
IPILIEXIU~

(

(

Sys5 UNIX User Guide

98-05083.1 Ver. A July 1, 1985

PLEXUS COMPUTERS, INC.

3833 North First Street

San Jose, CA 95134

408/943-9433

Copyright 1985
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may
be reproduced, transmitted,
transcribed, stored in a
retrieval system, or translated
into any language, in any form
or by any means, without the
prior written consent of Plexus
Computers, Inc.

The information contained
herein is subject to change
without notice. Therefore,
Plexus Computers, Inc.
assumes no responsibility for
the accuracy of the information
presented in this document
beyond its burrent release
date.

Printed in the United States of America

CONTENTS

1. INTRODUCTION

(General...................................... . .. 1-1
Caveats 1-1

2. PRIMER

Primer................................... 2-1
Human Interface .. 2-1

3. BASICS FOR BEGINNERS

Basics for Beginners .. 3-1
Creating Files-The Editor .. 3-1
What Files Are Out There ... 3-2
Printing Files .. 3-3
Moving Files Around ... 3-4
What's in a File Name ... 3-5
What's in a File Name, Continued ... 3-7
Using Files for 1/0 .. 3-10
Pipes .. 3-11
The Shell ... 3-12
Document Preparation.... 3-14
Programming ... 3-18

4. TUTORIAL-TEXT EDITOR

Tutorial-Text Editor.... 4-1
General.................... 4-1
Getting Started......... 4-2
Exercises 4-4
The Global Commands 4-19
Special Characters 4-19
Summary....................... 4-22

5. vi

vi... 5-1
Specifying Terminal Type ... 5-1
Editing a File ... 5-2
The Editor's Copy: The Buffer ... 5-2
Notational Conventions .. 5-3
Arrow Keys ... 5-3
Special Characters: esc, er, and del .. 5-3
Moving Around in the File .. 5-4
Making Simple Changes ... 5-8
Moving About ... 5-11
High Level Commands ... 5-14
Special Topics .. 5-16
Nitty-Gritty Details ... 5-23

6. INTRODUCTION TO THE SHELL

Introduction to the Shell ... 6-1
Simple Commands .. 6-1
Shell Procedures ... 6-5

(Plexus Sys5 UNIX - 1 - December 1984

CONTENTS

Keyword Parameters .. 6-16

7. csh

csh 7-1
The Basic Notation of Commands ... 7-1
Flag Arguments ... 7-2
Output to Files .. 7-2
Metacharacters in the Shell 7 -3
Input from Files: Pipelines ... 7-3
Filenames......... 7 -5
Quotation ... 7-7
Terminating Commands .. 7-8
Details on the Shell ... 7 -1 o
Shell Control Structures .. 7-20
Miscellaneous .. 7 -19
Appendix ... 7-32

8. GLOSSARY

Summary .. 8-1

December 1984 . 2 • Plexus Sys5 UNIX

(

INTRODUCTION CHAPTER 1

1. INTRODUCTION

The Sys5 UNIX* User Guide covers the following topics:

• A description of the features in the UNIX operating system

• A general overview of the capabilities of the UNIX operating system

• Instructions on how to use the UNIX operating system.

Not all of the capabilities of the UNIX operating system are described or
illustrated herein, but enough are described so that a new user can become
familiar with the use of the UNIX operating system.

Using the available information, users who have more interest than the
novice can utilize the information herein to accomplish their tasks with some
experimenting and self-teaching.

Throughout this volume, each reference of the form name(1 M), name(?), or
name(B) refers to entries in the Sys5 UNIX Administrator Reference Manual.
Other references to entries of the form name(N), where "N" is a number (1
or 6) possibly followed by a letter, refer to entry name in section N of the
Sys5 UNIX User Reference Manual. Entries where "N" is a number (2
through 5) possibly followed by a letter, refer to entry name in section N of
the Sys5 UNIX Programmer Reference Manual.

1.1 CAVEATS

Document processing features described throughout the following sections
may not be available on your system.

• UNIX is a trademark of Bell Laboratories, Inc.

Sys5 UNIX 1-1

/

~·~ (.

' /

(

PRIMER CHAPTER 2

2. PRIMER

This section of the SysS UNIX User Guide provides the information that
users will need to access the UNIX operating system. It is not intended to
be a detailed description. Many of the subjects described are discussed in
detail in other sections of this volume or the SysS UNIX User Reference
Manual.

Throughout this section, each reference of the form name(1 M), name(7), or
name(8) refers to entries in the SysS UNIX Administrator Reference Manual.
Other references to entries of the form name(N), where "N" is a number (1
or 6) possibly followed by a letter, refer to entry name in section N of the
SysS UNIX User Reference Manual. Entries where "N" is a number (2
through 5) possibly followed by a letter, refer to entry name in section N of
the SysS UNIX Programmer Reference Manual.

In this primer, software programs that can be executed by users are referred
to as programs. A program that is in some state of execution is referred to
as a process. The request typed by the user is referred to as a command
or "command line."

In this primer, the following graphic conventions are used in examples:

(RETURN) Indicates that the user should press the RETURN key
on the terminal keyboard.

(DEL) Indicates that the user should press the key marked
DEL, DELETE, or RUBOUT (whichever is appropriate
for the terminal being used).

2.1 HUMAN INTERFACE

2.1.1 Concept of a Login

The UNIX operating system is accessed by the use of a login. A login is
used by the system to uniquely identify users. Before the user can access
the system, the user must be assigned a login by the system administrator.
Every login consists of the following components:

login name

user identification number (uid)

group identification number (gid)

password.

A login name is a unique string of letters (should be all lowercase) and/or
numbers that identifies an individual to the system. The login name must
begin with a letter. In many cases, a person's login name is their real first

SysS UNIX 2-1

CHAPTER 2 PRIMER

name, last name, initials, or nickname. Any string of letters and/or digits can
be used as your login name, as long as it is unique (i.e., different from all
other login names). Only the first eight characters of a login name are used
by the system. Login names are assigned by the system administrator.

The uid of a login is a unique number assigned to each login by the system
administrator. This number is used by the system to identify the owners of
information stored on the system and the commands that users are
executing.

The gid is a unique number assigned by the system administrator to each
group. This number identifies groups of use.rs that have something in
common. For example, all logins used by people in the same department
(or working on the same project) may have the same gid. The gid is
important for security and accounting reasons. The impact of gid numbers
on the user and the group that the user belongs to is described later.

The password is a string of 13 characters chosen from a 64-character
alphabet (., \, 0-9, A-Z, a-z) that serves to control access to a login. The
password for a login is the main security feature of the UNIX operating
system. Usually, every login is assigned a password. When a user logs in
to the system, the password (if any) assigned to the login being used is
requested. Access to the system is not permitted until the correct password
is entered. The user can change a password as needed to ensure that
others are not accessing the user's login (and consequently the user's data).
Any string of letters, numbers, etc., can be used as a password as long as it
is from six to thirteen characters in length and composed of uppercase
letters, lowercase letters, numbers, or punctuation.

It is recommended that obvious strings such as the user's social security
number, birth date, or other data that could be well known about the user
not be used as passwords. If the password is something that is well known
about the user, someone could gain access to the user's login with little
effort. The more unusual your password, the more effective your security.

2.1.2 Logging In

In order to log in, the power to the terminal must be turned on and the
appropriate switches set. Depending on the type of terminal and
communication link, the user may need to press the return or break key a
couple of times. This is to synchronize your terminal with the system.
When communication is established, the system will prompt with:

login:

2-2 Sys5 UNIX

(~.

(

(

PRIMER CHAPTER 2

The user should type in his/her login name followed by a return. After the
system digests your login name, it will prompt for your password with:

Password:

The user should then type his/her password followed by a return. The
system does not echo your password on the terminal as you type it in. This
is an extra security measure. If you entered your login name and password
correctly, the system may print one or more "messages of the day".
Following the messages, the system will prompt you with the primary prompt
string, which is usually the $ symbol. If a mistake is made while logging in
or the system adminstrator has not set up the user's login on the system,
the following error message is printed:

login incorrect

This error message is followed by the login: message. The user should
attempt to log in again.

The UNIX operating system has a hierarchy of directories. When the system
administrator gave the user a login name, the administrator also created a
"directory" for the user. This directory ordinarily is the same name as the
user login name and is known as the login or home directory of the user.
When the user logs in, the home directory becomes the current directory or
working directory of the user. Any file created under the login name
(assuming no other subdirectories have been created yet) is by default in
the home directory. The user may, however, create one or more directories
under the home directory. The user may then change to subdirectories by
appropriate use of a "change directory" command. See cd(1) for details.
Under a directory or a subdirectory, the user may create files as necessary.
The user is the owner of the home directory and all subdirectories created
under the home directory. As the owner, the user has full permission to
create, alter, and remove (destroy) all files and subdirectories of the home
directory. To change from one directory to another, the command cd is
used.

2.1.3 Logging Off

After completing your work, it is best to log off the system. Before logging
off, you should have received the prompt string "$"from the system. That
is, all your commands have been completed; and the system is ready for
another command.

The preferred method for logging off is accomplished by typing an American
Standard Code for Information Interchange (ASCII) End Of Text (EQT)
character which is sometimes called the End-Of-File (EOF). On most
terminals, the EOT character is generated by holding down the "CONTROL"

Sys5 UNIX 2-3

CHAPTER 2 PRIMER

key and pressing the lowercase "d" key once. This is also referred to as a
CONTROL-d. Regardless of the terminal type, the power to it should be
turned off when the terminal is no longer needed. For terminal connected
via a phone line, you should hang up the phone.

2.1.4 Entering Commands

The UNIX operating system shell (command interpreter) serves as the
interface between the user and the system. The shell accepts requests
from the user in the form of a command line and invokes the appropriate
program to fulfill the request. The shell prompts (i.e., notifies) the user
when it is ready to accept another request. The prompt of the UNIX
operating system shell is the primary prompt string which is by default "$ "
(a dollar sign followed by a space).

2.1.4.1 Command Line Syntax

Commands or requests to the shell are usually in the form of a single line,
that is, a string of one or more words followed by a return. This single line
request entered following the prompt is referred to as a "command line".
The command line is divided into two major parts-the program name and
arguments.

The first word of the command line is the name of the program to be
executed. This is referred to as the command. All subsequent words are
arguments to the command. Arguments are used to provide information
required by the program.

Spaces and tabs serve as the delimiters for words on the command line.
That is, all characters on the command line up to the first space or tab are
interpreted as the command. All characters between the first space (or tab)
and the second space (or tab) is the first argument, etc. Thus, the syntax
for the command line is:

command argument argument argument (RETURN)

When spaces or tabs are needed within a single argument, that argument is
enclosed by double quote marks. For example, to execute a program that
requires two arguments such as john I and doe. The first argument should
be john and the initial I, that is, "john I". The second argument should be
doe. The required command line in this case would be:

command "john I" doe(RETURN)

2-4 SysS UNIX

(

('

PRIMER CHAPTER 2

2.1.4.2 Correction and Deletion

All users are likely to make mistakes, especially when typing. The UNIX
operating system provides two features to correct command lines. These
features are only effective for the current line (i.e., you have not ended the
line with a return yet).

The first correction feature is the erase character (by default, #), and the
second correction feature is the kill character (by default, @). The erase
character erases the character preceding it. For example, a command line
entered as

caf#t the fik#le (RETURN)

actually is "cat the file". The first # erases the first f and the second #
erases the k. The erase character can be used to erase a series of
characters such as in

this####the cat had kittens (RETURN)

which results in "the cat had kittens". The entire word "this" is erased by
the series of #characters following it. The first # erases the s, the second
erases the i, the third # erases the h, and the fourth # erases the t. If
you miscount the number of erase characters you need as in

this ###the cat had kittens (RETURN)

the result would be "ththe cat had kittens". The three erase characters
erase the space, the s, and the i preceding them.

If the user needs to enter a # in the command line for some reason,
preceding the # with the backslash character (\) will turn off the "erase last
character" meaning of the#. For example, a command line entered as

thsi##is is the \#7# 7 cat (RETURN)

is actually "this is the # 7 cat".

The second correction feature is the kill character. The kill character deletes
the entire current line. For example, the user enters the command line

command#### #om ma#### #mmad argm##gmu##ment

when the user was trying to enter "command argument". This command
line is so full of mistakes and corrections it is hard to determine if it is right.
It would be best to delete the entire line and start over. The user can delete
the line by ending it with an <a instead of a return. For example in this
sequence

kat###catteh##he file######## the flie##e@~
cat the file (RETURN)

SysS UNIX 2-5

CHAPTER 2 PRIMER

the first line is deleted by the@ character. It is much easier to delete it and
reenter it (as in the second line of the example).

If the @ character is needed in a line, the backslash character (\) should
precede it. For example, entering the line

The kill character is a \@ (RETURN)

results in "The kill character is a @".

2.1.4.3 Strange Terminal Behavior

Sometimes you can get into a state where your terminal acts strangely. For
example, each letter may be typed twice (terminal may be in the half-duplex
mode) or the RETURN may not cause a line feed or a return to the left
margin. The user can often change this by logging out and logging back in.
If logging back in fails to correct the problem, check the following areas:

keyboard Keys such as caps lock, local, block, etc. should not
be in depressed position.

dataphone For terminals connected via phone lines, the baud
rate could be incorrect.

switches The rear panel of your terminal normally has several
switches used to control terminal operations. These
switches should be set to be compatible with the UNIX
operating system.

If all else fails, the description of the stty(1) command can be read to
determine the appropriate action to take. To get intelligent treatment of tab
characters (which are much used in the UNIX operating system) if your
terminal does not have tabs, type the command

stty -tabs

and the system will convert each tab into sufficient blanks to space to the
next 8-character field. If your terminal does have hardware tabs, the
command tabs(1) will set the stops correctly for you.

2.1.4.4 Read-ahead

The UNIX operating system has full read-ahead, which means that the user
can type as fast as desired, whenever the user wants, even when some
command is already outputting on the terminal. If typing is done during
output, the input characters will appear intermixed with the output
characters, but they will be stored away and interpreted in the correct order.
So the user can type several commands one after another without waiting
for the first to finish or even begin. ;

2-6 Sys5 UNIX

(

(

PRIMER CHAPTER 2

2.1.5 Stopping a Program

Most programs can be stopped by typing the character "DEL" (perhaps
called "delete" or "rubout" on your terminal). The "interrupt" or "break" key
found on most terminals can also be used. In a few programs, like the text
editor, "DEL" stops whatever the program is doing but leaves you in that
program. Hanging up the phone with the talk button depressed will also
stop most programs.

2.1.6 Mail

After logging in, the user may sometimes get the following message:

You have mail.

The UNIX operating system provides a postal system so you can
communicate with other users of the system. To read your mail, type the
following command:

mail

Your mail will be printed, one message at a time, most recent message first.
After each message, mail(1) waits for you to say what to do with it. The
two basic responses are d, which deletes the message, and RETURN,
which does not (so it will still be there the next time you read your mailbox).
Other responses are described in the Sys5 UNIX User Reference Manual.

How is mail sent to someone else? Assume that "jones" is someone's login
name which is recognized by login(1). The easiest way to send mail to
"jones" is as follows:

mail jones
now type in the text of the letter
on as many lines as you like ...
After the last line of the letter
type the character "CONTROL·d",
that is, hold down "CONTROL" and type
a letter "d".

The "CONTROL·d" sequence, often called End ·Of-File (EOF), is used
throughout the system to mark the end of input from a terminal.

For practice, send mail to yourself. (This is not as strange as it might
sound-mail to oneself is a handy reminder mechanism.)

There are other ways to send mail-you can send a previously prepared
letter, and you can mail to a number of people all at once. For more details,
see mail(1).

Sys5 UNIX 2-7

CHAPTER 2

2.1. 7 Writing to Other Users

At some point, out of the blue will come a message like

Message from jones tty07 ...

PRIMER

which is accompanied by a startling beep on terminals that have the
capability to beep. It means that Jones (jones) wants to talk to you, but
unless you take explicit action, you will not be able to talk back. To
respond, type the following command:

write jones

This establishes a 2-way communication path. Now whatever jones types
on his terminal will appear on yours and vice versa. However, if you are in
the middle of some program, you must get back to a state where you are
talking to the command interpreter. Normally, whatever program you are
running has to terminate or be terminated. If you are editing, you can
escape temporarily from the editor-read the "Tutorial-Text Editor" section
of this document. If you are printing and do not want this message in your
printout or you simply do not want to be disturbed, enter the following:

mesg n

If you never wish to be disturbed, add the "mesg n" command line to your
.profile.

A protocol is needed to keep what you type from getting garbled up with
what jones types. Typically, a sequence like the following is used:

Jones types "write smith" and waits.

Smith types "write jones" and waits.

Jones now types a message
(as many lines as necessary).
When he is ready for a reply, he
signals it by typing
(o)
which stands for "over".

Now Smith types a reply, also
terminated by
(o).

This cycle repeats until
someone gets tired; he then
signals his intent to quit with
(oo)
for "over and out".

2-8 Sys5 UNIX

(

PRIMER

To terminate
the conversation, each side must
type a "CONTROL-d" character alone
at tlie beginning of a line. ("DELETE" also works.)
When the other person types "CONTROL-d",
you will get the message
EOF
on your terminal.

CHAPTER 2

If you write to someone who is not logged in or who does not want to be
disturbed, you will be told. If the target is logged in but does not answer
after a decent interval, simply type "CONTROL-d".

2.1.8 On-line Manual

The Sys5 UNIX User Reference Manual, Sys5 UNIX Programmer Reference
Manual, and Sys5 UNIX Administrator Reference Manual are kept on-line. If
you get stuck on something and can not find an expert to assist you, you
can print on your terminal some manual section that might help. This is also
useful for getting the most up-to-date information on a command. To print a
manual section, type "man command-name". Thus to read up on the
who(1) command, type

man who

and, of course,

man man

tells all about the man(1) command.

Sys5 UNIX 2-9

(

(

BASICS FOR BEGINNERS

3. BASICS FOR BEGINNERS

3.1 Creating Files-The Editor

CHAPTER 3

If you have to type a paper, a letter, or a program, how do you get the
information into the machine? These tasks can be performed using the
UNIX operating system "text editor". See ed(1) and the "TUTORIAL-TEXT
EDITOR" section of this volume for a detailed description.

Throughout this section, each reference of the form name(N) refers to
entries in the SysS UNIX Administrator Reference Manual, SysS UNIX User
Reference Manual, or SysS UNIX Programmer Reference Manual, where
name is the name of the file, and (X) is the chapter of the book it is in.

The UNIX operating system "text editor" operates on a "file". Simply stated,
a file is just a collection of information stored in the machine. The following
text will describe how to make some files. To create a file called junk with
text in it, do the following:

ed junk (invokes the text editor)
a (command to "ed" to add text)
now type in
whatever text you want ...

(signals the end of text addition)

The"." that signals the end of adding text must be at the beginning of a line
by itself. Do not forget it, for until it is typed, no other ed commands will be
recognized-everything you type will be treated as text to be added. Also
note that no system prompt appears while you are appending, inserting, or
changing text while in the text editor.

After a file exists, the user can do various editing operations on the text
which was typed in, such as correcting spelling mistakes, rearranging
paragraphs, etc.

Finally, the user must write the information typed into a file with the editor
command:

w

The ed will respond with the number of characters it wrote into the file junk.

Nothing is stored permanently in the junk file until the w command is used.
If the user is editing a file and hangs up before using the w command, the
changes are not stored in the working file. The data in this case is saved in
a file called ed.hup which the user can continue working with at the next
editing session. But after w the information is there permanently. The user
can reaccess it any time by typing the following:

SysS UNIX 3-1

CHAPTER 3 BASICS FOR BEGINNERS

edjunk

Type a q command to quit the editor. (If you try to quit without writing, the
text editor will print a "?"to remind you. A second q gets the user out of the
text editor regardless.) Now create a second file called temp in the same
manner. You should now have two files, junk and temp.

3.2 What Files Are Out There?

The ls(1) command lists the names (not contents) of any of the files that the
UNIX operating system knows about. If you type

Is

the response will be

junk
temp

which are indeed the two files just created.

The names are sorted into alphabetical order automatically, but other
variations are possible. For example, the command

Is -t

causes the files to be listed in the order in which they were last changed,
most recent first. The - I option gives a "long" listing and is used as follows

Is -I

to produce something like

-rw-rw-rw- 1 bwk bsk 41 Jul 22 02:56 junk
-rw-rw-rw- 1 bwk bsk 78 Jul 22 12:57 temp

The date and time is the date and time of the last change to the file. The 41
and 78 are the number of characters (which should agree with the numbers
you got from ed). The "bwk" is the owner of the file, i.e., the person who
created it. The "bsk" identifies the group associated with "bwk". The "­
rw-rw-rw-" determines who has permission to read, write, or execute the
file. In this case the owner, group, and others all have permission to read
(r) and write (w). Note that there is no permission for anyone to execute (x).
The first character in "-rw-rw-rw-" is a "-" which indicates this is a file of
data. A "d" in the first character would indicate a directory. The remaining
nine characters are divided into three sets of permissions. Each set
consists of three characters. The three sets correspond to the permissions
of the owner, group, and all other users.

3-2 Sys5 UNIX

(

BASICS FOR BEGINNERS CHAPTER 3

Options can be combined: Is - It gives the same thing as Is - I but sorted
into time order. The user can also name the files interested in, and Is will
list the information about them only. More details can be found in ls(1).

The use of optional arguments that begin with a minus sign (like -t and -It
) is a common convention for UNIX system programs. In general, if a
program accepts such optional arguments, they precede any file name
arguments. It is also vital that you separate the various arguments with
spaces: ls- I is not the same as Is - I since the command Is must be
separated from its argument -/by a space.

3.3 Printing Files

Now that you've created a file of text, how can the file be printed so people
can look at it? There are several ways to print a file. One simple way to
obtain a print is to use the editor, since printing is often done just before
making changes anyway. The editor is used to print as follows:

edjunk
1,$p

The ed will reply with the count of the characters in junk and then print all
the lines in the file. The user can also be selective about the parts of a file
to be printed as follows:

edjunk
20,35p

There are times when it's not feasible to use the editor for printing. For
example, there is a limit on how big a file ed can handle (several thousand
lines). Secondly, it will only print one file at a time; and sometimes you want
to print several, one after the other. So here are a couple of alternatives.

The simplest of all the printing programs is cat(1). The cat command simply
prints on the terminal the contents of all the files named and in the order
listed. Thus the files are concatenated and printed. For example:

cat junk

prints one file, and

cat junk temp

prints two files. The files are simply concatenated onto the terminal.

The pr(1) command produces formatted printouts of files. As with cat, pr
prints all the files named in a list. The difference is that it produces
headings with date, time, page number, and file name at the top of each
page, and extra lines to skip over the fold in the paper.

SysS UNIX 3-3

CHAPTER 3 BASICS FOR BEGINNERS

Thus,

pr junk temp

will print junk neatly, then skip to the top of a new page and print temp
neatly.

The pr command can also produce multicolumn output. Inputting

pr -3 junk

prints junk in 3-column format. You can use any reasonable number in
place of "3", and pr will do its best. The pr command has other capabilities
also. See pr(1) for more information.

It should be noted that pr is not a formatting program in the sense of
shuffling lines around and justifying margins. The true formatters are nroff
and troff, which we will get to in the section on document preparation.

There are also programs that print files on a hard copy printer. See lp(1) for
more information.

3.4 Moving Files Around

The user is ready for bigger things after gaining experience in creating and
printing files. For example, the user can move a file from one place to
another (which amounts to giving it a new file name), like this:

mv junk precious

This means that what used to be named junk is now named precious. An
ls(1) command would now result in the following:

precious
temp

The contents of junk are now in precious. Notice that the junk file no
longer exists. Beware that if you move a file to another one that already
exists, the already existing file contents are lost forever.

If you want to make a copy of a file (i.e., to have two versions of
something), use the cp(1) command as follows:

cp precious temp1

This makes a duplicate copy of precious in tempt.

When you are finished creating and moving files, the files can be removed
from the file system by the rm(1) command. The command is used as
follows:

rm temp temp 1

3-4 SysS UNIX

c·
BASICS FOR BEGINNERS CHAPTER 3

This will remove both the temp and tempt files.

The user will get a warning message if one of the named files is not there,
but otherwise rm like most UNIX system commands does its work silently.
There is no prompting or response, and error messages are just
occasionally shortened. This terseness is sometimes disconcerting to new­
comers, but experienced users find it desirable.

3.5 What's in a File ·Name

So far we have used file names without ever saying what is a legal name,
so it is time for a couple of rules. First, file names are limited to 14
characters, which is enough to be descriptive. Second, although any
character can be used in a file name, common sense dictates sticking to
ones that are visible and avoiding characters that could be used with other
meanings. We have already seen, for example, that in the ls(1) command,
Is -t means to list in time order. So if a file existed whose name was - t,
you would have a tough time listing it by name. Besides the minus sign,
there are other characters which have special meaning. To avoid pitfalls,
use only letters, numbers, and the period until you are familiar with the
system.

On to some more positive suggestions. Suppose you are typing a large
document like a book. Logically, this divides into many small pieces, like
chapters and perhaps sections. Physically, it must be divided too, for ed will
not handle really big (over 90,000 characters) files. Thus the document
should be typed as a number of files. One possible method is to have a
separate file for each chapter as follows:

chap1
chap2
etc

Another method is breaking each chapter into several files as follows:

chap1.1
chap1.2
chap1.3

chap2.1
chap2.2

It can now be determined at a glance where a particular file fits into the
whole.

There are advantages to a systematic naming convention which are not
obvious to the novice UNIX system user. To print the whole book, the user

Sys5 UNIX 3-5

CHAPTER 3 BASICS FOR BEGINNERS

could enter the following:

pr chap1 .1 chap1 .2 chap1 .3 ...

Using the pr(1) command like this would be tiring and possibly lead to
making mistakes. Fortunately, there is a shortcut. The user can enter:

pr chap*

The * means "anything at all", so this translates into "print all files whose
names begin with chap listed in alphabetical order".

This shorthand notation is not a property of the ·pr command by the way. It
is system-wide, a service of the program that interprets commands-the
"shell", sh(1). The files in the book can be listed by using

Is chap*

which produces the following:

chap1.1
chap1.2
chap1.3

The * is not limited to the last position in a file name. The * can be used
./ \

anywhere and can occur several times. Thus entering
·-- _/ rm *junk* *temp*

removes all files that contain junk or temp as any part of their name. As a
special case, *by itself matches every file name, so

pr*

prints all your files (alphabetical order), and

rm *

removes all files. (Before using the rm * command, make sure all files are
not needed!)

The * is not the only pattern-matching feature available. To print only
chapters 1 through 4 and 9, use the following command:

pr chap[12349]*

The [..•) means to match any of the characters inside the brackets. A range
of consecutive letters or digits can be abbreviated as follows:

pr chap[1-49]*

Letters can also be used within brackets. The [a·z] pattern-matching feature (-~ .. \·
matches any character in the range a through z. /

3-6 SysS UNIX

(

(

BASICS FOR BEGINNERS

The? pattern matches any single character, so

Is?

lists all files which have single-character names, and

Is -I chap?.1

CHAPTER 3

lists information about the first file of each chapter chap 1. 1, chap2. 1, etc .

. Of these niceties, * is certainly the most useful to become familiar with. The
others are frills, but worth knowing.

If the special meaning of *, ? , etc. needs to be turned off, enclose the entire
argument in single quotes as follows:

Is'?'

Some examples of this will be shown in the following paragraphs.

3.6 What's in a File Name, Continued

When the file called junk is first created, how does the system know that
there is not another junk somewhere else, especially since the person in the
next office could also be reading this tutorial? The answer is that generally
each user has a private directory, which contains only the files that belong
to that particular user. When you login, you are "in" your directory. Unless
the user takes special action when creating a new file, the new file is made
in the directory that toe user is currently in. This is most often your own
directory, and thus the file is unrelated to any other file of the same name
that might exist in another (someone else's) directory.

The set of all files is organized into a (usually big) tree with your files located
several branches into the tree. It is possible for you to "walk" around this
tree and find any file in the system by starting at the root of the tree and
walking along the proper set of branches. Conversely, you can start at your
present location and walk toward the root.

Try the latter first. The basic tool is the command pwd(1) (print working
directory) which prints the name of the directory the user is currently in.

Although the details will vary according to the system the user is on, the
pwd(1) command will print something like:

/usr/your _name

This message indicates that the user is currently in the directory your _name,
which is in turn in the directory lusr, which is in turn in the root directory
called by convention just/. (Even if it is not called !usr on your system, the
message will be something analogous. Recognize any differences between
your machine's pathname and the standard setup and make the

SysS UNIX 3-7

CHAPTER 3 BASICS FOR BEGINNERS

corresponding changes to the following command lines when appropriate.)

If user now types

Is /usr/your_name

the results should be exactly the same list of file names as obtained from a
plain ls(1). With no arguments, Is lists the contents of the current directory.
Given the name of a directory, it lists the contents of that directory.

Next, try using the following command:

Is /usr

This should print a long series of names, among which is your own login
name your _name. On many systems, usr is a directory that contains the
directories of all the normal users of the system.

The next step is to try the following:

Is I

The response should be something like this (although again the details may
be different):

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files that the system knows
about; we are at the root of the tree.

If junk is still in your directory, enter the following:

cat /usr/your_name/junk

The name

/usr/your _name/junk

is called the pathname of the file that is normally thought of as junk. The
pathname represents the full name of the path as followed from the root
through the tree of directories to get to a particular file. It is a universal rule
in the UNIX operating system that anywhere an ordinary file name can be
used the pathname can also be used.

This is not too exciting if all the files of interest are in your own directory; but
if you work with someone else or on several projects concurrently, it
becomes handy indeed. For example, your friends can print your book by
entering the following:

3-8 Sys5 UNIX

/ --....__,

'~ /

/

(

BASICS FOR BEGINNERS CHAPTER 3

pr /usr/your_name/chap*

Similarly, you can find out what files your neighbor has by entering:

Is /usr/neighbor

The "neighbor" just entered represents the login name of your neighbor. A
copy of one of your neighbor's files can be made as follows:

cp /usr/neighbor/his_f~le your_file

If a file owner does not want someone else to have access to the owner's
files or vice versa, privacy can be arranged. Each file and directory has
read-write-execute (rwx) permissions for the owner, a group, and everyone
else, which can be set to control access. See ls(1) and chmod(1) for
details. Most users find openness of more benefit than privacy (most of the
time).

As a final experiment with pathnames, try the following:

Is /bin /usr/bin

Do some of the names look familiar? When a program is run by typing its
name after the prompt character, the system simply looks for a file of that
name. It normally looks first in your directory (where it typically does not
find it), then in !bin and finally in /usrlbin. There is nothing magic about
commands like cat(1) or ls(1), except that they have been collected into a
couple of places to be easy to find and administer.

It is possible for two or more users to work regularly with common
information in the same document. This common document should be
divided up into several files. To prevent users from working in the same file
at the same time, the users should be allowed to work only on specfied files.
The files that make up this common document can be located in the
directories of several users. These files can be combined into one document
using the copy command [cp(1)] or the .so macro. If this common
document is to be located in the same directory, the users can change the
current working directory as follows:

cd full_path_name

Now you are ready to edit your specified files in this directory.

Another method of working on the same document is to locate the files in
your friend's directory and login as your friend. Take into consideration that
this defeats the accounting purpose of individual logins. If you are already
logged in as yourself and want to work in a friend's files, change the current
working directory as follows:

(cd /usr/your_friend

Sys5 UNIX 3-9

CHAPTER 3 BASICS FOR BEGINNERS

Now when a file name is used in something like cat(1) or pr(1), the
command refers to the file in your friend's directory. Changing directories \.__/
does not affect any permissions associated with a file. If you can not access
a file, get the owner to change permissions via chmod(1). Of course, if you
forget what directory you are in, type

pwd

to find out.

It is usually convenient to arrange your own files so that all the files related
to one thing are in a directory separate from other projects. For example,
when writing your book, the user might want to keep all the text in a
directory called book. A directory can be made using the mkdir(1)
command. The book directory is made as follows:

mkdirbook

The book directory can now be accessed to input chapters as follows:

.cd book

If you logged in as yourself, the pathname of book is:

/usr/your _name/book

To remove the book directory, type:

rm book/*
rmdir book

or
rm -r book

The rm book/* command removes all files in the book directory. The rmdir
book command is then used to remove the empty directory. The book
directory must be empty before the rmdir command will work. The rm -r
book command recursively deletes the entire contents of the book directory
and then removes the book directory itself.

The user can go up one level in the tree of files by entering:

.cd ..

The " .• " is the name of the parent of whatever directory you are currently in.
For completeness, ''."is an alternate name for the directory you are in.

3.7 Using Files for 1/0 Instead of the Terminal

Most of the commands used so far produce output on the terminal. Other
commands, like the editor, take input from the terminal. It is universal in
UNIX systems that the terminal can be replaced by a file for either or both of

3-10 Sys5 UNIX

(

(

(

BASICS FOR BEGINNERS

input and output.

As one example,

Is

makes a list of files on your terminal. But if the user enters

Is >filelist

CHAPTER 3

a list of your files will be placed in the file filelist (which will be created if it
does not already exist or overwritten if it does). The symbol > means "put
the output on the following file rather than on the terminal". Nothing is
produced on the terminal. As another example, the user could combine
several files into one by capturing the output of cat in a file:

cat f1 f2 f3 >temp

Another symbol, that operates very much like > does, is > >. The > >
means "add to the end of". That is,

cat f1 f2 f3 >>temp

means to concatenate f1, f2, and f3 to the end of whatever is already in
temp instead of overwriting the existing contents. As with >, if temp does
not exist, it will be created.

In a similar way, the symbol < means to take the input for a program from
the following file instead of from the terminal. Thus, the user could make up
a script of commonly used editing commands and put them into a file called
script. The script could then be run on a file by entering:

ed file <script

Another example is using ed to prepare a letter in file let. The letter (file let)
could then be sent to several people as follows:

mail adam eve mary joe <let

3.8 Pipes

One of the novel contributions of the UNIX operating system is the idea of a
pipe. A pipe is simply a way to connect the output of one program to the
input of another program, so the two run as a sequence of processes-a
pipeline.

For example,

pr f g h

will print the files f, g, and h, beginning each on a new page. Instead of
printing the files separately, the files can be printed together as follows:

Sys5 UNIX 3-11

CHAPTER 3 BASICS FOR BEGINNERS

cat f g h >temp
pr <temp
rm temp

This method is more work than necessary. To take the output of cat and
connect it to the input of pr, use the following pipe:

cat f g h I pr

The vertical bar I means to take the output from cat which would normally
have gone to the terminal and put it into pr to be neatly formatted.

There are many other examples of pipes. For example,

Is I pr -3

prints a list of your files in three columns. The program wc(1) counts the
number of lines, words, and characters in its input; while the who(1)
command prints a list of users currently logged on the system, one per
access port.

Thus the command line

wholwc -I

tells how many people are logged on. And of course

lslwc -I

counts your files.

Most programs that read from the terminal can read from a pipe instead.
Most programs that write on the terminal can write on a pipe instead. There
can be as many commands in a pipeline as desired.

Many UNIX operating system programs are written to take input from one or
more files if file arguments are given. If no arguments are given, the
programs will read from the terminal, and thus can be used in pipelines.
One example using the pr(1) command to print files a, b, and c in three
columns and in the order specified is as follows:

pr-3 ab c

But in

cat a b c I pr - 3

the pr prints the information coming down the pipeline, still in three columns.

3.9 The Shell

The mysterious "shell".mentioned previously is actually the sh(1) command.
The shell is the program that interprets what is typed as commands and

3-12 SysS UNIX

(

(

BASICS FOR BEGINNERS CHAPTER 3

arguments. The shell also looks after translating *, etc., into lists of file
names, and <, >, and I into changes of input and output streams.

The shell has other capabilities too. For example, the user can run two
programs with one command line by separating the commands with a
semicolon. The shell recognizes the semicolon and breaks the line into two
commands. Thus

date; who

does both commands before returning with a prompt character.

More than one program can run simultaneously if desired. This is beneficial
when doing something time-comsuming, like using the editor script. The act
of running programs in the background prevents waiting around for the
results before starting something else. An example follows:

ed file <script &

The ampersand (&) at the end of a command line means "start this
command running, then take further commands from the terminal
immediately'', that is, don't wait for it to complete. Thus the script will begin,
but the user can do something else at the same time. Of course, to keep
the output from interfering with what you are doing on the terminal, it would
be better to enter

ed file <script >script.out &

which saves the output lines in a file called script.out.

When a command is initiated with &, the system replies with a number
called the process number. Programs running simultaneously can be
terminated as follows:

kill process_number

The process number is used to identify the command to be stopped. If you
forget the process number, the ps(1) command will list the process number
for all programs you are running. (Entering kill 0 will kill all your processes.)
If you are curious about other people, ps -a will provide information about
all active programs that other users are running.

To start three commands that will execute in the order specified and in the
background, enter the following:

(command_ 1; command_2; command_3) &

A background pipeline can be started as follows:

command_ 1 I command_2 &

Sys5 UNIX 3-13

CHAPTER 3 BASICS FOR BEGINNERS

Just as the editor or some similar program can get its' input from a file 1'

instead of from the terminal, the shell can read a file to get commands. For ~j
example, suppose the user wants to perform a sequence of actions after
every login such as:

• Set the tabs on the terminal

• Find out the date

• Find out who's on the system.

The three necessary commands to perform these actions [tabs(1), date(1),
and who(1)] could be put in a file called startup.-· The startup file would then
be~~~~= .

sh startup

This instruction commands the machine to run the shell with the file startup
as input. The effect is the same ~ typing the contents of startup on the
terminal.

If this is to be a regular thing, the need to type sh every time can be
eliminated by typing the following command only once:

chmod + x startup

To run the sequence of commands thereafter, the user only needs to enter:

startup

The chmod(1) command marks the file ~ being executable. The shell
recognizes this and runs it as a sequence of commands.

If the user wants startup to run automatically for every login, create a file in
your login directory called .profile and place in it the line "startup". Upon
logging in, the shell gains control and executes the commands found in the
. profile file. We will get back to the shell in the section on programming.

3.10 DOCUMENT PREPARATION

UNIX operating systems are used extensively for document preparation.
There are two major formatting programs, that is, programs that produce a
text with justified right margins, automatic page numbering and titling,
automatic hyphenation, etc. The nroff program is designed to· produce
output on terminals and line-printers. The troff (pronounced ''tee-roff")
program w~ designed to drive a phototypesetter, which produces very high
quality output on photographic paper. This document was formatted with
troff.

3-14 Sys5 UNIX

(

BASICS FOR BEGINNERS CHAPTER 3

3.10.1 Formatting Packages

The basic idea of nroff and troff(1) is that the text to be formatted contains
within it "formatting commands" that indicate in detail how the formatted text
is to look. For example, there may be commands that specify how long
lines are, whether to use single or double spacing, and the running titles to
use on each page.

Because nroff and troff are relatively hard to learn to use effectively,
several "packages" of canned formatting requests are available to let you
specify paragraphs, running titles, footnotes, multicolumn output, etc. with
little effort and without having to learn nroff and troff. These packages take
a modest effort to learn, but the rewards for using them are so great that it
is time well spent.

This section provides a brief description of the "memorandum macros"
package known as mm(1). Formatting requests typically consist of a period
and two uppercase letters, such as

.TL

which is used to introduce a title or

.P

(to begin a new paragraph.

(

The text of a typical document is entered so it looks something like this:

.TL
title
.AU "author information"
.MT "memorandum type"
.P
Enter text ---

.P
More text ---

.SG "signature"

The lines that begin with a period are the formatting macro requests. For
example, .P calls for starting a new paragraph. The precise meaning of .P
depends on the output device being used (typesetter or terminal, for
instance) and the publication the document will appear in. For example,
- mm normally assumes that a paragraph is preceded by a space-one line
in nroff, and one-half line in troff, and the first word is indented. These
rules can be changed if desired, but they are changed by changing the
interpretation of .P, not by retyping the document.

SysS UNIX 3-15

CHAPTER 3 BASICS FOR BEGINNERS

To actually produce a document in standard format using -mm, use the
command

troff - mm files ...

for the typesetter and

nroff - mm files ...

for a terminal. The -mm argument tells troff and nroff to use the
manuscript package of formatting requests. There are several similar
packages; check with a local expert to determine which ones are in common
use on your machine. The proper terminal filter for the terminal should be
used in the command line. The terminal filter option is indicated by -T
followed by the terminal type. The terminal types are known by various
UNIX system utility calls found in section 1 of the Sys5 UNIX User Reference
Manual.

3.10.2 Supporting Tools

In addition to the basic formatters, there is a host of supporting programs
that help with document preparation. The list in the next few paragraphs is
far from complete, so browse through the SysS UNIX User Reference
Manual and check with UNIX operating system users for other possibilities.

Both eqn(1) and neqn (see eqn for more information) programs let you
integrate mathematics into the text of a document in an easy-to-learn
language that closely resembles the way you would speak it aloud.

For example, the eqn input

sum from i=O ton x sub i -=-pi over 2

produces the output

The program tbl(1) provides an analogous service for preparing tables. The
tbl program does all the computations necessary to align complicated
columns with elements of varying widths.

The spell(1) program detects possible spelling mistakes in a document.
The spell program compares the words in your document to a dictionary
(stored in memory) and prints those words that are not in the dictionary. It
knows enough about English spelling to detect plurals and the like, so it
does a good job.

The grep(1) program looks through a set of files for lines that contain a
particular text pattern (rather like the editor's context search does, but on a
bunch of files). For example,

3-16 Sys5 UNIX

BASICS FOR BEGINNERS CHAPTER 3

grep 'ing$' chap*

will find all lines that end with the letters ing in the files chap*. The "$"
indicated that the pattern to search for is at the end of the line, whereas a
...... indicates that the pattern to search for is at the beginning of a line. (It is
almost always a good practice to put single quotes around the pattern to be
searched for in case it contains characters like * or $ that have a special
meaning to the shell.) The grep program is often used to locate the
misspelled words detected by the spell program.

The diff(1) program prints a list of the differences between two files, so that
two versions of something can automatically be compared. This is a vast
improvement over proofreading by hand.

The wc(1) program counts the words, lines, and characters in a set of files.
The tr(1) program translates characters into other characters. For example,
tr will convert uppercase to lowercase and vice versa. This translates
uppercase into lowercase:

tr [A-Z] [a-z] <input >output

The sort(1) program sorts files in a variety of ways while cxref(1) makes
cross-references. The ptx(1) program makes a permuted index (keyword­
in-context listing). The sed(1) program provides many of the editing
facilities of ed but can apply them to arbitrarily long inputs. The awk(1)
program provides the ability to do both pattern matching and numeric
computations and to conveniently process fields within lines. These
programs are for more advanced users and are not limited to document
preparation. Put them on your list of things to learn.

Most of these programs are either independently documented in the
supplemental package like eqn(1) and tbl(1) in the DOCUMENTER'S
WORKBENCH software option, or the programs are sufficiently simple
enough so that the description in the Sys5 UNIX User Reference Manual is
an adequate explanation.

3.10.3 Hints for Preparing Documents

Most documents go through several versions (always more than expected)
before they are finally finished. Accordingly, you should do whatever
possible to make the job of changing them easy.

First, when you do the purely mechanical operations of typing, type so that
subsequent editing will be easy. Start each sentence on a new line. Make
lines short, and break lines at natural places, such as after commas and
semicolons, rather than randomly. Since most people change documents
by rewriting phrases and adding, deleting, and rearranging sentences, these
precautions simplify any editing needed later.

Sys5 UNIX 3-17

CHAPTER 3 BASICS FOR BEGINNERS

Keep the individual files of a document down to modest size, perhaps 10 to
15 thousand characters. Larger files edit more slowly. If a dumb mistake is /
made, it is better to clobber a small file than a big one. Split the files at
natural boundaries in the document for the same reasons that you start
each sentence on a new line.

The second aspect of making changes to documents easy is not to commit
to the formatting details too early. One of the advantages of formatting
packages is permitting format decisions to be delayed until the last possible
moment. Indeed, until a document is printed, it is not even decided whether
it will be typeset or printed out on a line printer.

As a rule of thumb, a document should be produced in terms of a set of
requests or commands (macros) for all but the most trivial jobs. The macros
used should then be defined either by using one of the existing macro
packages (the recommended way) or by defining your own nroff and/or troff
macros. As long as the text is entered in some systematic way, it can
always be cleaned up and formatted by a judicious combination of editing
commands and macro definitions.

3.11 Programming

There will be no attempt made to teach any of the programming languages
available, but a few words of advice are in order. One of the reasons why
the UNIX operating system is a productive programming environment is that
there is already a rich set of tools available. Facilities like pipes,
input/output redirection, and the capabilities of the shell often make it
possible to do a job by pasting together programs that already exist instead
of writing a program completely from scratch.

The Sys5 UNIX Programmer Reference Manual contains the UNIX system
programming utilities.

3.11.1 Shell Programming

The pipe mechanism lets you fabricate quite complicated operations out of
spare parts that already exist. For example, the first draft of the spell
program was (roughly)

3-18 Sys5 UNIX

(_

(

BASICS FOR BEGINNERS

cat ...

I tr .. .
I tr .. .
I sort

I uniq

I comm

collect the files

put each word on a new line

delete punctuation, etc.

into dictionary order

discard duplicates

print words in text but not in dictionary

CHAPTER 3

More pieces have been added subsequently, but this goes a long way for
such a small effort.

The editor can be made to do things that would normally require special
programs on other systems. For example, to list the first and last lines of
each of a set of files, such as a book, the user could laboriously type:

ed
e chap1 .1
1p
$p
e chap1 .2
1p
$p
etc.

The same job can be performed much more easily. One procedure is to type

Is chap* >temp

to get the list of file names into a file called temp. The temp file is then
edited using global commands as follows:

1,$ s/'.*$/e &\
1p\
$p/

The results are written into the script file (1,$ w script) and then the
following command is entered:

ed <script

This will produce the same output as the laborious hand typing. Another
method is using shell loops to repeat a set of commands over and over
again for a set of arguments as illustrated below:

Sys5 UNIX 3-19

CHAPTER 3

for i in chap*
do

ed $i <script
done

BASICS FOR BEGINNERS

This sets the shell variable i to each file name in turn, then does the
command. This command can be entered at the terminal or put in a file for
later execution. Before the file can be executed, it may be necessary to
change the mode by entering the following:

ch mod + x filename

3.11.2 Programming with Shell

An option often overlooked by new users is that the shell is itself a
programming language, with variables, control flow if-else, while, for, case,
subroutines, and interrupt handling. Since there are many building-block
programs, the user can sometimes avoid writing a new program merely by
piecing together some of the building blocks with shell command files.

We will not go into any details here; examples and rules can be found in
section "AN INTRODUCTION TO SHELL" described later in this volume.

3.11.3 Programming in C

The C language is a reasonable choice of a programming language when
undertaking anything substantial. Everything in the UNIX operating system
is based on the C language. The system itself is written in C, as are most
of the programs that run on the system. The C language is also an easy
language to use once you get started. The C language is introduced and
fully described in The C Programming Language by B. W. Kernighan and D.
M. Ritchie (Prentice-Hall, 1978). Several sections of the manual describe
the system interfaces, that is, how to do input/output and similar functions.

Most input and output in C is best handled with the standard input/output
library, which provides a set of 1/0 functions that exist in compatible form on
most machines that have C compilers. In general, it's wisest to confine the
system interactions in a program to the facilities provided by this library.
(Refer to Section 3 of the Sys5 UNIX User Reference Manual.)

The C programs that do not depend too much on the special features of the
UNIX operating system (such as pipes) can be moved to other computers
that have C compilers.

There are a number of supporting programs that go with C. The lint(1)
program checks C programs for potential portability problems and detects
errors such as mismatched argument types and uninitialized variables.

3-20 Sys5 UNIX

(

(

BASICS FOR BEGINNERS CHAPTER 3

For larger programs (anything whose source is on more than one file), the
make(1) program allows you to specify the dependencies among the source
files and the processing steps needed to make a new version. The program
then checks the times that the pieces were last changed and does the
minimal amount of recompiling to create a consistent updated version.

The debugger sdb(1) program is useful for digging through the dead bodies
of C programs but is rather hard to learn to use effectively. The most
effective debugging tool is still careful thought, coupled with judiciously
placed print statements.

The C compiler provides a limited statistical service, so a user can find
where programs spend their time executing and what parts of a program are
worth optimizing. Compile the programs with the -p option; after the test
run, use the prof(1) command to print a program execution profile. The
command time(1) will give the gross run-time statistics of a program, but the
times are not very accurate or reproducible.

3.11.4 Other Languages

If Fortran must be used, there are two possibilities- Fortran 77 and ratfor.
The user might consider ratfor which provides decent control structures and
free-form input that characterize C, yet permits the writing of code that is
also portable to other environments. Bear in mind that UNIX operating
system Fortran tends to produce large and relatively slow-running programs.
Furthermore, supporting software like prof(1), etc., are all virtually useless
with Fortran programs. If there is a Fortran 77 compiler on your system, it
may be a viable alternative to ratfor and has the nontrivial advantage that it
is compatible with the C language and related programs. (The ratfor
processor and C tools can be used with Fortran 77 too.)

If your application requires translating a language into a set of actions or
another language, the user is in effect building a compiler, though probably
a small one. In that case, the yacc(1) compiler-compiler is recommended
for use, which aids in developing a compiler quickly.

The lex(1) lexical analyzer generator does the same job for the simpler
languages that can be expressed as regular expressions. It can be used by
itself or as a front end to recognize inputs for a yacc-based program. Both
yacc and lex require some sophistication to use, but the initial effort of
learning them can be repaid many times over in programs that are easy to
change later.

Sys5 UNIX 3-21

/
\...__)

(

TUTORIAL-TEXT EDITOR CHAPTER 4

4. TUTORIAL-TEXT-EDITOR

Almost all text input on the UNIX operating system is done with the standard
text editor ed(1). This is a tutorial guide to help beginners get started with
text editing.

Although this guide does not cover everything about the UNIX operating
system, it does discuss enough for most user's day-to-day needs. This
includes printing, appending, changing, deleting, moving, and inserting entire
lines of text; reading and writing files; context searching and line addressing;
substituting; global changing; and using some special characters for easier
editing.

Throughout this section, each reference of the form name(1 M), name(?), or
name(8) refers to entries in the Sys5 UNIX V Administrator Reference
Manual .. Other references to entries of the form name(N), where "N" is a
number (1 or 6) possibly followed by a letter, refer to entry name in section
N of the Sys5 UNIX V User Reference Manual. Entries where "N" is a
number (2 through 5) possibly followed by a letter, refer to entry name in
section N of the Sys5 UNIX V Programmer Reference Manual.

4.1 GENERAL

Theed program is a "text editor", that is, an interactive program for creating
and modifying "text" using directions (commands) provided by a user at a
terminal. The text is often a document like this one or perhaps data for a
program.

This tutorial is meant to simplify learning ed. The recommended way to
learn ed is to read this document, while simultaneously using ed to follow
the examples, then to read the description in Section 1 of the Sys5 UNIX V
User Reference Manual. Getting advice from experienced UNIX operating
system users and experimenting with ed are also useful.

Do the exercises! The exercises illustrate techniques not completely
discussed in the actual text. A summary at the end of this section
summarizes the commands.

4. 1. 1 Disclaimer

This is a tutorial introduction and guide only. For this reason, no attempt is
made to cover more than a part of the facilities that ed offers (although this
fraction includes the most useful and frequently used facilities). Also, there
is not enough space to explain the basic UNIX operating system procedures.
It is assumed that the user knows how to log on to the UNIX operating
system and has a vague understanding of what a UNIX operating system file
is. For more on the UNIX operating system facilities, refer to the section,
"Basics For Beginners".

SysS UNIX 4-1

CHAPTER 4 TUTORIAL-TEXT EDITOR

The user must also know what character to type as the end-of-line character
on the user's particular terminal. This character is the RETURN or newline
character (key) on most terminals. Hereafter reference to the end-of-line
character, whatever it is, will be referred to as RETURN.

4.2 GETTING STARTED

Assume that the user has logged in to a UNIX operating system and it has
just printed the prompt character, usually a

$

The easiest way to invoke ed is to type:

ed (followed by a RETURN)

You (the user) are now ready to go. The ed program is waiting to be told
what to do.

4.2.1 Creating Text-The Append Command "a"

As your first problem, suppose some text is to be created starting from
scratch. Perhaps the very first draft of a document or paper is to be
entered. Normally, it will have to start somewhere and undergo modifications
(editing) later. This part will describe how to enter some text to get a file of
text started. How to make changes and corrections to the text is described
later.

When ed is first invoked, it is rather like working with a blank piece of paper
(the file)-there is no text or information present on the paper (in the file).
The text must be supplied by the person using ed; it is usually done by
typing in the text or by reading it into ed from a file. We will start by typing
in some text and return shortly to how to read files.

First a bit of terminology. In ed jargon, the text being worked on is said to
be "kept in a buffer." Think of the buffer as a work space, if desired, or
simply as the information that is to be edited. In effect the buffer is like the
piece of paper on which we will write things, then change some of them, and
finally file the whole thing away for another day.

The user tells ed what to do to the text by typing instructions called
"commands." Most commands consist of a single lowercase letter. Each
command is typed on a separate line. (Sometimes the command is
preceded by information about the line or lines of text to be affected-these
will be described below.) The ed text editor makes no response to most
commands-there is no prompting or response messages like "ready".
(This silence is preferred by experienced users.

The first command is append, written as the letter

4-2 Sys5 UNIX

TUTORIAL-TEXT EDITOR CHAPTER 4

a

on a command line all by itself. It means "append (or add) text lines to the
buffer as I type them in."

Appending is rather like writing fresh material on a piece of paper. So to
enter lines of text into the buffer, just type an

a

followed by a RETURN and the lines of text desired, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a line that contains only a period.
The "." is used to tell ed that the appending is finished. (Even experienced
users forget to terminate appending with a "." sometimes. If ed seems to
be ignoring your entries, type an extra line with just the "."on it. You may
then find you have added some garbage lines to your text, which you will
have to take out later.)

After the append command has been used, the buffer will contain the
following three lines:

Now is the time
for all good men
to come to the aid of their party.

The a and the ··." are not there because they are not text.

To add more text to what already exists, just issue another a command and
continue typing.

4.2.2 Error Messages (?)

If at any time the user makes an error in the commands typed into ed, the
text editor will tell the user by typing the following:

?

This is about as cryptic as it can be, but with practice, the user can usually
figure out the goof. The user can get a brief explanation of the error by
typing

h

The help command gives a short error message that explains the reason for
the most recent ? diagnostic.

Sys5 UNIX 4-3

CHAPTER 4 TUTORIAL-TEXT EDITOR

4.2.3 Writing Text File-The Write Command "w"

It is likely that you will want to save your text for later use. To write out the
contents of the buffer onto a file, use the write command

w

followed by the file name to write on. This will copy the buffer's contents
onto the specified file (destroying any previous information on the file). To
save (write) the text in a file named junk, for example, type:

w junk

Leave a space between w and the file name. The ed program will respond
by printing the number of characters it wrote out. In this case, ed would
respond with:

68

(Remember that blanks and the return character at the end of each line are
included in the character count.) Writing a file just makes a copy of the
text-the buffer's contents are not disturbed, so the user can go on adding
lines to it. This is an important point. The ed program at all times works on
a copy of a file, not the file itself. No change in the contents of a file takes
place until you give a w command. (Writing out the text onto a file from time
to time as it is being created is a good idea. If the system crashes or if the
user makes some horrible mistake, all the text in the buffer will be lost but
any text that was written onto a file is relatively safe.)

4.2.4 Leaving ed-The Quit Command "q"

To terminate a session with ed, first save your text by writing it onto a file
using the w (write) command, and then type the q (quit) command:

q

The system will respond with the prompt character:

$

At this point your buffer vanishes, with all its text, which is why the user
would want to write before quitting. Actually ed will print the character

?

if the user tries to quit without writing. At this point, the user writes if
desired; if not, another q will get you out regardless and will not save the
text in the buffer. EXERCISES-TRY THEM!

4.3 EXERCISES

4-4 Sys5 UNIX

(

(

(

TUTORIAL-TEXT EDITOR

4.3.1 EXERCISE 1

Enter ed and create some text using the append command a

a
... text...

CHAPTER 4

Note that no system prompt appears while in the text editor. Do not forget to
write the text into memory with the write command w. Write it into memory
using the w command. Then leave ed with the q command and print the file
to see that everything worked. To print a file, enter

pr filename
or

cat filename

in response to the prompt character ($). Try both.

4.3.1.1 Reading Text File- Edith Command "e"

A common way to get text into the buffer is to read it from another file in the
file system. This is what you do to edit text that you saved with the w
command in a previous session. The edit command

e

retrives the entire contents of a file into the buffer.

So if the user had saved the three lines "Now is the time", etc., with a w
command in an earlier session, the edit command

ejunk

would place the entire contents of the file junk into the buffer and respond
with a number

68

which is the number of characters in the file junk. If anything was already
in the buffer, it is deleted first.

If the e command is used to read a file into the buffer, then the user does
not need to use a file name after a subsequent w command; ed remembers
the last file name used in an e command, and w will write on this file. Thus
a good practice to follow is:

Sys5 UNIX 4-5

CHAPTER 4 TUTORIAL-TEXT EDITOR

ed
e filename
[editing session]

w
q

This way, the user can simply enter w from time to time and be secure in
the knowledge that if the user got the file name right at the beginning, the
user is writing into the proper file each time. Note that after each edit
command e or each write command w the number of characters is returned
by ed. The user can find out at any time what file name ed is remembering
by typing the file command f. In this example, if you typed

f

ed would reply

junk

4.3.1.2 Reading Text-The Read Command "r"

Sometimes you want to read a file into the buffer without destroying
anything that is already in the buffer. This is done by the read command r.
The command

r junk

will read the file junk into the buffer. The command appends the file
specified to the end of whatever file is already in the buffer. So if you do a
read after an edit command such as

ejunk
r junk

the buffer will contain two copies of the orginal text as follows:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, r prints the number of characters read in after
the reading operation is complete. Generally speaking, r is much less used
thane.

The read command r may also be used to read a file external to the buffer
into the file in the buffer. While in ed and at the current line, enter the
command

4-6 Sys5 UNIX

(

TUTORIAL-TEXT EDITOR CHAPTER 4

.r filename

and filename will be read into the file (already in the buffer) immediately
after the current line. None of the file in the buffer is destroyed, rather the
external file filename has been read into and been combined with the file
already in the buffer. The file that was read remains in filename also. You
only copied it. Notice the difference between "r" and ".r".

4.3.2 EXERCISE 2

Experiment with the e command-try reading and printing various files. The
user may get an error ?name where name is the name of a file. This
means that the file does not exist. Some typical causes of getting an empty
file are spelling the file name wrong or perhaps trying to read or write a
particular file which your permissions will not allow. Try alternately reading
and appending to see that they work similarly. Verify that

ed filename

is exactly equivalent to

ed
e filename

What does

(. f filename

do?

(

4.3.2.1 Printing Buffer Contents-The Print Command "p"

To print or list the contents of the buffer (or parts of it) on the terminal, use
the print command p. This is done as follows. Specify the line numbers
where printing is to begin and end. These numbers have a comma between
the beginning number and the ending number, i.e., "beginning line number,
ending line number p". Thus to print the first ten lines of the contents of any
buffer (i.e., lines 1 through 10), type:

1, 10p (prints lines 1 through 10)

The ed will respond by printing the specified starting line (1) through the
specified ending line (10).

Suppose it is desirable to print a// the lines in the buffer. You could use
"1,30p" as above if it is known there were exactly 30 lines in the buffer. But
in general, it is not known how many lines there are, so what can be used
for the ending line number? The ed program provides a shorthand symbol
for "line number of the last line in the buffer"-the dollar sign $. To print all
the lines in the buffer, use it this way:

Sys5 UNIX 4-7

CHAPTER 4 TUTORIAL-TEXT EDITOR

1,$p (Prints all lines in buffer)
or

,p (Prints all lines in buffer also)

This will print all the lines in the buffer (line 1 through the last line). The
"1,$p" can be abbreviated "$,p". To stop the printing before the last line is
printed, push the DEL key or the DELETE (or equivalent) key on the
terminal. The ed program will respond

?

and wait for the next input command.

To print the last line of the buffer, you could use

$,$p

but ed lets you abbreviate this to

$p

Any single line can be printed by typing the line number followed by a p.
Thus

1p

produces the response

Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further. You can print any single line by
typing just the line number-no need to type the letter p. So by entering

$

ed will print the last line of the buffer. Entering a single line number will print
that line only.

It is also possible to use $ in combinations like

$-5,$p

which prints the last five lines of the buffer. This helps to determine the end
of the contents of the buffer when more is to be entered.

4.3.3 EXERCISE 3

Create some text using the a command and experiment with the p
command. The user will find, for example, that line 0 or a line beyond the
end (last line) of the buffer cannot be printed. Attempts to print a buffer in
reverse order by entering

4-8 Sys5 UNIX

TUTORIAL-TEXT EDITOR CHAPTER 4

3,1p

will not work.

4.3.3.1 The Current Line "." or Dot

Suppose the buffer still contains the six lines of text (as in Exercise 1), and
the following was entered

1,3p

and eel has printed the three lines.

Try typing just

p (no line numbers)

This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is the last (most recent) line
that anything was done to. (The line just printed!) The p command can be
repeated without line numbers, and it will continue to print line 3.

The reason is that ed maintains a record of the last line that anything was
done to (in this case, line 3, which was just printed) so that it can be used
instead of an explicit line number. This most recent line is referred to by the
shorthand symbol

(Pronounced "dot")

Dot is a line number in the same way that $ is. Dot means exactly ·'the
current line'', or loosely, "the line something was done to most recently."
The dot can be used in several ways-one possibility 1s to enter:

.,$p

This will print all the lines from (including) the current line to the end {last
line) of the buffer. In our example, these are lines 3 through 6.

Some commands change the value of dot, while others do not. The print
command p sets dot to the number of the last line printed; the last
command entered {.,$p) will set both".'' and $to the last line in the buffer
(line 6).

Dot is most useful when used in combinations like:

. + 1 (or equivalently, . + 1 p)

This means "print the next line·· and is a handy way to step slowly through a
buffer. The user can also enter

SysS UNIX 4-9

CHAPTER 4 TUTORIAL-TEXT EDITOR

.-1 (or .-1p}

which means "print the line before the current line." This enables stepping
through the buffer backwards if desired. Another useful one is something
like

.-3,.-1p

which prints the previous three lines.

Do not forget that all of these change the value of dot. The user can find
out what dot is at any time by typing

(dot line number is ?}

The ed program will respond by printing the value (line number) of dot.

Let us summarize some things about the p command and dot. Essentially,
p can be preceded by 0, 1, or 2 line numbers (for our example}. If there is
no line number given, it prints the "current line", the line that dot refers to. If
there is one line number given with or without the letter p, it prints that line
and sets dot there. If there are two line numbers separated by a comma, it
prints all the lines in that range from the first number to the last number, and
sets dot to the last line printed. If two line numbers are specified, the first
cannot be bigger than the second (refer to the beginning of "EXERCISE 3").

Typing a single RETURN will cause printing of the next line-it is equivalent
to:

.+1p

Try it. Typing a · is equivalent to typing the minus - . It can be used in
multiples, as --·. which will move the current line or dot line backwards three
lines from the current line. The ;, - " or the can be considered equivalent
to "-1 p" since either moves the dot back one line.

4.3.3.2 Deleting Lines-The Delete Command "d"

Suppose three extra lines in the buffer are not needed. They may be
removed by use of the delete command:

d

Except that d deletes lines instead of printing them, its action is similar to
that of the print command p. The lines to be deleted are specified for d
exactly as they are for pas follows:

starting line, ending line d

Thus the command

4,$d

4-10 Sys5 UNIX

(

(

(~

TUTORIAL-TEXT EDITOR CHAPTER 4

deletes lines 4 through the end. There are now three lines left that can be
checked by using:

1,$p

And notice that $ now is line 3! Dot is set to the next line after the last line
deleted, unless the last line deleted is the last line in the buffer. In that
case, dot is set to $.

The delete command d and the print command p may be used together thus

dp

which deletes the current line, prints the following line, and sets dot to the
line printed.

4.3.4 EXERCISE 4

Experiment with a, e, r, w, p, and d until you become familiar with their
use. While experimenting, also use "dot", $, and line numbers to
understand their use.

When you start to feel adventurous, try using line numbers with a, r, and w
as well. The user will find that a will append lines after the line number that
you specify (rather than after dot); r reads a file in after the line number you
specify (not necessarily at the end of the buffer); and w will write out exactly
the lines specified, not necessarily the whole buffer. These variations are
sometimes handy. For instance, a file can be inserted at the beginning of a
buffer by entering:

Or filename

Lines can be entered at the beginning of the buffer by using:

Oa
... text...

Notice that ". w" is very different from

w

4.3.4.1 Modifying Text-The Substitute Command "s"

We are now ready to try one of the most important of all commands-the
substitute command

s

This is the command that is used to change individual words or letters within
a line or group of lines. The substitute command is used for correcting

SysS UNIX 4-11

CHAPTER 4 TUTORIAL-TEXT EDITOR

spelling mistakes and typing errors.

Suppose that, because of a typing error, line 1 says

Now is th time

notice the e has been left off. The s command can be used to fix this as
follows:

1 s/th/the/

This says: in line 1, substitute for the characters th the characters the.
Since ed will not print the result automatically, enter

p

to verify that the substitution worked, and you should get

Now is the time

which is what is desired. Notice that dot must have been set to the line
where the substitution took place since the p command printed that line.
Dot is always set this way with the s command.

The general way to use the substitute command is

starting-line, ending-line s;change this1to this1

Whatever string of characters is between the first pair of slashes is replaced
by whatever is between the second pair, in a// the lines between
starting-line and ending-line. Only the first occurrence on each line is
changed however. If every occurrence is to be changed, see "EXERCISE
5". The rules for line numbers are the same as those for the print command
p except that dot is set to the last line changed. (But there is a trap for the
unwary: if no substitution took place, dot is not changed. This causes an
error response? as a warning.)

Thus the following can be entered

1,$slspeling/spelling1

to correct the first spelling mistake (speling in this case) on each line in the
text. (This is useful for people who are consistent misspellers!)

If no line numbers are given, the s command assumes we mean "make the
substitution on line dot", so it changes things only on the current line. This
leads to the very common sequence

s/something/something else/p

which makes some correction on the current line and then prints it (current
line) to make sure it worked out right. If it did not, you can try again. Notice
that there is a p on the ·same line as the s command. With few exceptions, \\..
p can follow any substitute command.

4-12 Sys5 UNIX

(

TUTORIAL-TEXT EDITOR

It is also legal to say

s///

CHAPTER 4

which means change the first string of characters (....) to nothing, i.e.,
remove them. This is useful for deleting extra words in a line or removing
extra letters from words.

For instance, if the buffer contained

Nowxx is the time

this can be corrected by entering

s/xx//p

to get

Now is the time

Notice that II (two adjacent slashes) means "no characters" not a blank.
There is a difference! (See "Context Searching" under "EXERCISE s·· for
another meaning of"//").

4.3.5 EXERCISE 5

Experiment with the substitute command. See what happens if you
substitute for some word on a line with several occurrences of that word.
For example, enter

a
the other side of the coin

s/the/on the/p

which results in the following:

on the other side of the coin

A substitute command changes only the first occurrence of the first string.

All occurrences can be changed by adding a g (for "global") command to
the s command, like this:

s/ ... 1 •• .!gp

Try other characters instead of slashes to delimit the two sets of characters
in the s command-anything should work except blanks or tabs.

If strange results are produced by inputting

$ \ &

(" , read the part under "Special Characters" in this section.

Sys5 UNIX 4-13

CHAPTER 4 TUTORIAL-TEXT EDITOR

4.3.5.1 Context Searching "/ /"

When the substitute command is mastered, you may move on to another
highly important feature of ed(1)-context searching.

Suppose the original three lines of text in the buffer is as follows:

Now is the time
for all good men
to come to the aid of their party.

Suppose the word their is to be changed to the. How is the line that
contains their located? With only three lines in the buffer, it is pretty easy to
keep track of what line the word their is on. But if the buffer contained
several hundred lines and you had been making changes, deleting and
rearranging lines, etc., you would no longer really know what this line
number would be. Context searching is simply a method of specifying the
desired line, regardless of what its number is, by specifying some context
(unique text) on it.

The way to say "search for a line that contains this particular string of
characters" or "unique text" is to type:

/string of characters to find/

For example, the ed expression

/their/

is a context search which is sufficient to find the desired line-it will locate
the next occurrence of the characters between slashes ("their"). It also sets
dot to that line and prints that line for verification:

to come to the aid of their party.

"Next occurrence" means that ed starts looking for the string at line ". + 1"
and searches to the end of the buffer, then continues at line 1 and searches
to line dot. That is, the search "wraps around" from $ to 1. It scans all the
lines in the buffer until it either finds the desired line or gets back to dot
again. If the given string of characters cannot be found in any line, ed types
the error message

?

Otherwise, it prints the line it found.

The search for the desired line and the substitution can be done together,
like this

/their/s1their1the/p

4-14 SysS UNIX

TUTORIAL-TEXT EDITOR CHAPTER 4

which will yield

to come to the aid of the party.

There were three parts to that last command: context search for the desired
line, make the substitution, and print the line.

The expression "/their/" is a context search expression. In the simplest
form, all context search expressions are like this-a string of characters
surrounded by slashes. Context searches are interchangeable with line
numbers, so they can be used by themselves to find and print a desired line
or as line numbers for some other command, like s. They were used both
ways in the examples above.

Suppose the buffer contains the three familiar lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

/Now/+ 1
/good/
/party/-1

are all context search expressions, and they all refer to the same line (line
2). To make a change in line 2, enter

1Now1 + 1 s/good/bad,
or

;goods. goodibad1
or

; party. - 1 s, goodibad1

The choice is dictated only by convenience. All three lines could be printed
by entering

1Now/,/party/p
or

/Now/,/Now/ + 2p

or by any number of similar combinations. The first one of these might be
better if you do not know how many lines are involved. The basic rule is: a
context search expression is the same as a line number, so it can be used
wherever a line number is needed.

4.3.6 EXERCISE 6

Experiment with context searching. Try a body of text with several
occurrences of the same string of characters and scan through it using the

SysS UNIX 4-15

CHAPTER 4 TUTORIAL-TEXT EDITOR

same context search.

Try using context searches as line numbers for the substitute, print, and
delete commands. They can also be used with r, w, and a.

Try context searching using "?text?" instead of "/text/" This scans lines in
the buffer in reverse order rather than normal (forward order). This is
sometimes useful if you go too far while looking for some string of
characters-it is an easy way to back up.

If funny results are obtained with any of the characters

$ \ &

read the part in this section on "Special Characters".

The ed program provides a short method for repeating a context search for
the same string. For example, the ed line number

/string/

will find the next occurrence of "string". It often happens that this is not the
desired line, so the search must be repeated. This can be done by typing
merely:

II

This short method stands for "the most recently (last) used context search
expression". It can also be used as the first string of the substitute
command, as in

/string1 /s//string2/

which will find the next occurrence of stringt and replace it by string2. This
can save a lot of typing. Similarly

??

means "scan backwards for the same expression."

4.3.6.1 Change and Insert Commands "c" and "i"

This section discusses the change command

c

which is used to change the current line or to replace the current line with a
group of one or more lines, and the insert command

which is used for inserting a group of one or more lines immediately before
the current line.

4-16 Sys5 UNIX

(

(

(

TUTORIAL-TEXT EDITOR

"Change", written as

c

CHAPTER 4

is used to replace a number of lines with different lines, which are typed in
at the terminal. For example, to change the first line (. + 1) past the current
line through the last line ($) of a file to something else, type

.+1,$c

... type the lines of text you want here ...

The lines typed between the c command and the'.' (dot) command will take
the place of the original lines between start line and end line. This is most
useful in replacing a line or several lines which have errors.

If only one line is specified in the c command, then just that line is replaced.
(You can type in as many replacement lines as you like.) Notice the use of
'.' (dot) to end the input-this works just like the '.' (dot) in the a command
and must appear by itself at the beginning of a new line. If no line number
is given, line dot is replaced. The value of dot is set to the last line you
typed in.

"Insert" is similar to append-for instance

/string/i
.. .type the lines to be inserted here ...

will insert the given text before the next line that contains "string". The text
between i and the '.' (dot) is inserted before the specified line. If no line
number is specified, the dot line is used. Dot is set to the last line inserted.

4.3. 7 EXERCISE 7

"Change" is rather like a combination of delete followed by insert.
Experiment to verify that

starting-line.ending-line d
i
... text...

is almost the same as

starting-line.ending-line c
.. .text...

These are not precisely the same if the last line ($) gets deleted. Check
this out. What is dot?

Sys5 UNIX 4-17

CHAPTER 4 TUTORIAL-TEXT EDITOR

Experiment with the append command a and the insert command i to see
that they are similar but not the same. You will observe that

line-number a
... text ...

appends after the given line, while

line-number i
... text...

inserts before it. Observe that if no line number is given, i inserts before
line dot, a appends after line dot, and c changes line dot.

4.3.7.1 Moving Text Around-The Move Command "m"

The move command m is used for cutting and pasting-it allows a group of
lines to be moved from one place to another in the buffer. Suppose the first
three lines of the buffer are to be placed at the end of the buffer instead of
at the beginning. This could be performed by entering:

1,3w temp
$r temp
1,3d

(Do you see why?) This method will work, but it is a lot easier using the m
command as follows:

1,3m$

The general case is:

starting-line.ending-line m after this line

Notice that there is a third line to be specified-the line after which the other
lines are to be moved. Of course, the lines to be moved can be specified by
context searches; if you had

First paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

the two paragraphs could be reversed like this:

/Second/ ,/end of second/m/First/-1

4-18 Sys5 UNIX

(

(

TUTORIAL-TEXT EDITOR CHAPTER 4

Notice the "-1 "-the moved text goes after the line mentioned. Dot gets
set to the last line moved.

4.4 THE GLOBAL COMMANDS

The two global commands are g and v. The global command g is used to
execute one or more ed commands on all those lines in the buffer that
match some specified string. For example

g/peling/p

prints all lines that contain "peling". More usefully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line, then prints each corrected
line.

Compare this to

1,$s/peling/pelling/gp

which only prints the last line substituted. Another subtle difference is that
the g command does not give a ?-if "peling" is not found, where the s
command will.

There may be several commands used in conjunction with the g command,
but every line except the last must end with a backslash ''\". For example:

g/xxx/-1 s/abc1def/\
. + 2s/ghi/jkl/\
.-2,.p

makes changes in the lines before and after each line that contains "xxx'',
then prints all three lines.

The v command is the same as g except that the commands are executed
on every line that does not match the string following v. The following input

v/ /d

deletes every line that does not contain a blank.

4.5 SPECIAL CHARACTERS

You may have noticed that things just did not work right when you used
some characters like . , *, $, and others in context searches and in the s
command. The reason is rather complex, although the cure is simple.
Basically, ed treats these characters as special, with special meanings. For
instance, in a context search or the first string of the substitute command
only,

(/x.y/

SysS UNIX 4-19

CHAPTER 4 TUTORIAL-TEXT EDITOR

means "a line with an x, any character, and a y", not just "a line with an x, /
a period, and a y."

The following is a complete list of the special characters that can cause
trouble:

$ * \ &

Warning: The backslash character "\" is special to "ed". For safety's
sake, avoid it where possible.

If you have to use one of the special characters in a substitute command,
you can turn off its magic meaning temporarily by preceding it with the
backslash. Thus

s/\\ \.*/backslash dot star/

will change "\. *" into "backslash dot star".

Here is a brief synopsis of the other special characters. First, the circumflex
'"" signifies the beginning of a line. Thus

/"string/

finds "string" only if it is at the beginning of a line. It will find

string

but not

the string ...

The dollar sign "$" is just the opposite of the circumflex; it means the end of
a line.

The input

/string$/

will only find an occurrence of "string" at the end of some line. This implies,
of course, that

(string$/

will find only a line that contains just "string" and

r.$1

finds a line containing exactly one character.

The character".", as we mentioned above, matches anything. For example,
the input

/x.y/

4-20 SysS UNIX

TUTORIAL-TEXT EDITOR CHAPTER 4

(matches any of the following:

x+y

(

(

x-y
xy
x.y

This is useful in conjunction with "*" which is a repetition character. The
"a*" is a shorthand input for "any number of a's" therefore ". *" matches any
number of anythings.

For example, input

s/.*/stuff/

which changes an entire line, or

s/. *,//

which deletes all characters in the line up to and including the last comma.
(Since ". *" finds the longest possible match, this goes up to the last
comma.)

The "(" is used with the ")" to form character classes; for example,

/[0123456789]/

matches any single digit-any one of the characters inside the braces will
cause a match. This can be abbreviated to

[0-9)

Finally, the "&" is another shorthand character - it is used only on the
right-hand part of a substitute command where it means "whatever was
matched on the left-hand side". It is used to save typing.

Suppose the current line contained

Now is the time

and you wanted to put parentheses around it. One tedious method is just to
retype the line. Another method is to enter

sr/(/
s/$/)/

using your knowledge of and "$". But the easiest way uses the "&" as
follows:

S/. *!(&)/

This says "match the whole line and replace it by itself surrounded by
parentheses." The"&" can be used several times in a line; consider using

Sys5 UNIX 4-21

CHAPTER 4

sl.*I&? &!!/

to produce

TUTORIAL-TEXT EDITOR

Now is the time? Now is the time!!

You do not have to match the whole line, of course. If the buffer contains

the end of the world

you could type

/world/s//& is at hand/

to produce

the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage of
ed to save typing. The string "/world/" found the desired line; the shorthand
"//" found the same word in the line; and the "&" saves you from typing it
again.

The "&" is a special character only within the replacement text of a
substitute command and has no special meaning elsewhere. You can turn
off the special meaning of "&"by preceding it with a backslash''\".

Inputting

s/ampersand/\&/

will convert the word "ampersand" into the literal symbol "&" in the current
(dot) line.

4.6 SUMMARY OF COMMANDS AND LINE NUMBERS

The general form of the ed text editor commands is the command name,
perhaps preceded by one or two line numbers. In the case of the edit
command e, the read command r, and the write command w, the command
name is also followed by a file name. Normally, only one command is
allowed to be entered per line, but a print command p may follow any other
command (except for the edit command e, the read command r, the write
command w, and the quit command q).

a

c

4-22

Append, adds lines to the buffer (at line dot, unless a
different line is specified). Appending continues until a
dot "." is typed at the beginning (first character) of a
new line. Dot is set to the last line appended.

Change the specified lines to the new text which
follows. Entering new lines is terminated by a dot"."
as with a. If no lines are specified, the current line
(dot) is replaced. Dot is set to last line changed.

SysS UNIX

(

(

TUTORIAL-TEXT EDITOR CHAPTER 4

d

e

f

g

m

n

p

q

r

s

SysS UNIX

Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first undeleted line
unless $ is specified, in which case dot is set to the
last line, $.

Edit new file. Any previous contents of the buffer are
thrown away, so issue a write command w
beforehand.

Print the remembered file name. If a name follows f,
the remembered name will be set to it.

The global command g/---/commands will execute
the commands on those lines that contain"---".

Insert lines before the specified line or the current line
(dot line) until a"." is typed at the beginning of a new
line. Dot is set to last line inserted.

Move lines specified to the line named after m. Dot
is set to the last line moved.

Print the number of the addressed line(s) followed by
a tab and the line itself.

Print specified lines. If none specified, print line dot.
A single line number is equivalent to "line number".
A single RETURN prints the next line, i.e., the dot
plus one line, ;< 1 ".

The quit command exits from ed. It wipes out all text
in buffer if you give it twice in a row without first giving
a write command w.

Read a file into buffer (at end unless specified
elsewhere). Dot set to last line read. If .r filename is
used, the filename is read into the buffer immediately
after the dot line.

The s/string1/string2/ command is used to substitute
the characters "string1" into "string2" in the specified
lines. If no lines are specified, make the substitution
in line dot. Dot is set to last line in which a
substitution took place; if no substitution took place,
dot is not changed. The command s changes only
the first occurrence of "string1" on a line; to change
all occurrences on a line, type a g after the final
slash.

4-23

CHAPTER 4

v

w

/-----/

?-----?

4-24

TUTORIAL-TEXT EDITOR

The exclude command v/---/commands executes
commands only on those lines that do not contain "--
"

The write command writes out the buffer contents
onto a file. Dot is not changed.

The ". =" causes the printout of the current line
number. The dot value prints the line number of the
current line (dot line). The "=" by itself prints the
value of the last line in the file.

The "!" is a temporary escape command. The line
"command-line" causes "command-line" to be
executed as a UNIX operating system command.

The context search command searches for next line
which contains this string of characters "----" and
prints it. Dot is set to the line where string was found.
Search starts at line ". = 1" then wraps around from
the last line "$" to line "1" and continues to dot (the
current line) if necessary.

Performs context search in reverse direction. Starts
search at the previous line ".-1", scans to line 1,
wraps around to the last line "$", and scans back to
the current line (dot line) if necessary.

Sys5 UNIX

(

(

(

vi CHAPTER 5

5. vi

This document provides a quick introduction to vi (pronounced vee-eye).
You should be running vi on a file you are familiar with while you are reading
this. An appendix lists each character and any special meanings this
character has in vi.

5.1 Specifying Terminal Type

Before you can start vi, you must tell the system what kind of terminal you
are using. Here is a (necessarily incomplete) list of terminal type codes. If
your terminal does not appear here, you should consult with one of the staff
members on your system to find out the code for your terminal. If your
terminal does not have a code, one can be assigned and a description for
the terminal can be created.

Code Full name T~~e
2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb

acts Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
c100 Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent

dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h19 Intelligent
i100 lnfoton 100 Intelligent
mime Imitating a smart act4 Intelligent
t1061 Teleray 1061 Intelligent
vt52 Dec VT-52 Dumb

Suppose, for example, that you have a Hewlett-Packard HP2621 A terminal.
The code used by the system for this terminal is '2621 '. In this case you
can use one of the following commands to tell the system the type of your
terminal:

o/o setenv TERM 2621

This command works with the shell csh on all Plexus systems. If you are
using the standard SysS shell, give the commands

Sys5 UNIX 5-1

CHAPTER 5 vi

$ TERM=2621
$ export TERM

If you want to arrange to have your terminal type set up automatically when
you log in, you can use the tset program. For example, if you dial in on a
mime, but often use hardwired ports, a typical line for your .login file (if you
use csh) would be

setenv TERM 'tset --cl mime'

or for your .profile file (if you use sh)

TERM='tset--d mime·

Tset knows which terminals are hardwired to each port and needs only to be
told that when you dial in you are probably on a mime. Tset is usually used
to change the erase and kill characters, too.

5.2 Editing a File

After telling the system what kind of terminal you have, you should make a
copy of a file you are familiar with, and run vi on this file. Pick a file that is
longer than one screenful (usually 24 lines) so you can see the effect of
scrolling and other commands. Give the command

% vi name

replacing name with the name of the copy file you just created. The screen
should clear and the text of your file should appear on the screen.

5.3 The Editor's Copy: the Buffer

The editor does not directly modify the file you are editing. Rather, the editor
makes a copy of this file, in a place called the buffer, and remembers the
file's name. You do not affect the contents of the file unless and until you
write the changes you make back into the original file.

o. If something else happens. you may have given the system an incorrect terminal type
code. In this case. the editor may have just made a mess out of your screen (your file is
probably okay). This sort of mess happens when the editor sends control codes for one
kind of terminal to some other kind of terminal. To re-start. hit the keys :q (colon and the q
key) and then hit the RETURN key. This should get you back to the command level
interpreter. Figure out what you did wrong (ask someone else if necessary) and try
again. You may also have typed the wrong file name and the editor just printed an error
diagnostic. In this case you should follow the above procedure for getting out of the
editor. and try again. If the editor doesn't seem to respond to the commands that you
type here, try sending an interrupt to it by hitting the DEL or RUB key on your terminal. and
then hitting the :q command again. followed by a carriage return.

5-2 Sys5 UNIX

(

(

vi CHAPTER 5

5.4 Notational Conventions

In our examples, input that must be typed exactly as written here is
presented in bold face. Text that should be replaced with appropriate input
is given in italics. We represent special characters in SMALL CAPITALS.

5.5 Arrow Keys

The editor command set is independent of the terminal you are using. On
most terminals with cursor positioning keys, these keys also work within the
editor. If you don't have cursor positioning keys, or even if you do, you can
use the h j k and I keys as cursor positioning keys (these are labeled with
arrows on an adm3a). *

(Particular note for the HP2621: on this terminal the function keys must be
shifted to send to the machine; otherwise they only act locally. Unshifted
use leaves the cursor positioned incorrectly.)

s.& Special Characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find
them right now. Look on your keyboard for a key labeled ESC or ALT. It
should be near the upper left corner of your terminal. Try hitting this key a
few times. The editor rings the bell to indicate that it is in a quiescent state.
Partially formed commands are canceled by ESC, and when you insert text in
the file you end the text insertion with ESC. This key is a fairly harmless one
to hit, so you can just hit it if you don't know what is going on until the editor
rings the bell.

The CR or RETURN key is important because it is used to terminate certain
commands. It is usually at the right side of the keyboard, and is the same
command used at the end of each shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt,
telling the editor to stop what it is doing. It is a forceful way of making the
editor listen to you, or to return it to the quiescent state if you don't know or
don't like what is going on. Try hitting the '/' key on your terminal. This key
is used when you want to specify a string to be searched for. The cursor
should now be positioned at the bottom line of the terminal after a '!' printed
as a prompt. You can get the cursor back to the current position by hitting

O. • As we will see later. h moves back to the left (like control-h. which is a backspace). j
moves down (in the same column). k moves up (in the same column). and I moves to the
right.

0. On smart terminals where possible. the editor quietly flashes the screen rather than
ringing the bell.

Sys5 UNIX 5-3

CHAPTER 5 vi

the DEL or RUB key; try this now.· From now on we will simply refer to hitting
the DEL or RUB key as "sending an interrupt."**

The editor often echoes your commands on the last line of the terminal. If
the cursor is on the first position of this last line, then the editor is
performing a computation, such as computing a new position in the file after
a search or running a command to reformat part of the buffer. When this is
happening you can stop the editor by sending an interrupt.

5. 7 Getting out of the Editor

After you have worked with this introduction for a while, and you wish to do
something else, you can give the command ZZ to the editor. This writes the
contents of the editor's buffer back into the file you are editing, if you made
any changes, and then leaves the editor. You can also end an editor
session by giving the command :q!CR; this is a dangerous but occasionally
essential command that ends the editor session and discards all your
changes. You need to know about this command in case you change the
editor's copy of a file you wish only to look at. Be very careful not to give
this command when you really want to save the changes you have made.

5.8 Moving around in the File

5.8. 1 Scrolling and Paging

The editor has a number of commands for moving around in the file. The
most useful of these is generated by hitting the control and D keys at the
same time, a control-0 or ··o·. We will use this two character notation for
referring to these control keys from now on. You may have a key labeled ·•·
on your terminal. This key will be represented as '1' in this document; ··· is
exclusively used as part of the ''x' notation for control characters.

As you know now if you tried hitting ·o, this command scrolls down in the
file. The D thus stands for down. Many editor commands are mnemonic and
this makes them much easier to remember. For instance the command to
scroll up is ·u. Many dumb terminals can't scroll up at all, in which case
hitting ·u clears the screen and refreshes it with a line which is farther back
in the file at the top.

o. • Backspacing over the · · also cancels the search.

o. •• On some systems. this interruptibility comes at a price: you cannot type ahead when
the editor is computing with the cursor on the bottom line.

0. All commands that read from the last display line can also be terminated with a ESC as
well as an CR.

0. If you don't have a ... key on your terminal then there is probably a key labeled ·1; in any
case these characters are one and the same.

5-4 SysS UNIX

c·

vi CHAPTER 5

If you want to see more of the file below where you are, you can hit ·e to
expose one more line at the bottom of the screen, leaving the cursor where
it is. The command ·y (which is hopelessly non-mnemonic, but next to ·u
on the keyboard) exposes one more line at the top of the screen.

Other ways to move around in the file include the keys 'F and ·e, which
move forward and backward a page, keeping a couple of lines of continuity
between screens.

Notice the difference between scrolling and paging. If you are trying to read
the text in a file, hitting 'F to move forward a page leaves you only a little
context to look back at. Scrolling on the other hand leaves more context,
and happens more smoothly. You can continue to read the text as scrolling
is taking place.

5.8.2 Searching, Goto, and Previous Context

Another way to position yourself in the file is by giving the editor a string to
search for. Type the character I followed by a string of characters
terminated by CR. The editor positions the cursor at the next occurrence of
this string. Try hitting n to then go to the next occurrence of this string. The
character ? searches backwards from where you are, and is otherwise like I.

If the search string you give the editor is not present in the file, the editor
prints a message to that effect on the last line of the screen, and the cursor
is returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the
search string with an r. To match only at the end of a line, end the search
string with a $. Thus I tsearchcR searches for the word 'search' at the
beginning of a line, and /last$CA searches for the word 'last' at the end of a
line.*

The command G, when preceded by a number, positions the cursor at that
line in the file. Thus 1 G moves the cursor to the first line of the file. If you
give G no count, it moves to the end of the file.

0. These searches normally wrap around the end of the file. and thus find the string even if
it is not on a line in the direction you search provided it is anywhere else in the file. You
can disable this wraparound in scans by giving the command :se nowrapscancR. or
more briefly :se nowscR.

0. "Actually, the string you give to search for here can be a regular expression in the sense
of the editors ex(1) and ed(1}. If you dont wish to learn about this yet. you can disable
this more general facility by putting the command :se nomagiccR. in EXINIT in your
environment. (More about EXINIT later)

Sys5 UNIX 5-5

CHAPTER 5 vi

If you are near the end of the file, and the last line is not at the bottom of the
screen, the editor places only the character ' ' on each remaining line. This
indicates that the last line in the file is on the screen; that is, the ' ' lines are
past the end of the file.

You can find out the state of the file you are editing by typing a 'G. The
editor shows you the name of the file you are editing, the number of the
current line, the number of lines in the buffer, and what percentage of the
buffer you have traversed. Try doing this now, and remember the number
of the line you are on. Give a G command to get to the end. You can get
back to your previous position by using the command " (two back quotes).
Try giving a search with I or ? and then a " to get back to where you were.
If you accidentally hit n or any command that moves you far away from a
context of interest, you can quickly get back by hitting ".

5.8.3 Moving around on the Screen

Now try just moving the cursor around on the screen. If your terminal has
arrow keys (4 or 5 keys with arrows going in each direction) try them and
convince yourself that they work. (On certain terminals, they won't.) If you
don't have working arrow keys, you can always use h, j, k, and I.
Experienced users of vi prefer these keys to arrow keys, because they are
usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next
line in the file, at the first non-white position on the line. The - key is like +
but goes the other way.

These are very common keys for moving up and down lines in the file.
Notice that if you go off the bottom or top with these keys then the screen
scrolls down (and up if possible) to bring a line at a time into view. The
RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the
screen. H takes you to the top (home or highest) line on the screen. Try
preceding it with a number as in 3H. This takes you to the third line on the
screen. Many vi commands take preceding numbers and do interesting
things with them. Try M, which takes you to the middle line on the screen,
and L, which takes you to the last (or lowest) line on the screen. L also
takes counts, thus SL takes you to the fifth line from the bottom.

5.8.4 Moving within a Line

Now try picking a word on some line on the screen, not the first word on the
line. Move the cursor using RETURN and - to be on the line where the word
is. Try hitting the w key. This advances the cursor to the next word on the
line. Try hitting the b key to back up words in the line. Try thee key, which
advances you to the end of the current word rather than to the beginning of

5-6 SysS UNIX

(

(

(-

vi CHAPTER 5

the next word. Also try SPACE (the space bar), which moves right one
character and the BS (backspace or ·H) key, which moves left one character.
The key h works as 'H does and is useful if you don't have a BS key. (Also,
as noted just above, I moves to the right.)

If the line has punctuation in it, you may notice that that the w and b keys
stop at each group of punctuation. You can also go back and forward by
words without stopping at punctuation by using W and B rather than the
lower case equivalents. Think of these as bigger words. Try these on a few
lines with punctuation to see how they differ from the lower case w and b.

The word keys wrap around the end of line, rather than stopping at the end.
Try moving to a word on a line below where you are by repeatedly hitting w.

5.8.5 Summary

SPACE advance the cursor one position
·e backwards to previous page

.-o scrolls down in the file
.E exposes another line at the bottom (v3)
.F forward to next page
.G tell what is going on
.H backspace the cursor
.N next line, same column
·p previous line, same column
·u scrolls up in the file
·y exposes another line at the top (v3)
+ next line, at the beginning

previous line, at the beginning
I scan for a following string forwards
? scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
w forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of I or ? pattern
w word after this word

5.8.6 View

If you want to use the editor to look at a file, rather than to make changes,
invoke it as view instead of vi. This sets the readonly option which prevents

SysS UNIX 5-7

CHAPTER 5

you from accidently overwriting the file.

5.9 Making Simple Changes

5.9.1 Inserting

vi

One of the most useful commands is the i (insert) command. After you type
i, everything you type until you hit ESC is inserted into the file. Try this now;
position yourself to some word in the file and try inserting text before this
word. If you are on an dumb terminal it may seem, for a minute, that some
of the characters in your line have been overwritten, but they reappear when
you hit ESC.

Now try finding a word which can, but does not, end in an 's'. Position
yourself at this word and type e (move to end of word), then a for append
and then 'sESC' to terminate the insertion. This sequence of commands
(easESC) can be used to pluralize a word easily.

Try inserting and appending a few times to make sure you understand how
this works; i placing text to the left of the cursor, a to the right.

You may often want to add new lines before or after some specific line in
the file. Find a line where this makes sense and then give the command o to
create a new line after the line you are on, or the command 0 to create a
new line before the line you are on. After you create a new line in this way,
all text you type up to an ESC is inserted, This may amount to many lines or
just one (see below).

Many related editor commands are invoked by the same letter key and differ
only in that one is given by a lower case key and the other is given by an
upper case key. In these cases, the upper case key often differs from the
lower case key in its sense of direction, with the upper case key working
backward and/or up, while the lower case key moves forward and/or down.

Whenever you are typing in text--whether you begin with i, a, o, 0, s, C,
etc.--you can give many lines of input or just a few characters. To type in
more than one line of text, hit a RETURN at the middle of your input. A new
line is created for text, and you can continue to type. If you are on a slow
and dumb terminal the editor may choose to wait to redraw the tail of the
screen, and let you type over the existing screen lines. This avoids the
lengthy delay that would occur if the editor attempted to keep the tail of the
screen always up to date. The tail of the screen is fixed, and the missing
lines reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normally
use at the system command level (usually "H or #) to backspace over the
last character you typed, and the character you use to kill input lines (usually / ,
@, ·x, or 'U) to erase the input you have typed on the current line. The

5-8 Sys5 UNIX

(

vi CHAPTER 5

character 'W erases a whole word and leaves you after the space after the
previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion, the characters you
backspace over are not erased; the cursor moves backwards, and the
characters remain on the display. This is often useful if you are planning to
type in something similar. In any case the characters disappear when when
you hit ESC.

Notice also that you can't erase characters you didn't insert with the current
insertion command, and that you can't backspace around the end of a line.
If you need to back up to the previous line to make a correction, just hit ESC

and move the cursor back to the previous line. After making the correction
you can return to where you were and use the insert or append command
again.

5.9.2 Making Small Corrections

You can make small corrections in existing text quite easily. Find a single
character that is wrong or just pick any character. Use the arrow keys to
find the character, or get near the character with the word motion keys and
then either backspace (hit the ss key or "H or even just h) or SPACE (using
the space bar) until the cursor is on the character that is wrong. If the
character is not needed then hit the x key; this deletes the character from
the file. It is analogous to the way you x out characters when you make
mistakes on a typewriter (except it's not as messy).

If the character is incorrect, you can replace it with the correct character by
giving the command re, where c is replaced by the correct character.
Finally if the character that is incorrect should be replaced by more than one
character, give the command s, which substitutes a string of characters,
ending with ESC. If a small number of characters are wrong, you can
precede s with a count of the number of characters to be replaced. Counts
are also useful with x to specify the number of characters to be deleted.

5.9.3 More Corrections: Operators

You already know almost enough to make changes at a higher level. All
you need to know now is that the d key acts as a delete operator. Try the
command dw to delete a word. Try hitting . a few times. Notice that this
repeats the effect of the dw. The command . repeats the last command that
made a change. You can remember it by analogy with an ellipsis '. . .'.

O. In fact, the character 'H (backspace) always works to erase the last input character here
regardless of what your erase character is.

Sys5 UNIX 5-9

CHAPTER 5 vi

Now try db. This deletes a word backwards, namely the preceding word.
Try dSPACE. This deletes a single character, and is equivalent to the x
command.

Another very useful operator is c or change. The command cw thus
changes the text of a single word. You follow it by the replacement text
ending with an ESC. Find a word that you can change to another, and try
this now. Notice that the end of the text to be changed was marked with the
character '$' so that you can see this as you are typing in the new material.

5.9.4 Operating on Lines

You often want to operate on lines rather than just words or letters. Find a
line you want to delete, and type dd, the d operator twice. This deletes the
line. If you are on a dumb terminal, the editor may just erase the line on the
screen, replacing it with a line with only an @ on it. This line does not
correspond to any line in your file, but only acts as a place holder. It helps to
avoid a lengthy redraw of the rest of the screen, which would be necessary
to close up the hole created by the deletion on a terminal without a delete
line capability.

Try repeating the c operator twice; this changes a whole line, erasing its
previous contents and replacing them with text you type up to an ESC.

You can delete or change more than one line by preceding the dd or cc with
a count, i.e. Sdd deletes 5 lines. You can also give a command like dl to
delete all the lines up to and including the last line on the screen, or d3L to
delete through the third from the bottom line. Try some commands like this
now.* Notice that the editor lets you know when you change a large number
of lines so that you can see the extent of the change. The editor also
always tells you when a change you make affects text you cannot see.

5.9.5 Undoing

Now suppose that the last change you made was incorrect; you could use
the insert, delete and append commands to put the correct material back.
However, since we often regret a change or make a change incorrectly, the
editor provides au (undo) command to reverse the last change you made.
Try this a few times, and give it twice in a row to notice that an u also
undoes au.

o. The command 5 is a convenient synonym for for cc, by analogy with s. Think of S as a
substitute on lines. while s is a substitute on characters.

o. • Using the i search after a d is subtle. This move normally deletes characters from the
current position to the point of the match. If you want to delete whole lines including the
two points. give the pattern as /patl+O, a line address.

5-10 Sys5 UNIX

\

"'·

(

vi CHAPTER 5

The undo command lets you reverse only a single change. After you make a
number of changes to a line, you may decide that you would rather have the
original state of the line back. The U command restores the current line to
the state before you started changing it.

You can recover text that you delete, even if undo will not bring it back; see
the section on recovering lost text below.

5.9.6 Summary

SPACE

"H
·w

advance the cursor one position
backspace the cursor
erase a word during an insert

erase
kill

your erase (usually "H or #), erases a character during an insert
your kill (usually @, ·x, or ·u), kills the insert on this line

0
u
a
c
d
i
0

u

repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text
deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

5.10 Moving about; Rearranging and Duplicating Text

5.10.1 Low Level Character Motions

Now move the cursor to a line containing a punctuation or a bracketing
character such as a parenthesis or a comma or period. Try the command fx
where x is this character. This command finds the next x character to the
right of the cursor in the current line. Try then hitting a ;, which finds the
next instance of the same character. By using the f command and then a
sequence of ;'s you can often get to a particular place in a line much faster
than with a sequence of word motions or SPACES. The F command, which is
like f, searches backward. The ; command repeats Falso.

When you are operating on the text in a line, you often find it useful to deal
with the characters up to, but not including, the first instance of a character.
Try dfx for some x now and notice that the x character is deleted. Undo this
with u and then try dtx; the t here stands for to, i.e. delete up to the next
x, but not the x. The command Tis the reverse oft.

When working with the text of a single line, an t moves the cursor to the first
non-white position on the line, and a$ moves it to the end of the line. Hitting
'O' (zero) also works to move to the beginning of a line. Thus $a will append

Sys5 UNIX 5-11

CHAPTER 5 vi

new text at the end of the current line.

Your file may have tab Cl) characters in it. These characters are
represented as a number of spaces expanding to a tab stop, where tab
stops are every 8 positions.· When the cursor is at a tab, it sits on the last
of the several spaces that represent that tab. Try moving the cursor back
and forth over tabs so you understand how this works.

On rare occasions, your file may have nonprinting characters in it. These
characters are displayed in the same way they are represented in this
document, that is, with a two character code, the first character of which is
'". On the screen non-printing characters resemble a ·•· character adjacent
to another, but if you space or backspace over the character, you see that
the two characters are, like the spaces representing a tab character, a
single character.

The editor sometimes won't allow you to insert control characters,
depending on the character and the setting of the beautify option. You can
force a control character into the file by beginning an insert and then typing
a ·v before the control character. The ·v quotes the following character,
causing it to be inserted directly into the file.

5.10.2 Higher Level Text Objects

Sometimes the capacity to work with characters or words or lines is not
enough; you need to be able to manipulate sentences, paragraphs, and
sections. A sentence is defined to end at a'.', '!'or'?', followed by either the
end of a line, or by two spaces. Any number of closing ')', ']', "" and ·-·
characters may appear after the '.', '!'or '?' before the spaces or end of line.

The operations (and) move to the beginning of the previous and next
sentences respectively. Thus the command d) deletes the rest of the
current sentence; likewise d(deletes the previous sentence if you are at the
beginning of the current sentence, or the current sentence up to where you
are if you are not at the beginning of the current sentence.

The operations { and } move over paragraphs and the operations [[and])
move over sections.

0. • This is settable by a command of the form :se ts=xcR, where x is the number of
columns per tabstop. This has effect on the screen representation within the editor.

o. The [(and)] operations require the operation character to be doubled because they can
move the cursor far from where it currently is. While it is easy to get back with the
command ", these commands would still be frustrating if they were easy to hit
accidentally.

5-12 Sys5 UNIX

-(

vi CHAPTER 5

A paragraph begins after each empty line, and also at each of a set of
paragraph macros, specified by the pairs of characters in the definition of
the string valued option paragraphs. The default setting for this option
defines the paragraph macros of the -ms and -mm macro packages, i.e.
the '.IP', '.LP', '.P' and '.QP', '.P' and '.LI' macros. Each paragraph
boundary is also a sentence boundary. The sentence and paragraph
commands can be given counts to operate over groups of sentences and
paragraphs.

Sections in the editor begin after each macro in the sections option,
normally '.NH', '.SH', '.H' and '.HU', and each line with a formfeed "L in the
first column. Section boundaries are always line and paragraph boundaries
also.

Try experimenting with the sentence and paragraph commands until you are
sure how they work. If you have a large document, try looking through it
using the section commands.. The section commands interpret a preceding
count as a different window size in which to redraw the screen at the new
location, and this window size is the base size for newly drawn windows until
another size is specified. This is very useful if you are on a slow terminal
and are looking for a particular section. You can give the first section
command a small count to then see each successive section heading in a
small window.

5.10.3 Rearranging and Duplicating Text

The editor has a single unnamed buffer where the last deleted or changed
text is saved.

The operator y yanks a copy of the object that follows into the unnamed
buffer. The text can then be put back in the file with the commands p and
P; p puts the text after or below the cursor, while P puts the text before or
above the cursor.

If the text that you yank forms a part of a line, or is an object such as a
sentence, which partially spans more than one line, then when you put the
text back, it is placed after the cursor (or before if you use P). If the yanked
text forms whole lines, they are put back as whole lines, without changing
the current line. In this case, the put acts much like a o or 0 command.

O. You can easily change or extend this set of macros by assigning a different string to the
paragraphs option in your EXINIT. See section 6.2 for details. The '.bp · directive is also
considered to start a paragraph.

Sys5 UNIX 5-13

CHAPTER 5 vi

Try the command VP. This makes a copy of the current line and leaves you 1
on this copy, which is placed before the current line. The command Y is a
convenient abbreviation for yy. The command Yp also makes a copy of the
current line, and places it after the current line. You can give Y a count of
lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it
back in another. An ordinary delete command saves the text in the unnamed
buffer, so that an ordinary put can move it elsewhere. However, the
unnamed buffer is lost when you change files.

5.10.4 Summary

$
)
}
11
(
{
[[
f x
p
y
tx
Fx
p
Tx

first non-white on line
end of line
forward sentence
forward paragraph
forward section
backward sentence
backward paragraph
backward section
find x forward in line
put text back, after cursor or below current line
yank operator, for copies and moves
up to x forward, for operators
f backward in line
put text back, before cursor or above current line
t backward in line

5.11 High Level Commands

5.11.1 Writing, Quitting, Editing New Files

So far we have seen how to enter vi and to write out our file using either ZZ
or :wcR. The first exits from the editor, (writing if changes were made), the
second writes and stays in the editor.

If you have changed the editor's copy of the file but do not wish to save your
changes, then you can give the command :q!cR to quit from the editor
without writing the changes. You can also reedit the same file (starting
over) by giving the command :e!cR. These commands should be used only
rarely, and with caution, as you cannot recover the changes you have made
after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command
:e namecR. If you have not written out your file before you try to do this,
then the editor will tell you this, and delay editing the other file. You can then

5-14 SysS UNIX

vi CHAPTER 5

give the command :wCR to save your work and then the :e nameCR
command again, or carefully give the command :e! nameCR, which edits the
other file discarding the changes you have made to the current file. To have
the editor automatically save changes, include set autowrite in your EXINIT,
and use :n instead of :e.

5.11.2 Escaping to a Shell

You can get to a shell to execute a single command by giving a vi command
of the form :!cmdCR. The system runs the single command cmd and when
the command finishes, the editor asks you to hit a RETURN to continue.
When you have finished looking at the output on the screen, hit RETURN. The
editor clears the screen and redraws it. You can then continue editin.g. You
can also give another : command when it asks you for a RETURN; in this
case the screen is not redrawn.

If you wish to execute more than one command in the shell, you can give
the command :shcR. This gives you a new shell, and when you finish with
the shell, ending it by typing a ·o, the editor clears the screen and
continues.

On systems that support it, ·z suspends the editor and returns to the (top
level) shell. When the editor is resumed, the screen is redrawn.

(- ', 5.11.3 Marking and Returning

The command " returned to the previous place after a motion of the cursor
by a command such as/, ? or G. You can also mark lines in the file with
single letter tags and return to these marks later by naming the tags. Try
marking the current line with the command mx, where you should pick some
letter for x, say 'a'. Then move the cursor to a different line (any way you
like) and hit 'a. The cursor returns to the place you marked. Marks last only
until you edit another file.

Sometimes you mark a line in the middle but want to return to the beginning
of the marked line; for example, when using operators such as d or c on
marked lines. In this case you can use the form 'x rather than ·x. Used
without an operator, 'x will move to the first non-white character of the
marked line; similarly ,, moves to the first non-white character of the line
containing the previous context mark · ·.

5.11.4 Adjusting the Screen

If the screen image is messed up because of a transmission error to your
terminal, or because some program other than the editor wrote output to
your terminal, you can hit a ·L, the ASCII form-feed character, to cause the
screen to be refreshed.

Sys5 UNIX 5-15

CHAPTER 5 vi

On a dumb terminal, if there are @ lines in the middle of the screen as a
result of line deletion, you may get rid of these lines by typing 'R to cause
the editor to retype the screen, closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or
bottom of the screen, you can position the cursor to that line, and then give
a z command. You should follow the z command with a RETURN if you want
the line to appear at the top of the window, a . if you want it at the center, or
a - if you want it at the bottom.

5.12 Special Topics

5.12.1 Editing on Slow Terminals

When you are on a slow terminal, you will probably want to limit the amount
of output generated to your screen so that you will not suffer long delays
waiting for the screen to be refreshed. We have already pointed out how the
editor optimizes the updating of the screen during insertions on dumb
terminals to limit the delays, and how the editor erases lines to @ when they
are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen
option. You can force the editor to use this mode even on faster terminals
by giving the command :se slowcR. ('Se' is short for 'set'.) If your system is
sluggish this helps lessen the amount of output coming to your terminal.
You can disable this option by :se noslowcR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the
command :se redrawcR. This simulation generates a great deal of output
and is generally tolerable only on lightly loaded systems and fast terminals.
You can disable this by giving the command

:se noredrawcR.

The editor also makes editing more pleasant at low speed by starting in a
small window, and letting the window expand as you edit. This works
particularly well on intelligent terminals. The editor can expand the window
easily when you insert in the middle of the screen on these terminals. If
possible, try the editor on an intelligent terminal to see how this works.

You can control the size of the window that is redrawn each time the screen
is cleared by giving window sizes as argument to the commands that cause
large screen motions:

:/?[(])'.

Thus if you are searching for a particular instance of a common string in a
file you can precede the first search command by a small number, say 3,
and the editor draws three line windows around each instance of the string it
locates.

5-16 Sys5 UNIX

_/

(

vi CHAPTER 5

You can easily expand or contract the window, placing the current line as
you choose, by giving a number on a z command, after the z and before the
following RETURN, • or -. Thus the command zS. redraws the screen with the
current line in the center of a five line window.

If the editor is redrawing or otherwise updating large portions of the display,
you can interrupt this updating by hitting a DEL or RUBOUT as usual. If you do
this you may partially confuse the editor about what is displayed on the
screen. You can still edit the text on the screen if you wish; clear up the
confusion by hitting a 'L; or move or search again, ignoring the current state
of the display.

See section 7.8 on open mode for another way to use the vi command set
on slow terminals.

5.12.2 Options, Set, and Editor Startup Files

The editor has a set of options, some of which have been mentioned above.
The most useful options are given in the following table.

Name Default Description
autoindent noai Supply indentation automatically

autowrite noaw Automatic write before :n, :ta, · t, !
ignorecase noic Ignore case in searching

lisp nolisp ({) } commands deal with
$-expressions

list nolist Tabs print as ·1; end of lines
marked with $

magic nomagic The characters . [and * are
special in scans

number no nu Lines are displayed prefixed with
line numbers

paragraphs para= IPLPPPQPbpP LI Macro names which start
paragraphs

redraw no re Simulate a smart terminal on a
dumb one

o. Note that the command Sz. has an entirely different effect placing line 5 in the center of
a new window.

Sys5 UNIX 5-17

CHAPTER 5

sections sect=NHSHH HU

Shiftwidth SW= 8

showmatch nosm

slowopen slow

term dumb

Macro names which start new
sections
Shift distance for <, > and
input ·o and 'T

Show matching (or { as) or }
is typed
Postpone display updates during
inserts

The kind of terminal you are using.

vi

The options are of three kinds: numeric options, string options, and toggle
options. You can set numeric and string options by a statement of the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your environment, or
given while you are running vi by preceding them with a : and following them
with a CR.

You can get a list of all options that you have changed by the command
:setCR; you can get the value of a single option by the command :set
opt?CR. A list of all possible options and their values is generated by :set
allCR. Set can be abbreviated se. Multiple options can be placed on one
line, e.g. :se ai aw nucR.

Options set by the set command only last while you stay in the editor. You
may want to have certain options set whenever you use the editor. This can
be accomplished by creating a list of ex commands that are to be run every
time you start up ex, edit, or vi. A typical list includes a series of set
commands. Put these commands all on one line, and separate them with
the I character, for example:

set ai aw terse

which sets the options autoindent, autowrite, and terse. This string should
be placed in the variable EXINIT in your environment. If you use csh, put
this line in the file .login in your home directory:

0. All commands that start with : are ex commands.

5-18 SysS UNIX

(

vi CHAPTER 5

setenv EXINIT 'set ai aw terse

If you use the standard v7 shell, put these lines in the file .profile in your
home directory:

EXINIT =·set ai aw terse

export EXINIT

Of course, the particulars of the line depend on which options you want to
set.

5.12.3 Recovering Lost Lines

You might have a serious problem if you deleted a number of lines
inadvertently. Despair not, the editor saves the last 9 deleted blocks of text
in a set of numbered registers 1-9. You can get the n'th previous deleted
text back in your file by the command "n p. The " here says that a buffer
name is to follow, n is the number of the buffer you wish to inspect (use the
number 1 for now), and p is the put command, which puts text in the buffer
after the cursor. If this doesn't bring back the text you wanted, hit u to undo
this and then . (period) to repeat the put command. In general the .
command repeats the last change you made, but in this case, when the last
command refers to a numbered text buffer, the . command increments the
number of the buffer before repeating the command. Thus a sequence of
the form

"1pu.u.u.

if repeated long enough, shows you all the deleted text that has been saved
for you. You can omit the u commands here to gather up all this text in the
buffer, or stop after any . command to keep just the most currently
recovered text. The command P can also be used rather than p to put the
recovered text before rather than after the cursor.

5.12.4 Recovering Lost Files

If the system crashes, you can recover the work you were doing to within a
few changes. Change to the directory you were in when the system crashed
and give a command of the form:

% vi -r name

replacing name with the name of the file you were editing. This recovers
your work to a point near where you left off.

SysS UNIX 5-19

CHAPTER 5 vi

You can get a listing of the files that are saved for you by giving the
command: "'

%vi-r

The invocation "vi -r" does not always list all saved files, but they can be
recovered with "vi -r name" even if they are not listed.

5.12.5 Continuous Text Input

When you are typing in large amounts of text it is convenient to have lines
broken near the right margin automatically. You can cause this to happen by
giving the command :se wm=nCR, where n is some number of columns.
So, the command :se wm = 10CR causes all lines to be broken at a space
at least 1 o columns from the right hand edge of the screen.

If the editor breaks an input line and you wish to put it back together you
can tell it to join the lines with J. You can give J a count of the number of
lines to be joined as in 3J to join 3 lines. The editor supplies white space, if
appropriate, at the juncture of the joined lines, and leaves the cursor at this
white space. Kill the white space with x if you don't want it.

5.12.6 Features for Editing Programs

The editor has a number of commands for editing programs. Editing
programs is different from editing text because in programs, an indentation
structure must often be maintained. The editor has a autoindent facility to
help you generate correctly indented programs.

To enable this facility you can give the command :se aiCR. Now try opening
a new line with o and type some characters on the line after a few tabs. If
you now start another line, notice that the editor supplies white space at the
beginning of the line to line it up with the previous line. You cannot
backspace over this indentation, but you can use ·o key to backtab over the
supplied indentation.

Each time you type ·o you back up one position, normally to an 8 column
boundary. This amount is settable; the editor has an option called shiftwidth
that can be set to change this value. Try giving the command :se sw=4CR
and then experimenting with autoindent again.

O. In rare cases, some of the lines of the file may be lost. The editor gives you the numbers
of these lines and the text of the lines are replaced by the string 'LOST. These lines
almost always are among the last few you changed. You can either choose to discard the
changes (if they are easy to remake) or replace the few lost lines by hand.

5-20 Sys5 UNIX

(

vi CHAPTER 5

For shifting lines in the program left and right, the operators < and > shift
the lines you specify right or left by one shiftwidth. Try<< and>>, which
shift one line left or right, and < L and > L, which shift the rest of the display
left and right.

If you have a complicated expression and wish to see if the parentheses
match, put the cursor at a left or right parenthesis and hit%. This will show
you the matching parenthesis. This works also for braces { and }, and
brackets [and].

If you are editing C programs, you can use the [[and]] keys to advance or
retreat to a line starting with a {, i.e. a function declaration at a time. When)]
is used with an operator it stops after a line that starts with }; this is
sometimes useful with y]].

5.12. 7 Filtering Portions of the Buffer

You can run system commands over portions of the buffer using the
operator !. You can use this to sort lines in the buffer, or to reformat
portions of the buffer with a pretty-printer. Try typing in a list of random
words, one per line and ending them with a blank line. Back up to the
beginning of the list, and then give the command !}sortcR. This says to sort
the next paragraph of material, and the blank line ends a paragraph.

(.. 5.12.8 Commands for Editing usP

(

If you are editing a USP program you should set the option lisp by doing
:se lispcR. This changes the (and) commands to move backward and
forward overs-expressions. The {and} commands are like (and) but don't
stop at atoms. These can be used to skip to the next list, or through a
comment quickly.

The autoindent option works differently for LISP, supplying indent to align at
the first argument to the last open list. If there is no such argument then the
indent is two spaces more than the last level.

Another option useful for typing in LISP is showmatch. Try setting it with :se
smCR and then try typing a '(' some words and then a ')'. Notice that the
cursor shows the position of the '(' which matches the ')' briefly. This
happens only if the matching '(' is on the screen, and the cursor stays there
for at most one second.

The editor also has an operator to realign existing lines as though they had
been typed in with lisp and autoindent set. This is the = operator. Try the

0. The usP features are not available on some v2 editors due to memory constraints.

Sys5 UNIX 5-21

CHAPTER 5 vi

(~-~\

command =%at the beginning of a function. This will realign all the lines of
the function declaration. ___/ ,;

When you are editing LISP, [[and]] advance and retreat to lines beginning
with a(, and are useful for dealing with entire function definitions.

5.12.9 Macros

Vi has a parameterless macro facility, which lets you set it up so that when
you hit a single keystroke, the editor will act as though you had hit some
longer sequence of keys. You can set this up if you find yourself typing the
same sequence of commands repeatedly.

Briefly, there are two kinds of macros: Ones where you put the macro body
in a buffer register, say x. You can then type @x to invoke the macro. The
@may be followed by another @to repeat the last macro. You can use the
map command from vi (typically in your EX/NIT) with a command of the
form:

:map lhs rhscR

mapping lhs ('left hand side') into rhs ('right hand side'). Restrictions are:
lhs should be one keystroke (either 1 character or one function key) since it
must be entered within one second (unless notimeout is set, in which case
you can type it as slowly as you wish, and vi will wait for you to finish it
before it echoes anything). The lhs can be no longer than 10 characters, "-
the rhs no longer than 100. To get a space, tab or newline into lhs or rhs
you should escape them with a ·v. (It may be necessary to double the ·v if
the map command is given inside vi, rather than in ex.) Spaces and tabs
inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wq·v·vcR CR

which means that whenever you type q, the system will behave as though
you had typed the four characters :wqcR. A ·v·s is needed because without
it the CR would end the : command, rather than becoming part of the map
definition. Two ·v·s are required because from within vi, two ·v·s must be
typed to get one. The first CR is part of the rhs, the second terminates the :
command.

Macros can be deleted with

o. Plexus currently does not support the macro feature.

5-22 Sys5 UNIX

vi CHAPTER 5

unmap lhs

If the lhs of a macro is "#0" through "#9'', this maps the particular function
key instead of the 2 character "#" sequence. So that terminals without
function keys can access such definitions, the form "#x" will mean function
key x on all terminals (and need not be typed within one second.) The
character"#" can be changed by using a macro in the usual way:

:map ·v·v·1 #

to use tab, for example. (This won't affect the map command, which still
uses#, but just the invocation from visual mode.)

The undo command reverses an entire macro call as a unit, if it made any
changes.

Placing a'!' after the word map causes the mapping to apply to input mode,
rather than command mode. Thus, to arrange for ·T to be the same as 4
spaces in input mode, you can type:

:map ·T ·vlblblblb

where 16 is a blank. The ·v is necessary to prevent the blanks from being
taken as white space between the lhs and rhs. Word Abbreviations

A feature similar to macros in input mode is word abbreviation. This allows
you to type a short word and have it expanded into a longer word or words.
The commands are :abbreviate and :unabbreviate (:ab and :una) and
have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical
Engineering and Computer Sciences' Word abbreviation is different from
macros in that only whole words are affected. If 'eecs' were typed as part of
a larger word, it would be left alone. Also, the partial word is echoed as it is
typed. An abbreviation need not be a single keystroke, as it should be with
a macro.

5.12.10 Abbreviations

The editor has a number of short commands that abbreviate longer
commands introduced here. You can find these commands easily on the
quick reference card. They often save a bit of typing and you can learn
them as convenient.

5.13 Nitty-gritty Details

5.13.1 Line Representation in the Display

The editor folds long logical lines onto many physical lines in the display.
Commands that advance "lines" advance logical lines, not physical lines. A

Sys5 UNIX 5-23

CHAPTER 5 vi

logical line is everything between user-input carriage returns. (So if you use
autowrap and let the system break lines for you, the physical lines thus
broken are not delimited by your carriage returns and thus do not
correspond to vi's idea of logical lines.)

The command I moves the cursor to a specific column, and may be useful
for getting near the middle of a long line to split it in half. Try SOI on a line
which is more than 80 columns long.

The editor puts only full lines on the display; if there is not enough room on
the display to fit a logical line, the editor leaves the physical line empty,
placing only an @ on the line as a place holder. When you delete lines on a
dumb terminal, the editor often just clears the lines to (cl to save time (rather
than rewriting the rest of the scr~en.) You can always maximize the
information on the screen by giving the "R command.

The editor can place line numbers before each line on the display. Give the
command :se nucR to enable this, and the command :se nonucR to turn it
off. However, this may not work well with long input lines on some dumb
terminals. The display of long lines may be scrambled and the apparent
cursor position may not be reliable; i.e., you may change something
inadvertently. Be prepared to issue lots of 'L commands.

You can have tabs represented as ·1 and the ends of lines indicated with '$'
by giving the command :se listCR; :se nolistcR turns this off.

Finally, lines consisting of only the character '· are displayed when the last
line in the file is in the middle of the screen. These represent physical lines
that are past the logical end of file.

5.13.2 Counts

Most vi commands accept a preceding count to affect their behavior in some
way. The following table gives the common ways in which the counts are
used:

new window size
scroll amount
line/column number
repeat effect

:/?[[)]
·o ·u
z GI
most of the rest

The editor maintains a notion of the current default window size. On
terminals that run at speeds greater than 1200 baud, the editor uses the full
terminal screen. On terminals slower than 1200 baud (most dialup lines are

O. You can make long lines very easily by using J to join together short lines.

5-24 SysS UNIX

(

vi CHAPTER 5

in this group) the editor uses 8 lines as the default window size. At 1200
baud the default is 16 lines.

The editor uses this size when it clears and refills the screen after a search
or other motion moves far from the edge of the current window. All the
commands that take a new window size as count often cause the screen to
be redrawn. If you anticipate this, but do not need as large a window as you
are currently using, you may wish to change the screen size by specifying
the new size before these commands. In any case, the number of lines
used on the screen expands if you move off the top with a - or similar
command or off the bottom with a command such as RETURN or ·o. The
window reverts to the last specified size the next time it is cleared and
refilled.

The scroll commands 'D and ·u likewise remember the amount of scroll last
specified. Initially they use half the basic window size. The simple insert
commands use a count to specify a repetition of the inserted text. Thus
10a+--ESC inserts a grid-like string of text. A few commands also use a
preceding count as a line or column number.

Except for a few commands that ignore any counts (such as 'R), the rest of
the editor commands use a count to indicate a simple repetition of their
effect. Thus Sw advances five words on the current line, while SAETURN

advances five lines. You can also give a count to the . command, which
repeats the last changing command. If you do dw and then 3., you delete
first one and then three words. You can then delete two more words with 2 ..

5.13.3 More File Manipulation Commands

The following table lists the file manipulation commands you can use when
you are in vi.

o. But not by a 'L, which just redraws the screen as it is.

Sys5 UNIX 5-25

CHAPTER 5

:w
:wq
:x
:ename
:e!
:e +name
:e +n
:e#
:wname
:wlname
:x,ywname
:rname
:r lcmd
:n
:nl
:n args
:ta tag

write back changes
write and quit
write (if necessary) and quit (same as ZZ).
edit file name
reedit, discarding changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in argument list
edit next file, discarding changes to current
specify new argument list
edit file containing tag tag, at tag

vi

All of these commands are followed by a CR or esc. The most basic
commands are :w and :e. A normal editing session on a single file ends
with a ZZ command. If you are editing for a long period of time you can give
:w commands occasionally after major amounts of editing, and then finish
with a ZZ. When you edit more than one file, you can finish with one with a
:w and start editing a new file by giving a :e command, or set autowrite and
use :n <file>.

If you make changes to the editor's copy of a file, but do not wish to write
them back, you must give an I after the command you would otherwise use;
this forces the editor to discard any changes you have made. Use this
carefully.

The :e command can be given a + argument to start at the end of the file,
or a +n argument to start at linen. Actually, n may be any editor command
not containing a space, usefully a scan like +!pat or +?pat. In forming new
names to the e command, you can use the character %, which is replaced
by the current file name, or the character #, which is replaced by the
alternate file name. The alternate file name is generally the last name you
typed other than the current file name. Thus if you try to do a :e and get a
diagnostic that you haven't written the file, you can give a :w command and
then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that bound
the range to be written using ·G, and giving these numbers after the : and
before thew, separated by ,'s (commas). For example, to write out lines 10
through 200 into a file called pip, issue the command r"~"

5-26 Sys5 UNIX

\ J ""'-· ~

(_-,

vi CHAPTER 5

:10,200w pipCR

You can also mark these lines with m and then use an address of the form
·x, ·y on the w command here.

You can read another file into the buffer after the current line by using the :r
command. You can also read in the output from a command; just use !cmd
instead of a file name. So, for example, to read in the output of the Is
command, type :r !Is.

If you wish to edit a set of files in succession, you can give all the names on
the command line, and then edit each one in turn using the command :n.
You can also respecify the list of files to be edited by giving the :n command
a list of file names, or a pattern to be expanded as you would have given it
in the initial vi command to the shell.

The :ta command is very useful for editing large programs. It utilizes a data
base of function names and their locations--which can be created by
programs such as ctags--to quickly find a function whose name you give. If
the :ta command requires the editor to switch files, then you must :w or
abandon any changes before switching. You can repeat the :ta command
without any arguments to look for the same tag again. (The tag feature is
not available in some v2 editors.)

5.13.4 More about Searching for Strings

When you search for strings with I and ? , the editor normally places you at
the next or previous occurrence of the string. But sometimes you want to
affect the lines between your current position and the next or previous
occurrence of the pattern, without affecting the line containing the pattern.
This is especially so if you are using an operator such as d, c or y. You can
give a search of the form I patl-n to refer to the n'th line before the next line
containing pat, or you can use + instead of - to refer to the lines after the
one containing pat. If you don't give a line offset, then the editor just affects
characters up to the match place, rather than whole lines; thus use "+O" to
affect to the line that matches.

You can have the editor ignore the case of words in the searches it does by
giving the command :se icCR. The command :se noiccR turns this off.

Strings given to searches may actually be regular expressions. If you do
not want or need this facility, you should

set nomagic

in your EXINIT. In this case, only the characters t and $ are special in
patterns. The character \ is also then special (as it is most everywhere in
the system), and may be used to get at the extended pattern matching
facility. Thus, with nomagic set, the character\ functions to turn on magic;

Sys5 UNIX 5-27

CHAPTER 5 vi

with magic set, \ turns it off. You must also use a \ before a literal I in a
forward scan or a ? in a backward scan, in any case. The following table
gives the extended forms when magic is set.

$

\<
\>
[str]
[rs tr]
[x-y]

at beginning of pattern, matches beginning of line
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between x and y

* matches any number of the preceding pattern, including 0

If you use nomagic mode, then the . [and * primitives are given with a
preceding \.

5.13.5 More about Input Mode

A number of characters can make corrections during input mode. These are
summarized in the following table.

· H deletes the last input character
·w deletes the last input word, defined as by b
erase your erase character, same as 'H !

kill your kill character, deletes the input on this line
escapes a following "Hand your erase and kill

esc ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
·o backtabs over autoindent
o·o kills all the autoindent
t'D same as o·o, but restores indent next line
·v quotes the next non-printing character into the file

The most usual way of making corrections during input mode is to type "H to
correct a single character, or to type one or more ·w·s to back over
incorrect words. If you use # as your erase character in the normal system,
it works like "H.

Your system kill character, normally (~1', ·x or ·u, erases all the input you
have given on the current line. In general, you can neither erase input back
around a line boundary nor erase characters that you did not insert with this
insertion command. To make corrections on the previous line after a new
line has been started you can hit ESC to end the insertion, move over and
make the correction, and then return to where you were. The command A,
which appends at the end of the current line, is often useful for continuing.

5-28 SysS UNIX

.(/

vi CHAPTER 5

If you wish to type in your erase or kill character (say # or @) then you must
precede it with a \, just as you would do at the normal system command
level. A more general way of typing non-printing characters into the file is to
precede them with a ·v. The ·v echoes as a r character on which the cursor
rests. This indicates that the editor expects you to type a control character.
In fact you may type any character and it will be inserted into the file at that
point.*

If you are using autoindent you can backtab over the indent that it supplies
by typing a ·o. This backs up to a shiftwidth boundary. This works only
immediately after the supplied autoindent.

When you are using autoindent you may wish to place a label at the left
margin of a line. This is easy: type r and then ·o. The editor moves the
cursor to the left margin for one line, and restore the previous indent on the
next. You can also type a O followed immediately by a ·o to kill all the indent
and not have it come back on the next line.

5.13.6 Upper Case only Terminals

If your terminal has only upper case, you can still use vi by using the normal
system convention for typing on such a terminal. Characters that you
normally type are converted to lower case, and you can type upper case
letters by preceding them with a \. The characters { } I - are not available
on such terminals, but you can escape them as \(\ t \) \! \'. These
characters are represented on the display in the same way they are typed.

5.13.7 Vi and Ex

Vi is actually one mode of editing within the editor ex. When you are
running vi you can escape to the line oriented editor of ex by giving the
command Q. All the : commands introduced above are available in ex.
Likewise, most ex commands can be invoked from vi using :. Just give
them without the : and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you get a
diagnostic and are left in the command mode of ex. You can then save
your work and quit, if you wish, by giving a command x after the ex prompt

0. • This is not quite true. The implementation of the editor does not allow the NULL C<il')
character to appear in files. Also the LF (linefeed or 'J) character is used by the editor to
separate lines in the file, so it cannot appear in the middle of a line. You can insert any
other character. however, if you wait for the editor to echo the 1 before you type the
character. In fact, the editor treats a following letter as a request for the corresponding
control character. This is the only way to type ·s or ·a, since the system normally uses
them to suspend and resume output and never gives them to the editor to process.

0. The 1 character you give does not echo until you type another key.

Sys5 UNIX 5-29

CHAPTER 5 vi

:, or you can reenter vi by giving ex a vi command.

Some tasks are easier in ex than in vi. Systematic changes in line oriented
material are particularly easy. You can read the advanced editing
documents for the editor ed to find out more about this style of editing.
Experienced users often mix their use of ex command mode and vi
command mode to speed the work they are doing.

5.13.8 Open Mode: Vi on Hardcopy Terminals and "Glass TTYs"

If you are on a hardcopy terminal or a terminal that does not have a cursor
that can move off the bottom line, you can still ·use the command set of vi,
but in a different mode. When you give a vi command, the editor tells you
that it is using open mode. This name comes from the open command in
ex, which is used to get into the same mode.

The only difference between visual mode and open mode is the way in
which the text is displayed.

In open mode the editor uses a single line window into the file, and moving
backward and forward in the file causes new lines to be displayed, always
below the current Hne. Two commands of vi i,york differently in open: z and
"R. The z command does not take parameters, but rather draws a window
of context around the current line and then returns you to the current line.

If you are on a hardcopy terminal, the "R command retypes the current line.
On such terminals, the editor normally uses two lines to represent the
current line. The first line is a copy of the line as you started to edit it, and
you work on the line below this line. When you delete characters, the editor
types a number of \'s to show you the characters that are deleted. The
editor also reprints the current line soon after such changes so that you can
see what the line looks like again.

This mode is sometimes useful on very slow terminals that can support vi in
the full screen mode. You can do this by entering ex and using an open
command.

5-30 Sys5 UNIX

(-

(~

INTRODUCTION TO THE SHELL CHAPTER 6

6. INTRODUCTION TO THE SHELL

The shell is a command programming language that provides an interface
to the UNIX operating system. Its features include control-flow primitives,
parameter passing, variables, and string substitution. Constructs such as
while, if then else, case, and for are available. Two-way communication
is possible between the shell and commands. String-valued parameters,
typically file names or flags, may be passed to a command. A return code
is set by commands that may be used to determine control-flow, and the
standard output from a command may be used as shell input.

The shell can modify the environment in which commands run. Input and
output can be redirected to files, and processes that communicate through
pipes can be invoked. Commands are found by searching directories in the
file system in a sequence that can be defined by the user. Commands can
be read either from the terminal or from a file which allows command
procedures to be stored for later use.

The shell is both a command language and a programming language that
provides an interface to the UNIX operating system. This volume describes,
with examples, the UNIX operating system shell. The "Simple Commands"
part of this section covers most of the everyday requirements of terminal
users. Some familiarity with the UNIX operating system is an advantage
when reading this section; refer to the section "BASICS FOR BEGINNERS".
The "Shell Procedures" part of this section describes those features of the
shell primarily intended for use within shell commands or procedures.
These include the control-flow primitives and string-valued variables
provided by the shell. A knowledge of a programming language would be
helpful when reading this section. The last part, "Keyword Parameters",
describes the more advanced features of the shell. See Table 5.A for a
defined listing of grammar words used in this section.

Throughout this section, each reference of the form name(1 M), name(7), or
name(8) refers to entries in the Sys5 UNIX V Administrator Reference
Manual. Other references to entries of the form name(N), where "N" is a
number (1 or 6) possibly followed by a letter, refer to entry name in section
N of the Sys5 UNIX V User Reference Manual. Entries where "N" is a
number (2 through 5) possibly followed by a letter, refer to entry name in
section N of the Sys5 UNIX V Programmer Reference Manual.

6.1 SIMPLE COMMANDS

Simple commands consist of one or more words separated by blanks. The
first word is the name of the command to be executed; any remaining words
are passed as arguments to the command. For example,

Sys5 UNIX 6-1

CHAPTER 6 INTRODUCTION TO THE SHELL

who

is a command that prints the names of users logged in. The command

Is -I

prints a list of files in the current directory. The argument -/ tells ls(1) to
print status information, size, and the creation date for each file.

6.1.1 Background Commands

To execute a command, the shell normally creates a new process and waits
for it to finish. A command may be run without waiting for it to finish. For
example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing "&" is an
operator that instructs the shell not to wait for the command to finish. To
help keep track of such a process, the shell reports its process number
following its creation. A list of currently active processes may be obtained
using the ps(1) command.

6.1.2 Input/Output Redirection

Most commands produce output to the standard output that is initially
connected to the terminal. This output may be directed to a file by the
notation ">"thus:

Is -I >file

The notation >file is interpreted by the shell and is not passed as an
argument to ls(1). If file does not exist, the shell creates it; otherwise, the
original contents of file are replaced with the output from ls(1). Output may
be appended to a file using the notation "> >" as follows:

Is -I >>file

In this case, file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the
terminal by the notation "<" thus:

WC <file

The command wc(1) reads its standard input (in this case redirected from
file) and prints the number of characters, words, and lines found. If only the
number of lines is required, then

WC -I <file

can be used.

6-2 Sys5 UNIX

(

INTRODUCTION TO THE SHELL CHAPTER 6

6.1.3 Pipelines and Filters

The standard output of one command may be connected to the standard
input of another by writing the "pipe" operator, indicated by I, between
commands as in

Is -llwc

Two or more commands connected in this way constitute a pipeline, and the
overall effect is the same as

Is -I >file; WC <file

except that no file is used. Instead the two processes are connected by a
pipe [see pipe(2)] and are run in parallel. Pipes are unidirectional, and
synchronization is achieved by halting wc(1) when there is nothing to read
and halting ls(1) when the pipe is full.

A filter is a command that reads its standard input, transforms it in some
way, and prints the result as output. One such filter, grep(1) selects from its
input those lines that contain some specified string. For example,

Is lgrep old

prints those lines, if any, of the output from Is that contain the string "old".
Another useful filter is sort(1). For example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

Is I grep old I wc -I

prints only the number of file names in the current directory containing the
string "old".

6.1.4 File Name Generation

Many commands accept arguments which are file names. For example,

Is -I main.c

prints only information relating to the tile main.c. The "Is - I" command
alone prints the same information about all files in the current directory.

The shell provides a mechanism for generating a list of file names that
match a pattern. For example,

Is -1 ·.c

generates as arguments to ls(1) all tile names in the current directory that
end in .c. The character "*" is a pattern that will match any string including

Sys5 UNIX 6-3

CHAPTER 6 INTRODUCTION TO THE SHELL

the null string. In general, patterns are specified as follows:

* Matches any string of characters including the null
string.

?

[...]

For example,

[a-z]*

Matches any single character.

Matches any one of the characters enclosed. A pair
of characters separated by a minus will match any
character lexically between the pair.

matches all names in the current directory beginning with one of the letters a
through z.

The input

/usr/fred/testi?

matches all names in the directory lusrlfredltest that consist of a single
character. If no file name is found that matches the pattern then the pattern
is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according
to some pattern. It may also be used to find files. For example,

echo /usr1fred/* /core

finds and prints the names of all core files in subdirectories of /usrlfred.
[The echo(1) command is a standard UNIX operating system command that
prints its arguments, separated by blanks.] This last feature can be
expensive, requiring a scan of all subdirectories of /usrlfred.

There is one exception to the general rules given for patterns. The
character "." at the start of a file name must be explicitly matched. The
input

echo*

will therefore echo all file names in the current directory not beginning with
".''. The input

echo.*

will echo all those file names that begin with "." . This avoids inadvertent
matching of the names ".''and" . .'' which mean "the current directory" and
"the parent directory", respectively. [Notice that ls(1) suppresses
information for the files "." and" • .''.]

6-4 Sys5 UNIX

/

INTRODUCTION TO THE SHELL

6.1.5 Quoting

Characters that have a special meaning to the shell, such as

< > * ? I &

CHAPTER 6

are called metacharacters. A complete list of metacharacters is given in
Table 5.B. Any character preceded by a\ is quoted and loses its special
meaning, if any. The\ is elided so that

echo\?

will echo a single?, and

echo\\

will echo a single \. To allow long strings to be continued over more than
one line, the sequence \new line (or RETURN) is ignored. The \ is
convenient for quoting single characters. When more than one character
needs quoting, the above mechanism is clumsy and error prone. A string of
characters may be quoted by enclosing the string between single quotes.
For example,

echo xx'****'xx

will echo

xx****xx

The quoted string may not contain a single quote but may contain new lines
which are preserved. This quoting mechanism is the most simple and is
recommended for casual use. A third quoting mechanism using double
quotes is also available and prevents interpretation of some but not all
metacharacters. Details of quoting are described under "Evaluation and
Quoting" in part "Keyword Parameters".

6.1.6 Prompting by the Shell

When the shell is used from a terminal, it will issue a prompt to the terminal
user indicating it is ready to read a command from the terminal. By default,
this prompt is "$ ". The prompt may be changed by entering

PS1 = newprompt

This sets the prompt to be the string "newprompt". If a new line is typed
and further input is needed, the shell will issue the prompt "> ".
Sometimes this can be caused by mistyping a quote mark. If it is
unexpected, then an interrupt (DEL) will return the shell to read another
command. The other prompt(">") may be changed by entering:

(PS2=more

Sys5 UNIX 6-5

CHAPTER 6 INTRODUCTION TO THE SHELL

6.1. 7 The Shell and Login

Following the user's login(1), the shell is called to read and execute
commands typed at the terminal. If the user's login directory contains the
file .profile, then it is assumed to contain commands and is read
immediately by the shell before reading any commands from the terminal.

6.1.8 Summary

Is Prints the names of files in the current directory.

Is >file Puts the output from Is into file.

Is I wc - I Prints the number of files in the current directory.

Is I grep old Prints those file names containing the string "old".

Is I grep old I wc -I Prints the number of files whose name contains the
string "old".

cc pgm.c & Runs cc in the background.

6.2 SHELL PROCEDURES

The shell may be used to read and execute commands contained in a file.
For example, the following call

sh file [args ...]

calls the shell to read commands from file. Such a file call is called a
"command procedure" or "shell procedure". Arguments may be supplied
with the call and are referred to in file using the positional parameters $1 ,
$2, For example, if the file wg contains

who I grep $1

then the call

sh wg fred

is equivalent to

who I grep fred

All UNIX operating system files have three independent attributes (often
called "permissions"), read, write, and execute (rwx). The UNIX operating
system command chmod(1) may be used to make a file executable. For
example,

chmod +x wg

will ensure that the file wg has execute status (permission). Following this,
the command

wg fred

6-6 Sys5 UNIX

INTRODUCTION TO THE SHELL CHAPTER 6

(is equivalent to the call

(

sh wg fred

This allows shell procedures and programs to be used interchangeably. In
either case, a new process is created to execute the command.

As well as providing names for the positional parameters, the number of
positional parameters in the call is available as $#. The name of the file
being executed is available as $0.

A special shell parameter $* is used to substitute for all positional
parameters except $0. A typical use of this is to provide some default
arguments, as in,

nroff - T 450 -cm $*

which simply prepends some arguments to those already given.

6.2. 1 Control Flow-for

A frequent use of shell procedures is to loop through the arguments ($1, $2,
•••) executing commands once for each argument. An example of such a
procedure is tel that searches the file lusr!lib!telnos that contains lines of the
form

fred mh0123
bert mh0789

The text of tel is

for i
do

grep $i /usr/lib/telnos
done

The command

tel fred

prints those lines in lusr!lib/telnos that contain the string ·'fred".

The command

tel fred bert

prints those lines containing "fred" followed by those for '·bert".

The for loop notation is recognized by the shell and has the general form

Sys5 UNIX 6-7

CHAPTER 6

for name in w1 w2
do

command-list
done

INTRODUCTION TO THE SHELL

A command-list is a sequence of one or more simple commands separated
or terminated by a new line or a semicolon. Furthermore, reserved words
like do and done are only recognized following a new line or semicolon. A
name is a shell variable that is set to the words wt w2 ... in turn each time
the command-list following do is executed. If "in w1 w2 ... "is omitted, then
the loop is executed once for each positional parameter; that is, in $* is
assumed.

Another example of the use of the for loop is the create command whose
text is

for i do >$i; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The
notation >file may be used on its own to create or clear the contents of a
file. Notice also that a semicolon (or new line) is required before done.

6.2.2 Control Flow-case

A multiple way (choice) branch is provided for by the case notation. For
example,

case$# in
1) cat >>$1 ;;
2) cat > >$2 <$1 ;;
*)echo 'usage: append [from] to';;

esac

is an append command. (Note the use of semicolons to delimit the cases.)
When called with one argument as in

append file

$# is the string ''1 '', and the standard input is appended (copied) onto the
end of file using the cat(1) command.

append file1 file2

appends the contents of file1 onto file2. If the number of arguments
supplied to append is other than 1 or 2, then a message is printed indicating
proper usage.

6-8 Sys5 UNIX

(

(

(

INTRODUCTION TO THE SHELL

The general form of the case command is

case word in
pattern) command-list;;

esac

CHAPTER 6

The shell attempts to match word with each pattern in the order in which
the patterns appear. If a match is found, the associated command-list is
executed and execution of the case is complete. Since * is the pattern that
matches any string, it can be used for the default case.

Caution: No check is made to ensure that only one pattern matches the
case argument.

The first match found defines the set of commands to be executed. In the
example below, the commands following the second "*" will never be
executed since the first "*" executes everything it receives.

case$# in
*) ... ;;
*) ''

esac

Another example of the use of the case construction is to distinguish
between different forms of an argument. The following example is a
fragment of a cc(1) command.

for i
do

case $i in
-[ocs]) ... ;;
-*) echo ·unknown flag $i' ;;
*.c) 1lib/cO $i ... ;;
*) echo ·unexpected argument $i · ;;

esac
done

To allow the same commands to be associated with more than one pattern,
the case command provides for alternative patterns separated by a I . For
example,

case $i in
-xl-y) ...

esac

is equivalent to

SysS UNIX 6-9

CHAPTER 6 INTRODUCTION TO THE SHELL

case $i in
-[xy]) ...

esac

The usual quoting conventions apply so that

case $i in
\?) ...

will match the character?.

6.2.3 Here Documents

The shell procedure tel described under "A. Control Flow-for" in this
section uses the file !usrllibltelnos to supply the data for grep(1). An
alternative is to include this data within the shell procedure as a here
document, as in,

for i
do

grep $i <<!

fred mh0123
bert mh0789

!
done

In this example, the shell takes the lines between < < ! and ! as the
standard input for grep(1). The string "!" is arbitrary. The document is being
terminated by a line that consists of the string following < < .

Parameters are substituted in the document before it is made available to
grep(1) as illustrated by the following procedure called edg.

ed $3 <<%
g1$1/s//$2/g
w
O/o

The call

edg string1 string2 file

is then equivalent to the command

6-10 Sys5 UNIX

(_

INTRODUCTION TO THE SHELL

ed file<<%
g/string1/s//string2/g
w
O/o

CHAPTER 6

and changes all occurrences of "string1" in file to "string2". Substitution can
be prevented using \ to quote the special character $ as in

ed $3 <<+
1,\$s/$1/$2/g
w
+
[This version of edg is equivalent to the first except that ed(1) will print a ? if
there are no occurrences of the string $1 .]

Substitution within a here document may be prevented entirely by quoting
the terminating string, for example,

grep $i <<#

The document is presented without modification to grep. If parameter
substitution is not required in a here document, this latter form is more
efficient.

6.2.4 Shell Variables

The shell provides string-valued variables. Variable names begin with a
letter and consist of letters, digits, and underscores. Variables may be given
values by writing

user=fred box=mOOO acct=mhOOOO

which assigns values to the variables user, box, and acct. A variable may
be set to the null string by entering

null=

The value of a variable is substituted by preceding its name with $; for
example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently
used strings.

{. For example,

Sys5 UNIX 6-11

CHAPTER 6

b= /usr/fred/bin
mv file $b

INTRODUCTION TO THE SHELL

will move the file from the current directory to the directory /usr/fred/bin. A
more general notation is available for parameter (or variable) substitution, as
in,

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For
example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output of ps(1) to the file /tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.

Except for $?, the following are set initially by the shell.

$? The exit status (return code) of the last command
executed as a decimal string. Most commands return
a zero exit status if they complete successfully;
otherwise, a nonzero exit status is returned. Testing
the value of return codes is dealt with later under if
and while commands.

$#

$$

$!

$-

6-12

The number of positional parameters in decimal.
Used, for example, in the append command to check
the number of parameters.

The process number of this shell in decimal. Since
process numbers are unique among all existing
processes, this string is frequently used to generate
unique temporary file names. For example,

ps a > /tmp/ps$$

rm 1tmp/ps$$

The process number of the last process run in the
background (in decimal).

The current shell flags, such as -x and -v.

SysS UNIX

(

INTRODUCTION TO THE SHELL CHAPTER 6

Some variables have a special meaning to the shell and should be avoided
for general use.

$MAIL

$HOME

$PATH

SysS UNIX

When used interactively, the shell looks at the file
specified by this variable before it issues a prompt. If
the specified file has been modified since it was last
looked at, the shell prints the message "you have
mail" before prompting for the next command. This
variable is typically set in the file .profile in the user's
login directory. For example:

MAIL= /usr/mail/fred

The default argument for the cd(1) command. The
current directory is used to resolve file name
references that do not begin with a I and is changed
using the cd command.

For example,

cd /usr/fred/bin

makes the current directory lusrlfredlbin. Then

cat wn

will print on the terminal the file wn in this directory.
The command cd(1) with no argument is equivalent
to

cd $HOME

This variable is also typically set in the user's login
profile.

A list of directories containing commands (the search
path). Each time a command is executed by the
shell, a list of directories is searched for an
executable file. If $PATH is not set, the current
directory, /bin, and lusrlbin are searched by default.
Otherwise, $PA TH consists of directory names
separated by:. For example,

PATH= :/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string
before the first :), /usrlfredlbin, /bin, and lusr!bin are
to be searched in that order. In this way, individual
users can have their own 'private' commands that are
accessible independently of the current directory. If

6-13

CHAPTER 6

$PS1

$PS2

$IFS

6.2.5 Test Command

INTRODUCTION TO THE SHELL

the command name contains a I, this directory search
is not used; a single attempt is made to execute the
command.

The primary shell prompt string, by default, "$ ".

The shell prompt when further input is needed, by
default, "> ".

The set of characters used by blank interpretation.
(See "D. Evaluation and Quoting" in part "Keyword
Parameters".)

The test command is intended for use by shell programs. For example,

test -f file

returns zero exit status if file exists and nonzero exit status otherwise. In
general, test evaluates a predicate and returns the result as its exit status.
Some of the more frequently used test arguments are given below [see
test(1) for a complete specification].

tests

test -f file

test -'-r file

test -w file

test -d file

6.2.6 Control Flow-while

true if the argument s is not the null string

true if file exists

true if file is readable

true if file is writable

true if file is a directory

The actions of the for loop and the case branch are determined by data
available to the shell. A while or until loop and an if then else branch are
also provided, whose actions are determined by the exit status returned by
commands.

A while loop has the general form

while command-list1
do

command-list2
done

The value tested by the while command· is the exit status of the last simple
command following while. Each time round the loop command-list1 is
executed; if a zero exit status is returned, then command-list2 is executed; '"-

6-14 Sys5 UNIX

(

INTRODUCTION TO THE SHELL

otherwise, the loop terminates. For example,

while test $1
do

shift
done

is equivalent to

for i
do

done

CHAPTER 6

The shift command is a shell command that renames the positional
parameters $2, $3, ... as $1, $2, ... and loses $1.

Another kind of use for the while/until loop is to wait until some external
event occurs and then run some commands. In an until loop, the
termination condition is reversed. For example,

until test -f file
do

sleep 300
done
commands

will loop until file exists. Each time round the loop, it waits for 5 minutes
(300 seconds) before trying again. (Presumably, another process will
eventually create the file.)

6.2. 7 Control Flow-if

Also available is a general conditional branch of the form,

if command-list
then

command-list
else

command-list
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test

Sys5 UNIX 6-15

CHAPTER 6 INTRODUCTION TO THE SHELL

for the existence of a file as in

if test - f file
then

process file
else

do something else
fi

An example of the use of if, case, and for constructions is given in "I. The
Man Command" in part "Shell Procedures".

A multiple test if command of the form

if ...
then

else

ti

if ...
then

else

ti

if ...

ti

may be written using an extension of the if notation as,

if ...
then

elif ...
then

elif ...

ti

The touch command changes the "last modified" time for a list of files. The
command may be used in conjunction with make(1) to force recompilation of
a list of files.

The following example is the touch command:

6-16 Sys5 UNIX

(

(

INTRODUCTION TO THE SHELL

flag=
for i
do

case $i in
-c) flag=N ;;
*) if test -t $i

then

esac
done

In $i junk$$
rm junk$$

elif test $flag
then

echo file \'$i\' does not exist
else

>$i
fi ;;

CHAPTER 6

The -c flag is used in this command to force subsequent files to be created
if they do not already exist. Otherwise, if the file does not exist, an error
message is printed. The shell variable flag is set to some non-null string if
the -c argument is encountered. The commands

In ... ; rm ...

make a link to the file and then remove it.

The sequence

if command1
then

command2
ti

may be written

command1 && command2

Conversely,

command1 11 command2

executes command2 only if command1 fails. In each case, the value
returned is that of the last simple command executed.

Command Grouping

Commands may be grouped in two ways,

({ command-list ; }

Sys5 UNIX 6-17

CHAPTER 6 INTRODUCTION TO THE SHELL

and

(command-list)

The first form, command-list, is simply executed. The second form
executes command-list as a separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of
the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

6.2.8 Debugging Shell Procedures

The shell provides two tracing mechanisms to help when debugging shell
procedures. The first is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are
read. It is useful to help isolate syntax errors. It may be invoked without
modifying the procedure by entering

sh -v proc ...

where proc is the name of the shell procedure. This flag may be used in
conjunction with the -n flag which prevents execution of subsequent
commands. (Note that typing "set -n" at a terminal will render the terminal
useless until an end-of-file is typed.)

The command

set -x

will produce an execution trace with flag - x. Following parameter
substitution, each command is printed as it is executed. (Try the above at
the terminal to see the effect it has.) Both flags may be turned off by typing

set -

and the current setting of the shell flags is available as $- .

6.2.9 The "man" Command

The following discussion of the man command assumes the existence of the
document preparation fe9tures available as an option on the UNIX system.

6-18 Sys5 UNIX

(

(

INTRODUCTION TO THE SHELL CHAPTER 6

The following is the man command which is used to print sections of the
Sys5 UNIX V User Reference Manual. It is called by entering

man sh
man -t ed
man 2 fork

In the first call, the manual section for sh is printed. Since no section is
specified, section 1 is used. The second call will typeset (-t option) the
manual section for ed. The last call prints the fork manual page from
section 2 of the manual.

6.3 KEYWORD PARAMETERS

Shell variables may be given values by assignment or when a shell
procedure is invoked. An argument to a shell procedure of the form
name= value that precedes the command name causes value to be
assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to fred. The -k flag causes arguments
of the form name= value to be interpreted in this way anywhere in the
argument list. Such names are sometimes called keyword parameters. If
any arguments remain, they are available as positional parameters $1, $2,

The set command may also be used to set positional parameters from
within a procedure.

For example,

set - *

will set $1 to the first file name in the current directory, $2 to the next, etc.
Note that the first argument, - , ensures correct treatment when the first file
name begins with a - .

6.3.1 Parameter Transmission

When a shell procedure is invoked, both positional and keyword parameters
may be supplied with the call. Keyword parameters are also made available
implicitly to a shell procedure by specifying in advance that such
parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is
invoked, copies are made of . all exportable variables for use within the
invoked procedure. Modification of such variables within the procedure does

Sys5 UNIX 6-19

CHAPTER 6 INTRODUCTION TO THE SHELL

not affect the values in the invoking shell. It is generally true of a shell
procedure that it may not modify the state of its caller without an explicit
request on the part of the caller. (Shared file descriptors are an exception to
this rule.)

Names whose value is intended to remain constant may be declared
readonly. The form of this command is the same as that of the export
command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

6.3.2 Parameter Substitution

If a shell parameter is not set, then the null string is substituted for it. For
example, if the variable d is not set,

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d-.}

which will echo the value of the variable d if it is set and "."otherwise. The
default string is evaluated using the usual quoting conventions so that

echo ${d- '*'}

will echo* if the variable dis not set. Similarly,

echo ${d-$1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A
variable may be assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set, it will be set to the string "." . (The notation
${ ... = ... } is not available for positional parameters.)

If there is no sensible default, the notation

echo ${d?message}

will echo the value of the variable d if it has one; otherwise, message is
printed by the shell and execution of the shell procedure is abandoned. If

6-20 Sys5 UNIX

.<f'·. '

(

(

(

INTRODUCTION TO THE SHELL CHAPTER 6

message is absent, a standard message is printed. A shell procedure that
requires some parameters to be set might start as follows:

: ${user?} ${acct?} ${bin?}

Colon (:) is a command built into the shell and does nothing once its
arguments have been evaluated. If any of the variables user, acct, or bin
are not set, the shell will abandon execution of the procedure.

6.3.3 Command Substitution

The standard output from a command can be substituted in a similar way to
parameters. The command pwd(1) prints on its standard output the name
of the current directory. For example, if the current directory is /usr!fredlbin,
the command

d='pwd'

is equivalent to

d=/usr/fred/bin

The entire string between single quotes (' .. .') is taken as the command to be
executed and is replaced with the output from the command. The command
is written using the usual quoting conventions except that a ' must be
escaped using a \.

For example,

Is 'echo "$1 '"

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter substitution
occurs (including here documents), and the treatment of the resulting text is
the same in both cases. This mechanism allows string processing
commands to be used within shell procedures. An example of such a
command is basename, which removes a specified suffix from a string. For
example,

basename main.c .c

will print the string "main". Its use is illustrated by the following fragment
from a cc(1) command.

SysS UNIX 6-21

CHAPTER 6 INTRODUCTION TO THE SHELL

case $A in

*.c) B='basename $A .c'

esac

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples.

• for i in 'Is -t'; do ...

The variable i is set
to the names of files in time order,
most recent first.

• set 'date'; echo $6 $2 $3, $4

will print, e.g.,
1977 Nov 1, 23:59:59

6.3.4 Evaluation and Quoting

The shell is a macro processor that provides parameter substitution,
command substitution, and file name generation for the arguments to
commands. This section discusses the order in which these evaluations
occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in Table 5.A.
Before a command is executed, the following substitutions occur:

1. Parameter substitution, e.g., $user

2. Command substitution, e.g., 'pwd'

Only one evaluation occurs so that if, for example, the value of the
variable X is the string "$y" then

echo $X

will echo "$y".

3. Blank interpretation

6-22

Following the above substitutions, the resulting characters are broken
into nonblank words (blank interpretation). For this purpose, 'blanks'
are the characters of the string "$IFS". By default, this string
consists of blank, tab, and newline. The null string is not regarded as
a word unless it is quoted. For example,

echo --

Sys5 UNIX

- ____ /

(

(

(

INTRODUCTION TO THE SHELL CHAPTER 6

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to
the null string.

4. File name generation

Each word is then scanned for the file pattern characters *, ? , and
[••.]; and an alphabetical list of file names is generated to replace the
word. Each such file name is a separate argument.

The evaluations just described also occur in the list of words associated with
a for loop. Only substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using\ and-... -, a third
quoting mechanism is provided using double quotes. Within double quotes,
parameter and command substitution occurs; but file name generation and
the interpretation of blanks does not.

The following characters have a special meaning within double quotes and
may be quoted using \.

$ parameter substitution
command substitution
ends the quoted string

\ quotes the special characters $ ' " \

For example,

echo "$x"

will pass the value of the variable x as a single argument to echo. Similarly,

echo"$*"

will pass the positional parameters as a single argument and is equivalent to

echo ''$1 $2

The notation $@ is the same as $* except when it is quoted. Inputting

echo"$@"

will pass the positional parameters, unevaluated, to echo and is equivalent
to

echo "$1 " "$2" ...

The following illustration gives, for each quoting mechanism, the shell
metacharacters that are evaluated.

metacharacter

Sys5 UNIX 6-23

CHAPTER 6 INTRODUCTION TO THE SHELL

\ $ *

I n n n n n t
I y n n t n n .. I y y n y t n

t terminator
y interpreted
n not interpreted

In cases where more than one evaluation of a string is required, the built-in
command eval may be used. For example, if the variable X has the value
"$y" and if y has the value "pqr", then

eval echo $X

will echo the string "pqr".

In general, the eval command evaluates its arguments (as do all
commands) and treats the result as input to the shell. The input is read and
the resulting command(s) executed. For example,

wg= 'eval who lgrep'
$wg fred

is equivalent to

who I grep fred

In this example, eval is required since there is no interpretation of
metacharacters, such as l following substitution.

6.3.5 Error Handling

The treatment of errors detected by the shell depends on the type of error
and on whether the shell is being used interactively. An interactive shell is
one whose input and output are connected to a terminal [as determined by
gtty(2)]. A shell invoked with the -i flag is also interactive.

Execution of a command (see also "G. Command Execution") may fail for
any of the following reasons:

6-24

• Input/output redirection may fail. For example, if a file does not exist
or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus error"
or "memory fault" signal.

Sys5 UNIX

(

(__

(-

INTRODUCTION TO THE SHELL CHAPTER 6

• The command terminates normally but returns a nonzero exit status.

In all of these cases, the shell will go on to execute the next command.
Except for the last case, an error message will be printed by the shell. All
remaining errors cause the shell to exit from a command procedure. An
interactive shell will return to read another command from the terminal.
Such errors include the following:

• Syntax errors, e.g., if ... then ... done

• A signal such as interrupt. The shell waits for the current command,
if any, to finish execution and then either exits or returns to the
terminal.

• Failure of any of the built-in commands such as cd(1).

The shell flag -e causes the shell to terminate if any error is detected.
The following is a list of the UNIX operating system signals:

1 hangup

2 interrupt

3* quit

4* illegal instruction

5* trace trap

6* IOT instruction

7* EMT instruction

8* floating point exception

9 Kill (cannot be caught or ignored)

10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it

14 alarm clock

15 software termination [from kill(1)]

The UNIX operating system signals marked with an asterisk "*" as shown in
the list produce a core dump if not caught. However, the shell itself ignores
quit which is the only external signal that can cause a dump. The signals in
this list of potential interest to shell programs are 1, 2, 3, 14, and 15.

Sys5 UNIX 6-25

CHAPTER 6 INTRODUCTION TO THE SHELL

6.3.6 Fault Handling

Shell procedures normally terminate when an interrupt is received from the
terminal. The trap command is used if some cleaning up is required, such
as removing temporary files. For example,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt); and if this signal is received, it
will execute the following commands:

rm /tmp/ps$$; exit

The exit is another built-in command that terminates execution of a shell
procedure. The exit is required; otherwise, after the trap has been taken,
the shell will resume executing the procedure at the place where it was
interrupted.

UNIX operating system signals can be handled in one of three ways.

1. They can be ignored, in which case the signal is never sent to the
process.

2. They can be caught, in which case the process must decide what
action to take when the signal is received.

3. They can be left to cause termination of the process without it having
to take any further action. , /

If a signal is being ignored on entry to the shell procedure, for example, by
invoking it in the background (see "G. Command Execution"), trap
commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command
illustrated below:

6-26 Sys5 UNIX

(

INTRODUCTION TO THE SHELL

flag=
trap 'rm -f junk$$; exit' 1 2 3 15
for i
do

case $i in
-c) flag= N ;;
*) if test -f $i

then
In $i junk$$; rm junk$$

elif test $flag
then

echo file \'$i\' does not exist
else

>$i
fi ;;

esac
done

CHAPTER 6

The cleanup action is to remove the file junk$$. The trap command
appears before the creation of the temporary file; otherwise, it would be
possible for the process to die without removing the file.

Since there is no signal 0 in the UNIX operating system, it is used by the
shell to indicate the commands to be executed on exit from the shell
procedure.

A procedure may, itself, elect to ignore signals by specifying the null string
as the argument to trap. The following:

trap - - 1 2 3 15

is a fragment taken from the nohup(1) command which causes the UNIX
operating system HANGUP, INTERRUPT, QUIT, and SOFTWARE
TERMINATION signals to be ignored both by the procedure and by invoked
commands.

Traps may be reset by entering

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of
the current values of traps may be obtained by writing

trap

The scan procedure is an example of the use of trap where there is no exit
in the trap command. The scan takes each directory in the current
directory, prompts with its name, and then executes commands typed at the
terminal until an end of file or an interrupt is received. Interrupts are ignored

SysS UNIX 6-27

CHAPTER 6 INTRODUCTION TO THE SHELL

while executing the requested commands but cause termination when scan
is waiting for input. The scan procedure follows:

d='pwd'
for i in*
do

if test -d $d/$i
then

ti
done

cd $d/$i
while echo "$i:" && trap exit 2 && read x
do

trap: 2
eval$x

done

The read x is a built-in command that reads one line from the standard input
and places the result in the variable x. It returns a nonzero exit status if
either an end-of-file is read or an interrupt is received.

6.3.7 Command Execution

To run a command (other than a built-in), the shell first creates a new
process using the system call fork(2). The execution environment for the
command includes input, output, and the states of signals and is established
in the child process before the command is executed. The built-in command
exec is used in rare cases when no fork is required and simply replaces the
shell with a new command. For example, a simple version of the nohup
command looks like

trap· · 1 2 3 15
exec$*

The trap turns off the signals specified so that they are ignored by
subsequently created commands, and exec replaces the shell by the
command specified.

Most forms of inputioutput redirection have already been described. In the
following, word is only subject to parameter and command substitution. No
file name generation or blank interpretation takes place so that, for example,

echo ... >*.c

will write its output into a file whose name is *.c. Input/output specifications
are evaluated left to right as they appear in the command. Some
input/output specifications are as follows: " ,

6-28 Sys5 UNIX

(~

(

INTRODUCTION TO THE SHELL CHAPTER 6

>word

>>word

<word

<<word

>&digit

<&digit

<&­
>&-

The standard output (file descriptor 1) is sent to the
file word which is created if it does not already exist.

The standard output is sent to file word. If the. file
exists, then output is appended (by seeking to the
end); otherwise, the file is created.

The standard input (file parameter 0) is taken from
the file word.

The standard input is taken from the lines of shell
input that follow up to but not including a line
consisting only of word. If word is quoted, no
interpretation of the document occurs. If word is not
quoted, parameter and command substitution occur
and \ is used to quote the characters \, $, ', and the
first character of word. In the latter case, \newline is
ignored (e.g., quoted strings).

The file descriptor digit is duplicated using the system
call dup(2), and the result is used as the standard
output.

The standard input is duplicated from file descriptor
digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit in which case the file
descriptor created is that specified by the digit instead of the default O or 1.
For example,

... 2>file

runs a command with message output (file descriptor 2) directed to file.
Another example,

... 2>&1

runs a command with its standard output and message output merged.
(Strictly speaking, file descriptor 2 is created by duplicating file descriptor 1;
but the effect is usually to merge the two streams.)

The environment for a command run in the background such as

list • .c I lpr &

is modified in two ways. First, the default standard input for such a
command is the empty file ldev/null. This prevents two processes (the
shell and the command), which are running in parallel, from trying to read

Sys5 UNIX 6-29

CHAPTER 6 INTRODUCTION TO THE SHELL

the same input. Chaos would ensue if this were not the case. For example,

ed file &

would allow both the editor and the shell to read from the same input at the
same time.

The other modification to the environment of a background command is to
turn off the QUIT and INTERRUPT signals so that they are ignored by the
command. This allows these signals to be used at the terminal without
causing background commands to terminate. For this reason, the UNIX
operating system convention for a signal is that if it is set to 1 (ignored) then
it is never changed even for a short time. Note that the shell command
trap has no effect for an ignored signal.

6.3.8 Invoking the Shell

The following flags are interpreted by the shell when it is invoked. If the
first character of argument zero is a minus, commands are read from the file
.profile.

-c string

-s

-i

6-30

lf the -c flag is present, then commands are read
from string .

If the - s flag is present or if no arguments remain,
commands are read from the standard input. Shell
output is written to file descriptor 2.

If the - i flag is present or if the shell input and
output are attached to a terminal [as told by getty(8)],
this shell is interactive. In this case, TERMINATE is
ignored (so that kill 0 does not kill an interactive
shell, and INTERRUPT is caught and ignored (so
that wait is interruptible). In all cases, QUIT is
ignored by the shell.

SysS UNIX

'- /

INTRODUCTION TO THE SHELL CHAPTER 6

(TABLE 6.A

GRAMMAR

item word
input-output
name= value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

pipeline: command
pipeline I command

(. andor: pipeline
andor && pipeline
andor 11 pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: >word
<word
>>word
<<word

file word
& digit
&-

case-part: pattern) command-list ; ;

pattern: word
pattern I word c- else-part: elif command-list then command-list else-part
else command-list

Sys5 UNIX 6-31

CHAPTER 6

empty:

word:

name

digit:

6-32

INTRODUCTION TO THE SHELL

empty

sequence of nonblank characters

sequence of letters, digits, or underscores
starting with a letter

0123456789

Sys5 UNIX

(

(

(

INTRODUCTION TO THE SHELL CHAPTER 6

TABLE 6.B

METACHARACTERS AND RESERVED WORDS

(a) syntactic:

pipe symbol

&& 'andf' symbol

II 'orf' symbol

command separator

" case delimiter

& background commands

() command grouping

< input redirection

<< input from a here document

> output creation

>> output append

(b) patterns:

* match any character(s) including none

? match any single character

[...] match any of the enclosed characters

(c) substitution:

${ ... } substitute shell variable

' ' substitute command output

(d) quoting:

\ quote the next character

quote the enclosed characters except for the ,

quote the enclosed characters except for the $, ' ,\,

and"

(e) reserved words:

Sys5 UNIX 6-33

CHAPTER 6

if then else elif fi
case in esac
for while until do done
{ }(] test

6-34

INTRODUCTION TO THE SHELL

Sys5 UNIX

(

(

csh CHAPTER 7

7. csh

7.1 The Basic Notion of Commands

A shell in UNIX acts mostly as a medium through which other commands are
invoked. While it has a set of built-in commands, which it performs directly,
most useful commands are, in fact, external to the shell. The shell is thus
distinguished from the command interpreters of other systems both by the
fact that it is just a user program, and by the fact that it is used almost
exclusively as a mechanism for invoking other programs.

Commands in the UNIX system expect a list of strings or words as
arguments. Thus the command

mail bill

consists of two words. The first word, 'mail', names the command to be
executed, in this case the mail program, which sends messages to other
users. The shell uses the name of the command in attempting to run it. It
looks in a number of directories for a file with the name mail and expects
the file called "mail" to contain the mail program.

The rest of the words of the command are given to the command itself to
execute. In this case the word bill is also specified; this is interpreted by the
mail program to be the name of a user to whom mail is to be sent.

For example, Chris can send mail to Bill as follows.

°lo mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Chris
°lo

Here Chris typed a message to send to bill and ended this message with a
control-d, which sent an end-of-file to the mail program. The mail program
then transmitted the message. The characters '% ' (per cent sign followed
by space) were printed before and after the mail command by the shell to
indicate that the shell was awaiting input.

After typing the '% ' prompt, the shell reads command input from the
terminal. Chris typed a complete command 'mail bill'. The shell then
executed the mail program with argument bill and went dormant waiting for it
to complete. The mail program then read input from the terminal until Chris
signalled an end-of-file, after which the shell noticed that mail had
completed. It signaled Chris that it was ready to read from the terminal
again by printing another '% ' prompt.

Sys5 UNIX 7-1

CHAPTER 7 csh

This is the essential pattern of all interaction with UNIX through the shell. A
complete command is typed at the terminal, the shell executes the
command and when this execution completes, the shell prompts for a new
command. If you run the editor for an hour, the shell will patiently wait for
you to finish editing and obediently prompt you again whenever you finish
editing.

7.2 Flag Arguments

A useful notion in UNIX is that of a flag argument. While many arguments to
commands specify file names or user namel:l, some arguments specify
optional capabilities of commands. By convention, such arguments begin
with the character ·-·. Thus the command

Is

produces a list of the files in the current directory. The option-sis the size
option, and

ls-s

causes Is to also give, for each file, the size of the file in blocks of 1024
characters. The manual page for each command in the Plexus Sys5 UNIX

Programmer's Reference Manual gives the available options for each
command. The Is command has many useful and interesting options. Most
other commands have either no options or only one or two options. It is
hard to remember options of commands that are not used very frequently,
so most UNIX utilities perform only one or two functions rather than having a
large number of hard-to-remember options.

7.3 Output to Files

The concepts of standard input and standard output are very important in
UNIX. The default for both is the terminal; this means that unless you tell UNIX
otherwise, UNIX expects to receive input for its commands from the terminal
and send output of commands to the terminal. But often you want to read
input from or write output to files rather than simply taking input and output
from the terminal. The shell provides simple ways to accomplish this.

Thus suppose we wish to save the current date in a file called 'now'. The
command

date

prints the current date on our terminal. This is because our terminal is the
default standard output for the date command and the date command prints
the date on its standard output. The shell lets us redirect the standard
output of a command through a notation using the metacharacter '> · and
the name of the file where output is to be placed. Thus the command

7-2 Sys5 UNIX

(

(

csh CHAPTER 7

date> now

runs the date command such that its standard output is the file 'now' rather
than our terminal. Thus this command places the current date and time in
the file 'now'. Note that the date command is unaware that its output is
going to a file rather than to our terminal. Date sends its results to standard
output, however that standard output is currently defined--terminal or file or
other device or whatever. The shell performed this redirection before the
command began executing.

Note also that the file 'now' need not have existed before the date command
was executed; the shell would have created the file if it did not exist. And if
the file did exist? If it had existed previously, these previous contents would
have been discarded! AC-shell option noclobber exists to prevent this from
happening accidentally; it is discussed in section 2.2.

7.4 Metacharacters in the Shell

The shell has a large number of special characters (like '> ') that indicate
special functions. We say that these notations have syntactic and semantic
meaning to the shell. In general, most characters that are neither letters nor
digits have special meaning to the shell. We shall shortly learn a means of
quotation, which allows us to create words that contain metacharacters and
to thus work without constantly worrying about whether certain characters
are metacharacters.

Note that the C-shell is only reading input when it has prompted with '% '.
Thus metacharacters normally have effect only then. So, for example, we
need not worry about placing shell metacharacters in a letter we are sending
via mail.

7.5 Input from Files; Pipelines

We learned above how to route the standard output of a command to a file.
We can also route the standard input of a command from a file. This is not
often necessary, however, since most commands will read from a file name
given as argument.

For example, we can give the command

sort< data

to run the sort command with standard input from the file 'data'. But we
would more likely say

sort data

and let the sort command open the file 'data' for input itself, since this is less
to type.

Sys5 UNIX 7-3

CHAPTER 7 csh

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did
not redirect the standard input, it would sort lines as we typed them on the
terminal until we typed a control-d to generate an end-of-file.

We can even combine the standard output of one command with the
standard input of the next, i.e. to run the commands in a sequence known
as a pipeline. This is an extremely useful feature. For instance, the
command

ls-s

normally produces a list of the files in our directory with the size, in 1024-
byte blocks, of each. If we are interested in learning which of our files is
largest, we may wish to have this list sorted by size rather than by name--ls
by default sorts by name. We could investigate the many options of Is to
see if one lists in order of size, but we would eventually discover that no
such option exists. Instead the shell lets us use a couple of simple options
of the sort command, combining it with Is to get what we want.

The -n option of sort specifies a numeric sort rather than an alphabetic sort.
Thus

Is -s I sort -n

specifies that the output of the Is command run with the option -s is to be
piped to the command sort run with the numeric sort option. This would
give us a sorted list of our files by size, but with the smallest first. We could
then use the -r reverse sort option and the head command in combination
with the previous command doing

Is -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the
size in blocks. We have run this to the standard input of the sort command
asking it to sort numerically in reverse order (largest first). This output has
then been run into the command head which gives us the first few lines of
its standard input. In this case we have asked head for the first 5 lines.
Thus this command gives us the names and sizes of our 5 largest files.

The metanotation introduced above is called the pipe mechanism.
Commands separated by 'I' characters are connected together by the shell
and the output of each functions as the input of the next. The leftmost
command in a pipeline normally takes its standard input from the terminal
and the rightmost places its standard output on the terminal. Other
examples of pipelines will be given later when we discuss the history
mechanism; one important use of pipes illustrated there is in the routing of

7-4 SysS UNIX

(:'

csh

information to the line printer.

7.6 Filenames

CHAPTER 7

Many commands need the names of files as arguments. UNIX pathnames
consist of a number of components separated by '/'. Each component
except the last names a directory in which the next component resides.
Thus the pathname

/etc/motd

specifies a file in the directory 'etc', which is a subdirectory of the root
directory '/'. Within this directory the file named is 'motd', which stands for
'message of the day'. Filenames that do not begin with '/' are interpreted
starting at the current working directory. This directory is, by default, your
home directory and can be changed dynamically by the chdir or cd change
directory command.

Most filenames consist of a number of alphanumeric characters and '.'s. In
fact, all printing characters except '/' may appear in filenames. However,
non-alphabetic charcters usually do not belong in filenames, because many
of these have special meaning to the shell. The character '.' is not a shell­
metacharacter and is often used as the prefix with an extension of a
basename. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a root portion of a name (a root portion
being that part of the name that is left when a trailing '.' and following
characters, which are not '.', are stripped off). The file 'prog.c' might be the
source for a C program, the file 'prog.o' the corresponding object file, the file
'prog.errs' the errors resulting from a compilation of the program and the file
'prog.output' the output of a run of the program.

If we wished to refer to all four of these files in a command, we could use
the metanotation

prog.*

This word is expanded by the shell, before the command to which it is an
argument is executed, into a list of names that begin with 'prog. ·. The
character'*' here matches any sequence (including the empty sequence) of
characters in a file name. The names that match are sorted into the
argument list to the command alphabetically. Thus the command

echo prog.*

echoes the names

(- prog.c prog.errs prog.o prog.output

Sys5 UNIX 7-5

CHAPTER 7 csh

Note that the names are in lexicographic order here, different from the way
we listed them above. The echo command receives four words as
arguments, even though we only typed one word as an argument directly.
The four words were generated by filename expansion of the metasyntax in
the one input word.

Other metanotations for filename expansion are also available. The
character '?' matches any single character in a filename. Thus

echo??????

echoes (i.e., writes on standard output) a line Qf filenames; first those with
one-character names, then those with two-character names, and finally
those with three-character names. The names of each length will be
independently lexicographically sorted.

Another mechanism consists of a sequence of characters between '[' and ']'.
This metasequence matches any single character from the enclosed set.
Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters astride a ·-· in this <J
notation to denote a range. Thus

chap.[1-5)

might match files

chap.1 chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap.[12345]

and otherwise equivalent.

Note that if a list of argument words to a command (an argument list)
contains filename expansion syntax, and if this filename expansion syntax
fails to match any existing file names, then the shell considers this to be an
error and prints a diagnostic

No match.

Also note that the character '.' at the beginning of a filename is treated
specially. Neither '*' or '?' or the '[' ']' mechanism will match it. This
prevents accidental matching of the filenames '.' and '. .' in the current
directory, which have special meaning to the system, as well as other files (----\
such as .cshrc, which are not normally visible. We will discuss the special __

7-6 SysS UNIX

(

(

csh CHAPTER 7

role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of
the home directory of other users. This notation consists of the character ' ·
followed by another user's login name. For instance the word ' bill' would
map to the pathname '/mnUbill' if the home directory for 'bill' were in the
directory '/mnUbill'. Since, on large systems, users may have login
directories scattered over many different disk volumes with different prefix
directory names, this notation provides a reliable way of accessing the files
of other users.

A special case of this notation consists of a '' alone, e.g. '/mbox'. This
notation is expanded by the shell into the file 'mbox' in your home directory.
This can be very useful if you have used chdir to change to another user's
directory and have found a file you wish to copy using cp. You can do

cp thatfile

which will be expanded by the shell to

cp thatfile /mnt/bill

i.e., the copy command interprets this as a request to make a copy of
'thatfile' in the directory '/mnUbill'. The ' ' notation doesn't, by itself, force
named files to exist. This is useful, for example, when using the cp
command, e.g.

cp thatfile /saveit

A mechanism using the characters '{' and '}'abbreviates a set of words that
have common parts but cannot be abbreviated by the above mechanisms
because they are not files, or are the names of files that do not yet exist.
This mechanism will be described much later, in section 4.2, as it is used
much less frequently.

7. 7 Quotation

We have already seen a number of metacharacters used by the shell.
These metacharacter pose a problem in that we cannot use them directly as
parts of words. Thus the command

echo*

does not echo the character'*'. It either echoes a sorted list of filenames in
the current directory, or prints the message 'No match' if there are no files in
the current directory.

The recommended mechanism for placing characters that are neither
numbers, digits, '/', '.'or'-' in an argument word to a command is to enclose
it with single quotation characters'", e.g.

Sys5 UNIX 7-7

CHAPTER 7 csh

echo···

The history mechanism of the shell uses the special character '!', so '!'
cannot be escaped in this way. It and the character •·· itself can be
preceded by a single '\' to prevent their special meaning. These two
mechanisms suffice to place any printing character into a word that is an
argument to a shell command.

7.8 Terminating Commands

When you are running a command from the shell and the shell is waiting for
it to complete, there are a couple of ways in which you can force such a
command to complete. For instance if you type the command

cat /usr/man/docs/csh/csh

the system prints this document on your terminal. This will continue for
several minutes unless you stop it. You can send an INTERRUPT signal to
the cat command by hitting the DEL or RUBOUT key on your terminal.
Actually, hitting this key sends this INTERRUPT signal to all programs running
on your terminal, including your shell. The shell normally ignores such
signals, however, so that the only program affected by the INTERRUPT is cat.
Since cat does not take any precautions to catch this signal the INTERRUPT

causes it to terminate. The shell notices that cat has died and prompts you
again with '% '. If you hit INTERRUPT again, the shell just repeats its prompt,
since it catches INTERRUPT signals but continues to execute commands
anyway. If the shell went away like cat, this would log you out.

Many other programs terminate when they get an end-of-file from their
standard input. Thus the mail program in the first example above was
terminated when we hit a control-d, which generates an end-of-file from the
standard input. The shell also terminates when it gets an end-of-file printing
'logout'; UNIX then logs you off the system. Since this means that typing too
many control-d's can accidentally log you off, the shell has a mechanism for
preventing this. This ignoreeof option is discussed in section 2.2.

If a command has its standard input redirected from a file, then it will
normally terminate when it reaches the end of this file. Thus if we execute

mail bill < prepared.text

the mail command terminates without our typing a control-d. This is
because it read to the end-of-file of our file 'prepared.text'. We could also
have done

cat prepared.text I mail bill

since the cat command would then have written the text through the pipe to
the standard input of -the mail command. When the cat command
completed it would have terminated, closing down the pipeline and the mail

7-8 Sys5 UNIX

(

(

(

csh CHAPTER 7

command would have received an end-of-file from it and terminated. Using
a pipe here is more complicated than redirecting input so we would more
likely use the first form. These commands could also have been stopped by
sending an INTERRUPT.

If you write or run programs that are not fully debugged, then you may want
to stop them somewhat ungracefully. This can be done by sending them a
QUIT signal, generated by a control~\. This usually provokes the shell to
produce a message like:

a.out: Quit - Core dumped

indicating that a file 'core' has been created containing information about the
program a.out's state when it ran amuck. You can examine this file
yourself, or forward information to the maintainer of the program telling
him/her where the core file is.

If you run background commands (as explained in section 2.6), then these
commands ignore INTERRUPT and QUIT signals at the terminal. To stop them
you must use the kill program. See section 2.6 for an example.

7.9 What Now?

We have so far seen a number of mechanisms of the shell and learned
something about the way in which it operates. The remaining sections will
go further into the internals of the shell, but you will surely want to try using
the shell before you go any further. To get the C shell as your login shell,
your entry in the file letclpasswd must be modified. letclpasswd is writable
only by the superuser, so you may have to get your system administrator to
perform the change. The last field of each line in letclpasswd is the shell
field. No entry in this field means this user has the regular shell, /bin/sh.
This field of your line must be modified to read lusrlplxlcsh. You will get the
C shell the next time you log in. It's a good idea to have your .login and
.cshrc files set up appropriately before you try the C shell, so your terminal
will behave properly.

You can also invoke a csh by typing '/usr/plx/csh'. This gives you a
temporary C shell, and you may return to your login shell by typing control-d.

Much of the discussion in this manual so far is applicable to '/bin/sh' as well
as the C shell. The next section will introduce many features particular to
csh so you should change your shell to csh before you begin reading it.

SysS UNIX 7-9

CHAPTER 7 csh

7.10 Details on the Shell

7.10.1 Shell Startup and Termination

When you login, the shell is placed by the system in your home directory
and begins by reading commands from a file .cshrc in this directory. All
shells that you may create during your terminal session read from this file.
We will later see what kinds of commands are usefully placed there. For
now we need not have this file and the shell does not complain about its
absence.

A login shell, executed after you login to the _-system, will, after it reads
commands from .cshrc, read commands from a file .login also in your home
directory. This file contains commands you wish to do each time you login
to the UNIX system. A .login file might look something like:

tset -d adm3a
set history= 20
set time=3

This file contains four commands to be executed by UNIX each time the user
logs in. The first is a tset command, which informs the system that this user
usually dials in on a Lear-Siegler ADM-3A terminal. The next two set
commands are interpreted directly by the shell and affect the values of
certain shell variables to modify the future behavior of the shell. Setting the
variable time tells the shell to print time statistics on commands that take
more than a certain threshold of machine time (in this case 3 CPU seconds).
Setting the variable history tells the shell how much history of previous
command words it should save in case the user wishes to repeat or rerun
modified versions of previous commands. This mechanism involves a
certain overhead, so the shell does not set this variable by default. The
value of 20 is a reasonably large value to assign to history. More casual
users of the history mechanism would probably set a value of 5 or 10. The
use of the history mechanism will be described subsequently.

After executing commands from .login, the shell reads commands from your
terminal, prompting for each with '% ·. When it receives an end-of-file from
the terminal, the shell prints 'logout' and executes commands from the file
'.logout' in your home directory. After that the shell dies and UNIX logs you
off the system. If the system is not going down, you receive a new login
message. In any case, after the 'logout' message, the shell from which the
end-of-file was received is doomed and takes no further input from the
terminal.

7.10.2 Shell Variables

The shell maintains a set of variables. We saw above the variables history /
and time, which had values '20' and '3'. In fact, each shell variable has as

7-10 Sys5 UNIX

(

(

(-

csh CHAPTER 7

value an array of zero or more strings. Shell variables may be assigned
values by the set command. This command has several forms, the most
useful of which was given above and is

set name=value

Shell variables may store values that are to be reintroduced into commands
later through a substitution mechanism. The shell variables most commonly
referenced are, however, those that the shell itself refers to. By changing
the values of these variables, you can directly affect the behavior of the
shell.

One of the most important variables is the variable path. This variable
contains a sequence of directory names where the shell searches for
commands. The set command shows the value of all variables currently
defined (we usually say set) in the shell. The default value for path will be
shown by set to be

%set
argv
home /mnt/bill
path (. /bin /usr/bin)
prompt%
shell /bin/csh
status O
%

This notation indicates that the variable path points to the current directory
'.'and then '/bin' and '/usr/bin'. Commands that you may write might be in '.'
(usually one of your directories). The most heavily used system commands
live in '/bin'. Less heavily used system commands live in '/usr/bin'.

A number of useful programs that are not part of standard UNIX SYSTEM
111--including csh--live in the directory '/usr/plx'. If you want all shells that
you invoke to have access to these new programs, place the command

set path=(. /usr/plx /bin /usr/bin)

in your file .cshrc in your home directory. Try doing this and then logging
out and back in and do

set

again to see that the value assigned to path has changed.

Other useful built-in variables are the variable home, which shows your
home directory, and the variable ignoreeot, which can be set in your .login
file to tell the shell not to exit when it receives an end-of-file from a terminal.
To logout from UNIX with ignoreeof set you must type

SysS UNIX 7-11

CHAPTER 7 csh

logout

This is one of several variables that the shell does not care about the value
of, only whether they are set or unset. Thus to set this variable you simply
do

set ignoreeof

and to unset it do

unset ignoreeof

Both set and unset are built-in commands of the shell.

Finally, some other useful built-in shell variables are noclobber and mail.
The metasyntax

>filename

which redirects the output of a command, overwrites and destroys the
previous contents of the named file. In this way you may accidentally
overwrite a valuable file. If you prefer that the shell not automatically
overwrite files in this way you can

set noclobber

in your .login file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date>! now

if you really wanted to overwrite the contents of 'now'. The'>!' is a special
metasyntax indicating that clobbering the file is all right.

If you receive mail frequently while you are logged in, and wish to be
informed of the arrival of this mail, you can put a command

set mail= /usr/mail/yourname

in your .login file. Here you should change 'yourname' to your login name.
The shell looks at this file every 10 minutes to see if new mail has arrived.
If you receive mail only infrequently, you are better off not setting this
variable; it only delays the shell's response to you.

The use of shell variables to introduce text into commands, which is most
useful in shell command scripts, will be introduced in section 2.4.

7.10.3 The Shell's History List

The shell can maintain a history list into which it places the words of
previous commands. You· can use a metanotation to reintroduce commands
or words from commands in forming new commands. This mechanism can

7-12 Sys5 UNIX

(

(

(

csh CHAPTER 7

repeat previous commands or correct minor typing mistakes in commands.

Consider the following transcript:

% Is -I shell.proc
-rw-r-r--1 sandy 6506 Jan 19 20:05 shell.proc
% chmod 755 !$
chmod 755 shell.proc

Here we asked for a long (-1) listing of the file 'shell.proc' and were told,
among other things, that it was not executable. We need to change the
permissions attached to it, so we execute a chmod command on'!$'. '!$'is
a history notation that means the last word of the last command executed, in
this case 'shell.proc'. The shell performed this substitution and then echoed
the command ('chmod 755 shell.proc') as it would execute it. Suppose now
that we want to verify that the permission changes were made by doing
another 'Is -I'. We can do

% !I
-rwxrwxrwx 1 sandy 6506 Jan 19 20:05 shell.proc
%

We repeat the ls-I command with the history notation '!I', which repeats the
last command that began with a word of which 'I' is a prefix.

The form '!!' re-executes the last command. Another useful command form
is 'tlhsrrhs', which performs a substitution similar to that in ed or ex. Thus in
this example,

% cat bill/csh/sh .. c
/mnt/bill/csh/sh •. c: No such file or directory
% t •• t.

cat bill/csh/sh.c
#include "sh.h"

char *pathlist[] = { SRCHP
o/o

we used the substitution to correct a typing mistake, and then rubbed the
command out after we saw that we had found the file we wanted. The
substitution changed the two '.' characters to a single '.' character.

After this command we might do

o/o !! I lpr
cat bill/csh/sh.c I lpr

to put a copy of this file on the line printer, or (immediately after the cat that
worked above)

Sys5 UNIX 7-13

CHAPTER 7

% pr!$ I lpr
pr bill/csh/sh.c I lpr
%

csh

More advanced forms of the history mechanism also exist. Substitutions
themselves may be modified, so you can say (after the first successful cat
above).

% cd !$:h
cd bill/csh
%

The trailing ':h' on the history substitution here causes only the head portion
of the pathname reintroduced by the history mechanism to be substituted.
This and related mechanisms are used less often than the forms above.

A complete description of history mechanism features is given in the C shell
manual entry in the Plexus Sys5 UNIX Programmer's Reference Manual.

7.10.4 Aliases

The shell has an alias mechanism that can simplify the commands you type,
supply default arguments to commands, or perform transformations on
commands and their arguments. The alias facility is similar to the macro
facility of many assemblers.

Some of the features obtained by aliasing can also be obtained using shell
command files, but these take place in another instance of the shell and
cannot directly affect the current shell's environment. Thus commands such
as chdir, which must be done in the current shell, may not work the way you
expect.

As an example, suppose you wish to use a new version of the mail program.
The new program is called 'Mail', and the standard mail program continues
to be called 'mail'. If you place the shell command

alias mail Mail

in your .login file, the shell will transform an input line of the form

mail bill

into a call on 'Mail'. More generally, suppose we wish the command 'Is' to
always show sizes of files, that is to always do '-s'. We can do

alias Is Is -s

or even

alias dir Is -s

creating a new command syntax 'dir', which does an 'Is -s'. If we say

7-14 Sys5 UNIX

(

(

(

csh CHAPTER 7

dir bill

then the shell translates this to

Is -s /mnt/bill

Thus the alias mechanism can provide deafult arguments and short names
for commands, and can define new short commands in terms of other
commands. You can also define aliases that contain multiple commands or
pipelines, showing where the arguments to the original command are to be
substituted using the facilities of the history mechanism. Thus the definition

alias cd · cd \!* ; Is ·

does an Is command after each change directory (cd) command. We
enclosed the entire alias definition in '·· characters to prevent most
substitutions from occurring and the character';' from being recognized as a
parser metacharacter. The '!' here is escaped with a '\' to prevent it from
being interpreted when the alias command is typed in. The '\!*' here
substitutes the entire argument list to the pre-aliasing cd command, without
giving an error if there were no arguments. The ';' separating commands is
used here to indicate that one command is to be done and then the next.
Similarly the definition

alias whois ·grep \!t /etc/passwd'

defines a command that looks up its first argument in the password file.

7.10.5 Detached Commands;>> and>& Redirection

A few more metanotations are useful. The metacharacter '&'may be placed
after a command, or after a sequence of commands separated by ';' or t.
This causes the shell not to wait for the commands to terminate before
prompting again. We say that they are detached or background processes.
Thus

% pr bill/csh/sh.c I lpr &
5120
5121
%

Here the shell printed two numbers and came back very quickly rather than
waiting for the pr and lpr commands to finish. These numbers are the
process numbers assigned by the system to the pr and /pr commands. t

tRunning commands in the background like this tends to slow
down the system and is not a good idea if the system is
overloaded. When overloaded, the system will just bog down more
if you run a large number of processes at once.

Sys5 UNIX 7-15

CHAPTER 7 csh

Since havoc would result if a command run in the background were to read
from your terminal at the same time as the shell does, the default standard '" . /
input for a command run in the background is not your terminal, but an
empty file called '/dev/null'. Commands run in the background are also
made immune to INTERRUPT and QUIT signals that you may subsequently
generate at your terminal.*

*If a background command stops suddenly when you hit INTERRUPT

or QUIT it is likely a bug in the background program.

If you intend to log off the system before the command completes you must
run the command immune to HANGUP signals. This is done by placing the
word 'nohup' before each program in the command, i.e.:

nohup man csh I nohup lpr & ·

In addition to the standard output, commands also have a diagnostic output
that is normally directed to the terminal even when the standard output is
directed to a file or a pipe. You may occasionally want to direct the
diagnostic output along with the standard output. For instance, you may
want to redirect the output of a long-running command Into a file and have a
record of any error diagnostic it produces. The command

command>& file

accomplishes this. The'>&' here tells t.he shell to route both the diagnostic
output and the standard output into 'file'. Similarly you can give the
command

command I& lpr

to route both standard and diagnostic output through the pipe to the line
printer daemon /pr.#

#A command form

command >&! file

exists, and is used when noclobber is set and file already exists.

Finally, you can use the form

#A command form
command > > file

to place output at the end of an existing file.t

tlf

noclobber is set, then an error will result if file does not exist; otherwise the
shell will create file if it doesn't exist. A form / · '

7-16 Sys5 UNIX

(

csh CHAPTER 7

command>>! file

makes it not be an error for file to not exist when noclobber is set.

7.10.6 Useful Built-in Commands

We now describe a few of the useful built-in commands of the shell.

The alias command described above assigns new aliases and shows
existing aliases. With no arguments it prints the current aliases. It may also
be given an argument such as

alias ls

to show the current alias for, in this case, 'Is'.

The cd and chdir commands are equivalent; they change the working
directory of the shell. An experienced UNIX user usually makes a
subdirectory for each of his projects and places all files related to each
project in the appropriate subdirectory. Thus after you login you can do

o/opwd
/mnt/bill
% mkdir newpaper
% chdir newpaper
o/opwd
/mnt/bill/newpaper
%

after which you will be in the directory newpaper. You can return to your
'home' login directory by doing just

chdir

with no arguments. We used the pwd (print working directory) command to
show the name of the current directory. The current directory is usually a
subdirectory of your home directory. Thus, the home directory (here
'/mntlbill') path forms the prefix of the new directory name. In the example
above, '/mnt/bill' forms the prefix of ','mnt/bill/newpaper'.

The echo command prints its arguments. It is often used in shell scripts or
as an interactive command to see what filename expansions will yield.

The history command shows the contents of the history list. The numbers
given with the history events can be used to refer to previous events that
are difficult to refer to using the contextual mechanisms introduced above.
There is also a shell variable called prompt. By placing a '!'character in its
value the shell there substitutes the index of the current command in the
history list. You can use this number to refer to this command in a history
substitution. Thus you could

SysS UNIX 7-17

CHAPTER 7 csh ·

set prompt=\! o/o -

Note that the'!' character had to be escaped here even within·-· characters.

The logout command terminates a login shell that has ignoreeof set.

The repeat command repeats a command. Thus to make 5 copies of the
file one in the file five you could do

repeat 5 cat one > > five

The setenv command sets variables in the environment. Thus

setenv TERM adm3a

sets the value of the environment variable TERM to 'adm3a'. A user program
printenv prints out the environment. It might then show:

o/o printenv
HOME /usr/bill
SHELL /bin/csh
TERM adm3a
o/o

The source command forces the current shell to read commands from a file.
Thus

source .cshrc

causes any changes to .cshrc to take effect before the next time you login.

The time command can time a command no matter how much CPU time it
takes. Thus

o/o time cp five five.save
O.Ou 0.3s 0:01 26o/o
o/o time we five.save

1200 6300 37650 five.save
1.2u O.Ss 0:03 55o/o
o/o

indicates that the cp command used less that 1/10th of a second of user
time and only 3/10th of a second of system time in copying the file 'five' to
'five.save'. The command word count wc, which counts the number of
words, character and lines in 'five.save', used 1.2 seconds of user time and
0.5 seconds of system time in 3 seconds of elapsed time. The percentage
'55%' indicates that over this period of 3 seconds, our command 'we' used
an average of 55 percent of the available CPU cycles of the machine. This is
a very high percentage and indicates that the system is lightly loaded.

The unalias and unset commands remove aliases and variable definitions
from the shell. '"'

7-18 Sys5 UNIX

(

(

(.

csh CHAPTER 7

The wait command can be used after starting processes with '&' to see
quickly if they have finished. If the shell responds immediately with another
prompt, they have. Otherwise you can wait for the shell to prompt, at which
point they will have finished, or interrupt the shell by sending a RUBOUT or
DELETE character. If the shell is interrupted, it prints the names and
numbers of the processes it knows to be unfinished. Thus:

% nroff paper I lpr &
2450
2451
%wait

2451 lpr
2450 nroff

wait: Interrupted.
%

You can check again later by doing another wait, or see which commands
are still running by doing a ps. As 'time' will show you, ps is fairly
expensive. It is thus counterproductive to run many ps commands to see
how a background process is doing. t

If you run a background process and decide you want to stop it you must
use the kill program. You must use the process id number(s) (PIDs) of the
process(es) you wish to kill. (If you don't know, do a ps). Thus to stop the
nroff in the above pipeline you would do

% kill 2450
%wait
2450: nroff: Terminated.
o/o

Here the shell printed a diagnostic that we terminated 'nroff' only after we
did a wait. If we want the shell to discover the termination of all processes it
has created we must, in general, use wait.

7.10.7 What Else?

This concludes the basic discussion of the shell for terminal users. The
programming features of the shell are described in the next section. One
especially useful feature discussed later is the foreach built-in command,
which can be used to run the same command sequence with a number of
different arguments.

0. tlf you do you are usurping with these ps commands the processor time the job needs to
finish, thereby delaying its completion!

Sys5 UNIX 7-19

CHAPTER 7 csh

If you intend to use UNIX a lot, you should look through t~ rest of this 1· ·"··
document and the shell manual pages to become familiar with the other <~~_)
facilities available to you.

7.11 Shell Control Structures and Command Scripts

7 .11.1 Introduction

Rather than inputting commands one at a time to the shell, you can place
commands in files and cause these commands to be read and executed.
Using these command files, you can put long command sequences in
motion without having to wait for each one to complete serially; arithmetic
and loop control constructs are also available. An added plus is that you
can use all the expansion and substitution facilities of your editor to create
these files quickly. These command files are called shell scripts. We here
detail those features of the shell useful to the writers of such scripts.

7.11.2 Make

Note what shell scripts are not useful for. The program make is very useful
for maintaining a group of related files or performing sets of operations on
related files. For instance, a large program consisting of one or more files
can have its dependencies described in a makefile, which contains
definitions of the commands used to create these different files when
changes occur. Definitions of the means for printing listings, cleaning up the
directory in which the files reside, and installing the resultant programs are
easily and most appropriately placed in this makefile. Shell scripts are less
suitable for this kind of maintenance.

Similarly when working on a document, a makefile may be created that
defines how different versions of the document are to be created and which
options of nroff or troff are appropriate.

7.11.3 Invocation

A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands
and ' .. .' is replaced by a sequence of arguments. The shell places these
arguments in the variable argv and then begins to read commands from the
script. These parameters are then available through the same mechanisms
used to refer to any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment-at the beginning of the shell script (i.e., begin the (\
file with a '#' character) then a '/usr/plxlcsh' is automatically invoked to "

7-20 Sys5 UNIX

(

csh CHAPTER 7

execute 'script' when you type

script

If the file does not begin with a'#' then the standard shell '/bin/sh' executes
it. This allows you to convert your older shell scripts to use csh at your
convenience. ·

A complication arises, however, when you run shell scripts under the C shell
in UNIX SYSTEM Ill or Plexus Sys5. The C shell was written to be used with
UNIX Version 7, the release before SYSTEM Ill, upon which Plexus Sys5 is
based. Many standard Sys5 commands are actually shell scripts, and some
begin with the comment character, so they look like C shell scripts to the C
shell. But Sys5 contains commands not found in Version 7, so some of
these shell scripts call commands the C shell has never heard of, and can't
execute. Such commands fail when run under the C shell. Therefore, if you
run the C shell with Sys5, you should set your environment variable SHELL
to /bin/sh, so any shell scripts are automatically run by the Sys5 shell. If
you really want the C shell to execute your shell script, you can explicitly
execute it with 'csh' or put the call to 'csh' within the script.

7.11.4 Variable Substitution

After each input line is broken into words, and history substitutions are done
on it, the input line is parsed into distinct commands. Before each
command is executed, variable substitution is done on these words. Keyed
by the character '$', this substitution replaces the names of variables by
their values. Thus

echo $argv

when placed in a command script causes the current value of the variable
argv to be echoed to the output of the shell script. Argv may not be unset
at this point.

A number of notations are provided for accessing attributes of variables.
The notation

$?name

expands to '1' if name is set or to ·o· if name is not set. This is the
fundamental mechanism used for checking whether particular variables have
been assigned values. All other forms of reference to undefined variables
cause errors.

The notation

$#name

(- expands to the number of elements in the variable name. Thus

Sys5 UNIX 7-21

CHAPTER 7

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
0
% echo$argv
Undefined variable: argv.
%

csh

You can also access the components of a variable that has several values.
Thus

$argv[1]

gives the first component of argv or, in the example above, 'a'. Similarly

$argv[$#argv)

would give 'c'.

Other notations useful in shell scripts are

$n

(where n is an integer) as a shorthand for

$argv[n]

(the nth parameter) and

$*

which is a shorthand for

$argv

The form

$$

expands to the process number of the current shell. Since this process
number is unique in the system it can be used in generation of unique
temporary file names.

One minor difference between '$n ' and '$argv[n)' should be noted here.
The form '$argv[n)' yields an error if n is not in the range '1-$#argv' while
'$n' never yields an out-of·range·subscript error. This is for compatibility
with the way older shells handled parameters.

Note also that it is never an error to give a subrange of the form 'n-'; if there
are less than n components of the given variable then no words are

7·22 Sys5 UNIX

csh CHAPTER 7

substituted. A range of the form 'm-n' likewise returns an empty vector
without giving an error when m exceeds the number of elements of the
given variable, provided the subscript n is in range.

7.11.5 Expressions

Expressions in the shell must be able to be evaluated based on the values
of variables; otherwise, the shell wouldn't be able to do anything interesting.
All the arithmetic operations of the language C are available in the shell with
the same precedence that they have in C. In particular, the operations '= = •

and '!=' compare strings and the operators '&&' and 'It implement the
Boolean 'and' and 'or' operations.

The shell also allows file enquiries of the form

-? filename

where '?' is replaced by a number of single characters. For instance the
expression primitive

-e filename

tells whether the file 'filename' exists. Other primitives test for read, write
and execute access to the file, whether it is a directory, or has non-zero
length.

You can also test whether a command terminates normally by a primitive of
the form '{command}', which returns true, i.e. '1 ', if the command succeeds
(exiting normally with exit status 0), or 'O' if the command terminates
abnormally (with exit status non-zero). If you need more detailed
information about the execution status of a command, execute it and in the
next command examine the variable '$status'. Since '$status' is set by every
command, it is very transient. It can be saved if it is inconvenient to use it
only in the single command immediately following.

For a full list of expression components available see the manual entry for
the shell.

7.11.6 Sample Shell Script

A sample shell script that makes use of the expression mechanism of the
shell and some of its control structure follows:

Sys5 UNIX 7-23

CHAPTER 7

% cat copyc

Copyc copies those C programs in the specified list
to the directory /backup if they differ from the files
already in /backup

set noglob
foreach i ($argv)

csh

if ($i:r.c != $i) continue # not a .c file so do nothing

end

if(! -r /backup/$i:t) then
echo $i:t not in backup ... not cp\'ed
continue

end if

cmp-s $i /backup/$i:t

if ($status!= O) then

endif

echo new backup of $i
cp $i /backup/$i :t

to set $status

This script makes use of the foreach command, which causes the shell to
execute the commands between the foreach and the matching end for each
of the values given between '(' and ')' with the named variable (in this case i)
set to successive values in the list. Within this loop we may use the
command break to stop executing the loop and continue to prematurely
terminate one iteration and begin the next. After the foreach loop the
iteration variable (i in this case) has the value at the last iteration.

We set the variable noglob here to prevent filename expansion of the
members of argv. This is a good idea, in general, if the arguments to a
shell script are filenames that have already been expanded or if the
arguments may contain filename expansion metacharacters. You can also
quote each use of a '$' variable expansion, but this is harder and less
reliable.

The other control construct used here is a statement of the form

if (expression) then
command

end if

The placement of the keywords here is somewhat flexible. t
7-24 SysS UNIX

(

csh CHAPTER 7

if (expression)
then

Produces diagnostic but works!

command

end if

but this produces a diagnostic to the effect that the command 'then' cannot
be found. The following format is not-currently acceptable to the shell:

if (expression) then command endif #Won't work

The shell does have another form of the if statement

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The
command must not involve 'I', '&' or ';' and must not be another control
command. The second form requires the final '\' to immediately precede
the end-of-line.

The more general if statements above also admit a sequence of else-if
pairs followed by a single else and an endif, e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is ':' modifiers. We can
use the modifier ':r' here to extract a root of a filename. Thus if the variable
i has the value 'too.bar' then

0. tLeaving out the 'then' altogether works, for example. The 'then' may also be put on a
separate line, as follows:

Sys5 UNIX 7-25

CHAPTER 7

% echo $i $i :r
foo.bar foo
%

csh

shows how the ':r' modifier strips off the trailing '.bar'. Other modifiers will
take off the last component of a pathname leaving the head ':h' or all but the
last component of a pathname leaving the tail ':t'. These modifiers are fully
described in the csh manual entry. You can also use the command
substitution mechanism described in section 4.3 to perform modifications on
strings to reenter the shell's environment. Since each usage of this
mechanism involves the creation of a new process, it is much more
expensive than the ':' modification mechanism.*

% echo $i Si:h:t
/a/b/c /a/b:t
%

does not do what one would expect.

Finally, we note that the character'#' lexically introduces a shell comment in
shell scripts (but not from the terminal). All subsequent characters on the
input line after a '#' are discarded by the shell. This character can be
quoted using "' or '\' to place it in an argument word.

7 .11. 7 Other Control Structures

The shell also has control structures while and switch similar to those of C.
These take the forms

and

while (expression)
commands

end

0. "Note also that the current implementation of the shell limits the number of·:· modifiers on
a '$' substitution to 1. Thus

7·26 Sys5 UNIX

csh CHAPTER 7

{ switch (word)

(

case str1:
commands
breaksw

case strn:
commands
breaksw

default:

endsw

commands
breaksw

For details see the manual section for csh. C programmers should note that
we use breaksw to exit from a switch while break exits a while or foreach
loop. A common mistake in csh scripts is to use break rather than breaksw
in switches.

Finally, csh allows a goto statement, with labels looking like they do in C,
i.e.:

loop:
commands
goto loop

7.11.8 Supplying Input to Commands

Commands run from shell scripts receive by default the standard input of the
shell that is running the script. Thus it is different from previous shells
running under UNIX. It allows shell scripts to participate fully in pipelines, but
mandates extra notation for commands that take inline data.

Thus we need a metanotation for supplying inline data to commands in shell
scripts. As an example, consider this script, which runs the editor to delete
leading blanks from the lines in each argument file

Sys5 UNIX 7-27

CHAPTER 7

% cat deblank
deblank - remove leading blanks
foreach i ($argv)
ed- $i << 'EOF'
1,$s/t(]*//
w
q
'EOF'
end
%

csh

The notation '< < 'EOF'' means that the standard input for the ed command
is to come from the text in the shell script file up to the next line consisting
of exactly ''EOF"'. The fact that the 'EOF is enclosed in ... characters, i.e.
quoted, causes the shell not to perform variable substitution on the
intervening lines. In general, if any part of the word following the '<<' is
quoted, then these substitutions are not performed. In this case, since we
used the form '1,$' in our editor script, we needed to insure that this '$' was
not variable-substituted. We could also have insured this by preceding the
'$' here with a '\', i.e.:

1, \$sit[]*II

but quoting the 'EOF' terminator is a more reliable way of achieving the
same thing.

7.11.9 Catching Interrupts

If our shell script creates temporary files, we may wish to catch interruptions
of the shell script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will
do a 'goto label' and we can remove the temporary files and then do a exit
command (which is built into the shell) to exit from the shell script. If we
wish to exit with a non-zero status we can do

exit(1)

e.g. to exit with status '1 '.

7.11.10 What Else?

Other features of the shell are useful to writers of shell procedures. The
verbose and echo options and the related -v and -x command line options
can help trace the actions of the shell. The -n option causes the shell only
to read commands and not to execute them.

7-28 Sys5 UNIX

(

(-

csh CHAPTER 7

Note that csh does not execute shell scripts that do not begin with the
character '#'--that is, shell scripts that do not begin with a comment.

Another quotation mechanism using "" allows only some of the expansion
mechanisms we have so far discussed to occur on the quoted string and
serves to make this string into a single word as "' does. See the manual
entry for more information.

7.12 Miscellaneous, Less Generally Useful, Shell Mechanisms

7.12.1 Loops at the Terminal; Variables as Vectors

You may occasionally want to use the foreach control structure at the
terminal to aid in performing a number of similar commands. For instance,
three shells were once in use on the Cory UNIX system at Cory Hall at UC
Berkeley: '/bin/sh', '/bin/nsh', and '/bin/csh'. To count the number of persons
using each shell, one could issue the commands

o/o grep -c csh$ /etc/passwd
27
o/o grep -c nsh$ /etc/passwd
128
o/o grep -c -v sh$ /etc/passwd
430
o/o

Since these commands are very similar we can use foreach to do this more
easily.

o/o foreach i ('sh$, , csh$, --v sh$')
? grep -c $i /etc/passwd
?end
27
128
430
o/o

Note here that the shell prompts for input with '? • when reading the body of
the loop.

Very useful with loops are variables that contain lists of filenames or other
words. You can, for example, do

Sys5 UNIX 7-29

CHAPTER 7

% set a=('ls')
% echo $a
csh.n csh.rm
%Is
csh.n
csh.rm
%echo$#a
2
%

csh

The set command here gave the variable a a list of all the filenames in the
current directory as value. We can then iterate over these names to
perform any chosen function.

The output of a command within '' · characters is converted by the shell to a
list of words. You can also place the''' quoted string within"" characters to
take each (non-empty) line as a component of the variable. This prevents
the lines from being split into words at blanks and tabs. A modifier ':x' can
later expand each component of the variable into another variable, splitting it
into separate words at embedded blanks and tabs.

7 .12.2 Braces { ... } in Argument Expansion

Another form of filename expansion involves the characters '{' and '}'.
These characters specify that the contained strings, separated by ·,·, are to
be consecutively substituted into the containing characters and the results
expanded left to right. Thus

A{str1 ,str2, •.. strn}B

expands to

Astr1 B Astr2B ..• AstrnB

This expansion occurs before the other filename expansions, and may be
applied recursively (i.e. nested). The results of each expanded string are
sorted separately, left to right order being preserved. If no other expansion
mechanisms are used, the resulting filenames need not exist. This means
that this mechanism can be used to generate arguments that are not
filenames, but have common parts.

A typical use of this would be

mkdir /{hdrs,retrofit,csh} .

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This
mechanism is most useful when the common prefix is longer than in this
example, i.e.

7-30 Sys5 UNIX

csh CHAPTER 7

chown bin /usr/{bin/{ex,edit},lib/{ex1 .1 strings,how_ex}}

This command changes the ownership of all the following files: /usr/bin/ex,
/usr/bin/edit, /usr/lib/ex1 .1 strings, and /usr/lib/how_ex.

7.12.3 Command Substitution

A command enclosed in ·-' characters is replaced, just before filenames are
expanded, by the output from that command. Thus it is possible to do

set pwd =' pwd'

to save the current directory in the variable pwd or to do

ex 'grep -I TRACE *.c'

to run the editor ex supplying as arguments those files whose names end in
'.c' and have the string 'TRACE' in them.*

7.12.4 Other Details Not Covered Here

Sometimes you may need to know the exact nature and order of different
substitutions performed by the shell. The exact meaning of certain
combinations of quotations is also occasionally important. These are
detailed fully in the manual section.

The shell has a number of command line option flags that are mostly of use
in writing UNIX programs and debugging shell scripts. See the manual entry
for a list of these options.

0. ·command expansion also occurs in input redirected with '<<'and within quotations.
Refer to the shell manual section for full details.

Sys5 UNIX 7-31

CHAPTER 7 csh

7.13 Appendix - Special Characters

The following table lists the special characters of csh and the UNIX system,
giving for each the section(s) in which it is discussed. A number of these
characters also have special meaning in expressions. See the csh manual
entry for a complete list.

Syntactic metacharacters
, 2.4 separates commands to be executed sequentially
I 1.5 separates commands in a pipeline
() 2.2,3.6 brackets expressions and variable values
& 2.5 follows commands to be executed without waiting for completion

Filename metacharacters
I 1.6 separates components of a file's pathname
? 1.6 expansion character matching any single character
* 1.6 expansion character matching any sequence of characters
[] 1.6 expansion sequence matching any single character from a set

1.6 used at the beginning of a filename to indicate home directories
{} 4.2 used to specify groups of arguments with common parts

Quotation metacharacters
\ 1. 7 prevents meta-meaning of following single character

1. 7 prevents meta-meaning of a group of characters
4.3 like·, but allows variable and command expansion

Input/output metacharacters
< 1.3 indicates redirected input
> 1.5 indicates redirected output

Expansion/substitution metacharacters
$ 3.4 indicates variable substitution

2.3 indicates history substitution
3.6 precedes substitution modifiers
2.3 used in special forms of history substitution
4.3 indicates command substitution

Other metacharacters
3.6 begins a shell comment

1.2 prefixes option (flag) arguments to commands

7-32 Sys5 UNIX

(

(

(

csh CHAPTER 7

This glossary lists the most important terms introduced in the introduction to
the shell and gives references to sections of this document for further
information about them. References of the form 'pr (1)' indicate that the
command pr is in the Plexus Sys5 UNIX Programmer's Reference Manual in
section 1. You can get an online copy of its manual page by doing

man 1 pr

References of the form (2.5) indicate that more information can be found in
section 2.5 of this manual. Your current directory has the name '.' as well
as the name printed by the command pwd. The current directory '.' is
usually the first component of the search path contained in the variable
path; thus commands that are in '.' are found first (2.2). The character '.' is
also used in separating components of filenames (1.6). The character '.' at
the beginning of a component of a pathname is treated specially and not
matched by the filename expansion metacharacters '?', '*', and '[' T pairs
(1.6). Each directory has a file ' . .' in it, which is a reference to its parent
directory. After changing into the directory with chdir, i.e.

chdir paper

you can return to the parent directory by doing

chdir ..

The current directory is printed by pwd (2.6). An alias specifies a shorter or
different name for a UNIX command, or a transformation on a command to
be performed in the shell. The shell has a command alias, which
establishes aliases and can print their current values. The command unalias
is used to remove aliases (2.6). Commands in UNIX receive a list of
argument words. Thus the command

echo ab c

consists of a command name 'echo' and three argument words 'a', 'b' and
'c' (1.1). The list of arguments to a command written in the shell language
(a shell script or shell procedure) is stored in a variable called argv within
the shell. This name is taken from the conventional name in the C
programming language (3.4). Commands started without waiting for them to
complete are called background commands (1.5). A directory containing
binaries of programs and shell scripts to be executed is typically called a
'bin' directory. The standard system 'bin' directories are '/bin', which
contains the most heavily used commands, and '/usr/bin', which contains
most other user programs. Other binaries are contained in directories such
as '/usr/plx' where new and Plexus-specific programs are placed. You can
place binaries in any directory. If you wish to execute them often, the
directory's name should be a component of the variable path. Break is a
built-in command used to exit from loops within the control structure of the

Sys5 UNIX 7-33

CHAPTER 7 csh

shell (3.6). A command executed directly by the shell is called a built-in
command. Most commands in UNIX are not built-into the shell, but rather
exist as files in 'bin' directories. These commands are accessible because
the directories in which they reside are named in the path variable. A case
command is used as a label in a switch statement in the shell's control
structure, similar to that of the language C. Details are given in the shell's
documentation 'csh (NEW)' (3.7). The cat program catenates a list of
specified files on the standard output. It is usually invoked to look at the
contents of a single file on the terminal, to 'cat a file' (1.8, 2.3). The cd
command is used to change the working directory. With no arguments, cd
changes your working directory to be your horrie directory (2.3) (2.6). The
chdir command is a synonym for ed. Cd is usually typed because it is
shorter. Cmp is a program that compares files. It is usually used on binary
files, or to see if two files are identical (3.6). For comparing text files the
program diff, described in 'diff (1)' is used. A function performed by the
system, either by the shell (a built-in command) or by a program residing in
a file in a directory within the UNIX system is called a command (1.1).
The replacement of a command enclosed in ··' characters by the text output
by that command is called command substitution (3.6, 4.3). A part of a
pathname between '/' characters is called a component of that pathname.
A variable that has multiple strings as value is said to have several
components, and each string is a component of the variable. A built-in
command that causes execution of the enclosing foreach or while loop to
cycle prematurely. Similar to the continue command in the programming
language C (3.6). When a program terminates abnormally, the system
places an image of its current state in a file named 'core'. This 'core dump'
can be examined with the system debuggers 'adb (1)' and 'sdb (1)' in order
to determine what went wrong with the program (1.8). If the shell produces
a message of the form:

commandname: Illegal instruction - Core dumped

(where 'Illegal instruction' is only one of several possible messages) you
should report this to the author of the program and save the 'core' file. The
cp (copy) program copies the contents of one file into another file. It is one
of the most commonly used UNIX commands (2.6). The file .cshrc in your
home directory is read by each shell as it begins execution. It is usually
used to change the setting of the variable path and to set alias parameters,
which take effect globally (2.1). The date command prints the current date
and time (1.3). Debugging is the process of correcting mistakes in
programs and shell scripts. The shell has several options and variables that
may be used to aid in shell debugging (4.4). The label default: is used
within shell switch statements, as it is in the C language to label the code to
be executed if none of the case labels matches the value switched on (3. 7).
The DELETE or RUBOUT key on the terminal is used to generate an INTERRUPT

7-34 Sys5 UNIX

(

(

csh CHAPTER 7

signal, which stops the execution of most programs on UNIX (2.6). A
command run without waiting for it to complete is said to be detached (2.5).
An error message produced by a program is often referred to as a
diagnostic. Most error messages are not written to the standard output,
since that is often directed away from the terminal (1.3, 1.5). Error
messages are instead written to the diagnostic output which may be
directed away from the terminal, but usually is not. Thus diagnostics will
usually appear on the terminal (2.5). A structure that contains files. At any
time you are 'in' one particular directory whose names can be printed by the
command 'pwd'. The chdir command will position you 'in' another directory.
The directory in which you are when you first login is your home directory
(1.1, 1.6). The echo command prints its arguments (1.6, 2.6, 3.6, 3.10).
The else command is part of the 'if-then-else-endif' control command
construct (3.6). An end-of-file is generated by the terminal by a control-d,
and whenever a command reads to the end of a file that it has been given
as input. Commands receiving input from a pipe receive an end-of-file
when the command sending them input completes. Most commands
terminate when they receive an end-of-file. The shell has an option to
ignore end-of-file from a terminal input; this option may help you keep from
logging out accidentally (1.1, 1.8, 3.8). A character \ used to prevent the
special meaning of a metacharacter is called an escape character, because
the special meaning is 'escaped'. Thus

echo*

will echo the character '*' while just

echo*

will echo the names of the file in the current directory. In this example, \
escapes '*' (1. 7). There is also a non-printing character called escape,
usually labeled ESC or AL TMODE on terminal keyboards. Some UNIX systems
use this character to indicate that output is to be suspended. Other systems
use control-s. This file contains information about the accounts currently on
the system. If consists of a line for each account with fields separated by ':'
characters (2.3). You can look at this file by saying

cat /etc/passwd

The command grep is often used to search for information in this file. See
'passwd (5)' and 'grep (1)' for more details. The exit command is used to
force termination of a shell script, and is built-into the shell (3.9). A
command that discovers a problem may reflect this back to the command
(such as a shell) that invoked (executed) it. It does this by returning a non­
zero number as its exit status, a status of zero being considered 'normal
termination'. The exit command can be used to force a shell command
script to give a non-zero exit status (3.5). The replacement of strings that

Sys5 UNIX 7-35

CHAPTER 7 csh

contain metacharacters by other strings is referred to as the process of (
expansion. Thus the replacement of the word '*' by a sorted list of files in ~-j
the current directory is a 'filename expansion'. Similarly the replacement of
the characters '!!' by the text of the last command is a 'history expansion'.
Expansions are also referred to as substitutions (1.6, 3.4, 4.2). Expressions
are used in the shell to control the conditional structures used in the writing
of shell scripts and in calculating values for these scripts. The operators
available in shell expressions are those of the language C (3.5). Filenames
often consist of a root name and an extension separated by the character'.'.
By convention, groups of related files often share the same root name.
Thus if 'prog.c' were a C program, then the object file for this program would
be stored in 'prog.o'. Similarly a paper written with the '-me' nroff macro
package might be stored in 'paper.me' while a formatted version of this
paper might be kept in 'paper.out' and a list of spelling errors in 'paper.errs'
(1.6). Each file in UNIX has a name consisting of up to 14 characters and
not including the character '/'. This name is used in pathname building.
Most file names do not begin with the character '. ', and contain only letters
and digits with perhaps a'.' separating the root portion of the filename from
an extension (1.6).
Filename expansion uses the metacharacters '*', '?' and '[' and']' to provide
a convenient mechanism for naming files. Using filename expansion it is
easy to name all the files in the current directory, or all files that have a ,/ ·"
common root name. Other filename . expansion mechanisms use the .'- .../
metacharacter ' ' and allow files in other users directories to be named
easily (1.6, 4.2). Many UNIX commands accept arguments that are not the
names of files or other users but are used to modify the action of the
commands. These are referred to as flag options, and by convention
consist of one or more letters preceded by the character '-' (1.2). Thus the .
Is list file commands has an option '-s' to list the sizes of files. This is
specified

ls-s

The foreach command is used in shell scripts and at the terminal to specify
repetition of a sequence of commands while the value of a certain shell
variable ranges through a specified list (3.6, 4.1). The getty program is part
of the system that determines the speed at which your terminal is to run
when you first log in. It types the initial system banner and 'login:'. When
no one is logged in on a terminal a ps command shows a command of the
form '- 7' where '7' here is often some other single letter or digit. This '7' is
an option to the getty command, indicating the type of port it is running on.
If you see a getty command running on a terminal in the output of ps you
know that no one is logged in on that terminal (2.3). The shell has a
command goto used in shell scripts to transfer control to a given label (3.7). l'f ·\

The grep command searches through a list of argument files for a specified

7-36 Sys5 UNIX

(

(

(

csh CHAPTER 7

string. Thus

grep bill /etc/passwd

will print each line in the file '/etc/passwd' that contains the string 'bill'.
Actually, grep scans for regular expressions in the sense of the editors 'ed
(1)' and 'ex (1)' (2.3). Grep stands for 'globally find regular expression and
print' or, some say, 'get regular expression pattern'. When you hangup a
phone line, a HANGUP signal is sent to all running processes on your
terminal, causing them to terminate execution prematurely. If you wish to
start commands to run after you log off a dialup you must use the command
nohup (2.6). The head command prints the first few lines of one or more
files. If you have files containing text you are wondering about, try running
head with these files as arguments. This usually shows enough of what is
in these files to let you decide which you are interested in (1.5, 2.3). The
history mechanism of the shell allows previous commands to be repeated,
possibly after modification to correct typing mistakes or to change the
meaning of the command. The shell has a history list where these
commands are kept, and a history variable, which controls how large this list
is (1. 7, 2.6). Each user has a home directory, which is given in your entry in
the password file, letclpasswd. This is the directory you are placed in when
you first log in. The cd or chdir command with no arguments takes you
back to this directory, whose name is recorded in the shell variable HOME.
You can also access the home directories of other users in forming
filenames using a file expansion notation and the character ' · (1.6). A
conditional command within the shell, the if command is used in shell
command scripts to make decisions about what course of action to take
next (3.6). Normally, your shell exits, printing 'logout' if you type a control-d
at a prompt of'%·. This is the way you usually log off the system. But you
can set the ignoreeof variable in your .login file and then use the command
logout to logout. This is useful if you sometimes accidentally type too many
control-d characters, logging yourself off (2.2, 2.6). Many commands on
UNIX take information from the terminal or from files that they then act on.
This information is called input. Commands normally read for input from
their standard input, which is, by default, the terminal. This standard input
can be redirected from a file using a shell metanotation with the character
· < ·. Many commands also read from a file specified as argument.
Commands placed in pipelines read from the output of the previous
command in the pipeline. The leftmost command in a pipeline reads from
the terminal if you neither redirect its input nor give it a file name to use as
standard input. Special mechanisms exist for supplying input to commands
in shell scripts (1.2, 1.6, 3.8). An interrupt is a signal to a program that is
generated by hitting the RUBOUT or DELETE key. It causes most programs to
stop execution. Certain programs such as the shell and the editors handle
an interrupt in special ways, usually by stopping what they are doing and

Sys5 UNIX 7-37

CHAPTER 7 csh

prompting for another command. While the shell is executing another
command and waiting for it to finish, the shell does not listen to interrupts.
The shell often wakes up when you hit interrupt because many commands
die when they receive an interrupt (1.8, 2.6, 3.9). A program that terminates
processes run without waiting for them to complete. (2.6) The file .login in
your home directory is read by the shell each time you log in to UNIX and the
commands there are executed. A number of commands are usefully placed
here, especially tset commands and set commands to the shell itself (2.1).
The logout command causes a login shell to exit. Normally, a login shell will
exit when you hit control-d generating an end~of-file, but if you have set
ignoreeof in your .login file, then this will not work and you must use logout
to log off the UNIX system (2.2). When you log off of UNIX the shell will
execute commands from the file .logout in your home directory after it prints
'logout'. The command /pr is the line printer daemon. The standard input of
/pr is spooled and printed on the UNIX line printer. You can also give /pr a
list of filenames as arguments to be printed. Lpr is usually the last
component of a pipeline (2.3). The Is list files command is one of the most
commonly used UNIX commands. With no argument filenames it prints the
names of the files in the current directory. It has a number of useful flag
arguments, and can also be given the names of directories as arguments, in
which case it lists the names of the files in these directories (1.2). The mail
program is used to send and receive messages from other UNIX users (1.1,
2.2). The make command is used to maintain one or more related files and
to organize functions to be performed on these files. In many ways make is
easier to use, and more helpful than shell command scripts (3.2}. The file
containing commands for make is called 'makefile' (3.2}. The 'manual' often
referred to is the Plexus SysS UNIX Programmer's Reference Manual. It
contains a description of each UNIX program. An online version of the
manual is accessible through the man command. Its documentation can be
obtained online via

man man

Many characters that are neither letters nor digits have special meaning
either to the shell or to UNIX. These characters are called metacharacters.
If these characters must be used without their special meaning in arguments
to commands, then they must be quoted. An example of a metacharacter is
the character '>', which is used to indicate placement of output into a file.
For the purposes of the history mechanism, most unquoted metacharacters
form separate words (1.4). The appendix to this manual lists the
metacharacters in groups by their function. The mkdir command is used to
create a new directory (2.6). Substitutions with the history mechanism,
keyed by the character '!' or of variables using the metacharacter '$' are
often subjected to modifications, indicated by placing the character ':' after
the substitution and following this with the modifier itself. The command ""

7-38 SysS UNIX

/

(

(.

(~

csh CHAPTER 7

substitution mechanism can also be used to perform modification in a similar
way, but this notation is less clear (3.6). The shell has a variable noclobber,
which may be set in the file .login to prevent accidental destruction of files
by the '>' output redirection metasyntax of the shell (2.2, 2.5). A shell
command used to allow background commands to run to completion even if
you log off a dialup before they complete. (2.5) The standard text formatter
on UNIX is the program nroff. Using nroff and one of the available macro
packages for it, documents may be automatically formatted and prepared for
phototypesetting using the typesetter program troff (3.2). The onintr
command is built-into the shell and is used to control the action of a shell
command script when an interrupt signal is received (3.9). Many commands
in UNIX produce output. This output is usually placed on what is known as
the standard output, which is normally connected to the user's terminal.
The shell metacharacter '>' redirects the standard output of a command to
a file (1.3). Using the pipe mechanism and the metacharacter 't. the
standard output of one command may become the standard input of another
command (1.5). Certain commands such as the line printer daemon /pr do
not place their results on the standard output but rather in more useful
places such as on the line printer (2.3). Similarly the write command places
its output on another user's terminal rather than its standard output (2.3).
Commands also have a diagnostic output where they write their error
messages. Normally these go to the terminal even if the standard output
has been sent to a file or another command, but you may direct error
diagnostics along with standard output using a special metanotation (2.5).
The shell has a variable path, which gives the names of the directories in
which it searches for the commands that it is given. It always checks first to
see if the command it is given is built-into the shell. If it is, then it need not
search for the command as it can do it internally. If the command is not
built-in, then the shell searches for a file with the name given in each of the
directories in the path variable, left to right. Since the normal definition of
the path variable is

path (./bin /usr/bin)

the shell normally looks in the current directory, and then in the standard
system directories '/bin' and '/usr/bin' for the named command (2.2). If the
command cannot be found the shell will print an error diagnostic. Scripts of
shell commands are executed using another shell to interpret them if they
have 'execute' bits set. This is normally true because a command of the
form

chmod 755 script

was executed to turn these execute bits on (3.3). A list of names, separated
by '/'characters forms a pathname. Each component, between successive
'/' characters, names a directory in which the next component file resides.

Sys5 UNIX 7-39

CHAPTER 7 csh

Pathnames that begin with the character '/' are interpreted relative to the
root directory in the file system. Other pathnames are interpreted relative to
the current directory as reported by pwd. The last component of a
pathname may name a directory, but usually names a file. A group of
commands connected together, the standard output of each connected to
the standard input of the next, is called a pipeline. The pipe mechanism
used to connect these commands is indicated by the shell metacharacter 't
(1.5, 2.3). The pr command prepares listings of the contents of files with
headers giving the name of the file and the date and time at which the file
was last modified (2.3). The printenv command is used on version 7 UNIX
systems to print the current setting of variables in the environment (2.6). A
instance of a running program is called a process (2.6). The numbers used
by kill and printed by wait are unique numbers generated for these
processes by UNIX. They are useful in kill commands, which can be used to
stop background processes. (2.6) Usually synonymous with command; a
binary file or shell command script that performs a useful function is often
called a program.
Also referred to as the manual. See the glossary entry for 'manual'. Many
programs print a prompt on the terminal when they expect input. Thus the
editor 'ex' prints a ':'when it expects input. The shell prompts for input with
'% ' and occasionally with '? ' when reading commands from the terminal
(1.1). The shell has a variable prompt, which may be set to a different
value to change the shell's main prompt. This is mostly used when
debugging the shell (2.6). The ps command shows the processes you are
currently running. Each process is shown with its unique process number,
an indication of the terminal name it is attached to, and the amount of CPU

time it has used so far. The command is identified by printing some of the
words used when it was invoked (2.3, 2.6). Login shells, such as the csh.
you get when you login are shown as'-'. The pwd command prints the full
pathname of the current (working) directory. The quit signal, generated by a
control-\ is used to terminate programs that are behaving unreasonably. It
normally produces a core image file (1.8). The process by which
metacharacters are prevented their special meaning, usually by using the
character ,, in pairs, or by using the character '\' (1.4). The routing of input
or output from or to a file is known as redirection of input or output (1.3).
The repeat command iterates another command a specified number of
times (2.6). The RUBOUT or DELETE key generates an interrupt signal that is
used to stop programs or to return and prompt for more input (2.6).
Sequences of shell commands placed in a file are called shell command
scripts. You may perform simple tasks using these scripts without writing a
program in a language such as C, by using the shell to selectively run other
programs (3.2, 3.3, 3.10). The built-in set command is used to assign new
values to shell variables .and to show the values of the current variables.
Many shell variables have special meaning to the shell itself. Thus by using

7-40 SysS UNIX

(

csh CHAPTER 7

the set command the behavior of the shell can be affected (2.1). Variables
in the environment 'environ (5)' can be changed by using the setenv built-in
command (2.6). The printenv command can be used to print the value of
the variables in the environment. A shell is a command language
interpreter. You may write and run your own shell, as shells are no different
from any other programs as far as the system is concerned. This manual
deals with the details of one particular shell, called csh. See script (3.2,
3.3, 3.10). The sort program sorts a· sequence of lines in ways that can be
controlled by argument flags (1.5). The source command causes the shell
to read commands from a specified file. It is most useful for reading files
such as .cshrc after changing them (2.6).
See metacharacters and the appendix to this manual. We refer often to the
standard input and standard output of commands. See input and output
(1.3, 3.8). A command normally returns a status when it finishes. By
convention a status of zero indicates that the command succeeded.
Commands may return non-zero status to indicate that some abnormal
event has occurred. The shell variable status is set to the status returned
by the last command. It is most useful in shell command scripts (3.5, 3.6).
The shell implements a number of substitutions where sequences indicated
by metacharacters are replaced by other sequences. Notable examples of
this are history substitution keyed by the metacharacter '!' and variable
substitution indicated by '$'. We also refer to substitutions as expansions
(3.4). The switch command of the shell allows the shell to select one of a
number of sequences of commands based on an argument string. It is
similar to the switch statement in the language C (3.7). When a command
that is being executed finishes, we say it undergoes termination or
terminates. Commands normally terminate when they read an end-of-file
from their standard input. It is also possible to terminate commands by
sending them an interrupt or quit signal (1.8). The kill program terminates
specified command whose numbers are given (2.6). The then command is
part of the shell's 'if-then-else-endif' control construct used in command
scripts (3.6). The time command can be used to measure the amount of
CPU and real time consumed by a specified command (2.1, 2.6). The troff
program is used to typeset documents. See also nroff (3.2). The tset
program is used to set standard erase and kill characters and to tell the
system what kind of terminal you are using. It is often invoked in a .login file
(2.1). The unalias command removes aliases (2.6). UNIX is an operating
system on which csh runs. UNIX provides facilities that allow csh to invoke
other programs such as editors and text formatters. The unset command
removes the definitions of shell variables (2.2, 2.6).
See variables and expansion (2.2, 3.4). Variables in csh hold one or more
strings as value. The most common use of variables is in controlling the
behavior of the shell. See path, noclobber, and ignoreeof for examples.
Variables such as argv are also used in writing shell programs (shell

Sys5 UNIX 7-41

CHAPTER 7 csh

command scripts) (2.2). The verbose shell variable can be set to cause
commands to be echoed after they are history-expanded. This is often \.____J
useful in debugging shell scripts. The verbose variable is set by the shells
-v command line option (3.10). The built-in command wait causes the shell
to pause, and not prompt, until all commands run in the background have
terminated (2.6). The while built-in control construct is used in shell
command scripts (3. 7). A sequence of characters that forms an argument
to a command is called a word. Many characters that are neither letters,
digits, '-', '.' or '/' form words all by themselves even if they are not
surrounded by blanks. Any sequence of charact~r may be made into a word
by surrounding it with ,,, characters except for the characters "' and '!',
which require special treatment (1.1, 1.6). This process of placing special
characters in words without their special meaning is called quoting.
At an given time you are in one particular directory, called your working
directory. This directory's name is printed by the pwd command and the
files listed by Is are the ones in this directory. You can change working
directories using chdir. The write command is used to communicate with
other users who are logged in to UNIX (2.3).

7-42 Sys5 UNIX

(

(

(

GLOSSARY CHAPTER 8

The following list defines terms and acronyms used in this volume which
may not be familiar to the user.

argument-Words following the command on a command line that provide
information necessary to execute a program. Command arguments are very
often file names.

ASCII-American Standard Code for Information Interchange.

background-A mode of program execution when the shell does not wait
for the command to terminate before prompting for another command.

C language-A general purpose low level programming language used to
write programs (such as numerical, text-processing, and data base) and
operating systems (such as the UNIX operating system).

command-The first word of a command line. It is the name of an
executable file that is a compiled program.

command line-A sequence of nonblank arguments separated by blanks or
tabs typed in by a user. The first argument usually specifies the name of a
command.

command list-A sequence of one or more simple commands separated or
terminated by a new line or a semicolon.

command procedure-A command procedure is an executable file that is
not a compiled program. It is a call to the shell to read and execute
commands contained in a file. A sequence of commands may thus be
perserved for repeated use by saving it in a file which can also be called a
shell procedure, a command file, or a runcom according to local preference.

command substitution-When the shell reads a command line, any
command or commands enclosed between grave accents(' .. .') are executed
first and the output from these commands replace the whole expression
(' .. .').

current working directory-The current point of reference for accessing
data within the file system.

directory-A type of file that is used to group and organize files and other
directories.

EOF-The End-Of-File character is the same as an ASCII EOT character.

Sys5 UNIX 8-1

CHAPTER 8 GLOSSARY

See EOT.

EOT-The End-Of-Text character is generated by holding down the
"CONTROL" key and pressing the lowercase "d" key once. The EOT is
used to terminate the shell which usually logs a user off the system.

erase character-The character which is used to delete the previous
character on the current line. To turn off the special meaning of the erase
character, it must be preceded with a''\". By default, the erase character is
#. See stty(1) to change the default character.

file-An organized collection of information containing data, programs, or
both which allows users to store, retrieve, and modify information. A simple
file name is a sequence of characters other than a slash (/).

filter-A command that reads its standard input, transforms it in some way,
and prints the result as output.

foreground-A mode of program execution when the shell waits for the
command to terminate before prompting for another command.

full pathname-The pathname of a specific file starting from the root / \
directory.

group identification number (gid)-A unique number assigned to one or
more logins that is used to identify groups of related users.

here documents-A command procedure that has the form
command<< eofstring which causes the shell to read subsequent lines
as standard input to the command until a line is read consisting of only the
eofstring. Any arbitrary string can be used for the eofstring.

HOME-Another name for the login directory.

in-line input documents-See here documents.

keyword parameters-An argument to a command procedure of the form
name=value command arg1 arg2 ••• here name is called the keyword
parameter. This allows shell variables to be assigned values when a shell
procedure is called. The value of name in the invoking shell is not affected,
but the value is assigned to name before execution of the procedure. The
arguments (arg1 arg2 ...) are available as positional parameters
($1 $2 ...).

8-2 SysS UNIX

(

GLOSSARY CHAPTER 8

kill character-The character which is used to delete all the characters
typed before it on the current line. To turn off the special meaning of the kill
character, it must be preceded with a"\". By default, the kill character is@.
The default character can be changed via stty(1).

login-A means by which a user can gain access to the UNIX operating
system.

login name-A unique string of letters and numbers used to identify a login.

log off-A procedure to disconnect the user from the UNIX operating
system.

memorandum macros-The standard general purpose package of text
formatting macros used in conjuction with nroff and troff to produce many
common types of documents.

metacharacters-Characters that have a special meaning to the shell,
such as<,>,*,?,~&,$,;,(,),\,",', ·, [,],etc.

mode-An absolute mode is an octal number used in conjunction with
chmod(1) to change permissions of files.

nroff-A text formatting program for driving typewriter-like terminals and
printers to produce a screen copy or a hardcopy.

parent directory-The directory immediately above another directory. A
" .. " is the shorthand name for the parent directory. To make the parent
directory of your current working directory your new current directory enter
the "cd •• " command.

partial pathname-The pathname between the current working directory
and a specific file.

password-A string of up to 13 characters chosen from a 64 character
alphabet (., \, 0-9, A-Z, a-z).

pathname-A sequence of directory names separated by the I character
and ending with the name of a file. The pathname defines the connection
path between some directory and a file.

pipe-A simple way to connect the output of one program to the input of
another program, so that each program will run as a sequence of processes.

Sys5 UNIX 8·3

CHAPTER 8 GLOSSARY

pipeline-A series of filters separated by the character I. The output of each
filter becomes the input of the next filter in the line. The last filter in the line '~
will write to its standard output.

positional parameters-Arguments supplied with a command procedure
that are placed into variable names $1, $2, . . . when the command
procedure is invoked by the shell. The name of the file being executed is
positional parameter $0.

primary prompt-A notification (by default "$ ''.) to the user that the UNIX
operating system shell is ready to accept another request.

process-A program that is in some state of execution. The execution of a
computer environment including contents of memory, register values, name
of the current directory, status of open files, information recorded at login
time, and various other items.

program-Software that can be executed by a user.

secondary prompt-A notification (by default "> ") to the user that the
command typed in response to the primary prompt is incomplete.

shell-A UNIX system user program written in C language that handles the
communication between the system and users. The shell accepts
commands and causes the appropriate program to be executed.

shell procedure-See command procedure.

standard input-The standard input of a command is sent to an open file
which is normally connected to the keyboard. An argument to the shell of
the form "< file" opens the specified file as the standard input thus
redirecting input to come from the file named instead of the keyboard.

standard output-Output produced by most commands is sent to an open
file which is normally connected to the printer or screen. This output may be
redirected by an argument to the shell of the form "> file" which opens the
specified file as the standard output.

text editor-An interactive program (ed) for creating and modifying text,
using commands provided by a user at a terminal.

troff-A text formatting program for driving a phototypesetter to produce
high quality printed text.

8-4 Sys5 UNIX

GLOSSARY CHAPTER 8

user-defined variables-A user variable can be defined using an
assignment statement of the form name=value where name must begin
with a letter or underscore and may then consist of any sequence of letters,
digits, or underscores up to 512 characters. The name is the variable.
Positional parameters cannot be in the name.

user identification number (uid)-A unique number assigned to each login
that is used to identify users and the owner of information stored on the
system.

variables-A variable is a name representing a string value. Variables
which are normally set only on a command line are called parameters
(positional parameters and keyword parameters). Other variables are simply
names to which the user (user-defined variables) or the shell itself may
assign string values.

Sys5 UNIX 8-5

