
IRIS R8
BUSINESS

BASIC
MANUAL

Revision 02

NOTICE

Every attempt has been made to make this manual complete
~cc~r~te and up-to-date. However, all information herein i~
suoJect to change due to updates. All inquiries concerning this
manual should be directed to POINT 4 Data Corporation.

PRE LIM I N A R Y

Copyright © 1982, 1983, 1984 by POINT 4 Data Corporation
(formerly Educati·onal Data Systems, Inc). Printed in the United
states of America. All rights reservedo No part of this work
covered by the copyrights hereon may be reproduced or copied in
any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information and
retrieval systems--without the prior written permission ofl

:;M-031)-0012-02

POINT 4 Data Corporation
2569 McCabe Way

Irvine, CA 92714
(714) 863-1111

pomT 4 Data Corporation 11
PRELIMINARY

IRIS Business BASIC Manual

REVISION RECORD

PUBLICATION RUMBBRI SII-030-0012

Revision Description

01 Draft Version

02 Preliminary Release

SM-030-0012-02
POINT 4 Data Corporation iii

10/01/62

02/01/84

PRELIMINARY
IRIS Business BASIC Manual

LIST OF EFFECTIVE PAGES

Changes, additions, and deletions to information in this manual
ace indicated by vertical bars in the margins or by a dot near
the page number if the entire page is affected. A vertical bar
by the page number indicates pagination rather than content has
changed. The effective revision for each page is shown below.

~ Btl

Cover
Title 02
ii thru x 02
1-1 thru 1-3 02
2-1 thru 2-57 02
3-1 thru 3-143 02
Appendix Title
A-I thru A-14 02
B-1 thru B-4 02
C-l 02
0-1 thru 0-4 02
E-l 02
Comment Sheet 02
Kailer
Back Cover

51«'030-0012-02
POINT 4 Data Corporation iv

PRELIMINARY
IRrS Business BASIC Manual

PREFACE

This manual describes IRIS data files and the statements which
make up IRIS Business BASIC. Section 2 describes each type-of
IRIS data file, and discusses features common to all files.
Section 3 presents each Business BASIC statement in alphabetical
order.

., ."
In Section 3, each statement is presented on facing pages. The
discussion of the statement is usually confined to the left pages
with appropriate examples on the right page.

Five appendices are included in the manual.
twelve examples of BASIC programs. Appendix
numbers and codes. Appendix C lists ASCII
shows a listing of the BUILDXF program.
terminal control codes.

Appendix A includes
B lists BASIC error
codes. Appendix D
Appendix E lists

This manual assumes that the reader has had some previous
programming experience in the BASIC language.

IRIS Business BASIC is upward compatible with Dartmouth BASIC as
described in Kemeny and Kertz's BASIC Programming, First Edition.
Programs written under Dartmouth BASIC will run without
modification under IRIS Business BASIC, except that all
appropriate statements must be executed.

Standard Writing Conventions

The following syntax conventions are used throughout the manu~i~

variable

list

expression

filename

filename string

SM-030-0012-02

simple or subscripted numeric or string
variable

the elements of a list must be separated
by commas; for example, an expression
list might be: A,B,C*5,D+I

a group of characters that may be
evaluated to a simple numeric value;
sometimes abbreviated expr

an IRIS filename

a quoted literal or string variable
containing a filename

POINT 4 Data Corporation v
PRELIMINARY

IRIS Business BASIC Manual

A
B

{}

*

<CTRL-X>

<RETURN>

Related Manuals

indicates that either A or B may be
included, but not both

braces indicate that the parameters they
enclose are optional

an asterisk following information
enclosed in braces indicates that the
enclosed information may be repeated up
to the length of the BASIC I/O and edit
buffers

user input is underlined

indicates a control character where X is
an alpha key

angle brackets around any word refer to
a specific key on the keyboard, the
RETURN key is shown

Related manuals include:

IRIS Operations Manual

IRIS RB User Manual

Pub. Number

SM-030-0010

SM-030-0011

IRIS Installation and Configuration
Manual SM-030-0009

SM-030-0012-02
POINT 4 Data Corporation vi

PRELIMINARY
IRIS Business BASIC Manual

Section

1

2

2.1
2.2
2.3
2.3.1
2.3.2

2.3.3
2.3.4
2.3.4.1
2.3.4.2
2.3.5
2.4
2.4.1
2.4.2
2.4.2.1
2.4.2.2
2.4.2.3
2.4.2.4
2.4.2.5
2.4.3
2.4.4

2.5
2.5.1
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3
2.5.2.4
2.5.2.4.1
2.5.2.4.2

2.5.3
2.5.4

2.6
2.6.1
2.6.2
2.6.2.1

CONTENTS

INTRODUCTION

IRIS DATA FILES

DEFINITION OF TERMS ASSOCIATED WITH FILES
INTRODUCTION TO IRIS DATA FILES
DATA FILE ACCESS

Overview of the File Handling Statements
Records and Items for Contiguous and Text

Files
Sequential and Repeated Access
Record Locking

Deadly Embraces
Delay Clause

The Channel Functions
FORMATTED FILES

Characteristics of Formatted Files
Accessing Formatted Files

WRITE for Formatted Files
READ for Formatted Files
PRINT for Formatted Files
HAT WRITE Statement for Formatted Files
The MAT READ Statement for Formatted Files

Creating a Formatted File Using FORMAT
Creating a Formatted File Using the BUILD

Statement
CONTIGUOUS FILES

Characteristics of Contiguous Files
Accessing Contiguous Files

WRITE for Contiguous Files
READ for Contiguous Files
PRINT for Contiguous Files
The Matrix Statements for Contiguous Files

MAT WRITE Statement for Contiguous Files
The MAT READ Statement for Contiguous

Files
Creating a Contiguous File Using FORMAT
Creating a Contiguous File Using the BUILD

Statement
TEXT FILES

Characteristics of Text Files
Accessing Text Files

WRITE for Text Files

1-1

2-1

2-1
2-2
2-4
2-4

2-5
2-6
2-8
2-9
2-9
2-10
2-11
2-11
2-12
2-13
2-14
2-15
2-15
2-16
2-17

2-18
2-19
2-19
2-20
2-22
2-22
2-23
2-23
2-24

2-24
2-25

2-25
2-26
2-26
2-26
2-27

SM-030-0012-02 PRELIMINARY
IRIS Business BASIC Manual POINT 4 Data Corporation vii

2.6.2.2
2.6.2.3
2.6.3
2.6.4
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.1.3
2.7.1.4
2.7.1.4.1
2.7.1.4.2

2.7.2
2.7.2.1
2.7.2.2
2.7.3
2.7.4
2.7.4.1
2.7.4.2
2.7.5
2.7.5.1
2.7.5.2
2.7.5.3
2.7.5.4
2.7.5.5
2.7.5.6
2.7.5.7
2.7.5.8
2.7.5.9
2.7.5.10

2.7.6
2.7.7
2.7.8

2.7.9
2.7.9.1
2.7.9.2
2.7.9.3
2.7.10

2.7.11

READ for Text Files
PRINT for Text Files

Creating a Text File Using a Text Editor
Creating a Text File Using the BUILD Statement

KEYED FILES
Types of Keyed Files

Indexed File Features
Types of Indexed files
Polyfile Features
Types of Polyfile Volumes

Polyfile Data Volume
Polyfile Directory and Directory Extension

Volumes
Managing Free Records

Indexed File: Free Record Chain
Polyfiles: Bit Map

Characteristics of Data Portion of Keyed Files
Structure of Keyed File Directories

Indexed File Directories
Polyfile Directories

Use of the SEARCH Statement
Search Mode 0: Directory Definition
Search Mode 1: Directory Information
Search Mode 2: Key Match
Search Mode 3: Next Key
Search Mode 4: Insert a Key
Search Mode 5: Delete a Key
Search Mode 7: Reorganize Directory
Inserting a Record into a Keyed File
Deleting a Record from a Keyed File
Finding and Updating a Record in a Keyed

File
Accessing the Data Portion of Keyed Files
Creating Keyed Files Using BUILDXF and BUILDPF
Creating an Indexed File from Within a BASIC

Program
Creating a Polyfile from Within a BASIC Program

Step 1: Build a Contiguous File
Step 2: Convert to Polyfile Volume
Step 3: Structure Polyfile

Converting an Application from Using Indexed
Files to Using Polyfiles

Special Polyfile CALL (91) Modes

2-28
2-28
2-29
2-29
2-30
2-30
2-30
2-31
2-31
2-32
2-32

2-32
2-33
2-33
2-33
2-34
2-34
2-36
2-37
2-38
2-41
2-42
2-43
2-43
2-44
2-44
2-45
2-45
2-46

2-47
2-48
2-48

2-50
2-51
2-51
2-52
2-55

2-56
2-57

5M-030-0012-02 PRELIMINARY
IRIS Business BASIC Manual POINT" Data Corporation viii

3 BUSINESS BASIC STATEMENTS 3-1

BUILD ••• 3-2
CALL •• 3-4
CALL 91 ••• 3-6
CALL $FINDF (CALL 96) ••••••••••••••••••••••••••• 3-8
CALL $LOGIC (CALL 88) ••••••••••••••••••••••••••• 3-10
CALL $RDFHD (CALL 97) ••••••••••••••••••••••••••• 3-12
CALL $STRING (CALL 82) •••••••••••••••••••••••••• 3-16
CALL $TIME (CALL 99) •••••••••••••••••••••••••••• 3-20
CALL $TRXCO (CALL 98) ••••••••••••••••••••••••••• 3-22
CHAIN ••• 3-26
CLOSEt •• 3-28
DATA •• 3-30
DEF ••• 3-32
DELETE •• 3-34
DIM ••• 3-36
DUMP •• 3-38
END ••• 3-40
EXIT •• 3-42
FOR ••• 3-44
GOSUB ••• 3-50
GOTO •• 3-52
HELP •• 3-54
IF •• 3-56
IF ERR .. 3-58
INPUT ••• 3-60
KILL •• 3-62
LET ••• 3-64
LET ••• USING 3-66
LIST •• 3-68
LOAD •• 3-70
MAT ••• 3-72
MAT INPUT 3-74
MAT PRINT ••••••••••••••••••••••••••••••••••••••• 3-76
MAT READ •• 3-78
MAT READt ••••••••••••••••••••••••••••••••••••••• 3-80
MAT WRITE. • ••••••••••••••••••••••••••••••••••••• 3-82
MAT. c CON •••••••••••••••••••••••••••••••••• 3-84
MAT. ION •••••••••••••••••••••••••••••••••• 3-86
MAT. INV •••••••••••••••••••••••••••••••••• 3-88
MAT. TRN 3-90
MAT. = ZER 3-92
NEXT •• 3-94
ON •• 3-96
OPEN •• 3-98
PRINT ••• 3-100
PRINT USING 3-104
PRINT •• 3-108
PRINT t USING 3-110
RANDOM •• 3-112
READ •• 3-114
READ ••• 3-116
REM ••• 3-118
RENUMBER •• 3-120

SM-030-0012-02 PRELIMINARY
IRIS Business BASIC Manual POINT 4 Data Corporation ix

A

B

C

D

E

2-1

3-1

2-1
2-2
2-3
2-4
2-5

3-1
3-2

RESTOR ••..•...•.•..•.••.•••••.•••••••••••••••••• 3-122
RETURN .•••••••...•.••...•••••••••••••••••••••••• 3-124
RUN •••..•.....•.••••.•••.••••••••••••••••••••••• 3-126
SEARCH ••••.••••.•..••..•••••••••••••••••••••••• 3-128
SIGNAL 1 ••..••••.••..••.•••••••••••••••••••••••• 3-132
SIGNAL 2 •••••••••••••••••••.•••••••••••••••••••• 3-134
SIGNAL 3 •••••••••••••.•••••••••••••••••••••••••• 3-136
SIZE ••••.••.•.•••.••.••••••••••••••••••••••••••• 3-138
STOP •••••••••••..••••..••••••••••••••••••••••••• 3-140
WRITE •••••.•.•.••.••.•••••••••••••••••••••••••• 3-142

APPENDICES

BASIC Program Examples

BASIC Error Numbers

ASCII Code in Octal

BUILDXF Listing

Terminal Control Codes

FIGURES

Directory Structure of Keyed Files

Format of Statement Descriptions

Search Error Status
Search Mode Zero
Search Mode One
File Parameters

TABLBS

CALL 91 Status Values

Format Fields for Print Using
Summary of Search Modes

A-I

B-1

C-l

D-l

E-l

2-35

3-1

2-39
2-41
2-42
2-53
2-54

3-106
3-130

SM-030-0012-02 PRELIMINARY
IRIS Business BASIC Manual POINT 4 Data Corporation x

Section 1
INTRODUCTION

BASIC is an easy-to-learn yet powerful programming language
well-suited to interactive use on a time-sharing computer. The
features of BASIC include the following:

• Simple grammar based on a small number of statements

• Facilities for handling strings, matrices and arithmetic
expressions

• Built-in editing features that facilitate debugging and
program modification

• Ease of translation by an interpreter. Use of an interpreter
makes it possible to write and debug problems interactively.
For example, a section of a program can be written and run;
lines can be added, deleted, or modified; and the revised
program can be rerun immediately without waiting for a
compilation

IRIS Business BASIC, the version of BASIC described here, is
designed to preserve the characteristics which have made BASIC
practically the universal time-sharing language. It adds further
capabilities which enhance its utility, especially for business
applications. The extensions of Business BASIC are:

• Extended precision decimal arithmetic - provides up to
fourteen decimal digits of accuracy

• PRINT USING - provides business oriented formatting of output

• Chaining - allows large applications to be segmented

• Signalling - allows communication between programs on
different ports or within a single program

• Extended function set - provides special functions and
facilities

• Error branching - allows BASIC programs to detect errors and
attempt correction

• Provision for large strings and arrays - increases the
usefulness of string and matrix operations

SM-030-0012-02
POINT 4 Data Corporation 1-1

INTRODUCT ION
IRIS Business BASIC Manual

• Five types of data files: formatted, contiguous, text
polyfile and indexed - provide random access data storage on
the disc

Each extension of Business BASIC is discussed in detail below.

Extended precision decimal arithmetic overcomes two problems in
most BASIC systems: limited precision and conversion errors.
Most BASIC systems represent numbers internally in floating point
binary form, typically to an accuracy of 21 to 24 bits. This
results in six decimal digits of precision in which the sixth may
be faulty because of errors introduced through the conversion
from decimal to binary and back. Business BASIC provides four
precision options: one-word integers (in the range ±7999) and
two-, three- and four-word floating point numbers which give,
respectively, six, ten, and fourteen decimal digits of accuracy.
Furthermore, all numbers are carried in decimal form and the
arithmetic is entirely decimal, so that conversion and its
inherent errors are eliminated.

The second major extension is PRINT USING, which simplifies
report generation by providing COBOL-like picture formats. These
are used to position column headings, line up decimal pOints,
float dollar signs, insert commas, and provide. the other controls
required for technical and financial reporting.

Chaining allows programs to be segmented for execution in a
system with a small memory. Small segments also permit faster
swapping for more efficient system operation.

Signalling allows programs on different ports and program
segments to communicate with each other.

The extended function set includes facilities for taking floating
point numbers apart and putting them back together.

Error branching allows turnkey systems to be written where the
BASIC program detects errors and attempts corrective action
(instead of printing an error message), perhaps by asking for
additional information from the user.

The usefulness of the string and matrix operations is increased
by the provision for large strings and matrices, which are
limited only by the program storage available and such features
as substrings, string comparisons, MAT INPUT, and matrix
inversion.

All files provide random access data storage on the disc. The
five types of IRIS data files provide programming flexibility •

• Formatted files may store over 16 million bytes of
information each, perform item-type checking and allow random
addressing of items •

• Contiguous files store large amounts of data and provide fast
access, without item-type checking.

SM-030-0012-02
POINT , Data Corporation 1-2

INTRODUCTION
IRIS Business BASIC Manual

• Text files have a capacity of over 16.7 million characters in
an extended file. They provide a common data base between
IRIS Business BASIC and other processors.

• Polyfiles may consist of up to 64 volumes and up to 63
directories. Each volume may reside on a different logical
unit, thereby eliminating size restrictions imposed on other
types of files.

• Indexed files offer up to 15 directories each and provide
fast random access by data content. The user specifies the
key length for each directory. Index-only files may also be
created.

Polyfiles and indexed files are grouped under the heading "Keyed
Files", because they both employ directories.

In addition to these extensions, IRIS Business BASIC provides the
following features: direct execution (calculator mode>, string
processing, matrix algebra and the CALL statement.

SM-030-00l2-02
POINT 4 Data Corporation 1-3

INTRODUCTION
IRIS Business BASIC Manual

Section 2
IRIS DATA FILES

IRIS file classes include system files, processor files, program
files and data files. This section describes IRIS data files and
how they are used.

2.1 DEFINITION OF TERMS ASSOCIATED WITH FILES

The use of terms associated with files often varies from system
to system. This section defines important terms in order to
prevent confusion.

BLOCK - the fundamental unit by which IRIS manages data on disc.
Each block is 512 bytes long. Normally, files are accessed
by record, leaving block manipulation to IRIS.

CHANNEL - a logical connection between a BASIC program and a file
(or device). It allows the program to access the file using
only an internal channel number for identification. This
number is associated with the actual file (or device) in the
statement which opens or builds it.

DIRECTORY - a method used to find records by key. The terms
"directory" and "index" are used interchangeably.
Directories are described in more detail in Section 2.7.4.
(Note that this is not a logical unit directory.)

FILE - a collection of data which is stored on disc. Files are
created, modified and retrieved by the use of system commands
or application programs. (Files may also be stored on other
magnetic media, but this is outside the scope of this
section.)

ITEM - a logical segment of a record. A record usually consists
of several related items. The terms "item" and "field" are
used interchangeably.

KEY - a keyword or identifier used for identification when
searching for a record in a keyed file. A key is a character
string.

RECORD - a logical segment of a file. Each record consists of a
variable number of bytes that can be used to store numbers
and strings of characters. Each record may be accessed
individually.

SM-OJO-0012-02
POINT 4 Data Corporation 2-1

IRIS DATA FILES
IRIS Business BASIC Manual

2.2 INTRODUCTION TO IRIS DATA FILES

Four IRIS file types are offered: formatted, contiguous, text and
keyed. Keyed files include two types of files: polyfiles and
indexed files. The major features of each file type are
summarized below. Further details and more strict definitions of
each file type may be found under each file heading later in this
section.

IRIS provides two structurally different forms of data files:
contiguously-allocated and randomly-allocated. These terms refer
to the organization on the disc of the data blocks which make up
the file. The data blocks of a contiguously-allocated file are
physically contiguous to each other, and all the blocks of the
file are allocated when the file is built. The data blocks of a
randomly-allocated file are allocated dynamically as they are
needed. They mayor may not be physically contiguous on the
disc.

A formatted file is randomly-allocated and formatted. When
formatting a file, the user specifies whether each item in the
file is a string or a decimal number of precision one, two, three
or four. Every record has the same format, which is recorded in
a format map in the file header. When a formatted file is
accessed, the item type and type of variable are checked. If the
types do not correspond, an error is generated.

A contiguous file is contiguously-allocated. Contiguous files
offer the potential of faster access than formatted files because
the position of the data record may be calculated by the system
without accessing the file header blocks. Because contiguous
files are not formatted and do not have item-type checking, they
offer greater flexibility than files which are formatted.

Text files are randomly-allocated. A text file may be regarded
as a string of up to 16 million ASCII characters terminated by a
null character. Text files may be accessed sequentially, but
IRIS allows the additional feature of random access.

There are two types of keyed files: polyfiles and indexed files.
Polyfiles and indexed files are grouped as keyed files because
they both allow random access by key.

Polyfiles consist of one or more associated filesl each file is
called a volume of the polyfile. Each volume is contiguously­
allocated. Additional volumes may be added when necessary, so
polyfiles need not be entirely allocated when they are created.
They may employ an optional bit map to keep track of free
records. Polyfiles offer practically unlimited storage, greater
key size, and higher record capacity than any other type of file.

SM-030-0012-02
POINT 4 Data Corporation 2-2

IRIS DATA PILES
IRIS Business BASIC Manual

An indexed file is contiguously-allocated. Part or all of every
indexed file is reserved for a directory. When a key is created,
a record may be associated with it. The record may then be
identified by unique keys contained in a directory. Unused data
records may be linked together to form a structure known as the
free record chain.

SM-030-00l2-02
POINT 4 Data Corporation 2-3

IRIS DATA FILES
IRIS Business BASIC Manual

2.3 OAT A FILES ACCESS

This section describes the file handling statements, access
method for each type of file, sequential and repeated record
access, record locking and the channel functions.

2.3.1 OVERVIEW OF THB FILB HANDLING STATEMENTS

The following summary overviews the statements which are commonly
used to manipulate files and briefly describes their functions:

BUILD

CLOSE

KILL

MAT READ

MAT WRITE

OPEN

PRINT

READ

SEARCH

WRITE

used to build the specified type of file
from within a program

used to dissociate a channel from the file
it was used to access, a file being built
is deleted if the program run is stopped
before the file is closed

used to delete specified files

used to read the elements of a matrix (or
an entire string) from a file

used to write the elements of a matrix (or
any variable) into a file

used to associate a file (or a peripheral
device) with the specified channel number

used to output information to a file. When
PRINTing to a file, the output is formatted
as it is for PRINT. A terminating
semicolon is not a record unlock command,
it is a formatting directive which
suppresses the RETURN at the end of the
line

used to read information from a file

used for polyfiles and indexed files to
manipulate directories and manage record
allocation

used to write information into a file

The syntax of each of these statements may be found in Section 3.
The BUILD, MAT READ, MAT WRITE, READ, SEARCH and WRITE statements
are discussed as they apply to each file type later in this
section.

SM-030-0012-02
POINT 4 Data Corporation 2-4

IRIS DATA FILES
IRIS Business BASIC Manual

2.3.2 RECORDS AND ITEMS FOR CONTIGUOUS AND TEXT FILES

The syntax of the READ, WRITE, MAT READ and MAT WRITE statements
are shown below:

READ tchannel {,~{ ,.J..tem{ ,~}}} 1variable list{ 1}

WRITE tchannel! ,~{ ,.J..tem{ ,~}}} ; express jon list{;}

MAT READ tchannel! ,~{ ,.J..tem{ ,~}}} ; artilY' or string variable{;}

MAT WRITE tchannel! ,~{ ,.J..tem{ ,~}}} ;artay or string variable{;}

The syntax of these statements allows specification of the record
and item numbers. However, contiguous files do not employ
records in the strict sense and text files do not employ records
and items in the strict sense. These terms have different
meanings for contiguous and text files.

For contiguous files, the item refers to the byte displacement
from the beginning of the record. For example, the following
statement reads data into variable A from a contiguous file open
on channel 0:

100 READ to,R,24;A

This statement reads record R (R contains the integer value of
the record number), beginning at byte 24. (Byte 24 is the
twenty-fifth byte, because __ the._J:ecord.-BtaL"t:s at byte zero.)

Numeric data fields must start at an even byte displacement
within the file.

For text files, the record refers to the relative block number
and the item refers to the byte displacement within that block.
(Each "record" in a text file is 512 bytes long.) For example,
the following statement accesses a text file on channell:

200 READ tl,3,15;A$

This statement reads block 3, beginning at byte 15.

For comparison, the following summary shows the meaning of
"record" and "item" for each file type:

File type ~

text block
contiguous record
polyf ile record
indexed record
formatted record

SM-030-0012-02
POINT 4 Data Corporation

byte
byte
byte
byte
item

2-5

ll..em

displacement into the block
displacement into the record
displacement into the record
displacement into the record

IRIS DATA FILES
IRIS Business BASIC Manual

2.3.3 SEQUENTIAL AND RBPEATBD ACCESS

When accessing sequentially numbered records, it is not necessary
to specify the number of each record. Instead, the values shown
below may be used as the record expression to access the records
sequentially or repeatedly. If the record expression is omitted,
sequential access is used by default.

Record
~

none

-1

-2

Accesses the next sequential record and assumes
item zero. The record number of the last access
on that channel is incremented by one and used
as the record number.

Same as none, except that it allows
specification of the item number.

Repeats access of the same record. The record
number of the last access on that channel is
used as the record number.

Sequential access operates somewhat differently for text files,
as described in Section 2.6.2.

If a statement which uses sequential or repeated access is
executed after opening the file or after building a new file,
record number zero is accessed.

The following lines demonstrate sequential access:

10 OPEN 12, -PAYROLL-
100 READ 12;A, B$
110 READ 12,6; X,Y$
120 READ 12,-1,5; A,B$
130 READ 12,-1,0; A,B$
140 READ 12,-1, A,B$

Line 10 opens the file named PAYROLL on channel 2. Line 100
accesses item zero of record number zero of that file. Line 110
accesses items zero and one of record number 6 of the file. Line
120 reads from record number seven of the file, because the
previous access of the file on channel 2 referenced record six.
Item five is read into variable A and item six is read into
variable B$. Line 130 is similar to line 120, record number
eight is read, since the previous access read record seven. Item
zero is read into A, and item one is read into B$. Line 140
operates similarly, referencing record nine.

5M-030-00l2-02
POINT 4 Data Corporation 2-6

IRIS DATA FILES
IRIS Business BASIC Manual

The following example shows repeated access of the same record.
This technique is especially useful for updating a record:

200 READ lSI A,B,C

.
250 WRITE IS, -2,1; B+D

Line 200 reads items zero, one and two of the next seqijential
record of the file open on channel five. Line 250 updates the
same record by writing the value B+D into item one.

The channel functions, described in section 2.3.5, may be used to
determine the number of the record last accessed.

SM-030-00l2-02
POINT 4 Data Corporation 2-7

IRIS DATA FILES
IRIS Business BASIC Manual

2.3.4 RECORD LOCKING

Whenever a READ, WRITE, MAT READ or MAT WRITE statement is used,
IRIS locks the record being accessed unless the statement ends
with a semicolon. When a given file may be accessed
simultaneously by more than one user, record locking restricts
access to the record to one user. Thus, several statements may
be executed to update a record before the next user has access to
the record.

For example, suppose two users named Smith and Jones are working
on an inventory control system. Smith checks how many walnut
desks are in stock by reading the appropriate record using a READ
statement with no ending semicolon. The record is locked. If
Jones attempts to. access the same record, Jones' program is
paused until Smith unlocks the record. Jones may then read an
accurate count of the remaining inventory.

IRIS locks individual records (not entire blocks like some other
operating systems). If two or more records are stored in one
block, only the record being accessed is lockedl other records in
that block may be accessed. A record which is two blocks long or
which extends over a block boundary is entirely locked and
therefore is safeguarded from simultaneous access. One record
per channel only may be locked at anyone time.

For text files, the exact block number and byte offset at which
the file is currently positioned is locked. The current position
is the next byte to be read or written. A record-lock condition
occurs in a text file only if a READ or WRITE is directed to the
exact current position.

Upon reading or writing to a new record, the old record remains
locked until the new record is successfully accessed. As a
result, a channel which is waiting to access a locked record can
itself have a record locked.

A record may be accessed without being locked by including a
semicolon at the end of the READ, WRITE, MAT READ or MAT WRITE
statement.

A record is automatically unlocked if the program is terminated
(except by a CHAIN statement) 1 if the file is closed, if another
access is made to the same record (without re-locking it); or if
any other record is successfully accessed on the same channel. A
record may also be unlocked by executing a statement of the form

WRITE 'Cll

where c is the number of the channel on which the record is
locked.

5M-030-0012-02
POINT 4 Data Corporation 2-8

IRIS DATA FILES
IRIS Business BASIC Manual

2.3.4.1 Deadly Babraces

A deadly embrace may occur if two users are each trying to access
the record which the other user has locked. Each user is paused
indefinitely while waiting for the other user to unlock the
desired record. Deadly embraces may also occur between three or
more users.

2.3.4.2 Delay Clause

A delay clause may be included in READ, WRITE and PRINT
statements to generate an error when a program is paused longer
than a specified period of time because a record (or devicel is
locked. If the program is paused longer than the specified delay
period, error 123 is generated. The syntax of the delay clause
is shown under READ, WRITE and PRINT statements in Section 3.
The delay is specified in tenths of a second.

The method of recovery from error 123 depends on the type of file
(or devicel involved, the statement used and whether access was
random or sequential. For formatted, contiguous or keyed files,
the aborted 1/0 may simply be re-executed. For text files, the
statement should be re-executed only if random access was used.
If the error occurred during sequential access to a text file,
the operation might have been only partially completed and the
file position might have changed. A record-locked error on any
data file may always be followed by random access to the same
record or to a different record.

In the following example, if record zero, item zero of the file
named "TEMP" remained locked by another user longer than
two-tenths of a second, the system would generate error 123 at
line 30:

10 DIM A$[lOOI
20 OPEN tl, "TEMP"
30 READ tl,0,0,2;A$
40 PRINT A$

SM-030-00l2-02
POINT 4 Data Corporation 2-9

IRIS DATA FILES
IRIS Business BASIC Manual

2.3.5 THE CHANNEL FUNCTIONS

The channel functions provide the current file size and current
access position within a file. The function CHF(x) may be used
in any arithmetic expression, like any other function. The
function type and channel number are combined in the expression
(x) by adding the function type (0, 100, 200 or 300) to the
appropriate channel number. For example, the value 302 selects
the function type 300 and channel number two.

Each of the channel functions and its result is shown below,
where c is the number of the channel on which the file is open.

Function ~

CHF(C) For the file open on the specified channel,
returns an integer one greater than the
record number of the highest numbered
record into which at least one item has
been written. If the file is a contiguous
file, the value returned is the number of
records in the file, regardless of where
data has been written in the file.

CHF(c+lOO) Returns the number of the record last
accessed on the specified channel. If the
file has not been accessed since it was
opened or built, returns -1.

CHF(c+200) Returns the byte displacement into the
block last accessed on the specified
channel. This function is most useful on
text files.

CHF(c+300) Returns the record size in words.

If a device is open on the specified channel, CHF(c) yields zero
and the other channel functions yield unpredictable results.
Error 49 occurs if the specified channel number is illegal or is
not open.

SM-030-00l2-02
POINT 4 Data Corporation 2-10

IRIS DATA FILES
IRIS Business BASIC Manual

2.4 FORMATTED FILES

Formatted files have the following features I

• randomly-allocated

• formatted; that is, the type and length of each item in a
record are specified

• format is recorded 1n a format map in the file header

• each item may be an ASCII string, a decimal number, or one or
more binary words

• item type and length are checked whenever information and
length are transferred to or from a formatted file

• every record of the file has the same format

• each record may be up to 1 block (256 words) long and may
have up to 64 items

• records may not span block boundaries; an integral number of
records is stored in each block

• maximum capacity is 32768 blocks

This section describes the use and creation of formatted files.

2.4.1 CHARACTERISTICS OF FORMATTED FILES

Records may be written in any order, and records may be skipped.
However, if a skipped record is read from a block which has been
allocated, a -Record not written- error is ~ returned. A
-Record not written- error occurs only if the program attempts to
read a record in a block which has not been allocated.

For example, suppose an allocated block contains records four,
five and six. Records four and six have been written into. If
the program attempts to read record five, zero values would be
returned; a -Record not written- error would not occur.

SM-030-00l2-02
POINT 4 Data Corporation 2-11

IRIS DATA FILES
IRIS Business BASIC Manual

2.4.2 ACCBSSING FORMATTBD FILBS

This section includes examples of the use of WRITE, READ, PRINT,
MAT READ and MAT WRITE statements on formatted files. The
general syntax of these statements is shown in Section 3.

Error 15 is generated if the program variable type is different
from the file item type, except when data is transferred between
binary and numeric types.

Data are always translated to the precision of the destination
variable/item. However, if a number outside the range +/-7999 is
read into a 1% variable, the value +/-7999 is read or written and
error 15 is generated.

For example, suppose a formatted file had the following record
layout:

~ Variable Length/precision

0 A$ 12 character
1 Al 1%
2 A2 2%
3 A3 3%
4 A4 4%

The following lines manipulate data in this file:

10 DIM 3%,A3,4%,A4
760 READ 'C,R,4;A3

Line 760 reads item 4, a preclslon 4% variable, into A3, which is
a 3% variable. This is accomplished by modifying the 4% value to
fit into the 3% variable.

SM-030-00l2-02
POINT 4 Data Corporation 2-12

IRIS DATA FILES
IRIS Business BASIC Manual

2.4.2.1 WRITB for Foraatted Files

For formatted files, a single WRITE statement may write into
sequential items of a single record only. An error results if a
variable type does not match the item type in the file.

An explicit WRITE to record zero is used to define the format of
a formatted file newly built from within a BASIC program, as
described in Section 2.4.4.

The following examples show the use of the WRITE statement on
formatted files.

200 WRITE '4, 19; F, Yl+3, "EXAMPLE", D-E

Line 200 sets item zero of record 19 of the file open on channel
4 to the value of F, item one of the same record to the value of
(Yl+3), item two to the string value EXAMPLE, and item three to
the value of (D-E). Items zero, one and three must be formatted
as numerics; item two must be formatted as a string.

700 WRITE IC-l, 2*R, 8; 0,2 A, MS[4,Ql;

In line 700, the channel number is given by the value of the
expression (C-l) and the record number is given by the value of
the expression (2*R). The item number may also be an expression.
The line sets item 8 of the specified record to 0, item nine to
the value of (2 A), and item ten to characters four through the
value of Q of the string MS. The final semicolon leaves the
specified record unlocked while the statement is executed, as
described in Section 2.3.4.

SM-030-0012-02
POINT 4 Data Corporation 2-13

IRIS DATA FILES
IRIS Business BASIC Manual

2.4.2.2 READ For Formatted Files

In formatted files, sequential items of a single record only may
be read by each READ statement. An error results if a variable
type is not compatible with the item type in the file.

The following examples show the use of the READ statement on
formatted files.

400 READ '2, 6; D, W$, K[7, A-2]

Line 400 reads item zero of record 6 of the file open on channel
2 into variable D, item one (which must be a string) into string
variable W$, and item two into the element of K at row 7, column
A-2. The record is left locked.

500 READ 'C[4]+I, R8, 5; F$[4], J, J;

In line 500, the channel number is given by the value of the
expression (C[4]+I) and the record number is given by the value
of R8. The item number may also be an expression. The line
reads items five, six and seven of the specified record. Item
five is read into F$ beginning at character four; characters one
through three remain unaffected. Item six is. read into J, then
item seven is read into J, thereby overwriting the value of item
six. This technique may be used when the value of item six is
not required. The final semicolon leaves the specified record
unlocked while the statement is executed, as described in Section
2.3.4.

Numeric expressions are allowed for the channel, record and item,
but an item value from the file may not be read into an
expression.

When reading values from a formatted file into string variables
listed in a READ statement, the system terminates the READ to a
given string variable when a zero byte is encountered in the file
or when the string variable is full, whichever occurs first. The
system then proceeds to the next item listed and begins to READ
into it. If a string specified in a READ statement is larger
than the item in the file, the system reads the item into the
string and adds a zero byte, leaving some unused space in the
string.

SM-030-0012-02
POINT 4 Data Corporation 2-14

IRIS DATA FILES
IRIS Business BASIC Manual

2.4.2.3 PRINT for Poraatted Piles

The PRINT statement can be used on formatted files, and results
in output of one or more strings. Output must be to an ASCII
string item. The use of PRINT on formatted files requires a
thorough knowledge of how PRINT operates. POINT 4 suggests the
use of alternate statements, such as LET USING.

2.4.2.4 MAT WRITB Statement for Foraatted Files

When using MAT WRITE, the entire matrix, string or variable is
written into a single item. The item type in the file must be
binary.

If the item is too small, then the data are truncated; no error
message is given. No data conversion takes place; the user's
program must ensure that the data will later be read back into
the same type of variable.

The following examples show the use of the MAT WRITE statement on
formatted files.

910 MAT WRITE tl, 20; A

Line 910 writes all elements of the matrix A into item zero of
record 20 of the file open on channell.

300 MAT WRITE tc, 2*R, 8; B

Line 300 writes all elements of the matrix B into item 8 of the
record given by the value of (2*R) of the file open on channel C.

700 MAT WRITE tL, R, 3; B$

Line 700 writes the string B$ into item 3 of record R of the file
open on channel L. Item three must be a binary field. The
system WRITEs the entire contents of B$, including all zero
bytes, to the end of B$ or until the item is full, whichever
occurs first.

SM-030-00l2-02
POINT 4 Data Corporation 2-15

IRIS DATA FILES
IRIS Business BASIC Manual

2.4.2.5 The KAT READ State.ent for Pormatted Piles

When using MAT READ, the entire matrix or string is read into a
single item. The type of the item must be binary. If the item
is too small, then the data are truncated; no error message is
given. No data conversion takes place; the program must ensure
that the data is read into the type of variable which matches the
data form.

The following examples show the use of the MAT READ statement on
formatted files.

400 MAT READ 12, 21; M

Line 400 reads all the elements of the matrix M into item zero of
record 21 of the file open on channel 2.

600 MAT READ IJ, R+3, 7; N

Line 600 reads all the elements of the matrix N into item 7 of
the record given by the value of (R+3) of the file open on
channel J.

800 MAT READ '3, 10, 2; A$

Line 800 reads the string A$ into item 2 of record 10 of the file
open on channel 3. Item two must be a binary field. The system
READS the entire contents of B$, including all zero bytes, until
A$ is full or to the end of the item, whichever occurs first.

5"-030-0012-02
POINT 4 Data Corporation 2-16

IRIS DATA PILES
IRIS Business BASIC Manual

2.4.3 CREATING A FORMATTED FILE USING FORMAT

The FORHAT processor, described in the IRIS RB User Manual, may
be used to create a formatted file. To create a formatted file
using FORHAT, enter a statement of the following form at the IRIS
system prompt:

'FORMAT filename

where filename is the name of the formatted file to be created.
The cost, protection and logical unit on which the file will be
created may also be specified ahead of the filename.

The processor will then prompt for the format of each item in a
record. The appropriate codes are described in the IRIS RB User
Manual.

NOTE

For an item which will be accessed by a
matrix statement (HAT READ or HAT WRITE), the
item type must be binary. For example, a
5xlO matrix dimensioned at 3% has six columns
(0 through 5) and eleven rows (0 through 10).
The item for this matrix must be formatted
B19B (6xllx3). A 29-byte string must be
dimensioned for 30 bytes, which is an even
number. Its item type would be B15.

Refer to the IRIS RB User Manual for details on the FORMAT
processor.

SM-030-0012-02
POINT 4 Data Corporation 2-17

IRIS DATA FILES
IRIS Business BASIC Manual

2.4.4 CREATING A FORMATTED PILE USING THE BUILD STATEMENT

To create a formatted file from within a BASIC program, the BUILD
statement is used followed by an explicit WRITE to record zero.
The explicit WRITE to record zero sets the format of the record1
this is called -auto-formatting- the file. For detailed syntax
of the BUILD and WRITE statements, refer to Section 3.

To build a formatted file, execute a statement of the following
form:

BUILD fc, -FMTFILE-

where -FMTFILE- is the name of the formatted file to be created
and c is the channel number expression. This statement must be
followed by a WRITE statement of the following form:

WRITE fc, 01 X, Y, Z

where c is the channel on which the formatted file being created
is open, zero is the record number and X, Y and Z are the items.
This statement automatically stores the format of each specified
item into the file's format map in its header block. The first
WRITE to a record other than zero ends auto-formatting.

The cost, protection and number of the logical unit on which the
file will be built may be specified within the quotation marks,
ahead of the filename. For example, the following statement
creates a formatted file named -FMTSAMPLE- with protection 33, and
cost $10 on logical unit 3:

BUILD fC,-<33> $10.00 3/FMTSAMPLE-

The detailed syntax of the BUILD statement is listed in
Section 3.

SM-030-00l2-02
POINT 4 Data Corporation 2-18

IRIS DATA FILES
IRIS Business BASIC Manual

2.5 CONTIGUOUS FILES

contiguous files have the following features,

• contiguously-allocated, so the entire file is allocated when
it is first built

• every record must be of the same size, multiple records may
be read or written by a single statement to have the effect
of variable record size

• record lengths should be a factor of the block size to
prevent records from spanning block boundaries. Records
which span block boundaries may require more than one disc
access to transfer

• unformatted; therefore, there is no item type checking. The
program must ensure that data are read back into the same
variable types as those from which they were written

• maximum record length is 32768 words

• maximum file size is limited by the size of the logical unit
only

This section describes the use and creation of contiguous files.

2.5.1 CHARACTERISTICS OF CONTIGUOUS FILBS

A contiguous file can be built only if an adequate number of
physically contiguous blocks are available on the specified
logical unit. All blocks are allocated initially. When the file
is built or opened, all information required to calculate the
disc address where the data transfer is to begin is stored in
memory.

Items are addressed by record number and byte position. A single
data transfer may span record boundaries because the address
specifies only a starting location.

SM-030-0012-02
POINT 4 Data Corporation 2-19

IRIS DATA FILES
IRIS Business BASIC Manual

2.5.2 ACCESSING CONTIGUOUS FILES

This section includes examples of the use of the WRITE, READ,
PRINT, MAT READ and MAT WRITE statements on contiguous files.
The general syntax of these statements is shown in Section 3.

For contiguous files, the specified record number is the
reference point at which the operation begins. The -item- refers
to the byte displacement from the beginning of a record. The
transfer continues, possibly across record boundaries (and
possibly across disc block boundaries) until all the data on the
expression list have been written. If the end of the file is
reached, the data are truncated with no error message. Two or
more records may be transferred in one command.

Reading or writing beyond the specified record is possible in
contiguous files if the -item- value (byte displacement) is
beyond the defined range or if the expression list contains more
data than will fit in one record.

In order to calculate the record size of randomly accessed
individual items, individual item types must be understood. For
a numeric item, its size (and displacement to the next item)
equals the number of bytes equivalent to the precision of the
variable if a variable is written, or four words if an expression
is written. ~meric constant is considered an expression..-IDld
is written in four-word preclsion. The fo!!owlng formulas may be
used to calculate the size and displacement of a string item.

Source string Number of bytes (n)

where

A$
A$(x)
A$ (x,y)

- -

n .. d+l
n os d-x+2
n os y-x+l
n .. c+l

(0 < x <- d)
(x <- y <- d)

n - the number of string bytes written into the file,
including a terminating zero byte, if written

A$ - any string variable

d - the dimension of the string variable A$

x and y - numeric expressions

c - the number of characters in a literal string

Writing into a file is always terminated if a zero byte is
encountered in the source string, and the zero byte is written.
Writing of the zero byte may be prevented only by the use of two
subscripts on a string variable.

SM-030-0012-02
POINT 4 Data Corporation 2-20

IRIS DATA PILES
IRIS Business BASIC Manual

The above formulas for n can also be used to determine the byte
displacement from the beginning of one item to the starting
location of the next item to be written sequentially by the same
statement. The value of n is determined by the dimensioned
length of the string, not by the current length of the string.

If the next item written is numeric (or any word-oriented data),
and the displacement results in an odd byte displacement from the
beginning of the record, then one byte in the file is skipped so
that the following field begins on a word boundary. The skipped
byte is not changed in the file.

The system maintains a byte pointer during READ operations. A
READ into a string variable terminates either on a zero byte in
the file or oy filling the string, whichever occurs first. A
READ into a numeric variable is terminated by transferring the
number of words appropriate to the precision of the variable. In
both cases, the byte pointer in the file is moved n bytes (as
defined above) from the beginning of the field just read. If the
pointer does not land on a word boundary and the next variable in
the expression list is numeric, the pointer is advanced to the
next word boundary and the READ begins there.

Take care not to supply a byte number which is in the middle of a
previously written numeric item.

SM-030-0012-02
POINT 4 Data Corporation 2-21

IRIS DATA FILES
IRIS Business BASIC Manual

2.5.2.1 WRITE for Contiguous Files

The following examples show the use of the WRITE statement on
contiguous files.

10 DIM A$[131 ,0$[201 ,2\,B,E
100 WRITE 'C,7,2l;A$,B,0$[1,61,E

Line 100 writes the string value of A$ followed by a terminator
character into the file open on channel C, beginning at the
twenty-second byte of record seven. The values of the remaining
variables are written sequentially into the record. No null is
written following 0$[1,61. The following columns show how the
byte displacement of the items in line 100 is determined
(assuming A$ is filled):

variable

A$
B
0$[1,61
E

Number of Bytes

n = 13+1 = 14 bytes
2\ precision = 4 bytes
n = (6-1)+1 • 6 bytes
2% precision • 4 bytes

200 WRITE '0,7,26;E

Displacement

0-13
14-17
16-25
26-29

Line 200 writes the value of variable E into the file open on
channel 0, beginning at byte 26 of record 7.

2.5.2.2 READ for Contiguous Files

The following example shows the use of the READ statement on
contiguous files.

10 DIM W$[101 ,2\,0

200 READ '2,6;0,W$

Line 200 reads record 6 of the file open on channel 2 into
variable 0 starting with byte zero. A total of four bytes (bytes
zero, one, two and three) are transferred to o. The line then
reads bytes four and on into W$, continuing the transfer until W$
is filled or until a zero byte is encountered in the file.

SM-030-00l2-02
POINT 4 Data Corporation 2-22

IRIS DATA FILES
IRIS Business BASIC Manual

2.5.2.3 PRINT for Contiguous Piles

The following examples show the use of the PRINT statement on
contiguous files. When PRINT is executed, the output is
formatted as it is for PRINT.

170 PRINT f3, 21, 6, 254.6, D+E, P/6

Line 170 prints the value 254.6 beginning 6 bytes into record 21
of the file open on channel 3, followed by the values of (D+E)
and (F/6) to successive bytes.

240 PRINT fC, J, X(l), Y(3,6), Z+W

Line 240 prints the value of element 1 of variable X beginning at
byte zero of record J of the file open on channel C, followed by
the values of element 3,6 of array Y and (Z+W) to successive
bytes.

310 PRINT fC2+1, R-l, USING B$(15), P, J, M$,

In line 310, the channel number is given by the value of the
expression (C2+1) and the record number is given by the value of
(R-l). The byte displacement may also be an expression. The
line prints the values of the variables P, J and M$ beginning at
byte zero and proceeding successively, using the format specified
in the format string B$(15). The final semicolon is treated as a
formatting directive which suppresses the RETURN at the end of
the line, not as a record unlock command.

2.5.2.4 The Matrix Statements for Contiguous Piles

When using MAT READ or MAT WRITE, the entire matrix, string or
variable is read in one statement. Por contiguous files, the
"item" is used as a byte displacement into the record, however,
all transfers are word oriented. If an odd byte displacement is
given, then the transfer begins at the next higher byte
displacement.

If writing a string variable, then the entire string as
dimensioned is written, including all zero bytes within that
string. If the string's dimension is odd, then a zero byte is
written at the end of the string bytes. As a general rule, the
system always adds a zero byte if necessary to fill the last
word.

The following formulas may be used to calculate the number of
words that will be transferred.

For an array variable: (r+l) (c+l)p

For a string variable: INT [(d+l)/21

SM-030-0012-02
POINT 4 Data Corporation 2-23

IRIS DATA PILES
IRIS Business BASIC Manual

where
r - row dimension of the matrix
c - column dimens on of the matrix
p - number precis on of the matrix
d - string dimens on (number of bytes)

2.5.2.4.1 MAT WRITE STATEMENT FOR CONTIGUOUS FILES

The following examples show the use of the MAT WRITE statement on
contiguous files.

910 MAT WRITE tl, 20; A

Line 910 writes all elements of the matrix A beginning at byte
zero of record 20 of the file open on channell.

300 MAT WRITE tc, 2*R, 8; B

Line 300 writes all elements of the matrix B beginning at byte 8
of the record given by the value of (2*Rl of the file open on
channel C.

700 MAT WRITE tL, R, 4; B$

Line 700 writes the entire string B$, including zero bytes,
beginning at byte 4 of record R of the file open on channel L.

2.5.2.4.2 THE MAT READ STATEMENT FOR CONTIGUOUS FILES

The following examples show the use of the MAT READ statement on
contiguous files.

400 MAT READ t2, 21; M

Line 400 reads all the elements of the matrix M beginning at byte
zero of record 21 of the file open on channel 2.

600 MAT READ tJ, R+3, 8; N

Line 600 reads all the elements of the matrix N beginning at byte
8 of the record given by the value of (R+3l of the file open on
channel J.

800 MAT READ t3, 10, 2/ A$

Line 800 reads the entire string A$, including zero bytes,
beginning at byte 2 of record 10 of the file open on channel 3.

SM-030-0012-02
POINT 4 Data Corporation 2-24

IRIS DATA FILES
IRIS Business BASIC Manual

2.5.3 CREATING A CONTIGUOUS FILE USING FORMAT

To create a contiguous file using FORMAT, enter a statement of
the following form at the IRIS system prompt:

IFORHAT [records:wordsl filename

where
records - number of records in the file

words - number of words per record
filename - name of the formatted file to be created

The cost, protection and logical unit on which the file will be
created may also be specified ahead of the [records:words]
specification.

FORMAT then displays the size of the file in blocks.

Refer to the IRIS R8 User Manual for detailed syntax and more
information on FORMAT.

2.5.4 CREATING A CONTIGUOUS FILE USING THE BUILD STATEMENT

To create a contiguous file from within a BASIC program, the
number of records and number of words per record is specified in
a BUILD statement. For the detailed syntax of the BUILD
statement, refer to Section 3.

To build a contiguous file, execute a statement of the following
form:

BUILD Ic, "[10:2561 CONTIGFILE"

where
c - channel number expression

10 - number of records
256 - number of words per record

CONTIGFILE - name of the contiguous file to be created

The cost, protection and number of the logical unit on which the
file will be built may be specified within the quotation marks
before the [records:words] specification. For example, the
following statement creates a contiguous file named ·CONSAMPLE"
with protection 33 and cost $20 on logical unit 4:

BUILD IC, "<33> $20.00 [10:256] 4!CONSAMPLE"

The detailed syntax of the BUILD statement is listed in
Section 3.

SM-030-0012-02
POINT 4 Data Corporation 2-25

IRIS DATA FILES
IRIS Business BASIC Manual

2.6 TEXT FILES

Text files have the following features:

• randomly-allocated, so blocks are allocated to the file only
when they are needed

• unformatted

• system regards text files as a single string of zero to
16,777,215 characters (or the size of a logical unit,
whichever is less) terminated by a null byte (binary zero)

This section describes the use and creation of text files.

2.6.1 CHARACTERISTICS OF TEXT FILES

Characters in a text file are packed and span block boundaries.
Each character is stored as a seven-bit ASCII code with the
eighth bit set unconditionally to one. If the file contains any
RETURN codes, the system recognizes them as end-of-line markers.

Although text files are not organized around data records in the
same sense as other data file types, a fixed record length of 512
bytes (one disc block) is adopted to facilitate random
addressing.

2.6.2 ACCESSING TEXT FILES

This section includes examples of the use of the WRITE, READ and
PRINT statements on text files. The general syntax of these
statements is shown in Section 3. The matrix statements may be
used on text files. However, if non-string data is output to a
text file, other programs and utilities may be unable to access
the data correctly. For this reason, MAT READ and MAT WRITE are
not discussed in this section.

For text files, the record refers to the block and the item
refers to the byte displacement within that block.

Text file access is usually sequential and line oriented, where a
line is defined as any string of characters up to and including a
RETURN code. Text files may also be accessed randomly as a
series of one-block records.

8M-030-0012-02
POINT 4 Data Corporation 2-26

IRIS DATA FILES
IRIS Business BASIC Manual

Sequential and repeated access of a -record- operates differently
for text files than for other file types. The values shown below
may be used as the record number expression for the designated
access.

Record
~

none

-1

-2

Accesses from the next byte to the next RETURN
code or zero byte in the file (or until the
specified variable is filled, whichever occurs
first) •

Same effect as none.

Has the same effect as -1 except that when
READing, the transfer is terminated by the length
of the variable being read into or by the end of
the file, not by a RETURN code.

If a statement which employs sequential access (as described
above) is executed after opening or building a text file, byte
zero of block zero is accessed.

2.6.2.1 WRITE For Text Files

The following example shows the use of the WRITE statement on
text files.

700 WRITE '1; A$, 0$, C$

Line 700 concatenates the values of AS, 0$ and C$ and writes them
into the file open on channell as a single string, with no
RETURN code at any point. If this statement were the first
executed after opening or building a text file, byte zero of
block zero would be accessed. Otherwise the strings would be
written immediately following the data last accessed. If line
700 were repeated, the file would show a continuous concatenation
of the fields written.

The WRITE statement does not add any return codes to the output.
The program may output zero, one or more return codes in the
output variables.

For text files, all expressions in the expression list of the
WRITE statement must be string expressions.

SM-030-0012-02
POINT 4 Data Corporation 2-27

IRIS DATA FILES
IRIS Business BASIC Manual

2.6.2.2 READ for Tezt files

The following examples show the use of the READ statement on text
files.

400 READ Il;A$;

Line 400 reads from the first byte following the data last
accessed up to the first RETURN found in the file open on channel
one into the string variable A$. If this statement were the
first executed after opening a text file, the data from byte zero
of block zero to the first RETURN code would be read. The final
semicolon disables record locking.

500 READ 10,-2;B$;

Line 500 reads from the first byte following the data last
accessed until filling B$ from the file open on channel O. The
final semicolon disables record locking.

When the end of a text file is encountered, the system returns
either an empty string or a 'Record not written' error.

2.6.2.3 PRINT for Tezt Files

The following examples show the use of the PRINT statement on
text files.

840 PRINT tl,-l;A$

Line 840 prints the contents of A$ followed by a RETURN code to
the file open on channell. If this statement were the first
executed after opening or building a text file, byte zero of
block zero would be accessed. Otherwise the string would be
written immediately following the data last accessed.

The following codes may be included in PRINT statements:

SM-030-00l2-02

\207\

\214\

\215\

POINT 4 Data Corporation 2-28

Meaning

ring bell

form feed

carriage return

IRIS DATA FILES
IRIS Business BASIC Manual

2.6.3 CREATING A TEXT FILE USING A TEXT EDITOR

To create a text file using EDIT, enter a command of the
following form at the IRIS system prompt:

'EDIT. filename

where filename is the unique name of a file to be created. EDIT
prompts for further commands with an asterisk. Enter XEND to
exit the editor. The cost, protection and logical unit on which
the file will be created may also be specified ahead of the
filename.

The IRIS R8 User Manual describes the use of EDIT in detail.

2.6.4 CREATING A TEXT FILE USING TUE BUILD STATEMENT

To build a text file from within a BASIC program, execute a
statement of the following form:

BUILD tc, +"TEXFILE w

where
c - channel number expression
+ - indicates that the file is to be a text file

TEXFILE - name of the text file to be created

The cost and protection of the file and the logical unit on which
it will be built may be specified ahead of the filename, within
the quotation marks. For example, the following statement
creates a text file named wTXSAMPLE w with protection 33 and cost
SlO on logical unit 4:

BUILD tc, +w<33> SlO.OO 4/TXSAMPLE w

The detailed syntax of the BUILD statement is listed in
Section 3.

SM-030-00l2-02
POINT 4 Data Corporation 2-29

IRIS DATA FILES
IRIS Business BASIC Manual

2.7 KEYED FILES

Keyed files have the following characteristics:

• unformatted

• contiguously-allocated

• allow random access by key

• may have two parts: the data portion and the directory
portion

• directories are accessed via the SEARCH statement, data
records are accessed in the same way as contiguous files

• keyed files may have more than one directory

2.7.1 TYPES OF KEYED FILES

There are two types of keyed files: indexed files and polyfiles.

2.7.1.1 Indexed File Features

Indexed files have the following characteristics in addition to
those of keyed files:

• maximum key size is 30 bytes, maximum number of 3D-byte keys
per file is 1830

• key size must be specified in word increments (multiples of
two bytes)

• maximum number of data records is 65,535

• require the use of search mode seven (described in Section
2.7.5.7) to redistribute directory keys, this process
necessitates the suspension of timesharing

• the size of a given directory may not be changed

• employ a free record chain to keep track of free records, it
is possible to disrupt this chain by improper programming

• data records start at a variable location depending on the
size of the directory

SM-030-0012-02
POINT • Data Corporation 2-30

IRIS DATA FILES
IRIS Buaineaa BASIC Manual

2.7.1.2 Types of Indexed Files

Indexed files may include up to 15 directories, as specified by
the user, within the data file itself. In addition, indexes may
be set up and used independently of any data file. Files used in
this way are called ·index-only· files. The key length may be
different for each directory.

2.7.1.3 Po1yfi1e Features

Each polyfile is made up of one or more associated contiguous
files, called ·volumes· of the polyfile. Although each volume is
contiguously-allocated and must be allocated in its entirety when
built, additional volumes may be added to the polyfile when
necessary. Polyfiles offer practically unlimited storage,
greater key size and higher record capacity than any other type
of file.

The volumes may reside on different logical units, except that no
volume may reside on logical unit zero. The volumes are
associated by the master volume, which holds linkage information
in its header block. The master volume is always volume zero of
the polyfile.

Polyfiles have the following characteristics:

• key size may be specified in exact number of bytes; maximum
key size is 121 bytes

I • keys are redistributed automatically, so search mode seven is
not needed

• directories may be enlarged by dynamically adding new
directory extension volumes

• a bit map keeps track of free records;
be disrupted by user programming

this bit map cannot

• data records always begin at record zero

• maximum number of keys per polyfile depends on the key size:

- 12l-byte keys = 8 million keys per polyfile

- 60-byte keys 20 million keys per polyfile

- 32-byte keys 40 million keys per polyfile

• maximum number of data records is 4,128,768

• maximum volume size is 65536 blocks (including the header) or
the size of the logical unit, whichever is smaller

Polyfiles can not be transferred by the MAGTAPE utility or any
other program which uses the SMTAS file transfer function.

SM-030-0012-02
POINT 4 Data Corporation 2-31

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.1.4 Types of Polyfile Volumes

Three types of polyfile volumes exist:

• data volume
• base directory volume
• directory extension volume

It is possible to reserve space on an LU for a polyfile or to
link a file to a polyfile via the polyfile CALL (91), without
structuring the space or file as a data, directory or directory
extension volume. This reserved space or linked file is called
an unstructured volume of the polyfile.

2.7.1.4.1 POLYFILE DATA VOLUME

A polyfile may have a maximum of 64 data volumes, numbered 0
to 63.

The record length must be the same throughout every volume of a
given polyfile. Records may cross block boundaries and are
numbered sequentially through ascending volumes. For example, if
volume two of a polyfile has 100 records, volume six has 200
records, and volume seven has 300 records, then records 0-99 will
be found in volume two, 100-299 in volume six and 300-599 in
volume seven.

New data volumes cannot be inserted into the existing data volume
numbers because the system does not renumber records. It is best
to allow the system to assign data volume numbers or number them
as low as possible.

Polyfiles may employ a bit map to keep track of free records.
The entire polyfile must be either mapped or unmapped; mapped and
unmapped data volumes may not be combined in the same polyfile.

2.7.1.4.2 POLYFILE DIRECTORY AND DIRECTORY EXTENSION VOLUMES

Each directory volume may have a maximum of 15 directories. When
a directory volume is filled with keys, a directory extension
volume may be used. An extension is used to extend a given
directory volume only; it provides a pool of additional disc
blocks which are available to any directory in the associated
base directory volume.

Section 2.7.4 describes the structure of keyed file directories.

SM-030-00l2-02
POINT 4 Data Corporation 2-32

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.2 MANAGING FREE RECORDS

Indexed files use a free record chain to keep track of free
records. Polyfiles may employ a bit map to keep track of free
records. (Record allocation may be managed by the program
itself, if the programmer chooses to develop a free record
structure.)

2.7.2.1 Indexed File: Free Record Chain

When an indexed file with internal directories is created, the
data records are linked together in the free record chain. To
allocate a record, the user obtains the number of an unused
record from the free record chain and uses that record for the
new file entry. To release a record, the user specifies the
number of the record to be released using search mode one, and
the record is returned to the free chain.

The free record chain is maintained on a Last-In-First-Out (LIFO)
basis. The file header contains the number of the first record
on the chain. The first word of that record contains the record
number of the next free record, which contains the record number
of the next free record, and so on.

When a program requests a free record, the first record on the
chain is allocated to the program and the record number contained
in its first word is inserted into the file header.

WARNING

The free record chain can be destroyed when
data written to one record overwrites
portions of the next record.

2.7.2.2 Polyfiles: Bit Map

Polyfiles use bit maps to allocate records in
disc blocks in directory volumes. Bit maps are
volumes, but are required in directory volumes.
in a given polyfile must be mapped or all
unmapped.

data volumes and
optional for data

All data volumes
of them must be

Each bit in a map block is used to map a block or record (in a
data volume each bit maps a record number; in a directory each
bit maps a disc block). Any map block can map up to 4096 units.

Each polyfile bit map also maps itself; thus, when allocating a
new record, the system does not have to search through an entire
bit map to find a bit which indicates a free record.

SM-030-0012-02
POINT 4 Data Corporation 2-33

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.3 CHARACTERISTICS OF DATA PORTION OF KEYED FILES

The data portion of an indexed file or data volume of a polyfile
has the same characteristics as contiguous files. Section 2.5
describes contiguous files.

2.7.4 STRUCTURE OF KEYED FILE DIRECTORIES

In keyed file directories, each key in the master level is linked
to the corresponding level below it, as shown in Figure 2-1.
Each key in the subsequent levels is linked to the corresponding
level below it. Finally, each key in the fine level references a
data record by its real record number.

Keys within each block are sorted in ascending order. To locate
a given key, the system scans the master, coarse and fine levels
in turn for a key of a matching or greater value. Each time a
key of matching or greater value is found, the system follows the
appropriate pointer to the subsequent level.

Directories for indexed files and polyfiles have one major
difference. Indexed files have only three lev.els: master, coarse
and fine. Polyfiles must have at least a one-block master level
and a one-block fine level, but may have any appropriate number
of coarse levels between.

SM-030-0012-02
POINT • Data Corporation 2-34

IRIS DATA FILES
IRIS Buaineaa BASIC Manual

"dtll
03:
..... 1
2:0
8w

o
.... 1

o
00
1lI~

""'" III I
o

()'" o ..,
"0 o ..,
III

"" ,...
o
;:J

'" I
W
c..n

H

" H
til

c:c
C
0>
;:J
In
O>H
0>"

H
c:ccn
i:;o
H>
()8

>
3:
1l>"J
;:JH
Ci:"'
Il>t'l
~tIl

Most ... L

Coano L_I

Fine L

Pointer1 To Data Records

Figure 2-1. Directory Structure of Keyed Files

2.7.4.1 Indexed File Directories

Each directory of an indexed file consists of three levels:
master, coarse and fine. The master level is always one disc
block long. The sizes of the coarse and fine levels depends on
the number of data records in the file.

The keys in each level are sorted in ascending alphabetic order.
Each entry in the master level contains the address of the
corresponding clock of coarse level entries and the highest key
held by that block. Each entry in the coarse level contains the
address of the corresponding block of fine level entries and the
highest key held by that block. Each entry in the fine level
contains a numeric value, which is usually a record number. The
numeric value need not be unique in each entry.

The maximum number of data records that can be indexed depends on
the longest key length to be used. The following table
summarizes the number of keys per block of the directory and the
maximum number of indexed data records for various key lengths:

Longest Key Length K
(number of wordsl

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Keys per Block
N=254/(K+ll

127
84
63
50
42
36
31
28
25
23
21
19
18
16
14

*maximum number of records in any file

Max Number of Indexed
Data Records =(NA 3-Nl/2

65534*
65534*
65534*
62475
37023
23310
14880
10962

7800
6072
4620
3420
2907
2040
1680

The system uses two words from each block of each
Each key has a one-word pointer associated with it.
the number of keys per block may be calculated
following equationl

directory.
Therefore,
using the

N-INT 2541 (L+ll

where N is the number of keys per block and L is is the length ot
each key in words. The string supplied for each key may be up to
2L bytes long.

5M-030-00l2-02
POINT 4 Data Corporation 2-36

IRIS DATA rILES
IRIS Bu.ine •• BASIC Manual

Because the master level is always one block long, it may contain
N keys. Each key in the master level points to one block on the
coarse level, so the coarse level may have a maximum of N blocks.

Theoretically, there could be N 2 blocks in the fine level
pointing to (N 3)-1 data records (one dummy key is inserted by
the system at the end of each level).

In practice, however, the insert and delete key algorithms may
cause every other block in the fine or coarse levels to contain
only one key. As a result, the number of blocks in the fine
level (F) must be:

F=2*RI(N+l)

where R is the number of data records to be indexed. In
addition, the number of blocks in the coarse level (C) must be:

C=F/(N-l)

where F is the number of blocks in the fine level and N is the
number of keys in the master level.

If a fraction results from the calculation, the number of blocks
is rounded up.

There must be at least two blocks in the fine and coarse levels.

2.7.4.2 Polyfile Directories

Each directory of a polyfile begins with a one-block master level
and a one-block fine level. When the fine level requires more
keys than can be indexed by the master level, the master level is
split to create an intermediate level, and a new one-block master
level is formed. The maximum number of levels allowed is 127.

SM-030-0012-02
POINT 4 Data Corporation 2-37

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.5 OSB OF THB SBARCH STATEMBNT

Indexed file and polyfile directories are accessed via the SEARCH
statement. The SEARCH statement has seven modes which may be
used to manipulate keys and directories.

The syntax of the SEARCH statement is shown below:

SEARCH .channel, ~, directory expr; K$, R, S

where

channel - channel number expression giving the number of the
channel on which the appropriate file is open

mode - search mode expression, as defined in the following
subsections

directory expr - expression giving the number of the appropriate
directory associated with the file or which may be set to
defined values to provide miscellaneous directory
information, as defined in the following text

K$ - any string variable which contains the appropriate key

R - any variable which will contain or receive the record number
of the key being acted upon

S - a variable which receives error status as shown in Table 2-1
or which may be set to defined values to provide
miscellaneous search functions, as defined in the following
subsections

SM-030-0012-02
POINT • Data Corporation 2-38

IRIS DATA PILSS
IRIS Buainea. BASIC Manual

TABLE 2-1. SEARCH ERROR STATUS

Value Meaning

0 no error, operation was successful

1 operation was unsuccessful (usually indicates key not
found)

2 end of directory (when inserting a key, indicates
directory is full)

3 end of data; all data records are allocated

4 file has no index

5 undetermined error or, for polyfiles, file structure
error

6 directory number not in sequence

7 file is not contiguous

8 indexed file or polyf ile volume is already indexed

9 the value of the record number (R) is negative or too
large

10 too many directories: for indexed files, the limit
is 15 per file; for polyf iles, the limit is 63 per
volume/polyfile

11 for indexed files: master directory level exceeds
one block; for polyf iles: volume not found (possible
structure error)

12 for indexed files: directories exceed size of file;
for polyf iles: volume too small

13 no such directory

14 file not indexed

15 data volume number is less than pre-existing data
volume

16 data volume map request not consistent with
pre-existing volumes

17 data volume does not have record length matching that
of the polyfile

SM-030-0012-02 IRIS DATA FILES
IRIS Business BASIC Manual POINT 4 Data Corporation 2-39

TABLB 2-1. SEARCD ERROR STATUS (Cont)

Value Meaning

18 block/record out of range

19 record was not allocated (already released)

20 volume has no bit map

For indexed files, status 5 (undetermined error) occurs in four
cases: if the system's Auxiliary Buffer Area (ABA) is less than
1004 words octal; if an illegal command is given, if K$ is
dimensioned shorter than the specified directory's key; or if the
file is not structured as expected (for example, if there are
less directories than the specified directory number).

Errors 6 through 12 occur in mode zero operations only.

The record number and status variables (R and S) must contain
legal values (0 through 32767, 0 through 2A31-1) on entry even if
those values are not used in a given mode.

The modes provided by SEARCH are summarized below:

o
1

2

3

4

5

6

7

Description

directory definition
directory information
key match
next key
insert a key
delete a key
unused
reorganize directory (not used on polyfiles)

Each of these modes are described in detail in the following
subsections.

SM-030-0012-02
POINT 4 Data Corporation 2-40

IRIS DATA PILES
IRIS Business BASIC Manual

2.7.5.1 Search Mode 0: Directory Definition

Search mode zero ls used when setting up a new file. Line 50 is
an example of search mode zero:

50 SEARCH tC,O,l,K$,R,S

The function of search mode zero depends on the value of the
directory expression, as shown in Table 2-2.

TABLE 2-2. SEARCH MODE ZERO

Directory
Expression Effect

> 0 Defines the directory specified by the
directory number expression. It sets the
key length (number of words) equal to the
value of Rand the number of keys per block
equal to the integer value of [2541 (key
length + 1) 1 for the specif ied directory.
The directories must be specified in
sequential order starting with directory
one.

= 0 Organizes all directories. This mode
freezes the directory configuration to that
specified by previous mode zero commands,
assumes a number of data records as given
in R, and sets up the internal linkage for
all directories. All mode zero commands
are rejected after this statement is
executed.

SM-030-0012-02
POINT 4 Data Corporation 2-41

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.5.2 Search Mode 1: Directory Information

Search mode one is used to read the attributes of an existing
file after it has been opened. Line 100 is an example of search
mode one:

100 SEARCH 'C,l,O,K$,R,S

The effect of search mode one depends on the values of the
directory number expression and status variable S, as shown in
Table 2-3.

Dir.
Expr.

> 0

= 0

Status
Var.

any
value

o

1

2

3

SM-030-0012-02

TABLE 2-3. SEARCH MODE ONE

Effect

Returns the key length (number of words)
of the specified directory into R. If
the specif ied di rectory does not ex i st,
R remains unchanged and S is set to
five.

Returns the record number of the first
real data record into R. The returned
value is always zero for polyfiles.

Returns thlLnumber of free records in R.
rFor indexed files-.J the number of free
records 1S taken from the free record
chain. [FOr polyfiles] the number of
free recoJOds is the sum of all available
records across all data volumes in the
polyfile.

[!ndexed files:1 returns the record
number of a free data record and removes
that record from the free record chain.

E!olyflIesU Allocates and returns the
record number of the first available
free record and marks it "in use" in the
bit map (if provided).

Releases the record spe~ified by the
value of R. IF'O"i IndexedUes,1 returns
the record to the free record chain.

\FOr polyfUes,! marks the record "free"
~ the bIt map (if provided). Sets S to
19 if the record was already free and to
20 if the file does not have that record
number.

POINT 4 Data Corporation 2-42
IRIS DATA FILES

IRIS Business BASIC Manual

2.7.5.3 Search Mode 2: Key Match

Search mode two searches the specified directory for a match with
the key specified by KS. Line 200 is an example of search mode
two:

200 SEARCH IC,2,D;KS,R,S

If the key is found, the system returns the entire key in KS,
returns the associated data record number in R, and sets S to
zero. If the key is not found, KS and R remain unchanged, and S
is set to one.

A match is found if the compared strings are equal to the end of
KS, even if the found key is longer than the original key. If
the strings match, the entire found key is returned in KS. For
example, if the key "SMITH" were compared to "SMITH,ALAN", a
match would be found and "SMITH,ALAN" would be returned in KS.

A match is not found if the key in the directory is shorter than
the key specified in KS.

2.7.5.4 Search Mode 3: Next Key

Search mode three is used to process sequential entries, starting
from a selected point. Line 300 is an example of search mode
three:

300 SEARCH tC,3,D;KS,R,S

Mode three searches the specified directory for the first key
whose value logically exceeds the value specified by KS. If the
key is found, the system returns the entire found key in KS,
returns the associated data record number in R, and sets S to
zero. If the key is not found, K$ and R remain unchanged, and S
is set to two.

For example, suppose K$ is set to "SMITH", and the directory
contains the entries SMITH,ALAN and SMITH,BETH. The first search
would return SMITH,ALAN, because it is the first key which
logically exceeds SMITH. A second search, with SMITH,ALAN in KS,
would return SMITH,BETH.

If the directory being searched may contain an entry which is
equal to the entire value of KS, mode two should be used for the
first search.

SM-030-00l2-02
POINT 4 Data Corporation 2-43

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.5.5 Search Mode 4: Insert a Key

Search mode four is used to insert a key. Line 400 is an example
of search mode four:

400 SEARCH tC,4,D;K$,R,S

Mode four searches the specified directory for a match with the
key specified by K$. If the key is not found and there is space
available in the directory, the system inserts the key into the
specified directory, references the key to the data record number
in R, and sets S to zero. If the key is not found but cannot be
inserted, S is set to two. If the key is found, the system
returns the associated data record number in R and sets S to one.

Before inserting a new key, the data record must have been
allocated using search mode one and the data record number for
the new key must be specified in R. The data should be written
into the record before the key is inserted into the directory.

For indexed files, if a key cannot be inserted because of
inadequate space in a directory, search mode seven may be used to
reorganize the directory. Section 2.7.5.7 describes search mode
seven. Search mode four may then be repeated.

2.7.5.6 Search Mode 5: Delete a Key

Search mode five is used to delete a key from a directory. Line
500 is an example of search mode five:

500 SEARCH tC,5,D;K$,R,S

Mode five searches the specified directory for a match with the
key specified by K$. If the key is found, the system deletes the
key from the directory, returns the data record number in R, and
sets S to zero. If the key is not found, R remains unchanged and
S is set to one.

Search mode one must be used after deleting the key to return the
freed data record to the free record chain.

5M-030-0012-02
POINT 4 Data Corporation 2-44

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.5.7 Search Mode 7: Reorganize Directory

Search mode seven reorganizes the specified directory by
optimizing it for efficient packing. Search mode seven is
usually used when a key insertion <mode four) has failed. Line
700 is an example of search mode seven:

700 SEARCH IC,7,D;K$,R,S

Mode seven usually frees sufficient room for the key to be
inserted. However, if a directory is nearly full, mode seven may
not free sufficient space; provisions for this should be included
in the program.

Search mode seven is not used on polyfiles because the keys in
polyfile directories are redistributed automatically.

2.7.5.8 Inserting a Record into a Keyed File

To insert a record into a keyed file, write the data into the
file before inserting the key in the directory. The following
program shows how to insert a record into a keyed file:

100 DIM B$ [l0], K$ [10]
150 INPUT "ENTER KEY: "B$

190 REM Insertion Routine
200 K$=B$
210 LET S=2
220 REM Get unused data~ord from free list
230 SEARCH '1,1,0; K$,R~)
240 IF S<>O GOTO 460
250 WRITE il,R; A,B,C
260 Rl=R
270 REM Put key for insertion into directory II
280 SEARCH 11,4,1; K$,R,S
290 IF S<>O GOTO 500
300 GOTO 150

460 PRINT "ABNORMAL MODE 1 RETURN; S= "S
470 STOP

500 REM Put record back on free chain
510 LET Sl=3
520 SEARCH 11,1,0; K$,Rl,Sl
530 IF Sl<>O GOTO 580
540 IF S~~PRINT "DUPLICATE KEY"
550 IF S=2 PRINT "DIRECTORY FULL OR DAMAGED"
560 IF S=5 PRINT ·UNKNOWN DIRECTORY DAMAGE"
570 GOTO 1000
580 PRINT "ABNORMAL MODE 1 RETURN; Sl= ·Sl
1000 STOP

SM-030-0012-02
POINT 4 Data Corporation 2-45

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.5.9 Deleting a Record from a Keyed File

To delete a record from a keyed file, delete the key from the
directory before deleting the data records from the file. The
following program shows how to delete a record from a keyed file.

100 DIM K$[20], B$[20]
110 INPUT "ENTER KEY: "B$
120 K$=B$

500 REM Delete key and return record number to free list
510 SEARCH tl,5,1; K$,R,S
520 IF S<>O GOTO 700
530 LET S~3
540 SEARCH tl,l,O;K$,R,S
550 IF S<>O GOTO 800
560 PRINT "KEY DELETED; RECORD RETURNED TO FREE CHAIN"
570 GOTO 110

700 PRINT "KEY NOT FOUND; S~ "S
710 GOTO 110

.
800 PRINT "ABNORMAL MODE 1 RETURN; S~ "S
810 STOP

SM-030-0012-02
POINT 4 Data Corporation 2-45

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.5.10 Finding and Updating A Record in a Keyed File

The following program shows how to find a given key in directory
one, check for an exact or partial match, and update the
associated data record.

100 DIM A$ (30), B$ (30), K$ (30)
110 OPEN 10;"FMTSAMPLE"
120 INPUT "ENTER NAME: "B$
130 K$=B$

500 REM Find the key and associated record number.
510 SEARCH 10,2,1; KS,R,S
520 IF S=l GOTO 1000
530 IF S<>O GOTO 1500
540 REM Branch if exact or partial match.
550 IF K$<>B$ GOTO 900
560 READ 10,R; AS,N
570 REM Update variables, then write the record.

600 WRITE 10,R;AS,J

700 GOTO 120

900 PRINT "PARTIAL MATCH; FOUND KEY IS: "K$
910 PRINT "KEY BEING SEARCHED FOR WAS: ·B$

1000 REM Exception Routine--no match of any kind.

1500 REM Error Exit.
1510 PRINT "ABNORMAL RETURN; S= ·S
1520 STOP

SM-030-00l2-02
POINT 4 Data Corporation 2-47

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.6 ACCESSING THE DATA PORTION OP KEYED PILES

The use of the REAO, WRITE, PRINT, MAT REAO and MAT PRINT
statements on keyed files is the same as their use on contiguous
files. Section 2.5.2 describes how contiguous files are
accessed.

2.7.7 CREATING KEYED PILES USING BUILDXP AND BUILDPP

BUILOXF may be used to build an indexed file/ BUILOPF may be used
to build a polyfile. BUILOXF and BUILOPF are both described in
the IRIS RB User Manual.

To create an indexed file using BUILOXF, enter the following
command at the IRIS system prompt:

tBUILOXF

BUILOXF then prompts for information regarding the data records
and directories. The prompts and appropriate user responses are
described in the IRIS RB User Manual.

To create a polyfile using BUILOPF, enter the following command
at the IRIS system promptl

tBUILOPF

BUILOPF then prompts:

BUILOPF - Build polyfiles Utility

POLYFILENAME [must have "LUI" (not 0)1:

The number of the logical unit must precede the name of the
polyfile; the LU may not be LU zero. The name must end with
an @.

BUILOPF then attempts to open the polyfile. If the polyfile is
found, BUILOPF enters the polyfile extension mode (refer to the
IRIS RB User Manual). If the file is not found, BUILOPF prompts:

POLYFILE NOT FOUNO

DO YOU WISH TO CREATE A NEW ONE? (yiN)

If the answer is No, the system returns to the IRIS system
prompt. If the answer is Yes, BUILOPP requests a record size:

RECORD SIZE (in words for the entire polyfile)I

After the record size has been entered, DUILOPP prints the
followingl

VOLUME I 0

SM-OJO-0012-02
POINT 4 Oata Corporation 2-48

IRIS OATA PILES
IRIS Dusine •• BASIC Manual

This reminds the user that the following parameters are for
volume zero, the master volume. BUILDPF then requests a volume
type:

VOLUME TYPES: RBR Base Directory

VOLUME TYPE:

RER Extension Directory
RDR Data Volume

Enter the appropriate letter. BUILDPF then requests information
pertinent to the type of volume specified, as described in the
IRIS R8 User Manual.

SM-030-00l2-02
POINT 4 Data Corporation 2- 49

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.8 CREATING AN INDEXED PILE PROM WITHIN A BASIC PROGRAM

An indexed file may be built within an application program using
the following five steps:

1. Create the filename string and BUILD a contiguous file of the
proper size. Section 2.5.4 describes how to BUILD a
contiguous file. Information on determining directory size
is provided below.

2. Define each directory with a SEARCH tC,M,D;, where M=O.

3. Organize the directory structure with a single SEARCH tC,M,D;
statement, where M=O and D=O.

4. Determine the numbers of the first and last real data records
with a SEARCH tC,M,D;K$,R,S statement, where M=l, D=O, and
S=O, and a CHF(Ol statement, respectively.

5. Link all real data records on the free record chain with
SEARCH tC,M,D;K$,R,S statements, where M=l, D=O and S=3.

The overall size of each directory may be calculated using the
following formulas:

N = INT (254/(K+ll]

F FNR (R*2/(N+ll])= 2

C = FNR (F/(N-ll])= 2

T = F+C+l
where

R - number of indexed records
K - key length (wordsl
N - number of keys per directory block
F-number of blocks in the fine level
C - number of blocks in the coarse level
T - total number of blocks used by the directory

FNR - a function defined as FNR(xl - INT(xl + SGN(FRA(xl]

Function FNR is used to round up any fractional part of a block
in the fine or coarse levels.

Multiply the total number of blocks for all directories by 256,
and divide the product by the data record length (wordsl to
compute the equivalent number of records (which must not exceed
65534l. Apply FNR to the result, and add this equivalent number
of records for all directories to the number of desired data
records when building the file. If this total number of records
exceeds 65534, then the data and directories must be in separate
files.

The BUILDXP processor, listed in Appendix D, is a good example of
how to build an indexed file from within a BASIC program.

SM-030-0012-02
POINT 4 Data Corporation 2-50

IRIS DATA PILES
IRIS Business BASIC Manual

2.7.9 CREATING A POLYFILB FROM WITHIN A BASIC PROGRAM

Three steps are involved in creating each polyfile volume. Each
of these steps is described in detail in the following
sUbsections.

1. Build a contiguous file.

2. Transform the contiguous file into a polyfile volume via the
polyfile call (91). The parameter "v" in CALL 91 assigns the
volume numbers.

N~B

Volume 0, the master volume, must be built
first.

3. Structure the polyfile volume via search mode zero.

2.7.9.1 Step 1: Build a Contiguous File

Build the contiguous file with the same name as the polyfile, but
omit the "@". Use the FORMAT processor (described in Section
2.5.3) or the BUILD statement (described in Section 2.5.4).

SM-030-0012-02
POINT 4 Data Corporation 2-51

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.9.2 Step 2: Convert to Polyfile Volume

The contiguous file is then converted to a polyfile volume by
CALL 91, which must be executed while the file is still in the
BUILD mode. After the call is executed, channel CO must be
closed to make the volume permanent on the disc. When building
the master volume (0), channel Cl should be closed. Use the
following statements:

IF ERR 0 STOP
CALL C,CO,Cl,V,S,P

where:

C - CALL number (91)
CO - Channel number on which the file is open
Cl - Channel number on which the master volume is open
V - Volume number
S - Status after the CALL is completed
P - File parameter array (see Table 2-4)

NOTB

The variable S and the array P must be
declared in a DIM statement; otherwise, the
"IF ERR" branch will take effect and Swill
return error 17, 18, or 19 (see Table 2-5).
Use the following format:

DIM S,Pln]

where n is a value of 10 or greater. This
permits validation of the P array dimensions.

If CALL 91 detects any errors, error 138 (error detected by a
called subroutine) is returned. CALL 91 checks to see that the
filename matches and that the volume is three or more blocks in
size.

If CO is less than 0, then only file parameters are returned.

If CO is greater than or equal to 0, and if I

V>O - this volume is linked to volume O.
V-O - a master volume is created.
V<O - CALL C assigns the next available volume number and

returns the number of that volume in V.

If the volume is a data volume, then the record length of the
volume must match that of the master volume.

SM-OJO-0012-02
POINT 4 Data CorporatIon 2-52

IRIS DATA PILES
IRIS Business BASIC Manual

When CO is non-negative, the value of S indicates the following:

5-0 - volume is to be a base directory or directory extension

5<>0 - volume is to be a data volume

If 5 is returned from the call with value 0, then file parameters
are to be found in the array P. The parameters, ordered by
index, are shown in Table 2-4.

TABLE 2-4. FILE PARAItETERS

Contents
of P Description

0 VLU (Volume/Logical Unit)

1 BNR (Base Number of Records)

2 LU flag (O=installed; <>O=not installed)

3 ACNT

4 TYPE

5 NBLK

6 LRCD

7 NRCD

B LDAT

9 LDAT+l

10 Keylength of 1st directory in volume (FMAP+4)

11 Keylength of 2nd directory in volume (FMAP+5)

:

72 Keylength of 63rd directory in volume (FMAP+l02)

76 Logical Unit number

77 DHDR

SM-030-00l2-02
POINT 4 Data Corporation 2-53

IRIS DATA FILES
IRIS Business BASIC Manual

If the value of S is nonzero, an error is indicated. The
possible status values for S are shown in Table 2-5.

TABLE 2-5. CALL 91 STATUS VALDES

Contents
of S Description

o No error

1 Invalid channel number

2 File not being built

3 Illegal volume number

4 File Cl is not a polyfile

5 File name invalid

6 Invalid variable type

7 Invalid number

8 Volume already exists on the desired LU, possibly
as part of another polyfile of the same name

9 File CO not found (deleted?)

10 Not enough nodes to link into extended DFT

11 Volume already exists for this po1yfile

12 Volume V not found

13 Account numbers do not match

14 Volume in extended DFT but not on disc

15 No available volume number for this polyfile

16 Volume V is not defined

17 P is not allocated as the next variable after S

18 P is not an array

19 P is not dimensioned P[lOl or greater

20 File CO is not contiguous

21 File Cl is open elsewhere

22 File CO is already a polyfile

23 HSLAs do not match for assign operations

24 VLU or BNR do not match for assign operations

25 Cannot move volume 0

26 Illegal move operation

21 File CO is not write protected

28 Illegal write enable operation

8M-030-0012-02
POINT 4 Data Corporation 2-54

IRIS DATA FILES
IRIS Business BASIC Manual

2.1.9.3 step 3: Structure Polyfile

Search mode zero is used to structure a polyfile. For polyfiles,
search mode zero requires that a volume number be given and that
key sizes be given in bytes. The format is:

SEARCH tC,m,d;K$,R,S

where:

m=O,d+l28 - Define volume number d to be a data volume; O<-d<-63;
R=number of records.

• If R=O, the number of records is computed and
returned in R.

• If S=O, a bit map is not built.

• If S<>O, a bit map is built with R free records
in it.

m=0,d+64 - Define volume number d to be an extension of the base
directory volume in S; O<=d<=63.

m=O,d Define directory d: volume number in S, key length in
R (in bytes); l<zd<=63.

m=O,d=O Organize all directories for the volume number given
in S.

SM-030-0012-02
POINT 4 Data Corporation 2-55

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.10 CONVERTING AN APPLICATION FROM USING INDEXED FILES
TO USING POLYFILES

An indexed file may be converted to a polyfile by using the steps
outlined below. Programs which use indexed files may also be
changed to handle polyfiles.

To convert an indexed file to a polyfile, build a polyfile with
key and data record sizes matching the current indexed file.
Then construct and execute a program which will:

• read each key and its associated data from the indexed file

• get a free record from the polyfile

• write the data record into the polyfile

• insert the key into the polyfile

• allow at least a 3% (precision) variable for the polyfile
record number

• use separate variables for indexed file access and polyfile
access to prevent Rand S being greater than 65535 for
indexed file access

To convert a program which uses indexed files to one which uses
polyfiles, do the following:

1. Modify OPEN statements to reference the polyfile.

2. Remove all search mode seven statements from the program.
Because polyfiles redistribute keys automatically, search
mode seven has no effect on polyfiles. A program containing
search mode seven may safely be used; however, mode seven is
unnecessary and should be eliminated.

3. Check that any variable intended for polyfile record numbers
is large enough to hold 3% (precision) numbers.

SM-030-0012-02
POINT 4 Data Corporation 2-56

IRIS DATA FILES
IRIS Business BASIC Manual

2.7.11 SPBCIAL POLYFILB CALL (91) MODES

Three special modes of CALL 91 are available. They allow the
following:

• an individual volume of an existing polyfile to be moved to
another logical unit

• the polyfile master volume and nonzero volume headers to be
updated after a logical unit number is changed during an
INSTALL procedure

• writing to an individual volume of a polyfile that is open in
read-only mode

These modes are described in detail in the IRIS R8 Polyfile
Document.

SM-030-0012-02
POINT 4 Data Corporation 2-57

IRIS DATA FILES
IRIS Business BASIC Manual

Section 3
BUSINESS BASIC STATEMENTS

This section gives a detailed discussion of each Business BASIC
statement. The discussions include information such as whether
the statement may be entered at the keyboard for immediate
execution, whether it may be executed within a program, its
syntax, and a description of its effect. Examples illustrating
correct use of the statement are shown on the facing page. The
format used in these discussions is illustrated in Example 3-1.

The statements are presented in alphabetical order.

STATEMDT

KEYBOARD: YES indicates the statement may be entered a.t the keyboard without
a line number and executed immediately.

PROGRAM: YES indicates the statement may be entered as part of a program and
executed when the program is run.

SYNTAX: shows all legal forms of the statement using the following
conventions:

EFFECT:

HOTES:

Variable = simple or subscripted numeric or string variable

~ = each element (such as xx) of a list except the last must
be followed by a comma

expression = a group of characters that may be evaluated to a
simple numeric value; sometimes abbreviated expr

filename = an IRIS filename

filename string = a quoted literal or string variable containing a
filename

A
indicates that either A or B may be included, but not both B

{} braces indicate that the parameters they enclose are optional

• an asterisk following information enclosed in braces indicates
that the enclosed information may be repeated up to the length
of the BASIC I/O and edit buffers

description of what the statement does when it is executed

additional comments on using the statement

Ezamp1e 3-1. Pormat of Statement Descriptions

SM-03 0-00 12-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-1

BUILD+

KEYBOARD: NO
YES PROGRAM:

SYNTAX:

EFFECT:

NOTES:

where ~ defines a tormatted file as tollows:

"!<~}!~}!LU/}tilename string or string yar!I}"

and CONTIG defines a contiguous tile as tollows:

"!<~>}!$~}[~:~]!LU/}tilenamo string or string yar!I}"

and +TEXT defines a text file as follows:

+"!<~>}!$~}!LU/}filename string or string yar!I}"

Used to build a data file. Creates a new file or
replaces an old file, identified by the filename
string, on a specified channel. Several files may be
created by one statement, and filenames not preceded
by a channel expression are created on successive
channels.

1. Refer to Section 2 for specific information on using
BUILD to create each file type.

2. If the file's protection or cost are not specified,
then the protection is 77 (maximum protection), and
the cost is zero.

An existing file of the same type on the user's own
account may be replaced by following the filename with
an exclamation mark (I). If the cost or protection is
changed, both must be re-entered or the default is
assumed.

3. A new formatted file is automatically formatted by
data written to record zero (record zero must be
specified explicitly).

4. Unless the channel on which a file is built is closed
using a CLOSE statement, any new file created using a
BUILD statement is deleted when the program is exited
or by an abortive error because the system
automatically clears all open channels. When CHAINing
to another BASIC program the channels are not cleared,
so new files created using BUILD are not deleted.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT • Data Corporation 3-2

BUILD+

EXAMPLES:

120 BUILD '2,"NEWFILE",'H3,N$

This example builds a formatted data file with the name NEWFILE
on channel two, and a data file with the name given in N$ on the
channel number given by variable H3.

220 BUILD '3,"<33> $14.50 [200:2501 LEDGER"

This example builds a contiguous data file called LEDGER, with
200 records of 250 words each, and opens it on channel three.
The file's cost is $14.50 and its protection is 33.

320 BUILD '1,"<33> $10.00 [10:2561 l/EXAMPLEI"

This example builds a contiguous file called EXAMPLE on logical
unit one, replacing an existing file of the same name. It is
built on channel one with protection 33, costs $10.00 each time
it is accessed and has 10 records of 256 words each.

A new text file may be built by a statement of the form

BUILD 'c,+filename string ••

where c is a channel number expression, and the filename is the
name under which the text file is to be built. For example:

100 BUILD '3,+"TEXT6.4"
150 BUILD '5,"FFILE",+D6$

Line 100 builds a text file named TEXT6.4 on channel three. Line
150 builds a formatted data file on channel five and a text file,
,:"hose filename is given in 06$, on channel six. The "+" symbol
~s part of the statement syntax and is not included as part of
the filename string.

SM-030-0012-02
POINT 4 Data Corporation 3-3

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL

KEYBOARD: YES
PROGRAM: YES

SYNTAX: CALL mnemonic or routine expr,yariable{,yariablel*

EFFECT: The CALL statement is used to execute a Business BASIC
or user-defined subroutine.

NOTES:

1. The integer value of the routine expression or the
routine mnemonic selects a specific subroutine.
(Subroutine numbers greater than 99 are reserved for
use by POINT 4.) CALLs SFINDF, SLOGIC, SRDFHD,
SSTRING, STIME, STRXCO and the polyfile CALL are
discussed on the following pages.

2. The variables are used to pass argument values to and
from the subroutine. Up to twelve such parameters may
be used. Simple variables and string variables may be
used. Expressions may not be uS,ed as parameters;
subscripts may not be used in strings.

3. For examples of some uses of CALLed subroutines, see
program 1 in Appendix A for use of CALL 99 (system
time) and programs 6 and 7 in Appendix A for use of
CALL 98 (transmit system command).

4. When assigning a mnemonic to a subroutine, POINT 4
recommends that the mnemonic begin with a prefix of
your choice to differentiate it from POINT 4
mnemonics.

5. CALLS 79, 93, 94 and 95 are reserved. CALL 91 is the
polyfile CALL. CALLs 82, 88, 96, 97, 98 and 99 are
used for subroutines which have mnemonics.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Buslnes8 BASIC Manual POINT 4 Data Corporation 3-4

EXAMPLES:

625 CALL 14,F2,P2,D$

980 CALL $LOGIC,L,Pl,P2,R

SM-030-0012-02
POINT 4 Data Corporation 3-5

CALL

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL 91

KEYBOARD: YES
PROGRAM: YES

SYNTAX: CALL 91, file channel,master yol channel,v,S,P

EFFECT:

NOTES:

where
v - volume number
S - status after the CALL is completed
P - file parameter array (see note 8)

Converts a contiguous file to a polyfile volume.

1. This CALL must be executed while the contiguous file
is being built. For a description of the steps
involved in creating a polyfile, refer to Section 2.7.

2. For further information on CALL 91, refer to Section
2.7.

3. The variable S and the array P must be declared using
the following format in a DIM statement:

S, P[nl

where n is a value of 10 or greater. If Sand Pare
not dimensioned as shown, the required IF ERR branch
will take effect and S will return error 17, 18 or 19.
This permits validation of the dimensions of array P.

4. CALL 91 checks to see that the filename matches and
that the volume is three or more blocks in size.

5. If the file channel (the channel on which the file is
open) is set less than zero, only file parameters are
returned. If it is set greater than or equal to zero,
the effect depends on the value of v as described
below:

v > 0 - links this volume to volume zero
v - 0 - creates a master volume
v < 0 - assigns the next variable volume number and

returns the number of that volume in v

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-6

CALL 91

EXAMPLES:

IF ERR 0 STOP
CALL 91, CO, Cl, V, S, P

IF ERR 1 STOP
CALL X, CO, Cl, V, S, P

NOTES: (Continued)

6. If the volume is a data volume, then the record length
of the volume must match that of the master volume.

7. If the file channel is non-negative, S should be set
to zero to indicate that the volume is to be a base
directory or directory extension volume or to a
non-zero value to indicate that the volume is to be a
data volume.

8. If S is returned from the CALL with the value zero,
then array P contains file parameters. The parameters
are shown in Table 2-4. If S is returned with a
non-zero value, then an error is indicated. The
possible status values for S are listed in Table 2-5.

9. After CALL 91 is executed, the file channel must be
closed to make the volume permanent on the disc. When
the master volume (0) is created, the master volume
channel should be closed, and the new master volume
accessed through the file channel.

10. CALL 91 offers three special modes which may be used
to move an existing polyfile to a new logical unit,
update headers after changing the number of a logical
unit, and write to an individual polyfile volume in
read-only mode. These special modes are described in
Section 2.7.11.

SM-030-0012-02
POINT 4 Data Corporation 3-7

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL $FINDF (CALL 96)

KEYBOARD: YES
PROGRAM: YES

SYNTAX: CALL $FINDF, filename string yariable,header variable

EFFECT: Calls a subroutine used to find a file.

NOTES:

1. The filename, in the form required in an OPEN
statement, is passed to the routine in the filename
string variable.

2. The routine returns the header block address of the
file in the header variable. If the file is not
found, zero is returned.

3. The file is not opened and the protection or file type
is not checked.

4. This CALL is usually used to determine whether a given
file exists.

5. $FINDF may also be CALLed by its SUbroutine number,
96.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Busines8 BASIC Manual POINT , Data Corporation 3-8

· .
D - P ,~pLFlCe~N7 INTO 810c",-
,::: TypE.

C.) / (-) ~
100 ~tj/J =- Re-tlD

t:- ') = WR,Te..

:= if"

z.. ..?%
3 3%
4 4%
<;; > tJ/'-I
(" i3'NAf21
70(1 /IIOrc.· :;TRI#J Go

"1:: 'ReAD - l<.c!c le(H"£ Up(w f2po 1)

WiZ (rf - Jt-l{..u CD 6 e iUr, TTf',u

V~, (~ f>r) 5T(1/Nj ru 4e. 1&.4 J
Wfl rc - 51tC1Ne- ro WroTe

CA it B1/r I
LA I \ c) eLl Pi.:J) ~ j E

~ S\ ~ <; j(,t-',; /0-CP ,0 1/ C c...

F::- .::' (JO,> (T, () rJ JiP /Y1 (ew IV (\ vJ -.C -;-n JCJ

PI 0 0 e :i. -- ~ 1 #oJ J. H A~cJ,.. k.d·ty-U'-l l '-r ch~ ~ A! I J..)

8i - s...t:t i: TQ~ _ L6C A7/ 0 J

EXAMPLES:

75 CALL SFINDF,AS,X

SM-030-00l2-02
POINT 4 Data Corporation 3-9

CALL $FINDF

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL $LOGIC (CALL 88)

KEYBOARD: YES
PROGRAM: YES

SYNTAX: CALL $LOGIC,ooerator,variablBl,variablB2,result variable

EFFECT:

NOTES:

string yarl,otring var2,reault string yar

Operator - a numeric variable containing the number of
the appropriate logical operator

where
1 - specifies AND
2 - specifies OR
3 - specifies XOR
4 - specifies NOT

Performs the specified logic operation (AND, OR, XOR,
and NOT) on variablel and variable2 and returns the
result in the result variable or on string varl and
sting var2 and returns the result in the result string
var.

1. All variables in the calling statement, except the
operator variable, must be of the same type (either
string or numeric). Numeric integers must be in the
range 0 to 65535.

2. Although NOT requires only one operand, the second
operand must be specified and is used as a dummy
variable to satisfy syntax requirements.

3. Numeric values are converted to unsigned 16-bit
integers before the logical operation is performed.

4. For strings, the operation is performed byte by byte
until the dimensioned length of the shortest string is
reached.

5. This subroutine, may be used to copy strings which
include multiple binary zeros by ANDing the string
with itself, and to fill a string with binary zeros by
XORing it with itself. This is possible because the
subroutine does not recognize binary zero as a string
terminator.

6. $LOGIC may also be CALLed by its subroutine number,
88.

S"-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POIN? 4 Data Corporation 3-10

EXAMPLES:

100 CALL SLOGIC, A, M, N, R

200 CALL SLOGIC, S, AS, BS, CS

10 LET Pl=3 \ P2=22
20 LET Aal \ CALL SLOGIC,A,Pl,P2,R
30 PRINT "Logical AND of PI & P2·"R
40 LET Aa 2 \ CALL SLOGIC,A,Pl,P2,R
50 PRINT "Logical OR of PI & P2="R
60 LET A=3 \ CALL SLOGIC,A,Pl,P2,R
70 PRINT "Logical XOR of PI & P2="R
80 LET A=4 \ CALL SLOGIC,A,Pl,P2,R
90 PRINT "Logical NOT of Pl-"R
100 DIM AS[151,BS[501
110 LET AS="HELLO THERE"

CALL $LOGIC

120 LET A=l \ CALL SLOGIC,A,AS,AS,BS
130 PRINT "AS ANDed with itself is:"B$
140 LET A=2 \ CALL SLOGIC,A,AS,AS,B$
150 PRINT "AS ORed with itself is:"B$
160 LET A=3 \ CALL SLOGIC,A,AS,AS,B$
170 PRINT "AS XORed with itself is:"BS
180 LET A=4 \ CALL SLOGIC,A,AS,A$,B$
190 PRINT "The logical NOT of AS is:"B$
RUN
Logical AND of PI & P2 = 2
Logical OR of PI & P2 = 23
Logical XOR of PI & P2 = 21
Logical NOT of Pl= 65532
AS ANDed with itself is:HELLO THERE
AS ORed with itself is:HELLO THERE
AS XORed with itself is:
The logical NOT of A$ is:
READY

NOTES: (Continued)

7. The logic operators cause the binary quantities x and
y to attain the values below:

.lI. ':i x AND ':i lL.OIL':i x ~QB ':i
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

.lI. ~
0 1
1 0

For further information on logic operators, consult a
text on boolean algebra.

SM-030-0012-02
POINT 4 Data Corporation)-11

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL $RDFHD (CALL 97)

KEYBOARD: YES
PROGRAM: YES

SYNTAX: CALL $RDFHD, lu,r,n$,a,t,s,q,c,i,d,l,h

EFFECT: Calls a subroutine which reads the file header
indicated by the record number r. The logical unit
and record number must be specified. The subroutine
returns the account number and the file's name, type,
size, status, cost, total income, creation date, last
access date and header disc address in the other
variables.

NOTES:

1. lu,r,a,t,s,q,c,i,d,l, and h are any numeric variable
names, and n$ is any string variable dimensioned as 15
characters or longer. Lu specifies the logical unit,
r specifies a starting record number in the INDEX
file, and the other variables receive information
about the file as follows:

n$ Filename

a Account number word. The bits and their meanings
are shown below:

15-14
13-6

5-0

15 - 14 13 - 6 5 - 0

Meaning

Privilege level
Account group number
Account user number

SM-030-0012-0l BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-12

CALL $RDFHD

t File type word. The bits and their meanings are shown
below:

115 114113112 III 110 I 91 81 71 6 I 5 I 4-0

15 Not used
14 Read protected against users of lower privilege
13 Write protected against users of lower privilege
12 Copy protected against users of lower privilege
11 Read protected against users of the same privilege
10 Write protected against users of the same privilege
9 Copy protected against users of the same privilege
S Runnable processor
7 Load active file when selected
6 Initiate input before first swap-in
5 May be locked in memory

4-0 File type

The value of t may be substituted in the following
equations to extract the information shown below:

T1 File Type = t-32·INT(t/32)
R R,L,I control digit = INT[(t -INT(t/512)·S12-T1)/64) I
P Protection digits = INT(t/512)
P1 Protection digit 11 INT(P/S)
P2 Protection digit 12 = INT(P-P1·S)

The meaning and use of this information is described in the
IRIS RS User Manual.

s File size. Number of disc blocks used by the file.

q File status word. The bits and their meanings are shown
below:

SM-030-0012-02

15 14 I 13 I 12 I 11 I 10 9 - 1 o

Meaning {if setl

15 File is being built; has not been closed yet
14 A file is being built to replace this one
13 File is to be deleted
12 File is mapped (ie, it is a formatted data file)
11 File has been opened with an open-lock
10 File can not be deleted
9-1 Not used
o File is extended

If bits 14 or 13 are set, the file will be overwrittenl
deleted when it is closed.

POINT 4 Data Corporation 3-13
BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

CALL $RDFHD (Continued)

c File cost to the dime.

i Total income to the file, to the dime. This is
increased by the value of c each time a user on a
different account accesses the file. Note: if
the value of variable i was zero before the call,
then the file's income will be cleared to zero by
use of the call; otherwise, the file's income is
not changed by the call.

d File creation date (hours after the base date).
The age in hours may be calculated as Age =
SPC(2)-D. SPC (18) returns the system base year.

1 Last access date (hours after the base date). The
hours since last access may be calculated as HSLA
= SPC (2) -1. SPC (18) returns the system base
year.

h Disc address of file's header.

2. All numeric values are returned in decimal. (LIBR
lists the t, q, and h values in octal. The t, q, and
h values returned by $RDFHD must be converted to octal
for comparison with a LIBR listing.)

3. If the INDEX record specified by R does not contain an
entry, then the next entry is automatically tried
until an entry is found or the end of the INDEX is
reached. If the end of the INDEX is reached, then R
is set to -1, and all other variables remain
unchanged. When a valid entry is found, R is set to
the record number of the next INDEX entry, and all
variables are loaded from information in the file's
header as indicated above.

4. $RDFHD may also be CALLed by its subroutine number,
97.

SM-030-00l2-02
POINT 4 Data Corporation 3-14

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL $RDFHD (Continued)

EXAMPLES:

110 CALL $RDFHD,X,J,M$,P,K,O,L,S,Nl,N2,H9,T2

320 CALL $RDFHD,S,B,B$,P,L,Tl,T2,T3,T4,T5,T6,T7

SM-030-0012-02
POINT 4 Data Corporation 3-15

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL $STRING (CALL 82)

KEYBOARD: YES
PROGRAM: YES

SYNTAX: CALL $STRING, ~, string expression

EFFECT:

NOTES:

where modeA - a variable set equal to 1, 2 or 5

CALL $STRING, ~, string expression, Yalue
where modeB - a variable set equal to 3 or 6

CALL $STRING, ~, Yalue, string expression

where modeC - a variable set equal to 4 or 7

The subroutine $STRING provides the following
functions: convert string to upper case, convert
string to lower case, convert one or two characters to
a numeric value, convert an a-bit or 16-bit value to a
character or characters, and read the I/O Buffer.

1. The variables shown by modeA, modeB and modeC in the
syntax statements above represent the mode. The mode
determines which function will be employed, as
described below.

Mode

1
2
3
4
5
6
7

Function

convert string to upper case
convert string to lower case
convert a single character to an ASCII value
convert an ASCII value to a single character
read the Input/Output Buffer
convert two characters to a l6-bit number
convert a given value to two characters

2. When modes land 2 are used, the subroutine converts
alphabetical letters only to the appropriate case.
Any characters already in the case being converted to
or any nonalphabetic characters remain unchanged.

3. When mode 3 is used, the subroutine converts the first
character of the string to an ASCII value in the range
zero to 255, depending on the binary value of the
character.

4. When mode 4 is used, if the specified value is greater
then 255, the value modulus 256 is used in the
conversion. The generated character overlays the
first character of the string, if any, and the second
character is overlayed with a null.

(Discussion of this statement is continued.)

SM-030-0012-0:l BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-16

EXAMPLES:

CALL $STRING

Modes 1 and 2:

10 DIM AS(100)
20 LET AS="ABCdef GhIj K1L@m3nS /:+m OPQRST uvwxyz"
30 INPUT "HaDE: "M
40 CALL SSTRING, H, AS \ PRINT
50 PRINT AS
RllN
MODE: ~
ABCDEF GHIJ K1L@M3NS /:+= OPQRST UVWXYZ

READY
RllN
MODE: 2.
abcdef ghij kll@m3nS ;:+= opqrst uvwxyz

Hodes 3 and 4:

10 DIM AS (10) ,BS (10)
20 LET AS = oZ·
30 LET H=3 lMode 3
40 CALL SSTRING, M, AS, A
50 PRINT A
60 LET M=4 lHode 4
70 CALL SSTRING, M, A, BS
80 PRINT B$
RllN

218
Z

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-17

CALL $STRING (Continued)

NOTES: (Continued)

5. When mode 5 is used, the returned string consists of
the contents of the 1/0 Buffer up to the first
<RETURN> found in the buffer. Because of this, when
mode 5 is used, the CALL must precede any input or
output within the program; otherwise, the contents of
the 1/0 Buffer may be lost. The buffer contents are
also destroyed if the program generates a BASIC error
message.

6. When mode 6 is used, the subroutine converts the first
two characters of the string to a value determined by
the following equation:

(A * 256) + B = value

where A
B

value

ASCII value of the first character
ASCII value of the second character
the calculated result

The subroutine returns a l6-bit value in the range
zero to 65535 which is calculated using the above
equation and which depends on the characters and
parity setting.

7. When mode 7 is used, the pair of generated characters
overlays the first two characters of the string.

8. Only values in the range zero to 65535 may be
converted to characters using this subroutine.

9. A program which uses mode 5 of $STRING may allow the
user to enter

.DISPLAY REPORT

which uses the program "DISPLAY" on the file named
"REPORT". See the example on the facing page.

10. $STRING may also be CALLed using its subroutine
number, 82.

SM-030-0012-0l
POINT 4 Data Corporation 3-18

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

EXAMPLES:

Mode 5:

10 DIM CS (100)
20 LET M=5
30 CALL SSTRING,M,CS

CALL $STRING (Continued)

40 PRINT "THE PARAMETERS ARE: ";CS
50 CHAIN" "
E.X.ll
'SAVE ECHO
SAVED I I CHECK CODE = CD1A
.ECHO THIS TEXT
THE PARAMETERS ARE: THIS TEXT

Modes 6 and 7:

10 DIM AS[10),BS[101
20 LET AS= "XX"
30 LET M=6 IMode 6
40 CALL SSTRING,M,AS,A
50 PRINT A
60 LET M=7 IMode 7
70 CALL SSTRING,M,A,BS
80 PRINT BS
RllN

55512
XX

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-19

CALL $TIME (CALL 99)

KEYBOARD: NO
PROGRAM: YES

SYNTAX: CALL $TIME, string variable

EFFECT: Calls a subroutine which is used to read or set system
time.

NOTES:

1. If CALL $TIME is issued with the string variable
empty, the system time is returned in the string
variable. The string variable must be dimensioned at
least 23 bytes.

2. If CALL $TIME is issued from account 0,1 only with
contents in the string variable, the system uses the
string variable to set the time.

3. $TIME may also be CALLed by its subroutine number, 99.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT • Data Corporation 3-20

CALL $TIME

EXAMPLE A:

From Any Account

CALL $TIME may be issued from any account to read the current
system time.

10 DIM AS (25)
20 AS = ""
30 CALL STIME, AS
40 PRINT AS
RUN
AUG 30, 1983 16:22:36

AS was set to an empty string in line 20. A$ must be dimensioned
at least 23 bytes.

EXAMPLE B:

From Account 0.1 Only

The system time may be adjusted by the system manager from
account 0,1 by use of a CALL STIME in a BASIC program. For
example:

10 DIM AS (25)
20 INPUT AS
30 CALL STIME, AS

This program will work only from the system manager account
(account 10,1). The string entered for A$ must represent the
current time. The time may be represented in either of the
following forms:

NOV 15, 1975 16:22:36

or

1975,11,15,16,22

where the ·seconds" portion (the last colon and last two digits)
is optional. All leading zeroes are also optional.

This usage differs from Example 1 above only in that AS is not
empty when entering CALL STIME. BASIC Error 138 will result if
the program in Example B is run on any account other than 0,1.

SM-030-0012-02
POINT 4 Data Corporation 3-21

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL $TRXCO (CALL98)

KEYBOARD: YES
PROGRAM: YES

SYNTAX: CALL $TRXCO, port no. yar,oogmand string Yar! ,status Yarl{ ,priority no.}

EFFECT: Calls a subroutine which transmits a system command to
any other port. Business BASIC programs and other
processors may be run on another port by use of the
CALL $TRXCO statement.

NOTES:

1. The value of the port number var iable is used to
specify the number of an interactive port. A constant
may not be given for the port number. The port mayor
may not have a keyboard or any I/O device of its own.
If the port has a terminal, it is called a "slave
port" while being used in this manner; if it has no
terminal, it is called a "phantom port". Phantom
ports can be activated only by system commands
transmitted from another port using CALL $TRXCO. Any
program to be run or command to be executed on a
phantom port should not require any operator
interaction, because an operator can not interact with
the port.

2. The command string variable may be any string variable
which contains a legal system command (any command
accepted at the system prompt). When CALL $TRXCO is
executed, it logs on the specified port if necessary,
and executes the specified command as though it had
been typed at a keyboard of the specified port.
Often, the command is to run a BASIC program.

(Discussion of this statement is continued.)

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT • Data Corporation 3-22

CALL $TRXCO

NOTES: (Cont inued)

3. The status variable is an optional numeric variable
which receives error status. If included, this
variable must be set to zero in the program before the
CALL STRXCO statement is executed. If an error is
detected by the system while executing CALL STRXCO,
this variable is set to a value as defined below:

~ Meaning

o no error; successful operation
1 port no. variable is not a numeric variable
2 specified port (that specified by the value

of the port number variable) does not exist
3 specified port is not interactive
4 specified port is the user's own port
5 command string var is not a string variable
6 specified port is compute bound or is

actively outputting information
7 specified port has input in progress
8 string is longer than the specified port's

input buffer
9 user is privilege level zero and therefore

cannot use CALL STRXCO
10 user is privilege level one and specified

port is not a phantom port
11 user is privilege level one and specified

port is in use by another account
12 user must be privilege level two to issue an

abort

If the status variable is not includeed, then Error 38
occurs if an error is detected.

4. The priority no. is used to set a priority for a
phantom port. The priority may be set in the range
one to seven; the priority must be set less than or
equal to the user's own priority. Priority is often
used to assign a low priority so the operation on the
phantom port runs as a background task.

5. A privilege level 2 or greater user may abort any
operation in progress on the selected port by
transmitting a backslash code (octal 334) in the
command string variable. This is equivalent to
entering <CTRL-C> at the keyboard. Note that an
application program with error branching in effect may
not respond to <CTRL-C>, so some other mechanism must
be used to abort the program. The suggested technique
is to include a SIGNAL 2 statement in the program to
receive an abort signal.

SM-030-0012-02
POINT 4 Data Corporation 3-23

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL $TRXCO (Continued)

NOTES: (Continued)

6. Only privilege level one and higher accounts may use
CALL $TRXCO; privilege level zero accounts may not use
it. Privilege level one users can transmit commands
only to a phantom port which is not in use or which is
in use by the same account. Privilege level two users
can transmit commands to any interactive port
regardless of its status.

7. $TRXCO may also be CALLed by its subroutine number,
98.

SM-030-0012-02
POIN~ , Data Corporation 3-24

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CALL $TRXCO (Continued)

EXAMPLES:

110 CALL $TRXCO,S,Nl$,T

200 CALL $TRXCO,P,A$,S

The following program may be used to initiate a procedure on a
phantom port. This program assumes that the user knows the
number of an available phantom port and is running on a manager
account.

100 DIM A$[lOOI ,B$ [II
110 INPUT "\2lS\PHANTOM PORT t, COMMAND "P,A$
120 LET V=O
130 LET Vl=O
140 REM LOG OFF PORT IF IN USE
150 LET B$= "\334\"
160 CALL 98,P,B$,Vl
170 REM WAIT FOR PORT TO LOG OFF
180 SIGNAL 3,20
190 REM WAIT IF PORT IS IN USE
200 IF Vl<>O GOTO 160
210 REM NOW ISSUE SYSTEM COMMAND
220 CALL 98,P,A$,V
230 SIGNAL 3,20
240 REM LOG OFF AND RESTART IF PORT WAS IN USE
250 IF V<> 0 GOTO 120
260 CHAIN "n

If lines 140, 150 and 160 are deleted, the above program may be
run on a non-manager account. (Lines 130, 170, 180 and 190 could
also be deleted.)

SM-030-0012-02
POINT 4 Data Corporation 3-25

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CHAIN

KEYBOARD: YES
PROGRAM: YES

SYNTAX: CHAIN guoted literal or variable string

EFFECT: Terminates running of the program in which it is
included and transmits the quoted literal or variable
string for execution.

NOTES:

1. There are two forms of the CHAIN statement: a long
CHAIN and a short CHAIN. Both forms terminate running
of the program in which they are executed. A long
CHAIN chains to SCOPE and the commands in the
statement are processed as though they were entered at
the IRIS system prompt. A short CHAIN chains from one
BASIC program to another BASIC program. The syntax of
both types of CHAINs is the same. A short CHAIN is
performed if the parameter string begins with the name
of a BASIC program.

2. When CHAINing to another BASIC program (using a short
CHAIN), the user's data channels remain open. This
allows one program segment to open a set of data
files, and succeeding program segments to access the
same files on the same channels without requiring the
filenames. All variables are cleared.

3. Several system commands may be given in a long CHAIN
statement, and they will be executed in sequence. The
commands must be separated by RETURN codes (enter
<CTRL-Z) or \215\). In a long CHAIN, the first
command may nQ~ be to run a BASIC program. For
example, line 900 in the examples saves the program in
its current state (including the values of all
variables), and then starts running it again at line
910; this is called checkpointing a program.
Statement 950 causes COPY to list the file LISTFILE
(presumably a text file on Logical Unit 13) on the
line printer, and then start the program PART3. The
command string is executed from the Intermediate Input
Buffer (lIB), so the length of the string must not
exceed the size of lIB.

4. CAUTIONI Do NOT type ahead while a program that may
CHAIN to a system command is running. Since the lIB
is used for both functions, the characters from the
two sources may become intermixed. Type ahead is
allowed during programs that CHAIN only to other BASIC
programs. The lIB is not affected when CHAINing from
one BASIC program to another BASIC program.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-26

EXAMPLES:

520 CHAIN "PART2"

710 CHAIN ·O/BYE"

840 CHAIN M$

900 CHAIN nO/SAVE TEMPI\215\BASIC\215\910 RUN"

950 CHAIN ·O/COPY $LPT=3/LISTFILE\215\PART3"

990 CHAIN

1000 CHAIN "\230\MYPROG\215\INPUTl\215\INPUT2"

CHAIN

Statement 520 terminates running the current program and
initiates execution of the BASIC program named PART2. An error
message is printed by SCOPE if PART2 does not exist and the
system returns to SCOPE. Any data channels that were opened by
the current program remain open and can be referenced by PART2
without re-opening them.

The other examples show additional uses for the CHAIN statement.
The port may be automatically logged off after all calculations
are finished (and the results have been stored in data files or
printed) by giving a BYE command as in statement 710. In
statement 840, the string variable M$ must contain a BASIC
program filename or a system command.

CHAIN looks first on the user's assigned LU or on the specified
LU for the first filename given; it then looks on LU/O. Because
of this, a "0/" should precede any system command as shown in
lines 710, 900, and 950. Each system command given in a CHAIN
statement is printed on the user's terminal, preceded by a •
symbol, just before it is executed, as if the user had entered
the command at the system prompt. Nothing is printed for a
direct CHAIN to another BASIC program.

Statement 990 shows the use of an empty string in the CHAIN
statement to exit to the system, similar in effect to using the
EXIT statement. All channels are cleared if the program chains
to BYE or to system control mode as in examples 990 and 710.

Statement 1000 shows how to CHAIN to a BASIC program (or through
multiple BASIC programs) and pass inputs as though they were
entered on the keyboard. The "\230\" causes entry into SCOPE,
thereby closing all channels.

SM-030-0012-02
POINT 4 Data Corporation 3-27

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

CLOSE+-

KEYBOARD: NO
PROGRAM: YES

SYNTAX: CLOSE .c{,.c)*

EFFECT: Dissociates the specified channel or channels from the
file or device which was opened on that channel.

NOTES:

1. An open channel must be closed before another file or
device can be opened or built on the same channel.

2. If a file is being built, closing the channel makes
the file accessible to other users for the first time.

3. A file being built is deleted if the program run is
stopped before the file is closed.

4. Attempting to close a channel which is not open
generates an error. If a CLOSE statemment includes
multiple channels and one of the channels generates
this error, the following channels will not be closed.

5. Expressions may be used to provide the channel number,
which may range from zero to the maximum channel
number. The maximum channel number depends on the
configuration of the system, but is usually nine.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-28

CLOSE+

EXAMPLES:

160 CLOSE tl

345 CLOSE 'A-l,'4,'R

Line 160 above closes the file or device on channel one. Line
345 closes channels A-I, four, and R, where A-I and Rare
expressions whose values each identify a channel number.

SM-030-0012-02
POINT 4 Data Corporation 3-29

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

DATA

KEYBOARD: NO
PROGRAM: YES

SYNTAX: DATA Iprecision%,lconstantl,constantl*

EFFECT: The DATA statement is used to supply constant numeric
data of a specified precision within a program.

NOTES:

1. If a DATA statement does not contain a precision
setting, then its data is stored with two-word
precision. "n%" In = 1, 2, 3, or 4) may be used in a
DATA statement, in which case the numbers in that DATA
statement are stored with precision n.

Only one % symbol may be used in each DATA statement,
and the n% must immediately follow the word DATA. All
numbers in a given DATA statement are of the same
precision. The % symbol in a DATA statement does not
affect the dimension of a numeric variable specified
in the DIM statement. Data from a DATA statement is
stored in the precision of the variable into which it
is read. Truncation or overflow (Error 15) may occur.

2. The data is read in sequence from the first to the
last DATA statement and from left to right within each
DATA statement. The system initially sets a pointer
to the first item of data. As the READ statements
request each data item, the pointer is moved to the
next data item. The RESTORE statement may be used to
reset the pointer.

3. DATA statements are not executed and may be placed
anywhere in the program. Items in a DATA statement
must be separated by commas, but no comma should
follow the last item of data.

4. Although DATA statements may be entered in keyboard
mode, they are useless because they can not be
referenced by a READ statement. DATA statements must
be entered with line numbers in order to be referenced
by a READ statement.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-30

EXAMPLE:

10 FOR J = 1 TO 4
20 READ Y
30 PRINT "THE SQUARE ROOT OF "Y"IS"SQR(Y)
40 NEXT J
50 DATA 3%,2,3.7,94.61,.0024
60 READ C,Z
70 LET E=C+Z
80 PRINT E
90 DATA 12,-32.4,9999,4E-16

DATA

In line 50 above, 2,3.7,94.61, and .0024 are stored as three-word
precision numbers. In line 70, variable E is a two-word variable
because the 3% specification in the preceding DATA statement
affects only those numbers in the DATA statement.

SM-030-0012-02
POINT 4 Data Corporation 3-31

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

DEF

KEYBOARD: NO
PROGRAM: YES

SYNTAX: DEF FN ~ (dumm~ variable)=numeric expression

EFFECT:

NOTES:

where
dumm~ variable is a single letter

This statement defines functions for use throughout
the program in which they are defined.

1. Up to 26 functions, FNA through FNZ, may be defined in
each program. Defined functions may be nested by
using other defined functions within the definition.
Up to 5 levels of nesting are allowed.

2. The DEF statement must be executed for the definition
to become effective. The definition may be changed at
any time by executing another DEF statement for the
same function.

3. A defined function is used primarily when the same
expression appears in several places in a program. A
function is defined equal to that expression, and then
the function is used in the program in place of the
expression.

4. The variable name in the function definition is called
a dummy variable because its name is independent of
all other program variables. If there is a variable
with the same name elsewhere in the program, it is not
affected by the defined function nor does it enter
into the evaluation. Also, the dummy variable is
assigned the value of the argument in the function
call only for the duration of the function evaluation.
Any single letter may be used for the dummy variable.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-32

EXAMPLES:

10 OEF FNR(B)=2*B-C/3

20 OEF FNC(0)=2*D-C/3

DEF

30 OEF FNN(L)=FNC(L)+FNR(L)-l

Because of the definition in line 10 above, the following two
statements are identical in operation:

100 LET G=B+4*(2*Y*Z-C/3)-M

100 LET G=B+4*FNR(Y*Z)-M

The argument (y*z in lines 100) of the function call (FNR) may be
any expression. The expression is evaluated, and the dummy
variable in the definition (0 in line 20) is assigned that value.

Lines 10 and 20 define equivalent functions.

SM-030-0012-02
POINT 4 Oata Corporation 3-33

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

DELETE

KEYBOARD: YES
PROGRAM: NO

SYNTAX: {beginning line! DELETE {ending line!

EFFECT: Deletes a group of statements.

NOTES:

1. If the beginning line number is omitted, then 1 is
assumed. All lines from 1 through the specified
ending line will be deleted.

2. If the ending line number is omitted, then 9999 is
assumed. All lines from the specified beginning line
through 9999 will be deleted.

3. DELETE with no arguments deletes the entire program.

4. An individual line may be deleted by entering its line
number only.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-34

EXAMPLES:

100 DELETE

DELETE

100 DELETE 200

150

SM-030-0012-02
POINT 4 Data Corporation 3-35

DELETE

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

DIM

KEYBOARD: YES
PROGRAM: YES

SYNTAX: DIM dimension list

EFFECT:

NOTES:

where
dimension list consists of array, string, vector or
variable declarations or precision settings in any order,
with each element except the first preceded by a comma.

The DIM statement instructs the system to reserve the correct
amount of storage space for a number, an array, or a string by
specifying an upper limit on the amount of space that will be
required.

1. DIM is used to specify the precision of variables and the maximum
number of elements which may be stored in a one- or two-dimensional
array or in a string.

When a variable is first encountered in a program, it is set to the
precision specified in the last DIM statement, or to the default of
2% if no DIM settings containing a precision setting have been
encountered. Precision may be set at 1%, 2%, 3%, or 4%.

2. To specify the maximum number of elements that may be stored ina
one- or two-dimensional array or in a string, the DIM statement is
followed by a variable name and one or two expressions enclosed in
brackets. For a two-dimensional array, the first expression
specifies the highest row number, and the second expression
specifies the highest column number. If the value of an expression
is not integral, the integer portion of the value is used.
Negative dimensions are not allowed. Since an array always
includes a row zero and a column zero, an array dimensioned 1.(3,5]
contains four rows and six columns for a total of 24 elements.
Lines 20, 40 and 500 in the example include two-dimensional arrays
in DIM statements.

3. A one-dimensional array is treated as a column vector; i.e., it has
only one column (column 0). The expression in the DIM statement
specifies the highest row number. Lines 10, 20, and 40 include
one-dimensional arrays in DIM statements.

A one-dimensional array which is not included in a DIM statement is
automatioally dimensioned 10 by O. A two-dimensional array which
is not included in a DIM statement is automatioally dimensioned 10
by 10.

4. The dimension of a string variable speoifies the maximum number of
bytes that the string oan store. Strinss are stored two characters
to a word. String variebles aust always sppear in a DIM statement
beoause they are not automatioally diaensioned. Lines 20 and 40
inolude strings in a DIM statement.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-36

EXAMPLES:

10 DIM A(15)
20 DIM B2[7,8),C4[40),D$[50)
30 INPUT B
40 DIM D[2,3),4%,G[15),H,B$[100),3%,R
50 LET C=B+M
60 READ X,Y,Z
70 DATA 4%,17,34.4669980257,2
500 DIM Q5[X, INT(Y»)

DIM

In the program above, variable B and array D in lines 30 and 40 are set to
two-word precision because the default of 2% has not been changed in the
preceding DIM statements. The specification of 4% in line 40 then causes all
variables which are encountered for the first time to be set to four-word
precision. Thus, vector G and variable H are both set to four-word precision.
The % precision specification has no effect on strings, so B$ is dimensioned
as a 100 character string. The specification of 3% then causes any new
variables following it to have three-word precision. Thus, R, C, and M in
lines 40 and 50 have three-word precision, but since variable B was already
encountered in line 30, its precision remains at 2%. The variables X, Y and Z
also have three-word precision, and they receive the values 17, 344.6699802
and 2, respectively. Variables or expressions may be used to dimension an
array, as shown in line 500.

NOTES: (Continued)

5. The number of words required to hold data and variables in Business
BASIC may be calculated from the following formulas, where
"precision" is the precision at which the variable was allocated.

simple variable
array
string
DATA statement

number of words

2 + precision
4 + (number of elements)·(precision)
3 + INT [(DIM+2)/2)
3 + (number of elements)·(precision)

The number of elements in an array dimensioned [R,C) is (R+l)·(C+l)
including row zero and column zero.

6. Numeric arrays may be redimensioned when the program is run by
execution of a second DIM statement. The total size of the array
given by the new dimensions may not exceed the total size of the
original array. The precision of the array is fixed by the initial
DIM statement.

7. Strings may be dimensioned once only; arrays may be redimensioned
if the total number of elements does not increase. If an array is
redimensioned, it uses the same precision as the first time it was
dimensioned, thus ignoring the current precision setting.

SM-030-0012-02
POINT 4 Data Corporation 3-37

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

DUMP

KEYBOARD: YES
PROGRAM: NO

SYNTAX: (beginning line)DUMP«~»($~(LU/)filename(I){eDdiDg line)

EFFECT: Saves the program currently in the user's active file
in a text file.

NOTES:

1. The user may specify numbers of the beginning and
ending lines, inclusive, to be saved. If the
beginning line number is not specified, the first line
is used; if the ending line number is not specified,
the last line is used.

2. The user may specify the cost and protection of the
file. If not specified, the protection is set to 77
(maximum protection) and the cost to zero.

3. The user may specify the number of the logical unit on
which the text file is to be saved. If not specified,
then the user's assigned logical unit is used.

4. An existing text file on the user's own account may be
overwritten by following the filename with an
exclamation point (I). If the cost or protection is
changed, both must be re-entered or the default is
assumed.

SH-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-38

DUMP

EXAMPLES:

DUMP <72> $2.58 4/CASHFLOW3

This command saves the user's program in source form in the text
file named CASHFLOW3 on logical unit four and protects it against
any access by lower privilege users.

A BASIC program in the user's active file may be listed on a line
printer by giving the command of the form

DUMP $LPT

where $LPT designates the appropriate printer.

SM-030-00l2-02
POINT 4 Data Corporation 3-39

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

END

KEYBOARD: YES
PROGRAM: YES

SYNTAX: END

EFFECT: Terminates program execution.

NOTES:

1. END is similar to STOP (which usually terminates
execution to indicate an error) and may be used
anywhere in a program.

2. It is not mandatory that the last statement in a
program be an END statement.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Bu.in ••• BASIC Manual POINT 4 Data Corporation 3-40

EXAMPLES:

1000 END

SM-030-0012-02
POINT 4 Data Corporation 3-41

END

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

EXIT

KEYBOARD: YES
PROGRAM: NO

SYNTAX: EXIT

EFFECT: Causes BASIC to exit to SCOPE.

NOTES:

1. EXIT is useful while debugging. The user may EXIT a
program, perform functions which do not disturb the
active file, and then re-enter BASIC to find the
variables unchanged.

2. The effect of EXIT is similar to using (CTRL-C) or
CHAIN •• except that EXIT does not disturb the stored
program or current value of the program's variables.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Buainea. BASIC Manual POINT 4 Data Corporation 3-42

EXAMPLE:

lllASli:
NIDi
LOAD ABC.
EXIT
#SAVE ABCI

SM-030-0012-02
POINT 4 Data Corporation 3-43

EXIT

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

FOR

KEYBOARD: YES
PROGRAM: YES

SYNTAX:

EFFECT:

NOTES:

FOR control variable initial expr TO limiting expr (STEP step exprl

NEXT control variable

Creates a program loop and repeats it a predetermined
(or calculated) number of times. The control
variable, sometimes called the "index variable", must
be the same in the FOR statement and in its matching
NEXT statement.

1. The FOR statement assigns the value of the initial
expression to the control variable, and saves the
value of the limiting expression as a 4% number. If
the initial value does not already exceed the limiting
value, control passes to the statement following the
FOR statement.

2. The value of the control variable exceeds the limiting
value if it is greater than the limit (for a positive
step value) or less than the limit (for a negative
step value). If the initial value exceeds the
limiting value, a search is made for the matching NEXT
statement, and control is immediately transferred to
the statement followng the NEXT statement without
executing the statements within the loop.

3. When a NEXT statement is encountered, the value of the
step expression (assumed to be +1 unless specified) is
added to the control variable. The control value is
then checked against the limiting value. If the
control value does not exceed the limiting value,
control is transferred to the statement following the
FOR statement. If the control value does exceed the
limiting value, control passes to the next statement
in sequence following the NEXT statement.

(Discussion of this statement is continued.)

S"-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-44

FOR

EXAMPLES:

110 FOR A = 11 TO 5
120 FOR B3 = 6 TO -4 STEP -2
130 FOR M = J TO K+4 STEP B-D

250 NEXT M
300 NEXT B3
600 NEXT A

The FOR and NEXT statements simplify the creation of a loop,
eliminating the need for multiple GOTO statements. For instance,
the following two programs perform similar functions:

Program 1

10 FOR A=B TO C STEP D
20

100 NEXT A
110

Program 2

10 LET A=B
15 IF A)C GOTO 110
20

100 LET A=A+D
105 IF A(=C GOTO 20
110

There is one important difference between these two programs:
changing the values of C and D within the FOR-NEXT loop has no
effect on the limit or step values because they are evaluated
only once when the FOR statement is executed; changing C and D
within the other program affects lines 100 and 105. The above
example assumes that the value of D is positive.

SM-030-0012-02
POINT 4 Data Corporation 3-45

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

FOR (Continued)

NOTES:

4. The initial value of the control variable is assigned
before calculating the limiting and step values;
therefore, use caution if the control variable is used
within expressions for the limiting or step values.

5. FOR-NEXT loops may be nested up to eight levels deep
as shown in the examples on the facing page. Note
that for legal nesting, the matching FOR and NEXT
statements can be connected without crossing lines.

6. The FOR-NEXT stack is used to keep track of FOR-NEXT
loops. When a FOR statement is encountered, the
control variable is added to the FOR-NEXT stack. When
a second FOR statement is encountered, its control
variable is added to the top of the stack, and the
original control variable is pushed down the stack.
This process continues with up to eight FOR
statements. When a NEXT statement is encountered, the
control variable which is at the top of the stack is
"popped off", or eliminated, and the remaining control
variables move back up.

As many as eight control variables may be on the
FOR-NEXT stack at a time; if a ninth control variable
is added to the stack, the stack overflows and an
error message appears.

7. Two examples of illegal nesting are shown on the
facing page. In the first example, the two loops
interfere with each other. When the NEXT A statement
is encountered, the system checks whether the last FOR
statement encountered was a FOR A. It was not, so the
FOR B loop is dropped, and the FOR A statement is
found. The FOR A/NEXT A loop is processed to
completion, but an error occurs when the NEXT B
statement is encountered.

The second type of illegal nesting involves use of the
same control variable in nested loops. In this case
the inner two loops are executed properly, but the
outer loop is lost. When a FOR statement is executed,
the system checks whether an existing loop uses the
same control variable, and if so, the existing loop is
dropped. Thus, the A loop created by line 10 in the
example is aborted when line)0 is executed, and a
"NEXT without matching FOR" error occurs at line 90.

Because the previously existing loop is dropped,
programs similar to the last program on the facing
page can be properly executed.

(Discussion of this statement is continued.>

5M-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-46

EXAMPLES:

SM-030-0012-02

legal nesting

10 FOR A

~J
20 FOR B

60 NEXT
70 NEXT

110 FOR C ·l

legal nesting

10 FOR A .

20 FOR B ~

,:: :::TCC:~
180 NEXT B

190 FOR BB~

300 NEXT· ~
310 NEXT A

legal nesting

10 FOR A .

60 GOTO 240

90 NEXT A

240 FOR A . ~

POINT 4 Data Corporation 3- 47

FOR (Continued)

illegal nesting

10 FOR A . -----.
20 FOR B .-~-I

: I
I I
I I
I I
I I

60 NEXT A
_______ ! I

I

70 NEXT B ------------

illegal nesting

10 FOR A .
20 FOR B

------j

30 FOR A

I ----ri
. -""tt"'i

I I I
I I I

: : :
I I I

7 0 NEXT A --------... : :
80 NEXT B -----------~ :
90 NEXT A ---------------.!

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

FOR (Continued)

NOTES:

8. If the control variable (0 in the example on the
facing page) is an integer (1\ precision), then the
step and limit values are also evaluated as integers.
The step and limit values are truncated to integers
using simple truncation (not evaluated as though the
INT function had been used). Thus, all arithmetic
which must be performed by the system will be done
using integers, and it will take approximately
one-third as long to execute the looping function.
Integers should be used whenever a short FOR-NEXT loop
is used and maximum speed is desired.

The difference between using an integer (1\) control
variable and a non-integer control variable is
illustrated by Example B on the facing page. Line 10
sets X to 2\ precision. Since X is not an integer
variable, the step value is not truncated and -1.2 is
used. Line 50 sets A to 1\ precision. Since A is an
integer variable, the step value -1.2 is truncated to
-1.

9. The maximum limit value when using an integer control
variable is 7998; a limit of 7999 cannot be exceeded,
and the loop would continue indefinitely after the
value of the control variable reached 7999.

8"-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT • Data Corporation 3-48

EXAMPLE A:

10 DIM 1%,D,3%
20 FOR D;l TO 10 STEP 2.9
30 LET X;5/D
40 PRINT D; X
50 NEXT D

This p~og~am's output would be:

EXAMPLE B:

1 5
3 1.666666666
5 1
7 .7142857142
9 .5555555555

10 DIM 2%,X

FOR (Continued)

20 FOR X; 10.2 TO 1.2 STEP -1.2
30 PRINT "X; "X
40 NEXT X
50 DIM 1%,A
60 FOR A; 10 TO 1 STEP -1.2
70 PRINT "A; "A
80 NEXT A

This p~og~am's output would be:

X; 10.2
X; 9
X; 7.8
X; 6.6
X; 5.4
X; 4.2
X; 3
X; 1.8
A; 10
A; 9
A; 8
A; 7
A; 6
A; 5
A; 4
A; 3
A; 2
A= 1

SM-030-0012-02
POINT 4 Data Corporation 3-49

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

GOSUB

KEYBOARD: NO
PROGRAM: YES

SYNTAX: GOSUB subroutine line no.

EFFECT: The GOSUB statement transfers control to the specified
line number.

NOTES:

1. The GOSUB and RETURN statements eliminate the need to
repeat frequently used groups of statements in a
program. Such a group of statements is called a
subroutine. The subroutine must be exited using a
RETURN statement.

2. A subroutine that has been entered with a GOSUB can
itself contain a GOSUB statement. This nesting
process can be carried out to eight levels. Each
RETURN returns to the previous level. A RETURN
statement cannot be executed without the previous
execution of a GOSUB statement.

8M-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-50

EXAMPLES:

10 DIM R$[10]
100 INPUT "Continue? (Enter YES or NO) "R$
110 PRINT
120 GOSUB 1000 ICheck whether YES or NO was entered.
130 GOTO 500
lliO GOTO 600
150 PRINT "You must enter YES or NOI"
160 GOTO 100
500 REM Perform the YES alternative
510 PRINT "The user entered YES"
520 STOP
600 REM Perform the NO alternative
610 PRINT "The user entered NO"
620 STOP
1000 REM Routine to check for YES or NO
1010 IF R$="YES" RETURN Ireturn to next statement if YES

GOSUB

1020 IF R$="NO" RETURN 1 Ireturn and skip next statement if NO
1030 RETURN 2 Ireturn and skip 2 statements if neither
.Il.l!.Ii
Continue? (Enter YES or NO) MAIaE
You must enter YES or NOI
Continue? (Enter YES or NO) ~
The user entered YES

STOP AT 520
.Il.l!.Ii
Continue? (Enter YES or NO) NQ
The user entered NO

STOP at 620

This program uses a subroutine to check whether the input string
R$ is equal to "YES", "NO" or neither. If R$ is equal to ·YES",
the subroutine returns to the next statement following the GOSUB,
which is "GOTO SaO".

If R$ is equal to "NO", the subroutine returns to the program,
skips one statement, and continues execution with the following
statement, which is "GOTO 600".

If R$ is not equal to "YES" or "NO·, the subroutine returns to
the program, skips two statements, and continues execution with
the following statement, which is "PRINT ·You must enter YES or
NOI""

SM-030-00l2-02
POINT 4 Data Corporation 3- 51

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

GOTO

KEYBOARD: NO
PROGRAM: YES

SYNTAX: GOTO line number

EFFECT: This statement transfers control to the specified
line.

NOTES:

1. GOTO must be followed by a line number to which
control is to be transferred, there must be a
statement in the program with that line number or an
error will occur.

2. The statement is useful for jumping to another part of
the program or for repeating a task indefinitely.

3. A GOTO should not be used to jump inside a FOR/NEXT
loop because a "NEXT without matching FOR" error will
occur when the NEXT statement is encountered (unless
the FOR/NEXT loop is exited before the NEXT statement
is encountered). A GOTO statement can be used to jump
out of a FOR/NEXT loop.

4. A GOTO should not be used to jump inside a subroutine
because a "'RETURN' WITHOUT 'GOSUB'" error will occur
when a RETURN statement is encountered. A GOTO should
not be used to jump out of a subroutine because the
return address will be left on the stack, probably
causing a "GOSUB STACK OVERFLOW" error.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT • Data Corporation 3-52

EXAMPLES:

10 INPUT "Please enter a number from 1 to 5: "A
20 PRINT
30 IF A=l GOTO 60
40 PRINT "A is not equal to 1"
50 GOTO 70
60 PRINT "A is equal to 1"
70 END
E.llN
Please enter a number from 1 to 5: 1
A is not equal to 1

READY
E.llN
Please enter a number from 1 to 5: ~
A is equal to 1

GOTO

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-53

HELP

KEYBOARD: YES
PROGRAM: NO

SYNTAX: HELP {error number}

EFFECT: Prints a message describing the type of error
encountered.

NOTES:

1. Some types of errors are serious enough that the
program is stopped when the error is detected, and the
word READY is printed following the error message.
Other types of errors allow the program to continue
with the next statement in sequence, thus allowing
several errors to be detected in a single run.

2. If the error number is not specified, a message which
describes the most recently encountered error, if any,
is printed. If the error number is specified, a
message which describes the specified error number is
printed.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Bu.in ••• BASIC Manual POINT 4 Data Corporation 3-54

EXAMPLES:

ERROR 16
ill:Ll'
NO SUCH LINE NUMBER

HELP 30
USER FUNCTION NOT DEFINED

SM-030-0012-02
POINT 4 Data Corporation 3-55

HELP

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

IF

KEYBOARD: YES
PROGRAM: YES

SYNTAX: IF logical expression statement{\statement}*

EFFECT: Provides conditional branching capabilities. The
logical expression is evaluated and, if it is found to
be true, the following statements on that line are
executed.

NOTES:

1. Any BASIC statement is permitted as the conditionally
executed statement, including another IF. Thus, the
statement IF A>B IF C>D GOTO 100 transfers program
control to statement 100 only if A is greater than B
and C is greater than D. In these cases the second IF
statement and its logical expression is executed only
if the first is satisfied. Any assignment statement
which immediately follows the logical expression must
begin with the keyword LET.

2. If the test condition is false, control passes to the
next line which begins with a line number (which may
not be the next sequential statement if multi­
statement lines are used).

3. The comparison symbols which may be used in the
logical expression of an IF statement are listed
below.

>
<
>~

<=
<>

Meaning

greater than
less than
greater than or equal to
less than or equal to
not equal to
equal to

4. IRIS Business BASIC does not use IF/THEN construction.
A statement such as IF A>B THEN 500 may be entered,
but the reserved word THEN has the same effect as GOTO
and is converted to "GOTO" by BASIC.

5. Line 900 in the examples shows the advantage of using
multiple-statement lines after an IF statement. If A
is originally greater than B, the following statements
on that line swap the value of A and B. If A is not
originally greater than B, control transfers to the
next numbered line, thereby skipping the remaining
statements on line 900.

S"-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-56

IF

EXAMPLES:

10 IF A>B GOTO 100

200 IF B GO TO 100

70 IF LEN(A$»10 LET C=D

800 IF A=5 PRINT "TRUE"

100 IF B$<>"YES· IF B$<>"NO" PRINT "Please enter YES or NO."

900 IF A>B LET T= A \ A=B \ B=T

170 IF A$,B$=C$ GOTO 1000

SM-030-00l2-02
POINT 4 Data Corporation 3-57

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

IF ERR

KEYBOARD: NO
PROGRAM: YES

SYNTAX: IF ERR error mode{statementl

EFFECT: The IF ERR statement sets or clears an error branch
which may be used to trap non-abortive errors within
the BASIC program instead of allowing them to cause an
error printout; the error trapping allows the program
to attempt corrective action. Escape (ESC, <CTRL-C>,
and <CTRL-D>) is also trapped.

NOTES:

1. If the error mode is set to zero, error 99 is
generated when error trapping is enabled and either
<ESC> or <CTRL-C> is pressed. If the error mode is
set to one, error 99 is generated when <ESC> is
pressed and error 199 is generated when (CTRL-C> is
pressed.

2. The statement is not executed at the time the IF ERR
is encountered, but an error branch is set so that any
non-abortive error or ESC causes the statement to be
executed as if it were at the line where the error
occurred. Therefore, unless the statement is a GOTO,
GOSUB, RETURN or ON statement, the next statement
executed will be the one following the statement in
which the error occurred. If the statement is a
GOSUB, then a normal RETURN from the subroutine will
also return to the statement following the statement
in which the error occurred, and a RETURN -1 will
return control to the statement in which the error
occurred.

3. If the statement is an aSSignment statement, it must
begin with the keyword LET.

4. An IF ERR statement may be used anywhere in the
program to set the error branch to point to its
statement. An IF ERR with no following statement
clears the switch so that any error will cause a
normal error message printout.

(Discussion of this statement is continued.)

SH-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-58

IF ERR

EXAMPLES:

10 IF ERR 0 LET E=E+l

20 IF ERR 0 GOSUB 1000

150 IF ERR 1 GOTO 9000

200 IF ERR 0

NOTBS: (Continued)

5. SPC (8) may be used in the error handling subroutine
to determine the type of error that occurred. IF ERR
also causes ESC and <CTRL-C) to be trapped. In this
case, SPC (8) returns 99 as the error type if the
error mode is set to 0, and returns error 99 if ESC is
trapped and 199 if <CTRL-C) is trapped if the error
mode is set to 1. If the program is not
copy-protected against the user, then the user can
bypass the ESC trap by pressing <CTRL-Y) followed by
ESC.

6. SPC (10) may be used in the error handling subroutine
to determine the line number where the last error
occurred. Thus, an erro~ message may be printed
giving the line number of the error if the program
cannot recover from the error.

7. An IF ERR statement must be the first executable
statement of a program in order to trap <ESC> and
<CTRL-C> when chaining from one BASIC program to
another BASIC program. Executable statements include
all statements except REM and DATA.

SM-030-0012-02
POINT 4 Data Corporation 3-59

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

INPUT

KEYBOARD: YES
PROGRAM: YES

SYNTAX: INRJT{@C,r;}{LEl\l...1.m1t.;}{"l1t <rQIDt"I.:ilII: ... l1:l1J ,{@C,rlLElWIII1t;){"lit Dm!pt"}~.

EFFECT:

NOTES:

INRJT{~IIW/ J.1III1.t.;II"l1teral IDmlt"lstring yadable

where
c - column

var list

- row

a list of vector or array variables in any
order, with each element except the first
preceded by a comma

This statement directs the system to accept data
entered from the keyboard. The system temporarily
suspends program execution, prints a question mark or
the literal prompt, and awaits data to be entered by
the user.

1. When the RETURN key is pressed after entering data in
response to an INPUT statement, the cursor does not
move, but remains at the same position.

2. To enter more than one number in response to an INPUT
statement, either separate the numbers by commas or
press the RETURN key after entering each number.

3. The standard question mark prompt character may be
replaced by any prompt message given in quotes at the
beginning of the statement. If there is nothing
between the quotes, then input will be enabled with no
prompt at all.

4. If the user I s response to an INPUT statement is
rejected, the system prints a backslash and question
mark and outputs a bell. The user may then enter
appropriate information and press RETURN. INPUT
response is rejected if input for a numeric variable
is required and the user enters nothing or enters
illegal characters. However, if error trapping is
enabled, then an empty input is accepted as a zero
value and entry of an illegal character causes an
error branch.

5. Two string variables or a numeric variable following a
string variable may not be input using a single INPUT
statement.

8M-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-60

INPUT

EXAMPLES:

110 INPUT A,B

120 INPUT C,D4,E

130 INPUT B [2]

140 INPUT "WHAT IS YOUR NAME? "N$

150 INPUT ""J
300 INPUT LEN 5,A$

500 INPUT @10,5,"AGE: "A,@lO,lO,"STATUS: "B

The following program inputs two numbers from the keyboard, adds
them, prints the sum, and asks for two more numbers. Line 20
causes the program to stop if the first value entered is zero.
The user may also press the ESC key at any time to abort the
program run.

10 INPUT "ENTER THE FIRST NUMBER: "A,"ENTER THE SECOND NUMBER: "8
20 IF A=O STOP
30 PRINT " THE SUH IS"A+B
40 GOTO 10

The following program accepts only the letters "Y· or "N" as
input. The user may type ·YES" or "NO", but the system acts as
though <RETURN> were pressed as soon as the specified input
length was reached. The excess letters ("ES" or "a") are queued
up as type-ahead.

10 INPUT LEN I, "Yes (Y) or No (N)? "A$
20 IF A$= "Y" GOTO 100
30 IF A$= "N" GOTO 200
40 PRINT "PLEASE ANSWER YES OR NO" \ GOTO 10

NOTES: (Continued)

6. The LEN clause may be used to limit the length of user
input to the number of characters specified by
"limit". For example, line 300 limits the length of
user input for A$ to five characters. The LEN clause
affects only the next read from the terminal. Setting
the input length to zero or greater than the 1/0
Buffer size has the same effect as not including a LEN
clause.

7. The @column,row clause may be used
column and row at which the input
displayed (or the cursor position, if
is to be displayed). Note that
specified first, then the row.

to specify the
prompt will be
no input prompt
the column is

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-61

KILL

KEYBOARD: YES
PROGRAM: YES

SYNTAX: KILL filename string{,filename string}.

EFFECT: Deletes the specified data files.

NOTES:

1. The filename string may contain a literal string or
string variable which contains the filename of a data
file. It may also include the number of the logical
unit on which the file is stored (LUI}. The effect is
the same as if the KILL command were given in the
system command mode. The user's account on which the
file was created will be credited for the disc blocks.

2. An error occurs in three cases: if any of the
specified strings do not contain a legal filename; if
a specified file is write protected; or if a specified
file does not exist.

3. If a legal command is given to kill a file that is
open at the time on a data channel, the filename will
be removed from the INDEX immediately, but the file
will remain open on the channel. The file will be
deleted later when the channel is closed by a CLOSE
statement or cleared by program termination.

8"-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-62

EXAMPLES:

KILL "FILE23"

KILL M$,"3/XPRL",D$

SM-030-00l2-02
POINT 4 Data Corporation 3-63

KILL

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

LET

KEYBOARD: YES
PROGRAM: YES

SYNTAX: LET destinatiQn variable = source expressioD or source string expre331Qo

EFFECT: This statement assigns a value to a variable.

NOTES:

1. In a LET statement, the symbol "=" should be read as
"take the value of", not as "equals". For example,

LET P=6

should be read "LET P take the value of 6".
Therefore, it is possible to have

LET B=B+1

which means let the new value of B take the existing
value of B with one added to it.

2. The word LET is not required when entering an
assignment statement except when the assignment
statement follows the logical expression of an IF
statement or error mode of an IF ERR statement. LET
will be assumed as the statement type if no directive
word is entered, and the word LET will be printed when
the program is listed.

3. Any numeric expressions are allowed in subscripts.

4. Only one element of an array may be changed by a
single LET statement.

5. When using a LET statement such as LET A-A$, only a
literal string, subscripted string variable or string
variable may be used, concatenated strings are not
allowed.

SM-030-00l2-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-64

EXAMPLES:

10 LET P=6

20 LET R2=Q+(T/5)

30 LET AI2]=C+5

40 LET B=B+l

50 D=P+5*Q-SQR(AIZ])

60 LET A$="THIS IS A STRING"

70 LET A$= B$,C$

10 DIM A$ I 50] ,B$ [50]
20 LET A$="THIS WAS A LONG STRING"
30 LET A$ [6,8]="IS"
40 LET A$ [11,15]=""
50 PRINT AS
60 LET A$ [s]="HELLO"
70 LET BS=A$
80 PRINT BS
90 PRINT AS [10J
100 LET B$="=",B$
110 PRINT BS

This program's output would be:

THIS IS A STRING
THISHELLO

LET

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-65

LET ... USING

KEYBOARD: YES
PROGRAM: YES

SYNTAX: LET string variable = numeric exor list USING format string ex or

EFFECT: Assigns a value to a string variable according to the
format specified by the format string.

NOTES:

1. The value of the format string expression is used to
specify the form in which the values represented in
the expression list is to be printed. The format
string expression may contain one or more format
fields. It may also contain blanks (spaces) and any
characters other than format control characters. The
numeric expression may include numeric expressions,
string expressions, commas, semi-colons, and TAB
functions. The format fields which may be used are
shown in Table 4-3, which follows the PRINT .•• USING
statement.

2. Subscripted string variables may be used in the format
string expression. However, the format string may not
contain concatenated strings or concatenated string
variables.

SM-030-0012-0:Z BUSINESS BASIC STATEMENTS
IRIS Buainesa BASIC Manual POINT 4 Data Corporation 3-66

EXAMPLE:

10 READ A,B
20 DIM AS [20] ,BS [20]
30 LET AS= 12.345 USING ·SS •••.•• •
40 PRINT AS
50 LET BS[I,4]=A+B USING ·t ••• •
60 PRINT BS
70 DATA 5, 10

RUN
S 12.34
15

LET ... USING

SM-030-0012-02
POINT 4 Data Corporation 3-67

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

LIST

KEYBOARD: YES
PROGRAM: NO

SYNTAX: LIST

EFFECT:

NOTES:

{first line} LIST {last line}

Lists the current program from the first line
specified (or from the beginning) through the last
line (or through the end).

1. If the first line is not specified, the system
defaults to 1 or the beginning of the program; if the
last line is not specified, the system defaults to
9999 or the end of the program.

2. The (ESC) key may be pressed at any time to terminate
listing.

3. When a program containing FOR-NEXT loops is listed,
statements within each loop are indented for easy
identification of loops and nesting.

4. If a first line number is specified and there is no
statement with the specified line number, then the
listing starts with the next higher numbered line.

SM-030-0012-01 BUSINESS BASIC STATEMENTS
IRIS Buaineaa BASIC Manual POINT 4 Data Corporation 3-68

EXAMPLES:

Command:

LIST

180 LIST

270 LIST 600

SM-030-0012-02
POINT 4 Data Co~poration

LIST

Effect:

lists the entire program as it stands

lists from line 180 through the end of
the p~ogram

lists lines 270 th~ough 600 of the
program

3-69
BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

LOAD

KEYBOARD: YES
PROGRAM: NO

SYNTAX: LOAD {-lfilename

EFFECT: Accesses a text file.

NOTES:

1. This command may be used to access a program that was
saved as a text file by use of the DUMP command.

2. This command may be used to load BASIC source code
which is in text file form.

3. If the filename is preceded by a minus sign "-" all
end-of-line comments (Icommentl are not loaded.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS BU8ine88 BASIC Manual POINT • Data Corporation 3-70

EXAMPLES:

LOAD CASHFLOW3

LOAD -CASIIFLOW3

SM-030-0012-02
POINT 4 Data Corporation 3-71

LOAD

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT

KEYBOARD: YES
PROGRAM: YES

SYNTAX: MAT destination matrix yariable=source matrix variable

EFFECT: This statement sets all the elements of a destination
matrix equal to the corresponding elements of a source
matrix.

NOTES:

1. The destination matrix is automatically dimensioned
the same as the source matrix and each element of the
source matrix is copied to the same position in the
destination matrix.

2. If the destination matrix existed prior to executing
this statement, then it must be the same precision as
the source matrix. The destination matrix will also
be redimensioned automatically (an error occurs if the
destination is not large enough).

3. A matrix is defined as a two-dimensional array
excluding row zero and column zero. Therefore, the
MAT statement has no effect on row zero or column
zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-72

EXAMPLES

200 MAT C = Y

500 MAT M2 = Q6

SM-030-0012-02
POINT 4 Data Corporation 3-73

MAT

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT INPUT

KEYBOARD: YES
PROGRAM: YES

SYNTAX: HAT INPUT matrix variable! lwa!I::! ,~]}{ ,matrix Variable!~!, expr}]}}.

EFFECT:

NOTES:

This statement allows the entry of an entire matrix
from the keyboard during program execution. The
matrix may be dimensioned in the INPUT statement or
given a new working size.

1. When entering the elements of each row, each element
must be separated by a comma, and each complete row of
data must be entered before pressing RETURN. For
example, while entering the data necessary for the
execution of

190 MAT INPUT A!3,4]

Four data items separated by three commas must be
typed in before pressing RETURN. If too few or too
many data items are entered, the system prints a
backslash and requests the entire new line of data.

2. The matrix is filled from left to right across one row
at a time. For example, element 1,1 is filled first,
then element 1,2, then element 1,3 and so on.

3. Any matrix created by a MAT statement with a single
dimension assumes a second dimension of one. For
example, line 180 of the examples is equivalent to

180 MAT INPUT R!5,1]

4. A matrix is defined as a two-dimensional array
excluding row zero and column zero. Therefore, the
MAT INPUT statement has no effect on row zero or
column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-14

EXAMPLES:

170 MAT INPUT F

180 MAT INPUT R[51

190 MAT INPUT C[E,Jl,F

SM-030-0012-02
POINT 4 Data Corporation 3-75

MAT INPUT

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT PRINT

KEYBOARD: NO
PROGRAM: YES

SYNTAX: MAT PRINT matrix yariablel;matrix variable}· ,

EFFECT: This statement causes the system to print one or more
entire matrices, row by row.

NOTES:

1. MAT PRINT simplifies programming with matrices by
reducing the number of statements required to print a
matrix. This is illustrated by programs A and B on
the facing page.

2. A matrix may be printed in a ·packed· form with up to
12 elements on a line by placing a semi-colon after
the matrix variable. Otherwise, the matrix is printed
with five elements per row.

If the matrix variable is followed by a comma or
semi-colon, an extra line feed is generated after
printing the matrix to provide double spacing between
matrices. More than one matrix may be printed in one
statement by separating the matrix variable names by a
comma or semi-colon.

3. A matrix is defined as a two-dimensional array
excluding row zero and column zero. Therefore, the
MAT PRINT statement has no effect on row zero or
column zero.

51'1-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-76

EXAMPLES:

10 MAT INPUT
20 MAT INPUT
30 MAT PRINT
40 MAT PRINT
50 MAT PRINT
RUN
11,2,3,4
15,6,7,8
19,10,11,12
110,20,30
140,50,60

1
5
9

1 2 3
5 6 7
9 10

1 2
5 6
9 10

10 20
40 50

A [3,41
B[2,31
A
A;
A,B

2
6
10

4
8

11 12

3
7

11

30
60

4
8

3
7

11

12

4
8

12

MAT PRINT

A. Sample Program without MAT Statements

100 DIM A (3 ,3)
110 FOR R= 1 TO 3
120 FOR C= 1 TO 3
130 READ A(R,C)
140 NEXT C
150 NEXT R
160 FOR R= 1 TO 3
170 FOR C= 1 TO 3
180 PRINT A(R,C)
190 NEXT C
200 NEXT R
210 DATA 1,2,3,4,5,6,7,8,9
220 END

B. Sample Program with MAT Statements

100 DIM A (3 ,3)
110 MAT READ A
120 MAT PRINT A
130 DATA 1,2,3,4,5,6,7,8,9
140 END

SM-030-0012-02
POINT 4 Data Corporation 3-77

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT READ

KEYBOARD: YES
PROGRAM: YES

SYNTAX: MAT READ matrix variable! [~lW.d •. ~}]}(.matrix Variable !~! • .tIlWrl]) ,-

EFFECT: This statement allows the computer to read an entire
matrix from DATA statements. The matrix may be
dimensioned in this statement or given a new working
size.

NOTES:

1. MAT READ simplifies programming with matrices by
reducing the number of statements required to read
values into a matrix. This is illustrated by the two
sample programs on the facing page.

2. The matrix is filled from left to right across one row
at a time. For example. element 1,1 is filled first,
then element 1,2, then element 1,3 and so on.

3. Any matrix created by a MAT statement with a single
dimension assumes a second dimension of one. For
example, line 415 in the examples is equivalent to
line 420.

4. A matrix is defined as a two-dimensional array
excluding row zero and column zero. Therefore, the
MAT READ statement has no effect on row zero or column
zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-78

EXAMPLES:

400 MAT READ A

405 MAT READ B,C

410 MAT READ E[L,Nl,A

415 MAT READ F[71

420 MAT READ F [7, 1l

A. Program Without MAT Statements:

100 DIM AD,3)
110 FOR R= 1 TO 3
120 FOR C= 1 TO 3
130 READ AeR,C)
140 NEXT C
150 NEXT R
160 FOR R= 1 TO 3
170 FOR C= 1 TO 3
180 PRINT AeR,C)
190 NEXT C
200 NEXT R
210 DATA 1,2,3,4,5,6,7,8,9
220 END

B. Program With MAT Statements:

100 DIM Ae3,3)
110 MAT READ A
120 MAT PRINT A
130 DATA 1,2,3,4,5,6,7,8,9
140 END

1
4
7

SM-030-0012-02

2
5
8

POINT 4 Data Corporation

3
6
9

3-79

MAT READ

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT READ+

KEYBOARD: NO
PROGRAM: YES

SYNTAX: HAT READ '~.!~! • .lla!.J1.I:.l..iU.}JJ;array or string variable!;}

EFFECT: Reads data from a single binary item of a formatted
data file or, starting at a specified location, from a
contiguous data file into an entire numeric array or
into an entire string variable.

NOTES:

1. The MAT READt statement functions exactly as the READt
statement except that an entire array (including row
zero and column zero), or an entire string is read in
one statement. No matrix or string subscripts are
allowed. For contiguous files, the value of the item
number expression is used as a byte displacement into
the record, but all transfers are word-oriented; if an
odd byte displacement is given (as in line 220 of the
examples), then the transfer begins at the next higher
even byte displacement. The entire array or string
variable is filled by copying directly from the file
unless the item (formatted file only), or the file
(contiguous file only) ends before the entire array or
string variable is filled, in which case the remainder
of the array or string variable remains unchanged.
For formatted files, the item type must be binary. No
data conversion takes place, and it is the
responsibility of the user's program to ensure that
the data is read into the type of variable that
matches the data form.

2. For a contiguous file, the byte displacement to the
next item in the file is equal to twice the number of
words transferred. The number of words transferred
will be INT(d/2+l) for a string variable or
(r+l)*(c+l)*p for an array variable, where:

r • row dimension of array,
c a column dimension of array,
p - number precision of array, and
d - string dimension (number of bytes).

S"-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-80

MAT READ+

EXAMPLES:

NOTES:

190 MAT READ tl,20;A

200 MAT READ 'K+2,8;B

210 MAT READ 13,10;A$

220 MAT READ tl,R*2,3;B$

(Continued)

3. If the item is not specified, the system defaults to
item zero. If the record is not specified, the
system defaults to sequential access.

4. A string variable might be used in a MAT READt
statement when, for example, it is necessary to read
the full dimensioned size of the variable, ignoring
terminators.

5. The terminating semicolon may be used as a record-lock
command.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-81

MAT WRITE#"

KEYBOARD: NO
PROGRAM: YES

SYNTAX: MAT WRITE I.c.lla.nnU, h:.e.l~I:U:lll ,~{,.d.tl.il.:LlIl ; array or string nriable{;}

EFFECT: This statement writes all data from a numeric array or
from a string variable into the specified single
binary item of a formatted data file or into a
contiguous data file at a specified starting point.

NOTES:

1. The MAT WRITE. statement functions exactly as the
WRITE. statement except that an entire array
(including row zero and column zero) or an entire
string variable is written by one statement. No
matrix or string subscripts are allowed. In the case
of a contiguous file, the value of the item number
expression is used as a byte displacement into the
record, but all transfers are word-oriented; if an odd
byte displacement is given (as in line 220 of the
examples), then the transfer begins at the next higher
even byte displacement. If there is enough space in
the file, then the entire array or string is written.
However, if the item is too small (formatted file
only), or the end of the file is reached (contiguous
file only), then the data is truncated and no error
message is given. In the case of a formatted file,
the entire array or string is written into a Single
item whose type must be binary. No data conversion
takes place, and it is the responsibility of the
user's program to ensure that the data will later be
read back into the same type of variable.

2. If an array variable is specified, then the entire
array, including row zero and column zero, will be
written. If writing a string variable, then the
entire string as dimensioned, including the byte
reserved for a terminator and any intermediate
terminator bytes, will be written.

3. For a contiguous file, the byte displacement to the
next item in the file is equal to twice the number of
words transferred. The number of words transferred
will be INT (d/2+1l for a string variable or
(r+l)*(c+l)*p for an array variable, where:

r • row dimension of array,
c • column dimension of array,
p • number precision of array, and
d. string dimension (number of bytes),

8M-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-82

EXAMPLES:

190 MAT WRITE

200 MAT WRITE

210 MAT WRITE

220 MAT WRITE

f'.-::' {'ow Dl"J
C' -: (uLP ,.,

p", P fPC (Stu,..)

NOTES: (Continued)

tl ,y!;A

'C,2*R,8;B

13,10;A$

IL,R,};B$

S<:-> + (3) @ 20/..,

::(o-+I)~C3+I)* '7..

= .i.'I!-~ ~'2.

=- 4-'1-2
:0 d

MAT WRITE+

4. A string variable might be used in a MAT WRITE#
statement when, for example, it is necessary to write
the full dimensioned size of the variable, ignoring
terminators.

5. The terminating semicolon may be used as a record-lock
command.

SM-030-00l2-02
POINT 4 Data Corporation 3-83

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT ... =CON

KEYBOARD: YES
PROGRAM: YES

SYNTAX: MAT matrix yariable:CON(dimeos1oo expr(,d1meos1pD expr})}

EFFECT: Sets all of the elements of the specified matrix equal
to one.

NOTES:

1. This statement simplifies the process of setting all
elements of a matrix to one. This is shown on the
facing page.

2. Any matrix created by a MAT statement with a single
dimension assumes a second dimension of one. For
example, line 155 of the examples is equivalent to
line 160.

3. The matrix may be dimensioned or given a new working
size by including dimension expression(s) in this
statement.

4. A matrix is defined as a two-dimensional array
excluding row zero and column zero. Therefore, the
MAT ••• =CON statement has no effect on row zero or
column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-84

MAT ... =CON

EXAMPLES:

150 MAT D CON

155 MAT E CON (8)

160 MAT E CON (8,1)

165 MAT Z CON (X, Y)

Line 155 and 160 above are equivalent to the following program:

160 DIM EIX,Yl
170 FOR 1=1 TO X
180 FOR J=l TO Y
190 LET E[I,Jl=l
200 NEXT J
210 NEXT I

SM-030-0012-02
POINT 4 Data Corporation 3-85

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT ... =IDN

KEYBOARD: YES
PROGRAM: YES

SYNTAX: MAT matrix yariable=IDN {(dimension expr,dimensjon expr)}

EFFECT: This statement establishes an identity matrix. The
elements comprising the main diagonal are set equal to
one, and all other elements are set equal to zero.

NOTES:

1. The identity matrix must be two-dimensional and should
be square; i.e., the two dimensions should be equal.
For example, line 220 of the examples assigns the
matrix G:

1 000
o 1 0 0
o 0 1 0
o 0 0 1

2. If the matrix is not square, then the main diagonal is
assumed to start at the lower right corner. For
example, line 250 of the examples assigns matrix B the
value

o 1 0 0
o 0 1 0
o 0 0 1

3. A new working size may be specified by including
dimension expressions in this statement.

4. A matrix is defined as a two-dimensional array
excluding row zero and column zero. Therefore, the
MAT ••• =IDN statement has no effect on row zero or
column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-86

EXAMPLES:

210 MAT F ION

220 MAT G ION

230 MAT H = ION

240 MAT I ION

250 MAT B ION

SM-030-0012-02
POINT 4 Oata Corporation

(4,4)

(5,5)

!B4,B4}

(3,4)

3- 87

MAT ... =IDN

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT ... =INV

KEYBOARD: YES
PROGRAM: YES

SYNTAX: HAT destination matrix variable = INV (spurce matrix variable)

EFFECT: This statement inverts the elements of a source matrix
according to the rules of matrix arithmetic and
assigns the result to a destination matrix.

NOTES:

1. Only square, two-dimensional matrices may be used in
this statement; i.e., the dimensions must be equal and
non-zero. If the destination matrix existed prior to
executing this statement, then it must be of the same
precision as the source matrix.

2. A matrix may take on the value of the inverse of its
former self, as in statement 200.

3. As a side effect of matrix inversion, the determinant
value is evaluated according to the rules of matrix
arithmetic. (The determinant value is defined as the
sum of the products formed according to the rules of
matrix arithmetic from a series of quantities arranged
in an equal number of columns and rows.) After
inverting a matrix, the DET function may be used to
return the matrix's determinant value. This
determinant value is available until another matrix is
inverted or until a new run is initiated by the RUN
command.

4. The facing page shows a matrix and the result of its
inversion according to the rules of matrix arithmetic.

5. A matrix is defined as a two-dimensional array
excluding row zero and column zero. Therefore, the
MAT .•. ~INV statement has no effect on row zero or
column zero.

6. For further information on matrix arithmetic, consult
an appropriate text book.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-88

MAT ... =INV

EXAMPLES:

100 MAT B = INV (A)

200 MAT F = INV (F)

123 -1 6 6 6 7.5 3 3 3 3 3.5 -1 6 6 6 6.5

456 3 3 3 3 3 -6 6 6 6 6

789 -1 6 6 6 5.9 3 3 3 3 3

SM-030-0012-02
POINT 4 Data Corporation 3-89

3 3 333

-1 6 6 6 6 .6

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT ... =TRN

KEYBOARD: NO
PROGRAM: YES

SYNTAX: HAT destination matrix variable = TRN (source matrix variable)

EFFECT: This statement establishes a matrix hich is the
transposition of a specified matrix; i.e., it
exchanges the ro s and columns.

NOTES:

1. If the source matrix has the dimensions (M,N), then
the destination matrix is dimensioned (N,M). A sample
transposition, as commanded in line 450 of the
examples, produces the follo ing results.

R (source matrix)

123
456

o (destination matrix)

1 4
2 5
3 6

2. It is not necessary for the destination matrix to have
been previously dimensioned; ho ever, if the
destination matrix does exist previous to executing
this statement, it must be the same precision as the
source matrix.

3. CAUTION! A statement of the form

120 MAT S = TRN (S)

is illegal. It may be executed, but the result ill
not be an acccurate transposition.

4. A matrix is defined as a t o-dimensional array
excluding ro zero and column zero. Therefore, the
MAT ••• -TRN statement has no effect on ro zero or
column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-90

EXAMPLES:

450 MAT Q

460 MAT L

SM-030-0012-02

TRN (R)

TRN (A)

POINT 4 Data Corporation 3-91

MAT ... =TRN

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

MAT ... =ZER

KEYBOARD: YES
PROGRAM: YES

SYNTAX: MAT matrix yariable=ZER {(dimension expr{,dimension expr})}

EFFECT: This statement sets all the elements of the specified
matrix equal to zero. The matrix may be created or
given a new working size in this statement.

NOTES:

1. This statement simplifies the process of setting all
the elements of a matrix to zero. The facing page
illustrates this.

2. Any array created by a MAT statement with a single
dimension assumes a second dimension of one. For
example, line 200 of the examples is equivalent to
line 300.

3. A matrix may be dimensioned or given a new working
size by including dimension expression(s) in this
statement.

4. A matrix is defined as a two-dimensional array
excluding row zero and column zero. Therefore, the
MAT ••• =ZER statement has no effect on row zero or
column zero.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-92

EXAMPLES:

100 MAT A ZER

200 MAT B ZER (15)

300 MAT B ZER <15,1}

400 MAT Z ZER (9,14)

500 MAT L ZER (E ,F)

600 MAT B ZER (R,C)

Line 600 above is equivalent to the

40 DIM B[R,Cl
50 FOR I = 1 TO R
60 FOR K = 1 TO C
70 LET B [I ,Kl 0
80 NEXT K
90 NEXT I

SM-030-00l2-02
POINT 4 Data Corporation 3- 93

MAT ... =ZER

following program:

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

NEXT

KEYBOARD: NO
PROGRAM: YES

SYNTAX: NEXT control variable

EFFECT:

NOTES:

Transfers control out of a FOR ••• NEXT loop when the
value of the control variable exceeds the value of the
limiting expression specified in the matching FOR
statement.

1. The value of the index variable exceeds the limit
value if it is greater than the limit (for a positive
step value) or less than the limit (for a negative
step value). If the initial value in the FOR
statement exceeds the limit value, a search is made
for the matching NEXT statement, and control is
immediately transferred to the statement following the
NEXT statement without executing the statements within
the loop.

2. When a NEXT statement is encountered, the step value
(assumed to be +1 unless specified) is added to the
control variable.

The control value is then checked against the limiting
value. If the control value does not exceed the
limiting value, control is transferred to the
statement following the FOR statement. If the control
value does exceed the limiting value, control passes
to the next statement in sequence following the NEXT
statement.

3. Refer to the FOR statement in this section for further
information on FOR/NEXT loops.

SM-030-0012-02 BUSINBSS BASIC STATBMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-94

NEXT

EXAMPLES:

110 FOR A = 1 TO 5
120 FOR B3 = 6 TO -4 STEP -2
130 FOR M = J TO K+4 STEP B-D

250 NEXT M
300 NEXT B3
600 NEXT A

SM-030-0012-02
POINT 4 Data Corporation 3-95

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

ON

KEYBOARD: NO
PROGRAM: YES

SYNTAX: ON selecting expression ~g~~B list of line numbers

EFFECT: Transfers control to one of several line numbers,
depending on the integer value of the selecting
expression.

NOTES:

1. When the ON statement is encountered, the selecting
expression is evaluated and the resulting value is
truncated (not rounded) to an integer. The result is
used as an index to the list of line numbers. Control
then passes to the selected line number and proceeds
from that statement. For example, if the expression
evaluates to 1, control passes to the first specified
line number; if it evaluates to 2, control passes to
the second specified line number.

2. If the integer value of the selecting expression is
zero, a negative number, or greater than the number of
line numbers listed, the GOTO or GOSUB is not
executed; control is transferred to the statement
immediately following the ON statement.

The subroutine given control by an ON. .GOSUB
statement should be exited only with a RETURN
statement.

3. The line numbers following GOTO or GOSUB must be
separated by commas. There may be any number of line
numbers listed as long as the statement fits on one
line.

4. To illustrate the concept, statement 20 of the
examples will transfer control to line 130, 140, 200,
or 210 if the integer value of J is 1, 2, 3, or 4,
respectively.

5. ON ••• GOTO is similar to the statement GOTO ••• OF
implemented on some systems.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT , Data Corporation 3-96

ON

EXAMPLES:

10 ON LOG(R)+l GOTO 95,407

20 ON J GOSUB 130,140,200,210

30 ON P+l GOSUB 190,500,650

40 ON A GOSUB 400,400,350,410,430

60 ON J/2-5 GOTO 150,300,100,300,40

70 ON A+l GOTO 100,200,300

100 REM CONTROL PASSES TO THIS LINE IF A+l= 1

200 REM CONTROL PASSES TO THIS LINE IF A+l= 2

300 REM CONTROL PASSES TO THIS LINE IF A+l= 3

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3- 97

OPEN

KEYBOARD: NO
PROGRAM: YES

SYNTAX: OPEN Ic{=~}.filename string{{.lc{=~}}.filenamo string}-

EFFECT: Opens a data file or peripheral device on a channel.

NOTES:

1. This statement opens an existing data file or
peripheral device, identified by a filename string, on
each channel identified by a channel number
expression. Additional filenames not preceded by a
channel number are opened on successive channels.

2. The mode indicates whether the file is to be opened in
file maintenance mode for special manipulations. Mode
zero is the default and indicates a normal open; it
may be selected by omitting the clause. Any other
value selects a file maintenance mode. All files
listed in a given OPEN statement are opened in the
specified mode until the mode is respecified.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-98

OPEN

EXAMPLES:

20 OPEN 'O,"PRIME",B$

45 OPEN IA,D$[6,M-ll ,#4,"JOE5","$LPT"

70 OPEN 11=2, "INDEX·

In line 20 above, the file PRIME is opened on channel zero, and
the file identified by the string in B$ is opened on channel one.

In line 45, the file identified by characters 6 through M-l of D$
is opened on the channel specified by the value of A, the file
JOE5 is opened on channel four, and the line printer is opened on
channel five.

In line 70, the file INDEX is opened on channel one for file
maintenance access by a program whose GUARD bits are set. The
program must be guarded by the system manager before the file can
be opened in mode two.

SM-030-0012-02
POINT 4 Data Corporation 3-99

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

PRINT

KEYBOARD: YES
PROGRAM: YES

SYNTAX: PRINT {{'xx';}{@~,~;}numeric/strin9 exprl;}}*

EFFECT: Prints text, numbers, and computational results on the
user's terminal.

NOTES:

1. Most terminals have 80 columns or print spaces
numbered zero through 79 across each line. The line
is divided into five fields of 15 spaces each,
starting at columns 0, 15, 30, 45 and 60. A comma in
a PRINT statement causes a column tab; i.e., it causes
spacing to the beginning of the next field.

On terminals with a longer line, the comma tabs extend
to the end of the line at every 15 character
positions, and then wrap around the specified line
length. A precision three or four variable or any
expression may cause too many significant digits for
15 character spaces, so that the value printout and
the comma tab occupy 30 spaces total.

When a PRINT statement contains more than one
expression, the expressions must be separated by
commas or semicolons. A semicolon causes close
packing (no column tabs). Each number is printed with
either a leading minus sign or space, the value, and
one trailing space. Therefore, the use of semicolons
will print numbers in the closest readable form.

2. A verbatim message may be printed by enclosing it in
quotation marks as shown in example 300. Semicolons
are optional before and after literal strings except
following the use of the TAB function.

3. A quotation mark may be included in a literal string
by using two apostrophes, and a carriage return may be
included by using <CTRL-Z> where the RETURN is
desired. Any special characters may be included in
literal strings.

(Discussion of this statement is continued.)

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-100

EXAMPLES:

100 PRINT A
140 PRINT 6*A,B,SQR(B)+C,
300 PRINT "THE "BEST" ANSWER IS"R
440 PRINT "THE SUM OF"X"ANO"Y"IS"X+Y
610 PRINT
770 PRINT E;TAB(20);"*"
990 PRINT EXP(O+SQR(X»

If A=lO, B=20, C=30, R=40, X=50, Y=60,
E=70 and 0=80, the output of this program would be:

10
60 20 34.472135954999

THE "BEST" ANSWER IS 40
THE SUM OF 50 ANO 60 IS 110

70 *
6.5235543368236E+37

PRINT

Statement 100 above prints the current value of variable A and
then causes a carriage return and line feed.

Statement 140 prints the value of 6*A starting at column zero,
the value of B starting at column 15 and the value of SQR(B)+C
starting at column 30. The comma at the end of the statement
causes spacing to column 45 where printing ceases with a carriage
return.

Statement 300 shows how to enter and print quotation marks.

Statement 440 and its output is a good example of the use of
literal strings.

The spaces before and after the printed numbers are actually part
of the numeric value printouts as described previously. Each
printout is followed by a carriage return and line feed unless
this is suppressed by either a comma or a semi-colon at the end
of the PRINT statement. Therefore, an empty PRINT statement, as
in example 610, causes only a carriage return and line feed.

Statement 770 above prints the value of E, spaces to column 20,
and prints an asterisk.

SM-030-0012-02
POINT 4 Oata Corporation 3-101

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

PRINT (Continued)

NOTES:

4. The TAB function may be used for further control of a
printout. A field of the form

TAB (expression);

within a PRINT statement causes spacing to the column
number specified by the integer value of the
expression. If printing has already occurred beyond
the specified column, no further spacing takes place.
The print line is considered to be circular, so on a
terminal with a 75 character print line, columns 75,
150, 225, etc. are the same as column zero. A
negative value for the TAB expression causes an error.
The TAB function may be used only in a PRINT, PRINTt
or PRINT USING statement.

5. The resulting string from PRINT that goes into the I/O
buffer is not printed each time but is buffered up
until the buffer is filled, the user is swapped out,
or another BASIC statement needs to use the I/O buffer
for something other than PRINT (such as INPUT). The
user can force printing with a SIGNAL 3,0 statement.

6. A sequence of two-digit terminal control codes, shown
by xx in the syntax statement, may be included to
specify special printing instructions. Terminal
control codes which may be used are described in
Appendix E. Note that the sequence of control codes
is enclosed in single quotation marks.

7. The row and column may be included to specify the
position on the terminal screen at which the
information should be printed. The row and column may
be represented by expressions.

8. A final semicolon may be included at the end of the
expression list to suppress the output of RETURN/LINE
FEED.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-102

PRINT (Continued)

EXAMPLES:

170 PRINT 'cs'

250 PRINT @ 10,20;A$

560 PRINT 'CS';@10,5;A$ @X,Y;B$

840 PRINT 'MUMURB';"THE NUMBER "x" IS TOO LARGE";

SM-030-0012-02
POINT 4 Data Corporation 3-103

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

PRINT USING

KEYBOARD: YES
PROGRAM: YES

SYNTAX: PRINT USING format string;expression list!;}

EFFECT: Prints text, numbers, and computational results in a
format specified by a string.

NOTES:

1. The value of the format string is used to specify the
form in which the expression list is to be printed.
One subscript is allowed in the designation of the
format string; if a second subscript is specified, it
is ignored. The format string may contain one or more
format fields which control the form of printout of
the numeric expressions in the expression list. It
may also contain blanks (spaces) and any characters
other than format control characters. The expression
list may include numeric expressions, string
expressions, commas, semi-colons, and TAB functions.

2. Printing is accomplished by starting a scan of the
expression list. Any string expressions are printed
and tabulations are executed in response to commas,
semi-colons, and TAB functions until the first numeric
expression is reached. Then, a scan of the format
string is begun and all characters other than format
control characters in the format string are printed
until the first format field is reached. The value of
the numeric expression is then printed in the format
specified by the format field. Next, all non-format
characters in the format string are printed until
either the end of the string or another format field
is encountered. Format fields are separated by
spaces. The scan is then resumed in the expression
list, printing until the next numeric expression is
reached. In this way, scans of the expression list
and of the format string alternate until the
expression list is exhausted. When the format string
is exhausted, it is used over again starting at the
beginning.

3. Table 3-1 lists and describes the types of format
fields which may be used in format strings.

S"-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-104

EXAMPLES:
10 DIM A$ [101 ,B$ [301
20 LET A$E W •••••• w
30 PRINT USING A$;WANSWER=w;1.50*4
40 'PRINT USING A$;8.006,300;TAB(40) IC
50 LET B$: w+++ •• $$$ •••• _$., •••••• w
60 PRINT USING B$;7.6,5.4,-8500
70 PRINT USING B$ [151;X;Y
80 PRINT USING B$,XWTIMES"Yw:wX*Y
90 LET B$=w ••••• AAAA $**** •••• w
100 PRINT USING B$;15360000;23.469
110 PRINT USING •••••••• w;X

PRINT USING

If C : 20.5, X : 1000, and Y : 9.999, the output of these lines
would be:

ANSWER: 6.00
8.00 300.00 20.50
+ 7 $5.400 -$8,500.00

$1,000.00 $ 9.99
+1000 TIMES $9.999 : $9,999.00
1.536E+07 $***23.46
1000.00

5 OPEN 'l,·SLPTl w
10 INPUT A
15 PRINT 'l;·THE ENTRY IS ·A
20 PRINT 11;
30 PRINT '1; USING ·$$t,tt'""w;A
40 PRINT '1; USING W$$*,***,***";A
50 GOTO 10

The output of this program to a printer is shown below.

THE ENTRY IS 2

$ 2
$ *** ***2

THE ENTRY IS 20000

$ 20,000
$ **20,000

THE ENTRY IS 2222220

$2,222,220
$2,222,220

THE ENTRY IS 222

$ 222
$ **** 222

THE ENTRY IS 222222

$ 222,222
$* 222,222

SM-030-0012-02
POINT 4 Data Corporation 3-105

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

PRINT USING (Continued)

TABLE 3-1. FORMAT FIELDS FOR PRINT USING

Format Field Description

....

......

Exponent
Indicator (A)

Signs
(+,-,++,--)

SM-030-0012-03

For each. in the format field, a digit
(0-9) or blank (space) is substituted.
Integers are right justified with leading
blanks; a single zero is printed in the
last position if the value is zero. The
final zero digit may be suppressed by
using .----. instead of •••••• (see
below). Only integers are represented; no
decimal point or fractional portion is
printed, and the sign is ignored if only
.'s are given. If the data is too large,
an asterisk is printed in each position.

Prints a decimal point where indicated •
Digit positions (.) following the decimal
point are filled; no blanks are left in
these positions. If the fractional
portion is too long, it is truncated to
fit the format. Leading zeros in the
integer portion are replaced by blanks
except for a single leading zero preceding
a decimal point.

Four consecutive carets ("AAA) indicate an
exponent field and will be filled by E±nn
where nn is two digits showing the
exponentiation.

A fixed sign (+ or -) may appear as the
first symbol of a format field to indicate
the following:

+ Outputs .+. if value is positive, .-.
if negative.

- Outputs· • if value is positive, .-.
if negative.

A floating sign (++ ... or -- ...) may
appear as the first two or more symbols in
the format field. Positions occupied by
the second and subsequent signs can be
used for numeric positions in the data,
and the sign is printed immediately
preceding the data. Comma separators may
be used within a floating sign field, but
the sign will not float into a comma
position.

POINT 4 Data Corporation 3-106
BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

TABLE 3-1.

Format Field

Fixed and
Floating
dollar
sign ($)

Separator (,)

Asterisk (*)

SM-030-0012-02

PRINT USING (Continued)

FORMAT FIELDS FOR PRINT USING (Cont)

Description

A fixed $ may appear as the first or
second character in the format field,
causing a $ to be printed in that
character position. The $ may appear as
the second character if it is preceded by
a fixed sign.

A floating dollar sign ($$ •••) consists of
at least two $ symbols beginning at either
the first or second character position in
the numeric field of the format string.
It causes a $ to be placed in the
character position immediately preceding
the first digit. If the floating $ begins
in the second character position, it is
preceded by a fixed sign. Only one
floating character (sign or $) is
permitted in a given field. Comma
separators may be used within a floating $
field, but the $ will not float into a
comma position.

The separator (,) places a comma in the
position indicated except where leading
zeroes (blanks) occur.

The asterisk (*) specifies that asterisks
should be printed in all leading positions
which would otherwise print as blanks.
Leading asterisks are commonly used for
protection, as when printing checks.
Comma separators may be used within an
asterisk field, but blanks (not asterisks)
will be printed in the comma positions.

POINT 4 Data Corporation 3-107
BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

PRINT #

KEYBOARD: NO
PROGRAM: YES

SYNTAX: PRINT .~(,~(,~(,~}}};expression list(;}

EFFECT: Prints text, numbers, and computational results to a
data file or to a peripheral device.

NOTES:

1. When the PRINT' statement is used, all output is in
the form of an ASCII string identical to the string
that would be printed on the user's terminal if an
ordinary PRINT statement were used, but the string is
output instead to whatever file or device is open on
the specified channel. If nothing is open on the
channel, or the specified channel number is greater
than the number of channels on the system, then the
output defaults to the user's terminal. This allows
the destination for all output to be selected when the
program is run.

2. The final semicolon at the end of the expression list
may be included to suppress the output of RETURN/LINE
FEED.

3. If printing is directed to a formatted data file,
output must be to an ASCII string item within the
record. If printing is directed to a peripheral
device, the device must be capable of accepting an
ASCII string; such devices include line printers and
paper tape punches.

4. The record number may be omitted or -1 for sequential
access, or may be -2 to reference the last record
which was accessed, as described in Section 2.3.3.

5. When information is printed to any data file, the
record is always left locked since the semicolon has
special syntactical meaning in a PRINT statement. A
WRITE 'CI; statement should be used to unlock the
record unless another transfer on the same channel
will soon follOW the PRINT' statement.

6. If the expression list includes terminal control codes
such as 'CS' or "@5,10" and the output is directed to
a file, the internal representation of each control
code is written to the file.

7. Refer to Section 2 for examples of how to use PRINT'
for each file type.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-108

EXAMPLES:

10 OPEN II, "EXAMPLE"
20 READ A,B,C,R,X,Y,E,D
30 PRINT Il;A
40 PRINT II;6*A,B, SQR (B)+C
50 PRINT II; "THE " BEST" ANSWER IS"R
60 PRINT '1;"THE SUM OF"X"AND"Y"IS"X+Y
70 PRINT 11;
80 PRINT II;E; TAB (20);"*"
90 PRINT II; EXP (D+ SQR (X»
100 DATA 10, 20, 30, 40, 50, 60, 70, 80

The output from this program to a file would be:

PRINT +

10
60
THE
THE

20
"BEST" ANSWER IS 40

34.472135954999

SUM OF 50 AND 60 IS 110

70 *
6.5235543368236E+37

NOTES (Continued)

8. The delay may be included to generate error 123 when a
program is paused longer than the specified period of
time because a record or device is locked. The delay
must be specified in tenths of a second. Setting the
delay to -1 allows an unlimited delay period; setting
it to 0 specifies no delay and no I/O retries. Note
that the delay specifies the maximum amount of time to
be spent retrying input or output. For example, a
delay equal to 600 (60 seconds) allows 200 retries,
given a .3 second delay between retries.

9. The item has special meaning when open file
maintenance is in effect.

SM-030-0012-02
POINT 4 Data Corporation 3-109

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

PRINT + USING

KEYBOARD: NO
PROGRAM: YES

SYNTAX: PRINT 1~!,~!,.1.t&m!,~!!;USlNG format string;expr list!;!

EFFECT: Prints text, numbers, and computational results, using
a format string, to a data file or to a peripheral
device.

NOTES:

1. This statement combines the features of the PRINT
USING statement with the facilities of the PRINTI
statement. All output is in the form of an ASCII
string identical to the string that would be printed
on the user's terminal if an ordinary PRINT USING
statement were used, but the string goes instead to
whatever file or device is open on the specified
channel. The format fields which may be used are
shown in Table 3-1, which follows the PRINT ••• USING
statement. If nothing is open on the channel, or if
the specified channel number is greater than the
number of channels on the system, then the output
defaults to the user's terminal. This allows the
destination for all output to be selected when the
program is run.

2. If printing is directed to a formatted data file, the
selected item must be an ASCII string. If printing is
directed to a peripheral device, the device must be
capable of accepting an ASCII string; such devices
include line printers and paper tape punches.

3. The record number may be omitted for sequential
access, or may be -1 for sequential access or may be
-2 to reference the last record which was accessed, as
described in Section 2.3.3.

4. When output is directed to any data file, the record
is always left locked since the semi-colon has special
syntactical meaning in a PRINT statement. A
WRITE ICII statement should be used to unlock the
record unless another transfer on the same channel
will soon follow the PRINT' statement.

5. If the expression list includes terminal control codes
such as 'CS' or "@5,lO" and the output is directed to
a file, the internal representation of each control
code is written to the file.

SM-030-00l2-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-110

EXAMPLES:

10 OPEN II, "EXAMPLE"
20 DIM AS DO] ,BS [30]
30 READ C,X,Y
40 LET AS=" •••••• "
50 PRINT t1; USING AS;"ANSWER=";1.s*4

PRINT + USING

60 PRINT il, USING AS; 8.006, 300; TAB (40) ;C
70 LET BS="+++#, S$$.#.# -$t,#'#.##"
80 PRINT '1; USING B$; 7.6, 5.4, -8500
90 PRINT 11; USING B$; (15) ;X;Y
100 PRINT '1; USING B$;X"TIMES"Y"·"X*Y
110 LET B$." •• # •• AAAA $****#.'#"
120 PRINT il, USING BS; 15360000; 23.469
130 PRINT t1; USING ".ttlt.I.";X
140 DATA 20.5, 1000, 9.999

The output from this program to a file would be:

ANSWER= 6.00
8.00
+ 7
+15 $**.***

+1000 TIMES S9.999
1.s36E+07 $***23.46
1000.00

SM-030-0012-02

300.00
$5.400

$ 9.99
$9,999.00

20.50
-$8,500.00

POINT 4 Data Corporation 3-111
BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

RANDOM

KEYBOARD: YES
PROGRAM: YES

SYNTAX:

EFFECT:

NOTES:

RANDOM nymeric expression

The RANDOM statement allows the user to exercise
control over the random number sequence generated by
the RND function.

1. The RANDOM statement solves the following problems,
which are common to most programs using random
numbers:

a. The program may be difficult to debug since each
run produces different results.

b. Successive runs of a debugged program may not
behave independently if the "random" numbers are
from a single pseudo-random sequence.

2. The RANDOM statement is often the first statement in a
program which uses the RND function. The use of a
non-zero expression, as in the first example, causes a
certain sequence of pseudo-random numbers to be
generated. Different non-zero expressions initiate
different sequences, but each RANDOM statement with
the same non-zero value initiates the same sequence.

3. Execution of a RANDOM statement with a zero value
expression, as in the second example, causes the
system clock to be used to initiate the random number
sequence. Since the system clock changes each tenth
second, the random number sequence which follows a
RANDOM 0 statement is unpredictable.

4. For best results when using the RND function, the
following procedure is recommended:

a. Include a RANDOM statement with a non-zero
expression at the beginning of the program while
debugging.

b. Once the program has been tested, change the
expression in the RANDOM statement to zero.

SM-030-00ll-0l BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT , Data Corporation 3-112

RANDOM

EXAMPLES:

10 RANDOM 2

5 RANDOM 0

100 INPUT ·SEED: "S
110 PRINT
120 RANDOM -S
200 INPUT "NUMBER OF VALUES: "N
210 PRINT
300 INPUT "MODULO: "M
310 PRINT
500 FOR 1=1 TO N
510 LET R= RND (65536)
520 LET X= INT (R- INT(R/M)*M)
530 LET Rl= INT (R+ lE-06) Icorrect rounding error
540 PRINT Rl; X;" / " ;
550 NEXT I

NOTES (Continued)

5. The seed value set by RANDOM and numbers used in
computation are 16-bit binary numbers.

The sign of the value specified in the RANDOM
statement affects the setting. If the value is
positive, the four most significant decimal digits are
placed in packed decimal notation. These four digits
are placed in a 16-bit word which is interpreted as a
16-bit binary number when computing the pseudo-random
number sequence. In effect, there are 9999 unique
initial values. For example, the four most
significant digits of RANDOM (12) are 1200, which is
represented by 11000 octal in packed BCD. If the
value is negative, the internal 16-bit value is set to
the absolute value of the expression in binary. There
are 65535 (21\16-1) unique initial values. This allows
the user to pause the pseudo-random sequences, thus
allowing two processes to maintain separate
pseudo-random sequences.

The program above shows how this may be accomplished.
Given a seed value and a modulus, the example outputs
N value pairs. The pairs are printed "seed value/H.
For example, if a seed of the fifth number is input
for the seed value with the same modulus, the sequence
of values produced by the second run will match those
of the first, starting with the sixth output. Line
530 was required because of a rounding error when
converting the 16-bit internal value.

SM-030-0012-02
POINT 4 Data Corporation 3-113

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

READ

KEYBOARD: YES
PROGRAM: YES

SYNTAX: READ nymeric variable list

EFFECT:

NOTES:

where each element of the numeric variable list
except the first is preceded by a comma.

The READ statement reads numbers from DATA statements
and assigns the values to the corresponding specified
variables.

1. The data is read in sequence from the first to the
last DATA statement and from left to right within each
DATA statement. The system initially sets a pointer
to the first item of data. As the READ statements
request each data item, the pointer is moved to the
next data item. The RESTOR statement may be used to
reset the pointer.

2. String variables may not be included in READ
statements because strings may not be entered in DATA
statements.

3. A READ statement may be executed from the keyboard if
one or more DATA statements preceded by line numbers
have been entered. If all the data in the DATA
statements has been READ, a RESTOR statement may be
used to set the pointer to the first data element.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-114

EXAMPLES:

10 FOR J = 1 TO 4
20 READ Y
30 PRINT "THE SQUARE ROOT OF "Y"IS"SQR(Y)
40 NEXT J
50 DATA 2, 3.7, 94.61, 2.4E-03
60 READ C,Z
70 LET E=C+Z
80 PRINT E
90 DATA 12, -32.4, 9999, 4E-16

READ

In line 50 above, 2, 3.7, 94.61 and 2.4E-03 are stored as
two-word precision numbers. Variable E is a two-word variable.

The output of this program would be:

THE SQUARE ROOT OF
THE SQUARE ROOT OF
THE SQUARE ROOT OF
THE SQUARE ROOT OF
-20.4

SM-030-0012-02
POINT 4 Data Corporation

2 IS 1.414213562373
3.7 IS 1.9235384061671
94.61 IS 9.7267671916212
2.4E-03 IS 4.8989794855663E-02

3-115
BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

READ {I<

KEYBOARD: NO
PROGRAM: YES

SYNTAX: READ ichannel{,~{,~{,~}}};yariable list{;}

EFFECT:

NOTES:

where each element of the variable list except the
first is preceded by a comma.

Reads item values from a data file or from a
peripheral device into the variables listed.

1. The file or device to be accessed must have been
previously opened on the channel specified by the
channel number expression. The record number from
which data are to be read may also be specified. A
starting item number may be given if desired;
otherwise, ~tem zero is assumed.

2. The variables in the variable list are set to the
values contained in the specified record of the
specified file, starting with the specified item
number or with item zero if no item is specified. The
data in the file is not affected. The item number
field is used as a byte offset for text or contiguous
files (refer to Sections 2.3.2, 2.5 and 2.6).

3. In a formatted file, only sequential items of a single
record may be read by each READ. statement, and an
error results if a variable type does not match the
item type in the file.

4. A semi-colon may be included at the end of the
statement (as in the second example) to leave the
record unlocked.

5. Numeric expressions are allowed in the file address
(channel, record, and item numbers), delay and
subscripts, but an item value from the file can not be
read into an expression.

6. The record number may be omitted or -1 for sequential
access or may be -2 to reference the last record which
was accessed, as described in Section 2.3.3.

7. When reading into a string variable, a string
terminator (zero byte) is stored after the last
character read unless two subscripts are given on the
string variable and there is enough data to fill the
area specified by the subscripts. The rules for
string assignment are not followed/ the destination
string is not closed up if the source string is too
short, and overlaying a terminator byte has no effect.

8M-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-116

READ ""

EXAMPLES:

240 READ '2,6;D,WS,K[7,A-2]

415 READ tC[4]+l,RB,5;FS[4] ,J,J;

In line 240, item zero of record six of the file open on channel
two is read into variable D, item one (which must be a string) is
read into string variable WS, and item two is read into the
element of array K at row seven, column A-2. The record is
locked since there is no final semi-colon.

In line 415, the channel number and record number are given by
the expressions C[4]+1 and RB, respectively. The string variable
FS is loaded from item five of that record starting at character
position four in FS; characters one through three of FS are not
affected. Variable J will be set to the value in item six, but
this value is replaced immediately by the value of item seven.
This technique may be used if the value of item six is of no
immediate interest. The final semi-colon unlocks the record.

NOTES: (Continued)

B. The delay may be included to generate error 123 when a
program is paused longer than the specified period of
time because a record or device is locked. The delay
must be specified in tenths of a second. Setting the
delay to -1 allows an unlimited delay period; setting
it to 0 specifies no delay and no 1/0 retries. Note
that the delay specifies the maximum amount of time to
be spent retrying input or output. For example, a
delay equal to 600 (60 seconds) allows 200 retries,
given a .3 second delay between retries.

9. Refer to Section 2 for examples of how to use READ#
for each file type.

10. The item has special meaning when open file
maintenance is in effect.

SM-030-0012-02
POINT 4 Data Corporation 3-117

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

REM

KEYBOARD: YES
PROGRAM: YES

SYNTAX: REM series of printable characters

EFFECT: The REM statement allows the insertion of a remark
into a program.

NOTES:

1. REM lines are saved as part of the program. They
appear when the program is listed, but they are not
executed.

2. Comments may be appended to the end of any line by
entering an exclamation mark and comment following the
statements on the line.

SM-030-0012-03 BUSINESS BASIC STATEMENTS
IRIS Buaineaa BASIC Manual POINT • Data Corporation 3-118

REM

EXAMPLES:

10 REM THIS PROGRAM ADDS NUMBERS

20 REM "1$%& I ()

100 LET A=lOO lset A to initial value

200 PRINT S lprint the total

SM-030-00l2-02
POINT 4 Data Corporation 3-119

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

RENUMBER

KEYBOARD: YES
PROGRAM: NO

SYNTAX: {new beginning line no,} RENUMBER {increment}

EFFECT: Renumbers an entire program's line numbers.

NOTES:

1. All line numbers referenced in the program (such as in
GOTO and GOSUB statements) are adjusted so that they
remain pOinting to the same statements.

2. The program is renumbered so that it will start with
the specified beginning line number and subsequent
lines are increased by the specified increment. If
the increment is omitted, a value of 10 is assumed.
If the line number is omitted, a value equal to the
increment is assumed.

3. If a statement references a line number that does not
exist, then the line number will be changed to zero
and an error message will be printed giving the old
line number of the statement where the error occurred.
Because the error message gives the old line number,
POINT 4 recommends SAVE-ing or DUMPing the program
prior to renumbering.

4. CAUTIONI Do not press (ESC> while renumbering, or the
entire program will be lost.

SK-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Bu.in ••• BASIC Manual POINT 4 Data Corporation 3-120

EXAMPLES:

• BASIC SAMPLE
~
10 DATA 1,2,3,4,5,99
20 LET C=O
30 LET 0=0
40 READ X
50 IF X=99 THEN 90
60 LET C=C+X
70 LET D=D+X
80 GOTO 40
90 PRINT C,D,C/D
100 END
100 RENUMBER 10
~
100 DATA 1,2,3,4,5,99
110 LET C=O
120 LET 0=0
130 READ X
140 IF X=99 THEN 180
150 LET C=C+X
160 LET D=D+X
170 GOTO 130
180 PRINT C,D,C/D
190 END
RENUMBER 100
~
100 DATA 1,2,3,4,5,99
200 LET C=O
300 LET 0=0
400 READ X
500 IF X=99 THEN 900
600 LET C=C+X
700 LET D=D+X
800 GOTO 400
900 PRINT C,D,C/D
1000 END

SM-030-0012-02
POINT 4 Data Corporation 3-121

RENUMBER

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

RESTOR

KEYBOARD: YES
PROGRAM: YES

SYNTAX: RESTOR

EFFECT: Resets the data pOinter to the first item of data in a
DATA statement, making it possible for the data to be
re-read.

NOTES:

1. This statement may be used in keyboard mode to affect
keyboard execution of the READ or MAT READ statements.

SM-030-0012-02
POINT 4 Data Corporation 3-122

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

EXAMPLES:

10 FOR 1=1 TO 4
20 READ X,Y
30 INPUT Z

RESTOR

40 PRINT X"+"Z"divided by "Y"="(X+Z)/Y
50 RESTOR
60 NEXT I
70 DATA 150,20,900,30

Line 50 in the example program resets the data pointer so that
the same values are read for X and Y each time through the loop.

If the user entered 10, 20, 30 and 40 at the respective input
prompts, the output from this program would be:

150 + 10 div ded by 20 8
150 + 20 div ded by 20 8.5
150 + 30 div ded by 20 9
150 + 40 div ded by 20 9.5

SM-030-0012-02
POINT 4 Data Corporation 3-123

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

RETURN

KEYBOARD: NO
YES PROGRAM:

SYNTAX:

EFFECT:

NOTES:

RETURN {numeric expression}

Transfers control (from a subroutine) to the statement
immediately following the matching GOSUB statement (in
the main program) which originally transferred
control.

1. Every subroutine must be exited using a RETURN
statement. A RETURN statement may be used at any
desired exit point in a subroutine, and there may be
as many RETURN statements as needed in each
subroutine.

2. A subroutine that has been entered with a GOSUB can
itself contain a GOSUB statement. This nesting
process can be carried out to eight levels. Each
RETURN is to the previous level, but a RETURN
statement cannot be executed without the previous
execution of a GOSUB statement.

3. If any expression is included in the RETURN statement,
then its integer value specifies transferring control
to a number of statements forward (or backward if the
expression is negative) from the normal return pOint.
For example: RETURN a is the same as RETURN; RETURN
+2 skips two statements and returns to the third
statement following the GOSUB; and RETURN -1 returns
to the GOSUB statement itself.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Bus1ness BASIC Manual POINT • Data Corporat1on 3-12.

EXAMPLES:

10 DIM R$[10]
100 INPUT "Continue? (Enter YES or NO) "R$
110 PRINT
120 GOSUB 1000 ICheck whether YES or NO was entered.
130 GOTO 500
140 GOTO 600
150 PRINT "You must enter YES or NOI"
160 GOTO 100
500 REM Perform the YES alternative
510 PRINT "The user entered YES"
520 STOP
600 REM Perform the NO alternative
610 PRINT "The user entered NO"
620 STOP
1000 REM Routine to check for YES or NO
1010 IF R$="YES" RETURN Ireturn to next statement if YES

RETURN

1020 IF R$="NO" RETURN 1 Ireturn and skip next statement if NO
1030 RETURN 2 Ireturn and skip 2 statements if neither
rum
Continue? (Enter YES or NO) ~
You must enter YES or NOI
Continue? (Enter YES or NO) ~
The user entered YES

STOP AT 520
rum
Continue? (Enter YES or NO) HQ
The user entered NO

STOP at 620

This program uses a sUDroutine to check whether the input string
R$ is equal to "YES", "NO" or neither. If R$ is equal to "YES",
the subroutine returns to the next statement following the GOSUB,
which is "GOTO SOD".

If R$ is equal to "NO", the subroutine returns to the program,
skips one statement, and continues execution with the following
statement, which is "GOTO 600".

If R$ is not equal to "YES" or "NO", the subroutine returns to
the program, skips two statements, and continues execution with
the following statement, which is "PRINT "You must enter YES or
NOI"·

SM-030-00l2-02
POINT 4 Data Corporation 3-125

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

RUN

KEYBOARD: YES
PROGRAM: NO

SYNTAX: {line number} RUN

EFFECT: Executes a BASIC program.

NOTES:

1. When the RUN command is given, the program in the
user's active file is executed starting with the
specified line number. If no line number is
specified, execution begins with the lowest line
number. All variables are initially assumed to be
zero, all user functions are assumed undefined, and
all arrays and strings assumed dimensionless until a
statement is encountered to provide the necessary
information.

2. If a line number is specified, the variables,
user-defined functions, arrays, and strings remain as
they were at the time the last run was stopped.

3. A run may be aborted at any time by pressing <ESC>
unless error trapping is enabled (IF ERR 0 or IF ERR
1). If error trapping is enabled, the run may be
aborted by pressing <CTRL-Y> fOllowed by <ESC> (unless
the program is protected against it).

4. A saved program may also be run using the IRIS
processor RUN by giving the following command at the
IRIS system prompt

RUN Filename

or simply

Filename

which brings a copy of the program identified by the
Filename into the active file (if it is not read
protected) and immediately begins running the program.
This has the same effect as entering RUN within BASIC.

SM-030-00l2-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-126

EXAMPLE:

10 READ X
20 IF X-99 GOTO 80
30 PRINT X"SOUARED="X·X
40 PRINT "THE SOUARE ROOT OF "X"IS" SOR(XI
50 PRINT
60 DATA 4. 9. 16. 25. 625. 99
70 GOTO 10
80 PRINT "ALL NUMBERS HAVE BEEN PROCESSED"
~
RUN

4 SQUARED = 16
THE SQUARE ROOT OF 4 IS 2

9 SQUARED = 81
THE SQUARE ROOT OF 9 IS 3

16 SQUARED = 256
THE SQUARE ROOT OF 16 IS 4

25 SQUARED = 625
THE SQUARE ROOT OF 25 IS 5

625 SQUARED = 390625
THE SQUARE ROOT OF 625 IS 25

ALL NUMBERS HAVE BEEN PROCESSED

RUN

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-127

SEARCH #

KEYBOARD: NO
PROGRAM: YES

SYNTAX: SEARCH 'channel,~,directory expr; KS, R, S

EFFECT:

NOTES:

where

channel channel number expression giving the number
of the channel on which the appropriate file is
open

mode - search mode expression; the function of each
mode is summarized in Table 3-2

directory expr - expression giving the number of the
appropriate directory associated with the file or
which may be set to defined values to provide
miscellaneous directory information, as defined in
Table 3-2

K$ - any string variable which contains the
appropriate key

R - any variable which will contain or receive the
record number of the key being acted upon

S - a variable which receives error status as shown
in note .2 or which may be set to defined values
to provide miscellaneous search functions, as
defined in Table 3-2

Used to search for and manipulate keys within indexed
file and polyfile directories and to initialize and
provide information about indexed files and polyfiles.

1. The SEARCH statement is described in detail in Section
2.7.5. The information provided here is a summary
only. Read Section 2.7.5 to gain familiarity with the
SEARCH statement.

(Discussion of this statement is continued.)

8M-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-128

SEARCH +

NOTES: (Continued)

2. S may receive a status value as defined below:

o No error, operation was successful

I Operation was not successful

2 End of directory (when inserting a key, indicates
directory is full)

3 End of data (no free records available)

4 File has no index

5 Undetermined error (usually incorrect use of file)
or, for polyfiles, file structure error

6 Directory number not in sequence

7 File is not contiguous

8 Indexed file or polyfile volume is already indexed

9 The value of the record number (R) is negative or
too large

10 Too many directories: for indexed files, the
limit is 15 per file; for polyfiles, the limit
is 63 per volume/polyfile

11 For indexed files: master directory level exceeds
one block

For polyfiles: volume not found (possible
structure error)

12 For indexed files: directories exceed size of
file

For polyfiles: volume too small

13 No such directory

14 File not indexed

15 Data volume number is less than pre-existing data
volume

16 Data volume map request not consistent with
pre-existing volumes

17 Data volume does not have record length matching
that of the polyfile

18 Block/record out of range

19 Record was not allocated (already released)

20 Volume has no map

SM-030-0012-02
POINT 4 Data Corporation 3-129

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

SEARCH'" (Continued)

TABLE 3-2. SUMMARY OP SEARCH MODES

Directory Status
Mode Expression (S)

0)0

=0

1)0

=0 0

1

2

3

2

3

SM-030-0012-02
POINT 4 Data Corporation

Effect

sets key length equal to the value
of R and the number of keys/block
= INT[254/(key length+1)] for the
specified directory; must specify
directories in sequential order,
beginning with directory one

freezes directory configuration to
that specified by previous mode
zero commands; assumes a number of
data records as given in R; sets
up internal linkage for all
directories

returns key length of specified
directory in R

returns record number of first
real data record (always zero for
polyflles)

returns number of free records in
R

returns the number of a free
record

releases record R; returns the
record t.o t.he free chain or bit.
map, it provided

searches t.he speoified direotory
for a mat.oh with K$; if found,
ret.urns found key in K $,
assooiat.ed dat.a record number in R
and t.he value zero in S

searches t.he speoified direot.ory
for the first key whose value
logically exoeeds K$; if found,
ret.urns found key in I: $,
assooiat.ed dat.a record number in R
and t.he value zero in S

3-130
BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

SEARCH + (Continued)

TABLE 3-2. SUMMARY OF SEARCH MODES (Continued)

Directory Status
Mode Expression (S)

4

5

7

SH-030-0012-02
POINT 4 Data Corporation

Effect

inserts the key specified by K$,
references the key to record
number R and sets S to zero ~
a key is found which matches K$ or
there is insufficient room in the
directory

deletes the key specified by K$,
returns the associated data record
number in R and sets S to zero
(unless the specified key is not
found) ; for indexed files, use
mode one to return free record to
chain

reorganizes the specified
directory so key can be inserted
using mode four; include error
code in case directory is too full
after reorganization to allow
insertion; not used on polyflles

3-131
BUSINESS BASIC STATEMENTS

IRIS Business BASIC Manual

SIGNAL 1

KEYBOARD: NO
PROGRAM: YES

SYNTAX: SIGNAL l,port nymber expression,~,~

EFFECT: Sends a signal which consists of the integer values of
expressions paraml and param2, to the port number
given by the value of the port number expression.

NOTES:

1. The Signal will be received by the addressee only if
the program running on that port executes a SIGNAL 2
(Receive Signal) statement.

2. The Signal resides in the Signal list until a program
at the destination port executes a SIGNAL 2 statement.
However, a signal is ignored by the system if there is
no user logged on at the destination port. An error
occurs if the signal list is full at the time a SIGNAL
1 statement is executed, and the signal is lost. An
error also occurs if a signal is set to a non-existent
port.

3. To reduce the probability of the list being filled,
the system scans the signal list each hour on the
hour, and any signal that is more than one hour old is
automatically deleted from the list. Also, the
appropriate signal is deleted if the user at the
destination port logs off.

4. The expressions paraml and param2 must evaluate to
values not exceeding ± 32767. Their integer values
are then placed in a signal list along with the
integer value of the destination port number
expression.

5M-030-0012-0l BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT • Data Corporation 3-l3l

SIGNAL 1

EXAMPLES:

250 SIGNAL 1,5,61,2140

365 SIGNAL 1,D,R+l,2*I-Q

In line 250, the values 61 and 2140 are sent as a signal to port
number 5.

In line 365, the integer values of R+l and 2*I-Q are sent to the
port specified by the integer value of D.

,I ...c.-1 ___ 9-

c:

SM-030-0012-02
POINT 4 Data Corporation 3-133

~- 33

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

SIGNAL 2

KEYBOARD: NO
PROGRAM: YES

SYNTAX: SIGNAL 2, port nymber expression, paraml yar, param2 yarl,~

EFFECT: Receives any signal which has been sent to the port on
which this statement is executed (see SIGNAL 1).

NOTES:

1. The port number expression is set to the number of the
port from which the signal was sent, and variables
paraml and param2 are set to the signal values (the
values of paraml and param2 from the SIGNAL 1
statement). If there is no Signal to be received, the
port number expression is set to minus one, and paraml
and param2 remain unchanged.

2. A delay may be included when it is desirable to pause
and wait for a signal. The value of the delay is
specified in tenth-seconds. If a signal is received
before the delay runs out, the program is immediately
re-activated, and the port number and variables paraml
and param2 are set to the signal values. If the delay
runs out first, the program is re-activated, the port
number is set to minus one, and paraml and param2
remain unchanged.

3. The port number expression and paraml and param2
variables must be simple variables or subscripted
variables; expressions are not allowed. However, the
delay may be an expression. The maximum value for the
delay is 32767 which gives a delay of nearly one hour.

4. A user may send a signal to his or her own program by
pressing the BREAK key on the keyboard (use <CTRL-B)
if the BREAK key is disabled). When a SIGNAL 2
statement is executed, the port number is set to the
user's own port number, and paraml and param2 are both
set to zero. The SPC (6) function may be used by the
program to determine its own port number.

5. A program may clear all signals addressed to its port
by looping on a SIGNAL 2 statement until the value of
the port number expression is less than zero.

6. If the addressee is in a "receive signal with
time-out" statement, then that user's program is
activated and receives the signal immediately.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-134

SIGNAL 2

EXAMPLES:

420 SIGNAL 2,P,A,B

610 SIGNAL 2,S,M[2,31,Y,30

In line 610, the program pauses for three seconds (30 tenths of a
second) or until a signal is received. The port number of the
sender (or -1 if no signal received) is put into variable S, and
the two signal values are put into M[2,31 and Y.

SM-030-0012-02
POINT 4 Data Corporation 3-135

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

SIGNAL 3

KEYBOARD: NO
PROGRAM: YES

SYNTAX: SIGNAL 3,~

EFFECT: Allows a program to pause (defer further execution)
for a specified period of time.

NOTES:

1. The delay is specified in tenth-seconds. All inputs
(except ESCAPE) and all signals are saved until the
delay is exhausted. An output in progress at the time
the SIGNAL 3 statement is executed is allowed to
finish. The maximum value for the delay is 32767,
which gives a delay of nearly one hour.

2. This statement may be used whenever it is desired to
pause before executing the next statement in the
program. One example of this is a program which is to
loop periodically. It also forces the output of the
user's output buffer on demand. At the beginning of
the pause, output to the terminal is started if the
user's output buffer contains any data.

3. If the value of the delay is 0, then an immediate
return is made to the next BASIC statement, but
printout is initiated if any output is waiting in the
user's output buffer.

CAUTION

4. The SIGNAL 3,0 statement must be used with great
restraint. The only proper place for a SIGNAL 3,0 is
following one or more PRINT statements where the
following code will be compute-bound for a significant
period of time. This causes the printout to occur
while the computation progresses. Use of a SIGNAL 3
statement in cases where the next PRINT would occur
within a few seconds may cause excessive swapping and
may seriously degrade system throughput.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-136

EXAMPLES:

660 SIGNAL 3,100

400 SIGNAL 3,A+42

SIGNAL 3

Line 660 delays further program execution for ten seconds.

Line 400 delays further program execution for (A+42)/10 seconds.

SM-030-00l2-02
POINT 4 Data Corporation 3-137

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

SIZE

KEYBOARD: YES
PROGRAM: NO

SYNTAX: SIZE

EFFECT: Displays current size of a BASIC program by printing a
message of the form "=x WORDS OUT OF m"

NOTES:

where
x is the current size of the program in decimal

m is the maximum size in decimal for a BAS IC
program on the system as it is configured

1. If the program has just been run, then the value x
includes the program's variable storage space. After
exiting to SCOPE with a <CTRL-C> and re-entering
BASIC, the value of x represents the size of the
program itself.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-138

EXAMPLES:

.BASIC SAMPLE
L.lSl.'
10 DATA 1,2,3,4,5,99
20 LET C=O
30 LET D=O
40 READ X
50 IF X=99 THEN 90
60 LET C=C+X
70 LET D=D+X
80 GOTO 40
90 PRINT C,D,C/D
100 END
EJlN
15 15 1
~ = 75 WORDS OUT OF 7774
<CTRL-C>
\
.BASIC SAMPLE
~ = 69 WORDS OUT OF 7774

SM-030-0012-02
POINT 4 Data Corporation 3-13 9

SIZE

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

STOP

KEYBOARD: YES
PROGRAM: YES

SYNTAX: STOP

EFFECT: Terminates the execution of a program.

NOTES:

1. The END and STOP statements have similar effects, and
may be used anywhere in a program to terminate
execution of the program. It is not mandatory that
the last statement in a program be an END statement.

2. The END statement causes the simple message "READY" to
be printed, while a STOP statement causes

STOP AT line number of STOP statement

to be printed. Pressing the ESC key aborts a program
run at any time and causes a similar STOP message to
be printed unless error branching is in effect (see
the IF ERR statement).

SM-030-0012-0:l BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT • Data Corporation 3-140

EXAMPLE:

150 STOP

SM-030-0012-02
POINT 4 Data Corporation 3-141

STOP

BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual

WRITE .,.

KEYBOARD: NO
PROGRAM: YES

SYNTAX: WRITE I~{ ,~{ ,J.t&III{ ,J1.Ua.:£}}}; {expression list} {;}

EFFECT:

NOTES:

where the expression list consists of numeric or
string expressions with each element except the
first preceded by a comma.

Writes the values of the expressions in the expression
list into a data file or to a peripheral device. The
file or device to be accessed must have been
previously opened on the channel specified by the
channel number expression. The record number into
which data is to be written may also be specif ied. A
starting item number may be given if desired;
otherwise, item zero is assumed.

1. The expressions following the first semi-colon are
evaluated and the values are written into the
specified record of the specified file, starting with
the item number specified or starting with item zero
if none is specified. Items not addressed in the file
are not affected. The item number field is used
differently for a text file or a contiguous file.

2. In a formatted file, only sequential items of a single
record may be written into by each WRITEt statement,
and an error results if a variable type does not match
the item type in the file.

3. The final semicolon at the end of the statement may be
used to leave the record unlocked.

4. The record number may be omitted or -1 for sequential
file access or may be -2 to reference the last record
which was accessed, as described in Section 2.3.3.

5. A locked record may be unlocked by a statement of the
form

line number WRITE tC11

which unlocks any record that may be locked on the
specified channel without writing into the file.

6. Refer to Section 2 for examples of how to use WRITE'
for each file type.

SM-030-0012-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT • Data Corporation 3-142

WRITE ".

EXAMPLES:

195 WRITE t4,19;F,Yl+3,"JUNK",D-E

600 WRITE tC-2,2*R,8;0,2~A,M$[4,Ql;

In line 195, item zero of record 19 of the file open on channel
four is set to the value of F, item one of the same record is set
to the value of the expression Yl+3, item two (which must be
formatted as a string) is set to the string value JUNK, item
three is set to the value of D-E, and the record is locked since
there is no final semi-colon.

In line 600, the channel number and record number are given by
the expressions C-2 and 2*R, respectively. The item number could
also be given as an expression if desired. In this example, item
eight of the specified record is set to zero, item nine is set to
21\ A, and item ten receives characters four through the value of
Q of string M$. The final semi-colon unlocks the record.

NOTES: (Continued)

7. The delay may be included to generate error 123 when a
program is paused longer than the specified period of
time because a record or device is locked. The delay
must be specified in tenths of a second. Setting the
delay to -1 allows an unlimited delay period; setting
it to 0 specifies no delay and no 1/0 retries. Note
that the delay specifies the maximum amount of time to
be spent retrying input or output. For example, a
delay equal to 600 (60 seconds) allows 200 retries,
given a .3 second delay between retries.

8. The record and item numbers have special meaning when
open file maintenance is in effect.

SM-030-00l2-02 BUSINESS BASIC STATEMENTS
IRIS Business BASIC Manual POINT 4 Data Corporation 3-143

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-008a
	3-008b
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144

