

Plexus Sys3 UNIX Programmer's Manual -- vol2C

98-05047.2 May 25, 1984

PLEXUS COMPUTERS, INC.

2230 Martin Ave.

Santa Clara, CA 95050

408/988-1755

'--

Copyright 1984
Plexus Computers, Inc., Santa Clara, CA

All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language, in any
form or by any means, without the prior written
consent of Plexus Computers, Inc.

The information contained herein is subject to
change without notice. Therefore, Plexus
Computers, Inc. assumes no responsibility for the
accuracy of the information presented in this
document beyond its current release date.

Printed in the United States of America

f"
\

Plexus Sys3 UNIX Programmer's Manual -- vol 2C

PREFACE

This manual contains a collection of documents that describe specific aspects of the UNIX·
operating system. These include descriptions of special utilities developed at the University of
California at Berkeley including the C shell, ada, ex, and vi.

Additional documents describing the operating system, document preparation tools, and
language tools may be found in the Plexus Sys3 UNIX Programmer's Manual -- vol2A (Plexus
publication #98-05036). Documents describing programming, language, administrative and
maintenance tools are collected in the Plexus Sys3 UNIX Programmer's Manual -- vol 2B
(Plexus publication #98-05037).

Both these volumes (2A and 2B) should be used as supplementary documents for the Plexus
Sys3 UNIX Programmer's Manual -- vol 1 A (Plexus publication #98-05045), and Plexus Sys3
UNIX Programmer's Manual -- vol 1 B (Plexus publication #98-05046), the basic reference
manual for the operating system.

Comments
Please address all comments concerning this manual to:

Plexus Computers, Inc.
Technical Publications Dept.
2230 Martin Ave.
Santa Clara, CA 95050
408/988-1755

Revision History
Plexus publication number 98-05047.1 was the first edition.

This edition (98-05047.2) is typeset, and corrects some minor errors.

• UNIX is a trademark of AT&T Bell Laboratories. Plexus Computers, Inc. is licensed to distribute UNIX under t~e
authority of AT&T.

I~ ,

~.

An Introduction to the C Shell

ABSTRACT

Csh is a new command language interpreter for UNIX systems. It incor­
porates good features of other shells and a history mechanism similar to the
redo of INTERLISP. While incorporating many features of other shells that make
writing shell programs (shell scripts) easier, most of the features unique to csh
are designed more for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with
csh is possible after reading just the first section of this document. The second
section describes capabilities that you can explore after you have become more
acquainted with the shell. Later sections introduce features that are useful, but
not necessary for all users of the shell.

Back matter includes an appendix listing special characters of the shell
and a glossary of terms and commands introduced in this manual.

May 17, 1984

~-.--'

r
An Introduction to the C Shell

Introduction

A shell is a command language interpreter. Csh is the name of one particularly useful
command interpreter on UNIX. The primary purpose of csh is to translate command lines typed
at a terminal into system actions, such as invocation of other programs.

This document has four sections. The first two describe how to form command lines to the
shell; these sections are written for people who will use the shell from a terminal, but will not
necessarily write shell scripts. Section 1 describes the basics; Section 2 details more advanced
features. The third section is directed toward those who wish to use the programming facilities
of the shell to write shell scripts. The fourth section describes miscellaneous and less used
features of the shell.

In addition to this document, you need access to the Plexus Sys3 UNIX Programmer's
Manual -- vol 1. The csh entry in that manual provides a full description of all features of the
shell and is a final reference for questions about the shell.

Many words in this document are shown in italics. These are important words: names of
commands, and words that have special meaning in discussing the shell and UNIX. Many of the
words are defined in a glossary at the end of this document. If you don't know what a word
means, you should look for it in the glossary.

Acknowledgements

This document is based on An introduction to the C shell by William Joy.

- 2 -

1. USING THE SHELL FROM THE TERMINAL

1.1. The Basic Notion of Commands

A shell in UNIX acts mostly as a medium through which other commands are invoked.
While it has a set of built-in commands, which it performs directly, most useful commands are,
in fact, external to the shell. The shell is thus distinguished from the command interpreters of
other systems both by the fact that it is just a user program, and by the fact that it is used
almost exclusively as a mechanism for invoking other programs.

Commands in the UNIX system expect a list of strings or words as arguments. Thus the
command

mail bill

consists of two words. The first word, 'mail', names the command to be executed, in this case
the mail program, which sends messages to other users. The shell uses the name of the com­
mand in attempting to run it. It looks in a number of directories for a file with the name mail
and expects the file called "mail" to contain the mail program.

The rest of the words of the command are given to the command itself to execute. In this
case the word bill is also specified; this is interpreted by the mail program to be the name of a
user to whom mail is to be sent.

For example, Chris can send mail to Bill as follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Chris
%

Here Chris typed a message to send to bill and ended this message with a control-d,
which sent an end-of-file to the mail program. Themail program then transmitted the message.
The characters '% ' (per cent sign followed by space) were printed before and after the mail
command by the shell to indicate that the shell was awaiting input.

After typing the '% ' prompt, the shell reads command input from the terminal. Chris typed
a complete command 'mail bill'. The shell then executed the mail program with argument bill
and went dormant waiting for it to complete. Themail program then read input from the terminal
until Chris signalled an end-of-file, after which the shell noticed that mail had completed. It sig·
naled Chris that it was ready to read from the terminal again by printing another '% ' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete com­
mand is typed at the terminal, the shell executes the command and when this execution com­
pletes, the shell prompts for a new command. If you run the editor for an hour, the shell will
patiently wait for you to finish editing and obediently prompt you again whenever you finish edit­
ing.

1.2. Flag Arguments

A useful notion in UNIX is that of a flag argument. While many arguments to commands
specify file names or user names, some arguments specify optional capabilities of commands.
By convention, such arguments begin with the character '-'. Thus the command

Is

produces a list of the files in the current directory. The option -s is the size option, and

Is -s

causes Is to also give, for each file, the size of the file in blocks of 1024 characters. The

- 3 -

manual page for each command in the Plexus Sys3 UNIX Programmer's Manual gives the avail­
able options for each command. The Is command has many useful and interesting options.
Most other commands have either no options or only one or two options. It is hard to remember
options of commands that are not used very frequently, so most UNIX utilities perform only one
or two functions rather than having a large number of hard-to-remember options.

1.3. Output to Files

The concepts of standard input and standard output are very important in UNIX. The
default for both is the terminal; this means that unless you tell UNIX otherwise, UNIX expects to
receive input for its commands from the terminal and send output of commands to the terminal.
But often you want to read input from or write output to files rather than simply taking input and
output from the terminal. The shell provides simple ways to accomplish this.

Thus suppose we wish to save the current date in a file called 'now'. The command

date

prints the current date on our terminal. This is because our terminal is the default standard out­
put for the date command and the date command prints the date on its standard output. The
shell lets us redirect the standard output of a command through a notation using the metachar­
acter '>' and the name of the file where output is to be placed. Thus the command

date> now

runs the date command such that its standard output is the file 'now' rather than our terminal.
Thus this command places the current date and time in the file 'now'. Note that the date com­
mand is unaware that its output is going to a file rather than to our terminal. Date sends its
results to standard output, however that standard output is currently defined--terminal or file or
other device or whatever. The shell performed this redirection before the command began exe­
cuting.

Note also that the file 'now' need not have existed before the date command was exe­
cuted; the shell would have created the file if it did not exist. And if the file did exist? If it had
existed previously, these previous contents would have been discarded! A C-shell option
noclobber exists to prevent this from happening accidentally; it is discussed in section 2.2.

1.4. Metacharacters in the Shell

The shell has a large number of special characters (like '>') that indicate special func­
tions. We say that these notations have syntactic and semantic meaning to the shell. In gen­
eral, most characters that are neither letters nor digits have special meaning to the shell. We
shall shortly learn a means of quotation, which allows us to create words that contain metachar­
acters and to thus work without constantly worrying about whether certain characters are meta­
characters.

Note that the C-shell is only reading input when it has prompted with '% '. Thus metachar­
acters normally have effect only then. So, for example, we need not worry about placing shell
metacharacters in a letter we are sending via mail.

1.5. Input from Files; Pipelines

We learned above how to route the standard output of a command to a file. We can also
route the standard input of a command from a file. This is not often necessary, however, since
most commands will read from a file name given as argument. For example, we can give the
command

sort < data

to run the sort command with standard input from the file 'data'. But we would more likely say

- 4 -

sort data

and let the sort command open the file 'data' for input itself, since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the
standard input, it would sort lines as we typed them on the terminal until we typed a control-d to
generate an end-at-tile.

We can even combine the standard output at one command with the standard input of the
next, i.e. to run the commands in a sequence known as a pipeline. This is an extremely useful
feature. For instance, the command

Is -s

normally produces a list of the files in our directory with the size, in 1024-byte blocks, of each.
If we are interested in learning which of our files is largest, we may wish to have this list sorted
by size rather than by name--Is by default sorts by name. We could investigate the many
options of Is to see if one lists in order of size, but we would eventually discover that no such
option exists. Instead the shell lets us use a couple of simple options of the sort command,
combining it with Is to get what we want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

Is -s I sort -n

specifies that the output of the Is command run with the option -s is to be piped to the com­
mand sort run with the numeric sort option. This would give us a sorted list of our files by size,
but with the smallest first. We could then use the -r reverse sort option and the head command
in combination with the previous command doing

Is -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We
have run this to the standard input of the sort command asking it to sort numerically in reverse
order (largest first). This output has then been run into the command head which gives us the
first few lines ot its standard input. In this case we have asked head for the first 5 lines. Thus
this command gives us the names and sizes of our 5 largest files.

The metanotation introduced above is called the pipe mechanism. Commands separated
by 'I' characters are connected together by the shell and the output of each functions as the
input of the next. The leftmost command in a pipeline normally takes its standard input from the
terminal and the rightmost places its standard output on the terminal. Other examples of pipe­
lines wili be given later when we discuss the history mechanism; one important use of pipes
illustrated there is in the routing ot information to the line printer.

1.6. Filenames

Many commands need the names of files as arguments. UNIX pathnames consist of a
number of components separated by 'I'. Each component except the last names a directory in
which the next component resides. Thus the pathname

letclmotd

specifies a file in the directory 'etc', which is a subdirectory of the root directory 'I'. Within this
directory the file named is 'motd', which stands for 'message of the day'. Filenames that do not
begin with 'I' are interpreted starting at the current working directory. This directory is, by
default, your home directory and can be changed dynamically by the chdir or cd change direc­
tory command.

- 5 -

Most filenames consist of a number of alphanumeric characters and '.'s. In fact, all print­
ing characters except 'J' may appear in filenames. However, non-alphabetic charcters usually
do not belong in filenames, because many of these have special meaning to the shell. The
character '.' is not a shell-metacharacter and is often used as the prefix with an extension of a
basename. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a root portion of a name (a root portion being that part of the
name that is left when a trailing '.' and following characters, which are not '.', are stripped off).
The file 'prog.c· might be the source for a C program, the file 'prog.o· the corresponding object
file, the file 'prog.errs' the errors resulting from a compilation of the program and the file
'prog.output' the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use the metanotation

prog.·

This word is expanded by the shell, before the command to which it is an argument is executed,
into a list of names that begin with 'prog.'. The character , •• here matches any sequence (includ­
ing the empty sequence) of characters in a file name. The names that match are sorted into the
argument list to the command alphabetically. Thus the command

echo prog.·

echoes the names

prog.c prog.errs prog.o prog.output

Note that the names are in lexicographic order here, different from the way we listed them
above. The echo command receives four words as arguments, even though we only typed one
word as an argument directly. The four words were generated by filename expansion of the
metasyntax in the one input word.

Other metanotations for filename expansion are also available. The character'?' matches
any single character in a filename. Thus

echo? ?? ???

echoes (Le., writes on standard output) a line of filenames; first those with one-character
names, then those with two-character names, and finally those with three-character names.
The names of each length will be independently lexicographically sorted.

Another mechanism consists of a sequence of characters between '[' and']'. This metase­
quence matches any single character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters astride a '-' in this notation to denote a
range. Thus

chap.[1-S]

might match files

chap.1 chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap.[1234S]

and otherwise equivalent.

- 6 -

Note that if a list of argument wore$: to a command (an argument list) contains filename
expansion syntax, and if this filename expansion syntax fails to match any existing file names,
then the shell considers this to be an error and prints a diagnostic

No match.

Also note that the character '.' at the beginning of a filename is treated specially. Neither
,., or'?, or the '[' T mechanism will match it. This prevents accidental matching of the filenames
'.' and ' . .' in the current directory, which have special meaning to the system, as well as other
files such as .cshrc, which are not normally visible. We will discuss the special role of the file
.cshrc later.

Another filename expansion mechanism gives access to the pathname of the home direc­
tory of other users. This notation consists of the character ,N, followed by another user's login
name. For instance the word 'Nbill' would map to the pathname '/mntlbill' if the home directory
for 'bill' were in the directory '/mntLbill'. Since, on large. systems, users may have login direc­
tories scattered over many different disk volumes with different prefix directory names, this nota­
tion provides a reliable way of accessing the files of other users.

A speCial case of this notation consists of a ,N, alone, e.g. 'Nlmbox'. This notation is
expanded by the shell into the file 'mbox' in your home directory. This can be very useful if you
have used chdir to change to another user's directory and have found a file you wish to copy
using cpo You can do

cp thatfile N

which will be expanded by the shell to

cp thatfile Imntlbill

i.e., the copy command interprets this as a request to make a copy of 'thatfile' in the directory
'/mntlbill'. The ,N, notation doesn't, by itself, force named files to exist. This is useful, for exam­
ple, when using the cp command, e.g.

cp thatfile N Isaveit

A mechanism using the characters '{' and '}' abbreviates a set of words that have com­
mon parts but cannot be abbreviated by the above mechanisms because they are not files, or
are the names of files that do not yet exist. This mechanism will be described much later, in
section 4.2, as it is used much less frequently.

1_7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharac­
ter pose a problem in that we cannot use them directly as parts of words. Thus the command

echo •

does not echo the character '*'. It either echoes a sorted list of filenames in the current direc­
tory, or prints the message 'No match' if there are no files in the current directory.

The recommended mechanism for placing characters that are neither numbers, digits, 'I',
'.' or '.' in an argument word to a command is to enclose it with single quotation characters' ",
e.g.

echo ,*,

The history mechanism of the shell uses the special character '!', so '!' cannot be escaped in
this way. It and the character'" itself can be preceded by a single '\' to prevent their special
meaning. These two mechanisms suffice to place any printing character into a word that is an
argument to a shell command.

- 7 -

1.8. Terminating Commands

When you are running a command from the shell and the shell is waiting for it to complete,
there are a couple of ways in which you can force such a command to complete. For instance it
you type the command

cat lusr/man/docs/csh/csh

the system prints this document on your terminal. This will continue for several minutes unless
you stop it. You can send an INTERRUPT signal to the cat command by hitting the DEL or RUBOUT

key on your terminal. Actually, hitting this key sends this INTERRUPT signal to all programs run­
ning on your terminal, including your shell. The shell normally ignores such signals, however, so
that the only program affected by the INTERRUPT is cat. Since cat does not take any precautions
to catch this signal the INTERRUPT causes it to terminate. The shell notices that cat has died
and prompts you again with '% '. If you hit INTERRUPT again, the shell just repeats its prompt,
since it catches INTERRUPT signals but continues to execute commands anyway. If the shell
went away like cat, this would log you out.

Many other programs terminate when they get an end-ot-file from their standard input.
Thus the mail program in the first example above was terminated when we hit a control-d,
which generates an end-of-file from the standard input. The shell also terminates when it gets
an end-of-file printing 'logout'; UNIX then logs you off the system. Since this means that typing
too many control-d's can aCCidentally log you off, the shell has a mechanism for preventing this.
This ignoreeof option is discussed in section 2.2.

If a command has its standard input redirected from a file, then it will normally terminate
when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command terminates without our typing a control-d. This is because it read to the
end-of-file of our file 'prepared.text'. We could also have done

cat prepared.text I mail bill

since the cat command would then have written the text through the pipe to the standard input
of the mail command. When the cat command completed it would have terminated, closing
down the pipeline and the mail command would have received an end-of-file from it and ter­
minated. Using a pipe here is more complicated than redirecting input so we would more likely
use the first form. These commands could also have been stopped by sending an INTERRUPT.

If you write or run programs that are not fully debugged, then you may want to stop them
somewhat ungracefully. This can be done by sending them a QUIT signal, generated by a
control-\. This usually provokes the shell to produce a message like:

a.out: Quit -- Core dumped

indicating that a file 'core' has been created containing information about the program a.out's
state when it ran amuck. You can examine this file yourself, or forward information to the main­
tainer of the program telling him/her where the core file is.

If you run background commands (as explained in section 2.6), then these commands
ignore INTERRUPT and QUIT signals at the terminal. To stop them you must use the kill program.
See section 2.6 for an example.

1.9. What Now?

We have so far seen a number of mechanisms of the shell and learned something about
the way in which it operates. The remaining sections will go further into the internals of the
shell, but you will surely want to try using the shell before you go any further. To get the C shell
as your login shell, your entry in the file letclpasswd must be modified. letclpasswd is writable
only by the superuser, so you may have to get your system administrator to perform the change.
The last field of each line in letclpasswd is the shell field. No entry in this field means this user

- 8 -

has the regular shell, Ibinlsh. This field of your line must be modified to read lusrlplxlcsh. You
will get the C shell the next time you log in. It's a good idea to have your .Iogin and .cshrc files
set up appropriately before you try the C shell, so your terminal will behave properly.

You can also invoke a csh by typing '/usr/plxlcsh'. This gives you a temporary C shell, and
you may return to your login shell by typing control-d.

Much of the discussion in this manual so far is applicable to '/bin/sh' as well as the C shell.
The next section will introduce many features particular to csh so you should change your shell
to csh before you begin reading it.

- 9 -

2_ DETAILS ON THE SHELL

2_1. Shell Startup and Termination

When you login, the shell is placed by the system in your home directory and begins by
reading commands from a file .cshrc in this directory. All shells that you may create during
your terminal session read from this file. We will later see what kinds of commands are usefully
placed there. For now we need not have this file and the shell does not complain about its
absence.

A login shell, executed after you login to the system, will, after it reads commands from
.cshrc, read commands from a file ./ogin afso in your home directory. This file contains com­
mands you wish to do each time you login to the UNIX system. A ./ogin file might look some­
thing like:

tset -d adm3a
set history=20
set time=3

This file contains four commands to be executed by UNIX each time the us~r logs in. The first is
a tset command, which informs the system that this user usually dials in on a Lear-Siegler
ADM-3A terminal. The next two set commands are interpreted directly by the shell and affect the
values of certain shell variables to modify the future behavior of the shell. Setting the variable
time tells the shell to print time statistics on commands that take more than a certain threshold
of machine time (in this case 3 CPU seconds). Setting the variable history tells the shell how
much history of previous command words it should save in case the user wishes to repeat or
rerun modified versions of previous commands. This mechanism involves a certain overhead,
so the shell does not set this variable by default. The value of 20 is a reasonably large value to
assign to history. More casual users of the history mechanism would probably set a value of 5
or 10. The use of the history mechanism will be described subsequently.

After executing commands from . login, the shell reads commands from your terminal,
prompting for each with '% '. When it receives an end-of-file from the terminal, the shell prints
'logout' and executes commands from the file '.logout' in your home directory. After that the
shell dies and UNIX logs you off the system. If the system is not going down, you receive a new
login message. In any case, after the 'logout' message, the shell from which the end-of-file was
received is doomed and takes no further input from the terminal.

2.2. Shell Variables

The shell maintains a set of variables. We saw above the variables history and time,
which had values '20' and '3'. In fact, each shell variable has as value an array of zero or more
strings. Shell variables may be assigned values by the set command. This command has
several forms, the most useful of which was given above and is

set name=value

Shell variables may store values that are to be reintroduced into commands later through a
substitution mechanism. The shell variables most commonly referenced are, however, those
that the shell itself refers to. By changing the values of these variables, you can directly affect
the behavior of the shell.

One of the most important variables is the variable path. This variable contains a
sequence of directory names where the shell searches for commands. The set command shows
the value of all variables currently defined (we usually say set) in the shell. The default value for
path will be shown by set to be

% set
argv
home /mnt/biIJ
path (. /bin /usr/bin)
prompt %
shell /bin/csh
status 0
0/0

- 10 -

This notation indicates that the variable path pOints to the current directory '.' and then '/bin' and
'/usr/bin'. Commands that you may write might be in '.' (usually one of your directories). The
most heavily used system commands live in '/bin'. Less heavily used system commands live in
'/usr/bin'.

A number of useful programs that are not part of standard UNIX SYSTEM lIi--including
csh--live in the directory '/usr/plx'. If you want all shells that you invoke to have access to these
new programs, place the command

set path=(. /usr/plx /bin /usr/bin)

in your file .cshrc in your home directory. Try doing this and then logging out and back in and
do

set

again to see that the value assigned to path has changed.

Other useful built-in variables are the variable home, which shows your home directory,
and the variable ignoreeof, which can be set in your ./ogin file to tell the shell not to exit when it
receives an end-of-file from a terminal. To logout from UNIX with ignoreeof set you must type

logout

This is one of several variables that the shell does not care about the value of, only whether
they are set or unset. Thus to set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

Both set and unset are built-in commands of the shell.

Finally, some other useful built-in shell variables are noc/obber and mai/. The metasyntax

> filename

which redirects the output of a command, overwrites and destroys the previous contents of the
named file. In this way you may aCCidentally overwrite a valuable file. If you prefer that the
shell not automatically overwrite files in this way you can

set noclobber

in your .Iogin file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date >! now

if you really wanted to overwrite the contents of 'now'. The' >!' is a special metasyntax indicat­
ing that clobbering the file is all right.

If you receive mail frequently while you are logged in, and wish to be informed of the
arrival of this mail, you can put a command

- 11 -

set mail=/usr/mail/yourname

in your ./ogin file. Here you should change 'yourname' to your login name. The shell looks at
this file every 10 minutes to see if new mail has arrived. If you receive mail only infrequently,
you are better off not setting this variable; it only delays the shell's response to you.

The use of shell variables to introduce text into commands, which is most useful in shell
command scripts, will be introduced in section 2.4.

2.3. The Shell's History List

The shell can maintain a history list into which it places the words of previous commands.
You can use a metanotation to reintroduce commands or words from commands in forming new
commands. This mechanism can repeat previous commands or correct minor typing mistakes
in commands.

Consider the following transcript:

% Is -I shell.proc
-rw...:r--r-- 1 sandy 6506 Jan 1920:05 shelLproc
% chmod 755 !$
chmod 755 shell.proc

Here we asked for a long (-I) listing of the file 'shelLproc' and were told, among other things, that
it was not executable. We need to change the permissions attached to it, so we execute a
chmod command on '!$'. '!$' is a history notation that means the last word of the last command
executed, in this case 'shell.proc'. The shell performed this substitution and then echoed the
command ('chmod 755 shelLproc') as it would execute it. Suppose now that we want to verify
that the permission changes were made by doing another 'Is -I'. We can do

%!I
-rwxrwxrwx 1 sandy 6506 Jan 19 20:05 shell.proc
0/0

We repeat the Is -I command with the history notation '!I', which repeats the last command that
began with a word of which 'I' is a prefix.

The form '!!' re-executes the last command. Another useful command form is 'ilhsirhs',
which performs a sUbstitution similar to that in ed or ex. Thus in this example,

% cat ~bill/csh/sh .. c
Imnt/bill/csh/sh .. c: No such file or directory

% i··i·
cat ~bill/csh/sh.c
#include nsh.hn

char *pathlist[] = { SRCHP
%

we used the substitution to correct a typing mistake, and then rubbed the command out after we
saw that we had found the file we wanted. The substitution changed the two '.' characters to a
single '.' character.

After this command we might do

% !! Ilpr
cat ~bill/csh/sh.c I Ipr

to put a copy of this file on the line printer, or (immediately after the cat that worked above)

% pr!$ Ilpr
pr Nbill/csh/sh.c I Ipr
%

- 12 -

More advanced forms of the history mechanism also exist. Substitutions themselves may
be modified, so you can say (after the first successful cat above).

%cd !$:h
cd NbilVcsh
%

The trailing ':h' on the history substitution here causes only the head portion of the pathname
reintroduced by the history mechanism to be substituted. This and related mechanisms are
used less often than the forms above.

A complete description of history mechanism features is given in the C shell manual entry
in the Plexus Sys3 UNIX Programmer's Manual.

2.4. Aliases
The shell has an alias mechanism that can simplify the commands you type, supply

default arguments to commands, or perform transformations on commands and their arguments.
The alias facility is similar to the macro facility of many assemblers.

Some of the features obtained by aliasing can also be obtained using shell command files,
but these take place in another instance of the shell and cannot directly affect the current shell's
environment. Thus commands such as chdir, which must be done in the current shell, may not
work the way you expect.

As an example, suppose you wish to use a new version of the mail program. The new
program is called 'Mail', and the standard mail program continues to be called 'mail'. If you
place the shell command

alias mail Mail

in your ./ogin file, the shell will transform an input line of the form

mail bill

into a call on 'Mail'. More generally, suppose we wish the command 'Is' to always show sizes of
files, that is to always do '-s'. We can do

alias Is Is -s

or even

alias dir Is -s

creating a new command syntax 'dir', which does an 'Is os'. If we say

dir Nbill

then the shell translates this to

Is -s 1m nt/bill

Thus the alias mechanism can provide deafult arguments and short names for commands,
and can define new short commands in terms of other commands. You can also define aliases
that contain multiple commands or pipelines, showing where the arguments to the original com­
mand are to be substituted using the facilities of the history mechanism. Thus the definition

alias cd 'cd \!* ; Is '

does an Is command after each change directory (cd) command. We enclosed the entire alias
definition in'" characters to prevent most substitutions from occurring and the character ';' from

- 13 -

being recognized as a parser metacharacter. The '!' here is escaped with a '\' to prevent it from
being interpreted when the alias command is typed in. The '\!*' here substitutes the entire argu­
ment list to the pre-aliasing cd command, without giving an error if there were no arguments.
The ';' separating commands is used here to indicate that one command is to be done and then
the next. Similarly the definition

alias whois 'grep \!t /etc/passwd'

defines a command that looks up its first argument in the password file.

2.5. Detached Commands; > > and >& Redirection

A few more metanotations are useful. The metacharacter '&' may be placed after a com­
mand, or after a sequence of commands separated by';' or '1'. This causes the shell not to wait
for the commands to terminate before prompting again. We say that they are detached or
background processes. Thus

% pr Nbill/csh/sh.c I Ipr &
5120
5121
0/0

Here the shell printed two numbers and came back very quickly rather than waiting for the pr
and /pr commands to finish. These numbers are the process numbers assigned by the system
to the pr and /pr commands.t

Since havoc would result if a command run in the background were to read from your ter­
minal at the same time as the shell does, the default standard input for a command run in the
background is not your terminal, but an empty file called '/dev/null'. Commands run in the back­
ground are also made immune to INTERRUPT and QUIT signals that you may subsequently gen­
erate at your terminal.*

If you intend to log off the system before the command completes you must run the com­
mand immune to HANGUP signals. This is done by placing the word 'nohup' before each program
in the command, i.e.:

nohup man csh I nohup Ipr &

In addition to the standard output, commands also have a diagnostic output that is nor­
mally directed to the terminal even when the standard output is directed to a file or a pipe. You
may occasionally want to direct the diagnostic output along with the standard output. For
instance, you may want to redirect the output of a long-running command into a file and have a
record of any error diagnostic it produces. The command

command >& file

accomplishes this. The' > &' here tells the shell to route both the diagnostic output and the
standard output into 'file'. Similarly you can give the command

command 1& Ipr

to route both standard and diagnostic output through the pipe to the line printer daemon /pr.#

tRunning commands in the background like this tends to slow down the system and is not a good idea if the
system is overloaded. When overloaded. the system will just bog down more if you run a large number of
processes at once.
·If a background command stops suddenly when you hit INTERRUPT or QUIT it is likely a bug in the back­
ground program.
#A command form

command >&! file

exists, and is used when noclobber is set and file already exists.

Finally, you can use the form

command > > file

to place output at the end of an existing file.t

2.6. Useful Built-in Commands

- 14 -

We now describe a few of the useful built-in commands of the shell.

The alias command described above assigns new aliases and shows existing aliases.
With no arguments it prints the current aliases. It may also be given an argument such as

alias Is

to show the current alias for, in this case, 'Is'.

The cd and chdir commands are equivalent; they change the working directory of the
shell. An experienced UNIX user usually makes a subdirectory for each of his projects and
places all files related to each project in the appropriate subdirectory. Thus after you login you
can do

%pwd
ImntJbill
% mkdir newpaper
% chdi r newpaper
%pwd
ImntJbill/newpaper
0/0

after which you will be in the directory newpaper. You can return to your 'home' login directory
by doing just

chdir

with no arguments. We used the pwd (print working directory) command to show the name of
the current directory. The current directory is usually a subdirectory of your home directory.
Thus, the home directory (here '/mntJbill') path forms the prefix of the new directory name. In
the example above, '/mntJbill' forms the prefix of '/mntJbill/newpaper'.

The echo command prints its arguments. It is often used in shell scripts or as an interac­
tive command to see what filename expansions will yield.

The history command shows the contents of the history list. The numbers given with the
history events can be used to refer to previous events that are difficult to refer to using the con­
textual mechanisms introduced above. There is also a shell variable called prompt. By placing
a '!' character in its value the shell there substitutes the index of the current command in the his­
tory list. You can use this number to refer to this command in a history substitution. Thus you
could

set prompt= '\! % I

Note that the '!' character had to be escaped here even within' " characters.

The logout command terminates a login shell that has ignoreeof set.

The repeat command repeats a command. Thus to make 5 copies of the file one in the
file five you could do

tlf noclobber is set, then an error will result if file does not exist; otherwise the shell will create file if it
doesn't exist. A form

command > >! file

makes it not be an error for file to not exist when noc/obber is set.

- 15 -

repeat 5 cat one > > five

The setenv command sets variables in the environment. Thus

setenv TERM adm3a

sets the value of the environment variable TERM to 'adm3a'. A user program printenv prints out
the environment. It might then show:

% printenv
HOME lusr/bill
SHELL Ibin/csh
TERM adm3a
0/0

The source command forces the current shell to read commands from a file. Thus

source .cshrc

causes any changes to .cshrc to take effect before the next time you login.

The time command can time a command no matter how much CPU time it takes. Thus

% time cp five five.save
O.Ou 0.3s 0:01 26%
% time wc five. save

1200 6300 37650 five. save
1.2u 0.5s 0:03 55%
0/0

indicates that the cp command used less that 1/10th of a second of user time and only 3/10th of
a second of system time in copying the file 'five' to 'five.save'. The command word count wc,
which counts the number of words, character and lines in 'five.save', used 1.2 seconds of user
time and 0.5 seconds of system time in 3 seconds of elapsed time. The percentage '55%' indi­
cates that over this period of 3 seconds, our command 'wc' used an average of 55 percent of
the available CPU cycles of the machine. This is a very high percentage and indicates that the
system is lightly loaded.

The unalias and unset commands remove aliases and variable definitions from the shell.

The wait command can be used after starting processes with '&' to see quickly if they
have finished. If the shell responds immediately with another prompt, they have. Otherwise you
can wait for the shell to prompt, at which point they will have finished, or interrupt the shell by
sending a RUBOUT or DELETE character. If the shell is interrupted, it prints the names and
numbers of the processes it knows to be unfinished. Thus:

% nroff paper I Ipr &
2450
2451
% wait

2451 Ipr
2450 nroff

wait: Interrupted.
%

You can check again later by doing another wait, or see which commands are still running
by doing a ps. As 'time' will show you, ps is fairly expensive. It is thus counterproductive to run
many ps commands to see how a background process is doing.t

tit you do you are usurping with these ps commands the processor time the job needs to finish, thereby de­
laying its completion!

- 16 -

If you run a background process and decide you want to stop it you must use the kill pro­
gram. You must use the process id number(s) (PIDs) of the process(es) you wish to kill. (If you
don't know, do a ps). Thus to stop the nroff in the above pipeline you would do

% kill 2450
% wait
2450: nroff: Terminated.
0/0

. Here the shell printed a diagnostic that we terminated 'nrott' only after we did a wait. If we want
the shell to discover the termination of all processes it has created we must, in general, use
wait.

2.7. What Else?

This concludes the basic discussion of the shell for terminal users. The programming
features of the shell are described in the next section. One especially useful feature discussed
later is the (oreach built-in command, which can be used to run the same command sequence
with a number of different arguments.

If you intend to use UNIX a lot, you should look through the rest of this document and the
shell manual pages to become familiar with the other facilities available to you.

- 17-

3. SHELL CONTROL STRUCTURES AND COMMAND SCRIPTS

3.1. Introduction

Rather than inputting commands one at a time to the shell, you can place commands in
files and cause these commands to be read and executed. Using these command files, you can
put long command sequences in motion without having to wait for each one to complete serially;
arithmetic and loop control constructs are also available. An added plus is that you can use all
the expansion and substitution facilities of your editor to create these files quickly. These com­
mand files are called shell scripts. We here detail those features of the shell useful to the writ­
ers of such scripts.

3.2. Make

Note what shell scripts are not useful for. The program make is very useful for maintain­
ing a group of related files or performing sets of operations on related files. For instance, a
large program consisting of one or more files can have its dependencies described in a
makefile, which contains definitions of the commands used to create these different files when
changes occur. Definitions of the means for printing listings, cleaning up the directory in which
the files reside, and installing the resultant programs are easily and most appropriately placed in
this makefile. Shell scripts are less suitable for this kind of maintenance.

Similarly when working on a document, a makefile may be created that defines how dif­
ferent versions of the document are to be created and which options of nroff or troff are
appropriate.

3.3. Invocation

A csh command script may be interpreted by saying

% csh sCript ...

where script is the name of the file containing a group of csh commands and •.. .' is replaced by
a sequence of arguments. The shell places these arguments in the variable argv and then
begins to read commands from the script. These parameters are then available through the
same mechanisms used to refer to any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e., begin the file with a '#' char­
acter) then a '/usr/plxlcsh' is automatically invoked to execute 'script' when you type

script

If the file does not begin with a '#' then the standard shell'/bin/sh' executes it. This allows you
to convert your older shell sCripts to use csh at your convenience.

A complication arises, however, when you run shell scripts under the C shell in UNIX SyS­
TEM III or Plexus Sys3. The C shell was written to be used with UNIX Version 7, the release
before SYSTEM III, upon which Plexus Sys3 is based. Many standard Sys3 commands are
actually shell sCripts, and some begin with the comment character, so they look like C shell
scripts to the C shell. But Sys3 contains commands not found in Version 7, so some of these
shell sCripts call commands the C shell has never heard of, and can't execute. Such commands
fail when run under the C shell. Therefore, if you run the C shell with Sys3, you should set your
environment variable SHELL to Ibin/sh, so any shell scripts are automatically run by the Sys3
shell. If you really want the C shell to execute your shell script, you can explicitly execute it with
'csh' or put the call to 'csh' within the script.

- 18 -

3.4. Variable Substitution

After each input line is broken into words, and history substitutions are done on it, the
input line is parsed into distinct commands. Before each command is executed, variable substi­
tution is done on these words. Keyed by the character '$', this substitution replaces the names
of variables by their values. Thus

echo $argv

when placed in a command script causes the current value of the variable argv to be echoed to
the output of the shell script. Argv may not be unset at this point.

A number of notations are provided for accessing attributes of variables. The notation

$?name

expands to '1' if name is set or to '0' if name is not set. This is the fundamental mechanism
used for checking whether particular variables have been assigned values. All other forms of
reference to undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name. Thus

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
o
% echo $argv
Undefined variable: argv.
%

You can also access the components of a variable that has several values. Thus

$argv[1]

gives the first component of argv or, in the example above, 'a'. Similarly

$argv[$#argv]

would give ·c'.

Other notations useful in shell sCripts are

$n

(where n is an integer) as a shorthand for

$argv[n]

(the nth parameter) and

$*

which is a shorthand for

$argv

The form

$$

expands to the process number of the current shell. Since this process number is unique in the

- 19 -

system it can be used in generation of unique temporary file names.

One minor difference between '$n' and '$argv[n]' should be noted here. The form
'$argv[n]' yields an error if n is not in the range '1-$#argv' while '$n' never yields an out-of­
range-subscript error. This is for compatibility with the way older shells handled parameters.

Note also that it is never an error to give a subrange of the form 'n-'; if there are less than
n components of the given variable then no words are substituted. A range of the form 'm-n'
likewise returns an empty vector without giving an error when m exceeds the number of ele­
ments of the given variable, provided the subscript n is in range.

3_5. Expressions

Expressions in the shell must be able to be evaluated based on the values of variables;
otherwise, the shell wouldn't be able to do anything interesting. All the arithmetic operations of
the language C are available in the shell with the same precedence that they have in C. In par­
ticular, the operations '==' and '!=' compare strings and the operators '&&' and 'I r implement
the Boolean 'and' and 'or' operations.

The shell also allows file enquiries of the form

-? filename

where'?' is replaced by a number of single characters. For instance the expression primitive

-e filename

tells whether the file 'filename' exists. Other primitives test for read, write and execute access
to the file, whether it is a directory, or has non-zero length.

You can also test whether a command terminates normally by a primitive of the form '{
command }', which returns true, i.e. '1', if the command succeeds (exiting normally with exit
status 0), or '0' if the command terminates abnormally (with exit status non-zero). If you need
more detailed information about the execution status of a command, execute it and in the next
command examine the variable '$status'. Since '$status' is set by every command, it is very
transient. It can be saved if it is inconvenient to use it only in the single command immediately
following.

For a full list of expression components available see the manual entry for the shell.

3.6. Sample Shell Script

A sample shell script that makes use of the expression mechanism of the shell and some
of its control structure follows:

- 20-

% cat copyc

Copyc copies those C programs in the specified list
to the directory N/backup if they differ from the files
#: already in N Ibackup

set noglob
foreach i ($argv)

end

if ($i:r.c != $i) continue # not a .c file so do nothing

if (! -r N/backup/$i:t) then
echo $i:t not in backup ... not cp\'ed
continue

endif

cmp -s $i N Ibackup/$i:t

if ($status != 0) then

endif

echo new backup of $i
cp $i N Ibackup/$i:t

to set $status

This sCript makes use of the foreach command, which causes the shell to execute the
commands between the foreach and the matching end for each of the values given between '('
and ")' with the named variable (in this case I) set to successive values in the list. Within this
loop we may use the command break to stop executing the loop and continue to prematurely
terminate one iteration and begin the next. After the foreach loop the iteration variable (i in this
case) has the value at the last iteration.

We set the variable nog/ob here to prevent filename expansion of the members of argv.
This is a good idea, in general, if the arguments to a shell script are filenames that have already
been expanded or if the arguments may contain filename expansion metacharacters, You can
also quote each use of a '$' variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endif

The placement of the keywords here is somewhat flexible. t
The shell does have another form of the if statement

tLeaving out the 'then' altogether works, for example. The 'then' may also be put on a separate line, as fol­
lows:

if (expression) '* Produces diagnostic but works I
then

command

endlf

but this produces a diagnostic to the effect that the command 'then' cannot be found, The following format is
not currently acceptable to the shell:

if (expression) then command endif ""Won't work

if (expression) command

which can be written

if (expression) \
command

- 21 -

Here we have escaped the newline for the sake of appearance. The command must not involve
'1', '&' or ';' and must not be another control command. The second form requires the final '\' to
immediately precede the end-of-line.

The more general if statements above also admit a sequence of else-if pairs followed by a
single else and an endif, e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell sCripts is ':' modifiers. We can use the modif-
ier ':r' here to extract a root of a filename. Thus if the variable i has the value 'foo.bar' then

% echo $i $i:r
foo.bar foo
0/0

shows how the ':r' modifier strips off the trailing '.bar'. Other modifiers will take off the last com­
ponent of a pathname leaving the head ':h' or all but the last component of a pathname leaving
the tail ':t'. These modifiers are fully described in the csh manual entry. You can also use the
command substitution mechanism described in section 4.3 to perform modifications on strings
to reenter the shell's environment. Since each usage of this mechanism involves the creation of
a new process, it is much more expensive than the ':' modification mechanism.* Finally, we note
that the character '#' lexically introduces a shell comment in shell sCripts (but not from the ter­
minal). All subsequent characters on the input line after a '#' are discarded by the shell. This
character can be quoted using'" or '\' to place it in an argument word.

3.7. Other Control Structures

The shell also has control structures while and switch similar to those of C. These take
the forms

and

while (expression)
commands

end

"Note also that the current implementation of the shell limits the number of ':' modifiers on a '$' substitution to
1. Thus

% echo $1 $I:h:t
,'alb/c Ialb:t
%

does not do what one would expect.

switch (word)

case str1:
commands
breaksw

case strn:
commands
breaksw

default:

endsw

commands
breaksw

- 22 -

For details see the manual section for csh. C programmers should note that we use breaksw to
exit from a switch while break exits a while or foreach loop. A common mistake in csh sCripts
is to use break rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, Le.:

loop:
commands
goto loop

3.8. Supplying Input to Commands

Commands run from shell scripts receive by default the standard input of the shell that is
running the script. Thus it is different from previous shells running under UNIX. It allows shell
scripts to participate fully in pipelines, but mandates extra notation for commands that take inline
data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As
an example, consider this script, which runs the editor to delete leading blanks from the lines in
each argument file

% cat deblank
deblank -- remove leadi ng blanks
foreach i ($argv)
ed - $i « 'EOF'
1 ,$s/t[]*//
w
q
'EOF'
end
0/0

The notation' < < 'EOF" means that the standard input for the ed command is to come from
the text in the shell script file up to the next line consisting of exactly "EOF". The fact that the
'EOF' is enclosed in ." characters, Le. quoted, causes the shell not to perform variable substitu­
tion on the intervening lines. In general, if any part of the word following the' < <' is quoted,
then these substitutions are not performed. In this case, since we used the form '1,$' in our edi­
tor script, we needed to insure that this '$' was not variable-substituted. We could also have
insured this by preceding the '$' here with a '\', Le.:

~
I

r
- 23 .

1,\$s/t[]*11

but quoting the 'EOF' terminator is a more reliable way of achieving the same thing.

3.9. Catching Interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell
script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a 'goto label'
and we can remove the temporary files and then do a exit command (which is built into the
shell) to exit from the shell script. If we wish to exit with a non-zero status we can do

exit(1)

e.g. to exit with status '1 '.

3.10. What Else?

Other features of the shell are useful to writers of shell procedures. The verbose and
echo options and the related -v and ·x command line options can help trace the actions of the
shell. The -n option causes the shell only to read commands and not to execute them.

Note that csh does not execute shell scripts that do not begin with the character '#'--that
is, shell sCripts that do not begin with a comment.

Another quotation mechanism using 'II' allows only some of the expansion mechanisms we
have so far discussed to occur on the quoted string and serves to make this string into a single
word as ", does. See the manual entry for more information.

- 24-

4. MISCELLANEOUS, LESS GENERALLY USEFUL, SHELL MECHANISMS

4.1. Loops at the Terminal; Variables as Vectors

You may occasionally want to use the foreach control structure at the terminal to aid in
performing a number of similar commands. For instance, three shells were once in use on the
Cory UNIX system at Cory Hall at UC Berkeley: '/bin/sh', '/bin/nsh', and '/bin/csh'. To count the
number of persons using each shell, one could issue the commands

% grep -c csh$ letc/passwd
27
% grep -c nsh$ letc/passwd
128
% grep -c -v sh$ letc/passwd
430
%

Since these commands are very similar we can use foreach to do this more easily.

% foreach i ('sh$' 'csh$' . -v sh$ ')
? grep -c $i /etc/passwd
? end
27
128
430
%

Note here that the shell prompts for input with '? 'when reading the body of the loop.

Very useful with loops are variables that contain lists of filenames or other words. You
can, for example, do

% set a=('ls')
%echo$a
csh.n csh.rm
%Is
csh.n
csh.rm
%echo$#a
2
%

The set command here gave the variable a a list of all the filenames in the current directory as
value. We can then iterate over these names to perform any chosen function.

The output of a command within '" characters is converted by the shell to a list of words.
You can also place the'" quoted string within 'H' characters to take each (non-empty) line as a
component of the variable. This prevents the lines from being split into words at blanks and
tabs. A modifier ':x' can later expand each component of the variable into another variable,
splitting it into separate words at embedded blanks and tabs.

4.2. Braces { ••• } in Argument Expansion

Another form of filename expansion involves the characters '{' and T. These characters
specify that the contained strings, separated by',', are to be consecutively substituted into the
containing characters and the results expanded left to right. Thus

A{ str1,str2,. .. strn}B

expands to

- 25 -

Astr1 B Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied recursively
(i.e. nested). The results of each expanded string are sorted separately, left to right order being
preserved. If no other expansion mechanisms are used, the resulting filenames need not exist.
This means that this mechanism can be used to generate arguments that are not filenames, but
have common parts.

A typical use of this would be

mkdir N/{hdrs,retrofit,csh}

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is most
useful when the common prefix is longer than in this example, i.e.

chown bin lusr/{bin/{ex,edit},lib/{ex1.1strings,how_ex}}

This command changes the ownership of all the following files: /usr/bin/ex, lusr/bin/edit,
lusr/lib/ex1.1 strings, and lusr/lib/how_ex.

4.3. Command Substitution

A command enclosed in '" characters is replaced, just before filenames are expanded, by
the output from that command. Thus it is possible to do

set pwd='pwd'

to save the current directory in the variable pwd or to do

ex 'grep -I TRACE -.c'

to run the editor ex supplying as arguments those files whose names end in '.c' and have the
string 'TRACE' in them.-

4.4. Other Details Not Covered Here

Sometimes you may need to know the exact nature and order of different substitutions
performed by the shell. The exact meaning of certain combinations of quotations is also occa­
sionally important. These are detailed fully in the manual section.

The shell has a number of command line option flags that are mostly of use in writing UNIX

programs and debugging shell scripts. See the manual entry for a list of these options.

·Command expansion also occurs in input redirected with '< <' and within '.' quotations, Refer to the shell
manual section for tull details,

- 26-

Appendix - Special Characters

The following table lists the special characters of csh and the UNIX system, giving for each the
section(s) in which it is discussed. A number of these characters also have special meaning in
expressions. See the csh manual entry for a complete list.

Syntactic metacharacters
2.4 separates commands to be executed sequentially

I 1.5 separates commands in a pipeline
() 2.2,3.6 brackets expressions and variable values
& 2.5 follows commands to be executed without waiting for completion

Fi lename metacharacters
/ 1.6 separates components of a file's pathname
? 1.6 expansion character matching any single character
* 1.6 expansion character matching any sequence of characters
[] 1.6 expansion sequence matching any single character from a set

1.6 used at the beginning of a filename to indicate home directories
{} 4.2 used to specify groups of arguments with common parts

Quotation metacharacters
\ 1.7 prevents meta-meaning of following single character

1.7 prevents meta-meaning of a group of characters
n 4.3 like', but allows variable and command expansion

Input/output metacharacters
< 1.3 indicates redirected input
> 1.5 indicates redirected output

Expansion/substitution metacharacters
$ 3.4 indicates variable substitution

2.3 indicates history substitution
3.6 precedes substitution modifiers

t 2.3 used in special forms of history substitution
4.3 indicates command substitution

Other metacharacters
#: 3.6 begins a shell comment

1.2 prefixes option (flag) arguments to commands

- 27 -

Glossary

This glossary lists the most important terms introduced in the introduction to the shell and
gives references to sections of this document for further information about them. References of
the form 'pr (1)' indicate that the command pr is in the Plexus Sys3 UNIX Programmer's Manual
in section 1. You can get an online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in section 2.5 of this
manual.

alias

argument

argv

background

bin

break

built-in

Your current directory has the name '.' as well as the name printed by the com­
mand pwd. The current directory '.' is usually the first component of the search
path contained in the variable path; thus commands that are in '.' are found
first (2.2). The character '.' is also used in separating components of filenames
(1.6). The character '.' at the beginning of a component of a pathname is
treated specially and not matched by the filename expansion metacharacters
'T, '*', and '[' T pairs (1.6).

Each directory has a file ' . .' in it, which is a reference to its parent directory.
After changing into the directory with chdir, i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

The current directory is printed by pwd (2.6).

An alias specifies a shorter or different name for a UNIX command, or a
transformation on a command to be performed in the shell. The shell has a
command alias, which establishes aliases and can print their current values.
The command unalias is used to remove aliases (2.6).

Commands in UNIX receive a list of argument words. Thus the command

echo abc

consists of a command name 'echo' and three argument words 'a', 'b' and 'c'
(1.1).

The list of arguments to a command written in the shell language (a shell script
or shell procedure) is stored in a variable called argv within the shell. This
name is taken from the conventional name in the C programming language
(3.4).

Commands started without waiting for them to complete are called background
commands (1.5).

A directory containing binaries of programs and shell scripts to be executed is
typically called a 'bin' directory. The standard system 'bin' directories are '/bin',
which contains the most heavily used commands, and '/usr/bin', which contains
most other user programs. Other binaries are contained in directories such as
'/usr/plx' where new and Plexus-specific programs are placed. You can place
binaries in any directory. If you wish to execute them often, the directory's
name should be a component of the variable path.

Break is a built-in command used to exit from loops within the control structure
of the shell (3.6).

A command executed directly by the shell is called a built-in command. Most
commands in UNIX are not built-into the shell, but rather exist as files in 'bin'
directories. These commands are accessible because the directories in which
they reside are named in the path variable.

case

cat

cd

chdir

cmp

command

- 28-

A case command is used as a label in a switch statement in the shell's control
structure, similar to that of the language C. Details are given in the shell's
documentation 'csh (NEW)' (3.7).

The cat program catenates a list of specified files on the standard output. It is
usually invoked to look at the contents of a single file on the terminal, to 'cat a
file' (1.8, 2.3).

The cd command is used to change the working directory. With no arguments,
cd changes your working directory to be your home directory (2.3) (2.6).

The chdir command is a synonym for cd. Cd is usually typed because it is
shorter.

Cmp is a program that compares files. It is usually used on binary files, or to
see if two files are identical (3.6). For comparing text files the program diff,
described in 'diff (1)' is used.

A function performed by the system, either by the shell (a built-in command) or
by a program residing in a file in a directory within the UNIX system is called a
command (1.1).

command substitution

component

continue

core dump

cp

.cshrc

date

debugging

default

DELETE

The replacement of a command enclosed in '" characters by the text output by
that command is called command substitution (3.6, 4.3).

A part of a pathname between 'f' characters is called a component of that
pathname. A variable that has multiple strings as value is said to have several
components, and each string is a component of the variable.

A built-in command that causes execution of the enclosing foreach or while
loop to cycle prematurely. Similar to the continue command in the program­
ming language C (3.6).

When a program terminates abnormally, the system places an image of its
current state in a file named 'core'. This 'core dump' can be examined with the
system debuggers 'adb (1)' and 'sdb (1)' in order to determine what went wrong
with the program (1.8). If the shell produces a message of the form:

commandname: Illegal instruction -- Core dumped

(where 'Illegal instruction' is only one of several possible messages) you should
report this to the author of the program and save the 'core' file.

The cp (copy) program copies the contents of one file into another file. It is
one of the most commonly used UNIX commands (2.6).

The file .cshrc in your home directory is read by each shell as it begins execu­
tion. It is usually used to change the setting of the variable path and to set
alias parameters, which take effect globally (2.1).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell sCripts.
The shell has several options and variables that may be used to aid in shell
debugging (4.4).

The label default: is used within shell switch statements, as it is in the C
language to label the code to be executed if none of the case labels matches
the value switched on (3.7).

The DELETE or RUBOUT key on the terminal is used to generate an INTERRUPT

signal, which stops the execution of most programs on UNIX (2.6).

detached

diagnostic

directory

echo

else

EOF

escape

/etc/passwd

exit

exit status

expansion

- 29 -

A command run without waiting for it to complete is said to be detached (2.5).

An error message produced by a program is often referred to as a diagnostic.
Most error messages are not written to the standard output, since that is often
directed away from the terminal (1.3, 1.5). Error messages are instead written
to the diagnostic output which may be directed away from the terminal, but
usually is not. Thus diagnostics will usually appear on the terminal (2.5).

A structure that contains files. At any time you are 'in' one particular directory
whose names can be printed by the command 'pwd'. The chdir command will
position you 'in' another directory. The directory in which you are when you
first login is your home directory (1.1, 1.6).

The echo command prints its arguments (1.6, 2.6, 3.6, 3.10).

The else command is part of the 'if-then-else-endif' control command construct
(3.6).

An end-ot-file is generated by the terminal by a control-d, and whenever a
command reads to the end of a file that it has been given as input. Commands
receiving input from a pipe receive an end-of-file when the command sending
them input completes. Most commands terminate when they receive an end­
of-file. The shell has an option to ignore end-of-file from a terminal input; this
option may help you keep from logging out accidentally (1.1, 1.8, 3.8).

A character \ used to prevent the special meaning of a metacharacter is called
an escape character, because the special meaning is 'escaped'. Thus

echo *
will echo the character '*' while just

echo *

will echo the names of the file in the current directory. In this example, \
escapes '*' (1.7). There is also a non-printing character called escape, usually
labeled ESC or AL TMODE on terminal keyboards. Some UNIX systems use this
character to indicate that output is to be suspended. Other systems use
control-s.

This file contains information about the accounts currently on the system. If
consists of a line for each account with fields separated by':' characters (2.3).
You can look at this file by saying

cat /etc/passwd

The command grep is often used to search for information in this file. See
'passwd (5)' and 'grep (1)' for more details.

The exit command is used to force termination of a shell script, and is built-into
the shell (3.9).

A command that discovers a problem may reflect this back to the command
(such as a shell) that invoked (executed) it. It does this by returning a non­
zero number as its exit status, a status of zero being considered 'normal termi­
nation'. The exit command can be used to force a shell command script to
give a non-zero exit status (3.5).

The replacement of strings that contain metacharacters by other strings is
referred to as the process of expansion. Thus the replacement of the word ,*,
by a sorted list of files in the current directory is a 'filename expansion'. Simi­
larly the replacement of the characters '!!' by the text of the last command is a
'history expansion'. Expansions are also referred to as substitutions (1.6, 3.4,
4.2).

expressions

extension

filename

- 30 -

Expressions are used in the shell to control the conditional structures used in
the writing of shell sCripts and in calculating values for these scripts. The
operators available in shell expressions are those of the language C (3.5).

Filenames often consist of a root name and an extension separated by the
character '.'. By convention, groups of related files often share the same root
name. Thus if 'prog.c' were a C program, then the object file for this program
would be stored in 'prog.o'. Similarly a paper written with the '-me' nrott macro
package might be stored in 'paper. me' while a formatted version of this paper
might be kept in 'paper. out' and a list of spelling errors in 'paper.errs' (1.6).

Each file in UNIX has a name consisting of up to 14 characters and not including
the character 'I'. This name is used in pathname building. Most file names do
not begin with the character '.', and contain only letters and digits with perhaps
a '.' separating the root portion of the filename from an extension (1.6).

filename expansion

flag

foreach

getty

goto

grep

hangup

Filename expansion uses the metacharacters '*', '?' and '[' and ']' to provide a
convenient mechanism for naming files. Using filename expansion it is easy to
name all the files in the current directory, or all files that have a common root
name. Other filename expansion mechanisms use the metacharacter ,N, and
allow files in other users directories to be named easily (1.6, 4.2).

Many UNIX commands accept arguments that are not the names of files or other
users but are used to modify the action of the commands. These are referred
to as flag options, and by convention consist of one or more letters preceded
by the character '-' (1.2). Thus the Is list file commands has an option '-s' to
list the sizes of files. This is specified

Is -s

The foreach command is used in shell scripts and at the terminal to specify
repetition of a sequence of commands while the value of a certain shell variable
ranges through a specified list (3.6, 4.1).

The getty program is part of the system that determines the speed at which
your terminal is to run when you first log in. It types the initial system banner
and 'login:'. When no one is logged in on a terminal a ps command shows a
command of the form '- 7' where '7' here is often some other single letter or
digit. This '7' is an option to the getty command, indicating the type of port it is
running on. If you see a getty command running on a terminal in the output of
ps you know that no one is logged in on that terminal (2.3).

The shell has a command goto used in shell scripts to transfer control to a
given labei (3.7).

The grep command searches through a list of argument files for a specified
stri ng. Thus

grep bill letc/passwd

will print each line in the file 'Ietc/passwd' that contains the string 'bill'. Actually,
grep scans for regular expressions in the sense of the editors 'ed (1)' and 'ex
(1)' (2.3). Grep stands for 'globally find regular expression and print' or, some
say, 'get regular expression pattern'.

When you hangup a phone line, a HANGUP signal is sent to all running
processes on your terminal, causing them to terminate execution prematurely.
If you wish to start commands to run after you log off a dialup you must use the
command nohup (2.6).

r head

- 31 -

The head command prints the first few lines of one or more files. If you have
files containing text you are wondering about, try running head with these files
as arguments. This usually shows enough of what is in these files to let you
decide which you are interested in (1.5, 2.3).

history The history mechanism of the shell allows previous commands to be repeated,
possibly after modification to correct typing mistakes or to change the meaning
of the command. The shell has a history list where these commands are kept,
and a history variable, which controls how large this list is (1.7, 2.6).

home directory Each user has a home directory, which is given in your entry in the password
file, /etc/passwd. This is the directory you are placed in when you first log in.
The cd or chdir command with no arguments takes you back to this directory,
whose name is recorded in the shell variable HOME. You can also access the
home directories of other users in forming filenames using a file expansion
notation and the character ,N, (1.6).

if

ignoreeof

input

interrupt

kill

. login

logout

.logout

A conditional command within the shell, the if command is used in shell com­
mand scripts to make decisions about what course of action to take next (3.6).

Normally, your shell exits, printing 'logout' if you type a control-d at a prompt of
'% '. This is the way you usually log off the system. But you can set the
ignoreeof variable in your ./ogin file and then use the command logout to
logout. This is useful if you sometimes accidentally type too many control-d
characters, logging yourself off (2.2, 2.6).

Many commands on UNIX take information from the terminal or from files that
they then act on. This information is called input. Commands normally read for
input from their standard input, which is, by default, the terminal. This stan­
dard input can be redirected from a file using a shell metanotation with the
character '<'. Many commands also read from a file specified as argument.
Commands placed in pipelines read from the output of the previous command
in the pipeline. The leftmost command in a pipeline reads from the terminal if
you neither redirect its input nor give it a file name to use as standard input.
Special mechanisms exist for supplying input to commands in shell scripts (1.2,
1.6,3.8).

An interrupt is a signal to a program that is generated by hitting the RUBOUT or
DELETE key. It causes most programs to stop execution. Certain programs
such as the shell and the editors handle an interrupt in special ways, usually by
stopping what they are doing and prompting for another command. While the
shell is executing another command and waiting for it to finish, the shell does
not listen to interrupts. The shell often wakes up when you hit interrupt
because many commands die when they receive an interrupt (1.8, 2.6, 3.9).

A program that terminates processes run without waiting for them to complete.
(2.6)

The file ./ogin in your home directory is read by the shell each time you log in
to UNIX and the commands there are executed. A number of commands are
usefully placed here, especially tset commands and set commands to the shell
itself (2.1).

The logout command causes a login shell to exit. Normally, a login shell will
exit when you hit control-d generating an end-ot-tile, but it you have set
ignoreeof in your .Iogin file, then this will not work and you must use logout to
log off the UNIX system (2.2).

When you log off ot UNIX the shell will execute commands from the file .Iogout
in your home directory after it prints 'logout'.

Ipr

Is

mail

make

makefile

manual

- 32 -

The command Ipr is the line printer daemon. The standard input of Ipr is
spooled and printed on the UNIX line printer. You can also give Ipr a list of
filenames as arguments to be printed. Lpr is usually the last component of a
pipeline (2.3).

The Is list files command is one of the most commonly used UNIX commands.
With no argument filenames it prints the names of the files in the current direc­
tory. It has a number of useful flag arguments, and can also be given the
names of directories as arguments, in which case it lists the names of the files
in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users
(1.1,2.2).

The make command is used to maintain one or more related files and to organ­
ize functions to be performed on these files. In many ways make is easier to
use, and more helpful than shell command scripts (3.2).

The file containing commands for make is called 'makefile' (3.2).

The 'manual' often referred to is the Plexus Sys3 UNIX Programmer's Manual.
It contains a description of each UNIX program. An online version of the manual
is accessible through the man command. Its documentation can be obtained
online via

man man

metacharacter Many characters that are neither letters nor digits have special meaning either
to the shell or to UNIX. These characters are called metacharacters. If these
characters must be used without their special meaning in arguments to com-
mands, then they must be quoted. An example of a metacharacter is the char- ~
acter '>', which is used to indicate placement of output into a file. For the pur-
poses of the history mechanism, most unquoted metacharacters form separate
words (1.4). The appendix to this manual lists the metacharacters in groups by
their function.

mkdir The mkdir command is used to create a new directory (2.6).

modifier

noclobber

nohup

nroff

onintr

output

Substitutions with the history mechanism, keyed by the character '!' or of vari­
ables using the metacharacter 'S' are often subjected to modifications, indicated
by placing the character ':' after the substitution and following this with the
modifier itself. The command substitution mechanism can also be used to per­
form modification in a similar way, but this notation is less clear (3.6).

The shell has a variable noclobber, which may be set in the file .Iogin to
prevent accidental destruction of files by the '>' output redirection metasyntax
of the shell (2.2, 2.5).

A shell command used to allow background commands to run to completion
even if you log off a dialup before they complete. (2.5)

The standard text formatter on UNIX is the program nro". Using nro" and one
of the available macro packages for it, documents may be automatically for­
matted and prepared for phototypesetting using the typesetter program troff
(3.2).

The onintr command is built-into the shell and is used to control the action of a
shell command script when an interrupt signal is received (3.9).

Many commands in UNIX produce output. This output is usually placed on what
is known as the standard output, which is normally connected to the user's ter­
minal. The shell metacharacter '>' redirects the standard output of a com­
mand to a file (1.3). Using the pipe mechanism and the metacharacter '1'. the
standard output of one command may become the standard input of another

path

path name

pipeline

pr

printenv

process

program

- 33 -

command (1.5). Certain commands such as the line printer daemon /pr do not
place their results on the standard output but rather in more useful places such
as on the line printer (2.3). Similarly the write command places its output on
another user's terminal rather than its standard output (2.3). Commands also
have a diagnostic output where they write their error messages. Normally
these go to the terminal even if the standard output has been sent to a file or
another command, but you may direct error diagnostics along with standard
output using a special metanotation (2.5).

The shell has a variable path, which gives the names of the directories in
which it searches for the commands that it is given. It always checks first to
see if the command it is given is built-into the shell. If it is, then it need not
search for the command as it can do it internally. If the command is not built­
in, then the shell searches for a file with the name given in each of the direc­
tories in the path variable, left to right. Since the normal definition of the path
variable is

path (. fbin fusrfbin)

the shell normally looks in the current directory, and then in the standard sys­
tem directories 'fbin' and 'Iusrlbin' for the named command (2.2). If the com­
mand cannot be found the shell will print an error diagnostic. Scripts of shell
commands are executed using another shell to interpret them if they have 'exe­
cute' bits set. This is normally true because a command of the form

chmod 755 script

was executed to turn these execute bits on (3.3).

A list of names, separated by 'I' characters forms a pathname. Each com­
ponent, between successive 'I' characters, names a directory in which the next
component file resides. Pathnames that begin with the character 'I' are inter­
preted relative to the root directory in the file system. Other pathnames are
interpreted relative to the current directory as reported by pwd. The last com­
ponent of a pathname may name a directory, but usually names a file.

A group of commands connected together, the standard output of each con­
nected to the standard input of the next, is called a pipeline. The pipe mechan­
ism used to connect these commands is indicated by the shell metacharacter T
(1.5,2.3).

The pr command prepares listings of the contents of files with headers giving
the name of the file and the date and time at which the file was last modified
(2.3).

The printenv command is used on version 7 UNIX systems to print the current
setting of variables in the environment (2.6).

A instance of a running program is called a process (2.6). The numbers used
by kill and printed by wait are unique numbers generated for these processes
by UNIX. They are useful in kill commands, which can be used to stop back­
ground processes. (2.6)

Usually synonymous with command; a binary file or shell command script that
performs a useful function is often called a program.

Programmer's Manual

prompt

Also referred to as the manual. See the glossary entry for 'manual'.

Many programs print a prompt on the terminal when they expect input. Thus
the editor 'ex' prints a ':' when it expects input. The shell prompts for input with
'% ' and occasionally with '? ' when reading commands from the terminal (1.1).
The shell has a variable prompt, which may be set to a different value to

ps

pwd

quit

quotation

redirection

repeat

RUBOUT

script

set

setenv

shell

shell script

sort

source

- 34-

change the shell's main prompt. This is mostly used when debugging the shell
(2.6).

The ps command shows the processes you are currently running. Each pro­
cess is shown with its unique process number, an indication of the terminal
name it is attached to, and the amount of CPU time it has used so far. The
command is identified by printing some of the words used when it was invoked
(2.3, 2.6). Login shells, such as the csh you get when you login are shown as

The pwd command prints the full pathname of the current (working) directory.

The quit signal, generated by a control-\ is used to terminate programs that
are behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning,
usually by using the character" in pairs, or by using the character '\' (1.4).

The routing of input or output from or to a file is known as redirection of input
or output (1.3).

The repeat command iterates another command a specified number of times
(2.6).

The RUBOUT or DELETE key generates an interrupt signal that is used to stop
programs or to return and prompt for more input (2.6).

Sequences of shell commands placed in a file are called shell command
scripts. You may perform simple tasks using these scripts without writing a
program in a language such as C, by using the shell to selectively run other
programs (3.2, 3.3, 3.10).

The built-in set command is used to assign new values to shell variables and
to show the values of the current variables. Many shell variables have special
meaning to the shell itself. Thus by using the set command the behavior of the
shell can be affected (2.1).

Variables in the environment 'environ (5)' can be changed by using the setenv
built-in command (2.6). The printenv command can be used to print the value
of the variables in the environment.

A shell is a command language interpreter. You may write and run your own
shell, as shells are no different from any other programs as far as the system is
concerned. This manual deals with the details of one particular shell, called
csh.

See script (3.2, 3.3, 3.10).

The sort program sorts a sequence of lines in ways that can be controlled by
argument flags (1.5).

The source command causes the shell to read commands from a specified file.
It is most useful for reading files such as .cshrc after changing them (2.6).

special character

standard

status

See metacharacters and the appendix to this manual.

We refer often to the standard input and standard output of commands. See
input and output (1.3, 3.8).

A command normally returns a status when it finishes. By convention a status
of zero indicates that the command succeeded. Commands may return non­
zero status to indicate that some abnormal event has occurred. The shell vari­
able status is set to the status returned by the last command. It is most useful
in shell command scripts (3.5, 3.6).

substitution

switch

termination

then

time

troff

tset

unalias

UNIX

unset

- 35 -

The shell implements a number of substitutions where sequences indicated by
metacharacters are replaced by other sequences. Notable examples of this are
history substitution keyed by the metacharacter '!' and variable substitution indi­
cated by '$'. We also refer to substitutions as expansions (3.4).

The switch command of the shell allows the shell to select one of a number of
sequences of commands based on an argument string. It is similar to the
switch statement in the language C (3.7).

When a command that is being executed finishes, we say it undergoes termina­
tion or terminates. Commands normally terminate when they read an end-of­
file from their standard input. It is also possible to terminate commands by
sending them an interrupt or quit signal (1.8). The kill program terminates
specified command whose numbers are given (2.6).

The then command is part of the shell's 'if-then-else-endif' control construct
used in command scripts (3.6).

The time command can be used to measure the amount of CPU and real time
consumed by a specified command (2.1, 2.6).

The troff program is used to typeset documents. See also nroff (3.2).

The tset program is used to set standard erase and ki II characters and to tell
the system what kind of terminal you are using. It is often invoked in a ./ogin
file (2.1).

The unalias command removes aliases (2.6).

UNIX is an operating system on which csh runs. UNIX provides facilities that
allow csh to invoke other programs such as editors and text formatters.

The unset command removes the definitions of shell variables (2.2, 2.6).

variable expansion

variables

verbose

wait

while

word

See variables and expansion (2.2, 3.4).

Variables in csh hold one or more strings as value. The most common use of
variables is in controlling the behavior of the shell. See path, noclobber, and
ignoreeof for examples. Variables such as argv are also used in writing shell
programs (shell command scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after
they are history-expanded. This is often useful in debugging shell scripts. The
verbose variable is set by the shells -v command line option (3.10).

The built-in command wait causes the shell to pause, and not prompt, until all
commands run in the background have terminated (2.6).

The while built-in control construct is used in shell command scripts (3.7).

A sequence of characters that forms an argument to a command is called a
word. Many characters that are neither letters, digits, '-', '.' or 'j' form words all
by themselves even if they are not surrounded by blanks. Any sequence of
character may be made into a word by surrounding it with'" characters except
for the characters'" and T, which require special treatment (1.1, 1.6). This
process of placing special characters in words without their special meaning is
called quoting.

working directory
At an given time you are in one particular directory, called your working direc­
tory. This directory's name is printed by the pwd command and the files listed
by Is are the ones in this directory. You can change working directories using
chdir.

write

- 36-

The write command is used to communicate with other users who are logged
in to UNIX (2.3).

"'::0'

r
Edit: A Tutorial

Acknowledgement

This document is based on Edit: A Tutorial by Ricki Blau and James Joyce.

Introduction

Text editing using a terminal connected to a computer allows you to create, modify, and
print text easily. Creating text is much like typing it as you would on an electric typewriter.
Modifying text involves telling the text editor what to add, change, or delete. Printing text is
accomplished merely by giving the proper command, with or without special instructions as to
the format of the desired output.

These lessons assume no prior familiarity with computers or with text editing. They con­
sist of a series of text editing sessions, which will lead you through the fundamental steps of
creating and revising a file of text. After scanning each lesson and before beginning the next,
you should follow the examples at a terminal to get a feeling for the actual process of text edit­
ing. Set aside some time for experimentation, and you will soon become familiar with using the
computer to write and modify text. In addition to the actual use of the text editor, other features
of UNIX will be very important to your work. You can begin to learn about these other features by
reading UNIX for Beginners or one of the other tutorials that provide a general introduction to the
system. You will be ready to proceed with this lesson as soon as you are familiar with your ter­
minal and its special keys, the login procedure, and the ways of correcting typing errors. Let's
first define some terms:

program

UNIX

edit

A set of instructions given to the computer, describing the sequence of steps that
the computer performs in order to accomplish a specific task. As an example, a
series of steps to balance your checkbook is a program.

UNIX is a special type of program called an operating system. It supervises the
machinery and all other programs comprising the total computer system.

edit is the name of the UNIX text editor that you will be learning to use. A text edi­
tor (or "editor" for short) is a program that aids you in writing or revising text. Edit
was designed for beginning users, and is a simplified version of an editor called
ex.

file Each UNIX account is allotted space for the permanent storage of information, such
as programs, data or text. A file is a logical unit of data, for example, an essay, a
program, or a chapter from a book, which is stored on a computer system. Once
you create a file, it is kept until you instruct the system to remove it. You may
create a file during one UNIX session, log out, and return to use it at a later time.
Files contain anything you choose to write and store in them. The sizes of files
vary to suit your needs; one file might hold only a single number while another
might contain a very long document or program. The only way to save information
from one session to the next is to store it in a file.

filename Filenames distinguish one file from another. They serve the same purpose as the
labels of manila folders in a file cabinet. In order to get access to information in a
file, you use the name of that file in a UNIX command, and the system automatically
locates the file.

disk

buffer

- 2 -

Files are stored on an input/output device called a disk. which looks something like
a stack of phonograph records. Each surface is coated with a material similar to
the coating on magnetic recording tape. on which information is recorded.

A temporary work space. made available to the user for the duration of a session
of text editing and used for building and modifying the text file. We can imagine
the buffer as a blackboard that is erased after each class. where each session with
the editor is a class.

Session 1: Creating a File of Text

To use the editor you must first make contact with the computer by logging in to UNIX.
We'll quickly review the standard UNIX login procedure.

If the terminal you are using is directly linked to the computer, turn it on and press carriage
return, usually labeled "RETURN". If your terminal connects with the computer over a telephone
line, turn on the terminal, dial the system access number, and, when you hear a high-pitched
tone, place the receiver of the telephone in the acoustic coupler. Press carriage return once
and wait for the login message:

:Iogin:

Type your login name. which identifies you to UNIX. on the same line as the login message,
and press carriage return. If the terminal you are using has both upper and lower case, be sure
you enter your login name in lower case; otherwise UNIX assumes your terminal has only upper
case and will not recognize lower case letters you may type. UNIX types ":Iogin:" and you reply ~.
with your login name, for example "susan": ~

:Iogin: susan (and press carriage return)

(In the examples, input typed by the user appears in bold to distinguish it from the responses
from UNIX.)

UNIX next responds with a request for a password as an additional precaution to prevent
unauthorized people from using your account. The password does not appear when you type it,
to prevent others from seeing it. The message is:

Password: (type your password and press carriage return)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX
responds with

Login incorrect.
:Iogin:

in which case you should start the login process anew. Assuming that you have successfully
logged in, UNIX may print the message of the day and eventually presents you with a $ or % at
the beginning of a fresh line. The $ or % is the UNIX prompt symbol, which tells you that UNIX is
ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a con­
venient time to choose a name for the file of text that you are about to create. To begin your
editing session type edit followed by a space and then the filename you have selected, for
example "text". When you have completed the command, press carriage return and wait for
edit's response:

r
- 3 -

$ edit text (followed by a carriage return)
"text" No such file or directory

If you typed the command correctly, you are now in communication with edit. Edit has set aside
a buffer for use as a temporary working space during your current editing session. It also
checked to see if the file you named, "text", already existed. As we expected, it was unable to
find such a file since "text" is the name of a new file. Edit confirms this with the line:

"text" No such fi Ie or di rectory

On the next line appears edit's prompt ":", announcing that edit expects a command from you.
You may now begin to create the new file.

The "not found" Message

If you misspelled "edit" by typing, say, "editor", your request is handled as follows:

$ editor
editor: not found
$

Your mistake in calling edit "editor" was treated by UNIX as a request for a program named "edi­
tor". Since there is no program named "editor", UNIX reported that the program was "not found".
A new $ indicates that UNIX is ready for another command, so you may enter the correct com­
mand.

Summary

Your exchange with UNIX as you logged in and made contact with edit should look some­
thing like this:

Entering Text

:Iogin: susan
Password:
Computer Center UNIX System
... A Message of General Interest ...
$ edit text
"text" No such fi Ie or di rectory

You may now begin to enter text into the buffer. This is done by appending text to what­
ever is currently in the buffer. Since there is nothing in the buffer at the moment, you are
appending text to nothing; in effect, you are creating text. Most edit commands have two forms:
a word that describes what the command does and a shorter abbreviation of that word. Either
form may be used. Many beginners find the full command names easier to remember, but once
you are familiar with editing you may prefer to type the shorter abbreviations. The command to
input text is "append" which may be abbreviated "a". Type append and press carriage return.

% edit text
: append

Messages from edit

If you make a mistake in entering a command and type something that edit does not
recognize, edit responds with a message intended to help you diagnose your error. For exam­
ple, if you misspell the command to input text by typing, perhaps, "add" instead of "append" or
"a", you receive this message:

- 4 -

: add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part
of your command confused edit. The message above means that edit was unable to recognize
your mistyped command and, therefore, did not execute it. Instead, a new":" appeared to let
you know that edit is again ready to execute a command.

Text Input Mode

By giving the command "append" (or using the abbreviation "a"), you entered text input
mode, also known as append mode. When you enter text input mode, edit responds by doing
nothing. You do not receive any prompts while in text input mode. This is your signal that you
are to begin entering lines of text. You can enter pretty much anything you want on the lines.
The lines are transmitted one by one to the buffer and held there during the editing session.
You may append as much text as you want. When you wish to stop entering text, type a period
as the only character on the line and press carriage return. When you give this signal, you exit
from text input mode and reenter command mode. Edit again prompts you for a command by
printing ":".

Leaving append mode does not destroy the text in the buffer. You have to leave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If you
type a period as the first character and type any other character on the same line, edit believes
you want to remain in append mode and does not let you out. As this can be very frustrating,
be sure to type only the period and carriage return.

This is as good a place as any to learn an important lesson about computers and text: a
blank space is a character as far as a computer is concerned. If you so much as type a period
followed by a blank (that is, type a period and then the space bar on the keyboard), you will
remain in append mode with the last line of text being:

Let's say that the lines of text you enter are (try to type exactly what you see, including "thiss"):

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.

The last line is the period followed by a carriage return that gets you out of append mode. If
while typing the line you hit an incorrect key, recall that you may delete the incorrect character
or cancel the entire line of input by erasing in the usual way. Erasing a character or cancelling a
line must be done before the line has been completed by a carriage return. We will discuss
changes in lines already typed in session 2.

Writing Text to Disk

You are now ready to edit the text. The simplest kind of editing is to write it to disk as a
file for safekeeping after the session is over. This is the only way to save information from one
session to the next, since the editor's buffer is temporary and lasts only until the end of the edit­
ing session. Thus, learning how to write a file to disk is second in importance only to entering
the text. To write the contents of the buffer to a disk file, use the command "write" (or its abbre­
viation "w"):

: write

Edit copies the buffer to a disk file. If the file does not yet exist, a new file is created automati­
cally and the presence of a "[New file)" is noted. The newly-created file is given the name
specified when you entered the editor, in this case "text". To confirm that the disk file has been

- 5 -

successfully written, edit repeats the filename and gives the number of lines and the total
number of characters in the file. The buffer remains unchanged by the "write" command. All of
the lines that were written to disk are still in the buffer, should you want to modify or add to
them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the
name of the file when you began the editing session, edit prints

No current filename

in response to your write command. If this happens, you can specify the filename in a new
write command:

: write text

After the "write" (or "w") type a space and then the name of the file.

Signing Off

We have done enough for this first lesson on using the UNIX text editor, and are now ready
to quit the edit session. To do this we type "quit" (or "q") and press carriage return:

: write
"text" [New file] 3 lines, 90 characters
: quit
$

The $ is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Since we want to end the entire session at the terminal we also need to exit from UNIX.
In response to the UNIX prompt of "%" type a "control d". This is done by holding down the con­
trol key (usually labeled "CTRL") and simultaneously pressing the d key. This ends your session
with UNIX and makes the terminal ready for the next user. It is always important to type a
"control-d" at the end of a session to make absolutely sure no one could accidentally stumble
into your abandoned session and thus gain access to your files, tempting even the most honest
of souls.

This is the end of the first session on UNIX text editing.

- 6-

Session 2

Login with UNIX as in the first session:

:Iogin: susan (carriage return)
Password: (give password and carriage return)
Computer Center UNIX System
$

This time when you say that you want to edit, you can specify the name of the file you worked
on last time. This starts edit working and it fetches the contents of the file into the buffer, so
that you can resume editing the same file. When edit has copied the file into the buffer, it
repeats the file name and tells you the number of lines and characters the file contains. Thus,

$ edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named "text" for editing, causing it to copy the 90 charac­
ters of text into the buffer. Edit awaits your further instructions. In this session, we will append
more text to our file, print the contents of the buffer, and learn to change the text of a line.

Adding More Text to the File

If you want to add to the end of your text you may do so by using the append command to
enter text input mode. Here we'll use the abbreviation for the append command, "a":

Interrupt

:a
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Should you press the RUBOUT key (sometimes labeled DELETE) while working with edit, it
will send this message to you:

Interrupt

Any command that edit might be executing is terminated by RUBOUT or DELETE, causing edit
to prompt you for a new command. If you are appending text at the time, you exit from append
mode and return to command mode. The line of text that you were typing when the append
command was interrupted is not entered into the buffer.

Making Corrections

If you have read a general introduction to UNIX, such as UNIX for Beginners, you will recall
that you may erase individual letters that you have typed. This is done by typing the designated
erase character, usually the number sign (#), as many times as there are characters you want
to erase. If you make a bad start in a line and would like to begin again, this technique is
cumbersome - what if you had 15 characters in your line and wanted to get rid of them? To do
so either requires:

This is yucky tex###############

with no room for the great text you'd like to type, or,

This is yucky tex@This is great text.

When you type the at-sign (@), you erase the entire line typed so far. You may immediately

~
\

- 7 -

begin to retype the line. This, unfortunately, does not help after you type the line and press car­
riage return. To make corrections in lines that have been completed, you must use the editing
commands covered in this session and those that follow.

Listing What's in the Buffer

Having appended text to what you wrote in Lesson 1, you might be curious to see what is
in the buffer. To print the contents of the buffer, type the command:

: 1,$p

The "1" stands for line 1 of the buffer, the "$" is a speCial symbol designating the last line of the
. buffer, and "p" (or print) is the command to print from line 1 to the end of the buffer. Thus,
"1,$p" gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editor.

Occasionally, you may enter into the buffer a character that can't be printed, which is done by
striking a key while the CTRL key is depressed. In printing lines, edit uses a special notation to
show the existence of non-printing characters. Suppose you had introduced the non-printing
character "control-a" into the word "illustrate" by accidently holding down the CTRL key while
typing "a". Edit would display

it does iIIustr'Ate the editor.

if you asked to have the line printed. To represent the control-a, edit shows "'A". The
sequence "A" followed by a capital letter stands for the one character entered by holding down
the CTRL key and typing the letter that appears after the "'''. We'll soon discuss the commands
that can be used to correct this typing error.

In looking over the text we see that "this" is typed as "thiss" in the second line, as sug­
gested. Let's correct the spelling.

Finding Things in the Buffer

In order to change something in the buffer we first need to find it. We can find "thiss" in
the text we have entered by looking at a listing of the lines. Physically speaking, we search the
lines of text looking for "thiss" and stop searching when we have found it. To tell edit to search
for something type it inside slash marks:

:/thissl

By typing Ithissl and pressing carriage return edit is instructed to search for "thiss". If we
asked edit to look for a pattern of characters that it could not find in the buffer, it would respond
"Pattern not found". When edit finds the characters "thiss", it prints the line of text for your
inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line that it just printed, ready to make a change in the
line.

The Current Line

At all times during an editing session, edit keeps track of the line in the buffer where it is
positioned. In general, the line that has been most recently printed, entered, or changed is con­
sidered to be the current position in the buffer. 'tOlA can refer to your current position in the
buffer by the symbol period (.) usually known by the name "dot". If you type and carriage

- 8 -

return you will be instructing edit to print the current line:

And thiss is some more text.

If you want to know the number of the current line, type .= and carriage return, and edit
responds with the line number:

:.=
2

If you type the number of any line and a carriage return, edit positions you at that line and prints
its contents:

:2
And thiss is some more text.

You should experiment with these commands to assure yourself that you understand what they
do.

Numbering Lines {nul

The number (nu) command is similar to print, giving both the number and the text of each
printed line. To see the number and the text of the current line type

:nu
2 And thiss is some more text.

Notice that the shortest abbreviation for the number command is "nu" (and not "n',' which is
used for a different command). You may specify a range of lines to be listed by the number
command in the same way that lines are specified for print. For example, "1,$nu" lists all lines
in the buffer with the corresponding line numbers.

Substitute Command (s)

Now that we have found our misspelled word it is time to change it from "thiss" to "this".
As far as edit is concerned, changing things is a matter of substituting one thing for another. As
a stood for append, so s stands for substitute. We use the abbreviation "s" to reduce the
chance of mistyping the substitute command. This command instructs edit to make the change:

2s/thiss/thisl

We first indicate the line to be changed, line 2, and then type an "s" to indicate we want substi­
tution. Inside the first set of slashes are the characters that we want to change, followed by the
characters to replace them and then a closing slash mark. To summarize:

2s1 what is to be changed 1 what to change to 1

If edit finds an exact match of the characters to be changed, it makes the change only in the
first occurrence of the characters. If it does not find the characters to be changed it responds:

Substitute pattern match failed

indicating your instructions could not be carried out. When edit does find the characters you
want to change, it makes the substitution and automatically prints the changed line, so that you
can check that the correct substitution was made. In the example,

: 2s/thiss/this/
And this is some more text.

line 2 (and line 2 only) is searched for the characters "thiss", and when the first exact match is
found, "thiss" is changed to "this". Strictly speaking, it was not necessary above to specify the
number of the line to be changed. In

- 9 -

: s/tlhiss/thisl

edit assumes that we mean to change the line where we are currently positioned ("."). In this
case, the command without a line number would have produced the same result because we
were already positioned at the line we wished to change.

For another illustration of substitution we may choose the line:

Text editing is strange, but nice.

We might like to be a bit more positive. Thus, we could take out the characters "strange, but"
so the line would read:

Text editing is nice.

A command that first positions edit at that line and then makes the substitution is:

: Istll"ange/s/strange, but II

Here we have combined our search with our substitution. Such combinations are perfectly
legal. This illustrates that we do not necessarily have to use line numbers to identify a line to
edit. Instead, we may identify the line we want to change by asking edit to search for a speci­
fied pattern of letters that occurs in that line. The parts of the above command are:

Istrangel tells edit to find the characters
"strange" in the text

s tells edit we want to make a substitution

Istrange, but II substitutes nothing at all for
the characters "strange, but"

You should note the space after "but" in "1st range, but I". If you do not indicate the space
is to be taken out, your line will be:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we realize
from this that a blank space is a real character to a computer, and in editing text we need to be
aware of spaces within a line just as we would be aware of an "a" or a "4".

Another Way to List What's in the Buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other com­
mands can be more convenient for viewing large sections of text. You can ask to see a screen
full of text at a time by using the command z. If you type

: 1z

edit starts with line 1 and continues printing lines, stopping either when the screen of your ter­
minal is full or when the last line in the buffer has been printed. If you want to read the next
segment of text, give the command

:z
If no starting line number is given for the z command, printing starts at the "current" line, in this
case the last line printed. Viewing lines in the buffer one screen full at a time is known as pag­
ing. Paging can also be used to print a section of text on a hard-copy terminal.

- 10 -

Saving the Modified Text

This seems to be a good place to pause in our work, and so we should end the second
session. If you (in haste) type "q" to quit the session your dialogue with edit will be:

:q
No write since last change (q! quits)

This is edit's warning that you have not written the modified contents of the buffer to disk. You
run the risk of losing the work you have done during the editing session since the latest write
command. Since in this lesson we have not written to disk at all, everything we have done would
be lost. If we did not want to save the work done during this editing session, we would have to
type "q!" to confirm that we indeed wanted to end the session immediately, losing the contents
of the buffer. However, since we want to preserve what we have edited, we need to say:

:w
"text" 6 lines, 171 characters

and then,

:q
$ {control d}

and hang up the phone or turn off the terminal when UNIX asks for a name. This is the end of
the second session on UNIX text editing.

- 11 -

Session 3

Bringing Text into the Buffer (e)

Login to UNIX and make contact with edit. Try to login without looking at the notes.

Did you remember to give the name of the file you wanted to edit? That is, did you say

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way brings a copy of the file named "text"
into the buffer. If you did forget to tell edit the name of your file, you can get it into the buffer by
saying:

:e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated "e", tells edit that you want to erase anything
that might already be in the buffer and bring a copy of the file "text" into the buffer for editing.
You may also use the edit (e) command to change files in the middle of an editing session or to
give edit the name of a new file that you want to create. Because the edit command clears the
buffer, you receive a warning if you try to edit a new file without having saved a copy of the old
file. This gives you a chance to write the contents of the buffer to disk before editing the next
file.

Moving Text in the Buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means of
the move (m) command:

:2,4m$

This command directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for
the move command is to specify the first line to be moved, the last line to be moved, the move
command "m", and the line after which the moved text is to be placed. Thus,

: 1,6m20

instructs edit to move lines 1 through 6 (inclusive) to a position after line 20 in the buffer. To
move only one line, say, line 4, to a position in the buffer after line 6, the command would be
"4m6".

Let's move some text using the command:

:5,$m1
2 lines moved
it does illustrate the editor.

After executing a command that changes more than one line of the buffer, edit tells how many
lines were affected by the change. The last moved line is printed for your inspection. If you
want to see more than just the last line, use the print (p), Z, or number (nu) command to view
more text. The buffer should now contain:

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

We can restore the original order by typing:

- 12 -

:4,$m1

or, combining context searching and the move command:

: / And this is somel,lThis is textlmlThis is some sample/

The problem with combining context searching with the move command is that the chance of
making a typing error in such a long command is greater than if one types line numbers.

Copying Lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original
lines where they were. Copy has the same format as the move command, for example:

: 12, 15copy $

makes a copy of lines 12 through 15, placing the added lines after the buffer's end ($). Experi­
ment with the copy command so that you can become familiar with how it works. Note that the
shortest abbreviation for copy is "co" (and not the letter "c", which has another meaning).

Deleting Lines (d)

Suppose you want to delete the Ii ne

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number fol­
lowed by "delete" or "d". This example deletes line 4:

:4d
It doesn't mean much here, but

Here "4" is the number of the line to be deleted and "delete" or "d" is the command to delete
the line. After executing the delete command, edit prints the line that has become the current
line (".").

If you do not happen to know the line number you can search for the line and then delete it
using this sequence of commands:

: /added in Session 2./
This is text added in Session 2.
:d
It doesn't mean much here, but

The "/added in Session 2.1" asks edit to locate and print the next line that contains the indicated
text. Once you are sure that you have correctly specified the line that you want to delete, you
can enter the delete (d) command. In this case you don't need to specify a line number before
the "d". If no line number is given, edit deletes the current line ("."), that is, the line found by
our search. After the deletion, your buffer should contain:

This is some sample text.
And this is some more text.
Text editi ng is nice.
It doesn't mean much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

you type

And this is some more text.
Text editing is nice.

:2,3d

- 13 -

which specifies the range of lines from 2 to 3, and the operation on those lines - "d" for delete.

Again, this presumes that you know the line numbers for the lines to be deleted. If you do
not you might combine the search command with the delete command as so:

: I And this is some/,/Text editing is nice.ld

A word or two of caution:

In using the search function to locate lines to be deleted you should be absolutely sure
the characters you give as the basis for the search will take edit to the line you want deleted.
Edit searches for the first occurrence of the characters starting from where you last edited - that
is, from the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which
edit will do as easily as if you had meant it. For this reason, it is usually safer to specify the
search and then delete in two separate steps, at least until you become familiar enough with
using the editor that you understand how best to specify searches. For a beginner it is not a
bad idea to double-check each command before pressing carriage return to send the command
on its way.

Undo (u) to the Rescue

The undo (u) command can reverse the effects of the last command. To undo the previ­
ous command, type "u" or "undo". Undo can rescue the contents of the buffer from many an
unfortunate mistake. However, its powers are not unlimited, so it is still wise to be reasonably
careful about the commands you give. It is possible to undo only commands that have the
power to change the buffer, for example delete, append, move, copy, substitute, and even undo
itself. The commands write (w) and edit (e), which interact with disk files, cannot be undone,
nor can commands such as print that do not change the buffer. Most importantly, the only com­
mand that can be reversed by undo is the one last "undo-able" command you gave.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command
we gave deleted the lines formerly numbered 2 and 3. Executing undo at this moment reverses
the effects of the deletion, causing those two lines to be replaced in the buffer.

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of
the line, which is now "dot" (the current line).

More about the Dot (.) and Buffer End ($)

The function assumed by the symbol dot depends on its context. It can be used

1. to exit from append mode. To do this, we type dot (and only a dot) on a line and press
carriage return;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being
edited:

:.=

Thus if we type ".=" we are asking for the number of the line and if we type we are asking
for the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the buffer
in commands such as print, copy, and move. The dollar sign as a command asks edit to print
the last line in the buffer. If the dollar sign is combined with the equal sign ($=) edit will print
the line number corresponding to the last line in the buffer.

·14·

010 " and 01$" therefore represent line numbers. Whenever appropriate, these symbols can
be used in place of line numbers in commands. For example

:o,$d

instructs edit to delete all lines from the current line (0) to the end of the buffer.

Moving around in the Buffer (+ and-)

During an editing session, you often want to go back and re-read a previous line. You
could specify a context search for a line you want to read if you remember some of its text, but
if you simply want to see what was written a few, say 3, lines ago, you can type

·3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line.
We can move forward in the buffer similarly:

+2p

instructs edit to print the line that is 2 ahead of our current position.

You may use 01+" and 01." in any command where edit accepts line numbers. Une
numbers specified with 01+" or 01 0 " can be combined to print a range of lines. The command

:-1,+2copy$

makes a copy of 4 lines: the current line, the line before it, and the two after it. The copied
lines are placed after the last line in the buffer ($).

Try typing only 01 0 "; you move back one line just as if you had typed uo1p". Typing the
command 01+" works similarly. You might also try typing a few plus or minus signs in a row
(such as 01+++") to see edit's response. Typing a carriage return alone on a line is the ~
equivalent of typing u+ 1p"; it moves you one line ahead in the buffer and prints that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a
u+" or a carriage return alone on the line, edit reminds you that you are at the end of the
buffer:

At end-of-file

Similarly, if you try to move to a position before the first line, edit prints one of these messages:

Nonzero address required on this command
Negative address 0 first buffer line is 1

The number associated with a buffer line is the line's "address", because it can be used to
locate the line.

Changing Lines (c)

You may on occasion want to delete certain lines and insert new text in their place. This
can be accomplished easily with the change (c) command. The change command instructs edit
to delete specified lines and then switch to text input mode in order to accept the text that
replaces them. Let's say we want to change the first two lines in the buffer:

to read

This is some sample text.
And this is some more text.

This text was created with the UNIX text editor.

To do so, you can type:

- 15 -

:1,2c
2 lines changed
This text was created with the UNIX text editor.

In the command 1,2c we specify that we want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted.
After a carriage return enters the change command. edit notifies you if more than one line will
be changed and places you in text input mode. Any text then typed on the following lines is
inserted into the position where lines were deleted by the change command. You remain in text
input mode until you exit in the usual way. by typing a period alone on a line. Note that the
number of lines added to the buffer need not be the same as the number of lines deleted.

This is the end of the third session on text editing with UNIX.

- 16 -

Session 4

This lesson covers several topics, starting with commands that apply throughout the buffer,
characters with special meanings, and how to issue UNIX commands while in the editor. The
next topics deal with files: more on reading and writing, and methods of recovering files lost in a
crash.

Making Commands Global (g)

One disadvantage to the commands we have used for searching or substituting is that if
you have a number of instances of a word to change it appears that you have to type the com­
mand repeatedly, once for each time the change needs to be made. Edit, however, provides a
way to make commands apply to the entire contents of the buffer - the global (g) command.

To print all lines containing a certain sequence of characters (say, "text") the command is:

:g/textlp

The "g" instructs edit to make a global search for all lines in the buffer containing the characters
"text". The "p" prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying the
lines to be affected. Then, on the same line, type the command to be executed on the identified
lines. Global substitutions are frequently useful. For example, to change all instances of the
word ''text'' to the word "material" the command is a combination of the global search and the
substitute command:

: g/textls/textlmaterial/g

Note the "g" at the end of the global command which instructs edit to change each and every
instance of "text" to "material". If you do not type the "g" at the end of the command only the
first instance of "text" in each line is changed (the normal result of the substitute command).
The "g" at the end of the command is independent of the "g" at the beginning. The command

: 14s/textlmaterial/g

changes every instance of "text" in line 14 alone. Further, neither cqmmand changes "Text" to
"material" because "Text" begins with a capital rather than a lower-case t.

Edit does not automatically print the lines modified by a global command. If you want the
lines to be printed, type a "p" at the end of the global command:

: gltextls/textlmaterial/gp

The usual qualification should be made about using the global command in combination with
any other - in essence, be sure of what you are telling edit to do to the entire buffer. For exam­
ple,

:gI Id
72 less lines in file after global

deletes every line containing a blank anywhere in it. This could adversely affect your document,
since most lines have spaces between words and thus would be deleted. After executing the
global command, edit prints a warning if the command added or deleted more than one line.
Fortunately, the undo command can reverse the effects of a global command. You should
experiment with the global command on a small buffer of text to see what it can do for you.

More about Searching and Substituting

In using slashes to identify a character string that we want to search for or change, we
have always specified the exact characters. There is a less tedious way to repeat the same
string of characters. To change "noun" to "nouns" we may type either

: Inoun/s/noun/nounsl

r
\

- 17 -

as we have done in the past, or a somewhat abbreviated command:

: /noun/s//nouns/

In this example, the characters to be changed are not specified - there are no characters, not
even a space, between the two slash marks that indicate what is to be changed. This lack of
characters between the slashes is taken by the editor to mean "use the characters we last
searched for as the characters to be changed."

Similarly, the last context search may be repeated by typing a pair of slashes with nothing
between them:

:/does/
It doesn't mean much here, but
://
it does illustrate the editor.

Because no characters are specified for the second search, the editor scans the buffer for the
next occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the
buffer to the beginning, until the specified character string is found. If you want to search in the
reverse direction, use question marks (?) instead of slashes to surround the character string.

Special Characters

Two characters have special meanings when used in specifying searches: "$" and "'''.
Edit understands "$" to mean "end of the line" and is used to identify strings that occur at the
end of a line. The command

: g/ing$/s//ed/p

tells the editor to search for all lines ending in "ing" (and nothing else, not even a blank space),
to change each final "ing" to "ed" and print the changed lines.

The symbol .. '" indicates the beginning of a line. Thus,

:st/1. /

instructs the editor to insert "1." and a space at the beginning of the current line.

The characters "$" and have special meanings only in the context of searching. At
other times, they are ordinary characters. If you ever need to search for a character that has a
special meaning, you must indicate that the character is to temporarily lose its special signifi­
cance by typing another special character, the backs lash (\), before it.

: s/\$/dollarl

looks for the character "$" in the current line and replaces it by the word "dollar". Were it not for
the backs lash, the "$" would have represented "the end of the line" in your search, not neces­
sarily the character "$". The backslash retains its special significance at all times.

Issuing UNIX Commands from the Editor

After creating several files with the editor, you may want to delete files no longer useful to
you or ask for a list of your files. Removing and listing files are not functions of the editor, and
so they require the use of UNIX system commands (also referred to as "shell" commands, as
"shell" is the name of the program that processes UNIX commands). You do not need to quit the
editor to execute a UNIX command as long as you indicate that it is to be sent to the shell for
execution. To use the UNIX command rm to remove the file named "junk" type:

:!rm junk
!

- 18 -

The exclamation mark (!) indicates that the rest of the line is to be processed as a UNIX com- ~
mand. If the buffer contents have not been written since the last change, a warning is printed)
before the command is executed. The editor prints a "!" when the command is completed. The
tutorial UNIX for Beginners describes useful features of the system, of which the editor is only
one part.

Filenames and File Manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as
the current filename. Edit remembers as the current filename the name given when you entered
the editor. The current filename changes whenever the edit (e) command is used to specify a
new file. Once edit has recorded a current filename, it inserts that name into any command
where a filename has been omitted. If a write command does not specify a file, edit, as we
have seen, supplies the current filename. You can have the editor write onto a different file by
including its name in the write command:

:w chapter3
"chapter3" 283 lines, 8698 characters

The current filename remembered by the editor is not changed as a result of the write com­
mand unless it is the first filename given in the editing session. Thus, in the next write com­
mand which does not specify a name, edit writes onto the current file and not onto the file
"chapter3".

The File (f) Command

To ask for the current filename, type file (or f). In response, the editor provides current
information about the buffer, including the filename, your current pOSition, and the number of
lines in the buffer:

:f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written, the editor tells
you that the file has been "[Modified]". After you save the changes by writing onto a disk file,
the buffer is no longer considered modified:

:w
"text" 4 lines, 88 characters
:f
"text" line 3 of 4 --75%--

Reading Additional Files (r)

The read (r) command allows you to add the contents of a file to the buffer without des­
troying the text already there. To use it, specify the line after which the new text will be placed,
the command r, and then the name of the file.

: $r bibliography
"bibliography" 18 lines, 473 characters

This command reads in the file bibliography and adds it to the buffer after the last line. The
current filename is not changed by the read command unless it is the first filename given in the
editing session.

Writing Parts of the Buffer
The write (w) command can write all or part of the buffer to a file you specify. We are

already familiar with writing the entire contents of the buffer to a disk file. To write only part of
the buffer onto a file, indicate the beginning and ending lines before the write command, for
example

- 19 -

: 45,$w ending

Here all lines from 45 through the end of the buffer are written onto the file named ending. The
lines remain in the buffer as part of the document you are editing, and you may continue to edit
the entire buffer.

Recovering Files

Under most circumstances, edit's crash recovery mechanism is able to save work to within
a few lines of changes after a crash or if the phone is hung up accidently. To recover the file,
enter the editor and type the command recover (rec), followed by the name of the lost file.

: recover chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the con­
tents of the saved buffer carefully before writing it back onto the original file.

Other Recovery Techniques

If something goes wrong when you are using the editor, it may be possible to save your
work by using the command preserve (pre), which saves the buffer as if the system had
crashed. If you are writing a file and you get the message "Quota exceeded", you have tried to
use more disk storage than is allotted to your account. Proceed with caution because it is likely
that only a part of the editor's buffer is now present in the file you tried to write. In this case you
should use the shell escape from the editor (!) to remove some files you don't need and try to
write the file again. If this is not possible and you cannot find someone to help you, enter the
command

: preserve

and then seek help. Do not simply leave the editor. If you do, the buffer will be lost, and you
may not be able to save your file. After a preserve, you can use the recover command once the
problem has been corrected.

~
"'-~':

Ex Reference Manual

ABSTRACT

Ex a line oriented text editor that supports both command and display
oriented editing. This reference manual describes the command oriented part of
ex; the display editing features of ex are described in An Introduction to
Display Editing with Vi. Other documents about the editor include the introduc­
tion Edit: A Tutorial, and a Ex/Vi Quick Reference card.

May 21,1984

/~
, I --.'

Ex Reference Manual

Acknowledgement

This document is based on the Ex Reference Manual by William Jay. revised by Mark Harton.

1. Starting Ex

Each instance of the editor has a set of options, which can be set to tailor it to your liking.
The command edit invokes a version of ex designed for more casual or beginning users. It
causes the default settings of some of these options to be changed. To simplify the description
that follows, we assume the default settings of the options.

When invoked, ex determines the terminal type from the TERM variable in the environment.
It there is a TERMCAP variable in the environment, and the type of the terminal described there
matches the TERM variable, then that deSCription is used. Also if the TERMCAP variable contains a
pathname (beginning with a /) then the editor seeks the description of the terminal in that file
(rather than the default letc/termcap.) If the environment contains a variable EXINIT, then the
editor executes the commands in that variable; otherwise if there is a file .exrc in your HOME

directory ex reads commands from that file, simulating a source command. Option setting
commands placed in EXINIT or .exrc are executed before each editor session.

A command to enter ex has the following prototype:t

ex [-] [-v] [-t tag] [-r] [-I] [-wn] [-x] [-R] [+command] name .. ,

Most commonly, you simply edit a single file, as in

ex name

The - command line option option suppresses all interactive-user feedback and is useful in pro­
cessing editor scripts in command files. The -y option is equivalent to using vi rather than ex.
The -t option is equivalent to an initial tag command, editing the file containing the tag and
positioning the editor at its definition. The -r option recovers the last saved version of the
named file after an editor or system crash. If no file is specified, a list of saved files is typed.
The -I option sets up for editing LISP, setting the showmatch and lisp options. The -w option
sets the default window size to n, and is useful on dialups to start in small windows. The-x
option causes ex to prompt for a key, which is used to encrypt and decrypt the contents of the
file. The file should already be encrypted using the same key, see crypt (1). The -R option sets
the readonly option at the start. Name arguments indicate files to be edited. An argument of
the form +command indicates that the editor should begin by executing the specified com­
mand. If command is omitted, then it defaults to "$", positioning the editor at the last line of the
first file. Other useful commands are scanning patterns of the form "/pat" or line numbers, e.g.
"+100" starting at line 100.

2. File Manipulation

t Brackets T T surround optional parameters here.

- 2 -

2.1. Current File

Ex is normally editing the contents of a single file, whose name is recorded in the current
file name. Ex performs all editing actions in a buffer (actually a temporary file) into which the
text of the file is initially read. Changes made to the buffer have no effect on the file being
edited unless and until the buffer contents are written out to the file with a write command.
After the buffer contents are written, the previous contents of the written file are no longer
accessible. When a file is edited, its name becomes the current file name, and its contents are
read into the buffer.

The current file is almost always considered to be edited. This means that the contents of
the buffer are logically connected with the current file name, so that writing the current buffer
contents onto that file, even if it exists, is reasonable. If the current file is not edited then ex
does not normally write on it if it already exists.·

2.2. Alternate File

Each time a new value is given to the current file name, the previous current file name is
saved as the alternate file name. Similarly if a file is mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename Expansion

Filenames within the editor may be specified using the normal shell expansion conven­
tions. In addition, the character '%' in filenames is replaced by the current file name and the
character '#' by the alternate file name.t

2.4. Multiple Files and Named Buffers

If more than one file is given on the command line, then the first file is edited as described
above. The remaining arguments are placed with the first file in the argument list. The current
argument list may be displayed with the args command. The next file in the argument list may
be edited with the next command. The argument list may also be respecified by specifying a
list of names to the next command. These names are expanded, the resulting list of names
becomes the new argument list, and ex edits the first file on the list.

2.5. Read Only

You can use ex in read only mode to look at files that you have no intention of modifying.
This mode protects you from accidently overwriting the file. Read only mode is on when the
readonly option is set. It can be turned on with the -R command line option, by the view com­
mand line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. You can write, even while in read only mode, if you know what you are doing. You
can write to a different file, or can use the ! form of write.

3. Exceptional Conditions

3.1. Errors and Interrupts

When errors occur, ex usually rings the terminal bell (except on intelligent terminals,
where it makes the screen flash); in any case, it prints an error diagnostic. If the primary input is
from a file, editor processing terminates. If an interrupt signal is received, ex prints "Interrupt"'
and returns to its command level. If the primary input is a file, ex exits .

• The file command will say "[Not edited)" if the current file is not considered edited.
t This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied
on an edit command after a No write since last change diagnostic is received.

- 3 -

3.2. Recovering from Hangups and Crashes

If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it reboots,
in the second) attempts to preserve the buffer. The next time you log in you should be able to
recover the work you were doing, losing at most a few lines of changes from the last point
before the hangup or editor crash. To recover a file you can use the -r option of ex. If you were
editing the file resume, then you should change to the directory where you were when the crash
occurred, and then give the command

ex -r resume

Check that the retrieved file has indeed been salvaged. Then write it over the previous contents
of that file.

The command

ex -r

prints a list of the files that have been saved for you. (In the case of a hangup, the file does not
appear in the list, although it can still be recovered.)

4. Editing Modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered
in command mode when a ':' prompt is present, and are executed each time a complete line is
sent. In text input mode ex gathers input lines and places them in the file. The append, insert,
and change commands use text input mode. No prompt is printed when you are in text input
mode. You leave insert mode by typing a ': alone at the beginning of a line, and command
mode resumes.

The last three modes are open and visual modes, entered by the commands of the same
name, and, within open and visual modes text insertion mode. Open and visual modes allow
local editing operations to be performed on the text in the file. The open command displays one
line at a time on any terminal while visual works on CRT terminals with random positioning cur­
sors, using the screen as a (single) window for file editing changes. These modes are
described (only) in An Introduction to Display Editing with Vi.

5. Command Structure

Most command names are English words, and initial prefixes of the words are acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands."

5.1. Command Parameters

Most commands accept prefix addresses specifying the lines in the file upon which they
are to have effect. The forms of these addresses are discussed below. A number of commands
also may take a trailing count specifying the number of lines to be involved in the command.t
Thus the command "10p" prints the tenth line in the buffer while "delete 5" deletes five lines
from the buffer, starting with the current line.

Some commands take other information or parameters. This information is always given
after the command name.t

• For example, the command substitute can be abbreviated's' while the shortest available abbreviation for
the set command is 'se'.
t Counts are rounded down if necessary .
• Examples include option names in a set command i.e. "set number", a file name in an edit command. a
regular expression in a substitute command, or a target address for a copy command, i.e. "1,5 copy 25".

- 4 -

5.2. Command Variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an '!' immediately after the command name. Some of the default variants
may be controlled by options; in this case, the '!' serves to toggle the default.

5.3. Flags after Commands

The characters '#', 'p' and 'I' may be placed after many commands.** In this case, the
command abbreviated by these characters is executed after the command completes. Since ex
normally prints the new current line after each change, 'p' is rarely necessary. Any number of
'+' or '-' characters may also be given with these flags. If they appear, the specified offset is
applied to the current line value before the printing command is executed.

5.4. Comments

You can give editor commands that are ignored. This is useful when making complex edi­
tor scripts for which comments are desired. The comment character is the double quote: ".
Any command line beginning with" is ignored. Comments beginning with" may also be placed
at the ends of commands, except in cases where they could be confused as part of text (shell
escapes and the substitute commands).

5.5. Multiple Commands per Line

More than one command may be placed on a line by separating each pair of commands
by a l' character. However the global commands, comments, and the shell escape '!' must be
the last command on a line, as they are not terminated by a,..

5.6. Reporting Large Changes

Most commands that change the contents of the editor buffer .give feedback if the scope of
the change exceeds a threshold given by the report option. This teed back helps to detect large
changes so that they may be quickly and easily reversed with an undo if they are undesirable.
After commands with more global effect such as global or visual, you are informed if the net
change in the number of lines in the buffer during this command exceeds this threshold.

6. Command Addressing

6.1. Addressing Primitives

n

$

%

+n -n
lpatl ?pat?

The current line. Most commands leave the current line as the last line
they affect. The default address for most commands is the current line,
thus '.' is rarely used alone as an address.

The nth line in the editor's buffer, lines being numbered sequentially from
1.
The last line in the buffer.

An abbreviation for "1,$", the entire buffer.

An offset relative to the current buffer line.t

Scan forward and backward respectively for a line containing pat, a regu­
lar expression (as defined below). The scans normally wrap around the
end of the buffer. If you just want to print the next line containing pat,
then the trailing I or ? may be omitted. If pat is omitted or explicitly
empty, then the last regular expression specified is located.*

•• A 'p' or 'I' must be preceded by a blank or tab except In the single special case 'dp'.
t The forms '.+3' '+3' and '+++' are all equivalent; if the current line is line 100 they all address line 103 .
• The forms V and \? scan using the last regular expression used in a scan; after a substitute /I and ??

" 'x

- 5 -

Before each non-relative motion of the current line '.', the previous current
line is marked with a tag, subsequently referred to as "". This makes it
easy to refer or return to this previous context. Marks may also be esta­
blished by the mark command, using single lower case letters x and the
marked lines referred to as "x'.

6.2. Combining Addressing Primitives

Addresses to commands consist of a series of addressing primitives, separated by',' or ';'.
Such address lists are evaluated left-to-right. When addresses are separated by';', the current
line '.' is set to the value of the previous addressing expression before the next address is inter­
preted. If more addresses are given than the command requires, then all but the last one or two
are ignored. If the command takes two addresses, the first addressed line must precede the
second in the buffer.t

7. Command Descriptions

The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command, which prints the next line in
the file. For sanity with use from within visual mode, ex ignores a ":" preceding any command.

In the following command descriptions, the default addresses are shown in parentheses;
these parentheses are not part of the command.

(.) append abbr: a
text

a!
text

args

Reads the input text and places it after the specified line. After the command, '.'
addresses the last line input or the specified line if no lines were input. If address '0' is
given, text is placed at the beginning of the buffer.

The variant flag to append toggles the setting for the autoindent option during the input of
text.

The members of the argument list are printed, with the current argument delimited by '['
and T.

(. , •) change count
text

abbr: c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line
input; if no lines were input it is left as for a delete.

scan using the substitute's regular expression.
t Null address specifications are permitted in a list of addresses, the default in this case is the current line '.';
thus ',100' is equivalent to '.,100'. It is an error to give a prefix address to a command that expects none.

- 6 -

The variant toggles autoindent during the change.

(_ . _) copy addr flags abbr: co

A copy of the specified lines is placed after addr, which may be '0'. The current line ':
addresses the last line of the copy. The command t is a synonym for copy.

(.. _) delete buffer count flags abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes
the current line; if the lines deleted were originally at the end. the new last line becomes
the current line.

r

- 7 -

edit file
ex file

abbr: e

e! file

Used to begin an editing session on a new file. The editor first checks to see if the buffer
has been modified since the last write command was issued. If it has been, a warning is
issued and the command is aborted. The command otherwise deletes the entire contents
of the editor buffer, makes the named file the current file and prints the new filename.

If the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCII characters in the file they are stripped of their non-ASCII
high bits, and any null characters in the file are discarded. If none of these errors occurs,
the file is considered edited. Ifthe last line of the input file is missing the trailing newline
character, it is supplied and a complaint is issued. This command leaves the current line
'.' at the last line read.~

The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes that have been made before edit­
ing the new file.

e +n file

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, e.g.: "+/pat".

abbr: f

Prints the current file name, whether it has been '[Modified)' since the last write command,
whether it is read only, the current line, the number of lines in the buffer, and the percen­
tage of the way through the buffer the current line is. *

file file

The current file name is changed to file, which is considered ,[Not edited]' .

• If executed from within open or visual, the current line is initially the first line of the file .
• In the rare case that the current file is '[Not edited], this is noted also; in this case you have to use the form
w! to write to the file, since the editor is not sure that a write will not destroy a file unrelated to the current
contents of the buffer.

- 8 -

(1 , $) global/pat! cmds abbr: g

First marks each line among those specified that matches the given regular expression.
Then the given command list is executed with '.' initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a '\'. If cmds (and possi­
bly the trailing I delimiter) is omitted, each line matching pat is printed. Append, insert,
and change commands and associated input are permitted; the '.' terminating input may
be omitted if it would be on the last line of the command list. Open and visual commands
are permitted in the command list and take input from the terminal.

The global command itself may not appear in cmds. The undo command is also not per­
mitted there, as undo instead can be used to reverse the entire global command. The
options autoprint and autoindent are inhibited during a global, (and possibly the trailing /
delimiter) and the value of the report option is temporarily infinite, in deference to a report
for the entire global. Finally, the context mark" .. is set to the value of '.' before the global
command begins and is not changed during a global command, except perhaps by an
open or visual within the global.

g! / patl cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(.) insert abbr: i
text

i!
text

Places the given text before the specified line. The current line is left at the last line input;
if there were none input, it is left at the line before the addressed line. This command
differs from append only in the placement of text.

The variant toggles autoindent during the insert.

(. , .+1) join count flags abbr: j

Places the text from a specified range of lines together on one line. White space is
adjusted at each junction to provide at least one blank character, two if there was a '.' at
the end of the line, or none if the first following character is a ')'. If there is already white
space at the end of the line, then the white space at the start of the next line is discarded.

.,
J.

- 9 -

The variant causes a simpler pin with no white space processing; the characters in the
lines are simply concatenated.

(.) k x

The k command is a synonym for mark. It does not require a blank or tab before the fol­
lowing letter.

(. , .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as ,AI' and the end
of each line is marked with a trailing '$'. The current line is left at the last line printed.

(.)markx

Gives the specified line mark x, a single lower case letter. The x must be preceded by a
blank or a tab. The addressing form' 'x' then addresses this line. The current line is not
affected by this command.

(. , .) move addr abbr: m

next

n!

The move command repositions the specified lines to be after addr. The first of the
moved lines becomes the current line.

abbr: n

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been
written out, discarding (irretrievably) any changes that may have been made.

n filelist
n +command filelist

The specified filelist is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no
spaces), then it is executed after editing the first such file.

(. , .) number count flags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at the
last line printed.

(.) open flags abbr: 0
(.) open / pat! flags

Enters intraline editing open mode at each addressed line. If pat is given, then the cursor
is placed initially at the beginning of the string matched by the pattern. To exit this mode
use Q. See An Introduction to Display Editing with Vi for more details.

* preserve

The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resulted in an error and you
don't know how to save your work. After a preserve you should seek help.

(. , .) print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters ,AX';

delete (octal 177) is represented as ,AT. The current line is left at the last line printed.

; Not available in all editors due to memory constraints.

- 10 -

(.) put buffer abbr: pu

quit

q!

Puts back previously deleted or yanked lines. Normally used with delete to effect move­
ment of lines, or with yank to effect duplication of lines. If no numbered buffer is speci­
fied, then the last deleted or yanked text is restored. *

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, ex issues a warning message if the file has changed since the last write com­
mand was issued, and does not quit.t Normally, you will wish to save your changes, and
you should give a write command; if you wish to discard them, use the q! command vari­
ant.

Quits from the editor, discarding changes to the buffer. No diagnostic message is issued.

• But no modifying commands may Intervene between the delete or yank and the put, nor may lines be
moved between files.
t Ex will also Issue a diagnostic if there are more files in the argument list.

r
- 11 -

(.) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If no
file is given the current file name is used. The current file name is not changed unless
there is none in which case file becomes the current name. The sensibility restrictions for
the edit command apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edit command.

Address '0' is legal for this command and causes the file to be read at the beginning of the
buffer. Statistics are given as for the edit command when the read successfully ter­
minates. After a read the current line is the last line read.+

(.) read !command

Reads the output of the command command into the buffer after the specified line. A
blank or tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone**
or a system crash*· or preserve command.

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parameter

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values .

• Within open and visual the current line is set to the first line read rather than the last.
*. The system saves a copy of the file you were editing only if you have made changes to the file.

- 12 -

Giving an option name followed by a '?' causes the current value of that option to be
printed. The '?' is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to turn them on or 'set nooption' to turn them
off; string and numeric options are assigned via the form 'set option=value'.

More than one parameter may be given to set; parameters are interpreted left-to-right.

shell abbr: sh

A new shell is created. When it terminates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be
nested.

(. , .) substitute /patlrepl/ options count flags abbr: s

On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character 'g' appears, then all instances are substituted;
if the confirm indication character 'c' appears, then before each substitution, the line to be
substituted is typed with the string to be substituted marked with 't' characters. Type a 'y'
to cause the substitution to be performed; any other input causes no change to take place.
After a substitute the current line is the last line substituted.

Unes may be split by substituting new-line characters into them. The newline in rep! must
be escaped by preceding it with a '\'. Other metacharacters available in pat and repl are
described below.

(. , .) substitute options count flags abbr: s

If pat and rep! are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(. • .) t addr flags

The t command is a synonym for copy.

- 13 -

ta tag

undo

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file.+

The tags file is normally created by a program such as ctags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the tag,
the second the name of the file where the tag resides, and the third gives an addressing
form that the editor uses to find the tag; this field is usually a contextual scan using '/patl'
to be immune to minor changes in the file. Such scans are always performed as if
nomagic were set.

The tag names in the tags file must be sorted alphabetically. +

abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of undo (as are
open and visual.) Also, the commands write and edit, which interact with the file system,
cannot be undone. Undo is its own inverse.

Undo always marks the previous value of the current line '.' as ,. ". After an undo the
current line is the first line restored or the line before the first line deleted if no lines were
restored. For commands with more global effect such as global and visual the current
line regains its pre-command value after an undo.

(1 , $) v / pat! cmds

A synonym for the global command variant gl, running the specified cmds on each line
that does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed .

• If you have modified the current file before giving a tag command. you must write it out: giving another tag
command; specifying no tag reuses the previous tag .
• Not available in all editors due to memory constraints.

- 14 -

(_) visual type count flags abbr: vi ~

Enters visual mode at the specified line. Type is optional and may be '-' , 'j' or ': as in the
z command to specify the placement of the specified line on the screen. By default, if
type is omitted, the specified line is placed as the first on the screen. A count specifies
an initial window size; the default is the value of the option window. See the document An
Introduction to Display Editing with Vi for more details. To exit this mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit.

(1 , $) write file abbr: w

Writes changes made back to file, printing the number of lines and characters· written.
Normally file is omitted and the text goes back where it came from. If a file is specified,
then text is written to that file.* If the file does not exist, it is created. The current file
name is changed only if there is no current file name; the current line is never changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been "No write since last change" even if the buffer had not previously been modified.

(1 , $) write> > file abbr: w> >

Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file that the sys­
tem permits.

(1 , $) w !command

Writes the specified lines into command. Note the difference between wI, which overrides
checks, and w !, which writes to a command .

• The editor writes to a file only if (1) it is the current file and is edited; or (2) the file does not exist, or (3) the
file is actually a teletype. /dev/tty, /devlnull. Otherwise, you must give the variant form w! to force the write.

wqname

Uke a write and then a quit command.

wq! name

. 15 .

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changes have been made and not written, writes the buffer out. Then, in any case,
quits.

(. , .) yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer name
is specified, the lines go to a more volatile place; see the put command description.

(.+1) z count

Print the next count lines, default window.

(.) z type count

Prints a window of text with the specified line at the top. If type is '.' the line is placed at
the bottom; a ': causes the line to be placed in the center.* A count gives the number of
lines to be displayed rather than double the number specified by the scroll option. On a
CRT the screen is cleared before display begins unless a count which is less than the
screen size is given. The current line is left at the last line printed.

! command

The remainder of the line after the '!' character is sent to a shell to be executed. Within
the text of command the characters '%' and '#' are expanded as in filenames and the
character '!' is replaced with the text of the previous command. Thus, in particular, '!!'
repeats the last such shell escape. If any such expansion is performed, the expanded line
is echoed. The current line is unchanged by this command .

• Forms 'z=' and 'z1' also exist; 'z=' places the current line in the center, surrounds it with lines of '.' char·
acters and leaves the current line at this line. The form 'zt' prints the window before 'z·' WOUld. The charac·
ters '+', '1' and '.' may be repeated for cumulative effect.

- 16-

If there has been "[No write)" of the buffer contents since the last change to the editing
buffer, then a diagnostic is printed as a warning before the command is executed. A sin­
gle ',' is printed when the command completes.

(addr , addr) I command

Takes the specified address range and supplies it as standard input to command; the
resulting output then replaces the input lines.

($) =
Prints the line number of the addressed line. The current line is unchanged.

(. , .) > count flags
(. , .) < count flags

Perform intelligent shifting on the specified lines; < shifts left and> shift right. The quan­
tity of shift is determined by the shiftwidth option and the repetition of the specification
character. Only white space (blanks and tabs) is shifted; no non-white characters are dis­
carded in a left-shift. The current line becomes the last line that changed due to the shift­
ing.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies the
size of the scroll, normally a half screen of text.

(.+1 ,.+1)
(.+1 , .+1) I

An address alone causes the addressed lines to be printed. A blank line prints the next
line in the file.

(• , •) & options count flags

Repeats the previous substitute command.

(• , •) N options count flags

Replaces the previous regular expression with the previous replacement pattern from a
substitution.

8. Regular Expressions and Substitute Replacement Patterns

8.1. Regular Expressions

A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous regular
expressions: the previous regular expression used in a substitute command and the previous
regular expression used elsewhere (referred to as the previous scanning regular expression.)
The previous regular expression can always be referred to by a null re, e.g. 'I/' or '11'.

8.2. Magic and Nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default setting of magic gives quick access to a
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharacters are magic and precede them with the character '\' to
use them as "ordinary" characters. With nomagic, the default for edit, regular expressions are
much simpler, because there are only two metacharacters. The power of the other metacharac­
ters is still available by preceding the (now) ordinary character with a '\'. Note that '\' is thus
always a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of
this option is magic. t

t To discem what is true with nomagic remember that the only special characters in this case are 'f' at the
beginning of a regular expression, '$' at the end of a regular expression, and '\'. With nomagic the charac-

- 17-

8.3. Basic Regular Expression Summary

The following are the elements of magic mode regular expressions.

char An ordinary character matches itself. The characters 't' at the beginning of a
line, '$' at the end of line, ,.' as any character other than the first, '.', '\', T, and
'N' are not ordinary characters and must be escaped (preceded) by '\' to be
treated as such.

i

$

\<

\>

[string]

At the beginning of a pattern forces the match to succeed only at the beginning
of a line.

At the end of a regular expression forces the match to succeed only at the end
of the line.

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word"; that
is, either at the beginning of a line, or just before a letter, digit, or underline and
after a character not one of these.

Similar to '\<', but matching the end of a "variable" or "word", i.e. either the
end of the line or before character that is neither a letter, nor a digit, nor the
underline character.

Matches any (single) character in the class defined by string. Most characters
in string define themselves. A pair of characters separated by '-' in string
defines the set of characters between the specified lower and upper bounds,
thus '[a-z)' as a regular expression matches any (single) lower-case letter. If
the first character of string is an T then the construct matches characters it
otherwise would not; thus '[ja-z)' matches anything but a lower-case letter (and
of course a newline). To place any of the characters T, T, or '-' in string you
must escape them with a preceding '\'.

8.4. Combining Regular Expression Primitives

The concatenation of two regular expressions matches the leftmost and then longest string
that can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the (single character matching) regular expressions men­
tioned above may be followed by the character ,,., to form a regular expression that matches any
number of adjacent occurrences (including 0) of characters matched by the regular expression it
follows.

The character 'N' matches the text that defined the replacement part of the last substitute
command. A regular expression may be enclosed between the sequences '\(' and '\)' with side
effects in the substitute replacement patterns.

8.5. Substitute Replacement Patterns

The basic metacharacters for the replacement pattern are '&' and 'N'; these are given as
'\&' and '\ N, when nomagic is set. Each instance of '&' is replaced by the characters that the
regular expression matched. The metacharacter ,N, stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences in the replacement pattern are always introduced by the escaping
character '\'. The sequence '\n' is replaced by the text matched by the n-th regular subexpres­
sion enclosed between '\(' and '\)'.t The sequences '\u' and '\I' cause the immediately following
character in the replacement to be converted to upper- or lower-case respectively if this

ters ,N, and '&' also lose their special meanings in the replacement pattern of a substitute.
t In nested, parenthesized subexpressions, n is determined by counting occurrences of '\(' starting from the
left,

- 18 -

character is a letter. The sequences '\U' and '\L' turn such conversion on, either until '\E' or
'\e' is encountered, or until the end of the replacement pattern.

9. Option Descriptions

autoindent, ai default: noai

Eases the preparation of structured program text. At the beginning of each append,
change or insert command, or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual mode, ex looks at the line
being appended after, the first line changed or the line inserted before and calculates the
amount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.

All lines of text input from then on are justified at the displayed indenting level. If more
white space is typed at the beginning of a line, the following line starts aligned with the first
non-white character of the previous line. To back the cursor up to the preceding tab stop,
hit AD. The tab stops going backwards are defined at multiples of the shiftwidth option.
You cannot backspace over the indent, except by sending an end-of-file with a AD.

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the autoindent is discarded.) Also spe­
cially processed in this mode are lines beginning with an 't' and immediately followed by a
AD. This causes the input to be repositioned at the beginning of the line, but retaining the
previous indent for the next line. Similarly, a '0' followed by a AD repositions at the begin­
ning but without retaining the previous indent.

Autoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy, pin, move, substitute, t,
undo or shift command. This has the same effect as supplying a trailing 'p' to each such
command. Autoprint is suppressed in globals, and only applies to the last of many com­
mands on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it
and give a next, rewind, stop, tag, or 1 command, or a At (switch files) or A] (tag goto)
command in visual. Note that the edit and ex commands do not autowrite, even if
auto write is set. If auto write is set but you don't want it in a particular case, you can over­
ride it with the following commands:

- edit for next,
- rewindl for rewind,
- stopl for stop,
- tagl for tag,
- shell for I, and
- :e #: and a :ta! command from within visual.

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beau­
tify does not apply to command input.

directory, dir default: dir=ltmp

- 19 -

Specifies the directory in which ex places its buffer file. If this directory is not writable, ex
exits abruptly when it fails to create its buffer there.

errorbells, eb default: noeb

Error messages are preceded by a bell. * If possible the editor always places the error mes­
sage in a standout mode of the terminal (such as inverse video) instead of ringing the bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition, all upper case characters in regular expressions are mapped to
lower case except in character class specifications.

lisp default: nolisp

Autoindent indents appropriately for lisp code, and the () { } [[and]] commands in open
and visual are modified to have meaning for lisp.

list default: nolist

All printed lines are displayed (more) unambiguously, showing tabs and end-of-lines as in
the list command.

magic default: magic for ex and vit

If nomagic is set, the number of regular expression metacharacters is greatly reduced,
with only 'j' and '$' having special effects. In addition the metacharacters ,~, and '&' of the
replacement pattern are treated as normal characters. When nomagic is set, all the nor­
mal metacharacters may be made magic by preceding them with a '\'.

numbell', nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line is
prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and visual are not permitted. This is set for edit to
prevent confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage returns
when printing more than one (logical) line of output, greatly speeding output on terminals
without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP Ubp

Specifies the paragraphs for the { and} operations in open and visual. The pairs of char­
acters in the option's value are the names of the macros that start paragraphs.

prompt default: prompt

Command mode input is prompted for with a':'.

redraw default: noredraw

The editor simulates an intelligent terminal on a dumb terminal. For example, during inser­
tions in visual, the characters to the right of the cursor position are refreshed as each
input character is typed. Useful only at very high speed .

• Bell ringing in open and visual on errors is not suppressed by setting noeb.
t Nomagic for edit.

- 20 -

report default: report=5t

Specifies a threshold for feedback from commands. Any command that modifies more
than the specified number of lines provides feedback as to the scope of its changes. For
commands such as global, open, undo, and visual, which have potentially more far­
reaching scope, the net change in the number of lines in the buffer is presented at the end
of the command, subject to this same threshold. Thus notification is suppressed during a
global command on the individual commands performed.

scroll default: scroll=lh window

Determines the number of logical lines scrolled when an end-of-file is received from a ter­
minal input in command mode, and the number of lines printed by a command mode z
command (double the value of scroll).

sections default: sections=SHNHH HU

Specifies the section macros for the [[and]] operations in open and visual. The pairs of
characters in the option's value are the names of the macros that start paragraphs.

shell, sh default: sh=/bin/sh

Gives the path name of the shell forked for the shell escape command T, and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw default: sw=8

Gives the width of a software tab stop, used in reverse tabbing with "0, when using autoin­
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or {
for one second if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during input
of new text to improve throughput when the terminal in use is both slow and unintelligent.
See An Introduction to Display Editing with Vi for more details.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display.

tag length, tl default: tI=O

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

tags default: tags=ta9s lusr/lib/tags

term

terse

A path of files to be used as tag files for the tag command. By default files called tags
are searched for in the current directory and in lusr/lib (a master file for the entire system.)

from environment TERM

The terminal type of the output device.

default: noterse

Shorter error diagnostics are produced for the experienced user.

t 2 for edit.

r
- 21 -

warn default: warn

Warn if there has been '[No write since last change]' before a '!' command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options; they set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EXINIT and make it easy to
change the 8/16/full screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing wrap around past the end of the file
if this is set.

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and visual modes.
See An Introduction to Text Editing with Vi for details.

writeany, wa default: now a

Inhibit the checks normally made before write commands, allowing a write to any file per­
mitted by the system protection mechanism.

10. Limitations

Editor limits that you are likely to encounter are as follows: 1024 characters per line, 256
characters per global command list, 128 characters per file name, 128 characters in the previ­
ous inserted and deleted text in open or visual, 100 characters in a shell escape command, 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250000
lines in the file is Silently enforced.

An Introduction to Display Editing with Vi

ABSTRACT

Vi (visual) is a display-oriented interactive text editor. When you use vi,
the screen of your terminal acts as a window into the file you are editing. You
can see the changes you make to the file.

Using vi you can easily insert new text any place in the file. Most of the
commands to vi move the cursor around in the file. The cursor moves forward
and backward in units of characters, words, sentences and paragraphs. A small
set of operators, such as d for delete and c for change, are combined with the
motion commands to form operations such as "delete word" or "change para­
graph", in a simple and natural way. This regularity and the mnemonic assign­
ment of commands to keys makes the editor command set easy to remember
and use.

Vi works on a large number of display terminals, and new terminals are
easily driven after editing a terminal description file. Vi is well suited to run on
intelligent terminals that can locally insert and delete lines and characters. But it
also functions well on dumb terminals over slow phone lines. The editor makes
allowance for the low bandwidth in these situations and uses smaller window
sizes and different display updating algorithms to make best use of the limited
speed available.

You can also use the command set of vi on hardcopy terminals, storage
tubes and "glass TTYs" using a one-line editing window; thus vi's command set
is available on all terminals. The full command set of the more traditional, line
oriented editor ex is available within vi; switching between the two modes of
editing is simple.

May 18, 1984

/~
...... - ..

(~!

r

r

An Introduction to Display Editing with VI

1. GETTING STARTED

This document provides a quick introduction to vi (pronounced vee-eye). You should be
running vi on a file you are familiar with while you are reading this. The first part of this docu­
ment (sections 1 through 5) describes the basics of using vi. Some topics of special interest are
presented in section 6, and some nitty-gritty details of how the editor functions are saved for
section 7 to avoid cluttering the presentation here.

The short appendix lists each character and any special meanings this character has in vi.

1.1. Specifying Terminal Type

Before you can start vi, you must tell the system what kind of terminal you are using.
Here is a (necessarily incomplete) list of terminal type codes. If your terminal does not appear
here, you should consult with one of the staff members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Full name Type
2621 Hewlett-Packard 2621 AlP Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
act5 Microterm ACT -V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
c100 Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h19 Intelligent
i100 Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent
t1061 Teleray 1061 Intelligent
vt52 Dec VT-52 Dumb

Suppose, for example, that you have a Hewlett-Packard HP2621 A terminal. The code
used by the system for this terminal is '2621'. In this case you can use one of the following
commands to tell the system the type of your terminal:

% setenv TERM 2621

This command works with the shell csh on all Plexus systems. If you are using the standard
Sys3 shell, give the commands

$ TERM=2621
$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in, you
can use the tset program. For example, if you dial in on a mime, but often use hardwired ports,
a typical line for your ./ogin file (if you use csh) would be

setenv TERM 'tset - -d mime'

or for your .profile file (if you use sh)

TERM='tset - -d mime'

- 2 -

Tset knows which terminals are hardwired to each port and needs only to be told that when you
dial in you are probably on a mime. Tset is usually used to change the erase and kill charac­
ters, too.

1.2. Editing a File

After telling the system what kind of terminal you have, you should make a copy of a file
you are familiar with, and run vi on this file. Pick a file that is longer than one screenful (usually
24 lines) so you can see the effect of scrolling and other commands. Give the command

0/0 vi name

replacing name with the name of the copy file you just created. The screen should clear and the
text of your file should appear on the screen.+

1.3. The Editor's Copy: the Buffer

The editor does not directly modify the file you are editing. Rather, the editor makes a
copy of this file, in a place called the buffer, and remembers the file's name. You do not affect
the contents of the file unless and until you write the changes you make back into the original
file.

1.4. Notational Conventions

In our examples, input that must be typed exactly as written here is presented in bold
face. Text that should be replaced with appropriate input is given in italics. We represent special
characters in SMALL CAPITALS.

1.5. Arrow Keys

The editor command set is independent of the terminal you are using. On most terminals
with cursor positioning keys, these keys also work within the editor. If you don't have cursor
positioning keys, or even if you do, you can use the h j k and I keys as cursor positioning keys
(these are labeled with arrows on an adm3a). *

(Particular note for the HP2621: on this terminal the function keys must be shifted to send
to the machine; otherwise they only act locally. Unshifted use leaves the cursor positioned
incorrectly.)

1.6. Special Characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now.
Look on your keyboard for a key labeled ESC or ALT. It should be near the upper left corner of
your terminal. Try hitting this key a few times. The editor rings the bell to indicate that it is in a

• If something else happens, you may have given the system an incorrect terminal type code. In this case,
the editor may have just made a mess out of your screen (your file Is probably okay). This sort of mess hap­
pens when the editor sends control codes for one kind of terminal to some other kind of terminal. To re­
start, hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you back to the
command level Interpreter. Figure out what you did wrong (ask someone else if necessary) and try again.
You may also have typed the wrong file name and the editor just printed an error diagnostic. In this case you
should follow the above procedure for getting out of the editor, and try again. If the editor doesn't seem to
respond to the commands that you type here, try sending an interrupt to it by hitting the DEL or RUB key on
your terminal. and then hitting the :q command again, followed by a carriage return .
• As we will see later, h moves back to the left (like control-h, which is a backspace), j moves down (In the
same column), k moves up (In the same column), and I moves to the right.

- 3 -

quiescent state.t Partially formed commands are canceled by ESC, and when you insert text in
the file you end the text insertion with ESC. This key is a fairly harmless one to hit, so you can
just hit it if you don't know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It is
usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the edi­
tor to stop what it is doing. It is a forceful way of making the editor listen to you, or to return it
to the quiescent state if you don't know or don't like what is going on. Try hitting the 'f' key on
your terminal. This key is used when you want to specify a string to be searched for. The cursor
should now be positioned at the bottom line of the terminal after a 'f' printed as a prompt. You
can get the cursor back to the current position by hitting the DEL or RUB key; try this now: From
now on we will simply refer to hitting the DEL or RUB key as "sending an interrupt.

The editor often echoes your commands on the last line of the terminal. If the cursor is on
the first position of this last line, then the editor is performing a computation, such as computing
a new position in the file after a search or running a command to reformat part of the buffer.
When this is happening you can stop the editor by sending an interrupt.

1.7. Getting out of the Editor

After you have worked with this introduction for a while, and you wish to do something
else, you can give the command ZZ to the editor. This writes the contents of the editor's buffer
back into the file you are editing, if you made any changes, and then leaves the editor. You can
also end an editor session by giving the command :q!CR;t this is a dangerous but occasionally
essential command that ends the editor session and discards all your changes. You need to
know about this command in case you change the editor's copy of a file you wish only to look at.
Be very careful not to give this command when you really want to save the changes you have
made.

2. MOVING AROUND IN THE FILE

2.1. ScrOlling and Paging

The editor has a number of commands for moving around in the file. The most useful of
these is generated by hitting the control and D keys at the same time, a control-D or ,AD'. We
will use this two character notation for referring to these control keys from now on. You may
have a key labeled ,A, on your terminal. This key will be represented as 'j' in this document; ,A, is
exclusively used as part of the ,AX' notation for control characters.t

As you know now if you tried hitting AD, this command scrolls down in the file. The I[) thus
stands for down. Many editor commands are mnemonic and this makes them much easier to
remember. For instance the command to scroll up is AU. Many dumb terminals can't scroll up at
all, in which case hitting AU clears the screen and refreshes it with a line which is farther back in
the file at the top.

If you want to see more of the file below where you are, you can hit AE to expose one
more line at the bottom of the screen, leaving the cursor where it is. The command ·Y (which is
hopelessly non-mnemonic, but next to AU on the keyboard) exposes one more line at the top of
the screen. U

l On smart terminals where possible, the editor quietly flashes the screen rather than ringing the bell.
• Backspacing over the '/' also cancels the search .
•• On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is comput­
ing with the cursor on the bottom line.
t All commands that rlj/ad from the last display line can also be terminated with a ESC as well as an CR.
llf you don't have a . , key on your terminal then there is probably a key labeled 't'; in any case these char­
acters are one and the same.
U Not currently available.

- 4 -

Other ways to move around in the file include the keys AF and AS, which move forward and
backward a page, keeping a couple of lines of continuity between screens.

Notice the difference between scrolling and paging. If you are trying to read the text in a
file, hitting AF to move forward a page leaves you only a little context to look back at. Scrolling
on the other hand leaves more context, and happens more smoothly. You can continue to read
the text as scrolling is taking place.

2.2. Searching, Goto, and Previous Context

Another way to position yourself in the file is by giving the editor a string to search for.
Type the character I followed by a string of characters terminated by CR. The editor positions the
cursor at the next occurrence of this string. Try hitting n to then go to the next occurrence of
this string. The character? searches backwards from where you are, and is otherwise like I.t

If the search string you give the editor is not present in the file, the editor prints a message
to that effect on the last line of the screen, and the cursor is returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string with
an t. To match only at the end of a line, end the search string with a $. Thus ItsearchcR
searches for the word 'search' at the beginning of a line, and lIast$CR searches for the word
'last' at the end of a line:

The command G, when preceded by a number, positions the cursor at that line in the file.
Thus 1G moves the cursor to the first line of the file. If you give G no count, it moves to the end
of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the
editor places only the character ,N, on each remaining line. This indicates that the last line in the
file is on the screen; that is, the ,N, lines are past the end of the file.

You can find out the state of the file you are editing by typing a AG. The editor shows you
the name of the file you are editing, the number of the current line, the number of lines in the
buffer, and what percentage of the buffer you have traversed. Try doing this now, and
remember the number of the line you are on. Give a G command to get to the end. You can
get back to your previous position by using the command" (two back quotes). Try giving a
search with I or ? and then a " to get back to where you were. If you accidentally hit n or any
command that moves you far away from a context of interest, you can quickly get back by hit­
ting ".

2.3. Moving around on the Screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4 or
5 keys with arrows going in each direction) try them and convince yourself that they work. (On
certain terminals, they won't.) If you don't have working arrow keys, you can always use h, j, k,
and I. Experienced users of vi prefer these keys to arrow keys, because they are usually right
underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the
file, at the first non-white position on the line. The· key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you
go off the bottom or top with these keys then the screen scrolls down (and up if possible) to
bring a line at a time into view. The RETURN key has the same effect as the + key.

t These searches normally wrap around the end of the file, and thus find the string even if it is not on a line
in the direction you search provided it is anywhere else in the file. You can disable this wraparound in scans
by giving the command :se nowrapscanCR, or more briefly :se nowsCR.
"Actually, the string you give to search for here can be a regular expression in the sense of the editors
ex (1) and ed (1). If you don't wish to leam about this yet, you can disable this more general facility by put­
ting the command :se nomagicCR; in EXINIT in your environment. (More about EXINIT later.)

- 5 -

Vi also has commands to take you to the top, middle and bottom of the screen. H takes
you to the top (home or highest) line on the screen. Try preceding it with a number as in 3H.
This takes you to the third line on the screen. Many vi commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen, and l,
which takes you to the last (or lowest) line on the screen. L also takes counts, thus 5L takes
you to the fifth line from the bottom.

2.4. Moving within a Line

Now try picking a word on some line on the screen, not the first word on the line. Move
the cursor using RETURN and - to be on the line where the word is. Try hitting the w key. This
advances the cursor to the next word on the line. Try hitting the b key to back up words in the
line. Try the e key, which advances you to the end of the current word rather than to the begin­
ning of the next word. Also try SPACE (the space bar), which moves right one character and the
BS (backspace or AH) key, which moves left one character. The key h works as AH does and is
useful if you don't have a BS key. (Also. as noted just above. I moves to the right.)

If the line has punctuation in it, you may notice that that the wand b keys stop at each
group of punctuation. You can also go back and forward by words without stopping at punctua­
tion by using Wand B rather than the lower case equivalents. Think of these as bigger words.
Try these on a few lines with punctuation to see how they differ from the lower case wand b.

The word keys wrap around the end of line. rather than stopping at the end. Try moving to
a word on a line below where you are by repeatedly hitting w.

2.5. Summary

SPACE advance the cursor one position
AB backwards to previous page
AD scrolls down in the file
AE exposes another line at the bottom (v3)
AF forward to next page
AG tell what is going on
AH backspace the cursor
"N next line, same column
"p previous line, same column
"u scrolls up in the file
"y exposes another line at the top (v3)

+ next line. at the beginning
previous line, at the beginning

I scan for a followi ng stri ng forwards
? scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen Ii ne
W forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of I or ? pattern
w word after this word

- 6 -

2.6. View

If you want to use the editor to look at a file, rather than to make changes, invoke it as
view instead of vi. This sets the readonly option which prevents you from accidently overwrit­
ing the file.

3. MAKING SIMPLE CHANGES

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, everything
you type until you hit ESC is inserted into the file. Try this now; position yourself to some word in
the file and try inserting text before this word. If you are on an dumb terminal it may seem, for a
minute, that some of the characters in your line have been overwritten, but they reappear when
you hit ESC.

Now try finding a word which can, but does not, end in an's'. Position yourself at this
word and type e (move to end of word), then a for append and then 'sESe' to terminate the
insertion. This sequence of commands (easESC) can be used to pluralize a word easily.

Try inserting and appending a few times to make sure you understand how this works; i
placing text to the left of the cursor, a to the right.

You may often want to add new lines before or after some specific line in the file. Find a
line where this makes sense and then give the command 0 to create a new line after the line
you are on, or the command 0 to create a new line before the line you are on. After you create
a new line in this way, all text you type up to an ESC is inserted. This may amount to many lines
or just one (see below).

Many related editor commands are invoked by the same letter key and differ only in that
one is given by a lower case key and the other is given by an upper case key. I n these cases,
the upper case key often differs from the lower case key in its sense of direction, with the upper ~
case key working backward and/or up, while the lower case key moves forward and/or down.

Whenever you are typing in text--whether you begin with i, a, 0, 0, S, C, etc.--you can
give many lines of input or just a few characters. To type in more than one line of text, hit a
RETURN at the middle of your input. A new line is created for text, and you can continue to type.
If you are on a slow and dumb terminal the editor may choose to wait to redraw the tail of the
screen, and let you type over the existing screen lines. This avoids the lengthy delay that would
occur if the editor attempted to keep the tail of the screen always up to date. The tail of the
screen is fixed, and the missing lines reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normally use at the sys­
tem command level (usually ·H or #) to backspace over the last character you typed, and the
character you use to kill input lines (usually @, ·X, or ·U) to erase the input you have typed on
the current line. t The character ·W erases a whole word and leaves you after the space after
the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion, the characters you backspace over
are not erased; the cursor moves backwards, and the characters remain on the display. This is
often useful if you are planning to type in something similar. In any case the characters disap­
pear when when you hit ESC.

Notice also that you can't erase characters you didn't insert with the current insertion com­
mand, and that you can't backspace around the end of a line .. If you need to back up to the pre­
vious line to make a correction, just hit ESC and move the cursor back to the previous line. After
making the correction you can return to where you were and use the insert or append command
again.

t In fact, the character ·H (backspace) always works to erase the last input character here, regardless of
what your erase character is.

- 7 -

3.2. Making Small Corrections

You can make small corrections in existing text quite easily. Find a single character that is
wrong or just pick any character. Use the arrow keys to find the character, or get near the char­
acter with the word motion keys and then either backspace (hit the BS key or AH or even just h)
or SPACE (using the space bar) until the cursor is on the character that is wrong. If the character
is not needed then hit the x key; this deletes the character from the file. It is analogous to the
way you x out characters when you make mistakes on a typewriter (except it's not as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command rc, where c is replaced by the correct character. Finally if the character that is
incorrect should be replaced by more than one character, give the command s, which substi­
tutes a string of characters, ending with ESC. If a small number of characters are wrong, you
can precede s with a count of the number of characters to be replaced. Counts are also useful
with x to specify the number of characters to be deleted.

3.3. More Corrections: Operators

You already know almost enough to make changes at a higher level. All you need to know
now is that the d key acts as a delete operator. Try the command dw to delete a word. Try hit­
ting . a few times. Notice that this repeats the effect of the dw. The command. repeats the last
command that made a change. You can remember it by analogy with an ellipsis'.

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE.
This deletes a single character, and is equivalent to the x command.

Another very useful operator is c or change. The command cw thus changes the text of a
single word. You follow it by the replacement text ending with an ESC. Find a word that you can
change to another, and try this now. Notice that the end of the text to be changed was marked
with the character '$' so that you can see this as you are typing in the new material.

3.4. Operating on Lines

You often want to operate on lines rather than just words or letters. Find a line you want
to delete, and type dd, the d operator twice. This deletes the line. If you are on a dumb termi­
nal, the editor may just erase the line on the screen, replacing it with a line with only an @ on it.
This line does not correspond to any line in your file, but only acts as a place holder. It helps to
avoid a lengthy redraw of the rest of the screen, which would be necessary to close up the hole
created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this changes a whole line, erasing its previous contents
and replacing them with text you type up to an ESC.t

You can delete or change more than one line by preceding the dd or cc with a count, i.e.
5dd deletes 5 lines. You can also give a command like dL to delete all the lines up to and
including the last line on the screen, or d3L to delete through the third from the bottom line. Try
some commands like this now. * Notice that the editor lets you know when you change a large
number of lines so that you can see the extent of the change. The editor also always tells you
when a change you make affects text you cannot see.

t The command S is a convenient synonym for for ee. by analogy with s. Think of S as a substitute on
lines, while 8 is a substitute on characters .
• Using the / search after a d is subtle. This move normally deletes characters from the current position to
the point of the match. If you want to delete whole lines including the two points. give the pattern as !patl+O.
a line address.

- 8 -

3.5. Undoing

Now suppose that the last change you made was incorrect; you could use the insert,
delete and append commands to put the correct material back. However, since we often regret a
change or make a change incorrectly, the editor provides a u (undo) command to reverse the
last change you made. Try this a few times, and give it twice in a row to notice that an u also
undoes a u.

The undo command lets you reverse only a single change. After you make a number of
changes to a line, you may decide that you would rather have the original state of the line back.
The U command restores the current line to the state before you started changing it.

You can recover text that you delete, even if undo will not bring it back; see the section on
recovering lost text below.

3.6. Summary

SPACE
"H
"w
erase
kill

0
U
a
c
d
i
0

u

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually ·H or #), erases a character during an insert
your kill (usually @, ·X, or ·U), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text
deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. MOVING ABOUT: REARRANGING AND DUPLICATING TEXT

4.1. Low Level Character Motions

Now move the cursor to a line containing a punctuation or a bracketing character such as
a parenthesis or a comma or period. Try the command fx where x is this character. This com­
mand finds the next x character to the right of the cursor in the current line. Try then hitting a ;,
which finds the next instance of the same character. By using the f command and then a
sequence of ;'s you can often get to a particular place in a line much faster than with a
sequence of word motions or SPACES. The F command, which is like f, searches backward. The
; command repeats F also.

When you are operating on the text in aline, you often find it useful to deal with the char­
acters up to, but not including, the first instance of a character. Try dfx for some x now and
notice that the x character is deleted. Undo this with u and then try dtx; the t here stands for to,
i.e. delete up to the next x, but not the x. The command T is the reverse Of t.

When working with the text of a single line, an t moves the cursor to the first non-white
position on the line, and a $ moves it to the end of the line. Hitting '0' (zero) also works to move
to the beginning of a line. Thus $a will append new text at the end of the current line.

Your file may have tab (I) characters in it. These characters are represented as a number
of spaces expanding to a tab stop, where tab stops are every 8 positions.' When the cursor is at
a tab, it sits on the last of the several spaces that represent that tab. Try moving the cursor back

• This is settable by a command of the form :se ts=xCR, where x is the number of columns per tabstop.
This has effect on the screen representation within the editor.

r

- 9 -

and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are
displayed in the same way they are represented in this document, that is, with a two character
code, the first character of which is ,A,. On the screen non-printing characters resemble a ,A,

character adjacent to another, but if you space or backspace over the character, you see that
the two characters are, like the spaces representing a tab character, a single character.

The editor sometimes won't allow you to insert control characters, depending on the char­
acter and the setting of the beautify option. You can force a control character into the file by
beginning an insert and then typing a Ay before the control character. The Ay quotes the follow­
ing character, causing it to be inserted directly into the file.

4_2. Higher level Text Objects

Sometimes the capacity to work with characters or words or lines is not enough; you need
to be able to manipulate sentences, paragraphs, and sections. A sentence is defined to end at a
'.', '!' or'?', followed by either the end of a line, or by two spaces. Any number of closing 'r, ,]"
'II' and'" characters may appear after the '.', '!' or'?, before the spaces or end of line.

The operations (and) move to the beginning of the previous and next sentences respec­
tively. Thus the command d) deletes the rest of the current sentence; likewise d(deletes the
previous sentence if you are at the beginning of the current sentence, or the current sentence
up to where you are if you are not at the beginning of the current sentence.

The operations { and } move over paragraphs and the operations [[and U move over sec­
tions·t

A paragraph begins after each empty line, and also at each of a set of paragraph macros,
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the oms and -mm macro pack­
ages, i.e. the '.IP', '.LP', '.PP' and '.QP·, '.P' and '.LI' macros.t Each paragraph boundary is also
a sentence boundary. The sentence and paragraph commands can be given counts to operate
over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally '.NH', '.SH',
'.H' and '.HU', and each line with a formfeed AL in the first column. Section boundaries are
always line and paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how they
work. If you have a large document, try looking through it using the section commands. The
section commands interpret a preceding count as a different window size in which to redraw the
screen at the new location, and this window size is the base size for newly drawn windows until
another size is specified. This is very useful if you are on a slow terminal and are looking for a
particular section. You can give the first section command a small count to then see each suc­
cessive section heading in a small window.

4_3_ Rearranging and Duplicating Text

The editor has a single unnamed buffer where the last deleted or changed text is saved.

The operator y yanks a copy of the object that follows into the unnamed buffer. The text
can then be put back in the file with the commands p and P; P puts the text after or below the
cursor, while P puts the text before or above the cursor.

If the text that you yank forms a part of a line, or is an object such as a sentence, which

t The [[and)) operations require the operation character to be doubled because they can move the cursor
far from where it currently is. While it is easy to get back with the command ", these commands would still
be frustrating if they were easy to hit accidentally.
t You can easily change or extend this set of macros by assigning a different string to the paragraphs option
in your EXINIT. See section 6.2 for details. The '.bp' directive is also considered to start a paragraph,

- 10 -

partially spans more than one line, then when you put the text back, it is placed after the cursor
(or before if you use P). If the yanked text forms whole lines, they are put back as whole lines,
without changing the current line. In this case, the put acts much like a 0 or 0 command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp also makes a copy of the current line, and places it after the current line. You
can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in
another. An ordinary delete command saves the text in the unnamed buffer, so that an ordinary
put can move it elsewhere. However, the unnamed buffer is lost when you change files.

4.4. Summary

t first non-white on line
$ end of line
) forward sentence
} forward paragraph
]) forward section
(backward sentence
{ backward paragraph
[[backward section
fx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
Fx f backward in line
P put text back, before cursor or above current line
Tx t backward in line

5. HIGH LEVEL COMMANDS

5.1. Writing, Quitting, Editing New Files

So far we have seen how to enter vi and to write out our file using either ZZ or :WCR. The
first exits from the editor, (writing if changes were made), the second writes and stays in the
editor.

If you have changed the editor's copy of the file but do not wish to save your changes,
then you can give the command :q!CR to quit from the editor without writing the changes. You
can also reedit the same file (starting over) by giving the command :e!cR. These commands
should be used only rarely, and with caution, as you cannot recover the changes you have made
after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command :e nameCR. If
you have not written out your file before you try to do this, then the editor will tell you this, and
delay editing the other file. You can then give the command :WCR to save your work and then
the :e nameCR command again, or carefully give the command :e! namecR, which edits the
other file discarding the changes you have made to the current file. To have the editor automat­
ically save changes, include set auto write in your EXINIT, and use :n instead of :e.

5.2. Escaping to a Shell

You can get to a shell to execute a single command by giving a vi command of the form
:!cmdCR. The system runs the single command cmd and when the command finishes, the edi­
tor asks you to hit a RETURN to continue. When you have finished looking at the output on the
screen, hit RETURN. The editor clears the screen and redraws it. You can then continue editing.
You can also give another: command when it asks you for a RETURN; in this case the screen is

r

- " -
not redrawn.

If you wish to execute more than one command in the shell, you can give the command
:ShCR. This gives you a new shell, and when you finish with the shell, ending it by typing a AD,
the editor clears the screen and continues.

On systems that support it, AZ suspends the editor and returns to the (top level) shell.
When the editor is resumed, the screen is redrawn.

5.3. Marking and Returning

The command " returned to the previous place after a motion of the cursor by a com­
mand such as I, ? or G. You can also mark lines in the file with single letter tags and return to
these marks later by naming the tags. Try marking the current line with the command mx, where
you should pick some letter for x, say 'a'. Then move the cursor to a different line (any way you
like) and hit 'a. The cursor returns to the place you marked. Marks last only until you edit
another file.

Sometimes you mark a line in the middle but want to return to the beginning of the marked
line; for example, when using operators such as d or c on marked lines. In this case you can
use the form 'x rather than 'x. Used without an operator, 'x will move to the first non-white
character of the marked line; similarly" moves to the first non-white character of the line con­
taining the previous context mark".

5.4. Adjusting the Screen

If the screen image is messed up because of a transmission error to your terminal, or
because some program other than the editor wrote output to your terminal, you can hit a A L, the
ASCII form-feed character, to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line dele­
tion, you may get rid of these lines by typing "R to cause the editor to retype the screen, closing
up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of the
screen, you can position the cursor to that line, and then give a z command. You should follow
the z command with a RETURN if you want the line to appear at the top of the window, a. if you
want it at the center, or a - if you want it at the bottom.

6. SPECIAL TOPICS

6.1. Editing on Slow Terminals

When you are on a slow terminal, you will probably want to limit the amount of output gen­
erated to your screen so that you will not suffer long delays waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen dur­
ing insertions on dumb terminals to limit the delays, and how the editor erases lines to @ when
they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen option. You can
force the editor to use this mode even on faster terminals by giving the command :se SIOWCR.
('Se' is short for 'set'.) If your system is sluggish this helps lessen the amount of output coming
to your terminal. You can disable this option by :se noslowcR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command :se
redrawcR. This simulation generates a great deal of output and is generally tolerable only on
lightly loaded systems and fast terminals. You can disable this by giving the command

:se noredrawCR.

The editor also makes editing more pleasant at low speed by starting in a small window,
and letting the window expand as you edit. This works particularly well on intelligent terminals.

- 12 -

The editor can expand the window easily when you insert in the middle of the screen on these
terminals. If possible, try the editor on an intelligent terminal to see how this works.

You can control the size of the window that is redrawn each time the screen is cleared by
giving window sizes as argument to the commands that cause large screen motions:

:/?[[])' .

Thus if you are searching for a particular instance of a common string in a file you can precede
the first search command by a small number, say 3, and the editor draws three line windows
around each instance of the string it locates.

You can easily expand or contract the window, placing the current line as you choose, by
giving a number on a z command, after the z and before the following RETURN, • or -. Thus the
command zS. redraws the screen with the currentline in the center of a five line window.t

If the editor is redrawing or otherwise updating large portions of the display, you can inter­
rupt this updating by hitting a DEL or RUBOUT as usual. If you do this you may partially confuse
the editor about what is displayed on the screen. You can still edit the text on the screen if you
wish; clear up the confusion by hitting a I\L; or move or search again, ignoring the current state
of the display.

See section 7.8 on open mode for another way to use the vi command set on slow termi­
nals.

6.2. Options, Set, and Editor Startup Files

The editor has a set of options, some of which have been mentioned above. The most
useful options are given in the following table.

Name Default Description
autoindent
autowrite
ignorecase
lisp
list
magic
number
paragraphs
redraw
sections
shiftwidth
showmatch
slowopen
term

noai
noaw
noic
nolisp
nolist
nomagic
nonu
para=IPLPPPQPbpP LI
nore
sect=NHSHH HU
sw=8
nosm
slow
dumb

Supply indentation automatically
Automatic write before :n, :ta, 1\ t, !
Ignore case in searching
({) } commands deal with S-expressions
Tabs print as "I; end of lines marked with $
The characters. [and * are special in scans
Lines are displayed prefixed with line numbers
Macro names which start paragraphs
Simulate a smart terminal on a dumb one
Macro names which start new sections
Shift distance for <, > and input 1\0 and AT
Show matching (or { as) or } is typed
Postpone display updates during inserts
The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You
can set numeric and string options by a statement of the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or given while you are
running vi by preceding them with a: and following them with a CR.

t Note that th~ command 5z. has an entirely different effect. placing line 5 in the center of a new window.

- 13 -

You can get a list of all options that you have changed by the command :setcR; you can
get the value of a single option by the command :set Opt?CR. A list of all possible options and
their values is generated by :set alicR. Set can be abbreviated se. Multiple options can be
placed on one line, e.g. :se ai aw nUCR.

Options set by the set command only last while you stay in the editor. You may want to
have certain options set whenever you use the editor. This can be accomplished by creating a
list of ex commandst that are to be run every time you start up ex, edit, or vi. A typical list
includes a series of set commands. Put these commands all on one line, and separate them
with the I character, for example:

set ai aw terse

which sets the options autoindent, autowrite, and terse. This string should be placed in the vari­
able EXINIT in your environment. If you use csh, put this line in the file .login in your home
directory:

setenv EXINIT 'set ai aw terse

If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT = 'set ai aw terse
export EXINIT

Of course, the particulars of the line depend on which options you want to set.

6.3. Recovering Lost Lines

You might have a serious problem if you deleted a number of lines inadvertently. Despair
not, the editor saves the last 9 deleted blocks of text in a set of numbered registers 1-9. You
can get the n'th previous deleted text back in your file by the command lin p. The" here says
that a buffer name is to follow, n is the number of the buffer you wish to inspect (use the number
1 for now), and p is the put command, which puts text in the buffer after the cursor. If this
doesn't bring back the text you wanted, hit U to undo this and then. (period) to repeat the put
command. In general the. command repeats the last change you made, but in this case, when
the last command refers to a numbered text buffer, the . command increments the number of
the buffer before repeating the command. Thus a sequence of the form

"1pu.u.u.

if repeated long enough, shows you all the deleted text that has been saved for you. You can
omit the U commands here to gather up all this text in the buffer, or stop after any. command to
keep just the most currently recovered text. The command P can also be used rather than p to
put the recovered text before rather than after the cursor.

6.4. Recovering Lost Files

If the system crashes, you can recover the work you were doing to within a few changes.
Change to the directory you were in when the system crashed and give a command of the form:

% vi -r name

replacing name with the name of the file you were editing. This recovers your work to a point
near where you left off. t

You can get a listing of the files that are saved for you by giving the command:

t All commands that start with : are ex commands.
t In rare cases, some of the lines of the file may be lost. The editor gives you the numbers of these lines
and the text of the lines are replaced by the string ·LOST. These lines almost always are among the last few
you changed. You can either choose to discard the changes (if they are easy to remake) or replace the few
lost lines by hand.

- 14-

% vi-r

The invocation "vi -," does not always list all saved files, but they can be recovered with "vi -r
name" even if they are not listed.

6.5. Continuous Text Input

When you are typing in large amounts of text it is convenient to have lines broken near the
right margin automatically. You can cause this to happen by giving the command :se wm=ncR,
where n is some number of columns. So, the command :se wm=10CR causes all lines to be
broken at a space at least 10 columns from the right hand edge of the screen.

If the editor breaks an input line and you wish to put it back together you can tell it to join
the lines with J. You can give J a count of the number of lines to be joined as in 3J to join 3
lines. The editor supplies white space, if appropriate, at the juncture of the joined lines, and
leaves the cursor at this white space. Kill the white space with x if you don't want it.

6.6. Features for Editing Programs

The editor has a number of commands for editing programs. Editing programs is different
from editing text because in programs, an indentation structure must often be maintained. The
editor has a autoindent facility to help you generate correctly indented programs.

To enable this facility you can give the command :se aiCR. Now try opening a new line
with 0 and type some characters on the line after a few tabs. If you now start another line,
notice that the editor supplies white space at the beginning of the line to line it up with the previ­
ous line. You cannot backspace over this indentation, but you can use AD key to backtab over
the supplied indentation.

Each time you type AD you back up one position, normally to an 8 column boundary. This
amount is settable; the editor has an option called shiftwidth that can be set to change this
value. Try giving the command :se SW=4CR and then experimenting with autoindent again.

For shifting lines in the program left and right, the operators < and> shift the lines you
specify right or left by one shiftwidth. Try < < and> >, which shift one line left or right, and
< Land > L, which shift the rest of the display left and right.

If you have a complicated expression and wish to see if the parentheses match, put the
cursor at a left or right parenthesis and hit %. This will show you the matching parenthesis.
This works also for braces { and}. and brackets [and].

If you are editing C programs, you can use the [[and]) keys to advance or retreat to a line
starting with a {, i.e. a function declaration at a time. When]) is used with an operator it stops
after a line that starts with }; this is sometimes useful with y)].

6.7. Filtering Portions of the Buffer

You can run system commands over portions of the buffer using the operator!. You can
use this to sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer. Try
typing in a list of random words, one per line and ending them with a blank line. Back up to the
beginning of the list, and then give the command !}sortCR. This says to sort the next paragraph
of material, and the blank line ends a paragraph.

6.8. Commands for Editing LlSpt

If you are editing a LISP program you should set the option lisp by doing :se IiSpcR. This
changes the (and) commands to move backward and forward over s-expressions. The { and }
commands are like (and) but don't stop at atoms. These can be used to skip to the next list, or
through a comment quickly.

t The LISP features are not available on some v2 editors due to memory constraints.

- 15 -

The autoindent option works differently for LISP, supplying indent to align at the first argu­
ment to the last open list. If there is no such argument then the indent is two spaces more than
the last level.

Another option useful for typing in LISP is showmatch. Try setting it with :se smCR and
then try typing a '(' some words and then a ')'. Notice that the cursor shows the position of the '('
which matches the')' briefly. This happens only if the matching '(' is on the screen, and the cur­
sor stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in
with lisp and autoindent set. This is the = operator. Try the command =% at the beginning of
a function. This will realign all the lines of the function declaration.

When you are editing LISP, [[and]] advance and retreat to lines beginning with a (, and
are useful for dealing with entire function definitions.

6.9. Macros~

Vi has a parameterless macro facility, which lets you set it up so that when you hit a single
keystroke, the editor will act as though you had hit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briefly, there are two kinds of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EXINIT) with a command of the
form:

:map Ihs rhsCR

mapping Ihs (,left hand side') into rhs ('right hand side'). Restrictions are: Ihs should be
one keystroke (either 1 character or one function key) since it must be entered within one
second (unless no timeout is set, in which case you can type it as slowly as you wish, and
vi will wait for you to finish it before it echoes anything). The Ihs can be no longer than 10
characters, the rhs no longer than 100. To get a space, tab or newline into Ihs or rhs you
should escape them with a AV. (It may be necessary to double the AV if the map command
is given inside vi, rather than in ex.) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wqAVAVCR CR

which means that whenever you type q, the system will behave as though you had typed the
four characters :wqCR. A AV is needed because without it the CR would end the : command,
rather than becoming part of the map definition. Two AV'S are required because from within vi,
two AV'S must be typed to get one. The first CR is part of the rhs; the second terminates the:
command.

Macros can be deleted with

unmap Ihs

If the Ihs of a macro is "#0" through "#9", this maps the particular function key instead of
the 2 character "#" sequence. So that terminals without function keys can access such defini­
tions, the form "#x" will mean function key x on all terminals (and need not be typed within one
second.) The character "#" can be changed by using a macro in the usual way:

:map AVAVAI #

to use tab, for example. (This won't affect the map command, which still uses #, but just the

• Plexus currently does not support the macro feature.

- 16 -

invocation from visual mode.)

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a '!' after the word map causes the mapping to apply to input mode, rather than
command mode. Thus, to arrange for AT to be the same as 4 spaces in input mode, you can
type:

:map AT AylOlOlOlO

where ~ is a blank. The Ay is necessary to prevent the blanks from being taken as white space
between the Ihs and rhs .

7. Word Abbreviations H
A feature similar to macros in input mode is word abbreviation. This allows you to type a

short word and have it expanded into a longer word or words. The commands are :abbreviate
and :unabbreviate (:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Com­
puter Sciences'. Word abbreviation is different from macros in that only whole words are
affected. If 'eecs' were typed as part of a larger word, it would be left alone. Also, the partial
word is echoed as it is typed. An abbreviation need not be a single keystroke, as it should be
with a macro.

7.1. Abbreviations

The editor has a number of short commands that abbreviate longer commands introduced
here. You can find these commands easily on the quick reference card. They often save a bit of
typi ng and you can learn them as convenient.

8. NITTY-GRITTY DETAILS

8.1. Line Representation in the Display

The editor folds long logical lines onto many physical lines in the display. Commands that
advance "lines" advance logical lines, not physical lines. A logical line is everything between
user-input carriage returns. (So if you use autowrap and let the system break lines for you, the
physical lines thus broken are not delimited by your carriage returns and thus do not correspond
to vi's idea of logical lines.)

The command I moves the cursor to a specific column, and may be useful for getting near
the middle of a long line to split it in half. Try 801 on a line which is more than 80 columns long.t

The editor puts only full lines on the display; if there is not enough room on the display to
fit a logical line, the editor leaves the physical line empty, placing only an @ on the line as a
place holder. When you delete lines on a dumb terminal, the editor often just clears the lines to
@ to save time (rather than rewriting the rest of the screen.) You can always maximize the infor­
mation on the screen by giving the AR command.

The editor can place line numbers before each line on the display. Give the command :se
nUCR to enable this, and the command :se nonuCR to turn it off. However, this may not work
well with long input lines on some dumb terminals. The display of long lines may be scrambled
and the apparent cursor position may not be reliable; i.e., you may change something inadver­
tently. Be prepared to issue lots of AL commands.

You can have tabs represented as AI and the ends of lines indicated with '$' by giving the
command :se IistCR; :se nolistcR turns this off.

U Not currently available.
t You can make long lines very easily by using J to join together short lines.

- 17 -

Finally, lines consisting of only the character ,N, are displayed when the last line in the file
is in the middle of the screen. These represent physical lines that are past the logical end of file.

8.2. Counts

Most vi commands accept a preceding count to affect their behavior in some way. The
following table gives the common ways in which the counts are used:

new window size
scroll amount
line/column number
repeat effect

:/?[[]]
AD AU
z G I
most of the rest

The editor maintains a notion of the current default window size. On terminals that run at
speeds greater than 1200 baud, the editor uses the full terminal screen. On terminals slower
than 1200 baud (most dialup lines are in this group) the editor uses 8 lines as the default win­
dow size. At 1200 baud the default is 16 lines.

The editor uses this size when it clears and refills the screen after a search or other
motion moves far from the edge of the current window. All the commands that take a new win­
dow size as count often cause the screen to be redrawn. If you anticipate this, but do not need
as large a window as you are currently using, you may wish to change the screen size by speci­
fying the new size before these commands. In any case, the number of lines used on the
screen expands if you move off the top with a ~ or similar command or off the bottom with a
command such as RETURN or AD. The window reverts to the last specified size the next time it is
cleared and refilled. t

The scroll commands AID and AU likewise remember the amount of scroll last specified. Ini­
tially they use half the basic window size. The simple insert commands use a count to specify a
repetition of the inserted text. Thus 10a+----ESC inserts a grid-like string of text. A few com­
mands also use a preceding count as a line or column number.

Except for a few commands that ignore any counts (such as A R), the rest of the editor
commands use a count to indicate a simple repetition of their effect. Thus 5w advances five
words on the current line, while 5RETURN advances five lines. You can also give a count to the.
command, which repeats the last changing command. If you do dw and then 3., you delete first
one and then three words. You can then delete two more words with 2 ..

8.3. More File Manipulation Commands

The following table lists the file manipulation commands you can use when you are in vi.
All of these commands are followed by a CR or ESC. The most basic commands are :w and :e.
A normal editing session on a single file ends with a ZZ command. If you are editing for a long
period of time you can give :w commands occasionally after major amounts of editing, and then
finish with a ZZ. When you edit more than one file, you can finish with one with a :w and start
editing a new file by giving a :8 command, or set auto write and use :n <file>.

If you make changes to the editor's copy of a file, but do not wish to write them back. you
must give an ! after the command you would otherwise use; this forces the editor to discard any
changes you have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a +n argu­
ment to start at line n. Actually, n may be any editor command not containing a space, usefully
a scan like +/pat or +?pat. In forming new names to the 8 command, you can use the charac­
ter %, which is replaced by the current file name, or the character #, which is replaced by the
alternate file name. The alternate file name is generally the last name you typed other than the
current file name. Thus if you try to do a :8 and get a diagnostic that you haven't written the file,

t But not by a \, which just redraws the screen as it is.

:w
:wq
:x
:ename
:e!
:e + name
:e+n
:e#
:wname
:w! name
:x,yw name
:r name
:r !cmd
:n
:nl
:n args
:ta tag

write back changes
write and quit

- 18 -

write (if necessary) and quit (same as ZZ).
edit file name
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag tag, at tag

you can give a :w command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that bound the range to be
written using AG, and giving these numbers after the: and before the w, separated by ,'s (com­
mas). For example, to write out lines 10 through 200 into a file called pip, issue the command

:10,200w pipeR

You can also mark these lines with m and then use an address of the form 'x,'y on the w com­
mand here.

You can read another file into the buffer after the current line by using the :r command.
You can also read in the output from a command; just use !cmd instead of a file name. So, for
example, to read in the output of the Is command, type :r lis.

If you wish to edit a set of files in succession, you can give all the names on the command
line, and then edit each one in turn using the command :n. You can also respecify the list of
files to be edited by giving the :n command a list of file names, or a pattern to be expanded as
you would have given it in the initial vi command to the shell.

The :ta command is very useful for editing large programs. It utilizes a data base of func­
tion names and their locations--which can be created by programs such as ctags--to quickly
find a function whose name you give. If the :ta command requires the editor to switch files,
then you must :w or abandon any changes before switching. You can repeat the :ta command
without any arguments to look for the same tag again. (The tag feature is not available in some
v2 editors.)

8.4. More about Searching for Strings

When you search for strings with / and ?, the editor normally places you at the next or pre­
vious occurrence of the string. But sometimes you want to affect the lines between your current
position and the next or previous occurrence of the pattern, without affecting the line containing
the pattern. This is especially so if you are using an operator such as d, e or y. You can give a
search of the form /pat/-n to refer to the n'th line before the next line containing pat, or you can
use + instead of - to refer to the lines after the one containing pat. If you don't give a line
offset, then the editor just affects characters up to the match place, rather than whole lines; thus
use "+0" to affect to the line that matches.

You can have the editor ignore the case of words in the searches it does by giving the
command :se ieeR. The command :se noiccR turns this off.

- 19 -

Strings given to searches may actually be regular expressions. If you do not want or need
this facility, you should

set nomagic

in your EXINIT. In this case, only the characters t and $ are special in patterns. The character
\ is also then special (as it is most everywhere in the system), and may be used to get at the
extended pattern matching facility. Thus, with nomagic set, the character \ functions to turn on
magic; with magic set, \ turns it off. You must also use a \ before a literal/in a forward scan
or a ? in a backward scan, in any case. The following table gives the extended forms when
magic is set.

t
$

\<
\>
[str]
[tstr]
[x-y]
*

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and y
matches any number of the preceding pattern, including 0

If you use nomagic mode, then the. [and * primitives are given with a preceding \.

8.5. More about Input Mode

A number of characters can make corrections during input mode. These are summarized
in the following table.

AH
AW

erase
kill

\
ESC

DEL

CR
AD
OAO

fO
V

deletes the last input character
deletes the last input word, defined as by b
your erase character, same as AH
your kill character, deletes the input on this line
escapes a following AH and your erase and kill
ends an insertion
interrupts an insertion, terminating it abnormally
starts a new line
backtabs over autoindent
kills all the autoindent
same as OAO, but restores indent next line
quotes the next non-printing character into the file

The most usual way of making corrections during input mode is to type AH to correct a sin­
gle character, or to type one or more AW'S to back over incorrect words. If you use # as your
erase character in the normal system, it works like AH.

Your system kill character, normally @, AX or AU, erases all the input you have given on the
current line. In general, you can neither erase input back around a line boundary nor erase
characters that you did not insert with this insertion command. To make corrections on the pre­
vious line after a new line has been started you can hit ESC to end the insertion, move over and
make the correction, and then return to where you were. The command A, which appends at
the end of the current line, is often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you must precede it
with a \' just as you would do at the normal system command level. A more general way of typ­
ing non-printing characters into the file is to precede them with a AV. The AV echoes as a t char­
acter on which the cursor rests. This indicates that the editor expects you to type a control char­
acter. In fact you may type any character and it will be inserted into the file at that point.*

A

• This is not quite true. The inwlementation of the editor does not allow the NULL (a) character to appear in
flies. Also the LF (linefeed or J) character is used by the editor to separate lines in the file. so it cannot ap-

- 20 -

If you are using autoindent you can backtab over the indent that it supplies by typing a AD.
This backs up to a shiftwidth boundary. This works only immediately after the supplied autoin- ~
dent.

When you are using autoindent you may wish to place a label at the left margin of a line.
This is easy: type 1 and then AD. The editor moves the cursor to the left margin for one line, and
restore the previous indent on the next. You can also type a 0 followed immediately by a AD to
kill all the indent and not have it come back on the next line.

8.6. Upper Case only Terminals

If your terminal has only upper case, you can still use vi by using the normal system con­
vention for typing on such a terminal. Characters that you normally type are converted to lower
case, and you can type upper case letters by preceding them with a \. The characters { ~ } I '
are not avai lable on such termi nals, but you can escape them as \ (\ 1 \) \! \'. These charac­
ters are represented on the display in the same way they are typed.* *

8.7. Vi and Ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can
escape to the line oriented editor of ex by giving the command Q. All the: commands intro­
duced above are available in ex. Likewise, most ex commands can be invoked from vi using :.
Just give them without the : and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you get a diagnostic and
are left in the command mode of ex. You can then save your work and quit, if you wish, by giv­
ing a command x after the ex prompt :, or you can reenter vi by giving ex a vi command.

Some tasks are easier in ex than in vi. Systematic changes in line oriented material are
particularly easy. You can read the advanced editing documents for the editor ed to find out
more about this style of editing. Experienced users often mix their use of ex command mode
and vi command mode to speed the work they are doing.

8.8. Open Mode: Vi on Hardcopy Terminals and "Glass TTYs"

If you are on a hardcopy terminal or a terminal that does not have a cursor that can move
off the bottom line, you can still use the command set of vi, but in a different mode. When you
give a vi command, the editor tells you that it is using open mode. This name comes from the
open command in ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is
displayed.

In open mode the editor uses a single line window into the file, and moving backward and
forward in the file causes new lines to be displayed, always below the current line. Two com­
mands of vi work differently in open: z and AR. The z command does not take parameters, but
rather draws a window of context around the current line and then returns you to the current
line.

If you are on a hardcopy terminal, the AR command retypes the current line. On such ter­
minals, the editor normally uses two lines to represent the current line. The first line is a copy of
the line as you started to edit it, and you work on the line below this line. When you delete char­
acters, the editor types a number of \'s to show you the characters that are deleted. The editor
also reprints the current line soon after such changes so that you can see what the line looks

pear in the middle of a line. You can insert any other character, however, if you wait for the editor to echo
the f before you type the character. In fact, the editor t{eats f.i following letter as a request for the
corresponding control character. This is the only way to type S or Q, since the system normally uses them
to suspend and resume output and never gives them to the editor to process .
• The \ character you give does not echo until you type another key .
• Not available in all v2 editors due to memory constraints.

"' '.
\

- 21 -

like again.

This mode is sometimes useful on very slow terminals that can support vi in the full screen
mode. You can do this by entering ex and using an open command.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

",:-_. I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r

- 22-

Appendix: Character Functions

This appendix lists characters and their functions in vi. The characters are presented in
their order in the ASCII character set. Control characters come first, then most special characters,
then the digits, upper and then lower case characters.

For each character we tell what it means as a command and during an insert, if applicable.
Section numbers in parentheses refer to sections in this manual where the character is dis­
cussed; a 'f' after the section number means that the character is mentioned in a footnote.

"@ Not a command character. If typed as the first character of an insertion, it is
replaced with the last text inserted, and the insert terminates. Only 128 charac­
ters are saved from the last insert; if more characters were inserted, the
mechanism is not available. A "@ cannot be part of the file due to the editor
implementation (7.5f).

"c
"D

"e
"F

"G

"H (BS)

"I (TAB)

"J (IF)

"K

"L

AM (CA)

Unused.

Backward window. A count (e.g., S"8) means back up the specified number of
windows. Two lines of continuity are kept if possible (2.1, 6.1, 7.2).

Unused.

As a command, scrolls down a half-window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future "D and AU commands
(2.1, 7.2). During an insert, backtabs over autoindent white space at the begin­
ning of a line (6.6, 7.5); this white space cannot be backspaced over.

Unused.

Forward window. A count (e.g., S"F) means go forward the specified number of
windows. Two lines of continuity are kept if possible (2.1, 6.1, 7.2).

Equivalent to :fCA, printing the current file, whether it has been modified, the
current line number, the number of lines in the file, and the percentage of the
way through the file that you are.

Same as left arrow. (See h). During an insert, eliminates the last input char­
acter, backing over it but not erasing it; it remains so you can see what you
typed if you wish to type something only slightly different (3.1, 7.5).

Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab characters, it rests at the last of the spaces that
represent the tab. The spacing of tabstops is controlled by the tabstop option
(4.1,6.6).

Same as down arrow (see j).

Unused.

The ASCII formfeecl character, this causes the screen to be cleared and
redrawn. This is useful after a transmission error, if characters typed by a pro­
gram other than the editor scramble the screen, or after output is stopped by an
interrupt (5.4, 7.21).

A carriage return advances to the next line, at the first non-white position in the
line. Given a count, it advances that many lines (2.3). During an insert, a CR

causes the insert to continue onto another line (3.1).

Same as down arrow (see j).

Unused.

Same as up arrow (see k).

Not a command character. In input mode, "Q quotes the next character, the
same as AV, except that some teletype drivers will eat the "Q so that the editor
never sees it.

AS

AT

AU

AV

AW

AX

"y

"Z

A[(ESC)

A

SPACE

.I

"

- 23 -

Redraws the current screen, eliminating logical lines not corresponding to phy­
sical lines (lines with only a single @ character on them). On hardcopy termi­
nals in open mode, retypes the current line (5.4, 7.2, 7.8).

Unused. Some teletype drivers use AS to suspend output until AQis

Not a command character. During an insert, with autoindent set and at the
beginning of the line, inserts shiftwidth white space.

Scrolls the screen up--the opposite of "0, which scrolls down. Counts work as
they do for AD, and the previous scroll amount is common to both. On a dumb
terminal, AU will often necessitate clearing and redrawing the screen further
back in the file (2.1, 7.2).

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file (4.2, 7.5).

Not a command character. During an insert, backs up as b would in command
mode; the deleted characters remain on the display (see AH) (7.5).

Unused.

Unused.

If supported by the UNIX system, stops the editor, exiting to the top level shell.
Same as :stOPCR. Otherwise, unused.

Cancels a partially formed command, such as a z when no following character
has yet been given; terminates inputs on the last line (read by commands such
as : I and 1); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus hit ESC if you don't know what is happening till the editor
rings the bell. If you don't know if you are in insert mode you can type Esca,
and then material to be input; the material is then inserted correctly whether or
not you were in insert mode when you started (1.5, 3.1, 7.5).

Unused.

Searches for the word that is after the cursor as a tag. Equivalent to typing :ta,
this word, and then a CR. Mnemonically, this command is "go right to" (7.3).

Equivalent to :e #CR, returning to the previous position in the last edited file, or
editing a file that you specified if you got a 'No write since last change' diag­
nostic and do not want to have to type the file name again (7.3). (You have to
do a :w before At will work in this case. If you do not wish to write the file you
should do :e! #CR instead.)

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.

Same as right arrow (see I).

An operator that processes lines from the buffer with reformatting commands .
Follow t with the object to be processed, and then the command name ter­
minated by CR. DoubOng ! and preceding it by a count causes count lines to be
filtered; otherwise the count is passed on to the object after the!. To read a file
or the output of a command into the buffer use :r (7.3). To simply execute a
command use :! (7.3).

Precedes a named buffer specification. There are named buffers 1-9 used for
saving deleted text. (4.3, 6.3)

In input mode, if this is your erase character, it deletes the last character you
typed in input mode, and must be preceded with a \ to insert it, since it nor­
mally backs over the last input character you gave.

~
J

%

&

(

)

*

+

I

r

- 24-

Moves to the end of the current line. If you :88 IistCR, then the end of each line
will be shown by printing a $ after the end of the displayed text in the line.
Given a count, advances to the count'th following end of line; thus 2$ advances
to the end of the following line.

Moves to the parenthesis or brace { } that balances the parenthesis or brace at
the current cursor position.

A synonym for :&CR, by analogy with the ex &. command.

When followed by a " returns to the previous context at the beginning of a line.
The previous context is set whenever the current line is moved in a non-relative
way. When followed by a letter a-z, returns to the line that was marked with
this letter with a m command. at the first non-white character in the line. (2.2,
5.3). When used with an operator such as d, the operation takes place over
complete lines; if you use', the operation takes place from the exact marked
place to the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginning of a LISP s­
expression if the lisp option is set. A sentence ends at a ., !, or ?, followed by
either the end of a line or by two spaces. Any number of closing), J, ", and'
characters may appear after the and before the spaces or end of line. Sen­
tences also begin at paragraph and section boundaries (see { and [(
below). A count advances that many sentences (4.2, 6.8).

Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence (4.2, 6.8).

Unused.

Same as CR when used as a command.

Reverse of the last f, F, t, or T command, looking the other way in the current
line. Especially useful after hitting too many ; characters. A count repeats the
search.

Retreats to the previous line at the first non-white character. This is the
inverse of + and RETURN. If the line moved to is not on the screen, it is made
visible, either by scrolling, or clearing and redrawing. If a large amount of scrol­
ling would be required the screen is also cleared and redrawn, with the current
line at the center (2.3).

Repeats the last command that changed the buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit. to delete
more and more words/lines. Given a count, it passes it on to the command
being repeated. Thus after a 2dw, 3. deletes three words (3.3, 6.3, 7.2, 7.4).

Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The normal input editing sequences may be used dur­
ing the input on the bottom line. The search begins when you hit CR to ter­
minate the pattern; the cursor moves to the beginning of the last line to indicate
that the search is in progress; the search may then be terminated with a DEL or
RUB, or by backspacing when at the beginning of the bottom line, returning the
cursor to its initial position. Searches normally wrap end-around to find a string
anywhere in the buffer.

When used with an operator the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern you can force whole lines
to be affected. To do this, give a pattern with a closing I and then an offset +n
or-n.

o

1-9

<

>

?

@

A

B

c
o
E

F

G

H

I

J

- 25-

To include the character / in the search string, you must escape it with a
preceding \. A t at the beginning of the pattern forces the match to occur at
the beginning of a line only; this can speed the search. A $ at the end of the
pattern forces the match to occur at the end of a line only. More extended pat­
tern matching is available, see section 7.4; unless you set nomagie in your
.exrc file, you must precede the characters ., [, *, and" in the search pattern
with a \ to get them to work as literals (1.5, 2,2, 6.1, 7.2, 7.4).

Moves to the first character on the current line. Also used, in forming numbers,
after an initial 1-9.

Used to form numeric arguments to commands (2.3, 7.2).

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with an CR. The
command is then executed. You can return to where you were by hitting DEL or
RUB if you hit: aCCidentally (see primarily 6.2 and 7.3).

Repeats the last single character find that used f, F, t, or T. A count repeats
the scan (4.1).

An operator that shifts lines left one shiftwidth, normally 8 spaces. Uke all
operators, affects lines when repeated, as in < <. Counts are passed through
to the basic object, thus 3< < shifts three lines (6.6, 7.2).

Reindents lines for LISP, as though they were typed in with lisp and autoindent
set (6.8).

An operator that shifts lines right one shiftwidth, normally 8 spaces. Affects
lines when repeated as in > >. Counts repeat the basic object (6.6, 7.2).

Scans backwards, the opposite of I. See the 1 description above for details on
scanning (2.2, 6.1, 7.4).

Unused.

Appends at the end of line, a synonym for $a (7.2).

Backs up a word, where words are composed of non-blank sequences, placi ng
the cursor at the beginning of the word. A count repeats the effect (2.4).

Changes the rest of the text on the current line; a synonym for e$.

Deletes the rest of the text on the current line; a synonym for d$.

Moves forward to the end of a word, defined as blanks and non-blanks, like B
and W. A count repeats the effect.

Finds a single following character, backwards in the current line. A count
repeats this search (4.1).

Goes to the line number given as preceding argument, or the end of the file if
no preceding count is given. The screen is redrawn if necessary with the new
current line in the center (7.2).

Home arrow. Homes the cursor to the top line on the screen. If a count is
given, then the cursor is moved to the count'th line on the screen. In any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator, full lines are affected (2.3, 3.2).

Inserts at the beginning of a line; a synonym for ti.
Joins together lines, supplying appropriate white space: one space between
words, two spaces after a ., and no spaces at all if the first character of the
joined on line is). A count causes that many lines to be joined rather than the
default two (6.5, 7.1f).

K
L

M

N

o

P

Q

R

s

T

u
V
W

x

y

zz

[[

\
)]

- 26-

Unused.

Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-white of the count'th line from the bottom. Opera­
tors affect whole lines when used with L (2.3).

Moves the cursor to the middle line on the screen, at the first non-white posi­
tion on the line (2.3).

Scans for the next match of the last pattern given to / or ?, but in the reverse
direction; this is the reverse of n.

Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete, as the slowopen option works better (3.1).

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the
text is inserted between the characters before and at the cursor. May be pre­
ceded by a named buffer specification "x to retrieve the contents of the buffer;
buffers 1-9 contain deleted material (6.3).

Quits from vi to ex command mode. In this mode, whole lines form commands,
ending with a RETURN. You can give all the: commands; the editor supplies the
: as a prompt (7.7).

Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

Changes whole lines, a synonym for cc. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the screen
before the substitution begins.

Takes a single following character, locates the character before the cursor in
the current line, and places the cursor just after that character. A count repeats
the effect. Most useful with operators such as d (4.1).

Restores the current line to its state before you started changing it (3.5).

Unused.

Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/non-blank characters. A count repeats the
effect (2.4).

Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer, to be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines.

Exits the editor. (Same as :XCR.) If any changes have been made, the buffer is
written out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins. at each macro in
the sections option, normally a '.NH' or '.SH' and also at lines that start with a
formfeed "L. Wnes beginning with { also stop [[; this makes it useful for looking
backwards, a function at a time, in C programs. If the option lisp is set, stops at
each (at the beginning of a line, and is thus useful for moving backwards at the
top level LISP objects. (4.2, 6.1, 6.6, 7.2).

Unused.

Moves forward to a section boundary. See [[for a definition (4.2, 6.1, 6.6, 7.2).

t

a

b

c

d

•
f

g
h

I

J

k

m

n

- 27-

Moves to the first non-white position on the current line (4.4).

Unused.

When followed by a ' returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a-z. returns to the position that was marked with this letter with a m
command. When used with an operator such as d, the operation takes place
from the exact marked place to the current position within the line; if you use "
the operation takes place over complete lines (2.2, 5.3).

Appends arbitrary text after the current cursor position; the insert can continue
onto multiple lines by using RETURN within the insert. A count causes the
inserted text to be replicated, but only if the inserted text is all on one line. The
insertion terminates with an ESC (3.1, 7.2).

Backs up to the beginning of a word in the current line. A word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect (2.4).

An operator that changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text
that is to be changed is removed from the display but saved in the numeric
named buffers. For example, c) makes the rest of the current sentence disap­
pear, and creates a new empty line so you can begin to rewrite the sentence.
If only part of the current line is affected, then the last character to be changed
is marked with a $. A count causes that many objects to be affected; thus both
3c) and c3) change the following three sentences (7.4).

An operator that deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w (3.3, 3.4, 4.1, 7.4).

Advances to the end of the next word, defined as for band w. A count repeats
the effect (2.4, 3.1).

Finds the first instance of the next character following the cursor on the current
line. A count repeats the find (4.1).

Unused.

Left arrow. Moves the cursor one character to the left. Uke the other arrow
keys, either h, the left arrow key, or one of the synonyms ("H) has the same
effect. On v2 editors, arrow keys on certain kinds of terminals (those which
send escape sequences, such as vt52, c100, or hp) cannot be used. A count
repeats the effect (3.1, 7.5).

Inserts text before the cursor, otherwise like a (7.2).

Down arrow. Moves the cursor one line down in the same column. If the posi­
tion does not exist, vi comes as close as possible to the same column.
Synonyms include "J (Iinefeed) and "N.
Up arrow. Moves the cursor one line up. "p is a synonym.

Right arrow. Moves the cursor one character to the right. SPACE is a
synonym.
Marks the current position of the cursor in the mark register that is specified by
the next character a-z. Retum to this position or use with an operator with • or
• (5.3).

Repeats the last I or ? scanning commands (2.2).

~

"i'

o
p
q
r

s

t

u

v
w
x

y

z

{

}

"? (DEL)

- 28 -

Opens new lines below the current line; otherwise like 0 (3.1).

Puts text after/below the cursor; otherwise like P (6.3).

Unused.

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split lines. A
count replaces each of the following count characters with the single character
given; see R above, which is the more generally useful iteration of r (3.2).

Changes the single character at the cursor to the text that follows up to an ESC;

given a count, that many characters from the current line are changed. The last
character to be changed is marked with $ as in c (3.2).

Advances the cursor up to the character before the next character typed. Most
useful with operators such as d and c to delete the characters up to a following
character. You can use. to delete more if this doesn't delete enough the first
time (4.1).

Undoes the last change made to the current buffer. If repeated, alternates
between these two states. Thus u is its own inverse. When used after an insert
that inserted text on more than one line, the lines are saved in the numeric
named buffers (3.5).

Unused.

Advances to the beginning of the next word, as defined by b (2.4).

Deletes the single character under the cursor. With a count deletes deletes that
many characters forward from the cursor position, but only on the current line
(6.5).

An operator, yanks the following object into the unnamed temporary buffer.
Text can be recovered by a later p or P (7.4).

Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen, • the center of the screen,
and - at the bottom of the screen. A count may be given after the z and before
the following character to specify the new screen size for the redraw. A count
before the z gives the number of the line to place in the center of the screen
instead of the default current line. (5.4)

Retreats to the beginning of the preceding paragraph. A paragraph begins at
each macro in the paragraphs option, normally '.IP', '.LP', '.PP', '.QP' and '.bp'.
A paragraph also begins after a completely empty line, and at each section
boundary (see [[above) (4.2, 6.8, 7.6).

Places the cursor on the character in the column specified by the count (7.1,
7.2).

Advances to the beginning of the next paragraph. See { for the definition of
paragraph (4.2, 6.8, 7.6).

Unused.

Interrupts the editor, returning it to command accepting state (1.5, 7.5)

	CSH
	EDIT
	EX
	VI

