P&T-488 INTERFACE
INSTRUCTION MANUAL

MSOFT Software Package

(805) 685-4641

P. 0. BOX 1206
GOLETA, CA 93116

P&T-488

P&T-488 INTERFACE
INSTRUCTION MANUAL

copyright (c) 1982 by

Pickles & Trout
P.O. Box 1206
Goleta, CA 93116
All Rights Reserved

WARRANTY

This Pickles & Trout product is warranted against defects in materials and workmanship for 90
days from the date of shipment. Pickles & Trout will, at its option, repair or replace
products which prove to be defective within the warranty period provided they are returned to
Pickles & Trout. Repairs necessitated by modification, alteration or misuse of this product
are not covered by this warranty.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE. PICKLES & TROUT IS NOT LIABLE FOR
CONSEQUENTIAL DAMAGES.

rev 4-15-82 17:43 - -

P&T-488 Foreword

FOREWORD

This manual contains the information necessary to understand and use the P&T-488
interface as well as provide instruction in the basic concepts of the IEEE-488 bus.

Those who are already familiar with the IEEE-488 bus (also known as the HP-IB, GPIB and
ASCIl bus) and the concepts of a Talker, Listener and Controller may skip to page MSOFT-1.
It is recommended that those who are not acquainted with Talkers, Listeners and Controllers
read the chapter "The |IEEE-488 Bus" first.

The P&T-488 interface consists of two major components: the P&T-488 interface board and
the P&T-488 to Microsoft Basic interface software package. The software package is actually
two programs: MSOFT.COM and MSOFT.REL. MSOFT.COM is an object code program to be
used with interpreter Basic, and MSOFT.REL is a linkable module to be used with compiler
Basic. Also included is an object code program (488TST81) which performs a complete functional
test of the P&T-488 interface board. Additional programs are provided as examples of how one
can use the P&T-488 interface to communicate with 488 devices. Several utility programs have
also been provided. One which is especially useful is called BUSMON. It displays all IEEE-488
bus transactions on the console and can also be used to send data or commands over the bus.
All programs are provided on a single density, non-system diskette recorded in CP/M} format.

Even though MSOFT is designed to be used with Microsoft Basic, other languages can also
successfully use MSOFT. Included in this manual and on the disk are sample programs written
in assembler, Fortran, Pascal and C.

t+ CP/M is a trademark of Digital Research

- ii - rev 4-15-82 17:43

Table of Contents P&T-488

Page

12

MSOFT-1

MSOFT-2

MSOFT-4

MSOFT-5

MSOFT-7

MSOFT-8

MSOFT-9

MSOFT-12

rev 4-15-82

Table of Contents

Title Description

IEEE-488 Bus
An introduction to the three primary occupants of the IEEE 488 bus: the
Talker, Listener and Controller.

Hardware Description
A brief description of the P&T-488 interface board. Instructions are included
for changing the 1/O port addresses used. The significance of each port is also
explained.

Functional Test
Instructions on the use of the Functional test routine (488TST81). This
routine performs a complete check of the operation of the P&T-488 interface
board and its 488 cable.

P&T-488 to Microsoft Basic Interface Software

Introduction
Unpacking, Installation and Testing the P&T—488 card.

Programs
List of programs supplied with the P&T-488,

MSOFT - How It Works

Instructions on the use of the P&T-488 to Microsoft Basic interface software
package (MSOFT).

Communication Functions

The thirteen communication functions are described. They are CNTL, CNTLC,
TALK, TALKC, LSTN, LSTNC, SPOLL, PPOLL, DREN, REN, STATUS, IFC
and BRSET.

Setup Functions
The four setup functions are described. They are SETUP, IOSET, PROTCL and
ECHO.

Configuration Function
The configuration function IOPORT is described.

Communication Variables
The communication variables are described. The .names used in the sample
programs for these variables are ERCODE%, TIME%, POLL%, BUS%, EOT%,
EOS%, LENGTH%, ECHOIN% and ECHOOUT%.

Quirks, Oddities and Strange Behavior

A summary of characteristics of MSOFT, Basic and the IEEE-488 bus which may
give rise to unexpected results.

17:43 - iii -

P &T-488

MSOFT-14

MSOFT-16

MSOFT-16

MSOFT-17

MSOFT-18

MSOFT-18

MSOFT-22

MSOFT-27

MSOFT-27

MSOFT-32

MSOFT-33

MSOFT-35

MSOFT-36

MSOFT-41

Table of Contents

Gotchyas
A capsule summary of the problems (and their solutions) the user is likely to
encounter while using the P&T-488.

How to Use MSOFT with Interpreter Basic
How to use MSOFT with Compiling Basic

Example of how to Compile an MSOFT Program
A step-by-step dialog showing how to compile and link an MSOFT program.

Comments on BISAMPL.BAS and BCSAMPL.BAS
An overview of the purpose and operation of a sample Basic program. The
program allows the operator to exercise most of the functions of MSOFT.

HP 59309A Dialog
The dialog needed to reset, set and read a Hewlett-Packard 59309A Digital Clock
while running the program BISAMPL.

BISAMPL.BAS Listing
The source listing of a program written in interpreter Basic which allows the
operator to exercise most of the functions of MSOFT.

BCSAMPL.BAS
A summary of the changes needed to change the interpreter Basic program
BISAMPL.BAS into a program which can be used with compiling Basic.

BCSAMPL.BAS Listing

The source listing of a program which performs the same functions as
BISAMPL.BAS but which is written for compiler Basic.

B488INIT.BAS
The source listing of a program fragment that you will find useful to include in
each of your programs for MSOFT. This program fragment is also on the disk.
Its primary utility is that it bypasses errors which may be introduced by
typos, etc.

BICLOCK.BAS
The source listing of a program written in interpreter Basic which initializes
the 488 bus and then reads the date and time from an HP 59309A clock.

Parameter Passing
An explanation of how MSOFT expects parameters to be passed. This
information is useful when MSOFT is to be used with some language other than
Microsoft Basic.

CLOCK.MAC
The source listing of a program written in 8080 assembler which initializes the
488 bus and then reads the date and time from an HP 59309A clock. This
program performs the same function as BICLOCK.BAS, but shows how to write
assembler programs that use MSOFT.

MTSAMPL.PAS
The source listing of a program written in Pascal/MT+ which allows the operator
to exercise most of the functions. of MSOFT. This program performs the same
function as BISAMPL.BAS, but is written in Pascal/MT+ to demonstrate how:
MSOFT can be used with Pascal.

- iv - rev 4-15-82 17:43

Table of Contents P&T-488

MSOFT-50

MSOFT-53

MSOFT-56

MSOFT-63

MSOFT-67

MSOFT-74

rev 4-15-82

MT488.MAC

The source listing of an assembler program which performs the parameter passing
conversions necessary to make MSOFT work with Pascal/MT+.

MTCLOCK.PAS
The source listing of a program written in Pascal/MT+ which initializes the 488
bus and then reads the date and time from an HP 59309A clock. This program
performs the same function as BICLOCK.BAS, but shows how to write
Pascal/MT+ programs that use MSOFT.

FSAMPL.FOR
The source listing of a program written in Microsoft Fortran which allows the
operator to exercise most of the functions of MSOFT.

STRIN.MAC
The source listing of an assemtﬂwwmgram which collects strings from the
console for FSAMPL.FOR. \\

FCLOCK.FOR

The source listing of a program written in Fortran which initializes the 488 bus
and then reads the date and time from an HP 59309A clock. This program
performs the same function as BICLOCK.BAS.

QCCLOCK.C
The source listing of a program written in C which initializes the 4838 bus and
then reads the date and time from an HP 59309A clock. This program performs
the same function as BICLOCK.BAS, but shows how to write C programs that
use MSOFT.

17:43 -V -

P &T-488

Al

B1

AUX-=1

AUX-3

AUX-4

AUX-5

AUX-6

AUX-10

Table of Contents

Appendices

Unofficial Phrasebook
A dictionary which expands the IEEE 488 standard mnemonics into English.
There are also some definitions, and many of the mnemonics are cross—referenced

to the page(s) in the IEEE Standard document which define their meaning and
use.

Multiline Interface Messages (Command Codes)

A table showing the ASCIl (or 1SO-7) character codes which correspond to
messages sent by the Controller. This table includes the allowed Listen and
Talk addresses.

Auxiliary Programs

BUSMON ,

Description of the program BUSMON which monitors and reports all transactions
occurring on the IEEE-488 bus.

488TODSK

Description of the utility program which will record all IEEE-488 data
transactions in-a disk file.

DSKTO04388

Description of the utility program which sends the contents of a disk file over
the IEEE-488 bus as data.

HANDSHAK

Comments about the source code listing of the source and acceptor handshake
subroutines.

HANDSHAK
Source code listing of source and acceptor handshake subroutines.

SAMPLHS

The source:listing of a simple program which makes use of the subroutines in-
HANDSHAK to get data from the IEEE-488 bus and display it on the console.

-vi - rev 4-15-82 17:43

P&T -488 The IEEE -488 Bus

- CAST OF CHARACTERS -

The 488 bus is populated by three major types of devices. One is the Controller,
which sends commands over the bus to other devices. Another is the Talker, which sends
data over the bus to one or more devices of the third kind: the Listeners. The Listeners
and Talker communicate with a handshake on each data transfer, and the communication
proceeds at the maximum rate allowed by the Talker and the slowest Listener. This
communication is completely asynchronous and may be interrupted at specific points in the
handshake cycle without causing any loss of data.

It can be useful to liken the bus to a meeting which has a chairman (Controller), a
recognized speaker (Talker) and an audience (Listeners). As is true of most meetings,
some of the audience is paying no attention whatever to the proceedings (some of the
devices on the bus may be ldle), while some of those that are listening want to interrupt
the Talker. Sometimes a member of the audience is audacious enough to indicate that it
should be the chairman. The 488 bus specification allows the Controller to designate
another device as his successor.

It is the Controller's responsibility to make sure that communication takes place in an
orderly manner: it is he that says who can talk and who should listen at any given time.
It is also the Controller that takes care of such matters as telling everyone to shut up
(Universal Untalk UNT command), everyone to go back to their desks (Interface Clear
IFC), or listen to someone trying to gain the floor (Service Request SRQ). Even though
the Controller has (in theory) complete command over everyone else, problems can arise.
One possible problem is that the Controller has made the unwise choice of telling more than
one device that it can be a Talker, which results in sheer bedlam. Another way for the
Controller to lose control of the situation is if a Talk Only (tom) device is placed on the
bus. Some Talk Only devices are notoriously deaf and don't pay any attention to
anybody, even the Controller!

A Talker, on the other hand, leads a simple life. It does not concern itself with
disputes over who has the right to be heard, and when. It only puts data on the bus,
waits until the slowest listener indicates it is ready for data, says the data is valid, waits
until the slowest Listener says it has accepted the data, then says that it is removing the
data and follows up on its threat. About the only thing that bothers a Talker is to find
that no one is listening to hime Most get really upset and let the Controller know about
this impolite state of affairs. Talkers that don't complain have a tendency to sit there
with their mouths open, caught in mid-word. Either way, no communication is taking place
and this is not considered a desirable state of affairs.

Listeners can be a little more complicated. They let the Talker know when they are
ready for another word and when they have received it. Some also let the Controller
know that they want some special attention. The Controller waits until the Talker can be
interrupted so that no Listener is deprived of the latest bit of wisdom imparted by the
Talker. Then the Controller tries to find out which device wants the attention. Two
ways to do this are Serial Poll, in which each device is allowed to speak (one at a time)
and Parallel Poll, which allows several devices to simultaneously inform the Controller of
their need by a bit pattern each puts onto the eight data lines.

P&T-488 The IEEE-488 Bus
- HARDWARE OVERVIEW -

The 488 bus is made up of 16 signal lines: eight are used for data, three are
needed for the interlocking handshake used to communicate the data, and the remaining
five are used for bus management. Since there are eight data lines, a full eight bit
byte can be communicated in each handshake cycle. This is what is meant by the
phrase "bit parallel - byte serial" transmission. It is an alternative to the
slower RS 232C standard, in which only one data line is used (and which is referred
to as being a "bit serial" interface standard).

Data Bus Data Byte- General
(8 Lines) Transfer Interface
Control Management

DIO 1...8

DAV
NRFD
NDAC

IFC
ATN
SRQ
REN
£01

Device B Device C
Able to Talk, Listenf] § Able to Taik and Only Able to § Only Able to Talk

Device D

and Control Listen (e.ge, Listen (e.g.,

(e.ge, P&T-488) digital multimeter) signal generator) (e.g., counter)

There are three basic concepts which are important to an understanding of how
the hardware of the 488 bus works. The first is that only one of two voltages is
allowed on each line, and the lower allowed voltage is ground. The second is that
the 488 bus uses negative true logic, which means that the lower of the two voitage
levels has the value TRUE, while the higher voltage has the value FALSE. The third
is that the bus uses open-collector drivers. An open-colliector driver can be thought
of as a switch with one terminal connected to the line and the other to ground. When
the driver is ON, it is as if the switch is closed, and so connects the line to
ground. If the driver is OFF, it is as if the switch is open, so no connection is
made between the line and ground. There is a resistor connecting the line to a
voltage supply, so the voltage on the line rises to the higher of the two allowed
levels if the line is not grounded. Since the 488 uses negative true logic, a line
is given the value TRUE by turning the open-collector driver ON, or the value
FALSE by turning the driver OFF. The phrases "active true" and "passive
false" are used to describe this system; active true because the line must be
actively connected to ground to impress a. value of true on it, passive. false because
no action is needed (no connection is made) to make the value of the line falses

-2

P&T -488 ‘ The IEEE -488 Bus

Each 488 device has one open-—collector driver for each 488 line that it uses. More
than one open-collector driver (that is, more than one 488 device) can be connected to
each line. If all drivers are off the voltage on the line will be high, which means it has
the value false. However, if one or more open-collector drivers are on, the line's
voltage will be low, and it will have the value true. This is called a "wire-or" system
because the logical value of the line is the logical OR of the logical values impressed on it
by the several open-collector drivers connected to it. Thus each 488 device sends a true
to the line by turning on its driver, or a false by turning the driver off. Note that if
any device asserts a particular line true, that line will have the value true. However, if
a device asserts a false (high) signal, it will be overridden by any device which asserts a
true.

The eight data lines are named DIO1 through DIO8 (DIO stands for Data
Input/Output)e The least significant bit appears on DIO1, the most significant on DIOS.
One point of possible confusion is that the data bits in an S-100 system are numbered @
through 7, while the 488 data lines are numbered 1 through 8. Another is that S-100
systems. assume positive true logic (high means TRUE, low means FALSE). Just remember
that S-10¢ data bit 7 appears on DIO8, etc. and a 488 byte is the one's complement of
an S-100 byte and everything should be all right.

The proper IEEE title for the three handshake lines is "Data Byte Transfer Control"
lines. They are individually known as follows: *
DAYV (Data Valid) - when true the data on the eight data lines is valid.
NRFD (Not Ready For Data) - when true the 488 devices are not ready to accept data.
NDAC (Not Data Accepted) - when true the devices have not yet accepted the data.

The remaining five lines are known as the ‘"General Interface Management" lines.
They are as follows:
IFC (Interface Clear) - place all 488 devices in their default state.
ATN (Attention) -~ used to distinguish between a Controller and a Talker.
SRQ (Service Request) - indicates that a device needs attention.
REN (Remote Enable) -~ allows 488 devices to be programmed either by their local
controls (front panel switches, etc.), or by information sent over the 488 bus.
EOI (End or Identify) - indicates the end of a string if ATN is false, otherwise it
indicates a Parallel Poll is in progress.

- BYTE COMMUNICATION -

Byte communication requires that there be a device which is generating the byte to
be communicated (the "source") and one or more devices which receive the byte (the
"acceptors'). The Source and Acceptors communicate by use of an interlocking handshake
using the three Data Byte Transfer Control lines (DAV, NRFD and NDAC). The byte
itself is sent on the eight data lines (DIO1 through DIO8). The handshake is schematized
in the following flow chart.

-3

P&T-488

SOURCE
(SH)

(5}

Set DAV high (false)

v
Are NRFD and NDAC both
high (false)?

YES - error: no Acceptors
on bus
NO - place the byte on
DIO1-DIO8
B ¥

[Is NRFD false (high)? |
NO - goto B
YES - continue

C K

Has it been at least 2
microseconds since the
byte was placed on the
data bus?
NO - goto C
YES - assert DAV true
(data available)

D/

lis NDAC false (high)? |
NO - goto D
YES - data has been accepted,
so prepare to send next byte.

[More data to send? }
YES - goto A

The IEEE-488 Bus

ACCEPTORS
(AH)

Initialize handshake
Set NRFD, NDAC low (true)

Each Acceptor'passively asserts
NRFD false (high) as it becomes

ready for data. The NRFD line
goes high (false) when all are
ready.

v

O

{ls DAV true (low)? |

NO - continue

v ,
Warn that data will change
Assert DAV false (high)

&
Remove data
Assert DIO1T through DIOS
false (high)

END

NO - goto U
YES -

as each Acceptor finishes
getting the byte it passively
asserts NDAC false and actively
asserts NRFD true (low). When
all have accepted the byte, NDAC
finally goes false (high).

\'

{Is DAV false (high)? |

NO - goto V - e :
YES - actively assert NDAC true
(low), because the new byte which
has not yet been sent is not
accepted yet

goto T

P&T -488 The IEEE -488 Bus

- A More Detailed Lookbat the 488 Inhabitants -

A TALKER is a device which sends data over the 488 interface to other devices.
There are two major types and various subtypes. One major type is the Talk Only (ton),
which may be used in a 488 system which has no Controller. This device always talks,
and so it must be the only device which can talk. The other major type must be told
when to talk ("addressed to talk"). A Controller is needed because it is the only kind of
488 device that is allowed to address Talkers and Listeners. All Talkers use the Source
Handshake (SH) function to send a message over the 488 bus.

A LISTENER is a device which receives data over the 488 interface. As with the
Talker, there are two major types: Listen Only (lon) and addressed Listener. A Listen
Only device always listens to the 488 bus, while an addressed Listener listens only when
the Controller tells it to. The Listen Only device can operate in a 488 system which does
not have a Controller since it does not need to be told what to do and when to do it. All
Listeners use the Acceptor Handshake (AH) function to receive messages on the 488 bus.

A CONTROLLER is a device which issues commands on the 488 bus. These include
commands which are used to reset all devices on the bus Interface Clear (IFC), indicate
which device is to Talk (when the Controller relinquishes the bus) and which devices are to
Listen (i.e. it sends the Talk and Listen addresses of those devices over the bus),
perform a Poll of 488 devices (Serial Poll and Parallel Poll), and a myriad of other special
functions. The commands fall into two general classifications: Uniline and Multiline.
Each uniline command uses only one line out of the five General Interface Management
lines. Examples of uniline messages are Remote Enable (REN), Interface Clear (IFC) and
Parallel Poll. Multiline messages use the eight data (DIO1-DIO8) lines to issue the
command. Examples of multiline messages include performing a Serial Poll and commanding
488 devices to Talk or Listen. Multiline messages are sent using the Source Handshake
(SH) function, just like a Talker. The way that a device determines whether it is hearing
a Talker or the Controller is that the ATN (Attention) line is true (low) when the
Controller is issuing a message, but false (high) when a Talker is saying something. The
Controller is the device which controls the ATN line. Whenever ATN is true, all
addressed Talkers shut up so that the Controller can say its piece. However, some Talk
Only devices don't, and so they garble commands issued by the Controller. Generally
speaking, a Talk Only device should be used only in a 488 system which has no Controller.
Whenever the Controller passively asserts ATN false (lets it go high), the Talker (if any)
begins to send its message.

~ MULTILINE COMMANDS -

Telling a 488 device to Listen is one example of a multiline command. The
Controller places the Listen address of the selected device on the data lines (DIO1 through
DIO8) and then performs the Source Handshake (SH) function. In other words, it "speaks"
the address while ATN is true (low). Whenever the Controller is active (that is, whenever
ATN is true), all devices on the 488 bus interpret whatever is said (via the data lines and
the Source Handshake function) as a command rather than data. ALL devices hear what is
said by the Controller. They ALL execute the Acceptor Handshake function, without
regard to whether they are normally a Talker, Listener or whatever.

-5

P&T -488 The IEEE -488 Bus

Another example of a multiline command is the Serial Poll. The order of events is
that the Controller sends out the Serial Poll Enable (SPE) command, which tells each
device that when it is addressed as a Talker that it is to say either SBN (Status Byte -
service Not requested) or SBA (Status Byte - service request Acknowledged). Those are
the only two messages that are allowed. Then the Controller addresses each device as a
Talker in turn and Listens to the response of each. To conclude a Serial Poll, the
Controller sends the Serial Poll Disable (SPD) command so that any device later addressed
as a Talker can. speak data (instead of SBN or SBA). Finally, the Controller performs
whatever service is needed, which is device dependent.

- UNILINE COMMANDS -

An example of a uniline command is Parallel Poll. Parallel Poll is both simpler and
more complicated than Serial Poll. It is simpler because only one command is given
(Identify IDY: the logical AND of ATN and EOI) and all devices respond at once. It is
possibly more complicated in that it may be more difficult to sort out which device wants
service. Whenever a 488 device receives the IDY message, it immediately places its
Parallel Poll Response byte on the eight data lines. For systems of eight devices or less,
it is common for each device to be assigned a unique bit which it asserts true when it
needs service. For example, one device would have a Parallel Poll response byte in which
bit 1 is true if it needs service, otherwise bit 1 is false, and bits 2 through 8 are always
false. Another device would use bit 2 to indicate its need for service aad all other bits
would always be false in its response byte. A third device would use bit 3. When a
Parallel Poll is performed, the response sensed by the Controlier will be the logical OR of
all the Parallel Poll Response bytes (due to the fact that the 488 bus is a wire-or
system). If the response has bits 1 and 3 true, and all other bits fals2, it means that
the first and third devices need service, while the second does not.

If the 488 system uses more than eight devices, some alternate scheme must be used.
One would be to have only eight devices respond to a Parallel Poll, and use Serial Poll on
the remaining devices. Another scheme would be to have several devices share the same
Parallel Poll Response byte. If the response to a Parallel Poll shows that at least one of
the devices that shares a common response needs service, a Serial Poll can be used to
find which ones they are.

P&T -488 ‘ Hardware Description

- OVERVIEW -

The P&T-488 has four read/write registers which appear as four input/output (I/O)
ports to the S-100 host machine. The ports are addressed as four consecutive 1/O ports
with the first port address an integral multiple of 4 (@, 4, 8, 0C, ..., N*4, ..., FC).
For ease of description these registers will be referred to as registers @ through 3, even
though what is called register § may be Port ¢, 4, 8, ..., N*4, ..., FC.

The addresses used by the P&T-488 are set by means of a DIP switch on the upper
left corner of the interface board. All boards are set at the factory for I/O ports 7C
through 7F Hex, and all software supplied by Pickles & Trout assumes these addresses.
The address used by both the board and the software can be changed by the user. The
addresses used by the software and the board must be the same. To change the addresses
assumed by the software, refer to the instructions given with the program.

To change the addresses used by the board, first note that the labels "A7" through
WA2" appear to the left of the switch. Switches A2 through A7 are set according to the
following table:

Address A7 A6 A5 A4 A3 A2

(Hex)

00-903 ON ON ON ON ON ON
04-07 ON ON ON ON ON OFF
98-0B ON ON ON . ON OFF ON
pC-0F ON ON ON ON OFF OFF
19-13 ON ON ON OFF ON ON
14-17 ON ON ON OFF ON OFF
18-18B ON ON ON OFF OFF ON
1C-1F ON ON ON OFF OFF OFF
290-23 ON ON OFF ON ON ON
24-27 ON ON OFF ON - ON OFF
28-28B ON ON OFF ON OFF ON
2C-2F ON ON OFF ON OFF OFF
39-33 ON ON OFF OFF ON ON
34-37 ON ON OFF OFF ON OFF
38-3B ON ON OFF OFF OFF ON
3C-3F ON ON OFF OFF OFF OFF
40-43 ON OFF ON ON ON ON
44-47 ON OFF ON ON ON OFF
48-48B ON OFF ON ON OFF ON
4C-4F ON OFF ON ON OFF OFF
50-53 ON OFF ON OFF ON ON
54-57 ON OFF ON OFF ON OFF
58-5B ON OFF ON. OFF OFF ON
5C-5F ON OFF ON OFF OFF OFF
60-63 ON OFF OFF ON ON ON
64-67 ON OFF OFF ON ON OFF
68-6B ON OFF OFF ON OFF ON

P&T-488 Hardware Description

Address A7 A6 AS A4 A3 A2

(Hex)

6C-6F ON OFF OFF ON OFF OFF
790-73 ON OFF OFF OFF ON ON
74-717 ON OFF OFF OFF ON OFF
78-78B ON OFF OFF OFF OFF ON
7C-7F ON OFF OFF OFF OFF OFF

80-83 OFF ON ON ON ON ON
84-87 OFF ON ON ON ON OFF
88-8B OFF ON ON ON OFF ON
8C-8F OFF ON ON ON. OFF OFF
90-93 OFF ON ON' OFF ON ON
94-97 OFF ON ON OFF ON OFF
98-9B OFF ON ON OFF OFF ON
9C-9F OFF ON ON OFF OFF OFF
AQ-A3 OFF ON OFF ON ON ON
A4-AT7 OFF ON OFF ON ON OFF
A8-AB OFF ON OFF ON OFF ON
AC-AF OFF ON OFF ON OFF OFF
Bg-B3 OFF ON OFF OFF ON ON "~
B4-B7 OFF ON OFF OFF ON OFF
B8-BB OFF ON OFF OFF = OFF ON
BC-~-BF OFF ON OFF OFF OFF OFF
Cp-C3 OFF OFF ON ON ON ON
C4-C7 OFF OFF ON - ON ON OFF
C8-CB OFF OFF ON ON OFF ON
CC-CF OFF OFF ON ON OFF OFF
D@-D3 OFF OFF ON OFF ON ON
D4-D7 OFF OFF ON OFF ON OFF
D8-DB OFF OFF ON OFF OFF ON
DC-DF OFF OFF ON OFF OFF OFF
E¢-E3 OFF = OFF OFF ON ON ON
E4-E7 OFF OFF OFF ON ON OFF
E8-EB OFF OFF OFF ON OFF ON
EC-EF OFF OFF OFF ON OFF OFF
FO-F3 OFF OFF OFF OFF ON ON
F4-F7 OFF OFF OFF OFF ON OFF
F8-FB OFF OFF OFF OFF OFF ON
FC-FF OFF OFF OFF OFF OFF OFF

For example, to address the P&T-488 interface board to use 1/O ports 7C through
7F Hex, A7 must be ON and A2 through A6 OFF.

The P&T -488 allows direct access to the 8 signal lines of the IEEE 488-1978
(hereafter called 488) data bus (Register 2) and the 8 lines of the 488 Data Byte Transfer
Control Bus and General Interface Management Bus (Register 1). In addition, a register is
provided to allow a software settable response to a Parallel Poll (Register 3). Finally, a
register is provided which indicates transitions occurring on the various 488 Control Bus
and Management Bus lines (Register). Additional features of the P&T-488 include
software disable of interrupts from the P&T-488 (without having to disable all interrupts
of the S-1¢Q system) and immediate response of the interface to Attention (ATN),
Interface Clear (IFC) and -Parallel Poll without: intervention: of the S-10¢ system's CPU.

P&T -488

Hardware Description

The data transfer rate is highly dependent on the software, CPU and system memory
of the S-100 system, but with the supplied software, an 808) running at 2.9 MHz and no
memory wait states, the transfer rate is about 3 KBytes/sec. For applications requiring
higher rates, the same S-10@ system can get data rates of over 9 KBytes/sec in the Talk

Only mode.

REGISTER FUNCTIONS

FUNCTION

0] Interrupt Status (read only)
/] Interrupt Reset (write only)

1 Command Line Register (read and write)

2 Data Line Register (read and write)

3 Parallel Poll Response (write only)

No . 1/0
(/] IN
] ouT
1 1/0
2 1/0
3 ouT

NOTES:

REGISTER BIT MAP

D7 D6 D5 D4 D3 D2 D1
DAV NRFD NDAC XIFC XATN SRQ REN
+ - + + - + = - +
DAV~ NRFD NDAC XIFC XATN SRQ TALK/
LISTN
DAV NRFD NDAC IFC ATN SRQ REN
DIO8 DIO7 DIO6 DIOS DIO4 DIO3 DIO2
DIO8 DIO7 DIO6 DIOS DI04 DIO3 DIO2

+ means the bit goes low on a LOW to HIGH transition
- means the bit goes low on a HIGH to LOW transition

Dl means 488 interface interrupts are disabled
El means 488 interface interrupts are enabled

The 488 data lines are numbered from 1 to 8, while the
data lines on the S-109 system are numbered @ to 7

X as in XATN, XIFC signifies that some device other than
the P&T -488 has made the level on the line (ATN or IFC)
active true (low).

o0

POC

,DI/

El

EO!I

DIO1

D101

P&T -488 Hardware Description

- REGISTER 3 -

This register holds the Parallel Poll Response byte. Whatever has been output to
Register 3 will appear on the 488 data lines in response to a Parallel Poll (ATN and EOI).

- REGISTER 2 -

This register is connected to the 488 data lines through bus transceivers. The state
of the data lines can be sensed by reading Register 2, and the P&T-488 will assert on the
data lines whatever was last written into Register 2. However, if either the XATN flag
or XIFC flag in Register @ is set, the output buffers to the 488 bus are disabled which
precludes assertion of what was last written into Register 2. Remember that the 488 bus
uses negative logic so that any bit that is low is asserted (or logically true). Also the 488
bus is a wire—-or system, so if any piece of equipment is asserting a particular line true,
that line will be a logical true. But if a device asserts a false (high) signal, it is
overridden by any device that asserts a true. Hence the terminology of active true and
passive false. Thus if the P&T-488 is being used as a Listener all bits of Register 2
should be written high (logic false) so that the data asserted by the Talker can be properly
read.

--REGISTER 1 -

This register allows direct setting and sensing of the 488 Control and Management -
bus lines. If the XIFC flag is set in Register §, the interface will not assert any of the
lines, regardless of what was last written into Register 1. Similarly, if XATN flag is set
in Register @, the interface will not assert any line except Not Ready For Data (NRFD)
and Service Request (SRQ). SRQ will be asserted active true (low) only if the SRQ bit
(bit D2) of Register 1 was written low. NRFD will always be asserted active true (low).
The reason that NRFD is asserted true is so that the System Controller will not send any
commands until the S-100 CPU is ready to accept them. Note that XATN has precedence
over XIFC, so an externally applied IFC followed by an externally applied ATN will cause
NRFD to be active true, SRQ to be true if the SRQ bit in Register 1 was written low,
and all other 488 lines will be passive false.

- REGISTER ¢ -

This is the Interrupt Status/Reset Register. Since the P&T-488 uses only one
interrupt vector, one needs to be able to determine which condition caused the interrupt.
Each bit of this register is associated with an interrupt—causing condition. By writing a
low in the corresponding bits, one can individually reset the status bits associated with
Data Valid (DAV), Not Ready For Data (NRFD), Not Data Accepted (NDAC), External
Interface Clear (XIFC), External Attention (XATN) and Service Request (SRQ). If Bit 1 is
set low status bit 7 will ignore any activity on the DAV line. This is useful when the
interface is used as a Talker or Controller. If Bit 1 is set high, Bits 5 and 6 will ignore
any activity on the NDAC and NRFD lines, which is useful when the interface is used as a
Listener. |If Bit @ is set low, status Bits § (POC/RESET) and 1 (REN) will be cleared and
the - P&T -488 will be- prevented from interrupting the. S—-10Q system. (but the interrupt
status bits will continue to respond to 488 Control and Management:line -activity). If Bit @

-10-

P&T -488 Hardware Description

is set high the interface can interrupt the S-100 system.

If Bit 4 (IFC) of Register 1 is asserted there is no way of determining if an external
Controller is also asserting IFC, 'so interrupt status bit 4 (XIFC) will ignore any activity
due to an external Controller. A similar argument is true for ATN and XATN (Bit 3 of
Registers 1 and @). This is not a problem because the IEEE standard allows only the
System Controller to assert IFC, and only the Controller—-in-Charge may assert ATN.
The standard further specifies that there may be no more than one System Controller and
no more than one Controller-in-Charge.

~11-

P&T -488 Functional Test
P&T-488 Functional Test

The program 488TST81 performs seven different kinds of tests on the P&T-488
interface board and its 488 cable. The first group of four are done with no 488 device
or test plug connected to the P&T-488. The last three are made with the special test
plug connected to the P&T -488.

The program starts by printing a message to the operator to disconnect all 488
devices from the P&T-488. The operator signifies this has been done by pressing any key

on the keyboard. After a key has been pressed the program begins its tests.

NOTE: Any time a Control C is pressed, the program is aborted and control is returned to
the monitor (operating system).

The first test checks the data register (Register 2) by outputting a byte to the 488
data lines then reading the data lines to see if their state corresponds to the byte output
to them. Each of the 256 possible bytes is tried in turn. |If any errors occur, a
message "DATA ERROR - bits in error are ..." with the bit names is printed. |[f there
are no errors, no message is printed.

In a similar manner, the second test checks the command line register (Register 1).
If there are any errors, the message "COMMAND LINE ERROR - bits in error are ..." is-
printed. Again, if there is no error, no message is printed.

The third test checks the Parallel Poll Response register (Register 3) by first making
ATN and EOl true. Thus anything output to the Parallel Poll Response Register should
appear on the 488 data lines. If the Command Line test failed with bits @ and/or 3 in
error, the results of this third test are meaningless. As with the first two tests, each of
the 256 possible byte values is tried and any errors are reported: this time the error
message is "PARALLEL POLL ERROR - bits in error are ...".

The fourth test checks the Interrupt Service Register (Register ¢). If the second
test failed, this one will probably fail also. Errors are reported with the message
"INTERRUPT SERVICE REGISTER ERROR - bits in error are ...".

After these four tests have been made, (they take less than a tenth of a second),
the operator is told to attach the special test plug and then press any key on the keyboard
to continue the tests. The plug connects the eight data lines to the eight 488 command
lines, so that the 488 cable can be tested for continuity, shorts or incorrect wiring. It
also allows testing the response of the P&T-488 board to ATN and IFC asserted true by
an external Controller.

The fifth test checks the 488 cable and reports any bits in error. If either the
first (data line) or second (command line) tests failed, the results of this test will be
meaningless. If the first four tests were passed without error, but this one shows errors,
it means either the cable and/or test plug is open, shorted, miswired or improperly
plugged. If all bits are in error, the 488 cable is either not connected to the P&T-488
interface board or the special test plug is not plugged into the cable.

-12-

P&T -488 Functional Test

The sixth test checks the response of the P&T -488 to an IFC (Interface Clear)
presented by an external Controller. What is really done, of course, is to use the data
port to assert a true on the IFC line through the special shorting plug, but the P&T -488
can't tell the difference between this and an external Controller making IFC true. The
results are meaningful only if the first five tests passed with no errors.

The seventh test checks the response of the P&T-488 to an ATN (Attention)
presented by an external Controller. The technique is the same as used in the sixth test.
Again, the results are meaningful only if the first five tests were passed without any
errorse.

After the seventh test has been completed, the message NO ERRORS is printed if
all tests were passed without error. Then the message "P&T 488 functional test complete"
is printed and the program jumps back to the monitor.

WHAT TO DO IN CASE OF ERROR -
If any of the first four tests fail, bheck the following:

1. The P&T -488 interface board must be addressed to the same ports that the test
routine tests. The base address (lowest address of the four) used by the P&T -488
must be in location 193 Hex for CP/M systems, 3003 Hex for North Star. The
program is supplied with the base address set to 7C Hex.

2. All 488 devices must be disconnected from the P&T -488.

3. Make sure you are using the correct test routine. 488TST81 is to be used on
ONLY Revision 81A boards (serial number 5000 and up). 488TEST is to be used on
ONLY boards with serial numbers under 5000.

If any of the first four tests fail, try disconnecting the 488 cable from the
P&T-488 interface board. If they STILL fail, the P&T-488 is faulty and should be
returned to Pickles & Trout for repair or replacement. Be sure to include a printout of
the test results. |If the first four tests are passed without error after the cable has been
disconnected, the cable is defective (a short between lines or a short to ground).

If no error message is printed before the "Attach test plug..." message to the
operator, the first four tests were passed without error. If the error message
"EXTERNAL ATN ERROR - bits in error are 2" is displayed, it is likely that you are
using "the wrong test routine. 488TEST is to be used on only boards with serial numbers
under 5000; 488TST81 is to be used only on boards with serial numbers over 4999. USE
THE CORRECT TEST. |If the error message "EXTERNAL INTERFACE CLEAR ERROR
.= eee" is printed with no error message preceding it, the P&T-488 is faulty. If the
error message "EXTERNAL ATN ERROR - ..." is printed, and either there is no other
error message or only the EXTERNAL INTERFACE CLEAR ERROR message, the P&T-488
is faulty and should be returned for repair or replacement.

RETURN POLICY -
The P&T-488 interface board, its 488 connecting cable and the special test plug are

warranted to be free of defects in materials and workmanship for 90 days from the date
of sales |If they should be found faulty within the warranty period, Pickles &. Trout will

-13-

P&T -488 Functional Test

(at its option) repair or replace them upon receipt of the defective pieces. Repairs
necessitated by alteration, modification or misuse of these products are not covered by
this warranty. Out of warranty interface boards which have not been modified or
otherwise tampered with will be repaired or replaced for a flat fee. As of January,
1981, the fee is $45.00.

NOTICE - A handling fee of $45.00 will be charged for any board that is returned for
repair because the wrong test routine was used. THIS INCLUDES BOARDS STILL IN
WARRANTY.,

When returning equipment to Pickles & Trout, be sure to include the following
information:

1 NAME and ADDRESS of the owner.
2 NAME and PHONE NUMBER of the person who is using the P&T-488.

3 / Description of the failure and how it was found. PRINTOUT OF THE TEST
RESULTS IS REQUIRED.

4 Description of the S-100 machine and operating system. Include manufacturer and
model name of the CPU board, system clock rate, and the name of the organization
that authored the operating system, as well as any information on systemic
modifications made to it.

For example: IMSAI 8080 with Ithaca Audio Z-80 CPU board with a system clock of 4
MHz, North Star single density 5.25" floppy disk drive and controller, Digital
Research CP/M as modified by Lifeboat Associates for North Star diskss

5 If the equipment is still in warranty, enclose a copy of the bill of sale. Otherwise
enclose a check for the repair and shipping and handling fees. The shipping and
handling fee is $5.00 for addresses within the contiguous US, $7.50 for Alaska and
Hawaii. There is no shipping fee for foreign addresses because the equipment will be
returned freight collect.

The repairs/replacements will be made within five business days and the equipment returned
postage paid to US addresses, freight collect to foreign addreses.

-14-

P&T-488 MSOFT User's Manual Introduction
2% Introduction ***¢
The sequence that most people follow is
1. Unpack the P&T—488
2. Install it in an S-100 system
3. Test the P&T—488 to make sure it is operating properly
4. Write programs
The MSOFT portion of the P&T-488 manual will follow this sequence.
*s+% Unpacking the P&T-488 ****

The package contains the following items:

1. P&T-488 interface card 5. floppy disk
2. 18 inch cable 6. manual
3. metric mounting hardware 7. registration card

4, P&T-488 test plug

The 18 inch cable is designed to go from the P&T—488 card to the back panel of your S-100
computer. The 488 receptacle should be mounted with the metric mounting hardware provided:
it is designed to mate with the jackscrews of standard 488 cables.

The floppy disk contains the MSOFT driver program, the P&T-488 functional self test program,
some sample programs (so you can see real live examples of programs written for the MSOFT
driver) and several utility programs. '

The P&T-488 test plug is needed to perform the functional self test.

The registration card is very important! Please fill it out and mail it to us. It is our only
means of getting your name and address so we can tell you of any bug fixes that we have come
up with, inform you of new application programs and other things which will save you time and
effort. Most of our orders come from purchasing departments, and they really are not interested
in being notified about such things.

**2%* Installation *%%*

The P&T-488 interface card uses four contiguous 1/O ports and is supplied configured to use
ports 7C through 7F Hex (124 through 127 decimal). Be sure there is no port address conflict
with other I/O boards in your S-100 system before installing the P&T-488. Refer to the
chapter "Hardware Description" for instructions if it is necessary to change the 1/O ports that
the P&T-488 uses.

When you are satisfied that there is no /O port address conflict between the P&T-488
interface and other devices in your S-100 system, turn off the power to the S-100 system and
wait at least twenty seconds (to allow sufficient time for the S-100 power supply to discharge)
before installing the P&T-488 card. Attach the cable to the back panel of the S-100 system
using the metric hardware supplied with the cable (this hardware mates with the standard
lockscrews used on 488 cables supplied by Hewlett-Packard, Beldon and others) and plug the
cable onto the top connector of the P&T-488 interface card. Note that the plug and connector
are keyed.

It will be necessary to modify 488TST81 if the I/O port addresses of the board have been
changed from 7C through 7F Hex. The fourth byte in this program contains the lowest address
of the four-that is used-by-the-P&T-488 interface card. If, for example, the card has been

addressed to use ports 60 through 63 Hex you could change 488TST81 by following: this
procedure:

rev 4-14-82 13:49 MSOFT-1

Introduction P&T-488 MSOFT User's Manual

1. Load the program using the utility routine DDT (key "DDT 488TST81.COM"). Note that
you are supposed to key what is in between the quote marks, but not the quote marks
themselves. The mnemonic <CR> means to press the carriage return key. DO NOT type
the four individual characters <, C, R and >.

2. Change the byte in location 103 Hex. (Key "S103<CR>". DDT will respond by displaying
1103 7C" which is the address and the contents at that address. Then key the new base

address: in this example it would be "60<CR>", DDT will then display the next memory
location.)

3. Return to CP/M monitor. (Press and hold the Control key then press the letter C. Then
release both keys.)

4. Put the modified file back on disk (key "SAVE 5 4838TST60.COM<CR>"). Be sure not to
use the file name 488TST81.COM.

As an example, assume that the port addresses used in 488TST81 are to be changed from 7C -
7F Hex to 60 — 63 Hex. Assume further that DDT is on disk drive A and 488TST81 is on
drive B. Finally, assume that the new file is to be stored on drive B and its name is to be
488TST60 (the 60 is a reminder that this program is for the P&T-488 addressed to ports 60 —
63 Hex). The keys typed by the operator are underlined in the following dialog.

A>B:<CR>

B>A:DDT 488TST81.COM<CR>
DDT VERS 1.4

NEXT PC

0600 0100

-S103<CR>

0103 7C 60<CR>

0104 00 {C

B>SAVE 5 488TST60.COM<CR>
B>

Note that the characters <CR> mean that the carriage return key is pressed not that the four
characters <, C, R and > are typed. Also, the two character string +C means that the
operator issued a Control C, not that the two keys + and C were typed.

*s** Test the P&T-488 #****
Next the P&T-488 should be tested for proper operation. Run the program named 488TST81 and
refer to the chapter "Functional Test" for instructions. After the test has been completed

with no errors the 488 interface is ready for use.

MSOFT.REL P&T-488 driver for compiler Basic
MSOFT.COM P&T-488 driver for interpreter Basic
BCSAMPL .BAS Compiler Basic program to exercise MSOFT
BISAMPL .BAS Interpreter Basic program to exercise MSOFT
B488INIT.BAS
BICLOCK.BAS Interpreter Basic program to read an HP 59309 clock
CLOCK.MAC Assembler program to read an HP 59309 clock
MTSAMPL.PAS Pascal MT+ program to exercise MSOFT
MTCLOCK.PAS Pascal MT+ program to read an HP 59309 clock
FSAMPL.FOR Microsoft Fortran program to exercise ‘MSOFT
FCLOCK.FOR Microsoft Fortran program to read an HP 59309 clock
QCCLOCK.C C program to read an HP 59309 clock

MSOFT-2 rev 4-14-82

13:49

P &T-488 MSOFT User's Manual Introduction

BUSMON.COM IEEE-488 interactive bus monitor
488TODSK.COM Put all 488 bus data into a disk file
DSKTO488.COM Send contents of disk file as 488 data
HANDSHAK.ASM Sample program for source and acceptor handshake

SAMPLHS .ASM Sample program showing the use of HANDSHAK

Even though MSOFT is designed to work with Microsoft Basic, it can be used with some other
languages as well. Programs written in assembler, C, Microsoft Fortran and Pascal MT+ are
included to demonstrate how MSOFT can be used with these languages.

ss** |EEE-488 Bus Monitor *%**¢

A utility program named BUSMON is included on the software disk. This program is especially
useful for experimenting and gaining familiarity with the 488 bus and the devices connected to
it The program is interactive and allows the user to send data as a Talker, commands as a
Controller as well as send the various uniline messages (SRQ, REN, etc). The program is
always a Listener and reports immediately any data, commands or uniline messages which appear
on the 488 bus. BUSMON and the other utility programs are described in detail in the chapter
"p&T-488 Auxiliary Programs for CP/M", This chapter appears at the end of the manual.

ss** Sample Basic Programs **%*

The Basic programs BISAMPL and BCSAMPL are also useful for dinking around and gaining
familiarity with the 488 bus, the P&T-488 interface and whatever instruments are connected to
the 488 bus. BISAMPL is a version written for the Microsoft Basic interpreter (MBASIC) and
BCSAMPL is the same program written for Microsoft's Basic compiler (BASCOM). BUSMON has
more capability and is more useful for actually debugging 488 bus operation, while BISAMPL and
BCSAMPL are written in Basic and can serve as examples of how to write programs which use
MSOFT.

The general form of the command line to load and run Basic programs which use the P&T-488
and interpreter Basic is the following:
x:MSOFT y:filenaml z:filenam2<CR>
where x is the drive on which the program MSOFT is mounted

y is the drive on which the file filenaml is mounted

z is the drive on which file filenam2 is mounted

filenam1 is the name of the Basic interpreter/run time package

filenam2 is the name of the Basic program itself.

For example, if MSOFT is on drive A, MBASIC is on drive C and BISAMPL is on drive B, the
command line would be

A:MSOFT C:MBASIC B:BISAMPL <CR>

As is normal with CP/M, you do not need to specify the drive name if it is the current
default drive.

s MSOFT: The P&T-488 Driver Program #*%s*
There are two versions of MSOFT on your disk: MSOFT.COM and MSOFT.REL. MSOFT.COM
is the version to be used with the interpreter Basic, and MSOFT.REL is to be used with

compiling Basic.

The program MSOFT is an interface between Microsoft Basic Rev 5.00 (and later) and the

rev 4-14-82 13:49 MSOFT-3

Introduction P&T-488 MSOFT User's Manual

IEEE-488 bus. You can use MSOFT to perform the following functions:

488 Bus Control Remote Enable Parallel Poll
Talk Local Serial Poll
Listen 488 Interface Clear (IFC)

MSOFT is designed to allow you to easily access the IEEE-488 bus from either the compiler or
interpreter version of Microsoft Basic. It uses a calling convention which is easy to understand
and use, and which also provides the 488 functions commonly needed in a laboratory or
automated test facility.

A typical application program consists of two parts: a Basic program and MSOFT (a machine
language program). Thirteen communication functions are available to allow the Basic program
to be a Controller, Talker or Listener on the 488 bus, as well as perform other 488 operations.
These functions use eleven variables to control communication between the Basic program and
MSOFT. These variables may assume any legal Basic variable name. MSOFT functions are
executed by using Basic CALL statements and passing the appropriate parameters.

*2** How It Works ****
The key to the operation of MSOFT is the CALL statement. CALL statements are of the form
CALL <variable name> (<parameter 1>, <parameter 2>, ... ,<parameter N>)

where <variable name> is the name of the variable which contains the address of the machine
language routine you want to call, and <parameterl>, <parameter2>, etc., are the parameters
you want to pass to the subroutine. You may pass any number of parameters, but the
number and type of parameters passed must match the number and type of parameters expected
by the machine language subroutine. Note that a passed parameter cannot be a constant or a
string literal (e.g. 27.5 or "hello there").

When Basic passes a variable via the CALL statement it doesn't actually pass the variable
itself, but only a pointer to the variable. If the variable is an integer the pointer points to
the number itself. Integers, which is the only type of numeric variable that MSOFT uses, are
stored as two byte-two!s complement numbers, low order byte first. If the variable is a string
the pointer points to that string's string descriptor. String descriptors consist of two parts:
the string length (one byte), and the address in memory where the string is stored (two bytes,
low order byte first).

When one of the MSOFT setup routines is called Basic passes the appropriate pointers to
MSOFT. MSOFT then transfers these pointers to a table so it can remember which variable
names you are using for the various communication variables. In this way MSOFT can
automatically read (or write to) the variables used for Basic-MSOFT communication. If you
need to change some communication parameter all you have to do is assign the parameter a
different value and MSOFT will automatically note the change.

Example: Suppose you want to turn the input echo function on and off. If you named the
variables for input and output echo ECHOIN% and ECHOOUT% respectively, you would say

100 CALL ECHO(ECHOIN%,ECHOOUT%)
to tell MSOFT the names of the input and output echo variables. Since Basic always
initializes variables to zero, both the input and output echo functions are initially off. When

you want to turn on the input echo you need only make ECHOIN% non-zero, as is shown by
the following program line:

135 ECHOIN%=1

MSOFT-4 ' ' rev 4-14-82 13:49

P&T—488 MSOFT User's Manual Introduction

In this example we have shown the two basic units needed to communicate with MSOFT. One
is the "Communication Function" (in this case ECHO) and the other is the "Communication
Variable" (ECHOIN% and ECHOOUT%).

+ Communication Functions *

There are thirteen communication functions, four setup functions and one configuration function
available to the user in the MSOFT program. The communication functions — as their name
implies — control data transfer and housekeeping on the 488 bus. The setup functions are
used to inform MSOFT what variables to use to communicate with a Basic program. These
functions are invoked by using a Basic call to the setup function SETUP%. You may use
different names for the communication functions in a program which is to be used with the
interpreter version of Basic, but you must use the names shown below if you use the compiler
version. The names shown here are the ones used in the sample programs and in the file
INIT.BAS, which has all the code required to set up communication between MSOFT and your
Basic program. The configuration function is used to tell MSOFT what 1/O ports the P&T-488
board is using.

The parameters which are used by the communication and setup functions fall into two general
categories: output variables and input variables. Output variables are values you send to
MSOFT. Input variables are values that MSOFT sends to you. Each of these categories is
broken down into two subcategories according to the type of variable used: integers and strings.
The communication functions use only strings while the setup functions use only integers.

The communication functions are:

1. CNTL% (<output string>)
Example: 100 CALL CNTL% (A$)

Become the 488 Controller and send the output string as a command string over the 488
bus. The error code is updated by this function.
2. CNTLC% (<output string>)
Works like CNTL%, but the error code is set equal to zero (cleared) before transmitting
the command string.
3. TALK% (<output string>)
Example: 100 CALL TALK% (A$)
Become a Talker and transmit the output string over the 488 bus. All 488 data lines are
left passive FALSE after the last byte has been sent. NOTE: see EOT switch and EOS
value. The error code is updated by this function.
4. TALKC% (<output string>)
Works like TALK%, but the error code is cleared before the output string is transmitted.
5. LSTN% (<input string>)
Example: 100 CALL LSTN% (A$)
Become a Listener and receive an input string over the 488 bus. The NRFD line is left

true after receiving the last byte. NOTE: see EOT switch and EOS value. The error
code is updated by this function.

rev 4-14-82 13:49 MSOFT-5

Communication Functions : P&T-488 MSOFT User's Manual

6.

8.

9.

LSTNC% (<input string>)

Works like LSTN%, but the error code is cleared before receiving the input string.

SPOLL% (<output string>, <input string>)
Example: 100 CALL SPOLL% (A$,B$)

Perform a Serial Poll by sending the Serial Poll Enable (SPE) message as a Controller, then
sending UNTALK followed by the first Talk Address in the output string. SPOLL% then
gets a single byte from the newly addressed Talker and checks it to see if that Talker is
requesting service. If that Talker was not requesting service, SPOLL% sends UNTALK
followed by the next Talk address in the output string and gets that Talker's response
byte. It continues doing so until it either finds a device requesting service, encounters
an invalid Talk Address, has tried all addresses in the output string, or encounters a bus
error. If it finds the device requesting service it puts the poll response byte in POLL%
and the device's Talk Address in the input string, sends UNTALK followed by Serial Poll
Disable (SPD) as a Controller, then returns to Basic. If it encounters an invalid Talk
Address or tries all addresses but does not find the device requesting service, it makes
the input string a null string, sends UNTALK followed by Serial Poll Disable (SPD) as a
Controller, then returns to Basic. If it encounters a bus error (timeout, IFC, etc.), it
puts the error code in the error code byte, makes the input string a null string and
returns to Basic. NOTE THAT IT DOES NOT SEND UNTALK OR SERIAL POLL
DISABLE!! It cannot because of the bus error, and the other devices on the bus may
well be left in the Serial Poll mode instead of the Data mode of operation. It is up to
your program to take whatever action is appropriate in case of error. (One possibility is
to send an IFC, which resets all 488 devices to their initial state. However, in some
cases this may not be appropriate.)

Note that the output string should contain only the Talk addresses of the devices to be:
polled. If the Talk Address of some device which is not connected to the bus is in the
output string, SPOLL% will address it to talk and wait for its response. None is
forthcoming, since the device is not connected! The result will be either a timeout
error, or, if the timeout function has been disabled (by setting the time value to 255),
the 488 bus and your S-100 system will lock up. The only recovery to such a lock-up is
for you to reboot your S-100 system.

Note also that the poll response variable is updated only when the device requesting
service is found. If no such device is found POLL% contains whatever garbage it had
when SPOLL% was called. . You can tell whether the contents of POLL% are meaningful
by looking at the input string: it is a null string (has a length of zero) if the device
requesting service was not found. Otherwise it is a non-null string which is the Talk
Address of the device requesting service.

PPOLL% Example: 100 CALL PPOLL%
Performs a Parallel Poll of the 488 devices (by making the 488 ATN and EOI lines true).

The response is placed in the poll response variable. Note that no arguments are used
with the PPOLL% call. This function does not affect the error code.

DREN% Example: 100 CALL DREN%
Make the REN (Remote Enable) line of the 488 bus false; which places all: devices in

their LOCAL mode. This function does not affect the error code.

MSOFT-6 rev 4-14-82 13:49

P &T-488 MSOFT User's Manual Communication Functions

10. REN% Example: 100 CALL REN%

Make the REN line of the 488 bus true. Once the REN line goes true any device
addressed as a Listener by the Controller will enter the remote mode. This function does
not affect the error code.

11. STATUS% Example: 100 CALL STATUS%

Calling this function updates the bus status variable. STATUS% allows the user to
determine the bus status without becoming a Controller, Talker or Listener. It is
primarily used to determine if some special condition is occurring on the 488 bus (another
Controller issuing an IFC, etc). The way it works is that it checks for XATN, XIFC,
POC and SRQ. It then sets the appropriate bits of the error code and then copies the
five most significant bits of the error code into the bus status variable. The three
least significant bits of the bus status variable are set to zero. Notice that since
STATUS% does not reset the error code before checking the 488 bus, the error code and
the bus status variable may show a condition which occurred before STATUS% was called.
The error code is updated by this function.

12. IFC% Example: 100 CALL IFC%

Initialize the bus. This function resets the P&T 488 and then issues an IFC (Interface
Clear), which puts all 488 devices in their default state. It terminates with the NRFD
line true, which prevents any communication from taking place on the 488 bus until the
MSOFT system is ready to participate. This function does not affect the error code.

13. BRSET% Example: 100 CALL BRSET%

Resets the P&T 488. Unlike the IFC% command, it does not send an IFC nor does it
make NRFD true. Thus if it is desired to allow communication to take place on the
488 bus without the participation of the Basic program, one can use the BRSET% call.
This function does not affect the error code.

*s3% Setup Functions *%**

Since you are allowed to choose the names you want for the variables used to communicate
with MSOFT, you must tell it the names of the variables. There are four setup functions
that are used for this purpose:

1. SETUP% (<CNTL%>, <CNTLC%>, <TALK%>, <TALKC%>, <LSTN%>, <LSTNC%>,
<SPOLL%>, <PPOLL%>, <DREN%>, <REN%>, <STATUS%>, <IFC%>, <BRSET%>, <IOSET%>,
<PROTCL%>, <ECHO%>, <IOPORT%>)

This function is needed only for a program which is to be run with the interpreter
version of Basic. You do not need to use this function if the program is to be run
with the compiling version of Basic because the compiler already "knows" the names of
the communication functions. In fact, you cannot use this function since the compiler
allows a maximum of ten parameters to be passed through a CALL.

This function sets up the variable names that MSOFT is to use for all the 488 bus

functions and the following three setup functions. Note that the value of SETUP% must
be calculated. The calculation can be performed by the following three lines of code:

rev 4-14-82 13:49 MSOFT-7

Setup Functions P&T-488 MSOFT User's Manual

100 TEMP = 256*PEEK (7}+PEEK (6)+9
110 IF TEMP > 32767 THEN TEMP = TEMP-65536!
120 SETUP% = CINT(TEMP)

Line 100 calculates the address of the setup function in MSOFT. Line 110 ensures that
the value of TEMP is in the range of -32768 to 32767 (which is the range of an integer).
Line 120 sets SETUP% to the integer value of TEMP.

NOTE: You must call SETUP% BEFORE you make use of any other MSOFT function if
you are using interpreter Basic. SETUP% is the function that establishes all the
"hooks" needed by MSOFT to communicate with your basic program.

2. IOSET% (<error code>, <timeout value>, <poll result>, <bus status>)

This function sets up the variable names that MSOFT is to use for the error code,
timeout value, poll result, and the bus status. It sets a default timeout value of 254
each time it is called. This function must be called before using any of the function
calls.

Example: 100 CALL IOSET% (ERCODE%, TIME%, POLL%, BUS%)

3. PROTCL% (<EOT switch>, <EOS value>, <string length>)

This function sets up the variables for the data transfer protocol. It sets the default
string length to 254 each time it is called. This function must be called before using
any of the function calls.

Example: 100 CALL PROTCL% (EOT%, EOS%, LENGTH%)

4. ECHO% (<input echo flag>, <output echo-flag>)

This function sets up the variables for the input and output echo flags. This function
call is optional. If it's not called before using any of the communication function calls,
the default value is no input or output echo.

Example: 100 CALL ECHO% (ECHOIN%, ECHOOUT%)

.

deakekk NOTE kK

Basic does not have any mechanism to check that the correct number and type of variables are
passed by a CALL function, so MSOFT cannot determine whether the arguments are valid.
Thus it is extremely important that when you call one of the MSOFT functions that you use
the right number of arguments, and the right type of arguments. Never, NEVER do a call
with the wrong number of arguments, or with arguments of the wrong type. If you do, your
program will most likely fail and give unpredictable results. The best thing to do is to be
extra careful when typing in statements involving MSOFT function calls.

*3%+ (Configuration Function **%*

The P&T-488 board is shipped from the factory set up to use S-100 /O ports 7C through 7F
Hex (124 through 127 decimal). If your S$-100 system already uses these ports for some other
function, the P&T-488 must be re—addressed to some other set of ports. The section of the
manual titled "Hardware Description" tells you how to change the address of the P&T-488 board.
You' will also ‘have to tell MSOFT what the new. address is. MSOFT assumes-that the P&T-488
board uses addresses 7C through 7F. By calling: IOPORT you can tell MSOFT the lowest
address used by the P&T-488 board.

MSOFT-8 rev 4-14-82 13:49

P &T-488 MSOFT User's Manual Configuration Function

For example, assume that you change the P&T-—488 board so it uses ports 38 through 3B Hex.
The following program line will tell MSOFT this new address:

100 PORT%=56 : CALL IOPORT%(PORT%)

PORT% was set to 56 decimal, which is the equivalent of 38 Hex (the lowest address used by
the P&T-488 in this example). Note that PORT% must be set before calling IOPORT!
IOPORT is not like the communication functions (IOSET, PROTCL, etc) because it passes to
MSOFT the value of the parameter, while the communication functions pass to MSOFT the
names of the parameters. You can change the timeout value at any time without having to
call IOSET again, but you cannot change the port numbers without calling IOPORT again.

This was done on purpose. Your program should call IOPORT no more than once since you will
not be changing the port numbers used by the P&T—488 while the program is running. If
IOPORT told MSOFT the name of the parameter, and you used that parameter again later on in
the program for something else, MSOFT would then try to communicate with the P&T-488 using
incorrect port numbers.

The rules for the use of IOPORT are simple but important. You need to use it only if you
have re-addressed the P&T-488 to some address other than 7C through 7F Hex. If the P&T-488
has been readdressed, you must use it after you call SETUP but before you use any
communication function (CNTL, TALK, etc).

*3** Communication Variables *%**

The variables used fall into two categories: output variables and input variables. Output
variables are values you send to MSOFT. Input variables are values that MSOFT sends to you.
The purpose and type of each of these variables is listed below. In each case a variable name
is also shown. You do not have to use this variable name, but it is the one used in the
sample programs and in the file INIT.BAS, which has all the code required to set up
communication between MSOFT and your Basic program.

1. ERROR CODE ERCODE% (integer, input variable)
This variable indicates what errors (if any) occurred while using the 488 bus functions.
It is sometimes called the RETURN CODE. The variable is a sixteen bit integer, while
the error code is only eight bits. The error code is contained in the lower eight bits of
the error code variable. Each bit is associated with a particular error condition. If the
bit has the value ™" the corresponding error has occurred.

0000 0000 Normal return - the function has been successfully completed. (Notice that
no bit is set to "),

Teee seee The S-100 RESET line is/has been true.

elee eeeo The IFC line on the 488 bus has been true. Re—initialize the P&T 488,

eele eeee The ATN line on'the 488 bus is/has been true. An external 488 Controller is
trying to issue a command. (MSOFT will not work with 488 systems which

have another Controller on the 483 bus.)

eeel <eee Bus timeout error. No handshake has taken place in the allotted amount of
time.

eeee leee The SRQ line on the 488 bus is true. Some 488 device wants service.
Refer to the manufacturer's manual to determine what action is necessary.

rev 4-14-82 13:49 MSOFT-9

Communication Variables ’ P&T-488 MSOFT User's Manual

2,

3.

4.

esee olee Serial Poll address error. An invalid Talk address is in the string of devices
to be polled.

eses eeole No Acceptors on the 488 bus. If this error occurs while performing a Control
function, it means that there are no 488 devices on the bus which are
capable of being addressed or programmed by the Controller. If this error
occurs during a Talk function, it means that there are no 488 devices on the
bus which are listening.

eess essl Either IOSET% or PROTCL% was not called before trying to use one of the
MSOFT communication functions. This error code will not tell you if the
wrong number of arguments was passed to either IOSET% or PROTCL%, it
will only tell you if one of them wasn't called prior to calling an MSOFT
communication function.

Example: If the value of the error variable is found to be 192 (1100 0000 binary), it
means that BOTH the 488 IFC line AND the S-100 RESET are or have been
true.

Functions CNTLC%, TALKC% and LSTNC% reset the error code before they begin 488 bus
communication. They then set the appropriate bits (if any) before returning to the Basic
program. Functions CNTL%, TALK%, LSTN%, SPOLL% and STATUS% do not reset the
error code before they begin 488 bus communication. They do set the appropriate bits (if
any) before returning to Basic. Thus the error code may show errors which have occurred
before these functions were called.

The eight functions CNTL%, CNTLC%, TALK%, TALKC%, LSTN%, LSTNC%, SPOLL% and
STATUS% are the only functions which affect the error code.

TIMEOUT VALUE TIME% (integer, output variable)

This variable sets the amount of time within which a 488 handshake cycle must occur or
else a bus timeout error will occur. As with the error code, MSOFT only uses the lower
eight bits of this variable: the actual value used is the timeout value modulo 256. If
it is set to 255 Decimal, no timeout check is made; that is, even if a handshake cycle
is never completed, a timeout error is not generated. For a value of 0 through 254
Decimal, the value is used to indicate the amount of time that the handshake may take
before a timeout error is generated. The amount of time that the timing loop takes
varies with the processor (8080 or Z-80), system clock rate, etc. On an 8080 system
running at 2 MHz a value of 200 corresponds roughly to 5 seconds or a value of 4
corresponds to about 100 milliseconds.

NOTE: The TIMEOUT value is set to 254 each time you CALL I0SET%.

POLL RESPONSE POLL% (integer, input variable)

The lower eight bits of the poll response variable contain the response to the most recent
Serial or Parallel Poll.

BUS STATUS BUS% (integer, input variable)

The bus status tells the user the current bus state. Note: to save time, the bus
status is not automatically updated as the bus state changes. The bus status function
must be called each time the bus status is desired. The coding used is exactly the
same as that used for the error code except that only the five:most significant bits are
used. The three least significant bits are always set to: zero.

MSOFT-10 rev 4-14-82 13:49

P &T-488 MSOFT User's Manual Communication Variables

0000 0000 Normal return — the function has been successfully completed. (Notice that
no bit is set to "),

Teee eeee The S-100 RESET line is/has been true.
elee eeee The IFC line on the 488 bus has been true. Re—initialize the P&T 488.

eele <eee The ATN line on the 488 bus is/has been true. An external 488 Controller is
trying to issue a command. (MSOFT will not work with 488 systems which
have another Controller on the 488 bus.)

eeel +e.. Bus timeout error. No handshake took place in the allotted amount of time
during the previous TALK%, TALKC%, LSTN%, LSTNC%, CNTL%, CNTLC%
or SPOLL% function.

eees leee The SRQ line on the 488 bus is true. Some 488 device wants service.
Refer to the manufacturer's manual to determine what action is necessary.

5. EOT SWITCH EOT% (integer, output variable)

This variable tells MSOFT how to recognize the end of a data transmission (if it's a
Listener), or what to send at the end of its data transmission (if it's a Talker). There
are three ways to specify the end of a data transmission: 1) The data transmission is
assumed to be finished after a certain number of characters. 2) The data transmission
is assumed to end with an END message. 3) The data transmission is assumed to end
with a special end-of-string (EOS) character. The EOT switch can be greater than zero,
zero, or less than zero.

LISTEN MODE:
EOT > 0 Terminate string collection upon receipt of an EOS character, END or if the
LENGTH is matched.
EOT = 0 Terminate string collection upon receipt of END or if the LENGTH is
matched.
EOT < 0 Terminate string collection upon receipt of END or if the LENGTH is
matched. (Same as EOT = 0.)

TALK MODE:
EOT > O Append the EOS character to the end of the string.
EOT = 0 Send string as-—is.
EOT < 0 Send the END message with the last byte of the string.

6. EOS VALUE EOS% (integer, output variable)
If the value of the EOT switch is greater than zero MSOFT looks for (or sends) this
value as the end of a data transmission. Since there are only eight bits of data on the
IEEE-488 bus, MSOFT only uses the lower eight bits of the EOS value.

7. STRING LENGTH LENGTH% (integer, output variable)
This is used only in the LISTEN mode (that is, when you CALL LSTN% or CALL
LSTNC%). MSOFT uses this variable to determine the length of incoming messages. For
instance, if the string length was set to 25 Decimal, then MSOFT would assume a data
transmission was over after receiving 25 characters.
NOTE: The string length is set to a default value of 254 each time you CALL
PROTCL%.

rev 4-14-82 13:49 MSOFT-11

Communication Variables P&T-488 MSOFT User's Manual

8. 'INPUT ECHO FLAG ECHOIN% (integer, output variable)
If the input echo flag is non-zero, then characters received by MSOFT are echoed to the
console, otherwise they're not. The default value is zero.

9. OUTPUT ECHO FLAG ECHOOUT% (integer, output variable)
If the output echo flag is non-zero, then characters sent by MSOFT are echoed to the
console, otherwise they're not. The default value is zero.

10. OUTPUT STRING (string, output variable)
The output string is the string of characters or commands that you wish to send over
the 488 bus. Remember, you don't need an EOS character in your output string.
MSOFT will automatically generate an EOS character, an END message, or nothing at all,
depending on how the EOT switch is set.

11. INPUT STRING (string, input variable)
The input string is the string most recently received by MSOFT. If the EOT switch is
positive (EOS selected), then MSOFT will automatically remove the EOS character from
the end of the string.

Note: the input string variable and the output string variable may have the same name.

As you may have noticed, the input and output string variables are not passed to MSOFT
through the setup functions. There is a method to the madness, however. While the values
of MSOFT numeric variables might change frequently, it shouldn't be necessary to change the
names of these variables very often, if at all. For instance, if you called the timeout variable
TIME%, you may change its value many times, but there is little need to change its name to
something else. However, when using the MSOFT string variables, there are many occasions
where it would be nice to change the names of the variables used. You could just change the
contents of a string variable (by using an assignment statement like 100 A$ = B$'), but string

assignments take a comparitively long time, and it's faster just to pass the desired string
variable (B$ in this case).

For example, if you have a standard programming string for each instrument on the bus, it is
simpler to say

100 CALL TALK%(HP3455$)
110 CALL TALK%(HP9876%)

than it is to say

100 A$=HP3455%

110 CALL TALK%(A$)
120 A$=HP9876$

130 CALL TALK%(A$)

‘s*s+ Quirks, Oddities and Strange Behavior ¥
The following characteristics of MSOFT may give rise to unexpected results. The user should
be aware of these characteristics so that they may be used to aid, rather than hinder, program
development.
1. The CONTROLLER functions CNTL and CNTLC return to Basic with ATN true. The reason

is that in some cases the user may want to send out several different strings and not have-
ATN go false in between them. For instance, the user can write

MSOFT-12 rev 4-14-82 13:49

P&T-488 MSOFT User's Manual Quirks

310 CALL CNTL%(A$)
320 CALL CNTL%(B$)
330 CALL CNTL%(C$)

and have all three strings be sent as a Controller without ATN going false in between them. A
case in which this might be desirable is shown in the following program fragment:

310 DVMTLK$=NT"

320 LCRTLKS$="wH"

330 L9876A$="3"

340 L2631¢="6"

350 UNT$=CHR$(95)

360 UNL$=CHR$(63)

370 PRINT "CODE INSTRUMENT®"

380 PRINT " 1 HP 3455A DVM

390 PRINT * 2 HP 4275 LCR METER

400 INPUT "What instrument do you want to TALK (1 or 2)%TLKNO%
410 PRINT "CODE INSTRUMENT?"

420 PRINT " 1 HP 9876A PRINTER

430 PRINT ® 2 HP 2631 PRINTER

440 INPUT "What instrument do you want to LISTEN (1 or 2)"LSNO%
450 CALL CNTLC%(UNTS$)

460 CALL CNTL%(UNLS$)

470 IF TLKNO%=1 THEN CALL CNTL%(DVMTLK$) ELSE CALL CNTL%(LCRTLK}$)
480 IF LSNO%=1 THEN CALL CNTL%(L9876A$) ELSE CALL CNTL%(L2631%)

If CNTL and CNTLC made ATN false before returning to Basic the selected Talker would try to
send data over the bus as soon as line 470 is executed. Since the Listener had not been
designated yet the Talker would abort with a "No Listener" error. ATN will be made false
when LSTN%, LSTNC%, IFC% or BRSET% is called.

2. A related topic involves the PARALLEL POLL function PPOLL. It also leaves ATN true
when it returns to Basic. The idea is that after a parallel poll the user usually wants to
become a Controller and issue some commands which are based on the results of the parallel poll.
Thus the way it is set up now ATN remains true between the time of the parallel poll and the
use of the Controller functions. If ATN were made false by the parallel poll function before it
returns to the Basic program, there would be a period between the poll and the beginning of
the Controller function during which 488 data communication can proceed.

3. The STATUS function updates the error code and then copies the appropriate bits into the
bus status variable. :

4. The way the error code is presently set up is that the bus communication functions (TALK,
TALKC, LSTN, LSTNC, CNTL, CNTLC, SPOLL and STATUS) can set error bits, but only
TALKC, LSTNC, CNTLC, BRSET and the user can clear error bits. The reasoning is that you
may want to do a series of bus functions and check for error only after they are all done (which
considerably speeds up bus communication). If the error code showed only what (if any) errors
occurred during the most recent bus communication function, you would have to keep and
update your own cumulative error flag, which would completely negate any speed improvement.

5. IOSET always sets a default timeout of 254 and PROTCL always sets a default string length
of 254. They do this so that the system will work even if the user forgets to initialize
TIME% and LENGTH%. (Remember that Basic always initializes integer variables to 0, so if
IOSET and PROTCL did not set default values and the user forgot to set the timeout or string
length he would almost always get timeout errors, and never get a listen string because the
string length indicated that zero characters are to be gathered from the bus.)

6. One problem that often rears its ugly head has to do with how 488 devices terminate a

rev 4-14-82 13:49 MSOFT-13

Quirks P&T-488 MSOFT User's Manual

message. Some use the END message (EOl true on the last byte), some use a fixed length
message and some use a single End-Of-String (EOS) character. All of these techniques are
easily handled by MSOFT. However, there are some devices which use more than one character
to indicate the end of a message: the usual multiple character end of string message is a
carriage return followed by a line feed. The "correct" way to set up MSOFT in this case is
to tell it to look for an EOS character, and tell it that the EOS character is a line feed.
The problem is that the string you get back from MSOFT contains a carriage return as the last
character. At times this can be a real bother. One way of dealing with the problem is to
copy all but the last character of the string into another string with the statement

100 NEW$=LEFT$(OLD$,LEN(OLD$)-1)

7. MSOFT does not automatically start up in the RESET state. You must do a CALL BRSET
in your application programs before you try to do any other bus function.

8. SPOLL will leave the bus in the Serial Poll mode instead of the Data mode if it encounters
a bus error (handshake timeout, IFC, etc.). Thus if SPOLL is interrupted by a bus error you
must restore the bus to data mode. This can be done by issuing an Interface Clear (IFC), or
by clearing the bus error then sending out Serial Poll Disable (SPD) as a controller.

SEEES Gotchyas E 2 22 2

Gotchyas (sometimes called "features" by advertising types) are characteristics of a product
which are almost certain to bite the user in a most tender, if not vital, spot. Gotchyas are
usually the result of either a lack of care in the design of the product, or are due to
limitations over which the manufacturer has no control. MSOFT!'s known gotchyas fall into the
latter category. We have done what we can to limit their number and effect, but the ones we
know about are either unavoidable, or the result of avoiding them is to create even more of
them. If you find more gotchyas, please let us know so that we can warn others of their
existence and possibly get rid of them.

Gotchya Number 1

Basic does not have any mechanism to check that the correct number and type of variables are
passed by a CALL function, so MSOFT cannot determine whether the arguments are valid.
Thus it is extremely important that when you call one of the MSOFT functions that you use
the right number of arguments, and the right type of arguments. Never, NEVER do a call
with the wrong number of arguments, or with arguments of the wrong type. If you do, your
program will most likely fail and give unpredictable results. The best thing to do is to be
extra careful when typing in statements involving MSOFT function calls.

Gotchya Number 2

MSOFT does not perform an automatic reset when it starts up. You must do a CALL
BRSET% or a CALL IFC% before you perform any other 488 bus function which looks at the
error code (TALK, TALKC, LSTN, LSTNC, CNTL, CNTLC or SPOLL). You need to do this
only once (it is a bus initialization step). If you neglect to do a CALL BRSET% or a CALL
IFC% before the first time you call TALK, TALKC, etc, you will most likely get an S-100
RESET error, as well as several others.

Gotchya Number 3 (Occurs only with LSTN and LSTNC)

The way that MSOFT passes a string back to Basic is by dinking with the string address in
the string descriptor area. MSOFT has its own 256 byte buffer to hold any string heard on the
488 bus, and it changes Basic's descriptor area to point to this buffer. Everything is OK
until you go to get the next string by LSTN or LSTNC. If that string has a different name,
what you wind up with is two different string names both pointing to the MSOFT string
buffer, so the contents of both strings will be the same.

MSOFT-14 rev 4-14-82 13:49

P &T-488 MSOFT User's Manual Gotchyas

For example, if you have a program that looks like this

100 CALL LSTN%(A$) sexxk THIS CODE WILL NOT WORK ~ #k#x
110 CALL LSTN%(B$) sexxx THIS CODE WILL NOT WORK *#**

both A$ and B$ will point to the MSOFT string buffer and will both contain the string heard
with the second LSTN command. The string heard by the first LSTN command will be lost. If
you want to get two or more strings from the bus as a Listener without losing the contents
of the earlier strings, you can write your program like this:

100 CALL LSTN%(DUMMY$) sxkk THIS CODE WILL WORK ###=
105 A$=DUMMY$ (exxx THIS CODE WILL WORK *#*#*
110 CALL LSTN%(DUMMY$) sexsx THIS CODE WILL WORK *#a*
115 B$=DUMMY$ sk THIS CODE WILL WORK woesx

Statements 105 and 115 cause Basic to copy the contents of DUMMY$ (which happens to be
the string buffer in MSOFT) into strings A$ and B$, respectively. Since A$ is a copy of what
was heard on the bus statement 110 will not destroy it.

If you do not need to preserve the previous message, and, in fact, use the same string
variable over and over, you do not need to worry about this problem. For instance, if you are
waiting for a 488 device to send the string "QUIT" and you want to ignore all others, the
following program segment will work just fine.

100 CALL LSTN%(A$) sexex THIS CODE WILL WORK *#*=
110 IF A$<o"QUIT" THEN 100 stexkk THIS CODE WILL WORK %

The time you have to really watch for this problem is when you want to remember previous
messages. |If you are trying to get a set of readings from an instrument and you want to
keep them in an array, the following code will not work.

100 FOR 1%=0 TO 35
110 CALL LSTN%(A$(1%)) : s#xx% THIS CODE WILL NOT WORK ~ **#*
120 NEXT 1%

What will happen is that A$(0), A$(1), will all point to the buffer in MSOFT, and it will
hold only the last reading. The following code will work.

100 FOR 1%=0 TO 35

110 CALL LSTN%(DUMMY$) Jexxx THIS CODE WILL WORK #***
120 A$(1-DUMMY$ J*#x+ THIS CODE WILL WORK #***
130 NEXT 1%

Gotchya Number 4

The Serial Poll function SPOLL can leave the bus in a state where the Talker will send only its
serial poll response byte instead of data. This occurs only if a bus error (timeout, IFC, etc.)
occurs while it is doing a serial poll. Since it already encountered one bus error it assumes
that it cannot send the Serial Poll Disable (SPD) command. One rather common way of getting
a bus error during a serial poll is to try to poll a device which is not connected to the bus.
SPOLL will send out its talk address and wait for the response. None is forthcoming since
the device isn't even there. Eventually a bus timeout error will occur (if the timeout value
had been set to something other than 255) and SPOLL will return to your Basic program. But
note that the devices on the 488 bus still think that a serial poll is in progress, and any
device which is later addressed as a Talker will send its serial poll response -byte instead of
data. You can tell if this has occurred by checking the error code variable after the serial
poll. If it shows a bus timeout error occurred the other devices on the bus think a serial poll

rev 4-14-82 13:49 MSOFT-15

Gotchyas ' P&T-488 MSOFT User's Manual

is still in progress. Your program will have to tell them that it is not. One way is to
become a Controller and send Untalk (UNT is 5F Hex) followed by Serial Poll Disable (SPD is 19
Hex). Another way would be to send IFC (by calling function IFC), but this method may not
be appropriate at times, because it resets all devices to their power-on state. You may not
want to reprogram them.

*3%% How to Use MSOFT with Interpreter Basic ****

MSOFT.COM is comprised of two parts: one of which is temporary and is used for
initialization, the second of which remains resident in your system until you exit from Basic
(via the SYSTEM command). You must use a command line of the following form in order to
bring in both MSOFT and Basic:

MSOFT MBASIC [filename options]

Notice that you may (but do not have to) specify the name of the Basic program which you
want to run and you may also specify the normal Basic options, such as memory size, number
of disk file buffers, etc. For example, if you want to run the Basic program BISAMPL.BAS
and you also want to set the memory size option to limit Basic to only the first 32 Kbytes of
memory, the command line would look like this:

MSOFT MBASIC BISAMPL /M:32767
Note that one and only one space must separate each of the commands on the command line.

rkRR NOTE L2 2 2]
If you have renamed your copy of MBASIC to some new name, substitute the new name
wherever "MBASIC" appears in these command line examples.

What MSOFT actually does is that it first relocates the resident module so that it lies just
below the operating system (BDOS for CP/M). It then takes the rest of the command line and
"submits" it to the operating system, just as if it were typed in by the user directly. This
is the reason that you must give the name of your Basic interpreter on the command line. If
you only type MSOFT on the command line MSOFT will relocate its resident module to lie just
below the operating system and then return to the operating system. CP/M will then reload the
CCP (Console Command Processor) to get your next command. However, the CCP also lies just
below the operating system and destroys the resident module of MSOFT.

MSOFT also changes the JMP BDOS in location 0005H to a JMP to its own beginning address.
That address contains a JMP BDOS so the BDOS calls (that is, CALL 0005H) work normally.
MSOFT does all this to protect itself from the self-sizing feature of Basic.

*2%%¢ How to Use MSOFT with Compiling Basic ****

The general scheme of operation is very similar to that used for the interpreter version of
Basic, but there are a few differences. First and foremost is that the argument to a CALL .in
the interpreter must be an integer or integer variable. This is why each name ended with a
percent sign (%). The compiler does NOT call an integer. Instead, the argument to its CALL
is what is known as a PUBLIC LABEL. There are only two points that you really need to
concern yourself with: (1) the name of each 488 function MUST BE the names shown earlier and
(2) each name does NOT end with a percent sign. This means that while you may call the
Serial Poll function any integer name you like in an interpreter program (SPOLL%, SP%, 1%,
etc.), you must call it SPOLL in a program to be compiled.

Since the argument of each CALL is a public label in compiling Basic, you do not have to tell
MSOFT what variables to use (as is done in MBASINIT.BAS). Nor 'do you have to calculate -
SETUP%. It will not hurt anything if you do, but it is not necessary in a program which will
be compiled. You cannot do a CALL SETUP (CNTL%, CNTLC%, ...) because the compiler will

MSOFT-16 . rev 4-14-82 13:49

P &T-488 MSOFT User's Manual MSOFT and Compiling Basic

not allow more than ten parameters to be passed through a CALL. There is no problem,
because SETUP is not needed for the compiler anyway.

You do have to define all the communication variables (ERCODE%, TIME%, etc.) and CALL the
functions IOSET and PROTCL. As in the interpreter version, you need to CALL ECHO only if
you want to enable the input and/or output echo.

The program BCSAMPL.BAS is exactly the same as BISAMPL.BAS EXCEPT that the modifications
necessary to make it compile have been made. Note that each 488 function name has had the
ending percent sign (%) stripped off of it, since each is now a public label instead of an
integer variable. Lines 1160 through 1300 have been removed.

The following dialog shows how the program BCSAMPL.BAS was compiled with Microsoft's version
5.30 Basic compiler and then linked to the MSOFT.REL file to generate the executable
BCSAMPL.COM file. Note that BCSAMPL.COM stands alone: you need only type

BCSAMPL
to run it. This is in marked contrast to the interpreter version in which you have to type

MSOFT MBASIC BISAMPL !

sss* Example of how to Compile an MSOFT Program *%s*

NOTE: In the following dialog these conventions have been used:
1. Everything typed by the operator is shown underscored.
2. The character sequence <CR> means that the CARRIAGE RETURN key was typed.
(Sometimes this key is labeled RETURN or ENTER.)
3. Version 5.30 of Microsoft's Basic compiler was used.
4. The */O" switch was used so that BCSAMPL.COM will run without the BRUN.COM
runtime package.

BYBASCOM<CR>
*=BCSAMPL /O<CR>

00000 Fatal Errors
14101 Bytes Free

B>L80<CR>
Link-80 3.43 14-Apr-81 Copyright (c) 1981 Microsoft

*BCSAMPL /E,BCSAMPL /N ,MSOFT<CR>

Data 0103 4639 <17 8>

18563 Bytes Free
[0162 4639 70]

B>

rev 4-14-82 13:49 MSOFT-17

~ISAMPL and BCSAMPL P&T-488 MSOFT User's Manual

PS5 53555 5554 NOTE 2222222222224

The following source-code programs are included for illustrative purposes. Permission is granted
to the reader to reproduce or abstract from these programs. These programs are the ONLY
portion of this manual that may be reproduced without the prior written permission of

Pickles & Trout, P.O. Box 1206, Goleta, CA 93116

Comments on BISAMPL.BAS and BCSAMPL.BAS

These programs can be used to experiment with how MSOFT works, as well as experiment with
how any device attached to the 488 bus responds to various commands. The programs differ.
only in that BISAMPL is the version that is for the interpreter version of Basic, while
BCSAMPL is the version for the Basic compiler. They differ in that the arguments of all the
CALLs in BISAMPL are integers (end with a % sign), while in BCSAMPL they are public labels,
Also, BCSAMPL does not do a CALL SETUP(...).

These programs request the user to specify what function is to be performed by MSOFT, and
whatever other information is needed in order to perform it. For instance, if the user
indicates that the TALK function is to be used, the programs ask for the string that is to be
sent over the 488 bus by the P&T-488 as a talker. After all necessary information has been
entered the programs perform the function and report the value of the error code, what function
was performed and any appropriate error message.

The programs have a special string collection routine (lines 3160 through 3410). Basic does not
normally allow characters such as line feed and carriage return to be included in a string
gathered from the console keyboard. However, it is often necessary to include these and other
control characters in strings which are to be sent over the 488 bus while the P&T-488 is a
talker or a controller. These control characters can be entered into the talk and control strings
by preceding them with an ESCAPE character. For example, to get the string

1234<ESCAPE>$%<RETURN><LINE FEED>
you would type
1234<ESCAPE><ESCAPE>$%<ESCAPE><RETURN><ESCAPE>LINE FEED><RETURN>

Notice that each control code (<KESCAPE>, <RETURN> and <LINE FEED>) is preceded by an
<ESCAPE>. The very last <RETURN> is not preceded by an <ESCAPE> because it is the
delimiter telling Basic that the string is complete. The BACKSPACE key can be used to
correct errors. BACKSPACE can be put into the string by preceding it (like the other control
characters) with an <ESCAPE>. The only character that cannot be put into a string is Control
C (ETX) because Basic recognizes it as an abort.

As an illustration of how to use these programs, assume you have a Hewlett-Packard 59309A
Digital Clock. The programming codes for this clock are the following:

Reset the clock to 01:01:00:00:00

Stop the clock

Start the clock

Add one second to the time displayed by the clock
Add one minute to the time displayed by the clock
Add one hour

Add one day

OxI=wn-H9w

MSOFT-18 rev 4-14-82 12:49

P &T-488 MSOFT User's Manual BISAMPL and BCSAMPL
NOTE: When the front panel display is the following:

Month Day Hour Minute Second
12 28 1 23 14

The output to the 488 bus (when addressed to talk and with colon format) is in the following
format:

(? or <SP> <SP>) : 12 : 28 : 11 : 23 : 14 <CR> d4PF>
Status Space Month Day Hour Minute Second

The status character "?" means that there is an error. The status character
<SP> means that there is no error.

The following example shows how to reset, set and read the time. It is assumed that the
Talk address of the clock is "E" and the Listen address is "%". Underlined sections in the
example are what the operator typed on the console: the rest is the computer's response. Note
that the mnemonic <CR> means that the Carriage Return key is pressed, NOT that the four
individual characters <, C, R, and > were pressed. To save paper [MENU] is shown in
place of the menu that will actually appear on your console. The marginal comments indicate
what it was that | was trying to accomplish at each step.

A>MSOFT MBASIC BISAMPL<CR>

P&T 488 - MBasic Interface Software Revision 0,63
Copyright 1981,82 by Pickles & Trout

BASIC-80 Rev, 5.21

[CP/M Version]

Copyright 1977-81 (C) by Microsoft
Created: 28-Jul-81

24967 Bytes free

1, CONTROL Become the Controller and output a command string

2, TALK Become a Talker and send a string

3. LISTEN Become a Listener and receive a string

4, REMOTE Make the REN (Remote ENable) |ine true

5. LOCAL Make the REN line false

6. |IFC Issue an IFC (InterFace Clear) command

7. RESET Reset the P&T 488 interface

8. STATUS Display the current 488 bus status

9. SPOLL Perform a Serial Poll of the 488 bus

10, PPOLL Perform a Parallel Poll of the 488 bus

11, Change the communication protocol (EOT switch, EOS, and string length)
12, Change input echo, output echo and timeout values

13, Change S-100 port numbers (DIP switch on P&T-488 card must agree)

Which would you like to do? 6<CR> send Interface Clear to 488 devices
Function = INTERFACE CLEAR Error Code = 0

NORMAL RETURN no errors have occurred

[MENU 1

Which would you like to do? 4<CR> make REN |ine true-

Function = REMOTE ENABLE Error Code = 0

NORMAL RETURN

rev 4-14-82 12:49 MSOFT-19

BISAMPL and BCSAMPL P&T-488 MSOFT User's Manual

[MENU 1

Which would you like to do? 1<CR> address the clock as a Listener

Please enter the Control string

STRING: #<CR>

Function = CONTROLLER Error Code = 2

NO LISTENERS = | cannot talk to myself! Oh dear, | forgot to connect the 488 cable

[MENU 1

Which would you |ike to do? 6<CR> connected .the cable, let's try again
Function = INTERFACE CLEAR Error Code = 0

NORMAL RETURN

[MENU]

Which would you like to do? 4<CR> make REN line true

Function = REMOTE ENABLE Error Code = 0
NORMAL RETURN

[MENU]
Which would you |ike to do? 1<CR> address the clock as a Listener

Please enter the Control string
STRING: %<CR>

Function = CONTROLLER Error Code = 0

NORMAL RETURN and the clock!s indicator shows that it is addressed
[MENU 1]

Which would you |ike to do? 2<CR> set the.clock to Jan 5, 8:10 AM and 15 seconds:

Please enter the Talk string

STRING: RPDDDDHHHHHHHHMMMMMMMMMMSSSSSSSSSSSSSSS<CR>

Function = TALKER Error Code = 0

NORMAL RETURN and the clock displays 01:05:08:10:15

[MENU |

Which would you |ike to do? 2<CR> start the clock when the time is 8:10:15
Please enter the Talk string

STRING: T<CR>

Function = TALKER Error Code = 0

NORMAL RETURN the clock is now running

[MENU]

Which would you like to do? 11<CR> make |ine feed the EOS byte
The current communication protocol setup is:

EOT switch = 0

EOS value = 0

String length = 254
What is the new EOT switch? 1<CR> terminate |isten upon receipt of EOS
What is the new EOS value- (0:,255)7 -10<CR>. make-EQS a line~feed

What s the new String Length (0..255)7 25<CR> make maximum. string 25 bytes

MSOFT-20 rev 4-14-82 12:49

P&T-488 MSOFT User's Manual BISAMPL and BCSAMPL
[MENU 1
Which would you like to do? 1<CR> unaddress clock as Listener, address as Talker

Please enter the Control string
STRING: ?E<CR>

Function = CONTROLLER Error Code = 0
NORMAL RETURN
[MENU 1
Which would you |ike to do? 3<CR> Iisten to the clock
String heard on the 488 bus is:

01:05:08:16:01 that's the time!
Function = LISTENER Error Code = 0

NORMAL RETURN

[MENU 1

Which would you like fo do? 1C press Control C to abort
Break in 1510

Ok

SYSTEM exit Basic

B>

rev 4-14-82 12:49 MSOFT-21

BISAMPL .BAS

20!

40 1
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490

®E¥EE BISAMPL.BAS Listing ®%&%

BISAMPL as of 9:54 4-8-82

Let the operator test each function and observe the
response :

Control characters (such as |ine feed and carriage return) can

be entered into the TALK and CONTROL strings by preceding the
control character with an ESCAPE., For example, to get the string
1234<ESCAPE>$F<RETURN><L INE FEED> you would type
1234<ESCAPE><ESCAPE>$Z<ESCAPE><RETURN><ESCAPE><L INE FEED><RETURN>.

-« - w @ @ e -

Initialization Routines

-

! The purpose of these routines is to initialize the MSOFT function
! addresses and the communication variables,
1

! Calculate the address of the SETUP function
1

TEMP = 256 *PEEK(7)+PEEK(6)+9

|F TEMP>32767 THEN TEMP = TEMP-65536!

SETUP$ = CINT(TEMP) :? convert it to an integer

1 .

! Set up function call address variables-

1

CALL SETUP% (CNTL3, CNTLC? ,TALKE, TALKC%, LSTN$, LSTNC%, SPOLL%, PPOLL%,

DREN%, RENZ, STATUSZ, IFC%, BRSETY, IOSET$, PROTCL%, ECHO%,
|OPORT%)

' Call the setup routines to let MSOFT know what variables to use
]

CALL I0SET# (ERCODEZ, TIME%, POLLE, BUS%)

CALL PROTCL® (EOT%, EOS%, LENGTH%)

CALL ECHOZ (ECHOINE, ECHOOUT%)

1

)

' Main Menu

1]

PRINT : PRINT

PRINT "1, CONTROL Become the Controller and output a command string"
PRINT "2, TALK Become a Talker and send a string"

PRINT "3, LISTEN Become a Listener and receive a string"

PRINT "4, REMOTE Make the REN (Remote ENable) Iline true"

PRINT "5, LOCAL Make the REN line false"

PRINT "6, IFC Issue an IFC (InterFace Clear) command"

PRINT "7, RESET Reset the P&T 488 interface"

PRINT "8, STATUS Display the current 488 bus status™

PRINT "9, SPOLL Perform a Serial Poll of the 488 bus"

PRINT ™10, PPOLL Perform a Parallel Poll of the 488 bus"

PRINT ™11, Change the communication protocol (EOT switch, EOS, and string length)"
PRINT "12, Change input echo, output ‘echo and timeout values"

PRINT "13, Change S$-100 port numbers (DIP switch on P&T-488 card must agree)"

MSOFT-22 rev 4-14-82

P&T-488 MSOFT User's Manual

12:49

P&T-488 MSOFT User's Manual

1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070

PRINT

INPUT "Which would you like to do";F§ : ' get function code

IF F#<1 OR F%>13 THEN PRINT CHR$(7):GOTO 1360

PRINT
ERCODEZ=0

IF F3<>1 THEN 1630

« 1

clear the error code

PRINT "Please enter the Control string"

GOosuB 3200
FC$="CONTROLLER"
CALL CNTLZ (A1S$)
GOTO 2730

'

IF F%<>2 THEN 1700

get string to send as a controller

send out the command string

PRINT "Please enter the Talk string"

GOSUB 3200
FC$="TALKER"

CALL TALKZ (A1S$)
GOTO 2730

]

IF F$<>3 THEN 1780
A] $=""
FC$="L|STENER"

CALL LSTNZ(A1S)
PRINT "String heard on 488
PRINT A1$

GOTO 2730

L

IF F§<>4 THEN 1830
FC$="REMOTE ENABLE"
CALL REN%

GOTO 2730

1

IF F§<>5 THEN 1880
FC$="REMOTE DISABLE"
CALL DREN%

GOTO 2730

1

IF F$<>6 THEN 1930
FC$=" INTERFACE CLEAR"
CALL IFC%

GOTO 2730

1

IF F%<>7 THEN 1980
FC$="RESET PA&T 488"
CALL BRSETY

GOTO 2730

1

IF F%<>8 THEN 2040
CALL STATUS%

¢ !

¢« !

o 1

bus

oo
-

.

PRINT "Bus Status is: ";BUS%

FC$="STATUS"

GOTO 2730
'

IF F$<>9 THEN 2140

GOosuB 3200
PRINT

rev 4-14-82 12:49

get string to send as a talker

send out a data string

get string from the 488
is"

make REN |ine true

make REN |ine false

issue an |IFC command

reset the P&T 488

PRINT "Please enter Talk addresses to polin

get string of talk addresses

MSOFT-23

BISAMPL .BAS

BISAMPL.BAS

2080
2090
2100
2110
2120
2130

- 2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650

'PRINT ® EOS value

FC$="SERIAL POLL"
CALL SPOLLZ(A1$,B1$) : ' perform Serial Poll
PRINT "Talk address of responding device is ";B1$
PRINT "Poll response = ";POLL%

GOTO 2730

]

IF F$<>10 THEN 2200

FC$="PARALLEL POLL"

CALL PPOLL% : ' perform parallel poli
PRINT "Poll| response = ";POLL%

GOTO 2730

1]

IF F§<>11 THEN 2400

PRINT:PRINT

PRINT "The current communication protocol setup is:"
PRINT

PRINT ® EOT switch

";EOTS
";E0S$
"; LENGTHS

PRINT String length
PRINT

INPUT "What is the new EOT switch value";EOT$
INPUT "What is the new EOS value (0..255)";E0S%
IF EOS$>=0 AND EOS$<=255 THEN 2330

PRINT "The EOS value must be between-0 and 255!"
GOTO 2290

INPUT "What is. the new String Length (0..255)";LENGTH%
IF LENGTH$>=0 AND LENGTH$<256 THEN 2370

PRINT "The LENGTH must be between 0 and 2551" -

GOTO 2330 ‘ ' ’

PRINT

GOTO 1360

1]

IF F#<>12 THEN 2640

PRINT:PRINT

PRINT "The Input Echo, Output Echo, and Timeout are currently set to:"
PRINT

P$=tN": I|F ECHOINgZ<>0 THEN P$=tyn

PRINT " Input Echo ".p$

P$="N": |F ECHOOUTZ<>0 THEN P$=nyn

PRINT " Output Echo ".pP$

PRINT " Timeout Value ";TIME%

PRINT

PRINT "Echo Input (Y/N)";

INPUT A1$: A1$=LEFTS$(A1S$,1)

IF AT1$<>nY™ AND AT$<>UN" AND A1$<>"y't AND A1$<>"n" THEN 2500
ECHOINg=0: IF A1$=1Y"® OR A1$=my" THEN ECHOINZ=1

PRINT "Echo Output (Y/N)";

INPUT A1$: A1$=LEFT$(A1S$,1)

IF A1$<>nYn AND A1$<>UN® AND A1$<>ty" AND A1$<>"n" THEN 2540
ECHOOUT%=0: IF A1$="Y" OR Al1$="y" THEN ECHOOUT%=1

INPUT "What is the new TIMEOUT value (0..255)";TIMES

IF TIMEZ>=0 AND TIME%<=255 THEN 2620

PRINT "The TIMEOUT value must be between 0 and 2551"
GOTO 2580

PRINT

GOTO 1360

IF F#<>13 THEN 2730

INPUT "What is the new S-100 port number (0..255)";PORT%

MSOFT-24 rev 4-14-82

P&T-488 MSOFT User's Manual

12:49

P&T-488 MSOFT User's Manual

2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230

PRINT

CALL |OPORT#(PORT%)

GOTO 1360

1

1

' Display function and error code, then return to maln menu
1

PRINT

GOSuUB 2770 : ' print function and error message
GOTO 1360 : ' go back to main menu

1]

]

' Report 488 Function Errors

1)

PRINT "Function = ";FC$;TAB(40);"Error Code = ";ERCODE%

'

' Interpret Error codes and print error messages
]

IF ERCODE$<0 THEN 3140
IF ERCODE$=0 THEN PRINT "NORMAL RETURN" : RETURN
|F ERCODE#>255 THEN 3140

FOR 1=7 TO O STEP -1

10=2€|

R9=ERCODE#-10 : IF R9 < O THEN 3120

ERCODE%=R9

ON |+1 GOTO 2930,2960,2980,3010,3030,3060,3080,3100

]

PRINT "SETUP ERROR - either |0SET# or PROTCLZ wasn't called before"
PRINT » using one of the MSOFT communication functions"
GOTO 3120

PRINT "NO LISTENERS - | cannot talk to myselfi"

GOTO 3120

PRINT ®"SERIAL POLL ADDRESS ERROR - no more than one secondary address"
PRINT " may follow a primary address"

GOTO 3120

PRINT "SERVICE REQUEST - a 488 device is requesting service"

GOTO 3120

PRINT "TIMEOUT ERROR - the specified amount of time has elapsed without"
PRINT ® completing a 488 handshake cycle"

GOTO 3120

PRINT "ATN TRUE - an external controller is trying to issue a command"

GOTO 3120

PRINT "|FC TRUE - reset 488 interface"

GOTO 3120

PRINT "S-100 RESET - reset interface (use function 6 or 7)"
GOTO 3120

NEXT |

RETURN

PRINT "SYSTEM ERROR -~ an illegal error code has been encoutered"
RETURN

1)

1

! String Input Routine

1

! Get the string. Gather control codes if preceded by <ESCAPE>,
1

Alg=nn
PRINT "STRING: ";

rev 4-14-82 12:49 MSOFT-25

BISAMPL .BAS

BISAMPL.BAS
3240 A8$=INPUTS(1)
3250 IF ASC(A8%$)<>13 THEN 3280 : ' <RETURN> terminates input
3260 PRINT
3270 RETURN
3280 ' Use backspace key for character at a time deletion
3290 IF ASC(A8%)=8 THEN IF LEN(A1$)>0 THEN 3310 ELSE 3240
3300 GOTO 3370
3310 A9$=RIGHT$(A1$,1) : ' keep deleted char
3320 A1$=LEFT$(A1S$,LEN(A1$)=1) : ' remove deleted char from string

3330
3340
3350
3360
3370
3380
3390
3400
3410
3420

PRINT CHR$(8);" ";CHR$(8); ' delete char from CRT

' If deleted char is a control char must also delete leading caret
IF ASC(A9$)<32 THEN PRINT CHR$(8);" ";CHR$(8);

GOTO 3240

IF ASC(A8%)=27 THEN A8%=INPUT$(1) : ' <ESCAPE> means get next char
! Show the control character. |f not a space preceed character with
' a caret. Change the control character into a printing character.
IF A8$>=" " THEN PRINT A8%; ELSE PRINT "©"+CHR$(64+ASC(A8%));
A1$=A18+A8% : ' Append the character to the string

GOTO 3240

MSOFT-26 rev 4-14-82

P&T-488 MSOFT User's Manual

12:49

P&T-488 MSOFT User's Manual BCSAMPL .BAS

*%%% BCSAMPL.BAS &%

BCSAMPL performs the same function as BISAMPL, but is written for the Basic compiler. The
differences between the two programs is a consequence of the difference between the interpreter
and compiler versions of Microsoft Basic, You will notice that all arguments of CALLs in BCSAMPL
are public labels, while in BISAMPL they are integers (end with a § sign). Also, lines 1170
through 1260 of BISAMPL are superfluous when the compiler is used, so they do not appear in
BCSAMPL.,

%REE% BCSAMPL.BAS Listing #¥¥%

10

20 ' BCSAMPL as of 10:32 4-8-82

30 ¢

40 !

1000 !

1010 !

1020 ' Let the operator test each function and observe the

1030 ' response

1040 !

1050 ' Control characters (such as |line feed and carriage return) can
1060 ' be entered into the TALK and CONTROL strings by preceding the
1070 ' control character with an ESCAPE. For example, to get the string
1080 ' 1234<ESCAPE>$F<RETURN><LINE FEED> you would type

1090 ' 1234<ESCAPE><ESCAPE>$%<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>,
1100 ! :

1110 ¢

1120 ' Initialization Routines

1130 !

1140 ' The purpose of these routines is to initialize the MSOFT function
1150 ' addresses and the communication variables,.

1160 !

1270 ' Call the setup routines to let MSOFT know what variables to use
1280 !

1290 CALL IOSET (ERCODEg, TIMEZ, POLLS, BUSE)

1300 CALL PROTCL (EOT%, EOS%, LENGTH%)

1310 CALL ECHO (ECHOINg, ECHOOUT%)

1320 !
1330 !
1340 ' Main Menu

1350 !

1360 PRINT : PRINT

1370 PRINT "1, CONTROL Become the Controller and output a command string"

1380 PRINT "2, TALK Become a Talker and send a string"

1390 PRINT "3, LISTEN Become a Listener and receive a string"

1400 PRINT "4, REMOTE Make the REN (Remote ENable) |ine true"

1410 PRINT "5, LOCAL Make the REN |ine false"

1420 PRINT "6, IFC Issue an IFC (InterFace Clear) command"

1430 PRINT "7, RESET Reset the P&T 488 interface"

1440 PRINT "8, STATUS Display the current 488 bus status"

1450 PRINT "9, SPOLL Perform a Serial Poll of the 488 bus"

1460 PRINT "10, PPOLL Perform a Parallel Poll of the 488 bus"

1470 PRINT "11, Change the communication protocol (EOT switch, EOS, and string length)"
1480 PRINT "12, Change input echo, output echo and timeout values"

1490 PRINT "13, Change S~100 port numbers (DIP switch on P&T-488 card must agree)"

1500 PRINT

rev 4-14-82 12:49 MSOFT-27

BCSAMPL .BAS

1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080

INPUT "Which would you like to do";F§ : ' get function code

IF F%<1 OR F%>13 THEN PRINT CHR$(7):G0TO 1360

PRINT

ERCODE%=0 : ' clear the error code

)

iF F#<>1 THEN 1630

PRINT "Please enter the Control string"

GOsuB 3200 : ' get string to send as a controller
FC$="CONTROLLER"
CALL CNTL (A1$)
GOTO 2730

1]

IF F$<>2 THEN 1700
PRINT "Please enter the Talk string"

GOSUB 3200 ¢ ' get string to send as a talker
FC$="TALKER"

CALL TALK (A1$) : ' send out a data string

GOTO 2730

1

IF Fg<>3 THEN 1780

A]s-_-.""

FC$="LISTENER"

CALL LSTN(A1S) : ' get string from the 488
PRINT "String heard on 488 bus is:"

PRINT Al1S$

GOTO 2730

1

IF F$<>4 THEN 1830
FC$="REMOTE ENABLE"
CALL REN

GOTO 2730

1)

IF F$<>5 THEN 1880
FC$="REMOTE DI SABLE"
CALL DREN

GOTO 2730

]

IF F§<>6 THEN 1930
FC$="INTERFACE CLEAR"
CALL IFC

GOTO 2730

1

IF F$<>7 THEN 1980
FC$="RESET P&T 488"
CALL BRSET

GOTO 2730

!

IF F%<>8 THEN 2040
CALL STATUS

PRINT "Bus Status is: ";BUSE

FC$="STATUS"

GOTO 2730

)

IF F$<>9 THEN 2140

PRINT "Please enter Talk addresses to pol "

GOSuUB 3200 : ! get string.of talk addresses:
PRINT

FC$="SERIAL POLL"

.
-

send out the command string

' make REN |ine true

.o

' make REN line false

oo

oe
-

issue an IFC command

reset the P&T 488

MSOFT-28

rev 4-14-82

P&T-488 MSOFT User's Manual

12:49

P&T-488 MSOFT User's Manual BCSAMPL ,BAS

2090 CALL SPOLL(A1$,B1$%) : ' perform Serial Poll
2100 PRINT "Talk address of responding device is ";B1$
2110 PRINT "Pol| response = ";POLL%

2120 GOTO 2730

2130 !

2140 IF F$<>10 THEN 2200

2150 FC$="PARALLEL POLL"

2160 CALL PPOLL ¢ ' perform paralliel poll
2170 PRINT "Pol | response = ";POLL%

2180 GOTO 2730

2190 !

2200 |IF F$<>11 THEN 2400

2210 PRINT:PRINT

2220 PRINT "The current communication protocol setup is:"

2230 PRINT

2240 PRINT * EOT switch = ", EOT%
2250 PRINT * EOS value = ";E0S%
2260 PRINT " String length = ";LENGTH%

2270 PRINT

2280 INPUT "What is the new EOT switch value";EOT%

2290 INPUT "What is the new EOS value (0..255)";E0S%

2300 IF EOS%>=0 AND E0S%<=255 THEN 2330

2310 PRINT "The EOS value must be between 0 and 255!"

2320 GOTO 2290

2330 INPUT "What is the new String Length (0..255)";LENGTH%
2340 IF LENGTH%Z>=0 AND LENGTH%<256 THEN 2370

2350 PRINT "The LENGTH must be between O and 255!"

2360 GOTO 2330

2370 PRINT

2380 GOTO 1360

2390 !

2400 IF F$<>12 THEN 2640

2410 PRINT:PRINT

2420 PRINT "The Input Echo, Output Echo, and Timeout are currently set to:"

2430 PRINT

2440 P$="N": |F ECHOIN%<>0 THEN P$=myn
2450 PRINT " Input Echo ".ps
2460 P$="N": IF ECHOOUT$<>0 THEN P$=uyn
2470 PRINT ® Output Echo ":P$
2480 PRINT " Timeout Value ";TIMES
2490 PRINT

2500 PRINT "Echo Input (Y/N)":

2510 INPUT A1$: A1$=LEFT$(A1$,1)

2520 IF A1$<OMY™ AND ATS<OUN® AND A1$<>Uyn AND A1$<>"n" THEN 2500
2530 ECHOINS=0: IF A1$="Y" OR A1$="y" THEN ECHOIN%=1

2540 PRINT "Echo Output (Y/N)';

2550 INPUT A1$: A1$=LEFT$(A1$,1)

2560 IF A1$<>1Y" AND A1$<>!IN" AND A1$<>"y" AND A1$<>"n" THEN 2540
2570 ECHOOUT%=0: IF A1$="Y" OR Al1$="y" THEN ECHOOUTZ=1

2580 INPUT "What is the new TIMEOUT value (0..255)";TIMEZ

2590 IF TIME$>=0 AND TIMEZ<=255 THEN 2620

2600 PRINT "The TIMEOUT value must be between 0 and 255!"

2610 GOTO 2580

2620 PRINT

2630 GOTO 1360

2640 IF F%<>13 THEN 2730

2650 INPUT "What is the new S-100 port number (0..255)";PORT%
2660 PRINT

rev 4-14-82 12:49 MSOFT-29

BCSAMPL .BAS

2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240

CALL IOPORT(PORT%)

GOTO 1360

1

\]

' Display function and error code, then return to main menu
1

PRINT

GOosuB 2770 : ' print function and error message
GOTO 1360 : ' go back to main menu

]

)

' Report 488 Function Errors

1

PRINT "Function = ";FC$;TAB(40);"Error Code = ";ERCODE¥

! Interpret Error codes and .print error messages
1

IF ERCODE%<0 THEN 3140

IF ERCODE%=0 THEN PRINT "NORMAL RETURN" : RETURN

IF ERCODE$>255 THEN 3140

FOR 1=7 TO O STEP -1

10=20|

R9=ERCODE%-10 : IF R9 < 0 THEN 3120

ERCODE#=R9

ON I1+1 GOTO 2930,2960,2980,3010,3030,3060,3080,3100

1

PRINT "SETUP ERROR - either |0SET% or PROTCL%Z wasn't called before™"
PRINT " using one of the MSOFT communication functions" -
GOTO 3120

PRINT "NO LISTENERS - | cannot talk to myself!"

GOTO 3120 :

PRINT "SERIAL POLL ADDRESS ERROR ~ no more than one secondary address"
PRINT " may follow a primary address"

GOTO 3120

PRINT "SERVICE REQUEST - a 488 device Is requesting service"

GOTO 3120

PRINT "TIMEOUT ERROR - the specified amount of time has elapsed without"
PRINT » completing a 488 handshake cycle"

GOTO 3120

PRINT "ATN TRUE - an external controller is trying fo issue a command"

GOTO 3120

PRINT "|FC TRUE - reset 488 interface"

GOTO 3120

PRINT "S-100 RESET - reset interface (use function 6 or 7)%
GOTO 3120

NEXT |

RETURN

PRINT "SYSTEM ERROR - an illegal error code has been encoutered"

RETURN

'

1

' String input Routine

'

' Get the string. Gather control codes if preceded by <ESCAPE>.
]

A‘s:""

PRINT "STRING: ";

A8%=INPUTS$(1)

MSOFT-30 rev 4-14-82

P&T-488 MSOFT User's Manual

12:49

P&T-488 MSOFT User's Manual

3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420

IF ASC(A8%)<>13 THEN 3280 : ' <RETURN> terminates input
PRINT

RETURN
' Use backspace key for character at a time deletion

IF ASC(A8%)=8 THEN IF LEN(A1$)>0 THEN 3310 ELSE 3240

GOTO 3370

A9$=RIGHT$(A1$,1) : ' keep deleted char
A1$=LEFT$(A1$,LEN(A1$)=-1) : ' remove deleted char from string
PRINT CHR$(8);" ";CHR$(8); : ' delete char from CRT

' If deleted char is a control char must also delete leading caret

IF ASC(A9$)<32 THEN PRINT CHR$(8);" ";CHR$(8);

GOTO 3240

IF ASC(A8%$)=27 THEN A8$=INPUT$(1) : ' <ESCAPE> means get next char
' Show the control character., I|f not a space preceed character with
' a caret, Change the control character into a printing character.
IF A8$>=%" " THEN PRINT A8%; ELSE PRINT "O"+CHR$(64+ASC(A8%));
A13=A13+A88 : ' Append the character to the string

GOTO 3240

rev 4-14-82 12:49 MSOFT-31

BCSAMPL .BAS

B488INIT.BAS P&T-488 MSOFT User's Manual

®EXE B4ABBINIT.BAS H¥%x

[’

This program fragment is included on your disk as an aid in writing programs for MSOFT, All of
the setup calls are included. |Its primary utility is that all the variables are called in the
correct order in the setup routines., Remember that Basic does not check to make sure that the
right number of parameters are passed, nor does it check to make sure they are of the correct
type. Since B488INIT.BAS has all of the setup calls in it, If you copy it to your program you
are sure that the right number and type of parameters are used, Also, you are spared the
frustration of spending hours trying to get a program to work only to find out that you have
mispel led a function name, or have accident!y changed the order of the parameters,

®EEE - B4BBINIT.BAS Listing ***x

100
110 ' Initialization Routines

120 ¢

130 ' The purpose of these routines is to initialize the MBAS488 function
140 ' addresses and the communication variables,

150 !

160 ' Calculate the address of the SETUP function

170 !

180 TEMP = 256*PEEK(7)+PEEK(6)+9

190 IF TEMP>32767 THEN TEMP = TEMP-65536!

200 SETUPE = CINT(TEMP) :t convert it to an integer
210 ¢

220 ' Set up function call address variables

230 !

240 CALL SETUP$ (CNTL%, CNTLC% ,TALKS, TALKCZ, LSTN%, LSTNCH, SPOLLZ, PPOLLE,
DREN®, REN%, STATUSH, IFC%, BRSET#, I0SET$, PROTCL$, ECHO%,

iOPORT%)
250 !
260 ' Call the setup routines to let MBAS488 know what variables to use
270 !

280 CALL I0SET# (ERCODE%, TIME%, POLL%, BUS%)
290 CALL PROTCL¥ (EOT#, EOSE, LENGTHZ)

300 CALL ECHOF (ECHOIN$, ECHOOUTZ)

310 ¢
320 !

MSOFT-32 rev 4-14-82 12:49

P&T-488 MSOFT User's Manual BICLOCK.BAS

sss+ BICLOCK.BAS %%+

This program demonstrates how simple an interpreter Basic program can be. The first part is a
copy of B488INIT, and the error-reporting subroutine was lifted from BISAMPL. Thus only lines
1340 through 1650 are unique to this program. This program initializes the 488 bus (by sending
an Interface Clear), puts an HP 59309 clock into the Remote mode (by making the REN line
true and then sending the clock!s Listen Address). It then addresses the clock as a Talker and
listens to the data (status, date and time) that the clock sends over the bus. It displays the
date and time each time the minutes change. It also displays the data each time the status
character indicates a clock error.

10 °?

20 ' BICLOCK as of 14:30 4-09-82
30
40 '
1000 '
1010 '
1020 * This is an interpreter Basic program which addresses an
1030 ' HP 59309A clock as a talker and then reads the time and
1040 ' date, |t continually rereads the time and displays the
1050 ' +ime and date on the console each minute,

-

1060 !

1070 ' The program assumes that the bus output format of the
1080 ' 59309A is set to SPACE, CAL and COLON. It also assumes
1090 ' that the TALK address of the clock is "E" and the

1100 ' LISTEN address of the clock is "g",

1110 !

1120 !

1130 ' Initialization Routines

1140

1150 ' The purpose of these routines is to initialize the MSOFT function
1160 ' addresses and the communication variables.

1170 !

1180 ' Calculate the address of the SETUP function

1190 !

1200 TEMP = 256*PEEK(7)+PEEK(6)+9
1210 |F TEMP>32767 THEN TEMP = TEMP-65536!

1220 SETUPE = CINT(TEMP) :! convert it to an integer
1230 !

1240 ' Set up function call address variables

1250 '

1260 CALL SETUP$ (CNTL%, CNTLCZ ,TALKS, TALKCH, LSTN%, LSTNC%, SPOLL%, PPOLLZ,
DREN%, REN%, STATUS3, IFC%, BRSET%, I0SET$, PROTCL$, ECHOZ,

10PORT%)
1270 !
1280 ' Call the setup routines to let MSOFT know what variables to use
1290 !

1300 CALL I0SET% (ERCODE%, TIMEZ, POLL$, BUS%)
1310 CALL PROTCLE (EOT%, EOS%, LENGTH%)
1320 CALL ECHO% (ECHOIN%, ECHOOUT%)

1330 !

1340 CALL IFC% :' Do an Interface Clear (IFC)

1350 CALL REN% :' Make the REN |ine true

1360 A1$="2"+CHR$(95)+"g" :' Unlisten, Untalk, Listen Address "%"

1370 CALL CNTLC%(A1S) :!' Become the Controller and output A1$

1380 ! (This puts the clock into the REMOTE mode)
1390 IF ERCODE%<>0 THEN 1640 :' Report any errors

1400 !

rev 4-14-82 12:54 MSOFT=-33

BICLOCK.BAS

1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980

TIMEZ=255 :' Do not time handshake

EOT%=1 :!' Stop on End-Of-String (EOS) byte
EOS%#=10 :!' Make line feed the EOS byte
OLDMINg=-1 :' Make OLDMIN some value which cannot
' match a clock reading

1]

A1$="214+CHR$ (95) +nEN :!' Unlisten, Untalk, Talk Address "E"
CALL CNTLCZ(A1S$) :' Become the Controller and output Al$
IF ERCODE#<>0 THEN 1640 :' Report any errors

CALL LSTNCZ(A2$) :' Read the clock

|F ERCODE#<>0 THEN 1640 ¢! Report any errors

' If the first character is a "?" then the clock is in error

IF MID$(A2$,1,1)=" " THEN 1580

PRINT "CLOCK ERROR . ";A2%

PRINT "Reset clock" :! Tell operator clock needs resetting.
END :!' Then exit program

' Make MINZ the value of the unit minutes character

MINE=ASC(MID$(A28,13,1))

! Show the time if the minutes have changed

IF MIN$<>OLDMINZ THEN PRINT A2$

OLDMIN%=MINZ :' Update OLDMINZ

GOTO 1460 :' Read the clock again

1

GOSUB 1670 :' Report the error

GOTO 1340 :?* go back to IFC, REN, etc

1

1

! Report 488 Function Errors

'

! Interpret Error codes and print error messages

1

|F. ERCODE%<0 THEN 2020

IF ERCODEZ=0 THEN RETURN

IF ERCODEZ>255 THEN 2020

FOR 1=7 TO O STEP =1

10=20| '

R9=ERCODE%-10 : IF R9 < 0 THEN 2000

ERCODE%=R9

ON I+1 GOTO 1810, 1840,1860,1890,1910, 1940, 1960, 1980

]

PRINT "SETUP ERROR - either 10SET% or PROTCL$ wasn't called before"
PRINT " using one of the MSOFT communication functions"
GOTO 2000

PRINT "NO LISTENERS -~ | cannot talk to myself!"

GOTO 2000

PRINT "SERIAL POLL ADDRESS ERROR - no more than one secondary address"
PRINT may follow a primary address™
GOTO 2000

PRINT "SERVICE REQUEST - a 488 device is requesting service"

GOTO 2000

PRINT "TIMEOUT ERROR - the specified amount of time has elapsed without"
PRINT " completing a 488 handshake cycle"

GOTO 2000

PRINT "ATN TRUE - an external controller is trying to issue a command"

GOTO 2000

PRINT "IFC TRUE - reset 488 interface"
GOTO 2000

PRINT "S-100 RESET"

MSOFT-34 rev 4-14-82

P&T-488 MSOFT User's Manual

12:54

P&T-488 MSOFT User's Manual BICLOCK.BAS

1990 GOTO 2000

2000 NEXT |

2010 RETURN

2020 PRINT "SYSTEM ERROR - an illegal error code has been encountered"
2030 RETURN

E%% pParameter Passing ®¥¥¥

Even though MSOFT is designed to work with Microsoft Basic, it can be used with some other
languages as well, Programs written in assembler, C, Microsoft Fortran and Pascal MT+ are shown
in the following pages to demonstrate how MSOFT can be used with these languages.

Most languages require some assembler code in order to convert the Microsoft Basic parameter
passing convention into whatever the language requires. For instance, C passes parameters on the
stack but the called routine must not remove them from the stack. Pascal MT+ passes parameters
on the stack and requires that the called routine remove them from the stack. In general, each
language is slightly different and will require different parameter-passing conversion programs,

MSOFT is designed to interface with Microsoft Basic, so It uses exactly the same method of
passing parameters as Microsoft Basic. The instruction

CALL PGM(paraml, param2, param3, param4)
passes the four parameters paraml, param2, param3 and param4 to PGM, Unlike most modern
languages, Basic passes parameters by reference instead of by value. What this means is that
Basic passes the address of the parameter to the called program,

MSOFT uses only two kinds of parameters: integers and strings. Basic stores Integers as 16 bit
(two byte) quantities, with the low order byte stored at the address, and the high order byte at
location address+1, Basic stores strings in two parts: one is the string itself, and the other
part is the string descriptor (sometimes called a dope vector)., The string itself is stored in
contiguous memory locations, with the leftmost character stored in the lowest address. The
string descriptor is a three-byte block. The first byte contains the number of characters in the
string (0..255), and the remaining two bytes contain the address of the first character of the
string. As usual, Basic stores the address low order byte first,

When Basic passes an integer parameter, it actually passes the 16 bit address where that integer
is stored. And when Basic passes a string, it actually passes the address of the descriptor
block of that string. The called program has to look in that descriptor block to find the actual
address of the string.

Basic does not indicate in any manner whatsoever the number or type of arguments passed, This is
why it is so important that you make sure that the number and type are correct when you write a
program, There is no way for the called programs to check for correctness of number and type.

Basic passes the parameters in the 16 bit registers of the 8080/Z-80, and, if there are more than
three parameters, in a parameter table., The address of the first parameter is passed in register
pair HL, The address of the second parameter (if any) Is passed in register pair DE, |f there
are three parameters, the address of the third parameter is passed in register pair BC, I|f there
are more than three parameters, the third through last parameters are put into a table and
register pair BC contains the beginning address of that table. The table is organized as low
byte of parameter 3, high byte of parameter 3, low byte of parameter 4, etc.

Let us look at a few examples,
CALL ECHO(ECHOIN%, ECHOUTY)

HL = address of ECHOIN%
DE = address of ECHOUT%

rev 4-14-82 12:54 MSOFT-35

Parameter Passing

CALL TALK (A$)
HL = address of descriptor block for A$
A$ descriptor block:
Byte 0 = string length
Byte 1 = low byte of string address
Byte 2 = high byte of string address

CALL I0SET (ERCODEg, TIME%, POLLZ, BUS%)

HL = address of ERCODE}

DE = .address of TIME%

BC = address of parameter table
parameter table:
Byte 0 = low byte of address of POLLY
Byte 1 = high byte of address of POLL%
Byte 2 = low byte of address. of BUS%
Byte 3 = high byte of address of BUS%

#E%E CLOCK.MAC ***

P&T-488 MSOFT User's Manual

This program performs the same function as the Basic program BICLOCK, but this one is written in
8080 assembler, Notice how the addresses of the parameters are placed in the registers before
the MSOFT functions are called,

The following dialog shows how to assemble and .link this program with MSOFT.REL.
an executable file named CLOCK.COM.

we Be %o we W We We We We W& wo Wo we we %o

B>M80 =CLOCK<CR>
No Fatal error(s)

B>LB0 CLOCK/E,CLOCK/N,MSOFT<CR>

Link 80 3.42 19-Feb-81 Copyright (c) 1981 Microsoft
Data 0103 0B2B < 2600>

38769 Bytes Free
[0000 0828 111

B>

CLOCK.MAC 4-12-82 15:32

This assembly program is designed to be used with the MSOFT interface
software for the P&T-488, The primary purpose of this program Is to
illustrate how one can use MSOFT from an assembly program.

This program first initializes the 488 bus by sending an Interface Clear.
It then puts an HP 59309A clock into the remote mode by making the REN
line true and then addressing the clock as a Listener, This program
then addresses the clock as a Talker and listens to the data (status,
date and time) that the clock sends over the bus. It displays the date
and time each time the minutes change. It also displays the data each
time the status character indicates a clock error.

The program assumes that the bus output format of the 59309A is set

The result is

MSOFT-36 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

we we we we e

to SPACE, CAL and COLON. It also assumes that the TALK address of the
clock is "E" and the LISTEN address is "%", :

Declare MSOFT routines as EXTernal references

EXT CNTL, CNTLC, TALK, TALKC, LSTN, LSTNC
EXT SPOLL, PPOLL, DREN, REN, STATUS, IFC
EXT BRSET, I0SET, PROTCL, ECHO, IOPORT
CR EQU 13 ;ASCI| carriage return
LF EQU 10 3ASCI! |ine feed
ES EQU g ;CP/M end of string character
BOOT EQU 0 ;CP/M reboot entry
BDOS EQU 5 ;standard CP/M entry
JMP CLOCK ; jump to beginning of the program
»
ERCODE: DW 0 ;storage area for 488 error code
TIME: DW 0 ;storage area for 488 timeout
EOT: DW 0 ;storage area for 488 EOT switch
EOS: DwW 0 ;storage area for 488 EOS byte
LENGTH: DW 0 ;storage area for 488 |isten string length
POLL: DW 0 ;storage area for 488 poll response
ECHOIN: DW 0 ;storage area for 488 input echo switch
ECHOUT: DW 0 ;storage area for 488 output echo switch
BUS: DwW 0 ;storage area for 488 bus status variable
; B register buffer
BBFR1: DW 0
BBFR2: DW 0
»
OLDMIN: DB 0 ;previous minutes reading
STRVCR: DS 3 ;string vector (count followed by address)
STRBFR: DS 64 ;a string buffer
H
DS 32 ;stack area
STAK:
H
CLKMSG: DB CR,LF,'CLOCK ERROR ',ES
RSTMSG: DB 'Reset clock!,CR,LF,ES
ERMSG1: DB CR,LF,'SETUP ERROR - either I0SET or PROTCL was not !
DB fcalled before using'
DB CR,LF,'one of the MSOFT communication functions',CR,LF,ES
ERMSG2: DB CR,LF,'NO LISTENERS - | cannot talk to mysel f!',CR,LF,ES
ERMSG3: DB CR,LF,'SERIAL POLL ADDRESS ERROR - no more than one secondary!
DB CR,LF,'address may follow a primary address!,CR,LF,ES
ERMSG4: DB CR,LF,'SERVICE REQUEST -~ a 488 device is requesting service!
DB CR,LF,ES
ERMSG5: DB CR,LF,'TIMEOUT ERROR - the specified amount of time has elapsed!
DB CR,LF,'without completing a 488 handshake cycle!,CR,LF,ES
ERMSG6: DB CR,LF,'ATN TRUE - an external controller is trying to issue'’
DB ! a command',CR,LF,ES
ERMSG7: DB CR,LF,'IFC TRUE - reset 488 interface!,CR,LF,ES
ERMSG8: DB CR,LF,'S-100 RESET',CR,LF,ES
»
CLOCK: LXI H,BUS
SHLD BBFR2 ;save address in second entry of B reg buffer
LXI H,POLL
SHLD BBFR1
rev 4-14-82 12:54 MSOFT-37

CLOCK.MAC

CLOCK<MAC P&T-488 MSOFT User's Manual

LXI B,BBFR1 ;point BC to B register buffer
LXI D,TIME ;point DE to address of word holding TIME
LXI H, ERCODE
CALL 10SET
H
LX1 B, LENGTH
LXI D,EOS
LXI H,EOT

CALL PROTCL

LXI1 D, ECHOUT
LXI H,ECHOIN
CALL ECHO

e

; |Issue -an IFC command
CALL IFC

Make REN line true
CALL REN

e wso

TIME contains the amount of time to allow for handshake.
If TIME=255, then the handshake is not itmed,

LXI1 H,255

SHLD TIME

we we wo

we e

Turn off input and output echo
LXI H,0
SHLD ECHOIN
SHLD ECHOUT

Set up MSOFT so that it will stop on EOS (End-Of-String) byte,
set the EOS byte to be a line feed.

we wo o

LXl1 H,1
SHLD EOT
LXI1 H,10
SHLD EOS

Set up a string for the Control function. We will make the string
three bytes long: UNLISTEN, UNTALK and LAD (Listen Address of the clock)

e we wo

LX1 H,STRVCR ;point HL to the string descriptor vector
LXlI D,STRBFR ;point DE to the string buffer
MV M,3 ;put the count in the first byte of the vector
INX H
MoV M,E ;put the address of the string in the next word
INX H ; of the vector
Mov M,D
; Now put the characters into the string.
MV A,t?' ;UNLISTEN
STAX D
INX D
MV A,' ' ;UNTALK
STAX D
INX D
MV A,'%3" ;LAD (Listen Address of the clock)
STAX D

H
; Now send the string over the 488 bus as'a controller:
LX1 H, STRVCR

MSOFT-38 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual CLOCK.MAC
CALL CNTLC

Check error code and report any errors
CALL ERRCHK

; |f there is a bus error start the program again
LDA ERCODE
ORA A
INZ CLOCK

e

; Set up a string for the Control function, We will make the string
; three bytes long: UNLISTEN, UNTALK and TAD (Talk Address of the clock)

REDT IM: LXI H,STRVCR ;point HL to the string descriptor vector
LX1 D,STRBFR ;point DE to the string buffer
MVi M,3 ;put the count in the first byte of the vector
INX H
MoV M,E ;put the address of the string in the next word
INX H ; of the vector
MOV M,D
; Now put the characters into the string
MV A,'?" ;UNLISTEN
STAX D
INX D
MVi At ! sUNTALK
STAX D
INX D
MV A,'E' ;TAD (Talk Address of the clock)
STAX D

.o we

Now send the string over the 488 bus as a controller
LXI H, STRVCR
CALL CNTLC

we we

Check error code and report any errors
CALL ERRCHK

ve we

If there is a bus error start the program again
LDA ERCODE
ORA A
JINZ CLOCK

.o we

Now become a |istener and read the time from the clock
X1 H,STRVCR ;tell LSTNC where the string vector is kept
CALL LSTNC ;listen to the clock

we

; Check error code and report any errors
CALL ERRCHK

.o we

If there Is a bus error start the program again
LDA ERCODE
ORA A
JINZ CLOCK

;
; No 488 bus error, so look at the string we got from the clock

LXI H,STRVCR ;point HL to the string vector again
Mov c,M ;C=count (length of string)

INX H ;point to the address of the string
MoV E,M

rev 4-14-82 12:54 MSOFT-39

CLOCK.MAC P&T-488 MSOFT User's Manual

INX H
Mov D,M ;DE=address of string heard on the 488 bus

H
; Look at clock status byte to see if there is a problem

LDAX D
CP1 "
Jz CLKERR ;e.e.clock error, so report it

we we

See if the minutes have changed since the last time the clock was read

LX1 H,12 s;units digit of minutes is the 13th byte of
; the string
DAD D s;HL now points to the units digit of the minutes
LDA OLDMIN ;get old value of units digit of minutes
CMP M ;compare it to the new value
MoV A,M ;update the old value for the next time

STA OLDMIN
CNZ SHOTIM ;..display the time if units digit has changed
JMP REDTIM ;read the time again

k4
; This subroutine reports any MSOFT errors on the console
ERRCHK: LDA ERCODE ;get the error code
RAR ;rotate right
LX1 D,ERMSG!1 ;DE points to appropriate error message
cc SHOERR ;if carry set, display the error message
RAR ;rotate right
LXI D,ERMSG2 ;DE points to appropriate error message
cc SHOERR ;if carry set, display the error message
RAR jrotate right
LX1 D,ERMSG3 ;DE points to appropriate error message
cc SHOERR = ;if carry set, display the error message
RAR ;rotate right
LXI D,ERMSG4 ;DE points to appropriate error message
cC SHOERR ;if carry set, display the error message
RAR srotate right
LXI D,ERMSG5 ;DE points to appropriate error message
cC SHOERR ;if carry set, display the error message
RAR ;rotate right
LX1 D,ERMSG6 ;DE points to appropriate error message
cc SHOERR ;if carry set, display the error message
RAR ;jrotate right
LX1 D,ERMSG7 ;DE points to appropriate error message
cc SHOERR ;if carry set, display the error message
RAR ;rotate right
LX| D,ERMSG8 ;DE points to appropriate error message
cCc SHOERR ;if carry set, display the error message
RET
H
;3 This subroutine displays the clock error message and the time
;3 read from the clock on the console, |t then jumps back to the
; read time routine,
CLKERR: PUSH B ;save string length counter
PUSH D ;save pointer to listen string
LX1 D,CLKMSG ;point to clock error message
CALL SHOERR ;display it on the console
POP D ;DE points to beginning of listen string again
POP B ;C contains the string length
CALL SHOTIM ;display the string we got from the clock
LX1 D,RSTMSG ;point to reset message

MSOFT-40 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual CLOCK.MAC

CALL SHOERR ;and display it on the console
JMP BOOT ;and go to operating system
;
; This subroutine displays the message pointed to by DE on the console
SHOERR: PUSH PSwW ;preseve flags and reg A

MVI c,9 ;select print string function

CALL BDOS

POP PSW ;restore flags and reg A

RET
; This subroutine displays the time on the system console. It uses the
; unbuffered CP/M console output function,
SHOTIM: SuB A ;clear reg A

ORA (o} ;see If count is zero

RZ seecount is zero, so do not print anything
SHOT1: LDAX D ;get the character

INX D ;point to next

PUSH D ;preserve pointer from damage by CP/M

PUSH B ;preserve counter from damage by CP/M

MOV E,A ;put the character in reg E as needed by CP/M

MVI c,2 ;select console output function

CALL BDOS

POP B ;get character counter again

POP D ;get character pointer again

DCR c ;decrement the count

JINZ SHOT1 ;eelo0p until all characters printed

Mvi E,LF ;finish with a line feed

MVI c,2

CALL BDOS

RET

END

#EEE MTSAMPL,PAS #e*%

This program performs the same functions as BISAMPL.,BAS and BCSAMPL.BAS, It is written in Pascal
MT+ (a product of MT Microsystems, Inc.). It requires the program MT488.,MAC, which is an
assembler program which performs the necessary parameter passing conversions, The listing of
MT488 ,MAC fol lows MTSAMPL.PAS.

The major difference between MTSAMPL and BISAMPL is that MTSAMPL has a 14th menu item, namely,
the option of returning to the operating system. This option was not needed in BISAMPL or
BCSAMPL since Microsoft Basic will abort a program when it detects a Control C typed on the
consol e,

One point that you should notice is that all of the formal parameters of the MSOFT functions
(external procedures pcntl through pioprt) are variable parameters (denoted by var)., Pascal
passes variable parameters by reference instead of by value. This means that Pascal will pass to
MT488 (and thence to MSOFT) the addresses of the parameters instead of the values., MSOFT
requires the addresses, so remember that you must declare the parameters of the MSOFT functions
to be variable parameters. -

The following dialog shows how to compile the program MTSAMPL.PAS, assemble MT488.MAC, and |ink
these programs with MSOFT.REL. The result is an executable file named MTSAMPL.COM, Since
Pascal /MT+ uses the extension .ERL to denote relocatable (linkable) files, we rename MT488.REL
and MSOFT.REL to MT488.ERL and MSOFT.ERL, respectively,

rev 4-14-82 12:54 MSOFT-41

MTSAMPL.PAS

B>MTPLUS MTSAMPL<CR>
Pascal /MT+ Release 5.2
(c) 1980 MT MicroSYSTEMS

8080/Z80 Target CPU

B R mE T
Source lines: 396
Available Memory: 12743
User Table Space: 8747
V5.2 Phase 1
FREBRARHARAH

Remaining Memory: 6942
V5.2 Phase 2

8080

INITVAR 39
ERRREPOR 99
GETCMD 1145
GETKEY 2317
PUTCHR 2362
APND 2392
CHARDEL 2446
GETSTR 2474
RESULTS 2790
GETPROTO 2937
PRNYN 3653
GETECHO 3722
SAMPLE

Lines : 396
Errors: 0
Code : 5564
Data : 472

Compilation Complete

B>M80 =MT488<CR>

No Fatal error(s)

B>REN MT488,ERL=MT488.REL<CR>

B>REN MSOFT,ERL=MSOFT.REL<CR>
B>LINKMT MTSAMPL=MTSAMPL ,MT488 ,MSOFT ,PASLIB/S<CR>

Link/MT+ 5,2b

Processing file- MTSAMPL .ERL

Processing file- MT488 = .ERL

Processing file- MSOFT .ERL

Processing file~ PASLIB LERL

Undefined Symbols:

No Undefined Symbols

0115 (decimal) records written to ,COM file
Total Data: 06F5H bytes

Total Code: 3216H bytes
Remaining : 7165H bytes

MSOFT-42

rev 4-14-82

P&T-488 MSOFT User's Manual

12:54

P&T-488 MSOFT User's Manual

program

const

(*

*)

var

(*

external
external
external
external
external
external
external
external
external
external
external
external
external

rev 4-14-82

Link/MT+ processing completed

B>
®EEE MTSAMPL.PAS Listing ®¥&¥
sample;
SEQNUM = 0019; (*editing sequence number¥)
TITLE = 0; (*last edited (4/09/82~12:50)*)
maxstr = 71; (*maximum length of input string*)

Let the operator test each function and observe the response

Control characters (such as line feed and carriage return) can

be entered into the TALK and CONTROL strings by preceding the
control character with an ESCAPE. For example, to get the string
1234<ESCAPE>$$<RETURN><L INE FEED> you would type
1234<ESCAPE><ESCAPE>$<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>

eq_;ode, time, poll, bus : integer;
eot, eos, len : integer;
echq_ln, echo_out : integer;

sfoQ_flag : boolean; (*determines if Thg'user wants to abort¥*)

cmd : integer; (*holds number of command to execute¥*)

bell : char; (*holds ASCI| BEL code*)

bs : char; (*holds ASCI!| back space code¥)

str : stringl(2551]; (*string for general usage¥)

funct : stringl(20]; (*holds type of function for result report¥)
presp : string; (*used for serial poll to return address of¥*)

(* the device responding to the pol|¥)
port : integer; (*used when setting the P&T-488 port number¥)

The following are the declarations for the external procedures that
are used to communicate to the 488 bus, Note that not all of them
are used by this program. *)

procedure pcntl (var s:string);
procedure pcntlc (var s:string);
procedure ptalk (var s:string);
procedure ptalkc (var s:string);
procedure plstn (var s:string);
procedure plstnc (var s:string);
procedure pspoll (var os,is : string);
procedure pppoll;

procedure pdren;

procedure pren;

procedure pstat;

procedure pifc;

procedure pbrset;

12:54 MSOFT-43

MTSAMPL ,PAS

MTSAMPL.PAS P&T-488 MSOFT User's Manual

external procedure pioset (var ec,tv,pr,bs : integer);
external procedure pprot (var eot,eos,sl| : integer);
external procedure pecho (var ei,eo : integer);
external procedure pioprt (var port:integer);

(* The following external function allows direct access to BDOS functions¥*)

external function @BDOS (f:integer ; p:word) : integer;

(* INITVAR===~==%)

procedure initvar;

(* Procedure to call the setup routines to tell MSOFT where the control
variables are. *)

begin

pioset (er code, time, poll, bus);
pprot (eof:.eos, len);

pecho (echo in, echo out);

bel I :=chr(7); -

bs:=chr(8);

end;

(* ERR_REPORT--%*)
procedure err_report;

* Procedure to report the meaning of the error code. *)

begin

if er code<>0 then
if (er code<0) or (er code>255) then
writeln('SYSTEM ERROR - an 11egal error code has been encountered!)
else begin

If tstbit(er_code,7) then
writeln('S-100 RESET ~ reset interface (Use Function 6 or 7)");

if tstbit(er_code,6) then
writeln('IFC TRUE -~ reset 488 interface');

if tstbit(er code,5) then
writeln('ATN TRUE - an external controller Is trying to issue a command');

if tstbit(er_code,4) then begin
writeln('TIMEOUT ERROR -~ the specified amount of time has elapsed without');
writeln(! completing a 488 handshake cycle!);
end;

if tstbit(er code,3) then
writeln(?SERVICE REQUEST - a 488 device is requesting service');

if fsfblf(e(_pode,Z) then begin
writeln('SERIAL POLL ADDRESS ERROR = no more than one secondary address');
writeln(! may follow a primary address');
end;

if tstbit(er code,1) then
writeln('NO LISTENERS - | cannot talk to myself');

if tstbit(er_code,0) then begin
writeln('SETUP ERROR - either I0SET or PROTCL wasn''t callied before!);

writeln(? using one of the MSOFT communication functions');
end;
end;
end;
(* mmmmnmmGET_CMD=m==%)

function get cmd : integer;

MSOFT-44 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

(* Function to present menu and input the code for the bus function

to perform,
var I:integer;
begin
repeat

writeln; writelin;

*)
(*variable for entry of function code¥)

writeln('1, CONTROL Become the Controller and output a command string');

writein('2, TALK

writeln('3, LISTEN
writeln('4, REMOTE
writeln('5, LOCAL
writein('6., IFC

writeln('7, RESET
writeln('8, STATUS
writeln('9, SPOLL
writeln('10, PPOLL

Become a Talker and send a string');
Become a Listener and receive a string');
Make the REN (Remote ENable) Iigg true');
Make the REN line false');)

Issue an IFC (InterFace Clear) command!);
Reset the P&T 488 interface!);

Display the current 488 bus status');
Perform a Serial Poll of the 488 bus');
Perform a Parallel Poll of the 488 bus');

MTSAMPL ,PAS

writeln('11, Change the communication protocol (EOT switch, EOS, and string length)');

writeln('12, Change in

put echo, output echo, and timeout values');

writeln('13, Change S~100 port numbers (DIP switch on P&T-488 card must agree)');
writeln('14, Exit to operating system');

writeln;

write('Which would you like to do? ');

readin(l);

if (i<1) or (i>14) then write(bell);

until (1>0) and (i<15);
get cmd:=i;

*)

*)

*)

end;

(* GET KEY

function get key : char;

(* This function returns the next character from the console input.*)

var ch : integer;

begin

repeat
ch:=@bdos(6,wrd(255));

until ch<>0;

get key:=chr(ch);

end; -

(* PUT CHR

procedure put chr (ch:char); -

(* Thlé_brocedure puts a character out to the console using direct
console 1/0, *)

var dumy : integer;

begin

dumy :=@bdos(6,wrd(ch));

end;

(* GET_STR

procedure get str (var st : string);

(* Thié_brocedure collects a string from the console with simple back
space editing., Control codes may be entered by preceding them by
an escape. *)

var strlen : integer; (*variable to track string length*)

ch : char;

rev 4-14-82 12:54

(*variable for input character¥®)

MSOFT-45

MTSAMPL .PAS P&T-488 MSOFT User's Manual

(*000.'00000000..000ll."...;Q.QQ(GET_STR)'.'c.......'o....t-O..’APNDODQOQOO'*)'

procedure apnd;

(* This procedure is called to append a character onto the end of the
string being collected, It adjusts the string length and rings the
bell if the string is already at its maximum length. *)

begin

if strien<maxstr then begin
strien:=succ(strien);
stlstrienl:=ch;
end
else
put_chr(bell);
end;

(*‘.Q............"0..'.'....'...(GET_STR)....Q.......'..ﬁ.l.....CHARDEL‘...'*)

procedure chardel;

(* This procedure is called to delete a character., |t outputs <space>
<back space><space>, *)
begin
put chr(bs); put chr(' '); put chr(bs);
end; - - -
begin (*GET STR¥)
strien:=0; T (*set length to O%)
ch:=t '; (*Init ch to a non-carriage return¥*)

write(!'STRING: ');

while ord(ch)<>13 do begin (*collect until a carriage return*)
ch:=get key; (*get a character from the console¥)
if (ch>=' 1) and (ch<='™1) then begin
apnd; (*append character onto string¥*)
put chr(ch); (*also echo it to the screen¥*)
end
else (*perform various control character fcns¥)
case ord(ch) of
8: if strien>0 then begin (*back space => delete char¥)
if stistrienl<' ' then chardel; (*need to delete 2 if cti chr¥)
chardel ;
strien:=pred(strien); (*adjust string length¥*)
end;
27: begin
ch:=get key; (*get character after ESC to¥*)
apnd; - (* put into string*)

(*echo as printing char preceeded by ©%)
put chr('©'); put chr(chr(ord(ch)+64));

chi=t 1, (*make sure ch is not a carriage ret¥)
end;
13: ;
else put_chr(bell); (*ring bell for invalid chars*)
end;
end;
st[0):=chr(strien); (*set length byte of the returned str¥*)
end;

MSOFT-46 rev 4-14-82

12:54

P&T-488 MSOFT User's Manual MTSAMPL .PAS

(* RESULTS *)
procedure results;
(* This procedure reports the results of a function, *)
begin
writeln;
writeln('Function = !,funct,! Error Code = ',er code);

if eq_pode=0 then writeln('NORMAL RETURN')
else erq_reporf;

end;
(* GETPROTO *)
procedure getproto; .
(* This procedure allows the user to set the EOT switch, EOS value,
and the string length, *)
begin

writeln;writeln;
writeln('The current communication protocol setup is:');

writeln;
writeln(! EOT switch = ',eot);
writeln(! EOS value = 1,e0s);
writeln(! String length = ',len);
writeln;

write('what is the new EOT switch value? '); readin(eot);

repeat
write('What Is the new EOS value (0..255)? !'); readin(eos);
If (e0s<0) or (eos>255) then
writeln('The EOS value must be between 0 and 255!!);
until (eos>=0) and (eos<=255);

repeat

write('What is the new String Length (0..255)? '); readin(ien);

if (len<0) or (len>255) then writeln('LENGTH must be between 0 and 255!');
until (len>=0) and (len<=255);

writeln;
end;
(* GETECHO *)
procedure getecho;
(* This procedure allows the user to respecify the input and output

echo switches and the timeout. *)

var temp : stringl10];
(*.....IOIOOOCOOIIC...0..........(GETECHO)..'.........l...".....PRNYN.....Q.*)

procedure prnyn (v:integer);
(* This procedure prints 'N!' if the passed parameter is 0 and 'Y!

otherwise*)
begin
if v=0 then writeln('N!') else writeln('Y');
end;
begin (*GETECHO*)

writeln; writein;
writeln('The Input Echo, Output Echo, and Timeout are currently set to:');

rev 4-14-82 12:54 MSOFT-47

MTSAMPL.PAS P&T-488 MSOFT User's Manual

writeln;

write (! Input Echo '); prnyn(echo_in);
write (! Output Echo '); prnyn(echo out);
writeln(! Timeout Value ',time); -
writeln;

repeat

temp:=' ';
write('Echo Input (Y/N) : '); readin(temp);
until templ1] in ['Y','y!',IN', t'n'];
if templ1] In ['Y','y'] then echo_in:=1 else echq_ln:=0;

repeat
temp:=! ';
write('Echo Output (Y/N) : '); read(temp);
until templ1] in ['Y!,'y',IN','n'];
if templ[1] ‘In ['Y!,'y'] then echo_out:=1 else echo out:=0;

repeat
write('What is the new TIMEOUT value (0..255)? '); readin(time);
if (time<0) or (time>255) then
writeln('The TIMEOUT value must be between O and 255!');
until (time>=0) and (time<=255);
writeln;
end;

begin (*main program¥*)

initvar; (*initialize variables for control of MSOFT¥)
repeat”
cmd :=get cmd; (*get the function to perform*)
er code;;b; (¥*clear error code*)
case cmd of
1: begin
writeln('Please enter the Control string');
get str(str);
funct:='CONTROLLER";
penti(str);
end;
2: begin

writeln('Please enter the Talk string');
get str(str);
fuﬁz}:='TALKER';
ptalk(str);
end;

3: begin
funct:='LISTENER';
plstn(str);
writeln('String heard on 488 bus is:');
writeln(str);
end;

4: begin
funct:='REMOTE ENABLE';
pren;
end;

MSOFT-48 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

11:
12:
13:

14:
end;

begin
funct:="'REMOTE DISABLE';
pdren;

end;

begin
funct:='INTERFACE CLEAR';
pifc;

end;

begin
funct:='RESET P&T 488';
pbrset;

end;

begin

funct:='STATUS';

pstat;

writeln('Bus Status is: ',bus);
end;

begin
funct:='Serial Poll!';
writeln('Please enter Talk addresses to poll');
get str(str);
wrf;éln;
pspol | (str,presp);
writeln('Talk address of responding device is !',presp);
writeln('Pol!| response = !,poll);
end;

begin

funct:='Parallel Poll!;

pppol !;

writein('Pol | response = ',poll);
end;

getproto;

getecho;

begin
write('What Is the new S-100 port number (0-255)2 ');
readin(port);
pioprt(port);

end;

stopflag:=true;

if cmd<11 then results;

until stopflag;

end.

rev 4-14-82 12:54

MSOFT-49

MTSAMPL ,PAS

MT488 .MAC P&T-488 MSOFT User's Manual

REERE MT488.MAC H**%

The program MT488.MAC performs all the parameter passing conversions necessary for a program
written in Pascal MT+ to work with MSOFT,REL. Pascal MT+ passes parameters on the stack and
expects the called routine to remove them from the stack before returning. MT488.MAC takes the
parameters from the stack and puts them into the appropriate registers and tables for MSOFT,.

title 'Interface routines from Pascal/MT+ to MSOFT!

SEQNUM EQU 0009

The following are the entry points into MSOFT
extrn cntl,cntlc,talk,talke,|stn

extrn Istnc,spol | ,ppoll,dren,ren

extrn status,ifc,brset, ioset,protcl

extrn echo,loport

we

; the following are the names used by MT+ programs to call the
MSOFT routines
‘ entry pentl, pentlc, ptalk, ptalkc, plstn

entry plstnc, pspoll, pppoll, pdren, pren

entry pstat, pifc, pbrset, pioset, pprot

entry pecho, pioprt

e

General routine to call an MSOFT routine that has 1 string passed

wo we wo

to it
H on entry: DE => address of MSOFT routine to call
; .
stri: pop b ;get return address
pop h ;get address of string
mov a,m ;get length of string
sta dumy1
inx h ;save address of string
shid dumyla
Ixi h,dumy1 ;get address of string pointer block
push b ;put return address back on stack
push d ;jump to target routine
ret
pentl: Ixi d,cntl ;get address of MSOFT routine
Jmp. stri
pentic: Ixi d,cntlc
Jmp stri
ptalk: Ixi d,talk
Jmp stri
ptalkec: Ixi d,talkec
Jmp stri
plstn: pop h ;get return address
xthi ;swap it with address of MT+ string on stack

MSOFT-50 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

I scomn:

Islup:

plstnc:

pspolt:

rev 4-14-82

shld

Ixi
push
call

pop
Idax
Ihid
mov
ora
rz
mov
fnx
| dax
mov
inx
ldax
mov

inx

ldax
mov
inx
inx
der
Jnz
ret

pop
xthl

shid

Ixi
push
call

Jmp

pop
pop
shid

pop
mov
sta
inx
shid
push
Ixi
Ixi
push
call
Jmp

12:54

mtstr

h,dumy1
h
Istn

-
o

.
0O o

T 0 aacaa oo

mtstr
h,dumy1

Istnc
| scomn

mtstr
a,m
dumy1
dumyla

h,dumy1
d,dumy2

spol |
I scomn

;save address where it won't be harmed

;point to place for dope vector
;save address on stack
;call listen routine

;get dope vector address into DE
;get length of returned string
;get address of MT+ string

;set length of returned string
;Just return on O length

;save length in b

;point to addr field of dope vector
;get low byte of address

;save it

;high byte of addr field

;get it

;DE holds address of MSOFT string
;skip over count field of MT+ string

;transfer a character
; Increment pointers

;decrement count
;loop till done

;get return address
;swap It with address of MT+ string on stack

;save address where it won't be harmed
;point to place for dope vector

;save address on stack
;call listen routine

;save return address
;get address of string 2
;save it in a safe place

;get address of string 1
;set up dummy dope vector

srestore return address

;put address of dummy dope vector on stack
;call serial poll routine
;Jump to routine to pass string back to MT+

MSOFT-51

MT488.MAC

MT488,MAC

pppol l:
pdren:
pren:
pstat:
pifc:
pbrset:

ploset:

pprot:

pecho:

pioprt:

dumyl:
dumyla:

dumy2:
dumy2a:

dumy3:
dumy4:

mtstr:

Jmp
Jmp
Jmp
Jmp
Jmp
Jmp

pop
pop
shid
pop
shid
pop
pop
push
Ixi

Jmp

pop
pop
pop
xthi

Jmp

pop
pop
pop
push

Jmp
pop

pop
push

Jmp

dw

end

ppoll
dren

ren
status
ifc
brset

dumy4

dumy3

b,dumy3
ioset

protcl

[« - = N -

echo

P&T-488 MSOFT User's Manual

;save return address.
;get address of bus status variable

;get address of poll result variable

;get address of timeout value variable
;get address of error code variable
;restore return address

;point to additional parameters

;jump to MSOFT routine

;save return adéress

;get address of string length variable
;get address of EOS variable

shl = address of EOT switch variable
;tos = return address

; jump to MSOFT routine

;save return address

;get address of echoout variable
;get address of echoin variable
;restore return address

;jump to MSOFT routine

;save return address

;get address of port variable
;jrestore return address

MSOFT-52

rev 4-14-82

12:54

P&T-488 MSOFT User's Manual MTCLOCK.PAS
#28% MTCLOCK.PAS *#¥#

This program performs the same function as the Basic program BICLOCK, but this one is written in
Pascal MT+, Like BICLOCK, MTCLOCK initializes the 488 bus with an Interface Clear, puts the
HP59309 clock into the Remote state by making the REN line true and sending the clock!s listen
address, |t then addresses the clock as a Talker and listens to the data (status, date and time)
that the clock sends over the bus. MTCLOCK displays the date and time on the console each time
the minutes change. It also displays the data each time the status character indicates a clock
error,

program mtclock;

const
SEQNUM = 0012; (*editing sequence number¥*)

* This Is a Pascal/MT+ program which addresses an HP 59309A clock
as a talker and then reads the time and date. It continually
rereads the time and displays the time and date on the console
each minute,

The program assumes that the bus output format of the 59309A is
set to SPACE, CAL and COLON. It also assumes that the talk address
of the clock is "E" and the listen address is "g§", - %)

var eq_pode, time, poll, bus : Integer;
eot, eos, len : integer;
echo_in, echo out : Integer;
oldmin : char; (*holds the previohs value of minutes¥*)

(* The following are the declarations for the external procedures that
are used to communicate to the 488 bus., Note that not all of them
are used by this program. *)

external procedure pcntl (var s:string);

external procedure pcntlc (var s:string);

external procedure ptalk (var s:string);

external procedure ptalkc (var s:string);

external procedure plstn (var s:string);

external procedure plstnc (var s:string);

external procedure pspoll (var os,is : string);
external procedure pppoll;

external procedure pdren;

external procedure pren;

external procedure pstat;

external procedure pifc;

external procedure pbrset;

external procedure pioset (var ec,tv,pr,bs : integer);
external procedure pprot (var eot,eos,sl : integer);
external procedure pecho (var ei,eo : integer);

(* The following external function allows direct access to BDOS functions*)
external function @BDOS (f:integer ; p:word) : integer;

(* INITVAR=====¥)
procedure initvar;

rev 4-14-82 12:54 MSOFT-53

MTCLOCK.PAS P&T-488 MSOFT User's Manual

(* Procedure to call the setup routines to tell MSOFT where the control
variables are, *)
begin
pioset (er code, time, poll, bus);
pprot (eof: eos, len);
pecho (echo in, echo out);

end;

* ERR REPORT--%*)
procedure err_report;

(* Procedure to report the meaning of the error code, *)

begin

if er code<>0 then
if (er code<0) or (er code>255) then
writeln('SYSTEM ERROR - an illegal error code has been encountered')
else begin

if tstbit(er code,7) then
writeln('S-100 RESET - reset interface (use function IFC or BRSET)!');

if tstbit(er code,6) then
writeln('IFC TRUE - reset 488 interface!);

if tstbit(er_code,5) then
writeln(TATN TRUE - an external controller is trying tfo issue a command');

if tstbit(er code,4) then begin
writeln(!'TIMEOUT ERROR - the specified amount of time has elapsed without');
writein(! completing a 488 handshake cycle');
end;

if tstbit(er code,3) then
wrlfeln('éEthCE REQUEST - a 488 device Is requesting service!);

if tstbit(er code,2) then begin
writeln("SERIAL POLL ADDRESS ERROR - no more than one secondary address');
writeln(? may follow a primary address!);
end;

if tstbit(er_code,1) then
writeln('NO LISTENERS - | cannot talk to myself');

if tstbit(er code,0) then begin
wrifeln('éE%UP ERROR - either IOSET or PROTCL wasn''t called before');

writeln(® using one of the MSOFT communication functions');
end;
end;
end;
* INITBUS *)
procedure initbus;
(* Procedure to initialize the bus and set various control variables, *)
var ctistr : stringl10];
begin
pifc; (*do an interface clear®)
pren; (*make the REN line true¥)
ctistr:=1? §'; (*Unlisten, Untalk, |isten address %¥*)
pcnflc(cff;}r); (*become the controller and output CTLSTR¥)
(* This puts the clock into the REMOTE mode¥*)
if er code<>0 then err report; (*report any bus errors¥*)
flme{;QSS; (*do not time handshake*)
eot:=1; (*stop on End-Of-String byte*)
e0s:=10; (*make | ine feed the EOS byte*)
oldmin:='x'; (*set oldmin to some value which cannot match a clock*)

MSOFT-54 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

(* reading*)
end;

(* READ_TIME---%)
function read time : boolean;

(* Function fo read the clock and display results on the console,
Does not return until either the user aborts operation or a bus error
occurs, Returns true if the user aborts or a clock error occurs,
Returns false If a bus error occurred, ¥*)

var reading : stringl128]; (*string to read clock into*)
check : integer; (*used for abort checking*)
ctistr : stringl10]; (*used to send control string*)

begin

repeat
cflsfr:='{_§'; (*set control string for Unlisten, Untalk, Talk addr E¥)
pentic(ctistr); (*send control string*)
if er code<>0 then err report (*report any errors¥)
else.Bégin -
plstnc(reading); (*read the clock¥)
if er code<>0 then err report (*report any errors¥*)
else‘ségln -
(*if the first character is a ? then the clock is in error¥*)
if readingl1]='?' then begin
writeln('Clock error ',reading);
writeln('Reset clock!');
end
else (*show the time if the minutes have changed¥*)
if readingl13]1<>oldmin then wrlfeln(readlng);
oldmin:=readingl13];
end;
check:=@bdos(6,wrd(255)); (*check for character at keyboard¥)
end;
until (er_code<>0) or (readingl1]='?') or (check=3);
reaq_flme:=(check=3i or (readingl1]='?'); (*set returned value¥)
end;

begin (*main program*)

initvar; (*initialize variables for control of MSOFT¥)
repeat
initbus; (*initial ize bus*)
until read time or (@bdos(6,wrd(255))=3);
end,

rev 4-14-82 12:54 MSOFT-55

MTCLOCK.PAS

FSAMPL ,FOR

P&T-488 MSOFT User's Manual

®ER% FSAMPL,FOR ¥

This program performs the same function as the Basic program BISAMPL, but this one is written in
Microsoft Fortran,

The following dialog shows how to compile the Fortran program FSAMPL.FOR, assemble the assembler

program STRIN.MAC, and then |ink these two programs wit+h MSOFT.REL.

file named CLOCK,COM,

OO0 0O00O00O0O000O 0

B>F80 =FSAMPL<CR>
SMAIN
ERRMSG
STRXFR
1UNSGN

B>M80 =STRIN<CR>
No Fatal error(s)

B>L80 FSAMPL/E,FSAMPL/N,MSOFT,STRIN<CR>

Link 80 3,42 19-Feb-81 Copyright (c) 1981 Microsoft
Data 0103 3DAD <15530>

23862 Bytes Free
[09BF 3DAD 611

B>

FORTRAN driver for MSOFT
FSAMPL.FOR revised 4/8/82 by J. Tinsman

NOTE:

A

The name that MBASIC uses for the echo out variable

Is ECHOOUT, but the longest variable name FORTRAN will
accept is ECHOUT (6 characters). This program uses the
substitute name ECHOUT.

Let the operator test each function and observe the response

Control characters (such as line feed and carriage return) can

be entered into the TALK and CONTROL strings by preceeding the
control character with an ESCAPE., For example, to get the string
1234<ESCAPE>$F<RETURN><LINE FEED> you would type
1234<ESCAPE><ESCAPE>$Z<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>.

INTEGER ERCODE, TIME,EOT,EOS, LENGTH,POLL ,ECHO IN, ECHOUT ,BUS
INTEGER 1,J,P,F,BELL,BUFLEN

BYTE BUFFER(255),TKADDR(5)

DOUBLE PRECISION FCL,FCH,FCNS(2,12)

DATA FCNS /'CONTROLL','ER','TALKER',' ','LISTENER',' ','REMOTE E',

__'NABLE', 'REMOTE D','ISABLE',' INTERFAC','E CLEAR','RESET P&!','T?,
__'STATUS',! ','SERIAL P','OLL',"'PARALLEL",! POLL'," ', 1,1 f v 1/

MSOFT-56

rev 4-14-82

The result is an executable

12:54

P&T-488 MSOFT User's Manual

OO0

DATA ERCODE, TIME,EOT,EOS,LENGTH,POLL,ECHOIN, ECHOUT,BUS /9*0/

BELL=7
BUFLEN=255

Pass variable names that FSAMPL will be using to MSOFT

CALL I0SET (ERCODE,TIME,POLL,BUS)
CALL PROTCL (EOT,EOS,LENGTH)
CALL ECHO (ECHOIN,ECHOUT)

OO0O0O00O0

530
531

541

551

561

571

581

591

601

611

621

631

641

651

671

673
680

681
690

691
C

rev 4-14-82

Main Menu

WRITE (1,531)
FORMAT ('0')
WRITE (1,541)
FORMAT(' 1,
string')
WRITE (1,551)
FORMAT (' 2,
WRITE (1,561)
FORMAT (' 3,
WRITE (1,571)
FORMAT (' 4,
WRITE (1,581)
FORMAT (' 5.
WRITE (1,591)
FORMAT (' 6.
WRITE (1,601)
FORMAT (' 7,
WRITE (1,611)
FORMAT (' 8,
WRITE (1,621)
FORMAT (' 9.
WRITE (1,631)
FORMAT (' 10.
WRITE (1,641)
FORMAT (' 11,

WRITE (1,651)

CONTROL

TALK

LISTEN

REMOTE

LOCAL

IFC

RESET

STATUS

SPOLL

PPOLL

Become the Controller and output a command

Become a Talker and send a string')
Become a Listener and receive a string')
Make the REN (Remote ENable) line true')
Make the REN line false!)

Issue an |IFC (InterFace Clear) command')
Reset the P&T 488 interface!)

Display the current 488 bus status!')
Perform a Serial Poll of the 488 bus!')

Perform a Parallel Poll of the 488 bus')

Change the communication protocol (EOT switch, EOS,
_and string length)')

FORMAT (' 12, Change input echo, output echo and timeout values')

WRITE (1,671)

FORMAT ('0','Which would you like to do? ')
READ (3,673) F

FORMAT (15)

IF (FsGT.0.AND.F.LT.13) GOTO 690

WRITE (1,681)

BELL

FORMAT (' ',Al)

GOTO 530
WRITE (1,691)
FORMAT (* ')

ERCODE=0

FCH=FCNS(1,F)
FCL=FCNS(2,F)

12:54

MSOFT-57

FSAMPL.FOR

FSAMPL ,FOR P&T-488 MSOFT User's Manual

c
720 IF (FJNE.1) GOTO 790
WRITE (1,731)
731 FORMAT (' Please enter the Control string')
C Get string to send as a controller
CALL STRIN (BUFFER,BUFLEN)
C Send out the command string
CALL CNTL (BUFFER)
GOTO 1790
c
C
790 IF (F.NE.2) GOTO 860
WRITE (1,801)
801 FORMAT (' Please enter the Talk string!)
C Get string to send as a talker
CALL STRIN (BUFFER,BUFLEN)
C Send out the talk string
CALL TALK (BUFFER)

GOTO 1790
c
c
860 IF (F.NE.3) GOTO 940
c
C Read string off bus into PAT 488 buffer and make string descriptor
C in the first three elements of array BUFFER

CALL LSTN (BUFFER)

C Transfer contents of P&T 488 buffer into array BUFFER
CALL STRXFR (BUFFER,BUFLEN)
WRITE (1,901)

901 FORMAT (' String heard on 488 bus is: ')
J=IUNSGN(BUFFER(1))+3
WRITE (1,911) (BUFFER(1),1=4,J)

911 FORMAT (' ',255A1)

GOTO 1790

Cc

(o4

940 IF (F.NE.4) GOTO 990

c

C Make REN |ine frue
CALL REN
GOTO 1790

c

C

990 IF (F.NE.5) GOTO 1040

c

C Make REN line false
CALL DREN
GOTO 1790

Cc

c

1040 |IF (F.NE.6) GOTO 1090

Cc

c Issue an IFC command
CALL IFC
GOTO 1790

c

c

1090 IF (F.NE.7) GOTO 1140

MSOFT-58 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

c

C Reset the PAT 488

1140

1161

c
c
1200

121
c

CALL BRSET
GOTO 1790

IF (F.NE.8) GOTO 1200

CALL STATUS

WRITE (1,1161) BUS

FORMAT (' Bus status is: ',13)
GOTO 1790

IF (F.NE.9) GOTO 1300
WRITE (1,1211)
FORMAT (' Please enter Talk address to poll')

C Get ftalk address string

1231

OO0 O0

CALL STRIN (BUFFER,BUFLEN)
WRITE (1,1231)
FORMAT (' ')

Send out Talk string and put response in P&T 488 string buffer,
Then put string descriptor for response in the first three
elements of TKADDR.

CALL SPOLL (BUFFER,TKADDR(1))
IF (TKADDR(3).NE.O) GOTO 1260
|=t ?

TKADDR(4)=1

TKADDR(5)=1

C Transfer response from P&T 488 buffer to array TKADDR

1260

1261

12Nn

c
c

CALL STRXFR (TKADDR,5)

WRITE (1,1261) TKADDR(4),TKADDR(5)

FORMAT (' Talk address of device responding is ',2Al)
WRITE (1,1271) POLL

FORMAT (' Poll reaponse = !,13)

GOTO 1790

1300 IF (F.NE.10) GOTO 1360

c

C Perform parallel poll

1331

1360

1371

1381

1401

1411

rev 4-14-82

CALL PPOLL

WRITE (1,1331) POLL

FORMAT (' Pol! response = ',13)
GOTO 1790

IF (F.NE.11) GOTO 1560

WRITE (1,1371)

FORMAT (* 1)

WRITE (1,1381)

FORMAT ('0','The current communication protocol setup is:!')
WRITE (1,1371)

WRITE (1,1401) EOT

FORMAT (' ',10X,'EOT switch =1,13)
WRITE (1,1411) EOS
FORMAT (' ',10X,'EOS switch = 1,13)

12:54 MSOFT-59

FSAMPL . FOR

FSAMPL,FOR

1421
1441
1445

1450
1451

1471

1490 .

1491

151

1530
1531

c
c

1560

1571
1581

P&T-488 MSOFT User's Manual

WRITE (1,1421) LENGTH

FORMAT (' ',10X,'String length =1,13)

WRITE (1,1441)

FORMAT ('0', 'What is the new EOT switch value: ')
READ (3,1445) EOT

FORMAT (14)

WRITE (1,1451)

FORMAT (' What is the new EOS value: ')

READ (3,1445) EOS

IF (E0OS.GE.0.AND,EOS.LT.256) GOTO 1490

WRITE (1,1471)

FORMAT (' The EOS value must be between 0 and 2551!11)
GOTO 1450

WRITE (1,1491)

FORMAT (' What Is the new string length: ')

READ (3,1445) LENGTH

IF (LENGTH.GE.0.AND.LENGTH.LT.256) GOTO 1530
WRITE (1,1511)

FORMAT (' The LENGTH must be between 0 and 255!!!')
GOTO 1490

WRITE (1,1531)

FORMAT (' 1)

GOTO 530

IF (FJ,NE.12) GOTO 1790

WRITE (1,1571)

FORMAT ('0'))

FORMAT (' The Input Echo, Output Echo, and Timeout values are cu

_rrently set to: ')

1611

1621
1641
1660
1661

1671

1710
1711

1721

1750
1761

177

pP=tN?
IF (ECHOINJNE.O) P='Y!

WRITE (1,1611) P

FORMAT (' ',10X,'Input Echo ',A1)
p=IN!

IF (ECHOUT.NE.O) P='Y!

WRITE (1,1621) P

FORMAT (' ',10X,'Output Echo ',AD)
WRITE (1,1641) TIME

FORMAT (' ',10X,'Timeout Value ',13)
WRITE (1,1661)

FORMAT ('0','Echo Input (Y/N) : ')

READ (3,1671) P

FORMAT (A1)

IF (P.NE,'Y'! ,AND,P.NE.'N' ,AND.P,NE.8313,AND.P.NE.8302) GOTO 1660
ECHOIN=0

IF (PEQ.'Y' . OR.P.EQ.8313) ECHOIN=1

WRITE (1,1711)

FORMAT ('0','Echo Output (Y/N) : ')

READ (3,1721) P

FORMAT (A1)

IF (PJNE.'Y',AND,P,NE.'N' ,AND.P.NE.8313,AND.P.NE,8302) GOTO 1710
ECHOUT=0

IF (PeEQe'Y' OR.P.EQ.8313) ECHOUT=1

WRITE (1,1761)

FORMAT (' What is the .new TIMEOUT value: ')

READ (3,1771) TIME

FORMAT (14)

MSOFT-60

rev 4-14-82

12:54

P&T-488 MSOFT User's Manual FSAMPL.FOR

IF (TIME.GE.0.,AND,TIME,LT.256) GOTO 530
WRITE (1,1781)

1781 FORMAT (' The TIMEOUT value must be between 0 and 255!!!')
GOTO 1750

1790 WRITE (1,1791)
1791 FORMAT (' 1)
CALL ERRMSG(ERCODE,FCH,FCL)

GOTO 530
END
C
Cc
SUBROUT INE ERRMSG (ERCODE, FCH,FCL)
Cc
INTEGER ERCODE,I,J,K,10,R9
DOUBLE PRECISION FCH,FCL
Cc
Cc Report 488 Function Errors
Cc

WRITE (1,9031) FCH,FCL,ERCODE
9031 FORMAT (' Function = ',A8,A8,14X,'Error Code = ',13)
Cc
C Interpret Error codes and print error messages
Cc
|F (ERCODE,LT.0) GOTO 9370
IF (ERCODE.NE,0) GOTO 9090
WRITE (1,9085)
9085 FORMAT (' NORMAL RETURN!)
RETURN
9090 IF (ERCODE.GT.255) GOTO 9370
DO 9350 K=0,7
1=7-K
10=2%%
R9=ERCODE-10
IF (R9.LT.0) GOTO 9350
ERCODE=R9
J=1+1
GOTO (9160,9190,9210,9240,9260,9290,9310,9330),J
Cc
9160 WRITE (1,9161)
9161 FORMAT (' SETUP ERROR - either |OSET or PROTCL was not called be
_foret)
c
9170 WRITE (1,9171)
9171 FORMAT (' using one of the MSOFT communication fun
ctions')
~ GOTO 9350
c
9190 WRITE (1,9191)
9191 FORMAT (' NO LISTENERS - | cannot talk to myself!!)
GOTO 9350
c
9210 WRITE (1,9211)
9211 FORMAT (' SERIAL POLL ADDRESS ERROR - no more than one secondary
address!)
9220 WRITE (1,9221)

rev 4-14-82 12:54 MSOFT-61

FSAMPL

«FOR

9221

c

P&T-488 MSOFT User's Manual

FORMAT (! may follow a primary addre
ss!)

GOTO 9350

9240 WRITE (1,9241)
9241

c

FORMAT (' SERVICE REQUEST - a 488 device Is requesting service')
GOTO 9350

9260 WRITE (1,9261)
9261

FORMAT (' TIMEOUT ERROR -~ the specified amount of time has elaps
ed without!)

9270 WRITE (1,9271)
9271

c

FORMAT (! completing a 488 handshake cycle!)
GOTO 9350

9290 WRITE (1,9291)
9291

c

FORMAT (' ATN TRUE - an external controller is trying fo issue a
command*')

9310
9311

c

9330
9331

c

9350
9360

c

9370
9371

GOTO 9350

WRITE (1,9311)
FORMAT (' IFC TRUE - reset 488 interface')
GOTO 9350

WRITE (1,9331) _
FORMAT (' S-100 RESET - reset interface (use function | or R)!)
GOTO 9350

CONTINUE
RETURN

WRITE (1,9371)
FORMAT (' SYSTEM ERROR -~ an illegal error code has been encounte
red')

9380 RETURN

OO OO0

(9]

END

STRING TRANSFER ROUTINE

9505

9506

SUBROUTINE STRXFR (ARRAY,SIZE)

INTEGER 1,J,SIZE,STRLEN,ADDR
BYTE ARRAY
DIMENS ION ARRAY(SIZE)

STRLEN=1UNSGN(ARRAY(1))
ADDR=256*1 UNSGN (ARRAY (3))+ UNSGN (ARRAY (2))

J=STRLEN+3

IF (SIZE.GE.J) GOTO 9600

WRITE (1,9505)

FORMAT (' THE STRING RECEIVED 1S BIGGER THAN THE ARRAY GIVEN!!!)
WRITE (1,9506) SIZE

FORMAT (' Only the first ',13,' characters were transferred,.')

DO 9520 1=4,SIZE"
ARRAY (1)=PEEK(ADDR)

MSOFT-62 rev 4-14-82

12:54

P&T-488 MSOFT User's Manual

ADDR=ADDR+1

9520 CONTINUE

c
c

RETURN

9600 DO 9610 1=4,J

ARRAY (|)=PEEK(ADDR)
ADDR=ADDR+1

9610 CONTINUE

J=d+1
DO 9620 1=J,SIZE
ARRAY(1)=0

9620 CONTINUE

OO0

(o]

This assembly program is used by FSAMPL.FOR to collect strings from the keyboard.

RETURN
END
FUNCTION ITUNSGN
/
INTEGER FUNCTION IUNSGN (M)

BYTE M
INTEGER I1UNSGN

LUNSGN=M

IF (1UNSGN.LT.0) [UNSGN=IUNSGN+256
RETURN

END

32] STRINJMAC RRER

FSAMPL . FOR

It is the

routine responsible for the capability of entering a control character (such as line feed or

carriage return) Iin the string by preceding the control character with an ESCAPE,

It iIs also

responsible for displaying the string on the console, and allowing the operator to delete
characters by pressing backspace.

This routine was written in assembly language instead of Fortran because Fortran does not have
manipulation capability. This program could be written in Fortran but the code would be
even more difficult to understand, ’

string

We We We wE We e %o ws We We we W We we

STRIN (bufname,buflen) 4/8/82

STRING INPUT ROUTINE FOR-USE WITH MICROSOFT FORTRAN

THIS ROUTINE EXPECTS TWO PARAMETERS TO BE PASSED TO IT:
THE NAME OF THE BUFFER THE STRING IS TO BE PUT IN
AND THE LENGTH OF THE BUFFER (UP TO 255)

THE BUFFER ARRAY VARIABLE MUST BE OF BYTE TYPE., THE BUFFER LENGTH
VARIABLE MUST BE OF INTEGER TYPE., THIS ROUTINE ONLY LOOKS AT THE
LOW ORDER BYTE OF THE INTEGER VARIABLE.

NOTE THAT THE: ACTUAL USABLE ‘BUFFER SIZE S THE LENGTH PASSED-3. THIS IS
BECAUSE THE FIRST THREE BYTES OF THE BUFFER ARE USED TO CREATE THE STRING

rev 4-14-82 12:54 MSOFT-63

STRIN.MAC

we we wo W

»

BDOS

DRCTI0

VERNUM

STROUT
H

BELL

BS

CR

CARET

ESC

LF

SPACE

STRIN:

e

»
STRINT:

»
STRIN2:

PUBLIC STRIN

EQU 0005

EQU 06H

EQU 0CH

EQU O09H

EQU 07H

EQU 08H

EQU ODH

EQU 05EH

EQU 01BH
EQU 0AH

EQU 020H

MV1 M, 00
SHLD LENPT
INX H

MOV B,H

MOV c,L

INX B

INX B

MOV M,C

INX H

MOV M,B

INX H

SHLD BUFPT
XCHG

MOV AM

STA BUFMAX
MVI C, VERNUM
CALL BDOS

MOV AH

ORA L

INZ STRIN1
MVI C, STROUT
LXI D, VERERR
JMP BDOS

MV C, STROUT
LXI D,PROMPT
CALL BDOS

suB A

STA BUFCT
CALL GETCHR
cPI CR

INZ STRIN3
LDA BUFCT
LHLD LENPT
MOV M, A

LDA CR

P&T-488 MSOFT User's Manual

DESCRIPTOR THAT MSOFT NEEDS TO SEND OUT STRINGS. THE FIRST BYTE OF THE
DESCRIPTOR GIVES THE STRING LENGTH; THE SECOND AND THIRD BYTES GIVE THE
STRING'S STARTING ADDRESS.

;BDOS JUMP VECTOR

3BDOS FUNCTION FOR UNBUFFERED |/0
;BDOS FUNCTION FOR CP/M VERSION NUMBER
;BDOS FUNCTION FOR STRING OUTPUT

;BELL

; BACKSPACE
;CARRIAGE 'RETURN
;CARET

;ESCAPE

sLINE FEED

s SPACE

s INIT STRING LENGTH TO ZERO AND SAVE IN BUFFER
3SAVE POINTER TO LENGTH COUNT IN LENPT

sPOINT HL TO WHERE STRING START ADDRESS WILL GO
;COPY HL INTO BC

INCREMENT IT TWO TIMES TO GET

ACTUAL STRING STARTING ADDRESS

SAVE STRING STARTING ADDRESS

INTO STRING DESCRIPTOR PART OF BUFFER

H
H
H
H
sPOINT HL TO START OF STRING IN BUFFER
3SAVE STRING POINTER

;GET MAX BUFFER LENGTH FROM LOW ORDER BYTE
;OF BUFLEN VARIABLE AND SAVE IT

sCHECK FOR CP/M VERSION NUMBER
sRESULT IS RETURNED IN H,L
;IF EITHER H OR L <>0, THEN THE

;CP/M IS VERSION 2,0 OR LATER
;|F BOTH ARE ZERO, PRINT ERROR MESSAGE

sPRINT PROMPT

3 INIT BUFFER COUNT

sGET A CHARACTER FROM CONSOLE
;CHECK FOR CARRIAGE RETURN

;GET STRING LENGTH

sGET POINTER TO LENGTH DEST. IN BUFFER
;SAVE STRINGLENGTH - IN BUFFER"

;SEND OUT CARRIAGE RETURN

MSOFT-64

rev 4-14-82

12:54

P&T-488 MSOFT User's Manual

STRIN3:

STRIN4:

STRINS:

.
»

BUFFUL:

»
GETCHR:

PUTCHR:

CHROUT:

BAKSPC:

rev 4-14-82

JMP

CPI
JZ
CPI
JINZ
CALL
JMP
CPi
JC

STA
LDA
Sul
MoV
LDA

JZ
INR
STA
LHLD
LDA
Mov
INX
SHLD
CALL
JMP

Mvi
CALL
JMP

MVI
Mvi
CALL
ANI
Jz
RET

STA
CPI
JNC
MVi
CALL
LDA
ADI
MV
Mov
JMP

LDA
CP1
Jz
DCR
STA
CALL
LHLD
DCX

12:54

CHROUT

BS
BAKSPC
ESC
STRIN4
GETCHR
STRINS
SPACE
STRIN2

KEYBUF
BUFMAX
03

B,A
BUFCT
B
BUFFUL
A
BUFCT
BUFPT
KEYBUF
M,A

H
BUFPT
PUTCHR
STRIN2

A,BELL
CHROUT
STRIN2

C,DRCTIO
E,OFFH
BDOS
07FH
GETCHR

PUTBUF
SPACE
CHROUT
A,CARET
CHROUT
PUTBUF
040H
C,DRCTIO
E,A
BDOS

BUFCT
00
STRIN2
A
BUFCT
BACKUP
BUFPT
H

;CHECK FOR BACKSPACE

;CHECK FOR ESCAPE KEY

; |F NOT, THEN SKIP OVER ESCAPE HANDLER
;GET KEY FOLLOWING ESC

3SKIP CONTROL CHARACTER CHECK

;CHECK FOR CONTROL CHARACTER

;|F SO, IGNORE

3SAVE KEY
;GET MAX BUFFER SIZE
;SUBTRACT THREE TO GET TRUE BUFFER USAGE

;GET CURRENT BUFFER USAGE

;IF TWO ARE THE SAME, THEN BUFFER IS FULL
;JUMP TO BUFFER ERROR HANDLER

; INCREMENT COUNT
;SAVE 1T

;GET BUFFER POINTER
;GET KEY BACK

;SAVE CHARACTER IN BUFFER
; INCREMENT BUFFER POINTER
3SAVE IT

;ECHO CHARACTER TO CONSOLE
;LOOP BACK

;SET UP TO RING BELL
3SEND IT
;LOOP BACK (IGNORING LAST CHARACTER TYPED)

;SET UP FOR KEY FETCH

;GET KEY
;STRIP OFF PARITY
; |F RESULT ZERO, NO KEY WAS PRESSED

3SAVE CHARACTER TO BE PRINTED

;COMPARE TO SPACE

; |F 'NO CARRY, PRINT CHARACTER
;OTHERWISE, IT'S A CONTROL CHARACTER
3SO PRINT CARET FIRST

;GET SAVED CHARACTER

;ADD 64 TO CONVERT TO PRINTING CHARCTER
3SET UP FOR SINGLE CHARACTER PRINT
;MOVE CHARACTER TO BE SENT INTO E

3SEND CHARACTER

sGET STRING LENGTH

;|F LENGTH IS ZERO, THEN NO BACKSPACE
;DECREMENT LENGTH

3SAVE IT

;DELETE CHARACTER FROM CONSOLE

;GET BUFFER POINTER

;DECREMENT IT

MSOFT-65

STRIN.MAC

STRIN.MAC

.

»

BACKUP :

we we

BUFCT:
BUFPT:
BUFMAX:
KEYBUF :
LENPT:
PUTBUF :

we

SHLD
Mov
CP1
cc
JMP

Mvi
CALL
MV
CALL
MV
JMP:

END

BUFPT
AM
SPACE
BACKUP
STRIN2

A,BS
CHROUT
A, SPACE
CHROUT
A,BS
CHROUT

- N - - N e

P&T-488 MSOFT User's Manual

3SAVE T

;GET LAST CHARACTER

3CHECK FOR CONTROL CHARACTER

;1F SO, ERASE PRECEDING CARET FROM CONSOLE
sLOOP BACK

3SEND OUT BACKSPACE , SPACE,BACKSPACE

;CURRENT: STRING ‘LENGTH

;POINTER TO NEXT AVAILABLE BUFFER LOCATION
;BUFFER LENGTH

;ONE CHARACTER KEY BUFFER

;POINTER TO LENGTH LOCATION IN BUFFER

CR,LF,"STRING: $'
CR,'STRING INPUT ROUTINE REQUIRES CP/M VERSION 2.0 '
'OR LATER!',CR,'$'

MSOFT-66

rev 4-14-82

12:54

P&T-488 MSOFT User's Manual FCLOCK.FOR
+% FCLOCK.FOR #**=

Like all the other clock programs, this one performs the same function but is written in
Microsoft Fortran. It initializes the 488 bus by sending an Interface Clear (IFC), puts the
clock into the remote mode by making the REN line true and then addressing the clock as a
listener. It then addresses the clock as a talker and listens to the data (status, date and
time) that the clock sends over the bus. It displays the date and time each time the minutes
change. It also displays the data each time the status character indicates a clock error.

A few differences will be seen when FCLOCK is compared to BICLOCK. Fortran does not have
much ability to manipulate strings, so a special array is created to hold the data string read
from the clock. This array is called BUFFER. The first three bytes of the array are used to
emulate Basic's string descriptor block. Remember that the first byte of the string descriptor
block holds the length of the string, and the remaining two bytes hold the address of the
string. Similar arrays are set up for the two strings TAD and LAD.

A routine that you will find useful if you write Fortran programs for MSOFT is STRXFR. It
transfers (copies) strings from MSOFT's input string buffer into the specified array. Another
useful routine is STRSET, which generates a string descriptor block in the first three bytes of
an array.

FCLOCK.FOR is compiled and linked in just the same way that FSAMPL.FOR is. If you
follow the dialog shown for FSAMPL, subsituting FCLOCK each place FSAMPL appears, and
IVARPT each place STRIN appears, you will get an execuatble file named FCLOCK.COM.

c
c
c FCLOCK,.FOR
c
c Revised for MSOFT.REL by John Tinsman 4-15-82
c
c This is a Microsoft FORTRAN program which addresses an
C an HP 59309A clock as a talker and then reads the time and
C date. It continually rereads the time and displays the
C +time and date on the console each minute,
c
C The program assumes that the bus output format of the 59309A
C 1is set to SPACE, CAL, and COLON., It also assumes that the
C TALK address of the clock is "E" and the |isten address is "g",
c
c
c
INTEGER ERCODE, TIME, EOT, EOS, LENGTH, POLL, ECHOIN, ECHOUT, BUS
INTEGER STATUS, MIN, OLDMIN
BYTE BUFFER(23),TAD(6),LAD(6)
c
c The byte array TAD contains an Unlisten and an Untalk command
C followed by the clock!s talk address in the last three bytes., The
C first three bytes are used fo store the string descriptor for the
c last three bytes. The byte array LAD is almost the same, but the
C last byte of the string is -- instead of being the clock's talk
C address -- the clock's listen address. In both cases, the first 3
C bytes (which form the string descriptor) are initially set to 0,
C and then later set to the proper values by using the subroutine
C STRSET to do the string descriptor set ups.
C

DATA TAD /0:0:01'?'.'_J,'E'/

rev 4-15-82 16:13 MSOFT-67

FCLOCK.FOR

OO0 OO0 OO0 0

(e}

30

OO0

OO0 OO0

OO0 OO0 OO0 0 OO0 0 OO0

[e e}

DATA LAD /0,0,0,'2'," ','3'/

Pass variable names that FCLOCK will be using to MSOFT

CALL I0SET (ERCODE,TIME,POLL,BUS)

CALL PROTCL (EOT,EOS,LENGTH)

CALL ECHO (ECHOIN, ECHOUT)
Intialize OLDMIN to some value which cannot match the first reading
from the clock, This will insure that the time and date will be
displayed the first time through.

OLDMIN = =1
Issue an |FC command

CALL IFC
Make REN line true

CALL REN

TIME contains the amount of time to allow for handshake
If TIME=255, then the handshake is not timed

TIME = 255
Turn off input and output echo

ECHOIN
ECHOUT

0
0

1]

Set up the Listen string. It contains the string descriptor (3 bytes),
the UNLISTEN byte, the UNTALK byte and the Listen Address of the clocke.

CALL STRSET(LAD,6,3)
Become the 488 controller and issue UNLISTEN, UNTALK and then
address the clock as a listener,
This puts the clock in the REMOTE mode,
CALL CNTLC(LAD)
IF (ERCODE .NE,0) GOTO 200
Set up MSOFT so it will stop on EOS (End-of-=String) byte, set the EOS

to be a line feed,

EOT = 1
EOS = 10

Set up the Talk string. It contains the string descriptor (3 bytes),
the UNLISTEN byte, the UNTALK byte and the Talk Address of the clock,

CALL STRSET(TAD,6,3)
Become the 488 controller and issue UNLISTEN, UNTALK and then

address the clock as a talkere.

MSOFT-68

rev 4-15-82

P&T-488 MSOFT User's Manual

16:13

P&T-488 MSOFT User's Manual FCLOCK . FOR

c
40 CALL CNTLC (TAD)
c
C Report any 488 errors that may have occurred
c
IF (ERCODE.NE.0) GOTO 200
c
C Become a listener and read the time from the clock
c
50 CALL LSTNC(BUFFER)
c
C Report any 488 errors that may have occurred
c
IF (ERCODE.NE.O) GOTO 200
c
C Transfer clock response from 488 buffer into array BUFFER
c
CALL STRXFR(BUFFER,23)
C
C The clock's response is now stored in elements 4-23 of the byte array
C BUFFER in the following form:
C
c 1?7 or <sp>¥<sp>1<:>IMIMI<:>IDIDI<: >THIHI< : >IMIMI<: >ISTST<er> 1< | >4
c
C Put BUFFER(4) into STATUS, and put the string length + 3 into J
c
STATUS = BUFFER(4)
J = TUNSGN(BUFFER(1))+3
c
C Put the least significant digit of the minutes into MIN
c
MIN = BUFFER(16)
C
C Check the clock status. If it's not OK then print message and halt
c

IF (STATUS.EQ.32) GOTO 100
WRITE (1,55) (BUFFER(I),1=4,J)
WRITE (1,60)

55 FORMAT (' ',20A1)

60 FORMAT (' Reset clock')
WRITE (1,55)
STOP

c

C Show the time if the minutes have changed

c
100 IF (MINJNE.OLDMIN) WRITE (1,110) (BUFFER(I),I=4,J)
110 FORMAT (' ',20A1)

c
C Update OLDMIN and read clock again
c
OLDMIN = MIN
GOTO 40
c
C Error handling routine
C If an error occurs, print error message and go back to
C IFC, REN, efc,
c

rev 4-15-82 16:13 MSOFT-69

FCLOCK. FOR

200

C

P&T-488 MSOFT User's Manual

CALL ERRMSG(ERCODE)
GOTO 30

END

OO0

9031
c

ERRMSG ——mmmmmn

488 interface error reporting routine

SUBROUT INE ERRMSG (ERCODE)

INTEGER ERCODE, I,J,K,10,R9

WRITE (1,9031) ERCODE
FORMAT (' Error Code = ',13)

C Interpret Error codes and print error messages

c

9090

c
9160
9161

IF (ERCODE.LT.0) GOTO 9370

IF (ERCODE.NE.O) GOTO 9090
RETURN

IF (ERCODE.GT.255) GOTO 9370

DO 9350 K=0,7

1=7-K

10=2%%|

R9=ERCODE-10

IF (R9.LT.0) GOTO 9350

ERCODE=R9

J=1+1

GOTO (9160,9190,9210,9240,9260,9290,9310,9330),J

WRITE (1,916])
FORMAT (' SETUP ERROR = either I0SET or PROTCL was not called be
fore!')

c
9170
91N

WRITE (1,9171)
FORMAT (! using one of the MSOFT communication fun
ctions')

(]
9190
9191

c
9210
9211

GOTO 9350

WRITE (1,9191)
FORMAT (' NO LISTENERS - | cannot talk to myself!')
GOTO 9350

WRITE (1,9211)
FORMAT (' SERIAL POLL ADDRESS ERROR - no more than one secondary
address')

9220 WRITE (1,9221)

9221

FORMAT (! may fol low a primary addre
ss')

c
9240
9241

c
9260
9261

GOTO 9350

WRITE (1,9241)
FORMAT (' SERVICE REQUEST - a 488 device is requesting service!')
GOTO 9350

WRITE (1,9261)
+ FORMAT (' TIMEOUT ERROR = the specified amount of time has elaps
ed ‘without!)

9270 WRITE (1,9271)

MSOFT-70

rev 4-15-82

16:13

P&T-488 MSOFT User's Manual

c

c

C

c

c

OO 00

o

(o]

rev 4-15-82

9271

9290
9291

FORMAT (! completing a 488 handshake cycle')
GOTO 9350

WRITE (1,9291)
FORMAT (' ATN TRUE - an external controller is frying fo issue a
command ')

9310
9311

9330
9331

9350

9360

9370
9371

GOTO 9350

WRITE (1,9311)
FORMAT (' IFC TRUE - reset 488 interface')
GOTO 9350

WRITE (1,9331)
FORMAT (' S-100 RESET')
GOTO 9350

CONT INUE
RETURN

WRITE (1,9371)
FORMAT (' SYSTEM ERROR - an illegal error code has been encounte
red')

9380 RETURN

END

String Transfer Routine

9505

9506

9520

9600

9610

SUBROUTINE STRXFR (ARRAY,SIZE)

INTEGER 1,J,SIZE,STRLEN,ADDR
BYTE ARRAY
DIMENSION ARRAY(SIZE)

STRLEN=| UNSGN (ARRAY (1))
ADDR=256% | UNSGN (ARRAY (3)) +1 UNSGN (ARRAY(2))

J=STRLEN+3

IF (SIZE.GE.J) GOTO 9600

WRITE (1,9505)

FORMAT (' THE STRING RECEIVED IS BIGGER THAN THE ARRAY GIVEN!!')
WRITE (1,9506) SIZE

FORMAT (' Only the first ',13,' characters were transferred.')

DO 9520 |=4,SIZE
ARRAY (1)=PEEK(ADDR)

ADDR=ADDR+1

CONT INUE

RETURN

DO 9610 1=4,J
ARRAY (|)=PEEK(ADDR)
ADDR=ADDR+1

CONT INUE

J=J+1

DO 9620 i=J,SIZE

16: 13 MSOFT-71

FCLOCK. FOR

FCLOCK. FOR P&T-488 MSOFT User's Manual

ARRAY(1)=0
9620 CONTINUE
RETURN
END

JUNSGN =~===——ee
Signed Byte to Unsigned Integer Converter

o000

INTEGER FUNCTION IUNSGN (M)

BYTE M
INTEGER [UNSGN

TUNSGN=M

IF (IUNSGN,LT.0) 1UNSGN=IUNSGN+256
RETURN

END

String Descriptor Setup Routine

OO0 00

SUBROUT INE STRSET(ARRAY,SIZE,STRLEN)

(@}

INTEGER 1,J,SIZE,STRLEN
BYTE ARRAY
DIMENSION ARRAY(SIZE)

Set up string descriptor: length, address low, -high
in the first three bytes of the array

OO 00

ARRAY (1)=STRLEN

Get the array address and add an offset to point around
the string descriptor

OO0

1=1 VARPT (ARRAY) +3

J=1/256
ARRAY(2)=1-256%*J
ARRAY(3)=J
RETURN

END

The following assembler program is used by FCLOCK.FOR to get the address of a variable,
Microsoft Fortran is similar to Basic in that it passes the addresses of parameters, and |ike
Basic, it passes the address of the first parameter in register pair HL., Values returned by
functions are put into register pair HL before the function returns to the calling program.
Since the address of the parameter of IVARPT is placed in HL by the calling program, and IVARPT
immediately returns to the calling program, the value that is returned is the address of the
parameter of IVARPT,

we

; PROGRAM |VARPT
3 THIS PROGRAM IS DESIGNED TO BE USED.AS A

; FORTRAN FUNCTION CALL SIMILAR TO MICROSOFT
;5 VARPTR'FUNCTION IN THEIR BASIC.

MSOFT-72 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual FCLOCK.FOR

WHEN THE ROUTINE IS CALLED, FORTRAN WILL
PASS THE POINTER TO THE ARGUMENT VARIABLE
IN THE HL REGISTER PAIR. SINCE FORTRAN

;3 EXPECTS INTEGER FUNCTIONS TO PLACE THE

; RETURN ARGUMENTS IN THE HL PAIR, ALL THAT
; NEED BE DONE IS A RET.

e we e

PUBLIC 1VARPT
IVARPT: RET

»

END

rev 4-15-82 16:13 MSOFT-73

QCCLOCK.C P&T-488 MSOFT User's Manual
®EX% OCCLOCK.C ®¥%*

This program illustrates how MSOFT can be used with a program written in C, The particular
compiler used in this example is Q/C written by Qual ity Computer Systems., It has the advantage
of being inexpensive (under $100), readily available, and it can be used with a linker (such as
Microsoft's L80).

Like all the other clock programs, this one performs the same function but is written in a
different language. It initializes the 488 bus by sending an Interface Clear (IFC), puts the
clock into the remote mode by making the REN line tfrue and then addressing the clock as a
listener., |t then addresses the clock as a-talker and listens to. the data (status, date and
time) that the clock sends over the bus, |t displays the date and time each time the minutes
change. It also displays the data each time the status character indicates a clock error.

There are a few points you should keep in mind if you use this program:as a guide for writing a
program.for some other C compiler. One is that even though all pass the parameters on the.stack,
some reverse the order, Q/C places the leftmost parameter on the stack first and the rightmost
last, so that the first parameter popped off of the stack is the rightmost one. Some other
compilers put the rightmost parameter on the stack first, so that the first parameter popped off
of the stack is the leftmost one.

Another potential source of difficulty is that Q/C passes an argument back to the calling
procedure in register pair HL, | have no Idea of whether other compilers do also. | made use of
Q/C's convention in the procedure scntlc.

The following dialog shows how to compile this program and link it with MSOFT.REL. The result is
an executable file named QCCLOCK.COM,

B>CC QCCLOCK.C -M<CR>

QC Compiler V1,01 Copyright (c) 1981 Qual ity Computer Systems
0 error(s) found

B>M80 =QCCLOCK<CR>

No Fatal error(s)

B>L80 QCCLOCK,CRUNLIB,MSOFT,QCCLOCK/N/E<CR>

Link-80 3,42 19-Feb-81 Copyright (c) 1981 Microsoft
Data 0103 2A08 <10501>

29959 Bytes Free
[0103 2A08 42]

B>

MSOFT-T4 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual

QCCLOCK.C

JRBERRRERRRRRRRRRRRRERRREARRRRBRARRRRERRNARERRERRRRRRRRL TR RRE R/

/#

/* QCCLOCK.C 4-14-82

/% for Q/C Compiler Version 1.01
/%

/#* This is a C program which addresses an HP 59309A clock as
/* a talker and then reads the time and date.

/* rereads the time and displays the time and date on the

/* console each minute,
/%

It continually

/% The program assumes that the bus output format of the 59309A */

/* is set to SPACE, CAL, and COLON.

/* TALK address of the clock is "E".

/i

/¥ The Q/C Compiler is distributed by
/* The Code Works

A Box 550

/% Goleta, CA 93116

/* (805) 683-1585

It also assumes that the

%/
*/
*/
*/
%/
*/
*/
*/

JERARBUEERREREERSREREEREEERERERERRRERRRRRERRRLRRRRNERRRRRRERERREER /

extern CNTL, CNTLC, TALK, TALKC, LSTN, LSTNC, SPOLL;
extern PPOLL, DREN, REN, STATUS, IFC, BRSET;
extern IOSET, PROTCL, ECHO, IOPORT;

#include "gstdio.h"
#define LINLEN 132
#define LF 10

/%
/*

maximum input line size */
ASCII code for line feed */

— m= MAIN —mmemmce————eee

/* Make all the communication variables static because Q/C
accesses static variables more rapidly and with less object

code than it accesses automatic variables

static ercode,
time,
eot,
eos,
length,
poll,
echoin,
echout,
bus;

VAd
/*
/%
/%
/*
/%
/*
/%
/%

error code %/

timeout ¥/

EOT switch #*/

EOS byte */

listen string length */
poll response ¥/

input echo switch */
output echo switch */
488 status ¥/

int status; /* HP clock status ¥/
int umin; /* units digit of minutes ¥/
int oldmin; /* previous units digit of minutes */

char 1line[LINLEN];

/%

listen input line ¥/

/* Pass variable names that CCLOCK will be using to MSOFT
sioset(&ercode, &time, &poll, &bus);
sprotel(&eot, &eos, &length);
secho(&echoin, &echout);

rev 4-15-82 16:13

MSOFT-75

*/

®/

QCCLOCK.C P&T-488 MSOFT User's Manual

/* TIME contains the amount of time to allow for handshake */
/% If TIME=255, then the handshake is not timed \ */
time=255;
echoin=0; /% turn off input echo */
echout=0; /% turn off output echo ¥/

/* Set up MSOFT so it will stop on EOS (End-of-String) byte, */
/% set the EOS byte to be a line feed. */
eot=1;
eos=LF;

/% initialize the 488 bus */

for (33) {
’
H /% make REN true ¥/

ife()
ren()
/* Become the 488 controller and issue UNLISTEN, UNTALK and #*/

/* then address the clock as a listener */
sentle("?2_%");

/% Report any 488 errors that may have occurred #/
errmsg(ercode);
/* Intialize OLDMIN to some value which cannot match the */

/* first reading from the clock. This will insure that the */
/% time and date will be displayed the first time through. ¥/

oldmin = =1;
for (;;) {
/% Become the 488 controller and issue UNLISTEN, UNTALK and
*/
/* then address the clock as a talker
*/
sentlce("?_E");
/* Report any 488 errors that may have occurred */
errmsg(ercode);
if (ercode != 0) break; /* break out of loop if bus error
*/
/% Become a listener and read the clock's status and time
*/
slstne(line);
/* Report any 488 errors that may have occurred */
errmsg(ercode);
if (ercode != Q) break; /* break out of loop if bus error
*/

/* Check for clock error and report any other errors */

/* (Remember that the first character of the line is #¥/

/% a "?" if the clock is in error.) */
if (1line[0] == '?') {clkerr(); puts(line); break;}

/* Show the time if the minutes have changed ¥*/
if (line[12] !z oldmin) puts(line);
oldmin = line[12]; /% update oldmin ¥/

}

/* Check for clock error. Exit to operating system ¥/

MSOFT-76 rev 4-15-82 16:13

P&T-U488 MSOFT User's Manual QCCLOCK.C

/% on a clock error because the clock must be reset, ¥/
if (line[0] == '?') {puts("Reset clock"); break;}
}

/* end main */ }

/% e CLKERR =mmmm—mmcmcceeee */
/* Clock error report routine */
elkerr()

{

fputs("CLOCK ERROR ",stdout);

}
- - ERRMSG =e-meeeccccccaa—- L
/* U488 interface error reporting routine */
errmsg(code)
int code;

{
if (code != 0) printf("Error Code = %d\n",code,2);

/* Interpret Error codes and print error messages ¥/

if (code & 1) {
puts("SETUP ERROR - either IOSET or PROTCL was not called before");
puts(" using one of the MSOFT communication functions");

}
if (code & 2)
puts("NO LISTENERS - I cannot talk to myself!");

if (code & 4) {
puts("SERIAL POLL ADDRESS ERROR - no more than one secondary address");
puts(" may follow a primary address");

}
if (code & 8) _
puts("SERVICE REQUEST - a 488 device is requesting service");

if (code & 16) {
puts("TIMEOUT ERROR - the specified amount of time has elapsed
without");

puts(” completing a 488 handshake cycle");

}
if (code & 32)
puts("ATN TRUE - an external controller is trying to issue a command");

if (code & 64)
puts("IFC TRUE - reset 488 interface");

if (code & 128)
puts("S-100 RESET");

/* end errmsg */ }

/¥ e SCNTLC ==mmccmcccccceee */

/* Send a string as a controller */
scntle(string)

char string[];

{

makedope(string); /% HL = dope vector address */

entle(); /* clear the error code and send the string */

rev 4-15-82 16:13 MSOFT-T77

QCCLOCK.C P&T-488 MSOFT User's Manual

}
T e SLSTNC ===ememmmem e */
/* Get a string as a listener */
slstne(string)
char string[];
{
#asm
pPOP B ;jremove return address
POP H ;get addr of beginning of string area
PUSH H
PUSH B
PUSH H ;addr of beginning of string area

LXI H,DOPVTR ;HL points to the dope vector for MSOFT
CALL LSTNC ;clear the error code and get the string

Copy MSOFT string into the C string. Remove all carriage returns,

weo we we

LXT H,DOPVTR ;HL points to the dope vector
POP D ;DE points to C string area
MOV C,M ;C = MSOFT string length
INX H
MOV AM
INX H
MOV H,M ,
MOV L,A ;HL = MSOFT string address
CPYSTR: DCR C ,
JM ENDSTR ;..no more characters to copy
MOV AM
INX H _
CPI 13 ;carriage return?
JZ CPYSTR ;..yes, so do not copy into C string
STAX D ;..n0, so copy into C string
INX D
JMP CPYSTR
ENDSTR: SUB A ;terminate C string with a null
STAX D
RET
f#endasm
/* end slstnc #*/}
/¥ e MAKEDOPE =m—=cemeemae—- */
/#* Make a Microsoft type of string dope vector */

makedope(string)

char string;

{

jfasm

; C stores a string as a sequence of characters terminated by a NULL.
We have to generate a string in the form that MSOFT expects. This
involves two steps. The first is to generate a "dope vector" which
consists of three bytes. The first is the length of the string, and
the second and third are a word which contains the address of the
string itself. Since C passed the address of the string to this
routine, all that we really need to do is generate a dope vector.

“o wo we Ve wo we ws

POP B ;8et return address out of the way
POP H ;get the address of the string

MSOFT-T78 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual QCCLOCK.C

PUSH H

PUSH B ;put return address on stack

SHLD DOPVTR+1 ;put string address in the dope vector

MVI Cc,-1 ;preset the string length counter
SLEN: INR c

SUB A szero reg A

ORA M ;see if the byte is NULL (zero)

INX H ;point to the next byte

JNZ SLEN ;. .try next byte

MOV A,C ;get the string length

STA DOPVTR ;put it in the dope vector

LXI H,DOPVTR ;HL = dope vector

RET ;jreturn dope vector address
DOPVTR: DB 0 ;count byte

DW 0 ;address of string

#endasm
/* end makedope */ }

/% - - STIOSET —=—e-mmmmmmemee */
/* Set up communication variables */
sioset(ercode,time,poll,bus)
int *ercode, *time, *poll, ¥*bus;
{
#asm
Call IOSET with
HL = address of ercode
DE = address of time R
BC = address of a table (B reg buffer)
The table must contain the following entries:
1. ¥poll
2. ‘*pus
Set DE to point to last parameter passed
LXI H,2 ;skip over the return address
DAD SP ;HL = stack pointer upon entry
MoV E,M
INX H
MOV D,M
INX H
XCHG sHL = address of bus variable
SHLD BBFR2 ;save it in second entry of B reg buffer
XCHG
MOV E
INX H
MOV D,M
INX H
XCHG ;HL = address of poll variable
SHLD BBFR1 ;save it in first entry of B reg buffer
XCHG
MOV E
INX H
MOV D
INX H
MOV AM
H
H
L
B

w5 we we We we we we we

;DE = address of time

INX
MOV
MoV

2
JA ;HL = address of ercode
LXI B

BFR1 ;point BC to B register buffer

rev 4-15-82 16:13 MSOFT-79

QCCLOCK.C P&T-488 MSOFT User's Manual

JMP IOSET
BBFR1: DW 0 ;B register buffer
BBFR2: DW 0
f#fendasm

/* end sioset ¥/ }

/e SPROTCL =m=mmmmmmmmmmmm */
/% Set up more communication variables */
sprotcl(length,eos,eot)

int *length, ¥*eos, *eot;

{

#asm

3 Call PROTCL with

H
H HL = address of length
H DE = address of eos
5 BC = address of eot
;7 Set HL to point to last parameter passed
LXI H,2 ;8kip over the return address
DAD SP sHL = stack pointer upon entry
MOV Cc,M ;get address of eot switch
INX H
MOV B,M ;BC = address of eot switch
INX H
MOV E,M
INX H
MOV D,M ;DE = address of eos byte
INX H '
MOV AM
INX H
MOV H,M
MOV L,A ;HL = address of listen string length
JMP PROTCL
#endasm
/% end sprotcl */ }
e SECHO —=-e—eeee- —_——-%
/* Set up echo switches */

secho(echoin,echout)
int *echoin, *echout;
{
#asm
Call ECHO with
HL = address of echoin
DE = address of echout
POP B shang on to return address

“-e we weo

POP D ;DE = address of echout switch
POP H ;HL = address of echin switch
PUSH H ;jrestore stack

PUSH D

PUSH B

JMP ECHO

#endasm
/% end secho #*/ }

MSOFT-80 rev 4-15-82 16:13

P&T -488 488 PHRASEBOOK

UNOFFICIAL PHRASEBOOK
IEEE 488 to ENGLISH

IEEE used the following conventions when they assigned the names used in

the standard:

Lower Case names are associated with local messages (messages between a
device and its interface; they MIGHT NOT appear on the 488 bus).

Upper Case names are divided into three groups:

One or two letters name interface functions,

Three letter mnemonics are remote messages (communications over the
488 bus from one interface to another) and

Four letter names ending in "S" jdentify the state of an interface
function.

The numbers following an entry are the pages of the IEEE Standard (Apr 4, 1975)
which give further information.

ACDS ACcept Data State
21,22

ACG Addressed Command Group - multiline messages (§0-9F Hex) which affect
only addressed devices. The messages GTL (Go To Local), SDC (Selective
Device Clear), PPC (Parallel Poll Configure) and GET (Group Execute
Trigger) operate only on devices in the LADS (Listener Addressed) state.
TCT (Take Control) operates on the device in the TADS (Talk Addressed)
state.
48,77

ACRS ACceptor Ready ‘State
21,22

Addressed Commands - Commands belonging to the Addressed Command Group (See
ACG)
43

AH Acceptor Handshake - the device function which allows proper reception of

data and commands appearing on the eight data lines of the 488 bus (i.e.,
multiline messages). The DAV (Data Available) line is sensed to determine
when the multiline message is valid, and the AH function indicates its
readiness for data by asserting a passive false on the NRFD (Not Ready For
Data) line, and that it has received the message by asserting a passive
false on the NDAC (Not Data Accepted) line. Note that it is illegal for the
AH to assert both NDAC and NRFD passive false simultaneously.

20 :

P&T -488 488 PHRASEBOOK

Active

Active

AIDS

ANRS

APRS

ATN

AWNS

CACS

CADS

CAWS

CiDS

CPPS

CPWS

False - an active false message asserted on the 488 bus is one in which it
is guaranteed that a false value is received. It overrides a passive true.
The standard is constructed so that it is not possible for an active true and
an active false message to be asserted on the bus at the same time.
16

True - . a message which when asserted on the 488 bus is guaranteed to be
received as true. It overrides a passive false. The standard is

constructed so that it is not possible for an-active true and an-—active false
message to be asserted on the bus at the same time.

16

ACceptor Idle State .

20, 21

Acceptor Not Ready State

20,21

Affirmative Poll Response State

32

ATtentioN - a uniline remote message indicating that a Controller is sending

commands (as contrasted to a Talker sending data) over the eight data (DIO)
lines.
19,21,24,29,35,41,48,75-76

Acceptor Wait for New cycle State

21,22

Controllier interface function - the interface function which allows a device
to send device addresses, universal commands and addressed commands over
the 488 bus. It also allows the device to conduct a Parallel Poll to
determine which device needs service.

41

Controller ACtive State
41,42

Controller ADdressed State
41,42

Controller Active Wait State
41,43

Controller IDle State
41

Controller Parallel Poll State
41,43

Controller Parallel poll Wait State
41,43

P&T -488 488 PHRASEBOOK

CSBS Controller StandBy State
41,43

CSNS Controller Service Not requested State
41,44

CSRS Controller Service Requested State
41,44

CSWS Controller Synchronous Wait State
41,43

CTRS Controller TRansfer State
41,44

DAB DAta Byte - a multiline sent by the Source Handshake (SH) over the eight
data (DIO) lines
25,48,75-76

DAC Data ACcepted - the complerrient appears on the NDAC line. See AH, SH

for further information.
19,22,48,75-76

Data Byte Transfer Control lines - the three lines (DAV, NRFD and NDAC) that
are used by the Source and Acceptor functions to perform the handshake
cycle.
12,18-22,67

DAV DAta Valid - a uniline message sent by the Source Handshake (SH) function
over the DAV line. See SH.
48,75-76

. DC Device Clear interface function - the interface function which allows a

device to be cleared (initialized) either individually or as part of a group.
The group may be either part or all of the addressed devices in one
system.
37-38

DCAS Device Clear Active State
38

DCIS Device Clear Idle State
37,38

DCL Device CLear - a multiline message (14 Hex) sent by the Controller over the
eight data lines indicating that all devices are to go into the Clear state.
The details are device dependent, but usually the device is left in the same
state as when its power is first turned on.
38,43,48,75-77

Dense Subset - A subset of the Primary Command Group, consisting of only the
Listen Address Group (LAG) and Talk Address Group (TAG). 150 codes
Space through Underline, inclusive. (Values 20 Hex through 5F Hex).
77

P&T -488 488 PHRASEBOOK

DIOn Data Input/Output line n (n goes from 1 through 8)
54 ’

DT Device Trigger interface function - the interface function which allows a
device to start its basic operation started either individually or as part of a
group. This function may be used to start several devices simultaneously.

38-39
DTAS Device Trigger Active State
39
DTIS Device Trigger Idle State
39
END END - a uniline message sent by a Talker (EOI line active true) at the

same time a data byte is sent on the data (DIO) lines. The message
indicates that this is the last data byte to be sent. (See EOS for an

alternate way of terminating a string sent by a Talker).
23,48,75-76

EOI End Or lIdentify - a uniline message which serves two purposes: if asserted
true by a Talker it indicates that the last byte of a string is being sent.
If asserted true by a Controller it initiates a Parallel Poll.

EOS End Of String - a multiline message sent by a Talker to indicate that the
last byte of a string has been sent. . Its value (ISO code) is determined by
what the Listener(s) recognize.

48

General Interface Management lines - the five lines used to perform system
operations, such as Parallel Poll, Interface Clear, etc. Several of the
lines are also used in data transactions: an example is EOI, which may be
used to signal the end of a multibyte transaction. The five lines are ATN,
EOIl, IFC, REN and SRQ.

12

GET Group Execute Trigger - a multiline message (08 Hex) sent by the
Controller indicating that all devices addressed as Listeners are to start
performing their respective functions. This command is often used to start
several pieces of equipment in synchronism.
39,43,48,75-77

GTL Go To Local - a multiline message (@1 Hex) sent by the Controller
indicating that all devices addressed as Listeners are to go to the Local
state: i.e., local controls on the front or back panel (instead of device
dependent messages on the 488 bus) control device operation. (See Local
Control)
33,43,48,75-77

gts go to standby - a local message sent by a device to its Controller interface
function telling it that it is finished sending commands. The response is
that the Controller function releases the bus so that other operations (e.g.,
a Talker sending data to Listeners) may proceed.
41,75 '

P&T -488 488 PHRASEBOOK

IDY IDentifY - a uniline message sent by the Controller during a Parallel Poll
telling the other devices to assert their Parallel Poll responses on the data
bus.
35,48,75-76

IFC InterFace Clear - a uniline message sent by the System Controller telling
all other devices on the bus to go to the Idle state. This message is used
to place all devices in a known state. It should be used sparingly because
any bus transaction is terminated by this function.
24,29,41-42,48,75-76

ISO Code - a seven bit code equivalent to the American National Code for
Information Interchange, ANSI X3.4-1968 (often called ASCII).

46,50,77

isr individual service request - a local message sent by a device to its Parallel
Poll interface function. |If the individual status (see "ist") message is equal
to the S (Sense) bit received as part of the most recently received PPE
(Parallel Poll Enable) command, the PPR (Parallel Poll Response) byte
specified by the three bits P1-P3 of the most recent PPE command must be
sent true upon receipt of an IDY (ldentify) command from the Controller.
Alternately, if subset PP2 (Parallel Poll function cannot be configured by
the Controller) is used, local messages are substituted for S, P1-P3.
35-37,75

ist individual status - a local message used by the Parallel Poll function to
determine the proper response to an IDY (ldentify) command from the
Controller. See "isr".

35-36

L Listen interface function - the function which allows a device to receive
data from the 488 bus.
28

LACS Listener ACtive State
29-30

(LAD) the listen address of a specific device (received as MLA). See "MLA",
43

LADS Listener ADdressed State
28-29

LAG Listen Address Group - a subset of the ISO-7 codes, being characters
SPACE through ? (20 Hex through 3F Hex).

48, 77

LE Listen Extended interface function - similar to the Listen function except
that a Secondary Address must be used as well as the Primary Address used
for the Listen function.

30 v

LIDS Listener IDle State

28-29

P&T -488 488 PHRASEBOOK

LLO Local LockOut - a multiline command (11 Hex) sent by the Controller which
tells all devices with the RL (Remote Local) interface function to obey
device dependent messages sent over the 488 bus instead of their local
controls (e.g., front panel).
33,43,48,75-77

LOCS LOCal State
33

local control - the device is programmed by its controls instead of by the 488
interface. An example is a digital multimeter; the range, function, sample
rate, etc. are set by front panel controls if it is under local control.

33

local message - a message sent between a device function and an interface
function. It may cause a remote message to be sent from the interface
function over the 488 bus.
15

lon listen only - a local message which causes the Listen function of the device
to act as if it had been addressed by the Controller.
29,75

LPAS Listener Primary Addressed State
29,30

Ipe local poll enable - a local message which causes the Parallel Poll function

of the device to act as if it has received a PPE (Parallel Poll Enable) from
the Controller. When Ipe is false, the device is to act as if it has
received a PPD (Parallel Poll Disable) while in the PACS (Parallel Poll
Addressed to Configure state) or a PPU (Parallel Poll Unconfigure) command
from the Controller. '

35,75
LPIS Listener Primary Idle State
29-30
Itn listen - a local message which when true and the Controller is in the active

state causes the L (Listen) or LE (Listen Extended) function to go from the
Idle (LIDS) to the Addressed (LADS) state.
29,75

lun local unlisten - a local message which when true and the Controller is in
the active state (CACS) causes the L (Listen) or LE (Listen Extended)
function to go from the Addressed (LADS) to the Idle (LIDS) state.
29,75

LWLS Local With Lockout State
33-34

P&T -488 488 PHRASEBOOK

MLA My Listen Address - the address which the L (Listen) or LE (Listen
Extended) function will respond to. Note that the standard does not allow a
488 bus system to have both an L and an LE interface function which
respond to the same primary address. MLA must belong to the LAG (Listen
Address Group).
48,75-76

MSA My Secondary Address - the secondary address which the TE (Talk
Extended) or LE (Listen Extended) functions will respond to if they are in
the Primary Addressed state (TPAS or LPAS, respectively)s MSA must
belong to the SCG (Secondary Command Group).
24,48,75-76

MTA My Talk Address - the primary address which the T (Talk) or TE (Talk
Extended) function will respond to. Note that the standard does not allow a
488 bus system to have both a T and TE interface function simultaneaously
with the same primary address. MTA must belong to the TAG (Talk Address
Group).
24,29,48,75-76

muitiline message - a message that is sent over two or more lines of the 488 bus.
An example is Device Clear (DCL) (14 Hex sent out on the data (DIO1-DIOS8)
lines by the Controller).
45

nba new byte available - a local message sent by a device to its Source
Handshake (SH) function to inform it that another byte is available for it to
place on the bus data (DIO1-DIOS8) lines.
19,75

NDAC Not Data ACcepted - one line of the 488 bus which carries the complement
of the Data ACcepted (DAC) message. It is one of the three Data Byte
Transfer Control lines. (See DAC).

NPRS Negative Poll Response State
32

NRFD Not Ready For Data - one line of the 488 bus. It carries the complement
of the Ready For Data (RFD) message, and is one of the three Data Byte
Transfer Control lines. (See RFD).

NUL null byte: all eight bits are false.
23,42,48

OSA Other Secondary Address - a secondary address which is not the same as

the secondary address of the TE (Talk Extended) function while it is in the
TPAS (Talk Primary Addressed state), or of the LE (Listen Extended)
function while it is in the LPAS (Listen Primary Addressed state). OSA
must belong to the SCG (Secondary Command Group).

48,75-76

P&T -488 488 PHRASEBOOK

OTA

PACS

Passive

Passive

PCG

pon

PP

PPAS

PPC

PPD

PPE

Other Talk Address - an address other than a device's own talk address.
Some devices which are capable of talking unaddress themselves if they
sense that the Controller is addressing another Talker. This feature can be
convenient because an UNTalk (UNT) command is not needed. OTA must
belong to the TAG (Talk Address Group).

24,48,75-76

Parallel poll Addressed to Configure State

35-36

False - a message which when asserted on the 488 bus is NOT guaranteed
to be received as false. It is overridden by an active true message.
16

True - a message which when asserted on the 488 bus is NOT guaranteed
to be received as true. It is overridden by an active false message.
16

Primary Command Group - a subset of the ISO-7 code. It consists of all
characters NUL through UNDERLINE (99 Hex through S5F Hex). It includes
all of the ACG (Addressed Command Group), UCG (Universal Command
Group), LAG (Listen Address Group) and TAG (Talk Address Group).
35,49,75-77

power -on - a local message sent by the device to its own interface to
inform it that power has just been appliede The interface should reset all
functions (e.g., Listen, AH, Talk, etc.) to their Ildle states.

75

Parallel Poll interface function -~ the function which allows a device to
respond to a Parallel Poll from the Controller.

35

Parallel Poll Active State

35-36

Parallel Poll Configure - a multiline message (§5 Hex) sent by the

Controller which causes the device presently addressed as a Listener (e.g.,
in the LADS state) to go into the PACS (Parallel Poll Addressed to
Configure) state. While in the PACS, the PP (Parallel Poll) function is to
obey the PPE (Parallel Poll Enable) and PPD (Paraliel Poll Disable) messages
sent by the Controller.

35,43,75-77

Parallel Poll Disable - a multiline message (70 Hex) sent by the Controller
which will place all devices in the PACS (Parallel Poll Addressed to
Configure) state into the PPIS (Parallel Poll Idle) state.

35,43,49,75-76

Parallel Poll Enable - a multiline message (60-6F Hex) sent by the
Controller which will change all devices in the PPIS (Parallel Poll Idle) state
to the PPSS (Parallel Poll Standby) state. It also specifies the PPRn
(Parallel Poll Response byte) to be used and the S (Sense) of the PPR.
The form of the message is (from most significant bit to least)

A-8

P&T -488 488 PHRASEBOOK

PPIS

PPRn

PPSS

PPU

PUCS

rdy

remote

REMS

REN

RFD

RL

X 1 1 ¢ S P3P2PI
where X means don't care (may be either high or low), and the binary value
formed by P3-P1 indicates which PPRn is to be used. Note that n of PPRn
indicates which data line is to be made active true (i.e., DIO3 will be made
active true when PPR3 is placed on the bus).
35,43,49,75-76

Parallel Poll Idle State
35-36

Parallel Poll Response n (See PPE)
35,49,75-176

Parallel Poll Standby State
35-36

Parallel Poll Unconfigure - a multiline message (15 Hex) sent by the
Controller which takes all devices in the PPSS (Parallel Poll Standby) state
and puts them into the PPIS (Parallel Poll Idle) state.

35,43,49,75-77

Parallel poll Unaddressed to Configure State
35-36

ready for next message — a local message sent by a device to its AH
(Acceptor Handshake) interface function to indicate it is ready for another
message byte from the 488 bus (i.e, another multiline remote message).
21,75

control - a device is programmed by its 488 interface instead of by local
controls. An example is a DMM whose function, range selection, etc are
selected by messages sent to it over the 488 bus. See local control for
contrast.

33

REMote State

33-34

Remote ENable - one of the five General Interface Management lines.

Also, a uniline message sent by the Controller to put devices addressed as
Listeners into the REMS (Remote) state. When the Controller makes the
REN message false, all devices are to go to the LOCS (Local) state.
33,42,49,75-76

Ready For Data - the complement appears on the NRFD line. This uniline
message is used by the AH (Acceptor Handshake) function to indicate that it
is ready to accept the next byte (multiline message). See AH for further
information.

19,22,49,75-76

Remote Local interface function - if present it allows a device to be
switched from local to remote control and vice versa.

33

P&T -488 488 PHRASEBOOK

rpp

RQS

rsy

rtl

RWLS
SACS

(SAD)

(SBA)

(SBN)

SCG

request parallel poll - a local message sent to the Controller interface
function when the device wants a Parallel Poll performed.

41,75

ReQuest Service - the byte sent by the current Talker in response to a

Serial Poll. Data bit 7 (DIO7) is true.
23,49,75-76

request system control - a local message sent to the Controller interface
function by the device when it wants to go to the SACS (System Control
Active) state.

41,75

request service - a local message sent by a device to its Service Request
interface function to cause it to go to the SRQS (Service Request) state.
As a consequence, the uniline message SRQ is sent active true until either
rsv is sent false, or the Controller performs a Serial Poll of this device.
32,75

return to local - a local message sent by a device to its Remote/Local
interface function. The LOCS (Local) state is entered if neither LLO
(Local Lockout) nor ACDS (Accept Data State) are true.

33,75

Remote With Lockout State

33,34

System Control Active State

41,44

Secondary ADdress - the seconday address of a specific device, and is

received as either My Seconday Address (MSA) or Other Secondary Address
(OSA). Its value must lie in the range 690-7E Hex. (See SCG).
43

Status Byte, service request Acknowledged. A message sent over the 488
bus by the current Talker in response to a Serial Poll. This message
indicates that this device was requesting service. Data bit 7 (DIO7) is
true. (See RQS)

62

Status Byte, service Not requested. Same as SBA but indicates that this
device does not need service. Data bit 7 (DIO7) is false.
62

Secondary Command Group. A subset of the I1SO-7 code consisting of
characters ACCENT GRAVE through TILDE (60 Hex through 7E Hex).
Secondary Talk and Listen addresses must be selected from this group.
(Note that DEL is not allowed as a secondary address).

49, 77

P&T -488 488 PHRASEBOOK

SDC Selected Device Clear - a multiline message (4 Hex) sent by the Controller
indicating that all devices addressed as Listeners are to go into the DCAS
(Device Clear Active) state. The details are device dependent, but usually
the device is left in the same state as when its power is first turned on.
38,43,49,75-77

SDYS Source DelaY State
18-19

Secondary Commands - the commands PPE, PPD and (SAD).
43

SGNS Source GeNerate State
18-19

SH Source Handshake interface function. The function used by a Talker or
Controller to insure proper communication of multiline messages. The NRFD
and NDAC lines are sensed to determine whether the AH (Acceptor
Handshake) function of some -device is active (if both NRFD and NDAC are
false simultaneously, there is no AH function on the bus, which is an
error). The multiline message is placed on the eight data lines (DIO1-DIO8)
and a 2 microsecond timeout is started. When NRFD is sensed false and
the timeout has been completed (to insure the data lines have settled) DAV
is asserted true (to show that the data is available and settled). Upon
sensing NDAC false the SH asserts DAV false (to indicate that the data
may no longer be valid) then removes the data. The whole cycle is
repeated for subsequent bytes of data. (See AH for the other half of the
handshake cycle).

18
SIAS System control Interface clear Active State
41,44
sic send interface clear - a local message which causes the devices' Controller

interface function to enter the SIAS (System Control Interface Clear Active)
state if it is the System Controller (i.e., it is in the SACS (System Control
Active) state). . As a consequence, the IFC (Inteface Clear) signal is sent
active true. (IFC is a uniline message sent on the IFC line).

41,75

SIDS Source IDle State
18-19

SHS System control Interface clear Idle State
41,44

SINS System control Interface clear Not active State
41,44

SIWS Source Idle Wait State
19-20

SNAS System control Not Active State
" 41,44

P&T -488 488 PHRASEBOOK

SPAS

SPD

SPE

SPIS

SPMS

SR

SRAS

SRIS

SRNS

SRQ

SRQS

STB

Serial Poll Active State
24,26

Serial Poll Disable - a multiline message (19 Hex) sent by the Controller.
It informs all devices capable of being Talkers that they are to speak data
when they are addressed to talk. (See SPE for contrast).

43,49,75-77

Serial Poll Enable - a mulitline message (18 Hex) sent by the Controller. It
informs all devices capable of being Talkers that they are to speak their
Serial Poll Status Byte (instead of data) when they are addressed to' talk.
See SBA, SBN, STB for further information about the status byte.
43,49,75-77

Serial Poll Idle State
24,26

Serial Poll Mode State
24,26

Service Request interface function. This function allows a device to
asynchronously request service from the Controller-In-Charge.
31

System control Remote enable Active State
41,45 :

send remote enable - a local message sent by a device to its Control
interface function. It causes the function to enter the SRAS (System
Control Remote Enable Active) state only if it was already in the SACS
(System Control Active) state. The uniline message REN is sent active true
as long as the Controller remains in the SRAS state.

41,75

System control Remote enable ldle State

41,44

System control Remote enable Not active State

41,45

Service ReQuest - a uniline message sent on the SRQ line by the SR
(Service Request) interface function. It is the duty of the Controller to
provide the service needed.

49,75-76

Service ReQuest State
32

STatus Byte. Data bits 1 through 6 and bit 8 (DIO1-DIO6, DIO8) sent in
response to a Serial Poll. STB is combined with RQS to form the complete
byte. (See SBA, SBN).

25,49,75-76

P&T -488 488 PHRASEBOOK

STRS

SWNS

TACS

(TAD)

TADS

TAG

tca

tcs

TCT

Source TRansfer State
18-19

Source Wait for New cycle State
18-19

Talk interface function. This function allows a device to send information
to other devices on the 488 bus. Only one byte (selected from the Talker
Address Group) need be sent to address the Talker.

23

Talker ACtive State
24,26

the Talk ADdress of a specific device. It is received as either My Talk
Address (MTA) or Other Talk Address (OTA). It must be a member of the
TAG (Talk Address Group).

43

Talker ADdressed State
23-24

Talker Address Group. A subset of the 1SO-7 code consisting of all
characters from @ through UNDERLINE (490 Hex through 5F Hex). The
address of .a Talker (or the primary address of an Extended Talker) must be
selected from this group. Note that UNDERLINE cannot be used as an
address, for it is reserved as the Universal Untalk command.

49, 77

take control asynchronously - a local message sent by a device to its
Controller interface function. It causes the function to go from the CSBS
(Controller Standby) state to the CSWS (Controller Synchronous Wait) state,
where it waits for at least 500 nsec (to allow the other devices on the 488
bus to respond to the active true assertion of the uniline message ATN),
then proceed to the CAWS (Controller Active Wait) state. ATN is active
true in both CSWS and CAWS.

41,75
take control synchronously - a local message sent by a device to its
Controller interface function. It operates the same as tca EXCEPT that

the function goes from CSBS to CSWS only when the AH (Acceptor
Handshake) function is in the ANRS (Acceptor Not Ready) state. - The
effect is to insure that a message sent by a Talker is not garbled or
misinterpreted as a message sent by the Controller; ATN will not become
active true until the Source Handshake is complete (i.e., DAYV is false,
showing that the message is no longer valid).

21,41,75

Take ConTrol - a multiline message (§9 Hex) sent by the Controller to
inform the device currently addressed as a Talker that it is to become the
Controller-in-Charge.

41,43,49,75-77

P&T -488 488 PHRASEBOOK

TE Talker Extended interface function. Similar to the Talker (T) function
except that this one is addressed by two bytes. The first must be selected
from the Talker Address Group (TAG) and the second from the Secondary
Command Group (SCG).

23

TIDS Talker IDle State
23-24

ton talk only - a local message sent by a device to its Talk interface function.
if IFC (Interface Clear) is false, the Talker function enters the TADS
(Talker Addressed) state. Remember that only one Talker may be addressed
at a time, so as long as ton is true no other device may have-ton true or
be addressed as a Talker by the Controller.

24,75

TPAS Talker Primary Addressed State
24,26

TPIS Talker Primary Idle State
24,26

UcaG Universal Command Group - A subset of the ISO-~7 code consisting of all
characters from DLE through US (10 Hex through 1F Hex). These commands
operate upon all devices which are capable of responding to a Controller;
the devices are not individually addressed. For contrast see Addressed
Command Group (ACG). ‘

43,49,77
uniline: message - a message that uses only one line of the 488 bus. An example is

Service ReQuest (SRQ).

Universal Command Group - See UCG

UNL

UNT

UNListen -~ a multiline message (3F Hex or the character "?") sent by the
Controller which forces the Listen function of all devices into the LIDS
(Listen Idle) state. :

29,43,49,75-77

UNTalk - a multiline message (5F Hex or the character "_") sent by the
Controller ‘which forces the Talk function of all devices into the TIDS (Talk
Idle) state.

49,77

Code Assignments for ““Command Mode’’ of Operation.

(SENT AND RECEIVED WITH ATN TRUE)

0 ® 0 0 0 1 1 1 1
0 MSG 0 MSG 1 MSG 1 MSG o MSG 0 MSG 1 MSG 1 MSG
()} 1 0 1 o 1 0 1
ba[bs3]b,[b, Jorumn =
{1018 7 Row ¢ 0 1 2 3 4 5 6 7
oloJofol o NUL DLE sP 0) @ & P) 3 o 7
oflofof1] soH | GTL |DbCci |LLo] 1 A a a | Q w
ojoli1]o| 2 STX DC2 ” 2 M B R M b w v e 1
olof1 1] 3 ETX DC3 # w 3 Q c w s 2 c 8 s 3_
o[1]olo] a €E0T |soc | bc4 |ocL $ 3 4 @ D s T @ d o 1 3
w [+ w =} %] 0 i
of1fof1] s ena | prc(d)] Nak | PrPu % a 5 o € o u ° e < u >
oj1|[1]ol 6 ACK SYN & o 6 F F e v + f % v 2
B ERER KR K BEL ETB : o 7 o G o w 2 9 a w w |
1{ofo]o] s 8BS GET | CAN | sPE { w 8 3 H S X z h 2 x :
O O &
1[olo[1] o HT | 7cT | eM_ |sPo) 2 9 2 I g Y 2 i i y a_ |
1fol1lo[10 LF SUB .] : : 3] z P j o z)
1o N VT ESC + < ; 3 K < [£ K z t z
2 E Z ; <
1l1]ojo 12 FF FS , H < L s \ | Z H o
[[o[] 13 CR Gs - - M] g b =
1f1f{1]o] 14 o) RS . v N ~ v n | ~ v
1]1] s s us / v ? UNL) v | — Junt 00 v DEL
w N\ I\ ® J’]
vV v vV Vv
ADDRESSED UNIVERSAL LISTEN TALK
COMMAND COMMAND ADDRESS ADDRESS
GROUP GROUP GROUP GROUP
{ACG) (UCG) {LAG) (TAG)
PRIMARY COMMAND GROUP (PCG) SECONDARY
COMMAND
NOTES: (1) MSG = INTERFACE MESSAGE G(?(?(?)P

b, = DIO1...by = DIO7

REQUIRES SECONDARY COMMAND
DENSE SUBSET (COLUMN 2 THROUGH 5). ALL CHARACTERS USED IN BOTH COMMAND & DATA MODES.

Courtesy of Hewlett-Packard Co.

P&T -488 Auxilliary Programs for CP/M ¢

The program BUSMON monitors and reports all transactions on the IEEE -488 bus.
488TODSK records data sent over the 488 bus into a disk file. DSKTOQO488 sends the
contents of a disk file over the bus as data. HANDSHAK.ASM contains the source code
for routines which perform the Source and Acceptor Handshake functions. An example
of how to use HANDSHAK.ASM is given in the program SAMPLHS.ASM.

BUSMON

The program BUSMON monitors and reports all transactions which occur on the
IEEE -488 bus. The operator can choose two different forms for the report. The
normal form displays the transactions without any special handlings The other form is
expanded, which means that non-printing characters are replaced with strings of printable
characters. This form is especially useful for those cases where one is trying to
distinguish between tabs and spaces, or determine whether line feed precedes carriage
return, etc. The form of the report can be selected by typing a character on the
console keyboard while the program is running. Once the form has been selected, its
action may be repeated by typing any key on the keyboard.

The operator can set BUSMON to stop on one of three different conditions: on
each carriage return, line feed, or each character. The condition is selected by using
one of the four stop code keys. The stop code can be changed at any time by typing
the appropriate stop code key. The stop code keys and the corresponding stop conditions
are shown in the following table. Note that typing a stop code key will NOT cause a
repeat of the previous stop condition, but will invoke a new stop condition. The program
starts in the Carriage Return mode,

Expand/Normal Option

N or n Show characters normally

X or x Expand the non-printing characters. Space (20 Hex), Horizontal Tab (9) and
Line Feed (0OA Hex) are replaced by the strings <SPACE>, <HT> and <LF>
respectively. The non-printing character Carriage Return (0D Hex) causes the
message <CR> to be printed followed by a carriage return and a line feed. All
other non-printing characters are replaced with the two character string of an
up arrow followed by a capital letter. Thus the non-printing character 01 Hex
is replaced by the string fA, while the character 1A Hex. is printed as 1Z.

Stop Codes
Carriage Return Display all transactions up to and including the next carriage return.
Line Feed Display all tranéactions up to and including the next line feed.
Space Display the next transaction (allows stepping one byte at a time).
Gorg Go. Display all transactions continuously without stopping on Line

Feed, Carriage Return or next byte.

+ CP/M is a trademark of Digital Research

CP/M AUX-1

P&T -488 CP/M Auxilliary Software

Abort
Control C Abort. Go back to the CP/M command mode.

Console/Printer Switch
0 Direct all output to the console.
1-9 Direct all output to the system printer.

NOTE: to direct output to both the console and printer, select the console and. then
press Control P.
IEEE -488 Functions

I or i Assert IFC (perform an Interface Clear).

R or r Make REN true (assert Remote Enable).
L or I Make REN false (all instruments will go to Local mode).

Q or g Make SRQ true (request service).
W or w Make SRQ false (cease requesting service).

P or p Perform a Parallel Poll and report the results.
S or s Show the state of the IEEE-488 lines.

T or t Talk - collect a string of characters from the operator then send it over the
bus as a Talker.

Cor c Control - collect a string and send it over the bus as a Controller.
NOTE: While collecting a string for Talk or Control the following keys have special
meaning: ‘

Control X Delete the string and restart collection. This allows errors to be corrected.

RETURN Terminate the collection of the strings The carriage return is not included
in the string.

ESCAPE Put the next character into the string., This allows ESCAPE, RETURN and
Control X to be put into the string. For instance, to get the string
?A<ESCAPE>12<RETURN><LINE FEED>, you would type
?A<ESCAPE><ESCAPE>12<ESCAPE><RETURN><LINE = FEED><RETURN>. In
this example, the string <ESCAPE> means that the ESCAPE key is pressed,
not that the 8 keys <, E, S, C, A, P, E and > are pressed. Similarly,
<RETURN> and <LINE FEED> mean that the RETURN and LINE FEED keys
are used.

Each time the Controller becomes active (asserts ATN active true), a carriage
return-line feed is sent to the console, followed by the string COMMAND:, followed by
another carriage return-line feed pair. Similarly, each time the Controller becomes
inactive (ATN is false), a carriage return, line feed, the string DATA:, carriage return
and a line feed is sent to the console. Thus all characters printed after COMMAND:
and before DATA: are instructions sent by the Controller, (for example, "?' means

CP/M AUX-2

P&T -488 CP/M Auxilliary Software

UNLISTEN). All characters printed after DATA: and before COMMAND: are data
(otherwise known as device-dependant messages). Examples are readings from a DVM
which has been commanded to be a Talker, etc.

Messages are also printed on the console to indicate occurances of IFC (Interface
Clear), indicate a change of the state of the REN (Remote Enable) line, and of the SRQ
(Service Request) line. The message >>> S-100 POC/RESET TRUE <<< is printed
whenever the Power On Clear or the RESET line of the S-1¢@ system becomes true.

Whenever the Controller is active, a descriptive string is substituted for special
non-printing messages. For example, > GO TO LOCAL << is printed when @1 Hex is
received and ATN is true. The list of messages and the corresponding non-printing
characters is as follows:

Character Message
Hex
| >> GO TO LOCAL <<
04 >> SELECTIVE DEVICE CLEAR <<
@5 >> PARALLEL POLL CONFIGURE <<
08 >> GROUP EXECUTE TRIGGER <X
99 >> TAKE CONTROL <<
11 >> LOCAL LOCKOUT <<
14 >> UNIVERSAL DEVICE CLEAR <<
15 >> PARALLEL POLL UNCONFIGURE <<
18 >> SERIAL POLL ENABLE <<
19 >> SERIAL POLL DISABLE <<

The results of this program can be misleading for the following reasons:

1. This program functions as a Listener on the 488 bus. |[If there were no Listeners
on the bus before this routine was run, any Talker would have been unable to say
a thing. However, when this routine is run, the Talker has someone to talk to.
Thus the operation of the 488 system may be changed by the fact that the Bus
Monitor routine is run.

2. This routine is slow compared to the speed that communication on the 488 bus is
capable of attaining. Thus 488 throughput may be drastically slowed by using the
bus monitor.

3. This routine is incapable of sensing a Parallel Poll issued by another controller, or
the response to that Parallel Poll. |If it happens that this routine tests the EOI

line at the time of a Parallel Poll, it will show the message <END>, even though
ATN is true.

488TODSK

The program 488TODSK is used to record all data transactions directly into a
CP/M disk file. To use the program type
488TODSK filename.ext x<CR>
where filename.ext is the file name and extension of the file into which the data is to
be recorded, and x is the option code. Note that there must be one and only one space

CP/M AUX-3

P&T -488 CP/M Auxilliary Software

between 488TODSK and the file name, and also one and only one space between the file
‘name and the option code. The characters <CR> mean that the Carriage Return key is
pressed, mnot that the four keys <, C, R and > are pressed.

Three different options are available: none, Z and E. The option E means that
the file will be closed and control passed back to the console upon receipt of the 488
END message. The option Z means that the file will be closed and control passed back
to the console upon receipt of a Control Z in the data stream (the Control Z is also
placed in:the file). This option can be useful because CP/M text files are terminated by
a Control Z. |If no option is selected (that is, a Carriage Return follows the file name),
the file can be closed only by pressing Control C on the console. Note that Control C
can be used at any time to abort the program: all data received up to the time the
Control C was pressed is saved in the file. Some garbage will also appear at the end of
the file ‘because the whole buffer is saved in the disk file, and the buffer probably was
not filled at the time Control C is pressed.

Error messages are printed on the console if the disk directory is full, the data
area is full, or any other disk write error occurs. In each case the function is aborted.
If the name of the file is the same as one which is already on the disk, the operator is
asked if it is OK to replace the old file. If the operator responds by typing any
character other than "Y" or "y", the function is aborted and the old file is left
untouched. If the operator responds with either "Y" or "y" the old file is erased and
the new one takes its place.

DSKT 04388

The program DSKTO488 sends the contents of a CP/M disk file over the 488 bus.
The program is called by the string
DSKTO0488 filename.ext x
where filename.ext is the name of the file that is to be sent and x is the option code.
Only two options are available: none and Z. The Z option causes the Control Z to be
sent with the 488 END message when a Control Z is found in the file, then the program
returns control to the console. This can be useful for text files that are terminated by
a Control Z. If no option code is selected, the entire file is sent followed by a null
with the 488 END message, then control is returned to the console. The program may
be aborted at any time by typing Control C on the console.

Error messages are printed on the console if there is no Listener on the bus, if
the file is not on the disk, or if an invalid option code is selected. In each case the
program is aborted and control is returned to the console.

If you have two systems and want to send a file from one to the other via the

488 bus, you would type

488TODSK filename.ext E<CR>
on the system which is to receive the file, and

DSKTO0488 filename.ext<CR>
on the one which is sending the file. (It is not necessary to use the same file name or
extension.) Note that the system receiving the file must be started first, otherwise the
first byte of the file will be lost or the sending system will complain that there are no
listeners.

CP/M AUX-4

P&T -488 CP /M Auxilliary Software

HAND SHAK

The source file HANDSHAK.ASM is actually two subroutines: a routine for Source
handshake and a routine for Acceptor handshake. These routines can be useful in special
applications where it is desired to use the S-10@ system as a Talk Only or Listen Only
device, or where increased data rate on the 488 bus is needed. These routines are
capable of running much faster than the larger Custom System, CPM488 or 488BAS
routines because the larger routines check for the existance of another Controller on the
bus, check for excessive time in the handshake cycle, and many other things.

Refer to the chapter titled Hardware Description in the P&T-488 manual for
information about the bit mapping of the ports and the 488 bus lines.
SAMPLHS

This file contains the source code for a routine which uses the Source, Acceptor
and Initialization subroutines in HANDSHAK to take data from the IEEE-488 bus and
display it on the console.

CP/M AUX-5

P&T-488 CP/M Auxilliary Software

khkkkkkkhkkhhhkhkkhhkkhkkhkhhkhkhkhkhkhkhkkhkhkhkhhkkhkhkhkhkkhkhkhhkhhhhkhkhkhhhhkhkhkhkkkkhk

Source and Acceptor Handshake listings

hkhkkkkkhkhkhkhkhkhkhhkhhkhhkkhkhkhhhkhhkkhkhhkhrhhhhkhhhhkhhhhhhhhkhhhkhkhhkhrxkkhhx

we “o wo e “eo

ISRPT EQU 7CH

CMDPT EQU ISRPT+1

DATPT EQU ISRPT+2

PPORT EQU ISRPT+3

MONITR® SET] ;CP/M warmstart entry

CPMIO SET 5 ;CP/M I/0 entry point

CR SET @DH ;ASCII carriage return

LF SET #AH ;ASCII line feed

ES SET 's! ;CP/M buffered print string terminator

BUFPRN SET 9 ;CP/M fcn. number for buffered print

7 .

: TALK

7

TLKT: LDA GIMTC sget the image of the byte last sent

; to the command line port

ORI 8 smake sure that ATN is false (high)
STA GIMTC : when do source handshake

kkkkkhkhkhhhhkhkhkhkhhkhhkhkhkhhhhkhhkkhkkhkhhkhkhhhhhhhhhhkkkhkhkhhkhhkhkhhhkhkkhkk

SOURCE HANDSHAKE

This routine takes the byte in memory location CHAR and says
it on the 488 bus as a Talker. If either the S-100 RESET

or Power On Clear line is or has been true, or if the

488 ATN or IFC lines are or have been true, then an error
messadge is printed and the routine jumps to the system
monitor.

khkkkkhkkkkhkkhkkkhkhhkhkhkhhkhhkhkkhkkhkhkhkkkhhhkkhhkkhkhhhkkhkhhkhkhkhkhkhhkhhhkrhkkkkkx

) S¢ ~e Ne “6 mo N6 e So e N me N6 we o

RCHS: LDA GIMTC ;get 488 command line image
ORI 60H ;set NRFD, NDAC high (false)
CALL COMND

SRC1:. CALL INTRPT ;check for POC, ATN or IFC

JNZ BYE :..abort if POC, ATN or IFC true
IN CMDPT ;see if there are any listeners
CMA
ANI 60H ;check only NRFD, NDAC
JzZ NOLSN ;..n0 listeners error
ANI 40H ;wait until NRFD is high (false)
JNZ SRC1
LDA CHAR ;get the data byte
CMA ;488 uses negative logic

CP/M AUX-6

P&T-488

ouT
LDA
ANI
CALL
SRC2: CALL
JNZ
IN
ANI
J2Z
LDA
ORI
CALL
MVI
ouT
RET

3
1’

DATPT
GIMTC
7FH
COMND
INTRPT
BYE
CMDPT
20H
SRC2
GIMTC
81H
COMND
A,0FFH
DATPT

CP/M Auxilliary Software

;make DAV true (low)

scheck for POC, ATN or IFC
;..abort if POC, ATN or IFC true

;1look at NDAC line
;...data not accepted yet

;make DAV & EOI false (high)

;make all data lines passive false

ekkkhkkhkkhkhhhkkhhkhhkhkhkhkkhhkkhkkhhhkhhkhhkhhhkhkhkhhhhhkhhkhkhhkhkhkhhrhkhkhrrdrhhhdhhxxk

ACCEPTOR HANDSHAKE

This routine gets one byte from the 488 bus and returns with
it in register A.
Clear line is or has been true, or if the 488 ATN or IFC

lines are or have been true, then an error message is printed

If either the S-100 RESET or Power On

**

CEPTR: LDA
ORI
ANI
CALL
LDA
ORI
CALL
ACEPT1: CALL
JINZ
IN
ANI
JNZ
IN
CMA
MOV
LDA
ORI
ANI
CALL
ACEPT2: CALL
JNZ
IN
ANI
JZ
LDA
ANI

GIMTC
8

9FH
COMND
GIMTC
40H
COMND
INTRPT
BYE
CMDPT
80H
ACEPT1
DATPT

D,A
GIMTC
20H
@BFH
COMND
INTRPT
BYE
CMDPT
80H
ACEPT2
GIMTC
9FH

;
;
H
;
; and the routine jumps to the system monitor.
;
;
H
A

;make ATN false

:+ and NRFD true, NDAC true
:now make NRFD false

;see if received POC, ATN or IFC
;. .abort

slook at DAV

;..DAV still false

;get the data

;488 uses negative logic
;keep the data in register D
;NDAC false

;s NRFD true

;..abort

;wait for DAV false

;...DAV still true

s NRFD true, NDAC true

CP/M AUX-7

P&T-488 CP/M Auxilliary Software

CALL COMND
MOV A,D ;put the data back in register A
RET :

Initialize 488 board

This routine should be called after every S-1008 RESET or
Power On Clear

= e “o Ne weo “weo wo

NIT: MVI A,QFFH
ouT PPORT ;clear parallel poll response port
ouT DATPT ; and 488 data port
CALL COMND ; and 488 control lines and image byte
SUB A
ouT ISRPT ;clear Interrupt Service Register
STA RETCOD ; <clear return code
STA CHAR ; and CHAR
RET

COMND keeps track of the last byte that was output to the
command port. It is necessary to keep track of what the
P&T-488 interface board is asserting on the bus because
the 488 bus is an open-collector wire-or system, so it is
not possible to determine what the P&T-488 is asserting
on the 488 bus by merely sensing the 488 lines.

()~ Se Ne Se Ne Ne we ~e

OMND: STA GIMTC ;update the 488 command line image
ouT CMDPT ;put it on the command lines
RET
: Check for interrupt due to ATN, IFC or POC
r
; NOTE: This function does not reset the interrupts in the
: Interrupt Service Register (ISR)
INTRPT: 1IN ISRPT ;look at the interrupt service register
RAR ;sput POC bit in carry
CNC IPOC ;..set POC bit in return code byte if
; no carry
RAR sREN > CARRY
RAR ;SRQ > CARRY
RAR sATN > CARRY
CNC IATN s..Set the XATN bit
RAR sIFC > CARRY
CNC IIFC :..5et the XIFC bit
LDA RETCOD
ANI QF9H ;look at only POC, IFC and ATN
RET
7
IPOC: PUSH A
LDA RETCOD
ORI 84@H
ICOM: STA RETCOD
POP. A ;restore reg A and carry

CP/M AUX-8

P&T-488

~e

IIFC:

00 ~e ~e ~e
=
m

[T] Se ~e ~e 2 ~o o ~o ~o
O
e
)]
2

g ~e ~e ~o

RINT:

~e

GIMTC:
CHAR:
RETCOD :

MS1:
MS2:
MS3:
MS4:

RET

PUSH
LDA
ORI
JMP

PUSH
LDA
ORI
JMP

CP/M Auxilliary Software

A
RETCOD
20H
ICOM

A
RETCOD
40H
ICOM

Print the reason for aborting then jump to the monitor

PUSH
LXI
ANI
CNZ
POP
PUSH
LXI
ANI
CNZ
POP
LXI
ANI
CNZ
JMP

PSW ;save the error code
D,MS2 ;power on clear

80H

PRINT

PSW ;get the error code again
PSW

D,MS3 ;s XIFC

40H

PRINT

PSW

D,MS4 ;s XATN

20H

PRINT

MONITR

No listeners present - print error message then
jump to the monitor

LXI

D,MS1 ;print no listener msg

Print error message and return to monitor

CALL
JMP

PRINT
MONITR

print the line pointed to by DE

MVI
CALL
RET

DB
DB
DB

DB
DB
DB
DB

C,BUFPRN

CPMIO

2 ;image of last byte sent to CMDPT
)

0 ;a byte containing the error code

'No listeners on the bus',CR,LF,ES

'S-190 POWER ON CLEAR or RESET',CR,LF,ES

'Another 488 Controller is asserting IFC true',CR,LF,ES
'Another 488 Controller is asserting ATN true',CR,LF,ES

CP/M AUX-9

P&T-488

WO Ne NS e N8 N w8 e we o

ORG

MONITR SET
CPMIO SET

GETCHR SET
PUTCHR SET
CONSTAT SET

LXI
CALL
LOOP: CALL
MOV
MVI
CALL
MVI
CALL
ANI
Jz
MVI
CALL
CPI
JINZ

JMP

we N6 we N e

END

SAMPLHS . ASM

1908

N us

1

SP,2000H
INIT
ACEPTR
E,A
C,PUTCHR
CPMIO

:CP/M
;CP/M

;CP/M
;CP/M
;CP/M

C,CONSTAT

CPMIO

1

LOOP
C,GETCHR
CPMIO

3

LOOP

MONITR

CP/M Auxilliary Software

khkkhkhkkkkhhhkkhkhhkkkhkhkhhhkhdhhhhhkkhkhhhhhhhhhkhhhkhhhhkhkhhkhrhkkhkhkkkhik

This program uses the Acceptor handsahke routine to get a
data byte from the IEEE-488 bus and display it on the
system console.

khkkkkhkhkhkkhkkhhkhkhkhkkhkkhkkhkhkhhhkhhkkhkhkhkhhhkhhkhhhhkhhkhkhkkhkhkhkhkhdhkkhkihxkx

warmstart entry point
I/0 routine entry point

function code for console input
function code for console output
function code for console status

rinitialize stack pointer
sinitialize the P&T-488 card
;get a byte from the 488 bus
;put it in register E for CP/M
;function to print on console
;CP/M I/0 routine entry point
;1look to see if a key is pressed

:..n0 key pressed
;get the key

sCONTROL C?

;..Nn0, so continue getting data
from the bus

;..yes, so do a warmstart

~e

khkkkhkhhhhhkhhhkkkhkhkhhkhhhhkhhkhhkkhhhhkhkkhhkhkhkhkhkhkhkkhhhhhkhkhkhhkhkkhhhkkhkkk

Insert the Handshake routines here

khkkhkkhhkkhkhhhkhkhkhhhkhhhkhhhhhhhkhhhkhkkhhhkhkhhkhhhkhhhhhkhhhhhhkhhhkhkkhhhh

CP/M AUX-10

v Sseas| § s7a | Gser
1 Ssees] § 374 | Sser
o Gaas] § 374 | Sser
; 03ess] G390] Gaer

L L

B ssssess
[—]
VRI[—
==C3]

P & T 488 REV. 8IA

-
:

8 | 7 | 6 | 5 vl | | 4 | 3 l 2 I !
) o
o oo T oN—
—m2Z200du >=0000
ThEWw OC O o+t et
nan~Z2Zowoooo
12 |
8voCUNREG | ™1 0 N[
A & —» +5v
I C4 18 CAPACITORS c2t 0 I\l e = =
0.1uF 0.1uF EACH 0.\ uf 24 13
GND T' T FEEEEEEEEEEDEES
iod> M4-1,15 z2zzzz=zzuwWoQ90o0
/L4-I5 l [CRTNCRCRTRC] -
488 DATA { 488 BUS
ak
| 4 9 8 9 3aL2 2 L2 l4pali3 @ DI7
007 BO>— Hers > 3 Y- (3 sl o7 ediely 3> 0l6
D06 40 He 3 3 2 - ol T Qos aifuals “5> 015
posBS W G < o] paraLces |5 3dLe 14 JJ-Z 15 2 M43 $> 014
004 BE>—H7 > 3 w2 3 (M2 2 M2 110 M4]9 {a2> 013
D03 83 Ha \al is 5 :] M2 6 M2 7 M4| 7 JE> DI2
D02 (88 6 G4 7 17 M3 16 11 M2 10 M2 9 14 M43 2> ol!
N 00! BS>— 5a 8 B 3me 4 Mz is 2wl > o
DOR 136 I oL OE .&z INTERRUPT _STATUS READ ol wl o] ol | o m '
! : +A5 J4'|: § ; % :QE;‘;
4 |
PDBIN [78> —0 o0—e 5 s) REA°7| 8) rjrjﬂvqgug ;
SINP [a6> I 3 3 S - 7 € 12,8THRU 24 |y {21314 li3lialis|ie) d.l. a s
—1 93 Ps e 13, 12 DI D2 D3 D4 D5 D607 D8 > 8l 922l olz|E =
i 4] ass 5 /7‘; 3| 2| g | x| v| | 8
2 4 v} 488 BUS y a 2
< =] 3] oata |2 o] =
F 14 5 mZzZozolR > o 4) B e B JK‘:J‘IO?; 2 -
e | .
2 5 NRITE g 7] 3 i6 Geezfioed| YyYsizisiele) Q0 —o S af— 6
- :) o 0 \ Pl FFT wENNvﬂvQ 3 3 : ok 3 3 .
! 488DAT, NEEE 67 R Of—
s j&‘ Qﬁsl f 8 nz) b 1:3 < 1w) Fé —
i 8 9 .
o b2 °<} 12 T 2 ot TYPICAL I
2 \ 2 ol 12 4 Yo 74Ls74 15
2 8 9 pav s k2 6 K2 7 2 3| €4 le ”
ol v @ -
9|2 le nrFD 13rfke/ 147K215 | g i
zlH g 2 13 12 NDAG 3 8k2 2 2 |
g N 4| ass [5.1FC 1, s 1 v2 10592 9 1
olel 2| 2 3| commano [2a 2 m 3 @ 2 921
&l 5lgl 3 q =
1 E : 14 is| | sra 13 {2 14 JJ2 15
A 3 7] «3 |ie] [Ren 5 9 627
HE 18 is| |eor 1 ke 10 DKZ 9
w
= CL__OE k2-4
z T 1 J2-4.
. INZ2 12 3
u g u)rs
w c3
[4
Fi
12113 hE "
+5 2 S 10
1 03 9)F3
2 12 3
Gl R8S |, =
[2 3 «OEEDB_ 5NE !
‘D’ @ 2
a\B\c\o\E\F\ ¢, [R] . |
1011 122199
6 5432 3
3 xarn L& us
Ay E>— 56)&] i3
Ao EB>— 12N 4 9 4 ©
G [8 AT I 12
b @&l & c3 ¢
1 13 L RIS O 9 N8 1jC4 I8
o2 [B>- e o>
2 15 12 1 LYT?;J
D07 1,[H3
RESET 4 D06 15 1 10
RESET [B>— e)s e +5
POC D04 REN 1| F2 |s 10
D03 ‘—E“ 6 —p 12 S
H2 |5 1] €2
T 002 L!;
vis [oor = I
|: >0 D0@ J
vii 3|F2 |e POC/ RESET 2
VI T z
viz [E>o 488 COMMAND READ | ! o
Vi3 [>—o INTERRUPT INTERRUPT_STATUS READ +5 z
— PATCH INT. LATCHES RESET_STROBE
Vi4 éxREA INTERRUPT
Vis [>—o0
vie — Reser ¥ poC
vit [>o
- e @ DENOTES OPEN COLLECTOR JCKLE
Nl >0 810 8(
[X> DENOTES S-100 BUS CONNECTOR
ST I ICKLES & TROUT
®
© 1978, 82 PICKLES & TROUT TROUT P.0. BOX 1206, GOLETA, CA 93116, (805) 685-4641
MIL 10820 % 8 | 7 I 6

3

2 l

