
r'16·lORY ADDRESSING" VECTORED INTERRUPT"

AND SERIAL I/O

Memory and I/O Addressing The CPU/8 processor card may contain
up to 3.5K bytes of onboard RAM and ROM. This" memory occupies
a contiguous 4K address space which is jumper selectable to
start at It S~00H, or Eg00H (see Figure 1). The CPU/8 board
is shipped prewlred to start at address 0. This may be modified
by remo~ing jumper uJu and replacin~ it with jumpers from J to
S or J to T. The onboard I/O port address space follows the
onboard memory address space as shown in Figure 1.

Space for three 2708 UV erasable PROM's or three 2308 :masked ROM'S
js provided on the CPU/So The ROM's occupy the first 3K bytes
of the 4K address space. "Also provided on the CPU/S is 512
bytes of e"~ad/write memory (RAM). This RAM occupies the upper
1K of address space. Figure 1 shows to ~K block of RAM. These
are in fact the same ~K block of RAM as the address of each cell
is not unique. Two addresses exist for each byte of RAM. Ad-
dress 07FH contains the same information as address F7FH. This is
caused by the fact that address bit 8 is not decoded when addressing
onboard RAM.

USART and Baud Rate Latch The use of the USART and baud rate
latch is discussed in a separate section "Programming the SERIS
serialoption. I'

Real-Time Clock The real-time clock (RTC) circuit generates and
interrupts for every positive going edge of the 50Hz or 60 Hz
line frequency. This interrupt is latched and remains on until
it is reset by issuing an output command to the real-time clock
port. It is the programmer's responsibility to reset the RiC,
before reenab1ing interrupts, when he services the clock. This
is done by doing an aUT a, aUT aaH or aUT ~E8H instruction depen­
ding upon the location of the onboard ports. Vectored interrupt 1
(trap address 30H) is generally used for the real-time clock
interrupt service routine. The real-time clock is physically
connected on the CPU board by a jumper from the RTe pad in the
upper 1eft hand side of the board to V~l in the interrupt jumper
area.

Single-Step Logic The single step logic hardware uses vectored
interrupt ~ for the purpose of executing a single instruction
of a program being tested and returning to a fixed location
(38H) in RAM. Issuing an output instruction to the single-step
port causes the single step logic to be enabled. This also causes
all other interrupts to be disabled.(masked). The logic will
count out 2 instruction cycles and then generate an interrupt
which is vectored to location.38H. The single-step logic is·
immediately reset and its interrupts that were masked otfare

. unmasked. Note that it is still not possible to be interrupted
until an enable interrupt (EI) instruction is executed.

The two instructions normally executed after the output instruction
are a return (to the program bring s i ngl e-stepped) and one ; nstruc­
tion out of the program being single-stepped. For an example
of the use of the single-step logic see the assembly listing for
the POLY 88 resident monitor.

Us i ng the vectored in terru ets The 8 vectored interrupt traps. in
the 8080A CPU ch i pare located every 8 bytes in the fi rs t 64

bytes of memory (see Figure 2). The first trap is also· used
by the reset function on the CpU so is generally not available
for use as an interrupt. The last trap (38H) is used by the
single-step logic on the CPU/8 card so it is also not available
if the Single-step function is to be used.

Consequently, only 6 (or 7) vectored interrupts are generally
available. The 8 bytes at each trap location are usually not
enough for the interrupt service routine, but are enough to
save the state of the CPU and jump to the actual routine (see

'1----7 Figure 3).

Thi address of the service routines are stored in a table (rSRTSC)
in RAM so that the service routines may be modified dynamically.
The routine rORET restores the CPU registers and enables
interrupts before returning to the interrupted program.

Power on reset When power is applied to the CPU a reset signal
is generated for approximately ~ second. This causes the
program counter to be reset to zero and the interrupts to be dis­
abled. When this signal is released execution begins sequentially
from location zero. The first 5 locations in memory (0 to 4)
are generally used for a portion of the cold-start routine and a
jump in the next 3 (5-7) jumps to the rest of the cold start
routine (see POLY 88 resident monitor). This is done because
location 8 is generally used for vectored interrupt 6.

CPU/8 I/O ADDRESSING

Address (Hex)~ R/W Function
J S T

0,2 8O,82 E0.E2 R USART s ta tus byte
rI,2 80,82 E0. E2 W USART command/node
1,3 81,83 E1,E3 R USART received data
1,3 81,83 E1,E3 W USART transmit data
4-7 84-87 E4-E7 R Unused
4-7 84-S1 E4-E7 W Baud Rate Latch
8-B 88-8B E8-EB R Unused
8-8 88-8B E8-EB W Reset real-time clock
C-F 8C-8F EC-EF R Unused
C-F 8C-8F EC-EF W Start single step

CPU/S MEMORY ADDRESSING

Address'" Function
J - S T
0-3FF S0"rI ... S3FF EfI"rI-E3FF ROM #1
400-7FF 84f10-87FF E4f1f1 ... E7FF ROM #2
8f1f1-SFF 88f10-88F~ E800- EBFF 4- ROM #3

C0f1-0FF 8CfI"-80FF EC"fI-EDFF Onboard RAM
E00- FFF 8E00-8FFF EEfI"-EFFF Onboard RAM **

* Jumpers J, Sand T determine the base address of the CPU memory
and 1/0 address space

**This is the same RAM as the 512 bytes below it. (Bit 9 of
the address is not decoded).

Figure 1

Vectored Interrupt Locations

Interrupt iF Address (Hex)
~ 38*
1 3~

2 28
3 2~

4 18
5 1~

6 8
7 ~**

* This location is also used for the single-step trap.

**This location is also used for the power-on reset.

Figure 2

INTRODUCTION

The SER/8 serial port option for the CPU/8 CPU card provides
a very flexible serial communications interface for the POLY-88.
The SER/8 provides a universal synchronous/asynchronous receiver/
transmitter and a software controllable baud rate generator. The
USART may interface to two serial I/O devices. The device and
its baud rate may be changed under the control of one output port.
These interface through two "minicards" which mount to the rear
of the POLY-88 cHassis. Interface cards are available for RS-232-C,
current loop,Kansas City (Byte) Standard audio cassette, and the

1200 baud bi-phase cassette.

This note describes the SER/8 option from a functional standpoint
and then describes the various operating modes of the USART and
how the SER/8 may be programmed.

COMMUNICATIONS FORMATS

Serial communications, either on a data link or with a local peri­
pheral, occurs in one of two basic formats; asynchronous or syn­
chronous. These formats are similar in that they both require
framing information to be added to the data to enable proper
detection of the character at the receiving end. The major
difference between the two formats is that the 'asynchronous format
requires framing information to be added to each character,
while the synchronous format adds framing information to blocks
of data, or messages. Since the synchronous format is more efficient
than the asynchronous format but requires more complex decoding
it is typically found on high-speed data links, while the asynchronous
format is used on lower speed lines.

The asynchronous format starts with the basic data bit to be
transmitted and adds a "START" bit to the front of them and one
or more ~STOP~ bits behind them as they are transmitted. The
START bit ;s a logical zero, or SPACE, and is defined as the positive
voltage leve1 by RS-232-C. The STOP bit is a logical one, or

MARK, and is defined as the negative voltage level by RS-232-C.
In current loop applications current flow normally indicates a
MARK and lack of current a SPACE. The START bit tells the receiver
to start assembling a character and allows the receiver to synchronize
itself with the transmitter. Since this synchronization only has
to last for the duration of the character (the ne~t character
will contain a new START bit), this method works quite well assuming
a properly designed receiver. One or more STOP bits are added
to the end of the character to ensure that the START bit of the
next character will cause a transition on the communication line
and to give the receiver time to "catch up" with the transmitter if
its basic clock happens to be running slightly slower than the
transmitter clock. If. on the other hand, the receiver clock
happens to be running slightly faster than the transmitter clock,
the receiver will perceive gaps between characters but will still
correctly decode the data. Because of this tolerance to minor
frequency deviations, it is not necessary that the transmitter
and receiver clocks be locked to the identical frequency for
successful asynchronous communication.

The synchronous format, instead of adding bits to each character,
groups characters into records and adds framing characters to the
record. The framing characters are generally known as SYN characters
and are used by the receiver to determine where the character
boundaries are in a string of bits. Since synchronization must
be held over a fairly long stream of data, bit synchronization
is normally either extracted from the communication channel by
the modem or supplied from an external source.

An example of the synchronous and asynchronous formats is shown in
Figure 1. The synchronous format shown is fairly typical in
that it requires two SYN characters at the start of the message.
The asynchronous format, also typical, requires a START bit
preceding each character and a single STOP bit following it. In
both cases, two a-bit ~haracters are to be transmitted. In the

asynchronous mode 10 n bits are used to transmit n characters
and in the synchronous made 8n + 16 bits are used. For the
example shown the asynchronous made is actually more efficient,
uSing 20 bits versus 32. To transmit a thousand characters in
the asynchronous mode, however, take 10,000 bits versus 8,016
for the synchronous format mode. For long messages the synchronous
format becomes much mare efficient than the asynchronous format;
the crossover paint for the examples shown in Figure 1 is eight
characters, for which both formats require 80 bits.

In addition to the differences in format between synchronous and
asynchronous communication, there are differences with regards
to the type of modems that can be used. Asynchronous modems
typically employ FSK (Frequency Shift Keying) techniques which
simply generate one audio tone for a MARK and another for a
SPACE. The receiving modem detects these tones on the telephone
line, converts them to logical signals, and presents them to
the receiving terminal. Since the modem itself is not concerned
with the transmission speed, it can handle baud rates from zero
to its maximum speed. Synchronous modems, in contrast to asynchronous
modems, supply timing information to the terminal and require data
to be presented to them in synchronism with this timing information.
Synchronous modems, because of this extra clocking, are only capable
of operating at certain preset baud rates. The receiving mode,
which has an oscillator running at the same frequency as the
transmitting modem, phase locks its clock to that of the transmitter
and interprets changes of phase as data. The PolyMorphic bi-phase
cassette interface operates in a synchronous mode.

In some cases it is desirable to operate in a hybrid made which
involves transmitting data with the asynchronous format using
a synchronous modem. This occurs when an increase in operating
speed is required without a change in the basic protocol of the
system. This hybrid technique is known as isosynchronous and
involves the generation of the start and stop bits associated with
the asynchronous format, while still using the modem clock for

bit synchronization. The Byte standard cassette interface operates
in an isosynchronous mode.

The 8251 USART (Universal Synchronous/Asynchronous Receiver) has
been designed to meet a broad spectrum of requirements in the syn­
chronous, asynchronous, and isosynchronous modes. In the synchronous
modes it operates with 5, 6, 7, or 8-bit characters. Even or
odd parity can be optionally appended and checked. Synchronization
can be achieved internally via SYN character detection. SYN detec-

·tion can be based on one or two characters which mayor may not
be the same. The single or double SYN characters are inserted
into the data stream automatically if the software fails to supply
data in time. The automatic generation of SYN characters is
required to prevent the loss of synchronization. In the asynchro­
nous mode the USART operates with the same data and parity
structures as it does in the synchronous mode. In addition to
appending a START bit to this data, it appends 1, 1~, or 2 STOP
bits. Proper framing is checked by the receiver and a status flag
set if an error occurs. In the asynchronous mode the USART can
be programmed to accept clock rates of 1, 16, or 64 times the
required baud rate. Note that Xl operation is only valid if
the clocks of the receiver and transmitter are synchronized.

The USART can transmit the three formats in half or full duplex
mode and is double-buffered internally (i.e., the software has
a complete character time to respond to a service request).
Although theUSART supports basic data set control signals (e.g.,
OTR and RST), it does not fully support the signaling described
in EIA RS-232-C. Examples of unsupported signals are Ring Indicator
(CE), and the second channel signals. The serial option does not
interface to the voltage levels required by EIA RS-232-C; this
interface is provided by the SIO/2 card. (The S10/2 also provides
an optically isolated current loop interface) .

•

A b10ck diagram of the SER/8 serial port option is shown in
Figure 2. As can be seen in the figure, the USART consists of
five major sections which communicate with each other on an internal

data bus. The five sections are the receiver, transmitter, modem
control, read/write control., and I/O Buffer. In order to facilitate
discussion,. the I/O Buffer has been shown broken down into its
three major subsections: the status buffer, the transmit data/command
buffer. and the receive data buffer.

RECEIVER

The receiver accepts serial data on the RxD pin and converts it to
parallel data according to the appropriate format. When the USART
is in the asynchronous mode, and it is ready to accept a character
(i.e., it is not in the process of receiving a character). it
looks for a low level on the RxD line. When it sees the low level,
it assumes that it is a START bit and enables an internal counter.
At a count equivalent to one-half of a bit time, the RxD line is
sampled again. If the line is still low, a valid START bit has
probably been received and the USART proceeds to assemble the
character. If the RxD line is high when it is sampled, then either
a noise pulse h.as occured on the line or the receiver has become
enabled in the middle of the transmission of a character. In
either case the receiver aborts its operation and prepares itself
to accept a new character. After the successful reception of a
START bit the USART clocks in the data, parity, and STOP bits, and
then transfers the data on the internal data bus to the receive
data register. When operating with less than 8 bits, the characters
are right-justified. The RxRDY signal is asserted to indicate
that a character is available.

In the synchronous mode the recei~er Simply clOCks in the specified
number of data bits and transfers them to the receiver buffer
register, setting RxROY. Since the receiver blindly groups data
bits into characters, there must be a means of synchronizing the
receiver to the transmitter so that the proper character boundaries
are maintained in the serial data stream. This synchronization
is achieved in the HUNT mode.

In the HUNT mode the USART shifts in data on the RxD line one bit
at a time. Afte~ each bit is received, the receiver register is

FI£SET

eLl!:
C/o
iiD
WR
a -0

-c

-c

OATA

START 81T STOl'SIT

ASYNCHRONOUS

CAl ...

Figure 1. Transmission Formats

" ;:.. UT!RN,"- CAT A sus

) f,
v

I
I STATUS I RIClIV« J

IU"'ER ": ~ DATAau.,IR

1 XMITOATAI 1 f~ CMOau""'R

i I

I/O aUFF!R

Z
;;: '" ",---, TRANSMITTER
~ / "-$I ,.. . ..
<: ..

RL\OIWRIT! ,/L-- ,.--- TRANSMIT
eQNTROI.

'v-
ICOHTROI.I

"OC":

-
L..-- "(CliVER

IC:CNTROI.i

MODEM ~
CONTROl. ~ 1-- --

RECEIVER
IS-OI

Figure 2. 8251 Block Diagram

T.O

T.fi10V

T_£
r;c

"_.qov
SYNOiT

A;G

1'1_0

j

CE I C/O, READ IwRITE I Function I 0 I 0 0

0 I 1 0

I a 0 1

I I a I 1 1

x x

1

1

0

0

x

CPU Reads Data from

USART

CPU Reads Status from

USART

CPU Writes Data to

USART

CPU Writes Command to

USART

US,A,RT Bus Fioatlng

(NO-a?)

I
I
I
I
I ,
I
I
I

I

: i

OATA

S .. ,.
C)otAR .,

~

'START SIT

S"tST'''''ESII'T
IN'TIAI.IZATION

i

~ . N

I

~ :y

Figure 4, lnitiaiization Flowchart

eN

I 4-~ t .. ENA8&.£
~.OlSAIIU -r-- -,- -r-- T IIAUOIIATIJACTOIl

00 - SYNMOOt

Y OAT A TIIIM'IIIAL
IlUQY

">O/GH'" "'1.1. I'OIn:I
OT" OUTPUT TO nllo

G1 •,..,
'a -Al\'Nxt.
11-ASWtx ..

CMAIUCTIII UHGTN

, RIClIV •• "....U
!-E_URaIlOY
'.~R.IIOY

00-1 tIlTS
.,· ... TS

I
10-'IITS
11 -. tIlTS

S_PI"C
0IA1W:l'11I
'.I'OIICIST.O~ I PARITY CIlIfI'IIOI.

XO-NO,.".TY
n .QOO'''R.TY O. 'OOlIMA1. ClnU nON
I 1 • tV.N ""IIITY

IflRO""UIT
I • ~UIT "'1.1. 111"011

I 'u.G$, ac. Pll '1IAI04Ml CCNTJIOL

nw NO--.o, 0.,.'''' 00 - NOT VAI.IO
I o 1 - I STOI' lIlT

I 0 .. I. STOI' lIlTS
1 1 .2 STOI' tIlTS "'QUIST TO SINO

~G~;:~:!o YIS
tD, 0.,-.

nw~

11Ifft_ "OCT
~1I'TIJIII_ClS1
ro_WII'JWC:1,CIt
~r

X. lIrTIlI_ $VIII
XI aTl"_nw
ox CIOU8LI SY'M OIA"
IX _u S'IIII CI4AII

Figurw 5. Mod. Instruction Format
INTI" HUIf1'IIOOOt

I • EHAlh.1 sv.RCH 1'011
S'rN CHMACfIRll

Figure 6. Command Instruction Format

L.----~-----4------+-----_r----~------------~----~~~::~~~~
' ,TYI .. AO ..

T'HE PC F\.A T IS sn liM.,.
A 'AR'TY (IIAO'" 1.$ 01·
T(tTeD. IT IS "£SIT 81'
THe e ... ,T 0' "!'HE CQM.
~INSTRucnaN .• ,
OOU NOT ,,,",s.T OPt ...
UIONO' "!'HE UlIl.

OV.R""'N1ERIIO ..
THE 01 '!.AG IS SET ,"MO'
,.,.. Cl'U OCfS NOT "' 0 ...
CH ACT1! I'O"'ETH.
~tlCT OllIE BECOMES AV"'L •
.4.81..1. 1'1 IS $rESET 8Y'TH,
EA BIT 0' "!'HE COMM O
INSTRUCTION. OE OOiS
IrifCT IH"fS.T O"A .. flON OF
TkE iI2lIl: ""' .. EVEII. THE
'''E'VtOUSL y eVE'A.UN
CHARACTER 1$ LOsr

.RAMlNG e""OJIIIASYNC
ONLYl

THE F€ F\.AG IS SET EN
... VAl,JO $TO' SIT IS NOT
o£nCTED 41" 'THE ePr.lO OF
£'VEAIf' OfARAC'TEJiI. IT 1$
,q£.saT BY "Ti\04E SA SIT OF
""e COMMANO IN$T-.UC·
nON. ;:£ OOES NOT lNM"IIT
THE O'!RA nON OF "'THE 4251.

Figure 7. Status Register Format

T'MAf 1" .. ,.0. t$ HOT
CD!OiO'Tl0"10 av
T.'HOltaT.

compared to a register holding the SYNcharacter (program loaded).
If- the two registers are now equal, the USART shi-fts in another
bit and repeats the comparison. When the registers compare as equal,
the USART ends the HUNT mode and raises the SYNDET line to indicate
that it has achieved synchronization. If the USART has been pro­
grammed to operate with two SYN. characters the process is as des­
cribed above, except that two contiguous characters from the line
must compare to the two stores SYN characters before synchronization
is declared. Parity is not checked. The USART enters the HUNT mode
when it is initialized into the synchronous mode or when it is
commanded to do so by the command instruction. Before the receiver
is operated, it must be enabled by the RxE bit (02) of the command
instructions. If this bit is not set the receiver will not assert
the RxRDY bi t.

TRANSMITTER

The transmitter
the appropriate
on the TxO pin.

accepts parallel data from the processor, adds
framing information, serializes it, and transmits it

In the asynchronous mode the transmitter always

adds a START bit; depending on how the unit is programmed, it also
adds an optional even or odd parity bit, and either 1, 1~ or 2
STOP bits. In the synchronous mode no extra bits (other than parity,
if enable) are generated by the transmitter unless the computer
fails. to send a character to the USART. If the USART is ready to
transmit a character and a new character has not been supplied
by the computer, the USART will transmit a SYN character. This is
"necessary since synchronous communications, unlike asynchronous
communications, does not allow gaps between characters. If the USART
is operating in the dual SY~mode, both SYN characters will be
transmitted before the message can be resumed. The USART will
not generate SYN characters until the software has supplied at
least one character; i.e., the USART will fill 'holes' in the
transmission but will not initiate transmission itself. The SYN
characters which are to be transmitted by the USART are specified
by the software during the initialization procedure. In either
the synchronous or asynchronous modes, transmission is inhibited
until TxEnable and the CTS input are asserted.

An additional feature of the transmitter is the ability to transmit
a BREAK. A BREAK is a period of continuous SPACE on the communication
line and is used in full fuplex communication to interrupt the
transmitting terminal. The USART will transmit a BREAK condition
as long as bit 3 (SBRK) of the command register is set.

MODEM CONTROL

The modem control section provides for the generation of RTS
and the reception of eTS. In addition, a general purpose output
and a general purpose input are provided. The output is labeled
m and the input is labeled DSR. OTR can be asserted by setting
bit 2 of the command instruction; DSR can be sensed as bit 7 of
the status register. Although the USART itself attaches no special
significance to these signals, OTR (Data Terminal Ready) is nor­
mally assigned to the modem, indicating that the terminal is ready
to communicate and OSR (Data Set Ready) is a signal from the modem
indicating that it is ready for communications.

I/O CONTROL

The Read/Write Control Logic decodes control signals on the 8080
control bus into signals which gate data on and off the USART's
internal bus and controls the external I/O bus (DBO - DB7).
The receiver and transmitter buffers are located at port #0
while the status and command buffers are port #1. The I/O buffer
contains the STATUS buffer, the RECEIVE DATA buffer and the XMIT
DATA/CMn buffer as shown in Figure 2. Note that although there
are two registers which store data for transfer to the CPU (STATUS
and RECEIVE DATA), there is only one register which stores data
being transferred to 'the USART. The sharing of the input register
for both transmit data and command makes it important to ensure
that the USART does not have data stored in this register before
sending a command to the device. The TxROY signal can be monitored
to accomplish this. Neither data nor commands should be transferred
to the USART if TxRDY is low. Failure to perform this check can
result in erroneous data being transmitted.

MODE SELECTION

The USART is capable of operating in a number of modes (e.g., syn­
chronous or asynchronous). In order to keep the hardware as flex­
ible as possible (both at the chip and end product level~, these
operating modes are selected via a series of control outputs to
the USART. These mode control outputs must occur between the time
the USART is reset and the time it is utilized for ,data transfer.
Since the USART needs this information to structure its internal
logic it is essential to complete the initialization before any
attempts are made at data transfer (including reading status).

A flowchart of the initialization process appears in Figure 4.
The first operation which must occur following a reset is the
loading of the mode control register. The mode control register
is loaded by the first control output following a ,reset. The
format of the mode control instruction is shown in Figure 5. The
instruction can be considered as four 2-bit fields. The first

2-bit field (D100) determines whether the USART is to operate
in the synchronous (00) or asynchronous mode. In the asynchronous
mode this field also controls the clock scaling factor. As an
example, if 01 and DO are both ones, the RxC and TxC will be
divided by 64 to establish the baud rate. The second field,
03 - 02, determines the number of data bits in the character and
the third, Os - 04, controls parity generation. Note that the
parity bit (if enabled) is added to the data bits and is not con­
sidered as part of them when setting up the character length. As
an example, standard ASCII transmission, which is seven bits
plus even parity would be specified as:

x X 1 1 1 0 X X

The last field, 07 - 06' has two meanings, depending on whether
operation is to be in the synchronous or asynchronous mode. For
the asynchronous mode (Le., D1DOJi 00), it controls the number of
STOP bits to be transmitted with the character. Since the
receiver will always operate with only one STOP bit, 07 and 06
only control the transmitter. In the synchronous mode, (°100=00),
this field controls the synchronizing process. Note that the choice
of Single or double SYN characters is independen~ of the choice of
internal or external synchronization. This is because even though
the receiver may operate with external synchronization logic, the
transmitt~r.must still know whether tti send ona or two SYN characters
should the CPU fail to supply a character in time.

Following the loading of the mode instruction the appropriate SYN
character (or characters) must be loaded if synchronous mode has
been specified. The SYN character(s) are loaded by the same
control output instruction used to load the mode instruction. The
USART determines from the mode instruction whether no, one, or two
SYN characters are required and uses the control output to 10ad

SYN characters until the required number are loaded.

At completion of the load of SYN chatacters (or after the mode
instruction in the asynchronous mode), a command character is issued
to the USART. The command instruction controls the operation of
the USART within the basic framework established by the mode instruc­
tion. The format of the command instruction is shown in Figure 6.
Note that if, as an example, the USART is waiting for a SYN charac­
ter load and instead is issued an internal reset command, it will
accept the command as an SYN character instead of resetting. This
situation, which should only occur if two independent programs con­
trol the USART, can be avoided by outputting three all zero char­
acters as commands before issuing the internal reset command. The
USART indicates its state in a status register which can be read
under program control. The format of the status register read is
shown in Figure 7.

When operating the receiver it is important to realIze that RxE
(bit 2 of the command instruction) only inhibits the assertion of
RxRDY; it does not inhibit the actual reception of characters.
Because the rece~ver is co~stantly running, it is possible for it
to contain extraneous data when it is enabled. To avoift problems
this data should be read from the USART and discarded. The read
should be done immediately following the setting of Receive Enable
in the asynchronous mode, and following the setting of Enter Hunt
in the synchronous mode. It is not necessary to wait for RxRDY
before executing the dummy read.

USART INTERRUPTS

The SYNDET, TxRDY, and RxROY flags will cause an interrupt if they
are set. These three flags are ored together and applied to interrupt
3. This connection may be broken, if this interrupt is not used,
by cutting trace "K" on the CPU card. Two adjacent pads are pro­
vided to reconnect the interrupt later, if desired.

When using the PolyMorphic Systems Monitor ROM the K jumper should
be cut for monitor versions 2.~ and 2.2 and connected for version
3.0.

USART ADDRESSING

The transmit and receive buffers are addressed as port ~ on the
CPU card if it is set up for operation at~. The command and
status buffers are located at port 1. If your CPU card is not
setup for operation at 0 consult the following table.

SER/8 ADDRESSI~G

Address ROM begins Data Command Baud Rate
Jumper at port & Status Generator

Port Latch

J (factory set) 0000 0 1 4
T 80130 813 81 84
S E00!iJ E!iJ El E4

BAUD RATE GENERATOR OPERATION

The baud rate generator may be accessed through port #4. The
byte output to this port will be latched into the baud rate
latch and determines the baud rate, device number, and ROM disable
or enable. When power is applied to the CPU card or the front panel
reset button is pushed, this latch ;s set to 13. The command format
is as follows:

07 06 Os
Unused ROM

disable

BAUD RATE

D4 03 09
Device Baud Rate

JI.
11'

The baud rate field may assume 1 of 16 values of 0 through F (base
16). 15 of these are valid baud rates, 0 disables clocK generation.
Note that the actual baud rate is determined by the USART mode
(xl, x16, x64 clock). See Figure 8 for the availab1e baud rates.

SER/8 Baud Rates

USART mode xl x16
Baud Rate Field
Binary Hex

0001
,

1 800 50
0010 2 1200 75
00 11 3 1760. 110
0100 4 2152 134.5
0101 5 2400 150
0110 6 4800 300
0111 7 9600 600
1000 8 14400 900
1001 9 19200 1200
1010 A 28800 1800
1011 B 38400 2400
1100 C 57600 3600
1101 0 4800
1110 E 7200
1111 F 9600

Fi gure 8.

DEVICE NUMBER

This bit selects the device to· be connected to the USART.
devices (0 and 1) may share the US ART on the CPU board.

x64

12.5
18.75
27.5
33.62
37.5
75
150
225
300
450
600
900
1200
1800
2400

Two
When a

device is enable it sends data, receive clock, CTS and OSR to
the USART through a tri-state buffer. Transmit data, clocK, RTS and
DTR are anded with the device select signal at the device. Device
o is normally a cassette interface minicard and device 1 is normally
a RS-232/current loop minicard. (Note that the 2 DIP sockets on
the CPU do not determine the device number).

ROM DISABLE

Bit 5 of the BRG control word normally is not enabled. When enabl ed
by connecting a jumper on the CPU card, it will disable the onboard
ROM and RAM when true. This option should be used with caution
as disabling the onboard ROM while executing the monitor routines
may cause unpredictable results. (See application note on
ROM disable option use).

APPENDIX A
PROGRAMMING HINTS

1. Output of a command to. the USART destroys the integrity of a
transmission in progress if timed incorrectly.

Sending a command into the USART wl1 overwrite any character
which is stored in the buffer waiting for transfer to the para­
llel-to-serial converter in the device. This can be avoided
by sending a command if transmission is taking place. Due to
the internal structure of the USART, it is also possible to
disturb the transmission if a command is sent whtleSYN charac­
ter is being generated by the device. (The USART generates a
SYN if the software fails to respond to TxRDY}. If this occurrence
is possible in a system, commands should be transferred only
when a positive-going edge is detected on the TxRDY1ine).

2. RxE only acts as a mask to RxRDY; it does not control the oper­
ation of the receiver.

When the receiver is enabled, it is possible for it to already
contain one or two characters. These characters should be .read
and discarded when the RxE bit is first set. Because of these
extraneous characters the proper sequence for gaining synchron­
ization is as follows:
1.Disable interrupts.

2.Issue a command to enter hunt mode, clear errors, and enable the
receiver (EH,ER,RxE=l).

3.Read USART data (it is not necessary to check statusl.

4.Enable interrupts.

The first RxROY that occurs after the a~ove sequence will indicate
that the SYN character or characters have been detected and the

next character has been assembled and isready to be read.

3. Loss of eTS or dropping TxEnable will immediately clamp the
serial output line.

TxEnable and RTS should remain as~erted until the transmission
is complete. Note that this implies that not only has the USART
completed the transfer of all bits of the last character, but
also that they have cleared the modem. A delay of 1 msec fol­
lowing a proper occurence of TxEmpty is usually sufficient
(see Item 4). An additional problem can occur in the synchronous
mode because the loss of TxEnable clamps the data in at a
SPACE instead of the normal MARK. This problem, which does not
occur in the asynchronous mode, can be corrected by an external
gate combining RTS and the serial output data.

4. Extraneous transitions can occur on TxEmpty while data (including
USART generated SYNs) is transferred t~ the parallel-to-serial
converter,

This ~ituation can be avoided by ensuring that TxEmpty occurs
during several consecutive status reads before assuming that the
transmitter is truly lnthe empty state.

5. A BREAK (i.e., long space) detected by the receiver results in
a string of characters which have framing errors.

If reception is to be continued after a BREAK, care must b~

taken ,to ensure that valid data is being received; special care
must be taken with the last character perceived during a BREAK, ,
since its value, including any framing error associated with it,
is indeterminate.

Interfacing to the POLy-aa Bus

Data Bus - Data transfer in the POLy-aa occurs over two uni­
directional data busses - the Data In bus, Dl~-7 (device to
CPU transfer) and the Data Out bus, D~1-7 (CPU to device trans­
fer). Both busses are a bits wide. The Data Out bus is tri­
state and will drive 30 TTL loads or 120 low-power schottky
TTL' (LSTTL) loads. The Data In bus present 1 LSTTL load. 07
ts the most significant bit during arithmetic operations.
Data is presented on the bus uncomplemented.

Address Bus - The Address Bus, A0 - A15, is 16 bits wide and
is also tri-state for DMA or multiprocessing applications.
It also will drive 30 TTL or 120 LSTTL loads. During memory
transfers a 16 bit memory address appears on this bus. A15
is the most significant address bit. During I/O transfers
two identical a bit addresses appear on the bus. A1S and A7
are the most significant address bits. Generally the lower
a-bits (A~ - 7) are used to address I/O devices.

Interrupt Bus - The Interrupt Bus (VI0 - VI7) consists of
eight active low interrupt request lines. VI7 is the interrupt
with the highest priority and VI~ has the lowest priority.
Each of these lines present 1 TTL load to the bus and each is
pulled up by a 2200 ohm resistor to +5 volts to ensure unused
interrupts are inactive. An interrupt request should remain
low until services by the CPU.

Status Bus - These 6 lines indicate the status of the CPU
(i.e.- what type of cycles it is running). SINTA goes high
during and interrupt acknowledge cycle; SMEMR, when high, sig­
nals a memory read cycle; SIN and SOUT, respectively, indi-
cate input and output data transfers. SWO goes low during output
or memory write cycles, and HLTA is active (high) only when
the CPU is halted. Note that there ;s not a separate status

line for a memory write cycle. This may be generated by the
logic SWO·SOOi'. All status lines, except HLTA, are tri-state
and capable of driving 30 TTL loads. HlTA is an open collector
output wi.th a resistive pulley of 1000n to +5 volts.

Clocks - The two 8080 CPU clocks 01 and 02 are buffered and
brought out to the bus. Both clocks are active high .

. Control Bus and Data Strobes ~ Two lines are provided for
cold starting the CPU. The PRESET line (active low) causes
the program counter to be reset to zero, and when release
(high) starts execution from that point with interrupts dis­
abled. PRESET may be generated by a mechanical switch closure
as an RC timing network and pullups are provided on the CPU/8
cards. pac is an active low signal that is asserted whenever
PRESET is active. It is open-collector with a 2.2K pullup to
+5 volts and is normally used to reset peripheral controllers
when power is applied to the system or during a reset.
XRDY, PRDY, and BGNT are all anded together and applied to
the 8080 CPU as the READY signal. When any of these are
low the processor will enter a wait state the next time it tries
to access the bus and will remain in a wait state until ~RDY
PRDY, and BGNT are all high. These three inputs are pulled
high through 22QO~ resistors to +5 volts to ensure they are
active when unused. The PRDY line is to be. used by memory
and peripheral controllers to indicate that a transfer cannot
be completed within the 500 nanosecond CPU cycle, and will
extend this cycle by adding wait cycles, until PRDY is high.

BGNT and XRDY are to be used only by the bus controller card.
BGNT, when taken low, will a1so disable all tri-state bus
drivers on the CPU/8 card. The data strobes POBIN and PWR are
~tocessor data bus in and processor write, respectively. PDBIN is
active high and PWR is active low. When PDBIN is active data
for a transfer to the CPU should be gated onto the data in bus.
When PWR is active, valid data is present on the data out
bus for a transfer to a peripheral device on memory. The PSYNC

signal is asserted (active high} at the beginning of every
memory or I/O cycle. During this time, the processor status
word is being sent to the status latch. Shortly after the
rising edge of ~1 during PSVNC the status is available. A
delay' of 40 ns after the positive edge of 01 is satisfactory.
The memory or I/O address (A~ - A15) is stable shortly after
the rising edge of PSVNC (see timing diagram). An additional
strobes PMWR or MWRITE t is provided on the bus. lhis is an
active nigh signal that is the logical end of PWR+ and SOUT-.
It is to be used as the write strobe for memory transfers.

Using Static Devices on the POLy-aa

Bus -- Devices such as static ROM or RAM or I/O parts are easy
to interface to the poly-aa bus.Addresses and chip selects
may be decoded directly from the address bus and applied to
the memory or I/O devices,. POBIN and the status of the opera­
tion (SINP or SMEMR) should be used to gate data onto the bus.
When writing MWRITE or PWR·SOUT should be used as the write
strobe. If data is to be gated onto an oncard bus, SYNC'WO
should be used. Otherwise the DO bus should be buffered
and applied continuously. When designing an interface to
the bus all data strobes should be applied to Schmidt-trigger
inputs for noise immunity. See Figure X for an example.

Additional interfacing for dynamic or clocked devices - When
interfacing to dynamic RAM a signal is needed to indicate the
start if an acce~s cycle. This may be produced by anding toge­
ther 01, SYNC, the appropriate status bit and a board select
(SS) signal. SS indicates that a valid address has been decoded.
Shown below is a circuit for decoding the start of a memory
read cycle.

PSYNC+
01+

cl1 40ns START CYCLE-
SMEMR+
BS+

ADDRESS
DECODER DEVICE ~ 74LS14

6
CHIP WRITE '--------I

___ -----l 5 EL£C TEN A 8 L E
~--~~...;;;...;;;;;.~ MWRITE+

BUS BUS
DRIVERS ENABLE RECEIVERS ENABLE

o 'e;-7 DO¢-7

~274LS13
%,74LS14

I
SMEMR+

P DB-IN +

FIG X

PSYNC+
I

Wo-

3'224-
eLl(, GeN,

RE sI{'I IWr1N 1#'-
- ,

~ j

-~ ONBfJ

(\ [\

4700
..0-

~

+
~)- t ~

ac Co :::a:.

X 0(~
CL

\ -,

cpu/g

¢2
-t-- ~,

FUSEf

...., \-

1 h n
II" I, ,II' VI Ir ~y

,fU- STATl:f

-4- + ~ ~ + + v :::: , a::
'0

I~ ~
i- 13 0.. ~ Ig ~

ir :t
Q Q n..

,I / 1/ ,[r /' v lI"
I~\ /

ClJXk> PATA
STRoBf?5

B(}5

gOlfe)

c; T/\ TV S
LATC.H

t
P~"/ER5

SINTA
SHI:HR
sour
SIN
Swo
SHtTA

~ ~
/'

STATUS
8Us

-.. -- ~

CP u
A/J-I!7 -- P¢--=z ------------ -- ------- -----

V
----- --]-- I------;~ V x--- --.J

Af-()

~ ,6
I"

AODR
BUS

--- -----------t--
lJO"~7 P'-t -=] r-. -- --. -~j

DA·TA
OVT
BUs

PE:

" -F'¢l
DATIl- INfr::RRtJP1-
IN BUs

BU5

