P&T-488 INTERFACE
INSTRUCTION MANUAL

Custom Software Package

PICKLES & TROUT

P. 0. BOX 1206, GOLETA, CA 93116, (805) 685-4641

PImES

P&T -488 INTERFACE
INSTRUCTION MANUAL

copyright 1981 by

Pickles & Trout
P.0. Box 1206
Goleta, CA 93116
All Rights Reserved

WARRANTY

This Pickles & Trout product is warranted against defects in materials and workmanship for
90 days from the date of shipment. Pickles & Trout will, at its option, repair or replace
products which prove to be defective within the warranty period provided they are returned
to Pickles & Trout. Repairs necessitated by modification, alteration or misuse of this
product are not covered by this warranty.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A

PARTICULAR PURPOSE. PICKLES & TROUT IS NOT LIABLE FOR CONSEQUENTIAL
DAMAGES.

P&T-488

FOREWORD

This manual contains the information necessary to understand and use the
P&T -488 interface as well as provide instruction in the basic concepts of the
IEEE -488 bus.

Those who are already familiar with the IEEE -488 bus (also known as the
HP-IB, GPIB and ASCIl bus) and the concepts of a Talker, Listener and Controller may
skip to the chapter "Installation of the P&T -488". It is recommended that those who
are not acquainted with Talkers, Listeners and Controllers read the chapter "The
IEEE -488 Bus" first.

The P&T-488 interface consists of two major components: the P&T -488 interface
board and the P&T -488 custom system interface software package. The software package
consists of a single program named PNT488. Also included is a program named 488TEST
which performs a complete functional test of the P&T-488 interface board. Additional
programs are provided as examples of how one can use the P&T -488 interface to
communicate with 488 devices. :

P&T -488

Page

1

12

Cs-3

CS-4

CS-5

CS-5

CSs-7

Cs-8

CS-8

CS-8

CS5-9

Cs-9

CS-9

Title

IEEE -488
BUS

Hardware

Description

Functional
Test

Installation
of the P&T -488

Custom System
Routines

Design
Philosophy

Jump
Table

Single & Double
Byte Addresses

Serial Poll &
Service Request

Summary of
Functions

CNTRL

GIM

INIT

LISTN

PPIDL

PPQRY

PISTT

Table of Contents

Table of Contents

Description

An introduction to the three primary occupants of the
IEEE -488 bus: the Talker, Listener and Controller.

A brief description of the P&T -488 interface board.
Instructions are included for changing the 1/O port addresses
used. The significance of each port is also explained.
Instruction on the use of the Functional test routine
(488TEST). This routine performs a complete check of the
operation of the P&T -488 interface board and its 488 cable.

A step by step account of how to install the P&T -488
interface board and test it.

A description of each of the routines in the Custom system
package, and how each is to be used.

An overview of the goals set for the design and use of the
Custom Software Package.

The organization and relative addresses of the various routines
in the Custom Software Package.

A description of the meaning of single and double byte 488
addresses, and a summary of how the P&T -488 uses them.

An explanation of the interaction of the Service Request and
Serial Poll functions.

A summary of the IEEE -488 functions provided by the Custom
Software Package.

The routine which makes the P&T -488 the Active Controller.

A routine which gives the user direct access to the IFC,
SRQ, REN and EOI lines.

A routine which initializes the P&T -488 interface and can
optionally send an IFC on the 488 bus.

The routine which causes the P&T -488 to become a Listener.

A routine which puts the P&T -488 Parallel Poll function into
the ldle (PPIS) state.

A routine which causes the P&T -488 to perform a Parallel
Poll.

Sets the "ist" (individual status) message of the P&T -488 true.

P&T -488

CS-10

CS-10

csS-1n

csS-1n1

CS-12

CS-12

CS-13

CS-13

CS-15

CS-15

CsS-17

CS-17

CS-17

CS-18

CS-18

CS-18

Cs-18

CS-18

PISTF

Additional
Comments

SPIDL

SPQRY

SPSRQ

STADR

STATE

State
Table
TALK
XCTRL
User-
Supplied

Routines

Jump

Table

BREAK

BUFUL

DVCLR

IFCLR

NOLSN

POC

Table of Contents

Sets the "ist" message of the P&T -488 false.

A description of how the Parallel Poll response function of the
P&T -488 may be used in an IEEE -488 system.

A routine which puts the P&T -488 Service Request function
into the idle (NPRS) state.

A routine which conducts a 488 Serial Poll.

A routine which places a Service Request on the 488 bus and
then responds to a Serial Poll.

A routine which sets the Listen and Talk addresses of the
P&T -488. It also sets the Parallel Poll Response byte and
the End-of-String (EOS) character.

The routine which summarizes the state of the P&T -488
interface.

A table showing how the states of the various 488 interface
functions are stored in memory.

The routine which makes the P&T -488 a Talker.

The routine which updates the state of the P&T -488 in
response to commands sent by an external Controller.

Brief descriptions of each of the routines the user must
supply to complete the integration of the P&T -488 into his
system.

The required organization of the jump table for the
user-supplied routines.

The routine which allows the user to defer or interrupt 488
communication after each byte.

The routine which is called when the Listen buffer is full and
cannot accept more bytes.

A routine which is called whenever a Device Clear message is
detected.

A routine which is called when an IFC (sent by an external
Controller) is detected.

A routine which is called upon the discovery that there are no
Acceptors on the bus when the P&T -488 is trying to be a
Source (that is a Controller or Talker).

A routine which is called whenever an S-100 RESET or

Power-On Clear has been detected.

- v -

P&T -488

CS-18

CS-19

CsS-19

CS-20

CS-25

Cs-30

CS-35

SVCRQ

TRIGR

XATN

488 Bus
Monitor

Sample
Program

DINK

Special
Considerations

Unofficial
Phrasebook

Functional
Test Program

Bitwiggler™

Version 1.4
Listing

Code Assignments
for Command Mode
of Operation

Table of Contents

A routine which is called upon detection of a 488 device
requesting service.

A routine which is called whenever the Group Execute Trigger
(GET) command is received from the Controller.

A routine which is called whenever an external Controller is
attempting to issue commands.

A sample program which shows how to use the P&T -488 to
monitor communication on the 488 bus. The source listing (in
Intel mnemonics) is included.

A sample program which shows how to set up the P&T -488 as
a Controller to send out bus commands and then become a
Listener. The source listing (in Intel mnemonics) is included.

A sample program which allows the user to exercise most of
the functions provided by the Custom Software package.

A review of how the P&T -488 works and the consequences in
terms of communications on the IEEE -488 bus and the
operation of the S-100 computer. '

*88 b 2 2

Appendices

A dictionary which expands the IEEE -488 Standard mnemonics
into Englishe There are also some definitions, and many of
the mnemonics are cross—referenced to the pages in the
IEEE -488 1975 Standard document which define their meaning
and use.

Comments on how to modify the Functional Test program so
that it can be used in any 8080 or Z-80 system. The source
listing is included.

Instructions on how to use the Audio Cassette input port of
the P&T -488 to read tapes recorded in Kansas City format.
The source listing of the Bitwiggler™ program is included.
(Provided only when the software is supplied on cassette.)

The source listing for the Custom Software Package Version
1.4.

A table giving the binary, Hex and ASCIl codes for the
commands sent by the 488 Controller.

P&T -488 The IEEE -488 Bus

— CAST OF CHARACTERS -

The 488 bus is populated by three major types of devices. One is the Controller,
which sends commands over the bus to other devices. Another is the Talker, which sends
data over the bus to one or more devices of the third kind: the Listeners. The Listeners
and Talker communicate with a handshake on each data transfer, and the communication
proceeds at the maximum rate allowed by the Talker and the slowest Listener. This
communication is completely asynchronous and may be interrupted at specific points in the
handshake cycle without causing any loss of data.

It can be useful to liken the bus to a meeting which has a chairman (Controller), a
recognized speaker (Talker) and an audience (Listeners). As is true of most meetings,
some of the audience is paying no attention whatever to the proceedings (some of the
devices on the bus may be lIdle), while some of those that are listening want to interrupt
the Talker. Sometimes a member of the audience is audacious enough to indicate that it
should be the chairman. The 488 bus specification allows the Controller to designate
another device as his successor.

It is the Controller's responsibility to make sure that communication takes place in an
orderly manner: it is he that says who can talk and who should listen at any given time.
It is also the Controller that takes care of such matters as telling everyone to shut up
(Universal Untalk UNT command), everyone to go back to their desks (Interface Clear
IFC), or listen to someone trying to gain the floor (Service Request SRQ). Even though
the Controller has (in theory) complete command over everyone else, problems can arise.
One possible problem is that the Controller has made the unwise choice of telling more than
one device that it can be a Talker, which results in sheer bedlam. Another way for the
Controller to lose control of the situation is if a Talk Only (ton) device is placed on the
bus. Some Talk Only devices are notoriously deaf and don't pay any attention to
anybody, even the Controller!

A Talker, on the other hand, leads a simple life. It does not concern itself with
disputes over who has the right to be heard, and when. It only puts data on the bus,
waits until the slowest listener indicates it is ready for data, says the data is valid, waits
until the slowest Listener says it has accepted the data, then says that it is removing the
data and follows up on its threat. About the only thing that bothers a Talker is to find
that no one is listening to him. Most get really upset and let the Controller know about
this impolite state of affairs. Talkers that don't complain have a tendency to sit there
with their mouths open, caught in mid-word. Either way, no communication is taking place
and this is not considered a desirable state of affairs.

Listeners can be a little more complicated. They let the Talker know when they are
ready for another word and when they have received it. Some also let the Controller
know that they want some special attention. The Controller waits until the Talker can be
interrupted so that no Listener is deprived of the latest bit of wisdom imparted by the
Talker. Then the Controller tries to find out which device wants the attention. Two
ways to do this are Serial Poll, in which each device is allowed to speak (one at a time)
and Parallel Poll, which allows several devices to simultaneously inform the Controller of
their need by a bit pattern each puts onto the eight data lines.

P&T-488 The IEEE-488 Bus

- HARDWARE OVERVIEW -

The 488 bus is made up of 16 signal lines: eight are used for data, three are
needed for the interlocking handshake used to communicate the data, and the remaining
five are used for bus management. Since there are eight data lines, a full eight bit
byte can be communicated in each handshake cycle. This is what is meant by the
phrase "bit parallel - byte serial" transmission. It is an alternative to the
slower RS 232C standard, in which only one data line is used (and which is referred
to as being a "bit serial" interface standard).

Data Bus Data Byte General
(8 Lines) Transfer Interface
Control Management

DI0 1...8

DAV
NRFD
NDAC

IFC
ATN
SRQ
REN
€01

Devica B Device C
Able to Talk, Listen Able to Taik and Only Able to
and Control Listen (e.g., Listen (e.g.,
(e.g., P&T-488) digital multimeter) signal generator)

Device D
Only Able to Talk
(e.g., counter)

There are three basic concepts which are important to an understanding of how
the hardware of the 488 bus works. The first is that only one of two voltages is
allowed on each line, and the lower allowed voltage is ground. The second is that
the 488 bus uses negative true logic, which means that the lower of the two voltage
levels has the value TRUE, while the higher voltage has the value FALSE. The third
is that the bus uses open-collector drivers. An open-collector driver can be thought
of as a switch with one terminal connected to the line and the other to ground. When
the driver is ON, it is as if the switch is closed, and so connects the line to
ground. If the driver is OFF, it is as if the switch is open, so no connection is
made between the line and ground. There is a resistor connecting the line to a
voltage supply, so the voltage on the line rises to the higher of the two allowed
levels if the line is not grounded. Since the 488 uses negative true logic, a line
is given the value TRUE by turning the open-collector driver CN, or the value
FALSE by turning the driver OFF. The phrases "active true"' and "passive
false’ are used to describe this system; active true because the line must be
actively connected to ground to impress a value of true on it, passive false because
no action is needed (no connection is made) to make the value of the line false.

-2

P&T -488 The IEEE -488 Bus

Each 488 device has one open-collector driver for each 488 line that it uses. More
than one open-collector driver (that is, more than one 488 device) can be connected to
each line. If all drivers are off the voltage on the line will be high, which means it has
the value false. However, if one or more open-collector drivers are on, the line's
voltage will be low, and it will have the value true. This is called a "wire—or" system
because the logical value of the line is the logical OR of the logical values impressed on it
by the several open-collector drivers connected to it. Thus each 488 device sends a true
to the line by turning on its driver, or a false by turning the driver off. Note that if
any device asserts a particular line true, that line will have the value true. However, if
a device asserts a false (high) signal, it will be overridden by any device which asserts a
true.

The eight data lines are named DIO1 through DIO8 (DIO stands for Data
Input/Output)e The least significant bit appears on DIO1, the most significant on DIOS.
One point of possible confusion is that the data bits in an S-10Q system are numbered Q
through 7, while the 488 data lines are numbered 1 through 8. Another is that S-109
systems assume positive true logic (high means TRUE, low means FALSE). Just remember
that S-10¢ data bit 7 appears on DIO8, etc. and a 488 byte is the one's complement of
an S-10Q byte and everything should be all right.

The proper IEEE title for the three handshake lines is "Data Byte Transfer Control"
lines. They are individually known as follows:

DAV (Data Valid) - when true the data on the eight data lines is valid.
NRFD (Not Ready For Data) - when true the 488 devices are not ready to accept data.
NDAC (Not Data Accepted) - when true the devices have not yet accepted the data.

The remaining five lines are known as the "General Interface Management" lines.
They are as follows:

IFC (Interface Clear) - place all 488 devices in their default state.

ATN (Attention) - used to distinguish between a Controller and a Talker.

SRQ (Service Request) - indicates that a device needs attention.

REN (Remote Enable) - allows 488 devices to be programmed either by their local
controls (front panel switches, etc.), or by information sent over the 488 bus.

EOI (End or Identify) - indicates the end of a string if ATN is false, otherwise it

indicates a Parallel Poll is in progress.

- BYTE COMMUNICATION -

Byte communication requires that there be a device which is generating the byte to
be communicated (the "source") and one or more devices which receive the byte (the
"acceptors"). The Source and Acceptors communicate by use of an interlocking handshake
using the three Data Byte Transfer Control lines (DAV, NRFD and NDAC). The byte
itself is sent on the eight data lines (DIO1 through DIO8). The handshake is schematized
in the following flow chart.

P&T-4838

SOURCE
(SH)

(A)&

Set DAV high
v
Are NRFD and NDAC both

(false)

high (false)?
YES - error: no Acceptors
on bus
NO - place the byte on
DIO1-DI10O38

o

LIs NRFD false (high)? |

The IEEE-488 Bus

ACCEPTORS
(AH)

Initialize handshake

NO - goto B
YES - continue
C)¢
Has it been at least 2
microseconds since the
byte was placed on the
data bus?
NO - goto C
YES - assert DAV true
(data available)
Dl
I's NDAC false (high)?]
NO - goto D
YES - data has been accepted,
so prepare to send next byte.
[More data to send? <1
YES - goto A
NO - continue
.
Warn that data will change
Assert DAV false (high)
L

Remove data
Assert DIO1
false (high)

END

through DIOS8

Set NRFD, NDAC low (true)

T

Each Acceptor passively asserts

NRFD false (high) as it becomes
ready for data. The NRFD line
goes high (false) when all are
ready.

L 4

&
{Is DAV true (low)? i
NO - goto U
YES -
as each Acceptor finishes
getting the byte it passively
asserts NDAC false and actively
asserts NRFD true (low). When
all have accepted the byte, NDAC
finally goes false (high).

\"

[ts DAV false (high)? |

NO - goto V

YES - actively assert NDAC true
(low), because the new byte which
has not yet been sent is not

accepted yet

goto T

P&T -488 The IEEE -488 Bus

- A More Detailed Look at the 488 Inhabitants -

A TALKER is a device which sends data over the 488 interface to other devices.
There are two major types and various subtypes. One major type is the Talk Only (ton),
which may be used in a 488 system which has no Controller. This device always talks,
and so it must be the only device which can talk. The other major type must be told
when to talk ("addressed to talk"). A Controller is needed because it is the only kind of
488 device that is allowed to address Talkers and Listeners. All Talkers use the Source
Handshake (SH) function to send a message over the 488 bus.

A LISTENER is a device which receives data over the 488 interface. As with the
Talker, there are two major types: Listen Only (lon) and addressed Listener. A Listen
Only device always listens to the 488 bus, while an addressed Listener listens only when
the Controller tells it to. The Listen Only device can operate in a 488 system which does
not have a Controiler since it does not need to be told what to do and when to do it. All
Listeners use the Acceptor Handshake (AH) function to receive messages on the 488 bus.

A CONTROLLER is a device which issues commands on the 488 bus. These include
commands which are used to reset all devices on the bus Interface Clear (IFC), indicate
which device is to Talk (when the Controller relinquishes the bus) and which devices are to
Listen (i.e. it sends the Talk and Listen addresses of those devices over the bus),
perform a Poll of 488 devices (Serial Poll and Parallel Poll), and a myriad of other special
functions. The commands fall into two general classifications: Uniline and Muitiline.
Each uniline command uses only one line out of the five General Interface Management
lines. Examples of uniline messages are Remote Enable (REN), Interface Clear (IFC) and
Parallel Poll. Multiline messages use the eight data (DIO1-D!08) lines to issue the
command. Examples of multiline messages incilude performing a Serial Poll and commanding
488 devices to Talk or Listen. Multiline messages are sent using the Source Handshake
(SH) function, just like a Talker. The way that a device determines whether it is hearing
a Talker or the Controller is that the ATN (Attention) line is true (low) when the
Controller is issuing a message, but false (high) when a Talker is saying something. The
Controller is the device which controls the ATN line. Whenever ATN is true, all
addressed Talkers shut up so that the Controller can say its piece. However, some Talk
Only devices don't, and so they garble commands issued by the Controller. Generally
speaking, a Talk Only device should be used only in a 488 system which has no Controller.
Whenever the Controller passively asserts ATN false (lets it go high), the Talker (if any)
begins to send its message.

- MULTILINE COMMANDS -

Telling a 488 device to Listen is one example of a multiline command. The
Controller places the Listen address of the selected device on the data lines (DIO1 through
DIO8) and then performs the Source Handshake (SH) function. In other words, it "speaks"
the address while ATN is true (low). Whenever the Controller is active (that is, whenever
ATN is true), all devices on the 488 bus interpret whatever is said (via the data lines and
the Source Handshake function) as a command rather than data. ALL devices hear what is
said by the Controller. They ALL execute the Acceptor Handshake function, without
regard to whether they are normally a Talker, Listener or whatever.

P&T -488 The IEEE -488 Bus

Another example of a multiline command is the Serial Poll. The order of events is
that the Controller sends out the Serial Poll Enable (SPE) command, which tells each
device that when it is addressed as a Talker that it is to say either SBN (Status Byte -
service Not requested) or SBA (Status Byte - service request Acknowledged). Those are
the only two messages that are allowed. Then the Controller addresses each device as a
Talker in turn and Listens to the response of each. To conclude a Serial Poll, the
Controller sends the Serial Poll Disable (SPD) command so that any device later addressed
as a Talker can speak data (instead of SBN or SBA). Finally, the Controller performs
whatever service is needed, which is device dependent.

~ UNILINE COMMANDS -

An example of a uniline command is Parallel Poll. Parallel Poll is both simpler and
more complicated than Serial Poll. It is simpler because only one command is given
(Identify IDY: the logical AND of ATN and EOl) and all devices respond at once. It is
possibly more complicated in that it may be more difficult to sort out which device wants
service. Whenever a 488 device receives the IDY message, it immediately places its
Parailel Poll Response byte on the eight data lines. For systems of eight devices or less,
it is common for each device to be assigned a unique bit which it asserts true when it
needs service. For example, one device would have a Parallel Poll response byte in which
bit 1 is true if it needs service, otherwise bit 1 is false, and bits 2 through 8 are always
false. Another device would use bit 2 to indicate its need for service and all other bits
would always be false in its response byte. A third device would use bit 3. When a
Parallel Poll is performed, the response sensed by the Controller will be the logical OR of
all the Parallel Poll Response bytes (due to the fact that the 488 bus is a wire-or
system). |If the response has bits 1 and 3 true, and all other bits false, it means that
the first and third devices need service, while the second does not.

If the 488 system uses more than eight devices, some alternate scheme must be used.
One would be to have only eight devices respond to a Parallel Poll, and use Serial Poll on
the remaining devices. Another scheme would be to have several devices share the same
Parallel Poll Response byte. If the response to a Parallel Poll shows that at least one of
the devices that shares a common response needs service, a Serial Poll can be used to
find which ones they are.

-6-

P&T -488 Hardware Description

- OVERVIEW -

The P&T -488 has four read/write registers which appear as four input/output (I/O)
ports to the S-10Q host machine. The ports are addressed as four consecutive I/O ports
with the first port address an integral multiple of 4 (9, 4, 8, 0C, ..., N*4 ..., FC).
For ease of description these registers will be referred to as registers @ through 3, even
though what is called register ® may be Port 0, 4, 8, ..., N*4,6 ..., FC.

The addresses used by the P&T-488 are set by means of a DIP switch on the upper
left corner of the interface board. All boards are set at the factory for I/O ports 7C
through 7F Hex, and all software supplied by Pickles & Trout assumes these addresses.
The address used by both the board and the software can be changed by the user. The
addresses used by the software and the board must be the same. To change the addresses
assumed by the software, refer to the instructions given with the program.

To change the addresses used by the board, first note that the labels "A7" through
"A2" appear to the left of the switch. Switches A2 through A7 are set according to the
following table:

Address A7 A6 AS A4 A3 A2

(Hex)

90-93 ON ON ON ON ON ON
04-07 ON ON ON ON ON OFF
#8-9B ON ON ON ON OFF ON
pC-9F ON ON ON ON OFF OFF
19-13 ON ON ON OFF ON ON
14-17 ON ON ON OFF ON OFF
18-18 ON ON ON OFF OFF ON
1C-1F ON ON ON OFF OFF OFF
20-23 ON ON OFF ON ON ON
24-27 ON ON OFF ON ON OFF
28-28 ON ON OFF ON OFF ON
2C-2F ON ON OFF ON OFF OFF
39-33 ON ON OFF OFF ON ON
34-37 ON ON OFF OFF ON OFF
38-38B ON ON OFF OFF OFF ON
3C-3F ON ON OFF OFF OFF OFF
40-43 ON OFF ON ON ON ON
44-47 ON OFF ON ON ON OFF
48-48B ON OFF ON ON OFF ON
4C-4F ON OFF ON ON OFF OFF
50-53 ON OFF ON OFF ON ON
54-57 ON OFF ON OFF ON OFF
58-58B ON OFF ON OFF OFF ON
5C-5F ON OFF ON OFF OFF OFF
69-63 ON OFF OFF ON ON ON
64-67 ON OFF OFF ON ON OFF
68-6B ON OFF OFF ON OFF ON

P&T-488 Hardware Description

Address A7 A6 AS A4 A3 A2

(Hex)

6C-6F ON OFF OFF ON OFF OFF
70-73 ON OFF OFF OFF ON ON
74-77 ON OFF OFF OFF ON OFF
78-78B ON OFF OFF OFF OFF ON
7C-7F ON OFF OFF OFF OFF OFF

89p-83 OFF ON ON ON ON ON
84-87 OFF ON ON ON ON OFF
88-88 OFF ON ON ON OFF ON
8C-8F OFF ON ON ON OFF OFF
99-93 OFF ON ON OFF ON ON
94-97 OFF ON ON OFF ON OFF
98-98 OFF ON ON OFF OFF ON
9C-9F OFF ON ON OFF OFF OFF
AP-A3 OFF ON OFF ON ON ON
A4-A7 OFF ON OFF ON ON OFF
A8-AB OFF ON OFF ON OFF ON
AC-AF OFF ON OFF ON OFF OFF
Bp-B3 OFF ON OFF OFF ON ON
B4-B7 OFF ON OFF OFF ON OFF
B8-BB OFF ON OFF OFF OFF ON
BC-BF OFF ON OFF OFF OFF OFF
Co-C3 OFF OFF ON ON ON ON
C4-C7 OFF OFF ON ON ON OFF
C3-CB OFF OFF ON ON OFF ON
CC-CF OFF OFF ON ON OFF OFF
D§-D3 OFF OFF ON OFF ON ON
D4-D7 OFF OFF ON OFF ON OFF
D8-DB OFF OFF ON OFF OFF ON
DC-DF OFF OFF ON OFF OFF OFF
EP-E3 OFF OFF OFF ON ON ON
E4-E7 OFF OFF OFF ON ON OFF
E8-EB OFF OFF OFF ON OFF ON
EC-EF OFF OFF OFF ON OFF OFF
FP-F3 OFF OFF OFF OFF ON ON
F4-F7 OFF OFF OFF OFF ON OFF
F8-FB OFF OFF OFF OFF OFF ON
FC-FF OFF OFF OFF OFF OFF OFF

For example, to address the P&T-488 interface board to use /O ports 7C through
7F Hex, A7 must be ON and A2 through A6 OFF.

The P&T -488 allows direct access to the 8 signal lines of the IEEE 488-1978
(hereafter called 488) data bus (Register 2) and the 8 lines of the 488 Data Byte Transfer
Control Bus and General Interface Management Bus (Register 1). In addition, a register is
provided to allow a software settable response to a Parallel Poll (Register 3). Finally, a
register is provided which indicates transitions occurring on the various 488 Control Bus
and Management Bus lines (Register @§). Additional features of the P&T-488 include
software disable of interrupts from the P&T-488 (without having to disable all interrupts
of the S-100Q system) and immediate response of the interface to Attention (ATN),
Interface Clear (IFC) and Parallel Poll without intervention of the S-100 system's CPU.

P&T -488

Hardware Description

The data transfer rate is highly dependent on the software, CPU and system memory
of the S-100 system, but with the supplied software, an 8089 running at 2.9 MHz and no
states, the transfer rate is about 3 KBytes/sec. For applications requiring
higher rates, the same S-10Q system can get data rates of over 9 KBytes/sec in the Talk

memory wait

Only mode.

REGISTER FUNCTIONS

FUNCTION

? Interrupt Status (read only)
? Interrupt Reset (write only)

1 Command Line Register (read and write)

2 Data Line Register (read and write)

3 Parallel Poll Response (write only)

No . 1/0
g IN
('] ouT
1 1/0
2 1/0
3 ouT

NOTES:

REGISTER BIT MAP

D7 D6 D5 D4 D3 D2 D1
DAV NRFD NDAC XI1FC XATN SRQ REN
+ - + + - +- - +
DAV NRFD NDAC XIFC XATN SRQ TALK/
LISTN
DAV NRFD NDAC 1FC ATN SRQ REN
D108 DIO7 D106 D105 D104 D103 DIO2
D108 D107 D106 D105 D104 DIO3 D102

+ means the bit goes low on a LOW to HIGH transition
- means the bit goes low on a HIGH to LOW transition

D! means 488 interface interrupts are disabled
El means 488 interface interrupts are enabled

The 488 data lines are numbered from 1 to 8, while the
data lines on the S-10Q0 system are numbered @ to 7

X as in XATN, XIFC signifies that some device other than
the P&T -488 has made the level on the line (ATN or IFC)
active true (low).

09
POC
DI/
El
EOI
D101

D101

P&T -488 Hardware Description

- REGISTER 3 -

This register holds the Parallel Poll Response byte. Whatever has been output to
Register 3 will appear on the 488 data lines in response to a Parallel Poll (ATN and EOI).

- REGISTER 2 -

This register is connected to the 488 data lines through bus transceivers. The state
of the data lines can be sensed by reading Register 2, and the P&T-488 will assert on the
data lines whatever was last written into Register 2. However, if either the XATN flag
or XIFC flag in Register @ is set, the output buffers to the 488 bus are disabled which
precludes assertion of what was last written into Register 2. Remember that the 488 bus
uses negative logic so that any bit that is low is asserted (or logically true). Also the 488
bus is a wire-or system, so if any piece of equipment is asserting a particular line true,
that line will be a logical true. But if a device asserts a false (high) signal, it is
overridden by any device that asserts a true. Hence the terminology of active true and
passive false. Thus if the P&T-488 is being used as a Listener all bits of Register 2
should be written high (logic false) so that the data asserted by the Talker can be properly
read.

- REGISTER 1 -

This register allows direct setting and sensing of the 488 Control and Management
bus lines. |If the XIFC flag is set in Register @, the interface will not assert any of the
lines, regardless of what was last written into Register 1. Similarly, if XATN flag is set
in Register @, the interface will not assert any line except Not Ready For Data (NRFD)
and Service Request (SRQ). SRQ will be asserted active true (low) only if the SRQ bit
(bit D2) of Register 1 was written low. NRFD will always be asserted active true (low).
The reason that NRFD is asserted true is so that the System Controller will not send any
commands until the S-109 CPU is ready to accept them. Note that XATN has precedence
over XIFC, so an externally applied IFC followed by an externally applied ATN will cause
NRFD to be active true, SRQ to be true if the SRQ bit in Register 1 was written low,
and all other 488 lines will be passive false.

- REGISTER § -

This is the Interrupt Status/Reset Register. Since the P&T-488 uses only one
interrupt vector, one needs to be able to determine which condition caused the interrupt.
Each bit of this register is associated with an interrupt-causing condition. By writing a
low in the corresponding bits, one can individually reset the status bits associated with
Data Valid (DAV), Not Ready For Data (NRFD), Not Data Accepted (NDAC), External
Interface Clear (XIFC), External Attention (XATN) and Service Request (SRQ). If Bit 1 is
set low status bit 7 will ignore any activity on the DAV line. This is useful when the
interface is used as a Talker or Controller. |If Bit 1 is set high, Bits 5 and 6 will ignore
any activity on the NDAC and NRFD lines, which is useful when the interface is used as a
Listener. If Bit @ is set low, status Bits § (POC/RESET) and 1 (REN) will be cleared and
the P&T-488 will be prevented from interrupting the S-100 system (but the interrupt
status bits will continue to respond to 488 Control and Management line activity). If Bit @

-10-

P&T -488 Hardware Description

is set high the interface can interrupt the S—109 system.

If Bit 4 (IFC) of Register 1 is asserted there is no way of determining if an external
Controller is also asserting IFC, so interrupt status bit 4 (XIFC) will ignore any activity
due to an external Controller. A similar argument is true for ATN and XATN (Bit 3 of
Registers 1 and ®). This is not a problem because the IEEE standard allows only the
System Controller to assert IFC, and only the Controller-in-Charge may assert ATN.
The standard further specifies that there may be no more than one System Controller and
no more than one Controller-in-Charge.

-11=

P&T -488 Functional Test
P&T -488 Functional Test

The program 488TST81 performs seven different kinds of tests on the P&T-438
interface board and its 488 cable. The first group of four are done with no 488 device
or test plug connected to the P&T-488. The last three are made with the special test
plug connected to the P&T -488.

The program starts by printing a message to the operator to disconnect all 488
devices from the P&T-488. The operator signifies this has been done by pressing any key
on the keyboard. After a key has been pressed the program begins its tests.

NOTE: Any time a Control C is pressed, the program is aborted and control is returned to
the monitor (operating system).

The first test checks the data register (Register 2). by outputting a byte to the 488
data lines then reading the data lines to see if their state corresponds to the byte output
to them. Each of the 256 possible bytes . is tried in turn. If any errors occur, a
message "DATA ERROR - bits in error are ..." with the bit names is printed. If there
are no errors, no message is printed.

In a similar manner, the second test checks the command line register (Register 1).
If there are any errors, the message "COMMAND LINE ERROR - bits in error are ..." is
printed. Again, if there is no error, no message is printed.

The third test checks the Parallel Poll Response register (Register 3) by first making
ATN and EOIl true. Thus anything output to the Parallel Poll Response Register should
appear on the 488 data lines. If the Command Line test failed with bits ® and/or 3 in
error, the results of this third test are meaningless. As with the first two tests, each of
the 256 possible byte values is tried and any errors are reported: this time the error
message is "PARALLEL POLL ERROR - bits in error are ...'".

The fourth test checks the Interrupt Service Register (Register @). If the second
test failed, this one will probably fail also. Errors are reported with the message
"INTERRUPT SERVICE REGISTER ERROR - bits in error are ...".

After these four tests have been made, (they take less than a tenth of a second),
the operator is told to attach the special test plug and then press any key on the keyboard
to continue the tests. The plug connects the eight data lines to the eight 488 command
lines, so that the 488 cable can be tested for continuity, shorts or incorrect wiring. It
also allows testing the response of the P&T-488 board to ATN and IFC asserted true by
an external Controller.

The fifth test checks the 488 cable and reports any bits in error. If either the
first (data line) or second (command line) tests failed, the results of this test will be
meaningless. |f the first four tests were passed without error, but this one shows errors,
it means either the cable and/or test plug is open, shorted, miswired or improperly
plugged. If all bits are in error, the 488 cable is either not connected to the P&T-488
interface board or the special test plug is not plugged into the cable.

-12-

P&T -488 Functional Test

The sixth test checks the response of the P&T -488 to an IFC (Interface Clear)
presented by an external Controller. What is really done, of course, is to use the data
port to assert a true on the IFC line through the special shorting plug, but the P&T-488
can't tell the difference between this and an external Controller making IFC true. The
results are meaningful only if the first five tests passed with no errors.

The seventh test checks the response of the P&T-488 to an ATN (Attention)
presented by an external Controller. The technique is the same as used in the sixth test.
Again, the results are meaningful only if the first five tests were passed without any
errors.

After the seventh test has been completed, the message NO ERRORS is printed if
all tests were passed without error. Then the message "P&T 488 functional test complete"

is printed and the program jumps back to the monitor.

WHAT TO DO IN CASE OF ERROR -
If any of the first four tests fail, check the following:

1. The P&T -488 interface board must be addressed to the same ports that the test
routine tests. The base address (lowest address of the four) used by the P&T -488
must be in location 193 Hex for CP/M systems, 3003 Hex for North Star. The
program is supplied with the base address set to 7C Hex.

2. All 488 devices must be disconnected from the P&T -488.

3. Make sure you are using the correct test routine. 488TST81 is to be used on
ONLY Revision 81A boards (serial number 5000 and up). 488TEST is to be used on
ONLY boards with serial numbers under 5000.

If any of the first four tests fail, try disconnecting the 488 cable from the
P&T -488 interface board. If they STILL fail, the P&T-488 is faulty and should be
returned to Pickles & Trout for repair or replacement. Be sure to include a printout of
the test results. If the first four tests are passed without error after the cable has been
disconnected, the cable is defective (a short between lines or a short to ground).

If no error message is printed before the "Attach test plug..." message to the
operator, the first four tests were passed without error. If the error message
"EXTERNAL ATN ERROR - bits in error are 2" is displayed, it is likely that you are
using the wrong test routine. 488TEST is to be used on only boards with serial numbers
under 5000Q; 488TST81 is to be used only on boards with serial numbers over 4999. USE
THE CORRECT TEST. |If the error message "EXTERNAL INTERFACE CLEAR ERROR
— eee' is printed with no error message preceding it, the P&T-488 is faulty. |If the
error message "EXTERNAL ATN ERROR - ..." is printed, and either there is no other
error message or only the EXTERNAL INTERFACE CLEAR ERROR message, the P&T -488
is faulty and should be returned for repair or replacement.

RETURN POLICY -
The P&T-488 interface board, its 488 connecting cable and the special test plug are

warranted to be free of defects in materials and workmanship for 90 days from the date
of sale. If they should be found faulty within the warranty period, Pickles & Trout will

-13-

P&T -488 Functional Test

(at -its option) repair or replace them upon receipt of the defective pieces. Repairs
necessitated by alteration, modification or misuse of these products are not covered by
this warranty. Out of warranty interface boards which have not been modified or
otherwise tampered with will be repaired or replaced for a flat fee. As of January,
1981, the fee is $45.00.

NOTICE - A handling fee of $45.00 will be charged for any board that is returned for
repair because the wrong test routine was used. THIS INCLUDES BOARDS STILL IN
WARRANTY.

When returning equipment to Pickles & Trout, be sure to include the following
information:

1 NAME and ADDRESS of the owner.
2 NAME and PHONE NUMBER of the person who is using the P&T-488.

3 Description of the failure and how it was found. PRINTOUT OF THE TEST
RESULTS IS REQUIRED.

4 Description of the S-100 machine and operating system. Include manufacturer and
model name of the CPU board, system clock rate, and the name of the organization
that authored the operating system, as well as any information on systemic
modifications made to it.

For example: IMSAIl 8080 with Ithaca Audio Z-80 CPU board with a system clock of 4
MHz, North Star single density 5.25" floppy disk drive and controller, Digital
Research CP/M as modified by Lifeboat Associates for North Star disks.

5 If the equipment is still in warranty, enclose a copy of the bill of sale. Otherwise
enclose a check for the repair and shipping and handling fees. The shipping and
handling fee is $5.00 for addresses within the contiguous US, $7.50 for Alaska and
Hawaii. There is no shipping fee for foreign addresses because the equipment will be
returned freight collect.

The repairs/replacements will be made within five business days and the equipment returned
postage paid to US addresses, freight collect to foreign addreses.

14

P&T-488 Installation

INSTALLATION of the P&T -488

The P&T -488 interface card uses four contiguous |/O ports, and is supplied
configured to use ports 7C through 7F Hex. Be sure there is no port address conflict
with other /O boards in your S-100 system BEFORE installing the P&T-488. If it is
necessary to change the 1/O ports that the P&T -488 uses, refer to the chapter
entitled "Hardware Description" for instructions.

When you are satisfied that there is no I/O port address conflict between the
P&T -488 interface and other devices in your S-100 system, turn off the power to the
$-100 system and wait at least twenty seconds (to allow sufficient time for the S-100
power supply to discharge) before installing the P&T-488 card. Attach the cable to
the back panel of the S-100 system using the metric hardware supplied with the cable
(this hardware mates with the standard lockscrews used on 488 cables supplied by
Hewlett-Packard, Beldon and others), and plug the cable onto the top edge connector
of the P&T -488 interface card. Note that the plug and edge connector are keyed.

If the I/O port addresses of the board have been changed from 7C through 7F Hex,
it will be necessary to modify 488TEST and PNT488. The fourth byte in the program
488TEST is supposed to contain the lowest address of the four that is used by the
P&T -488 interface card. |If, for example, the card has been addressed to use ports 60
through 63 Hex, you should change the value in the location BASPRT (103 Hex of
488TEST) to 60 Hex.

The programs 488TEST and PNT488 should now be loaded so they can be modified (if
necessary) and run. Programs supplied on cassette tape are recorded in Kansas City
format and may be read by the BITWIGGLER™ (see Appendix C for the source listing) or
any other cassette interface which understands the Kansas City format.

Next the P&T -488 should be tested for proper operation. Make any necessary
modifications to 488TEST (see Appendix B for details) and then run the modified
program. Refer to the chapter "Functional Test" for information about the meanings of
the various messages.

After the test has been completed with no errors, you are ready to use the 488
interface. You will have to write a set of short routines to complete the integration
of the P&T-488 with your particular system. The chapters "Custom Package Routines"
and "User-Supplied Routines" define the purpose of each of the routines, and the
chapters "488 Bus Monitor" and "Sample Program" each give examples of how the
routines can be written and used.

CS-1

P&T-488 Custom Package Routines

PAGE ROUTINE FUNCTION
NAME

CS-7 CNTRL Performs the Controller function (sends commands)

csS-8 GIM Allows direct control of the General Interface
Management lines
CcS-8 INIT Clears the interface, leaves all lines

passive false
CS-8 LISTN Performs the Listen-Only function

CS-9 PPIDL Puts the Parallel Poll function in the Idle state
CS-9 PPQRY Performs a Parallel poll

CS-9 PISTT Sets the "ist" (individual status) message true
CS-10 PISTF Sets the "ist" message false

CS-11 SPIDL Puts the Service Request function in the Idle state
CS-11 SPQRY Serial Poll query routine (performs a Serial Poll)
CS-12 SPSRQ Service Request routine

CS-12 STADR Sets the talker, listener addresses

CS-13 STATE Passes information on the state of the interface
to the user

CS-15 TALK Performs the Talk-Only function

CS-15 XCTRL Respond to an External Controller

DESIGN PHILOSOPHY

This software package was written with several objectives in mind. The first is
that the routines should relieve the user of as much of the burden of dealing with
the 488 bus protocol as possible. In place of having to test and respond to the
signals on the bus the user need only set up a buffer (when appropriate) for the
commands or data to be sent or received and then call a routine. The second is that
ALL commands actually appear on the bus: there is nothing more frustrating than
trying to debug a system in which a "smart" controller sees that it is going to
address itself as a Talker, and then does so without putting the Talk address on the
bus. The third consideration is that the design be closely identifiable with the
state-space representation of bus functions. The memory locations TSTAT, LSTAT, etc.
hold the present state of the interface functions. The fourth consideration is that
the code for the interface routines be "pure" so that it can be put into ROM (Read
Only Memory).

Cs-2

P&T-488 Custom Package Routines

The routines supplied with the P&T -488 interface board allow it to act as a
Controller, Talker or Listener, and provide the additional ability of conveniently
handling commonly encountered situations. These include requesting service, either
by means of the SRQ (Service Request) function or the PP (Parallel Poll) function,
ceasing to request service, performing a Paralle! Poll, performing a Serial Poll and
responding to an external Controller (i.e., a Controller that is not the P&T -488
itself).

The P&T -488 interface depends heavily on the support software in order to
communicate on the 488 bus. For this reason it is necessary for the S-100 system to
execute P&T -488 routines in order to perform 488 bus functions. This includes not
only the "assertive' functions, such as Talk and Control, but also the "responsive"
functions, which include responding to a Serial Poll, being addressed as a Talker or
a Listener by the Controller, etc. The only 488 bus function which the P&T -488
interface board can complete without any software intervention is respond to a
Parallel Poll.

Communication between the S-100 system and the P&T -488 takes place by means of
jump tables, state tables and string buffers. The user accesses routines within the
P&T -488 software package by means of a jump table that resides within it. The user
supplies several routines which are used by the P&T -488: these routines are accessed
by means of a jump table which the user also supplies. The jump table within the
P&T -488 interface software package is near the beginning and starts at memory
location ENTBL. The user is expected to use it and it only as the means of calling
the various P&T -488 routines. The reason the jump table should be used instead of
going directly to the P&T-488 routine is that later versions of the interface
software may change the location of the routine, while the placement of the jump to
that routine in the jump table WILL NOT change. Thus if the user uses only the jump
table, he can use subsequent versions of the interface software without changing his
software in any way.

P&T -488 Ver. 1.4 jJump Table
Organization

Routine Entry Point
INIT ENTBL

TALK ENTBL+3
LISTN ENTBL+6
STADR ENTBL+9
CNTRL ENTBL+12 (decimal)
GIM ENTBL+15
STATE ENTBL+18
XCTRL ENTBL+21
SPQRY ENTBL+24
SPSRQ ENTBL+27
SPIDL ENTBL+30
PPQRY ENTBL+33
PISTT ENTBL+36
PISTF ENTBL+39
PPIDL ENTBL+42

The P&T -488 interface software needs several user supplied routines in order to
complete the integration into his system. It is expected that the user will provide
a jump table which points to these routines. The details of the jump table and the
operation of the routines appears in the section User-Supplied Routines.

Cs-3

P&T-488 Custom Package Routines

Many of the P&T -488 interface routines cause the 488 interface functions to
change state. The routine STATE allows the user to quickly determine the state of
the more commonly desired interface functions. If the user needs additional detailed
information about the states of the various interface functions he may look at the
state table which is stored in memory starting at location TSTAT.

The P&T -488 routines which allow the S-100 system to be the 488 bus Controller
or a Talker require strings which are stored in output string buffers. The user
informs the P&T -488 routines of the location of the buffer by setting the register
pair HL to the beginning address of the string and DE to the address of the end of
the string before calling the P&T -488 routine. This technique allows the user
flexibility in the definition of the strings and their length. For those strings
which are needed on a recurring basis, the user may just point to that string rather
than copying it into an intermediate buffer before calling the P&T -488 routine.

One other P&T -488 interface function may require a string buffer. That function
is the 488 Listen routine. The conditions under which it needs a buffer are detailed
in the description of the routine LISTN. If a buffer is needed, the location of that
buffer is passed to the routine by the HL and DE register pairs, just as was done for
the Talk and Control functions.

Single and Double Byte Addresses
And How the P&T -488 Uses Them

The IEEE-488 standard defines two general ways of addressing Talkers and
Listeners. One way is by a single byte, and is called "single byte address" or
"non-extended address". In terms of function mnemonics, the Talker function is known
as the T Interface function, and the Listener as the L Interface function. The other
method of addressing is known as "extended address" or "two byte address". The
corresponding function mnemonics are TE and LE for Extended Talker and Extended
Listener Interface functions, respectively. The P&T -488 and this software package
are set up so that the P&T -488 may be addressed either way. If the Controller sends
the primary Listen address of the P&T-48383 and follows it with a secondary address,
the secondary address is stored in the memory location LSTNS. [If the primary address
was not followed by a secondary address, a dummy secondary address of 7F Hex (which
is an illegal secondary address) is stored in that location. The memory location
TALKS is used in a similar manner to record the secondary address (or lack thereof)
sent by the Controller after the P&T -488's primary Talk address. The user can make
use of the optional secondary address for many different purposes. One example of a
use of multiple secondary addresses is the following: Assume that the S-100 system
is monitoring activity of the 488 bus and printing the results on its printer.
Assume also that there are several different print formats possible and that the user
wants the 488 Controller to be able to specify which format is to be used. One way
of accomplishing this goal is to assign two different Listen addresses to the
P&T -488: one for passing formatting information and the other for passing characters
to be printed. The two addresses must have the same primary address and so differ
only in the secondary address. Assume that the P&T -488 has been assigned the primary
Listen address of ! (21 Hex), and the secondary address for formatting information
is b (62 Hex), while that for data to be printed is a (61 Hex). Whenever the
S-100 system calls the Listen function it first looks at the memory location LSTNS to
see what the secondary Listen address is. |If it finds the character b, it
interprets the string that is heard as formatting information. If it finds the
character a, it prints the string, for it is data. And if it finds any other
character it means that neither of these functions has been called for.

CS-4

P&T-488 Custom Package Routines

This brings up a point that should be made about good practice concerning
configuration of the IEEE -488 bus. It is generally a good rule to assign a given
primary Listen or Talk address to only one 488 device. This way if an address gets
garbled (the wrong secondary address sent with the proper primary address), it
becomes obvious that there is an error.

Serial Poll and Service Request
Overview

The two functions Serial Poll and Service Request are closely intertwined.
Basically, the Service Request function is used by a 488 device to tell the
Controller that it needs some special attention. The Serial Poll function is used by
the Controller to determine which one of the devices attached to the 488 bus is
calling for help.

All 488 devices which have the Service Request function share the single 488
line known as SRQ. Any one which needs special attention asserts an active true
(connects the line to ground). It can be seen that the SRQ line is false (high) only
when all the devices do not need service. Since several devices share the one line,
the Controller must find which device(s) need attention before it can service it
(them). This is done by performing a Serial Poll, which consists of first informing
all devices that a Serial Poll is going to begin (the Controller sends the Serial
Poll Enable message), addressing each device as a Talker one at a time, and listening
to its response. The response byte has a true (low) value on line DIO7 if that
device is requesting service, and that device also asserts a passive false (high) on
the SRQ line as it sends the response byte. |If the device is not requesting service,
line DIO7 is false (high). '

When the Controller has finished the Serial Poll, it informs all devices that
the function is finished by sending the SPD (Serial Poll Disable) message. This is
done so that any device which is subsequently addressed as a Talker will speak normal
data instead of the Serial Poll response byte.

Summary of Functions
IEEE -488 Functions Implemented
The IEEE-488 standard assigns mnemonics to the allowed subsets of each interface
function, so a 488 device can be tersely but fully described by just a few words.
The following table indicates what interface functions are implemented by the P&T -488
and Ver 1.4 software, and includes a brief description of the meaning of the
mnemonics used.

AH1
Complete Acceptor Handshake capability

SH1
Complete Source Handshake capability

TS5

The device can operate as a Basic Talker, respond to a Serial Poll, be placed into a
Talk Only mode of operation, and will unaddress itself as a Talker if the Controller
sends its Listen Address. This last operation means that the device will cease being
an addressed Talker when the Controller commands it to be a Listener.

CS-5

P&T-488 Custom Package Routines

TES '

The device can operate as a Basic Extended Talker, respond to a Serial Poll, be
placed into a Talk Only mode of operation, and will unaddress itself as a Talker if
the Controller sends its Listen Address. This last operation means that the device

will cease being an addressed Talker when the Controller commands it to be a
Listener.
L3

The device can operate as a Basic Listener, can be placed into a Listen Only mode of
operation, and will unaddress itself as a Listener if the Controller sends its Talk
Address. This last operation means that the device will cease being an addressed
Listener when the Controller commands it to be a Talker.

LE3

The device can operate as a Basic Extended Listener, can be placed into a Listen Only
mode of operation, and will unaddress itself as a Listener if the Controller sends
its Talk Address. This last operation means that the device will cease being an
addressed Listener when the Controller commands it to be a Talker.

SR1
The device has complete Service Request capability.

RLO
The device has no Remote-Local function capability.

PP1

The device has complete Parallel Poll response capability. This means that the
Parallel Poll function can be configured by the Controller (which in turn means that

the Controller can assign a specific Parallel Poll response message to the device).

PP2

The device is not capable of being configured (assigned a Parallel Poll response
message) by the Controller. The response is assigned by the local message lIpe,
which in this case is done by the S-100 system.

The user should note that the PP1 and PP2 functions are mutually exclusive. The
P&T -488 and its associated software package have been constructed so that the user
could pick whichever function is most suited to his needs. But for proper operation
of the 488 bus, it is imperative that he use only one of the two functions in any
particular bus configuration.

DC1
The device has complete Device Clear capability.

DT1
The device has complete Device Trigger capability.

C1
The device can operate as the System Controller.

C2
The device can send IFC and take charge of the 488 bus.

C3
The device can send the REN (Remote Enable) message.

Cs-6

P&T-488 Custom Package Routines

c4 .
The device can respond to the SRQ (Service Request) message.

C25

The device can send IF messages (e.g., Listen and Talk addresses, etc.), can perform
a Parallel Poll and can Take Control Synchronously. However, the device can not pass
or receive control to or from another Controller.

The user should be aware of the fact that these are capabilities offered by
the P&T -488 and that he does not have to use all of them. Indeed, some are
mutually contradictory so he must not use both. The mutually exclusive capabilities
offered are the T5/TES5 pair, the L3/LE3 pair and the PP1/PP2 pair. It is the user's
obligation to pick at most only one function capability out of each of these pairs.
It is allowable for the user to pick neither, but it is not allowable for the user
to pick both.

CNTRL
Become the Controller

This routine is used to perform the various Controller functions, such as
addressing Listeners, Talkers, sending Remote Enable, etc. It is important that this
routine be called only when the user is sure that the DAV line is passive high,
(i.e., take Control synchronously); otherwise there is the possibility of the current
Talker being interrupted by the Controller while it is in the middie of transferring
a byte of data. This could result in a spurious command being sent over the 488 bus
and may destroy the data byte as well. In those cases where the P&T -488 is not
participating in data transfer on the 488 bus but it is necessary for it to become
the Controller from time to time, one can use the non-buffered Listener function
provided by the routine LISTN to insure that the P&T -488 will take control
synchronously. Note that the routines TALK and LISTN either return to the user's
calling routine or call his routine BREAK at a point in the handshake cycle where a
call to CNTRL will result in a synchronous assumption of the Controller function by
the P&T -488.

The register pair HL must contain the address of the first character of the
command string to be sent, DE contains the address of the last character of the
string, and BC contains the address of the beginning of the user-supplied jump table.
CNTRL calls the user routine BREAK after each character in the string has been sent
(this allows the user to interrupt or defer further commands while other devices on
the S-100 system are being serviced). If a Service Request (SRQ) is detected from
some 488 device, a call is made to the user-supplied routine SVCRQ.

When CNTRL has finished sending the string of commands, it returns to the user's
calling routine with the address of the last character sent in register pair HL, and
the 488 lines ATN and DAV are left passive false. (Thus the P&T-488 has relinquished
control of the bus.) If the P&T-488 has been selected as a Listener or is to perform
Listen Handshake, the 488 line NRFD is left active true. This prevents the Talker
from saying anything until the S-100 system has started execution of the routine
LISTN. Finally, the Controller is left in STANDBY (CSBS in IEEE 488 notation). Thus
the P&T-488 is assumed by the other programs to be the Controller-In-Charge until
CSTAT (a memory location) is set to the Controller Idle State (CIDS) either directly
by the user, or by the user executing the routine INIT.

Cs-7

P&T-488 Custom Package Routines

GIM
General Interface Management

This routine allows the user to directly control several of the General
Interface Management lines. A call to GIM is made with the appropriate bit pattern
in the A register. ’

D7 D6 D5 D4 D3 D2 D1 DO
X X X IFC X SRQ REN EOI

If a bit is high (positive logic 1), the corresponding line is made active true.
Those bits marked by an X are disregarded. For example, if it is desired to make EOI
active true, and IFC, SRQ and REN passive false, one would call GIM with 01 Hex in
the A register. (Because of the disregarded bits, the A register could contain 09
Hex, 21 Hex, etc. without changing the result.) GIM returns to the calling routine
with all registers restored except the accumulator and flags.

INIT
Initialize Interface

A call to INIT clears the P&T -488 by setting all data and control lines passive
false, sets the Parallel Poll Response to all lines passive false, and sets all
functions (Talker, Controller, Listener, etc) to their idle states. If the B
register is zero when INIT is called, an IFC (Interface Clear) pulse is also sent on
the 488 bus to initialize all devices to a known state. Note that only the
Controller is allowed to send the IFC message, so the user should set register B
non-zero if the P&T -488 is not the Controller.

LISTN
Listen-Only

This routine performs the Listen function, which allows another device on the
488 bus to send information to the S-100 computer. The information can be in any
byte-oriented form: it may be ASCIl characters with or without parity, it may be BCD
values, binary values, etc.

The accumulator (A register) determines which of four modes is selected: if Bit
0 of A is O no buffer is used and the user must get the byte of data by looking at
the A register each time BREAK is called. If the Bit O is 1 when LISTN is called,
the data is put into a buffer as well as appearing in the A register each time BREAK
is called. Bit 1 of the A register determines whether the Listen function will
terminate on a End Of String (EOS) byte. If Bit 1 is 1, then an EOS will cause
LISTN to return to the calling program. The routine BREAK is called as each byte of
data is received, which allows the user to interrupt or defer further 4838
transactions while he performs some other operation, or allows him to check each byte
for special information.

The register pair HL must contain the address of the beginning of the listen
buffer, and DE contain the address of the end of the buffer. Note that HL and DE

need to be defined only if a buffer is used. The register pair BC contains the
address of the beginning of the user-supplied jump table.

A jump is made to the user-supplied routine BUFUL when the buffer is filled, so
the user can then transfer or otherwise manipulate the data and clear the buffer.

CS-38

P&T-488 Custom Package Routines

When the buffer is emptied, a cail to LISTN will continue the transfer of data.
LISTN returns to the calling routine when it senses EOI (End Or Identify) true.

The SRQ (Service Request) line is tested before each byte is received, and if it
is active true, the routine determines whether the P&T -488 is the Controller-In-
Charge. If it is, then a call is made to the user-supplied routine SVCRQ. After the
user has serviced the Service Request, he need only execute a RETurn to continue
listening from where LISTN left off.

This routine implements the Listen Only (lon) function described in the IEEE-438
standard. Thus execution of this routine sets the Listen State byte to Listener
Addressed. Execution of this routine also resets the Talk State byte to the ldle
(TIDS) State.

If the user wishes instead to implement the Addressed Listen function described
in the IEEE -488 standard (i.e., the transition from LIDS to LADS should occur only if
the Controller has addressed the P&T -488 as a Listener), he should call the routine
STATE and then call LISTN only if the Listen State byte shows that the P&T -488 is
addressed to Listen.

The non-buffered Listen function can be used for those cases where the P&T -488
is not the Talker or Listener but is expected to assume Control from time to time.
The technique is (> use the LISTN routine but ignore the data. Each time BREAK is
called is a time that the P&T -488 can assume Controller status without garbling a
data byte. So each time BREAK is called the S-100 system determines whether it needs
to become the 488 Controller: if so, it does so then, but if not it merely RETurns to
the calling routine. Note that the routine BREAK is called AFTER each data byte has
been communicated; this technique will lock up the S-100 system until the Talker says
something. If it turns out that there is no Talker or the Talker never speaks, there
is no way for the S-100 system to regain control.

PPIDL
Parallel Poll Idle

This routine puts the Parallel Poll response function in the Idle state. Thus,
whenever the Controller performs a Parallel Poll, the P&T -488 will give a
non-affirmative response, regardless of the state of the M"ist" (individual status)
message and the Sense bit of the most recent PPE (Parallel Poll Enable) message
received by the P&T -488.

PPQRY
Parallel Poll

This routine causes the P&T -488 to conduct a Parallel Poll. The response to
the Parallel Poll is returned in the accumulator and also in the memory location
LBYTE. Note that the IEEE -488 standard specifies that only the Controller is allowed

to conduct a Parallel Poll; it is up to the user to refrain from using this routine
unless the P&T -488 is the 488 Controller.

PISTT
Parallel Poll - ist True

This routine sets the "ist" (individual status) message in the P&T -488 true. If

the sense bit of the most recent PPE (Parallel Poll Enable) message received by the
P&T -488 is the same as the value of the "ist" message, (in this case, true), the

CS-9

P&T-488 Custom Package Routines

affirmative response byte is. put into the Parallel Poll response register of the
P&T -488. Otherwise, the non-affirmative response byte is put into the Parallel Poll
response register. What all this means is that when the 488 Controller conducts a
Parallel Poll, the P&T -488 will respond affirmatively if the sense bit of the PPE
message was true, non-affirmatively if the sense bit of the PPE message was false.
This routine also places the Parallel Poll function in the Standby (PPSS) state.
Note that the Parallel Poll response will change if the routines PISTF or PPIDL are
called or if the 488 Controller sends another PPE to the P&T -488.

PISTF
Parallel Poll - ist False

This routine is the same as PISTT except that it sets the "ist" message false.
Thus if the sense bit of the most recent PPE message received by the P&T -488 is
FALSE, the AFFIRMATIVE response is put into the Parallel Poll Response register.
Otherwise the NON-AFFIRMATIVE response is put there. Note that this is just the
opposite of what happens when the routine PISTT is called. Execution of this routine
places the Parallel Poll function in the Standby (PPSS) state.

Additional Comments
Parallel Poll - How to use it

There are several ways in which the Parallel Poll response function may be
programmed using the P&T -488 and this interface software package. One way is for the
488 Controller (which may or may not be the P&T -488 itself) to address the P&T-488 as
a Listener, send the PPC (Parallel Poll Configure) message, then send the PPE
(Parallel Poll Enable) message. This will put the Parallel Poll function of the
P&T -488 into the Standby (PPSS) state and also define which one of the eight 488 data
lines will be used by the P&T -488 when the Controller performs a Parallel Polil.
Another method is to put the PPE byte into the memory location reserved for the
Parallel Poll response byte. This can be done by defining a five byte string
consisting of the P&T -488's Primary Talk address, Primary Listen address, Serial Poll
Response byte, Parallel Poll response byte (the desired PPE message), and the EOS
(End Of String) byte, then calling the routine STADR. This method defines the
response byte, but the Parallel Poll response function of the P&T -488 still needs to
be enabled (put into the Standby state). Do do this, a call can be made to the
routine PISTT or PISTF. PISTT will make the "ist" message true, while PISTF will
make it false. Since an affirmative Parallel Poll response is given only if the
"ist" and sense bit of the PPE have the same logical value, one would call PISTT if
he wanted the P&T -488 to respond affirmatively to a Parallel Poll and the PPE message
was the character h, i, j, k, |, n or o.

By the use of the routines PISTT and PISTF one can readily cause the P&T -488 to
give either a non-affirmative or an affirmative Parallel Poll response. One use of
this ability would be to define an affirmative response as meaning that the S-100
system wants the Controller to perform some special function (which could be
something as simple as to alert the operator that the printer is out of paper), and a
non-affirmative response means that the Controller is to continue with normal
operation. For the sake of a concrete example, assume that the P&T -488's Listen
address is the character ! (21 Hex). Assume also that the Controller has sent the
string ?1<PPC>h? where the characters <PPC> mean that the PPC message (05 Hex) was
sent, not that the five characters <, P, P, C and > were sent. Thus the sense bit
of the PPE is true, and the P&T -488 is assigned to use data line DIO1 for its
Parallel Poll response. Now assume that the S-100 system is listening to
transactions on the 4838 bus (via the Listen function of the P&T -488) and printing

CS-10

P&T-488 Custom Package Routines

each character on a printer as it is heard. Whenever the printer's status indicates
that it is out of paper, the routine PISTT should be called, for it will set the
"ist" message true and cause the P&T -488 to respond affirmatively to a Parallel Poll.
When the printer has been serviced, the routine PISTF should be called so that the
P&T -488's response to a Parallel Poll will be non-affirmative.

One thing that the user should be aware of is that all Listeners which are in
the addressed state will be assigned the same Parallel Poll response byte when the
Controller sends the string <PPC><PPE>. This can give rise to utter confusion when a
Parallel Poll is actually executed, so it is wise to have the Controller explicitely
unaddress all Listeners (with the Unlisten command, which is the character ?),
address the Listener that is to have its Parallel Poll response byte configured, then
send the PPC and PPE message, followed by another Unlisten.

The P&T -488 along with this software package implements the full Parallel Poll
(PP1) function as defined by the IEEE -488 standard. As such, the function may be put
back into its Idle state (PPIS) by the Controller addressing the P&T-488 as a
Listener and sending the PPC character followed by the PPD character, or by the
Controller sending the PPU (Parallel Poll Unconfigure) message, or by calling the
routine PPIDL, which implements the "local poll not enabled" message defined in the
standard.

SPIDL
Service Request ldle

This routine resets the Service Request function to the Idle state. As a
consequence, it also insures that the P&T -488 is passively asserting SRQ false and
that the Serial Poll response byte is non-affirmative. Thus execution of this
routine is equivalent to the S-100 system making the local message rsv (request
service) false. This routine is the complement of the routine SPSRQ, which makes the
local message rsv true.

SPQRY
Serial Poll Query

This routine is called when the user wishes to determine (by means of Serial
Poll) which device is requesting service. The Talker addresses in the buffer are
sent out one by one and the response monitored to find which one is requesting
service. The routine returns when the appropriate device is found or when the buffer
with the Talker addresses is emptied.

The register pair HL must contain the address of the first byte of the Serial
Poll Query buffer, DE must contain the address of the end of the buffer, and BC the
first address of the user-supplied jump table. The Serial Poll Query buffer must
contain a character string made up of the Talk or Talk Extended addresses (in any
order) of the devices to be tested for Service Request.

This routine causes the Controller function of the P&T-488 to enter the Active
state, issue a UNL (Unlisten) message so that devices that had been addressed to
Listen will not hear the Serial Poll response bytes sent by each Talker, then issue a
SPE (Serial Poll Enable) message, and then send each Talk address in turn. As a
precaution against the possibility of a device not unaddressing itself as a Talker
whenever another Talk address is sent over the 488 bus, each Talk address is
preceeded by a UNT (Untalk) command. When a Talker responds affirmatively to the
Poll or when there are no more Talker addresses left in the buffer, this routine

CS-11

P&T-488 Custom Package Routines

issues a SPD (Serial Poll Disable) message and then returns to the calling program.

To allow for the possibility of addressing both normal (single address byte) and
extended address (two address bytes) Talkers (otherwise known as T and TE Talkers),
this routine sends the first address and then looks to see if a secondary address is
to be sent also. |If not, it listens for the Talker's response. If there is a
secondary address to be sent, it sends it then listens to the Talker's response.

If a Talker responded affirmatively to the Serial Poll, the routine returns to
the calling program with 00 Hex in the accumulator, the Serial Poll response byte in
register B, and the register pair HL points to the buffer location that contains the
Primary Address of that Talker. If no Talker responds affirmatively, the A register
contains 40 Hex, register B contains the response of the last Talker, and HL points
to the memory location holding the address of that last Talker.

Note that the IEEE -488 standard allows only the Controller to perform a Serial
Poll. It is up to the user to insure that this routine is called by his programs only
when the P&T -488 is the 488 Controller. Another point the user should be aware of is
that this routine does not check for valid Talk addresses. It is the user's
responsibility to put only valid Talk addresses in the buffer. Since the P&T -488
must wait for the addressed Talker to respond to the Serial Poll, if a non-existant
Talk address is in the buffer, the P&T -488 will wait forever for the non-existant
Talker to speak its Serial Poll response byte.

SPSRQ
Service Request

A call to this routine causes the P&T -488 to make the SRQ (Service Regquest) line
active true and puts the Service Request function of the P&T -488 into the Service
Request (SRQS) state. Thus execution of this routine is equivalent to the $-100
system making the local message rsv (request service) true. This routine then
tests the Controller State of the interface. |[f it is Not Idle, a jump is made to
the user-supplied routine SVCRQ. Otherwise the routine waits until the Talker
address of the interface is sent out and responds properly to the Serial Poll
performed by an external controller. After it has responded, the routine returns to
the calling program. The register pair BC must contain the base address of the
user-supplied jump table before this routine is called.

If the P&T -488 Controller state is Idle, the P&T -488 ignores all data
communication on the 488 bus until it has been polled by the Controller. Thus if the
P&T -488 had been a Listener, it will miss everything the Talker says between the time
SPSRQ was called and a Serial Poll is conducted by the Controller.

STADR
Set Talker, Listener addresses

This routine copies the Talker and Listener addresses, Parallel Poll and Serial
Poll Response bytes and the End Of Strimg (EOS) byte from a table to the P&T -4838
interface routines. The register pair HL must contain the address of the beginning
of this table. Note that the Parallel Poll response byte is not copied into the
interface Parallel Poll Response register. The Parallel Poll Response byte is
interpreted in the same manner as the PPE/PPD (Parallel Poll Enable/Parallel Poll
Disable) messages received from the Controller during a Parallel Poll Configure.

Cs-12

P&T-488 Custom Package Routines

STATE
Show the state of the P&T -488

This routine passes abbreviated state information to the user in the A register
and sets HL to the beginning of the State table. Thus the user can determine the
states of the various interface functions if the abbreviated information returned in
the A register is insufficient.

The states of various interface functions are mapped into the following bit
positions of the A register:

eees o400 Both Talk and Listen functions are idle
cees .01 TIDS- (Not Talker Idle State)

cees +o10 LIDS- (Not Listener Idle State)
ceee 0. PPIS (Parallel Poll Idle State)
cese 1. PPSS (Parallel Poll Standby State)
eee0 0., LOCS (Local State)

eees0 1... LWLS (Local With Lockout State)
eesl 0O0... REMS (Remote State)

eeel 1... RWLS (Remote With Lockout State)
e0ee conn CIDS (Controller Idie State)

elee oene CIDS- (Not Controller Idle State)

Example: If the Controller State is Not Idle, the Remote-Local State is LOCAL,
Parailel poll is Idle and Talker Not Idle, the A register would contain 41 Hex.

The state table itself is comprised of six bytes, each one of which is
associated with one 488 interface function. The actual state of the function is
represented by the bit pattern of its associated state byte. Some states have the
same bit pattern and are distinguished only by what routine is being executed. For
example, if you look at the encoding for the Talk states you will find that TADS,
TACS and SPAS are all represented by the same bit pattern. However, the P&T -488
interface software can distinguish among them by the fact that if it is not running
either the Talk routine or the Serial Poll response routine, the state is TADS. |If
it is running the Talk routine, the state is TACS, and if it is running the Serial
Poll response routine, the state is SPAS. The user does not need to concern himself
with which one of the three states the Talk function is in because he only needs to
know whether the Talk function has been addressed by a Controller, and he will make
the inquiry at a time when neither the Talk nor the Serial Poll response routines are
being executed.

State Table
TSTAT Talk Interface Function State byte

e e e .«.0 TIDS Talk Idle State

c e eesl TADS Talk Addressed State

e e eesl TACS Talk Active State

e e eeol SPAS Serial Poll Active State

. oo .0.. SPIS Serial Poll Idle State

RPN elen SPMS Serial Poll Mode State

eees Oe.. TPIS Talk Primary Idle State

e 1... TPAS Talk Primary Addressed State

CS-13

P&T-488

LSTAT

SSTAT

RSTAT

PSTAT

CSTAT

Listen

Servi

0000
«.01
..10

Remo
(Not
defi

eeol
ool

ro

Custom Package Routines

Interface Function State byte

«es 0
el
eeol

LIDS Listen Idle State

LADS Listen Addressed State

LACS Listen Active State

LPIS Listen Primary Idle State

LPAS Listen Primary Addressed State

oo non-buffered Listen function

c oo buffered Listen function

eese do not return from Listen routine
upon receipt of EOS message

e oo return from Listen routine upon
receipt of EOS message

e Request Interface Function State byte

ees0
ceel
el
+. 0.
R I
.0..
P I

ller

0000
0001
0010
0011
0011
0011
0011
0110
1000

e s o 0
e s 0 o

o o o o

NPRS Negative Poll Response State
SRQS Service Request State
APRS Affirmative Poll Response State

S

t

false

implemented)

al Interface Function State byte
is function is not implemented, but these
s will be used when it is.)
LOCS Local State
LWLS Local With Lockout State
REMS Remote State
RWLS Remote With Lockout State
oll Interface Function State byte
PPIS Parallel Poll Idle State
PPSS Parallel Po!ll Standby State
PPAS Parallel Poll Active State
‘eees ist (individual status) message |
ceee ist message is true
PUCS Paraltel Poll Unaddressed to Configure
PACS Parallel Poll Addressed to Configure
Interfacte Function State byte
CIDS Controller Idle State
CADS Controller Addressed State
CTRS Controiler Transfer State (not ye
CACS Controller Active State
CPWS Controller Parallel Poll Wait State
CPPS Controller Parallel Polil State
CAWS Controller Active Wait State
CSBS Controller Standby State
CSWS Controller Synchronous Wait State

CSNS Controller Service Not Requested State
CSRS Controller Service Requested State

SNAS System Control Not Active State
SACS System Control Active State

CS-14

P&T-488 Custom Package Routines

TALK
Talk-Only

This routine allows the user to send data from the S-100 system to other
devices on the 488 bus. The data may be in any byte oriented form: ASCIl characters
(with or without parity), BCD, binary, etc. The information is put into a buffer in
memory before the routine is called.

The register pair HL must contain the address of the beginning of the buffer,
DE must contain the address of the end, and BC the address of the beginning of the
user-supplied jump table. If the accumulator (A register) contents are non-zero, the
last byte in the buffer will be sent with EOIl (End Or Identify) active true,
otherwise the last byte will be sent with EOIl passive false. All other bytes of the
string are sent with EOl passive false.

A call is made to the user-supplied routine BREAK after each byte is sent,
which allows the user to interrupt or defer further 488 bus transactions while he
executes some other routine. To continue the Talk function, he need only execute a
RETurn. All "registers may be changed between the time BREAK was entered and the
RETurn to the Talker routine was executed.

The SRQ (Service Request) line is checked after each byte is transmitted, and
if it is active true, the routine determines whether the P&T -488 is the
Controller—In-Charge. (Actually, CSTAT is tested to see if the Controller function is
in the non-ldle state.) If it is the Controller-In-Charge, then a call is made to
the user-supplied routine SVCRQ. After the user has serviced the Service Request, he
need only execute a RETurn to continue talking from where the routine left off.

This routine implements the Talk Only (ton) function described in the IEEE -488
standard. Thus execution of this routine sets the Talk State byte to Talker
Addressed. Execution of this routine also resets the Listen State byte to the ldle
(LIDS) State.

If the user wishes instead to implement the Addressed Talker function described
in the IEEE-488 standard, (i.e., the transition from TIDS to TADS should occur only
if the Controller has addressed the P&T-488 as a Talker), he should call the routine
STATE and then call TALK only if the Talk State byte shows that the P&T -488 is
addressed to Talk.

XCTRL
Respond to External Controller

Each command presented by an external Controller (some device other than the
P&T -488) is examined in turn and the states of the various interface functions are
modified as necessary. A return is made to the calling program when the external
Controller relinquishes the bus (asserts ATN passive false). An exception is made
when the external Controller is conducting a Serial Poll: in this case the routine
responds appropriately to the poll and returns to the calling program after the poll
is concluded (a Serial Poll Disable command has been received followed by ATN going
passive false).

This routine is to be called only upon ATN being made active true (low) by an

external Controller. Load the register pair BC with the base address of the
user-supplied jump table before calling XCTRL.

CS-15

P&T-488 Custom Package Routines

Since the states of the interface functions may have changed (due to commands
from the external Controller), it may not be appropriate to return to the routine
that was interrupted by the external Controller.

CS-16

P&T-488 User-Supplied Routines

PAGE ROUTINE FUNCT ION
NAME N

CS-17 BREAK Allows S-100 operations during buffered
488 communication

CS-18 BUFUL Fixup for Listen Buffer full

CS-18 DVCLR Application dependent. A Device Clear (DCL)
was detected

CS-18 IFCLR Re-initialize due to 488 Interface Clear (IFC)

CS-18 NOLSN No listeners on 488 bus - ERROR
CS-18 POC Re-initialize due to S-100 Power-On Clear or Reset

CS-18 SVCRQ The 488 Service Request line is active true
Find the device and service it

CS-19 TRIGR Start whatever function that was waiting for
Group Execute Trigger (GET)

CS-19 XATN Some other device made the 488 ATN line true

The P&T -488 interface software uses a jump table to access the user-supplied
routines. It is the user's responsibility to provide the jump table, and it must have
the form shown below. The user must set the register pair BC to the address of the
first entry of the user jump table before calling routines supplied in the P&T -488
sofware package.

User -Supplied Jump Table

Organization
JMP TRIGR
JMP DVCLR
JjmMP BUF UL
JMP IFCLR
JMP BREAK
Jmp NOLSN
JMP SVCRQ
IMP POC
JMP XATN

BREAK

After each data byte or command is transferred on the 488 bus, a call is made
to BREAK. The accumulator (A register) contains the byte last communicated, and the
register pair HL points to the buffer location of the last byte sent or received.
This routine allows the user to interrupt or defer until later any further 488
transactions, so that he may perform other operations. Examples include polling the
keyboard for operator input, performing a background print routine, etc. It also

CS-17

P&T-488 User-Supplied Routines

gives the user the opportunity to regain control of the S-100 system short of
pushing RESET or turning off the power.

The BREAK routine is also useful for those cases in which the Talker does not
make EOI true on the last byte; since the routine LISTN does not return to the user's
calling routine until it sees an EOIl (or optionally an EOS), one can see there is a
fundamental problem. However, since a call is made to BREAK after each byte, the
user can test each byte and determine if it is the end of transmission.

The only register that needs to be preserved is the Stack Pointer (SP).
Transactions on the 488 bus may be resumed by executing a RETurn.

BUFUL
Listen Buffer Full

A jump is made to this routine when the Listen buffer is filled. The user
should empty or redefine the buffer, then continue Listening by reinitializing all
registers (A, BC, DE and HL) and calling LISTN.

DVCLR
Detected a Device Clear

A jump is executed to this routine whenever the Controller sends a Device Clear
command. The user should perform whatever function Device Clear means in his system.
(The proper response is device dependent.)

IFCLR
Detected an Interface Clear

A jump is made to this routine whenever an external Controller sends an
Interface Clear (IFC) command. The P&T-488 must be re-intialized (for example, use
INIT followed by STADR).

NOLSN
Nobody's Listening

A jump is made to this routine whenever the P&T -488 was to have said something
as a Talker but found that no one was Listening. This is an error condition: correct
it, reinitialize the registers and then call TALK again. (The only time that Not
Ready For Data (NRFD) and Not Data Accepted (NDAC) can both be false at the same time
is if there are no Listeners. It is this condition that causes a jump to NOLSN.)

POC
S-100 Power-On Clear or Reset

A jump is made to this routine whenever the P&T -488 interface senses an S-100
Reset or Power-On Clear. It will have to be re-initialized (use INIT followed by
STADR).

SVCRQ
488 Service Request

This routine is CALLed whenever the 488 Service Request (SRQ) line is true and
the P&T-488 is the Controller-In-~Charge. Find the device (by using SPQRY), service

CS-18

P&T-488 User-Supplied Routines

it, then execute a RETurn to resume 488 transactions. The only register that needs
to be preserved is the Stack Pointer.

TRIGR
488 Group Execute Trigger

This routine is CALLed whenever the Group Execute Trigger (GET) command is
received. Start whatever function was waiting for the trigger, then RETurn to resume
488 transactions. The only register that needs to be preserved is the Stack Pointer.

XATN
An External Controller wants Control

This routine is CALLed whenever some other device on the 488 bus has made ATN
active true (low). Call STATE to get the present Talker, Listener, etc. state
information. Save this information, put the base address of the user-supplied jump
table in register pair BC and call XCTRL. Then call STATE again to find out if the
external Controller has changed the states of the Talk, Listen, etc. functions. If
not, just execute a RETurn to resume 488 transactions from where they were
interrupted by the external Controller. If the states are changed, perform whatever
function the external Controller has commanded.

CS5-19

P&T-488 488 Bus Monitor Program

488 Bus Monitor
Description

This program shows all data and all commands sent over the IEEE -488 bus. Common
non-printing characters (space, horizontal tab, carriage return and line feed) are
shown as a message enclosed in angle brackets. As an example, "<HT>" is printed on
the console printer each time a horizontal tab is detected.

The program begins by placing dummy Listen and Talk addresses in the interface.
The parity bit is set (logic 1), so there is no way that the 488 interface can be
addressed as either a Listener or a Talker by the Controller. (The parity bit of
each address sent by the Controller is set to zero before comparing it to the
interface Listen and Talk addresses.)

After the addresses are set up, the interface is cleared by a call to the
routine INIT. Note that the B register is non-zero because we do not want to send an
IFC (interface clear) signal over the bus. Only the System Controller is allowed to
send IFC, and we are not he.

Then the interface is set to the Controller Standby state (at statement label
RST2) which causes the 488 routines to assume that we are the Controller-in-Charge.
We are not, but this is done so that the Listen routine will branch to the
user -supplied routine SREQ each time a Service Request (SRQ) is detected. Otherwise
there is no easy way of making this program print a special message each time a
Service Request is pending.

Finally the Stack Pointer is reset, register pair BC is set pointing to the jump
table of user-supplied routines, and the Listen routine is called. No buffer is used
and the End-of-String (EOS) byte is ignored. The Listen routine will return each
time it receives an END byte (a data byte with the EOIl line active true). A special
message is printed on the system console to show that an END byte was received and
then the program is restarted.

The user-supplied routine BRK is called each time a byte of data or command
appears on the 488 bus. All printing characters are sent to the console printer as
is and a RETurn is made to the calling routine. The non-printing characters space
(20 Hex), Horizontal Tab (9) and Line Feed (OA Hex) are replaced with the messages
<SPACE>, <HT> and <LF> respectively. The non-printing character Carriage Return (0D
Hex) causes the message <CR> to be printed followed by a carriage return and a line
feed.

The user-supplied routine XTN prints a message to show that a Controller is
active (ATN active true) and then calls the routine XCTRL to listen to the commands

sent by the Controller. Each byte sent by the Controller is placed in location LBYTE
and a branch is made to the routine BRKX.

Special Cases:

Each time the Controller becomes active (asserts ATN active true), a carriage
return-line feed is sent to the console device, followed by the string "COMMAND:",
followed by another carriage return-line feed pair. Similarly, each time the
Controller becomes inactive (ATN is false), a carriage return, line feed, the string
"DATA:", carriage return and a line feed is sent to the console. All characters

CSs-20

P&T-488

printed after
instructions

that no device

All

"COMMAND :*
to the various 488 devices (for example, "
should be a Listener when

characters which are printed after
(otherwise known as device-dependent messages).

and before

488 Bus Monitor Program

"DATA:" are sent by the Controller, and are
means Unlisten, which means

the Controller relinquishes the bus).

"DATA:"* and before "COMMAND:" are data
They may be readings from a DVM

which has been commanded to be a Talker, etc.

Ne Ne St wp Se o

-

CSTAT
ENTBL

[

INIT
LISTN
XCTRL
STADR
’
MNITR
PRT

~e

U) we Se Se e Se o

TART:

RSTRT:

RST2:

~e we o

483 BUS MONITOR PROGRAM

All activity on the 488 bus is shown by messages printed
on the console printer.

ORG

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU

AB 7094

80 0AH ;controller state byte

8026AH ;memory addr of beginning of P&T-488
; Jjump table

ENTBL

ENTBL+5

ENTBL+15H

ENTBL+51H

2A0AH ;System monitor entry address

PD106H ;console print routine entry address

It is assumed that the routine PRT prints the character
held in the A register, then returns to the calling

routine.

All registers

(except the flags) are assumed

to be unmodified by PRT.

LXI
LXI
CALL
MVI
CALL
MVI

STA
LXI
LXI
MVI
CALL
LXI
CALL
JMP

SP, STAK
H,DUMAD
STADR
B,2
INIT
A,6

CSTAT
SP, STAK
B,JTBL
A,9
LISTN
B, ENDMS
MSG
RST2

sinitialize the stack pointer
;set up dummy listen, talk addresses

;clear 488 interface, but do not send IFC

;set CSTAT to standby (thus fooling the
;other routines into jumping to SVCRQ
;upon detection of a service request)
;initialize stack pointer

;set up pointers

;non-buffered listener, ignore EOS byte

;show that an <END> message has been
; received

USER-SUPPLIED JUMP TABLE

€cs-21

JTBL:

00 S Se N

RK:

CRMSG:

LFMSG:

HTMSG:

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

LXI
CALL
RET

LXI
CALL
RET

LXI
CALL
JMP

LXI
CALL
JMP

LOOK

CPI
Jz
CPI
Jz
CPI
Jz
CPI
JZ
CALL
RET

PUSH
LXI
CALL
POP
CaLL
MVI
CALL
RET

LXI
CALL
RET

LXI
CALL

AT

TRGR
DVCL
3FL
ICLR
BRK
NLS
SREQ
POCRST
XTN

B, TMS
MSGCR

B,DVMS
MSGCR

B,BMS
MSGCR
MNITR

B, IFMS
MSGCR
RSTRT

438 Bus Monitor Program

;Print trigger message

;print device clear message

;we should never get this message
;but if we do, print it and go to monitor

;print interface clear message

;restart (initialize 488 interface)

THE LAST COMMUNICATED CHARACTER

ADH
CRMSG
@AH
LFMSG
9
HTMSG
20H
SPMSG
PRT

A
B,CRMS
MSG

a

PRT
A,paH
PRT

B,LFMS
MSG

B, HTMS
MSG

; <CR>?

;..print <CR> message

; <LF>?

;..print <LF> message

; <KHORIZONTAL TAB>?
;..Drint <HT> message

; <SPACE>?

;..print <SPACE> message
;print char

;save character for later
;Print <CR> message

;then do the carriage return

;finish with a line feed

;print <LF> message

;jPrint <HT> message

cs-22

P&T-488

SPMSG:

NLS:

SREQ:

POCRST:

MSG:

MSGCR:

U\. Ne we No No

UMAD:

TMS:
DVMS:
BMS:

RET

LXI
CALL
RET

LXI
CALL

JMP

LXI
CALL
RET

LXI
CALL
JMP

LXI
CALL
LXI
CALL

LXI
CALL
JMP

LDAX
CALL
ANI
INX
Jz
RET

CALL
MVI
CALL
MVI
CALL
RET

438 Bus Monitor Program

B,SPMS ;print <SPACE> message
MSG

B,NLMS ;we should never reach this point

MSGCR ;but if we do, print message and
; go to the monitor

MNITR

B,SROMS ;print service request message

MSGCR
;let the controller-in-charge take care
; of the service request

B,POCMS ;print S-100 reset message
MSGCR
RSTRT ;re-initialize the 48R interface

B,XTNMS ;print external ATN message

MSGCR

B,JTBL ‘

XCTRL ;listen to the commands and update
: state of interface

B,DATMS ;print data message

MSGCR

RST2 ;go back to listen-only function
B

PRT ;Print message

80H ;see if parity set

B

MSG ;..no, so print some more

MSG ;print the message, terminate with CRLF
A, ODH ;output a carriage return

PRT

A,0AH ;then a line feed

PRT

DUMMY LISTEN, TALK ADDRESSES-

The parity bit is set, preventing the 488 interface
from ever recognizing a talk or listen address

DB
DB
DB
DB
DB
DB
DB
DB

AAZH ;dummy listen address

ACQOH ;dummy talk address

@FFH ;parallel poll response byte (no response)
gFFH ;serial poll response byte (no response)
gAH ;EOS CHARACTER (IGNORED IN THIS PROGRAM)

'DEVICE TRIGGE', @D2H
'DEVICE CLEA', AD2H
'LISTEN BUFFER FUL', @CCH

Cs-23

P&T-488 488 Bus Monitor Program

IFMS: DB gDH, @AH,'INTERFACE CLEA', 0D2H
NLMS: DB 'NO LISTENE', @D2H
SRQMS: DB #DH, 0AH,'SRQ ACTIVE TRU', @CSH
POCMS: DB @DH, JAH, 'POC/RESET TRU', 0CS5H
XTNMS: DB ¢DH, AAH, 'COMMAND' , ABAH
ENDMS: DB '<END',0BEH
CRMS: DB '<CR',0BEH
LFMS: DB '<LF',0BEH
HTMS: DB '<HT',0@BEH
SPMS: DB '<SPACE' ,0BEH
DATMS: DB 7DH, #AH, 'DATA' ,2BAH
DS 64D ;Stack area
STAK:
END

Cs-24

P&T-4338 Sample Program

488 Sample Program
Description

This program demonstrates how to set up the P&T -488 as a Controller to send out
bus commands (in this case, the Talk and Listen addresses of two devices), then
become a Listener. It also illustrates how to allow for an abort command (by the use
of the routine BRK).

The program begins by setting up the Stack Pointer and then sets the Listen and
Talk addresses of the P&T -488 interface. The 488 bus and interface are cleared by a
call to the routine INIT, which is followed by a call to CNTRL, which sends out the
contents of the buffer CMDSTR. These commands first tell all active Listeners to
stop Listening, then all active Talkers to stop Talking. Talker 5 is then told it is
the designated Talker, and Listener 3 (which in this case is the P&T -488) is told it
is the sole Listener.

The state of the interface is checked by a call to the routine STATE after the
commands are sent. If the Listen state is in the IDLE mode, a jump is made to the
routine NTLSN, which prints an error message on the printer and then jumps to the
system monitor. (Since the Listen address of the P&T -488 was sent as a command this
particular branch should never be executed.)

As preparation for the use of the routine LISTN, the mode switch (A register) is
set so that a buffer will be used and the EOS byte will not cause LISTN to RETurn to
the calling program. Each time the LISTN routine returns (due to an END byte; i.e.
a data byte sent with EOIl active true) or the buffer fills (i.e., a branch is made to
BFL), the contents of the buffer are printed, the buffer pointers are reset and the
LISTN routine is called again.

The user-supplied routine BRK is used to allow the user to suspend 488
transactions and jump back to the system monitor by pressing Control C on the
keyboard. It is assumed that the keyboard status is available at Port O, bit 2 is
zero when a key has been depressed, and the keycode is available at Port 1.

The skeleton of the user-supplied routine SREQ is shown, in which a Serial Poll
is made of 488 devices 1, 17, 7 and 3. The address of the first device to respond is
placed in the A register but the rest of the routine is device dependent. For
example, a printer may request service when it is out of paper, the ribbon jams, or
some other error condition. A reasonable response to a paper out condition would be
a message sent to the console (assuming it is not the printer needing service)
informing the operator of the printer's problem.

CS-25

P&T-488

Ne N6 Ne Ne N Se N

CSTAT
ENTBL

INIT
LISTN
CNTRL
STATE
XCTRL
SPQRY
STADR
1
MNITR
PRT

TART:

LSNLUP:

LSNPRT:

LSNPR1:

Sample Program

488 SAMPLE PROGRAM

Assert control, send out the talk address of some
other device, the listen address of the P&T-488,

and then listen to the talker

ORG ¢B7@30H

EQU 840AH ;addr of controller state byte

EQU 8026H ;addr of beginning of P&T-488
; Jump table

EQU ENTBL

EQU ENTBL+6

EQU ENTBL+@QCH

EQU ENTBL+12H

EQU ENTBL+15H

EQU ENTBL+18H

EQU ENTBL+51H

EQU 000JH ;Ssystem monitor entry address

EQU @D124%H ;console print routine entry address

It is assumed that the routine PRT prints the character
held in the A register, then returns to the calling
routine. All registers (except the flags) are assumed
to be unmodified by PRT.

LXI SP,STAK ;initialize the stack pointer
LXI H,ADRTBL ;set up P&T-488 listen, talk addresses
CALL STADR
MVI B,9 ;clear 488 interface and send IFC
CALL INIT
LXI H,CMDSTR ;load HL with beginning address
; of command string
LXI D,CMDEND ;load DE with end addr of command string
LXI B,JTBL ;load BC with beginning addr of jump table
CALL CNTRL ;send the commands
CALL STATE ;Eind out what P&T-488 state is
ANI 2 ;keep only listener bit
Jz NTLSN ;..P&T-488 in listener idle mode
MVI A,l ;use buffer, ignore EOS character
LXI H,LSNTBL
LXI D, LSNEND ;addr of last byte of listen buffer
LXI B,JTBL ;set up pointers
CALL LISTN
LXI D,LSNTBL ;now print the contents of the
: listen buffer
DCX D
INX D ;point to next byte in buffer
LDAX D
CALL PRT

Cs-25

P&T-488

MOV
CMP
JINZ
MOV
CMP
JNZ
JMP

~e wo So

JTBL: JMP
JMP
JMPp
JMP
JMP
JMP
JMP
JMP
JMP

 Se Se Se Ne we e

RGR: LXI
CALL
JMP

DVCL: LXI
CALL
JMP

ICLR: LXI
CALL
JMP

NLS: LXI
CALL
JMP

’
POCRST: LXI
CALL

JMP

’

XTN: LXI
CALL
JMP

’

NTLSN: LXI
CALL
JMP

s o

khkkhkkkhdkhkdkhhhkhkkik

Sample Program

A,E ;have we done the last byte yet?

L
LSNPR1
A,D

H
LSNPR1

LSNLUP ;printed the last byte, so start
; listening again

TRGR
DVCL
BFL
ICLR
BRK
NLS
SREQ
POCRST
XTN

B,TMS ;print
MSGCR
MNITR

B,DVMS ;print
MSGCR
MNITR

B,IFMS ;print
MSGCR
MNITR

B,NLMS ;print
MSGCR
MNITR

B,POCMS ;print
MSGCR
MNITR

B,XTNMS ;print
MSGCR
MNITR

USER-SUPPLIED JUMP TABLE

The following routines should not be entered in
this program. If they
(to aid in debugging)
the system monitor.

are, a message is printed

and then a jump is made to

trigger message

device clear message
interface clear message

no listener message

S-100 reset/power-on clear

external controller message

B,NTLMS ;get P&T not listening message

MSGCR ;Pprint

it

MNITR ;then go to the system monitor

Ccs-27

END OF ABNORMAL BRANCHES ****kkkkkkdhhkdix

P&T-488
BFL:

i
BRK:

SREQ:

7
ADRTBL:

CMDSTR:

CMDEND:

1
SPSTR:

SPEND:

7
TMS:
DVMS:

JMP

IN

ANI
RNZ
IN

ANI
CPI
RNZ
JMP

LXT

LXI
LXI
CALL
MOV

RET

LDAX
CALL
ANI
INX
JZ
RET

CALL
MVI
CALL
MVI
CALL
RET

DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB

DB
DB

LSNPRT

7FH
3

MNITR
H, SPSTR

D,SPEND
B,JTBL
SPQRY
A,M

PRT
807H

MSG

MSG
A,ADH
PRT
A,7AH
PRT

ek

'DEVICE
'DEVICE

Sample Program

;print the contents of the buffer
; then continue listening

;get keyboard status

;look at ready bit

;..n0 key has been depressed

;get char from keyboard

;strip parity bit

;<Control C>?

;..no, continue with 488 transactions
;user pressed Control C. ABORT!!!!!

;put beginning address of serial poll
; sString in HL

;and end address in DE

;user jump table address in BC

;£ind out which device wants service
;put device's address in A register

THE REST IS DEPENDENT ON THE DEVICE

;print message
;see if parity set

;..n0, So print some more

;Print the message, terminate with CRLF
;output a carriage return

;then 2 line feed

;listen address 3

;talk address 3

;parallel poll response byte (no response)
;serial poll response byte (no response)
;EOS character (ignored in this program)
;universal unlisten

;universal untalk

;Pprimary talk address 5

;primary listen address 3 (P&T-48%8)

;Primary talk address 1
;primary talk address 17
;Pprimary talk address 7
;primary talk address 3

TRIGGE', @D2H
CLEA', 0D2H

Cs-28

P&T-488 Sample Program

BMS: DB 'LISTEN BUFFER FUL', @CCH
IFMS: DB ¢DH, @AH,'INTERFACE CLEA', (D2H
NLMS: DB 'NO LISTENE', OD2H
POCMS: DB #DH, 2AH, 'POC/RESET TRU', ACS5H
XTNMS:: DB ODH, #AH, 'EXTERNAL CONTROLLE',@D2H
NTLMS: DB @DH, @AH, 'P&T NOT ADDRESSED AS A LISTENE',0D2H
LSNTBL: DS 255 ;listen buffer
LSNEND: DS 1 ;last byte of listen buffer
DS ~4D ;Stack area
STAK:
END

CS-29

P&T -488 ’ DINK
DINK
Description

The program DINK has been included for several reasons. The first is that it allows
the user to easily exercise the functions provided by the P&T -488 Custom Software
package and interface card. Another is that it allows the user to easily experiment with a
488 device so that he can thoroughly understand what messages it needs before he writes
the assembly language code. Finally, by looking at how DINK is written, the user can see
how the P&T-488 Custom Software package can be used. It should be noted, however,
that not all functions provided by the P&T -488 software package are used in DINK. As
an example, DINK uses only the non-buffered Listen function, so one cannot learn from
DINK how to use the buffered Listen function. '

The routine DINK was written so that it is fairly easy to see what is going on. As
a consequence, the code is not optimal, either in execution speed or in the amount of
memory that it requires. One could shorten it considerably, but at the expense of
clarity.

In order to use DINK, the user must first add two routines: the first is for console
input (which is called KBIN) and the other is console output (called PRT). The routine
KBIN should get a character from the console keyboard and return with the character in
the accumulator. No other register (except the flags) may be changed. The routine PRT
should print the character held in the accumulator on the console output device, and then
return. Again, no register (except the flags) may be altered. Examples of these routines
are given at the end of the listing of DINK. The examples shown use the console input
and output routines which are available in the CP/M operating system (CP/M is a product
of Digital Research). The console output routine of CP/M needs the character in register
C, and the CP/M input routine returns with the character in register A.

Once these two routines have been added to DINK, the user should modify (if
necessary) the EQUate for ENTBL and the ORG and then assemble DINK. (The EQUate
for ENTBL must be modified if the ORG of PNT488 has been changed.) PNT488 should
also be assembled, then it and DINK should be loaded into memory. Finally the routine
DINK should be executed from the location START.

Now that DINK is running, what does one do with it? The first thing is to respond
to the message it sent out. Assuming that PRT was correctly written and DINK was
properly assembled, loaded and run, the user should see the message
DINK 1-2-80
Enter P&T -488 Listen and Talk addresses, Parallel Poll response
Serial Poll status and the End-—of-String (EOS) bytes
If this message did not appear on the console, the subroutine PRT should be carefully
checked, and the steps of assembly, loading and executing DINK should be tried again.

Now that the message has appeared on the console answer it with the appropriate
characters. The computer will store the characters in a line buffer but will not act upon
them until the user indicates that he is finished with his response by pressing the <carriage
return> key. The line input routine incorporates several editing functions. Individual
characters may be "erased" from the line by pressing the <delete> (sometimes labelled
RUBOUT) key. The computer will "forget" the preceding character and the console output
device will print the character DELCHR in response. (This character can be changed by
the user to whatever code is appropriate for his console. The usual characters are 08
Hex (backspace) or 7F Hex (delete).) Multiple characters may be erased by pressing the

CS-30

P&T -488 DINK

delete key once for each character to be erased. The whole line can be erased by typing
a Control X (press and hold the CONTROL key, then press the X key, then release both
keys)e A # will be printed and the console will advance to the next line to show that the
line is being restarted.

The line input routine has one more special function key: ESCAPE. The line input
routine will not perform any special function associated with the first key depressed after
the ESCAPE key. Instead, it will put the key code into the line buffer just as it does
for any normal character. Thus the ESCAPE key allows any key code to be piaced into
the buffer, including the codes for <carriage return>, <ESCAPE>, <Control X> and
<delete>. For instance, if one types ABC<Control X>EF<carriage return> the computer
accepts this as the same as EF<carriage return> (remember that Control X> erases
everything that was typed before it). However, if ABC<ESCAPE><Control X>EF<carriage
return> were typed, the computer remembers this as the key codes ABC<Control X>EF
because the ESCAPE caused the line input routine to place the key following the ESCAPE
into the buffer instead of performing the special function.

Valid Listen addresses are any single character from <space> through >, inclusive.
(See the table Code Assignments for "Command Mode® of Operation for further details.)
Valid Talk addresses are any single character @ through #, inclusive. The Parallel Poll
response byte should be one character selected from <accent grave> through o, inclusive.
This byte is really the same as a Parallel Poll Enable byte sent by the Controller, in that
the three least significant bits of the byte indicate which data (DIO) line will be used by
the P&T -488 to respond to a Parallel Poll, and the fourth least significant bit is the
Sense bit which selects an affirmative poll response if it has the same logical value as the
ist (individual status) message. The Serial Poll status byte and the EOS byte may be set
to any character. (Remember that <delete>, <Control X>, <ESCAPE> or <carriage return>
must be preceded by <ESCAPE> to prevent the line input routine from deleting a
character, deleting the line or terminating the collection of the string, respectively).
These characters are used to set up the P&T -488's own Listen and Talk addresses as well
as the bytes it will respond with when it responds to a Parallel or Serial Polle The EOS
byte may be used by the Listen function to detect the end of a string sent by the Talker.
If it is desired to make the EOS character a carriage return, remember to press the
<ESCAPE> key before the carriage return.

After the line has been entered DINK will print
Enter function code
on the console. The code is a single character, and the following table shows the codes
and their corresponding functions.

Code Function Performed

A Get new Listen, Talk addresses, Poll response bytes

C Become the 488 Controller

G Use function GIM to control 488 General Interface Management
lines manually

Initialize the P&T -488 and optionally send IFC true

Listen to the Talker and print what he says

Put the P&T -488 into the Parallel Poll Idle (PPIS) state

Make the local "ist" (individual status) message false

Make the local "ist" (individual status) message true

Do a Parallel Poll and print the response

Do a Serial Poll and print the response

OoOvozZzZxr ~—

CS-31

P&T -488 DINK

R Put the P&T -488 into the active Service Request (SRQS) state
S Print a summary of the state of the P&T -488 and of the

) 488 Data and GIM lines (all numbers in Hex)
T Talk on the 488 bus

\ Put the P&T -488 into the No Service Requested (NPRS) state

The following paragraphs are expansions of the descriptions of each of the
functions.

Function A sets the Listen and Talk addresses, the Parallel and Serial Poll
responses, and the End-of-String bytes, just as was done when DINK was first started.
By use of this function one can change the addresses or the poll responses of the
P&T -488. Note that the Parallel Poll response can also be changed by the Controller. It
can send the Listen address of the P&T -488 followed by the PPC (Parallel Poll Configure)
byte, then the PPE (Parallel Poll Enable) byte. The PPE sets the Parallel Poll response
byte of the P&T -488.

Function C causes the P&T-488 to become the 488 Controller. Note that it asserts
control immediately, so the user must take care that he is not interrupting the current
Talker if it is desired to take control synchronously. Then the routine asks for a string.
When the user has typed in the string and terminated it with a carriage return, the string
is sent over the bus. Remember that the characters of the string have special meaning,
as they are now commands. For example, the character _ (underscore) means UNTALK (all
talkers are to revert to the Talker Idle (TIDS) state).

This function will lock up the S-100 system until all commands have been sent. If
one of the devices on the 488 bus is performing the Acceptor Handshake but does not
complete it, the S-100 system will remain locked up. |If there are not any devices
connected to the P&T -488, it will send the command string on the bus (even though no one
is there to hear it) because another section of the P&T -488 is performing the Acceptor
Handshake. It is doing this so that the state of the P&T -488 will be updated in response
to what the Controller says.

Function G allows one to manually set or reset selected General Interface
Management lines of the 488 bus. It is provided so that this software package is
compatible with programs written for an older package (Version 1.3). In general, the user
should be discouraged from using the function GIM because most of the functions can be
better performed by calling other routines.

The lines that function G allows access to are IFC, SRQ, REN and EOIl. IFC is
better controlled from the routine INIT (function code 1), SRQ from the routines SPIDL
(function code V) and SPSRQ (function code R), and EOIl from TALK (function code T) or
PPQRY (function code P). The only line that is not accessible from a better routine is
REN.

One can set/reset these lines by typing in an appropriate character followed by a
carriage return. The character is placed in the A register and then the PNT488 routine
GIM is called. By referring to the description of GIM, it is seen that the IFC, SRQ and
EOI lines can be made false while REN can be made true by using any one of the
characters <Control B>, ", B or b.

The user should be aware that the routines in PNT488 may not be aware of changes
made to the lines by use of this function, and things can get quite confused. The ONLY

CS-32

PXT -488 DINK

reason that this function should even be considered is to gain access to the REN line. |If
it is used, the user should note the state of the other three lines and preserve their state
while changing REN. ‘

Function | causes all P&T -488 states to revert back to their Idle state. The user is
asked whether an IFC (Interface Clear) is to be sent over the 488 bus also. If he answers
with a2 Y an IFC will be sent; this will cause all the other 488 devices to revert back to
their initialized states. If the answer is N then an IFC will not be sent and the 488
devices other than the P&T -488 will not be affected by this function. If any other
character is typed as the first character of the string a message is printed on the console
informing the user that only these two responses are allowed.

Function L sets up the P&T -488 as a non-buffered Listener. Each character heard
by the P&T -488 is printed on the console as it is heard. Control (non-printing)
characters are printed as two-character strings, the first being uparrow (4) and the
second being the character with 40 Hex added to it to make it printable. For example, a
null will be printed as 4@, a <Control X> (otherwise known as CAN or CANCEL) as %X,
etc. The user is asked
Return upon receipt of EOS byte?

If the response is Y or y the function will terminate when a character matching the EOS
byte is receivede Upon termination of this function the user is asked to select the next
function. The function will always terminate upon receipt of an END message (the EOI
line made true by the Talker while speaking a byte). In this case the message <END> is
printed on the console and the user is asked to select the next function.

Function M causes the routine PPIDL in PNT488 to be called, which in turn places
the P&T -488 into the Parallel Poll Idle (PPIS) state. All that this means is that the
P&T -488 will not participate in a Parallel Poll.

Function N causes the routine PISTF in PNT488 to be called. This routine sets the
ist (individual status) message false and then puts the appropriate response byte in the
Parallel Poll response register of the P&T -488. It then puts the P&T -488 into the
Parallel Poll Standby (PPSS) state. See the description of PISTF for more details.

Function O causes the routine PISTT in PNT488 to be called. This routine sets the
ist message true then puts the appropriate response byte in the Parallel Poll response
register of the P&T -488. It then puts the P&T -488 into the Parallel Poll Standby (PPSS)
state. See the description of PISTT for more details.

Function P causes the routine PPQRY in PNT488 to be called, which in turn
executes a Parallel Poll. The response is then printed (in Hex) on the console.

Function Q sets up the P&T-488 to do a Serial Poll. The user is asked to enter a
string, which should be the Talk addresses of the devices to be polled. Then the routine
SPQRY in PNT488 is called, which actually performs the poll. SPQRY will return upon
receipt of an affirmative response or after the string of talk addresses has been
exhausted, whichever occurs firste The commands sent by the P&T -488 while it is
conducting the Serial Poll are echoed on the console. The string will appear as
X _...1Y
where the character ? means UNListen, $X is the command SPE (Serial Poll Enable), _ is
the command UNTalk, the ellipsis (...) represents the Talk addresses that are sent by the
P&T -488, and the 4Y is SPD (Serial Poll Disable). If an affirmative response has been
detected, DINK will print the Talk address of the device that responded affirmatively as
well as the response, and then ask for the next function code. |If no device responded
affirmatively, DINK will print

CS-33

P&T -488 DINK

No affirmative response to Serial Poll

Try another Serial Poll (Y/N)?

and then wait for the user to respond. If a string beginning with N is entered, DINK will
ask for the next function code. If a string beginning with Y is entered, DINK will ask
for another string of Talk addresses to be polled. It is important that only Talk
addresses of devices which are currently connected to the 488 bus and capable of
responding to a Serial Poll be entered in the string. The reason is that the P&T will send
out the address and then listen for the addressed Talker to speak its poll response. If
there is no Talker, there will never be a response, and the whole system will wait forever
for that response.

Function R causes the routine SPSRQ in PNT488 to be called, which in turn asserts
a true on the SRQ line and places the P&T -488 in the Service Request (SRQS) state. If
the P&T -488 is not the Controller, the S-100 system will wait for an external Controller
(i.e., some device other than the P&T -488) to assert Control and perform a Serial Poll.
When the poll is made, the P&T -488 will respond affirmatively and then go into the
Affirmative Poll Response (APRS) state. Then the user will be asked to select the next
function.

If, on the other hand, the P&T -488 is the Controller, it will assert Control, then
ask the user to enter a string of the Talk addresses of the devices to be Serial Polled.
After the string has been entered the P&T -488 will poll each of these devices and then
return when it has found the one requesting service or has finished polling all devices.
The commands sent by the P&T -488 while it is conducting the Serial Poll are echoed on
the console. The string will appear as
1X_...1Y
where the character ? means UNListen, $X is the command SPE (Serial Poll Enable), _ is
the command UNTalk, the ellipsis (...) represents the Talk addresses that are sent by the
P&T -488, and the ¢Y is SPD (Serial Poll Disable). |If the user had included the
P&T -488's own Talk address in the string and no other device in the string before it has
responded affirmatively to the poll, the P&T -488 will respond affirmatively to the poll and
go into the Affirmative Poll Response (APRS) state, then return.

As in the case of function Q, it is important that only the Talk addresses of devices
actually connected to the bus and capable of responding to a Serial Poll be placed in the
poll string; otherwise the S-100 system will wait forever for the response of a
non-existent device.

Function S will display the state of the P&T-488, the secondary Talk and Listen
addresses and the state of the 488 bus lines. All values displayed are in Hex, and the
user should refer to the function STATE for a description of the meaning of the various
states. The value shown on the line labelled "Abbreviated State of P&T -488" is the value
that the routine STATE returned in the accumulator.

The secondary addresses shown for the Talk and Listen functions are 7F Hex if the
respective function has been addressed by the 488 Controller without a secondary address
(single byte addressing). Otherwise the secondary addresses shown are the characters sent
by the Controller as the secondary address when the Controller last addressed the Talk
and Listen functions.

The state of the eight data lines and eight command lines of the 488 bus is also
displayed. The values given are in Hex, which really has no particular meaning for the
eight command lines. However, the order (weighting) of the command lines is shown on the
same line as a handy reminder. The weights of the command lines are shown in the
following table.

CS-34

P&T -488 : DINK

Line Weight Line Weight
DAV 80H ATN 8
NRFD 40H SRQ 4
NDAC 20H REN 2
IFC 10H EOI 1

Function T sets up the P&T -488 as a Talker. The user is asked whether the END
message (EOI line true) is to be sent with the last character of the talk string. The only
responses allowed are strings beginning with Y or N. The user is then asked for the
string that the P&T -488 is to speak. Then the routine TALK of PNT488 is called and the
P&T -488 speaks the string on the bus. |If there are no Listeners the P&T -488 recognizes
this as an error and prints a message on the console informing the user that there are no
Listeners on the 488 bus. Otherwise the whole string is said and then the user is asked
for the next function code. '

Function V causes the routine SPIDL in PNT488 to be called, which in turn puts the
P&T -488 into the No Service Requested (NPRS) state. This is equivalent to the S-100
making the local message rsv (request service) false. The P&T -488 is also set to assert a
passive false on the SRQ ‘line. Then the routine returns and the user is asked for the
next function code.

Special Considerations

The P&T -488 is heavily dependent upon the support software (in this case, PNT488)
in order to communicate on the 488 bus. The S-100 system must execute one of the
interface subroutines if the P&T -488 is to perform nearly any 488 bus function. This
includes not only the "assertive! functions, such as Talk and Control, but the "responsive!
functions, such as responding to a Serial Poll, being addressed as a Talker or Listener by
the Controller, etc. The only 488 function that the P&T-488 can perform without any
software support is respond to a Parallel Poll.

This limitation can create problems unless the user is aware of it and allows for it in
his configuration of the 4838 bus and how he uses the P&T -488. For instance, assume
that some device other than the P&T -488 is the bus Controller and that it will perform a
Parallel Poll periodically. The P&T -488 will respond to the poll properly, but the
interface will lock up the 488 handshake function until the S-100 system releases it. This
happens because the poll was done by an external Controller, so XATN was made true
while the poll was performed. The P&T-488 responds to XATN true by asserting NRFD
active true and by asserting all other command lines and all data lines passive false. The
P&T -488 remains in this state until the S-100 system resets the XIFC bit in the ISR
register. Since NRFD is active true, no handshake can proceed. The reason the
P&T -488 behaves in this fashion is that if the external Controller wanted to issue
commands (instead of do a Parallel Poll), it is necessary to keep it from saying anything
until the S-100 system is ready to respond. The S-100 system indicates its readiness by
resetting the XIFC bit in the ISR register of the P&T -488.

Another consequence of the need of the P&T -488 for software support in order to
perform 488 bus functions is that something may happen on the 488 bus and the S-100
system will not find out about it until one of the PNT488 subroutines is callede For
example, some device may assert an active true on the SRQ line, indicating that it wants
service. The S-100 system will find out about it if any one of the routines TALK,
CNTRL or LISTN are executed, but not otherwise. The P&T -488 interface card can be

CS-35

P&T -488 DINK

set up to issue an interrupt to the S-100 system upon this and other conditions, but most
customers have stated very explicitly that they do not want an interrupt driven system.
Thus the P&T -488 has been strapped to defeat interrupts, and the routines in PNT488 poll
the P&T -488 to find out if anything interesting is happening.

There are several things which can happen which are not a direct response to the
function code the user selects. For instance, if the Listen function is selected and an
External Controller asserts Control, DINK will print a message on the console informing
the user of this fact and will then call the routine XCTRL in PNT488. This routine will
get the commands from the External Controller and will update the states of the various
interface functions of the P&T -488 as necessary. When the External Controller releases
control of the bus, XCTRL will return to DINK, which in turn will ask for the next
function code. At this point the user should select the SHOW function (code = S) to find
out how the state of the P&T -488 has been changed by the External Controller.

Another response the user may get is that DINK informs him that either the S-100
POC (Power-On Clear) or the S-100 Reset line has been (or is) true. Either of these
conditions has the effect of putting the P&T -488 interface into its idle mode, which means
that it has released all 488 data and control lines. The user should perform the Initialize
(code = 1) function to reset the P&T -488 to a known state.

CS-36

P&T -488

J109
ga7F

2@70
ga7E

ggsg =
8026 =

8026
8029
8@2C
8@2F
8932
8835
8938
8038
8@3E
8g41
8g@a4
8047
80aA
884D
8059

DAZ9
DAgC

gigg
2193
g1g6
2199
gigc
g19e

g

g4
g11s

g118
g
glE
g121
g124
2127
J12A
gi2c
B12F
2131
g134
136
2139
g138
g13E
2149
2143
@145
@148
ALY
214D

LU T T T T Y O T I O I ' 1]

31EC@8
910645
CD6724
CD79¢1
2641

CD268¢

31ECO8

97
322808

J1AF@5
CD6744
CDEC@3
CAl1g1
3A2A98
322908
FE41
CA9801
FE43
CA9EQ1
FE47
CAA791
FE49
CAB@g1
FE4C
CACeg1
FE4D
CAF6@1
FE4E
CA1182
FE4F

»

DELCHR

CMOPT
DATPT

BUFS1Z
ENTBL

’

INIT
TALK
LISTN
STADR
CNTRL
GIM
STATE
XCTRL
SPQRY
SPSRQ
SPREL
PPQRY
PPREQ
PPREL
PPIDL

»
.
£

CONIN
CONOUT

START:

GETFN:

DINK
PROGRAM LISTING

ORG 190H
EQU 7FH ;CHARACTER TO BE ECHOED UPON RECEIPT

; OF A DELETE CODE (DELETE AND BACKSPACE

; ARE THE MOST COMMON CHOICES)
EQU 70H ;PORT ADDR OF 488 COMMAND LINES
EQU 7EH ;PORT ADOR OF 488 DATA LINES
EQU 128 ;NUMBER OF BYTES IN INPUT BUFFER M8229
EQU 8@26H ;ADDRESS OF FIRST ENTRY IN PNT488 JUMP TABLE
EQU ENTBL
EQU ENTBL+@3H
EQU ENTBL+J6H
EQU ENTBL+@9H
EQU ENTBL+ICH
EQU ENTBL+@FH
EQU ENTBL+12H
EQU ENTBL+15H
EQU ENTBL+18H
EQU ENTBL+1BH
EQU ENTBL+1EH
EQU ENTBL+21H
EQU ENTBL#24H
EQU ENTBL+27H
EQU ENTBL+2AH
EQUATES FOR CP/M CB10S ROUTINES
EQU @DABOH ;CONSOLE INPUT ROUTINE M8229
EQU @DABCH ;CONSOLE OUTPUT ROUTINE M8229
X1 SP,STAK ;INITIALIZE THE STACK POINTER
X! B,IDMS ;PRINT ID MESSAGE M8229
CALL MSG ; : M8229
CALL ADRSET ;SET THE LISTEN, TALK ADDR, ETC M8229
MV B, | ;CLEAR 488 INTERFACE BUT DO NOT SEND IFC
CALL INIT
GET FUNCTION TO BE PERFORMED
X1 SP,STAK ;RE-INITIALIZE STACK POINTER (STACK WILL BE LEFT IN

; DISARRAY IF 'ATN' IS MADE TRUE WHILE TALKING OR

; LISTENING) M1g2g
suB A ;CLEAR ECHO FLAG SO THAT UNLESS THE FLAG
STA ECHO ; IS SET LATER, EACH CHAR COMMUNICATED

; ON THE 488 BUS IS NOT ECHOED TO THE

; CONSOLE
X1 B,FCNMS ;SEND "FUNCTION?" MESSAGE
CALL MsG
CALL FILBFR ;GET OPERATOR'S RESPONSE
3z GETFN ;..NOTHING IN BUFFER M8229
LDA BUFBEG ;LOOK AT FIRST CHARACTER
STA FCN ;SAVE IT FOR LATER
cPl 1Al
3z SETADR ;..SET NEW P&T-488 ADDRESSES
cPl I
3z CONTRL ;..CONTROLLER
cPI 6!
9z GIMSET ;..SET GIM LINES
cP! K
3z INITL ;.. INITIALIZE
cP! "
3z LSN ;eoLISTEN
cPI ™!
Jz PIDL ;..PUT PP IN IDLE STATE
cP! Nt
3z PNSET ;..SET IST=g
cP! 10!

CS-37

P&T -

grar
#152
g154
2157
#4159
g1sc
@15€
2161
g163
#9166
7168
#168
2160
@179
AN
g176

2179
gi7c
gr7F
2182
2183
7185
g188
g188
g18€

2191
194
3197

@198
g198

J19€E
1Al
g1A4

g1A7
J1AA
#1AD

2189
g183
@186
2189
g188
@18E
gicg
g1C3

g1ce
g1cs
gics
g1CE
@101
4104
g107
2109
gioc
g1DF
J1E2
g1es

J1E8
F1EA
J1ED
g1Fa
g1F3

g1F6
g1F9

488

CAgB@2
FES@
CAFCg@1
FES1
CAA8g3
FE52
CA1792
FE53
CA20@2
FE54
CAA7@2
FES6
CAA1g2
g1FBg4
CD72g4
c3tig

218204
CD6794
CDEC@3
78
FE@5
F29191
#1C3@5
CD6784
C379@1

212A08
CD2F8¢g
c9

CD79g1
Cc31181

CDF692
CD328¢
C31141

CDDD@2
C03580
C311a1

Jg1e805
CD67d4
ChoC1g2
2601

CAC@g1
g60g

CD268@
C3nig

3EFF

3228498
1895
CD6704
CbC1g2
C2e841
3EQ9

911693
CD2C8d
218795
CD7204
c3nign

3EP2

211643
CcD2csg
CD7584
C31ian

CD5¢89
C31141

ADRSET:

SET1:

SETADR:

CONTRL:
H
GIMSET:

INITL:

NOIFC:

LSN:

(SN1:

;
PIDL:

JZ
cPl
JZ
cPi

CPI
JZ
CPI
JZ
CPI
JZ
CPI

LX1
CALL
JMP

LX1
CALL
CALL
MoV
cel
JP

CALL
JMP

Lxl
CALL
RET

CALL
P

CALL
CALL
JMP

CALL
CALL
JMP

X1
CALL
CALL
MV
JZ
MV
CALL
JMP

Mvi
STA
LX1
CALL
CALL
INZ
Mvi
LXI1
CALL
LX1
CALL
JMP

MV
LX1
CALL
CALL
JMP

CALL
JMP

PSET ;..SET IST=1
1P
PPOLL ;..DO A PARALLEL POLL
e

?RT ;0eD0 A SERIAL POLL QUERY

829 ;++D0 A SERVICE REQUEST

?30 ;+«SHO THE STATE OF THE P&T-488
T;LKR ;oo TALK

e

SREL 3« sRELEASE SRQ LINE

B,BADMS ;PRINT "INVALID FCN" MESSAGE
MSGCR

GETFN ;GET FUNCTION AGAIN

B,ADRMS ;SEND "GET ADDRESSES™ MESSAGE

MSG

FILBFR ;GET RESPONSE AND PUT IN BUFFER

A,B ;MAKE SURE THAT THERE ARE AT LEAST 5

5 ; CHARACTERS IN THE RESPONSE

SET! ;e03 OR MORE CHARS

B,FEWMS ;PRINT TOO FEW CHARS IN BUFFER MESSAGE
MSG ;

ADRSET ;AND GET THE INFO AGAIN

H,BUFBEG ;SET UP P&T 488 LISTEN, TALK ADDRESSES
STADR ;PERFORM THE FUNCTION

.
k]

ADRSET ;SET THE LISTEN, TALK ADDR, ETC
GETFN

GETSTR ;FILL BUFFER AND SET POINTERS
CNTRL ;PERFORM THE FUNCTION
GETFN ;GET ANOTHER FUNCTION FROM OPERATOR

GETCHR ;GET THE CHARACTER

GIM

GETFN

B, IFCMS ;ASK IF IFC TO BE SENT

MSG

YESNO ;GET RESPONSE (ZERO FLAG SET IF NO)
8,1 ;SET UP FOR NO IFC

NOIFC ;..NO, SO DO NOT SEND IFC

B8,d ;+oYES, SO SEND IFC

INIT

GETFN

A,@FFH ;SET ECHO FLAG SO THAT EACH CHARACTER IS
ECHO ; SHOWN ON THE CONSOLE

B,EQSMS ;;PRINT "STOP ON EOQOS?"

MSG H

YESNO ;GET THE RESPONSE

LSN1 ;+eSTOP ON EOS BYTE

A8 ;NON-BUFFERED LISTENER, IGNORE EOS BYTE
B,JTBL ;BC POINT TO USER JUMP TABLE

LISTN

B8,ENDMS ;SHOW THAT AN END MESSAGE HAS BEEN RECEIVED
MSGCR

GETFN

A,2 ;NON-BUFFERED LISTENER, STOP ON EOS BYTE
B,JTBL ;POINT BC TO USER JUMP TABLE

LISTN

CRLF

GETFN

PPIDL ;PUT PP IN IDLE STATE
GETFN

CS-38

DINK

M8229

M8229
M8229
M8229
M8229
M8229
M8229

M8229
M8229
M8229

M8229
M8229
M8229
M8229

M8229
M8229
M8229
M8229
M8229

P&T -

g1FC
B1FF
9292
9205
@208

9208
g20€

g211
@214

g217
g21A
@210

9229
@223
9226
9229
g22¢
9220
9230
9233
9236
@237
9238
@238
923E
2241
@242
@243
@246
9249

488

CD478¢
CD46g4
#175d6
CD7204
Cc311a1

CD4A8Q
c3ng

CD4089
c3ng

g116@3
CD418¢
c3ng

CD388g
CD46d4
410806
CD7224
7E

CD46g4
P1F506
CD7204
23

7E

CD4604
219597
CD7204
23

3

CD46g4
g117a7
CD7204

#24C 23

9240
g24€
@251
9254
9257
9258
3259
925C
@25F
#262
9263
@264
@267
926A
@260
926E
@26F
@272
@275
9278
9279
@27A
2270
@280
2283
9285
9286
9289
g28C
@28F
9291
9292
9295
9298
9298
@29

7€
CD46g4
213207
CD7294
23
7E
CD46p4
F14A07
CD72¢04
23
7E
CD46g4
216397
CD7204

CD46¢4
#16C@5
CD7294
CD7504
C3ng

PPOLL:

PSET:
PNSET:

REQ:

CALL
CALL

CALL
JMP

CALL
JMP

CALL
JMP

LX1
CALL
JMP

CALL
CALL

CALL
Mov
CALL

CALL
INX
MoV
CALL
LXl
CALL
INX
MOV
CALL

CALL
INX
MoV
CALL
LXI
CALL
INX
MoV
CALL

CALL -

INX
Mov
CALL
LXI|
CALL
INX
MoV
CALL

CALL
INX

MOV
CALL

CALL
IN

CALL

CALL
IN

CALL
LX1
CALL
CALL
JMP

PPQRY
HEXO
B,PPMS
MSGCR
GETFN

PPREQ
GETFN

PPREL
GETFN

8,JTBL
SPSRQ
GETFN

STATE
HEXO

B, SEMSG
MSGCR
AM
HEXO
8,5 1MSG
MSGCR

A,M
HEXO
B,S2MSG
MSGCR

AM
HEXO
8,S3MSG
MSGCR

AM
HEXO
B, S4MSG
MSGCR

AM
HEXO

B, S5MSG
MSGCR

AM
HEXO
8, S6MSG
MSGCR

AM
HEXO
B,LSMSG
MSGCR

AM
HEXO

B, TSMSG
MSGCR
CMDPT

HEXO
B,CLMS
MSGCR
DATPT

HEXO
B,DLMS
MSGCR
CRLF
GETFN

;PERFORM A PARALLEL POLL
;PRINT THE RESPONSE

;AND 1D
;SET "IST" TRUE AND UPDATE PARALLEL POLL
; RESPONSE REGISTER

;SET "IST" FALSE AND UPDATE PARALLEL POLL
; RESPONSE REGISTER

;POINT TO USER JUMP TABLE
;PERFORM THE FUNCTION

;GET THE STATE OF THE P&T-488
;PRINT VALUE IN REG A IN HEX
;PRINT "ABBR. STATE" MESSAGE

;PRINT HEX VALUE OF THE STATE BYTE

;POINT TO THE NEXT STATE BYTE
;PRINT HEX VALUE OF THE STATE BYTE

;POINT TO THE NEXT STATE BYTE
;PRINT HEX VALUE OF THE STATE BYTE

;POINT TO THE NEXT STATE BYTE
;PRINT HEX VALUE OF THE STATE BYTE

;POINT TO THE NEXT STATE BYTE
;PRINT HEX VALUE OF THE STATE BYTE

;POINT TO THE NEXT STATE BYTE

;PRINT HEX VALUE OF THE STATE BYTE

;POINT TO LISTEN SECONDARY ADDRESS

;POINT TO TALK SECONDARY ADDRESS

;SHOW WHAT'S ON THE 488 COMMAND LINES

;AND THEN WHAT'S ON THE 488 DATA LINES

;PUT IN AN EXTRA CARRIAGE RETURN-LINE FEED
;GET ANOTHER FUNCTION

CS-39

DINK

P&T -

@32A1
Jg2A4

g2A7
@2AA
@g2AD
9280
2282
2285
9286
3287
@28A
4288
g28E

g2c1
g2C4
@g2C7
@2CA
g2cc
@g2CF
g2D1
9202
g2D5
9208

3208
g20C

2200
@2Eg
92€3
@2E6
92E9
@2EC
@2EF

g2F2
@2F5

g2F6
22F9
g2FC
@2FF
93d2
2385
9398

9308
@30E
930F
9312
@315

2316
2319
g31C
@31F
9322
2325
2328
2328
@932E

2331
g334
@337

438

CD448g
C31181

21ABG7
CD67g4
CDC192
3EQD

CAB6@2

CD298¢
c3nign

CDECgZ3
CAD292
3A2A08
FES9
CADB@2
FE4E
c8
912006
CD7294
C3C192

B7
C9

912505
CD6734
CDEC@3
C2F292
#1C3d5
CD7294
C3DD@2

3A2A08
c9

g19ca7
CD7204
CDECg@3
C20803
#1C3d5
CD7294
C3F602

2AAAZ8
EB
212A08
g11643
c9

C33193
C33843
C33F@3
C34893
C35183
C37993
C3A203
C38293
C388403

BICFg7
CD7294
c9

SREL:

TALKR :

NOEO! :

YESNO:

YESNT:

H
COK:

GETCHR :

GETCHI:

GETSTR:

GETS1:

Cowe %o weo we

TRGR:

CALL
JMP

LXI
CALL
CALL
MV
JZ
INR
PUSH
CALL
POP
CALL
JMP

CALL
JZ
LDA
cPi
JZ
cP1

X1
CALL
JMP

ORA
RET

LXI
CALL
CALL
JNZ
LX1
CALL
JMP

LDA
RET

X1
CALL
CALL
JNZ
LXi
CALL
JMP

LHLD
XCHG
LX1
X1
RET

SPREL ;RELEASE SRQ, PUT SR FCN IN NPRS
GETFN ;GET ANOTHER FUNCTION

B,TLKMS ;PRINT "SEND END WITH LAST CHAR"

YESNO

A,g ;SET FLAG FOR NO END

NOEO|

A ;SET FLAG FOR END

PSW ;SAVE END FLAG

GETSTR ;FILL BUFFER AND SET POINTERS
PSW ;GET END FLAG AGAIN

TALK ;PERFORM THE FUNCTION
GETFN ;GET ANOTHER FUNCTION FROM THE OPERATCR

FILBFR
YESN1 ; « «BUFFER EMPTY - INVALID RESPONSE
BUFBEG ;GET THE FIRST CHARACTER

'y! ;1S IT YES?
COK ; « «CHARACTER OK
'N! ;1S 1T NO?

;CHARACTER OK
B8,NOGUD ; INVALID RESPONSE
MSGCR
YESNO ;TRY AGAIN

A ;UNSET THE ZERO FLAG

B,CHRMS ;PRINT CHARACTER PROMPT

MSG

FILBFR ;GET THE CHARACTER

GETCH!1 ;..AT LEAST ONE CHARACTER IS IN THE BUFFER
B,FEWMS ;POINT TO 'TOO FEW' MSG

MSGCR ; THEN PRINT IT

GETCHR ;AND GET INFO FROM USER AGAIN

BUFBEG ;PUT FIRST CHARACTER IN REG A

B,STRMS ;PRINT STRING PROMPT

MSGCR

FILBFR ;GET A CHAR STRING FROM THE OPERATOR

GETS1 5 ««AT LEAST ONE CHARACTER IS IN THE BUFFER
B,FEWMS ;POINT TO 'TOO FEW' MSG

MSGCR ; THEN PRINT IT

GETSTR ;AND GET INFO FROM USER AGAIN

BUFPTR ;PUT ADOR OF LAST VALID CHAR IN HL

;PUT ADDR OF LAST VALID CHAR IN DE
H,BUFBEG ;LOAD HL WITH ADDRESS OF FIRST CHAR
B,JTBL ;LOAD BC WITH BEGINNING ADDR OF JUMP TABLE

USER-SUPPLIED JUMP TABLE

JMP
JMpP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

X1
CALL
RET

TRGR
DvVCL
BFL
ICLR
BRK
NLS
SREQ
POCRST
XTN

B,TMS ;PRINT TRIGGER MESSAGE
MSGCR

CS-40

DINK

M8229

M8229

M8229
M8229
M8229
M8229

M8229

M8229
M8229
MB8229
M8229

M8229

P&T -

@338
2338
@33€E

@33F
2342
@345

2348
@348
@34€

@351
9352
@355
9356
2357

2358
@35A
2350
@35F
2362
@364
9367
2369
a36C
936E
@36F
2371
a374
2375
@378

2379
g37C
g37F

2382
2385
@388

9388
@38E
2391
2393
9396
@399
g39C
@#39F

@3A2
@3A5
g3A8
23AA
@3AD

2380
2383
2386
@387
@3BA
@380
a3ce
#3C3
@3C6
#3C9
@3CA

a3CD
@3CE
@3CF

488

178085
CD72p4
Cc9

2113095
CD7204
C311a

g1F8@s
C07294
Cc311g1

912206
CD72¢04
c3nig

216506
CD7284
C311a1

911398
CD7224
3EFF

322898
11603
CD388¢g
CD7504
c3ng

217907
CD72g4
3EFF

322808
CDF6g2

CO3E8¢
CD75@4
B7

CACD@3
#13E26
CD72¢4
@100@87
CD72g4
CDC1g2
C8

C3A203

C5
E5
#183d6

DVCL:
BFL:

;CLR:

NOTCC:

ﬁLS:
POCRST:

B
XTN:

SREQ:
QRY:

AF IRM:

LX1
CALL
RET

LX1
CALL
JMP

LX1
CALL

LXI
JMP

X1
CALL
MV
STA
X1
CALL
CALL
JMP

LXI
CALL

STA
CALL

CALL
CALL
ORA
JZ
LX1
CALL

CALL
CALL

JMP
PUSH

PUSH
X1

B,DVMS ;PRINT DEVICE CLEAR MESSAGE
MSGCR

B,BMS ;WE SHOULD NEVER REACH THIS POINT, BUT
MSGCR ; |IF WE DO, PRINT MESSAGE
GETFN

8, !FMS ;PRINT INTERFACE CLEAR MESSAGE
MSGCR
GETFN ;ASK FOR NEW FUNCTION

B,A ;SAVE LAST CHAR COMMUNICATED ON 488 BUS
ECHO ;LOOK AT THE ECHO FLAG

A,B ;GET THE LAST CHAR AGAIN
; ««ECHO FCN NOT ENABLED, SO DON'T PRINT
; THE CHARACTER

2¢H ;CONTROL CHARACTER?

NOTCC ;..NO

goH ;TAB?

NOTCC ;..YES, SO PRINT AS IS

BAH ;LINE FEED?

NOTCC

@0H ;CARRIAGE RETURN?

NOTCC

40H ;MAKE THE CHAR INTO A PRINTING CHAR

PSW ;SAVE THE CHARACTER

A,'?" ;PRINT UPARROW TO FLAG IT AS A
PRT ; CONTROL CHARACTER

PSW

PRT ;PRINT THE CHARACTER

B,NLMS ;PRINT NO LISTENER MESSAGE
MSGCR
GETFN ;ASK FOR NEW FUNCTION

B,POCMS ;PRINT S-10@ RESET/POWER-ON CLEAR
MSGCR
GETFN ;ASK FOR NEW FUNCTION

B,XTNMS ;PRINT EXTERNAL CONTROLLER MESSAGE
MSGCR

A,@FFH ;SET ECHO FLAG SO THAT THE CONTROLLER'S
ECHO ; COMMANDS ARE SHOWN ON THE CONSOLE
B,JTBL ;POINT TO USER JUMP TABLE

XCTRL ;D0 WHATEVER THE CONTROLLER SAYS

CRLF

GETFN ;ASK FOR NEW FUNCTION

B,SRQMS ;PRINT "DEVICE REQUESTING SERVICE" MSG
MSGCR

A,@FFH ;SET ECHO SO THAT THE SERIAL POLL 1S
ECHO ; SHOWN ON THE CONSOLE

GETSTR ;GET STRING OF 488 DEVICES TO BE POLLED

SPQRY ;FIND OUT WHICH DEVICE WANTS SERVICE
CRLF ;TERMINATE THE ECHOED POLL WITH CRLF
A ;SEE IF ANY AFFIRMATIVE RESPONSE
AFIRM ;..YES

B,NORSP ;PRINT "NO RESPONDING DEVICE"

B, TRYAGN ;ASK |F WANT TO TRY AGAIN
MSGCR

YESNO

SREQ ;++.YES, SO REDO SERIAL POLL

B ; SAVE RESPONSE BYTE

H ;SAVE ADDR OF RESPONDING DEVICES TALK ADDR
B,RSPMS ;PRINT "REQUESTING DEVICE IS ™

CS-41

DINK

P&T -

#3D2
305
2306
2307
@3DA
@300
g3EQ
g3€e3
P3E4
@3€E5
93€E8
g3e8B

g3€eC
@3EE
@3F1
g3F4
@3F5
@3F7
F3FA
@3FC
g3FF
gag
gaga
gag7

g4aga
g49C
gagF
gan
ga14
#415
9416
ga19

g418
g41E

ga21
9423
@426
9429
P42A

942D
P42E
g431
2434
@435

g436
2437
@438
2439
@438
243C
243D
2449
g443

9446
gaa7
@448
g449
ga4A
9448
Fa4E
gaar
#452
g454
g457

488

CD6794
El
7€
CDECZ8
CD75¢94
p191g6
CD67g4
C1
78
CD46g4
CD7594
c9

g6d1
212A08
CDFB@8
77
FE@GD
CA2D@4
FE18
C20Ag4
3E23
CDEC@8
CD7504
C3EC@3

FETF
C22104
3ETF
CDEC@8
28

a5
C2F193
3E@7

CDECZ8
C3ECH3

FEIB
C23694
CDFB@8
77
C33604

28
22AA@8
CD7504
a5
c9

23

4F

g4
e8¢
B8

79
CA2Dg4
CDEC@8
C3F1@3

F5

gF

gF

aF

gF
CD5804
F1
CD58¢04
3E29
CDEC@8
c9

FILBFR:
FiLl:

FiL2:

NOTX:

H
NOTD:

FILXIT:

NESC:

HEXO:

CALL
POP
MOV
CALL
CALL
LXI
CALL
PoP
MOV
CALL
CALL
RET

MV

CALL
MOV
cPl
JZ
CP1
JINZ
MVI
CALL
CALL
JMP

CP1
JINZ
MV1
CALL
OCX

JNZ
MVi

CALL
JMP

CP!
JNZ
CALL
MOV
JMP

DCX
SHLD
CALL

RET

INX
MoV
INR
MV

MOV
JZ
CALL
JMP

PUSH

RRC
RRC
RRC
CALL
POP
CALL
MV
CALL
RET

MSG
H ;GET ADDR OF TALK ADDR AGAIN
AM ;PUT DEVICE'S ADDRESS IN A REGISTER

PRT ;PRINT THE DEVICE'S TALK ADDR

CRLF ;TERMINATE WITH A NEW LINE

B,RSBMS ;PRINT RESPONSE BYTE MESSAGE

MSG

B ;PRINT VALUE OF RESPONSE BYTE IN HEX
A,B

HEXO

CRLF ;FINISH WITH CRLF

B, 1 ;RESET CHARACTER COUNT TO ZERO
H,BUFBEG ; AND POINTER TO BEGINNING OF BUFFER
KBIN ;GET A CHARACTER FROM THE KEYBOARD

M,A ;PUT IT INTO THE BUFFER

gDH ;CARRIAGE RETURN?

FILXIT ;..YES, SO QUIT ALREADY

18H ;CONTROL X (CANCEL)?

NOTX

A, 4! ;PRINT OCTOTHORPE AS CANCEL CHARACTER
CRLF ;D0 A CARRIAGE RETURN AND LINE FEED

FiL1 ;RESTART BUFFER FILL PROCESS

7FH ;DELETE?

NOTD

A,DELCHR ;ECHO THE DELETE CHARACTER

PRT

H ;DECREMENT BUFFER POINTER (TO DELETE CHAR)
B ;DECREMENT CHARACTER COUNT

FiL2 ;GET NEXT CHAR
A7 ;DELETED MORE CHARS THAN IN BUFFER
; SO RING BELL

PRT

FIL1 ;RE-START BUFFER FILL ROUTINE

18H ;ESCAPE?

NESC ;..NO

KBIN - ;GET ANOTHER CHARACTER AND PUT IT IN
M, A ; THE BUFFER IN PLACE OF THE ESCAPE

NESC ; WITHOUT REGARD TO WHAT THE CHAR 1S

H ;POINT TO LAST VALID CHARACTER
BUFPTR ;UPDATE BUFFER POINTER
CRLF ;OUTPUT A CARRIAGE RETURN AND LINE FEED

B ;SET ZERO FLAG IF BUFFER EMPTY
H ; INCREMENT BUFFER POINTER

C,A ; SAVE CHARACTER

B ; INCREMENT CHARACTER COUNT

A,BUFSIZ ;SEE IF BUFFER OVERFLOWED
B .

A,C ;GET THE CHARACTER AGAIN

FILXIT ;..BUFFER FULL, SO RETURN TO CALLER
PRT ;ECHO THE CHARACTER ON THE CONSOLE
FIL2 ;GET NEXT CHARACTER

PSW ;SAVE THE BYTE TO BE PRINTED IN HEX
3GET HIGH NIBBLE INTO LOW NIBBLE

HEXL ;PRINT THE NIBBLE (NOW LOW NIBBLE)

PSW ;GET THE BYTE AGAIN
HEXL ;PRINT THE LOW NIBBLE
A,' ' ;PRINT A SPACE

PRT

CS-42

DINK

M8229
M8229
M8229

M8229
M8229

M8229

M8229
M8229
M8229

P&T -

@458
#45A
@45C
P45€E
g461
9463
@466

g467
9468
g468
g46D
g46E
ga71

9472
2475
d476
2478
@478
2470
g48g
g481

ga82
gaAc
gacs
PAEE
P4FB
@513
@525
@537
@56C
2578
@587
@58E
@5AF
#5C3
@506
#5E8
@g5F8
2609
9622
962D
g63E
2665
@675
2691
@683
g6eD8
@6F5
3735
g717
9732
g74A
7763
9779
979C
g7A8
@7CF
@700
g7FC
7813

9828
#829

g82A
@8AA

488

E6@F HEXL:
F63@

FE3A

DA6304

cea7

CDEC@8 NUM:
c9

gA MSG:
CDEC@8

E680

23

CA6704

c9

CD6794 MSGCR:
F5 CRLF:
3EQD

CDEC@8

3EQA

CDEC@8

F1

c9
PDPA456ET4ADRMS :
2050617261
5365726961
28454F5329
PDBA494ES6BADMS :
4C49535445BMS :
456E746572CHRMS :
3438382@43CLMS :
34383820440LMS :
4445564943DVMS :
POPA3SCA5S4EENDMS :
5265747572E0SMS :
456E746572FCNMS :
546F6F2066FEWMS :
PDPA44494E |DMS:

53656E6420 | FCMS:
PDPA494ES54 I FMS
4C69737465LMSG:
4E4F204C4A9NLMS :
PDBA592@6FNOGUD :
4E6F206166NORSP :
@DPASPAF 4 3POCMS :
5@6172616CPPMS :
5468652076RSBMS :
5468652@34RSPMS :
41626272655@MSG :
54616C6B20S IMSG :
4C6973746552MSG:
5365727669S3MSG :
52656D6F 7454MSG :
5@6172616CS5MSG:
436F6E7472S6MSG:
4120343838SRQMS :
456E746572STRMS :
53656E6420TLKMS :
4445564943TMS :
547279206 1 TRYAGN:
546 16C6B20TSMSG:
FDPA455854XTNMS :

20
a9

H
ECHO:
FCN:

BUFBEG:

2Ag8 BUFPTR:

ANI
ORI
cPl
JC
AD|
CALL
RET

LDAX
CALL
ANI
INX
Jz
RET

CALL
PUSH
Mvi
CALL
Mvi
CALL

RET

DINK

BFH

;STRIP HIGH NIBBLE
3@H ;CONVERT TO PRINTING CHARACTERS
st ;SEE IF VALUE GREATER THAN 9
NUM ;eeNO
7 ;eoYES, SO ADD OFFSET TO GET A-F
PRT ;PRINT THE CHARACTER
B
PRT ;PRINT MESSAGE
80H ;SEE IF PARITY SET
B
MSG ;e«NO, SO PRINT SOME MORE
MSG ;PRINT THE MESSAGE, TERMINATE WITH CRLF
PSW ;PRESERVE ALL REGISTERS
A,#DH ;OUTPUT A CARRIAGE RETURN
PRT
A,BAH ;THEN A LINE FEED
PRT
PSW ;RESTORE ALL REGISTERS

@OH, PAH,'Enter PAT-488 Listen and Talk addresses,!

! Parallel Poll response',dDH,dAH

'Serial Poll status and the End-of-String !

' (EQS) bytes.',dAgH

@DH, PAH, '"INVALID FUNCTION CODE',dA@H

'LISTEN BUFFER FUL', @CCH

'Enter a character!',JAgH

'488 Control lines:DAV NRFD NDAC IFC ATN SRQ REN EQI',BAGH
'488 Data |ines' ,dA@H

'DEVICE CLEA', @D2H

@DH, @AH,'<END',@BEH

'Return upon receipt of EOS byte?' ,JAgH ;
'Enter function code!,BAGH

'Too few characters!',JAgH

@DH, @AH,'DINK 1-2-8g',@DH,8AH

'Send IFC (Y/N)?',0AGH

POH, @AH,'INTERFACE CLEA', @O2H

'Listen Secondary Address',gA@gH

'NO LISTENE', ZD2H

@DH,PAH,'Y or N ONLY!!!' JAGH

'No affirmative response to Serial Poll!,gAgH
@0H ,BAH, 'POC/RESET TRU', @CSH

'Paral lel Poll| Response byte!,JAdH

'The value of the response byte is',@AgH
'The 488 device requesting service is',JAgH
'Abbreviated State of P&T-488',JAgH

'Talk State byte' ,gAgH

'Listen State byte!,dAgH

'Service Request State byte!,JAgH
'Remote-Local State byte!,dAGH

'Paral lel Poll State byte!,dAgH

'Control ler State byte!,JAgH

'A 488 device is requesting service!,@AgH
'Enter a string',JAgH

'Send END with last character (Y/N)?', @AGH
'DEVICE TRIGGE', @D2H

'Try another Serial Poll (Y/N)?',BAgH

'Talk Secondary Address' ,JAgH

@DH, #AH, '"EXTERNAL CONTROLLE!',ZD2H

M8229

M8229
M1g20

g ;ECHO FLAG. |IF @ DO NOT PRINT CHAR EACH
; TIME BRK IS CALLED
g ;AREA TO SAVE FUNCTION CODE

BUFSIZ
BUFBEG

;STRING BUFFER M8229

;STRING BUFFER POINTER

CS-43

P&T -438 DINK

g8AC N} 64D ;STACK AREA
STAK:

IT IS ASSUMED THAT THE ROUTINE PRT PRINTS THE CHARACTER
HELD IN THE A REGISTER, THEN RETURNS TO THE CALLING
ROUTINE. ALL REGISTERS (EXCEPT THE FLAGS) ARE ASSUMED
TO BE UNMODIFIED BY PRT.

SIMILARY, IT IS ASSUMED THAT THE ROUTINE KBIN GETS A
CHARACTER FROM THE KEYBOARD AND RETURNS WITH IT IN
THE A REGISTER, ALL OTHER REGISTERS ARE TO BE UNAFFECTED

AN EXAMPLE OF PRT WRITTEN TO USE CP/M'S
CONSOLE OUTPUT ROUTINE IN CBIOS

NOTE: THE STARTING ADDRESSES OF CONOUT AND CONIN CAN BE

FOUND IN THE FOLLOWING MANNER:

1« GET THE ADDRESS STORED IN THE WORD AT LOCATION 929d1
(LOW BYTE OF ADDR IN @g@@1, HIGH BYTE IN @9@2)

2. ADD 6 TO THAT ADDRESS. THE RESULT IS THE ADDRESS OF
A JUMP TO THE ROUTINE CONIN,

3. ADD 3 TO THE ADDRESS CALCULATED FOR CONIN. THIS IS
THE ADDRESS OF A JUMP TO THE ROUTINE CONOUT.

Owe v+ %o %o N W me Mo %l we we we Wi N we e wr we Ws We we wa

g8EC E5 RT: PUSH H
@8ED D5 PUSH D
@8EE C5 PUSH B8
@8EF F5 PUSH PSW ;SAVE ALL REGISTERS
g8F3 E67TF ANI 7FH ;STRIP PARITY BIT M8229
@g8F2 4F MOV C,A ;PUT CHAR INTO REG C AS NEEDED BY CBIOS
@#8F3 CDOCDA CALL CONOUT ;OUTPUT THE CHARACTER
g8F6 F1 POP PSW ;RESTORE REGISTERS
g8F7 Ci POP B
@8F8 D1 POP D
g8F9 E1 POP H
@8FA C9 RET

; AN EXAMPLE OF KBIN WRITTEN TO USE CBI0S CONSOLE

H INPUT ROUTINE

?
g8FB E5 KBIN: PUSH H ;SAVE REGISTERS
@8FC D5 PUSH D
@8FD C5 PUSH B
g8FE CD@9DA CALL CONIN ;GET THE CHAR (CP/M RETURNS WITH CHAR

; IN REG A)

g9g1 E67F ANI TFH ;STRIP PARITY BIT mM8229
2943 C1 POP B ;RESTORE REGISTERS
g9g4 D1 POP D
gogs el POP H
@996 C9 RET
asg7 END 198H

CS-44

P&T -488

7482
@513
9525
DAG9
og7F
2587
@5C3
@2F2
8035
2506
@316
21E8
@379
@375
g211
g1Fc
@208
2608
g74A
8@3E
@779
g79C
2331
2813

ADRMS

CHRMS
CONIN
DELCHR
ENDMS
FEWMS
GETCH!1
GIM
10MS
JTBL
LSN1
NLS
NOTCC
PNSET
PPOLL
PSET
SOMSG
S5MSG
SPQRY
SRQMS
STRMS

XTNMS

2179
2351
#4537
DAGC
gs6C
8026
@3€eC
2200
P1A7
g5e8
g8FB
g467
9286
2421
9665
8g47
93A8
@6F5
9763
8044
802F
8029
@700
@202

ADRSET
BRK
CLMS
CONOUT
DLMS
ENTBL
FiL1
GETCHR
GIMSET
| FCMS
KBIN
MSG
NOEO!
NOTD
POCMS
PPQORY
QRY
S1IMSG
S6MSG
SPREL
STADR
TALK
TRYAGN
YESN1

SYMBOL TABLE

@3CD AFIRM
@82A BUFBEG
gg70 CMDPT
J19€ CONTRL
9338 DVCL
@58E EOSMS
@3F1 FIL2
111
@458 HEXL
g5F8 |FMS
8@2C LISTN
3472 MSGCR
#62D NOGUD
P4GA NOTX
9382 POCRST
804D PPREL
9217 REQ
g705 S2MSG
#191 SET1
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>