
POLY 88 MICROCOMPUTER SYSTEM

VOLUME II: OPERATION AND SOFTWARE

© 1976 IPe

A:

TABLE OF CONTENTS

to the POLY Introduction
1. Symbo 1 system

88 ..

a.

b.

Number system.
1) Decimal and binary ..

ii) Octal and hexadecimal
AS C I I •••••••••••

2 . Com p u te r 1 a n g u age s • .

3.

a.
b •

c.

Machine language.
Assembly language ..
Hi gh 1 evel languages ..

theory Computer
Address a. and memory.

b.

c.
d.

Central processor architecture ..
Ins tructi on set .(fl.~/l/-.hV.E ... T;4~t.,v~.
Mo n i tor
i) ASCII

ii) Front
mode ..
paone 1 mode •.

rCf"" 35)·
~"

page

· .. 1
• •••••• 2

. • • • • • • • • • • 2

• •• 2

· ••. 9

· .11
.12
.12

· .. 12
.14

· .. 14
.14
17

...... ·24

. ·52

. .52

... ·53

B: Operating the System .. 60

PolyMorphic Systems POL Y 88, Vo 1. I I Rev.O.O P. 1

POLY 88 Microcomputer System Manual
Vol. II: Operation and Software

A: Introduction to the POLY 88.

The POLY 88 system is designed to be, not only a powerful
problem-solver, but also a source of satisfaction and enjoyment.
Sophisticated computer users know that computers are interesting
as well as useful. To derive the greatest possible value, both
practical and aesthetic, from the system, it is important to have
both a ready ability to interact with the computer at the level
of keyboard and screen and a good sense of what is going on inside
the computer at the level of actual electronic events. This
volume is intended to show the user how to operate the system,
and to convey some measure of awareness of what is going on
inside the computer as the user operates it.

You may be quite advanced in your familiarity with computers, or
you may just be getting started. Our discussion should be under­
standable and helpful to the beginner, yet interesting and worth­
while to the expert. We will be moving quickly through the
fundamental concepts of symbol systems -- binary and hexadecimal
math and ASCII code -- used by computer users, and some useful
"languages," especially assembly language, with which we communi­
cate with computers. Then we will consider how a computer accepts,
stores, and manipulates data to produce results. Then we will be
operating the POLY 88 to see how it works.

If you already have some experience with computers, you will be
mainly interested here in reading about those things that are
unique to the POLY 88 -- its architecture and its monitor. You

will probably just want to skim through Section A.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 2

Section 8 will give you some hands-on experience with
the POLY 88, while Section C and the appendix present in

tabular form the information you will want to refer to often.

If your experience with computers is more limited, you will wa~t
to go through Section A with care. It discusses binary math, etc.,
in a way intended to provide some insight into what actually goes
on inside the computer. Computer users should be able to picture
in their minds what the computer is going through in response to
their commands. Indeed, the computer usually performs its opera~.
tions so fast and replies to its operator so promptly that the
operator may have no sense of anything going on between his pushing
a key and the appearance of the response on the screen. This
"lack af sympathy" is undesireable, because it causes operators
to miss much of the aesthetic value of the computer, and in fact
prevents them from making full use of the computer (especially
a micro-computer like the POLY 88).

The relatively inexperienced computer user may find that our
discussion is occasionally hard to follow. He or she will want
to re-read and interpret, refer to other texts, and discuss
the subject with other people. The authors of this text, however,
are determined to make it understandable to the beginner, yet
interesting to those who are more advanced.

1. Symbol Systems
a. Number Systems
i) Decimal and Binary
Binary math is the symbol system that most closely approximates
the actual operations of an electronic digital computer. A
mechanical computer might use devices having ten different
II states,1I like a disc with the digits 0 through 9 around its edge:

o ~.I ~

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 3

(or discs with ten notches, gears with ten teeth, etc.). The
ten "s tates" of such a disc would be the ten different digits
that the disc presents to the view of the human user. In fact,
there are such devices, and they might be thought of as being
purely "decima111 in operation -- decimal meaning ten.

We could put several such discs together and have them count
things. ,Each disc would be geared to the one next to it, so
that when the disc on the right went all the way around once,
through all ten digits from 0 through 9, the gear on the left
would move one Unotch ll to its next state.

~ Every time this disc
T "goes all the way around

ffi~ once, from 0 through 9 •..
lol~

this gear would move rntiJ
to th e n ext dig it. ~

So when the counter had counted nine things, it would read

and when it counted one more, it would read:

moved --....~i! ~il.oolll(_ back to where
one no tch '1 its ta r ted

'"

An alternative would be to have just one large disc with many
numbers on it -- the numbers 0 to 100, say. But our "decimal
discs," each geared to move one number when the gear to its
right went all the way around once, would be smaller and handier,
and would be able to count very large numbers. In fact, we
increase its capacity to count by a factor of ten every time we
add"another disc. A two-disc counter could count from 0 to 99,
while a three-disc counter could count from 0 to 999, and so on.

Actually, this hypothetical counter using decimal discs is a

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P .,4 "\

mechanical analog of the decimal number system itself. Each
disc corresponds to a "place" in a decimal number, and the fact
that we would want each disc to move by on~ number when the disc
to its right had gone all the way through its ten digits shows
that each "place" in a decimal number repre~ents a power of ten,
with each place being one power higher than the place to its
right.

, X ! X I X ! X !

3 ~ / \~'---'X times 100
X times 10~ .

, X times 102 X times 10 1

In the decimal system, this number:

324
means IIthree hundred and twenty-four" because each digit in the
number represents a power of ten, thus:

X 100 = 4 X 1 = 4
2 X 101 = 2 X 10 = 20

3 x 10 2 = 3 X 100 = 300

The right-hand place (ca 11 ed the 111 eas t significant")
in the number is the 100 or IIten to the zeroeth" place; the
digit occupying that space tells you how many 100s the number
contains. Since 100 = 1, this position is called the ones
place or ones column. (The zeroeth power of any number is one.)
The 4 occupying this column means IIfour ones. 1I Moving to the
left, the next place shows 101 or ten. The 2 occupying this
place means IItwo tens. 1I The, next place (in this case, the "most
significant ll) indicates 102 , or one hundred. Three hundreds,
two tens, and four one~ -- 324. To express numbers involving

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 5

thousands, tens of thousands, etc., we just keep adding places
to the left. The left-most place is always the most significant
it indicates the highest power of the base. Decimal has ten
different digits -- 0,1,2,3,4,5,6,7,8, 9 -- and so can
indicate from 0 to 9 ones in the ones column, from 0 to 9 tens
in the tens column, and so forth. Humans, having ten fingers,
find decimal or ten-based countin~ very natural, and many people
just cannot believe that other bases are better for some purposes.

Nevertheless, the fact is that !nl value can be used as a base
in a number system. Consider thirty: We say "th-irty II and write
30 to represent this quantity. But just as we could use some
other word than IIthi rty II to repres en t the quant i ty, so we cou 1 d
apply some other number system. For instance, the base of the
number system could itself be thirty. That system would work
like this:

vi:; , X.' X ! X , X !

303= twenty-seven ~ ~ . '" ~ X times 300 =
thousands / \

X times 30 2 = nine- X times 30 1 = thirties

X times

hundreds

Thirty includes II no ones" and "one thirty," with no nine­
hundreds, etc. So in a thirty-based system, the value thirty
would be expressed:

one thi rty --:........ 1 a -.... .--..,.--- no 0 n e s

In a number system based on three, thirty would be expressed:

101 a

(Why?)

ones

Just what number is selected to be the base of a number system
isa matter of convenience. Creatures having ten fingers find

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.6

ten a convenient base. But when you start making devices to
help you in computation, it becomes convenient to use other
bases as well.

Computers use solid-state electronic devices to perform computa­
tions. The simplest, smallest, cheapest solid-state device can
take on just two electronic "states." (Recall that the decimal
disc had ten states -- the ten different positions it would be
in to show each of its ten digits to a viewer.) Such a device
is often thought of as a switch. The switch might offer two
possible pathways:

electric;-ty in

flip the switch:

electricity out this way

electricity out this way

The two stable states of the switch might simply be OPEN and
CLOSED -- OFF and ON. The two states can be called YES and NO,
or TRUE and FALSE -- or they can be called 1 and O. This
immediately suggests a number system based on just two digits.
And in fact, since a computer actually performs its operations
by means of many tiny solid-state devices that have two possible
stable states, computers are said to "use binary" in their
operation. In binary each position or column in a number represents
a power of two, rather than a power of ten. This binary number

1 X 1 = 1

o X 2 = 0
X 4 = 4

says II lone, 0 twos, and 1 four, " or five. In decimal -- 5.
In binary -- 101. (We will continue to use written words
1 ike II 0 n e, two, t h r e e II to dis c u sst h e s e 0 the r s y s te m s .) We will
also slash all ~s to distinguish them from Dis, as does the
POLY 88.)

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 7

Obviously, binary numbers are usually longer than decimal
numbers. So why use them? Because solid-state electronic devices
find them convenient. To be more exact, the binary system is the
simplest number system that can convey any and all data. The
only simpler system would be to the base one, and that would
not be a "system" at all, but just a tally -- ten marks to

. .
indicate the number ten. The simplicity of binary allows
computer design to be as simple as possible, since the simplest
physical system with more than one stable state has two.

Any quantity can be represented in bin~ry. Just keep adding
powers of two to the left. Binary digits, or "bits," are
frequently grouped in groups of eight:

27 26 25 24 23 22 21 2~

00000000
1 28's 64's 32's 16\ 8s 4's 2's l's

Eight bits is a "byte." The largest number expressible in a
byte, 0 b v i 0 u sly, i s 111111 11, w h i chi s (star tin g from th e rig h t)
one one, one two, one four, one eight, and so forth. In decimal
it would be 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128, or 255.
Larger numbers, of course, are built up from several bytes.

Many computers, the POLY 88 among them, always treat values in
eight-bit bytes. For instance, the POLY 88 stores data in its
memory ;n the form of eight-bit bytes. Recall that a binary digit
or bit, which ;s always either 0 or 1, corresponds to a tiny
solid-state device which is in one or the other of its two stable
states. When you store a data quantity in the POLY 88, you are
actually manipulating the states of many such devices. Let us
call these two states. the /lzero stateI' and the "not zero state. II
When you store the quantity five in the POLY 88's memory,

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 8

you affect the state of eight (microscopically small) devices.
Five in binary is 101B, or, as an eight-bit byte, OOOOOlOlB. The
eight affected devices will be in this overall state:

I I Not
Zero Zero Zero Zero Zero I Zero Zero

State State State Sta te Sta te Sta te Sta te

Another way to show the state of the eight affected devices
is:

1 1

Not
Zero
State

This is a very convenient way, because here we have our binary
number 00000101B over-laid onto the representation of the eight
affected devices. We will be using this representation often,
because to get the greatest use and the greatest aesthetic
satisfaction out of your computer, it is important to "think binary"

(at least at first)and visualize the actual events going on.down at the
level of the bi-stable devices. The "memory" of the computer
consists of many, many groups of eight such devices, and can be
thought of as many such rows (bytes) as this:

Ill! al alai all' rill/
turned on edge and grouped together like this:

Memory liIllll
each location in memory
contains one byte -- eight bits

Binary expresses the actual state of the bi-stable devices or
"fl ip flopsll that make up the computer ' & memory. As we will be

discussing later, binary also expresses the "vectors" or the
pathways that lead to the bytes that make up the memory.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 9

;i) Octal and Hexadecimal
Though electronic devices find binary convenient, it is cumber­
some for humans. $0 computer operators use other number systems
that are more like decimal in their compactness, namely 1I 0c tal,1I
based on eight, and IIhexadecimal,1I based on sixteen. Since eight

and sixteen are themselves powers of two, numbers in these
systems are fairly easy to compare with or convert to binary
numbers. Decimal could be used, but it would not convey any
sense of the actual state of operations down at the level of the
solid-state devices, where the abstraction of numbers has its
reality in the form of the electrical state of each device.

Octal uses the digits. 0 through 7, with each position indicating
up to seven times a power of eight. Hexadecimal is more important
for our purposes, since operating the POLY 88 involves its use.
Hexadecimal uses all ten of the familiar digits, plus the first
six letter of the alphabet: 0123456789ABCDEF.
Each position in a hexadecimal number indicates a power of
sixteen, thus:

r---:
: I

\63
I I

~
Clearly, very large numbers can be compactly expressed in
hexadecimal. This number, for instance:

F9'9
Says II no ones" no sixteens, and fifteen two-hundred-fifty-sixes."
In decimal -- 3,84a. (The hex number above would ordinarily be
written F00H and said IIF zero zero hex." We will always put an
H after a hex number and a B after a binary number; a number
with no letter after it is always decimal.)

In binary, by the way, the above hex number is
1111~~~a~a~~B. There is no sense in which the decimal number
3,84(1' is the "real" expression of this value. Any binary number up
to four bits can be expressed as one hexadecimal number, thus:

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 10

Bi na ry Hexadecimal Decimal

~000B 0H ~

0001B 1 H 1

(J~10B 2H 2

02111B 3H 3

21100B 4H 4

0101B 5H 5

21110B 6H 6

0111B 7H 7

1000B 8H 8

121{31B 9H 9

10H~B AH 10
1011 B BH 11

1100B CH 12

1101B DH 13

11108 EH 14
1111 B FH 15

Recall that in the POLY 88, each memory location consits of
eight bi-stable devices, so the contents of any memory location
can be expressed in eight binary digits or bits. This eight-bit
value can in turn be expressed in two hexadecimal characters.
For instance, if you think of the number 11110000B as two
groups: 1111 0000, you see that it equals F0 in hex (F0H).

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 11

b. ASCII. Binary numbers can be used (like any numbers) in a
code to express things other than quantities. One code for us to
consider is the American Standard Code for Information Interchange,

!"_ ..- - - oW

or ,8SCI1. ASCII provides a means for putting information into a
computer and getting it out again in a form that makes sense to
the human. In ASCII, the characters the human writes or reads -­
upper and lower case letters and the ten digits, plus punctuation
marks -- are all assigned numberical values. Every character on a
typewriter keyboard, for instance, is assigned a binary equivalent.
When the human strikes a key on the computer's input keyboard, the
keyboard in turn sends to the computer one byte -- an 8-bit binary
number -- corresponding to that key. This is necessary because
the computer itself "understands" nothing but binary; it conducts all
its operations in terms of the bistable state of electronic connectors.

ASCII also enables the computer to put out characters that make
sense to the human. If the computer and the human are communicat-
ing sttictly by means of a typewriter, the process described above
simply reverses. The human puts in his/her information by striking
the appropriate keys. The keyboard electronics interpret this
according to ASCII code into binary bytes, which are then sent
on to the computer. When the computer completes its operation,
it sends a series of bytes back to the teletype, which interprets .
them according to the ASCII code and causes the appropriate keys
to strike. Some bytes correspond to functions other than key
strikes -- carriage shift, carriage return, etc.

The POLY 88 uses a keyboard input and video output. {There is also
a tape input/output. The tape can be recorded according to the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 1 2

ASCII code -- actually in a dual-tone code corresponding to the
binary representations of the ASCII characters.} The human
types into the keyboard his/her: input. The keyboard sends
this input onto the computer in the form of the bytes
assigned to each key by ASCII. When the computer finishes its
operations, it sends the information in ASCII to its own video
electronics, where the information is converted into the form that
will cause the appropriate characters to appear on the screen. You
will find a chart showing the ASCII-to-binary code in the appendix.

2. Computer Languages
a . Mach i n e 1 a n g u age
As said earlier, the data a computer deals with exist in the form
of states of sets of bi-stable devices. Actually, not only data items
but also every operation the computer can perform corresponds to a
binary number. At the most fundamental level of the computer hard­
ware, events take place in the form of changes in the state of
individual devices' having two stable states. Therefore, binary
IIstatements ll can exactly lIexpress ll what is actually happening
inside the computer.

The heart of a computer is its central processor, usually con­
sisting of one or more integrated circuits or IIchips.1I Built into
the physical structure of these chips are microscopic pathways
and electronic devices that enable the computer to perform its
basic operations. The POLY 88 has one such chip, the Intel 8080A
microprocessor, designed to allow the computer to perform 72
fundamental types of functions. These functions are called
II mac hine instructions,1I and together are called the instruction
set. Each instruction corresponds to a binary number, and the
set of all iuch numbers is called the machine language.

b. Assembly language
Binary exists for the convenience of the computer -- it allows
computer design to be as simple as possible. Hexadecimal and
ASCII are ways that statements which make sense to the human can

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 1 3

be related to "statements" that II ma ke sense" to the computer.
Assembly language is a convenience to the human -- it expresses
computer operations in a form that makes sense to him.

Assembly language assigns a word to each instruction. When the
human writes a program, he/she uses assembly language to express
what the computer is supposed to do. For instance, the human
may write down something like this:

INR A

This instruction, which means II INcrement-Register A," causes
the value stored in a certain location to increase by 1. This
instruction can now be converted into a form the computer can
use. Each word in assembly language can also be expressed as a
two-digit hex number (called the "opcode") which represents the
binary instruction actually executed by the machine. (For a
1 ist of all assembly language words --the instruction set-,:",and th.eir
hex equivalents, see the appendix.) The human can now rewrite
his program in hex. The instruction above, for instance,
would be:

HEX
3C

ASSEMBLY LANGUAGE
INR A

This conversion process is called assembling. Now we can type
our hex directly into the keyboard. From there on, the POLY sa
converts the input into the binary form it requires.

Assembling by hand, by the way, can be avoided. You can program
the computer so that it will convert assembly language to the form
it needs.
assembler,
computer.
board, and

Such a program ;s called an assembler. When using an
you begin by putting the assembler program into the
Then youtype assembly language directly into the key­
the computer interprets that input appropriately.

PolyMorphic Systems POLY 88, Vol. II

c. High level languages

Rev. 0.0 P. 14

There is an even more "human" way to write a program. Operations
which seem to the human to be single steps (like "mu ltiplyll) may
actually require the computer to obey many instructions. The
human may find it convenient to be able to use symbols that do
not correspond directly to machine instructions. In assembly
language there is a word or symbol corresponding to every
instruction that the computer will obey in performing its operations.
In a high level language, on the other hand, one word or symbol
may imply many instructions.

When you write your commands for the computer in assembly language
(and then convert ,them to hex, or enter them directly into the
computer by using an assembler), you are thinking in terms of
the actual instructions built into the computer's central processor,
and so you will probably be making the best use of the abilities
of that particular computer. Nevertheless, it can sometimes be
a great convenience to be able to write a program in a high-
level language, using terms like "multiply" that imply many
different instructions and would have to be expressed in several
assembly language terms. The high-level language most appropriate
for small computers like the POLY 88 is called BASIC. To communi­
cate with your computer in BASIC, you would first program it to
convert your statements in BASIC into the appropriate sequence of

. machine instructions.

3. Computer Theory
a. Address and Memory
Any computer works by performing a series of manipulations (or
"program") on data stored in the computer's memory. Computer
memory consists of the state of the thousands or millions of
small, solid-state "flip-flops" or bi-stable devices within it.
The POLY 88 has from 10,000 to half a million such individual
devices in its memory, depending on options.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 15

To perform its functions, the computer must be able to locate
anyone of the data items stored in its memory whenever it is
needed. So the computer must keep track of where it puts each
item. To do so, it assigns an "address" to each item in memory.
In the POLY 88, the memory "bits" (each one corresponding to the
state of a single flip-flop) are divided up into bytes of eight
bits each, each byte having its own address. To get to a given
address, the computer searches along a wiring pathway that has
sixteen decision points -- sixteen places where the path can
fork to the left or right. A schematic of this pathway would
look, in part, like this:

We can assign the binary digits ~ and 1 to left and right
turns at each decision point. Consider the pathway represented
by the unbroken line:

--­~...-'-'-
- -' -- -- - ---4 --..-::::;:---.., . ."...,...... -- --~ = ----..--.

"" - - - -.---
. ..- - ----

000
001
010
all
100
10 1
110
111

To follow this pathway, you turn first right, then left, then
right. Defining left as r; and right as 1, we can give this
pathway the unique name lr,11, which means IIright-left-right.1I
Three right turns would.be 111; the pathway involving three
left turns would be (Jr;r;. All the other pathways would have the
designations shown. These binary numbers can be thought of as
the "addresses" to which these pathways lead. Since we have

PolyMorphic Systems PO L Y 88, Vol. I I Rev. 0.0 P. 16

either a left or a right turn at each of these decision points,
we have a total of 23 or eight unique pathways in all. You might
have noticed something else interesting. The addresses also turn
out to number the pathways in sequence in binary notation. The
top one, rJrJrt, equals zero. The next one down equals one, the next
one is two, the next one is three, and so forth. The last one,
111, is seven. So all eight pathways are neatly numbered, from
zero through seven. That is what we mean when we say that each
memory address is a unique pathway that can be expressed by a
binary number. Each digit, a or 1, in the binary number corresponds
to the state of a bi-stab1e device that is serving as a "switch"
that turns the pathway to the left or right.

As you can see from the figure above, the to ta 1 number of different
pathways doubles at every decision point. Since there are 16 such
points in all in the POLY 88, it can store items in 216 or 65,536
different possible memory locations. Each "location" is actually
a unique pathway, determined by the states of sixteen bi-stab1e
devices, leading to a unique set of eight binary devices. The
states of these eight devices constitute "an item, or part of an
item, stored in memory (one byte of memory). So -- 216 or 65,~~~
possible pathways leading to 65,~~~ locations, each of which can
contain anyone of 28 or 256 different binary values.

All addressed locations taken together make up the "memory space"
of a computer. Anyone address is sometimes called a "vector" in
this space because it "points" to a single byte in memory. The
memory space and address pointer can be depicted like this~

65,a~~
memory
locations

II, II' ,1

11. , ,

Each memory location contains 8 bits --one
byte

"vector ll or Each pathway is
pa thway 1 eading to expressed as
one 10catlon (address) 16 bltS--two bytes

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 17

with the bar representing the bytes of 8-bit groups within the
memory, and the large arrow indicating the lS-bit address that
specifies the pathway leading to each memory location.

The items stored in memory can be used in anyone of several
ways. An item can represent a program instruction to the machine.
Bytes in memory can represent ASCII characters, and thus can enable
the machine to communicate with its human operator. An item can
be a numerical value, to be manipulated in a program--like your
bank balance. In the same way, a pathway leading to these items
can be defined in two ways: as a program pointer (called IIprogram
counter") when it leads to memory items defined to be instructions;
or as a data pointer when it leads to quantities to be manipulated
by the program. Whether a certain stored item is to be considered
an instruction or a quantity to be manipulated by a program is up
to the operator. The computer does not care either way. In fact,
if,the operator accidentally tells the computer to treat a data

-.

quantity as though it were an instruction, the computer will gladly
do so. To it, anything the program counter points to is an
instruction--whether the operator meant it to be an instruction or
not. And anything the data pointer points to is an item of data
to be manipulated. Trouble sometimes occurs when the operator
accidentally causes the program counter to point to a memory
location that does not contain program. The computer executes the
item as an instruction, and from that point begins to produce
nonsense or IIgarbage. 1I

b. Central Processor Arcbitecture
A computer consists of memory space, containing stored program
instructions and data to be manipulated in programs, and a central
processing unit, which manipulates data in response to program
instructions. The CPU opens pathways to memory items, takes
items from memory and temporarily stores them, transforms data
by means of mathematical and logical operations, and sends results
out to memory or to an output device.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 18

The organization of a processor is called its "architecture; an
extremely simple computer could work like this:

Memory

Central
Process ing
Unit

data being
accessed

IIIII I II I i II I t I j I

instruction
being accessed

III , I ! jill i II i j II
Data Pointer Register Program Counter Register

Accumulator III1 i 1111

Here we have a bar representing a large amount of memory,
with a data pointer pointing to a quantity stored at one
address, and a program counter pointing to a program instruction
which tells the CPU what to do. (Don't lose sight of the fact
that these "arrows" that are "pointing" at bytes of memory are
actually pathways leading to groups of eight bi-stable devices.)
Also, there are some "registers." The data pointer register
contains the two-byte number that corresponds to the memory address
the data pointer is pOinting to. The program counter register
states the memory address of the instruction that the CPU is
currently executing. This hypothetical computer performs the
operation pOinted to by,the program counter, using the data
pointed to by the data pointer. The result of the operation gets
stored in the accumulator. Note that, because the data pointer
and program counter registers hold addresses, they contain two
bytes. When the computer finishes the operation indicated by
the program counter, the program counter automatically moves to
the next instruction in the program. The program counter may
"jump" on command to a new address at a considerable distance
from the previous location, but for one moment let's visualize
it as just moving one slot to the right at each step. The

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 . 19 P •

computer then does whatever that instruction tells it to do.
Each time an instruction is completed, the program counter moves
to its next instruction.

The operation of this simple computer can be visualized as
follows. The program counter points to an instruction that
tells the CPU, "Move data pointer to <address>." The CPU
opens a line to the slot bearing that address. It also move
the program counter to the next instruction. The next instruction
says, "Take the quantity located in the slot indicated by the
data pointer, and move it to the accumulator." The CPU does so.
Next instruction: "Move the data pointer to (new address) ."
CPU obeys. "Add the quantity in that slot to the quantity in
the accumulator." CPU does this. "Move the data pointer to

(new address)." Obeys. "Take the quantity from the accumulator
and put it in the memory slot that the data pointer is now point­
ing to."

Note that this series of operations involves three quantities
in memory: two quantities that were already in memory, and a
third quantity, the sum of the first two, which is now also stored
in memory.

Now, about those other two CPU registers. Every time the computer
obeyed an instruction, the program counter register changed to
reflect the address of the next instruction. Since we are
visualizing this simple computer as performing a series of
instructions in sequence, let us say for the moment that
after each instruction is performed, the value in the program
counter register goes up by 1, to move the program counter one
slot up. (Actual instructions can consist of several bytes and
therefore occupy several consecutive addresses.) We could put an
instruction into the program that says IIJump the program counter
all the way to another part of the program. 1I The value stored

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.20

in the program counter register would change to reflect the address
of the new instruction. The same thing' is true of the data pointer
register -- the value in the' data pointer register goes up or down as
the da ta po inter moves to corres pond to the memo ry add res s 0 f each
accessed memory item.

Why the acculIJul a tor? Because a computer pe,rforms its opera t ions
by taking one very small step at a time. To take a quantity out
of memory, then take another one from memory and add it to the
first, then put the sum into a new location, takes the computer
three steps. It needs the accumulator to store the results of
intermediate steps.

This simple computer can do anything that any real computer can
do. But because it has just the three basic registers, it does
everything slowly. To increase the speed of the computer, we
add registers.

The POLY 88 has several additional "working registers." The
working registers are like the accumulator in that they temporarily
store values being used in computations.

We will add the working registers to our conceptual depiction
of what is called the architecture of the POLY 88:

data bytes program bytes
Memory

data pointer i program pointer

A

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 21

So far, we have the memory space; a data pointer register; a
program counter register; working registers (two pairs, each
one holding one byte); and an accumulator. Let us consider
the working registers.·

The working registers, like the accumulator, temporarily store
values the computer is using in the course of its operations.
Thus the computer can move a value from memory to any register,
including the accumulator, from any register to any other
register, and from any register to memory. It can perform some
operations on the contents of the accumulator. It can also perform
operations involving the contents of the accumulator and other
registers (add them, for instance).

You have probably noticed that, because we used the letter A to
designate the accumulator, we designate the working registers B, C,
o and E. Each register holds one byte; the registers can also be
used in pairs, B with C and D with ~ to hold 16 bit quantities. The
register pairs are called "pair 8" and "pair 0."

You might also note that we are using the letters Hand L to
designate the two bytes of the data pointer register pair. This
simply means that the left register contains digits of relatively
high Significance, the right register digits of lower significance.
In any number, the significance of digits increases as you move to
the left -- in decimal, tens are more significant than ones,
hundreds are more significant than tens, and so forth. The letters
Hand L could apply to any of the register pairs; by convention,

however, only this register pair is de~cribed in that way.

There remains just one basic feature of computer architecture
to add: the stack pointer. In order to talk about the stack
pointer, we will have to go a bit deeper into the subject of
programming.

A program is a pre-determined series of instructions for the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 22

computer to follow in solving a specific problem. Recall that
the heart of the computer is its central processing unit, consist­
ing of one or more chips into which are built the electronics
providing for all the logical operations of the computer. This
central processor lets the computer deal with all the various
kinds of problems it is built to deal with. But the central
processor does not tell the computer when to perform any given
operation, or on what, and so it does not enable the computer to
deal with any specific problem. That requires a program.

The fundamental instructions built into the central processor
are called collectively the lJinstruction set." A program also
consists of instructions, which the user stores in memory. The
computer uses the electronics of the central processor as required
to obey the program instructions it encounters in memory.

A very simple program starts out with instruction #1 and moves
along in a straight line through a series of instructions to
the end. But almost no program is that simple. Most programs
incorporate strings of instructions that the computer performs
repeatedly, returning to the beginning of the string and performing
it again until some condition is satisfied. These repeating
strings are called "loops.1I

Another possibility is a separate part of a program that performs
some specific task that may be called for at several different
times in the execution of the program. The computer moves to that
part of the program whenever it is instructed to, and performs
the instructions it contains; then it returns to the main-stream
program. These repeatable sub-portions of the program are called

IIsub-routines. 1I

Obviously, the terms "loopll and IIsub-routine" are not real1y
mutually exclusive. A sub-routine could be a,loop. The point
is that both terms indicate a departure from the straight-ahead,
left-foot-right-foot progress of the program.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 23

We can depict a sub-routine in this way:

da ta program

Memory
,

sub-routine
IIAII

sub-routine
liB II

Sub-routines IIAII and "BII consist of instructions for operations

that are needed several times in the execution of the program.
Every time sub-routine IIA" is needed, the computer comes upon the
instruction lIeall sub-routine (first address in A>.II And off
it goes. When it needs IIB,II the computer comes upon the instruction
"Call sub-routine (first address in IIBII) II

This is where the stack pointer comes in. Say the program counter

departs from the main-stream program and goes to sub-routine "A."
The computer performs the sub-routine as required. Now it has to
get back to the right place in the main program. The stack pointer

records the address to which the program counter must return in
order to resume the main-stream program. In the example we are

discussing, this will be the address in the main-stream from

which the program counter originally departed -- plus three.

Why plus three? Because if the program counter returned from
sub-routine IIAli to exactly the same point in the

program from which it departed, it would once again come upon the
instruction "Call first address in IIAII " So back it would go

to the beginning of sub-routine IIAII. Finished, it would return to
the same instruction -- and go back to liA" again -- and again -­
till some merciful human pulled the plug. So when it return from

the subroutine, it must begin at the instruction following the

"CALL II (one-byte) and the two-byte address of the sub-routine.·

riow, our example is still very simple. So far it just involves
jumping to ei ther "All 9.I:. IIBII from the main-stream program, then

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 24

back. But often a program will involve calling a sub-routine,

then calling from the midst of the sub-routine to another, and

so forth. So the program counter may move from the main-stream
program to IIA,II then before finishing IIAII it may move to 118,11 then
II C ,II etc. Tor e t urn, i t may h a vet 0 go,: r' 0 m II C II toll B ,II the n to

IIA,II then back to the main-stream program. The actual path a

computer follows to go from question to answer can be very, very
complicated.

That is why the stack pointer has a stack. The stack pointer keeps
inserting into a portion of memory the addresses that the program
counter has to return to asit finishes with sub-routines. The
first address that goes into this IIstack ll is the address from
which the program counter departed when it jumped to sub-ro~tine

IIA,II plus three. If it goes to 118 11 before it finishes with IIA,II

then the next entry in the stack is the address in IIAII to which
the program counter must eventually return. The stack pointer
keeps putting these addresses in, in the required order, till it

is necessary to start returning.

To summarize, the computer stores into its memory both data items
and program instructions, in the form of bytes. It takes data
items from memory and puts them into the working registers, where
they can be manipulated. Addresses, or pathways leading to data
bytes and program bytes, are represented in the program counter,

data pointer, and stack pointer registers. These addresses can
themselves be stored into memory and recalled as required.

c. Instruction Set
At the heart of the POLY 88 is a small II chip,1I about the size
of the nail of your little finger, called a central processing

unit or CPU. This integrated circuit, the Intel 8080 A, incorporates
many microscopically small solid-state electronic devices that
enable the computer to perform its various operations. Basically,
in fact, all processing is the job of the CPU, while the rest of

the computer components provide input, output, storage, and access.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 25

We will now take a look at all 72 kinds of operations or
"instructions" the Intel 8080 CPU can perform. First we will
consider some general concepts.

Some of the operations the CPU performs are familiar -- addition
and subtraction, for instance. Others equally important, and in
fact more fundamental, are "logical operations," in particular
those called complementation, AND, OR, and XOR (exclusive OR).

COMPLEMENTATION
Addition and subtraction treat binary quantities as quantities -­
as numbers built up of one: or more digits, to be treated as wholes.
Logical operations, on the other hand, treat the bits of binary
values one at a time. One of them, complementation, simply changes
every 0 to a 1 and every 1 to a~. These two numbers are
comp 1 ementary:

One of the CPUls operations is IIcomplement"--that is, the CPU can
be told to complement any number, and will respond by changing
every 0 to a 1 and every 1 to a 0.

TWOS COMPLEMENT

For simplicity of design, the central processor uses addition to
subtract. It does this by converting a number to be subtracted
into its "twos complement,1I which in effect reverses its sign,
then adding it to the number to be subtracted from.

Letls say that the subtraction problem is:

1l~11001
- ~l ~0l00l

The number to be subtracted is 0l~0l0~1. To do this, we will
instead add the twos complement of this number, which is in
effect its negative counterpart (in a number of fixed length--here,
eight bits). We begin by constructing its twos complement.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 26

First we complement this number -- invert every bit. It becomes
101101HL That is the "ones complement," or just the complement

of 01001001. Then we add 1 to give the twos complement.
10110110

+ 00000001
1011011-l

We can test to see if this is really, in effect, the negative
equiva1ent of the original number by adding it to the original
number and seeing if the result is zero. In so doing, we will
also see the point of considering only numbers of fixed length.

01001001
+ 10110111

/
1 0000000~

ninth bit
not considered one byte
part of sum

The fact that we are conSidering numbers of fixed length means
that the carry out of the most significant place ;s not considered

part of the sum, so zero can result from the addition of two nonzero
bytes.

Adding 10110111

Carry not
part of sum----l

to 111311001

11011001
10110111

10010000

result

yields:

Among binary number of a fixed length of eight bits, there are
256 different possible combinations. These 256 combinations can
be considered to be the positive numbers from ~ through 255.
Equally well, they can be cons{dred the 256 values from -128
to + 127. In this latter case, the binary expressions for the
values from ~ to +127 would all be exactly the same as when only

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 27

positive numbers are being represented. Then converting all of
these values to their twos complements yields the remaining binary.
values which can be considered their negative counterparts. Note
that, in this case, all the positive numbers would begin with a
~ in the most significant place, and all the negative numbers
would begin with a 1.

~~ ~H'~~~l B = 1
~lllllllB = 127 (decimal)

-1 (twos complement of 1) 11111111B =
l0.0~OOOlB = -127 (twos complement of 127D)

Note that ~ (000~0~~~a) and -128 (lamm~~a0B)'are their own twos
complements. All other values have their own unique but dissimilar
twos complement.

The existence of these two sets of values, positive values starting
in every case with a ~ and negative values starting in every case
with a 1, means that the most significant bit can be considered
not only part of the value but also the sign of the value. This is
called "signedtwos complement notation." The following discussion
of com put e r 0 per a t ion s 0 r II ins tr u c t ion slim u s t be u n d e r s too din
light of twos complement representation.

LOGICAL OPERATIONS

.
One logical operation, complementation, treats the bits of a
single binary value. The other logical operations of the CPU
compare the bits of one binary number with the bits of another.
Let's take two binary numbers having just one bit each:

i Compare these bits.
1

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 28

The comparison checks to see if the two bits conform to some
"rule," and leaves a record to indicate whether or not they do
conform. A rule might be: "The two bits are the same." If
they are the same, we can leave a 1 as a record; if they are not
the same, we can leave a 0. Note that, in a comparison of two
bits, the first bit can be either a 0 or a one, and the second
bit can also be a 0 or a 1, so there are 22 or four possible
cases:

0~ ~0 1 .
1 1 1.
l~0 0 .
0~ 1 0.

(Since the rule says nothing about the order of the bits, we
can consider the last two cases:identica1.)

A different rule will produce different results for the same
cases. Supposing the rule is IIOneor the other of the two
digits is a 1.11 Now the four cases produce:

0'" ... 0 0 .
1 1 1.
1 0 1.

04 1 1 .

Another way of saying that two bits compare in conformance with
a rule is that the comparison is true. Using false and true
instead of 0 and 1 is very interesting, because it shows how
fundamental these comparisons are to logic, and therefore why
these comparisons are called logical functions.

In the second example above, the rule was that one or the other

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 29

of the two bits (or both) had to be 1. If at least one bit was
1, the result of the comparison was also 1. If neither was 1, the
result of the comparison was 0. Defining 0 as false and 1 as
true, we can restate that rule thus: If one bit or the other is
true, then the result is also true. For brevity:

If A is true OR B is true, then
C is true.

This rule provides a model for a certain kind of logical syllogism -­
the kind in which a certain conclusion always follows if either one
of two conditions is met. For instance:

If the batteries are dead, OR the bulb is burned out, the flashlight
will not work.

Here, either one of the conditions if true is sufficient to make
the conclusion true. There is, of course, another kind of
relationship; in which both one condition AND the second must be
true for the result to be true.

If you have enough money, AND if the store is open, you can buy
what you want.

This AND relationship provides the model for the most famous
syllogism of all: IIAll men are mortal; Socrates is a man;
therefore Socrates is morta1.11 Stated like the previoui example:
IIIf all men are mortal, AND if Socrates is a man, then Socrates
is mortal. 1I Note that syllogisms need not assert the truth of
any particular fact, but only offer a model to predict the
IItruth relationships" of possibilities. Another way of making
the same syllogism would be:
All men mortal? True. AND Socrates a man? True: Socrates mortal?
True.

PolyMorphic Systems POLY 88 Vol. II

To summarize the AND relationship:
false AND false: false
false AND true: false
true AND false: false
true AND true: true

REV .0.0 P. 30

Defining ~ as false and 1 as true, we can sum~arize the AND
relationship in this "truth table":

AND

We have already seen the rule that if one OR the other (or both)
of the two conditions being compared is true, then the result is
true. Here is the OR truth table:

vffll ~ ~ 1
1 1 1 OR

One other rule concerns us here: The XOR or "exclusive OR- rule,
in which one or the other (but not both) conditions must be true
for the result to be true.

For instance, suppose that Mr. Smith employs an equal number of
female and male people:

If Smith hires one female, XOR if Smith hires one male, he will
have an unequal number of female and male employees.-

Here is the XOR truth table:

~~.l
o 0 1
1 1 .,0

PolyMorphic Systems POLY 88 Vol. II Rev. 0.0 P. 31

As we said before, the POLY 88 CPU compares the bits of two
numbers by means of one of these rules in performing its logical
operations. Here's how two numbers are compared in these ways:

result

101100H'l
11011111
10011H~10

AND

The top number is compared bit by bit with the number below it,
to see if the upper bit AND the lower bit are 1.

10110010
11011111 OR
11111111

The top number is compared bit by bit with the number below it,
to see if the upper bit OR the lower bit is 1.

10110010
11011111 XOR
01101101

The top number is compared bit by bit with the number below it,
to see if the upper bit XOR the lower bit is 1.

BRANCHING

Computers are valuable primarily because they can do repetitive
tasks very rapidly. To be able to repeat the same task a required
number of times, the computer must be able to decide whether it
is to repeat a task or move on. The computer repeats a task

PolyMorphic Systems POLY 88, Vol. I I Rev. 0.0 P. 32

until some condition is satisfied, then moves on to something
else. If it could not make such a decision, the computer would
have to be told whether to repeat or move on -- the operator
would have to make that decision, and the computer would be far
less useful than it is.

This decision can be -- and is -- divided into two parts: a
test and a branch. The test determines which of two conditions
exists. The test may be of whether two values are equal, or of
whether one value is at least as large as another; it may be of
whether a particular single bit is 0 or 1, etc. These tests
always involve at least one of the values currently stored in a~·

CPU register.

The branch is the point at which the computer moves in one of
two directions. Which way the computer goes depends on the
result of a previous test. We need a way to record the results
of the test for use in the branch. This th~ computer does by
setting'the value of a particular bit to 1 or resetting it to ~

to indicate which of two conditions was found to exist. These
bits are called "flags."

These decisions, called conditional branches, always involve
two instructions:

TEST. Which of two conditions exists? Set a particular flag
to 1 or reset it ,to 0.depending on which condition
exists.

BRANCH. Is a particular flag 0 or l? Go on to one or another of
two different instructions depending on the status of
the flag.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p.33

Following a branch instruction, the computer always moves on
either to the next instruction in sequence; or to an address
stated in the branch instruction itself, where it will encounter
another instruction.

In the POLY 88 there are five flags.

CARRY FLAG

When a number is added to the value in the accumulator, the
result may include a carry out of the left-hand bit, the bit of
highest significance. This carry "sets" the carry flag to 1.

D~ I I I 1 I I I
accumulator

When an addition does not result in a carry out of the most
significant accumulator bit, the carry flag is 0.

The carry flag can be set to 0 or 1 by other operations. For
instance, the instructions RAR (rotate accumulator right) and
RAL (rotate accumulator left) affect the carry flag. In RAR,
the least significant bit in the accumulator moves into carry,
the bit that was in carry goes into the most significant place
in the accumulator, and all other accumulator bits move one
place to the right.

RAR rD~""1111
RAL is the opposite of RAR.

The carry flag can be affected by logical operations as well as
addition, subtraction, and rotation.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 34

AUXILIARY CARRY FLAG

A carry out of the "third bit" (fourth place -- 23) sets the
auxiliary carry flag:

~IIIIIIII ,
.... _------/

accumulator

The auxiliary carry flag cannot be tested directly, and exists
only to enable the DAA instruction for decimal conversion.

SIGN FLAG

The sign flag is set by certain instructions to duplicate the
most significant bit of the value in the affected register.

o I II I II I I I
~~ _____ ~f register

Recall from our discussion of twos complement that the most
significant bit in a register can be interpreted as the sign
of the data quantity when the quantity is considered to be twos
complement.

ZERO FLAG

The zero flag is set to 1 at the end of certain operations if
the byte resulting from the operations is all zeroes; the zero
bit is reset to 0 if the result is not zero.

A result that consists of eight zeroes plus a carry out of the
seventh bit sets the zero flag to 1, and also sets the carry flag
to 1.

PARITY FLAG

"Parity" refers to whether the number of 1s in a byte is even or
odd. Byte parity is checked after certain operations. If the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 35

number is even, parity is lI even li and the parity flag is set to 1;
if there is an odd number of ls, parity is "odd" and the parity
flag is reset to ~.

INSTRUCTIONS

Following is a complete list with discussion of all the operations
built into the central processor of the POLY 88. The discussion
divides the operations into groups of related instructions. Each
operation is identified by a "mnemonic" which corresponds to an
instruction in machine language (llopcode"). For a chart showing
all assembly mnemonics and the associated opcodes, see appendix.

CARRY FLAG INSTRUCTIONS. Two instructions affect the carry flag
, -
alone:

CMC (complement carry). Complement the carry flag -­
Set it to 0' if it is lor to 1 if it i s ~.

STC (set carry). Set the carry bit to 1.

SINGLE REGISTER INSTRUCTIONS. These instructions affect the
< "- -

contents of one memory address or anyone of the CPU registers
one byte. If memory, the instruction affects the byte addressed
by pa i r H.

INR (increment register or memory). Increment the affected
register or memory byte by 1 -- add 1 to it.

OCR (decrement register or memory). Decrement register or
memory byte by 1. This instruction is the opposite of INR it
i sid e n tic a 1 to i t ex c e p t t hat i t red u c e s th e a f f e c te d by t e
by 1. All flags may be affected.

CMA (complement accumulator). Complement the byte in the
accumulator -- change every 1 to ~ and 0 to 1. No flags are
affected.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 36

DAA (decimal adjust accumulator). Adjust the byte in the
accumulator to form two groups of four bits, each representing
one decimal digit. This instruction is rather complicated,
treating as it does the awkward relationship between binary and
decimal. It is used -- infrequently -- when a decimal output is
desired. DAA adjusts the first four bits and second four bits of
the accumulator byte separately. First, the less significant
four bits of the accumulator byte are compared to 1001 to see if
they are greater than nine. If they are (~ if the auxiliary
carry flag is set to 1), then the accumulator is incremented by
six -- which reduces the value of the four bits to nine or less.
Next, if the four more significant bits of the accumulator byte
now represent a number greater than nine (~ if the carry flag
is set to 1), then these four bits are incremented by six, so
that they will represent a value of nine or less. Note that
either of these two adjustments may have produced a carry. A
carry out of the four less significant bits sets the auxiliary
carry flag to 1; otherwise, it is reset. A carry out of the
accumulator byte sets the carry flag to 1; otherwise, it retains
its previous value. All other flags may be affected.

NO-OPERATION INSTRUCTION:

One instruction results in no operation.

NOP (no operation). Move on to the next instruction in sequence.
No flags are affected.

DATA TRANSFER INSTRUCTIONS:

These instructions transfer data between registers or between

memory and registers.

MOV (move). Move one byte of data from an indicated register
or memory to another individual register or memory. The data also

remains in its original location.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 37

Format example: MOV B,A. IIMove the byte in A (accumulator)
into regi s terB . II Note that the format states the affected
register first. Data cannot be moved from one memory address
to another in a single operation. Data moved out of memory
is always taken from the location addressed by H & L. No flags
are affected.

STAX (store accumulator). Store the contents of the accumulator
into the memory location addressed by register pair B or pair D.
No flags are affected.

LDAX (load accumulator). Store the contents of the memory
location addressed by the indicated register pair (pair B or
pair D) into the accumulator. No flags are affected.

REGiSTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS.

These instructions operate on the accumulator using a byte taken
from a register or from ~emory. Memory is taken from the memory
location addressed by the data pOinter (H & L). Results are
left in the accumulator.

ADD (add register or memory to accumulator). Add the byte in
one register or in memory to the value in the accumulator. ADD A
doubles the accumulator. All flags may be affected.

ADC (add register or memory and carry flag bit to accumulator).
Add the byte from a specified location, plus the value of the
carry flag, to the value in the accumulator. All flags may be
affected.

SUB (subtract register or memory from accumulator). Subtract the
byte in a specified register or memory location from the value in
the accumulator. SUB A subtracts the accumulator from itself,
leaving it "(and the carry flag) at zero. All flags may be affected.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 38

SSS {subtract r~gister or memory and carry flag bit -- "borrow"-­
from accumulator}. Subtract the byte taken from a specified
location, plus the value of the carry flag, from the accumulator.
All flags may be affected.

ANA (AND register or memory with accumulator). AND the specified

byte with the accumulator. ANA is often used to zero part of the
accumulator. Carry, zero, sign, and parity flags ~ay be affecied.

XRA (XOR register or memory with accumulator).
spe.cified byte with the value in the accumula-tor.

XOR the
XRA A

zeroes the accumulator. Then a MOV from A to a register zeroes
that register. All flags may be affected.

ORA (OR register or memory with accumulator). OR the specified
byte with the value in the accumulator. This instruction is
often used to set part of the accumulator to ls. Flags affected:
carry flag is zeroed; zero, sign, and parity flags may be
affected.

CMP (compare register or memory with accumulator). Compare the
specified byte to the contents of the accumulator. In effect,
this determines if the sp'ecified byte is smaller than, equal
to, or larger than the accumulator byte. Flags: the zero flag
is 1 if the quantities are equal~ and ~ if they are unequ~l. The
carry flag is 1 if the register or memory byte is larger than
the accumulator byte, and ~ otherwise (but when the two compared
values differ in sign, the sense of the carry flag is reversed).
All other flags may also be affected.

ROTATE ACCUMUlATO~ INSTRUCTIONS.

These instructions rotate the contents of th~ accumulator -­
move a bit from one end, and shift the other bits one place.
Rotation can be to the left or to the right, and involves the
carry flag bit (but no other).

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.39

RLC (rotate accumulator left and into carry). Move the most
significant bit in the accumulator (left-hand bit) into the
carry flag and into the least significant place in the accumulator.
All other bits shift one place to the left.

START

ROTATE

END

[] 1~11[1!~I~ilI0111

0jj~ 1111 1010111011b

II] 11111010111~11101

RRC (rotate accumulator right and into carry). Here, move the
least significant bit from the accumulator into carry and into
the most significant place; the opposite of the instruction
abo ve.

RAL (rotate accumulator left, through carry). Move the most
significant accumulator bit into carry, and the carry flag bit
into the least significant place; shift all other accumulator
bits left.

START

ROTATE

END

W 10 1111 I 010 \1 I 011 I
rtJ:j!3 1111 101~' 11 I 011 b

[QJ 111110 loll 10111x I
RAR (rotate accumulator right, through carry).
Move the least significant bit to carry, and move carry into the
most significant place; the opposite of the instruction above.

REGISTER PAIR INSTRUCTIONS.

These instructions operate on the register pairs.

PolyMorphic Systems POLY 88, Vol. II Re v. 0.0 P. 40

PUSH (push data onto stack). Store the value in the specified
register pair into the two bytes of memory addressed by the
stack pOinter. Such data is said to be "pushed" onto "the stack."

The more significant byte goes into address SP-l, the less
significant into address SP-2. Indicating PSW (processor staus
word) stores the current accumulator value at SP-l and a byte
incorporating all the flags in SP-2:
~ 5tA 8 ----;;.. /llw~t$,

1 " CIIIIIII:)~ $ ') -I a 1 way sal way s ~
Fa'/' ~t,;a...q,o~O,o sign----.... ' I-.... ...----carry
~ PI A:J. s J I a. tS zero f 1 a g __ '-....,-~ ~_:_'_---r-a..-""--....

S" rOY _f<l.o<:t:,OIl aux.

The stack pointer is left pointing to the address where the
second byte has been stored Flags are not affected.

POP (pop data off stack). Store data from the stack into the
indicated register pair. The byte of data at SP is stored into
the less significant register; the byte at SP+l goes into the
more significant register. If register pair PSW is qndicated,
the byte at SP goes into the accumulator, and the byte at SP+l
pro v ide s the bit 5 0 f the f 1 a g s . T his ins t r u c t ion i s th e 0 p p 0 sit e
of the one above.

DAD (double add). Add the two-byte value in the indicated
register pair (S, 0, or H) to the two-byte value in pair H, and
leave the result in pair H. Flag affected: carry.

INX (increment extended register pair). Increment the value in
a register pair by 1 -- add 1 to it. No flags are affected.

DCX (decrement extended register pa1r). The opposite of the
above.

XCHG (exchange registers). Move the value in pair H to pair 0
and vice versa. No flags are affected.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.41

XTHL (exchange H & L with stack). Exchange the value in L with
the value in the memory location addressed by the stack pointer and
exchange the value in H with the value in that memory address plus
one (SP + 1). No flags are affected.

SPHL (load SP from H & L). Load the value in register pair H
into the stack pointer register. That value is now the stack
address pOinted to by the stack pointer. No flags are affected.

IMMEDIATE INSTRUCTIONS.

These instructions operate on one or two bytes of-data, included
in the instruction itself. The data immediately follows the
opcode (hence "immediate").

LXI (load extended immediate). Load the indicated register pair
with the two bytes immediately following. The first byte goes
into the lower-order register, the second into the higher-order
register. No flags are affected.

MVI (move immediate). Move the following byte into the specified
register or into the memory location addressed by the data

pointer. This instruction resembles LXI except that it enters only
one byte of data (and therefore can be used to load a memory
location).

No flags are affected.

ADI (add immediate to accumulator). Add the folowing byte to the
value in the accumulator, and leave the result in the accumulator.
All flags may be affected.

ACI (add immediate, plus the carry bit, to accumulator).
Add the following byte, plus the value of the carry flag bit,
to the value in the accumulator, and leave the result in the

polyMorphic Systems PO L Y 88, Vo 1. II Rev. 0.0 P. 42

accumulator. All flags may be affected.

SUI (subtract immediate from accumulator). Subtract the follow­
ing byte from the value in the accumulator, and leave the result in
the accumulator. All flags may be affected. This instruction is
the subtraction equivalent of ADI above.

S8I (subtract immediate, and "borrow,1I from accumulator).

Subtract the byte immediately following, and the value of tne
carry flag bit, from the value in the accumUlator, and leave
the result in the accumulator. This is the subtraction equiva­
lent of ACI above. All flags may be affected.

ANI (AND immediate with accumulator.) AND the byte immediately
following with the value in the accumulator, and leave the
result in the accumulator. Carry, zero, sign, and parity flags
may be affected.

XRI (XOR immediate with accumulator). XOR the byte immediately
following with the value in the accumulator, and leave the result
in the accumulator. The carry flag is set to~. Zero, sign, and
parity flags may also be affected.

ORI (OR immediate with accumulator). OR the byte immediately follow­
ing with the value in the accumUlator, and leave the result in the
accumulator. The carry flag is set to~. Zero, sign, and parity
flags may also be affected.

CPI (compare immediate data with accumulators).
following byte to the value in the accumulator.
is set to 1 if the two val ues are equa 1 -iR-8 ~ if

Compare the
The zero flag
ttrey:=a~

and 0 if they are unequal. The carry flag is set to 1 if the
immediate data value is larger than the accumulator value, and
set to 0 otherwise. (But if the two values differ. in sign, the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.43

sense of the carry flag is reversed.) All other flags may be

affected.

DIRECT ADDRESSING INSTRUCTIONS.

These instructions involve the contents of memory addresses; the
addresses are included as part of the instruction. The instruction
states the address "backwards ll -- first the less significant
address byte, then the more significant. These instructions do
not affect flags.

STA (store accumulator direct). Store the value in the accumulator
into the memory location addressed in the instruction.

LDA (load accumulator direct). Load the contents of the memory
location addressed in the instruction into the accumulator. No
flags are affected. This instruction is the opposite of STA above.

SHLD (store Hand L direct). Store the contents of register pair
H into the memory location addressed in the instruction. No flags
are affected.

LHLD (load accumulator direct). Load the contents of the memory
location addressed by the instruction into the L register, and
the contents of the next higher address into the H register. This
is the opposite of SHLD above.

JUMP INSTRUCTIONS
--.r'"

These instructions cause the computer to IIjumpli to another part
of a program rather than continue to perform instructions in
sequence. None of these instructions affects flags.

PCHL (load program counter with H & L). Load the contents of
register H into the more significant byte of the program counter,
and the contents of register L into the less significant byte.
The next instruction executed will be the one now addressed by
the program counter. Note that this instruction does not itself
contain an address. All other jump instructions do.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 44

JMP (jump). Execute the instruction located at the address
given in the instruction, and continue sequentially. This is
called an "un~onditional jump." All the following jump instruc­
tions are "conditional."

JC (jump if carry). Jump to the instruction addressed by this
instruction if the carry flag is set to 1. If the carry flag
is ~, move on to the next instruction in sequence.

JNC (jump if no carry). Jump to the instruction addressed by
this instruction if the carry flag is set to~. If the carry
flag is 1, move on to the next instruction in sequence. This
instruction is the opposite of the above.

JZ (jump if zero). Jump to the instruction addressed by this
instruction if the zero flag is set to 1. If the tero flag is
set to ~, move on to the next instruction in sequence. Compare
to JC. Note that "if zero" means that the register in question
is all zeroes, so that the zero flag is set to 1.

JNZ (jump ifnot zero). Jump to the instruction addressed by
this instruction if the zero flag is set to~. If the zero flag
is set to 1, move on to the next instruction in sequence. This
instruction is the opposite of JZ above. Compare to JNC.

JM (jump if minus). Jump to the instruction addressed by this
ins t r u c t ion i f th e s i g n fl a 9 iss e t to 1 (" min u s II) • 1ft h e s i 9 n
flag is set to ~, move on to the next instruction in sequence.
Compare to JC and JZ above.

JP (jump if plus). Jump to the instruction addressed by this
ins t rue t ion i f "t h e s i g n f 1 a 9 iss e t to ~ (" p 1 us. II) 1ft he s i g n

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 45

flag is set to 1, move on to the next instruction in sequence.
This instruction is the opposite of JM above. Compare to JNC
and JNZ.

JPE (jump if parity even). Jump to the instruction addressed
by this instruction if the parity flag is set to 1 (" even parityll).
If it is set to 0, move on to the next instruction in sequence.
Compare to JC, JZ, and JM above.

JPO (jump if parity odd). Jump to the instruction addressed by
this instruction if the parity flag is set to 0 (llparity odd").
If the parity flag is 1, move on to the next instruction in
sequence. This instruction is the opposite of JPE above. Compare
to JNC, JNZ, and JP above.

CALL SUBROUTINE INSTRUCTIONS .' -------
Like jump instructions, call instructions cause the computer to
depart from sequential execution of instructions. Also like
jump instructions, they usually are II conditional ll -- they usually
operate only if some condition is met. And as with jump instructions,
execution of instructions continues in sequence starting with the
instruction at the address called (stated in the call instruction).
The two types of instructions also resemble one another in that
the address included is stated IIbackwards ll -- first the less
significant address byte, then the more significant. Also, these
instructions do not affect flags.

The two kinds of instructions differ in that a call
lithe stack ll namely, the
the computer will II re turn"

i nstruc ti on
address of
when it has

IIpushes ll an address onto
the instruction to which
finished the subroutine.
s ta ck.

See Section A.3. for a discussion of the

CALL. Go to the instruction addressed by this instruction, and
begin sequential execution there. This is an lIunconditional call,1I

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 46

and corresponds to an unconditional jump. All other call
instructions are conditional, and correspond to the conditional
jump instructions, each triggered by the state of one of the
f1 a gs .

CC (call if carry). Go to the instruction addressed by this
instruction if the carry flag is set to 1. If the carry flag
is 0, move on to the next instruction in sequence.

CNC (call if no carry). Go to the instruction addressed in this
instruction if the carry flag is set to 0. If the carry flag
is 1, move on to the next instruction in sequence. This instruc­
tion is the opposite of CC above.

CZ (call if zero). Go to the instruction addressed by this
instruction if the zero flag is set to 1. If the zero flag is 0,
move on to the next instruction in sequence. Compare to CC.

CNZ (call if not zero). Go to the instruction" addressed by this
instruction if the zero flag is set to 0. If the zero flag is 1,
move on to the next instruction in sequence. This instruction
is the opposite of CZ above. Compare to CNC.

CM (call if minus). Go to the instruction addressed by this
instruction if the sign flag is set to 1 (llminus"). If the sign
flag is 0, move on to the next instruction in sequence. Compare
to Ct and CZ above.

CP (call if plus). Go to the instruction addressed by this
instruction if the sign flag is set to 0 (llplus ll). If the sign
flag is 1, move on to the next instruction. This instruction is
the opposite of CM above. Compare to CNe and CNZ above.

CPE (call if parity even). Go to the instruction addressed by
this instruction if the parity flag is set to 1 (ll even parityll).
If the parity flag is 0, move on to the next instruction in

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 47

sequence. Compare to CC, CZ, and CM above.

CPO (call if parity odd). Go to the instruction addressed in
this instruction if the parity flag is set to 0. If the parity
flag is 1, move on to the next instruction. This instruction
is the reverse of CPE above. Compare to CNC, CNZ, and CP above.

RETURN FROM SUBROUTINE INSTRUCTIONS.

These instructions get the computer back from subroutines to the
instruction following the call instruction that caused it to
d epa r t . S P e ci f i c a 11 y, they II pop II a n add res s pre v ; 0 u sly II pus h e d II
onto lithe stack" off of the stack and into the program counter,
causing the computer to next execute the instruction located at
that address. Execution then continues sequentially from there.
Each return instruction is associated with a previous call instruc­
tion, i.e. the program counter always returns eventually to the
point in a program that it previously departed from (to an
instruction following a call instruction). Therefore the number
of returns executed is always equal to the number of calls
executed. (unless the machine halts).

Since these instructions always "pOpli addresses in the order
o p pas i te t hat i n w h i c h they we r e II pus he d ,II they can b e s aid
always to operate on the flnext available address ll in the stack,
so that the address need not be stated in the instruction.

Like IIjump" and call instructions, all but one of the return
instructions are conditional upon the state of one of the flags.
Flags are not affected by return instructions.

RET (return). Return to the most recently pushed address.
This is an flunconditional return. 1I

RC (return if carry). Return to the next address on the stack
if the carry flag is 0. If the carry flag is 1, move on to the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.48

next instruction in sequence.

RNC (return if no carry). Return to the next address on the
stack if the carry flag is~. If the carry flag is 1, move on
to the next instruction in sequence. This instruction is the
opposite of RC above.

RZ (return if zero). Return to the next address on the stack
if the zero flag is 1. If the zero flag is ~. move on to the
next instruction in sequence. Compare to RC above.

RNZ (return if not zero). Return to the next address on the
stack if the zero flag is~. If the zero flag is 1, move on to
the next instruction in sequence. This instruction is the oPPosite
of RZ above. Compare to RNC above.

RM (return if minus). Return to the next address on the stack
if the Sign flag is 1 ("minus"). If the sign flag is ~, move
on to the next instruction in sequence. Compare to RC, RZ above.

RP (return if plus). Return to the next address on the stack
if the sign flag is ~ ("plus"). If the sign flag is ~, move
on to the next instruction in sequence. This instruction is the
opposite of the instruction above. Compare to RNC, RNZ above.

RPE (return if parity even). Return to the next address on the
stack if the parity flag is 1 Cleven parity"). If the parity
flag is 0, move on to the next instruction in sequence. Compare
to RC, RZ, RM above.

RPO (return if parity odd). Return to the next address on the
stack if the parity flag is ~ ("odd parity"). If the parity
flag is 1, move on to the next instruction in sequence. This
instruction is the opposite of RPE above. Compare to RNC, RNZ,
RP above.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 49

RESTART INSTRUCTION.
... . ..

One special instruction, RST, resembles the call instructions in
that it pushes a return address onto the stack and sends the
computer off to another location. The address of the instruction
following the RST instruction sequentially is pushed onto the
stack, so that the computer will eventually return to its point
of departure. Note that the RST instruction pushes the address
of the instruction following RST -- otherwise the computer would
return to the RST instruction itself and be trapped in an endless
loop.

RST sends the computer (i.e. the program counter) off to one of
eight pre-determined memory locations, each the first of a
sequence of eight bytes, making up the first sixty-four bytes
of memory.

MEMORY
BYTES I I II II [Ill IIII II (II

RJ ~ST \RST
~ 1 2

(MEM (MEM (MEM
00H) 08H) l~H)

etc. throu gh RST 7,
at memory address
38H.

Actually, the eight bytes associated with each RST can be reached
by means of other kinds of instructions -- jump and call
instructions -- and need not comprise individual routines. In
the POLY 88, all sixty-four of these bytes are used in the
monitor (discussed later).

The CPU executes an RST at one of two times. An RST instruction
may be written into a program, in which case the instruction is
in effect a "call ll instruction in shorter form -- one byte
instead of three. More usually, the CPU executes an RST when the
running of a program is interrupted IIfrom the outside". For instance,
loading onto tape is a very slow process for the POLY 88, which

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 50

can output data much faster than the tape recorder can properly
record it. So the computer outputs data to the tape on an
interrupt basis -- it occupies itself with other tasks until
the output port electronics indicate th~t it is time to output
another data item to the tape. This forces a restart, which puts
a book marker into the program so the computer will be able to get
back to its point of departure, and sends the program counter off
to a predetermined location to begin execution of a brief routine
that causes the computer to output a data item to the tape.

INTERRUPT FLIF-FLOP INSTRUCTIONS. . "'-
Sometimes it is important not to permit interruptions of a program.
For that reason, interrupts can be disabled--input or output
electronics can be prevented from forcing a restart. Whether or
not-interrupts are disabled depends upon the state of a single
flip-flop, called the interrupt flip-flop. When the flip-flop
is set to 1, input or output electronics can force a restart
until the interrupt f1ip~f1op is reset to 0, from which time
interrupts are disabled till the flip-flop is once again set to 1.
No flags are affected.

EI (enable interrupt). Set the interrupt flip-flop to 1.

01 (disable interrupt). Reset the interrupt flip-flop to 0.

INPUT/OUTPUT INSTRUCTIONS.
~-~ ---------

These instructions cause the computer to input data from or out­
put data to a device external to the computer -- like a keyboard.
To be precise, the instruction causes the CPU to open an input
or output port, which is assumed to provide a connection with
some device. ' No flags are affected.

IN (input). Load one byte from the deSignated input port into
the accumulator.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p.51

OUT (output). Send the byte in the accumulator out to the
designated output port.

HALT INSTRUCTION.

This instruction brings computer operations to a stop. It
first increments the program counter -- adds 1 to it -- so
that the computer will resume with the next instruction. No
flags are affected.

HLT (halt). Increment the program counter, then stop.

PolyMorphic Systems Vo 1. 2 P. 53

SYSTEM PHILOSOPHY

The POLY-SS system represents a departure from the usual
microcomputer system organization in that it contains, in its

minimal configuration, several sophisticated I/O devices. These
devices - a keyboard, a memory mapped video display, and a
universal serial port - are at fixed addresses and are accessed
and controlled in identical ways on every POLY-SS. The result
of this standardization is that the power of the elementary
machine can be increased manyfold by the use of dedicated read
only memories ~OM~ resident in the CPU as hardware. The ROM
can assume that the special dedicated devices exist and can use
them. Other systems have no way to know where the devices are
located or/even if they exist. The ROM in the POLY-SS CPU is
called the monitor ROM, and is supplied with every POLY-SS
system sold. It contains bootstrapping functions, front panel
simulator functions, 1/9 device drivers for the self-contained
devices, utility programs, and initialization routines that
configure the system when power is supplied or the system is
reset externally.

The ROM also provides another extremely important function:
it sets up conventions for the logical expansion of compatible
software systems that are well engineered from the ground-up.
Unlike the owners of large computers, many microcomputer owners
intend to develop their own software systems. The monitor ROM
allows these systems to share resources such as I/O handlers,
supervisors or special purpose subsystems, but most importantly,
it allows users to share their programs. The standardization
of I/O handling means Polymorphic Systems can publish software
which will run on any POLY-88 immediately, without modification
of sections of the binary program to cope with the various I/O
methods used on each system.

PolyMorphic Systems Vo 1. 2 P. 54

The standardization does not, however, limit the use of
the POLY-88 with other types of I/O devices such as TTY IS,

serial CRTls, paper tape reader/punches etc., because the ROM
allows the standard devices to be re-allocated once the system
is up and running. Any type of I/O device can be substituted
for the standard devices by loading a simple driver routine
for that device and installing its address in one of the

- "'- --------~
m 0 nit 0 r I s II W 0 r mho 1 e s ".* The w 0 r mho 1 e s are use d to com m u n i cat e . -

between any user program and a standard I/O device of any type.
Thus, once the driver program is written for the special device
to be used, it will work for any program that communicates
through the wOfmholes, and it will work on any POLY-8B. The
wormholes and system standardization are dealt with in a later
sec t ion ..

Another advantage of the dedicated I/O devices on the
POLY-8B system is reliability. Specifically, the dedicated
memory mapped video display allows the ROM to generate a
simulated front panel which replaces the usual array of switches
and light emitting diodes. The hardware front panel used on
most minicomputers and many microcomputers is a rather expensive
and complex device. It was intended, in minicomputer systems,
to be used only in emergencies or when "bring-up" (bootstrapping)
the system. Microcomputers, however, since they are frequently
used for program debugging and are bootstrapped very frequently,
have a tendency to wear out front panel hardware quickly.
Furthermore, the hardware switches and lights have no access to
the all-important CPU registers in microcomputers as they do
in minicomputers. The front panel switches on most microcomputers

* The term "wormhole" has been used to describe a hypothetical
astronomical situation where a black hole connects to the nother
side" of the universe. When this happens, information can pass
through the wormhole, in only one direction~ much as "assumptions II

pass down the monitorls wormholes,

PolyMorphic Systems Vo 1. 2 P. 55

can be used for little else than examining and loading memory
contents in binary and starting program execution at a certain
address. Some microcomputers use serial output devices with ROM
based monitors for program debugging. These systems have extremely
limited I/O speed, and therefore result in a tedious interaction
between man and machine that the POLy-aS eliminates by putting
all important information on the screen at all times.

The front panel display of the POLY-Sa shows all of the CPU
registers, the "workspace" of the CPU, and a memory "window".
The "workspace" is the areas of memory pointed to by the double
registers, including the program counter and stack pointer. The
workspace display shows, therefore, the program area, stack
area, and data areas pointed to by HL, DE and BC. The memory
"window" is an a x 8 block of memory that is displayed, with
addresses, on the bottom of the screen. It can be used to
view a selected area of memory or to point to data areas being
modified. The philosophy behind the front panel display is
that it is best to use the computer's high output capability to
effectively answer all the programmer/debugger's questions
about the machine rather than require him to ask.

Another application of the "anser-the-question-before-it-is­
asked" philosophy is in the POLY-SS bootstrap tape loader. The
resident ROM contains a complete audio cassette tape loader
which reads absolute binary programs in a sophisticated format
called POLYFORMAT. The files in this format are broken into
short blocks, each with a name and number recorded with it. These
names and numbers are displayed on the dedicated video display
whenever tape is being read. They give the operator an indica­
tion of what file he is reading, where along the length of the
file he is, and whether or not the tape is even being read
properly. The names and record nubmers effectively make the data
on the cassette visible, so that files can be separated from
each ~ther and located.

PolyMorphic Systems Vo 1. 2 P. 56

The POLYFORMAT has other advantages also. Its block
structure allows the tape to be stopped in the event of an error
and restarted before the erroneous block. Some recording formats
require a file be read entirely without errors, or the whole
loading must be restarted. The names on the records allow the
computer to identify needed data on the tape such as relatively
complex constructs like subroutines in a library that must be
linked in a relocatable linking loader. The names also allow
files to be packed closely together, without time-wasting
leaders. POLYFORMAT includes definitions of several types of
5locks (or records) such as: absolute binary (for programs),
data (for text·etc.), end (stops load), auto-execute (jumps
into given address), and comment (displays a message for operator).
The comment record is another example of the. visibility
philosophy. By placing comment records at the beginning and
end ~f a file, the tape is made even more visible.

USING THE ABSOLUTE TAPE LOADER

The tape loader mode of the monitor may be entered at any
time by resetting the CPU (either by depressing the front panel
reset button or by applying power to the system). When tape
mode is entered, the system video display is cleared and a
small block appears in the upper left corner of the display.
The small block is the cursor symbol used by the display driver
program "DSPLY" which is resident in the monitor ROM with the
loader. In order to load a POLY FORMAT absolute binary tape,
the loader needs to know which encoding scheme to use and the
name on the desired file. The encoding scheme can be indicated
by typing either a "B" or a "P" on the system console keyboard.
These stand for BYTE standard, the encoding scheme used in
PolyMorphic published software, and POLY-PHASE, PolyMorphic's
special very high speed encoding scheme. The loader transmits
all necessary configuration information to the 8251 USART and
the 5307 programmable baud rate generator on the CPU card 1V

Go (0

fJ~l ? 7

PolyMorphic Systems Vol. 2 P. 67

according to the encoding specification. It selects the zero
designated mini-card, which should be the audio cassette
interface mini-card being used for the load.

When this is done, the cursor moves down to the next line
and the loader expects a 1 to 8 character file name to be
entered followed by a carriage return. The cassette motor
control line is turned on, and the tape is read, comparing
the record names found with the nam~ of the desired file. As
records are discovered with the correct name, they are accpeted.
Reading continues until an END or AUTO~EXECUTE type record is
encountered. (See section on tape format). If an END record
is found, the cassette motor control line is turned off and
the loader waits for another encoding specification (B or P-followed
by file name) or a "continue" command (just a "C" is typed-the old*

EXECUTE type record is found, the cassette motor is turned off
and the loaded program is executed by jumping to the address
indicated in the AUTO-EXECUTE record.

Each record encountered, whether it is accepted or not, is
acknowledged by having its name listed, followed by its record
number, on the system console display. Thus if it is desired
to simply examine the contents of a certain cassette tape, the
tape loader can be told to search for an impossible name, such
as no name at all. It will continue indefinitely, searching for
the nonexistent name on a record, each time showing the name
and hexadecimal record number of each record it finds. The
record number is recorded in the RCD# field of the record.

Occasionally, while a file is being loaded, a COMMENT type
record will be encountered and the message it contains will be
displayed on the system display. All files should have a
COMMENT record at the beginning for documentary purposes, and
it is the appearance of this COMMENT message on the system
video display that indicates the loader has recognized the
desired file and will load it. COMMENT records are very useful, -;2.

*name is used). Go to
fj, 67

PolyMorphic Systems Vo 1. 2 P. 57

as they can indicate such things as the portion of a large
program that has loaded (the message serves as a flag some
distance down the tape), or that a program has finished
loading and is executing (an AUTO-EXECUTE followed the COMMENT).

All mass storage systems must cope with errors in some way,
and magnetic tape is far from an exception. A very long program
has a relatively high probability of loading incorrectly simply
due to noise and other factors which create "soft" or read-only
errors. If the lost data can be re-read, the soft error is
unlikely to occur again, and the loading can continue. The
POLY-FORMAT allows an erroneous record to be re-read without
starting at the beginning of the file. The record structure of
the POLY-FORMAT is such that each record is completely self­
consistent. This means that if the cassette tape is rewound
beyond the erroneous record and the loader and recorder are
restarted, the loader will find the first complete record (if
it is restarted in the middle of a record) and will reload
records up through the record that was lost. This process may
be repeated until a diffi'cult record loads properly - a very
time consuming proposition if considered with a file structure
which requires restarting of the load at the beginning of the
file. An error is indicated to the operator by a question mark
on the video screen and stopping of the cassette motor. If
the motor control is not being used (some recorders have motor
voltages and polarities inconsistent with the audio cassette motor
control drivers) then the tape will continue to play after the
loader has stopped at the error. In this case, it may be
necessary to rewind the tape some distance, and it will be
helpful to check the record numbers to find the original spot.
A depression of a C key on the keyboard will resume reading of
the tape. If the motor control is being used, it will be
impossible to rewind the tape until the motor control is again

PolyMorphic Systems Vo 1. 2 P. 58

turned on, and again, this can be done by simply depressing
the C key on the keyboard. The name and format of the file
being loaded is retained and need not be re-entered.

FRONT PANEL MODE

Instead of a hardware front panel, the POLY-88 uses a

program which drives a simulated front panel display onto,.....-~.o .. L If.)'
system video terminal. The display, shown ~n appendix C~ is \f~j '7:,1

present whenever the monitor is in the front panel mode, and
is updated each time a command is executed, or the registers
are modified in any way. The display is thus always a
reflection of. the contents of the registers and memory at any
instant, just ~s if it were ha~ired into the CPU and the
memory address and data busses. Visible in the display are:

*contents of CPU registers: program counter (PC), stack
pointer (SP): accumulator (A) and general purpose registers.

*contents of memory areas pointed to by general purpose
registers: program area, stack area, and the areas
pointed to by Be, DE, and HL.

*a moveable memory window which shows 64 contiguous locations
and their addresses.

*the status of the carry, sign and zero flags decoded into
an easy to read form.

The front panel display driver program is complemented by a
command interpreter program. In most cases, a single keystrike
on the system console keyboard will allow the operator to:

*interrupt a running user program to bring up the front panel.
*single-step, run with breakpoints, or return to full speed
execution of the user program.

*move the memory window to a given location.

*enter single bytes or long strings of bytes in hexadecimal
into memory with instant verification of entered data and
easy backup for error correction.

PolyMorphic Systems Vo 1. 2 P. 59

*trace byte-reversed address pointers in memory by moving
the memory window to the given address.

*move the memory window to point at the program, stack or
data areas currently being used by the user program.

The commands in Appendix B are primitives and should be
used in combination to provide a powerful interactive system
for manipulating memory data and debugging machine language
programs. There is, for example. no command for setting the
contents of any given general register. Instead, there is a
command for pointing the memory modify window at the save area
on the system stack where a given register was stored, This
allows the contents of the register to be modified using the
rest of the commands, such as the Jumbo (J) command, which
allows entry of a full address in its normal byte order instead
of the byte-reversed order of 8080 addresses. Another example
might be using the I (indirect) command after pointing the
window at the register save area on the stack. This will
point the window at the memory area that the register points at.

In other words. if the register was the program counter, a
sequence of "SPIll would leave the window displaying the p,rogram
area. The program area could then be modified using the full
power of the front panel commands.

In order to fully introduce each command and its possible
combinations with others, the following text will take the
reader step-by-step through the procedure of loading a simple
program, correcting entry mistakes, checking its logic using the
I command and the X (single-step) command, and finally, running
it.

USING THE FRONT PANEL MODE

Suppose we wish to construct a simple program in an available
location in RAM. The demonstration we will use is a video
display test which loads each location of VTI memory with the
low~order address byte of each location. This has the effect of

PolyMorphic Systems Vo 1 . 2 P. 60

displaying all possible characters and graphics patterns on
the screen in a cyclic group of 256 ~haracters. The display
is thus repeated four times vertically.

STAk/$ AT The program looks like this in symbolic assembly language:
i e 'lo H

:2.1 dlf) F'8 -:- - -- -LXI
75' - - - - - LOOP: MOV
;23---- ----INX
7e MOV
FE F c,' - - -- - - - - - C P I
c 1. IS';; c ~ - - - - -- - - J N Z
7~ '- HLTAGN: HLT

C. ~ ~s () t.. -JMP

H,OFBOOH
M,L
H
A,H
OFCH
LOOP

HLTAGN

;start at top of system screen
;put out each location's low addr byte
;next location
;get high addr byte for comparison
;is it off the screen yet?
;no - keep going
;yes - OK, were done, stop.
;sometimes interrupts break a HLT, so
;go back to the HLT when they do.

In hexadecimal machine code:
21 00 F8 75 237C FE FC ~2 83 OC 76 C3 88 OC
assuming that we want to load it at CBOH, which is a free space in
the system RAM. The problem now is to correctly load this hex
into the RAM at that address and then send the CPU off executing
it.

Turn on the POLY-B8, and push the front panel reset button.
The machine should have a CPU card with 4,0 monitor installed as 'P" ___ ..-;;.:z..----

per appendix At and a video terminal interface card with its
address switches at OF800H, also as per appendix A. The screen
should show only the small cursor block in the upper left
corner. This is the prompt character (actually no prompt char.
per se')*for the tape loader system. Since we want to use the
front panel mode, push the control Z (hold down CTL' before and
while pushing Z). Instantly, the front panel display should
appear on the screen. Appendix C shows an example of the front
panel display with an explanation of the various data areas
in it. For now, the part that interests us is the memory
modify window at the bottom. The window i's a 64 byte section
of memory which shows, in hex, the locations before and after
the "current" window position. The byte actually at the current
window position is indicated by a right-arrow at the left

* b~t only a cursor symbol.

PolyMorphic Systems Vol. 2 P. 61

center of the block. The address of this byte and the leftmost
byte in each row is displayed at the far left of the screen, also
in hex.

Now, to enter the test program into the RAM, we first point
the window at the desired address:

LC80(ret)

where "(ret)" means carriage return (CR on some keyboards, RET
on others). The display should now show OC80 in the address
next to the arrow. To enter the bytes of our program, we can
simply type the hex for each instruction followed by a space.
When hex is being entered, the termination character for each
byte is interpreted as a valid command. In this case, the
space indicates that the window pointer is to be incremented,
hence each byte goes into a succeeding location. The program
entry looks like this:

2l(space)OO(space)F8(space) 76(space)C3(space)8B(space)
OC(space) where the "(space)" means, of course, a blank space
from the space bar.

Suppose an error had been made while entering data into
memory. The window may be moved back one location with the
backspace command, control H. The erroneous byte may be
reentered, and after the usual space, the rest of the program
bytes may be entered. If the error is detected before a
termination character is typed, it is only necessary to
continue typing in the hex for the correct code until the
last two hex characters shown at the bottom of the screen
are correct. The hex input routine used by the command interpreter
shifts hex nybbles into a two byte register from the bottom, so
when it returns to the calling program on receipt of the termina­
tion character, it leaves only the last four nybbles in the

PolyMorphic Systems Vol. 2 P. 62

double register. In the case of hex input to the window location,
only the bottom two nybbles are actually used by the program. Any
previous hex digits are ignored. The use of the last hex charac­
ters typed in is built into all the other commands which expect
a hexadecimal in~ut of some kind.

On~ of the commands which expects a hex input is the J
command. J stands for Jumbo, a mnemonic which indicates a
double word is to be entered at the current window location.
The J command is followed by up to four hex nybbles or characters
and a carriage return, thus:

JFafilfil(RET)

The contents of the two locations at and following the window
are modified to contain the lIe.xte-reverse~" double word that was
entered. Actually, as mentioned above, only the four last
characters typed in for hex are used, so if an error is made on
entry, just keep typing until all four of the last characters are
perfect. Since the register that the bytes are shifted into is
started out with all zero contents, a small hex number need not
be typed in with leading zeroes (unless, of course, it is being
re-typed after an error). The way to enter an address of ¢ca1,
then, is to type the J followed by cal followed by a carriage
return; JCap1ret). One important fact about the J command is
that it does not move the window pointer. The reason for this
is to allow the use of the I command immediately after a J.
Sometimes this combination can be useful.

The I command is the ~indirectll operator. It takes the
two bytes at and following the window location and puts them
into the window pointer. It "jumps" to the address currently
shown in the memory at the window pointer. This is a very useful

. function for tracing programs that do JMpis or CALLis by placing
the window pointer over the address of the JMP or CALL and
then typing I. Itis also immediately after a "JII as a check

PolyMorphic Systems Vol. 2 P. 63

of the address entered. If the address is correct, the window
will show the data that are supposed to be pointed to.

It should be pointed out that the I and J commands work
with double words in memory that are stored in what is known
as IIbyte-reversed ll format. The 8080 puts the high order byte
of an address stored in memory into the high order register
of a pair when POP or LHLD type instructions are executed.
PUSH and SHLD instructions operate similarly. Addresses in
JMP and CALL instructions also follow this rule. Although it
seems logical to arrange addresses this way, it is normal to
enter data into memory incrementing addresses between bytes
entered. This, unfortunately, means that addresses are typed
in low order byte first. Addresses are also displayed back­
wards in the normal representation of data in memory: addresses
increasing to the right. The seemingly backwards storage of
addresses has come to be called IIbyte-reversed ll •

Now that the program has been entered correctly, we would
like to run the program. The first thing to do is to set up
the program counter to point at the first instruction of the
program. To do this we will use one of the S commands: SP,
which will point the window at the area on the system stack
where the program counter is stored. Now, of course, the
actual program counter could not be stored on the stack, because
the program which we are running that displays the front panel
and interprets our commands is moving the PC up and down in the
monitor. The program counter we will modify is the one that
will be restored into the urealll program counter when we want
to execute the program. In other words, as far as we are
concerned, the actual program counter is stored right there in
memory, along with the values of all the other registers. Since
the stack may have any value in it when we preseed control Z,
the locations actually used to store the register values are
unknown. The monitor however, keeps track of these locations

PolyMorphic Systems Vo 1 . 2 P. 64

and will point us at anyone we want if we use the S type
of command.

So, to set up the program counter, we point the window at
the ·proper place on the stack with an SP command, and then do
a J:

SPJC80(ret)

The front panel display at the top of the screen should now
show the OC80 we just entered in the PC register. The area to
the right of the PC double word shows the memory pointed to by
the PC, which is the program area. It should show part of the
program we have loaded. The arrow at the bottom of the front
panel display points upwards at the actual locations that all
the register pairs point to. The 21 hex that was the first
opcode of our program should be visible above this arrow in the
field next to the PC.

The memory window should also show the new PC value, except
it will be backwards because of the "byte-~eversed" address
format. The window should show 80 followed by an ~C. Now,
to check this value, let's see if the PC actually points at
the program. Press I and the window should show the first
instruction again: the 21H. For one last check before we
run the program, type a (ret) and the window will scroll up
one row (8 bytes). We could move backwards one row by typing
line feed (IF). Jhis gets us closer to the address in the JNZ
instruction that we want to test. Space down to the locations
following the JNZ (following the C2) and press I. The window
should point at the address we called "lOOP" in the symbolic
assembly program. The instruction at this address was a
MOV M,l; which has hex opcode 7$. The 7$ should be in the
memory window after the I command is typed.

If this last test works, we are ready to step the program

PolyMorphic Systems Vo 1. 2 P. 65

through one cycle of its loop to see what happens. The program
counter is still set up to OC80, so press the single-step command
key, X. The program counter will advance to OC83 and the HL
register pair will be loaded with F800, the data from the second
two bytes in the LXI H instruction. On the next single-step,
the first byte will be transmitted to the video screen, but since
the front panel display is replaced on the screen after the byte
the instruction transfers, we do not see anything happen. The
next instruction increments HL to F80l. Next, A gets the contents ,
of H, then it is compared with FC hex in the CPI OFCH instruction
(FE FC). Finally, since F8 does not equal FC, and the zero flag
is not set, the JNZ instruction goes back to OC83 to continue
the loop.

The program seems to work when single stepping, so the
final test is to execute it at full machine speed. This can be
done by pressing G. The entire screen should fill with the test
pattern of consecutive ASCII characters and graphics patterns,
in a cyclic replication four times down the screen. The single­
stepping lost the first character in the upper left corner of
the screen, though.

When the test pattern is verified, the front panel mode may
be re-entered as it may be at any time by typing the control-Z.
The front panel will appear, showing the program counter just as
it was, halted at the end of the program on the 76 (HLT)
instruction. The HL pair should have the last screen address
used: FCOOH.

PolyMorphic Systems Vo 1. 2 P. 66

.4.0 UTILITY PROGRAMS

In addition to the directly operator-apparent features
of the 4.0 monitor, there are also some software-apparent
features which make I/O handling and other difficult or routine
operations easy in machine language. Program patching is easy
on the 4.0 monitor becasue the most common patching area for
programs being m~ved from system to system is in the I/O
section, and the 4.0 monitor contains patch routines for
direct substitution into most programs. These include routines
for transmitting characters from the accumulator to the console
display from the keyboard to the accumulator, and from the USART
port to the accumulator. Several hexadecimal conversion routines
are included which will handle nybble, byte and doubleword
conversions from the keyboard. Other utility functions include
lower to upper case folding of characters input from'the keyboard
(lower case characters are converted to upper case before passing
on to user), screen manipulations such as clear, tab, space and
carriage return, and USART setup programs for Polyphase, Byte
Standard or user defined USART mode.

,
The following discussion will be found useful to beginning

programmers who wish to use the utility routines to simplify their
programming. Advanced users will want to study the section on
software conventions and methodology in order to make their
complex programs more general , flexible and compatible with
both PolyMorphics published software and other user's software.
The utility programs in the 4.0 monitor, although designed to be
universally available to all users of POLY-88 systems, may
occupy different address areas in later versions of the 4.0
(4.l etc.). This would make programs written using the
utility programs obsolete, and would require adjustment of the
addresses in all programs that were to be transferred from one
verson to the next. To avoid this mass adjustment of addresses
in user code, PolyMorphicsw;11 not publish any version of the
4.0 monitor with the utility routines relocated unless it is
absolutely-necessary to do so. However, the possibility does

o '1'0

PolyMorphic Systems Vo 1 • 2 P. 68

exist, so it is wise for programmers who intend to use the
utility programs to be aware that this may happen. In any case,
the utility routines are intended only to allow users to construct
small software systems without the need to generate all the
standard utility functions themselves~

The vital utility fun~tions - the I/O functions - are made
available to ill levels of programming without reservation. The
standard character transmission operations are made available
through an ingenious device known as the "wormhole vector", which
puts the I/O routines at absolutely stnadard positions in the CPU
resident system RAM memory. Thus, no matter what version of
monitor is being used, or ~ven whether the monitor has been
replaced by a disk operating system or time-sharing system, the
wormholes in the vector will remain fixed and programs using
them for I/O need not be changed. I~ is possible, then, for
anyone to write pro'rams which will last through many cycles of
monitor or supervisor redesign by simply using the wormholes for.
I/O rather than any fixed-address I/O subroutines.

The concept of standardizing the addresses of various
important pieces of information has been extended in 4.0 to
include many things beside. ... the addresses of the character I/O •
handlers. The storage areas for such widely accessible v'riables
as the present video screen starting, ending and cursor addresses
are defined by the 4.0 in an absolute, fixed manner, so that
any program can modify or examine them with confidence in their
locations. The definition of all the standard locations and
mthods of use of the variables in the system RAM are what give
the POLY-88 its software fl~ibility (an interesting apparent ;,

contradiction: the abs,0lute riJidity results in increa~ed

flexibility). The tech'iques for using the wormholes and other
"system variables" (see glossary for definition of "system
variables" and other terminology used here) are described in
detail in later sections. It is the intention of this section,

PolyMorphic Systems Vol. 2 P. 69

however, to describe the use of the utility functions by
programmers who would rather see their systems work than to
generate a masterpiece of programming generality and portability .

• First, let us look at the basic I/O functions. Almost all
programs need some sort of communication with the keyboard and
system video display.. The first two wormholes are defined for
this purpose. Wormhole zero (WHO, pronouned whoo) is the
console input wormhole, while wormhole one (WH1, pronounced
whee) is the console output wormhole. Notice that these wormholes
are defined by their logical rather than their physical function.
Either of them may be changed to operate with any actual, physical
console input or output device desired, but as far as the
programmer is concerned, all they do is communicate with the
computer operator through some sort of character-oriented device.
The total effort that must be expended to Ullk to the operator

. is thus, to do a CAll to the appropriate wormhole. The character
will be taken from the accumulator or placed in the accumulator
by the subroutine that the wormhole "contains" (checkout how
the wormholes actually work if you want to, but for now, pretend
each o~e contains a complete subroutine in its four bytes). All
the ~rmholes work the same way~ by transferring one character
at a time from the accumulator the addresses of all the wormholes
are shown below.

Wormhole Address Logical.device accessed (example)

• WHO OC20 console input (,enerally a VTI keyboard)

WHI OC24 console o~put (g~eral1y a VTI screen)

WH2 OC28 system input (binary from a mag.tape)

PolyMorphic Systems Vo 1 . 2 P. 70

WH3

WH4

WH5

WH6

WH7

WH8

WH9

OC2C

OC30

OC34

0.C38

OC3C

OC40

OC44

system output (binary to a mag tape)

.aux._syst. input (secondary mag or paper tape)

aux. syst. output (secondary tape)

text input ("saved" pgm listihg from tape)

text output (printer or tape for listings)

undefined input

undefined output

The first three wormholes are loaded by the monitor with
the proper data to make them act as subroutines when the system
is powered up or when the front panel reset button is pushed.
The subroutines' in the monitor are lIinstalled" automatically in
WHO, WHl and WH2, but the other wormholes, since they require
very complex I/O handlers, must be installed later, with I/O
routines in RAM. The actual routines that the monitor installs
are: the DSPLY program - for driving a PolyMorphics VTI-64 or
32 video display, KI - for getting characters from the keyboard
port of the VTI board, and USRT~ - for getting characters from
the 8251 USART on the CPU. As described later, these default
allocations may be changed easily. Let us illustrate the use
of the wormholes with a program ~which echoes 'the characterr typed
on the VTI keyboard port onto the VTI display:

NEXTCH: CALL WHO
CALL WHl
JMP NEXTCH

;get a character from console device
;put on console display
; g01> bac k for more

Notice that even this simple loop allows complete control of
the video display through the DSPLY routine which recognizes
many of the standard control codes . ..

PolyMorphic Systems Vo 1. 2 P. 71

DSPLY, KI and USRTI

More specifically, the codes that DSPLY recognizes are:

ASCII code (hex) kelI:~ress function
DEL 7F rubout moves cursor back, deleting cha r.
CR 00 return ski ps a line and puts cursor at

left side of screen. "car. ret. "
FF DC CTL/L clears screen, leaving cursor at

"home" - upper 1 eft. "form feed".
VT 08 CTL/K moves cursor to "home" position,

in upper 1 eft corner. "verti cal tab".
HT 09 CTL/ I ski ps cursor to next horizontal

position evenly divisible by
eight. "tab" function.

DSPLY also does a little rearranging of the character set given
to it. If the character is a control code, as are several of
the above, it is not printed on the screen. However, if it is
a control code but has a high bit 7 (the top bit) then it will
print as a greek character, but will not work as a control
character. It is thus impossible to use the graphics capability
of the VTI card by transmitting characters to the screen through
DSPLY. Any graphics character comes out as a regular ASCII
character, as if bit 7 were low. Note that DSPLY corrects for
the backwards polarity of bit 7 as the VTI card expects it.
Normally, a high bit 7 will display graphics, and a low bit 7,
ASCII, when bytes are transferred directly to the VTI as if it
were memory. The DSPLY program'will take either polarity in
bit 7, and will always generate characters rather than blocks.
The map of the DSPLY input expectations looks like this:

PolyMorphic System s Vo 1. 2 P. 72

Mapping of DSPLY expected
input codes.

hex
FF

80

7F

00

"'\

?
Duplicated ASCII character
codes. (same, with bit 7=1)

!)

>-G
J

reek character codes.

V

Normal ASCII character
codes.

Normal ASCII control
codes. (non-printing)

The other two default wormhole subroutines operate in a more
elementary manner. Neither the KI nor USRTI wormhole subroutines
map their character codes in any way. KI gets 8 bit characters

from the VTI keyboard without zeroing bit 7. It is possible
using KI to load binary data or special function codes from an
auxiliary keyboard from the VTI keyboard port. Normal ASCII
characters are expected to have zeroes in bit 7, so, if bit 7
of the keyboard is not grounded, then it should be zeroed by

the software. Bit 7 here means, as usual, the highest bit,
not the next to highest. USRTI operates exactly as KI except

that it fetches bytes from the USART.

To test the USART and a cassette tape system, the following

direct echo loop can be loaded into a free spot in RAM:

PolyMorphic Systems

lOOP: CAll
CAll
JMP

WH2
WHl
lOOP

Vo 1. 2 P. 73

;get ~ byte from USART
;display its ASCII representation on scrn
;go back for more

Before this program will work, the USART must be configured
to read from the tape. To do this, reset the system with the
front panel button, and proceed as if a tape were being loaded.
Put in a dummy name and a carriage return. Then bring up the
front panel with a CTl/Z, and run the loop. When the cassette
is played into the USART through an audio-cassette interface,
the characters on the tape will appear on the screen. Many of
the characters will be control codes and will clear the screen
or return the cursor, but some of the patterns on the tape will
be discernible, such as the string of lower casaf's that
represent the leader of hexadecimal E6's on a POlYFORMAT record.

PolyMorphic Systems Vo 1. 2 P. 74

APPENDIX A. INSTALLING 4.0

A number of hardware changes are necessary to convert the
P-88 to 4.0 monitor compatibility. After installing the 4.0
monitor ROM (read only memory) in the right-most ROM socket on
the CPU card, the following points of possible incompatibility
should be checked and corrected as needed:

1. The system video screen, although it may be moved once
the system is running, is initialized to run at F800 hex.
In order to change the address on the video card, configure
the address selection switch as shown below. The movement
of the video address allows greater expansion of contiguous
program memory.

OLD SWITCHES NEW SWITCHES

2. A short trace labelled "K" on the back of the CPU card
is normally cut for the earlier monitors since they do not
use interrupts from the USART, and this trace connects the
USART interrupt to VI3 (vector interrupt three). This trace
should be reinstalled if it h as been cut by soldering a short
piece of bare wire into the two pads on either end of the
trace as shown in Fig. A.2.
Figure A.2. "K" T~ACE "REINSTALLATION

"K" trace

Bottom edge of back of CPU card shown.

PolyMorphic Sy~tems Vol. 2 P. 75

3. The 4.0 monitor uses the 60 Hz real time clock interrupt
which is normally not connected for the earlier monitors.
To connect the clock, run an insulated2/1 jumper wire on the
back of the CPU card from the "A" pad to interrupt pad 1.

The "A" pad is on the right center of the CPU card

FigUr.e A3. RTC JUMPER

"A" (RTC)

~~!!I-Vll

(looking at the back), however, the IIAII is on the front of the
card, next to a 74LS109. Again on the back of the card, vector
interrupt 1 can be found in a group of eight pads arranged in
a horizontal line at the bottom right. Interrupt 1 is second
from the right in the upper series of eight.

PolyMorphic Systems Vol. 2 P. 76

PolyMorphic Systems Vo 1. 2 P. 77

5. Earlier monitors had keyboard driver routines which zeroed
the high order (bit 7) bit of the data coming from the
keyboard. The 4.0 monitor leaves this bit unchanged when
data is obtained from the keyboard via the keyboard driver
routine. This is so the high order bit may be used for
inputting binary directly through the keyboard or for
increasing the number of valid key codes on the keyboard
to include special functions. An example of this might
be the use of the keyboard driver routine in a text
editing system where a special cursor control keypad
transmits a high bit 7, and the normal keyboard transmits
the normal zero bit 7.
The net effect of this change is that all keyboards must
transmit a zero bit 7. To do this, make sure that this
bit is grounded on the keyboard itself, or ground the
"8" pad on the VTI board. This pad connects to bit 7 of
the input to the 8212 keyboard data latch. It is near
the strobe-polarity jumper pads in the upper right corner
(looking frontwise at board). Version 1.0 and later video
cards will all omit the "8" pad, because their keyboards
are expected to supply a zero bit 7.

APPENDIX B. MONITOR COMMANDS

The following list comprises the set of primitive operators
or commands available in the 4.0 monitor in the front panel mode.
Front panel mode may be entered at any time by striking the
control Z key on the system console keyboard. Further commands
on the system console keyboard have effects which are immediately
reflected tn the front panel display_ When front panel mode is
to be exited, the interrupted program may be restarted trans­
parently, since the entire status of the CPU is saved on the
current system stack upon entry to the monitor.

PolyMorphic Systems Vo 1 • 2 P. 78

Key or key se9u~nce Effect

control Z Interrupt currently executing program.
Front panel mode is entered. Status
of CPU (PC,SP,regs.,flags) is saved
on the system stack.

X Execute the next instruction of the
interrupted program and return to
front panel mode to display results.

G Go to the next instruction of the
interrupted program and do not return.

Lxx .. xx(CR) Look at address xx .. xx with the memory
modify display. The variable-length
address (up to four last hex digits
accepted) is placed into the memory
modify display pointer.

space Move the memory modify display pointer
forward one and redisplay everything.

BX (control H) Move the memory modify display pointer
back one and redisplay everything.

CR (carriage ret.) Move the pointer forward 8 positions.
This has the effect of scrolling the
display up one line.

PolyMorphic Systems

Key or key sequence

LF (line feed)

xx xx(any command)

Jxx xx(CR)

I

SP (Program Counter)
SH (HL)
S D (DE)
SB (BC)
SA (Accumulator/flags)

Vo 1 • 2 P. 79

Effect

Move the pointer back 8 positions.
This has the effect of scrolling the
display down one line.

The last two hex characters before
the command are entered into the
location pointed to by the memory
modify pointer. The command is then
executed.

Jumbo data word (double-word) is ent­
ered in byte-reversed format at and
following the memory modify pointer.
The last four hex characters before
the carriage return are used.

Indirect display. The two bytes at
and following the memory modify pointer
are placed into it in reverse order.
so that if they represent the address
in a JMP instruction, the pointer
will be moved to that address.

Stack modify. The memory modify point­
er ;s moved to that address on the
stack where the indicated register
pair was stored on program interrupt.
If the location at the memory modify
pointer is modified, the register
display will show the contents of the
appropriate register as having changed,
and when the G command is executed,
program execution will continue with
the new val u e . Toe n t era do u b 1 e - W 0 r d ,
-the J command may be used. A single
byte may be inserted in one register of
a pair by simply entering it for the
lower register and by spacing once over
the lower register to enter it into
the upper register. Data at the address
pointed to by a register pair may be
modified by using the I command to
move the memory modify pointer to the
appropriate area of memory.

PolyMorphic Systems

Key or key sequence

U (or other illegal
command)

T

Vol. 2 P. 80

Effect

Update the display. This can be used
to watch dynamically changing events
such as the real time clock counter
being incremented in system memory,
or an I/O buffer filling.

Tape system is entered. This is the
same tape system entered on power up
or reset from the front panel reset
button, except that the system con­
stants that are initialized by either
of these latter entry methods are left
intact. These include the video screen
address, console wormholes and inter­
rupt service routine addresses for
the USART, keyboard and RTC.

PolyMorphic Systems Vo 1. 2 P. 81

APPENDIX C. FRONT PANEL DISPLAY

Shown on system video screen Explanation of display

PC 008C OC DC 7E B7 C2 8B FE 8C
SP OFFA FF 8C 00 FB 7C 2F 31 AD

Hl OCOC 49 48 05 10 08 56 C6 DA
DE OC51 21 00 88 A7 BA OC OF IF
BC 0000 AO 19 70 31 00 10 06 FF

PC=008C hex
SP=OFFA
H=OC L=OC
D=OC E=51
B=OO C=OO
A=FF
flag byte=86

(PC)=B7 hex
(SP)=FB
(HL)=10
(DE)=A7
(BC)=31

AF FF86 CNZ t Carry, sign and zero flags are
shown as all high ("CNZ") for
explanatory purposes only, as
this is an impossible condition
and does not correspond to the
flag-byte shown. A low flag is

1FE3
1FEB
1FF3
IFFB
2003
2008
2013
2018

FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF
FF FF FF FF FF 01 CA CD

~ 00 AA FE 3A 40 21 CE 8F
76 C2 3C 03 2A 27 OC 3A
26 4F 3A 29 2A 44 OC C9
B9 83 B2 16 FO C8 33 BA

dis played a s a b 1 a n k, e g. II II

means c=s=z=o.

Memory window is displaying data
around 2003 hex. If data is entered
it will replace the 00 to the right
of the arrow. Addresses increase
from top to bottom and left to
right. Location 2003 contains 00,
2004 contains AA etc.

The display shown above appears on the POLY-88 system console
whenever the monitor is in the front panel mode. It is updated
each time any command is executed, so it always reflects the
contents of the memory and registers accurately.

The top of the screen shows the simulated front panel itself,
and the bottom shows the memory window. To the right of each
register pair is a display of the locations on either side of
the address in the register pair. The up-arrow near the
middle of the screen points to the act~al location that the
register pair points to. This is the location that would be
modified or read if the associated register pair is used as a
pointer (LDAX S, LDAX D, or MOV A,M type of instructions).
Since the A register and the F (flag) byte are never used as
concatenated bytes in an address, they do not have a memory •

PolyMorphic Systems Vol. 2 P. 82

APPENDIX D. POLYFORMAT DEFINITION
The next page shows five examples of POLYFORMAT records,

one of each of the currently defined types. Each record has
the same basic structure as shown below:
L . SYNC IS HI NAME
r E6 E6 E6((E6· E6 01 a. a a a a· a a

Each record consists of a HEADER followed by a possible
DATA field. The fields in the header above have the f~llowing
meanings:

field designator
a
r

1

b

t
c

d

E6
01

purpose/description of field
eight character record name
record number {O to 65536)

field name
NAME
RECD#

length of data 1 to 256 bytes LN
bias address or absolute addr. ADDR
one of five record types
checksum modulo 256 neg.sum
data bytes binary 8 bits
hexadecimal E6 sync chars.
ASCII "start of header", SOH

TP
CS
DATA
SYNC

SH

All records begin with the SyNC characters
(exactly 16 of them) followed by an ASCII SOH character.
NAME and REeD# are on all types of record. but record
types without data have undefined LN fields. The ADDR
field is defined for absolute binary types and auto-

-execute, in which cases it indicates loading or branching

DATA (text,relocatable object etc.)

LEADER NAME DATA
/
[E6 I6 E6 E67 E6 E6 48 49 20 20 20 20 20 54 45 58 54 00

synch. characters "H I ~)S ~ ~ ~ 5 by te s data liT E X T JII
long type

recd.
COMMENT (message to operator during load)

I LEADER I SO NAME DATA

~ I E 6 E 6 E 6 E 6(E6 E6 E6 01 48 49 20 20 20 20 20 20 49 20 20 20 OF
synch. characters "H I ~ ~ ~ ~ ~ ~"#OOH 5 by tes comm. IIH I ~ ~ ~"

long type
recd.

ABSOLUTE BINARY (core-image for binary object code)

I LEADER ISOHI NAt~E IRCD H LN ADDR ITP/C51 DATA I C5 1 m E6 E6 E6(E6 E6 E6 01 48 49 20 20 20 20 20 20 01 00 00 02 E5 00 77 C3 21 ,FB C9 ~
synfih. characters IIH I ~ ~ ~ ~ ~ ~"#lH 256 E5 D2H abs. binary object

bytes load type
1 on9 . addr. reed.

AUTO-EXECUTE (jump to address given in AOOR field)

I LEADER SO~ NAME I RCD ·U 177 ADOR I TP I CS
I E 6 E 6 ' E 6 E 67 E 6 E 6E 6 0 1 48 49 2 0 2 0 2 0 2 0 2 0 2 0 02 00 00 D 7 E 5 0 3 2 E

synch. characters IIH I ~ ~ ~ ~ ~ ~"#2H no exec. auto-
len. addr. exec.

type
END (stop tape loading - indicates no more data)

I LEADER SOH/ NAME I RCD #
(£6 E6 E6 E6? E6 E6 E6 01 48 49 20 20 20 20 20 20 03 00

synch. characters "H I ~ ~ ~ ~ ~ ~" #3H

recd.

171 /TP/CS/
00 00 02 EA

-0
0

'<
3:
0
-s
-0
:::T
n

Vl
'<
lJl
rt
ro
3
lJl

<:
0

N

ex>
w

PolyMorphic Systems Vol. 2 P. 84

address respectively. Both RECD# and ADDR are in the standard

8080 byte-reversed format, so that they work with LHLD and SHLD

instructions. In other words, the upper byte in memory contains

the most significant byte of the double word. The type field has

the following meanings:

TP (type) field

DOH

OIH

02H

03H

04H

Record type indicated

ABSOLUTE BINARY. Used for program
storage where data must be reloaded
into .the same place it was copied from
originally. The address of the area
is contained in the ADDR field. Data
is copied starting at this address
for the number of bytes given in the
LN field.

COMMENT. The data in the data field
is echoed to the system vi·deo display
as a message to the operator. The
checksum on the data may be ignored.

END. This terminates a file. Any
physical device capable of being turned
off is stopped, if it is the device
supplying the data. LN,ADDR fields are
undefined. No data follows the header.

AUTO-EXECUTE. The address in the AD DR
field is jumped to. LN is undefined
and no data follows the header.

DATA. Information in the DATA field
is loaded into a buffer somewhere and
used by a program. Data in this
record has no address associated with
it as object code programs do, hence
the ADDR field is undefined. Data is
8 bits/no parity as is the ABS. format
and might be ASCII text (bit 7=0) or
relocatable object code etc .. Length of
data part of record is given in LN.

PolyMorphic Systems Vo 1 • 2 P. 85

The length field specifies from 1 to 256 bytes in the data
field, but it is given the following meanings:

LN (length) field Actual data block length (bytes)

1 to 255

a
1 to 255

256

This is so that the value of the length field corresponds with
the actual number of bytes transferred, but also so that the
records may be an even ~K block maximum. The seemingly special
case of zero length (0 LN) field for a 256 byte data block is
actually natural, since it represents the overflow condition
(lOOH with the 1 dropped). It is easy to write program loops
which work with this definition with no special logic to detect
the 256 byte case.

Checksums are applied to both the header and the data
block separately. The checksum is the negative sum of the
bytes preceding it. When it is added to the preceding bytes
by a loader, the result should be zero. A valid header must
have a correct checksum, or it will be ignored. If a data
block following a valid header has a bad checksum, a checksum
error is generated and loading of the file stops until the
erroneous record can be re-read correctly. Record types with­
out data blocks do not need a second checksum following the
header checksum. Header checksums do not include the SYNC
characters or the SOH character.

Records on a magnetic tape are separated by an inter­
record-gap or IRG of sufficient length that the tape may be
stopped between records and restarted without loss of the next
record. This is to allow controlled loading and storing of data
to match the processing speed of a program. Records may be
stored in immediately successive positions on a tape for the
ABSOLUTE type record if it ;s not desired to read the data back
slowly under program control. In this case, data can, and
must be loaded back into RAM directly, at full speed.

Ct..e1rlL- _
S£(l.e.N

STA-p.1

"., PelT
CH"RACTSIt
FAo'"
CONSOMI

4.0 POLYFORMAT TAPE LOADER
FLOWCHART

SIIITVP
ClS'+RT..s S R (;
FOR
'POL'fPHA.S£

S(i1'VP
"slt~T"" B~G
i=OR
8'frE $TtJ

I. 0 RoD ·J:IN P"
""Me INTO
,,"'ItMS
FRoOM c~NSOI.£

ONAHt:

PUP4i4'('

?"
oN VIPEO
settE-tEN

STOP
USA-AT ~O
TA-pe
".".TORS

DNAI'1'

J,.'Ol4p
81#.41(,(,
",...,.,. INTO PNt

.... r RAPR

D/SPI.AY'
co",...,ENT Oil
1.11 D6 0
$CAGIN

STOP
II.),A-,lllt.,.. ;llrNO
rA-pe,
MoToRS

"DN~HG

f)'SPLj.y NA/'16
DF f(6cP.
/lEAP 0/11

S'II. •• /i

$YNcli

SYGIf, II" IISAAl)
~.ItD 'Leltf)~R
TO SOH
QfARACTER

LOI4J) JlE~TJIiR
INTO R.,.,P
HIiNflI!Il WUFF.
IIJ •

~'l:.lic,un;
PGI'1
.$1' ARTIN& "..,.
R~DR.

PolyMorphic Systems Vol. 2 P. 86

APPENDIX G. GLOSSARY OF TERMS

awareness

filter program

ISR or Interrupt
Servi ce Rout,i ne

the condition of knowing in a given program
that a certain system variable can and
should be changed to a certain value without
dangerous effects. An assembler, for example,
should change no system variables - it is
completely lIunaware". This way, an "awarell
program, called a supervisor, can run the
assembler with the system RAM configured any
way desired. The assembler could be used
to communicate with any physical device that
the supervisor desires, merely by letting
the supervisor put the address of the
physical device's driver routine into the
appropriate wormhole.

A program which can be installed in a wormhole
by putting its address in that wormhole, and
which performs some intermediate processing
on I/O information before passing it on to
its intended destination. An example is a
pager for the listing generated by an assembler.
The pager would be installed in a wormhole
by a supervisor, and then the assembler would
be called. The assembler would proceed unaware
that the pager was counting lines and leaving
spaces on each ,page for a page number that
it generates also. The pager would pass the
paged text listing on down to the physical
device driver routine that was originally
in the wormhole. Filter programs are also
II unaware ll , as are user programs, since they
do not know what physical device they are
filtering. They depend on a supervisor to
install them.

A program which executes each time a specific
interrupt of the 7 possible interrupts -
occurs. It usually communicates with a
physical device and moves data between the
device and a buffer area in RAM which is
shared by the ISR and the wormhole prrigram
which will transfer the data on to the user.
The ISR also zeroes a flag byte, also in a
shared (thus standardized) location. The
wormhole program simply waits for this flag
to be zeroed, and when it is, it knows that
the data has been placed in the ass~ciated

PolyMorphic Systems Vo 1 , 2 P . 87

CASSETTE TAPE FORMAT CRITERIA

Cha racteri s ti cs of the medium

1. fixed speed of character transfer
2. operator cannot visually identify position of tape to

fi nd 1 eaders or identify files
3. cassettes are long enough for many files
4. no position control is available other than start/stop

without operator intervention. The operator? however does
not know what is coming from tape, and cannot perform
positioning functions accurately, so he is of limited
value.

Format criteria

1. Transfer speed regulatable over long term for program
controlled acceptance of data input or output.

2. Read error recovery--operator assistance acceptable on error
detection, but it must be possible to skip already read
data. This makes direct loading into memory for binary
object code tapes faster since an error does not mean the
entire tape must be reread. Also makes buffered transfers
recoverable because previous data may not be available.

3. Files identifiable by the machine so that tape libraries
are possible and files may be packed closely together.

4. Contents of tape should be made visible to operator so
he can scan a tape and find a file or a blank space or
so he will know what portion of a file has loaded etc ...

5. Multiple file types should be avilable for special kinds
of data such as absolute binary object code, which should
be loaded di rectly into memory, documentati on or "comment"
files, which should be displayed for the operator, ASCII
or binary data which is to be operated on by a program of
some kind and therefore should be transferred through a
buffer.

6. Synchronous or asynchronous byte format should be usable with
no change in the file format

7 . Any transmission speed should be usable
8. Format should work on a teletype or floppy disk as well as

cassette ta pe.
9. High efficiency i n information packing for fast data rate.

PolyMorphic Systems Vol. 2 P t 88

APPENDIX E. MEMORY MAP

Total address space allocation.

0000

0400

0800

OCOO

OEOO

(tio 9 (, p) 1 0 0 0

if
;1J11~ ~ 2000

FOOD

F400

F800

Feoo
\

FFOO
FFFF·

4.0 monitor ROM (slot 1)

ROM expansion tslot-2)
Onboard (CPU-resident).
ROM and RAM (4K bytes)

System expansion
area (4K bytes)

·Minimal User RAM
area (8K bytes)

User RAM expansion

Possible video displays
or other mapped I/O.

ROM expansion (slot 3)

System RAM COO to EOO,
duplicated EOO to 1000.

typical 8K RAM board.

Dedicated system video typical VTI/64
display.

Memory mapped I/O
ports.

PolyMorphic Systems Vo 1 • 2

CPU resident system RAM.

DCDO

Dcao
(3200 1))

DFFF

(,/0 q.fp)

System variable space. Defined
for all systems as reserved for
storage of interrupt, wormhole, and
other shared information.

User program space(in systems
with no other RAM}. May be used
by operating systems for I/O
drivers, etc., in large systems.

Meeting point between system
programs and stack depends on size
of both - either can expand until
conflict occurs. Big systems usually
move stack to a larger area to allow
more system programs.

1'Initial system stack. May be moved ~ ______ ~y large systems which need system
RAM for system functions.

P. 89

PolyMorphic Systems Vo 1. 2

System variables in System RAM.

OCOO

OC04

ocoa
OCOA
OCOC
OCOE
OCIO

OCIE
OC20

TIMER
~ RT C

TANI
I..J

tINT.
rsUF

TSUFF
RBUFF FS

.J KBUFF
l'VIDE o pas

SRAI
SRA2

ISR
ADD RS .

WAKEUP
) SRA7
!rVIDE SCEND

SCRHM o

-"'~-'~~'-~- WHO
Video

?(:::tH.v Ct;L i -""'.......::-."...~" .. '" .-- , ... ~~" ... ~- WHI

--.~--•.. :;;;p

WOR
HOl

OC48

M­
ES

VJ)tlJ-

WH9

.J

OC48

OC4C

OC50
OC52
OC54

OC5C

OC64
OC66

OC6A

OC80

AUX.
VIDEO
CTL

TAPE
LOADER

P. 90

SCND2
SCRH2
POS2
SCND3
SCRH3
POS3
WINDOW
SAVPC

FNAME

RNAME

RRN
RLEN
RADR
RTYPE

reserved but
un defi ned
by 4.0.

PolyMorphic Systems Vo 1, 2 P. 91

link program

logical device

buffer. When the wormhole program is done,
it de-activates the flag by putting a non­
zero value in it. Interrupts occur at random
times~ so they must save the contents of all
cpu registers and restore them when done.

A part of a supervisor program which connects
a filter program to the physical devices
that the filter program replaced. It is
installed in the appropriate wormhole by the
supervisor program before the user program
is executed. When the user program calls
the filtered wormhole, the link program is
executed. The link program restores the
wormhole to its original contents and calls
the filter program. The filter program
executes, transferring filtered data to and
from the original source/sink. When it
returns, the link program restores its own
address into the wormhole and returns into
the user program. When the user program
is finished, it returns back into the
supervisor program which restores the
original contents of the wormhole which had
the link program address. It is evident
(with thought) that a supervisor program
may act as a link program for a supervisor
above it, and that a link program is a
simple-minded supervisor program.

An imaginary I/O device which behaves in a
known way for a program which communicates
with it. For example. the unknown device
which communicates with the computer oper­
ator is called the logical console device.
It can be used by an program without regard
to what physical device is actually being
used for communications with the operator
(video display, TTY. graphics CRT. etc).
This means that the logical devices must be
standardized: methods of access must be
uniform, and the conceptual function of
each device must be uniform. Standardization
is achieved in the POLY-88 by such means as
the use of wormholes and the declaration of
conventions for allocation of system variables
in the CPU resident RAM memory.

PolyMorphic Systems Vo 1. 2 P. 92

physical device

supervisor program

system variables

user program

A n act u alp i e ceo f h a r d ware cap a b 1 e 0 f
performing input or output or both, via
some standard method or format. It is
used to describe the difference between
the data sources/sinks that an executing
program is "aware~ of (see glossary
definition of "awareness") and the data
sources/sinks that are actually being used.
Programs are normally concerned with "logical
devices" (e.g. "logical tape reader" or
"logical console key board"), whereas the
system and the computer operator are
concerned with the actual physical device
that data is flowing to (e.g. audio
cassette or paper tape reader).
Any program which changes the contents of any
wormhole or other system variable in the CPU
resident RAM is acting as a supervisor to
all programs which use the system in the new
context (see dictionary definition of context).
The supervisor is responsible for saving the
old contents of the system RAM that it changes,
and for restoring it when its job is done.
It executes a CALL to the "userll program
it is supposed to run. When the user program
is finished, it will return and the supervisor
can restore the system RAM. Supervisor
generally discover how to change the system
RAM by talking to the operator through the
system console.
Any of the shared storage areas in the CPU
resident RAM memory from CODH to C80H.
System variables are used to "configure ll the
system because they control the connections
of physical to logical devices through the
wormholes, the address of current system
video display and system keyboard, the
addresses of auxiliary video displays, the
addresses of the interrupt service routines
for each interrupt, and the status of the
real time clock.
A completely unaware program. It is designed
to perform some processing function and so
should be maximally flexible in its I/O. For
this reason, it does not change any system
variable, but assumes that any system variables
that it references have been set up properly
by a supervisor before hand. When it is done,
it returns with a RET instruction and the
supervisor that called it restores the system
variables it changed or runs another user program.

PolyMorphic Systems Vo 1 • 2 P. 93

wormholes One of 10 areas in the CPU resident RAM
memory that contain CALL followed by RET
instructions. The address of the CALL is
the address of a routine which can fetch
or transmit a single byte from/to a
physical device. Each wormhole is defined
to be the access port for a given logical
device such as the console input, console
output or binary input or output etc ..
The wormholes start at OC20H and go up,
each taking 4 bytes. Each can be called
and will transmit/fetch the character in A .

. ~ See Appendix H for details.

wormhole programs A program called by a wormhole which is
supposed to communicate with a logical
device such as the logical console input
device. In an interrupt driven system,
it usually wastes time waiting for a flag
in a known RAM location to indicate that
data is available or can be transmitted to
the physical device currently connected.
When the flag is activated, the transfer takes
place and the wormhole program returns to
the user via the wormhole. The wormhole
program thus guarantees that exactly one
byte will be transmitted before it returns
to the user. No registers other than the
accumulator may be affected.

PolyMorphic Systems Vo 1. 2

APPENDIX I

HEX ASCII
~~ NUL
~1 SOH

ASCII CONTROL CHARACTER USAGE

CTl
KEY USE

@ USED TO DETECT BREAK CONDITION
A

~2 STX B

~3 ETX C
~4 EOT 0

~5 ENQ E
06 ACK F

07 BEL G
H BACKSPACE
I HORIZONTAL TAB

P. 94

08 BS
~9 HT
0A IF J LINE FEED (NOT RECOGNIZED BY CRT DRIV.)
~B VT
~C FF

~D CR
0E SO
0F SI
10 OLE
11 DCl
12
13

14

DC2
DC3
DC4

15 NAK
16 SYN
17 ETB
18 CAN
19 EM
lA SUB
1B ESC
I C FS
lOGS
IE RS
I F US
>F DEL

K VERTICAL TAB - MOVES CURSOR TO HOME POSe
L FORM FEED - CLEAR SCREEN ON CRT
M CARRIAGE RETURN - NEWLINE ON CRT
N

o
P

Q
R

S

T

U

V SYNC CHARACTER - IGNORE EXCEPT AS BCC
W

X CANCEL LINE
Y KEYBOARD INTERRUPT
Z SAVE CPU STATE & GO TO MONITOR
C HALT EXECUTION & RETURN TO INTERPRETER

"-
]

l' e,)
->(-)

RB RUBOUT - DELETE LAST CHARACTER AND BACKSPACE

PolyMorphic Systems Vol. 2 P. 95

APPENDIX J. VECTOR INTERRUPT SYSTEM

Interrupts on 4.0 vector through the locations from
zero through 38 hex as they do in any 8080 system, however
these locations in the monitor ROM contain instructions which
push all general registers and jump to an address stored in
the corresponding element in the SRA table (Service Routine
Address table). The SRA table is in System RAM, so can be
changed by a user supervisor program which wants to install
its own Interrupt Service Routine (ISR) into any of the
vectors. The chart below shows the history of the vectoring
for each of the monitor versions. 4.0 fixes permanently the
address of the SRA table at C10. Note that there is no SRA6,
but instead an address known as the "wa keup" address, which
is the jump address for RTC timeout. The RTC acts like a
piece of hardware wich increments the negative count in
TIMER (four bytes at COO) until it reaches zero, when the
routine at the WAKEUP address is jumped to.

VECTORED EQUIVALENT INTERRUPT VECTOR
RESTART ADDRESS ASSIGNED BY

INTERRUPT INSIRUCTION MONIIOR VERSION

2.~ ~.2 4.0

VI~ sing.step. RST 7 N.A. N. A. C 1 C (S RA 7)
VII RTC RST 6 1~3~ ~FFC CIA (wakeup)

. V I 2 KBD RST 5 N.A . N.A. C18(SRA5)

VI3 USART RST 4 1~2~ ~FF9 C16(SRA4)-

VI4 RST 3 1~18 ~FF6 C14(SRA3)

VIS RST 2 1010 0FF3 CI2(SRA2)

VI6 RST 1 1008 0FF0 CIO(SRAI)
-,

VI7 (same- as RST 0 Used to initialize
RESET) the system

PolyMorphic Systems Vo 1. 2 P. 96

The service routine should use the original flag byte and
single byte buffer that KSR (Keyboard Service Routine} used
for the VTI keyboard port. If it does not, the address in the
console input wormhole should be changed to point to a routine
which can communicate with the proper flag and buffer. The flag
and buffer used by KSR is called KBUFF and is located at COC~
with the flag byte at that address, followed by the buffer. The
flag indicates data is valid in the buffer when it is zero.

If it were desired to connect multiple keyboards to the system~
this could be done either by using more interrupt vectors~ assign­
ing a separate service routine to each, or it could be done by
doing "polled ll 110 to determine which keyboard interrupted
through a shared interrupt. Polling requires an interrupt
service routine which can talk separ~tely to each keyboard port
to find the one that interrupted~ and then service only that one.
It puts the data obtained tnto a buffer corresponding to the
interrupting keyboard and activates (zeroes) the corresponding
flag. In a time sharing system, the operating system w~uld
swap addresses into and out of the console input wormhole
(WHO) each time a user's program was restarted. Each user's
wormhole would effectively contain a special routine which
would communicate only with the buffer corresponding to his
keyboard.

The monitor provides a routine which reads from the USART~
and which uses another buffer of the same configuration as the
keyboard buffer. It is called RBUFF and is located at eOA in
system RAM. When a higher-level program installs routines
which can both read and write through the USART, they should
use the buffers and flags defined in system RAM, just as the
keyboard service routine did with the keyboard buffer. This
way, all wormhole programs which wait for the flags to go to

PolyMorphic Systems Vo 1 . 2 P. 97

zero will work no matter what interrupt service routine
actually changed the flag. The ISR may be handling more than
one device on the particular interrupt that it is installed
in, and may be placing the characters it obtains into a long
buffer (longer than the singJe byte buffer used to talk to
the wormhole programs), but in any case, if the same flag and
byte-buffer are used, no incompatibilities between rSR and
wormhole program will result.

The key board flag is particularly important, since many
large applications programs may te~t it to determine whether
a key has been pressed. If different ISR's use different flags,
then these applications programs will not work.

On the subject of standards, the interrupts service
routines all use a standardized register save sequence, which
consists of pushing PSW (accum and flags), then B, 0, and H.
All interrupts are forced to use the sequence because it is done
automatically in the ROM before the rSR is jumped to. For the
convenience of the ISRs, a section of code in the monitor called
rORET can be used to restore all the registers in the same
sequence, and to enable interrupts before returning to the
interrupting program. A simple jump into the start of IORET
will do the rest. In the monitor. the USART ISR, called USRTSR
falls through into rORET to avoid the need to jump.

There are only seven vector interrupts because the location
that V17 would interrupt through is the same address as RESET
uses, specifically, address 0000. V17 would have the same
effect as resetting the CPU, which of course initializes the
system and brings up the tape loader mode.

Several of the other VIIs have been dedicated also.
They are allocated by 4.0 for the single step interrupt, the
system keyboard and the 8251 USART (in addition to the RTC
interrupt mentioned above).

PolyMorphic Systems Yo 1. 2 P. 98

The single step interrupt is generated by a few
flip-flops on the CPU which count two instructions after
they are activated and then interrupt. This allows the
single stepping feature on thePOlY-88 which is so useful
in program debugging. The monitor pops the values of the
registers from their save afea on the system stack, leaving
the address to be stepped, activates the single~step hard­
ware, and does a return. The RET instruction is counted by
the hardware as one instruction, then the single instruction
in the user program that gets executed is counted as another
befgre the interrupt is generated. The interrupt is vectored
to SAVE - an address in the monitor - by SRA7, which is
initialized to contain this address. SAVE then pushes all the
registers back down the stack and returns to the front panel
mode for further operator cgmmands. 4.0 leaves the vector
address of VIO changeable through SRA7 in order to use the
single-stepping feature in more advanced program debugging
systems.

The sytem keyboard interrupt is initially set up for a
VTI keyboard port, but by changing the address in SRA5, any
other interrupt serviced physical device service routine may
be installed.

POLY 88 RESIDENT MONITOR VERSION 4.~ 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.~S PAGE ~1

· ,
1FINAL VERSION 4.0 MONITOR NOV 22,1976
· ,
1COPYRIGHT 1976 BY
1POLYMORPHIC SYSTEMS
;A DIVISION OF
1INTERACTIVE PRODUCTS CORPORATION
1737 S. KELLOGG AVE.
;GOLETA, CA 93017
· ,
;********** 4.0 MONITOR **********

· , ;WRITTEN BY D.L.FAIMAN
D.W.SALLUME
R.L.DERAN · , · ,

;POLY-88 RESIDENT MONITOR ROM VERSION 4.0. RUNS FROM 00
1TO 3FFH IN FIRST CPU ROM SOCKET. FRONT PANEL RESET OR
1THRU ZERO GETS A "POLY-FORMAT" ABSOLUTE TAPE LOADER
iWHICa WILL RUN THE CPU RESIDENT USART TO READ BYTE-STAN
1('B') OR "POLY-PHASE" ('P') AUDIO CASSETTE TAPES.
1CONTROL-Z AT ANY TIME ON SYSTEM KBD BRINGS UP FRONT PAN
;DISPLAY WITH MEMORY MODIFY WINDOW IN HEX. COMMANDS THE
:ALLOW MEMORY,REGISTER MODIFICATION AND SINGLE-STEP/EXEC
;OF INTERRUPTED PGM.
· ,
:UTILITY PGMS AVAILABLE FOR USER ARE:
:DSPLY PUTS CHAR ON SYSTEM VIDEO SCRN. RECOGNIZES

· ,
;KI

ALL STANDARD CTL CHARS AND SCROLLS TEXT UP.
ACCESSIBLE BY CALL TO WORMHOLE 1 (WH1) AT 0C24H.
GETS CHAR FROM SYSTEM CONSOLE KBD.

; ACCESSIBLE BY CALL TO WORMHOLE ZERO (WH0) AT 0C2
iUSRTI GETS CHAR FROM USART BACKGROUND LOAD
;
:HEXO
: BYTE
;DEOUT
;HEXC
i
i
: MOVE

TYPE ROUTINE.
PUTS OUT LOW NIBBLE OF A IN HEX THRU WH1
PUTS OUT A IN HEX THRU WHI.
PUTS OUT D,E IN HEX THRU WH1.
GETS A HEX NUMBER UP TO 2 BYTES LONG IN H,L FROM
WH0, ECHOING ON WHI. NON-HEX CHARACTER
TE~~INATES INPUT. THE TERM. CHAR IS LEFT IN A.
TRANSFERS #BYTES IN BC FROM ADDR IN HI. TO ADDR I

; TERMINATES WITH HL=HL+SC,DE=DE+BC,BC=0.
:IORET A SECTION OF CODE THAT TERMINATES AN

· ,
;TIME

INTERRUPT SERVICE ROUTINE BY RESTORING
ALL REGS IN STANDARD ORDER, EI, RET.
EXECUTES 60 TIMES A SECOND AUTOMATICALLY, INCREM
ING FOUR BYTE LOCATION CALLED TIMER. IF TIMER=0
ALL REGS SAVED AND ROUTINE AT ADDR IN LOCATION
WAKEUP IS JUMPED TO. THIS ROUTINE MAY TERMINATE

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.09 PAGE 02

0C00
0C00

0C04
0G0S

0C0A

0C0C
0C0E

eC10
0Cl2
9C14
0C16
0Cl8
0ClA

0CIC

eClE
0CIF

0C20
0C24
0C28

FFEA
0C2C

; BY USING IORET • . ,
;******SYSTEM RAM ALLOCATION****** . ,
;DEDICATED LOCATIONS.

ORG
TIMER: OS

TANI: OS
TBUFP: OS

RBUPP: OS

KBUPF: OS
POS: DS
; INTERRUPT
SRAl: OS
SRA2: OS
SRA3: DS
SRA4: OS
SRAS: OS
WAKEUP: DS

SRA7: DS

0C00H
4

4
2

2

2
2

;BEGIN OF ONBD RAM
;INCREMENTED BY 60HZ CLOCK.
;LOW BYTE=LEAST SIGNIFICANT.
;TIME AT NEXT INT. USED BY
;USART TRANSMIT BUFFER
;FLAG AND ONE BYTE BUFFER.
;USED BY EXTERNAL DUMPERS.
;USART RECEIVE BUFFER FLAG
;AND ONE BYTE BUFFER.
;USED BY MONITOR TAPE LOADER.
;KBD BUFF-FULL FLAG AND BUFFER
;CURSOR POSITION FOR DSPLY

SERVICE
2
2
2
2
2
2

ROUTINE ADDRESS TABLE.
;VI7

2

;VI6
;VI5
;VI4: USART INT.,FIRST INITED SR
;VI3: KBD INT.
;ADDRESS JUMPED TO WHEN CLOCK TIM£
rOUT IS IN THIS LOC. IT FUNCTION
;EXACTLY LIKE AN SRA, BUT IS ACT
;JUMPED TO BY THE CLOCK SOFTWARE
;EFFECTlVELY SIMULATES A HARDWAR
;SINGLE-STEP INTERRUPT. NORMALLY
;AT ITS INITED ADDR WHICH BRINGS
;UP FRONT PANEL DISPLAY. IT CAN
;CHANGED FOR EXTRNAL PGMS TO USE
iDEBUGGING OR FANCY PGMING.

;VIDEO SCREEN ADDRESS
;INITED TO F800H,FCH,
;SYSTEM START UP.

PARAMETERS USED IN DSPLY.
BUT MAY BE CHANGED AFTER

SCEND: DS 1 ;SCREEN END FOR DSPLY.
SCRHM: DS 1 ;SCREEN HOME FOR DISPLAY
;WORMHOLE VECTOR. THIS TABLE IS FULL OF CALL-RETURN PAIR
;WHICH CALL SYSTEM I/O PROGRAMS. THEY MAY BE CHANGED AFT
;INITIALIZATION TO CALL ANY PHYSICAL DEVICE DRIVER IT IS
;DESIRED TO INSTALL. THIS IS NORMALLY DONE WITH LINK PR
JAS DESCRIBED IN MANUALS. THE FIRST TWO WORMHOLES ARE I
;TO THE SYSTEM CONSOLE KBD AND SYSTEM VIDEO DISPLAY.
;ALL USER I/O SHOULD BE DONE THRU THE ~IS TO INSURE
;COMPATIBILITY WITH ANY SUPERVISOR SYSTEM AND TO ALLOW
:DYNAMIC REASSIGNMENT OF I/O FOR A FIXED USER OBJECT PGM
WH0: OS 4 iCONSOLE IN: INITED TO CALL SYS.
WHl: OS 4 ;CONSOLE OUT: INITED TO CALL DSP
WH2: OS 4 iSYSIN: USED EXTRNLY BY TAPE OR

INITLEN EQU
WH3: OS

;INPUT DRIVERS. A CALL GETS BYTE
SRZ\4-$ iLENGTH OF INITILIZED ~-1EMORY
4 :SYSOT: USED 8Y TAPE OR DISK OUT

POLY 88 RESIDENT MONITOR VERSION 4.~ 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.~S PAGE 03

0C30
0C34
0C38

~C3C

0C40
0C44

0C48
0C49
0C4A

0C4C
0C4D
0C4E

0CS0
0C52

0CS4
~CSC
~C64
0C66
0C67
0C69

0000
8000 3180Hl
0303 C30002

0006 E1
0007 E9
0008 F5
0009 C5
000A 05

WH4:
WHS:
WH6:

WH7:

OS
OS
OS

OS

4
4
4

4

1DRIVERS. A CALL OUTPUTS BYTE IN
:SYSIN2: SECONDARY SYSTEM INPUT.
:SYSOT2: SECONDARY SYSTEM OUTPUT
:READ: TEXT TYPE INPUT USED
:BY EXTRNL TAPE,DISK,KBD DRIVERS
:LIST: TEXT TYPE OUTPUT TO LINE
:PRINTERS OR TEXT FILES ETC.

WH8: OS 4 1AUX WH: IN
wa9: OS 4 1AUX WH: OUT
1VCB BLOCKS TO BE TEMPORARILY SWAPPED FOR SCRHM,SCEND AN
;IN ORDER TO USE DSPLY ON OTHER THAN SYSTEM VIDEO DISPLA
:A LINK PGM DOES SWAPPING, AND IS CALLED FROM WHl IN­
;STEAD OF DSPLY. IT THEN CALLS OSPLY, AND RESTORES
:CONTENTS OF SCRHM,SCEND AND POS BEFORE RET ••
VCB2: :SECONDARY veo SCRN CONTEXT
SCND2: OS 1
SCRH2: OS 1
POS2: DS 2
VCB3:
SCND3 :
SCRH3:
POS3:
· ,

OS
OS
OS

1
1
2

:TERTIARY veo SCRN CTX.

1TEMPORARY LOCATIONS USED BY FRONT PANEL MODE.
· , WINDOW: OS
SAVPC: OS
;

2
2

1MEM. MODIFY WINDOW POINTER.
1USEO BY S.S.WHEN STACK UNAVAILA

;TEMPORARY LOCATIONS USED BY TAPE LOADER.
· ,
FNAME: OS
RNAME: OS
RRN: OS
RLEN: OS
RADR: OS
RTYPE: OS

8
8
2
1
2
1

: I'FIND" NAME FOR TAPE LOAOER.
;READ RECO NAME -FOOND ON TAPE.
:READ RECD NUMBER.
:READ RECD LENGTH.
:READ RECD ADDR (BIAS).
;REAO RECD TYPE.

;FREE ONBOARD RAM ONWARDS.
· ,
;***MONITOR PROGRAM***
· , ;VECTOR INTERRUPT LOCATIONS

ORG "
RESET: LXI SP,STACK ;FRNT PANEL RST OR POWER UP GET

JMP RSTI ;RSTI INITS SYST RAM, ENDS IN TAP
· I "

:THESE TWO INSTRUCTIONS CAN BE CALLED TO GET THE
;ADDDRESS OF THE CALLING PROGRAM INTO H,L. THIS
;IS NECESSARY IN WRITING SELF RELOCATING CODE.
· ,

POP H
PCHL

VI6: . PUSH PSW ;STANDARD REGISTER PUSH SEQUENCE
PUSH B
PUSH D

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 04

000B ES
000C 2A100C
B00F E9
0010 FS
0011 C5
0012 DS
0013 E5
0014 2A120C
0017 E9
01H8 FS
0019 C5
iHJ1A DS
001B E5
001C 2A140C
00lF E9
0020 F5
0021 C5
0022 D5
0023 ES
0024 2A160C
0027 E9
0028 FS
0029 CS
B02A DS
002B ES
002C 2A180C
002F E9
0030 FS
0031 CS
0932 D5
0033 £5
9034 C34e00
13037 00
0038 F5
0039 C5
003A D5
003B £5
003C 2AIC0C
003F E9
0040 D308
0042 2HJ00C
0045 3E04
0047 34
0048 C26400
004B 23
004C 3D
004D C24700
0050 2AIA0C
0053 £9

0054 DB01
0056 £602
0058 CA64~Hl

PUSH
LHLD
PCHL

VIS: PUSH
PUSH
PUSH
PUSH
LHLD
PCHL

VI4: PUSH
PUSH
PUSH
PUSH
LHLD
PCHL

VI3: PUSH
PUSH
PUSH
PUSH
LELD
PCHL

VI2: PUSH
PUSH
PUSH
PUSH
LHLD
PCHL

CLOCK: PUSH
PUSH
PUSH
PUSH
JMP
DB

SS: PUSH
PUSH
PUSH
PUSH
LHLD
PCHL

TIME: OUT
LXI
MVI

TIME2: INR
JNZ
INX
DCR
JNZ
LHLD
PCHL

iUSART INTERUPT
;ITS ADDRESS IS
USRTSR: IN

ANI
JZ

H
SRA1 iGET SERVICE ROUTINE ADDRESS

:GO EXECUTE IT. IT WILL RTRN THR
PSW :SAM£ AS ABOVE
B
o
H
SRA2

PSW
B
o
H
SRA3

PSW,
B
o
H
SRA4

PSW
B
o
H
SRAS

'Y11
PSW
B

"' .. iTHE CLOCK INT ALWAYS GOES TO TH

o
H
TIME

" PSW
B
o
H
SRA7

;TIMER COUNTER ROUTINE.

(;

ct.
/

8
H,TIMER
A,4

:ENABLE INT FOR NEXT
iCOUNT£R LOCATION

60HZ CYCLE

M
IORET
H
A

i 4 BYTES TO INCR
iINC ONE LOC.
iDONE,STANDARD RETURN

TIME2
WAKEUP iCNTR IS ZERO,SO INITIATE

:GO TO THE WAKEUP TASK
SERVICE ROUTINE FOR INPUT
INITED INTO SRA4.
1
2
IORET

WAKEU

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 05

905B DB09
9950 219A9C

9960 3690
0062 23
9963 77

9064 E1

0965 01
0966 C1
0067 Fl
9068 FB
9069 C9

906A E5
006B 210C9C
"06E 7E
906F B7
0079 C26E00
0073 35
0974 23
9075 7E
~H376 E1
121077 C9
121078 E5
9979 219A0C
907C C36E99

007F F5
0080 cs
0081 05
0082 E5
0083 2A0E0C
0018

· ,
IN
LXI

9
H,RBUFF

1THIS CODE IS SHARED BY ANY SERVICE ROUTINE
1WHICH HAS FOUND A CHARACTER. BL SHOULD HAVE THE
:BUFFER ADDRESS, FLAG FIRST-THEN ONE BYTE BUFF.
:ONLY USED BY INPUT ISR'S.
· , IOPUT: MVI M,0 :ZERO THE FLAG: WE GOT THE

INX H :MOVE UP TO DATA BUFFER
MOV M,A :PUT CHAR IN DATA BUFF

:FALL THRU TO IORET

CHAR

IORET: POP H :THIS CODE SECTION CAN BE JUMPED

POP
POP
POP
EI
RET

o
B
PSW

:FOR STANDARD SEQ.REG.POPS AND E
:AS FOR ANY INTERRUPT SERVICE RT

:WORMHOLE END OF KBD CHAR FETCH RTNS.
:WHEN CALLED BY WH0,WAITS FOR VALID DATA FLG IN KBUFF,
;THEN RETURNS CHAR FROM KBUFF+1 IN A.
KI: PUSH H :WE CAN ONLY WRECK A. SO SAVE H

LXI H,KBUFF
KI1: MOV A,M

ORA A
JNZ KIl
OCR M
INX H
MOV A,M
pop H
RET

USRTI; PUSH
LXI

H
H,RBUFF
KI1

· ,
JMP

:GET FLAG
;IS IT ZERO?
;NO,TRY AGAIN

:****** VIDEO DISPLAY DRIVER ******
· ,
;DSPLY IS THE FAMOUS "TELETYPE SIMULATOR" walCH -f

;DRIVES A POLYMORPHICS VTI AND SCROLLS TEXT WH£N -
:THE(SCRN FILLS. IT RECOGNIZES ALL IMPORTANT CONTROL­
;CHARACTERS AND USES THE SCRHM,SCEND, AND POS LOCATIONS
;IN SYSTEM RAM WHICH ARE INITIALIZED TO GIVE A SCREEN
;AT 0F890H TO 0FBFFH ON POWER-UP OR FPRST. AT
;THE SAME TIME, ITS OWN ADDRESS IS PUT IN WH1 FOR THE
;OEFAULT SYSTEM CONSOLE DISPLAY DRIVER.
· ,
DSPLY: PUSH

PUSH
PUSH
PUSH
LHLD

CTLX - EQU

PSW
B
o
H
POS
l8H

;A WH PGM MUST SAVE ALL REGS

iASCII "CAN" CLEARS CUR. LINE

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 06

0086 FE18
0088 CAD000
008B 11B900
008E 05

008F 367F

007F

0991 FE7F
0093 CAE400
0096 FE20
0098 02B400

000D

009B 060D
009D CAE6!30
B00C

90A9 3C
00A1 CAEF00
000B
00A4 3C
00As CAF900
0909

00A8 3C
00A9 3C
00AA C0
00AB 70
99AC E6F8
00AE 6F
00AF 010800
90B2 09
00B3 C9
00B4 F680

00B6 77
00B7 23
00B8 C9

90B9 3A1E0C
00BC BC
00BD C2DC00
00C0 2AIE0C

RB

CR

FF

VT

TAB

NORM:

. ,

CPI
JZ
LXI
PUSH

MVI

EQU

CPI
JZ
CPI
JNC

EQU

SUI
JZ
EQU

INR
JZ
EQU
INR
JZ
EQU

INR
INR
RNZ
MOV
ANI
MOV
LXI
DAD
RET
ORI

MOV
INX
RET

CTLX
CLINE
D,SCRL
D

M,07F8

7FH

RB
RBR
20H
NORM

00H

CR
CRR
0CH

A
FFR
eBH
A
VTR
098

A
A

A,L
0FaH
L,A
B,8
B

80H

M,A
H

;ALL DSPLY CHARACTER
:HANDLING SUBROUTINES EXCEPT
;CLINE RETURN TO SCRL TO CHECK
;SCRN OVERFLOW AND SCROLL
;IF NECESSARY.
;BLANK THE CURSOR SO WE
;WON'T HAVE TO LATER.
1USE A GRAPHICS BLANK
;INSTEAD OF A SPACE.
:ASCII "DEL" OR RUB OUT
:BACKSPACE AND DELETE CHAR.

;IF CHAR IS ABOVE 20H, PRINT IT
;ELSE IT'S NOT A NORMAL CHAR,
;SO TEST IT FOR VALID CTL CODE
;CARRIAGE RETURN. MOVES DOWN
;A LINE, LEFT-ZEROES CURSOR.

;FORM FEED. CLEARS SCRN, HOMES
;CURSOR.

;VERTICAL TAB. JUST HOMES CURSOR

;TAB. MOVES CURSOR RIGHT TO
;NEXT EVEN/8 POSITION.

:IF NOT A TAB, RETURN
:BACK UP CURSOR TO EVEN/8

:MOV UP 8 POSITIONS

:WE HAVE A PRINTING CHAR, SO MAP
;IT INTO CHAR AREA OF VTI SPACE.
:PUT IT IN REFRESH MEM.
:MOVE UP A POSITION.
;GO TO SCRL.

;SCRL SCROLLS TEXT UP THE SCRN IF NECESSARY,
;THEN FALLS INTO CURP, WHICH RESTORES THE CURSOR
:AND RETURNS TO USER THRU IORET • . ,
SCRL: LOA

CMP
JNZ
LHLD

SCEND
H
CURP
SCEND

POLY 88 ,RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 07

00C3 7C MOV A,H
0~C4 95 SUB L
00C5 54 MOV D,H
00C6 2E40 MVI L,4QJH
0~C8 lEQJg MVI E,0
00CA 40 MOV C,L
00CB 47 MOV B,A
00CC CDB001 CALL MOVE
B0CF 2B DCX H

· ,
:CLINE CLEARS THE CURRENT LINE
1

0000 3E3F CLINE: MVI A,3FH
0002 57 MOV D,A
0003 B5 ORA L
0004 6F MOV L,A
~005 367F WIPE: MVI M,7FH
0007 2B DCX H
0008 15 OCR 0
1lJ009 C205eS JNZ WIPE
1lJ0DC 36FF CURP: MVI M,QJFFR
000E 22,0E0C SHLO POS
00El C36400 JMP IORET
00E4 2B RBR: DCX H :RUBOUT ROUTINE
0~ES C9 RET
00E6 QJ14000 CRR: LXI B,64 :CARRIAGE RETURN RTN.
00E9 7D MOV A,L
0BEA t6C9 ANI 0CSR
S0tC 6F MOV L,A
0QJED 09 DAD B
00EE C9 RET
00EF COF900 FFR: CALL VTR :FORM FEED ROUTINE
00F2 367F FF1: MVI M,7FH
fH'lF4 23 INX H
00F5 BC CMP H
QJ0F6 C2F200 JNZ FF1
00F9 2A1E0C VTR: LHLD SCEND ;VERTICAL TAB RTN.
00FC 7D MOV A,L
00FD 2E00 MVI L,0
S0FF C9 RET

· ,
: MOVE MOVES -BC BYTES FROM THE AREA STARTING AT"
7 (HL) TO THE AREA STARTING AT (DE)
· , SHHJ 7E MOVE: MOV A,M

~HH 12 STAX 0
0102 13 INX 0
0103 23 INX H
011:'4 0C INR C
0105 C20SS1 JNZ MOVE
0108 04 INR B
0109 C20001 JNZ MOVE
0lSC C9 RET

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 08

0100 DBFS
010F 2l0C0C
00lA
0112 FEIA
0114 C26000

0117 2l0A00
01lA 39
0llB E5
0llC 2B
0110 56
0llE 2B
0llF 5E
0120 05

0121 CD9203
0124 FB
0125 CDF900
0128 015101
012B 09
012e 369C
B12E 017501

0131 09
~n32 369A

0134 3E~8
0136 CD7F00
0139 3E0B
013B CD7F0~

;KEYBOARD INTERUPT SERVICE ROUTINE FOR SYSTEM CONSLE
;KEYBOARD AT 0F8H. ITS ADDRESS IS INITED INTO SRA5.
;IT WATCHES FOR CTL/Z. IF IT FINDS ONE, IT FALLS
;THRU INTO SAVE, ,THUS ENTERING FRONT PANEL MODE.
;KBD ADDR IS FIXED BY SCREEN ADDR, WHICH IS 0FaB0H
;SINCE A POLYMORPHIC VTI USES SAME DECODER FOR KBD
;AS FOR VIDEO REFRESH MEMORY.
· ,
KSR:

CTLZ

· , .****** ,
· ,

IN
LXI
EQU
CPI
J'NZ

FRONT

0F8H
H,KBUFF
01AH
CTLZ
IOPUT

PANEL MODE ******

;SAVE IS THE ENTRY POINT INTO FRONT PANEL
;MODE IF REGISTERS HAVE BEEN ALREADY PUSHED IN
;STANDARD SEQUENCE. IT PUSHES PC AND SP
iON TOP OF REGISTERS FOR DISP TO USE.
· ,
SAVE:

· ,

LXI
DAD
PUSH
DCX
MOV
DCX
MOV
PUSH

H,10
SP
H
H
D,M
H
E,M
D

;WARM IS THE ENTRY POINT TO FRONT PANEL MODE
;IF PC AND SP HAVE ALREADY BEEN PUSHED DOWN
iON TOP OF REGISTERS IN STANDARD SEQUENCE
· ,
WARM: CALL CLEAR

EI
CALL VTR ;SET HL TO BEGINNING OF SCREEN
LXI B,337 ;OFFSET FROM SCRHM FOR UPARROW
DAD B
MVI M,9CH ;VTI CODE FOR UPARROW
LXI B,175H iOFFSET FROM UPARROW FOR

;RIGHT ARROW
DAD B
MVI M,9AH ;VTI CODE FOR RIGHT ARROW

;
;DISP IS THE ENTRY POINT TO FRONT PANEL MODE IF
;THE SCREEN ALREADY SHOWS A FRONT PANEL DISPLAY.
;IT DOES NOT CLEAR THE SCREEN, SO WILL NOT
iBLINK WHEN SCREEN IS UPDATED.
· I

DISP: MVI
CALL
MVI
CALL

A,CTLX ;ERASE LAST COMMAND ON SCRN
DSPLY
A,eBH
DSPLY

POLY 88 RESIDENT MONITOR VERSION 4.9 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 09

In3E 3E06
0140 210000
0143 39
0144 016D01
9.1147 11'5
0148 37 DISP1:
0149 CD7C01
014C CD7CS1
9.11411' CD97S3
0152 5E
0153 23
0154 56
0155 23
0156 CDD1S3
iH59 11'1
015A 3D
015B CA87S1
015E 11'5
01511' C5
0160 EB
0161 01FOFF
0164 09
0165 EB
8166 C07F03
0169 C1
016A C34801
0160 50435350 MSG:
0171 484C4445
8175 42434146
0179 43405A

· ,

MVI
LXI
DAD
LXI
PUSH
STC
CALL
CALL
CALL
MOV
INX
MOV
INX
CALL
POP
OCR
JZ
PUSH
PUSH
XCHG
LXI
DAD
XCHG
CALL
POP
JMP
DB

A,6
H,a
SP
B,MSG
PSW

FLOSY
FLDSY
BLK
E,M
H
D,M
H
DEOUT
PSW
A
FLAGS
PSW
B

B,-3
B

HEX08
B
DISP1
'PCSPHLDEBCAFCMZ'

;FIELO DISPLAY PUTS OUT CHAR IN AODR IN
;111'11' CY ZERO, PUT BLANK TO veo DISPLAY.
:IN EITHER CASE, B IS INCREMENTED.
· ,

S17C 11'5 FLDSY: PUSH PSW
9.1170 049703 CNC BLK
9.1180 0A LDAX B
0181 DC7F00 CC DSPLY
0184 11'1 POP PSW
0185 03 INX B
0186 C9 RET
0187 CD9C03 FLAGS: CALL TABBER
a18A 7B MOV A,E
018B 911' RRC
018C CD7C01 CALL FLDSY
01811' 07 RLC
0190 07 RLC
0191 CD7CI1Il CALL FLDSY
0194 07 RLC
111195 CD7C01 CALL FLDSY

· ,
;MMOO PLACES THE MEMORY MODIFY DISPLAY

B IFF CY SET.

;ON THE SCREEN WINDOW POINT TO THE BYTE

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0$ PAGE 10

0198 CD8DS3
019B C08D03
019E 2A500C
SlAI'01E0FF
0lA4 09
01AS SE08
01A7 EB
01A8 CODIS3
01AB C09C03
01AE 3E7F
SlB0 C07F00
01B3 CD7F03
01B6 00
01B7 C2A801

01BA CDAA03
01BD 79
01BE B7
01BF C45302
01C2 78
01C3 213401
alC6 E5
SlC7 21E801
SICA CDDS01
~nCD 1600
0leF 023E02
0102 cnDS01
0105 D8
0106 210002
0109 19
010A E9

01DB BE
0lDC 23
0100 5E
01DE C8
IHOF 23
01E0 5E'
01El IC
01E2 C20B01
01E5 23

;TO BE MODIFIED
• ,
MMOD: CALL

CALL
LHLD
LXI
DAD
MVI
XCBG

MMOOl: CALL
CALL
MVI
CALL
CALL
OCR
JNZ

· ,

CROUT
CROUT
WINDOW
B,-32
B
C,8

DEOUT
TABBER
A,7FH
DSPLY
HEX08
C
MMOOI

:COMo CALLS HEXC TO GET HEX NUMBERS TO BE ENTERED INTO M
:THEN EVALUATES THE NON-HEX TERMINATING CHARACTER TO SEE
: IT IS A COMMAND
· ,
COMO:

• ,

CALL
MOV
ORA
CNZ
MOV
LXI
PUSH
LXI
CALL
MVI
JNC
CALL
RC
LXI
DAD
PCBL

HEXC
A,C
A
STORE
A,B
H,DISP
H
H,MTBL
LOOKUP
0,0
ADDIT
LOOKUP

H,RTN
0

;LOOKUP COMPARES THE ACCUMULATOR
;AGAINST THE ENTRY IN A TABLE
;POINTED TO BY HL AND ReTURNS WITH
;THE BYTE FOLLOWING IT IN E.
;CARRY FLAG SET IF NO MATCH
;TABLE MUST END IN 0FFH, EACH ENTRY IS 2 BYTES
· I

LOOKUP: CMP M
INX H
MOV E,M
RZ
INX H
MOV E,M
INR E
JNZ LOOKUP
INX H

POLY 88 RESIDENT MONITOR VERSION 4.~ 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.05 PAGE 11

01E6 37
01E7 C9

01ES 20
01E9 11
01EA 08
eY1EB 0F
~lEC 00
~lED 18
01EE SA
~lEF 08
01F0 FF
01Fl 47
01F2 6C
01F3 53
01F4 7C
0U's 58
~IF6 59
0lF7 49
01FS 49
01F9 54
01FA 14
01FS 4C
01FC 37
01FD 4A
0lFE 2C
BIFF FF

0200
~200 Il160C
0203 2lEA03
g2~6 BIEAFF
eJ209 CDeJ~01
02aC 3A0004
020F 3C
0210 C40004
0213 FB

0214 CD9203
0217 CDA103
021A 4F
0218 FES0

· ,

STC
RET

;MTBL IS THE TABLE OF COMMANDS FOR
;MEMORY MODIFY
· , MTBL:

· ,

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

I I

17
8
15
13
24
HJ
8
-1
'G'
G-RTN

;SPACE MOVE POINTER FORWARD

;BACKSPACE MOVES BACKWAROSONE

iRETURN MOVES FWD 8 BYTES

;LINE FEED MOVES BACK 8 BYTES

;END OF 1ST HALF TABLE
:GO

's' :SET REGISTER
SETR-RTN
'X' :EXECUTE (SINGLE STEP)
X-RTN
, I I : INDIRECT
IND-RTN
'T' :TAPE LOADER
TAPE-RTN
'L' iLOAD MEMORY POINTER
LOD-RTN
'J' :JUMBO - LOAD 2 BYTES
DOUBLE-RTN
-1

iRSTI IS THE INITIALIZATION ROUTINE
iIT SETS UP THE WORMHOLES USED IN THE
iMONITOR, THEN CHECKS FOR A SECOND ROM
iAND CALLS IT IF IT IS THERE
· ,
RTN EQU $:ALL ROUTINES REFERENCE TO HERE
RS'tl: LXI D,SRA4 "

LXI H,INITER
LXI B,INITLEN
CALL MOVE :INIT WORMHOLES
LDA 400H :GET 1ST BYTE OF 2ND ROM
INR A :IF IT WAS NOT AFFH
CNZ 40"H :CALL IT
EI ;TURN ON INTERRUPTS

· , :TAPE IS THE BOOTSTRAP LOADER ROUTINE
;IT EXPECTS TO GET A B,P, OR C OR IT WILL
;WAIT FOR ONE
;
TAPE: CALL CLEAR
START: CALL LCFLD ;GET A CASE-FOLDED B OR·P

MOV C,A ;SAVE THE B OR P FOR ECHOING.
CPI 'Pi : POLYPHASE

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 12

021D CABA02
0229 D642
0222 CAC702
0225 3D
0226 CAF302
0229C31702

022C COAA03
022F EB
0230 2A500C
9233 73
0234 23
0235 72
0236 C9

0237 COAA03
023A 22500C
9230 C9

023E 2A500C
0241 91F0FF
0244 09
9245 19
9246 C33A92

9249 2A500C
024C 5E
024D 23
024E 56
024F EB
0250 C33A02

· ,
· ,
· ,

JZ
SUI
JZ
DCR
JZ
JMP

POLY
I B I

BITE
A
HEAD
START

iBYTE STANDARD

iCONTINUE
iNOT A B OR C OR P TRY AGAIN

:DOUBLE GETS A HEX NUMBER FROM THE CONSOLE
iAND LOADS IT INTO THE NEXT 2 BYTES IN MEMORY
:(OR A REGISTER) LOW ORDER BYTE FIRST
iJ(HEX #>(CR)
· ,
DOUBLE: CALL

XCHG
LHLO
MOV
INX
MOV
RET

· ,

HEXC

WINDOW
M,E
H
M,D

:LOD LOADS WINDOW WITH THE NUMBER
:FOLLOWING THE L COMMAND
:L<HEX NUMBER> (CR)
· I

LOO:
SVW:

· ,

CALL
SHLD
RET

HEXC
WINDOW

:ADDIT MOVES THE MEMORY POINTER (WNDOW)
:BY FORWARD OR BACKWARDS BY
iTHE VALUE IN E (D=0)
:E IS OFFSET BY 16
· ,
ADDIT:

· ,

LHLD
LX!
DAD
DAD
JMP

WINDOW
B,-16
B
D
SVW

:IND LOADS THE NEXT 2 BYTES IN MEMORY
: I NTO WINDOW
:
IND:

· I

LHLD
MOV
INX
MOV
XCHG
JMP

WINDOW
E,M
H
D,M

SVW

iSTORE STORES THE BYTE IN L (ENTERED
iFROM CONSOLE) INTO MEMORY

POLY 88 RESIDENT MONITOR VERSION 4.~ 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 13

0253 7D
0254 2A511J0C
0257 77
0258 C9

0259 E1
025A E1
025B 22520C
~25E E1
025F E1
0260 Dl
0261 C1
0262 Fl
0263 E3
0264 2A529C
0267 E3
0268 FB
9269 D30C
026B C9

026C E1
026D E1
026E 22520C
0271 E1
0272 E1
0273 D1
0274 C1
0275 Fl
0276' E3
0277 2A520C
027A E3
027B C9

STORE: MOV
LHLD
MOV
RET

· ,

A,L
WINDOW
M,A

:X EXECCUTES ONE INSTRUCTION POINTED TO
:BY SAVPC AND RETURNS TO RST7
· ,
X:

· ,

POP
POP
SHLD
POP
POP
POP
POP
POP
XTHL
LHLD
XTHL
EI
OUT
RET

H :2 DUMMY POPS
H :GET PC
SAVPC :SAVE IT
H
H :GET REGISTERS
D
B
PSW
: RESTORE PC
SAVPC

12 :ENABLE SINGLE STEP
:GO TO USER PGM.

:G ACTS THE SAME AS X BUT DOES NOT
:ENABLE SINGLE STEP LOGIC, AND
: THE'REFORE DOES NOT RETURN
iTYPING CTL-Z WILL RETURN FROM THE
:PROGRAM BEING EXECUTED AND SAVE
:ALL REGISTERS
:IF A RST7 IS ENCOUNTERED THIS WILL
:ALSO HAPPEN
· ,
G:

· ,

POP
POP
SHLD
POP
POP
POP
POP
POP
XTHL
LHLD
XTHL
RET

H
H
SAVPC
H
H
D
B
M

SAVPC

;SETR POINTS TO ONE OF THE 8080 REGISTERS
;AS SAVED IN MEMORY
iMAY BE USED WITH JUMBO COMMAND TO
:SET A REGISTER PAIR, OR WITH OTHER
:COMMANDS TO SET INDIVIDUAL REGISTERS
;S<P/H/D/B/A)
· ,

LOGIC

~27C CDA103
027F 218F02

SETR: CALL
LXI

LCFLD :GET REGISTER DESIGNATION
H,RTA3 :AND LOOK UP POSITION

POLYSS RES1DENT MONITOR VERSION 4.0 11/22/76
COPYltIGHI.r 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 14

0282 COOB01
a285 08
0286 210200
0289 54
e28A 39
e28B 19
028C C33A02

028F 50
. 0290 00:.

_. 029148
"70292' 04:;
.. 0293 44.

:,':i 0294:06
:"0295 '42

0296 08
0297 41

- 0298 SA
0299 FF

029A AF
029B 47
029C CDA502
029F 77
02A0 23
02Al 00
02A2 C29C02

02A5 CD280C
02AS 57
02A9 80
02M 47
02AB 7A
B2AC C9

02AD E1
S2AE 7E

CALL LOOKUP
RC :RETURN IF NOT VALID REGISTER
LXI H,2
MOV D,H 1SET 0-0
DAD SP :ADD 2 TO STACK POINTER
DAD 0 :ADD REG. POSITION
JMP SVW ; PUT IN WINDOW

1
;RTA8 IS A TABLE OF THE 8080 REGISTERS
:AND THEIR RELATIVE POSITIONS AS
;STORED ON THE STACK
• ,
RTAB:

· ,

DB
DB
DB
08
DB
DB
DB
DB
DB
DB
DB

'P'
o
t H'
4
'0 '
6
'B'
8
'A •
10
-1

;GET IS USED BY THE LOADER TO GET
:C BYTES AND STORE THEM AT HI, ~o at+C-1
· ,
GST:

GETl:

· ,

XRA
MOV
CALL
MOV
INX
OCR
JNZ

A
B,A
TI
M,A ;PUT BYTE IN MEMORY
H :INCREMENT POINTER
C
GETl

;TI GETS A CHARACTER FROM WH2
:AND KEEPS A CHECKSUM IN B
:0 IS USED AS A TEMPORARY
· , '1'1:

· ,

CALL
MOV
ADD
MOV
MOV
RET

WH2
D,A
B
B,A
A,D

(FOR CAL

;SETUP PUTS IMMEDIATE BYTES INTO SAUD RATE GEN.,
;AND THEN USART CTL PORT. THE TERM CHAR IS ~0H,
:WHICH IS ALSO XMTED TO USART, LEAVING IT IDLING.
;WHEN DONE, JUMPS TO LOC. AFTER
:IMMED BYTES.
:
SETUP: POP

MOV
H
A,M

;GET ADDR FOLLOWING CALL TO SETU
;GBT DATA FOR BRG

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 15

1'iJ2AF 03134
02Bl 23
02B2 7E
02B3 0391
02B5 B7
02B6 C2B102
02B9 E9

02BA CDAD02
1'iJ2BD 05
02BE AA
1'iJ2BF 40
a2ca 0C

02Cl E6
02C2 E6
02C3 00
02C4 C3CF02
02C7 CDAD02
02CA 06
02CB AA
a2CC 40
02CO CE

02CE 00
02CF 21540C
0202 79
0203 C0240C
0206 COSD03
02D9 0Ea9

02DB CD20ac
02DE CD240C
02E1 FEaD
02E3 CAEC02
02E6 77
02E7 23
02E8 aD
02E9 C2DB02
02EC 36213
02EE 23
02EF 00
02F0 F2EC02

SETl:

· ,

OUT
INX
MOV
OUT
ORA
JNZ
PCHL

4
H
A,M
1
A
SETI

:PUT IN BRG
:NEXT BYTE

i USART PORT
:WAS THAT 00H?
:NO,NEXT BYTE
;JUMP TO THE 00H, EXEC. IT AS A
; CONTINUE

iPOLY AND BITE CONTAIN SETUP
;INFORMATION FOR POLYPHASE OR BYTE
iOPERATION OF THE USART
· ,
POLY:

BITE:

NAMER:

· I

CALL
DB
DB
DB
DB

DB
DB
DB
JMP
CALL
DB
DB
DB
DB

DB
LXI
MOV
CALL
CALL
MVI

SETUP
0058
0AAH
040H
00CH

aE6H
0E6H
000H
NAMER
SETUP
006H
0AAH
040H
0CEH

000H
H,FNAME
A,C
WHI
CROUT
C,9

:THE NEXT BYTES GOTO BRG AND USA
iTO BRG: SELECT DEV 0, 2400 BAUD
:FAKE SYNCH CHAR IF USART EXPECT
: INTERN. RESET. GETS USART~. TO MO
:MODE CODE FOR SYNCHRONOUS~. 8 BI
:NO PARITY, INTERN. SYNC,' 2:. SYNC
iFIRST SYNC CHAR. TO SRCHiFOR
;2ND SYNC CHAR.
;LEAVE COMMAND AT 00H (IDLE), RT

:TO BRG: SEL. DEV. 0, 3013 BAUD
;FAKE SYNCH CHAR IF USART EXPECT
iINT. RST. GETS US TO MODE LEVEL
iMODE: ASYNCH., 8 BITS, NO PARIT
i2 STOP BITS, 16X CLOCK SCALING
;FOR NOW COMMAND IS IDLE

;ECHO THE B OR P

:OUTPUT CR

:NAM0 GETS THE NAME OF THE FILE
iTO BE LOADED FROM THE CONSOLE
· I

NAM0:

NAM:

:

CALL
CALL
CPI
JZ
MOV
INX
DCR
JNZ
MVI
INX
OCR
JP

WH0
WHI
13
NAM
M'A
H
C
NAMa
M,20H
H
C
NAM

;ECHO CHAR.

:DONE IF CR
iSTORE IN MEMORY

iDONE IF 9 CHARACTERS
:FILL OUT WITH BLANKS

iHEAD SEARCHES FOR A RECORD HEADER
iAND STORES IT AT RNAME

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 16

02F3 214203
02F6 ES

02F7 3E96

02F9 D301
02FS CD280C
02FE FEE6
0300 C2F702
0303 CD280C
0306 FE01
0308 C2FE02
030S 21SC0C
030E 0E0E
0310 C09M'2
0313 C27003
0316 21SCeC
0319 11S40C
031C 0EB8
031E 1A
031F BE
0320 C0
0321 13
0322 23
0323 0D
0324 C21E03
0327 2A670C
032A 3A660C
032D 4F
032E 3A690C
0331 B7
0332 CA6C03
0335 3D
0336 CA5F03
0339 3D
033A CA7533
IB3D 3D
e33E C0
033F D301
0341 E9

0342 015CeC
0345 1608
0347 37
0348 CD7C01

;COMP THEN COMPARES THE NAME AGAINST
;THE NAME IT IS SEARCHING FOR
;GETS NEXT HEADER IF NOT MATCH
;AFTER DISPLAYING NAME AND RECORD NUMBER
iIF CHECKSUM ERROR GOES TO ERROR
· , HEAD: LXI

PUSH

HEAD6: MVI

OUT
CALL

HEAD7: CPI
JNZ
CALL
CPI
JNZ
LXI
MVI
CALL
JNZ
LXI
LXI
MVI

COMP: LDAX

· ,

CMP
RNZ
INX
INX
DCR
JNZ
LHLD
LDA
MOV
LDA
ORA
JZ
DCR
JZ
DCR
JZ
DCR
RNZ
OUT
PCHL

H,DNAME
H

A,096H

1
WH2
BE6H
HEAD6
WH2
001H
HEAD7
H,RNAME
C,14
GET
ERROR
H,RNAME
D,FNAME
c,a
D
M

D
H
C
COMP
RADR
RLEN
C,A
RTYPE
A
GETo
A
COf-1NT
A
STOP
A

;ANYTHING RETURNING AFTER HERE
iWILL DISPLAY THE RECD NAME AND
iSTART USART READING, ENTER SEAR
iIF SYNCHRONOUS, AND START MOTOR
;TO USART CTL PORT

iSYNC CHAR.
:RESYNC USART

:SOH CHAR.

iGET HEADER

iCOMPARE NAMES

:NOT MATCH

;FALL THRU IF MATCH
;GET LOAD ADDRESS AND
:LENGTH IN PREPARATION FOR LOADI

iCHECK RECORD TYPE

iDATA, LOAD INTO RAM

iCOMMENT, DISPLAY IT

;END OF FILE, STOP TAPE

:NOT TYPES 0-3, TRY AGAIN
1 ;STOP TAPE
iAUTO-EXECUTE, GO TO PGM.

:WERE DONE LOOKING AT OR READING A RECD, SO DISPLAY
:NAME AND RECD# OF LAST SEEN RECD.
· ,
DNAME: LXI

MVI
DNAM2: STC

CALL

B,RNAME
D,8

FLDSY

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 17

034B 15
034C C24703
034F C09703
0352 2A640C
0355 EB
0356 COOHJ3
0359 C08003
035C C3F302

035F C0280C
0362 CD7F03
0365 00
0366 C25F03
0369 C3F702

036C CD9A02
036F CS
0370 3E3F
0372 CD7F00
0375 C.DSD03
037S .l\F
0379 0301
037B E1
'D7C C31702

037F 060S
03S1 C09703
0384 1A
0385 CD0603
0388 13
~389 ~5
038A C28103

· , :COMNT
· ,
COMNT:

· ,

OCR
JNZ
CALL
LHLO
XCHG
CALL
CALL
JMP

DISPLAYS

CALL
CALL
OCR
JNZ
JMP

0
ONAM2
BLK
RRN :OISPLAY R/N

OEOUT
CROUT
HEAD

COMMENTS ON THE SCREEN

WH2 :ECHO TAPE ON CRT
DSPLY
C
COMNT
HEAD6

:GETO GETS DATA AND RETURNS IF CS2 IS GOOD
:OTHERWISE IT STOPS THE TAPE
:AND PRINTS A "1"
· ,
GETD: CALL GET

RZ
ERROR: MVI A'?' , .

CALL DSPLY
STOP: CALL CROUT

XRA A

Fag A COMMENT

OUT 1 iOUTPUT NUL TO STOP US,ART

· ,
.***** ,
· ,

POP
JMP

UTILITY

H :CLEAN UP STACK
START

SUBROUTINES *****

:THESE SUBROUTINES MAY BE USED EXTERNALLY, SO, WE,WA~T
:THEM IN KNOWN LOCATIONS.

~ HEX08 OUTPUTS 8 BYTES FROM THE ADDRESS POINTED.
iTO BY D,E LEAVING D,E PONITING TO THE NEXT.
:LOCATION IN MEMORY. IT PUTS THE BYTES OUT
:IN HEX WITH A SPACE BETWEEN THEM AND A
:CARRAGE RETURN AT THE END OF THE tINE.
· ,
:02 IS THE ACTUAL LOOP WHICH HEXOS USES
;IT PUTS OUT THE NUMBER OF BYTES IN B
:INCRAMENTS D AND THEN PUTS OUT A
;CARRAGE RETURN.

o · I

HEXOS: MVI B,8
02: CALL BLK

LDAX D
CALL BYTE
INX D
OCR B
JNZ 02

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 18

0380 3Ef3D
038F C37F00
0392 3E0C
0394 C37F00
0397 3E20
0399 C37F00
039C 3E09
039E C37F00

03Al CD20~C
03A4 FE60
03A6 08
03A7 D620
03A9 C9

· ,
:CROUT, CLEAR, BLK, AND TABBER
;OUTPUT A CARRIAGE RETURN, FORM FEED, BLANK,
:OR HORIZONTAL TAB TO THE CRT DRIVER, RESPECTIVELY
· ,
CROUT: MVI

JMP
CLEAR: MVI

JMP
BLK: MVI

JMP
TABBER: MVI

JMP
· ,

A,CR ;PUT CAR RETRN ON CONSLE DSPLY
DSPLY
A,12 ;CTL-L (FORM FEED)
DSPLY·
A,' I ;SPACE
DSPLY
A,9 :CTL-I TAB
DSPLY

:LCFLD (LOWER CASE FOLD). GETS A CHAR FROM WH~.
:IF AN LC CHAR WAS FOLDED, CY=0,ELSE CY=l.
:WATCH RUBOUTS1 THEY'RE FOLDED TO SFH FROM NORMAL 7FH.
· ,
LCFLD: CALL

CPI
RC
SUI
RET

:

WH0
060H

020H

:GET CHAR
;IF UPPER CASE,FORGET IT
;UC LETTERS ARE LESS THAN 60H
:FOLD THIS LOWER CASE LETTER ON

:HEXC INPUTS VARIABLE LENGTH HEX FROM WHe, ECHOING ON OS
:TERM CHAR IS ANY NON-HEX CHAR, AND IT IS RETURNED IN B.
:DIGIT COUNT ~ETURNED IN C.
· ,

03AA 210000 HEXC:
03AD 40

LXI
MOV

H,0 :ZERO CONVERSION BUFFER
C,L

03AE CDAl03 NXNYB:
03Bl 47

03B2 FE30
03B4 08
03B5 CD240C
0388 0639
03BA FE0A
03BC DAC703
93BF 0607
03CI FEllA
03C3 08
03C4 FE10
"3C6 00
03C7 0C NXN~l:
1l3CS 29
93C9 29
Vl3CA 29
03CB 29
03CC B5
03eD 6F
03CE C3AE03

;

CALL
MOV

CPI
RC
CALL
SUI
CPI
JC
SUI
CPI
RC
CPI
RNC
INR
DAD
DAD
DAD
DAD
ORA
MOV
JMP

LCFLD
B,A

' '" '
WH1
' 0 '
10
NXNBl
7
10

16

C
H
H
H
H
L
L,A
NXNYB

:GET A CASE-FOLDED CHAR FROM WH0
:SAVE THIS CHAR SO IT CAN BE USE
:IT WAS THE TERM CHAR.
:RETURN IF LESS THAN ASCII "

:ECHO EACH CHAR. VALID OR NOT
:CHANGE ASCII INTO BINARY 0-15

:RETURN IF NOT HEX

iRETURN IF NOT HEX
iCOUNT * OF HEX CHARACTERS
:SHIFT AL
:OVER
:FOR NEXT
:DIGIT
:OR IN NEW DIGIT

:DEOUT OUTPUTS DE TO THE SCREEN

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 19

03D1 7A
03D2 CDD603
03D5 7B

03D6 F5
03D7 0F
0308 0F
0309 0F
03DA 0F
03DB COOF03
03D£ F1

:AS 4 HEX DIGITS
· , DEOUT: MOV

CALL
MOV

· I

A,D
BYTE
A,E

:BYTE OUTPUTS THE ACCUMULATOR
:AS 2 HEX DIGITS TO THE SCREEN
· ,
BYTE:

· ,

PUSH
RRC
RRC
RRC
RRC
CALL
POP

PSW

HEXO
PSW

:HEXO OUTPUTS 1 HEX DIGIT TO
:TaE SCREEN • THE UPPER HALF
iOF A IS MASKED WITB ZEROS
· , e3DF E60F HEXO: ANI

ADI
DAA
ACI
DAA
JMP

15
90B 03El C690

03E3 27
03E4 CE40
03E6 27
03E7C37F00

1000

03EA 5400
03EC 0001
03EE 6400
03F0 1701
03F2 FC
03F3 F8
03F4 CD6A00
03F7 C9
03F8 C07F00
03FB C9
03FC CD7800
03FF C9
0000

· I

40H

DSPLY :OUTPUT HEX DIGIT AND USE RETURN

:****** INITIALIZATION PARAMETERS ******
:THE FOLLOWING INFORMATIO IS USED ON FPRST OR POC
iTO SETUP THE STARTING SYSTEM CONTEXT.
· ,
STACK EQU
i

01000B : USED IN AN LXI,SP

iTHE FOLLOWING BLOCK IS COPIED DIRECTLY OVER
;SYSTEM RAM STARTING AT SRA4.
· ,
INITER: OW USRTSR iVI3 USART INTERUPT

DW KSR iVI2: THE STANDARD KBOc+N'T
OW IORET ,WAKEUP: NOTHING FOR NOW' ";"
OW SAVE iVI0 : SINGLE STEP INT Goes: -BAlCJ(
DB ~FCH iVIDEO SCRN ENOS AT FC~0H,..r
DB eF8H iVIDEO SCRN HOME AT Fa00H '
CALL KI iWORMHOLE 0: INIT TO KBD AT iSH
RET :STANDARD PART OF ANY WORMHOLE '~
CALL DSPLY :WOR~HOLE 1: INIT TO VIDEO DSPL
RET
CALL USRTI : WORMHOLE 2: INIT TO USART AT 0
RET
END

POLY 88 RESIDENT MONITOR VERSION 4.0 11/22/76
COPYRIGHT 1976. INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 20

SYMBOLS SORTED BY NAME

AOOIT 023E BITE 02C7 BLK (:3397 BYTE 0306
CLINE 0000 CLOCK 0030 COMD 0lBA COMNT 03SF
CR 0000 CROUT 0380 CRR 00E6 CTLX 0018
CURP 00pC .02 0381 OEOUT 0301 OISP 0134
ONAM2 0347 'ONAME 0342 DOUBL 022C DSPLY 007F
FF 000C FFI 00F2 FFR 00EF FLAGS 0187
FNAME 0CS4 G 026C GET 1129A GETl 029C
HEAD 02F3 HEAD6 02F7 HEAD7 02FE HEXC 03AA
HEX08 037F IND 0249 INITE 03EA INITL FFEA
IORET 0064 KaUFF 0C0C KI ee6A KII e06E
LCFLD 03Al LOD 0237 LOOKU 0lDa MMOD 0198
MOVE 0HHJ MSG 0160 MTaL rHE8 NAM ~2EC
NAMER 02CF NORM 00B4 NXNBI 03C7 NXNYB e3AE
POS 0C0E POS2 0C4A POS3 0C4E RADR BC67
RBR 00E4 RBUFF 0C0A RESET 0000 RLEN 0C66
RRN 0C64 RSTI 0200 RTAB 028F RTN 0200
SAVE 0117 SAVPC 0CS2 SCEND 0CIE SCND2 0C48
SCRH2 0C49 SCRH3 0C40 SCRHM 0ClF SCRL 00B9
SETR 027C SETUP e2AO SRAl 0Cl0 SR.~2 0C12
SRA4 0Cl6 SRAS "C18 SRA7 "C1C SS 0038
START 0217 STOP 0375 STORE 0253 SVW 023A
TABBE 039C TANI 0C04 TAPE 0214 TBUFF aC08
TIME 0040 TIME2 0047 TIMER 0C00 USRTI 0078
VCB2 0C48 VCB3 0C4C VI2 0028 VI3 0020
VIS 00H} VI6 0008 VT 000B VTR 00F9
WARM 0121 WH0 0C20 WH1 0C24 WH2 0C28
WH4 0C3f) WH5 0C34 WH6 0C38 fila 7 0C3C
wa9 0C44 WINDO 0C50 WIPE 0005 X 13259

SYMBOLS SORTED BY VALUE

RESET 0000 VI6 0008 TAB (lJ009 VT e00B
CR 000D VIS 0010 CTLX 0018 VI4 01318
VI3 0(320 VI2 0028 CLOCK 13030 SS 0038
TIME2 0047 USRTS 0054 IOPUT 0060 IORET 13064
KII 006E USRTI 0078 DSPLY 007F RB 007F
SCRL 0089 CLINE @0D0 WIPE 0005 CURP 00DC
CRR 00E6 FFR 00EF FF1 00F2 VTR 00F9
KSR 01130 SAVE_ Dll7 WARM 0121 DISP 0134
MSG 0160 FLDSY 017C FLAGS 0187 MMOO 0198
COMD elBA LOOKU alDB MTBL 01ES RSTI (,]203
TAPE 0214 START 0217 DOUBL 022C LOD 0237
ADDIT 023E IND 0249 STORE 0253 X 0259
SETR 027C RT.a.B 028F GET 029A GETl 029C
SETUP 02AD SETI 02Bl POLY 02BA BITE 02C7
NM10 02DB NAX 02EC HEAD 02F3 HEAD6 02F7

CLEAR 0392
COMP 031E
CTLZ 001A
DISPI 0148
ERROR 0370
FLDSY 017C
GETD 036C
HEXO 03DF
IOPUT 0~60
KSR 0100
MMODI 0lA8
NAM0 02Da
POLY 02aA
RB 007F
RNAME 0CSC
RTYPE OC69
SCND3 0C4C
SET1 02Bl
SRA3 0C14
STACK 100:;)
TAB 0009
TI 02A5
USRTS 0054
VI4 0018
WAKEU 0C1A
WH3 0C2C
was 0C40

FF 000C
CTLZ 0fHA
TIME 0040
KI 006A
NORM 3084
RBR 00E4
MOVE 0100
DISPI 0148
MMODI 0lAS
RTN 0200
SV.'l 023A
G 026C
T1 02A5
NAXER 02CF
HEAD7 02FE

POLY 88 RESIDENT MONITOR VERSION 4.~ 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.~S PAGE 21

COMP 031E DNAME 0342 DNAM2 0347 COMNT "3SF GETQ ~. 036G
ERROR 037~ STOP ~37S HEX08 ~37F 02 0381 CROUT" 0380
CLEAR 0392 BLK 0397 TABBE 039C LCFLD "3A1 HEXC 03AA
NXNYB ~3AE NXNB1 03C7 DEOUT 0301 BYTE 0306 HEXO 03DF
INITE 03EA TIMER 0C"0 TAN I 0C04 TBUFF elC08 RBUFF 0C0A
KBUFF "C0C POS 0C0E SRA1 0Cl~ SRA2 0C12 SRA3 .. aC14
SRA4 0C16 SRAS aC18 WAKEU 0C1A SRA7 0C1C SCEND'aCIE
SCRHM 0C1F WH0 aC20 WH1 0C24 WH2 0C28 WB3 " 0C2C
WH4 0C30 WHS gC34 wa6 0C38 WH7 0C3C WHS 0C.40
Wa9 ~C44 SCND2 0C48 VCB2 0C48 SCRB2 0C49 POS2 ""C4A
SCND3 0C4C VCB3 0C4C SCRB3 0C4D POS3 0C4E WINOO 0CSfil
SAVPC 0C52 FNAME 0CS4 RNAME "CSC RRN 0C64 RLEN 0C66
RADR 0C67 RTYPE 0C69 STACK HHJ" INITL FFEA

THATS ALL, FOLKS!

~12/30/76 SMALL DUMPER DOCUMENTATION
PAGE 1

****** SMALL DUMPER FOR 4.0 ONBOARD RAM ******

SMD IS A SIMPLE ABSOLUTE DUMPER WHICH RUNS
ENTIRELY WITHIN THE ON BOARD MONITOR RAM FROM C6AH TO D9CH.
ITS STARTING ADDRESS IS C6A HEX. WHEN RUN, IT CLEARS THE
SCREEN AND EXPECTS AN ENCODING SPECIFICATION AND
FILENAME JUST AS THE 4.0 RESIDENT LOADER. AFTER
INPUT, THE STARTING AND ENDING HEX ADDRESSES ARE
AS SHOWN IN THE FOLLOWING EXAMPLE WHERE THE SMD
TO COPY ITSELF:

(SCREEN CLEARED, CURSOR IN UPPER LEFT)

B
SMD

C6A,D9D
C6A
D6A

(D9D USED FOR SAFETY)

THESE ARE
INPUT

IS USED

D6A (THIS LAST IS AN ENDRECORD)

(SCREEN CLEARS AGAIN, READY FOR ANOTHER DUMP)

BEFORE DATA IS DUMPED, THE CASSETTE RECORDER
SHOULD BE SETUP WITH THE PROPER PLUG IN THE MICROPHONE
JACK. THE BYTE/BIPHASE CASSETTE CARD HAS TWO PLUGS
FOR WRITING - ONE FOR BYTE AND ONE FOR BIPHASE. THE
READ PLUG (LABELLED USUALLY "EAR" OR "SPKR") SHOULD NOT BE
PLUGGED IN. SOME CASSETTES DO ODD THINGS WHEN BOTH THE MIC
AND EXTERNAL SPKR JACKS ARE PLUGGED IN. ALSO
MAKE SURE THAT ENOUGH TAPE RUNS BEFORE TYPING THE FINAL
CARRIAGE RETURN ON THE END ADDRESS SPECIFICATION SO THAT
NON-RECORDABLE LEADER GETS A CHANCE TO PASS BY BEFORE
DUMPING STARTS.

THE ONBOARD DU~PER WAS HAND OPTIMIZED TO
FIT 'INSIDE THE FREE SPACE ON SYSTEM RAM, BUT THE SYSTEM
STACK ALSO RESIDES THERE. THIS MEANS THAT THE STACK
MAY. OVERRUN THE DUMPER, ERASING PART OF IT. IF THE
DUMPER HAS BEEN IN RAM WHILE BASIC HAS BEEN RUN ,
FOR EXAMPLE, THE STACK HAS PROBABLY SQUASHED IT
AT SOME TIME. IF THERE IS DOUBT, CHECK THE BYTE
AT 0998. IT SHOULD BE A C9 (RETURN INSTRUCTION). IF IT
IS NOT, O~ YOU JUST WANT TO MAKE SURE, RELOAD THE DUMPER
JUST BEFORE USING IT.

WHEN THE DUMPER IS DUMPING, EACH RECORD WILL BE DISPLAYED
AS A HEX NUMBER ON TgE SCREEN. TgE HEX NUMBER REPRESENTS

12/30/76 SMALL DUMPER DOCUMENTATION
PAGE: 2

THE ADDRESS OF THE DATA BEING DUMPED ON EACH RECORD.
THAT ADDRESS IS PUT ON THE HEADER OF THE: RECORD SO
THE 4.0 RESIDENT LOADER WILL KNOW WHERE TO PUT IT
WHEN IT IS READ BACK IN.

,THE LAST RECORD IS AN n END" TYPE RECORD.
,IT IS PUT ON AUTOMATICALLY. IT WILL DISPLAY AS A RECORD

WITH 'DUMP ADDRESS EQUAL TO THE ADDRESS OF THE RECORD
BEFORE!T. OPTIMIZATION OF THE DUMPER'S CODE REQUIRES
SOME ,STRANGENESS ES SUCH AS THIS, "BUT IN ANY CASE, THE
LAST RECORD (DUMP FINISHED) WILL BE· SIGNALLED BY THE
SCREEN CLEARING. THIS PUTS THE DUMPER ,. BACK IN ITS
INITIAL MODE, JUST AS IF IT HAD BEEN RESTARTED AT C6AH.
MORE DATA MAY BE DUMPED IF DESIRED.

12/29/76 8-:00 PM SMALL DUMPER FOR 4.0 - ONBOARD RAM
51'104.0 PAGE 1

0C20
0C24
0C16
02AD
03AA
0301
0CSA
0CSA
0CSC
0C64
0CG6
BC67
0C69
0C6A 214500
0CGD 22160C
0C70 3E0C
0C72 CD240C
BC7S CD200C
0C78 CD240C
0C7B FE42
0C7D CA920C
0C80 FES0
0C82 C2700C
0C85 CDAD02
0C88 05
0C89 AA
0C8A 40
0CaB 0C
0CSC E6
0caD E6
0caE 00
0caF C39A0C
BC92 CDADB2
BC9S 06
0C96 AA

: ******* ONBOARD DUMPER:::FOR~ 4:;~0';;:*******

: THIS IS,' A' PQLYFORMAT DUMPER FOR ABSOLUTE
: DATA WHIClJRUNS~ROM C6A'TO't:)9F (OR SO)",', <START ADDRESS
:C6AH.'WHEN:JtUNi IT:.ACTS ... I:.ISE 4.0 ,MONITOR TAP'E LOAD IN
:THE WAY;.I'rC"ACCEPTS ENCOOI;NG/SPECIEICATION: (B",OR P) AND
:FILE NAME:..: 'THEN',IT EXPECTS ,TWO 'SEX NUMBERS FOR
: START AND END'DUMP ADDRESS.ES. 'EACH RECORD DUM~ED SBOWS
: ADDRESS 'USED IN HEX ON SCREEN. WHEN nONE i', IT. PUTS OUT
iAN • END.'·. :TYPE,RECORD AND CLEARS SCREEN,' READ'Y.
i FOR ANOTHER DUMP ~ :":L ~ " :, i

· I

:ORIGINAL 2.2 DUMPER SYSTEM WRITTEN BY DAVID FAIMAN
:REWRITTEN,DQCUMENTED AND CONVERTED TO ONBOARD FOR 4.0
:BY R.L.DERAN
· , · I

WH0
WHI
SRA4
SETUP
HEXC
DEOUT

LENGTH:
WNAME:
WRN:
WLEN:
WADR:
WTYPE:
START:

STAR2 :

POLY:

BITE:

EOU
EOU
EOU
EOU
EOU
EOU
ORG
OS
OS
OS
OS
os
OS
LXI
SHLD
MVI
CALL
CALL
CALL
CPI
JZ
CPt
JNZ
CALL
DB
DB
DB
DB
DB
DB
DB
JMP
CALL
DB
DB

0C20'H
0C24H
0Cl6H
02ADH
03AAH
03D1H
0CSCH-2
2
8
2
1
2
1
H,TISR
SRA4
A, 0CH
WHI
WH0
WHI
• B'
BITE
'P'
STAR2
SETUP
00SH
BAAH
040H
00CH
0E6R
0E6H
000H
NAMER
SETUP
0068
0AAH

iFORM FEED
iCLEAR SCREEN

!

SM04." 'PAGE 2

eC91 40
BC9S CEo
0C99', 00

0d9A 210000
0C9D 22640C
0CA0' eE08
l:lCA2, 21630C
fleAS 3620
SCA7 213
SCA8 SO
0C.A9 C2AS0C
ec.AC 23
0CAO SEe8
"CAF COISSO
scsi CD200C
SCBS CD24ec
e~:S8Faeo":
eCBA CAC30C
BcaD 77
BceE 23
SCBF eo
0cce C2B20C
eCC3 AF
e<;C4 32690C
eCC7 CDl80D
eCCA COAAe3
ecco 22670C
eCDe 78
BCDl C024ec
0CD4 EB
0CDS CQAA03
eCD8 CDISlaD
eCDB: 70
ecpc 93
SCOQ 6F
0COE'7C
aCDF 9A
eCES.67
eCEl 225A0C
eCE4CDF60C
SCE7 3£02
SCE9 3269SC
0CEC 3D
SCEO 32660C
SCFS CDS40D
SCF3C36A0C

0tE'6 21S'S0C
0cr9 7E '"
0CF~~·e7 .
·aCFS GAJ'n~,D •
0CF.E.35

12/29/76' 6-i00'''PM *SMALL DUMPER FOR 4.0 - ONSOARD RA.~

· ,

DB
DB
DB

0408.
0CEH
o fl0~f

: NAMEING ROtJ'l'.INE
· , HAMER: LXI

SSLD
MVI
LXI

HAM: MVI
OCX
OCR
J'NZ
INX
MVI
CALL

NAMe: CALL
'CALL.
CPI
JZ
MOV
INX
OCR
JNZ

DUMPC: XRA
STA
CALL

SIZE: CALL
SSLI)
MOV
CALL
XC8G
CALL
CALL
MOV
SUB
MOV
MOV
saB
MOV
saLD
CALL

ENDC: MVI
STA
OCR
STA
CALL
JMP

H,e·
'WRN, .~.
c, a : BtANK NAME FIELD
H,WNAME+7 .,
M,020B
H :BAC~UP B TO WHAME
C
NAM
B
c,a
CRLF
was
WHI
0eD8 :CR
OUMPC
M,A
B
C
NAM0
A
WTYPE
CRLF
HEXC
WAOR
A,B
WHI

HEXC
CRLF
A,L
E
L,A
A,a
D '~

B,A
LENGTH
DUMPR
A,2
WTYPE
A
WLEN
DUMP
START

\ ,.

DUMP DATA ~ECORDS
· ,
DUMPR: LXI

MOV
ORA .'
jz·
DCR

fr,LE~GTH+l
A,l'1 .
A
OVER
M

SM04.0 PAGE 3

0CFF AF
130013 32660C
13003 C05400
0006 2A670C
13009 24
000A 2267eC
eloeo C3F60C
0010 2B
0011 7E
0012 32660C
13015 C35400

0018 3E00
001A C0240C
0010 C9

001E 06130
13020 4F
0021 7E
0022 23
13023 F5
0024 80
0025 47
0026·F1
0027 CD340D
002A 00
002B C22100
f302E 78
002F 2F
0030 3C
0D31 C33400

0C0S
0034 E5
0035 2I080C
13038 F5
0039 7E
003A B7
003B C23900
003E 23
003F FI
00413 77
13041 2B
13042 34
0043 El
0044 C9

12/29/76 8-:00 PM. SMALL DUMPER FOR 4~e - ONBOARO RAM

XRA
STA
CALL
LHLD
INR
SHLD
JMP

A

OVER: DCX

WLE'N
DUMP.
WADR
H
WADR
DUMPR
H

· ,
CRLF:

· ,

· ,
PUT:

PUT0:

;
TBUFF
TO:

TOl:

MQV
STA
JMP

'MVI
CAL~
RET

A,M
WLEN
DUMP

A,eDH
WHI

ROUTINE TO OUTPUT A RECORD

MVI
MOV
MOV
INX
POSH
ADD
MOV
POP
CALL
OCR
JNZ
Mev
CMA
INR
JMP

B,0
C,A
A,M
H
PSW
B
B,A
PSW
TO
C
PUT0
A,B

A
TO

;CLEAR CHECKSUM
; PUT "LENGTH OF RECqRD -;Iij ~;C

TAPE OUTPUT ROUTIME

EQU
PUSH
LXI
PUSH
MOV
ORA
JNZ.
INX
POP
MOV
DCX
INR
POP
RET

oce8H·
H
H,TBUFF
PSW
A,M
A
T01
H
PSW
M,A
H
M
H

; TISR IS A SIMPLE USART READER WHICH WILL
RE-TRANSMIT THE CHP..R~CTER IN TBUFF If<t'!' HAS- NOT
BEEN REPLACED BY THE-WORL"'IHOLE ROUTD,;E • IT
DOES NOT CHECK THE FLAG, BECAUSE IT ASSUMSS.;
THAT THE PROGRAM CALLING THE WOR!1HQLE IS FASTER
THAN THE USART AND SO IT ALWAYS HAS A VAt!n· .

SMD4.0 PAGE 4

. ,

12/2'/76 8';':00 PM SMALL DUMPER FOR 4.0 - ONBOARD AA~

CHA,RACTER FOR US TO TAKE •

9D45~'AF""': ':~ISR:
e'l46 ',):29Pc: '?;;' .

XRA 'A'

:ftD493A,990C
004C 0300

STA,~l3'UFF
. ~,DA" ,tBOFF+l
'OOT ' "0:';'"

0042:El IORET: POP ,8
0CA'Pl,,:.. ,-
90S""Cl '
0D51F1
00S2'FB
9053 C9

905.4 3E21
00S6 0391
0058 2A670C
00SS EB
Bose ·CDD103
005F C01800
0062 21FF8F
006". 2S

.00.667C
0067 B,7
0068 <:.26500
01;)68 BE49
0060 3EE6
00oFCb3400
007200
0',!:)73 C26F0D
0.1:)76 3£01 .
3'D18 C03400

01:)7B 3.E0E
007D 215C0C
00a0 CD1E0D
0D83 JA660C
01)862A670C
0089C01E0D
008C 21640C
0D8F 34

· , .. ,
· , ,
• ,
.. ,
1

po.p ,~"''\:
'POP ..-' B'"
POP PSW
EI
RET

. ~":. ,':":.,.. :::.' .',
...... ".c.

DUMP PUTS OUT ONE" COMPLETE RECORD.
IT TURNS ON USART AND MOTORS,WAITS A WHILE
FOR.AN IRG,PUTS OOT 64 SYNCH CHARACTERS,
DUMPS A RECORD ACCORDING TO THE WRITE CONTROL
BLOCK AT WNAME (IT 'ALSO PUTS THE WCB
ON THE R£CORDASHEADER), INCREMENTS THE R,ECORD
NUMBER, STOPS USARTAND MOTORS, AND RETURNS •

DUMP: MVI A,e21H
1 OUT

. LHLO
XCBG
CALL
CALL
LXI

DELAY: OCX
MOV
ORA
JNZ
MVI
MVI

DUMP0: CALL
OCR
JNZ
MVI·
CALL .. ,

WADR

DEOUT iDISPLAY THE ADDRESS WE'RE DUMP!'
CRLF
H,98FFFH
H
A,H
A
OELAY
C ,6.4
A,0E6H iSYNC CHARACTER
TO
C
DUMP0
A,001a iSTART OF HEADER
TO

: DUMP HEADER AND OAT.;\. RECORDS ..
I'

A,00EH
H ,WNAME
PUT
WLEN
WADR
POT
H,WRN
M

;LENGTH OF HEADER RECORD

0D90 AF OFF:
~:p91 CP'340D

MVI
LXI
CALL
LOA
LHLD
CALL
LXI
INR
XRA
CALL
CALL
CAt.L
OOT
R,tT
END

A
TO ;THESE PUSH OUT LAST BYTES FROM . .

0,094 CD340D
0D97 C03.40D ...

TO
TO '

;1'8£ USART AND WE SUFFER PIPE LIN
;TORN OFF MOTOR AND TRANSMI':":'ER

009A0301 ····l·
0Dge C9
0000

: •.. ; " '.'

J{_f.?:8i'Y,o.l;., J;l{~(t4«fM'tlfi'ftP;1~~~11lg~,~.i~'ia:/ J)e;t;~.lIIber"2·8!t 1979 Pa ge,i;]
': - :-,*"':~-' -~ .. -', ,., ' '," .. " ',', .~ .. " ': .. ', •

THE FOLLOWING MODIFICATION IS REQUIRED TO THE CPU BOARD FOR REVISIONS

UP TO 0.3.

1. Cut trace from Port #.1 pi n 6 to Port #2 pi n 6

2. Jumper Port #2 pin 6 to IC30 pin 5.

Note: Port #1 for printer cable only

Port #2 for cassette cable only

R\GE 2. OF

Nl.M£R:

1052S2..

~ •• ~_!.A
• " •• ",ill W

del '0
o o

.. -... I
.0
'0
:0 -':. ,

•• ··0)

t",O,,".'(, i \
\. ~ \

• I
.•. 0

-1\ ..
.. ;i

00

Nl.J.EER;

1052-52.
PAG£: 4 OF'

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	56a
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	85a
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	E-01
	F-01
	F-02
	F-03

