
IPILIEXIU§

(
Sys5 UNIX Administrator's Guide

98-05076.1 Ver. C May, 1986

PLEXUS COMPUTERS, INC.

3833 North First Street

San Jose, CA 95134

408/943-9433

Copyright 1986
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may
be reproduced, transmitted,
transcribed, stored in a
retrieval system, or translated
into any language, in any form
or by any means, without the
prior written consent of Plexus
Computers, Inc.

The information contained
herein is subject to change
without notice. Therefore,
Plexus Computers, Inc.
assumes no responsibility for
the accuracy of the information
presented in this document
beyond its current release
date.

Printed in the United States of America

CONTENTS

1. INTRODUCTION

(
2. ADMINISTRATIVE ADVICE

Administrator's Road Map ... 2-1
Disk Free Space ... 2-1
A Few Words About System Tuning .. 2-2
Why a Spare Disk Drive Is Needed .. 2-2
Protecting User Files .. 2-3
File System Backup Programs .. 2-3
Controlling Disk Usage ... 2-4
Reorganizing File Systems .. 2-5
KHping Directory Files Small ... 2-6
Administrative Use of cron .. 2-6
Files and Directories That Grow ... 2-7
Allocating Resources to Users : .. 2-7
The Matter of Accounting and Usage .. ; 2-8
Dial-Une Utilization ... 2-8
Bird-Dogging .. 2-8
Terminals .. 2-9
Security ... 2-9
Communicating With the Users .. 2-9
Troubleshooting ... 2-10
Null Modem Wiring .. 2-12

3. SETIING UP UNIX

(4. ACU

5. UNIX SYSTEM ACCOUNTING

Files and Directories ... 5-1
Dally Operation .. 5-2
Setting Up the Accounting System .. 5-3
Runacct .. ··'······· 5-4
Recovering from Failure ... 5-6
Restarting Runacct.. .. 5-7
Fixing Corrupted Files .. 5-7
Updating Holidays ... 5-8
Daily Reports .. 5-9
Summary ... 5-13

&. FILE SYSTEM CHECKING

Update of the File System .. 6-1
Corruption of the File System ... 6-3
Detection and Correction of Corruption .. 6-3
Appendix 6·1 .. 6-10

Plexus Sys5 UNIX - 1 - May 1986

CONTENTS

7. LP SPOOLING

Overview of LP Features .. 7-1
Building LP ... 7-3
Configuring LP-The lpadmin Command .. 7-4
Output Request-The Ip Command ... 7-8
Finding LP Status-LPSTAT ... 7-9
Canceling Requests-CANCEL ... 7-10
ACCEPT and REJECT ... 7-10
ENABLE and DISABLE ... : 7-11
Moving Requests-LPMOVE .. 7-12
LPSHUT and LPSCHED .. 7-12
Printer Interface Programs .. 7-13
Setting-Up Hard-Wired Devices ... 7-15
Summary .. , 7-18

8. VIRTUAL PROTOCOL MACHINE

Support for Bit-orientated Protocols .. 8-2
Implementation .. 8-6
Appendix 1 .. 8-12
Appendix 2 .. 8-16
Appendix 3 .. 8-18
Appendix 4 .. 8-19

9. REMOTE JOB ENTRY

10. SYSTEM ACTIVITY PACKAGE

System Activity Counters .. 10-2
System Activity Commands .. 10-4
Daily Report Generation ... 10-7

11. UUCP ADMINISTRATION

Planning .. 11-1
UUCP Software .. 11-2
Installation .. 11-3
Administration .. 11-1 o
Debugging .. 11-11

May 1986 - 2 - Plexus Sys5 UNIX

(

INTRODUCTION CHAPTER 1

1. INTRODUCTION

The Administrator Guide is a reference volume for those who administer a
UNIX system. The guide should be used to supplement the information
contained in the Sys5 UNIX User Reference Manual, the Sys5 UNIX
Programmer Reference Manual, and the Sys5 UNIX Administrator
Reference Manual. The following paragraphs contain a brief description of
each chapter of the guide.

The chapter "ADMINISTRATIVE ADVICE" contains helpful advice and
suggestions for administrators of the UNIX system.

The chapter "SETTING UP THE UNIX SYSTEM" describes the setup
procedures for installing the Plexus Sys5 UNIX operating system.

The chapter "AUTO CALL FACILITY INSTALLATION" outlines the
installation procedures for a properly installed (software) automatic call-up
facility.

The chapter "UNIX SYSTEM ACCOUNTING" descibes the structure,
implementation, and management of the accounting system.

The chapter "FILE SYSTEM CHECKING" describes the file system check
program (fsck) of the UNIX system. Fsck audits and interactively repairs
inconsistency in the file system.

The chapter "LP SPOOLING SYSTEM" defines the LP program and
describes the role of the LP administrator in performing restricted functions
and overseeing the smooth operation of LP.

The chapter "VIRTUAL PROTOCOL MACHINE" defines the Plexus virtual
protocol machine (VPM) and describes the implementation and the
administrative duties.

The chapter "UNIX SYSTEM REMOTE JOB ENTRY" defines the UNIX
system remote job entry (RJE) and describes the administrative duties of an
RJE administrator.

The chapter "UNIX SYSTEM ACTIVITY PACKAGE" describes the design
and implementation of the UNIX system activity package. The package
reports UNIX system-wide statistics.

The chapter "UUCP ADMINISTRATION" describes how a uucp network is
set up, the format of the control files, and administrative procedures.

Sys5 UNIX 1-1

(

(

ADMINISTRATIVE ADVICE CHAPTER 2

2. ADMINISTRATOR'S ROAD MAP

This chapter contains administrative advice based on the experience and
suggestions of many system administrators. Other reasonable approaches
may be taken to solve many of the problem areas described.

Getting started as a UNIX system administrator is hard work. There are no
real shortcuts to a working knowledge of the system. The system
administrator will need time for reading, studying, and hands-on
experimenting. The system administrator should not go "live" with the
system until he/she have had several weeks to learn the job and get the
initial hardware quirks ironed out.

The administrator should be familiar with a lot of the distributed
documentation. The "Introduction" and "How to Get Started" sections of the
Sys5 UNIX User Reference Manual as well as all of the sections of the
Sys5 UNIX Administrator Reference Manual should be studied.

Throughout this chapter, each reference of the form name(1 M), name(?), or
name(8) refers to entries in the Sys5 UNIX Administrator Reference
Manual. References to entries of the form name(N), where "N" is the
number 1 or 6 possibly followed by a letter, refer to entry name in section N
of the Sys5 UNIX User Reference Manual . . If "N" is a number 2 through 5
possibly followed by a letter, refer to entry name in section N of the Sys5
UNIX Programmer Reference Manual.

In these manuals, pay special attention to: acct(1 M), checkall(1 M),
chmod(1), chown(1), config(1M), cpio(1), date(1), dcopy(1M), df(1M),
don(1 M), du(1), ed(1 }, env(1), errpt(1 M), find(1), format(1 M), fsck(1 M),
fuser(1M}, kill(1), mail(1), mkdir(1), mkfs(1M), ncheck(1M), ps(1), rm(1),
rmdir(1), shutdown(1 M), stty(1), su(1), sync(1 M), time(1 }, vcf(1 M),
volcopy(1M), wall(1 M}, who(1}, and write(1}; acct(4); alt of section 7; and
crash(8).

2.1 DISK FREE SPACE

Making files is easy under the UNIX operating system. Therefore, users
tend to create numerous files using large amounts of file space. It has been
said that the only standard thing about all UNIX systems is the message-of­
the-day telling users to clean up their files. Administratively, both free disk
blocks and free inodes (UNIX system talk for file headers) can be a
problem. If the free inode count falls below 100, the system spends most of
its time rebuilding the free inode array. If a file system runs out of space,
the system prints "nospace" messages and does little else. To avoid
problems, the following start-of-day free counts should be maintained:

Sys5 UNIX 2-1

CHAPTER 2 ADMINISTRATIVE ADVICE

• The file system containing /tmp (temporary files):

- 16-user system: 1500 free kilobytes (KB).
- 40-user system: 3000 free KB.

• The file system containing lusr:

- 3000 to 6000 free KB depending on load.

• Other user file systems:

- 6 to 1 o percent free depending on user habits
(3000 KB minimum).

This brings up an associated problem: how big should file systems be? The
preference is to set aside space on each drive for a copy of root/swap and
use the rest of the pack for a single file system. However, if you have user
groups that fight over disk space, it may be better to split them up arbitrarily
(i.e., divide a pack into more than one file system). If different disk drives
are set up with differing cylinder partitions between file systems, it will
eventually lead to an operational blunder.

2.2 A FEW WORDS ABOUT SYSTEM TUNING

A file system reorganization can help throughput but at the expense of down
time. If the reorganization is done during nonprime time, it can help.

If normal shutdown and filesave procedures are used, the file system check
program [fsck(1 M), -S option] will help keep the disk free list in reasonable
order. Try to keep disk drive usage balanced. If there are more than 20
users, performance will be improved if the root file system (!bin, ltmp, and
!etc) has a drive of its own. If there is a noisy modem (poorly executed do­
it-yourself null-modem) or a disconnected modem cable, the UNIX system
will spend a lot of CPU time trying to get it logged in. A random check of
systems uncovers a lot of this going on.

2.3 WHY A SPARE DISK DRIVE IS NEEDED

Without a spare disk drive, the system will be down when a drive is down.
Also, without the spare drive, it is difficult to reorganize file systems or to
save and restore user files.

2-2 Sys5 UNIX

(

ADMINISTRATIVE ADVICE CHAPTER 2

2.4 PROTECTING USER FILES

Users, especially inexperienced ones, occasionally remove their own files.
Open files are sometimes lost when the system crashes. Once in a great
while, an entire file system will be destroyed (picture a disk controller that
goes bad and writes when it should read). Here is a suggested file backup
procedure:

• Each day copy all user file systems to backup tapes. Keep these
tapes 3 to 5 days before reusing them.

• Once a week copy each file system to tape. Keep weekly tapes for 8
weeks.

• Keep bimonthly tapes "forever" (they should be recopied once a
year).

The most recent weekly tapes should be kept off premises. The other tapes
should be in a fireproof safe if available and not too expensive.

When the UNIX system goes down, active files can get scrambled. Your
users will not want to start the day over every time the system fails. In
addition to good backup, you must have file system patching expertise
available (on-site or on-call). If the system is ever rebooted for general use
without first checking the file systems, terrible things will happen. Study
checkall(1 M), fsck(1 M), and crash(8) as well as the "File System
Checking" chapter for more information.

2.5 FILE SYSTEM BACKUP PROGRAMS

The following backup programs are distributed:

• Find/cpio: The UNIX system is distributed in cpio format. The -cpio
option of the find command can be used for saving only those files
that have changed or been created over a definite period

• Volcopy: Physical file system copying to disk or tape. For those with
a spare drive, volcopy to disk provides convenient file restore and
quick recovery from disk disasters. Tape volcopy provides good
long-term backup because the file system can be read-in fairly
quickly, mounted, and browsed over. Disk and tape volcopy are
generally used together for short- and long-term backup. Note that a
volcopy from a mounted file system may result in an inconsistent
copy (files being written at the time can contain invalid data).

Figure 2-1 summarizes attributes of these programs. In the figure, the file
system size is 65,500 KB in all cases; times are in minutes and are relative;
judgments are subjective.

Sys5 UNIX 2-3

CHAPTER 2 ADMINISTRATIVE ADVICE

FIND/CPIO VOLCOPY lDISK) VOLCOPY J!_APt;l

Full dump time 40 2 15
Incremental dump time 7 - -
Full restore time 80 2 15
Incremental restore time 10 - -
Ease of restoring:

one file fair good fair
a directory fair good good
scattered files poor good good
full restore fair very good good

Needs tape drive yes no yes
Needs spare file system

(two CPUs can share) - yes -
Maintains pack/tape labels no yes -
Handles multireel tape yes - yes
512 KB per record 1.10 88 10
Interactive

(i.e., ties up console) yes yes yes
May require separate

l/D ~ace no no• no
---'

• KB per record are cut to 22 without separate VD space.

Figure 2-1. File System Backup Programs

The spare disk drive is strongly recommended. The speed and convenience
of volcopy are by no means the only advantage of a spare drive. It is
strongly recommended that the administrator modify the /etclfi/esave and
/etc/checklist files to meet the operational needs and update the local
operator's manual accordingly. Remember, the more the administrator
automates and documents operational procedures the less downtime will be
encountered.

2.6 CONTROLLING DISK USAGE

Try to maintain the start-of-day counts recommended. Watch usage during
the day by executing the df(1) command regularly.

The du(1) command should be executed (after hours) regularly (e.g., daily),
and the output kept in an accessible file for later comparison. In this way,
users rapidly increasing their disk usage may be spotted. This can also be
accomplished by running the accounting system's acctdusg program [see
acct(1 M)] as shown in "The SysS UNIX Accounting" chapter.

2-4 SysS UNIX

(

(

(~

ADMINISTRATIVE ADVICE CHAPTER 2

The find(1) command can be used to locate inactive (or large) files. For
example:

find /-mtime +90 -atime +90-print >somefile

records in somefile the names of files neither written nor accessed in the
last 90 days.

The administrator will also have to balance usage between file systems. To
do this, user directories must be moved. Users should be taught to accept
file system name changes (and to program around them-preferably ahead
of time). The user's login directory name (available in the shell variable
HOME) should be utilized to minimize pathname dependencies. User
groups with more extensive file system structures should set up a shell
variable to refer to the file system name (e.g., FS).

The find(1) and cpio(1) commands can be used to move user directories
and to manipulate the file system tree. The following sequence is useful (it
moves the directory trees userx and usery from file system filesys1 to file
system filesys2 where, presumably, more space is available):

cd /filesys1
find userx usery -print I cpio -pdm /filesys2
Make sure new copy is OK.
Change userx and usery login directories
in the /etc/passwd file.
Notify userx and usery via mail(1) that
they have been moved and that pathname
dependencies in their .profile and shell
procedures may need changed. See the
discussion on $HOME above.
rm -rf /filesys 1 /userx /filesys 1 /usery

When moving more than one user in this way, keep users with common
interests in the same file system (these users may have linked files) and
move groups of users who may have linked files with a single cpio
command (otherwise linked files will be unlinked and duplicated).

2.7 REORGANIZING FILE SYSTEMS

There is a new file system reorganization utility called dcopy(1 M). On an
otherwise idle system, a reorganized file system has almost twice the 1/0
throughput of a randomly organized file system. This applies to file copying,
finds, fscks, etc. Dcopy can take up to 2.5 hours to initially reorganize
(copy) a large file system. During reorganization the system can be up, but
the file system being copied must be unmounted.

Sys5 UNIX 2-5

CHAPTER 2 ADMINISTRATIVE ADVICE

For those who can afford the operator time, root reorganization once a week
(requires system reboot) and user file system reorganization once a month
will improve system performance. Dcopy is an interim step.

2.8 KEEPING DIRECTORY FILES SMALL

Directories larger than SK bytes (320 entries) are very inefficient because of
file system indirection. A UNIX system user once complained that it took
the system 1 O minutes to complete the login process; it turned out that his
login directory was 25K bytes long, and the login program spent that time
fruitlessly looking for a nonexistent .profile ·file. A large /usrlmail or
/usrlspoolluucp directory can also really slow the system down. The
following will ferret out such directories:

find I -type d -size + 1 O -print

Removing files from directories does not make the directories get smaller
(the empty directory entries are available for reuse). The following will
"compact" lusrlmail (or any other directory):

mv /usr/mail /usr/omail
mkdir /usr/mail
chmod 777 /usr/mail
cd /usr/omail
find . -print I cpio -plm . ./mail
cd ..
rm -rf omail

2.9 ADMINISTRATIVE USE OF "CRON"

The program cron(1 M) is useful in the administration of the system; it can
be used to:

• Turn off the programs in directory lusr/games during prime time.

• Run programs off ·hours:
• accounting;
• file system administration;
• long-running, user-written shell procedures.

2·6 Sys5 UNIX

' '

(

(

(

ADMINISTRATIVE ADVICE CHAPTER 2

2.10 WATCH OUT FOR FILES AND DIRECTORIES THAT GROW

Most of the below files are· restarted automatically by entries in !etc/re at
system reboot.

• Accounting files:

• /etc/wtmp-login information; grows extremely fast with
terminal line difficulties; use acctcon(1 M) to determine the
offending line(s).

• lusr/admlpacct-per process accounting records; gets big
quickly; monitored automatically by ckpacct from cron(1 M).

• lusr/liblcronllog-status log of commands executed by
cron(1 M); also watch this file for error messages from the
programs being executed in lusr/spool/cron/crontabl*.

• lusr/adm/errfile-hardware error logging info; also read login
adm's mail periodically.

• lusrladmlctlog-a log of the people who use ct(1 C) command.

• /usr/admlsulog-a log of those who execute the superuser
command.

• /usr/adm!Spacct-process accounting files left over from an
accounting failure; remove these files unless the accounting
files that failed are to be rerun.

• Other files:

• /usr/spoo/-spooling directory for line printers, uucp(1 C), etc.,
and whose subdirectories should be compacted as described
above.

2.11 ALLOCATING RESOURCES TO USERS

A prospective user should first obtain authorization to use the system and
then apply for a login by providing the following information to the "system
administrator":

• User's name.

• Suggested login name (not more than eight characters, beginning
with a lowercase letter and not containing special or uppercase
letters).

• Relationships to other users (this influences the choice of the file
system).

SysS UNIX 2-7

CHAPTER 2 ADMINISTRATIVE ADVICE

• Estimate of required file space (this also influences the choice of the
file system) and connect hours. This aids in hardware growth
planning.

Users must have passwords with at least six characters. (Only the first eight
characters are significant.) Also, every password must have at least two
alphabetic characters and one numeric or special character. The password
must differ from the user's login name and any reverse or circular shift of it.
Refer to passwd(1) and passwd(4) for more information on password
selection and password aging.

2.12 THE MATTER OF ACCOUNTING AND USAGE

You should run the accounting programs even if there is not a "bill" for
service. Otherwise, users' habits (especially bad habits) will be a mystery to
you. Accounting information can also help you find performance
bottlenecks, unused logins, bad phone lines, etc.

2.13 DIAL-LINE UTILIZATION

If prime-time dial-line utilization gets much over 70 percent, users will start
to encounter busy signals when dialing in. This, in turn, will lead to "line
hogging". The only solutions are to acquire more dial-up ports, get a larger
(another) machine, or lessen the number of users. Manual policing will help
some, but "automatic" policing will be invariably subverted by users.

2.14 "BIRD-DOGGING"

When the system is busy (lines busy and/or slow response), someone
should determine why this is so. The who(1) command lists the people
logged in. The ps(1) command shows what they are doing. Unfortunately,
ps operates from heuristics that can consistently fail to report certain
processes in a busy system. That is, one must be careful about hanging up
an apparently inactive line. The acctcom(1 M) command can read the
process accounting file lusrladmlpacct backwards from the most recent
entry. It will print entries for selected lines or login names.

2-8 Sys5 UNIX

(

ADMINISTRATIVE ADVICE CHAPTER 2

2.15 TERMINALS

Do not use uppercase only terminals. Use full-duplex, full-ASCII
asynchronous terminals. Hardware horizontal tabbing is very desirable
because it increases output speed and lowers system overhead. A fair
proportion of the terminals should provide for correspondence-quality hard
copy output to take advantage of the UNIX system word processing
capabilities; see term(5).

2.16 SECURITY

The current UNIX operating system is not tamperproof. The system
administrator cannot keep people from "breaking" the system but can
usually detect that they have done so. The following command will mail (to
root) a list of all "set user ID" programs owned by root (superuser):

find I -user root -perm -4100 -exec Is -I {} \; I mail root

Any surprises in root's mail should be investigated. In dealing with security,

• Change the superuser password regularly. Do not pick obvious
passwords (choose 6-to-8 character nonsense strings that combine
alphabetics with digits or special characters).

(• Dial ports that do not require passwords usually cause trouble.

(

• The chroot(1 M) and su(1) commands are inherently dangerous as
are group passwords.

• Login directories, .profile files, and files in /bin, /usrlbin, I/bin, and
/etc that are writable by others than their respective owners are
security weak spots; police the system regularly against them.

• Remember, no time-sharing system with dial ports is really secure.
Do not keep top secret information on the system.

2.17 COMMUNICATING WITH THE USERS

The directory /usr/news and the news(1) command are provided as a way
to get "brief" announcements to your users. More pressing items (one­
liners) can be entered in the /etclmotd (message of the day) file; motd and
(new to the user) news are announced at login time.

To reach users who are already logged in, use the wall(1 M) (write all)
command. Do not use wall while logged-in as superuser, except in
emergencies.

Sys5 UNIX 2-9

CHAPTER 2 ADMINISTRATIVE ADVICE

The lusrlnews directory should be cleaned out once a week by removing
everything older than 2 months. It has been found that on most systems a
file in /usrlnews will reach 50 percent of the users within a day and over 80
percent within a week; motd should be cleaned out daily.

2.18 TROUBLESHOOTING

It would be easy to write a book on troubleshooting. The following is some
effective advice in dealing with troubles. In dealing with hardware support
service personnel,

• Be sure that the contractor agrees to get along with the UNIX
software before you take out a hardware service contract ("It's the
hardware," says you; "It's the software," says the hardware service
contractor).

• Keep on top of problems. Find out about any such scheme that your
contractor may have and make them prove that it is being followed.
Remember that an unreported problem is getting no priority at all. If
a problem persists, escalate it through the contractor's local
management chain; it may also be effective to complain to the
contractor's sales representative.

• A support service agreement should be arranged, to allow for timely
and personal assistance on all technical questions and problems.
Arrange for preventive maintenance, noncritical repair, and add-on
installation work to be done before or after prime time.

• Know the details of the support service offering applicable to the
installation. In particular, make sure that preventive maintenance is
scheduled in advance and that it is completed.

• A "site log" should be maintained for the hardware. All troubles
should be recorded in the log by the support service personnel and/or
the operating personnel.

• Run error logging and maintain console sheets. Make sure error
messages are shown to support service personnel.

• Take core dumps after system crashes and have them available for
support service personnel.

• Keep records of downtime and make sure that support service
personnel know about them.

Telephone problems are most apt to occur when rearranging or adding
equipment. Occasionally, central office, trunking, or modem failures occur.
In dealing with the telephone services vendor,

2-10 Sys5 UNIX

(

(

(

ADMINISTRATIVE ADVICE CHAPTER 2

• Be specific with repair operators. Tell the operators that the trouble
involves data equipm~nt.

• If the first call fails to get results, ask for the "supervisor" on the
second call, and if necessary, escalate further to get the problem
solved.

Some of the obvious problem areas are:

• Disk Drives-Remember that preventive maintenance of disk drives
is very important. Make sure that the support service personnel who
service the hardware see the error-logging printouts and console
error messages produced by the UNIX system (and that they
understand them). Disk failure can ruin a file system. The only
defense is to make a complete, daily file backup! (See the part
"Protecting User Files".)

• Dial Ports-In the dial-in interface area, there is room for finger­
pointing among all involved vendors. Check for obvious things such
as is the system in "multiuser" mode, is the letclinittab file OK, or are
any cables loose (both ends)? In some telephone offices, trunk
hunting is based on 10-number groups. Hunting between such
groups can fail independently of anything else. The possibilities for
trouble are many. Figure 2-2 attempts to describe some alternatives;
it is meant primarily for users of the ICP and ACP devices used in
asynchronous mode. As an example of the format, (vertical) Rule 3
reads: "If line rings and ring light shows and computer does not
answer and switching the modem solves the problem, then it is likely
to be a telephone company problem; also, busy out that line."

Rules: 1 2 3 4 5 6 7 8 9 0
Condition:

Line rings N y y y y y y y y y

Ring light shows on telephone console - N y y y y y y y y
Computer answers - - N N y y y y y y

Login message received on terminal - - - - N N y y y y

Switching modem solves problem - - y N y N - - - -
User can login - - - - - - N N N y

Telephone console shows data received - - - - - - y y N -
Problem affects whole ICP or ACP - - - - - - y N - -

Diagnosis and/or Action:
No problem - - - - - - - - - x

Processor hardware problem likely - - - x - x x - - -
Telephone problem likely x x x - x - - - x -

May be a problem with user's terminal - - - - - - - x - -
Busy out bad line(s) x x x x x x x - x -

Figure 2-2. Asynchronous Line Problems

Sys5 UNIX 2-11

CHAPTER 2 ADMINISTRATIVE ADVICE

• Synchronous Ports-The following is a list of potential trouble spots: -,

-The UNIX system software.

-Interface device (e.g., KMC11 B).

-Cable to the modem.

-The modem.

- The communications line.

-Other modem.

-Other cable.

-Other interface device.

-Other system's software.

2.19 NULL MODEM WIRING

Improperly wired null modems can cause spurious interrupts, especially at
higher baud rates. A single bad modem on a 9600-baud line can waste 15
percent of your CPU power. The following (symmetrical) wiring plan will
prevent such problems:

pin 1 to 1
pin 2 to 3
pin 3 to 2
strap pin 4 to 5 in the same plug
pin 6 to 20
pin 7 to 7
pin 8 to 20
pin 20 to 6 and 8
ground unused pins

2-12 Sys5 UNIX

(

(

SETTING UP UNIX CHAPTER 3

3. SETTING UP UNIX

This chapter describes the load and upgrade procedures for the Plexus
implementation of the UNIX SysS operating system. The Plexus UNIX SysS
consists of:

• a release tape (cartridge or 9-track),

• this release document.

The Release Tape comprises 22 files. Files 0-19 are blocked at 1024 bytes
per record; file 20 is blocked at 10240 bytes per record; files 21 through the
end of the tape are blocked at 5120 bytes per record. Most of the tape files
and standalone programs are on the UNIX operating system release tape.
These are for backup and emergency purposes, in case the disk copies of
the standalones become inaccessible and you need to run the standalone
programs from tape. File 20 is a dump of the files that make up the
bootstrap. Files 21, 22, and 23 are cpio format files comprising the full
release. File 21 contains everything except the /usr/catman and /usr/man
directories. These directories are in files 22 and 23.

SysS UNIX 3-1

(~

(

ACU CHAPTER 4

4. ACU

For information about Automatic Calling Unit (ACU), please reference the
"UUCP ADMINISTRATION" chapter of this guide. ACU is discussed in the
section on Lines File, under the listing call-device.

Sys5 UNIX 4-1

(

(

(

UNIX SYSTEM ACCOUNTING CHAPTER 5

5. UNIX SYSTEM ACCOUNTING

The UNIX system accounting provides methods to collect per-process
resource utilization data, record connect sessions, monitor disk utilization,
and charge fees to specific logins. A set of C language programs and shell
procedures is provided to reduce this accounting data into summary files
and reports. This chapter describes the structure, implementation, and
management of. this accounting system, as well as a discussion of the
reports generated and the meaning of the columnar data.

Throughout this chapter, each reference of the form name(1 M), name(?), or
name(8) refers to entries in the SysS UNIX Administrator Reference
Manual. References to entries of the form name(N), where "N" is the
number 1 or 6 possibly followed by a letter, refer to entry name in section N
of the SysS UNIX User Reference Manual. If "N" is a number (2 through 5)
possibly followed by a letter, refer to entry name in section N of the SysS
UNIX Programmer Reference Manual.

The following list is a synopsis of the actions of the accounting system:

• At process termination, the UNIX system kernel writes one record per
process in lusr/adm1pacct in the form of acct.h.

• The login and init programs record connect sessions by writing
records into letclwtmp. Date changes, reboots, and shutdowns (via
acctwtmp) are also recorded in this file.

• The disk utilization program acctdusg and diskusg break down disk
usage by login.

• Fees for file restores, etc., can be charged to specific logins with the
chargefee shell procedure.

• Each day the runacct shell procedure is executed via cron to reduce
accounting data and produce summary files and reports.

• The monacct procedure can be executed on a monthly or fiscal
period basis. It saves and restarts summary files, generates a report,
and cleans up the sum directory. These saved summary files could
be used to charge users for UNIX system usage.

5.1 Files and Directories

The !usr/lib!acct directory contains all of the C language programs and shell
procedures necessary to run the accounting system. The adm login
(currently user ID of 4) is used by the accounting system and has the login
directory structure shown in Figure 5-1.

Sys5 UNIX 5-1

CHAPTER 5 UNIX SYSTEM ACCOUNTING

/usr/adm
I

acct
I ---------·---------
!

nite sum fiscal

Figure 5-1. Directory Structure of the "adm" Login

The lusrladm directory contains the active data collection files. (For a
complete explanation of the files used by the accounting system, see Figure
5-2 at the end of this section.) The nite directory contains files that are
reused daily by the runacct procedure. The sum directory contains the
cumulative summary files updated by runacct. The fiscal directory contains
periodic summary files created by monacct.

5.2 Daily Operation

When the UNIX system is switched into multiuser mode, lusrlliblacctlstartup
is executed which does the following:

1. The acctwtmp program adds a "boot" record to letclwtmp. This
record is signified by using the system name as the login name in the
wtmp record.

2. Process accounting is started via turnacct. Turnacct on executes the
accton program with the argument lusrladmlpacct.

3. The remove shell procedure is executed to clean up the saved pacct
and wtmp files left in the sum directory by runacct.

The ckpacct procedure is run via cron every hour of the day to check the
size of usr:admlpacct. If the file grows past 1000 blocks (default), turnacct
switch is executed. The advantage of having several smaller pacct files
becomes apparent when trying to restart runacct after a failure processing
these records.

The chargefee program can be used to bill users for file restores, etc. It
adds records to lusr/admlfee which are picked up and processed by the
next execution of runacct and merged into the total accounting records.

Runacct is executed via cron each night. It processes the active
accounting files, /usrladml pacct, , etciwtmp, usr'admiacctrniteidisktacct,
and /usrladm/fee. It produces command summaries and usage summaries
by login.

When the system is shut down using shutdown, the shutacct shell
procedure is executed. It writes a shutdown reason record into :etc!Wtmp

5-2 Sys5 UNIX

(

UNIX SYSTEM ACCOUNTING CHAPTER 5

and turns process accounting off.

After the first reboot each morning, the computer operator should execute
lusr//iblacctlprdaily to print the previous day's accounting report.

5.3 Setting Up the Accoutnting System

In order to automate the operation of this accounting system, several things
need to be done:

1. If not already present, add this line to the /etc/re file in the state 2
section:

/bin/su - adm -c /usr/lib/acct/startup

2. If not already present, add this line to /etc/shutdown to turn off the
accounting before the system is brought down:

; usrilibi acct/shutacct

3. For most installations, the following three entries should be made in
!usr!spool/cron!crontabladm so that cron will automatically run the
daily accounting.

O 4 * ·• 1·6 1usr<lib1acct;runacct 2 > usr,adm,acctnite1fd21og
0 2 * * 4 :usrrlib1acct1dodisk
5 * * * ·~ , usr/liblacct, ckpacct

4. To facilitate monthly merging of accounting data, the following entry in
/usr!spoolicromcrontabiadm will allow monacct to clean up all daily
reports and daily total accounting files and deposit one monthly total
report and one monthly total accounting file in the fiscal directory.

15 5 1 * * 1usr/lib/acct/monacct

The above entry takes advantage of the default action of monacct that
uses the current month's date as the suffix for the file names. Notice
that the entry is executed at such a time as to allow runacct sufficient
time to complete. This will, on the first day of each month, create
monthly accounting files with the entire month's data.

5. The PATH shell variable should be set in lusrladmi.profile to:

PATH= usr, liblacct:1bin:/usr1bin

5.4 Runacct

Runacct is the main daily accounting shell procedure. It is normally initiated
via cron during nonprime time hours. Runacct processes connect, fee,
disk, and process accounting files. It also prepares daily and cumulative
summary files for use by prdaily or for billing purposes. The following files
produced by runacct are of particular interest:

Sys5 UNIX 5-3

CHAPTER 5

nite/lineuse

nite/daytacct

sum/tacct

sum/daycms

su m1 login log

sum/rprtMMDD

UNIX SYSTEM ACCOUNTING

Produced by acctcon, reads the wtmp file, and
produces usage statistics for each terminal line on the
system. This report is especially useful for detecting
bad lines. If the ratio between the number of logoffs
to logins exceeds about 3/1, there is a good
possibility that the line is failing.

This file is the total accounting file for the previous
day in tacct.h format.

This file is the accumulation of each day's
niteldaytacct and can be used for billing purposes. It
is restarted each month or fiscal period by the
monacct procedure.

Produced by the acctcms program. It contains the
daily command summary. The ASCII version of this
file is niteldaycms.

The accumulation of each day's command
summaries. It is restarted by the execution of
monacct. The ASCII version is nite!cms.

Produced by the lastlogin shell procedure. It
maintains a record of the last time each login was
used.

Each execution of runacct saves a copy of the daily
report that can be printed by prdaily.

Runacct takes care not to damage files in the event of errors. A series of
protection mechanisms are used that attempt to recognize an error, provide
intelligent diagnostics, and terminate processing in such a way that runacct
can be restarted with minimal intervention. It records its progress by writing
descriptive messages into the file active. (Files used by runacct are
assumed to be in the nite directory unless otherwise noted.) All diagnostics
output during the execution of runacct is written into td2/og. Runacct will
complain if the files lock and /ock1 exist when invoked. The lastdate file
contains the month and day runacct was last invoked and is used to
prevent more than one execution per day. If runacct detects an error, a
message is written to /devlconsole, mail is sent to root and adm, locks are
removed, diagnostic files are saved, and execution is terminated.

In order to allow runacct to be restartable, processing is broken down into
separate reentrant states. A file is used to remember the last state
completed. When each state completes, statefile is updated to reflect the
next state. After processing for the state is complete, statefile is read and
the next state is processed. When runacct reaches the CLEANUP state, it

5-4 Sys5 UNIX

(

(~

UNIX SYSTEM ACCOUNTING CHAPTER 5

removes the locks and terminates. States are executed as follows:

SETUP

WTMPFIX

CONNECT1

CONNECT2

PROCESS

MERGE

FEES

DISK

MERGETACCT

CMS

Svss UNIX

The command turnacct switch is executed. The
process accounting files, /usrladmlpacct?, are moved
to !usr!adm!Spacct?.MMDD. The letclwtmp file is
moved to lusrladmlacctlnite!wtmp.MMDD with the
current time added on the end.

The wtmp file in the nite directory is checked for
correctness by the wtmpfix program. Some date
changes will cause ar ctcon1 to fail, so wtmpfix
attempts to adjust the time stamps in the wtmp file if
a date change record appears.

Connect session records are written to ctmp in the
form of ctmp.h. The lineuse file is created, and the
reboots file is created showing all of the boot records
found in the wtmp file.

Ctmp is converted to ctacct.MMDD which are
connect accounting records. (Accounting records are
in tacct.h format.)

The acctprc1 and acctprc2 programs are used to
convert the process accounting files,
iusr/adm!Spaccf?.MMDD, into total accounting
records in ptacct?.MMDD. The Spacct and ptacct
files are correlated by number so that if runacct fails
the unnecessary reprocessing of Spacct files will not
occur. One precaution should be noted; when
restarting runacct in this state, remove the last
ptacct file because it will not be complete.

Merge the process accounting records with the
connect accounting records to form daytacct.

Merge in any ASCII tacct records from the file fee
into daytacct.

On the day after the dodisk procedure runs, merge
disktacct with daytacct.

Merge daytacct with sum1tacct, the cumulative total
accounting file. Each day, daytacct is saved in
sum/tacctMMDD, so that sumltacct can be recreated
in the event it becomes corrupted or lost.

Merge in today's command summary with the
cumulative command summary file sum/ems.

5-5

CHAPTER 5 UNIX SYSTEM ACCOUNTING

Produce ASCII and internal format command
summary files.

USEREXIT Any installation dependent (local) accounting
programs can be included here.

CLEANUP Clean up temporary files, run prdaily and save its
output in sumlrprtMMDD, remove the locks, then exit.

5.5 Recovering From Failure

The runacct procedure can fail for a variety of reasons; usually due to a
system crash, /usr running out of space, or a corrupted wtmp file. If the
activeMMDD file exists, check it first for error messages. If the active file
and lock files exist, check fd2/og tor any mysterious messages. The
following are error messages produced by runacct and the recommended
recovery actions:

ERROR: locks found, run aborted

The files lock and lock1 were found. These files must be
removed before runacct can restart.

ERROR: acctg already run for date : check /usr/adm/acct/nite/lastdate

The date in lastdate and today's date are the same. Remove
lastdate.

ERROR: turnacct switch returned re=?

Check the integrity of turnacct and accton. The accton
program must be owned by root and have the setuid bit set.

ERROR: Spacct?.MMO[already exists

File setups probably already run.
Check status of files, then run setups manually.

ERROR: ,usr1adm/acct1nite1Wtmp.MMOO already exists, run setup manually

Self-explanatory.

ERROR: wtmpfix errors see ;usr/adm/acct1nite;wtmperror

Wtmpfix detected a corrupted wtmp file. Use fwtmp to
correct the corrupted file.

ERROR: connect acctg failed: check /usr/adm;acct/nite/log

The acctcon1 program encountered a bad wtmp file. Use
fwtmp to correct the bad file.

ERROR: Invalid state, check. usr,adm/acct/nite/active

5-6 SysS UNIX

(

(~

UNIX SYSTEM ACCOUNTING

The file statefile is probably corrupted. Check
statefile and read active before restarting.

5.6 Restarting Runacct

CHAPTER 5

Runacct called without arguments assumes that this is the first invocation of
the day. The argument MMDD is necessary if runacct is being restarted
and specifies the month and day for which runacct will rerun the
accounting. The entry point for processing is based on the contents of
statefile. To override statefile, include the desired state on the command
line. For example:

To start runacct:

nohup runacct 2> /usr/adm/acctlnite/fd21og&

To restart runacct:

nohup runacct 0601 2> /usr/adm/acct/nite/fd21og&

To restart runacct at a specific state:

nohup runacct 0601 WTMPFIX 2> 1usr/adm1acctmite1fd21og&

5.7 Fixing Corrupted Files

Unfortunately, this accounting system is not entirely foolproof. Occasionally,
a file will become corrupted or lost. Some of the files can simply be ignored
or restored from the file save backup. However, certain files must be fixed
in order to maintain the integrity of the accounting system.

5.7.1 Fixing WTMP Errors

The wtmp files seem to cause the most problems in the day-to-day
operation of the accounting system. When the date is changed and the
UNIX system is in multiuser mode, a set of date change records is written
into !etc!wtmp. The wtmpfix program is designed to adjust the time stamps
in the wtmp records when a date change is encountered. However, some
combinations of date changes and reboots will slip through wtmpfix and
cause acctcon1 to fail. The following steps show how to patch up a wtmp
file.

Svs5 UNIX 5-7

CHAPTER 5 UNIX SYSTEM ACCOUNTING

cd /usr/adm/accUnite
fwtmp < wtmp.MMDD > xwtmp
ed xwtmp

delete corrupted records or
delete all records from beginning up to the date change

fwtmp -ic < xwtmp > wtmp.MMOO

If the wtmp file is beyond repair, create a null wtmp file. This will prevent
any charging of connect time. Acctprc1 will not be able to determine which
login owned a particular process, but it will be charged to the login that is
first in the password file for that user id.

5.7.2 Fixing TACCT Errors

If the installation is using the accounting system to charge users for system
resources, the integrity of sumltacct is quite important. Occasionally,
mysterious tacct records will appear with negative numbers, duplicate user
IDs, or a user ID of 65,535. First check sumltacctprev with prtacct If it
looks all right, the latest sumltacct.MMDD should be patched up, then
sumltacct recreated. A simple patchup procedure would be:

cd /usr/adm/acct/sum
acctmerg -v < tacct.MMDD > xtacct
ed xtacct

remove the bad records
write duplicate uid records to another file

acctmerg -i < xtacct > tacct.MMDD
acctmerg tacctprev < tacct.MMDD > tacct

Remember that the monacct procedure removes all the tacct.MMDD files;
therefore, sumltacct can be recreated by merging these files together.

5.8 Updating Holidays

The file lusrllib/acctlholidays contains the prime/nonprime table for the
accounting system. The table should be edited to reflect your location's
holiday schedule for the year. The format is composed of three types of
entries:

1. Comment Lines: Comment lines may appear anywhere in the file as
long as the first character in the line is an asterisk.

2. Year Designation Line: This line should be the first data line
(noncomment line) in the file and must appear only once. The line
consists of three fields of four digits each (leading white space is
ignored). For example, to specify the year as 1982, prime time at 9:00
a.m., and nonprime time at 4:30 p.m., the following entry would be
appropriate:

5-8 Sys5 UNIX

(

(

UNIX SYSTEM ACCOUNTING CHAPTER 5

1982 0900 1630

A special condition allowed for in the time field is that the time 2400 is
automatically converted to 0000.

3. Company Holidays Lines: These entries follow the year designation
line and have the following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range of 1 through 366
indicating the day for the corresponding holiday (leading white space is
ignored). The other three fields are actually commentary and are not
currently used by other programs.

5.9 Daily Reports

Runacct generates five basic reports upon each invocation. They cover the
areas of connect accounting, usage by person on a daily basis, command
usage reported by daily and monthly totals, and a report of the last time
users were logged in.

The following paragraphs describe the reports and the meanings of their
tabulated data.

5.9.1 Daily Report

In the first part of the report, the from/to banner should alert the
administrator to the period reported on. The times are the time the last
accounting report was generated until the time the current accounting report
was generated. It is followed by a log of system reboots, shutdowns, power
fail recoveries, and any other record dumped into letclwtmp by the
acctwtmp program [see acct(1 M) in the Sys5 UNIX Administrator
Reference Manua~.

The second part of the report is a breakdown of line utilization. The TOT AL
DURATION tells how long the system was in multiuser state (able to be
accessed through the terminal lines). The columns are:

LINE

MINUTES

PERCENT

SESS

#ON

SysS UNIX

The terminal line or access port.

The total number of minutes that line was in use
during the accounting period.

The total number of MINUTES the line was in use
divided into the TOTAL DURATION.

The number of times this port was accessed for a
login(1) session.

This column does not have much meaning anymore.
It used to give the number of times that the port was

5-9

CHAPTER 5

#OFF

UNIX SYSTEM ACCOUNTING

used to log a user on; but since login(1) can no
longer be executed explicitly to log in a new user, this
column should be identical with SESS.

This column reflects not just the number of times a
user logged off but also any interrupts that occur on
that line. Generally, interrupts occur on a port when
the getty(1 M) is first invoked when the system is
brought to multiuser state. Where this column does
come into play is when the # OFF exceeds the # ON
by a large factor. This· usually indicates that the
multiplexer, modem, or cable is going bad, or there is
a bad connection somewhere. The most common
cause of this is an unconnected cable dangling from
the multiplexer.

During real time, letclwtmp should be monitored as this is the file that the
connect accounting is geared from. If it grows rapidly, execute acctcon1 to
see which tty line is the noisest. If the interrupting is occurring at a furious
rate, general system performance will be effected.

5.9.2 Daily Usage Report

This report gives a by-user breakdown of system resource utilization. Its
data consists of:

UID

LOGIN NAME

CPU (MINS)

KCORE-MINS

5-10

The user ID.

The login name of the user; there can be more
than one login name for a single user ID, this
identifies which one.

This represents the amount of time the user's
process used the central processing unit. This
category is broken down into PRIME and
NPRIME (nonprime) utilization. The accounting
system's idea of this breakdown is located in
the lusr!liblacct/holidays file. As delivered,
prime time is defined to be 0900 through 1700
hours.

This represents a cumulative measure of the
amount of memory a process uses while
running. The amount shown reflects kilobyte
segments of memory used per minute. This
measurement is also broken down into PRIME
and NPRIME amounts.

Sys5 UNIX

(

(

(

UNIX SYSTEM ACCOUNTING CHAPTER 5

CONNECT (MINS)

DISK BLOCKS

#OF PROCS

#OF SESS

DISK SAMPLES

FEE

This identifies "Real Time" used. What this
column really identifies is the amount of time
that a user was logged into the system. If this
time is rather high and the column "# OF
PROCS" is low, this user is what is called a
"line hog". That is, this person logs in first thing
in the morning and does not hardly touch the
terminal the rest of the day. Watch out for
these kinds of users. This column is also
subdivided into PRIME and NPRIME utilization.

When the disk accounting programs have been
run, the output is merged into the total
accounting record (tacct.h) and shows up in this
column. This disk accounting is accomplished
by the program acctdusg.

This column reflects the number of processes
that was invoked by the user. This is a good
column to watch for large numbers indicating
that a user may have a shell procedure that
runs amock.

This is how many times the user logged onto
the system.

This indicates how many times the disk
accounting was run to obtain the average
number of DISK BLOCKS listed earlier.

An often unused field in the total accounting
record, the FEE field represents the total
accumulation of widgets charged against the
user by the chargefee shell procedure [see
acctsh(1 M)]. The chargefee procedure is used
to levy charges against a user for special
services performed such as file restores, etc.

5.9.3 Daily Command and Monthly Total Command Summaries

These two reports are virtually the same except that the Daily Command
Summary only reports on the current accounting period while the Monthly
Total Command Summary tells the story for the start of the fiscal period to
the current date. In other words, the monthly report reflects the data
accumulated since the last invocation of monacct.

The data included in these reports gives an administrator an idea as to the
heaviest used commands and, based on those commands' characteristics of

Sys5 UNIX 5·11

CHAPTER 5 UNIX SYSTEM ACCOUNTING

system resource utilization, a hint as to what to weigh more heavily when
system tuning. ~/"

These reports are sorted by TOTAL KCOREMIN, which is an arbitrary
yardstick but often a good one for calculating "drain" on a system.

COMMAND NAME This is the name of the command.
Unfortunately, all shell procedures are lumped
together under the name sh since only object
modules are reported by the process accounting
system. The administrator should monitor the
frequency of programs called a.out or core or
any other name that does not seem quite right.
Often people like to work on their favorite
version of backgammon only they do not want
everyone to know about it. Acctcom is also a
good tool to use for determining who executed a
suspiciously named command and also if
superuser privileges were used.

NUMBER CMOS This is the total number of invocations of this
particular command.

TOTAL KCOREMIN

TOTAL CPU-MIN

TOTAL REAL-MIN

MEAN SIZE-K

MEAN CPU-MIN

HOG FACTOR

5-12

The total cumulative measurement of the
amount of kilobyte segments of memory used
by a process per minute of run time.

The total processing time this program has
accumulated.

The total real-time (wall-clock) minutes this
program has accumulated. This total is the
actual "waited for" time as opposed to kicking
off a process in the background.

This is the mean of the TOTAL KCOREMIN
over the number of invocations reflected by
NUMBER CMOS.

This is the mean derived between the NUMBER
CMOS and TOTAL CPU-MIN.

This is a relative measurement of the ratio of
system availability to system utilization. It is
computed by the formula

(total CPU time) I (elapsed time)

This gives a relative measure of the total

Sys5 UNIX

(

(

UNIX SYSTEM ACCOUNTING CHAPTER 5

CHARS TRNSFD

BLOCKS READ

5.9.4 Last Login

available CPU time consumed by the process
during its execution.

This column, which may go negative, is a total
count of the number of characters pushed
around by the read(2) and write(2) system
calls.

A total count of the physical block reads and
writes that a process performed.

This report simply gives the date when a particular login was last used. This
could be a good source for finding likely candidates for the archives or
getting rid of unused logins and login directories.

5.10 Summary

The UNIX system accounting was designed from a UNIX system
administrator's point of view. Every possible precaution has been taken to
ensure that the system will run smoothly and without error. It is important to
become familiar with the C programs and shell procedures. The manual
pages should be studied, and it is advisable to keep a printed copy of the
shell procedures handy. The accounting system should be easy to
maintain, provide valuable information for the administrator, and provide
accurate breakdowns of the usage of system resources for charging
purposes.

5.10.1 Files in the /usr/adm directory

diskdiag

dtmp

fee

pacct

pacct?

Spacct?. MMDD

diagnostic output during the execution of disk
accounting programs

output from the acctdusg program

output from the chargetee program, ASCII tacct
records

active process accounting file

process accounting files switched via turnacct

process accounting files for MMDD during
execution of runacct

5.10.2 Files in the /usr/adm/acct/nite directory

active

SysS UNIX

used by runacct to record progress and print
warning and error messages. activeMMOO
same as active after runacct detects an error

5-13

CHAPTER 5

ems

ctacct.MMDD

ct mp

daycms

daytacct

disktacct

fd21og

last date

lock lock1

lineuse

log

logMMDD

reboots

statefile

tmpwtmp

wtmperror

wtmperrorMMDD

UNIX SYSTEM ACCOUNTING

ASCII total command summary used by prdaily

connect accounting records in tacct.h format

output of acctcon1 program, connect session
records in ctmp.h format

ASCII daily command summary used by prdaily

total accounting records for 1 day in tacct.h
format

disk accounting records in tacct.h format,
created by dodisk procedure

diagnostic output during execution of runacct
(see cron entry)

last day run acct executed in date + %m%d
format

used to control serial use of runacct

tty line usage report used by prdaily

diagnostic output from acctcon 1

same as log after runacct detects an error

contains beginning and ending dates from wtmp,
and a listing of reboots

used to record current state during execution of
run acct

wtmp file corrected by wtmpfix

place for wtmpfix error messages

same as wtmperror after runacct detects an
error

wtmp.MMDD previous day's wtmp file

5.10.3 Files in the /usr/adm/acct/sum directory

ems

cmsprev

daycms

login log

5-14

total command summary file for current fiscal in
internal summary format

command summary file without latest update

command summary file for yesterday in internal
summary format

created by lastlogin

Sys5 UNIX

(.

(

(

UNIX SYSTEM ACCOUNTING CHAPTER 5

pacct.MMDD

rprtMMDD

tacct

tacctprev

tacctMMDD

concatenated version of all pacct files for
MMDD, removed after reboot by remove
procedure

saved output of prdaily program

cumulative total accounting file for current fiscal

same as tacct without latest update

total accounting file for MMDD

wtmp.MMDD saved copy of wtmp file for MMDD, removed
after reboot by remove procedure

5.10.4 Files in the /usr/adm/acct/fiscal directory

ems?

fiscrpt?

tacct?

Sys5 UNIX

total command summary file for fiscal ? in
internal summary format

report similar to prdaily for fiscal ?

total accounting file for fiscal ?

5·15

(

(

(

FILE SYSTEM CHECKING CHAPTER 6

6. FILE SYSTEM CHECKING

The File System Check Program (fsck) is an interactive file system check
and repair program. Fsck uses the redundant structural information in the
UNIX system file system to perform several consistency checks. If an
inconsistency is detected, it is reported to the operator, who may elect to fix
or ignore each inconsistency. These inconsistencies result from the
permanent interruption of the file system updates, which are performed
every time a file is modified. Fsck is frequently able to repair corrupted_ file
systems using procedures based upon the order in which the UNIX system
honors these file system update requests.

The purpose of this chapter is to describe the normal updating of the file
system, to discuss the possible causes of file system corruption, and to
present the corrective actions implemented by fsck. Both the program and
the interaction between the program and the operator are described.

Appendix 6-1 contains the fsck error conditions. The meanings of the
various error conditions, possible responses, and related error conditions are
explained.

When a UNIX operating system is brought up, a consistency check of the
file systems should always be performed. This precautionary measure helps
to ensure a reliable environment for file storage on disk. If an inconsistency
is discovered, corrective action must be taken.

The updating of the file system and file system corruption is described in this
chapter. Finally, the set of heuristically sound corrective actions used by
fsck are presented.

6.0.1 System Administrator Advice

Remember that system buffers are 1024 bytes. When configuring the
operating system, take into consideration that the same number of buffers
as before will use more main memory. Weigh this against reducing the
number of buffers, which reduces the cache hit ratio and degrades
performance.

6.1 Update of the File System

Every working day hundreds of files are created, modified, and removed.
Every time a file is modified, the UNIX operating system performs a series
of file system updates. These updates, when written on disk, yield a
consistent file system. To understand what happens in the event of a

SysS UNIX 6-1

CHAPTER 6 FILE SYSTEM CHECKING

permanent interruption in this sequence, it is important to understand the
order in which the update requests were probably being honored. Knowing
which pieces of information were probably written to the file system first,
heuristic procedures can be developed to repair a corrupted file system.

There are five types of file system updates. These involve the superblock,
inodes, indirect blocks, data blocks (directories and files), and free-list
blocks.

6.1.1 Superblock

The superblock contains information about the size of the file system, the
size of the inode list, part of the free-block list, the count of free blocks, the
count of free inodes, and part of the free-inode list.

The superblock of a mounted file system (the root file system is always
mounted) is written to the file system whenever the file system is
unmounted or a sync command is issued.

6.1.2 lnodes

An inode contains information about the type of inode (directory, data, or
special), the number of directory entries linked to the inode, the list of blocks
claimed by the inode, and the size of the inode.

An inode is written to the file system upon closure of the file associated with
the inode. (All "in" core blocks are also written to the file system upon issue
of a sync system call.)

6.1.3 Indirect Blocks

There are three types of indirect blocks-single-indirect, double-indirect, and
triple-indirect. A single-indirect block contains a list of some of the block
numbers claimed by an inode. Each one of the 128 entries in an indirect
block is a data-block number. A double-indirect block contains a list of
single-indirect block numbers. A triple-indirect block contains a list of ·
double-indirect block numbers.

Indirect blocks are written to the file system whenever they have been
modified and released by the operating system. More precisely, they are
queued for eventual writing. Physical 1/0 is deferred until the buffer is
needed by the UNIX system or a sync command is issued.

6-2 SysS UNIX

FILE SYSTEM CHECKING CHAPTER 6

(6.1.4 Data Blocks

(

A data block may contain file information or directory entries. Each directory
entry consists of a file name and an inode number.

Data blocks are written to the file system whenever they have been modified
and released by the operating system.

6.1.5 First Free-List Block

The superblock contains the first free-list block. The free-list blocks are a
list of all blocks that are not allocated to the superblock, inodes, indirect
blocks, or data blocks. Each free-list block contains a count of the number
of entries in this free-list block, a pointer to the next free-list block, and a
partial list of free blocks in the file system.

Free-list blocks are written to the file system whenever they have been
modified and released by the operating system.

6.2 Corruption of the File System

A file system can become corrupted in a variety of ways. Improper
shutdown procedures and hardware failures are the most common.

6.2.1 Improper System Shutdown and Startup

File systems may become corrupted when proper shutdown procedures are
not observed, e.g., forgetting to sync the system prior to halting the CPU,
physically write-protecting a mounted file system, or taking a mounted file
system off-line.

File systems may also become further corrupted by allowing a corrupted file
system to be used (and, thus, to be modified further) can be disastrous.

6.2.2 Hardware Failure

Any piece of hardware can fail at any time. Failures can be as subtle as a
bad block on a disk platter or as blatant as a nonfunctional disk controller.

6.3 Detection and Correction of Corruption

Sys5 UNIX . 6-3

CHAPTER 6 FILE SYSTEM CHECKING

A quiescent file system (an unmounted system and not being written on)
may be checked for structural integrity by performing consistency checks on
the redundant data intrinsic to a file system. The redundant data is either
read from the file system or computed from other known values. A
quiescent state is important during the checking of a file system because of
the multipass nature of the fsck program.

When an inconsistency is discovered, fsck reports the inconsistency for the
operator to chose a corrective action.

Discussed in this part are how to discover inqonsistencies (and possible
corrective actions) for the superblock, the inodes, the indirect blocks, the
data blocks containing directory entries, and the free-list blocks. These
corrective actions can be performed interactively by the fsck command
under control of the operator.

6.3.1 Superblock

One of the most common corrupted items is the superblock. The
superblock is prone to corruption because every change to the file system's
blocks or inodes modifies the superblock.

The superblock and its associated parts are most often corrupted when the
computer is halted and the last command involving output to the file system
was not a sync command.

The superblock can be checked for inconsistencies involving file system
size, inode-list size, free-block list, free-block count, and the free-inode
count.

6.3.1. 1 File System Size and lnode-List Size

The file system size must be larger than the number of blocks used by the
superblock and the number of blocks used by the list of inodes. The
number of inodes must be less than 65,535. The file system size and
inode-list size are critical pieces of information to the fsck program. While
there is no way to actually check these sizes, fsck can check for them being
within reasonable bounds. All other checks of the file system depend on the
correctness of these sizes.

6.3.1.2 Free-Block List

The free-block list starts in the superblock and continues through the free-list
blocks of the file system. Each free-list block can be checked for a list
count out of range, for block numbers out of range, and for blocks already

6-4 SysS UNIX

(

(

(

FILE SYSTEM CHECKING CHAPTER 6

allocated within the file system. A check is made to see that all the blocks
in the file system were founGI.

The first free-block list is in the superblock. Fsck checks the list count for a
value of less than 0 or greater than 50. It also checks each block number
for a value of less than the first data block in the file system or greater than
the last block in the file system. Then it compares each block number to a
list of already allocated blocks. If the free-list block pointer is nonzero, the
next free-list block is read in and the process is repeated.

When all the blocks have been accounted for, a check is made to see if the
number of blocks used by the free-block list plus the number of blocks
claimed by the inodes equals the total number of blocks in the file system.

If anything is wrong with the free-block list, then fsck may rebuild the list,
excluding all blocks in the list of allocated blocks.

6.3.1.3 Free-Block Count

The superblock contains a count of the total number of free blocks within the
file system. Fsck compares this count to the number of blocks it found free
within the file system. If the counts do not agree, then fsck may replace the
count in the superblock by the actual free-block count.

6.3. 1.4 Free-lnode Count

The superblock contains a count of the total number of free inodes within
the file system. Fsck compares this count to the number of inodes it found
free within the file system. If the counts do not agree, then fsck may
replace the count in the superblock by the actual free-inode count.

6.3.2 lnodes

An individual inode is not as likely to be corrupted as the superblock.
However, because of the great number of active inodes, there is almost as
likely a chance for corruption in the inode list as in the superblock.

The list of inodes is checked sequentially starting with inode 1 (there is no
inode 0) and going to the last inode in the file system. Each inode can be
checked for inconsistencies involving format and type, link count, duplicate
blocks, bad blocks, and inode size.

6.3.2.1 Format and Type

Each inode contains a mode word. This mode word describes the type and

Sys5 UNIX 6-5

CHAPTER 6 FILE SYSTEM CHECKING

state of the inode. lnodes may be one of four types:

• Regular

• Directory

• Special block

• Special character.

If an inode is not one of these types, then the inode has an illegal type.
lnodes may be found in one of three states-unallocated, allocated, and
neither unallocated nor allocated. This last state indicates an incorrectly
formatted inode. An inode can get in this state if bad data is written into the
inode list through, for example, a hardware failure. The only possible
corrective action is for fsck to clear the inode.

6.3.2.2 Link Count

Contained in each inode is a count of the total number of directory entries
linked to the inode. Fsck verifies the link count of each inode by traversing
down the total directory structure, starting from the root directory, and
calculating an actual link count for each inode.

If the stored link count is nonzero and the actual link count is zero, it means
that no directory entry appears for the inode. If the stored and actual link
counts are nonzero and unequal, a directory entry may have been added or
removed without the inode being updated.

If the stored link count is nonzero and the actual link count is zero, fsck can,
under operator control, link the disconnected file to the lost+ found directory.
If the stored and actual link counts are nonzero and unequal, fsck can
replace the stored link count by the actual link count.

6.3.2.3 Duplicate Blocks

Contained in each inode is a list or pointers to lists (indirect blocks) of all the
blocks claimed by the inode. Fsck compares each block number claimed by
an inode to a list of already allocated blocks. If a block number is already
claimed by another inode, the block number is added to a list of duplicate
blocks. Otherwise, the list of allocated blocks is updated to include the
block number. If there are any duplicate blocks, fsck will make a partial
second pass of the inode list to find the inode of the duplicated block. This
is necessary because without examining the files associated with these
inodes for correct content there is not enough information available to
decide which inode is corrupted and should be cleared. Most of the time,
the inode with the earliest modify time is incorrect and should be cleared.
This condition can occur by using a file system with blocks claimed by both

6-6 SysS UNIX

(

(

FILE SYSTEM CHECKING CHAPTER 6

the free-block list and by other parts of the file system.

A large number of duplicate blocks in an inode may be due to an indirect
block not being written to the file system. Fsck will prompt the operator to
clear both inodes.

6.3.2.4 Bad Blocks

Contained in each inode is a list or pointer to lists of all the blocks claimed
by the inode. Fsck checks each block number claimed by an inode for a
value lower than that of the first data block or greater than the last block in
the file system. If the block number is outside this range, the block number
is a bad block number.

If there is a large number of bad blocks in an inode, this may be due to an
indirect block not being written to the file system. Fsck will prompt the
operator to clear both inodes.

6.3.2.5 Size Checks

Each inode contains a 32-bit (4-byte) size field. This size indicates the
number of characters in the file associated with the inode. This size can be
checked for inconsistencies, e.g., directory sizes that are not a multiple of
16 characters or the number of blocks actually used not matching that
indicated by the inode size.

A directory inode within the file system has the directory bit on in the inode
mode word. The directory size must be a multiple of 16 because a
directory entry contains 16 bytes (2 bytes for the inode number and 14 bytes
for the file or directory name).

Fsck will warn of such directory misalignment. This is only a warning
because not enough information can be gathered to correct the
misalignment.

A rough check of the consistency of the size field of an inode can be
performed by computing from the size field the number of blocks that should
be associated with the inode and comparing it to the actual number of
blocks claimed by the inode.

Fsck calculates the number of blocks that there should be in an inode by
dividing the number of characters in an inode by the number of characters
per block and rounding up. Fsck adds one block for each indirect block
associated with the inode. If the actual number of blocks does not match
the computed number of blocks, fsck will warn of a possible file-size error.
This is only a warning because the UNIX system does not fill in blocks in
files created in random order.

Sys5 UNIX 6-7

CHAPTER 6 FILE SYSTEM CHECKING

6.3.3 Indirect Blocks

Indirect blocks are owned by an inode. Therefore, inconsistencies in indirect
blocks directly affect the inode that owns it.

Inconsistencies that can be checked are blocks already claimed by another
inode and block numbers outside the range of the file system.

For a discussion of detection and correction of the inconsistencies
associated with indirect blocks, see parts "Duplicate Blocks" and "Bad
Blocks".

6.3.4 Data Blocks

The two types of data blocks are plain data blocks and directory data blocks.
Plain data blocks contain the information stored in a file. Directory data
blocks contain directory entries. Fsck does not attempt to check the validity
of the contents of a plain data block.

Each directory data block can be checked for inconsistencies involving
directory inode numbers pointing to unallocated inodes, directory inode
numbers greater than the number of inodes in the file system, incorrect
directory inode numbers for "." and " .• ", and directories disconnected from
the file system. In addition, the validity of the contents of a directory's data
block is checked.

If a directory entry inode number points to an unallocated inode, then fsck
may remove that directory entry. This condition probably occurred because
the data blocks containing the directory entries were modified and written
out while the inode was not yet written out.

If a directory entry inode number is pointing beyond the end of the inode list,
fsck may remove that directory entry. This condition occurs if bad data is
written into a directory data block.

The directory inode number entry for "." should be the first entry in the
directory data block. Its value should be equal to the inode number for the
directory data block.

The directory inode number entry for " .. " should be the second entry in the
directory data block. Its value should be equal to the inode number for the
parent of the directory entry (or the inode number of the directory data block
if the directory is the root directory).

If the directory inode numbers are incorrect, fsck may replace them with the
correct values.

6-8 Sys5 UNIX

(

(

(

FILE SYSTEM CHECKING CHAPTER 6

Fsck checks the general connectivity of the file system. If directories are
found not to be linked into -the file system, fsck will link the directory back
into the file system in the lost+ found directory. This condition can be
caused by inodes being written to the file system with the corresponding
directory data blocks not being written to the file system.

6.3.5 Free-List Blocks

Free-list blocks are owned by the superblock. Therefore, inconsistencies in
free-list blocks directly affect the superblock.

Inconsistencies that can be checked are a list count outside of range, block
numbers outside of range, and blocks already associated with the file
system .

. For a discussion of detection and correction of the inconsistencies
associated with free-list blocks, see part "Free-Block List".

Sys5 UNIX 6-9

CHAPTER 6 FILE SYSTEM CHECKING

6.4 Appendix 6-1 (FSCK Error Conditions)

6.4.1 Conventions

Fsck is a multipass file system check program. Each file system pass
invokes a different phase of the fsck program. After the initial setup, fsck
performs successive phases over each file system performing cleanup,
checking blocks and sizes, pathnames, connectivity, reference counts, and
the free-block list (possibly rebuilding it).

When an inconsistency is detected, fsck reports the error condition to the
operator. If a response is required, fsck prints a prompt message and waits
for a response. This appendix explains the meaning of each error condition,
the possible responses, and the related error conditions.

The error conditions are organized by the "Phase" of the fsck program in
which they can occur. The error conditions that may occur in more than one
phase will be discussed under Part B.

6.4.2 Initialization

Before a file system check can be performed, certain tables have to be set
up and certain files opened. This section describes the opening of files and
the initialization of tables. Error conditions resulting from command line
options, memory requests, opening of files, status of files, file system size
checks, and creation of the scratch file are listed below.

6.4.2.1 C option?

C is not a legal option to fsck; legal options are -y, -n, -s, -S, -t, -r, -q,
and -D. Fsck terminates on this error condition. See the fsck(1 M) entry in
the UNIX System V Administrator Reference Manual for further details.

6.4.2.2 Bad -t option

The -t option is not followed by a file name. Fsck terminates on this error
condition. See the fsck(1 M) entry in the UNIX System V Administrator
Reference Manual for further details.

6.4.2.3 Invalid -s argument, defaults assumed

The -s option is not suffixed by 3, 4, or blocks-per-cylinder:blocks-to-skip.
Fsck assumes a default value of 400 blocks-per-cylinder and 9 blocks-to-

6-10 Sys5 UNIX

(

FILE SYSTEM CHECKING CHAPTER 6

skip. See the fsck(1 M) entry in the UNIX System V Administrator
Reference Manual for further details.

6.4.2.4 Incompatible options: -n and -s

It is not possible to salvage the free-block list without modifying the file
system. Fsck terminates on this error condition. See the fsck(1 M) entry in
the UNIX System V Administrator Reference Manual for further details.

6.4.2.5 Can not fstat standard input

Fsck's attempt to fstat standard input failed. The occurrence of this error
condition indicates a serious problem which may require additional
assistance. Fsck terminates on this error condition.

6.4.2.6 Can not get memory

Fsck's request for memory for its virtual memory tables failed. The
occurrence of this error condition indicates a serious problem which may
require additional assistance. Fsck terminates on this error condition.

'(~ 6.4.2.7 Can not open checkall file: F

The default file system checkall file F (usually !etclcheckall) cannot be
opened for reading. Fsck terminates on this error condition. Check access
modes of F.

6.4.2.8 Can not stat root

Fsck's request for statistics about the root directory "/" failed. The
occurrence of this error condition indicates a serious problem which may
require additional assistance. Fsck terminates on this error condition.

6.4.2.9 Can not stat F

Fsck's request for statistics about the file system F failed. It ignores this file
system and continues checking the next file system given. Check access
modes of F.

6.4.2.10 F is not a block or character device

Fsck has been given a regular file name by mistake. It ignores this file
system and continues checking the next file system given. Check file type
of F.

Sys5 UNIX 6-11

CHAPTER 6 FILE SYSTEM CHECKING

6.4.2.11 Can not open F

The file system F cannot be opened for reading. It ignores this file system
and continues checking the next file system given. Check access modes of
F.

6.4.2.12 Size check: fsize X isize Y

More blocks are used for the inode list Y than there are blocks in the file
system X, or there are more than 65,535 inodes in the file system. It
ignores this file system and continues checking the next file system given.

6.4.2.13 Can not create F

Fsck's request to create a scratch file F failed. It ignores this file system
and continues checking the next file system given. Check access modes of
F.

6.4.2.14 CAN NOT SEEK: BLK B (CONTINUE)

Fsck's request for moving to a specified block number B in the file system
failed. The occurrence of this error condition indicates a serious problem
which may require additional assistance.

Possible responses to CONTINUE prompt are:

YES

NO

Attempt to continue to run file system check. Often,
however, the problem will persist. This error condition
will not allow a complete check of the file system. A
second run of fsck should be made to recheck this
file system. If block was part of the virtual memory
buffer cache, fsck will terminate with the message
"Fatal 1/0 error".

Terminate program.

6.4.2.15 CAN NOT READ: BLK B (CONTINUE)

Fsck's request for reading a specified block number B in the file system
failed. The occurrence of this error condition indicates a serious problem
which may require additional assistance.

Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check. Often,
however, the problem will persist. This error condition
will not allow a complete check of the file system. A

6-12 Sys5 UNIX

FILE SYSTEM CHECKING CHAPTER 6

NO

second run of fsck should be made to recheck this
file system. If block was part of the virtual memory
buffer cache, fsck will terminate with the message
"Fatal 1/0 error".

Terminate program.

6.4.2.16 CAN NOT WRITE: BLK B (CONTINUE)

Fsck's request for writing a specified block number B in the file system
failed. The disk is write-protected.

Possible responses to CONTINUE prompt are:

YES

NO

Attempt to continue to run file system check. Often,
however, the problem will persist. This error condition
will not allow a complete check of the file system. A
second run of fsck should be made to recheck this
file system. If block was part of the virtual memory
buffer cache, fsck will terminate with the message
"Fatal 1/0 error".

Terminate program.

6.4.3 PHASE 1: CHECK BLOCKS AND SIZES

This phase concerns itself with the inode list. This part lists error conditions
resulting from checking inode types, setting up the zero-link-count table,
examining inode block numbers for bad or duplicate blocks, checking inode
size, and checking inode format.

6.4.3.1 UNKNOWN FILE TYPE I= I (CLEAR)

The mode word of the inode I indicates that the inode is not a special
character inode, regular inode, or directory inode.

Possible responses to CLEAR prompt are:

YES

NO

Deallocate inode I by zeroing its contents. This will
always invoke the UNALLOCATED error condition in
Phase 2 for each directory entry pointing to this
inode.

Ignore this error condition.

6.4.3.2 LINK COUNT TABLE OVERFLOW (CONTINUE)

SysS UNIX 6-13

CHAPTER 6 FILE SYSTEM CHECKING

An internal table for fsck containing allocated inodes with a link count of
zero has no more room. Recompile fsck with a larger value of MAXLNCNT.

Possible responses to CONTINUE prompt are:

YES

NO

6.4.3.3 B BAD I= I

Continue with program. This error condition will not
allow a complete check of the file system. A second
run of fsck should be made to recheck this file
system. If another allocated inode with a zero link
count is found, this error condition is repeated.

Terminate program.

lnode I contains block number B with a number lower than the number of
the first data block in the file system or greater than the number of the last
block in the file system. This error condition may invoke the EXCESSIVE
BAD BLKS error condition in Phase 1 if inode I has too many block numbers
outside the file system range. This error condition will always invoke the
BAD/DUP error condition in Phase 2 and Phase 4.

6.4.3.4 EXCESSIVE BAD BLKS I= I {CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number
lower than the number of the first data block in the file system or greater
than the number of the last block in the file system associated with inode /.

Possible responses to CONTINUE prompt are:

YES

NO

6.4.3.5 B DUP l=I

Ignore the rest of the blocks in this inode and
continue checking with next inode in the file system.
This error condition will not allow a complete check of
the file system. A second run of fsck should be
made to recheck this file system.

Terminate program.

lnode I contains block number B which is already claimed by another inode.
This error condition may invoke the EXCESSIVE DUP BLKS error condition
in Phase 1 if inode I has too many block numbers claimed by other inodes.
This error condition will always invoke Phase 1 b and the BAD!DUP error
condition in Phase 2 and Phase 4.

6-14 SysS UNIX

(

(

FILE SYSTEM CHECKING CHAPTER 6

6.4.3.6 EXCESSIVE DUP BLKS l=I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed by
other inodes.

Possible responses to CONTINUE prompt are:

YES

NO

Ignore the rest of the blocks in this inode and
continue checking with next inode in the file system.
This error condition will not allow a complete check of
the file system. A second run of fsck should be
made to recheck this file system.

Terminate program.

6.4.3.7 DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers has no more
room. Recompile fsck with a larger value of DUPTBLSIZE.

Possible responses to CONTINUE prompt are:

YES Continue with program. This error condition will not
allow a complete check of the file system. A second
run of fsck should be made to recheck this file
system. If another duplicate block is found, this error
condition will repeat.

NO Terminate program.

6.4.3.8 POSSIBLE FILE SIZE ERROR l=I

The inode I size does not match the actual number of blocks used by the
inode. This is only a warning. If the -q option is used, this message is not
printed.

6.4.3.9 DIRECTORY MISALIGNED I= I

The size of a directory inode is not a multiple of the size of a directory entry
(usually 16). This is only a warning. If the -q option is used, this message
is not printed.

6.4.3.10 PARTIALLY ALLOCATED INODE l=I (CLEAR)

lnode I is neither allocated nor unallocated.

Possible responses to CLEAR prompt are:

SysS UNIX 6-15

CHAPTER 6

YES

NO

FILE SYSTEM CHECKING

Deallocate inode I by zeroing its contents.

Ignore this error condition.

6.4.4 PHASE 18: RESCAN FOR MORE DUPS

When a duplicate block is found in the file system, the file system is
rescanned to find the inode which previously claimed that block. This part
lists the error condition when the duplicate block is found.

6.4.4.1 B DUP l=I

lnode I contains block number B which is already claimed by another inode.
This error condition will always invoke the BAD/DUP error condition in
Phase 2. lnodes with overlapping blocks may be determined by examining
this error condition and the DUP error condition in Phase 1.

6.4.5 PHASE 2: CHECK PATHNAMES

This phase concerns itself with removing directory entries pointing to error
conditioned inodes from Phase 1 and Phase 1 b. This part lists error
conditions resulting from root inode mode and status, directory inode
pointers in range, and directory entries pointing to bad inodes.

6.4.5.1 ROOT INODE UNALLOCATED. TERMINATING

The root inode (always inode number 2) has no allocate mode bits. The
occurrence of this error condition indicates a serious problem which may
require additional assistance. The program will terminate.

6.4.5.2 ROOT INODE NOT DIRECTORY (FIX)

The root inode (usually inode number 2) is not directory inode type.

Possible responses to FIX prompt are:

YES

NO

6-16

Replace the root inode's type to be a directory. If the
root inode's data blocks are not directory blocks, a
very large number of error conditions will be
produced.

Terminate program.

Sys5 UNIX

FILE SYSTEM CHECKING CHAPTER 6

6.4.5.3 DUPS/BAD IN ROOT INODE (CONTINUE)

Phase 1 or Phase 1 b have· found duplicate blocks or bad blocks in the root
inode (usually inode number 2) for the file system.

Possible responses to CONTINUE prompt are:

YES

NO

Ignore DUPSiBAD error condition in root inode and
attempt to continue to run the file system check. If
root inode is not correct, then this may result in a
large number of other error conditions.

Terminate program.

6.4.5.4 I OUT OF RANGE I= I NAME= F (REMOVE)

A directory entry F has an inode number I which is greater than the end of
the inode list.

Possible responses to REMOVE prompt are:

YES

NO

The directory entry F is removed.

Ignore this error condition.

(6.4.5.5 UNALLOCATED l=I OWNER=O MODE=M SIZE=S MTIME=T

(

NAME=F (REMOVE)

A directory entry F has an inode I without allocate mode bits. The owner 0,
mode M, size S, modify time T, and file name F are printed. If the file
system is not mounted and the -n option was not specified, the entry will be
removed automatically if the inode it points to is character size 0.

Possible responses to REMOVE prompt are:

YES

NO

The directory entry F is removed.

Ignore this error condition.

6.4.5.6 DUP/BAD l=I OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(REMOVE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated
with directory entry F, directory inode /. The owner 0, mode M, size S,
modify time T, and directory name F are printed.

Possible responses to REMOVE prompt are:

YES The directory entry F is removed.

SysS UNIX 6-17

CHAPTER 6 FILE SYSTEM CHECKING

NO Ignore this error condition.

6.4.5.7 DUP/BAD l=I OWNER=O MODE=M SIZE=S MTIME=T FILE=F
(REMOVE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated
with directory entry F, inode /. The owner 0, mode M, size S, modify time
T, and file name F are printed.

Possible responses to REMOVE prompt are:

YES

NO

The directory entry F is removed.

Ignore this error condition.

6.4.5.8 BAD BLK BIN DIR l=I OWNER=O MODE=M SIZE=S
MTIME=T

This message only occurs when the -q option is used. A bad block was
found in DIR inode /. Error conditions looked for in directory blocks are
nonzero padded entries, inconsistent "." and " .. " entries, and imbedded
slashes in the name field. This error message indicates that the user should
at a later time either remove the directory inode if the entire block looks bad
or change (or remove) those directory entries that look bad.

6.4.6 PHASE 3: CHECK CONNECTIVITY

This phase concerns itself with the directory connectivity seen in Phase 2.
This part lists error conditions resulting from unreferenced directories and
missing or full lost+ found directories.

6.4.6.1 UNREF DIR l=I OWNER=O MODE=M SIZE=S MTIME=T
(RECONNECT)

The directory inode I was not connected to a directory entry when the file
system was traversed. The owner 0, mode M, size S, and modify time T of
directory inode I are printed. Fsck will force the reconnection of a nonempty
directory.

Possible responses to RECONNECT prompt are:

YES

6-18

Reconnect directory inode I to the file system in
directory for lost files (usually lost+found). This may
invoke lost+found error condition in Phase 3 if there / ,
are problems connecting directory inode I to \
lost+ found. This may also invoke CONNECTED

Sys5 UNIX

(

(-

FILE SYSTEM CHECKING CHAPTER 6

NO

error condition in Phase 3 if link was successful.

Ignore this error condition. This will always invoke
UNREF error condition in Phase 4.

6.4.6.2 SORRY. NO lost+found DIRECTORY

There is no lost+ found directory in the root directory of the file system; fsck
ignores the request to link a directory in lost+found. This will always invoke
the UNREF error condition in Phase 4. Check access modes of lost+ found.
See fsck(1 M) in the UNIX System V Administrator Reference Manual for
further details.

6.4.6.3 SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the
root directory of the file system; fsck ignores the request to link a directory
in lost+found. This will always invoke the UNREF error condition in Phase
4. Clean out unnecessary entries in lost+found or make lost+found larger.
See fsck(1 M) in the UNIX System V Administrator Reference Manual for
further details.

6.4.6.4 DIR 1=11 CONNECTED. PARENT WAS 1=12

This is an advisory message indicating a directory inode 11 was successfully
connected to the lost+ found directory. The parent inode 12 of the directory
inode 11 is replaced by the inode number of the lost+ found directory.

6.4.7 PHASE 4: CHECK REFERENCE COUNTS

This phase concerns itself with the link count information seen in Phase 2
and Phase 3. This part lists error conditions resulting from unreferenced
files; missing or full lost+found directory; incorrect link counts for files,
directories, or special files; unreferenced files and directories; bad and
duplicate blocks in files and directories; and incorrect total free-inode counts.

6.4.7.1 UNREF FILE l=I OWNER=O MODE=M SIZE=S MTIME=T
(RECONNECT)

lnode I was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode I are
printed. If the -n option is not set and the file system is not mounted, empty
files will not be reconnected and will be cleared automatically.

SysS UNIX 6-19

CHAPTER 6 FILE SYSTEM CHECKING

Possible responses to RECONNECT prompt are:

YES Reconnect inode I to file system in the directory for
lost files (usually lost+found). This may invoke
lost+found error condition in Phase 4 if there are
problems connecting inode I to lost+ found.

NO Ignore this error condition. This will always invoke
CLEAR error condition in Phase 4.

6.4.7.2 SORRY. NO lost+found DIRECTORY ·

There is no lost+ found directory in the root directory of the file system; fsck
ignores the request to link a file in lost+ found. This will always invoke
CLEAR error condition in Phase 4. Check access modes of lost+found.

6.4.7.3 SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the
root directory of the file system; fsck ignores the request to link a file in
lost+ found. This will always invoke the CLEAR error condition in Phase 4.
Check size and contents of lost+ found.

6.4.7.4 {CLEAR)

The inode mentioned in the immediately previous error condition cannot be
reconnected.

Possible responses to CLEAR prompt are:

YES

NO

Deallocate inode mentioned in the immediately
previous error condition by zeroing its contents.

Ignore this error condition.

6.4.7.5 LINK COUNT FILE l=I OWNER=O MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BEY {ADJUST)

The link count for inode I, which is a file, is X but should be Y. The owner
0, mode M, size S, and modify time Tare printed.

Possible responses to ADJUST prompt are:

YES

NO

6-20

Replace link count of file inode I with Y.

Ignore this error condition.

Sys5 UNIX

(

FILE SYSTEM CHECKING CHAPTER 6

6.4.7.6 LINK COUNT DIR l=I OWNER =0 MODE=M SIZE=S MTIME=T
COUNT=X SHOULO BEY (ADJUST)

The link count for inode /, which is a directory, is X but should be Y. The
owner 0, mode M, size S, and modify time T of directory inode I are printed.

Possible responses to ADJUST prompt are:

YES

NO

Replace link count of directory inode I with Y.

Ignore this error condition.

6.4.7.7 LINK COUNT F l=I OWNER=O MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BEY (ADJUST)

The link count for F inode I is X but should be Y. The file name F, owner 0,
mode M, size S, and modify time T are printed.

Possible responses to ADJUST prompt are:

YES

NO

Replace link count of inode I with Y.

Ignore this error condition.

6.4.7.8 UNREF FILE l=I OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR)

lnode /, which is a file, was not connected to a directory entry when the file
system was traversed. The owner 0, mode M, size S, and modify time T of
inode I are printed. If the -n option is not set and the file system is not
mounted, empty files will be cleared automatically.

Possible responses to CLEAR prompt are:

YES

NO

Deallocate inode I by zeroing its contents.

Ignore this error condition.

6.4.7.9 UNREF DIR l=I OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR)

lnode /, which is a directory, was not connected to a directory entry when
the file system was traversed. The owner 0, mode M, size S, and modify
time T of inode I are printed. If the -n option is not set and the file system
is not mounted, empty directories will be cleared automatically. Nonempty
directories will not be cleared.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.

SysS UNIX 6-21

CHAPTER 6 FILE SYSTEM CHECKING

NO Ignore this error condition.

6.4.7.10 BAD/DUP FILE l=I OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated
with file inode /. The owner 0, mode M, size S, and modify time T of inode I
are printed.

Possible responses to CLEAR prompt are:

YES

NO

Deallocate inode. /by zeroing its contents.

Ignore this error condition.

6.4.7.11 BADiDUP DIR l=I OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated
with directory inode /. The owner 0, mode M, size S, and modify time T of
inode I are printed.

Possible responses to CLEAR prompt are:

YES

NO

Deallocate inode I by zeroing its contents.

Ignore this error condition.

6.4.7.12 FREE INODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the
superblock of the file system. If the -q option is specified, the count will be
fixed automatically in the superblock.

Possible responses to FIX prompt are:

YES

NO

Replace count in superblock by actual count.

Ignore this error condition.

6.4.8 PHASE 5: CHECK FREE LIST

This phase concerns itself with the free-block list. This part lists error
conditions resulting from bad blocks in the free-block list, bad free-blocks
count, duplicate blocks in the free-block list, unused blocks from the file
system not in the free-block list, and the total free-block count incorrect. !"'~.

\,,, ,·

6-22 SysS UNIX

(

(

(-

FILE SYSTEM CHECKING CHAPTER 6

6.4.8.1 EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of
blocks with a value less than the first data block in the file system or greater
than the last block in the file system.

Possible responses to CONTINUE prompt are:

YES

NO

Ignore rest of the free-block list and continue
execution of fsck. This error condition will always
invoke "BAD BLKS IN FREE LIST" error condition in
Phase 5.

Terminate program.

6.4.8.2 EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of
blocks claimed by inodes or earlier parts of the free-block list.

Possible responses to CONTINUE prompt are:

YES

NO

Ignore the rest of the free-block list and continue
execution of fsck. This error condition will always
invoke "DUP BLKS IN FREE LIST" error condition in
Phase 5.

Terminate program.

6.4.8.3 BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater th:rn 50 or less than 0.
This error condition will always invoke the "BAD FREE LIST" condition in
Phase 5.

6.4.8.4 X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower than the first data
block in the file system or greater than the last block in the file system. This
error condition will always invoke the "BAD FREE LIST' condition in Phase
5.

6.4.8.5 X DUP BLKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list block were found
in the free-block list. This error condition will always invoke the "BAD FREE
LIST" condition in Phase 5.

Sys5 UNIX 6-23

CHAPTER 6 FILE SYSTEM CHECKING

6.4.8.6 X BLK(S) MISSING

X blocks unused by the file system were not found in the free-block list. ./
This error condition will always invoke the "BAD FREE LIST" condition in
Phase 5.

6.4.8.7 FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the superblock
of the file system.

Possible responses to FIX prompt are:

YES

NO

Replace count in superblock by actual count.

Ignore this error condition.

6.4.8.8 BAD FREE LIST (SALVAGE)

Phase 5 has found bad blocks in the free-block list, duplicate blocks in the
free-block list, or blocks missing from the file system. If the -q option is
specified, the free-block list will be salvaged automatically.

Possible responses to SALVAGE prompt are:

YES Replace actual free-block list with a new free-block
list. The new free-block list will be ordered to reduce
time spent by the disk waiting for the disk to rotate
into position.

NO Ignore this error condition.

6.4.9 PHASE 6: SALVAGE FREE LIST

This phase concerns itself with the free-block list reconstruction. This part
lists error conditions resulting from the blocks-to-skip and blocks-per-cylinder
values.

6.4.9.1 Default free-block list spacing assumed

This is an advisory message indicating the blocks-to-skip is greater than the
blocks-per-cylinder, the blocks-to-skip is less than 1, the blocks-per-cylinder
is less than 1, or the blocks-per-cylinder is greater than 500. The default
values of 9 blocks-to-skip and 400 blocks-per-cylinder are used. See
fsck(1 M) in the UNIX System V Administrator Reference Manual tor further
details.

6-24 Sys5 UNIX

(~

(

(

FILE SYSTEM CHECKING CHAPTER 6

6.4.10 CLEANUP

Once a file system has been checked, a few cleanup functions are
performed. This part lists advisory messages about the file system and
modify status of the file system.

6.4.10.1 X files Y blocks Z free

This is an advisory message indicating that the file system checked
contained X files using Y blocks leaving Z blocks free in the file system.

6.4.10.2 ***** BOOT UNIX (NO SYNC!) *****

This is an advisory message indicating that a mounted file system or the
root file system has been modified by fsck. If the UNIX system is not
rebooted immediately without sync, the work done by fsck may be undone
by the in-core copies of tables the UNIX system keeps.

6.4.10.3 *****FILE SYSTEM WAS MODIFIED*****

This is an advisory message indicating that the current file system was
modified by fsck.

Sys5 UNIX 6-25

(

(

LP SPOOLING CHAPTER 7

7. LP SPOOLING

The line printer (LP) program is a series of commands that perform diverse
spooling functions under the UNIX operating system. Since the primary LP
application is off-line printing, this document focuses mainly on spooling to
line printers. LP allows administrators to customize the system to spool to a
collection of line printers of any type and to group printers into logical
classes in order to maximize the throughput of the devices. Users are
provided the capabilities of:

• Queuing and canceling print requests

• Preventing and allowing queuing to devices

• Starting and stopping LP from processing requests

• Changing configuration of printers

• Finding status of the LP system.

This chapter describes the role of an LP administrator in performing
restricted functions and overseeing the smooth operation of LP.

Throughout this chapter, each reference of the form name(1 M), name(?), or
name(8) refers to entries in the Sys5 UNIX Administrator Reference
Manual. References to entries of the form name(N), where "N" is the
number 1 or 6 possibly followed by a letter, refer to entry name in section N
of the Sys5 UNIX User Reference Manual. If "N" is a number 2 through 5
possibly followed by a letter, refer to entry name in section N of the Sys5
UNIX Programmer Reference Manual.

7.1 Overview of LP Features

7.1.1 Definitions

Several terms must be defined before presenting a brief summary of LP
commands. The LP was designed with the flexibility to meet the needs of
users on different UNIX systems. Changes to the LP configuration are
performed by the lpadmin(1 M) command.

LP makes a distinction between printers and printing devices. A device is a
physical peripheral device or a file and is represented by a full UNIX system
pathname. A printer is a logical name that represents a device. At different
points in time, a printer may be associated with different devices. A class is
a name given to an ordered list of printers. Every class must contain at
least one printer. Each printer may be a member of zero or more classes.
A destination is a printer or a class. One destination may be designated as
the system default destination. The lp(1) command will direct all output to
this destination unless the user specifies otherwise. Output that is routed to

Sys5 UNIX 7-1

CHAPTER 7 LP SPOOLING

a printer will be printed only by that printer, whereas output directed to a
class will be printed by the first available class member.

Each invocation of Ip creates an output request that consists of the files to
be printed and options from the Ip command line. An interface program
which formats requests must be supplied for each printer. The LP
scheduler, lpsched(1 M), services requests for all destinations by routing
requests to interface programs to do the printing on devices. An LP
configuration for a system consists of devices, destinations, and interface
programs.

7.1.2 Commands

7.1.2.1 Commands for General Use

The lp(1) command is used to request the printing of files. It creates an
output request and returns a request id of the form

dest-seqno

to the user, where seqno is a unique sequence number across the entire LP
system and dest is the destination where the request was routed.

Cancel is used to cancel output requests. The user supplies request ids as
returned by Ip or printer names, in which case the currently printing requests
on those printers are canceled.

Disable prevents lpsched from routing output requests to printers.

Enable(1) allows lpsched to route output requests to printers.

7.1.2.2 Commands for LP Administrators

Each LP system must designate a person or persons as LP administrator to
perform the restricted functions listed below. Either the superuser or any
user who is logged into the UNIX system as Ip qualifies as an LP
administrator. All LP files and commands are owned by Ip except for
lpadmin and lpsched which are owned by root. The following commands
will be described in more detail later in this chapter.

lpadmin(1 M)

lpsched(1 M)

lpshut

accept(1M)

7-2

Modifies LP configuration. Many features of this
command cannot be used when lpsched is running.

Routes output requests to interface programs which
do the printing on devices.

Stops lpsched from running. All printing activity is
halted, but other LP commands may still be used.

Allows Ip to accept output requests for destinations.

Sys5 UNIX

(

LP SPOOLING

reject

lpmove

7.2 Building LP

CHAPTER 7

Prevents Ip from accepting requests for destinations.

Moves output requests from one destination to
another. Whole destinations may be moved at one
time. This command cannot be used when lpsched
is running.

All LP commands are built from source code that resides in the
/usrlsrc/cmdllp directory including the make file, lp.mk. Unless some of the
definitions in lp.mk are changed, LP may be installed only by the superuser.
Before installing a new LP system, make sure there is a login called Ip on
your system and that the spool directory, lusrlspoolllp, does not exist. To
install LP, perform the following:

cd /usr/src/cmd/lp
make -f lp.mk install

This builds all LP commands and creates an initial LP configuration
consisting of no printers, classes, or default destination. LP must be
configured by an LP administrator using the lpadmin command in order to
create a useful spooler.

(In addition, add the following code to !etc/re:

rm -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched

(

echo "LP scheduler started"

This starts the LP scheduler each time that the UNIX system is restarted.

Several variables in lp.mk may be changed before installing LP to customize
the system:

Variable Default Value Meaning

SPOOL lusrlspoolllp spool directory
ADMIN Ip logname of LP Administrator
GROUP bin group owning LP commands/data
ADMDIR /usrllib commands of administrator
USRDIR iusnbin user commands reside here

If an existing LP spool directory is corrupted (but not the LP programs) or if
it needs to be rebuilt from scratch, make sure that lpsched is not running
and perform the following as superuser:

Sys5 UNIX 7-3

CHAPTER 7 LP SPOOLING

1. Make copies of any interface programs that are not standard LP
software. DO NOT make these copies underneath the spool directory.
The pathname for printer "p" is lusrlspoolllplinterface/p.

2. rm -fr /usr/spool/lp

3. Make -f lp.mk new. (This recreates the bare LP configuration
described above.)

PRECAUTIONS

1. Some LP commands invoke other LP commands. Moving them after
they are built will cause some commands to fail.

2. The files under the SPOOL directory should be modified only by LP
commands.

3. All LP commands require set-user-id permission. If this is removed,
the commands will fail.

7.3 Configuring LP-the "lpadmin" Command

Changes to the LP configuration should be made by using the lpadmin
command and not by hand. Lpadmin will not attempt to alter the LP
configuration when lpsched is running, except where explicitly noted below.

7.3.1 Introducing New Destinations

The following information must be supplied to lpadmin when introducing a
new printer:

1. The printer name (-p printer) is an arbitrary name which must conform
to the following rules:

• It must be no longer than 14 characters.

• It must consist solely of alphanumeric characters and
underscores.

• It must not be the name of an existing LP destination (printer or
class).

2. The device associated with the printer (-v device). This is the
pathname of a hard-wired printer, a login terminal, or other file that is
writable by Ip.

3. The printer interface program. This may be specified in one of three
ways:

7-4

• It may be selected from a list of model interfaces supplied with
LP (-m model).

SysS UNIX

\""" __ /

/

(

(

(

LP SPOOLING CHAPTER 7

• It may be the same interface that an existing printer uses (-e
printer).

• It may be a program supplied by the LP administrator (-i
interface).

Information which need not always be supplied when creating a new printer
includes:

1. The user may specify -h to indicate that the device for the printer is
hardwired or the device is the name of a file (this is assumed by
default). If, on the other hand, the device is the pathname of a login
terminal, then -I must be included on the command line. This
indicates to fpsched that it must automatically disable this printer each
time fpsched starts running. This fact is reported by lpstat when it
indicates printer status:

$ lpstat -pa
printer a (login terminal) disabled Oct 31 11: 15 -

disabled by scheduler: login terminal

This is done because device names for login terminals can be (and
usually are) associated with different physical devices from day to day.
If the scheduler did not take this action, somebody might log in and be
surprised that LP is spooling to his/her terminal!

2. The new printer may be added to an existing class or added to a new
class (-cclass). New class names must conform to the same rules for
new printer names.

EXAMPLES

The following examples will be referenced by further examples in later
sections.

1. Create a printer called pr1 whose device is ldev!printer and whose
interface program is the model hp interface:

$ /usr;lib/lpadmin -ppr1 -v;deviprinter -mhp

2. Add a printer called pr2 whose device is ldevltty22 and whose
interface is a variation of the model prx interface. It is also a login
terminal:

$ cp 1usr1spool/lp/model1prx xxx
<edit xxx >

$ /usrllib/lpadmin -ppr2 -v1dev1tty22 -ixxx -I

3. Create a printer called pr3 whose device is !devltty23. The pr3 will be
added to a new class called cl1 and will use the same interface as
printer pr2:

Sys5 UNIX 7-5

CHAPTER 7

$ /usr/lib/lpadmin -ppr3 -v/dev/tty23 --epr2 -ccl1

7.3.2 Modifying Existing Destinations

LP SPOOLING

Modifications to existing destinations must always be made with respect to a
printer name (-pprinter). The modifications may be one or more of the
following:

1. The device for the printer may be changed (-vdevice). If this is the
only modification, then this may be done even while fpsched is
running. This facilitates changing devices for login terminals.

2. The printer interface program may be changed (-mmodel, -eprinter,
-iinterface).

3. The printer may be specified as hardwired (-h) or as a login terminal
(-1).

4. The printer may be added to a new or existing class (-cclass).

5. The printer may be removed from an existing class (-rclass).
Removing the last remaining member of a class causes the class to be
deleted. No destination may be removed if it has pending requests.
In that case, lpmove or cancel should be used to move or delete the
pending requests.

EXAMPLES

These examples are based on the LP configuration created by those in the
previous section.

1. Add printer pr2 to class cl1:

$ /usr/lib/lpadmin -ppr2 -ccl1

2. Change pr2's interface program to the model prx interface, change its
device to ldevltty24, and add it to a new class called cl2:

$ /usrilibilpadmin -ppr2 -mprx -v/dev/tty24 -ccl2

Note that printers pr2 and pr3 now use different interface programs
even though pr3 was originally created with the same interface as pr2.
Printer pr2 is now a member of two classes.

3. Specify printer pr2 as a hard-wired printer:

$ /usrtlib/lpadmin -ppr2 -h

4. Add printer pr1 to class cl2:

7-6

$ /usrilib/lpadmin -ppr1 -ccl2

The members of class cl2 are now pr2 and pr1, in that order.
Requests routed to class cl2 will be serviced by pr2 if both pr2 and pr1

SysS UNIX

(

(

LP SPOOLING CHAPTER 7

are ready to print; otherwise, they will be printed by the one which is
next ready to print.

5. Remove printers pr2 and pr3 from class cl1:

$ /usr/lib/lpadmin -ppr2 -rcl1
$ /usr/lib/lpadmin -ppr3 -rcl1

Since pr3 was the last remaining member of class cl1, the class is
removed.

6. Add pr3 to a new class called cl3.

$ /usr/lib/lpadmin -ppr3 --ccl3

7.3.3 Specifying the System Default Destination

The system default destination may be changed even when lpsched is
running.

EXAMPLES

1. Establish class cl1 as the system default destination:

$ 1usr/lib/lpadmin -dcl1

2. Establish no default destination:

$ /usr/lib/lpadmin -d

7.3.4 Removing Destinations

Classes and printers may be removed only if there are no pending requests
that were routed to them. Pending requests must either be canceled using
cancel or moved to other destinations using lpmove before destinations
may be removed. If the removed destination is the system default
destination, then the system will have no default destination until the default
destination is respecified. When the last remaining member of a class is
removed, then the class is also removed. The removal of a class never
implies the removal of printers.

EXAMPLES

1. Make printer pr1 the system default destination:

$ /usr!lib/lpadmin -dpr1

Remove printer pr1 :

$ /usr/lib/lpadmin -xpr1

Now there is no system default destination.

2. Remove printer pr2:

SysS UNIX 7-7

CHAPTER 7 LP SPOOLING

$ /usr/lib/lpadmin -xpr2

Class cl2 is also removed since pr2 was its only member.

3. Remove class cl3:

$ /usr/lib/lpadmin -xcl3

Class cl3 is removed, but printer pr3 remains.

7.4 Making an Output Request-the "Ip" Command

Once LP destinations have been created, users may request output by
using the Ip command. The request id that is returned may be used to see
if the request has been printed or to cancel the request.

The LP program determines the destination of a request by checking the
following list in order:

• If the user specifies -ddest on the command line, then the request is
routed to dest.

• If the environment variable LPDEST is set, the request is routed to
the value of LPDEST.

• If there is a system default destination, then the request is routed
there.

• The request is rejected.

EXAMPLES

1. There are at least four ways to print the password file on the system
default destination:

Ip /etc/passwd
Ip < /etc/passwd
cat /etc/passwd I Ip
Ip -c /etc/passwd

The last three ways cause copies of the file to be printed, whereas the
first way prints the file directly. Thus, if the file is modified between the
time the request is made and the time it is actually printed, then the
changes will be reflected in the output.

2. Print two copies of file abc on printer xyz and title the output "my file":

pr abc I Ip -dxyz -n2 -t"my file"

7-8 SysS UNIX

<.

(

LP SPOOLING CHAPTER 7

3. Print file xxx on a Diablo* 1640 printer called zoo in 12-pitch and write
to the user's terminal when printing has completed:

Ip -dzoo -o 12 -w xxx

In this example, "1 r is an option that is meaningful to the model
Diablo 1640 interface program that prints output in 12-pitch mode [see
lpadmin(1 M)).

7.5 Finding LP Status-LPSTAT

The lpstat command is used to find status information about LP requests,
destinations, and the scheduler.

EXAMPLES

1. List the status of all pending output requests made by this user:

lpstat

The status information for a request includes the request id, the
logname of the user, the total number of characters to be printed, and
the date and time the request was made.

2. List the status of printers p1 and p2:

lpstat -pp1 ,p2

7.6 Cancleing Request-CANCEL

The LP requests may be canceled using the cancel command. Two kinds
of arguments may be given to the command-request ids and printer
names. The requests named by the request ids are canceled and requests
that are currently printing on the named printers are canceled. Both types of
arguments may be intermixed.

EXAMPLE

Cancel the request that is now printing on printer xyz:

cancel xyz

If the user that is canceling a request is not the same one that made the
request, then mail is sent to the owner of the request. LP allows any user to
cancel requests in order to eliminate the need for users to find LP
administrators when unusual output should be purged from printers.

• Registered trademark of Xerox Corporation

Sys5 UNIX 7-9

CHAPTER 7 LP SPOOLING

7.7 Allowing and Refusing Requests-ACCEPT and REJECT

When a new destination is created, Ip will reject requests that are routed to
it. When the LP administrator is sure that it is set up correctly, he or she
should allow Ip to accept requests for that destination. The accept
command performs this function.

Sometimes it is necessary to prevent Ip from routing requests to
destinations. If printers have been removed or are waiting to be repaired or
if too many requests are building for printers, then it may be desirable to
cause Ip to reject requests for those destinations. The reject command
performs this function. After the condition that led to the rejection of
requests has been remedied, the accept command should be used to allow
requests to be taken again.

The acceptance status of destinations is reported by the -a option of lpstat.

EXAMPLES

1. Cause Ip to reject requests for destination xyz:

/usrilib/reject -r''printer xyz needs repair" xyz

Any users that try to route requests to xyz will encounter the following:

$ Ip -dxyz file
Ip: can not accept requests for destination "xyz"

-- printer xyz needs repair

2. Allow Ip to accept requests routed to destination xyz:

/usr/lib/accept xyz

7.8 Allowing and Inhibiting Printing-ENABLE and DISABLE

The enable command allows the LP scheduler to print requests on printers.
That is, the scheduler routes requests only to the interface programs of
enabled printers. Note that it is possible to enable a printer and at the same
time prevent further requests from being routed to it.

The disable command will undo the effects of the enable command. It
prevents the scheduler from routing requests to printers, independently of
whether or not Ip is allowing them to accept requests. Printers may be
disabled for several reasons including malfunctioning hardware, paper jams,
and end of day shutdowns. If a printer is busy at the time it is disabled, then
the request that was printing will be reprinted in its entirety either on another
printer (if the request was originally routed to a class of printers) or on the
same one when the printer is reenabled. The -c option causes the currently
printing requests on busy printers to be canceled in addition to disabling the
printers. This is useful if strange output is causing a printer to behave
abnormally.

7-10 SysS UNIX

LP SPOOLING CHAPTER 7

(EXAMPLE

(

(~

Disable printer xyz because of a paper jam:

$disable -r"paper jam" xyz
printer "xyz" now disabled

Find the status of printer xyz:

$ lpstat -pxyz
printer "xyz" disabled since Jan 5 10:15 -

paper jam

Now, reenable xyz:

$enable xyz
printer "xyz" now enabled

7.9 Moving Requests Between Oestinations-LPMOVE

Occasionally, it is useful for LP administrators to move output requests
between destinations. For instance, when a printer is down for repairs, it
may be desirable to move all of its pending requests to a working printer.
This is one way to use the lpmove command. The other use of this
command is to move specific requests to a different destination. Lpmove
will refuse to move requests while the LP scheduler is running.

EXAMPLES

1. Move all requests for printer abc to printer xyz:

$ /usrilibilpmove abc xyz

All of the moved requests are renamed from abc-nnn to xyz-nnn. As a
side effect, destination abc is no longer accepting further requests.

2. Move requests zoo-543 and abc-1200 to printer xyz:

$ /usrilib/lpmove zoo-543 abc-1200 xyz

The two requests are now renamed xyz-543 and xyz-1200.

7.10 Stopping and Starting the Scheduler-LPSHUT and LPSCHED

Lpsched is the program that routes the output requests that were made
with Ip through the appropriate printer interface programs to be printed on
line printers. Each time the scheduler routes a request to an interface
program, it records an entry in the log file, /usrlspool!lp!fog. This entry
contains the logname of the user that made the request, the request id, the
name of the printer that the request is being printed on, and the date and
time that printing first started. In the case that a request has been restarted,
more than one entry in the log file may refer to the request. The scheduler
also records error messages in the log file. When lpsched is started, it

Sys5 UNIX 7-11

CHAPTER 7 LP SPOOLING

renames lusr/spoolllpllog to lusrlspoolllp/oldlog and starts a new log file.

No printing will be performed by the LP system unless lpsched is running.
Use the command

lpstat-r

to find the status of the LP scheduler.

Lpsched is normally started by the /etc/re program as described above and
continues to run until the UNIX system is shut down. The scheduler
operates in the lusrlspoolllp directory. When it starts running, it will exit
immediately if a file called SCHEDLOCK exists. Otherwise, it creates this
file in order to prevent more than one scheduler from running at the same
time.

Occasionally, it is necessary to shut down the scheduler in order to
reconfigure LP or to rebuild the LP software. The command

/usr/lib/lpshut

causes lpsched to stop running and terminates all printing activity. All
requests that were in the middle of printing will be reprinted in their entirety
when the scheduler is restarted.

To restart the LP scheduler, use the command

/usr/lib/lpsched

Shortly after this command is entered, lpstat should report that the
scheduler is running. If not, it is possible that a previous invocation of
lpsched exited without removing SCHEDLOCK, so try the following:

rm -f 1usr1spool/lp1SCHEDLOCK
/usr/lib/lpsched

The scheduler should be running now.

7.11 Printer Interface Programs

Every LP printer must have an interface program which does the actual
printing on the device that is currently associated with the printer. Interface
programs may be shell procedures, C programs, or any other executable
program. The LP model interfaces are all written as shell procedures and
can be found in the lusr!spoolllp/model directory. At the time lpsched
routes an output request to a printer P, the interface program for P is
invoked in the directory lusrlspool//p as follows:

7-12 SysS UNIX

(

(

LP SPOOLING

interface/P id user title copies options file ...
where
id is the request id returned by Ip
user is logname of user who made the request
title is optional title specified by the user
copies is number of copies requested by user
options is a blank-separated list of class or
printer-dependent options specified by user
file is the full pathname of a file to be printed

EXAMPLES

CHAPTER 7

The following examples are requests made by user "smith" with a system
default destination of printer "xyz". Each example lists an Ip command line
followed by the corresponding command line generated for printer xyz's
interface program:

1. Ip /etc/passwd /etc/group
interface/xyz xyz-52 smith "" 1 "" /etc/passwd /etc/group

2. pr /etc/passwd I Ip -t"users" -n5
interface/xyz xyz-53 smith users 5 "" /usr/spool/lp1requestJxyz1d0-53

3. Ip /etc/passwd --oa --ob
interface/xyz xyz-54 smith "" 1 "a b" 1etc1passwd

When the interface program is invoked, its standard input comes from
/dev/null and both the standard output and standard error output are
directed to the printer's device. Devices are opened for reading as well as
writing when file modes permit. In the case where a device is a regular file,
all output is appended to the end of the file.

Given the command line arguments and the output directed to a device,
interface programs may format their output in any way they choose.
Interface programs must ensure that the proper stty modes (terminal
characteristics such as baud rate, output options, etc.) are in effect on the
output device. This may be done in a shell interface only if the device is
opened for reading:

stty mode ... <&1

That is, take the standard input for the stty command from the device.

When printing has completed, it is the responsibility of the interface program
to exit with a code indicative of the success of the print job. Exit codes are
interpreted by lpsched as follows:

CODE MEANING TO LPSCHED

SysS UNIX 7-13

CHAPTER 7 LP SPOOLING

0 The print job has completed successfully.

1 to 127 A problem was encountered in printing this
particular request (e.g., too many nonprintable
characters). This problem will not affect future print
jobs. Lpsched notifies users by mail that there
was an error in printing the request.

greater than 127 These codes are reserved for internal use by
lpsched. Interface programs must not exit with
codes in this range.

When problems that are likely to affect future print jobs occur (e.g., a device
filter program is missing), the interface programs would be wise to disable
printers so that print requests are not lost. When a busy printer is disabled,
the interface program will be terminated with signal 15.

7.12 Setting Up Hard-Wired Devices and Login Terminals as LP
Printers

7.12.1 Hard-wired Devices

As an example of how to set up a hard-wired device for use as an LP
printer, consider using tty line 15 as printer xyz. As superuser, perform the
following:

1. Avoid unwanted output from non-LP processes and ensure that LP
can write to the device:

$ chown Ip 1dev/tty15
$ chmod 600 1dev/tty15

2. Change !etc/inittab so that tty15 is not a login terminal. In other
words, ensure that letclgetty is not trying to log users in at this
terminal. Change the entries for tty15 to:

15:2:off:/etc/getty -t60 tty15 1200

Enter the command:

$ telinit Q

If there is currently an invocation of letclgetty running on tty15, kill it.
When the UNIX system is rebooted, tty15 will be initialized with default
stty modes. Thus, it is up to LP interface programs to establish the
proper baud rate and other stty modes for correct printing to occur.

3. Introduce printer xyz to LP using the model prx interface program:

$ /usr/lib/lpadmin -pxyz -v/dev/tty15 -mprx cf

7-14 Sys5 UNIX

(

'(

LP SPOOLING CHAPTER 7

4. When xyz is created, it will initially be disabled and Ip will be rejecting
requests routed to it. If it is desired, allow Ip to accept requests for
xyz:

/usr/lib/accept xyz

This will allow requests to build up for xyz and to be printed when it is
enabled at a later time.

Sys5 UNIX 7-15

CHAPTER 7 LP SPOOLING

5. When it is desired for printing to occur, be sure that the printer is ready
to receive output. For several printers, this means that the top of form
has been adjusted and that the printer is on-line. Enable printing to
occur on xyz:

enable xyz

When requests have been routed to xyz, they will begin printing.

7.12.2 Login Terminals

Login terminals may also be used as LP printers. To do this for a Diablo
1640 terminal called abc, perform the following: ·

1. Introduce printer abc to LP using the model 1640 interface program:

$ /usr/lib/lpadmin -pabc -v/dev/null -m1640 -I

Note that !dev!null is used as abc's device because we will specify the
actual device each time that abc is enabled. This device may be
different from day to day. When abc is created, it will initially be
disabled; and Ip will be rejecting requests routed to it. If it is desired,
allow Ip to accept requests for abc:

/usr/lib/accept abc

This will allow requests to build up for abc and to be printed when it is
enabled at a later time. It is not advisable to enable abc for printing,
however, until the following steps have been taken.

2. Log terminal in if this has not already been done.

3. Assuming the tty(1) command reports that this terminal is ldev!tty02,
associate this device with printer abc:

$ /usr/libilpadmin -pabc -v/dev/tty02

Note that lpadm in may be used only by an LP administrator. If it is
desired for other users to routinely perform this step, then an LPA may
establish a program owned by Ip or by root with set-user-id
permission that performs this function.

4. When it is desired for printing to occur, be sure that the printer is ready
to receive output. For several printers, this means that the top of form
has been adjusted. Enable printing to occur on abc:

enable abc

When requests have been routed to abc, they will begin printing.

5. When all printing has stopped on abc or when you want it back as a
regular login terminal, you may prevent it from printing more output:

7-16 Sys5 UNIX

<~

(

LP SPOOLING CHAPTER 7

$ disable abc
printer "abc" now disabled

If abc is enabled when the UNIX system is rebooted or when lpsched
is restarted, it will be disabled automatically.

7.13 Summary

The administrative functions of the LP administrator have been described in
detail. These functions include configuring and reconfiguring LP;
maintaining printer interface programs; accepting, rejecting, and moving print
requests; stopping and starting the LP scheduler; and enabling and disabling
printers. LP offers administrators the following advantages over other
centrally supported printer packages:

• Printers may be grouped into classes.

• LP may be configured to meet the needs of each site.

• Administrators may supply interface programs to format output in any
way desirable.

• LP functions are performed by simple commands and not by hand.

SysS UNIX 7-17

(~

(

VIRTUAL PROTOCOL MACHINE CHAPTER 8

"8. VIRTUAL PROTOCOL MACHINE

This document describes the UNIX Virtual Protocol Machine (VPM). VPM is
a general-purpose UNIX interface for synchronous communications lines.
VPM allows link-level protocols such as BISYNC and HDLC to be
inplemented on the Plexus ICP microcomputer in a high-level language. The
hardware required to support VPM is a Plexus host computer, and an ICP.
The link-level communications protocol is excuted by the VPM interpreter
running in the Plexus ICP. This implementation technique leads to a
portable protocol representation and efficient protocol execution.

The VPM software consists of a protocol compiler, a UNIX driver, an
interpreter that executes in the Plexus ICP, and several utility programs. The
compiler, which executes in the host computer, translates a protocol
described in a high-level language into a load module for the ICP. The load
module contains the VPM interpreter and a compiled representation of the
protocol. The interpreter executes the protocol, communicates with the UNIX
driver in the host computer, and controls the communications line interface.

The first release of VPM supported a large class of protocols collectively
known as BISYNC. These protocols are distinguished by the use of control
characters to provide framing and transparency. At the frame level, these
protocols operate in a half-duplex manner, although they sometimes use
full-duplex communications facilities to reduce the time required to reverse
the direction of transmission.

The release of VPM adds support for bit-oriented, full-duplex protocols. This
class of protocols includes IBM's Synchronous Data Link Control (SDLC)
and the international standard High-Level Data Link Control (HDLC). LAPB,
a subset of HDLC which is the link-level protocol specified in the BX.25 Bell
System Standard, has been implemented using VPM and is available with
the Sys5 release. The interpreter used for bit-oriented protocols is different
from that used for character-oriented (BISYNC) protocols. The appropriate
interpreter is selected by means of a compiler option.

Other features of VPM include:

1. an increase in the number of transmit and receive buffers which the
interpreter can accept at one time.

2. additional debugging facilities.

3. provisions for interprocess communication between the protocol script
and a UNIX driver or a user process, and

4. a cleaner separation of functions in the UNIX driver to facilitate
tailoring of VPM to particular applications.

Sys5 UNIX 8-1

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

8.1 Support for Bit-Oriented Protocols

The capability to use bit-oriented protocols such as HDLC is provided by a
new set of communications primitives. These primitives are frame-oriented
and non-blocking, whereas the BISYNC primitives are character-oriented
and blocking. The new primitives are fully described in the attached manual
entry for vpmc(1 C). An overview of these primitives follows.

The VPM interpreter maintains a set of queues for transmit buffers. When a
transmit buffer is passed to the ICP by the UNIX driver, the buffer is
appended to the unopened-transmit-buffer queue. The protocol script in the
ICP obtains a transmit buffer from the unopened-transmit-buffer queue by
means of the getxfrm primitive; the buffer is then said to be open. In order
to get (open) a transmit buffer, the script must provide a transmit-sequence
number. This sequence number must be distinct from the sequence number
currently assigned to every other currently-open transmit buffer. This
sequence number is used to identify the buffer for subsequent calls to the
xmtfrm and rtnxfrm primitives. The xmtfrm primitive initiates transmission of
the specified buffer, using the control information specified by a previous
setctl primitive. Transmission proceeds asynchronously. The script can test
for completion of an output transfer by means of the xmtbusy primitive.
Open transmit buffers can be transmitted any number of times. When the
script decides that a buffer has successfully been received at the
destination, it notifies the interpreter by means of the rtnxfrm primitive. This
causes the buffer to be placed on the transmit-buffer-return queue; the
buffer is then no longer considered to be open and the sequence number
can be reused. The driver is notified as soon as possible that the buffer has
been closed. The buffer is then removed from the transmit-buffer-return
queue.

When a receive buffer is passed to the ICP by the driver, the buffer is
placed on the empty-receive-buffer queue. When the first byte of a new
frame arrives, an empty receive buffer is obtained from the empty-receive­
buffer queue and the incoming characters are placed into the buffer as they
arrive. An incoming frame will be discarded if the frame is too short (less
than four bytes including CRC), if the frame is too long to fit in the receive
buffer, or if the CRC is incorrect. If a frame is received successfully, the
buffer is placed on the completed-receive frame queue, otherwise the buffer
is returned to the empty-receive-buffer queue. When the script executes a
rcvfrm primitive, the buffer at the head of the completed-receive-frame
queue is removed from that queue and becomes the current receive buffer.
If the script subsequently executes a rtnrfrm primitive before executing
another rcvfrm primitive, the current receive buffer is placed on the receive­
buffer-return queue. If the script executes a rcvfrm primitive before
executing a rtnrfrm primitive, the current receive buffer, if any, is returned to
the empty-receive-frame queue. Buffers on the receive-buffer-return queue

8-2 SysS UNIX

VIRTUAL PROTOCOL MACHINE CHAPTER 8

are returned to the driver at the first opportunity. If the empty-receive-buffer
queue is empty when the first byte of a new frame is rceived, the first five
bytes of the frame are retained in a staging area and the remainder of the
frame is discarded. This allows a protocol script to receive a control frame
(up to seven bytes including CRC) when no data buffer is available. When
the next rcvfrm primitive is executed, the script will receive the information in
the staging area along with an indication that the remainder of the frame has
been discarded. If another frame arrives while the staging area is thus
occupied, the new frame is discarded entirely.

A count is kept of the number of frames discarded for each reason. These
counters may be read and reset from the host computer.

8.1.1 The VPM Split Driver

Since the VPM interpreter and a protocol script generally use most of the
memory of the ICP any higher levels of protocol that are required must be
executed by the host CPU. The purpose of the VPM split driver is to
provide a framework in which higher-level protocols can be implemented
conveniently using low-level routines in the VPM driver to communicate with
the interpreter in the ICP.

A set of functions has been written that provides a general-purpose interface
to the link-level protocol being executed by the interpreter in the ICP. Their
capabilities include a means to queue transmit and empty receive buffers for
use by the protocol script in the ICP, to start and stop the script, and to
send commands to and receive reports from the script. A means of getting
a copy of and resetting the VPM interpreter's error counters is also provided.
These functions will be referred to as interface functions or collectively as
the interface module. Appendix I contains a description of each of these
routines.

To implement higher levels of a protocol as a UNIX device driver, a set of
routines must be written to implement the standard UNIX system calls:
open, close, read, write, and ioctl as well as the required protocol. These
routines will be referred to as protocol functions or collectively as a protocol
module. The standard VPM driver does not implement a higher-level
protocol but instead provides a transparent user interface that can be used
by applications that supply their own higher levels of protocol. This driver
can be used as an example for those interested in writing a different
protocol module. Appendix 2 contains a description of these routines.

At lease two other protocol modules have been written thus far. They are
the Synchronous Terminal Interface [4, st(4)], and the BANGS THP
Interface.

VPM allows up to four different protocol modules to be executing
simultaneously. One ICP and one interface-module minor device* is required

Sys5 UNIX 8-3

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

for each protocol being executed. Any number of protocol modules may be
implemented, but no more than four can be in use at any one time since no
more than four ICPs are supported. In general, each protocol module can
have up to 256 minor devices. The VPM protocol module, however, can
have at most 16 minor devices; this restriction is due to the fact that the
minor device number of the VPM protocol module is used not only to specify
the VPM minor device but also to specify the interface-module minor device
and the ICP minor device. The low-order four bits of the protocol-module
minor device number determine the protocol-module minor device; the next
two bits determine the interface-module minor device; the next two bits
determine the ICP minor device.

Transmit buffers and receive buffers are passed between the VPM
interpreter, the interface module, and the protocol module by means of
pointers to data structures known as buffer descriptors. The buffer­
descriptor structure is defined as follows:

struct vpmbd {

}

short c_ct;
short d_adres;
char d_hbits;
char d_sta;
char d_type;
char d_dev;
struct but *d_buf;
int d_bos;
int d_ vpmtdev;

!* Buffer size */
I* Low-order 16 bits of buffer address *I
!* High-order 2 bits of buffer address *I
I* Protocol-dependent */
!* Protocol-dependent*/
I* Protocol-dependent*/
!* Pointer to system buffer descriptor*/
/* Index of next byte in buffer *I
/* Minor device number *I

For empty receive buffers, c_ct must be equal to the buffer size in bytes; for
transmit buffers, c_ct must be equal to the number of bytes to be
transmitted. When a receive buffer is returned to the protocol module, c_ct
is equal to the number of data bytes in the buffer. D_adres and d_hbits must
contain an 18-bit MULTIBUS-mapped buffer address; the low-order 16 bits
must be in d_adres and the high-order two bits must be in the low-order two
bits of id_hbits. D_type, d_sta, and d_dev are protocol-dependent; when
using the BISYNC interpreter these three bytes may be read and modified
by the protocol script. See the discussion of getxbuf, getrbuf, rtnxbuf, and
rtnrbuf in vpmc(1 C). D_buf contains a pointer to a system buffer descripter;
this is used to return the buffer to the system buffer pool. D _bos is the index
of the first byte in the buffer not yet returned to the user. D_vpmdev is the
minor device number of the protocol-module minor device to which the
buffer is allocated.

8-4 Sys5 UNIX

VIRTUAL PROTOCOL MACHINE CHAPTER 8

{ 8.1.2 The Trace Driver

(

The trace driver provides a means by which a user program can receive
trace information generated by the VPM driver and the protocol script to aid
in debugging new protocol modules and protocol scripts. It may also be
used to debug other drivers or system code not related to the VPM driver.
This driver can be configured to have a number of minor devices. Each
minor device provides a means by which a user program can read data
generated by functions within the operating system. This data is recorded by
calls to trsave as described in Appendix 3. Each call to trsave generates a
unit of data known as an event record which consists of a channel number
(one byte), a count (one byte) and count bytes of data. The channel number
can be used to multiplex up to 16 data streams on each minor device.

Associated with each minor device of the trace driver is a clist queue, which
is used to save event records provided a user program has that minor
device open and has enabled the channel to which the event records were
written. Channels may be enabled in any combination, using the ioctl
command VPMTRCO. See the manual entry for trace(4). While a minor
device read queue is full, event records for that minor device are discarded.
Appendix 3 contains a description of each trace-driver routine.

Minor device O of the trace driver is used by the VPM driver to record a
variety of debugging information generated within the VPM driver and also
to record the data generated by the trace primitive in a protocol script. Minor
device 1 of the trace driver is used to record the information generated by
the snap primitive in a protocol script. The vpmtrace and vmpsnap
commands are available for reading and formatting the data passed via
these two minor devices. These two commands are described in the
attached manual entry for vpmstart(IC). Appendix 4 contains a description
of the VPM driver event trace.

8.1.3 Miscellaneous Improvements

Two new primitives have been added to the protocol language to allow
communication between the link-level protocol script in the ICP and a
higher-level protocol implemented in a user program or a VPM protocol
module. The getcmd primitive allows the script to receive a four-byte
command from a user program or a protocol module. The standard VPM
protocol module allows a user program to pass a command to the script via
an ioctl system call. Other VPM protocol modules can pass a command to
the script by calling the vpmcmd routine in the VPM interface module. The
rtnrpt primitive allows the script in the ICP to send a tour-byte report to a
protocol module or to a user program. The standard VPM protocol module
allows a user program to receive a script report by means of an ioctl system
call. A protocol module can receive reports from the interface module by
calling the vpmrpt routine of the VPM interface module.

SysS UNIX 8-5

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

The trace primitive of the protocol language has been augmented to allow
two arguments. The form with one argument is still supported; if only one \"-.J

argument is given, the second argument is assumed to be zero. A snap
primitive has been added. This primitive causes four bytes of data from the
script followed by a four-byte time stamp to be placed on the read queue for
trace driver minor device 1.

The time primitive that allows a script to initialize a timer or test its current
value. If the argument to timer is non-zero, the timer is initialized with the
value of the argument. The timer is decremented ten times a second until it
reaches zero. If the timer primitive is called with an argument of zero, it
returns the current value of the timer. This value is zero if the timer has
expired, otherwise non-zero.

The interpreter would accept at most one transmit buffer and one receive
buffer at any given time. In the interpreter will accept up to four transmit
buffers and four receive buffers at a time. This applies to the bit-oriented
(HDLC) interpreter only.

8.2 Implementation

This section has two parts: the first gives configuration guidelines for VPM
and the ICPs and tells how to install and boot VPM; the second gives
procedures for compiling and link-loading protocol scripts.

8.2.1 Installing and Booting VPM

Each ICP can support up to eight users. If VPM is also installed, an
additional dedicated ICP is required as the VPM. Therefore, a P/60 with 32
users and a VPM requires FIVE ICPs. A P115, P.20 or P/35 with 8 users
and a VPM requires TWO ICPs.

For all systems, the lowest numbered ICP must be the VPM. Thus while
VPM is operating, ports 0-7 may not be used as TTY ports; users' TTY ports
must be numbered beginning with 8. For example, on a P/60 with 16 users
and VPM, the VPM uses ports 0-7 and users' TTYs are numbered 8-23.
The port assignments are changed by modifying the file /etc/inittab for use
with VPM.

If you want VPM in operation only intermittently, the VPM ICP can function
to a limited extent as a TTY ICP; the single wire-wrapped device and the
parallel port are unavailable. In other words, seven devices remain available
on the VPM ICP when VPM is not operating. You can switch back and forth
by alternating between versions of /etc/re that call different versions of
/etc/inittab.

Six basic steps are required to bring up VPM. The following sections
describe each step.

8-6 Sys5 UNIX

(

(

VIRTUAL PROTOCOL MACHINE

1. Perform several small hardware changes.

2. Create the VPM devices.

3. Modify /etc/inittab.

4. Modify /etc/re.

5. Boot Sys3.

6. Modify the VPM library for switched or constant carrier.

8.2.1.1 Hardware Installation

CHAPTER 8

The ICP(s) that are to be the VPM(s) require the following special hardware
features.

Note that port 2 on ICPO is the recommended VPM port. Further references
to a port will be to port 2.

1. The line(s) that are to be synchronous require the Carrier Detect signal
and Clear to Send signal to be strapped on the ICP. (See Plexus
User's Manual.)

2. The pin-pairs 3 and 4 must be jumpered for synchronous transmission.
Set up the 10-pin jumper network to look like the diagram below.

Sx Sx Sx Cx Cx
+- -+
I I
I o o o o o I
I I I I
I o o o o o I
I I
+- -+

1 2 3 4 5

3. Make sure your VPM ICP is part number 60-00079 Rev Z, 60-00079-1
(any rev), 60-00085 (any rev), or 60-00091 (any rev). Earlier ICPs
must be upgraded in order to be used for VPM.

4. Each port using synchronous transmission must be configured for
external clock. This is accomplished via a pair of three-pin jumper
networks for each port on that ICP. The jumper networks are
designated Tx and Xx, where ·x· means the port number.

a. If your VPM ICP is part number 60-00079 Rev Z, 60-00079-1
(any rev), or 60-00085 (any rev), the following describes the
procedure for configuring a part for external clocking.

Sys5 UNIX 8-7

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

8-8

Normally, the center pin (A) is jumpered to either outer pin (B or
C) using a two-pin female jumper block. However, configuring a
port for external clocking requires wirewrapping pin B to pin C on
both jumper networks for the port.

For example, to strap port 2 for external clock, do the following:

• Remove the two-pin jumper blocks from T2 and from X2.

• Using a wirewrap tool, connect T2-B to T2-C.

• Using a wirewrap tool, connect X2-B to X2-C.

b. If your VPM ICP is part number 60-00091 (any rev), the
procedure for configuring a port for external clocking is simpler.
On this ICP, the common pin(c) has been moved to facilitate
changing the clocking mode of the port. On previous ICP's, the
common was located between the other two pins (A and B),
making wirewrapping necessary for external clocking. On this
ICP, switching to external clocking only requires moving the
jumper blocks from pin pair A-C to 8-C.

For example, to strap port 2 for external clock, do the following:

• Remove the two-pin jumper blocks from T2 and from X2.

• Jumper pins X2-B and X2-C using the jumper block.

• Jumper pins T2-B and T2-C using the jumper block.

c. The connection cable between the VPM ICP port and the
synchronous modem is a specially strapped Plexus RS232C
modem cable. The following RS232C modem cable leads must
be strapped:

VPM ICP Port
RS232 Leads to

2
3
4
5
6
7
8
15
17
20

Modem Cable
RS232 Leads

3
2
5
4
20
7
8
15
17
6

d. If your ICP is part number 60-00085 rev H or later, you must set
switches on switchpak 01 (may also be labeled U-51). If your

SysS UNIX

(

VIRTUAL PROTOCOL MACHINE CHAPTER 8

VPM ICP is port 0-3, switch 3 must be on. If your VPM ICP is
port 4-7, switch 4 must be on.

8.2.2 Create the VPM Devices

The installation of SysS.2 automatically creates the VPM devices. The
following is an explanation of how they were created.

Login as root and bring your system to init state 1. Then use mknod(1 M) to
create a node for each VPM line and each ICP:

/etc/mknod /dev/vpm? c <major> <minor>
/etc/mknod /dev/ic? c <major> <minor>

where major is 18. minor is defined as follows: the two most significant bits
denote the physical ICP number (0-3), the next two bits denote the VPM
protocol number (0-3), and the four least significant bits denote the the
physical line number on the ICP. For example, if ICPs 0 and 1 are to be
used for VPM using protocol number 1 and line number 3, then the minor
device numbers should be 023 and 0123, respectively. Input may be in
decimal or octal.

For example, the mknod step might proceed as follows:

mknod /dev/vpm2 c 18 2

If TTY devices have been displaced by the new VPM ICP, you must do
mknods for these TTYs to link them to a different ICP.

8.2.3 Modify /etc/inittab

Change the logical device assignments in /etc/inittab so that only VPM
devices (/dev/vpmO - /dev/vpm7) are assigned ports 0-7 on ICPO. TTY
devices formerly assigned these ports should receive port assignments on
different ICPs. The lines for ports 0-7 on ICPO should look like this:

2:00:off:/etc/getty ttyO b
2:01 :off:/etc/getty tty1 b
2:02:off:/etc/getty tty2 b

2:07:off:/etc/getty tty7 b

Note that logins are disabled on VPM ports.

If port 2 on ICPO is moved to port 2 on ICP 3 (port 26 from the system's
point of view), the old line

Sys5 UNIX 8-9

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

2:02:respawn:/etc/getty tty2 b

should be changed to

2:26:respawn:/etc/getty tty26 b

8.2.4 Modify /etc/re

Verify that your /etc/re downloads your ICPs correctly when the system is
brought to multi-user state. No download step is required for VPM ICPs.
Since the VPM ICP must be the first (ICPO), your other ICP(s) must change
their device numbers and the lines in /etc/re that download these ICPs must
reflect these new numbers. Find the lines that do the dnld command. The
lines should look like this:

/etc/dnld -d -f /usr/lib/dnld/icp -o /dev/icn -a 4000

Verify that /etc/re contains a line like this one for each of your ICPs. If it
does not, edit /etc/re, adding line(s) for the missing ICP(s). Increment n as
appropriate to reflect the addition of the VPM ICP as ICPO.

8.2.5 Reboot

Shutdown and reboot normally, following the procedures in the Plexus
User's Manual.

8.2.6 Switched or Constant Carrier

VPM uses whatever library is in the file /usr/src/uts/m68/icp/libvpm.a. If
you require switched carrier, do nothing; the correct file is already in place.
If you require constant carrier, back up the file
/usr/src/uts/m68/icp/libvpm.a and copy the file
/usr/src/uts/m68/icp/libvpm.a.ccar to /usr/src/uts/m68/icp/libvpm.a.

8.2.7 Compiling and Loading VPM Scripts

This section gives the steps to compile and load VPM scripts.

1. You must be in the directory /usr/src/cmd/vpm, so issue the
command

cd /usr/src/cmd/vpm

2. Then move your protocol script into this directory, renaming it
vpmscript.r.

mv <your protocol script name> vpmscript.r

3. Execute the following command

make -f vpmscript.mk

This compiles the script in vpmscript.r and link-loads this compiled
script with the rest of the VPM ICP kernel. The object file created in

8-10 SysS UNIX

(

(

VIRTUAL PROTOCOL MACHINE CHAPTER 8

this step is called vpmO; it is down-loadable into the VPM ICP.

4. To download vpmO, use either of the programs dnld(1) or
vpmstart(1).

5. You may combine up to four scripts in one download module. Scripts
to be combined in this way must be called proto?code.s, where "?"
represents a number from 0 to 3. To combine scripts, you must
modify the file vpmscript.mk. inserting instructions for each script
(proto?code.s) to be compiled into a proto?.s file, where "?"
represents a number from 0 to 3. The following lines accomplish this
compilation; note that this whole series of steps must be done for each
script. Therefore, you must copy these lines into the file
vpmscript.mk once for each script, making sure you make the
appropriate substitution of a number for the "?".

(2) fgrep define sas_tempc > sas_define

(3) cat /usr/include/icp/opdef.h sas_tempc I /lib/cpp > tf

(4) /usr/lib/vpm/vratfor < tf > tg

(5) cp tg /usr/src/uts/m68/icp/vpmicp/proto?code.s

(6) cat sas_define proto?.s > th

(7) cp th /usr/src/uts/m68/icp/vpmicp/proto?.s

Sys5 UNIX 8-11

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

8.3 Appendix 1 - The VPM Interface Module

The VPM interface functions provide a general-purpose interface between a
higher-level protocol implemented in a VPM protocol module and the link­
level protocol script executed by the VPM interpreter in the ICP. The ICP
driver is used by the interface functions to pass commands to and receive
reports from the VPM interpreter. When reports are received by the interface
module that must be passed on to the protocol module, the protocol
module's receive-interrupt routine (vpmtrint in the case of the standard VPM
protocol module) is called.

This appendix describes each interface function. Dev is an argument to
many of the interface functions and has the same meaning for all but two of
them; the low-order four bits of the argument are not used by the interface
functions; the next two bits determine the interface module minor device
number; the next two bits determine the ICP minor device. Although dev is
declared as an int, only the low-order eight bits are meaningful at this time.
In calls to the vpmtrace and vpmsnap routines, dev need not be a minor
device number since it is just saved as part of the event record. The
definition of dev will not be repeated for each function.

vpmcmd (dev, cmd)
int dev;
char *cmd:

This function passes a command to the script. Cmd is the address of a
four-byte array. The four bytes are passed to the VPM interpreter, which
saves them until the protocol script executes a getcmd primitive. Only the
most recent four bytes passed by a vpmcmd call are saved by the VPM
interpreter.

struct vpmbd *vpmdeq (clp)
struct clist *clp:

This function removes the buffer-descriptor pointer at the head of the queue
pointed to by clp and returns it to the caller. If the queue is empty, a null
pointer is returned.

vpmemptq (dev, bdp)
int dev;
struct vpmdb *bdp;

This function is used to pass an empty receive buffer for use by the
interpreter in the ICP. Bdp is a pointer to a buffer descriptor or null. If bdp is
not a null pointer, the buffer decriptor is appended to the empty-receive­
buffer queue for the interface module specified by dev. If the VPM
interpreter currently has room for another empty receive buffer, the buffer at
the head of the queue is removed and passed to the ICP. The sum of the

8-12 Sys5 UNIX

(

VIRTUAL PROTOCOL MACHINE CHAPTER 8

number of buffers on the empty-receive buffer queue and the number of
receive buffers the VPM interpreter has in its queues is returned to the
caller. If bdp is a null pointer, the above sum is returned and nothing else is
done.

vpmenq (bdp, clp)
struct vpmbd*bdp;
struct clist *clp;

If bdp is a null pointer, the number of buffer-descriptor pointers on the clist
queue pointed to by clp is returned. If bdp is a not a null pointer, the buffer
descriptor pointed to by bdp is appended to the clist queue pointed to by
clp and the number of pointers currently on that queue is passed as the
return value.

char *vpmerrs (dev, n)
int dev, n;

This function is used to read and reset error counters in the VPM interpreter.
The function passes a GETECMD command to the VPM interpreter and
blocks until the interpreter responds; this command causes the interpreter to
copy its error counters to an array in the interface module and send a
completion report to the driver. After the copy operation is completed, a
pointer to the error-count array is passed to the caller as the return value.
The second argument is not currently used.

char *vpmrpt(dev)
int dev;

This function is used to receive a script report from the ICP. When the
protocol script executes a rtnrpt primitive, four bytes of data are passed to
the interface module. If a rtnrpt has been executed by the protocol script
since the last call to vpmrpt, a pointer to the four bytes passed by the most
recent rtnrpt primitive is returned; otherwise zero is returned.

vpmsave (type, dev, word1, word2)
char type, dev;
short word1, word2;

This function creates an event record with the following structure:

struct {

}

short c_sequn;
char c_type;
char c_dev;
short c_word1 ;
short c_word2;

Sys5 UNIX

I* Sequence number*/
/* Argument type */
/* Argument dev */
!* Argument word1 */
1* Argument word2 */

8-13

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

This event record is passed to the trace driver using trsave.

vpmsnap (type, dev, word1, word2)
char type, dev;
short word1, word2;

This function is similar to vpmsave. The only difference is that a time stamp
(long s_lbolt) is added to the event record after word2. A protocol script may
generate a time-stamped event record by executing the snap primitive.

vpmstart (dev, type,rint)
int dev, type;
int (*rint)();

This function must be called on the first open of the protocol-module minor
device associated with the interface-module minor device and ICP identified
by dev. Type is a number that identifies the program running in the ICP and
must agree with the value specified when the ICP load module was loaded
into the ICP. For VPM interpreters, type is conventionally 6. Rint is the
name of a protocol-module routine to be called by the interface module
when it needs to return a transmit buffer, a receive buffer, a script report, or
an error-termination code. See the description of vpmtrint in appendix 2 for
an example of such a routine. Vpmstart sends a RUN command to the VPM
interpreter which causes it to begin execution of the protocol script. If the
interface module identified by dev is not configured, ENXIO is returned. If
the module is already running, i.e., vpmstart has been called and fpmstop
has not been called, or if the ICP is not running or was loaded using a
different magic number, EACCESS is returned. A return value of zero
indicates a normal completion.

vpmstop (dev)
int dev;

This routine is called to halt the execution of the protocol script by the
interpreter. The routine waits until the last transmit buffer has been returned
by the protocol script (or 5 seconds have elapsed), then sends a HALT
command to the VPM interpreter, which causes the interpreter to stop
executing the protocol script. When the interpreter acknowledges the HALT
command (or 5 seconds), any transmit or receive buffers still enqueued on
the interface module's transmit-and-empty-buffer queues are returned to the
protocol module. This does not include buffers contained in the interpreter's
queues. Generally, when the protocol script is halted normally, the
interpreter will have one or more empty receive buffers. If the interpreter or
protocol script terminates in error, some transmit buffers may also remain
unaccounted for. The means the protocol module must keep a record of all
buffers in use for each particular minor device, so that these buffers can be
returned to the pool of available buffers when that minor device is closed.

8-14 SysS UNIX

c:

(

VIRTUAL PROTOCOL MACHINE CHAPTER 8

8.4 Appendix 2 - The VPM Protocol Module

This appendix gives a detailed description of the functions that make up the
standard VPM protocol module. The description may be useful as a guide in
writing other VPM protocol modules. The dev argument to the following
routines is declared as an int; however, only the low-order eight bits are
meaningful at this time. The low-order four bits are used to determine the
minor device of the protocol module; the next two bits determine the minor
device of the interface module; the next two bits determine the ICP minor
device.

vpmopen (dev, flag)
int dev, flag;

This function opens the protocol-module minor device specified by the low­
order four bits of dev. Flag contains the option bits specified on the open
system call. Exclusive or non-exclusive opens are permitted. If the driver is
opened for both reading-and-writing, the open is exclusive, i.e., no further
opens are permitted. If the driver is opened for both reading only or for
writing only, the open is non-exclusive and subsequent opens for reading
only or writing only are permitted. If this device is not open when this
function is called, it obtains a number of non-addressable system buffers to
be used as receive buffers and passes them to the VPM interpreter using
the interface routine vpmemptq. Vpmopen also calls the interface routine
vpmstart if the minor device was not already open.

vpmclose (dev)
int dev;

This function closes the minor device specified by the low-order four bits of
dev. It calls the interface routine vpmstop, flushes the receive queue for the
specified minor device, releases its buffers, and reinitializes its data
structure.

vpmwrite (dev)
int dev;

This function implements the write system call. If the transmit queue is not
full, the function obtains a non-addressable system buffer, copies up to 512
bytes of the user's write data into it, and enqueues the buffer on the level 2
transmit queue using the interface function vpmxmtq. These steps are
repeated until all of the user's write data has been copied. If the transmit
queue is full when this function is called or if it becomes full while "the
function is executing, the calling process is blocked until there is room in the
queue for more transmit buffers.

vpmread (dev)
int dev;

Sys5 UNIX 8-15

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

This function implements the read system call. When it is called, the calling
process is blocked until the receive queue is non-empty. As data is received
by the VPM interpreter, it is placed into an empty receive buffer. When the
protocol script decides that the data contained in a particular buffer is valid,
it executes a rtnbuf (BISNYC) or rtnfrm (HDLC) primitive, which causes the
buffer descriptor pointer to be passed to the interface module's interrupt
routine. The interface module then passes the buffer descriptor pointer to
the protocol module by calling the protocol module's interrupt routine. The
protocol module enqueues the buffer descriptor pointer on the receive queue
and wakes up (unblocks) the reader(s). The number of bytes requested, or
the data in one buffer, whichever is less, is copied to the user process; the
number of bytes copied is passed as the return value. Any bytes remaining
in a buffer are used to satisfy subsequent read requests.
vpmioctl (dev, cmd, arg, mode)
int dev, cmd, mode;
char *arg;

This function implements the ioctl system call. Cmd determines the function
to be performed as follows:

VPMCMD - Pass a command to the protocol script. The first four
bytes of the array pointed to by arg are passed to the VPM
interpreter which saves them and passes them to the protocol
script the next time it executes a getcmd primitive.

VPMERRS - Get and reset the VPM interpreter's error counters.
The eight-byte array containing the VPM interpreter's error
counters is copied to the user array pointed to by arg. The
interpreter's copy of the error counters is then set to zero.

VPMRPT - Get a· report from the protocol script. If the protocol
script has executed a rtnrpt primitive since the last time this ioctl
command was issued, the script report (four bytes) is copied to the
user array pointed to by arg and one is passed as the return value;
otherwise, zero is passed as the returned value.

The inode argument is not used. The values for VPMCMD, VPMERRS, and
VPMRPT are defined in file /usrlinclude/syslvpm.h.

vpmtrint (dev, code, bdp)
int dev, code;
struct vpmbd *bdp;

The address of this function is passed to the protocol module using the
vpmstart function described in Appendix 1. This routine is called from the
interface module to return transmit buffers, receive buffers, script reports, or
error termination codes. It is usually called at interrupt priority and therfore

8-16 Sys5 UNIX

\, ___ /

(

VIRTUAL PROTOCOL MACHINE CHAPTER 8

must not sleep or do unnecessary work. Code identifies the purpose of the
call and determines the meaning of bdp as follows:

RRTNXBUF - Bdp is a pointer to the buffer descriptor for a
transmit buffer. This call is made when the protocol script executes
a rtnxbuf (BISYNC) or a rtnxfrm (HDLC).

RRTNRBUF - Bdp is a pointer to the buffer descriptor for a receive
buffer. This call is made when the protocol script executes a rtnbuf
(BISYNC) or a rtnfrm (HDLC).

RRTNEBUF - Bdf is a pointer to the buffer descriptor for an empty
receive buffer. This call is used to return empty receive buffers
when the interface module is stopped by calling vpmstop.

ERRTERM - Bdp is the error-termination code passed to the
interface module by the VPM interpreter when it halts the protocol
script because of an error condition. The meaning of these error
codes is given in the attached manual entry for vmp(4).

The values for RRTNXBUF, RRTNRBUF, RRTNEBUF, and ERRITERM are
defined in the lusr/include!sys/vpm.h.

SysS UNIX 8-17

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

8.5 Appendix 3 - The Trace Driver

The trace driver provides a means by which a user program can receive
trace information generated by the VPM driver, a protocol script, or some
other driver. See the attached manual entry for trace(4).

A description of each routine of the trace driver follows.

tropen (dev)
int dev;

This function opens the minor device specified by dev exclusively.

trclose (dev)
int dev;

This function closes the minor device specified by dev. It discards any data
on the read queue and initializes the data structure associated with the
minor device.

trread (dev)
int dev;

This function implements the read system call; it sleeps until at least until at
least one event record is available on the read queue associated with dev. It

. then copies records to the user until the user's read count is less than the
number of bytes in the next event record or until the read queue is empty.
The number of bytes copied is passed as the return value.

trioctl (dev, cmd, arg, mode)
int dev, cmd, arg, mode;

This function implements the ioctl system call. Cmd indicates the operation
to be performed. The driver has one command:

VPMTRO - Enable a trace channel. In order for data to be saved
on the read queue for minor device dev, the device must be open
and the channel to which it is written must be enabled. This
command enables channel arg, which must be in the range O to 15.
Any combination of channels may be enabled by repeatedly calling
this function with different values of arg. All channels are disabled
when the minor device is closed.

trsave (dev, chno, buf, ct)
char dev, chno, *buf, ct;

If minor device dev of the trace driver is open and channel chno of that
minor device is enabled then chno and ct, followed by ct bytes starting at
address but, are copied onto the read queue associated with dev, provided
the read queue for that device has room for the complete event record. If
not, the record is discarded.

8-18 Sys5 UNIX

VIRTUAL PROTOCOL MACHINE CHAPTER 8

(8.6 Appendix 4 - The VPM Event Trace

(

(

Calls to the interface routine vpmsave have been placed strategically
throughout the standard VPM protocol module (vpmt.c) and the VPM
interface module (vpmb.c) to provide an event trace for debugging new
protocol modules and/or protocol scripts. A protocol script may generate an
event record by executing a trace primitive. All such event records are
discarded unless some user program has opened minor device 0 of the
trace driver and enabled channel 0 of that minor device. The command
vpmtrace(1 C) opens this device and enables channel 0, then reads event
records and prints them on the standard output as they are received. Each
kind of event record that is generated by the VPM driver will be described by
giving the vpmsave function call as it appears in vpmt.c or vpmb.c, followed
by an example of the line printed by vpmtrace as a result of this call.
Following this, the context of the vpmsave call and the definition of the
parameters passed will be given. The definition of a parameter that appears
in more than one call will not be repeated. The first five calls to vpmsave
occur in the source file vpmt.c; the remaining calls occur in vpmb.c.

vpmsave('p', dev, ec, 0)

243p100 15 0

Called if vpmstart returns an error code. The first field of the printed record
contains a sequence number assigned by vpmsave. The remaining four
fields contain the four remaining arguments to vpmsave in the same order
as they appear in the call to vpmsave. The first argument to vpmsave, in
this case a 'p', identifies the record type. Dev is the minor device number as
defined earlier; ec is the value returned by vpmstart.

vpmsave('O', dev, vp->vt_state, 0)

244 o 100 I 0

Called just before the normal return point of vpmopen. The variable, vp­
>vt_state, contains the state bits for the protocol module. Refer to the
source file, vpmt.c, for the definitions of the state bits.

vpmsave ('c', dev, vp->vt_state, 0)

245 c 100 13 0

Called from vpmclose just before the state bits are initialized.

vpmsave ('w', dev, ct, dp)

246 w 100 1000

Sys5 UNIX

CHAPTER 8 VIRTUAL PROTOCOL MACHINE

Called just before putting a buffer-descriptor pointer on the transmit queue in
vpmwrite. Ct is the number of bytes in the buffer. When executing on a
PDP11, dp is the pointer to the buffer descriptor; dp is not meaningful when
executing on a VAX because pointers are four bytes on a VAX and the
argument corresponding to dp is declared as a short.

vpmsave ('r', dev, ent, dp->d_bos)

247 r 100 500 500

Called from vpmread just after cnt bytes have been moved to the user's
read buffer. The parameter dp->d_bos is the n'umber of bytes remaining in
the current receive buffer.
vprrisave ('s', dev, vp->vbstate, 0)

248 s 100 401 0

Called just before the normal return from vpmstart. The parameter vp­
> vb_state contains the state bits for the interface module. For the
definitions of the state bits, refer to the source file vpmb.c.

vpmsave ('t', dev, vp->vb_state, vp->vb_xbkmc)

249 t 100 0 0

Called just before the normal return from vpmstop. The parameter vp­
> vb_xbkmc is the number of transmit buffers currently held by the VPM
interpreter. It can be non-zero if the protocol script or interpreter terminates
in error.

vpmsave ('X', dev, vp->vb_xbkmc, 0)

250 X 100 I 0

Called from vpmbrint. the interface module's receive-interrupt routine, each
time the VPM interpreter returns a transmit buffer.

vpmsave ('R', dev, vp->vb_vrkmc, 0)

251 R 100 I 0

Called from vpmbrint each time the VPM interpreter returns a receive buffer.
The parameter vp->vb_rbkmc contains the number of receive buffers
currently held by the interpreter.

vpmsave ('T', dev, sel4, se16)

252 T 100 370 21 34

8-20 Sys5 UNIX

VIRTUAL PROTOCOL MACHINE CHAPTER 8

Called from vpmbrint when a trace report is received from the interpreter.
This occurs when the protocol script executes a trace primitive. Sel4
contains the value of the script location counter (plus two) at the time the
trace primitive was executed. By referring to the assembly-language listing
of the protocol script generated by the -I option of vpmc, the point in the
protocol script at which the trace was executed can be determined. The
value of the location counter is two greater than the location of the trace
instruction as shown in the assembley-language listing. Sel6 contains the
byte or bytes passed by the trace primitive. Vpmtrace prints these two bytes
in separate fields.

vpmsave ('E', dev, sel4, sel6)

253 E 244 21

Called from vpmbrint when an error-termination report is received from the
interpreter. Sel4 contains the script location counter at the time execution of
the script was terminated. Sel6 contains the termination code. For an
explanation of these codes see the attached manual entry for vpm(4).

vpmsave ('P', dev, sel4, sel6)

254 p 100 2105 1055

Called from vpmbrint when a script report is received from the interpreter.
This occurs when the protocol script executes a rtnrpt primitive. Sel4 and
sel6 contain the four bytes transferred by this primitive.

vpmsave ('F', dev, se14, se16)

255F100 3 0

Called form vpmbrint when an error-count report is received from the
interpreter. Sel4 and se/6 do not contain any meaningful data for this event
type.

vpmsave ('S', dev, sel4, se16)

256 s 100 401 0

Called from vpmbrint when a start-up report is received from the interpreter.
The low-order eight bits of se/4 contain a parameter defining the maximum
number of transmit buffers the interpreter can accept; the high-order eight
bits contain a parameter defining the maximum number of receive buffers.
Sel6 contains the options supported by the interpreter.

vpmsave ('C', dev, vp-vb_state, bp·>xbkmc)

257 C 100 I 0

Called from vpmclean just before the data structure associated with dev is
initialized.

Sys5 UNIX 8-21

(

(

(

REMOTE JOB ENTRY CHAPTER 9

9. UNIX SYSTEM REMOTE JOB ENTRY

This chapter contains an overview of the Plexus implementation of the Sys5
UNIX Remote Job Entry (RJE) and the Plexus Batch 2780/3780. For
detailed information on RJE please reference the Plexus publication Plexus
RJEIHASP Re/ease Notice. For detailed information on Batch, consult the
Plexus publication Plexus Batch Release Notice.

RJE is the communal name for a collection of programs and a file
organization that allows a UNIX system, equipped with the appropriate
hardware and associated Virtual Protocol Machine (VPM) software, to
communicate with IBM's Job Entry Subsystems by mimicking an IBM 360
remote work station.

Similarly, Batch is the communal name for a group of programs and a file
organization that allows an appropriately equipped UNIX system to
communicate with IBM's Job Entry Subsystems by mimicking a 2780 or
3780 remote work station.

While active, RJE and Batch run in the background and require no human
supervision. They quietly transmit to the IBM system, jobs that have been
queued, and operator requests. They receive from the IBM system, print
and punch data sets and message output. They enter the data sets into the
proper UNIX system directory and notify the appropriate user of their arrival.
They store the message output and make these messages available for
public inspection.

In order to use RJE or Batch you need to be familiar with a subset of basic
commands. You must understand the directory structure of the file system,
and you should know something about the attributes of files. You must
know how to enter, edit, and examine text files, and how to communicate
with other users and with the system.

RJE and Batch are designed to be autonomous facilities that do not require
manual supervision. RJE and Batch may be initiated automatically by the
UNIX reboot procedures and continue in execution until the sytem is shut
down.

Whether you use RJE or Batch 2780/3780 depends on the protocol of the
IBM system you wish to communicate with.

Sys5 UNIX 9-1

~-~

i \
\._ /

(

SYSTEM ACTIVITY PACKAGE CHAPTER 10

10. SYSTEM ACTIVITY PACKAGE

This chapter describes the design and implementation of the UNIX System
Activity Package. The UNIX operating system contains a number of
counters that are incremented as various system actions occur. The system
activity package reports UNIX system-wide measurements including central
processing unit (CPU) utilization, disk and tape input/output (1/0) activities,
terminal device activity, buffer usage, system calls, system switching and
swapping, file-access activity, queue activity, and message and semaphore
activities.

Throughout this chapter, each reference of the form name(1 M), name(?), or
name(8) refers to entries in the Sys5 UNIX Administrator Reference
Manual. References to entries of the form name(N), where "N" is the
number 1 or 6 possibly followed by a letter, refer to entry name in section N
of the Sys5 UNIX User Reference Manual. If "N" is a number 2 through 5
possibly followed by a letter, refer to entry name in section N of the Sys5
UNIX Programmer Reference Manual.

The package provides four commands that generate various types of
reports. Procedures that automatically generate daily reports are also
included. The five functions of the activity package are:

• sar(1) command-allows a user to generate system activity reports in
real-time and to save system activities in a file for later usage.

• sag(1 G) command-displays system activity in a graphical form.

• sadp(1 M) command-samples disk activity once every second during
a specified time interval and reports disk usage and seek distance in
either tabular or histogram form.

• timex(1)-a modified time(1) command that times a command and
also (optionally) reports concurrent system activity and process
accounting activity.

• system activity daily reports-procedures are provided for sampling
and saving system activities in a data file periodically and for
generating the daily report from the data file.

The system activity information reported by this package is derived from a
set of system counters located in the operation system kernel. These
system counters are described in the part "System Activity Counters". The
part "System Activity Commands" describes the commands provided by this
package. The procedure for generating daily reports is given in "Daily
Report Generation". For a description of the files used by the system
activity package, see Attachment 10-1 at the end of this chapter.

Sys5 UNIX 10-1

CHAPTER 10 SYSTEM ACTIVITY PACKAGE

10.1 System Activity Counters

The UNIX operating system manages a number of counters that record
various activities and provide the basis for the system activity reporting
system. The data structure for most of these counters is defined in the
sysinfo structure in lusrlinclude/syslsysinfo.h (see Attachment 10-2 at the
end of this chapter). The system table overflow counters are kept in the
_syserr structure.

The following paragraphs describe the system activity counters sampled by
the system activity package.

Cpu time counters-There are four time counters that may be incremented
at each clock interrupt 60 times per second. According to the mode the
CPU is in at the interrupt (idle, user, kernel, and wait for 1/0 completion),
exactly one of the cpu(J counters is incremented.

Lread and lwrite-The /read and /write counters are used to count logical
read and write requests issued by the system to block devices.

Bread and bwrite-The bread and bwrite counters are used to count the
number of times data is transferred between the system buffers and the
block devices. These actual I/Os are triggered by logical I/Os that cannot be
satisfied by the current contents of the buffers. The ratio of block 1/0 to
logical 1/0 is a common measure of the effectiveness of the system
buffering.

Phread and phwrite-The phread and phwrite counters count read and
write requests issued by the system to raw devices.

Swapin and swapout-The swapin and swapout counters are incremented
for each system request initiating a transfer from or ta the swap device.
More than one request is usually involved in bringing a process into or out of
memory because text and data are handled separately. Frequently used
programs are kept on the swap device and are swapped in rather than
loaded from the file system. The swapin counter reflects these initial
loading operations as well as resumptions of activity, while the swapout
counter reveals the level of actual "swapping." The amount of data
transferred between the swap device and memory are measured in blocks
and counted by bswapin and bswapout.

10-2 Sys5 UNIX

(

SYSTEM ACTIVITY PACKAGE CHAPTER 10

Pswitch and syscall-These counters are related to the management of
multiprogramming. Syscall is incremented every time a system call is
invoked. The numbers of invocations of read(2), write(2), fork(2), and
exec(2) system calls are kept in counters sysread, syswrite, sysfork, and
sysexec, respectively. Pswitch counts the times the switcher was invoked,
which occurs when:

1. A system call resulted in a road block

2. An interrupt occurred resulting in awakening a higher priority process

3. A 1 second clock interrupt occurs.

lget, namei, and dirblk-These counters apply to file-access operations.
/get and namei, in particular, are the names of UNIX operating system
routines. The counters record the number of times the respective routines
are called. Namei is the routine that performs file system path searches. It
searches the various directory files to get the associated i-number of a file
corresponding to a special path. /get is a routine called to locate the inode
entry of a file (i-number). It first searches the in-core inode table. If the
inode entry is not in the table, routine iget will get the inode from the file
system where the file resides and make an entry in the in-core inode table
for the file. /get returns a pointer to this entry. Namei calls iget, but other
file access routines also call iget. Therefore, counter iget is always greater
than counter namei.

Counter dirblk records the number of directory block reads issued by the
system. It is noted that the directory blocks read divided by the number of
namei calls estimates the average path length of files.

Runque, runocc, . swpque, · and swpocc-These counters are used to
record queue activities. They are implemented in the cJack.c routine. At
every 1 second interval, the clock routine examines the process table to see
whether any processes are in core and in ready state. If so, the counter
runocc is incremented and the number of such processes are added to
counter runque. While examining the process table, the clock routine also
checks whether any processes in the swap device are in ready state. The
counter swpocc is incremented if the swap queue is occupied, and the
number of processes in swap queue is added to counter swpque.

Readch and writech-The readch and writech counters record the total
number of bytes (characters) transferred by the read and write system
calls, respectively.

Sys5 UNIX 10-3

CHAPTER10 SYSTEM ACTIVITY PACKAGE

Monitoring terminal device activities-There are six counters monitoring
terminal device activities. Rcvint, xmtint, and mdmint are counters
measuring hardware interrupt occurrences for receiver, transmitter, and '< ./

modem individually. Rawch, canch, and outch count number of characters
in the raw queue, canonical queue, and output queue. Characters
generated by devices operating in the cooked mode, such as terminals, are
counted in both rawch and (as edited) in canch; but characters from raw
devices, such as communication processors, are counted only in rawch.

Msg and sema counters-These counters record message sending and
receiving activities and semaphore operations, respectively.

Monitoring 110 activities-Four counters are kept for each disk or tape
drive in the device status table. Counter io_ops is incremented when an 1/0
operation has occurred on the device. It includes block 1/0, swap 1/0, and
physical 1/0. lo_bcnt counts the amount of data transferred between the
device and memory in 512-byte units. lo_act and io_resp measure the
active time and response time of a device in time ticks summed over all 1/0
requests that have completed for each device. The device active time
includes the device seeking, rotating, and data transferring times, while the
response time of an 1/0 operation is from the time the 110 request is queued
to the device to the time when the 1/0 completes.

lnodeovf, fileovf, textovf, and procovf-These counters are extracted
from _syserr structure. When an overflow occurs in any of the inode, file,
text, and process tables, the corresponding overflow counter is incremented.

10.2 System Activity Commands

The system activity package provides three commands- for generating
various system activity reports and one command for profiling disk activities.
These tools facilitate observation of system activity during

10-4

• A controlled stand-alone test of a large system

• An uncontrolled run of a program to observe the operating
environment

• Normal production operation.

Sys5 UNIX

(

SYSTEM ACTIVITY PACKAGE CHAPTER 10

Commands sar and sag permit the user to specify a sampling interval and
number of intervals for examining system activity and then to display the
observed level of activity in tabular or graphical form. The timex command
reports the amount of system activity that occurred during the precise period
of execution of a timed command. The sadp command allows the user to
establish a sampling period during which access location and seek distance
on specified disks are recorded and later displayed as a tabular summary or
as a histogram.

10.2.1 The "sar" Command

The sar command can be used in the following two ways:

• When the frequency arguments t and n are specified, it invokes the
data collection program sadc to sample the system activity counters
in the operating system every t seconds for n intervals and generates
system activity reports in real·time. Generally, it is desirable to
include the option to save the sampled data in a file for later
examination. The format of the data file is shown in sar(1 M). In
addition to the system counters, a time stamp is also included. It
gives the time at which the sample was taken.

• If no frequency arguments are supplied, it generates system activity
reports for a specified time interval from an existing data file that was
created by sar at an earlier time.

A convenient usage is to run sar as a background process saving its
samples in a temporary file but sending its standard output to /dev/null.
Then an experiment is conducted after which the system activity is extracted
from the temporary file. The sar(1) manual entry describes the usage and
lists various types of reports. Attachment 10-3 (at the end of this chapter)
gives the formula for deriving each reported item.

10.2.2 The "sag" Command

Sag displays system activity data graphically. It relies on the data file
produced by a prior run of sar after which any column of data or the
combination of columns of data of the sar report can be plotted. A fairly
simple but powerful command syntax allows the specification of cross plots
or time plots. Data items are selected using the sar column header names.
The sar(1 G) manual entry describes its options and usage. The system
activity graphical program invokes graphics(1 G) and tplot(1 G) commands
to have the graphical output displayed on any of the terminal types
supported by tplot.

Sys5 UNIX 10-5

CHAPTER 10 SYSTEM ACTIVITY PACKAGE

10.2.3 The "timex" Command

The timex command is an extension of the time(1) command. Without
options, timex behaves like time. In addition to giving the time information,
it can also print a system activity report and a process accounting report.
For all the options available, refer to the manual entry timex(1). It should be
emphasized that the user and sys times reported in the second and third
lines are for the measured process itself including all its children while the
remaining data (including the cpu user % and cpu sys %) are for the entire
system.

While the normal use of timex will probably be to measure a single
command, multiple commands can also be timed either by combining them
in an executable file and timing it or by typing:

timex sh -c "cmd1; cmd2; ... ;"

This establishes the necessary parent-child relationships to correctly extract
the user and system times consumed by cmd1, cmd2, ... (and the shell).

10.2.4 The "sadp" Command

Sadp is a user level program that can be invoked independently by any
user. It requires no storage or extra code in the operating system and
allows the user to specify the disks to be monitored. The program is
reawakened every second, reads system tables from ldevlkmem, and
extracts the required information. Because of the 1 second sampling, only a
small fraction of disk requests are observed; however, comparative studies
have shown that the statistical determination of disk locality is adequate
when sufficient samples are collected.

In the operating system, there is an iobuf for each disk drive. It contains
two pointers which are head and tail of the 1/0 active queue for the device.
The actual requests in the queue may be found in three buffer header
pools-system buffer headers for block 1/0 requests, physical buffer
headers for physical 1/0 requests, and swap buffer headers for swap 1/0.
Each buffer header has a forward pointer that points to the next request in
the 1/0 active queue and a backward pointer that points to the previous
request.

10-6 SysS UNIX

(

(

SYSTEM ACTIVITY PACKAGE CHAPTER 10

Sadp snapshots the iobuf of the monitored device and the three buffer
header pools once every second during the monitoring period. It then traces
the requests in the 1/0 queue, records the disk access location, and seeks
distance in buckets of a-cylinder increments. At the end of monitoring
period, it prints out the sampled data. The output of sadp can be used to
balance load among disk drives and to rearrange the layout of a particular
disk pack. The usage of this command is described in manual entry
sadp(1M).

10.3 Daily Report Generation

The previous part described the commands available to users to initiate
activity observations. It is probably desirable for each installation to
routinely monitor and record system activity in a standard way for historical
analysis. This part describes the steps that a system administrator may
follow to automatically produce a standard daily report of system activity.

10.3.1 Facilities

• sadc-The executable module of sadc.c (see Attachment 10-1 at the
end of this chapter) which reads system counters from ldev/kmem
and records them to a file. In addition, two frequency arguments are
usually specified to indicate the sampling interval and number of
samples to be taken. In case no frequency arguments are given, it
writes a dummy record in the file to indicate a system restart.

• sa1-The shell procedure that invokes sadc to write system counters
in the daily data file /usr/admlsadd where dd represents the day of
the month. It may be invoked with sampling interval and iterations as
arguments.

• sa2-The shell procedure that invokes the sar command to generate
daily report /usr/admlsalsardd from the daily data file
/usrladmlsalsadd. It also removes daily data files and report files
after 7 days. The starting and ending times and all report options of
sar are applicable to sa2.

Sys5 UNIX 10-7

CHAPTER10 SYSTEM ACTIVITY PACKAGE

10.3.2 Suggested Operational Setup

It is suggested that the cron(1 M) control the normal data collection and ·"- "
report generation operations. For example, the sample entries in
/usr/spoollcron/crontab/sys:

O * * * 0,6 /usr/lib/sa/sa1
O 18-7 * * 1-5 /usr/lib/sa/sa1
O 8-17 * * 1-5 /usr/lib/sa/sa 1 1200 3

would cause the data collection program sadc to be invoked every hour on
the hour. Moreover, depending on the arguments presented, it writes data
to the data file one to three times at every 20 minutes. Therefore, under the
control of cron(1M), the data file is written every 20 minutes between 8:00
and 18:00 on weekdays and hourly at other times.

Note that data samples are taken more frequently during prime time on
weekdays to make them available for a finer and more detailed graphical
display. It is suggested that sa1 be invoked hourly rather than invoking it
once every day; this ensures that if the system crashes data collection will
be resumed within an hour after the system is restarted.

Because system activity counters restart from zero when the system is
restarted, a special record is written on the data file to reflect this situation.
This process is accomplished by invoking sadc with no frequency
arguments within /etc/re when going to multiuser state:

su adm -c "/usr/lib/sa/sadc /usr/adm/sa/sa'date +%d'"

Cron(1 M) also controls the invocation of sar to generate the daily report via
shell procedure sa2. One may choose the time period the daily report is to
cover and the groups of system activity to be reported. For instance, if:

O 20 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:00 -i 3600 -uybd

is an entry in /usrlspoollcronlcrontablsys, cron will execute the sar
command to generate daily reports from the daily data file at 20:00 on
weekdays. The daily report reports the CPU utilization, terminal device
activity, buffer usage, and device activity every hour from 8:00 to 18:00.

In case of a shortage of the disk space or for any other reason, these data
files and report files can be removed by the superuser. The manual entry
sar(1 M) describes the daily report generation procedure.

10-8 SysS UNIX

(

(

SYSTEM ACTIVITY PACKAGE CHAPTER 10

ATTACHMENT 10-1

The source files and shell programs of the system activity package are in
directory lusr/src/cmdlsa.

sa.h The system activity header file defines the structure
of data file and device information for measured
devices. It is included in sadc.c, sar.c, and
timex.c.

sadc.c

sar.c

saghdr.h

saga.c & sagb.c

sa1.sh

sa2.sh

timex.c

sadp.c

Sys5 UNIX

The data collection program that accesses
ldevlkmem to read the system activity counters and
writes data either on standard output or on a binary
data file. It is invoked by the sar command
generating a real-time report. It is also invoked
indirectly by entries in /usrlspoollcron/crontab/sys to
collect system activity data.

The report generation program invokes sadc to
examine system activity data, generates reports in
real-time, and saves the data to a file for later
usage. It may also generate system activity reports
from an existing data file. It is invoked indirectly by
cron to generate daily reports.

The header file for saga.c and sagb.c. It contains
data structures and variables used by saga.c and
sagb.c.

The graph generation program that first invokes sar
to format the data of a data file in a tabular form and
then displays the sar data in graphical form.

The shell procedure that invokes sadc to write data
file records. It is activated by entries in
/usr/spoollcronlcrontab/sys.

The shell procedure that invokes sar to generate the
report. It also removes the daily data files and daily
report files after a week. It is activated by an entry
in /usr/spoollcron/crontab/sys on weekdays.

The program that times a command and generates a
system activity or process accounting report.

The program that samples and reports disk
activities.

10-9

CHAPTER 10 SYSTEM ACTIVITY PACKAGE

ATTACHMENT 10•2
'

struct sysinfo {
time_t cpu[4];

#define CPU_IDLE 0
#define CPU_USER 1
#define CPU_KERNAL 2
#define CPU_WAIT 3

time_t wait{3];
#define W_IO 0
#define W_SWAP 1
#define W_PIO 2

long bread;
long bwrite;
long lread;
long lwrite;
long phread;
long phwrite;
long swapin;
long swapout;
long bswapin;
long bswapout;
long pswitch;
long syscall;
long sysread;
long syswrite; / '
long sysfork; _/ . /

long sysexec;
long runque;
long runocc;
long swpque;
long swpocc;
long iget;
long narnei;
long dirblk;
long readch;
long writech;
long rcvint;
long xmtint;
long mdmint;
long rawch;
long canch;
long outch;
long msg;
long sema;

};

!' '\
I

_
10-10 SysS UNIX

(

SYSTEM ACTIVITY PACKAGE CHAPTER 10

ATTACHMENT 10-3

The derivation of the reported items is given in this attachment. Each item
discussed below is the data difference sampled at two distinct times t2 and
t1.

CPU Utilization

%-of-cpu-x = cpu-x I (cpu-idle + cpu-user + cpu-kernel + cpu-wait) * 100

where cpu-x is cpu-idle, cpu-user, cpu-kernel (cpu-sys), or cpu-wait.

Cache Hit Ratio

%-of-cache-1/0 = (logical-l/O - block-110) / logical-110 * 100

where cache 1/0 is cache read or cache write.

Disk or Tape 1/0 Activity

%-of-busy = 110-active I (t2 - t1) * 100;
avg-queue-length = 110-resp / 110-active;
avg-wait = (110-resp - 1/0-active) / 110-ops;
avg-service-time = 110-active / 110-ops.

(Queue Activity

("

avg-x-queue-length = x-queue I x-queue-occupied-time;
%-of-x-queue-occupied-time = x-queue-occupied-time I (t2 - t1);

where x-queue is run queue or swap queue.

The Rest of System Activity

avg-rate-of-x = x I (t2 - t1)

where x is swap in/out, blks swapped in/out, terminal device activities,
read/write characters, block read/write, logical read/write, process switch,
system calls, read/write, fork/exec, iget, namei, directory blocks read,
disk/tape 1/0 activities, message, or semaphore activities.

Sys5 UNIX 10-11

(

UUCP ADMINISTRATION CHAPTER 11

11. UUCP ADMINISTRATION

This chapter describes how a uucp network is set up, the format of control
files, and administrative procedures. Administrators should be familiar with
the manual pages for each of the uucp related commands.

11.1 Planning

In setting up a network of UNIX systems, there are several considerations
that should be taken into account before configuring each system on the
network. The following parts attempt to outline the most important
considerations.

11.1.1 Extent of the Network

Some basic decisions about access to processors in the network must be
made before attempting to set up the configuration files. If an administrator
has control over only one processor and an existing network is being joined,
then the administrator must decide what level of access should be granted
to other systems. The other members of the network must make a similar
decision for the new system. The UNIX system password mechanism is
used to grant access to other systems. The file /usrllib/uucp/USERFILE
restricts access by other systems to parts of the file system tree, and the file
/usrllib/uucp/Lsys on the local processor determines how many other
systems on the network can be reached.

When setting up more than one processor, the administrator has control of a
larger portion of the network and can make more decisions about the setup.
For example, the network can be set up as a private network where only
those machines under the direct control of the administrator can access
each other. Granting no access to machines outside the network can be
done if security is paramount; however, this is usually impractical. Very
limited access can be granted to outside machines by each of the systems
on the private network. Alternatively, access to/from the outside world can
be confined to only one processor. This is frequently done to minimize the
effort in keeping access information (passwords, phone numbers, login
sequences, etc.) updated and to minimize the number of security holes for
the private network.

Sys5 UNIX 11-1

CHAPTER 11 UUCP ADMINISTRATION

11.1.2 Hardware and Line Speeds

There are only two supported means of interconnection by uucp(1),

1. Direct connection using a null modem.

2. Connection over the Direct Distance Dialing (DOD) network.

In choosing hardware, the equipment used by other processors on the
network must be considered. For example, if some systems on the network
have only 103-type (300-baud) data sets, then communication with them is
not possible unless the local system has a 300-baud data set connected to
a calling unit. (Most data sets available on systems are 1200-baud.) If
hard-wired connections are to be used between systems, then the distance
between systems must be considered since a null modem. cannot .. be .used
when the systems are separated by more than several hundred feet. The
limit for communication at 9600-baud is about 800 to 1000 feet. However,
the RS232 specification and Western Electric Support Groups only allow for
less than 50 feet. Limited distance modems must be used beyond 50 feet
as noise on the lines becomes a problem.

11.1.3 Maintenance and Administration

There is a minimum amount of maintenance that must be provided on each
system to keep the access files updated, to ensure that the network is
running properly, and to track down line problems. When more than one
system is involved, the job becomes more difficult because there are more
files to update and because users are much less patient when failures occur
between machines that are under local control.

11.2 UUCP Software

Figure 10-1 (at the end of this chapter) is an illustration of the daemons
used by the uucp network to communicate with another system. The
uucp(1) or uux(1) command queues users requests and spawns the uucico
daemon to call another system. Figure 10-2 (at the end of this chapter)
illustrates the structure of uucico and the tasks that it performs in
communicating with another system. Uucico initiates the call to another
system and performs the file transfer. On the receiving side, uucico is
invoked to receive the transfer. Remote execution jobs are actually done by
transferring a command file to the remote system and invoking a daemon
(uuxqt) to execute that command file and return the results.

11-2 SysS UNIX

(

(

(

UUCP ADMINISTRATION CHAPTER 11

11.3 Installation

The uucp(1) package is delivered as part of the standard UNIX system
distribution. It resides in its own subdirectory (called uucp) in the
commands area and has its own make file (uucp.mk). The uucp package is
installed as part of the normal distribution; however, if it must be reinstalled
for any reason, then the sequence

make -f uucp.mk install

should be executed.

11.3.1 Object Modules

The following object modules are installed as part of the uucp make
procedure.

1.

2.

3.

4.

5.

6.

7.

uucp-The file transfer command.

uux-The remote execution command.

uucico-The uucp network daemon.

uustat-Network status command.

uuclean-Cleanup command.

uusub-The command for monitoring and creating a subnetwork.

uuxqt-The remote execution daemon.

8. uudemon.day-A shell procedure that is invoked each day to maintain
the network. Shell scripts for execution each week (uudemon.wk)
and each hour (uudemon.hr) are also distributed.

11.3.2 Password File

To allow remote systems to call the local system, password entries must be
made for any uucp logins. For example,

nuucp:zaaAA:6:1 :UUCP.Admin:/usr/spool/uucppublic:/usr/lib/uucp/uucico

Note that the uucico daemon is used for the shell, and the spool directory is
used as the working directory.

There must also be an entry in the passwd file for an uucp administrative
login. This login is the owner of all the uucp object and spooled data files
and is usually "uucp".

Sys5 UNIX 11-3

CHAPTER 11 UUCP ADMINISTRATION

For example, the following is an entry in letc/passwd for this administrative
login:

uucp:zAvLCKp:5:1 :UUCP .Admin:/usr/lib/uucp:

Note that the standard shell is used instead of uucico. If an owner other
than "uucp" is chosen, the make file for uucp (/usr/srclcmdluucp/uucp.mk)
must be edited. The line "OWNER= uucp" must be changed to reflect the
new owner login.

11.3.3 Lines File

The file /usrllibluucp/L-devices contains the list of all lines that are directly
connected to other systems or are available for calling other systems. The
file contains the attributes of the lines and whether the line is a permanent
connection or can call via a dialer. The format of the file is

type line call-device speed protocol

where each field is

type

line

call-device

speed

protocol

11-4

Two keywords are used to describe whether a line is
directly connected to another system (DIR) or uses an
automatic calling unit (ACU). An X.25 permanent virtual
circuit would use the DIR keyword.

This is the device name for the line (e.g., ttyab for a
direct line, cu/O for a line connected to an ACU).

If the ACU keyword is specified, this field contains the
device name of the ACU. Otherwise, the field is
ignored; however, a placeholder must be used in this
field so that the protocol field can be interpreted. This
"device" is actually a compiled program that handles
any required control signals for your modem. The
program we supply (/usr/plx/dial) supports HAYES 3451
modems only.

The line speed that the connection is to run at. (The
speed field is currently ignored if an X.25 link is used.)

This is an optional field that needs only be filled in if the
connection is for a protocol other than the default
terminal protocol. The X.25 protocol is the only other
protocol supported and the single character x is used to
select this protocol.

Sys5 UNIX

(

(

(

UUCP ADMINISTRATION CHAPTER 11

The following entries illustrate various types of connections:

DIR ttyab O 9600
ACU culO cuao 1200
DIR x25.s0 0 300 x

The first entry is for a hard-wired line running at 9600-baud between two
systems. Note that the acu-device field is zero. The second entry is for a
line with a 1200-baud ACU. The last entry is for an X.25 synchronous direct
connection between systems. Note that the protocol field is filled in and that
the acu-device and line speed fields are meaningless.

11.3.3.1 Naming Conventions

It is· often useful when naming lines that are directly connected between
systems or which are dedicated to calling other systems to choose a naming
scheme that conveys the use of the line. In the earlier examples, the name
ttyab is used for the line that directly connects two systems named a and b.
Similarly, lines associated with calling units are best given names that relate
them to the calling unit (note the names cu/O and cuao to specify the line
and calling unit, respectively).

11.3.4 System File

Each entry in this file represents a system that can be called by the local
uucp programs. More than one line may be present for a particular system.
In this case, the additional lines represent alternative communication paths
that will be tried in sequential order. The fields are described below.

system name Name of the remote system.

time

Sys5 UNIX

String indicating days-of-week and times-of-day when
the system can be called (e.g., MoTuThOB00-1730).

The day portion may be a list containing Su, Mo, Tu,
We, Th, Fr, Sa; or it may be Wk for any week·day or
Any for any day. The time should be a range (e.g.,
0800-1230). If no time portion is specified, any time of
day is assumed to be allowed. Note that a time range
that spans 0000 is permitted; 0800-0600 means all
times are allowed other than times between 6 and 8
am. An optional subfield is available to specify the
minimum time (minutes) before a retry following a failed
attempt. The subfield separator is a "," (e.g., Any,9
means call any time but wait at least 9 minutes before
retrying the can· after a failure has occurred).

11-5

CHAPTER 11

11-6

device

class

phone

login

UUCP ADMINISTRATION

This is either ACU or the hard-wired device name to be
used for the call. For the hard-wired case, the last part
of the special file name is used (e.g., ttyO).

This is usually the line speed for.the call (e.g., 300).

The phone number is made up of an optional alphabetic
abbreviation (dialing prefix) and a numeric part. The
abbreviation should be one that appears in the L­
dialcodes file (e.g., mh1212, bostonSSS-..,1212) .. For.the
hard-wired devices, this field contains the same string
as used for the device field.·

The login information is given as a series of fields and
subfields in the format

[expect send] ...

where expect is the string expected to be read and
send is the string to be sent when the expect string is
received.

The expect field may be made up of subfields of the
form

expect[-send-expect] ...

where the send is sent if the prior expect is not
successfully read and the expect following the send is
the next expected string. (For example, login--login will
expect login; if it .gets it, the program will go on to the
next field; if it does not get login. it will send null
followed by a new line, then expect login again.) If no
characters are initially expected from the remote
machine, the string "" (a null string) should be used in
the first expect field.

There are two special names available to be sent during
the login sequence. The string EOT will send an EQT
character, and the string BREAK will try to send a
BREAK character. (The BREAK character is simulated
using line speed changes and null characters and may
not work on all devices and/or systems.) A number from
1 to 9 may follow the BREAK (e.g., BREAK1, will send
1 null character. instead of the. default of. 3). Note that
BREAK1 usually works best for 300-/1200-baud lines.

Sys5 UNIX

('-· '\

__ _ _)

(

(

<~

UUCP ADMINISTRATION CHAPTER 11

There are several character strings that cause specific actions when they
are a part of a string sent during the login sequence.

\s Send a space character.

\d Delay one second before sending or reading more characters.

\c If at the end of a string, suppress the new-line that is normally
sent. Ignored otherwise.

\N Send a null character.
These character strings are useful for making uucp communicate via direct
lines to data switches.

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm matches all or part of the input string as illustrated in
the password field above.

11.3.5 Dialing Prefixes

This file contains the dial-code abbreviations used in the L.sys file (e.g., py,
mh, boston). The entry format is

abb dial-seq

where abb is the abbreviation and dial-seq is the dial sequence to call that
location.

The line

PY 165-

would be set up so that entry py7777 would send 165-7777 to the dial unit.

11.3.6 Userfile

This file contains user accessibility information. It specifies four types of
constraints:

1. Files that can be accessed by a normal user of the local machine.

2. Files that can be accessed from a remote computer.

3. Login name used by a particular remote computer.

4. Whether a remote computer should be called back in order to confirm
its identity.

Sys5 UNIX 11-7

CHAPTER 11 UUCP ADMINISTRATION

Each line in the file has the format

login.sys [c] pathname [pathname]

where

login is the login name for a user or the remote computer.

sys is the system name for a remote computer.

c is the optional ca/I-back required flag.

pathname is a pathname prefix that is acceptable for sys.

The constraints are implemented as follows:

1. When the program is obeying a command stored on the local machine,
the pathnames allowed are those given on the first line in the
USERFILE that has the login name of the user who entered the
command. If no such line is found, the first line with a nu// login name
is used.

2. When the program is responding to a command from a remote
machine, the pathnames allowed are those given on the first line in the
file that has the system name that matches the remote machine. If no
such line is found, the first one with a null system name is used.

3. When a remote computer logs in, the login name that it uses must
appear in the USERFILE. There may be several lines with the same
login name but one of them must either have the name of the remote
system or must contain a null system name.

4. If the line matched in (3.) contains a "c", the remote machine is called
back before any transactions take place.

The line

u,m /usr/xyz

allows machine m to login with name u and request the transfer of files
whose names start with /usr/xyz. The line

you, /usr/you

allows the ordinary user you to issue commands for files whose name starts
with /usr/you. (This type restriction is seldom used.)

11-8 SysS UNIX

(

UUCP ADMINISTRATION

The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

CHAPTER 11

allows any remote machine to login with name u. If its system name is not
m, it can only ask to transfer files whose names start with /usrlspool. If it is
system m, it can send files from paths lusr/xyz as well as lusr/spool. The
lines

root, I
, /usr

allow any user to transfer files beginning with /usr but the user with login
root can transfer any file. (Note that any file that is to be transferred must
be readable by anybody.)

11.3. 7 Forwarding File

There are two files that allow restrictions to be placed on the forwarding
mechanism. The format of the entries in each file is the same,

system
or

(system,user,user2, ...

The file ORIGFILE (lusr/libluucp!ORJGFILE) restricts the access of systems
that are attempting to forward through the local system. The file contains
the list of systems (and users) for whom the local system is willing to
forward. Each entry refers to the system that was the source of the original
job and not the name of the last system to forward the fila The second file,
FWDFILE (!usr/lib/uucp/FWDFILE), is a list of valid systems that a job can
be forwarded to. (It is not necessarily the name of the destination of a job,
but merely the next valid node.) This file will be a subset of the Lsys file and
can be used to prevent forwarding to systems that are very expensive to
reach but to which access by local users is allowed (e.g., links to overseas
universities). If neither of these files exist, uucp will be perfectly happy to
forward for any system. As an example, if the entry for system australia.
were in the ORIGFILE but not in the FWDFILE on system mhtsa, it would
mean that system australia would be capable of forwarding jobs into the
network via system mhtsa. However, no systems in the network could
forward a job to australia via system mhtsa.

Sys5 UNIX 11-9

CHAPTER 11 UUCP ADMINISTRATION

11.4 Administration

The role of the uucp administrator depends heavily on the amount of traffic
that enters or leaves a system and the quality of the connections that can
be made to and from that system. For the average system, only a modest
amount of traffic (100 to 200 files per day) pass through the system and little
if any intervention with the uucp automatic cleanup functions is necessary.
Systems that pass large numbers of files (200 to 10,000) may require more
attention when problems occur. The following parts describe the routine
administrative tasks that must be performed by the administrator or are
automatically performed by the uucp package. The part on problems
describes what are the most frequent problems and how to effectively deal
with them.

11.4.1 Cleanup

The biggest problem in a dialup network like uucp is dealing with the
backlog of jobs that cannot be transmitted to other systems. The following
cleanup activities should be routinely performed by shell scripts started from
cron(1).

11.4.1.1 Cleanup of Undeliverable Jobs

The uudemon.day procedure usually contains an invocation of the uuclean
command to purge any jobs that are older than some fixed time (usually 72
hours). A similar procedure is usually used to purge any lock or status files.
An example invocation of uuclean(1 M) to remove both job files and old
status files every 48 hours is:

/usr/lib/uucp/uuclean -pST -pC -n48

11.4.1.2 Cleanup of the Public Area

In order to keep the local file system from overflowing when files are sent to
the public area, the uudemon.day procedure is usually set up with a find
command to remove any files that are older than 7 days. This interval may
need to be shortened if there is not sufficient space to devote to the public
area.

11.4.1.3 Compaction of Log Files

The files SYSLOG and LOGFILE that contain logging information are
compacted daily (using the pack command from the shell script
uudemon.day) and should be kept for 1 week before being overwritten.

11-10 Sys5 UNIX

(

UUCP ADMINISTRATION CHAPTER 11

11.4.2 Polling Other Systems

Systems that are passive members of the network must be polled by other
systems in order for their files to be sent. This can be arranged by using the
uusub(1) command as follows:

uusub -cmhtsd

which will call mhtsd when it is invoked.

11.4.3 Problems

The following sections list the most frequent problems that appear on
systems that make heavy use of uucp(1).

11.4.3.1 Out of Space

The file system used to spool incoming or outgoing jobs can run out of
space and prevent jobs from being spawned or received from remote
systems. The inability to receive jobs is the worse of the two conditions.
When file space does become available, the system will be flooded with the
backlog of traffic.

11.4.3.2 Bad ACU and Modems

The ACU and incoming modems occasionally cause problems that make it
difficult to contact other systems or to receive files. These problems are
usually readily identifiable since LOGFILE entries will usually point to the bad
line. If a bad line is suspected, it is useful to use the cu(1) command to try
calling another system using the suspected line.

11.4.3.3 Administrative Problems

Some uucp networks have so many members that it is difficult to·keep·track
of changing passwords, changing phone numbers, or changing logins on
remote systems. This can be a very costly problem since ACU's will be tied
up calling a system that cannot be reached.

11.5 Debugging

In order to verify that a system on the network can be contacted, the uucico
daemon can be invoked from a user's terminal directly.

SysS UNIX 11-11

CHAPTER 11 UUCP ADMINISTRATION

For example, to verify that mhtsd can be contacted, a job would be queued
for that system as follows:

uucp -r file mhtsd ,-/tom

The -r option forces the job to be queued but does not invoke the daemon
to process the job. The uucico command can then be invoked directly:

/usr/lib/uucp/uucico -r1 -x4 -smhtsd

The -r1 option is necessary to indicate that the daemon is to start up in
master mode (i.e., it is the calling system). The -x4 specifies the level of
debugging that is to be printed. Higher levels of debugging can be printed
(greater than 4) but requires familiarity with the internals of uucico. If
several jobs are queued for the remote system, it is not possible to force
uucico to send one particular job first. The contents of LOGFILE should
also be monitored for any error indications that it posts. Frequently,
problems can be isolated by examining the entries in LOGFILE associated
with a particular system. The file ERRLOG also contains error indications.

11-12 Sys5 UNIX

~

U>
'<
C/l
(11

c z x

'
(.,.)

'Tl
'5'
c ...
CD
.....
«i>
c
c:
(')
r;·
0
0
D>
Cl>
3
0
::J

'i1
c:
::J
Q.
5·
::J
!!?..
OJ g
'A
C/l

.~

WORK LIST
.......,

SEQUENCE
AND

INTERLOCK

-A. -

UUCICO DAEMON

DIALING

ODD

DAT AK IT I
I (X.25)

u. INITIAL
I ·- CONNECTION

I
I
I

BYTE I
STREAM I

I

t

I~

I

FILE
TRANSFER
PROTOCOL

PACKET
PROTOCOL

UNIX SYSTEf'l OS

J

c
c
()
'1J
)>
0
s::
z
en
-I
:D

~
5 z

()
I
)>
'1J
-I m
:D
......

CHAPTER 11

z
Cl
u
WC z
ZCI
CIW
UE a:
w
z

c
E
w
en
>-en

11-14

-'c
Cw
C) a:
3;c

.....
en ... _,
:00:
a:
C)
::s

UUCP ADMINISTRATION

(IJ

Figure 10-2. Uucp Network Daemon

Sys5 UNIX

