POLY 88 MICROCOMPUTER SYSTEM
VOLUME II: OPERATION AND SOFTWARE

© 1976 1IPC

A:

B:

TABLE OF CONTENTS

page

Introduction to the POLY 88......ci ittt iieeennannn 1
1. Symbol SyStemM....eieiiiiieieeerieeeeeenoneeeeeneneneannnea 2
a. Number SyStem....ceieeereinieeeeeneeneeeneenennannnanns 2

i) Decimal and DiNary..eeeiee e e neeeneennennnns 2

ii) Octal and hexadecimal....cueineeinineeeennneennnn 9

s R Y o (5 11

2. Computer TangUAgeSt ereneenreeoeecnannesssssannannes 12
a. Machine 1anguage....oe it ettt eeennneeetensonaannans 12

b. Assembly 1anguage.....c.oeeiitiiinenenecennens IR 12

c. High Tevel 1anguagesS....cee et ereeeeesnencoasoacnnns 14

3. Computer theory...coe ettt ittt eeeeecnnnnenanns 14
a. Address and MEMOrY .«cce ettt innecenscnacannnns «..14

b. Central processor architecture..................... 17

c. Instruction set.(Aefual. Fualiucloms, fq350. 24

d Monidor..covunninniei i 52

F) ASCII MOdE:. e tvteneeneneieoeeeaeeneeeenenonennnns 52

i) Front panel MOdE. .. ceetreeeeeeeeenrnnennnnnnnnnn 53

Operating the SYStemM. ..t enereeniieeeeeeneneeneeenennnnnns 60

PolyMorphic Systems POLY 88, Vol. II Rev.0.0 P. 1

POLY 88 Microcomputer System Manual
Vol. II: Operation and Software

A: Introduction to the POLY 88.

The POLY 88 system is designed to be, not only a powerful
problem-solver, but also a source of satisfaction and enjoyment.
Sophisticated computer users know that computers are interesting
as well as useful. To derive the greatest possible value, both
practical and aesthetic, from the system, it is important to have
both a ready ability to interact with the computer at the level
of keyboard and screen and a good sense of what is going on inside
the computer at the level of actual electronic events. This
volume is intended to show the user how to operate the system,
and to convey some measure of awareness of what is going on
inside the computer as the user operates it.

You may be quite advanced in your familiarity with computers, or
you may just be getting started. Our discussion should be under-
standable and helpful to the beginner, yet interesting and worth-
while to the expert. We will be moving quickly through the
fundamental concepts of symbol systems -- binary and hexadecimal
math and ASCII code -- used by computer users, and some useful
"languages," especially assembly language, with which we communi-
cate with computers. Then we will consider how a computer accepts,
stores, and manipulates data to produce results. Then we will be
operating the POLY 88 to see how it works.

If you already have some experience with computers, you will be
mainly interested here in reading about those things that are
unique to the POLY 88 -- its architecture and its monitor. You

will probably just want to skim through Section A.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 2

Section B will give you some hands-on experience with
the POLY 88, while Section C and the appendix present in
tabular form the information you will want to refer to often.

If your experience with computers is more limited, you will want

to go through Section A with care. It discusses binary math, etc.,
in a way intended to provide some insight into what actually goes
on inside the computer. Computer users should be able to picture
in their minds what the computer is going through in response to
their commands. Indeed, the computer usually performs its opera=.
tions so fast and replies to its operator so promptly that the
operator may have no sense of anything going on between his pushing
a key and the appearance of the response on the screen. This
"lack of sympathy" is undesireable, because it causes operators

to miss much of the aesthetic value of the computer, and in fact

prevents them from making full use of the computer (especially
a micro-computer like the POLY 88).

The relatively inexperienced computer user may find that our
discussion is occasionally hard to follow. He or she will want

to re-read and interpret, refer to other texts, and discuss

the subject with other people. The authors of this text, however,
are determined to make it understandable to the beginner, yet
interesting to those who are more advanced.

1. Symbol Systems

a. Number Systems

i) Decimal and Binary

Binary math is the symbol system that most closely approximates
the actual operations of an electronic digital computer. A
mechanical computer might use devices having ten different
"states," Tike a disc with the digits 0 through 9 around its edge:

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.3

(or discs with ten notches, gears with ten teeth, etc.). The
ten "states" of such a disc would be the ten different digits
that the disc presents to the view of the human user. In fact,
there are such devices, and they might be thought of as being
purely "decimal" in operation -- decimal meaning ten.

We could put several such discs together and have them count

things. . Each disc would be geared to the one next to it, so

that when the disc on the right went all the way around once,
through all ten digits from 0 through 9, the gear on the left
would move one “"notch" to its next state. :

{\\\\Every time this disc
goes all the way around

once, from 0 through 9...
%r—x

this gear would move

.. to the next digit. \\\\j

So when the counter had counted nine things, it would read

&

i

rolo [}
~O

and when it counted one more, it would read:

___back to where
it started

An alternative would be to have just one large disc with many
numbers on it -- the numbers 0 to 100, say. But our "decimal
discs," each geared to move one number when the gear to its
right went all the way around once, would be smaller and handier,
and would be able to count very large numbers. In fact, we
increase its capacity to count by a factor of ten every time we
add another disc. A two-disc counter could count from 0 to 99,
while a three-disc counter could count from 0 to 999, and so on.

Actually, this hypothetical counter using decimal discs is a

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.4

mechanical analog of the decimal number system itself. Each
disc corresponds to a "place" in a decimal number, and the fact
that we would want each disc to move by one number when the disc
to its right had gone all the way through its ten digits shows
that each "place" in a decimal number represents a power of ten,
with each place being one power higher than the place to its
right.

X X X X

. \i |)
X times]03__—-/ / 2\ \————-—-I‘X times 10

X times 10 X times 10

In the decimal system, this number:
324

means "three hundred and twenty-four" because each digit in the
number represents a power of ten, thus:

i Z-ALX 0° = 4 X 1 = 4
= 2 X 10 = 20
X

3 X 100 = 300

3

The right-hand place (called the "least significant")

in the number is the 10° or "ten to the zeroeth" place; the
digit occupying that space tells you how many 10%s the number
contains. Since 10° = 1, this position is called the ones

place or ones column. (The zeroeth power of any number is one.)
The 4 occupying this column means "four ones." Moving to the
left, the next place shows 10] or ten. The 2 occupying this
place means "two tens." The next place (in this case, the "most
significant") indicates 102, or one hundred. Three hundreds,
two tens, and four ones -- 324. To express numbers involving

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.5

thousands, tens of thousands, etc., we just keep adding places

to the left. The left-most place is always the most significant --
it indicates the highest power of the base. Decimal has ten
different digits -- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 -- and so can
indicate from 0 to 9 ones in the ones column, from 0 to 9 tens

in the tens column, and so forth. Humans, having ten fingers,

find decimal or ten-based counting very natural, and many people
just cannot believe that other bases are better for some purposes.

Nevertheless, the fact is that any value can be used as a base
in a number system. Consider thirty: We say "thirty" and write
30 to represent this quantity. But just as we could use some
other word than "thirty" to represent the quantity, so we could
apply some other number system. For instance, the base of the
number system could itself be thirty. That system would work
like this:

X tﬁmes 303 twenty-seven \.\ X times 30° = ones
thousands

X times 30 = nine- X times 30 = thirties
hundreds

Thirty includes "no ones" and "one thirty.," with no nine-
hundreds, etc. So in a thirty-based system, the value thirty
would be expressed:

one thirty ——»= 1 0 ==—no ones

In a number system based on three, thirty would be expressed:

1 0 1 0

(Why?)

Just what number is selected to be the base of a number system
is a matter of convenience. Creatures having ten fingers find

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.6

ten a convenient base. But when you start making devices to
help you in computation, it becomes convenient to use other
bases as well. '

Computers use solid-state electronic devices to perform computa-
tions. The simplest, smallest, cheapest solid-state device can
take on just two electronic "states." (Recall that the decimal
disc had ten states -- the ten different positions it would be
in to show each of its ten digits to a viewer.) Such a device
is often thought of as a switch. The switch might offer two
possible pathways:

electricity in “///,)r
The
electricity out this way

e electricity out this way

flip the switch: ~ <

The two stable states of the switch might simply be OPEN and
CLOSED -- OFF and ON. The two states can be called YES and NO,

or TRUE and FALSE -- or they can be called 1 and 0. This
immediately suggests a number system based on just two digits.

And in fact, since a computer actually performs its operations

by means of many tiny solid-state devices that have two possible
stable states, computers are said to "use binary" in their
operation. In binary each position or column in a number represents
a power of two, rather than a power of ten. This binary number

1 1
Z 1x2°=1x1=1
0 X 2 = X2=20
1 X 2 =1X4 =14
says " 1 one, 0 twos, and 1 four, " or five. In decimal -- 5.
In binary -- 101. (We will continue to use written words

like "one, two, three" to discuss these other systems.) We will
also slash all @s to distinguish them from 0's, as does the
POLY 88.)

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 7

Obviously, binary numbers are usually longer than decimal

numbers. So why use them? Because solid-state electronic devices
find them convenient. To be more exact, the binary system is the
simplest number system that can convey any and all data. The

only simpler system would be to the base one, and that would

not be a "system" at all, but just a tally -- ten marks to
indicate the number ten. The simplicity of binary allows

computer design to be as simple as possible, since the simplest

physical system with more than one stable state has two.

Any quantity can be represented in binary. Just keep adding
powers of two to the left. Binary digits, or "bits," are
frequently grouped in groups of eight:

27 28 25 A 3 2 o1 50

128's 645 325 16% 8% 4’ 2's s
Eight bits is a "byte." The largest number expressible in a
byte, obviously, is 11111111, which is (starting from the right)
one one, one two, one four, one eight, and so forth. 1In decimal
it would be 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128, or 255.
Larger numbers, of course, are built up from several bytes.

Many computers, the POLY 88 among them, always treat values in
eight-bit bytes. For instance, the POLY 88 stores data in its
memory in the form of eight-bit bytes. Recall that a binary digit
or bit, which is always either 0 or 1, corresponds to a tiny
solid-state device which is in one or the other of its two stable
states. When you store a data quantity in the POLY 88, you are
actually manipulating the states of many such devices. Let us
call these two states the "zero state" and the "not zero state."
When you store the quantity five in the POLY 88's memory,

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.8

you affect the state of eight (microscopically small) devices.
Five in binary is 101B, or, as an eight-bit byte, 00000101B. The
eight affected devices will be in this overall state:

Not | Not

Zero Zero Zero Zero Zero | Zero Zero |Zero
State State State State State | State | State|State

Another way to show the state of the eight affected devices
is:

o jofofofo|1]0]

This is a very convenient way, because here we have our binary

number 00000101B over-laid onto the representation of the eight
affected devices. We will be using this representation often,

because to get the greatest use and the greatest aesthetic
satisfaction out of your computer, it is important to "think binary"
(at Teast at first)and visualize the actual events going on.down at the
level of the bi-stable devices. The "memory" of the computer

consists of many, many groups of eight such devices, and can be
thought of as many such rows (bytes) as this:

waaaa(1a(1

turned on edge and grouped together Tike this:

Memory i

each Tocation in memory
contains one byte -- eight bits

Binary expresses the actual state of the bi-stable devices or
"flip-flops" that make up the computer's memory. As we will be

discussing Tater, binary also expresses the "vectors" or the
pathways that lead to the bytes that make up the memory.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 9

ii) Octal and Hexadecimal

Though electronic devices find binary convenient, it is cumber-
some for humans. So computer operators use other number systems
that are more like decimal in their compactness, namely "octal,"
based on eight, and "hexadecimal," based on sixteen. Since eight
and sixteen are themselves powers of two, numbers in these
systems are fairly easy to compare with or convert to binary
numbers. Decimal could be used, but it would not convey any
sense of the actual state of operations down at the level of the
solid-state devices, where the abstraction of numbers has its
reality in the form of the electrical state of each device.

Octal uses the digits. @ through 7, with each position indicating
up to seven times a power of eight. Hexadecimal is more important
for our purposes, since operating the POLY 88 involves its use.
Hexadecimal uses all ten of the familiar digits, plus the first
six letter of the alphabet: #123456789ABCDEF.

Each position in a hexadecimal number indicates a power of
sixteen, thus:

e
163 16° 161

Clearly, very large numbers can be compactly expressed in
hexadecimal. This number, for instance:

Foo

Says "no ones, no sixteens, and fifteen two-hundred-fifty-sixes.
In decimal -- 3,840. (The hex number above would ordinarily be
written FPPH and said "F zero zero hex." We will always put an
H after a hex number and a B after a binary number; a number
with no Tetter after it is always decimal.) |

In binary, by the way, the above hex number is

11110000C0UIB. There is no sense in which the decimal number
3,840 is the "real" expression of this value. Any binary number up
to four bits can be expressed as one hexadecimal number, thus:

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 10

Binary Hexadecimal Decimal
PPPRE gH ¢
pPP1B 1H 1
@198 | 2H 2
ppI1B 3H 3
p1pPB 4H 4
p1p1B 5H 5
p11pB 6H 6
#1118 : 7H 7
1ppPB 8H 8
19018 9H 9
19198 AH 19
19118 BH 11
11988 CH 12
1191B DH 13
11198 | EH 14
1111B FH 15

Recall that in the POLY 88, each memory location consits of
eight bi-stable devices, so the contents of any memory location
can be expressed in eight binary digits or bits. This eight-bit
value can in turn be expressed in two hexadecimal characters.
For instance, if you think of the number 1111000PB as two
groups: 1111 @PpPP, you see that it equals FP in hex (FPH).

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 11

b. ASCII. Binary numbers can be used (l1ike any numbers) in a

code to express things other than quantities. One code for us to
consider is the American Standard Code for Information Interchange,
or ASCII. ASCII provides a means ?br puttihg information into a
computer and getting it out again in a form that makes sense to

the human. In ASCII, the characters the human writes or reads --
upper and lower case letters and the ten digits, plus punctuation
marks -- are all assigned numberical values. Every character on a
typewriter keyboard, for instance, is assigned a binary equivalent.
When the human strikes a key on the computer's input keyboard, the
keyboard in turn sends to the computer one byte -- an 8-bit binary
number -- corresponding to that key. This is necessary because

the computer itself "understands" nothing but binary; it conducts all
its operations in terms of the bistable state of electronic connectors.

ASCII also enables the computer to put out characters that make
sense to the human. If the computer and the human are communicat-
ing strictly by means of a typewriter, the process described above
simply reverses. The human puts in his/her information by striking
the appropriate keys. The keyboard electronics interpret this
according to ASCII code into binary bytes, which are then sent

on to the computer. When the computer completes its operation,

it sends a series of bytes back to the teletype, which interprets
them according to the ASCII code and causes the appropriate keys
to strike. Some bytes correspond to functions other than key
strikes -- carriage shift, carriage return, etc.

The POLY 88 uses a keyboard input and video output. (There is also
a tape input/output. The tape can be recorded according to the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p.12

ASCII code -- actually in a dual-tone code corresponding to the
binary representations of the ASCII characters.) The human

types into the keyboard his/her:. input. The keyboard sends

this input on to the computer in the form of the bytes

assigned to each key by ASCII. When the computer finishes its
operations, it sends the information in ASCII to its own video
electronics, where the information is converted into the form that
will cause the appropriate characters to appear on the screen. You
will find a chart showing the ASCII-to-binary code in the appendix.

2. Computer Languages

a. Machine language

As said earlier, the data a computer deals with exist in the form

of states of sets of bi-stable devices. Actually, not only data items
but also every operation the computer can perform corresponds to a
binary number. At the most fundamental level of the computer hard-
ware, events take place in the form of changes in the state of
individual devices having two stable states. Therefore, binary
"statements"” can exactly "express" what is actually happening

inside the computer.

The heart of a computer is its central processor, usually con-
sisting of one or more integrated circuits or "chips." Built into
the physical structure of these chips are microscopic pathways

and electronic devices that enable the computer to perform its
basic operations. The POLY 88 has one such chip, the Intel 8080A
microprocessor, designed to allow the computer to perform 72
fundamental types of functions. These functions are called
"machine instructions,” and together are called the instruction
set. Each instruction corresponds to a binary number, and the

set of all such numbers is called the machine language.

b. Assembly language

Binary exists for the convenience of the computer -- it allows
computer design to be as simpie as possible. Hexadecimal and
ASCII are ways that statements which make sense to the human can

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 13

be related to "statements" that "make sense" to the computer.
Assembly Tanguage is a convenience to the human -- it expresses
computer operations in a form that makes sense to him.

Assembly language assigns a word to each instruction. - When the
human writes a program, he/she uses assembly language to express
what the computer is supposed to do. For instance, the human
may write down something like this:

INR A

This instruction, which means " INcrement-Register A," causes

the value stored in a certain location to increase by 1. This
instruction can now be converted into a form the computer can

use. Each word in assembly language can also be expressed as a
two-digit hex number (called the "opcode") which represents the
binary instruction actually executed by the machine. (For a '
1ist of all assembly language words --the instruction set--and their
hex equivalents, see the appendix.) The human can now rewrite

his program in hex. The instruction above, for instance,

would be: ‘

HEX ASSEMBLY LANGUAGE
3C INR A

This conversion process is called assembling. Now we can type
our hex directly into the keyboard. From there on, the POLY 88
converts the input into the binary form it requires.

Assembling by hand, by the way, can be avoided. You can program
the computer so that it will convert assembly language to the form
it needs. Such a program is called an assembler. When using an
assembler, you begin by putting the assembler program into the
computer. Then youtype assembly Tanguage directly into the key-
board, and the computer interprets that input appropriately.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.14

c. High level languages

There is an even more "human" way to write a program. Operations
which seem to the human to be single steps (like "multiply") may
actually require the computer to obey many instructions. The
human may find it convenient to be able to use symbols that do
not correspond directly to machine instructions. In assembly
language there is a word or symbol corresponding to every
instruction that the computer will obey in performing its operations.
In a high level language, on the other hand, one word or symbol
may imply many instructions.

When you write your commands for the computer in assembly language
(and then convert .them to hex, or enter them directly into the
computer by using an assembler), you are thinking in terms of

the actual instructions built into the computer's central processor,
and so you will probably be making the best use of the abilities
of that particular computer. Nevertheless, it can sometimes be

a great convenience to be able to write a program in a high-

Tevel Tanguage, using terms Tike "multiply" that imply many
different instructions and would have to be expressed in several
assembly language terms. The high-level language most appropriate
for small computers 1like the POLY 88 is called BASIC. To communi-
cate with your computer in BASIC, you would first program it to
convert your statements in BASIC into the appropriate sequence of
.machine instructions.

3. Computer Theory

~a. Address and Memory

Any computer works by performing a series of manipulations (or
"program") on data stored in the computer's memory. Computer
memory consists of the state of the thousands or millions of
small, solid-state "flip-flops" or bi-stable devices within it.
The POLY 88 has from 10,000 to half a million such individual
devices in its memory, depending on options.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 15

To perform its functions, the computer must be able to locate
any one of the data items stored in its memory whenever it is
needed. So the computer must keep track of where it puts each
item. To do so, it assigns an "address" to each item in memory.
In the POLY 88, the memory "bits" (each one corresponding to the
state of a single flip-flop) are divided up into bytes of eight
bits each, each byte having its own address. To get to a given
address, the computer searches along a wiring pathway that has
sixteen decision points -- sixteen places where the path can
fork to the left or right. A schematic of this pathway would
look, in part, like this:

We can assign the binary digits @ and 1 to left and right
turns at each decision point. Consider the pathway represented
by the unbroken line:

000

=T _ __, 001
",.f""<~-...__ e e g 010
s ~IZ___ _ o011
=100

= 101

- R 4 ¢

‘ TS - 111

To follow this pathway, you turn first right, then left, then
right. Defining left as ¢ and right as 1, we can give this
pathway the unique name 1¢1, which means "right-left-right."
Three right turns would be 111; the pathway involving three
left turns would be @@g. Al11 the other pathways would have the
designations shown. These binary numbers can be thought of as
the "addresses" to which these pathways lead. Since we have

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 16

either a left or a right turn at each of these decision points,

we have a total of 23 or eight unique pathways in all. You might
have noticed something else interesting. The addresses also turn
out to number the pathways in sequence in binary notation. The
top one, 000, equals zero. The next one down equals one, the next
one is two, the next one is three, and so forth. The last one,
111, is seven. So all eight pathways are neatly numbered, from
zero through seven. That is what we mean when we say that each
memory address is a unique pathway that can be expressed by a
binary number. Each digit, @ or 1, in the binary number corresponds
to the state of a bi-stable device that is serving as a "switch"
that turns the pathway to the left or right.

As you can see from the figure above, the total number of different
pathways doubles at every decision point. Since there are 16 such
points in all in the POLY 88, it can store items in 2]6 or 65,536
different possible memory locations. Each "location" is actually

a unique pathway, determined by the states of sixteen bi-stable
devices, leading to a unique set of eight binary devices. The
states of these eight devices constitute an item, or part of an
jtem, stored in memory (one byte of memory). So -- 2]6 or 65,000
possible pathways leading to 65,008 locations, each of which can
contain any one of 28 or 256 different binary values.

A11 addressed locations taken together make up the "memory space"
of a computer. Any one address is sometimes called a "vector" in
this space because it "points" to a single byte in memory. The
memory space and address pointer can be depicted like this:

Each memory location contains 8 bits --one

byte
T
65,000 ;J
memory i
locations Al
A "vector" or Each pathway is
pathway leading to expressed as

Y one location (address) 16 bits--two bytes

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 17

with the bar representing the bytes of 8-bit groups within the
memory, and the large arrow indicating the 16-bit address that
specifies the pathway leading to each memory location.

The items stored in memory can be used in any one of several

ways. An item can represent a program instruction to the machine.
Bytes in memory can represent ASCII characters, and thus can enable
the machine to communicate with its human operator. An item can

be a numerical value, to be manipulated in a program--like your
bank balance. In the same way, a pathway leading to these items
can be defined in two ways: as a program pointer (called "program
counter") when it leads to memory items defined to be instructions;
or as a data pointer when it leads to quantities to be manipulated
by the program. Whether a certain stored item is to be considered
an instruction or a quantity to be manipulated by a program is up
to the operator. The computer does not care either way. 1In fact,
if the operator accidentally tells the computer to treat a data
quéntity as though it were an instruction, the computer will gladly
do so. To it, anything the program counter points to is an
instruction--whether the operator meant it to be an instruction or
not. And anything the data pointer points to is an item of data

to be manipulated. Trouble sometimes occurs when the operator
accidentally causes the program counter to point to a memory
location that does not contain program. The computer executes the
item as an instruction, and from that point begins to produce
nonsense or "garbage."

b. Central Processor Architecture

A computer consists of memory space, containing stored program
instructions and data to be manipulated in programs, and a central
processing unit, which manipulates data in response to program
instructions. The CPU opens pathways to memory items, takes

items from memory and temporarily stores them, transforms data

by means of mathematical and Togical operations, and sends results
out to memory or to an output device.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 18

The organization of a processor is called its "architecture; an
extremely simple computer could work like this:

Memory ' g! “
data being instruction
accessed being accessed
Central e ,
Processing il i]j ? | !fl
Unit .
Data Pointer Register Program Counter Register

Accumulator

Here we have a bar representing a large amount of memory,

with a data pointer pointing to a quantity stored at one
address, and a program counter pointing to a program instruction
which tells the CPU what to do. (Don't lose sight of the fact
that these "arrows" that are "pointing" at bytes of memory are
actually pathways leading to groups of eight bi-stable devices.)
Also, there are some "registers." The data pointer register
contains the two-byte number that corresponds to the memory address
the data pointer is pointing to. The program counter register
states the memory address of the instruction that the CPU is
currently executing. This hypothetical computer performs the
operation pointed to by the program counter, using the data
pointed to by the data pointer. The result of the operation gets
stored in the accumulator. Note that, because the data pointer
and program counter registers hold addresses, they contain two
bytes. When the computer finishes the operation indicated by
the program counter, the program counter automatically moves to
the next instruction in the program. The program counter may
"jump" on command to a new address at a considerable distance
from the previous location, but for one moment let's visualize
it as just moving one slot to the right at each step. The

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 19

computer then does whatever that instruction tells it to do.
Each time an instruction is completed, the program counter moves
to its next instruction.

The operation of this simple computer can be visualized as
follows. .The program counter points to an instruction that
tells the CPU, "Move data pointer to <address? ." The CPU
opens a line to the slot bearing that address. It also move
the program counter to the next instruction. The next instruction
says, "Take the quantity located in the slot indicated by the
data pointer, and move it to the accumulator." The CPU does so.
Next instruction: "Move the data pointer to (new address> ."
CPU obeys. "Add the quantity in that slot to the quantity in
the accumulator." CPU does this. "Move the data pointer to

{ new address} ." Obeys. "Take the quantity from the accumulator
and put it in the memory slot that the data pointer is now point-
ing to."

Note that this series of operations involves three quantities

in memory: two quantities that were already in memory, and a
third quantity, the sum of the first two, which is now also stored
in memory.

Now, about those other two CPU registers. Every time the computer
obeyed an instruction, the program counter register changed to
reflect the address of the next instruction. Since we are
visualizing this simple computer as performing a series of
instructions in sequence, let us say for the moment that

after each instruction is performed, the value in the program
counter register goes up by 1, to move the program counter one
slot up. (Actual instructions can consist of several bytes and
therefore occupy several consecutive addresses.) We could put an
instruction into the program that says "Jump the program counter
all the way to another part of the program." The value stored

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 20

in the program counter register would change to reflect the address
of the new instruction. The same thing is true of the data pointer
register -- the value in the data pointer register goes up or down as
the data pointer moves to correspond to the memory address of each
accessed memory item.

Why the accumulator? Because a computer performs its operations
by taking one very small step at a time. To take a quantity out
of memory, then take another one from memory and add it to the
first, then put the sum into a new location, takes the computer
three steps. It needs the accumulator to store the results of
intermediate steps.

This simple computer can do anything that any real computer can
do. But because it has just the three basic registers, it does
everything slowly. To increase the speed of the computer, we
add registers.

The POLY 88 has several additional "working registers." The
working registers are like the accumulator in that they temporarily
store values being used in computations.

We will add the working registers to our conceptual depiction
of what is called the architecture of the POLY 88:

data bytes program bytes
Memory T
, |]
data pointer ﬁ ﬁ program pointer
TR 0T, H
Q%%Q‘WR L_W
Reersmr 0" B C
W _____/«J
"¢ D E
REGIsre g !
A

Atcomolatee

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 21

So far, we have the memory space; a data pointer register; a
program counter register; working registers (two pairs, each
one holding one byte); and an accumulator. Let us consider
the working registers.:

The working registers, 1ike the accumulator, temporarily store
values the computer is using in the course of its operations.
Thus the computer can move a value from memory to any register,
including the accumulator, from any register to any other

register, and from any register to memory. It can perform SOmé
operations on the contents of the accumulator. It can also perform

operations involving the contents of the accumulator and other
registers (add them, for instance).

You have probably noticed that, because we used the letter A to
desjgnate the accumulator, we designate the working registers B, C,

D and E. Each register holds one byte; the registers can also be
used in pairs, B with ¢ and D with E to hold 16 bit quantities. The
register pairs are called "pair B" and "pair D."

You might also note that we are using the letters H and L to
designate the two bytes of the datapointer register pair. This
simply means that the left register contains digits of relatively
high significance, the right register digits of lower significance.
In any number, the significance of digits increases as you move to
the left -- in decimal, tens are more significant than ones,
hundreds are more significant than tens, and so forth. The letters
H and L could apply to any of the register pairs; by convention,
however, only this register pair is described in that way.

There remains just one basic feature of computer architecture
to add: the stack pointer. 1In order to talk about the stack
pointer, we will have to go a bit deeper into the subject of
programming.

A program is a pre-determined series of instructions for the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 22

computer to follow in solving a specific problem. Recall that

the heart of the computer is its central processing unit, consist-
ing of one or more chips into which are built the electronics
providing for all the logical operations of the computer. This
central processor -lets the computer deal with all the various
‘'kinds of problems it is built to deal with. But the central
processor does not tell the computer when to perform any given
operation, or on what, and so it does not enable the computer to
deal with any specific problem. That requires a program.

The fundamental instructions built into the central processor

are called collectively the "instruction set." A program also
consists of instructions, which the user stores in memory. The
computer uses the electronics of the central processor as required
to obey the program instructions it encounters in memory.

A very simple program starts out with instruction #1 and moves
along in a straight 1ine through a series of instructions to

the end. But almost no program is that simple. Most programs
incorporate strings of instructions that the computer performs
repeatedly, returning to the beginning of the string and performing
it agdin until some condition is satisfied. These repeating
strings are called "loops."

Another possibility is a separate part of a program that performs
some specific task that may be called for at several different
times in the execution of the program. The computer moves to that
part of the program whenever it is instructed to, and performs

the instructions it contains; then it returns to the main-stream
program. These repeatable sub-portions of the program are called

"sub-routines.”

Obviously, the terms "loop" and "sub-routine" are not really
mutually exclusive. A sub-routine could be é|1oop. The point
is that both terms indicate a departure from the straight-ahead,
left-foot-right-foot progress of the progranm.

PolyMorphic Systems POLY 88, VYol. II Rev. 0.0 P. 23

We can depict a sub-routine in this way:

data program

: m TR it

Memory l !%? %d“ i @ﬁ T

sub-routine sub-routine
IIAII IIBII

Sub-routines "A" and "B" consist of instructions for operations

that are needed several times in the execution of the program.

Every time sub-routine "A" is needed, the computer comes upon the
instruction "Call sub-routine (first address in A> ." And off

it goes. When it needs "B," the computer comes upon the instruction

"Call sub-routine <first address in "B"> ."

This is where the stack pointer comes in. Say the program counter
departs from the main-stream program and goes to sub-routine "A."
The computer performs the sub-routine as required. Now it has to
get back to the right place in the main program. The stack pointer
records the address to which the program counter must return in
order to resume the main-stream program. In the example we are
discussing, this will be the address in the main-stiream from

- which the program counter originally departed -- plus three.

Why plus three? Because if the program counter returned from
sub-routine "A" to exactly the same point in the
program from which it departed, it would once again come upon the

instruction "Call first address in "A" ." So back it would ao
to the beginning of sub-routine "A". Finished, it would return to
the same instruction -- and go back to "A" again -- and acain --

ti11 some merciful human pulled the plug. So when it return from
the subroutine, it must begin at the instruction following the

"CALL" (one-byte) and the two-byte address of the sub-routine.

Now, our example is still very simple. So far it just involves
jumping to either "A" or "B" from the main-stream program, then

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 24

back. But often a program will involve calling a sub-routine,
then calling from the midst of the sub-routine to another, and

so forth. So the program counter may move from the main-stream
program tc "A," then before finishing "A" it may move to "B," then
"C," etc. To return, it may have to go ‘rom "C" to "B," then to
"A," then back to the main-stream program. The actual path/a
computer follows to go from question to answer can be very, very

complicated.

That is why the stack pointer has a stack. The stack pointer keeps
inserting into a portion of memory the addresses that the program
counter has to return to asit finishes with sub-routines. The
first address that goes into this "stack" is the address from

which the program counter departed when it jumped to sub-routine
"A," plus three. If it goes to "B" before it finishes with "A,"
then the next entry in the stack is the address in "A" to which

the program counter must eventually return. The stack pointer
keeps putting these addresses in, in the required order, till it

is necessary to start returning.

To summarize, the computer stores into its memory both data items
and program instructions, in the form of bytes. It takes data
items from memory and puts them into the working registers, where
they can be manipulated. Addresses, or pathways leading to data
bytes and program bytes, are represented in the program counter,
data pointer, and stack pointer registers. These addresses can
themselves be stored into memory and recalled as required.

c. Instruction Set

At the heart of the POLY 88 is a small "chip," about the size

of the nail of your 1ittle finger, called a central processing

unit or CPU. This integrated circuit, the Intel 8080 A, incorporates
many microscopically small solid-state electronic devices that
enable the computer to perform its various operations. Basically,

in fact, all processing is the job of the CPU, while the rest of

the computer components provide input, output, storage, and access.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 25

We will now take a look at all 72 kinds of operations or
"instructions" the Intel 8080 CPU can perform. First we will
consider some general concepts.

Some of the operations the CPU performs are familiar -- addition
and subtraction, for instance. Others equally important, and in
fact more fundamental, are "logical operations," in particular
those called complementation, AND, OR, and XOR (exclusive OR).

COMPLEMENTATION
Addition and subtraction treat binary quantities as quantities --
as numbers built up of one: or more digits, to be treated as wholes.
Logical operations, on the other hand, treat the bits of binary
values one at a time. One of them, complementation, simply changes
every @ to a 1 and every 1 to a #. These two numbers are
complementary:

10191009

A1P1P111
One of the CPU's operations is "complement"--that is, the CPU can
be told to complement any number, and will respond by changing
every @ to a 1 and every 1 to a 9.

TWOS COMPLEMENT

For simplicity of design, the central processor uses addition to
subtract. It does this by converting a number to be subtracted
into its "twos complement," which in effect reverses its sign,
then adding it to the number to be subtracted from.

Let's say that the subtraction problem is:

11911901
- 91921901

The number to be subtracted is P1991PP1. To do this, we will
instead add the twos complement of this number, which is in

effect its negative counterpart (in a number of fixed length--here,
eight bits). We begin by constructing its twos complement.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 26

First we complement this number -- invert every bit. It becomes
19119118, That is the "ones <complement," or just the complement
of P1PA1PB#1. Then we add 1 to give the twos complement.

10110119
+ P00P2001
[gTT1QT1T

We can test to see if this is really, in effect, the negative
equivalent of the original number by adding it to the original
number and seeing if the result is zero. In so doing, we will
also see the point of considering only numbers of fixed length.

21991001
+ 19119111

1 ppopopRp
ninth bit ’/,/"’
not considered one byte

part of sum

The fact that we are considering numbers of fixed length means

that the carry out of the most significant place is not considered
part of the sum, so zero can result from the addition of two nonzero
bytes.

Adding 19110111 to 11011901 yields:

11911901
19119111
Carry not
part of sum—e=1 10019000
result

Among binary number of a fixed length of eight bits, there are
256 different possible combinations. These 256 combinations can
be considered to be the positive numbers from § through 255.
Equally well, they can be considred the 256 values from -128

to + 127. In this Tatter case, the binary expressions for the
values from § to +127 would all be exactly the same as when only

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 27

positive numbers are being represented. Then converting all of
these values to their twos complements yields the remaining binary.
values which can be considered their negative counterparts. Note
that, in this case, all the positive numbers would begin with a

@ in the most significant place, and all the negative numbers
would begin with a 1.

1

pooRPPA1B
A11111118B 127 (decimal)

— S
nu

-1 (twos complement of 1)
-127 (twos complement of 127D)

111111118
19pP000TB

Note that @ (00@0d6EEB) and -128 (10@PPPPFEB) are their own twos
complements. A1l other values have their own unique but dissimilar

twos complement.

The existence of these two sets of values, positive values starting
in every case with a @ and negative values starting in every case
with a 1, means that the most significant bit can be considered

not only part of the value but also the sign of the value. This is
called "signed twos complement notation." The following discussion
of computer operations or "instructions" must be understood in
light of twos complement representation.

LOGICAL OPERATIONS

One Tlogical opération, complementation, treats the bits of a
single binary value. The other logical operations of the CPU
compare the bits of one binary number with the bits of another.
Let's take two binary numbers having just one bit each:

g

Compare these bits.
1

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 28

The comparison checks to see if the two bits conform to some
"rule," and leaves a record to indicate whether or not they do
conform. A rule might be: "The two bits are the same." If

they are the same, we can leave a 1 as a record; if they are not
the same, we can leave a @#. Note that, in a comparison of two
bits, the first bit can be either a § or a one, and the second
bit can also be a § or a 1, so there are 22 or four possible

cases:
) G 1.
] 1 1.
1 ~—p=p g.
P ~g—p=1 9.

(Since the rule says nothing about the order of the bits, we
can consider the last two cases-identical.)

A different rule will produce different results for the same
cases. Supposing the rule is " One or the other of the two
digits is a 1." Now the four cases produce:

f —— f.
] | 1.
| € 1.
P 1 1.

Another way of saying that two bits compare in conformance with
a rule is that the comparison is true. Using false and true
instead of @ and 1 is very interesting, because it shows how
fundamental these comparisons are to logic, and therefore why
these comparisons are called logical functions.

In the second example above, the rule was that one or the other

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.29

of the two bits (or both) had to be 1. If at least one bit was

1, the result of the comparison was also 1. If neither was 1, the
result of the comparison was @. Defining @ as false and 1 as
true, we can restate that rule thus: If one bit or the other is
true, then the result is also frue. For brevity:

If A is true OR B is true, then
C is true.

This rule provides a model for a certain kind of logical syllogism --
the kind in which a certain conclusion always follows if either one
of two conditions is met. For instance:

If the batteries are dead, OR the bulb is burned out, the flashlight
will not work.

Here, either one of the conditions if true is sufficient to make
the conclusion true. There is, of course, another kind of
relationship, in which both one condition AND the second must be
true for the result to be true.

If you have enough money, AND if the store is open, you can buy
what you want.

This AND relationship provides the model for the most famous
syllogism of all: "A11l men are mortal; Socrates is a man;
therefore Socrates is mortal." Stated like the previous example:
"If all men are mortal, AND if Socrates is a man, then Socrates

is mortal." Note that syllogisms need not assert the truth of

any particular fact, but only offer a model to predict the

"truth relationships" of possibilities. Another way of making

the same syllogism would be:

A11 men mortal? True. AND Socrates a man? True: Socrates mortal?

True.

PolyMorphic Systems POLY 88 Vol. II REV. 0.0 P. 30
To summarize the AND relationship:

false AND false: false

false AND true : false

true AND false: false

true AND true : true

Defining @ as false and 1 as true, we can summarize the AND
relationship in this "truth table":

AND

-
LT T S
—_ e |

We have already seen the rule that if one OR the other (or both)
of the two conditions being compared is true, then the result is
true. Here is the OR truth table:

=
—t d |t

OR

One other rule concerns us here: The XOR or "exclusive OR® rule,
in which one or the other (but not both) conditions must be true
for the result to be true.

For jnstance, suppose that Mr. Smith employs an equal number of
female and male people:

If Smith hires one female, XOR if Smith hires one male, he will
have an unequal number of female and male employees.-

Here is the XOR truth table:

PolyMorphic Systems POLY 88 Vol. II Rev. 0.0 P.37

As we said before, the POLY 88 CPU compares the bits of two
numbers by means of one of these rules in performing its logical
operations. Here's how two numbers are compared in these ways:

' ' AND
result P 1P

The top number is compared bit by bit with the number below it,
to see if the upper bit AND the lower bit are 1.

19119019
11911111 OR

11111111

The top number is compared bit by bit with the number below it,
to see if the upper bit OR the lower bit is 1.

-

XOR

|- —
— |-
— Sy —
D |t
el ok
— |
W [t
—

The top number is compared bit by bit with the number below it,
to see if the upper bit XOR the lower bit is 1.

BRANCHING

Computers are valuable primarily because they can do repetitive
tasks very rapidly. To be able to repeat the same task a required
number of times, the computer must be able to decide whether it

is to repeat a task or move on. The computer repeats a task

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 32

until some condition is satisfied, then moves on to something
else. If it could not make such a decision, the computer would
have to be told whether to repeat or move on -- the operator
would have to make that decision, and the computer would be far
less useful than it is.

This decision can be -- and is -- divided into two parts: a
test and a branch. The test determines which of two conditions
exists. The test may be of whether two values are equal, or of
whether one value is at least as large as another; it may be of
whether a particular single bit is P or 1, etc. These tests
always involve at least one of the values currently stored in a"
CPU register.

The branch is the point at which the computer moves in one of
two directions. Which way the computer goes depends on the
result of a previous test. We need a way to record the results
of the test for use in the branch. This the computer does by
setting the value of a particular bit to 1 or resetting it to @
to indicate which of two conditions was found to exist. These
bits are called "flags."

These decisions, called conditional branches, always involve
two instructions:

TEST. Which of two conditions exists? Set a particular flag
to 1 or reset it to P depending on which condition
exists. ‘

BRANCH. Is a particular flag @ or 1? Go on to one or another of
two different instructions depending on the status of
the flag.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p.33

Following a branch instruction, the computer always moves on
either to the next instruction in sequence, or to an address
stated in the branch instruction itself, where it will encounter
another instruction.

In the POLY 88 there are five flags.

CARRY FLAG

When a number is added to the value in the accumulator, the
result may include a carry out of the left-hand bit, the bit of
highest significance. This carry "sets" the carry flag to 1.

accumulator

When an addition does not result in a carry out of the most
significant accumulator bit, the carry flag is 0.

The carry flag can be set to @# or 1 by other operations. For
instance, the instructions RAR (rotate accumulator right) and
RAL (rotate accumulator left) affect the carry flag. In RAR,
the least significant bit in the accumulator moves into carry,
the bit that was in carry goes into the most significant place
in the accumulator, and all other accumulator bits move one
place to the right.

RAR r — | —I

RAL is the opposite of RAR.

The carry flag can be affected by Togical operations as well as
addition, subtraction, and rotation.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 34

AUXILIARY CARRY FLAG

A carry out of the "third bit" (fourth place -- 23) sets the

auxiliary carry flag:

accumulator

“k\\g ~

The auxiliary carry flag cannot be tested directly, and exists
only to enable the DAA instruction for decimal conversion.

SIGN FLAG

The sign flag is set by certain instructions to duplicate the
most significant bit of the value in the affected register.

{______, register

Recall from our discussion of twos complement that the most
significant bit in a register can be interpreted as the sign
of the data quantity when the quantity is considered to be twos
complement.

ZERO FLAG

The zero flag is set to 1 at the end of certain operations if
the byte resulting from the operations is all zeroes; the zero
bit is reset to @ if the result is not zero.

A result that consists of eight zeroes plus a carry out of the
seventh bit sets the zero flag to 1, and also sets the carry flag
to 1.

PARITY FLAG

"Parity" refers to whether the number of 1s in a byte is even or
odd. Byte parity is checked after certain operations. If the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 35

number is even, parity is "even" and the parity flag is set to 1;
if there is an odd number of 1s, parity is "odd" and the parity
flag is reset to @.

INSTRUCTIONS

Following is a complete list with discussion of all the operations
built into the central processor of the POLY 88. The discussion
divides the operations into groups of related instructions. Each
operation is identified by a "mnemonic" which corresponds to an
instruction in machine language ("opcode"). For a chart showing
all assembly mnemonics and the associated opcodes, see appendix.

CARRY FLAG INSTRUCTIONS. Two instructions affect the carry flag
alone:

CMC (complement carry). Complement the carry flag --
Set it to @ if it is 1 or to 1 if it is Q.

STC (set carry). Set the carry bit to 1.

SINGLE REGISTER INSTRUCTIONS. These instructions affect the
contents of one memory address or any one of the CPU registers --
one byte. If memory, the instruction affects the byte addressed

by pair H.

INR (increment register or memory). Increment the affected
register or memory byte by 1 -- add 1 to it.

DCR (decrement register or memory). Decrement register or
memory byte by 1. This instruction is the opposite of INR -- it
is identical to it except that it reduces the affected byte

by 1. A1l flags may be affected.

CMA (complement accumulator). Complement the byte in the
accumulator -- change every 1 to @ and § to 1. No flags are
affected.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 36

DAA (decimal adjust accumulator). Adjust the byte in the
accumulator to form two groups of four bits, each representing
one decimal digit. This instruction is rather complicated,
treating as it does the awkward relationship between binary and
decimal. It is used -- infrequently -- when a decimal output is
desired. DAA adjusts the first four bits and second four bits of
the accumulator byte separately. First, the less significant
four bits of the accumulator byte are compared to 10@1 to see if
they are greater than nine. If they are (or if the auxiliary
carry flag is set to 1), then the accumulator is incremented by
six -- which reduces the value of the four bits to nine or Tless.
Next, if the four more significant bits of the accumulator byte
now represent a number greater than nine (gg if the carry flag

is set to 1), then these four bits are incremented by six, so
that they will represent a value of nine or less. Note that
either of these two adjustments may have produced a carry. A
carry out of the four less significant bits sets the auxiliary
carry flag to 1; otherwise, it is reset. A carry out of the
accumulator byte sets the carry flag to 1; otherwise, it retains
its previous value. A1l other flags may be affected.

NO-OPERATION INSTRUCTION:

One instruction results in no operation.

NOP (no operation). Move on to the next instruction in sequence.
No flags are affected.

DATA TRANSFER INSTRUCTIONS:

These instructions transfer data between registers or between
memory and registers.

MOV (move). Move one byte of data from an indicated register
or memory to another individual register or memory. The data also
remains in its original location.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 37

Format example: MOV B,A. "Move the byte in A (accumulator)
into register B." Note that the format states the affected
register first. Data cannot be moved from one memory address
to another in a single operation. Data moved out of memory

is always taken from the location addressed by H & L. No flags
are affected. '

STAX (store accumulator). Store the contents of the accumulator
into the memory location addressed by register pair B or pair D.
No flags are affected.

LDAX (load accumulator). Store the contents of the memory
location addressed by the indicated register pair (pair B or
pair D) into the accumulator. No flags are affected.

REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS.

These instructions operate on the accumulator using a byte taken
from a register or from memory. Memory is taken from the memory
location addressed by the data pointer (H & L). Results are
left in the accumulator.

ADD (add register or memory to accumulator). Add the byte in
one register or in memory to the value in the accumulator. ADD A
doubles the accumulator. Al11 flags may be affected.

ADC (add register or memory and carry flag bit to accumulator).
Add the byte from a specified location, plus the value of the
carry flag, to the value in the accumulator. A1l flags may be
affected.

SUB (subtract register or memory from accumulator). Subtract the
byte in a specified register or memory location from the value in
the accumulator. SUB A subtracts the accumulator from itself,
leaving it (and the carry flag) at zero. A1l flags may be affected.

PolyMorphic Systems ~ POLY 88, Vol. II Rev. 0.0 P.38

SBB (subtract register or memory and carry flag bit -- "borrow"--
from accumulator). Subtract the byte taken from a specified “

location, plus the value of the carry flag, from the accumulator.
A11 flags may be affected.

ANA (AND register or memory with accumulator). AND the specified
byte with the accumulator. ANA is often used to zero part of the
accumulator. Carry, zero, sign, and parity flags may be affected.

XRA (XOR register or memory with accumulator). XOR the
specified byte with the value in the accumulator. XRA A

zeroes the accumulator. Then a MOV from A to a register zeroes
that register. A1l flags may be affected.

ORA (OR register or memory with accumulator). OR the specified
byte with the value in the accumulator. This instruction is
often used to set part of the accumulator to 1s. Flags affected:
carry flag is zeroed; zero, sign, and parity flags may be
affected.

CMP (compare register or memory with accumulator). Compare the
specified byte to the contents of the accumulator. 1In effect,
this determines if the specified byte is smaller than, equal

to, or larger than the accumulator byte. Flags: the zero flag
is 1 if the quantities are equal, and @ if they are unequal. The
carry flag is 1 if the register or memory byte is larger than

the accumulator byte, and @ otherwise (but when the two compared
values differ 1in sign, the sense of the carry flag is reversed).
A11 other flags may also be affected.

ROTATE ACCUMULATOR INSTRUCTIONS.

These instructions rotate the contents of the accumulator --
move a bit from one end, and shift the other bits one place.
Rotation can be to the left or to the right, and involves the
carry flag bit (but no other).

PolyMorphic Systems POLY 88, Vol. Il Rev. 0.0 P. 39

RLC (rotate accumulator left and into carry). Move the most
significant bit in the accumulator (left-hand bit) into the

carry flag and into the least significant place in the accumulator.
A11 other bits shift one place to the left.

START x] [plil1lelp[1]p]1

ROTATE X ‘*T.g 11]plpl1ip]|1

END) 1111p10{1 |01]p

RRC (rotate accumulator right and into carry). Here, move the
least significant bit from the accumulator into carry and into
the most significant place; the opposite of the instruction
above.

RAL (rotate accumulator left, through carry). Move the most
significant accumulator bit into carry, and the carry flag bit
into the least significant place; shift all other accumulator
bits left. '

START X plililipip (1] @1

ROTATE rx*a T Tol2 11 ”1‘]

END 0 111lo]of1 o] 1/x

RAR (rotate accumulator right, through carry).
Move the least significant bit to carry, and move carry into the
most significant place; the opposite of the instruction above.

REGISTER PAIR INSTRUCTIONS.

These instructions operate on the register pairs.

PolyMorphic Systems POLY 88, Vol. Il Rev. 0.0 P. 40

PUSH (push data onto stack). Store the value in the specified
register pair into the two bytes of memory addressed by the

stack pointer. Such data is said to be "pushed" onto "the stack."
The more significant byte goes into address Sp- 1, the less
significant into address SP-2. Ind1cat1ng PSW (processor staus
word) stores the current accumulator value at SP-1 and a byte
incorporating all the flags in SP-2:

—> U R e Always |
Cﬁ/xi’m'%:* E f/ always‘?‘\salways\ﬂ always 1

For WEC.9c DGO

£ Fhe

sign ———————p ~—————carry

Jiee zero flag——" i Z@arity

5‘;oy TEooR aux. carry

The stack pointer is left pointing to the address where the
second byte has been stored Flags are not affected.

POP (pop data off stack). Store data from the stack into the
indicated register pair. The byte of data at SP is stored into
the less significant register; the byte at SP+1 goes into the
more significant register. If register pair PSW is dndicated,
the byte at SP goes into the accumulator, and the byte at SP+1
provides the bits of the flags. This instruction is the opposite
of the one above.

DAD (double add). Add the two-byte value in the indicated
register pair (B, D, or H) to the two-byte value in pair H, and
leave the result in pair H. Flag affected: carry.

INX (increment extended register pair). Increment the value in
a register pair by 1 -- add 1 to it. No flags are affected.

DCX (decrement extended register pair). The opposite of the
above.

XCHG (exchange registers). Move the value in pair H to pair D
and vice versa. No flags are affected.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 47

XTHL (exchange H & L with stack). Exchange the value in L with

the value in the memory location addressed by the stack pointer and
exchange the value in H with the value in that memory address plus
one (SP + 1). No flags are affected.

SPHL (Toad SP from H & L). Load the value in register pair H
into the stack pointer register. That value is now the stack
address pointed to by the stack pointer. No flags are affected.

IMMEDIATE INSTRUCTIONS.

These instructions operate on one or two bytes of data, included
in the instruction itself. The data immediately follows the
opcode (hence "immediate").

LXI (Toad extended immediate). Load the indicated register pair
with the two bytes immediately following. The first byte goes
into the lower-order register, the second into the higher-order
register. No flags are affected.

MVI (move immediate). Move the following byte into the specified
register or into the memory location addressed by the data

pointer. This instruction resembles LXI except that it enters only
one byte of data (and therefore can be used to load a memory
location).

No flags are affected.

ADI (add immediate to accumulator). Add the folowing byte to the
value in the accumulator, and leave the result in the accumulator.
A11 flags may be affected.

ACI (add immediate, plus the carry bit, to accumulator).
Add the following byte, plus the value of the carry flag bit,
to the value in the accumulator, and leave the result in the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.42

accumulator. A1l flags may be affected.

SUI (subtract immediate from accumulator). Subtract the follow-
ing byte from the value in the accumulator, and Teave the result in
the accumulator. A1l flags may be affected. This instruction is
the subtraction equivalent of ADI above.

SBI (subtract immediate, and "borrow," from accumulator).

Subtract the byte immediately following, and the value of tne
carry flag bit, from the value in the accumulator, and leave
the result in the accumulator. This is the subtraction equiva-
lent of ACI above. A1l flags may be affected.

ANI (AND immediate with accumulator.) AND the byte immediately
following with the value in the accumulator, and leave the
result in the accumulator. Carry, zero, sign, and parity flags
may be affected.

XRI (XOR immediate with accumulator). XOR the byte immediately
following with the value in the accumulator, and leave the result
in the accumulator. The carry flag is set to #. Zero, sign, and
parity flags may also be affected.

ORI (OR immediate with accumulator). OR the byte immediately follow-
ing with the value in the accumulator, and leave the result in the

accumulator. The carry flag is set to @. Zero, sign, and parity
flags may also be affected.

CPI (compare immediate data with accumulators). Compare the
following byte to the value in the accumulator. The zero flag
is set to 1 if the two values are equal and—g—f—they—are—wneuwal
and @ if they are unequal. The carry flag is set to 1 if the
immediate data value is Targer than the accumulator value, and
set to @ otherwise. (But if the two values differ. in sign, the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.43

sense of the carry flag is reversed.) All other flags may be
affected.

DIRECT ADDRESSING INSTRUCTIONS.

These instructions involve the contents of memory addresses; the
addresses are included as part of the instruction. The instruction
states the address "backwards" -- first the less significant
address byte, then the more significant. These instructions do

not affect flags.

STA (store accumulator direct). Store the value in the accumulator
into the memory location addressed in the instruction.

LDA (1oad accumulator direct). Load the contents of the memory
location addressed in the instruction into the accumulator. No
flags are affected. This instruction is the opposite of STA above.

SHLD (store H and L direct). Store the contents of register pair
H into the memory location addressed in the instruction. No flags
are affected.

LHLD (load accumulator direct). Load the contents of the memory
location addressed by the instruction into the L register, and

the contents of the next higher address into the H register. This
is the opposite of SHLD above.

JUMP INSTRUCTIONS

These instructions cause the computer to "jump" to another part
of a program rather than <continue to perform instructions in
sequence. None of these instructions affects flags.

PCHL (load program counter with H & L). Load the contents of
register H into the more significant byte of the program counter,
and the contents of register L into the less significant byte.
The next instruction executed will be the one now addressed by
the program counter. Note that this instruction does not itself
contain an address. A1l other jump instructions do.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 44

JMP (jump). Execute the instruction located at the address
given in the instruction, and continue sequentially. This is
called an "unconditional jump." A1l the following jump instruc-
tions are "conditional."

JC (jump if carry). Jump to the instruction addressed by this
instruction if the carry flag is set to 1. If the carry flag
is P, move on to the next instruction in sequence.

JNC (jump if no carry). Jump to the instruction addressed by
this instruction if the carry flag is set to §. If the carry
flag is 1, move on to the next instruction in sequence. This
instruction is the opposite of the above.

JZ (jump if zero). Jump to the instruction addressed by this
instruction if the zero flag is set to 1. If the zero flag is
set to @, move on to the next instruction in sequence. Compare
to JC. Note that "if zero " means that the register in question
is all zeroes, so that the zero flag is set to 1.

IJNZ (jump ifnot zero). Jump to the instruction addressed by
this instruction if the zéro flag is set to @§. If the zero flag
is set to 1, move on to the next instruction in sequence. This
instruc?ion is the opposite of JZ above. Compare to JNC.

JM (jump if minus). Jump to the instruction addressed by this
instruction if the sign flag is set to 1 ("minus"). If the sign
flag is set to P, move on to the next instruction in sequence.
Compare to JC and JZ above.

JP (jump if plus). Jump to the instruction addressed by this
instruction if the sign flag is set to P ("plus.") If the sign

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 45

flag is set to 1, move on to the next .instruction in sequence.
This instruction is the opposite of JM above. Compare to JNC
and JNZ.

JPE (jump if parity even). Jump to the instruction addressed

by this instruction if the parity flag is set to 1 ("even parity").
If it is set to @, move on to the next iﬁstruction in sequence.
Compare to JC, JZ, and JM above.

JPO (jump if parity odd). Jump to the instruction addressed by
this instruction if the parity flag is set to @ ("parity odd").

If the parity flag is 1, move on to the next instruction in
sequence. This instruction is the opposite of JPE above. Compare
to JNC, JNZ, and JP above.

CALL SUBROUTINE INSTRUCTIONS

Like jump instructions, call instructions cause the computer to

depart from sequential execution of instructions. Also like

jump instructions, they usually are "conditional" -- they usually
operate only if some condition is met. And as with jump instructions,
execution of instructions continues in sequence starting with the
instruction at the address called (stated in the call instruction).
The two types of instructions also resemble one another in that

the address included is stated "backwards" -- first the less
significant address byte, then the more significant. Also, these
instructions do not affect flags.

The two kinds of instructions differ in that a call instruction
"pushes" an address onto "the stack" -- namely, the address of
the instruction to which the computer will "return" when it has

f;ni:hed the subroutine. See Section A.3. for a discussion of the
stack.

CALL. Go to the instruction addressed by this instruction, and
begin sequential execution there. This is an "unconditional call,’

PolyMorphic Systems POLY 88, Vol. II Rev. O.Q P. 46

and corresponds to an unconditional jump. A1l other call
jnstructions are conditional, and correspond to the conditional
jump instructions, each triggered by the state of one of the
flags. '

€C (call if carry). Go to the instruction addressed by this
instruction if the carry flag is set to 1. If the carry flag
is P, move on to the next instruction in sequence.

CNC (call if no carry). Go to the instruction addressed in this
instruction if the carry flag is set to @. If the carry flag

is 1, move on to the next instruction in sequence. This instruc-
tion is the opposite of CC above.

CZ (call if zero). Go to the instruction addressed by this
instruction if the zero flag is set to 1. If the zero flag is 9,
move on to the next instruction in sequence. Compare to CC.

CNZ (call if not zero). Go to the instruction addressed by this
instruction if the zero flag is set to @. If the zero flag is 1,
move on to the next instruction in sequence. This instruction

is the opposite of CZ above. Compare to CNC.

CM (call if minus). Go to the instruction addressed by this
instruction if the sign flag is set to 1 ("minus"). If the sign
flag is P, move on to the next instruction in sequence. Compare
to CC and CZ above.

CP (call if plus). Go to the instruction addressed by this
instruction if the sign flag is set to P ("plus"). If the sign
flag is 1, move on to the next instruction. This instruction is
the opposite of CM above. Compare to CNC and CNZ above.

CPE (call if parity even). Go to the instruction addressed by
this instruction if the parity flag is set to 1 ("even parity").
If the parity flag is @, move on to the next dinstruction in

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 47
sequence. Compare to CC, CZ, and CM above.

CPO (call if parity odd). Go to the instruction addressed in
this instruction if the parity flag is set to p. If the parity
flag is 1, move on to the next instruction. This instruction
is the reverse of CPE above. Compare to CNC, CNZ, and CP above.

RETURN FROM SUBROUTINE INSTRUCTIONS.

These instructions get the computer back from subroutines to the
instruction following the call instruction that caused it to
depart. Specifically, they "pop" an address previously "pushed"
onto "the stack" off of the stack and into the program counter,
causing the computer to next execute the instruction located at
that address. Execution then continues sequentially from there.
Each return instruction is associated with a previous call instruc-
tion, i.e. the program counter always returns eventually to the
point in a program that it previously departed from (to an
instruction following a call instruction). Therefore the number
of returns executed is always equal to the number of calls
executed. (unless the machine halts).

Since these instructions always "pop" addresses in the order
opposite that in which they were "pushed," they can be said
always to operate on the "next available address" in the stack,
so that the address need not be stated in the instruction.

Like "jump" and call instructions, all but one of the return
instructions are conditional upon the state of one of the flags.
Flags are not affected by return instructions.

RET (return). Return to the most recently pushed address.
This is an "unconditional return."

RC (return if carry). Return to the next address on the stack
if the carry flag is @. If the carry flag is 1, move on to the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.g8

next instruction in sequence.

RNC (return if no carry). Return to the next address on the
stack if the carry flag is @#. If the carry flag is 1, move on
to the next instruction in sequence. This instruction is the
opposite of RC above.

RZ (return if zero). Return to the next address on the stack
if the zero flag is 1. If the zero flag is @, move on to the
next instruction in sequence. Compare to RC above.

RNZ (return if not zero). Return to the next address on the

stack if the zero flag is §. If the zero flag is 1, move on to

the next instruction in sequence. This instruction is the opposite
of RZ above. Compare to RNC above.

RM (return if minus). Return to the next address on the stack
if the sign flag is 1 ("minus"). If the sign flag is @, move
on to the next instruction in sequence. Compare to RC, RZ above.

RP (return if plus). Return to the next address on the stack

if the sign flag is @ ("plus"). If the sign flag is P, move

on to the next instruction in sequence. This instruction is the
opposite of the instruction above. Cbmpare to RNC, RNZ above.

RPE (return if parity even). Return to the next address on the
stack if the parity flag is 1 ("even parity"). If the parity
flag is @, move on to the next instruction in sequence. Compare
to RC, RZ, RM above.

RPO (return if parity odd). Return to the next address on the
stack if the parity flag is @ ("odd parity"). If the parity
flag is 1, move on to the next instruction in sequence. This
instruction is the opposite of RPE above. Compare to RNC, RNZ,
RP above. |

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 49

RESTART INSTRUCTION.

One special instruction, RST, resembles the call instructions in
that it pushes a return address onto the stack and sends the
computer off to another location. The address of the instruction
following the RST instruction sequentially is pushed onto the
stack, so that the computer will eventually return to its point
of departure. Note that the RST instruction pushes the address
of the instruction following RST -- otherwise the computer would
return to the RST instruction itself and be trapped in an endless
loop.

RST sends the computer (i.e. the program counter) off to one of
eight pre-determined memory locations, each the first of a
sequence of eight bytes, making up the first sixty-four bytes
of memory.

MEMORY

BYTES etc. through RST 7,
* \ \\ at memory address
38H.
RST RST RST
@ 1 - 2
(MEM (MEM (MEM
ppH) @8H) 10H)

Actually, the eight bytes associated with each RST can be reached
by means of other kinds of instructions -- jump and call
instructions -- and need not comprise individual routines. In
the POLY 88, all sixty-four of these bytes are used in the
monitor (discussed Tater).

The CPU executes an RST at one of two times. An RST dinstruction
may be written into a program, in which case the instruction is

in effect a "call" instruction in shorter form -- one byte
instead of three. More usually, the CPU executes an RST when the
running of a program is interrupted "from the outside". For instance,

Toading onto tape is a very slow process for the POLY 88, which

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 50

can output data much faster than the tape recorder can properly
record it. So the computer outputs data to the tape on an
interrupt basis -- it occupies itself with other tasks until

the output port electronics indicate that it is time to output
another data item to the tape. This forces a restart, which puts
a book marker into the program so the computer will be able to get
back to its point of departure, and sends the program counter off
to a predetermined Tocation to begin execution of a brief routine
that causes the computer to output a data item to the tape.

INTERRUPT FLIP-FLOP INSTRUCTIONS.

Sometimes it is important not to permit interruptions of a program.
For that reason, interrupts can be disabled--input or output
electronics can be prevented from forcing a restart. Whether or
not “interrupts are disabled depends upon the state of a single
flip-flop, called the interrupt flip-flop. When the flip-flop

is set to 1, input or output electronics can force a restart

until the interrupt flip=flop is reset to @, from which time
interrupts are disabled ti1l the flip-flop is once again set to 1.
No flags are affected.

EI (enable interrupt). Set the interrupt flip-flop to 1.
DI (disable interrupt). Reset the interrupt flip-flop to 0.

INPUT/OUTPUT INSTRUCTIONS.

L

These instructions cause the computer to input data from or out-
put data to a device external to the computer -- like a keyboard.
To be precise, the instruction causes the CPU to open an input

or output port, which is assumed to provide a connection with
some device. No flags are affected.

IN (input). Load one byte from the designated input port into
the accumulator. ‘

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 51

OUT (output). Send the byte in the accumulator out to the
designated output port.

HALT INSTRUCTION.

This instruction brings computer operations to a stop.
first increments the program counter -- adds 1 to it -- so
that the computer will resume with the next instruction.

It

No

flags are affected.

HLT (halt). Increment the program counter, then stop.

PolyMorphic Systems Vol. 2 : P. 53

SYSTEM PHILOSOPHY

The POLY-88 system represents a departure from the usual
microcomputer system organization in that it contains, in its
minimal configuration, several sophisticated I/0 devices. These
devices - a keyboard, a memory mapped video display, and a
universal serial port - are at fixed addresses and are accessed
and controlled in identical ways on every POLY-88. The result
of this standardization is that the power of the elementary
machine can be increased manyfold by the use of dedicated read
only memories (ROMs) resident in the CPU as hardware. The ROM
can assume that the special dedicated devices exist and can use
them. Other systems have no way to know where the devices are
located or.even if they exist. The ROM in the POLY-88 CPU is
called the monitor ROM, and is supplied with every POLY-88
system sold. It contains bootstrapping functions, front panel
simulator functions, I/0 device drivers for the self-contained
devices, utility programs, and initialization routines that
configure the system when power is supplied or the system is

reset externally.

The ROM also provides another extremely important function:
it sets up conventions for the logical expansion of compatible
software systems that are well engineered from the ground-up.
Unlike the owners of large computers, many microcomputer owners
intend to develop their own software systems. The monitor ROM
allows these systems to share resources such as I/0 handlers,
supervisors or special purpose subsystems, but most importantly,
it allows users to share their programs. The standardization
of I/0 handling means Polymorphic Systems can publish software
which will run on any POLY-88 immediately, without modification
of sections of the binary program to cope with the various I/0
methods used on each system. ' ‘

PolyMorphic Systems Vol. 2 P. 54

The standardization does not, however, limit the use of
the POLY-88 with other types of I/0 devices such as TTY's,
serial CRT's, paper tape reader/punches etc., because the ROM
allows the standard devices to be re-allocated once the system
is up and running. Any type of I/0 device can be substituted
for the standard devices by loading a simple driver routine
for that device and installing its address in one of the
monitor's "wormholes"* The wormholes are used to communicate
between any user program and a standard I/0 device of any type.
Thus, once the driver program is written for the special device
to be used, it will work for any program that communicates
through the wormholes, and it will work on any POLY-88. The
wormholes and system standardizationare dealt with in a later

section.

Another advantage of the dedicated I/0 devices on the
POLY-88 system is reliability. Specifically, the dedicated
memory mapped video display allows the ROM to generate a
simulated front panel which replaces the usual array of switches
and light emitting diodes. The hardware front panel used on
most minicomputers and many microcomputers is a rather expensive
and complex device. It was intended, in minicomputer systems,
to be used only in emergencies or when "bring-up" (bootstrapping)
the system. Microcomputers, however, since they are frequently
used for program debugging and are bootstrapped very frequently,
have a tendency to wear out front panel hardware quickly.
Furthermore, the hardware switches and lights have no access to
the all-important CPU registers in microcomputers as they do
in minicomputers. The front panel switches on most microcomputers

* The term "wormhole" has been used to describe a hypothetical
astronomical situation where a black hole connects to the "other
side" of the universe. When this happens, information can pass
through the wormhole, in only one direction, much as "assumptions”
pass down the monitor's wormholes,

PolyMorphic Systems Vol. 2 P. 55

can be used for Tlittle else than examining and loading memory
contents in binary and starting program execution at a certain
address. Some microcomputers use serial output devices with ROM
based monitors for program debugging. These systems have extremely
limited I/0 speed, and therefore result in a tedious interaction
between man and machine that the POLY-88 eliminates by putting

all important information on the screen at all times.

The front panel display of the POLY-88 shows all of the CPU
registers, the "workspace" of the CPU, and a memory "window".
The "workspace" is the areas of memory pointed to by the double
registers, including the program counter and stack pointer. The
workspace display shows, therefore, the program area, stack
area, and data areas pointed to by HL, DE and BC. The memory
"window" is an 8 X 8 block of memory that is displayed, with
addresses, on the bottom of the screen. It can be used to
view a selected area of memory or to point to data areas being
modified. The philosophy behind the front panel display is
that it is best to use the computer's high output capability to
effectively answer all the programmer/debugger's questions
about the machine rather than require him to ask.

Another application of the "anser-the-question-before-it-is-
asked" philosophy is in the POLY-88 bootstrap tape loader. The
resident ROM contains a complete audio cassette tape loader
which reads absolute binary programs in a sophisticated format
called POLYFORMAT. The files in this format are broken into
short blocks, each with a name and number recorded with it. These
names and numbers are displayed on the dedicated video display
whenever tape is being read. They give the operator an indica-
tion of what file he is reading, where along the length of the
file he is, and whether or not the tape is even being read
properly. The names and record nubmers effectively make the data
on the cassette visible, so that files can be separated from

each other and located.

PolyMorphic Systems Vol. 2 P. 56

The POLYFORMAT has other advantages also. Its block
structure allows the tape to be stopped in the event of an error
and restarted before the erroneous block. Some recording formats
require a file be read entirely without errors, or the whole
loading must be restarted. The names on the records allow the
computér to identify needed data on the tape such as relatively
complex constructs like subroutines in a library that must be
lTinked in a relocatable linking loader. The names also allow
files to be packed closely together, without time-wasting
leaders. POLYFORMAT includes definitions of several types of
blocks (or records) such as: absolute binary (for programs),
data (for text-.etc.), end (stops load), auto-execute (jumps
into given address), and comment (displays a message for operator).
The comment record is another example of the visibility
philosophy. By placing comment records at the beginning and
end of a file, the tape is made even more visible.

USING THE ABSOLUTE TAPE LOADER

The tape loader mode of the monitor may be entered at any
time by resetting the CPU (either by depressing the front panel
reset button or by applying power to the system). When tape
mode is entered, the system video display is cleared and a
small block appears in the upper left corner of the display.
The small block is the cursor symbol used by the display driver
program "DSPLY" which is resident in the monitor ROM with the
loader. In order to load a POLY FORMAT absolute binary tape,
the loader needs to know which encoding scheme to use and the
name on the desired file. The encoding scheme can be indicated
by typing either a "B" or a "P" on the system console keyboard,
These stand for BYTE standard, the encoding scheme used in
PolyMorphic published software, and POLY-PHASE, PolyMorphic's
special very high speed encoding scheme. The loader transmits
all necessary configuration information to the 8251 USART and

the 5307 programmable baud rate generator on the CPU card E)
GoTo

/ fE% a

PolyMorphic Systems Vol. 2 P. 67

according to the encoding specification. It selects the zero
designated mini-card, which should be the audio cassette
interface mini-card being used for the load.

When this is done, the cursor moves down to the next line
and the loader expects a 1 to 8 character file name to be
entered followed by a carriage return. The cassette motor
control line is turned on, and the tape is read, comparing
the record names found with the name of the desired file. As
records are discovered with the correct name, they are accpeted.
Reading continues until an END or AUTO-EXECUTE type record is
encountered. (See section on tape format). If an END record
is found, the cassette motor control line is turned off and
the loader waits for another encoding specification (B or P-followed
by file name) or a "continue" command (just a "C" is typed-the old*
EXECUTE type record is found, the cassette motor is turned off
and the loaded program is executed by jumping to the address
indicated in the AUTO-EXECUTE record. ’

Each record encountered, whether it is accepted or not, is
acknowledged by having its name listed, followed by its record
number, on the system console display. Thus if it is desired
to simply examine the contents of a certain cassette tape, the
tape loader can be told to search for an impossible name, such
as no name at all. It will continue indefinitely, searching for
the nonexistent name on a record, each time showing the name
and hexadecimal record number of each record it finds. The
record number is recorded in the RCD# field of the record.

Occasionally, while a file is being loaded, a COMMENT type
record will be encountered and the message it contains will be
displayed on the system display. Al1l files should havé a
COMMENT record at the beginning for documentary purposes, and
it is the appearance of this COMMENT message on the system
video display that indicates the loader has recognized the
desired file and will load it. COMMENT records are very usefu],'z

—T

GED lo

7y 67

*name is used).

PolyMorphic Systems Vol. 2 P. 57

as they can indicate such things as the portion of a Targe
program that has loaded (the message serves as a flag some
distance down the tape), or that a program has finished

loading and is executing (an AUTO-EXECUTE followed the COMMENT).

A11 mass storage systems must cope with errors in some way,
and magnetic tape is far from an exception. A very long program
has a relatively high probability of loading incorrectly simply
due to noise and other factors which create "soft" or read-only
errors. If the lost data can be re-read, the soft error is
unlikely to occur again, and the loading can continue. The
POLY-FORMAT allows an erroneous record to be re-read without
starting at the beginning of the file. The record structure of
the POLY-FORMAT is such that each record is completely self-
consistent. This means that if the cassette tape is rewound
beyond the erroneous record and the loader and recorder are
restarted, the loader will find the first complete record (if
it is restarted in the middle of a record) and will reload
records up through the record that was lost. This process may
be repeated until a difficult record loads properly - a very
time consuming proposition if considered with a file structure
which requires restarting of the load at the beginning of the
file. An error is indicated to the operator by a question mark
on the video screen and stopping of the cassette motor. If
the motor control is not being used (some recorders have motor
voltages and polarities inconsistent with the audio cassette motor
control drivers) then the tape will continue to play after the
loader has stopped.at the error. In this case, it may be
necessary to rewind the tape some distance, and it will be
helpful to check the record numbers to find the original spot.
A depression of a C key on the keyboard will resume reading of
the tape. If the motor control is being used, it will be
impossible to rewind the tape until the motor control is again

PolyMorphic Systems Vol. 2 P. 58

turned on, and again, this can be done by simply depressing
the C key on the keyboard. The name and format of the file
being loaded is retained and need not be re-entered.

FRONT PANEL MODE

Instead of a hardware front panel, the POLY-88 uses a

program which drives a simulated front panel display ontz/Eﬁg‘dAk;lt
system video terminal. The display, shown in appendix 8, is P
&

present whenever the monitor is in the front panel mode, and
is updated each time a command is executed, or the registers
are modified in any way. The display is thus always a
reflection of the contents of the registers and memory at any
instant, just és if it were haﬁkired into the CPU and the
memory address and data busses. Visible in the display are:

*cogtents of CPU registers: program counter (PC), stack
pointer (SP): accumulator (A) and general purpose registers.
*contents of memory areas pointed to by general purpose

registers: program area, stack area, and the areas
pointed to by BC, DE, and HL.

*a moveable memory window which shows 64 contiguous locations
and their addresses.

*the status of the carry, sign and zero flags decoded into

an easy to read form.

The front panel display driver program is complemented by a
command interpreter program. In most cases, a single keystrike
on the system console keyboard will allow the operator to:

*interrupt a running user program to bring up the front panel.
*single-step, run with breakpoints, or return to full speed
execution of the user program. '
*move the memory window to a given location.

*enter single bytes or long strings of bytes in hexadecimal
into memory with instant verification of entered data and
easy backup for error correction.

\

)

PolyMorphic Systems Vol. 2 P. 59

*trace byte-reversed address pointers in memory by moving
the memory window to the given address.

*move the memory window to point at the program, stack or

data areas currently being used by the user program.

The commands in Appendix B are primitives and should be
used in combination to provide a powerful interactive system
for manipulating memdry data and debugging machine language
programs. There is, for example, no command for setting the
contents of any given general register. Instead, there is a
command for pointing the memory modify window at the save area
on the system stack where a given register was stored, This
allows the contents of the register to be modified using the
rest of the commands, such as the Jumbo (J) command, which
allows entry of a full address in its normal byte order instead
of the byte-reversed order of 8080 addresses. Another example
might be using the I (indirect) command after pointing the
window at the register save area on the stack. This will ’
point the window at the memory area that the register points at,

In other words, if the register was the program counter, a
sequence of "SPI" would leave the window displaying the program
area. The program area could then be modified using the full
power of the front panel commands.

In order to fully introduce each command and its possible
combinations with others, the following text will take the
reader step-by-step through the procedure of loading a simple
program, correcting entry mistakes, checking its logic using the
I command and the X (single-step) command, and finally, running
it.

USING THE FRONT PANEL MODE

Suppose we wish to construct a simple program in an available
location in RAM. The demonstration we will use is a video
display test which loads each location of VTI memory with the
low-order address byte of each location. This has the effect of

STafrs AT
J CEoH

2i e F3d -

per_appendix A, and a video terminal

PolyMorphic Systems Vol. 2 P. 60

displaying all possible characters and graphics patterns on

the screen in a cyclic group of 256 characters. The display

is thus repeated four times vertically.
The program looks like this in symbolic assembly language:
- - .- -LXI H,0F800H ;start at top of system screen
. LOOP: MOV M,L ;put out each location's low addr byte
- - - INX H ;next location
- - - MoV A,H ;get high addr byte for comparison
- -~~--CPI OFCH ;is it off the screen yet?
T - -~ -JdNZ LOOP ;no - keep going
- HLTAGN: HLT ;yes - 0K, were done, stop.
- JMP HLTAGN ;sometimes interrupts break a HLT, so

3go back to the HLT when they do.

In hexadecimal machine code:
21 00 F8 75 23 7C FE FC C2 83 0C
assuming that we want to load it
the system RAM. The problem now
into the RAM at that address and
it.

76 C3 8B 0OC

at C80H, which is a free space in
is to correctly load this hex
then send the CPU off executing

Turn on the POLY-88, and push the front panel reset button.
The machine should have a CPU card with 4.0 monitor installed as
interface card with its

address switches at OF800H, also as per appendix A. The screen
should show only the small cursor block in the upper left
corner. This is the prompt character (actually no prompt char.
per se')*for the tape loader system. Since we want to use the
front panel mode, push the control Z (hold down CTL before and
Instantly, the front panel display should
appear on the screen. Appendix C shows an example of the front
panel display with an explanation of the various data areas

it. For now, the part that interests us is the memory
modify window at the bottom. The window is a 64 byte section
the locations before and after
the "current" window position. The byte actually at the current

window position is indicated by a right-arrow at the left

while pushing Z).

in

of memory which shows, in hex,

* but only a cursor symbol.

PolyMorphic Systems Vol. 2 P. 61

center of the block. The address of this byte and the leftmost
byte in each row is displayed at the far left of the screen, also
in hex.

Now, to enter the test program into the RAM, we first point
the window at the desired address:

Lc80(ret) Leck 47 ©CS0H (CR) [acllpess 320007

where "(ret)" means carriage return {(CR on some keyboards, RET
on others). The display should now show 0C80 in the address
next to the arrow. To enter the bytes of our ﬁrogram, we can
simply type the hex for each instruction followed by a space.
When hex is being entered, the termination character for each
byte is interpreted as a valid command. In this case, the
space indicates that the window pointer is to be incremented,
hence each byte goes into a succeeding location. The program
entry looks like this:

21(space)00(space)F8(space)..... 76(space)C3(space)8B(space)
O0C(space) where the "(space)" means, of course, a blank space
from the space bar.

Suppose an error had been made while entering data into
memory. The window may be moved back one location with the
backspace command, control H. The erroneous byte may be
reentered, and after the usual space, the rest of the program
bytes may be entered. If the error is detected before a
termination character is typed, it is only necessary to
continue typing in the hex for the correct code until the
last two hex characters shown at the bottom of the screen
are correct. The hex input routine used by the command interpreter
shifts hex nybbles into a two byte register from the bottom, so
when it returns to the calling program on receipt of the termina-
tion character, it leaves only the last four nybbles in the

PolyMorphic Systems Vol. 2 P. 62

double register. In the case of hex input to the window location,
only the bottom two nybbles are actually used by the program. Any
previous hex digits are ignored. The use of the last hex charac-
ters typed in is built into all the other commands which expect
a hexadecimal input of some kind.

One of the commands which expects a hex input is the J
command. J stands for Jumbo, a mnemonic which indicates a
double word is to be entered at the current window location.
The J command is followed by up to four hex nybbles or characters
and a carriage return, thus: t

JF8PP(RET)

The contents of the two locations at and following the window
are modified to contain the "byte-reversed" double word that was
entered. Actually, as mentioned above, only the four last
characters typed in for hex are used, so if an error is made on
entry, just keep typing until all four of the last characters are
perfect. Since the register that the bytes are shifted into is
started out with all zero contents, a small hex number need not
be typed in with leading zeroes (unless, of course, it is being
re-typed after an error), The way to enter an address of ﬂC&V,
then, is to type the J followed by C&ﬂ followed by a carriage
return; JC891ret). One important fact about the J command is
that it does not move the window pointer. The reason for this
is to allow the use of the I command immediately after a J.
Sometimes this combination can be useful.

The I command is the "indirect" operator. It takes the
two bytes at and following the window location and puts them
into the window pointer. It "jumps" to the address currently
shown in the memory at the window pointer. This is a very useful
- function for tracing programs that do JMP's or CALL's by placing
the window pointer over the address of the JMP or CALL and
then typing I. It is also immediately after a "J" as a check

PolyMorphic Systems Vol. 2 P. 63

of the address entered. If the address is correct, the window
will show the data that are supposed to be pointed to.

It should be pointed out that the I and J commands work
with double words in memory that are stored in what is known
as "byte-reversed" format. The 8080 puts the high order byte
of an address stored in memory into the high order register
of a pair when POP or LHLD type instructions are executed.

PUSH and SHLD instructions operate similarly. Addresses in

JMP and CALL instructions also follow this rule. Although it
seems logical to arrange addresses this way, it is normal to
enter data into memory incrementing addresses between bytes
entered. This, unfortunately, means that addresses are typed

in Tow order byte first. Addresses are also displayed back-
wards in the normal representation of data in memory: addresses
increasing to the right. The seemingly backwards storage of
addresses has come to be called "byte-reversed".

Now that the program has been entered correctly, we would
like to run the program. The first thing to do is to set up
the program counter to point at the first instruction of the
program. To do this we will use one of the S commands: SP,
which will point the window at the area on the system stack
where the program counter is stored. Now, of course, the
actual program counter could not be stored on the stack, because
the program which we are running that displays the front panel
and interprets our commands is moving the PC up and down in the
monitor. The program counter we will modify is the one that
will be restored into the "real" program counter when we want
to execute the program. In other words, as far as we are
concerned, the actual program counter is stored right there in
memory, along with the values of all the other registers. Since
the stack may have any value in it when we preseed control Z,
the locations actually used to store the register values are
unknown. The monitor however, keeps track of these locations

PolyMorphic Systems Vol. 2 P. 64

and will point us at any one we want if we use the S type
of command.

So, to set up the program counter, we point the window at
the proper place on the stack with an SP command, and then do
a Jd:

SPJC80(ret)

The front panel display at the top of the screen should now
show the 0C80 we just entered in the PC register. The area to
the right of the PC double word shows the memory pointed to by
the PC, which is the program area. It should show part of the
program we have loaded. The arrow at the bottom of the front
panel display points upwards at the actual locations that all
the register pairs point to. The 21 hex that was the first
opcode of our program should be visible above this arrow in the
field next to the PC.

The memory window should also show the new PC value, except
it will be backwards because of the "byte-reversed" address
format. The window should show 80 followed by an 0C. Now,
to check this value, let's see if the PC actually points at
the program. Press I and the window should show the first
instruction again: the 21H. For one last check before we
run the program, type a (ret) and the window will scroll up
one row (8 bytes). We could move backwards one row by typing
Tine feed (LF). This gets us closer to the address in the JNZ
instruction that we want to test. Space down to the locations
following the JINZ (following the C2) and press I. The window
should point at the address we called "LOOP" in the symbolic
assembly program. The instruction at this address was a
MOV M,L, which has hex opcode 7§. The 78 should be in the
memory window after the I command is typed. '

If this last test works, we are ready to step the program

PolyMorphic Systems Vol. 2 P. 65

through one cycle of its loop to see what happens. The program
counter is still set up to 0C80, so press the single-step command
key, X. The program counter will advance to 0C83 and the HL
register pair will be loaded with F800, the data from the second
two bytes in the LXI H instruction. On the next sing]e-step,

the first byte will be transmitted tb the video screen, but since
the front panel display is replaced on the screen after the byte
the instruction transfers, we do not see anything happen. The
next instruction increments HL to F801. Next, A gets the contents
of!H, then it is compared with FC hex in the CPI OFCH instruction
(FE FC). Finally, since F8 does not equal FC, and the zero flag
is not set, the JNZ instruction goes back to 0C83 to continue

the loop.

The program seems to work when single stepping, so the
final test is to execute it at full machine speed. This can be
done by pressing G. The entire screen should fill with the test
pattern of consecutive ASCII characters and graphics patterns,
in a cyclic replication four times down the screen. The single-
stepping lost the first character in the upper left corner of
the screen, though.

When the test pattern is verified, the front panel mode may
be re-entered as it may be at any time by typing the control-Z.
The front panel will appear, showing the program counter just as
it was, halted at the end of the program on the 76 (HLT)
instruction. The HL pair should have the last screen address
used: FCOOH.

PolyMorphic Systems Vol. 2 : P. 66

‘4.0 UTILITY PROGRAMS

In addition to the directly operator-apparent features
of the 4.0 monitor, there are also some software-apparent
features which make I/0 handling and other difficult or routine
operations easy in machine language. Program patching is easy
on the 4.0 monitor becasue the most common patching area for
programs being moved from system to system is in the I/0
section, and the 4.0 monitor contains patch routines for
direct substitution into most programs. These include routines
for transmitting characters from the accumulator to the console
display from the keyboard to the accumulator, and from the USART
port to the accumulator. Several hexadecimal conversion routines
are included which will handle nybble, byte and doubleword
conversions from the keyboard. Other utility functions include
lower to upper case folding of characters input from the keyboard
(Tower case characters are converted to upper case before passing
on to user), screen manipulations such as clear, tab, space and
carriage return, and USART setup programs for Polyphase, Byte
Standard or user defined USART mode. _

The following discussion will be found useful to bejinning
programmers who wish to use the utility routines to simplify their
programming. Advanced users will want to study the section on
software conventions and methodology in order to make their
complex programs more general , flexible and compatible with
both PolyMorphics published software and other user's software.
The utility programs in the 4.0 monitor, although designed to be
universally available to all users of POLY-88 systems, may
occupy different address areas in later versions of the 4.0
(4.1 etc.). This would make programs written using the

~utility programs obsolete, and would require adjustment of the
addresses in all programs that were to be transferred from one
verson to the next. To avoid this mass adjustment of addresses
in user code, PolyMorphics will not publish any version of the
4.0 monitor with the utility routines relocated unless it is
absolutely-necessary to do so. However, the possibility does -
/

Lo To K
fo. 6%

PolyMorphic Systems Vol. 2 P. 68

exist, so it is wise for programmers who intend to use the

utility programs to be aware that this may happen. In any case,
the utility routines are intended only to allow users to construct
small software systems without the need to generate all the
standard utility functions themselves.

The vital utility functions - the I/0 functions - are made
available to all levels of programming without reservation. " The
standard character transmission operations are made available
through an ingenious device known as the "wormhole vector", which
puts the I/0 routines at absolutely stnadard positions in the CPU
resident system RAM memory. Thus, no matter what version of '
monitor is being used, or even whether the monitor has been
replaced by a disk operating'system or time-sharing system, the
wormholes in the vector will remain fixed and programs using
them for I/0 need not be changed. 1It,is possible, then, for
anyone to write pro&?ams which will last through many cycles of
monitor or supervisor redesign by simply using the wormholes for
1/0 rather than any fixed-address 1/0 subroutines.

The concept of standardizing the addresses of various
important pieces of information has been extended in 4.0 to
include many things besider the.gddresses of the character I/0
handlers. The storage areas for such widely accessible v!%iab]es
as the present video screen starting, ending and cursor addresses
are defined by the 4.0 in an absolute, fixed manner, so that
any program can modify or examine them with confidence in their
Tocations. “ The definition of all the standard locations and
mthods of use of the variables in the system RAM are what give
the POLY-88 its software g]é&ibi]ity (an interesting apparent
contradiction: the absolute rigidity results in increa;ed
flexibility). The tecHWiques for using the wormholes and other
"system variables" (see glossary for definition of "system
variables" and other terminology used here) are described in
detail in later sections. It is the intention of this section,

PolyMorphic Systems Vol. 2 P. 69

however, to describe the use of the utility functions by
programmers who would rather see their systems work than to
generate a masterpiece of programming generality and portability.

First, 1gt us look at the basic I/0 functions. Almost all
programs need some sort of communication with the keyboard and
system video display. The first two wormholes are defined for
this purpose. Wormhole zero (WHO, pronouned whoo) is the
console input wormhole, while wormhole one (WH1, pronounced
whee) is the console output wormhole. Notice that these wormholes
are defined by their logical rather than their physical function.
Either of them may be changed to operate with any actual physical
console input or output device desired, but as far as the
programmer 1is concerned, all they do is communicate with the
computer operator through some sort of character-oriented device.
The total effort that must be expended to t#ilk to the operator
“is thus, to do a CALL to the appropriate wormhole. The character
will be taken from the accumulator or placed in the accumulator
by the subroutine that the wormhole "contains" (checkout how
the wormholes actually work if you want to, but for now, pretend
each one contains a complete subroutine in its four bytes). A1l
the w@rmholes work the same wayf by transferring one character
at a time from the accumulator the addresses of all the wormholes

are shown below.

Wormhole Address Logical.device accessed (example)

9
WHO 0Cc20 console input (§enerally a VII keyboard)
WH1 0cz24 censole oﬂ%put (ganerally a VTI screen)

WH?2 0c2s system input (binary from a mag.tape)

PolyMorphic Systems Vol. 2 P. 70

WH3 ocac system output (binary to a mag tape)

WH4 0C30 -aux..syst. input (secondary mag or paper tape)
WHS 0C34 aux. syst. output (secondary tape)

WH6 0C38 text input ("saved" pgm listing from tape)

WH7 0C3C text output (printer or tape for listings)

WH8 0C40 undefined input

WH9 0C44 undefined output

The first three wormholes are loaded by'the monitor with
the proper data to make them act as subroutines when the system
is powered up or when the front panel reset button is pushed.
The subroutines in the monitor are "installed" automatically in
WHO, WH1 and WH2, but the other wormholes, since they require
very complex I/0 handlers, must be installed later, with I/0
‘routines in RAM. The actual routines that the monitor installs
are: the DSPLY program - for driving a PolyMorphics VTI-64 or
32 video display, KI - for getting characters from the keyboard
port of the VTI board, and USRTI - for getting characters from
the 8251 USART on the CPU. As described later, these default
allocations may be changed easily. Let us illustrate the use
of the wormholes with a program swhich echoes ‘the characteg; typed .
on the VTI keyboard port onto the VTI display:

NEXTCH: CALL WHO | sget a character from console device
CALL WH1 ;put on console display
JMP NEXTCH ;go. back for more
Notice that even this simple loop allows complete control of
the video display through the DSPLY routine which recognizes

many of the standard control codes.

PolyMorphic Systems Vol. 2 P. 71

DSPLY, KI and USRTI

More specifically, the codes that DSPLY recognizes are:

ASCII code (hex) keypress function

DEL 7F rubout moves cursor back, deleting char.

CR 0D return skips a line and puts cursor at

, left side of screen. "car. ret."

FF 0cC CTL/L clears screen, leaving cursor at
"home" - upper left. “form feed".

VT 0B CTL/K moves cursor to "home" position,
in upper left corner."vertical tab".

HT 09 CTL/1 skips cursor to next horizontal

position evenly divisible by
eight. "tab" function.

DSPLY also does a little rearranging of the character set given
to it. If the character is a control code, as are several of
the above, it is not printed on the screen. However, if it is

a control code but has a high bit 7 (the top bit) then it will
print as a greek character, but will not work as a control
character. It is thus impossible to use the graphics capability
of the VTI card by transmitting characters to the screen through
DSPLY. Any graphics character comes out as a regular ASCII
character, as if bit 7 were low. Note that DSPLY corrects for
the backwards polarity of bit 7 as the VTI card expects it.
Normally, a high bit 7 will display graphics, and a low bit 7,
ASCII, when bytes are transferred directly to the VTI as if it
were memory. The DSPLY program will take either polarity in

bit 7, and will always generate characters rather than blocks.
The map of the DSPLY input expectations looks like this:

PolyMorphic Systems Vol. 2 P. 72

Mapping of DSPLY expected
input codes.

hex
FF
Duplicated ASCII character
codes. (same, with bit 7=1)
Greek character codes.
80
7F
Normal ASCII character
codes.
Normal ASCII control
00 codes. (non-printing)

The other two default wormhole subroutines operate in a more
elementary manner. Neither the KI nor USRTI wormhole subroutines
Amap their character codes in any way. KI gets 8 bit characters
from the VTI keyboard without zeroing bit 7. It is possible
using KI to load binary data or special function codes from an
auxiliary keyboard from the VTI keyboard port. Normal ASCII
characters are expected to have zeroes in bit 7, so, if bit 7
of the keyboard is not grounded, then it should be zeroed by
the software. Bit 7 here means, as usual, the highest bit,
not the next to highest. USRTI operates exactly as KI except
that it fetches bytes from the USART.

To test the USART and a cassette tape system, the following
direct echo loop can be loaded into a free spot in RAM:

PolyMorphic Systems Vol. 2 P. 73

LOOP: CALL WH2 ;get a byte from USART
CALL WHI1 ;display its ASCII representation on scrn
JMP LOOP ;go back for more

Before this program will work, the USART must be configured

to read from the tape. To do this, reset the system with the
front panel button, and proceed as if a tape were being loaded.
Put in a dummy name and a carriage return. Then bring up the
front panel with a CTL/Z, and run the loop. When the cassette
is played into the USART through an audio-cassette interface,
the characters on the tape will appear on the screen. Many of
the characters will be control codes and will clear the screen
or return the cursor, but some of the patterns on the tape will
be discernible, such as the string of lower casef's that
represent the leader of hexadecimal E6's on a POLYFORMAT record.

PolyMorphic Systems Vol. 2 P. 74
APPENDIX A. INSTALLING 4.0

A number of hardware changes are necessary to convert the
P-88 to 4.0 monitor compatibility. After installing the 4.0
monitor ROM (read only memory) in the right-most ROM socket on
the CPU card, the following points of possible incompatibility

should be checked and corrected as needed:
The system video screen, although it may be moved once
the system is running, is initialized to run at F800 hex.
In order to change the address on the video card, configure
the address selection switch as shown below. The movement
of the video address allows greater expansion of contiguous
program memory.

OLD SWITCHES NEW SWITCHES

2. A short trace labelled "K" on the back of the CPU card

is normally cut for the earlier monitors since they do not

use interrupts from the USART, and this trace connects the
USART interrupt to VI3 (vector interrupt three). This trace
should be reinstalled if it h as been cut by soldering a short
piece of bare wire into the two pads on either end of the
trace as shown in Fig. A.2.

Figure A.2. "K" TRACE REINSTALLATION

7 500/~
80000000/~

TG

22
"K" trace

Bottom edge of back of CPU card shown.

PolyMorphic Systems Vol. 2 P. 75

3. The 4,0 monitor uses the 60 Hz real time clock interrupt
which is normally not connected for the earlier monitors.

To connect the clock, run an insulated2" jumper wire on the
back of the CPU card from the "A" pad to interrupt pad 1.
The "A" pad is on the right center of the CPU card

Fiqure A3. RTC JUMPER -

uAn (RTC)

7T . ——D
\u»- S8 .:-"—_-

S80600

4.
RAAW

VIl

p—
o
[~
=
==
S
-—

(1ooking at the back), however, the "A" is on the front of the
card, next to a 74LS109. Again on the back of the card, vector
interrupt 1 can be found in a group of eight pads arranged in

a horizontal line at the bottom right. Interrupt 1 is second
from the right in the upper series of eight.

PolyMorphic Systems

Vol.2

- 76

PolyMorphic Systems Vol. 2 P. 77

5. Earlier monitors had keyboard driver routines which zeroed
the high order (bit 7) bit of the data coming from the
keyboard. The 4.0 monitor leaves this bit unchanged when
data is obtained from the keyboard via the keyboard driver
routine. This is so the high order bit may be used for
inputting binary directly through the keyboard or for
increasing the number of valid key codes on the keyboard
to include special functions. An example of this might
be the use of the keyboard driver routine in a text
editing system where a special cursor control keypad
transmits a high bit 7, and the normal keyboard transmits
the normal zero bit 7.

The net effect of this change is that all keyboards must
transmit a zero bit 7. To do this, make sure that this
bit is grounded on the keyboard itself, or ground the

"B" pad on the VTI board. This pad connects to bit 7 of
the input to the 8212 keyboard data latch. It is near

the strobe-polarity jumper pads in the upper right corner
(1ooking frontwise at board). Version 1.0 and later video
cards will all omit the "B" pad, because their keyboards
are expected to supply a zero bit 7.

APPENDIX B. MONITOR COMMANDS

The following 1ist comprises the set of primitive operators
or commands available in the 4.0 monitor in the front panel mode.
Front panel mode may be entered at any time by striking the
control Z key on the system console keyboard, Further commands
on the system console keyboard have effects which are immediately
reflected in the front panel display. When front panel mode is
to be exited, the interrupted program may be restarted trans-
parently, since the entire status of the CPU is saved on the
current system stack upon entry to the monitor. '

PolyMorphic Systems

Key or key sequence

Vol. 2 P. 78

Effect

control Z

Lxx..xx(CR)

space
BX (control H)

CR (carriage ret.)

Interrupt currently executing program.
Front panel mode is entered. Status
of CPU (PC,SP,regs.,flags) is saved

on the system stack.

Execute the next instruction of the
interrupted program and return to
front panel mode to display results.

Go to the next instruction of the
interrupted program and do not return.

Look at address xx..xx with the memory
modify display. The variable-length
address (up to four last hex digits
accepted) is placed into the memory
modify display pointer.

Move the memory modify display pointer
forward one and redisplay everything.

Move the memory modify display pointer
back one and redisplay everything.

Move the pointer forward 8 positions.
This has the effect of scrolling the
display up one line.

SP
SH

SB
SA

PolyMorphic Systems

Key or key sequence

LF (1ine feed)

xx xx(any command)

Jxx xx(CR)

I
(Program Counter)
(HL)
(DE)
(BC)
(Accumulator/flags)

Vol. 2 P. 79

Effect

Move the pointer back 8 positions.
This has the effect of scrolling the
display down one line.

The last two hex characters before
the command are entered into the
location pointed to by the memory
modify pointer. The command is then
executed.

Jumbo data word (double-word) is ent-
ered in byte-reversed format at and
following the memory modify pointer.
The last four hex characters before
the carriage return are used.

Indirect display. The two bytes at

and following the memory modify pointer
are placed into it in reverse order,

so that if they represent the address
in a JMP instruction, the pointer

will be moved to that address.

Stack modify. The memory modify point-
er is moved to that address on the -
stack where the indicated register

pair was stored on program interrupt.

If the location at the memory modify
pointer is modified, the register
display will show the contents of the
appropriate register as having changed,
and when the G command is executed,
program execution will continue with
the new value. To enter a double-word,
“the J command may be used. A single
byte may be inserted in one register of
a pair by simply entering it for the
lower register and by spacing once over
the lower register to enter it into

the upper register. Data at the address
pointed to by a register pair may be
modified by using the I command to
move the memory modify pointer to the
appropriate area of memory.

PolyMorphic Systems

Key or key sequence

U (or other illegal
command)

Vol. 2 P. 80

Effect

Update the display. This can be used
to watch dynamically changing events
such as the real time clock counter
being incremented in system memory,
or an I/0 buffer filling.

Tape system is entered. This is the
same tape system entered on power up

or reset from the front panel reset
button, except that the system con-
stants that are initialized by either
of these latter entry methods are left
intact. These include the video screen
address, console wormholes and inter-
rupt service routine addresses for

the USART, keyboard and RTC.

PolyMorphic Systems Vol. 2 P. 81
APPENDIX C. FRONT PANEL DISPLAY '

Shown on system video screen Explanation of display
PC 008C 0C 0C 7E B7 C2 8B FE 8C PC=008C hex gPC§=Eg hex
SP=0FFA SP)=
HL 0COC 49 48 D5 10 08 56 C6 DA D=0C E=51 gDE;=A7
B=00 C=00 BC)=31

DE 0C51 21 00 88 A7 BA DC OF 1IF a_pf

BC 0000 AD0 19 70 31 00 10 06 FF

flag byte=86

AF FF86 CNZ t Carry, sign and zero flags are

1FE3
1FEB
1FF3
1FFB
2003
200B
2013
2018

shown as all high ("CNZ") for
explanatory purposes only, as

FF FF FF FF FF FF FF FF this is an impossible condition

FF FF FF FF FF FF FF FF and does not correspond to the
flag-byte shown. A low flag is

FF FF FF FF FF FF FF FF displayed as a blank, eg. " "

FF FF FF FF FF 01 CA CD means C=S$=7=0.

=~ 00 AA FE 3A 40 21 CE 8F Memory window is displaying data

76 C2 3C 03 2A 27 0C 3A around 2003 hex. If data is ente;ed
it will replace the 00 to the right

26 4F 3A 29 2A 44 0OC C9 of the arrow. Addresses increase

from top to bottom and left to
right. Location 2003 contains 00,

2004 contains AA etc.

B9 83 B2 16 FO C8 33 BA

The display shown above appears on the POLY-88 system console

whenever the monitor is in the front panel mode. It is updated

each time any command is executed, so it always reflects the

contents of the memory and registers accurately.

The top of the screen shows the simulated front panel itself,

and the bottom shows the memory window. To the right of each

register pair is a display of the Tocations on either side of

the address in the register pair. The up-arrow near the

middle of the screen points to the actual location that the
register pair points to. This is the location that would be
modified or read if the associated register pair is used as a
pointer (LDAX B, LDAX D, or MOV A,M type of instructions).

Since the A register and the F (flag) byte are never used as

concatenated bytes in an address, they do not have a memory.

PolyMorphic Systems

APPENDIX D.

Vol. 2

POLYFORMAT DEFINITION

. 82

The next page shows five examples of POLYFORMAT records,

one of each of the currently defined types.

the same basic structure as shown below:

Each record has

SYNC NAME , JRECD#,LN,ADDR /TP/Ci’

{E6 E6 E6/E6 E6 01 a a a a a a a a r r b b t c(
Yy .
22 pata /€S,
Y 3 » .

/d d d d d//d d d d c]

Each record consists of a HEADER followed by a possible
DATA field. The fields in the header above have the following
meanings:

field designator

purpose/description of field

field name

a eight character record name NAME

r record number (0 to 65536) RECD#
1 length of data 1 to 256 bytes LN

b bias address or absolute addr. ADDR

t one of five record types TP

c checksum modulo 256 neg.sum CS

d data bytes binary 8 bits DATA

E6 hexadecimal E6 sync chars. SYNC

01 ASCII "start of header", SOH SH

A11 records begin with the SYNC characters

“execute,

(exactly 16 of them) followed by an ASCII SOH character.
NAME and RECD# are on all types of record, but record
types without data have undefined LN fields. The ADDR
field is defined for absolute binary types and auto-

in which cases it indicates loading or branching

DATA (text,relocatable object etc.)

/ LEADER FDH/ NAME ZRCD #/LN/ 77?41TP/CS/ DATA /CS/
{ E6 Eb EB E6/’/E6 E6 E6 01 48 49 20 20 20 20 20 20 57 01 05 00 00 04 8E 54 45 58 54 DD AE]
synch. characters "1 P b B B B B" #157H Sbytes data T E X T ¢"

long type

recd.

COMMENT (message to operator during load)
LEADER /S0H NAME /RCD #/LN/ [/TP/CS/ DATA /CS/
E6 E6 EB E6/ /E6 E6 E6 01 48 49 20 20 20 20 20 20 00 00 05 00 00 01 E9 48 49 20 20 20 OF)
synch. characters "H I p B B P ¥ P"#00H 5bytes comm. "H I B p p"
long type
recd.

ABSOLUTE BINARY (core-image for binary object code)

LEADER /SOH/ NAME /RCD #/LN ADDR JTPCSy DATA /€Sy
[E6 E6 E6 56/1/E6 E6 E6 01 48 49 20 20 20 20 20 20 01 00 00 D2 E5 00 77 C3 21(’/FB C9 C6)
syneh. characters "H I B B ¥ B B P"#1H 256 E5D2H abs. binary obJect

bytes load type
long . addr. recd.

AUTO-EXECUTE (jump to address given in ADDR field)

/ LEADER\ /SO NAME /RCD'#/??/ADDR /TP/C§/
{ E6 Eb .E6 Eﬁ(’éﬁﬁ E6 E6 01 48 49 20 20 20 20 20 20 02 00 00 D7 E5 03 2€E]
synch. characters "H T B P B P B P"#2H no exec. auto-
len. addr. exec.

type

END (stop tape loading - indicates no more data) recd.
LEADER /smy NAME /RCD #/??/ 71?7 /TP/CS/

\E6 E6 Eb6 EG/,/EB E6_E6 01 48 49 20 20 20 20 20 20 03 00 00 00 00 02 EA|
synch. characters "H I B p P ¥ B pb" #3H

swa3sAS dLyduopAod

OA

1

€8

PolyMorphic Systems Vol. 2 P. 84

address respectively. Both RECD# and ADDR are in the standard
8080 byte-reversed format, so that they work with LHLD and SHLD
instructions. In other words, the upper byte in memory contains
the most significant byte of the double word. The type field has

the following meanings:

TP (type) field Record type indicated

O0OH ABSOLUTE BINARY. Used for program
storage where data must be reloaded
into .the same place it was copied from
originally. The address of the area
is contained in the ADDR field. Data
is copied starting at this address
for the number of bytes given in the
LN field.

O1H COMMENT. The data in the data fiéld
is echoed to the system video display
as a message to the operator. The
checksum on the data may be ignored.

02H END. This terminates a file. Any
physical device capable of being turned
off is stopped, if it is the device
supplying the data. LN,ADDR fields are
undefined. No data follows the header.

03H AUTO-EXECUTE. The address in the ADDR
field is jumped to. LN is undefined
and no data follows the header.

04H DATA. Information in the DATA field
is loaded into a buffer somewhere and
used by a program. Data in this
record has no address associated with
it as object code programs do, hence
the ADDR field is undefined. Data is
8 bits/no parity as is the ABS. format
and might be ASCII text (bit 7=0) or
relocatable object code etc..Length of
data part of record is given in LN.

PolyMorphic Systems Vol. 2 P. 85

The length field specifies from 1 to 256 bytes in the data
field, but it is given the following meanings:

LN (length) field ‘Actual data block length (bytes)
1 to 255 -1 to 255
0 256

This is so that theAvalue of the length field corresponds with
the actual number of bytes transferred, but also so that the
records may be an even %K block maximum. The seemingly special
case of zero length (0 LN) field for a 256 byte data block is
actually natural, since it represents the overflow condition
(100H with the 1 dropped),. It is easy to write program loops
which work with this definition with no special logic to detect
the 256 byte case. |

Checksums are applied to both the header and the data
block separately. The checksum is the negative sum of the
bytes preceding it. When it is added to the preceding bytes
by a loader, the result should be zero. A valid header must
have a correct checksum, or it will be ignored. If a data
block following a valid header has a bad checksum, a checksum
error is generated and loading of the file stops until the
erroneous record can be re-read correctly. Record types with-
out data blocks do not need a second checksum following the
header checksum. Header checksums do not include the SYNC
characters or the SOH character.

Records on a magnetic tape are separated by an inter-
record-gap or IRG of sufficient length that the tape may be
stopped between records and restarted without loss of the next
record. This is to allow controlled loading and storing of data
to match the processing speed of a program. Records may be
stored in immediately successive positions on a tape for the
ABSOLUTE type record if it is not desired to read the data back
slowly under program control. In this case, data can, and
must be loaded back into RAM directly, at full speed.

ENTE R : ‘DNAME

C’:sze 4.0 POLYFORMAT TAPE LOADER DISPLAY NAME
OF RECP,
FLOWCHART READ ON
\ SCREEN
CLEAR . .
SCREEN b Srved

SYCH, UP USART,

READ LEADER
it START TO SON
CHARACTER

INPUT
CHARACTER
FRoM N
ONSOLE
i LOAD WEADER
WwTO READ
HEADER QUFF,
N -
S&TVP
VSART § BR G
l FOR e
POLYPHASE
DNAME
3&TVP
VSART 4 BRG
| FOR
8Yre sro
LOAD
BINARY
PATA INTO RAM
AT RADR
LoAD “Einyp”
NAME INTO
ENAME
FROM coNSOLE
DISPLAY
<& COmMMENT ON
VIiDE ©
SYNCH SCREEN

SYNCH

CHREKSUM
Goop?

DNAME

pis peAY
72«
oON VIDED
SCREEN
DNAME
y
sToP SToP EXECUTE
USART AnD USART aNO PGM
START < TAPE Nl TAPE STARTING AT

MOTORS MMOTORS RADR

PolyMorphic Systems

Vol. 2 P. 86

APPENDIX G. GLOSSARY OF TERMS

awareness

filter program

ISR or Interrupt
Service Routine

the condition of knowing in a given program
that a certain system variable can and
should be changed to a certain value without
dangerous effects. An assembler, for example,
should change no system variables - it is
completely "unaware". This way, an "aware"
program, called a supervisor, can run the
assembler with the system RAM configured any
way desired. The assembler could be used

to communicate with any physical device that
the supervisor desires, merely by letting
the supervisor put the address of the
physical device's driver routine into the
appropriate wormhole.

A program which can be installed in a wormhole
by putting its address in that wormhole, and
which performs some intermediate processing

on I/0 information before passing it on to

its intended destination. An example is a
pager for the listing generated by an assembler.
The pager would be installed in a wormhole

by a supervisor, and then the assembler would
be called. The assembler would proceed unaware
that the pager was counting lines and leaving
spaces on each page for a page number that

it generates also. The pager would pass the
paged text listing on down to the physical
device driver routine that was originally

in the wormhole. Filter programs are also

" unaware", as are user programs, since they

do not know what physical device they are
filtering. They depend on a supervisor to
install them.

A program which executes each time a specific
interrupt of the 7 possible interrupts -
occurs. It usually communicates with a
physical device and moves data between the
device and a buffer area in RAM which is
shared by the ISR and the wormhole program
which will transfer the data on to the user.
The ISR also zeroes a flag byte, also in a
shared (thus standardized) location. The
wormhole program simply waits for this flag
to be zeroed, and when it is, it knows that
the data has been placed in the associated

PolyMorphic Systems Vol, 2 P. 87

CASSETTE TAPE FORMAT CRITERIA

Characteristics of the medium

fixed speed of character transfer

2. operator cannot visually identify position of tape to
find leaders or identify files

cassettes are long enough for many files

no position control is available other than start/stop
without operator intervention. The operator, however does
not know what is coming from tape, and cannot perform
positioning functions accurately, so he is of limited
value.

Format criteria

1. Transfer speed regulatable over long term for program
controlled acceptance of data input or output.

2. Read error recovery--operator assistance acceptable on error

detection, but it must be possible to skip already read
data. This makes direct loading into memory for binary
object code tapes faster since an error does not mean the
entire tape must be reread. Also makes buffered transfers
recoverable because previous data may not be available.

3. Files identifiable by the machine so that tape libraries
are possible and files may be packed closely together.

4. Contents of tape should be made visible to operator so
he can scan a tape and find a file or a blank space or
so he will know what portion of a file has loaded etc...

5. Multiple file types should be avilable for special kinds
of data such as absolute binary object code, which should
be loaded directly into memory, documentation or "comment"
files, which should be displayed for the operator, ASCII
or binary data which is to be operated on by a program of
some kind and therefore should be transferred through a
buffer.

6. Synchronous or asynchronous byte format should be usable with

no change in the file format
7. Any transmission speed should be usable

Format should work on a teletype or floppy disk as well as
cassette tape.

9. High efficiency in information packing for fast data rate.

(47¢ 1)
/ I
‘%192)

16354 0)

PolyMorphic Systems
APPENDIX E.

Vol., 2 P, 88

MEMORY MAP

Total address space allocation.

0000

0400

0800

0Ccoo

O0EOO
1000

2000

4000

F000
F400
F800
FCO0

FFOO
FFFF

)
%

N

NN

A\

L

\ ' é j,\

\

L~

‘Minimal User RAM

4.0 monitor ROM (slot 1)

ROM expansion £s1o6t 2)

Onboard (CPU-resident;.
ROM and RAM (4K bytes

ROM expansion (slot 3)

System RAM C00 to EOO,
duplicated EOO0 to 1000.

System expansion
area (4K bytes)

area (8K bytes) typical 8K RAM board.

User RAM expansion

Possible video displays
or other mapped I/0.

Dedicated system video tyPical VTI/64

display.

Memory mapped I/0
ports.

PolyMorphic Systems Vol. 2

CPU resident system RAM.

0Ccoo

System variable space. Defined

for all systems as reserved for
storage of interrupt, wormhole, and
other shared information.

0Cc80
<3zo¢9§

v

OFFF
(4095D)

y User program space(in systems

with no other RAM). May be used
by operating systems for 1/0
drivers, etc., in large systems.

\

Meeting point between system
programs and stack depends on size
of both - either can expand until
conflict occurs. Big systems usually
move stack to a larger area to allow
.more system programs.

Initial system stack. May be moved
y large systems which need system
RAM for system functions.

89

ﬁ{ yééﬂ YC/

' ideo
SeeEED

AT TAOE (v cl 29 1

PolyMorphic Systems Vol.

System variables in System RAM.

- 0co8

0CO00

0Co4

0COA

0coc

0COE

0C10

O0C1E

0C20 - |

cezy

0c48

TIMER
RTC
TANI
INT. TBUFF
UFFS RBUFF
KBUFF
VIDEO POS
SRA1
SRA2
ISR
ADDRS
WAKEUP
SRA7
SCEND
VIDEO IlRnm
| WHO
> WH1
1 = w2
WORM-
HOLES
WHY

0C48

0C4cC

0C50
0C52
0C54

0C5¢C

0C64
0C66

0C6A

0C80

AUX.
VIDEO
CTL

temp.

TAPE
LOADER

90

SCND2
SCRHZ2
P0S2
SCND3
SCRH3
POS3
WINDOW
SAVPC

FNAME

RNAME

RRN
RLEN
RADR
RTYPE

undefined

>reserved but
by 4.0.

PoiyMorphic Systems Vol, 2 | P. 91

buffer. When the wormhole program is done,
it de-activates the flag by putting a non-
zero value in it. Interrupts occur at random
times, so they must save the contents of all
CPU registers and restore them when done.

1ink program A part of a supervisor program which connects
a filter program to the physical devices
that the filter program replaced. It is
installed in the appropriate wormhole by the
supervisor program before the user program
is executed. When the user program calls
the filtered wormhole, the 1ink program is
executed. The link program restores the
wormhole to its original contents and calls
the filter program. The filter program
executes, transferring filtered data to and
from the original source/sink. When it
returns, the 1ink program restores its own
address into the wormhole and returns into
the user program., When the user program
is finished, it returns back into the
supervisor program which restores the
original contents of the wormhole which had
the 1link program address. It is evident
(with thought) that a supervisor program
may act as a link program for a supervisor
above it, and that a 1ink program is a
simple-minded supervisor program,

logical device An imaginary I/0 device which behaves in a
known way for a program which communicates
with it. For example, the unknown device
which communicates with the computer oper-
ator is called the logical console device.

It can be used by an program without regard
to what physical device is actually being
used for communications with the operator
(video display, TTY, graphics CRT, etc....).
This means that the logical devices must be
standardized: methods of access must be
uniform, and the conceptual function of

each device must be uniform. Standardization
is achieved in the POLY-88 by such means as
the use of wormholes and the declaration of
conventions for allocation of system variables
in the CPU resident RAM memory.

PolyMorphic Systems Vol. 2 P. 92

physical device An actual piece of hardware capable of
performing input or output or both, via
some standard method or format. It is
used to describe the difference between
the data sources/sinks that an executing
program is "aware" of (see glossary
definition of "awareness") and the data
sources/sinks that are actually being used.
Programs are normally concerned with "logical
devices" (e.g. "logical tape reader" or
"logical console key board"), whereas the
system and the computer operator are
concerned with the actual physical device
that data is flowing to (e.g. audio
cassette or paper tape reader).

supervisor program Any program which changes the contents of any
wormhole or other system variable in the CPU
resident RAM is acting as a supervisor to
all programs which use the system in the new
context (see dictionary definition of context).
The supervisor is responsible for saving the
old contents of the system RAM that it changes,
and for restoring it when its job is done.
It executes a CALL to the ‘"user" program
it is supposed to run. When the user program
is finished, it will return and the supervisor
can restore the system RAM. Supervisor
generally discover how to change the system
RAM by talking to the operator through the
system console.

system variables Any of the shared storage areas in the CPU
resident RAM memory from COOH to C80H.
System variables are used to "configure" the
system because they control the connections
of physical to logical devices through the
wormholes, the address of current system
video display and system keyboard, the
addresses of auxiliary video displays, the
addresses of the interrupt service routines
for each interrupt, and the status of the
real time clock.

user program A completely unaware program. It is designed
to perform some processing function and so
should be maximally flexible in its I/0. For
this reason, it does not change any system
variable, but assumes that any system variables
that it references have been set up properly
by a supervisor before hand. When it is done,
it returns with a RET instruction and the
supervisor that called it restores the system

variables it changed or runs another user program.

PolyMorphic Systems Vol. 2 P. 93

wormholes One of 10 areas in the CPU resident RAM

memory that contain CALL followed by RET
instructions. The address of the CALL is
the address of a routine which can fetch
or transmit a single byte from/to a
physical device. Each wormhole is defined
to be the access port for a given logical
device such as the console input, console
output or binary input or output etc..
The wormholes start at 0C20H and go up,
each taking 4 bytes. Each can be called

, and will transmit/fetch the character in A.

P > See Appendix H for details.

wormhole programs A program called by a wormhole which 1is
supposed to communicate with a logical
device such as the logical console input
device. In an interrupt driven system,
it usually wastes time waiting for a flag
in a known RAM location to indicate that
data is available or can be transmitted to
the physical device currently connected.
When the flag is activated, the transfer takes
place and the wormhole program returns to
the user via the wormhole. The wormhole
program thus guarantees that exactly one
byte will be transmitted before it returns
to the user. No registers other than the
accumulator may be affected.

PolyMorphic Systems

Vol. 2 P. 94

APPENDIX I
ASCIT CONTROL CHARACTER USAGE
CTL

HEX ASCII KEY USE

@@ NUL @ USED TO DETECT BREAK CONDITION

g1 SOH A

g2 STX B

@3 ETX c

pas EOT D

g5 ENQ E

p6 ACK F

g7 BEL G

p8 BS H BACKSPACE

g9 HT I HORIZONTAL TAB

pA LF J LINE FEED (NOT RECOGNIZED BY CRT DRIV.)
gB VT K VERTICAL TAB - MOVES CURSOR TO HOME POS.
gc FF L FORM FEED - CLEAR SCREEN ON CRT

gD CR M CARRIAGE RETURN - NEWLINE ON CRT

pE SO N

gF SI 0

19 DLE P

11 DCI Q

12 DC2 R

13 DC3 S

14 DC4 T

15 NAK U

16 SYN V SYNC CHARACTER - IGNORE EXCEPT AS BCC
17 ETB W

18 CAN X CANCEL LINE

19 EM Y KEYBOARD INTERRUPT

1A SUB I SAVE CPU STATE & GO TO MONITOR

1B ESC L HALT EXECUTION & RETURN TO INTERPRETER
IC FS N

ID GS]

IE RS r)

IF US —(2)

>F DEL RB RUBOUT - DELETE LAST CHARACTER AND BACKSPACE

PolyMorphic Systems Vol, 2 P. 95

APPENDIX J. VECTOR INTERRUPT SYSTEM

Interrupts on 4.0 vector through the locations from
zero through 38 hex as they do in any 8080 system, however
these locations in the monitor ROM contain instructions which
push all general registers and jump to an address stored in
the corresponding element in the SRA table (Service Routine
Address table). The SRA table is in System RAM, so can be
changed by a user supervisor program which wants to install
its own Interrupt Service Routine (ISR) into any of the
vectors. The chart below shows the history of the vectoring
for each of the monitor versions. 4.0 fixes permanently the
address of the SRA table at C10. Note that there is no SRA6,
but instead an address known as the "wakeup" address, which
is the jump address for RTC timeout. The RTC acts like a

piece of hardware wich increments the negative count in
TIMER (four bytes at C00) until it reaches zero, when the
routine at the WAKEUP address

is jumped to.

VECTORED EQUIVALENT INTERRUPT VECTOR

 RESTART ADDRESS ASSIGNED BY
INTERRUPT INSTRUCTION MONIIOR VERSION

|) 7.2 4.0
V1P sing.step. RST 7 N.A. N.A. C1C(SRA7)
VI1 RTC RST 6 1939 pFFC c1A (wakeup)
.VI2 KBD RST 5 N.A. N.A. C18(SRA5)
VI3 USART RST 4 1920 PpFF9 C16 (SRA4)
VI4 RST 3 1918 pFF6 C14 (SRA3)
VIS5 RST 2 1919 PFF3 C12 (SRA2)
VI6 RST 1 1998 prrFg C10(SRA1)
VI7 (same as RST b Used to initialize
RESET) the system

PolyMorphic Systems Vol, 2 P. 96

The service routine should use the original flag byte and

single byte buffer that KSR (Keyboard Service Routine) used

for the VTI keyboard port. If it does not, the address in the
console input wormhole should be changed to point to a routine
which can communicate with the proper flag and buffer. The flag
and buffer used by KSR is called KBUFF and is located at COC,
with the flag byte at that address, followed by the buffer, The
flag indicates data is valid in the buffer when it is zero.

If it were desired to connect multiple keyboards to the system,
this could be done either by using more interrupt vectors, assign-
ing a separate service routine to each, or it could be done by
doing "polled" I/0 to determine which keyboard interrupted
through a shared interrupt. Polling requires an interrupt
service routine which can talk separately to each keyboard port
to find the one that interrupted, and then service only that one.
It puts the data obtained into a buffer corresponding to the
interrupting keyboard and activates (zeroes) the corresponding
flag. In a time sharing system, the operating system would

swap addresses into and out of the console input wormhole

(WHO) each time a user's program was restarted. Each user's
wormhole would effectively contain a special routine which

would communicate only with the buffer corresponding to his

keyboard,

The monitor provides a routine which reads from the USART,

and which uses another buffer of the same configuration as the
keyboard buffer. It is called RBUFF and is located at COA in
system RAM, When a higher-level program installs routines
which can both read and write through the USART, they should
use the buffers and flags defined in system RAM, just as the
keyboard service routine did with the keyboard buffer. This
way, all wormhole programs which wait for the flags to go to

PolyMorphic Systems Vol. 2 P. 97

zero will work no matter what interrupt service routine
actually changed the flag. The ISR may be handling more than
one device on the particular interrupt that it is installed
in, and may be placing the characters it obtains into a long
buffer (longer than the single byte buffer used to talk to
the wormhole programs), but in any case, if the same flag and
byte-buffer are used, no incompatibilities between ISR and
wormhole program will result.

The key board flag is particularly important, since many
large applications programs may test it to determine whether
a key has been pressed. If different ISR's use different flags,
then these applications programs will not work.

On the subject of standards, the interrupts service
routines all use a standardized register save sequence, which
consists of pushing PSW (accum and flags), then B, D, and H.

A11 interrupts are forced to use the sequence because it is done
automatically in the ROM before the ISR is jumped to. For the
convenience of the ISRs, a section of code in the monitor called
IORET can be used to restore all the registers in the same
sequence, and to enable interrupts before returning to the
interrupting program. A simple jump into the start of IORET
will do the rest. In the monitor, the USART ISR, called USRTSR
falls through into IORET to avoid the need to jump.

There are only seven vector interrupts because the location
that V17 would interrupt through is the same address as RESET
uses, specifically, address 0000. V17 would have the same
effect as resetting the CPU, which of course initializes the
system and brings up the tape loader mode.

Several of the other VI's have been dedicated also.
They are allocated by 4.0 for the single step interrupt, the
system keyboard and the 8251 USART (in addition to the RTC

interrupt mentioned above).

PolyMorphic Systems Vol. 2 P. 98

The single step interrupt is generated by a few
flip-flops on the CPU which count two instructions after
they are activated and then interrupt. This allows the
single stepping feature on the POLY-88 which is so useful
in program debugging. The monitor pops the values of the
registers from their save area on the system stack, leaving
the address to be stepped, activates the single-step hard-
ware, and does a return. The RET instruction is counted by
the hardware as one instruction, then the single instruction
in the user program that gets executed is counted as another
before the interrupt is generated. The interrupt is vectored
to SAVE - an address in the monitor - by SRA7, which is
initialized to contain this address. SAVE then pushes all the
registers back down the stack and returns to the front panel
mode for further operator commands. 4.0 leaves the vector
address of VIO changeable through SRA7 in order to use the
single-stepping feature in more advanced program debugging

systems.

The sytem keybbard interrupt is initially set up for a
VTI keyboard port, but by changing the address in SRA5, any
other interrupt serviced physical device service routine may

be installed.

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION

4.0S PAGE 61

;FINAL VERSION 4.9 MONITOR NOV 22,1976
;COPYRIGHT 1976 BY

s POLYMORPHIC SYSTEMS

;A DIVISION OF

;s INTERACTIVE PRODUCTS CORPORATION

:737 S. KELLOGG AVE.

;GOLETA, CA 93017

khkkhkhkkhdkdh 4.0 MONITOR kRkkkkRkkhkk

WRITTEN BY D.L.FAIMAN
D.W.SALLUME
R.L.DERAN

6 Ne N0 e Ne %o “e w»

;POLY-88 RESIDENT MONITOR ROM VERSION 4.8. RUNS FROM 29
;TO 3FFH IN FIRST CPU ROM SOCKET. FRONT PANEL RESET OR
:THRU ZERO GETS A "POLY-FORMAT" ABSOLUTE TAPE LOADER
sWHICH WILL RUN THE CPU RESIDENT USART TO READ BYTE-STAN
;('B') OR "POLY-PHASE" ('P') AUDIO CASSETTE TAPES.
;CONTROL-Z AT ANY TIME ON SYSTEM KBD BRINGS UP FRONT PAN
;DISPLAY WITH MEMORY MODIFY WINDOW IN HEX. COMMANDS THE
;ALLOW MEMORY,REGISTER MODIFICATION AND SINGLE-STEP/EXEC
;OF INTERRUPTED PGM.

’

;UTILITY PGMS AVAILABLE FOR USER ARE:

;DSPLY PUTS CHAR ON SYSTEM VIDEO SCRN. RECOGNIZES
ALL STANDARD CTL CHARS AND SCROLLS TEXT UP.
ACCESSIBLE BY CALL TO WORMHOLE 1 (WH1) AT @C24H.

KI GETS CHAR FROM SYSTEM CONSOLE KBD.

ACCESSIBLE BY CALL TO WORMHOLE ZERO (WH3) AT @C2

USRTI GETS CHAR FROM USART BACKGROUND LOAD

TYPE ROUTINE..

PUTS OUT LOW NIBBLE OF A IN HEX THRU WH1

;BYTE PUTS OUT A IN HEX THRU WH1.

;DEOUT PUTS OUT D,E IN HEX THRU WHI.

;HEXC GETS A HEX NUMBER UP TO 2 BYTES LONG IN H,L FROM
WHP, ECHOING ON WH1. NON-HEX CHARACTER
TERMINATES INPUT. THE TERM. CHAR IS LEFT IN A.

MOVE TRANSFERS #BYTES IN BC FROM ADDR IN HL TO ADDR I
TERMINATES WITH HL=HL+BC,DE=DE+BC,BC=J.

IORET A SECTION OF CODE THAT TERMINATES AN
INTERRUPT SERVICE ROUTINE BY RESTORING
ALL REGS IN STANDARD ORDER, EI, RET.

TIME EXECUTES 68 TIMES A SECOND AUTOMATICALLY, INCREM
ING FOUR BYTE LOCATION CALLED TIMER. IF TIMER=9
ALL REGS SAVED AND ROUTINE AT ADDR IN LOCATION
WAKEUP IS JUMPED TO. THIS ROUTINE MAY TERMINATE

w6 we WE wo W wo

o]
m
>
o

WP NE e we NP N NE Ne we we we

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.8S PAGE 42

BY USING IORET.
xSYSTEM RAM ALLOCATION****%*%

DEDICATED LOCATIONS.

we we N3 wo wo wo

aCo9 ORG aCooH ;BEGIN OF ONBD RAM

gcoo TIMER: DS 4 ; INCREMENTED BY 68HZ CLOCK.
;LOW BYTE=LEAST SIGNIFICANT.

0Co4 TANI: DS 4 ;TIME AT NEXT INT. USED BY

gces TBUFF: DS 2 ;USART TRANSMIT BUFFER

;FLAG AND ONE BYTE BUFFER.

;USED BY EXTERNAL DUMPERS.
aCaa . RBUFF: DS 2 ;USART RECEIVE BUFFER FLAG

;AND ONE BYTE BUFFER.

;USED BY MONITOR TAPE LOADER.

gcac KBUFF: DS 2 ;KBD BUFF-FULL FLAG AND BUFFER
0COE POS: DS 2 ;CURSOR POSITION FOR DSPLY
; INTERRUPT SERVICE ROUTINE ADDRESS TABLE.
pClo SRAl: DS 2 ;VIT
8C12 SRA2: DS 2 ;VI6
AC1l4 SRA3: DS 2 : VIS
acle SRA4: DS 2 sVI4: USART INT.,FIRST INITED SR
gcls SRAS: DS 2 ;VI3: KBD INT.
acla WAKEUP: DS 2 ;ADDRESS JUMPED TO WHEN CLOCK TImE

;OUT IS IN THIS LOC. IT FUNCTION
;EXACTLY LIXE AN SRA, BUT IS ACT
~ ;JUMPED TO BY THE CLOCK SOFTWARE
;EFFECTIVELY SIMULATES A HARDWAR
@8Cclc SRA7: DS 2 ;SINGLE-STEP INTERRUPT. NORMALLY
‘ ;AT ITS INITED ADDR WHICH BRINGS
;UP FRONT PANEL DISPLAY. IT CAN
;CHANGED FOR EXTRNAL PGMS TO USE
;DEBUGGING OR FANCY PGMING.
;VIDEO SCREEN ADDRESS PARAMETERS USED IN DSPLY.
;INITED TO F800H,FCH, BUT MAY BE CHANGED AFTER
;SYSTEM START UP.
@CleE SCEND: DS 1 ;SCREEN END FOR DSPLY.
8C1F SCRHM: DS 1 ;SCREEN HOME FOR DISPLAY
;WORMHOLE VECTOR. THIS TABLE IS FULL OF CALL-RETURN PAIR
;WHICH CALL SYSTEM I/O PROGRAMS. THEY MAY BE CHANGED AFT
;INITIALIZATION TO CALL ANY PHYSICAL DEVICE DRIVER IT IS
sDESIRED TO INSTALL. THIS IS NORMALLY DONE WITH LINK PR
;AS DESCRIBED IN MANUALS. THE FIRST TWO WORMHOLES ARE I
;TO THE SYSTEM CONSOLE KBD AND SYSTEM VIDEO DISPLAY.
;ALL USER I/0 SHOULD BE DONE THRU THE WH'S TO INSURE
;COMPATIBILITY WITH ANY SUPERVISOR SYSTEM AND TO ALLOW
;DYNAMIC REASSIGNMENT OF I/0 FOR A FIXED USER OBJECT PGM

8C29 WHO: DS 4 ;CONSOLE IN: INITED TO CALL SY¥S.
AC24 WH1: DS 4 ;CONSOLE OUT: INITED TO CALL DSP
8C28 WH2: DS 4 ;SYSIN: USED EXTRNLY BY TAPE OR
;s INPUT DRIVERS. A CALL GETS BYTE
FFEA INITLEN EQU SRA4-S ;;LENGTH OF INITILIZED MEMORY

gczac WH3: DS 4 ;SYSOT: USED BY TAPE OR DISK OUT

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76

COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 93

aC39
AC34
aCc38

aCc3cC

gc4o
2C44

aC4s
ac49
ac4a

pC4cC
#C4D

@C4E

2C59
8C52

aC54
acsc
8Cé64
0C66
2C67
2C69

0200
0000
2393

20896
29387
0088
29429
ga90A

310019
c34a302

El
E9
FS
C5
D3

;DRIVERS. A CALL OUTPUTS BYTE IN
WH4: DS 4 ;SYSIN2: SECONDARY SYSTEM INPUT.
WHS: DS 4 7SYSOT2: SECONDARY SYSTEM OUTPUT
4

WH6: DS sREAD: TEXT TYPE INPUT USED
;BY EXTRNL TAPE,DISK,KBD DRIVERS
WH7: DS 4 ;LIST: TEXT TYPE OUTPUT TO LINE
;PRINTERS OR TEXT FILES ETC.
WHS8: DS 4 ;AUX WH: IN
WHO: DS 4 sAUX WH: 0OOUT

;VCB BLOCKS TO BE TEMPORARILY SWAPPED FOR SCRHM,SCEND AN
;IN ORDER TO USE DSPLY ON OTHER THAN SYSTEM VIDEO DISPLA
;A LINK PGM DOES SWAPPING, AND IS CALLED FROM WH1 IN-
;STEAD OF DSPLY. IT THEN CALLS DSPLY, AND RESTORES
;CONTENTS OF SCRHM,SCEND AND POS BEFORE RET..

VCB2: : SECONDARY VDO SCRN CONTEXT
SCND2: DS 1

SCRH2: DS 1

POS2: DS 2

VCB3: sTERTIARY VDO SCRN CTX.
SCND3: DS 1l

SCRH3: DS 1l

POS3: DS 2

s TEMPORARY LOCATIONS USED BY FRONT PANEL MODE.
WINDOW: DS 2 :MEM. MODIFY WINDOW POINTER.
SAVPC: DS 2 :USED BY S.S.WHEN STACK UNAVAILA

’
; TEMPORARY LOCATIONS USED BY TAPE LOADER.

FNAME: DS

8 ; "FIND" NAME FOR TAPE LOADER.
RNAME: DS 8 ;READ RECD NAME -~FOUND ON TAPE.
RRN: DS 2 ;READ RECD NUMBER.
RLEN: DS 1 ;READ RECD LENGTH.
RADR: DS 2 ;READ RECD ADDR (BIAS).
RTYPE: DS 1 ;READ RECD TYPE.

;FREE ONBCARD RAM ONWARDS.

H
; ***MONITOR PROGRAM***
H
;

VECTOR INTERRUPT LOCATIONS

ORG 2
RESET: LXI SP,STACK ;FRNT PANEL RST OR POWER UP GET
JIMP RST1 ;RST1 INITS SYST RAM,ENDS IN TAP

;THESE TWO INSTRUCTIONS CAN BE CALLED TO GET THE
;ADDDRESS OF THE CALLING PROGRAM INTO H,L. THIS
;IS NECESSARY IN WRITING SELF RELOCATING CODE.

3
?

POP H
PCHL

Vie: - PUSH PSW ;STANDARD REGISTER PUSH SEQUENCE
PUSH B

pPUSH D

POLY 88 RESIDENT MONITOR VERSION 4.4

11/22/76

COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 04

@908
ggac
pa0oF
0019
211
0912
9313
99214
0817
pa1s8
8919
291A
2918
go1c
891F
0020
8921
0822
2023
2024
8927
028
8029
a02a
@92B
ga2C
8a2F
9039
8231
2032
2333
Pp34
2837
9038
8239
283A
2238
883C
2883F
08490
0042
8845
2047
248
2048
g34cC
884D
8959
0053

2854
0056
9258

ES
2A140C
E9

F5

C5

D5

ES
2A160C
E9

F5

CS

D5

E5
2A184C
E9

F5

C5

D5

ES
C340099
09

F5

C5

D5

E3
2Al1CaC
E9
D328
21@08aC
3E04
34
C26499
23

3D
C2470292
2A1A0C
E9

DB@1
E602
CA6409

VI5:

VIi4g:

VI3:

VI2:

CLOCK:

SS:

TIME:

TIME2:

;USART INTERUPT
;ITS ADDRESS 1IS

USRTSR:

PUSH
LHLD
PCHL
PUSH
PUSH
PUSH
PUSH
LHLD
PCHL
PUSH
PUSH
PUSH
PUSH
LHLD
PCHL
PUSH
PUSH
PUSH
PUSH
LHLD
PCHL
PUSH
PUSH
PUSH
PUSH
LHLD
PCHL
PUSH
PUSH
PUSH
PUSH
JMP
DB
PUSH
PUSH
PUSH
PUSH
LHLD
PCHL
ouT
LXI
MVI
INR
JN2
INX
DCR
JNZ
LHLD
PCHL

IN
ANI
JZ

H
SRAl

PSW

SRA7

8
H,TIMER
A,d

M

IORET

H

A

TIME2
WAKEUP

SERVICE

;GET SERVICE ROUTINE ADDRESS
;GO EXECUTE IT. IT WILL RTRN THR
;SAME AS ABOVE

V1|

- sTHE CLOCK INT ALWAYS GOES TO TH

;s TIMER COUNTER ROUTINE.

o f
T

T

<,] & g
wintg £ ; " A
e Sgp

ra, 7

;ENABLE INT FOR NEXT 602HZ CYCLE
;COUNTER LOCATION

;4 BYTES TO INCR

; INC ONE LOC.

;DONE , STANDARD RETURN

:CNTR IS ZERO,SO INITIATE WAKEU
;GO TO THE WAKEUP TASK
ROUTINE FOR INPUT

INITED INTO SRA4.

1
2
IORET

POLY 88 RESIDENT MONITOR VERSION 4.9 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE @5

9258
885D

0069
362
9063

264

0065
8066
2867
068
2969

26A
ga68
@O6E
AO6F
20780
8973
9074
275
2076
0877
2878
8879
pa7cC

237F
20389
0381
2282
2083
2018

DB29
2108a0C

3600
23
77

El

D1

Fl
FB
c9

E5
218ceac
7E
B7
C26EQ0
35
23
7E
El
co
ES
218A40C
C36E09

F5
C5S
D5
ES
2AQEQC

IN 2
LXI H,RBUFF

’

;THIS CODE IS SHARED BY ANY SERVICE ROUTINE
;WHICH HAS FOUND A CHARACTER. HL SHOULD HAVE THE
;BUFFER ADDRESS, FLAG FIRST-THEN ONE BYTE BUFF.
;ONLY USED BY INPUT ISR'S.

IOPUT: MVI M,0 ;ZERO THE FLAG: WE GOT THE CHAR
INX H sMOVE UP TO DATA BUFFER
MOV M,A ;PUT CHAR IN DATA BUFF
;FALL THRU TO IORET
IORET: POP H ;THIS CODE SECTION CAN BE JUMPED

;FOR STANDARD SEQ.REG.POPS AND E
;AS FOR ANY INTERRUPT SERVICE -RT

POP D
POP B
POP PSW
EI

RET

;WORMHOLE END OF KBD CHAR FETCH RTNS.
;WHEN CALLED BY WH@,WAITS FOR VALID DATA FLG IN KBUFF,
;THEN RETURNS CHAR FROM KBUFF+1 IN A.

KI: PUSH H ;WE CAN ONLY WRECK A, SO SAVE H
LXI H,KBUFF
KIl: Mov A,M ;GET FLAG
ORA A ;IS IT ZERO?
JNZ KIl ;NO,TRY AGAIN
DCR M
INX H
MOV A,M
POP H
RET
USRTI: PUSH H
LXI H,RBUFF
JMP KI1l

*k**** YIDEO DISPLAY DRIVER ******

“s we wo

;DSPLY IS THE FAMOUS "TELETYPE SIMULATOR" WHICH

;DRIVES A POLYMORPHICS VTI AND SCROLLS TEXT WHEN - x
;THE SCRN FILLS. IT RECOGNIZES ALL IMPORTANT CONTROL
;CHARACTERS AND USES THE SCRHM,SCEND, AND POS LOCATIONS
;IN SYSTEM RAM WHICH ARE INITIALIZED TO GIVE A SCREEN
;AT OF890H TO PFBFFH ON POWER-UP OR FPRST. AT

;THE SAME TIME, ITS CWN ADDRESS IS PUT IN WH1 FOR THE
'DEFAULT SYSTEM CONSOLE DISPLAY DRIVER.

DSPLY: PUSH PSW ;A WH PGM MUST SAVE ALL REGS
PUSH B
PUSH D
PUSH H
LHLD POS

CTLX ~-EQU 184 ;ASCII "CAN" CLEARS CUR. LfNE

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 06

o286
9038
08B
PO8E

908F

Q87F

pB91
293
2896
pa98

280D

8098
809D
2aaC

2020
ggAal
2908
294
gaas
0399

20A8
09A9
03AA
P0AB
28AC

AOAE

20AF
2982
2883
00B4

@286
00B7
0oB8

20B9
998BC
29BD
gacog

FE18
CADO20
11B908
D5

367F

FETF
CAE4089
FE290
D2B4932

Dé64D
CAE620

3C
CAEF@2

3C
CAF989

3C

3A1E@C
BC

C2pCo2
2A1EBC

CPI CTLX

J2 CLINE : ,

LXI D,SCRL ;ALL DSPLY CHARACTER

PUSH D ;s HANDLING SUBROUTINES EXCEPT

sCLINE RETURN TO SCRL TO CHECK
;SCRN OVERFLOW AND SCROLL
;IF NECESSARY. :
MVI M,87FH ;BLANK THE CURSOR SO WE

;WON'T HAVE TO LATER.
;USE A GRAPHICS BLANK
;INSTEAD OF A SPACE.

RB EQU 7FH ;ASCII "DEL" OR RUBOUT

' ;BACKSPACE AND DELETE CHAR.

CPI RB
JZ RBR
CPI 20H ;IF CHAR IS ABOVE 20H, PRINT IT
JNC NORM ;ELSE IT'S NOT A NORMAL CHAR,
;SO TEST IT FOR VALID CTL CODE
CR EQU O0DH :CARRIAGE RETURN. MOVES DOWN
A LINE, LEFT-ZEROES CURSOR.
SUI CR
JZ CRR ‘
FF EQU gcH ;FORM FEED. CLEARS SCRN, HOMES
;CURSOR.
INR A
J2Z FFR .
vT EQU 0BH ;VERTICAL TAB. JUST HOMES CURSOR
INR A
JzZ VTR
TAB EQU 09H ;TAB. MOVES CURSOR RIGHT TO
;NEXT EVEN/8 POSITION.
INR A
INR A
RNZ ;IF NOT A TAB, RETURN
MOV A,L ;BACK UP CURSOR TC EVEN/8
ANI gF8H
MOV L,A
LXI B,8 MOV UP 8 POSITIONS
DAD B
RET
NORM: ORI 84H sWE HAVE A PRINTING CHAR, SO MAP
;IT INTO CHAR AREA OF VTI SPACE.
MOV M,A ;PUT IT IN REFRESH MEM.
INX H sMOVE UP A POSITION.
RET ;GO TO SCRL.

;SCRL SCROLLS TEXT UP THE SCRN IF NECESSARY,
; THEN FALLS INTO CURP, WHICH RESTORES THE CURSOR
;AND RETURNS TO USER THRU IORET. ‘

SCRL: LDA SCEND
CMP H
JNZ CURP

LHLD SCEND

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE @7

gec3 7cC MOV

A,H
89C4 95 SUB L
09C5 54 MOV D,H
08C6 2E4D MVI L,40H
99C8 1EB3 MVI E,0
@8CA 4D MOV c,L
gacB 47 MOV B,A
@8CcC Cpoagl CALL MOVE
08CF 2B DCX H

CLINE CLEARS THE CURRENT LINE

“e wo we

99D@ 3E3F CLINE: MVI aA,3FH

g0D2 57 MOV D,A

98D3 BS ORA L

B3D4 6F MOV L,A

29D5 367F WIPE: MVI M,7FH

20D7 2B DCX H

09D8 15 DCR D

98D9 C2DS5492 JNZ WIPE

@0DC 36FF CURP: Mvi M,QFFH

A0DE 2223E6C - SHLD POS

90E1 C36400 JMP IORET

03E4 2B RBR: DCX H ; RUBOUT ROUTINE
03ES C9 RET

0BE6 014000 CRR: LXI B,64 ;CARRIAGE RETURN RTN.
ABEY9 7D MOV A,L

G9EA E6CO ANI acoH

90EC 6F MOV L,A

@BED @9 DAD B

A2EE C9 RET

Q3EF CDF929 FFR: CALL VTR ;FORM FEED ROUTINE
90F2 367F FFl: MVI M,7FH

80F4 23 INX H

88F5 BC CMP H

@OF6 C2F2890 JNZ FF1

02F9 2A1EBC VTR: LHLD SCEND ;VERTICAL TAB RTN.
A@FC 7D MoV A,L

0QFD 2EQ0 MVI L,2

89FF C9 RET

MOVE MOVES -BC BYTES FROM THE AREA STARTING AT
(HL) TO THE AREA STARTING AT (DE)

TR v we S e

9109 7E OVE: MOV A,M
21901 12 STAX D
8182 13 INX D
8183 23 INX H
2124 acC INR C
0105 C29001 JN2Z MOVE
21068 24 INR B
2169 C20891 JNZ MOVE

816Cc C9 RET

~e

POLY 88 RESIDENT MONITOR VERSION 4.0

11/22/76

COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 28

210D
B810F
931A
9112
0114

2117
811A
211B

811C

211D
A11E
811F
2120

2121
0124
8125
0128
2128
912C
912E

8131
2132

2134
8138
2139
2138

DBF38
212cCac

FElA
C26000

219A09
39
ES
2B
56
2B
SE
D5

CD9223
FB
CDF992
915101
29
369C
217591

29
369A

3E18
CD7F22
3E9B
CD7F30

;KEYBOARD INTERUPT SERVICE ROUTINE FOR SYSTEM CONSLE
; KEYBOARD AT @F8H. ITS ADDRESS IS INITED INTO SRAS.
;IT WATCHES FOR CTL/Z. 1IF IT FINDS ONE, IT FALLS
;THRU INTO SAVE, THUS ENTERING FRONT PANEL MODE.

;KBD ADDR IS FIXED BY SCREEN ADDR, WHICH IS @F804H
;SINCE A POLYMORPHIC VTI USES SAME DECODER FOR KBD
;AS FOR VIDEO REFRESH MEMORY.

KSR: IN gF8H
LXI H,KBUFF

CTLZ EQU @1AH
CPI CTLZ
JNZ IOPUT

*#**%%* PRONT PANEL MODE *#*#*#**

w~e “& Neo

;SAVE IS THE ENTRY POINT INTO FRONT PANEL.
;MODE IF REGISTERS HAVE BEEN ALREADY PUSHED IN
sSTANDARD SEQUENCE. IT PUSHES PC AND SP

;ON TOP OF REGISTERS FOR DISP TO USE.

SAVE:

LXI H,10
DAD SP
PUSH H
DCX H
MOV D,M
DCX H
MoV E,M
PUSH D

;WARM IS THE ENTRY POINT TO FRONT PANEL MODE
;IF PC AND SP HAVE ALREADY BEEN PUSHED DOWN
;ON TOP OF REGISTERS IN STANDARD SEQUENCE

WARM:

CALL CLEAR
EI
CALL VTR ;SET HL TO BEGINNING OF SCREEN
LXI B,337 ;OFFSET FROM SCRHM FOR UPARROW
DAD B
MVI M,9CH ;VTI CODE FOR UPARROW
LXI B,175H ;OFFSET FROM UPARROW FOR
. ;RIGHT ARROW
DAD B
MVI M,9AH ;VTI CODE FOR RIGHT ARROW

o we

;DISP IS THE ENTRY POINT TO FRONT PANEL MODE IF
;THE SCREEN ALREADY SHOWS A FRONT PANEL DISPLAY.
:IT DOES NOT CLEAR THE SCREEN, SO WILL NOT
;BLINK WHEN SCREEN IS UPDATED.

DISP: MVI A,CTLX ;ERASE LAST COMMAND ON SCRN
CALL DSPLY ’
MVI A,0BH
CALL DSPLY

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE @9

@13E 3E06 MVI A,b
9140 210009 LXI H,9
#143 39 DAD SP
9144 2816D01 LXI B,MSG
0147 FS PUSH PSW
8148 37 DISPl: STC

8149 CD7COl1 CALL FLDSY
@814C Cp7CO1 CALL FLDSY
014F CD9733 CALL BLK
8152 SE MOV E,M
9153 23 INX H
8154 56 MOV D,M
155 23 INX H
8156 CDD1@3 CALL DEOUT
2159 F1 POP PSW
#15A 3D DCR A
#15B CA8701 J2z FLAGS
815E F5 PUSH PSW
815F C5 PUSH B
9160 EB XCHG

2161 B1FDFF LXI B,-3
2164 99 DAD B
2165 EB XCHG

9166 CD7F@3 CALL HEXO8
2169 Cl POP B
pl6A C34801 JMP DISP1
816D 52435350 MSG: DB 'PCSPHLDEBCAFCMZ'

0171 484C4445

8175 42434146

8179 434D5A
sFIELD DISPLAY PUTS OUT CHAR IN ADDR IN B IFF CY SET.
;IFF CY ZERO, PUT BLANK TO VDO DISPLAY.
sIN EITHER CASE, B IS INCREMENTED.

#17C FS5 FLDSY: PUSH PSW
017D D4970@3 CNC BLK
2189 2a LDAX B
8181 DC7F@92 cc DSPLY
0184 F1 POP PSW
2185 23 INX B
8186 C9 RET

8187 CD9CA3 FLAGS: CALL TABBER
218A 7B MOV A,E
2188 @F ' RRC

218C CD7C21 CALL FLDSY
818F 87 RLC

8199 27 RLC

8191 Cp7CA1 CALL FLDSY
2194 07 RLC

195 Cp7C@l CALL FLDSY

MMOD PLACES THE MEMORY MODIFY DISPLAY
ON THE SCREEN WINDOW POINT TC THE BYTE

.
’
.
’
.
’

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 19

198
9198
A19E
21al
a1a4
A1AS5
B1A7
01A8
21AB

91AE

81B9
@1B3
21B6
81B7

d1BA
818D
@1BE
91BF
81C2
01c3
01C6
81C7
91CA
91CD
B1CF
0102
1D5
 01D6
1D9
@1DA

21DB
@1DC
21DD
91DE
81DF
21E9Q
g1l
31E2
81ES

CD8DA3
CD8DA3
2A594C
@lEOFF
29
gEQS
EB
CDD183
CD9Ca3
3E7F
CD7F@92
CD7F@3
@D
C2A831

CDAAG3
79
B7
c45382

BE
23
5E
c8
23
S3E
1C
C2DBJ1
23

;TO BE MODIFIED

MMOD: CALL
CALL
LHLD
LXI
DAD
MVI
XCHG

MMODl: CALL
CALL
MVI
CALL
CALL
DCR
JN2Z

CROUT
CROUT
WINDOW
B'_32
B

c,8

DEOUT
TABBER
A,7FH
DSPLY
HEXO8
C
MMOD1

:
;COMD CALLS HEXC TO GET HEX NUMBERS TO BE ENTERED INTO M

;THEN EVALUATES

:IT IS A COMMAND

COMD: CALL
MOV
ORA
CNZ
MOV
LXI
PUSH
LXI
CALL
MVI
JNC
CALL
RC
LXI
DAD
PCHL

THE NON-HEX TERMINATING CHARACTER TO SEE

HEXC
A,C

A
STORE
A,B
H,DISP
H
H,MTBL
LOOKUP
D,0d
ADDIT
LOOKUP

H,RTN
D

; LOOKUP COMPARES THE ACCUMULATOR
;sAGAINST THE ENTRY IN A TABLE
;POINTED TO BY HL AND RETURNS WITH
;THE BYTE FOLLOWING IT IN E.

;CARRY FLAG SET
; TABLE MUST END
LOOKUP: CMP

INX

MOV

RZ

INX

MOV

INR

JNZ

INX

IF NO MATCH
IN 9FFH, EACH ENTRY IS 2 BYTES

E,M

E
LOOKUP
H

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 11

01E6

37

P1E7 C9

91E8
g1E9
PlEA
21EB
81EC
@1ED
21EE
A1lEF
p1F9
21F1
81F2
P1F3
21F4
@1F5
@1F6
@1F7
glFr8
01F9
g1Fa
g1FB
1FC
1FD
@1FE
B1FF

0209
0209
2293
9206
209
828C
920F
0219
213

9214
2217
g21aAa
2218

11160C
21EAQ3
81EAFF
CDa2891
3A00904
3C

C400924
FB

CD92323
Cpalag3
4F
FES9O

STC
RET
;MTBL IS THE TABLE OF COMMANDS FOR
sMEMORY MODIFY
MTBL: DB v :SPACE MOVE POINTER FORWARD
DB 17
DB 8 ;BACKSPACE MOVES BACKWARDS ONE
DB 15 ‘
DB 13 ;RETURN MOVES FWD 8 BYTES
DB 24
DB 19 ;LINE FEED MOVES BACK 8 BYTES
DB 8 : ’
DB -1 ;END OF 1ST HALF TABLE
DB 'G’ ;GO
DB G-RTN
DB 's! :SET REGISTER
DB SETR-RTN
DB ‘X’ ;EXECUTE (SINGLE STEP)
DB X-RTN
DB ‘1! ;s INDIRECT
DB IND-RTN
DB ‘T ;TAPE LOADER
DB TAPE-RTN
DB 'L’ ; LOAD MEMORY POINTER
DB LOD~RTN
. DB '3 ;JUMBO - LOAD 2 BYTES
DB DOUBLE-RTN
DB -1

’

;RST1 IS THE INITIALIZATION ROUTINE
;IT SETS UP THE WORMHOLES USED IN THE
:MONITOR, THEN CHECKS FOR A SECOND ROM
;AND CALLS IT IF IT IS THERE

RTN EQU $;ALL ROUTINES REFERENCE TO HERE
RST1: LXI D,SRA4 PEREE

LXI H,INITER

LXI B, INITLEN

CALL MOVE ; INIT WORMHOLES

Lpa 499H ;GET 1ST BYTE OF 2ND ROM

INR A ;IF IT WAS NOT AFFH

CN2Z 4Q30H ;CALL IT

EI ;TURN ON INTERRUPTS

;TAPE IS THE BOOTSTRAP LOADER ROUTINE

;IT EXPECTS TO GET A B,P, OR C OR IT WILL

;WAIT FOR ONE

TAPE: CALL CLEAR

START: CALL LCFLD ;GET A CASE-FOLDED B OR P .
MOV C,A ;SAVE THE B OR P FOR ECHOING.
CPI 'p! : POLYPHASE

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 12

921D
0229
0222
8225
8226
8229

022C
922F
9239
8233
2234
9235
6236

8237
823a
23D

023E
2241
244
9245
8246

9249
g824cC
924D
824E
B24F
2259

CABAG2
D642
CAC782
3D
CAF382
C31792

CDAAG3
EB
2A502C
73
23
72
co

CDAAG3
22599C
c9

2A538C
01FOFF
29
19
c33a82

2A5088C
5E
23
56
EB
C33a@2

J2 POLY

SUI 'B! ;BYTE STANDARD

J2Z BITE

DCR A

JZ HEAD ;CONTINUE

JMP START sNOT A B ORCOR P :

-e we weo

;DOUBLE GETS A HEX NUMBER FROM THE CONSOLE
;AND LOADS IT INTO THE NEXT 2 BYTES IN MEMORY
s (OR A REGISTER) LOW ORDER BYTE FIRST

;J<HEX #>(CR)

DOUBLE: CALL. HEXC

XCHG

LHLD WINDOW
MOV M,E
INX H

MOV M,D
RET

’
;LOD LOADS WINDOW WITH THE NUMBER
; FOLLOWING THE L COMMAND
;s LKHEX NUMBER> (CR)
LOD: CALL HEXC
SVW: SHLD WINDOW
RET
;ADDIT MOVES THE MEMORY POINTER (WNDOW)
:BY FORWARD OR BACKWARDS BY
;THE VALUE IN E (D=0)
:E IS OFFSET BY 16

ADDIT: LHLD WINDOW

LXI B,-16
DAD B

DAD D
JMP SVW

IND LOADS THE NEXT 2 BYTES IN MEMORY
INTO WINDOW

b= e e w0 we

ND: LHLD WINDOW
MOV E,M
INX H
MOV D,M
XCHG
JMP SVW

;STORE STORES THE BYTE IN L (ENTERED
; FROM CONSOLE) INTO MEMORY

.
’

TRY AGAIN

POLY 88 RESIDENT MONITOR VERSION 4.9
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 13

9253
9254
8257
@258

8259
2252
825B
@25E
B25F
0260
8261
0262
0263
0264
8267
8268
2269
9268

926C
826D
926E
8271
8272
0273
0274
8275
8276
0277
827A
8278

827cC
p27F

7D
2A58aC
77
c9

El

El
22528C
El

El

D1

Cl

Fl

E3
2A524C
E3

FB
D38C
o)

El
El
22528C
El
El
D1
Cl
Fl
E3
2A528C
E3
Cc9

CDA1g3
218F02

STORE:

MOV
LHLD
MOV
RET

A,L
WINDOW
M,A

11/22/76

;X EXECCUTES ONE INSTRUCTION POINTED TO
;BY SAVPC AND RETURNS TO RST7

H
X:

POP
POP
SHLD
POP
POP
POP
POP
POP
XTHL
LHLD
XTHL
EI
QouT
RET

H

H
SAVPC
H

H

D

B

PSW
:RESTO
SAVPC

12

;2 DUMMY POPS
;GET PC
;SAVE IT

;GET REGISTERS

RE PC

;ENABLE SINGLE STEP LOGIC
;GO TO USER PGM.

’

;G ACTS THE SAME AS X BUT DOES NOT
;ENABLE SINGLE STEP LOGIC, AND

; THEREFORE DOES NOT RETURN

;TYPING CTL-Z WILL RETURN FROM THE
; PROGRAM BEING EXECUTED AND SAVE

sALL REGISTERS

;IF A RST7 IS ENCOUNTERED THIS WILL
;ALSO HAPPEN

G:

POP
POP
SHLD
POP
POP
POP
POP
POP
XTHL
LHLD
XTHL
RET

3

owommngm

SaveC

;SETR POINTS TO ONE OF THE 8288 REGISTERS
;AS SAVED IN MEMORY
;MAY BE USED WITH JUMBO COMMAND TO
;SET A REGISTER PAIR,
;COMMANDS TO SET INDIVIDUAL REGISTERS

:S<P/H/D/B/A>
SETR: CALL
LXI

LCFLD
H,RTAB

OR WITH OTHER

;GET REGISTER DESIGNATION
;AND LOOK UP POSITION

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.9S PAGE 14

7282 CDDBO1 CALL LOOKUP

#8285 D8 RC ;RETURN IF NOT VALID REGISTER
9286 210289 LXI H,2

9289 54 MOV D,H ;SET D-0

a28a 39 DAD SP ;ADD 2 TO STACK POINTER (FOR CAL
9288 19 DAD D ;ADD REG. POSITION

#28C C33a92 JIMP SVwW ;PUT IN WINDOW

;RTAB IS A TABLE OF THE 8988 REGISTERS
;AND THEIR RELATIVE POSITIONS AS
;STORED ON THE STACK

A28F 59 RTAB: DB '‘p!
© 9299 09 ' DB 2
J.8291.48 DB 'H'
778292 04 DB 4
9293 44. DB 'D'
c 8294706 DB 6
© 9295 42 DB ‘B’
8296 08 DB 8
0297 41 DB 'a’
* @298 9A DB 190
0299 FF DB -1

’
;GET IS USED BY THE LOADER TO GET
;C BYTES AND STORE THEM AT HL T0O dL+C-1

@29A AF GET: XRA A

929B 47 MOV B,A

829C CDAS32 GET1: CALL TI

@829F 77 MOV M,A ;s PUT BYTE IN MEMORY
22a9 23 INX H ; INCREMENT POINTER
02A1 @D DCR C

82A2 C29Ca2 JN2Z GET1

;TI GETS A CHARACTER FROM WH2
;AND KEEPS A CHECKSUM IN B
;D IS USED AS A TEMPORARY

p2AS5 CD28@C TI: CALL WH2
22A8 57 MOV D,A
8229 39 ADD B
82AA 47 MOV B,A
g2aB 7a MOV A,D
82aC C9 RET

’

;SETUP PUTS IMMEDIATE BYTES INTO BAUD RATE GEN.,

;AND THEN USART CTL PORT. THE TERM CHAR IS 48H,

;WHICH IS ALSO XMTED TO USART, LEAVING IT IDLING.

;:WHEN DONE, JUMPS TO LOC. AFTER

; IMMED BYTES.

H
22AD E1 SETUP: POP H ;GET ADDR FOLLOWING CALL TOC SETU
22AE TE Mov A,M ;GET DATA FOR BRG

POLY 88 RESIDENT MONITOR VERSION 4.8
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 15

@2AF
2281
22B2
@283
82B5
02B6
#2B9

@#2BA
@2BD
92BE
@2BF
g2Ca

22C1
g2C2
82C3
22C4
82C7
22CA
@2CB
g2CC
22CD

92CE
82CF
82D2
22D3
22D6
92D9

#2DB
#2DE
22E1
B2E3
B2E6
B2E7
@2ES8
P2E9
B2EC
32EE
@2EF
02F9

B7
C2B142
E9

CDAD@2
85
AA
49
ac

CBCFZZ
CDAD@2
26
AA
49
CE

29
215489C
79
CDh248C
CD38DAJ3
4EQ9

Cp284cC
CD2448cC
FE@D
CAEC02
77

23

2D
C2DB422
3629
23

gD
F2EC32

ouT
SET1: INX
MOV
ouT
ORA
JNZ
PCHL

11/22/76

;PUT IN BRG
s NEXT BYTE

; USART PORT

;WAS THAT 09H?

;NO,NEXT BYTE

;JUMP TO THE 00H, EXEC. IT AS A
sCONTINUE

:POLY AND BITE CONTAIN SETUP
: INFORMATION FOR POLYPHASE OR BYTE
:OPERATION OF THE USART

POLY: CALL
DB
DB
DB
DB

DB
DB
DB
JMP
BITE: CALL
DB
DB
DB
DB

DB
NAMER: LXI
MOV
CALL
CALL
MVI

SETUP
005H
@AAH
040H
pacH

PE6H
9E6H
0804
NAMER
SETUP
p06H
0AAH
P40H
OCEH

908H
H,FNAME
A'C
WH1
CROUT
C,9

;THE NEXT BYTES GOTO BRG AND USA
;TO BRG: SELECT DEV @, 2429 BAUD
;FAKE SYNCH CHAR IF USART EXPECT
; INTERN. RESET. GETS USART:TO MO
;MODE CODE FOR SYNCHRONOUS,. 8 BI
;NO PARITY, INTERN. SYNC, 2.SYNC

" ;FIRST SYNC CHAR. TO SRCH FOR

;2ND SYNC CHAR.
;LEAVE COMMAND AT @9H (IDLE), RT

;TO BRG: SEL. DEV. 08, 309 BAUD
;FAKE SYNCH CHAR IF USART EXPECT
;INT. RST. GETS US TO MODE LEVEL
;MODE: ASYNCH., 8 BITS, NO PARIT
;2 STOP BITS, 16X CLOCK SCALING
'FOR NOW COMMAND IS IDLE o

;ECHO THE B OR P

;OUTPUT CR

;NAMO GETS THE NAME OF THE FILE
;TO BE LOADED FROM THE CONSOLE

’

NAM@: CALL
CALL
CPI
Jz
MOV
INX
DCR
JNZ

NAM: MVI
INX
DCR
JP

WHO
WH1
13
NAM
M,A
H

C
NAMY
M,20H
H

C
NAM

; ECHO CHAR.
;DONE IF CR
;STORE IN MEMORY

;DONE IF 9 CHARACTERS
;FILL OUT WITH BLANKS

sHEAD SEARCHES FOR A RECORD HEADER
;AND STORES IT AT RNAME

POLY 88 RESIDENT MONITOR VERSION 4.0
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 16

A2F3
B2F6

a2F7

22F9
22FB
B2FE
2309
9303
8306
g308
- 930B
030E
2310
2313
8316
8319
831cC
@31E
831F
8328
2321
2322
323
2324
-8327
g32A
232D
832E
2331
8332
2335
2336
339
g33Aa
233D
@033E
@833F
2341

0342
8345
9347
8348

214283
ES

3E96

D321
cp2sac
FEE6
C2F702
cD284acC
FEQ1
C2FED2
215CacC
OEQE
CD9ag2
c27@93
215CacC
115408C
9E@8
1A

BE

cog

13

23

2D
C21EQ3

-2A678C

3A664C
4F
3A698C

CA5F@23
3D
CA7593
3D

ca
D321
E9

915CacC
1638
37
CD7C81

11/22/76

;COMP THEN COMPARES THE NAME AGAINST
;THE NAME IT IS SEARCHING FOR

sGETS NEXT HEADER IF NOT MATCH

;AFTER DISPLAYING NAME AND RECORD NUMBER
;IF CHECKSUM ERROR GOES TO ERROR

’
HEAD: LXI
PUSH

HEAD6: MVI

ouT
CALL
HEAD7: CPI
JNZ
CALL
CPI
JNZ
LXI
MVI
CALL
JINZ
LXI
LXI
MVI
COMP: LDAX
CMP
RNZ
INX
INX
DCR
JN2Z
LHLD
LDA
Mov
LDA
ORA
J2
DCR
Jz
DCR
J2Z
DCR
RNZ
ouT
PCHL

H,DNAME
H

A,096H

1

WH2
BE6H
HEAD6
WH2
031H
HEAD7
H,RNAME
C,14
GET
ERROR
H, RNAME
D,FNAME
C’B

D

M

D

H

C
COMP
RADR
RLEN
CyA
RTYPE
A
GETD
A
COMNT
A
STOP
A

1

sANYTHING RETURNING AFTER HERE
;WILL DISPLAY THE RECD NAME AND
;START USART READING, ENTER SEAR
; IF SYNCHRONOUS, AND START MOTOR
;TO USART CTL PORT

;SYNC CHAR.
;s RESYNC USART

;SOH CHAR.

;GET HEADER

;COMPARE NAMES

;NOT MATCH

;FALL THRU IF MATCH

;GET LOAD ADDRESS AND

;LENGTH IN PREPARATION FOR LOADI
;CHECK RECORD TYPE

;DATA, LOAD INTO RAM

;COMMENT, DISPLAY IT

;END OF FILE, STOP TAPE

;:NOT TYPES 8-3, TRY AGAIN
;STOP TAPE

sAUTO-EXECUTE, GO TO PGM.

sWERE DONE LOOKING AT OR READING A RECD, SO DISPLAY
;NAME AND RECD# OF LAST SEEN RECD.

.

DNAME: LXI
MVI
DNAM2: STC

CALL

B,RNAME
D,e

FLDSY

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 17

@34B 15 DCR D

034C C24783 JN2Z DNAM2

#34F CD9703 CALL BLK

0352 2A640C LHLD RRN :DISPLAY R/N
2355 EB XCHG

@356 CDD1@3 CALL DEOUT

9359 CD8DA3 CALL CROUT

@35C C3F34d2 JMP HEAD

;COMNT DISPLAYS COMMENTS ON THE SCREEN

#35F CD284C COMNT: CALL WH2 ;ECHO TAPE ON CRT FOR A COMMENT
6362 CD7F02 CALL DSPLY

@365 9D DCR C

8366 C25F03 JNZ = COMNT

8369 C3F702 JMP HEADG6

-e

;GETD GETS DATA AND RETURNS IF CS2 IS GOOD
;OTHERWISE IT STOPS THE TAPE
;AND PRINTS A "2"

836C CD9AG2 GETD: CALL GET

@36F C8 RZ

9379 3E3F ERROR: MVI a,'?'

2372 CD7F@9 CALL DSPLY

8375 CD8DA3 STOP: CALL CROUT

2378 AF XRA A '
@379 D331 ouT 1 ;OUTPUT NUL TO STOP USART
9378 E1 POP H ;CLEAN UP STACK

@37C C31782 JMP START

x** UTILITY SUBROUTINES **

we “wo o

; THESE SUBROUTINES MAY BE USED EXTERNALLY, SO WE WANT
;THEM IN KNOWN LOCATIONS.

.
’

;HEXO8 OUTPUTS 8 BYTES FROM THE ADDRESS POINTED
;TO BY D,E LEAVING D,E PONITING TO THE NEXT .
:LOCATION IN MEMORY. IT PUTS THE BYTES 0OT

;IN HEX WITH A SPACE BETWEEN THEM AND A
;CARRAGE RETURN AT THE END OF THE LINE.

’

;D2 IS THE ACTUAL LCOP WHICH HEXO8 USES
;IT PUTS OUT THE NUMBER OF BYTES IN B

; INCRAMENTS D AND THEN PUTS OUT A
;CARRAGE RETURN.

B37F 0608 HEX08: MVI B,8
A381 CD9743 D2: CALL BLK
2384 1A LDAX D
8385 CDD683 CALL BYTE
@388 13 INX D
2389 325 DCR B

#38A C23183 JNZ D2

POLY 88 RESIDENT MONITOR VERSION 4.0
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 18

638D
038F
8392
2394
8397
3399
839C
@39E

g3al
03a4
f3a6
g83a7
A3A9

93AA
A3AD
A3AE
f3B1

@3B2
03B4
@3B5
@388
@3BA
93BC
A3BF
23Cl1
23C3
23C4
A3Cé
83C7
f23C8
23C9
A3CA
83CB
@3cCcC
23CD
23CE

3E9D
C37r09
3E@C
C37r092
3E29
C37Fa9
3E09
C37F892

CD293C
FE69
D8
D628
Cc9

210099
4D
CDA183
47

FE30
D8
CD24gcC
D639
FEBA -
DAC783
D637
FEZA
D8 .
FE10
DO -
ac

29

29

25

29

B5

6F
C3AEQ3

11/22/76

;CROUT, CLEAR, BLK, AND TABBER ,
;OUTPUT A CARRIAGE RETURN, FORM FEED, BLANK,
;OR HORIZONTAL TAB TO THE CRT DRIVER, RESPECTIVELY

CROUT:
CLEAR:
BLK:

TABBER:

MVI
JMP
MVI
JMP
MVI
JMP
MVI
JMP

A,CR
DSPLY
A,12

DSPLY -

A" 1]
DSPLY
A,g

DSPLY

;PUT CAR RETRN ON CONSLE DSPLY
:CTL-L (FORM FEED)
;s SPACE

;CTL-I TAB

;LCFLD (LOWER CASE FOLD). GETS A CHAR FROM WHJ.
;IF AN LC CHAR WAS FOLDED, CY=4,ELSE CY=1.

sWATCH RUBOUTS!

LCFLD:

CALL
CPI
RC
SUI
RET

THEY'RE

WHO
2694

0224

FOLDED TO 5FH FROM NORMAL 7FH.
:GET CHAR

:IF UPPER CASE,FORGET IT

.UC LETTERS ARE LESS THAN 60H
:FOLD THIS LOWER CASE LETTER ON

sHEXC INPUTS VARIABLE LENGTH HEX FROM WH@, ECHOING ON DS
;TERM CHAR IS ANY NON-HEX CHAR, AND IT IS RETURNED IN B.
;DIGIT COUNT RETURNED IN C.

HEXC:

NXNYB:

NXNB1:

.
’
.
’

LXI
MOV
CALL
MOV

CPI
RC
CALL
SUI
CPI
JC
SUI
CPI
RC
CPI
RNC
INR
DAD
DAD
DAD
DAD
ORA
MoV
JMP

H,0
C,L
LCFLD
B,A

.0'

WH1
lg'
18

NXNB1
7

19

16

Cemmmm O

A
NXNYB

;ZERO CONVERSION BUFFER

;GET A CASE-FOLDED CHAR FROM WHY
;SAVE THIS CHAR SO IT CAN BE USE
;IT WAS THE TERM CHAR.

;sRETURN IF LESS THAN ASCII 9

; ECHO EACH CHAR. VALID OR NOT
;CHANGE ASCII INTO BINARY 8-15

sRETURN IF NOT HEX

;RETURN IF NOT HEX
;COUNT # OF HEX CHARACTERS
;SHIFT HL

;OVER

;FOR NEXT

;DIGIT

;OR IN NEW DIGIT

DEOUT CUTPUTS DE TO THE SCREEN

POLY 88 RESIDENT MONITOR VERSION 4.0
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 19

33D1
@3D2
@3D5

#3D6
@3D7
23D8
23D9
a3pa
23DB
23DE

03DF
93E1
03E3
93E4
A3E6
@3E7

1099

@3EA
@3EC
@3EE
03F0
Q3F2
83F3
A3r4
83F7
33F8
@3FB
B3FC
@3FF
9239

7A
CDD693
7B

C37F09

5429
D01
6409
1721
FC

F8
CD6A%9
c9
CD7F03
c9
CD7890
co

;AS 4 HEX DIGITS

DEOUT: MOV
CALL
MOV

03 we we ~o ~o

3

E: PUSH
RRC
RRC
RRC
RRC
CALL
POP

A,D
BYTE
A,E

PSW

HEXO
PSW

11/22/76

BYTE OUTPUTS THE ACCUMULATOR
AS 2 HEX DIGITS TO THE SCREEN

;HEXO OUTPUTS 1 HEX DIGIT TO
;THE SCREEN - THE UPPER HALF
;OF A IS MASKED WITH ZEROS

HEXO: ANI
ADI
DAA
ACI
DAA
JMP

15
90H

40H

DSPLY

;OUTPUT HEX DIGIT AND USE RETURN

g*¥*%%x*% TINITIALIZATION PARAMETERS ***#*%%
'THE FOLLOWING INFORMATIO IS USED ON FPRST OR POC
;TO SETUP THE STARTING SYSTEM CONTEXT.

STACK EQU

; THE FOLLOWING BLOCK IS
;SYSTEM RAM STARTING AT

INITER: DW
DW
DW
DW
DB
DB
CALL
RET
CALL
RET
CALL
RET
END

01000H

USRTSR
KSR
IORET
SAVE
2FCH
9F8H
KI

DSPLY

USRTI

; USED IN AN LXI,SP

COPIED DIRECTLY OVER
SRA4.

;VI3 USART INTERUPT ’

;VI2: THE STANDARD KBD. INT
;WAKEUP: NOTHING FOR NOW' ;

;VI@: SINGLE STEP INT GOESYBACK
;VIDEO SCRN ENDS AT FC@OH-I -
;VIDEO SCRN HOME AT F8098 =~
;WORMHOLE @: INIT TO KBD AT F8H
;STANDARD PART OF ANY WORMHOLE -
;WORMHOLE 1: INIT TO VIDEO DSPL

;WORMHOLE 2: INIT TO USART AT_@

POLY 88 RESIDENT MONITOR VERSION 4.0
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 28,

SYMBOLS SORTED BY NAME

ADDIT 023E
CLINE 04D@
CR 94D
CURP @8DC
DNAM2 @347
FF 839C
FNAME 0C54
HEAD 02F3
HEXO8 237F
IORET 0064
LCFLD 93al
MOVE @109
NAMER @2CF
POS 9COE
RBR PIE4
RRN aCc64
SAVE 0117
SCRH2 0C49
SETR 927C
SRA4 8C1l6
START 8217
TABBE 039C
TIME 0040
VCB2 @C48
VIS #0190
WARM @121
WH4 2C3d
WH9 2C44

BITE
CLOCK
CROUT

.D2
'DNAME

FF1

G
HEAD6
IND
KBUFF
LOD
MSG
NORM
POS2
RBUFF
RST1
SAVPC
SCRH3
SETUP
SRAS
STOP
TANI
TIME2
VCB3
VIé6
WH®
WHS
WINDO

92C7
2939
838D
9381
A342
0dF2
826C
92F7
0249
eceac
2237
216D
29B4
aCc4a
acoa
8209
aCs52
@C4p
22AD
aC18
2375
Ca4
0247
gc4c
2398
2Cc29
AC34
2C58

SYMBOLS SORTED BY VALUE

RESET 9084
CR 289D
Vi3 2329
TIME2 8247
KI1l 006E
SCRL 9989
CRR 99E6
KSR 219D
MSG 216D
COMD 21BA
TAPE 0214
ADDIT 923E
SETR 827C
SETUP 22AD

NAMZ 22DB

VI6
VIS
VI2
USRTS
USRTI
CLINE
FFR
SAVE
FLDSY
LOOKU
START
IND
RTAB
SET1
NAM

2008
0919
0928
2254
9978
22DA3
39EF
3117
a17c
21DB
8217
8249
@28F
92B1
22EC

BLK
coMD
CRR
DEOUT
DOUBL
FFR
GET
HEAD7
INITE
KI
LOOKU
MTBL
NXNB1
POS3
RESET
RTAB
SCEND
SCRHM
SRAl
SRA7
STORE
TAPE
TIMER
VIi2
vT
WH1
WH6
WIPE

TAB
CTLX
CLOCK
IOPUT
DSPLY
WIPE
FF1
WARM
FLAGS
MTBL
DOUBL
STORE
GET
POLY

'HEAD

3397
21BA
BOES6
03D1
g22C
90EF
829Aa
@2FE
f3EA
626A
91DB
AlES
@3C7
8C4E
08292
228F
2C1lE
@c1lF
0C19
8cic
2253
214
aca2
2028
00928
0Cc24
2C38
99D5

0329
2318
2239
0960
A37F
230D5
A3F2
0121
2187
AlES
g22C
8253
229A
02BA
02F3

11/22/76

BYTE
COMNT
CTLX
DISP
DSPLY
FLAGS
GET1
HEXC
INITL
KIl
MMOD
NAM
NXNYB
RADR
RLEN
RTN
SCND2
SCRL
SRA2

SVwW
TBUFF
USRTI
VI3
VTR
WH2
WH7

vT
VI4
ss -
IORET
RB
CURP
VTR
DISP
MMOD
RST1
LOD

X
GET1
BITE
HEAD®6

@3D6
@35SF
Ag318
2134
037F
2187
g29C
93AA
FFEA
006E
0198
22EC
23AE
aCce67
aC66
9229
ac4s
23B9
8Cl2
238
823A
pcos
0978
0320
gaFs
0C28
pc3c
3259

7998
2418
2038
7264
097F
94DC
99F9
2134
2198
2283
8237
0259
823C

82C7

A2F7

CLEAR
COoMP
CTLZ
DISP1
ERROR
FLDSY
GETD
HEXO
IOPUT
KSR
MMOD1
NAMY
POLY
RB
RNAME
RTYPE
SCND3
SET1
SRA3
STACK
TAB
TI
USRTS
VIi4
WAKEU
WH3
WHS

FF
CTLZ
TIME
KI
NORM
RBR
MOVE
DISP1
MMOD1
RTN
SVW
G

TI
NAMER
HEAD7

3392
A31E
231A
0148
9370
817cC
236C
A3DF
0269
210D
01A8
22DB
02BA
827F
@CsC
aces
BC4cC
82B1
8Cl4
1029
2099
g2a5
354
0018
2C1lA
3C2cC
2C40

gaacC
221A
2049
0262
2284
A9E4
21929
2148
21Aa8
5233
223a
326C
32A5
d2CF
d2FE

POLY 88 RESIDENT MONITOR VERSION 4.0
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION

4.05 PAGE 21

COMP
ERROR
CLEAR
NXNYB
INITE
KBUFF
SRA4
SCRHM
WH4
WH9
SCND3
SAVPC
RADR

THATS

831E
2370
3392
B3AE
@3EA
gcac
C16
9C1lF
8C32
2C44
gca4c
8C52
ace7

ALL,

DNAME
STOP
BLK
NXNB1
TIMER
POS
SRAS
WHO
WHS
SCND2
VCB3
FNAME
RTYPE

FOLKS!

2342
8375
8397
@3C7
aca9
2COE
aC18
8C29
2C34
aCc4s
ac4cC
8C54
aCe69

DNAM2

HEXO8
TABBE
DEOUT
TANI
SRAl
WAKEU
WH1
WH6
vcB2
SCRH3
RNAME
STACK

0347
237F
039C
a3D1
0Ca4
aClo
ocla
aC24
8C38
B8C48
9C4D
aCcs5C
1009

11/22/76

COMNT

D2
LCFLD
BYTE
TBUFF
SRA2
SRA7
WH2
WH7
SCRH2
POS3
RRN
INITL

@35F
2381
23al
83D6
2Ca8
gC12
aclc
2C28
gac3c
2C49
0C4E
9C64
FFEA

GETD
CROUT
HEXC
HEXO
RBUFF
SRA3 .
SCEND"
WH3
WH8
POS2
WINDO
RLEN

836C
038D
03AA
03DF
acen

2Cl4

AClE

. 8€2C

2C40

"9C4A

4C59
9C66

-12/38/76 SMALL DUMPER DOCUMENTATION
PAGE 1

xx** SMALL DUMPER FOR 4.0 ONBOARD RAM *x*

SMD IS A SIMPLE ABSOLUTE DUMPER WHICH RUNS
ENTIRELY WITHIN THE ONBOARD MONITOR RAM FROM C6AH TO D9CH.
ITS STARTING ADDRESS IS C6A HEX. WHEN RUN, IT CLEARS THE
SCREEN AND EXPECTS AN ENCODING SPECIFICATION AND
FILENAME JUST AS THE 4.9 RESIDENT LOADER. AFTER THESE ARE
INPUT, THE STARTING AND ENDING HEX ADDRESSES ARE INPUT
AS SHOWN IN THE FOLLOWING EXAMPLE WHERE THE SMD IS USED
TO COPY ITSELF:

(SCREEN CLEARED, CURSOR IN UPPER LEFT)

B .
SMD

C6A,D9D (DSD USED FOR SAFETY)

céa

D6A
D6A (THIS LAST IS AN ENDRECORD)

(SCREEN CLEARS AGAIN, READY FOR ANOTHER DUMP)

BEFORE DATA IS DUMPED, THE CASSETTE RECORDER
SHOULD BE SETUP WITH THE PROPER PLUG IN THE MICROPHONE
JACK. THE BYTE/BIPHASE CASSETTE CARD HAS TWO PLUGS
FOR WRITING - ONE FOR BYTE AND ONE FOR BIPHASE. THE
READ PLUG (LABELLED USUALLY "EAR" OR "SPKR") SHOULD NOT BE
PLUGGED IN. SOME CASSETTES DO ODD THINGS WHEN BOTH THE MIC
AND EXTERNAL SPKR JACKS ARE PLUGGED IN. ALSO
MAKE SURE THAT ENOUGH TAPE RUNS BEFORE TYPING THE FINAL
CARRIAGE RETURN ON THE END ADDRESS SPECIFICATION SO THAT
NON-RECORDABLE LEADER GETS A CHANCE TO PASS BY BEFORE
DUMPING STARTS.

THE ONBOARD DUMPER WAS HAND OPTIMIZED TO
FIT 'INSIDE THE FREE SPACE ON SYSTEM RAM, BUT THE SYSTEM
STACK ALSO RESIDES THERE. THIS MEANS THAT THE STACK
MAY OVERRUN THE DUMPER, ERASING PART OF IT. IF THE
DUMPER HAS BEEN IN RAM WHILE BASIC HAS BEEN RUN ,
FOR EXAMPLE, THE STACX HAS PROBABLY SQUASHED IT
AT SOME TIME. IF THERE IS DOUBT, CHECK THE BYTE
AT D99H. IT SHOULD BE A C9 (RETURN INSTRUCTION). IF IT
IS NOT, Ok YOU JUST WANT TO MAKE SURE, RELOAD THE DUMPER
JUST BEFORE USING IT.

WHEN THE DUMPER IS DUMPING, EACH RECORD WILL BE DISPLAYED
AS A HEX NUMBER ON THE SCREEN. THE HEX NUMBER REPRESENTS

12/38/76 SMALL DUMPER DOCUMENTATION
PAGE 2

THE ADDRESS OF THE DATA BEING DUMPED ON EACH RECORD.
THAT ADDRESS IS PUT ON THE HEADER OF THE RECORD SO
THE 4.0 RESIDENT LOADER WILL KNOW WHERE TO PUT IT

" WHEN' IT IS READ BACK IN. ‘

... .THE LAST RECORD IS AN "END" TYPE RECORD.

+IT IS PUT ON AUTOMATICALLY. IT WILL DISPLAY AS A RECORD
- WITH DUMP ADDRESS EQUAL TO THE ADDRESS OF THE RECORD
BEFORE IT. OPTIMIZATION OF THE DUMPER'S CODE REQUIRES
SOME STRANGENESSES SUCH AS THIS, "BUT IN ANY CASE, THE

- LAST RECORD (DUMP FINISHED) WILL BE-SIGNALLED BY THE
SCREEN CLEARING. THIS PUTS THE DUMPER BACK IN ITS
INITIAL MODE, JUST AS IF IT HAD BEEN RESTARTED AT CG6AH.
MORE DATA MAY BE DUMPED IF DESIRED.

12/29/76 8-:00 PM SMALL DUMPER FOR 4.0 - ONBOARD RAM

SMD4.9

acag
pCc24
gCl16
22AD
83aA
93D1
acsa
gcsa
8CsC
aC64
8C66
2ce7
8Cé69
gcea
gceD
8Cc79
8Cc72
ac7s
BC78
pC7B
8C7D
gceg
gcs82
gCss
acss
pCs89o
ocsa
8C8B
acsc
C8D
8C8E
8C8F
8C92
gC9s
8Cs36

PAGE 1

21459D
22168C
3E@C
CD248acC
cbpzgec
CD249C
FE42
CcA928C
FES52@
cz27a8cC
CDAD@2
25

AA

49

ac

E6

E6

29
c39%a8C
CDAD@2
86

AA

s **xxx*x*x ONBOARD DUMPER-FOR 4.0 ***%xxx

THIS IS A PQLYFORMAT DUMPER FOR ABSOLUTE

;DATA WHICH RUNS FROM C6A TO D9F (OR SO), 'START ADDRESS

;C6AH. "WHEN:RUN, IT ACTS LIKE 4.8 MONITOR TAPE LOALD IN

; THE WAY:IT ACCEPTS ENCODING SPECIEICATION: (B OR P) AND

sFILE NAME. ' THEN IT EXPECTS.TWQ HEX -NUMBERS FOR

;START AND END DUMP ADDRESSES. 'EACH RECORD DUMPED SHOWS
;ADDRESS 'USED IN HEX ON SCREEN. WHEN DONE, IT. PUTS OUT

;AN "END" ‘'TYPE RECORD AND CLEARS SCREEN READ&

;FOR ANOTHER DUMP. ‘ S E Lt

;ORIGINAL 2.2 DUMPER SYSTEM WRITTEN BY DAVID FAIMAN
; REWRITTEN, DOCUMENTED AND CONVERTED TO ONBOARD FOR 4.0
:BY R.L.DERAN

.
’

e -we

WHQ EQU 8C294

WH1 EQU 9C24H

SRA4 EQU gClen

SETUP EQU g2ADH

HEXC EQU g3aAH

DEOUT EQU g3D1H
ORG ACS5CH-2

LENGTH: DS 2

WNAME: DS 8

WRN: DS 2

WLEN: DS 1

WADR: DS 2

WTYPE: DS 1

START: LXI H,TISR
SHLD SRA4

STAR2: MVI A,0CH :FORM FEED
CALL WH1 ;CLEAR SCREEN

CALL WHY
CALL WH1

CPI ‘B!
J2z BITE
CpI 'p!
JNZ STAR2
POLY: CALL SETUP
DB 20858
DB AAAH
DB 84048
DB #8CH
DB PE6H
DB @E6H
DB 22928
JMP NAMER
BITE: CALL SETUP
DB Bo6d /
DB BAAH

R S 12/29/76 8-:88 PM 'SMALL DUMPER FOR 4.8 - ONBOARD RAM
SMD4.8 'PAGE 2

pC97 48 DB 840H
8C98 CE DB @CEH
gC99 020 DB 990H
: NAMEING ROUTINE
@C9A 210000 NAMER: LXI H,0 -
gC9D 22648C SHLD WRN S
pCAD OEDS : MVI c,8 ;BLANK NAME FIELD
- PCA2 21636C LXI H,WNAME+7
@CAS 3620 NAM: MVI M,020H
8CA7 2B DCX H ;BACKUP H TO WNAME
pCA8 9D DCR c :
pCA9 C2A58C JINZ NAM
ACAC 23 INX H
9CAD @ES8 » MvI C,8
@CAF CD188D -~ CALL CRLF
@CB2 CD298C NAMA: CALL WHO
8CBS CD240C ‘CALL WH1
pCBS8 FEBD CPI #0DH ;CR
fCBA CAC33C JZ DUMPC
@CBD 77 MOV M,A .
§CBE 23 INX H
8CBF 8D DCR C
gCCB C2B20C JINZ NAMO
gCC3 AF DUMPC: XRA A
9CC4 32698C - STA WTYPE
@CC7 CD188D CALL CRLF
@CCaA CDAAS3 SIZE: CALL HEXC
ACCD 22678C SHLD WADR
gcpo 78 MOV a,B
fCD1 CD248C CALL WH1
pCD4 EB XCHG
@CDS CDAAB3 CALL HEXC
aCD8 CD18@D CALL CRLF
@CcDB. 7D MOV A,L
gcDpcC 93 SUB E
@CDD 6F MOV L,A
@CDE 7C MOV A,H
9CDF 9A SBB D
9CE@ 67 MOV H,A
@CE1l 225A8C SHLD LENGTH
ACE4 CDF68C CALL DUMPR
@CE7 3E82 ENDC: MVI a,2
BCE9 32698C STA WTYPE -
8CEC 3D DCR A
@CED 32664C STA WLEN
9CF@ CD548D , CALL DUMP
BCF3 C36A8C JMP START

DUMP DATA RECORDS

(o A TER TR

8CF6 215B0C UMPR: LXI B,LENGTH+1
8cr9 78 MOV aAM
_ BCFAB7 ° ora’ A
‘@CFB CA18@D 3z~ OVER
8CFE 35 - DCR M

. 12/29/76 8-:08 PM. SMALL DUMPER FOR 4.8 - ONBCARD RAM
SMD4.0 PAGE 3 ' o ’

@CFF AF XRA a .
#DAB 32668C STA WLEN
@DB3 CD54@D CALL DUMP-
@DA6 2A678C LHLD WADR
gDB9 24 INR H
@DOBA 226708C SHLD WADR
#DAD C3F68C JMP DUMPR
#D19 2B OVER: DCX H -
D11 7E . MOV A,M
#D12 32660C STA = . WLEN
@D15 C3548D JMP - DUMP
@D18 3EBD CRLF: 'MVI A,@DH
@D1A CD248C CALL WH1
@D1D C9 RET
: ROUTINE TO OUTPUT A RECORD
BD1E 06080 PUT: MVI B,0 ;CLEAR CHECKSUM _
fD29 4F MOV C,a ;s PUT LENGTH OF RECORD -IN :C
#D21 7E PUTB: MOV A,M -
9D22 23 INX H
D23 F5 PUSH PSW
#D24 88 ADD B
@D25 47 MOV B,A
#D26 F1 ‘ POP PSW
#D27 CD348D CALL T
@D2A 9D DCR c
gD2B C2218D JINZ PUTS
gD2E 78 MCV A,B
@D2F 2F CMA
#D38 3C INR A
#D31 C3348D JMP TO
; TAPE OUTPUT ROUTIME
acos TBUFF EQU @CO8H-
#D34 ES TO: PUSH H
9D35 21888C LXI H,TBUFF
8D38 FS PUSH PSW
@D39 7E TO1l: MOV A,M
9D3A B7 ORA A
@D3B C2399D JNZ TO1 .
@D3E 23 INX H
@D3F F1 POP PSW
8D49 77 MOV M,A
@D41 2B DCX H
@D42 34 INR M
@D43 E1 POP H
#D44 C9 RET

TISR IS A SIMPLE USART READER WHICH WILL
RE-TRANSMIT THE CHARACTER IN TBUFF IF-IT HAS- NOT
BEEN REPLACED BY THE WORMHOLE ROUTINE. IT ’
DOES NOT CHECK THE FLAG, BECAUSE IT ASSUMES ~
THAT THE PROGRAM CALLING THE WORMHOLE IS FASTER
THAN THE USART AND SO IT ALWAYS HAS A VALID® .

Ne NS NE Ne Ne we we

SMD4.8

BD45
gD46
gD49
@D4c
@D4E

BD4F
pDSE "
8D51

AD52
D53

D54
6D56
9D58
gD5B
@D5C
BDSF
D62
8D65
8D66
8D67
D68
8D6B
8D6D
BD6F
8D72
ap73
#D76
BD78

- PD7B
8D7D
2D84g
D83
8D86
8D89
gp8cC
@D8F
#D9 9
D9l
gD94
8D97
8094

gD9C

2229

PAGE 4

s —e

AF
'32088C

3a99@cC
D3040
El

c1

Fl

FB

c9

3E21
D341
2A678C
EB
CDD183
CD188D
21FF8F
2B

7C

B7
c2658D
0E4D
3EE6
CD348D

2D

C26F@D
3E81 -
CD340D

3EQE
215Cec
CD1EBD
3A660C
2A678C
CD1E®D
21640C
34 :
AF
CD348D
CD340D
CD348D
D301
c9

{J N6 %6 oS8 N8 S0 w0 e o

c
=
o

12/29/76 8-:00 PM SMALL DUMPER FOR 4.8 - ONBOARD RAY

1-

. TISR:

IORET:

DELAY:

DUMP®:

. w wo

OFF:

CHARACTER FOR US TO TAKE.

XRA A

STA. . [IBUFF
"LDA,TBUFF+1
cour” gt e
POP H

POP B ..
"POP B
POP PSW

EI

RET

it

' DUMP PUTS OUT ONE COMPLETE RECORD.

IT TURNS ON USART AND MOTORS,WAITS A WHILE

FOR AN IRG, PUTS OUT 64 SYNCH CHARACTERS,

DUMPS A RECORD ACCORDING TO THE WRITE CONTROL
BLOCK AT WNAME (IT ALSO PUTS THE WCB

ON THE RECORD AS HEADER), INCREMENTS THE RECORD
NUMBER, STOPS USART AND MOTORS, AND RETURNS.

MVI A,021H
ouT 1

" LHLD WADR

XCBG
CALL DEQUT ;DISPLAY THE ADDRESS WE'RE DUMPT

CALL CRLF

LXI H,B88FFFH

DCX H

MOV A,H

ORA A

JNZ DELAY

MVI C,64 :

MVI A,QE6H ;SYNC CHARACTER
CALL TO

DCR C

JNZ DUMP#@

MVT - A,801H ;START OF HEADER
CALL TO '

DUMP HEADER AND DATA RECORDS

MVI A,80EH ;LENGTH OF HEADER RECORD

LXI H,WNAME
CALL pPUT
LDA WLEN

LHLD WADR
CALL POUT

LXI H,WRN

INR M

XRA A ,

CALL TO ; THESE PUSH OUT LAST BYTES IROM
CALL TO ;THE USART AND WH BUFFER PIPEZLIN
CALL TO ; TURN OFF MOTOR AND TRANSMITTER
ouT -1

RET .

END

POLY88, Vol. II and 4.0 MONITOR listing, ErFata December 28, 1976 Page E-1

VV "'Page 67 of VoTume: 1T ts Jout- of ortEr -~ it ‘should foll ow page 56 ‘to
 -make -the text follow in a Togical manner.

THE FOLLOWING MODIFICATION IS REQUIRED TO THE CPU BOARD FOR REVISIONS
UpP TO 0.3.

1. Cut trace from Port #1 pin 6 to Port #2 pin 6
2. Jumper Port #2 pin 6 to IC30 pin 5.

Note: Port #1 for printer cable only

Port #2 for cassette cable only

NUMBER :
/D0E2 52

l PAGE £ OF

00D O

A mr'-j,mnr

| I |/'| IUYL gl!l | o
® V¢ Ocp‘u o0 e
i

. 100020

;MER:
/05252

PGE 3 OF

.

NUMBER
IDA2S5 2
PMGE < OF

I

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	56a
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	85a
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	E-01
	F-01
	F-02
	F-03

