Prime. Advanced
Programmer’s Guide,
Volume 0:
Introduction and
Error Codes

Revision 22.0

DOC10066-3LA

Advanced Programmer’s Guide,
Volume 0: Introduction
and Error Codes

Third Edition
Glenn S. Morrow

This guide documents the software operation
of the Prime Computer and its supporting
systems and utilities as implemented at
Master Disk Revision 22.0 (Rev. 22.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

Copyright Information

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

Copyright © 1988 by Prime Computer, Inc., Prime' Park, Natick, Massachusetts 01760

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime Computer,
Inc. DISCOVER, EDMS, FM+, INFO/BASIC, INFORM, Prime INFORMATION, Prime
INFORMATION CONNECTION, Prime INFORMATION EXL, MDL, MIDAS, MIDASPLUS,
MXCL, PRIME EXL, PRIME MEDUSA, PERFORM, PERFORMER, PRIME/SNA, PRIME
TIMER, PRIMAN, PRIMELINK, PRIMENET, PRIMEWAY, PRIMEWORD, PRIMIX,
PRISAM, PRODUCER, Prime INFORMATION/pc, PST 100, PT25, PT45, PT65, PT200,
PT250, PW153, PW200, PW250, RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250, 2350,
2450, 2455, 2550, 2655, 2755, 4050, 4150, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955,
and 995511 are trademarks of Prime Computer, Inc.

Printing History

Preliminary Edition (DOC9229-1LA) January 1985 for Revision 19.4.0
First Edition (DOC10066-1L.A) November 1985 for Revision 19.4.2
Second Edition (DOC10066-2LLA) September 1987 for Revision 21.0
Third Edition (DOC10066-3LA) October 1988 for Revision 22.0

Credits

Editorial: Barbara Fowlkes

Project Support: Joan Karp, Nick Fichter
Graphics Support: Mingling Chang, Robert Alba
Document Preparation: Mary Mixon
Composition: Julie Cyphers, Sharon Temple
Production: Judy Gordon

Design: Carol Smith

Third Edition

How To Order Technicai Documents

Follow the instructions below to obtain a catalog, a price list, and information on placing orders.

United States Only: Call Prime Telemarketing, toll free, at 1-800-343-2533, Monday through
Friday, 8:30 a.m. t 5:00 p.m. (EST). ,

International: Contact your local Prime subsidiary or distributor.

Customer Support Center
Prime provides the following toll-free numbers for customers in the United States needing
service:

1-800-322-2838 (Massachusetts)
1-800-541-8288 (Alaska and Hawaii)
1-800-343-2320 (within other states)

For other locations, contact your Prime representative.

Surveys and Correspondence

Please comment on this manual using the Reader Response Form provided in the back of this
book. Address any additionral comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

Third Edition

Contents

About This Book

Calling Sequences and Coding Guidelines
Calling Sequence Conventions
General Coding Guidelines

Appendices

PRIMOS Error Codes
Error Code Presentation
PRIMOS Standard Error Codes

Alphabetical List of Error Messages

New Features of Recent PRIMOS Revisions
New Features at Revision 22.0
New Features at Revision 21.0
New Features at Revision 20.2

New Features at Revision 20.0

Master Index

vii
1-1
1-1
1-5

A-l
A-1
A-2
B-1
C-1
C-1
C3
C-7
C-8

Index-1

About This Book

The Advanced Programmer's Guide is a four-volume series intended for programmers who are
experienced with both 50 Series™ computer systems and at least one high-level language

(preferably PL/I or FORTRAN). This series consists of four volumes:

Advanced Programmer's Guide, Volume 0: Introduction and Error
(DOC10066-3LA) (this volume)

Advanced Programmer’s Guide, Volume I: BIND and EPFs (DOC10055-1LA)
Advanced Programmer’s Guide, Volume II: File System (DOC10056-2LA)

Codes

Advanced Programmer's Guide, Volume IlIl: Command Environment

(DOC10057-1LA)

Users of this series should be familiar with the following Prime publications:

Users of this series should also be familiar with Prime system architecture, as described in the
50 Series Technical Summary (DOC6904-2LA) and in the System Architecture Reference Guide

PRIMOS User's Guide (DOC4130-5LA)

Programmer’s Guide to BIND and EPFs (DOC8691-1LA) and its
(UPD8691-11A)

Subroutines Reference 1: Using Subroutines (DOC10080-2LA)

Subroutines Reference 1I: File System (DOC10081-1LA) and its
(UPD10081-12A)

Subroutines Reference III: Operating System (DOC10082-1LA) and its
(UPD10082-12A)

Subroutines Reference IV: Libraries and I'O (DOC10083-1LA) and its
(UPD10083-12A)

Subroutines Reference V: Event Synchronization (DOC10213-1LA)

(DOC9%473-2LA).

update

update

update

update

vii

Advanced Programmer’s Guide

viii

Specifics of This Volume

This volume contains reference information applicable to the subjects described in the other
volumes:

¢ An explanation of the presentation of subroutine calls and general coding guidelines
(Chapter 1)

Standard error codes used by PRIMOS, along with their messages and meanings
(Appendices A and B)

New features of recent PRIMOS revisions that may be of interest to advanced
programmers (Appendix C)

A master index encompassing the entire series

Specifics of the Series

The Advanced Programmer’'s Guide series is designed for system-level programmers. It
describes the lowest-level interfaces supported by PRIMOS and its utilities. Higher-level
interfaces not described in this series include

e Language-directed I/O

o The applications library (APPLIB)

¢ The sort packages (VSRTLI, SyncSort/PRIME, and MSORTS)
Data management packages (such as MPLUSLB and PRISAMLIB)

Other subroutine packages

L]

All of the above higher-level interfaces are described in other books, such as language reference
guides and the five volumes of the Subroutines Reference series.

This series documents low-level interfaces for use by programmers and engineers who are
designing new products, such as language compilers, data management software, electronic mail
subsystems, utility packages, and so on. Such products are themselves higher-level interfaces,
typically used by other products rather than by end users, and therefore, must use some or all of
the low-level interfaces described in this series for best results.

Because of the technical content of the subjects presented in this series, it is expected that these
guides will be regularly used only by project leaders, design engineers, and technical
supervisors, rather than by all programmers on a project. Most of the information in this series
deals with interfaces to PRIMOS that are typically used only in small portions of a structured
program, and with overall project design issues that should be considered before coding begins.
Once the project is designed and the PRIMOS interfaces are designed and coded, most of the
modules of a typical project can then be written by programmers whose knowledge of these
issues is minimal.

About This Book

Prime Documentation Conventions

The following conventions are used throughout this document. Examples illustrate the uses of
these conventions in typical applications.

Convention Explanation Example

UPPERCASE In calling sequence diagrams, words in ~ SLIST
uppercase boldface represent the sub-
routine name or keyword to be entered

as shown.
UPPERCASE Represent the data type of subroutine = HALF INT
WORDS arguments.
(not boldface)
lowercase In calling sequence diagrams, words in (key, unit)
lowercase represent the subroutine
arguments for which the user must
substitute a suitable variable.
Parentheses In calling sequence diagrams, paren- (key, unit, addr)
() theses must be entered exactly as

shown.

Calling Sequences and Coding Guidelines

Calling Sequence Conventions

The Advanced Programmer’'s Guide series contains diagrams of the calling sequences of system
subroutines. These diagrams are intended to complement the discussion of the subroutines in the
Subroutines Reference series. Similar calling sequence diagrams are also found in an appendix
to Subroutines Reference V: Event Synchronization.

Figure 1-1 is a sample diagram of a calling sequence. Each calling sequence diagram occupies
one full page. The subroutine (or procedure) name is listed in the middle of the page, followed
on the same line by dummy parameter names listed in parentheses and separated by commas.
This is the basic calling sequence for the procedure.

Above this basic calling sequence are the input arguments; below the calling sequence are the
output arguments. An arrow connects each argument to a dummy parameter name. The direction
of these arrows indicates the flow of information. These arrows also visually connect parameter
names to information about the parameters. This information includes the argument’s data type
and a brief description of the argument.

Some diagrams may contain other elements, such as

e A required value or a list of permitted values for keys or other parameters.

e An illustration of the format of an input or output argument.

e A dot and arrow indicating that a pointer to a data area must be supplied. Execution
of the subroutine writes information into this data area.

Data types are specified in a data type description language. This language is further described
in this chapter. You must convert the data type used here to the appropriate data type for your
programming language. In addition to the data type description language, this series often
includes PL/I or FORTRAN versions of structures.

Procedures that are functions return a function value. This retum value and its data type are
illustrated below the name of the procedure itself.

In addition to showing the arguments and their data types, each calling sequence diagram

e Shows the calling sequence for a single type of operation performed by the procedure
o Tllustrates the relationships between interdependent parameters in the calling sequence

Third Edition

Advanced Programmer’s Guide, Volume 0

Read a File
— Pointer to
Data Buffer
File Unit ___ " Number of Halfwords
Number to Read (Unsigned)
0 (Zero), to Read
KSREAD I_— at Current Position
HALF HALF prp HALF FULL
INT INT INT INT
VoY vy

PRWF$$ (key, unit, addr (buffer), size, rel-posn, halfwords-read, code)

| by

HALF _.HALF HALF
INT " INT INT
ARRAY-="" Standard
l—>Error
Buffer to Which [Code
Data Are Transferred
Number of
Halfwords

Actually Read

Side Effects: Contents of buffer elements halfwords-read +1 through size are
undefined after the operation if fewer halfwords than requested were read.

Figure 1-1
Sample Subroutine Calling Sequence

12 Third Edition

Calling Sequences and Coding Guidelines

Therefore, a multipurpose subroutine such as PRWF$$ is described using several different

calling sequence diagrams: one for reading a file, another for writing a file, and a third for
positioning within a file.

Some calling sequence diagrams contain dotted arrows between related arguments. These
relationships often involve a parameter (such as a character string) whose length is specified by
another parameter in the calling sequence.

Data Types
Table 1-1 lists the generic data types and their PL/I and FORTRAN equivalents that are used

throughout the Advanced Programmer’s Guide series. (The diagrams in Subroutines Reference V
use PL/I data types.)

Table 1-1

Data Types and Their PL/1 and FORTRAN Equivalents
Data Type PLII FORTRAN
HALF INT FIXED BIN(15) INTEGER*2
FULL INT FIXED BIN(31) INTEGER*4
n STRING CHARACTER(n) INTEGER*2 ((n+1)/2)
<=n STRING CHARACTER(n) VARYING INTEGER*2 ((n+3)/2)
n BIT BIT(n) INTEGER*2 ((n+15)/16) w/masking
PTR POINTER and ADDR() INTEGER*2 (3) and LOC()
STRUC 1 1
ARRAY(n) 2 2

1Structures are usually illustrated in the same calling sequence diagram or in another related
diagram, or their declarations are provided on a page near the diagram. Structures are also
known as record data types in other languages.

2Arrays are either a constant length which is indicated in parentheses, or a varying length
controlled by a parameter or a subfield in a parameter. Varying length arrays have dotted

arrows from the word ARRAY to the parameter (or its subfield) that controls the length of
the array.

The last three data types in Table 1-1 are discussed more fully in the subsection entitled
Pointers, Arrays, and Structures, later in this chapter.

In cases where the length of an item is specified in the data type, such as <=128 STRING, and a
dotted arrow is also drawn to a parameter that defines the operative length, then the length in the
data type is the maximum length for that item.

If you are unsure as to the meaning of a keyword, arrow, or other illustrative mark, consult the
Subroutines Reference series for more information on the subroutine or data structure.

Third Edition

Advanced Programmer’s Guide, Volume 0

Keys

Some subroutines take an input key argument. A key is a literal value that you use 10 specify the
operation to be performed by the routine. In most calling sequence diagrams that involve a key
argument, a list of valid (or appropriate) key values is provided. Each keyword corresponds to a
specific operation. For example, the k$read key specifies a read operation.

When the construction of a key is complex, two or more lists of keywords are often shown,
enclosed in braces { }, with + signs to indicate addition. As with command formats, choose one
keyword from each list in braces. Specify the + signs in your program to indicate the addition of
these multiple keywords. For example, your program might specify a key value of
k$rdwr+k$ndam-+k$getu.

To define keywords that have names beginning with K$, use a %INCLUDE or $INSERT
statement to insert the appropriate SYSCOM>KEYS.INS.language file into your program. See
the Subroutines Reference series for more information on this topic.

Standard Error Code

Many subroutines include a standard error code as a parameter. This is a HALF INT value
retumned by the subroutine to indicate the degree of success encountered by the subroutine. Each
error code can be represented by an integer value or a mnemonic. All standard error code
mnemonics begin with E$. Always use these mnemonic values in your programs.

For example, after each subroutine call your program should always check the standard error
code to ensure that its value is ESOK (integer value 0). A value of E$OK means a successful
call. Other values indicate specific errors or conditions worth noting.

Appendix A contains a list of PRIMOS standard error codes along with a description of the
meaning of each code. This list is ordered numerically by error code number. Appendix B
contains an alphabetical list of the error message displayed for each error code. The alphabetical
list is cross-referenced with the numeric list.

To define standard error code mnemonics for your program, use a %INCLUDE or $INSERT
statement to insert the appropriate SYSCOM>ERRD.INS.language file into your program. See
the Subroutines Reference series for more information on this topic.

Side Effects

Where appropriate, the side effects of a subroutine are listed at the bottom of the calling
sequence diagram. Side effects are those actions taken by the procedure that are not obviously a
designed function of the procedure. For example, a side effect of a call to the TSRC$$
subroutine may change the cache attach point without notifying its caller.

Third Edition

Calling Sequences and Coding Guidelines

General Coding Guidelines

When writing programs that use standard PRIMOS subroutines, observe the following guidelines
to ensure that your programs continue to function normally on subsequent revisions of
PRIMOS:

* Your program must ignore any reserved or undefined information returned to it by a
subroutine. For example, if a 16-bit halfword contains one defined bit and fifteen
reserved bits, your program must mask off the fifteen reserved bits before analyzing
the halfword to determine the value of the one defined bit.

¢ Your program must zero-fill any reserved or undefined arguments that it passes to a
subroutine, except where otherwise specified.

¢ The maximum number of defined character values in a returned character string is the
operative length of the string; characters beyond that point have undefined values and
must be ignored. For example, a character string with a data type of 32 STRING that
has been returned to the caller along with an operative length of 13 (as indicated by
the dotted arrow in Figure 1-1) has undefined values for characters 14-32 in the
returned string.

¢ Arrays, structures, and similar items with operative lengths are considered undefined
beyond those operative lengths.

Pointers, Arrays, and Structures

A number of PRIMOS subroutines deal with arrays and structures. The PRWF$$ subroutine, for
example, uses an array as a buffer. Some of the ACL subroutines use structures to manipulate
access control lists. A subroutine that deals with an array or a structure requires a pointer to the
array or structure as part of its calling sequence.

Pointers, arrays, and structures are represented as a PL/I language construct in the following
format:

addr(target-object)

Variable Meaning
addr The literal string addr with the data type PTR (pointer)
target-object The name of the array or structure, enclosed in parentheses, as defined

in the program by a data declaration statement

Figure 1-1 shows a calling sequence containing a pointer to a buffer having the data type HALF
INT ARRAY.

In some cases, the array or structure serves as both an input and an output argument, although it
is not necessarily used to the same extent in both. For example, a structure specified as an input
argument might contain only a required version number that you set to a specific value, whereas

"Third Edition

PRIMOS Error Codes

Error Code Presentation

This appendix contains an annotated list of the standard PRIMOS error codes. The error codes
are listed in numerical order. Appendix B contains a cross-reference listing of these error codes,
listed alphabetically by the text of the error message.

Each error code consists of a number, a mnemonic, and an error message. User programs should
always check the mnemonic value of an error code, not the numeric value or error message. You
can use the ERSPRINT subroutine to display an error message on your terminal or use the
ERSTEXT subroutine to return an error message to a variable in your program. These
subroutines are further described in Subroutines Reference I11: Operating System.

The description of each error code is in the following format:

E$xxxx (nnn) text of error message
description of error

Variable Meaning

ESxxxx The mnemonic for the error code

nnn The numeric value of the mnemonic

text of error The error message displayed by ERSPRINT or ER$TEXT for that
message error code

description of error The description of the error code

Mnemonics for error codes are defined by files in SYSCOM for several languages:

Language Filename in SYSCOM

C ERRD.INS.CC

FORTRAN 77 ERRD.INS.FTN

FORTRAN IV ERRD.INS.FTN

Pascal ERRD.INS.PASCAL

PL/I ERRD.INS.PL1
Third Edition

Advanced Programmer's Guide, Volume 0

PMA ERRD.INS.PMA
BASIC/VM not available
COBOL not available

Use the appropriate %INCLUDE (Pascal and PL/I), #include (C), or $INSERT (F77, FTN, and
PMA) in your program to provide definitions of all the standard error codes for your program.

Subroutines Reference I: Using Subroutines contains more information on these files.

Notes

Severity code numbers, sometimes returned by CPL programs, have
no correspondence in meaning with standard PRIMOS error codes
with the same numeric values. Severity codes are chosen arbitrarily
by the CPL programmer.

When running user programs that involve a subsystem such as DPTX,
you may encounter messages that are not listed in this appendix.
These messages are related to their respective subsystems, not to
PRIMOS. Refer to the appropriate subsystem documentation for
further information on these error codes.

PRIMOS Standard Error Codes

ESOK (0) Operation completed successfully.
The operation completed successfully. No error was detected.

ESECF (1) End of file.
The end-of-file point was reached during an operation on a file system object.
End-of-file errors may occur, for example, when

¢ Reading directory entries via DIRSE, DIRSRD, DIRSLS, or RDEN$$

e Positioning a file system object via PRWF$$ or SGDR$$

¢ Reading data from a file via PRWF$$ or RDLINS

e Attempting to open for reading a nonexistent member of a segment directory while
positioned at the end of that segment directory

The interpretation of this error depends upon the operation performed. For example, when
returned by PRWF$$ while trying to read data from a file, it indicates that end-of-file was
reached but that some data may have been successfully read. However, when returned by
DIRRD, EEOF indicates that the end of the directory was reached and no entry was
returned to the calling program.

A2 Third Edition

PRIMOS Error Codes

ES$BOF (2) Beginning of file.
An attempt was made to position a file system object to a point before the beginning of the
file. This error results if PRWF$$ is called with a relative-position key and a negative relative
position that would, when applied to the current position, produce an absolute position whose
value is less than zero.

ESUNOP (3) Unit not open.

The file-unit is closed or is not open for the type of operation being requested. For example,
an attempt to read from a file that is open only for writing causes this error, as does an
attempt to write to a file that is open only for reading.

This error code is also returned if an attempt is made to truncate a file that is not open for
writing.

ESUIUS (4) Unit in use.

The unit number supplied to a subroutine that is attempting to open a file system object is
already in use. This error occurs only when static file-unit allocation is used (that is, when the
k$getu subkey is not used).

ESFIUS (5) File in use.

The file system object being accessed is already open on another file-unit or by another user.
This error occurs if an attempt is made to

¢ Open an object that is already open by another user or by the same user on another
file-unit, and the read/write lock of the object disallows the attempt

e Rename an object that is open by another user or by the same user on another file-
unit

e Rename a file directory that is in use as an attach point by any user

¢ Set a quota on a nonquota directory that is in use or contains other files or directories
that are in use

e Change the open mode of a file-unit, by calling CH$MOD or SRCHS$$ (with the
k$cacc key), when the object is open by another user or by the same user on another
file-unit and the new open mode conflicts with the other open mode

e Truncate a file or segment directory that is open by another user or by the same user
on another file-unit

e Access a file that is open for VMFA read

ESBPAR (6) Bad parameter.

An invalid value or combination of values was supplied to a subroutine. Many system
subroutines are capable of returning this error code. If this error occurs, check the parameter
values used in your subroutine call against the description in the Subroutines Reference series.

Third Edition

A-3

Advanced Programmer's Guide, Volume 0

ESNATT (7) No directory attached.
Usually occurs when the directory to which the user is attached is removed from the system,
as when a disk is shut down, or in the case of a network failure when attached to a directory

on a remote disk. Use one of the AT$ subroutines, or the ATTACH or ORIGIN command, to
reestablish an attach point.

E$FDFL (8) Directory entry list is full.
An attempt was made to add an entry to a directory that does not have room for the entry.
Such entries include entries for newly created file system objects, new entries for name
changes of existing objects, ACL information placed on a file system object, and so on.
FIX_DISK may compress such a directory sufficiently to allow new entries to be added (if
the “"UFD_COMPRESSION and —FIX options are used), but, because a directory must reside
in a single segment, there is a limit of approximately 4000 entries per directory even in a
fully compressed directory. (This limit varies according to the lengths of objectnames, ACL
information present, and the current state of directory fragmentation.)

ESDKFL (9) Disk is full.
The operation requires an additional record to be allocated on a disk partition, but all records

on that partition are already allocated. Use the AVAIL command to display the number of
total and available records on a disk partition.

Some operations are nonrecoverable after returning this error code. For example, the WTLIN$
subroutine does not restore the file location pointer to the original location when it encounters
this error; the file location is undefined. On the other hand, the PRWF$$ subroutine does
reset the file location pointer to the value it held before the disk full error was encountered.

ESNRIT (10) Insufficient access rights.
The operation could not be performed because the user running the program has insufficient
access to perform the operation. In most cases, access is determined by either the ACL placed
on a file system object or the password protection. In some cases, only the System

. Administrator or the supervisor terminal user (User 1) may perform the operation. In a few
cases, such as calling the LOGOS$$ subroutine, access is determined by matching user names.

Other cases exist, as indicated in the description of the subroutine that returned this error
code.

ESFDEL (11) File open on delete.

An attempt to delete a file, segment directory, or file directory failed because the object was

either in use by another user, in use by the same user on another file-unit, or an EPF open for
VMFA read.

ESNTUD (12) Not a directory.

The attempted operation requires the target file system object to be a file directory, but it is
not a file directory.

Ad4 Third Edition

PRIMOS Error Codes

ESNTSD (13) Not a segment directory.

The attempted operation requires the target file system object to be a segment directory, but it
is not a segment directory.

ESDIRE (14) Operation illegal on directory.

The object being referenced is a file directory or a segment directory. The requested
operation, or the subroutine called to perform it, cannot act on a directory.

ESENTF (15) Not found.

The target of the operation does not exist. Typically, the target is a file system object, but it
can be any entity whose existence or nonexistence can be determined.

ESFNTS (16) Not found in segment directory.

The desired entry number was not found in the segment directory opened on the specified
file-unit. Either no entry was found at the current position, or the specified entry could not be
found by searching the segment directory.

ESBNAM (17) Illegal name.

The name supplied as a parameter for the operation does not meet the syntactic requirements
for the corresponding object. ESBNAM is also returned by the LOGOS$$ subroutine.

ESEXST (18) Already exists.
The object to be created already exists.

ESDNTE (19) Directory is not empty.

An operation, such as the deletion of a directory, cannot be performed because the directory
is not empty.

ES$SHUT (20)
Not currently returned by PRIMOS.

ESDISK (21) Disk I/O error.

The FORCEW subroutine returns this error code if a disk error occurred during the forced
writing of locate buffers. Other file system and low-level disk subroutines may return this
error code if a disk error occurs.

ESBDAM (22) Bad DAM file.

EPF$SMAP or EPF$RUN return this error code if the EPF DAM file structure has been
corrupted.

Third Edition

Advanced Programmer’s Guide, Volume 0

ESPTRM (23) Pointer mismatch found.
Many PRIMOS subroutines (for example, RDLIN$ and WTLINS$) return this error code if a

pointer mismatch is detected. This is usually caused by a corrupted disk. Run FIX_DISK to
repair the disk.

ES$BPAS (24) Bad password.
The password specified does not match the actual password.

ES$BCOD (25)
Not currently returned by PRIMOS.

ESBTRN (26) Bad truncate of segment directory.

SGDRS$$ returns this error code if an attempt was made to truncate a segment directory that
has members beyond the desired truncation point. Such members must be removed before the
truncation operation can succeed.

ESOLDP (27) 0ld partition.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESBKEY (28) Bad key.
Many PRIMOS subroutines use this error code to indicate that a key argument supplied by the

caller is not a valid value. Check the description of the subroutine being called for valid
values for the key argument.

ESBUNT (29) Bad unit number.

Either an invalid file-unit number was supplied to a system subroutine or an invalid device
unit number was supplied.

Invalid File-unit Number: The file-unit number supplied is invalid (out of range). Note
that file-units 1-128 are valid file-unit numbers (unless the System Administrator has reduced
the number of valid file-units by using the FILUNT directive in the system configuration
file). Larger file-units may become valid as a user uses more dynamically allocated units.

Invalid Device Unit Number: The device unit number is invalid. The range of valid unit
numbers depends upon the type of device involved. (See the ASSIGN command in the
PRIMOS Commands Reference Guide.)

ESBSUN (30) Bad segment directory unit.

The file-unit you specified was not a segment directory unit. This error code is not returned
by currently used subroutines; it may be returned by old programs that use obsolete
subroutine calls.

A-6 Third Edition

PRIMOS Error Codes

ES$SUNO (31) Segment directory unit not open.
An operation was attempted on a segment directory entry when the specified segment
directory file-unit was not open, or was not open for the type of operation requested. The
SRCH$$, SGDR$$, SGDOP, SGDEX, and SGD$DL subroutines may return this error
code.

ESNMLG (32) Name is too long.
A file system objectname is too long. For example, this error code is returned if a call to
APSFX$ to append a suffix to the specified filename would result in a filename or a
pathname longer than PRIMOS allows.

ESSDER (33) Segment directory error.
SGDR$$ or SGDS$SOP return this error code when the segment directory member being
opened is not a SAM or DAM file or a SAM or DAM segment directory. Contact your

System Administrator or system operations staff to determine whether the situation can be
corrected by file system maintenance.

ESBUFD (34) Directory is damaged.
Integrity checking performed by many file system subroutines has detected an integrity error
in the structure of a file directory. Contact your System Administrator or system operations
staff to determine whether the situation can be corrected by file system maintenance.

ESBFTS (35) Buffer is too small.
Either a caller-supplied buffer is too small to hold the data to be returned, or a buffer internal
to the subroutine is too small to hold the data. In some cases, the error indicates that the
requested operation could not be performed. In other cases, the operation may have been
performed, but the data to be returned was truncated to fit into the caller-supplied buffer.

Check the description of the subroutine you are calling to determine the appropriate error
recovery.

ESFITB (36) File is too big.

SGDRSS returns this error code if the segment directory on which it is operating is discovered
to be longer than 131,072 halfwords (65,536 entries).

ESNULL (37) (no message)

This error code does not have any specific meaning attached to it. If specified in a call to
ERS$SPRINT or ER$TEXT, this error code retumns a null string. Many programs use ESNULL
in calls to the obsolete subroutine ERRPRS, or to the ER$PRINT and ER$TEXT subroutines
when the only error message desired is a user-specified error message.

Third Edition A7

Advanced Programmer’'s Guide, Volume 0

A-8

ESIREM (38) Illegal remote reference.

An operation was attempted that requires a reference to a remote node on the network. No
PRIMOS support exists for such a reference. For example, this error code is returned when an
attempt is made to spawn a phantom either while attached to a remote directory or while
using a remote command file or CPL program.

ESDVIU (39) Device in use.

An attempt was made to assign a peripheral device, such as a magnetic tape drive, that was
already assigned to another user.

ESRLDN (40) Remote line is down.

The system being referenced cannot be reached from the local system. No disks or other
resources on that remote system can be accessed.

ESFUIU (41) File units all in use.
The operation could not proceed because the system lacks either available file-units or
available named semaphores.

No Available File-units: No more file-units are available for the calling process. This
usually indicates that the program is not closing units it has finished using, since the number
of available file-units is usually very large.

This error may also indicate that a remote system being used by the calling process has run
out of file-units on which to handle this process’s remote requests.

No Available Named Semaphores; No more semaphores are available on the system for
access via the named-semaphore subroutines. Use the STATUS SEMAPHORES command to
display information on both numbered and named semaphores. Typically, the SEM$OP
subroutine returns this error code if it refers to the lack of availability of named semaphores.

E$DNS (42) Device not started.
PRIMOS returns this error code if a low-level operation is requested on a device that is not started.

ESTMUL (43) Too many subdirectory levels.

The Q$READ and Q$SET subroutines and programs that perform treewalks of subdirectories
return this error code if the number of nested subdirectories exceeds the implementation-
defined maximum.

ESFBST (44)
Not currently retumed by PRIMOS.

ESBSGN (45) Bad segment number.
An invalid (out-of-range) segment number was specified. For example, an attempt was made

to set access on a segment (not a segment directory) with an invalid number via SEGACS.
This error code is also returned by the MM$MLPA and MM$MLPU subroutines.

Third Edition

PRIMOS Error Codes

ESFIFC (46) FAM - invalid function code.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESTMRU (47)
Not currently returned by PRIMOS.

ESNASS (48) Device not assigned.

An attempt was made to perform an operation on a peripheral device (such as a magnetic tape
unit) that is not assigned to the user.

ESBFSV (49)
Not currently retumed by PRIMOS.

ESSEMO (50) Semaphore overflow.

SEMSNF returns this error code if the number of outstanding notifies on the semaphore is
already 32,766.

ESNTIM (51) No timer.

SEMS$TN returns this error code if no timers are available to place on semaphores. Because of
the potential lack of timers for numbered semaphores, you may wish to have your program
use named semaphores and use the SEM$TW subroutine to wait for a specified amount of
time.

ESFABT (52)
Not currently returned by PRIMOS.

ES$FONC (53)
Not currently retumed by PRIMOS.

ESNPHA (54) No phantoms available.

An attempt to spawn a phantom (by calling PHNTM$ or PHANTS) failed because all
phantoms are already in use.

ESROOM (55) No room,

More entries have been returned to a fixed-length table than the table has room for. Some
subroutines return this error code after writing as many entries as possible into the table. This
error code is also returned by storage allocation subroutines that do not signal conditions
when they cannot find sufficient memory.

ESWTPR (56) Disk is write-protected.

On a write-protected disk, you cannot open an object for writing, create an object, or change
the attributes of an object.

Third Edition

A9

Advanced Programmer’s Guide, Volume 0

ESITRE (57) Illegal treename.
The pathname that was supplied to AT$, FIL$DL, SRSFX$, TSRC$$, or that is on a
command line does not conform to the syntax rules for a pathname. See the PRIMOS User’s
Guide for a description of the syntax of a pathname.

E$FAMU (58)
Not currently returned by PRIMOS.

ESTMUS (59) Too many users.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESNCOM (60) Null command line.
The PRIMOS command environment listener uses this error code intemally to distinguish a

null command line from a successfully invoked command. It is not currently returned to the
user.

ESNFLT (61) No fault frame.
CNSIGS$ returns this error code to indicate that it could not find a condition frame in which to

set the continue_sw bit to *1’b before it found the end of the stack. This error probably results
from calling CNSIG$ outside of an on-unit.

ESSTKF (62) Bad stack format.
PRIMOS subroutines, such as CNSIGS$, use this error code to indicate that the stack seems to
be circular. This may be due to a circular stack or a circular list of on-units. The stack is
considered circular if approximately 20,000 stack frames have been examined without finding
the desired frame or the end of the stack. The list of on-units for a particular stack frame is
considered circular if approximately 1,000 on-units have been examined without finding the
desired on-unit or the end of the list.

ESSTKS (63) Bad stack format signalling.

The condition signaling mechanism generates this error code upon detection of a bad stack
format when it calls the command environment reinitialization subroutine. The error code
itself is not returned by any PRIMOS subroutine.

ES$NOON (64) No on-unit found.
A spawned phantom encountered an error during startup that cannot be handled during
startup. Or, a crawlout condition occurred while the process was in Ring 3, indicating a
possible internal error or an error in a user program.

A-10 Third Edition

PRIMOS Error Codes

ESCRWL (65) Fatal error in crawlout.
An attempt was made to crawl out from one ring to another ring of equal or greater privilege,
an invalid crawlout was attempted, or a new condition was signaled during a crawlout. In all
cases, this error code is used only in the call to the subroutine that reinitializes the user’s
command environment, and is not returned by any PRIMOS subroutine to a calling program.

ESCROV (66) Stack overflow in crawlout.
Insufficient room exists on the Ring 3 stack to handle a crawlout from Ring 0 or Ring 1, or
insufficient room exists due to a warm start following a system halt caused by a Ring O stack
overflow by the user’s process. This error code is used only in the call to the subroutine that
reinitializes the user’s command environment, and is not returned by any PRIMOS subroutine
to a calling program. ’

ESCRUN (67) Crawlout unwind failed.

The stack could not be unwound during a crawlout. This error code is used only in the call to
the subroutine that reinitializes the user’s command environment, and is not returned by any
PRIMOS subroutine to a calling program.

E$SCMND (68) Bad command format.
The standard command processor (STD$CP or CP$) returns this error code if the command
line is truncated because it is too long, if the command name does not conform to filename
syntax rules, or if the command name is more than 32 characters long.

ESRCHR (69) Reserved character.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESNEXP (70) Corruption detected during use of EXIT.
PRIMOS has detected a stack frame that indicates the bottom of a static-mode program’s
stack when there is no known static-mode program suspended in the user’s process. Such a
situation is rarely encountered except in an errant program; it may be detected when a

program calls the EXIT subroutine, in which case it causes the user’s command environment
to be reinitialized.

ESBARG (71) Bad argument in command.
An argument, such as a key or a pathname, is invalid, either because it is unrecognized or because
it conflicts with other arguments. An unrecognized argument can occur if a required data area is
not allocated. ESBARG is also used to indicate an invalid argument to a PRIMOS command.

ESCSOV (72) Concealed stack overflow.
PRIMOS has detected that the user’s process has overflowed its Ring O concealed stack,
which is an internal error. This error code is used only in the call to the subroutine that
reinitializes the user’s command environment, and is not returned by any PRIMOS subroutine
to a calling program.

Third Edition

A-11

Advanced Programmer’s Guide, Volume 0

A-12

ESNOSG (73) Segment does not exist.
A reference was made to a nonexistent segment when calling a PRIMOS subroutine to
manipulate a segment’s access rights or when attempting to change the availability of the last
page of a segment.

ESTRCL (74) Command line truncated.

Subroutines that read a command line or expand text using the abbreviation preprocessor
return this error code to indicate that the command line or the expanded text was longer than
could be held in the buffer, and was, therefore, truncated.

ESNDMC (75) ' No SMLC DMC channels.
No further DMC channels are available for synchronous communications lines.

ESDNAV (76) Device not available.
The requested peripheral device, such as a magnetic tape unit, is not available.

ESDATT (77) Device already attached.
The requested peripheral device is already attached to the user’s process.

ES$SBDAT (78) Bad output data.
An incorrect data count or invalid data format exists. The SR$FR_LS subroutine returns this
error code if it encounters an invalid pointer in a linked list. The MM$SMLPA and
MMS$MLPU subroutines return this error code if you specify a page that cannot be operated
on. ESBDAT is also returned by the LN$SET subroutine.

ESBLEN (79) Bad length.

The specified buffer length is invalid. The ASSLST and AS$SET subroutines return ESBLEN
if the buffer length is not large enough.

ESBDEV (80) Bad device number.
An invalid number for a peripheral device, such as a communications device, was specified.

ESQLEX (81) Queue length exceeded.
An internal queue cannot hold another item.

ESNBUF (82) No buffer space.
An attempt to acquire internal buffer space failed.

ESINWT (83) Input waiting.
Pending input must be read before output can be sent to the peripheral device.

Third Edition

PRIMOS Error Codes

ESNINP (84) No input available.
No input from the peripheral device is pending.

ESDFD (85) Device forcibly detached.

The peripheral device was forcibly detached from the user’s process; therefore, the desired
operation cannot be performed.

ESDNC (86) DPTX not configured.

An attempt was made to operate a peripheral device that requires DPTX to be configured on
the system.

E$SICM (87) Illegal 3270 command.
An attempt to use an invalid 3270-class command code was made.

ESSBCF (88) Bad device number copied.
An invalid device number was copied during an output operation to a 3270-class device.

ESVKBL (89)
Not currently returned by PRIMOS.

ESVIA (90) Invalid AID byte.
An invalid or nonexistent AID byte was supplied in the buffer for a 3270-class device.

ESVICA (91) Invalid cursor address.
A cursor address in a cursor-addressing command is invalid or missing.

ESVIF (92) Invalid field address.
A field address in a field-addressing command is invalid or missing.

ESVFR (93) Field required.
An invalid field address was supplied for a formatted screen.

ESVFP (94) Field prohibited.

A Set Buffer Address (SBA) command was performed in an unformatted buffer for a 3270-
class device.

ES$VPFC (95) ' Protected field check.
An attempt was made to write into a protected field on the screen.

Third Edition A-13

Advanced Programmer’'s Guide, Volume 0

A-14

ESVNFC (96)
Not currently returned by PRIMOS.

ESVPEF (97) Past end of field.
An attempt was made to write past the end of a field on the screen.

ESVIRC (98)
Not currently returned by PRIMOS.

ESIVCM (99) Magtape command invalid.
PRIMOS returns this error code if an invalid magnetic tape operation is requested.

ESDNCT (100) Device not connected.

An operation was attempted on a peripheral device that was not connected to the system or to
the user’s process.

ES$BNWD (101) Bad number of words.
An invalid number of halfwords was specified as the size of the buffer.

E$SGIU (102) Segment in use.

An attempt was made to copy a segment to another segment that already exists. (This refers
to memory segments, not to segment directories or their members.)

ESNESG (103) Not enough segments.

Insufficient system segments are available for a program to be invoked or for additional
storage to be acquired.

E$SDUP (104)
Not currently returned by PRIMOS.

ESIVWN (105) Invalid VMFA window number.

An EPF was corrupted, because it contains invalid VMFA window numbers. Rebuild the EPF
by using BIND.

ESWAIN (106) Window already in address space.
PRIMOS uses this error code internally when mapping an EPF to memory to indicate that the

EPF was already mapped to memory for this process. ESWAIN is not currently returned to
the user.

Third Edition

~—

PRIMOS Error Codes

ESNMVS (107) No more VMFA segments.
Insufficient VMFA segments are available in the system to map in an EPE Ask your System
Administrator to increase, if possible, the number of segments available to your process.
Meanwhile, removing inactive EPFs from memory may temporarily alleviate the problem.

ESNMTS (108) No more temporary segments.
Insufficient temporary segments are available in the system to map in the impure procedure
code of an EPF (or the pure procedure code of a remote EPF or an EPF being debugged with
DBG). Ask your System Administrator to adjust (via NSEG) the number of temporary
segments on your system. Meanwhile, removing inactive EPFs from memory may temporarily
alleviate the problem.

ESNDAM (109) Not a DAM file.

An attempt was made to open a file for VMFA-read (via the k$vmr key) when the file is not
a DAM file.

ESNOVA (110) Not open for VMFA.
The file-unit number supplied to EPFSRUN or EPF$MAP does not identify a unit open for

VMFA-read (via the k$vmr key). See Volume III of this series for information on how to call
EPF$RUN or EPFSMAP.

ESNECS (111)
Not currently returned by PRIMOS.

ESNRCV (112) Receive enabled required.

SMSG$ is not allowing you to send a message because you are rejecting messages of the
same type (immediate or deferred) that you are sending to another user.

ESUNRV (113) User not receiving now.

The user to whom you are sending a message via SMSGS$ is rejecting immediate (and
possibly also deferred) messages.

ESUBSY (114) User busy, please wait.
SMSG$ was unable to send a message to a user, either because the receiver already had a
deferred message waiting to be displayed, or because the receiver’s terminal output buffer was
full and, therefore, an immediate message could not be sent.

ESUDEF (115) User unable to receive messages.

The user number specified in a call to SMSG$ identifies a user who is not logged in to the
system, but who is logged in either remotely to another system on the network or through the
system from one node to another.

Third Edition

A-15

Advanced Programmer’s Guide, Volume 0

A-16

ESUADR (116) Unknown addressee.

The user number specified in a call to SMSG$ does not correspond to a logged-in user or the
user name specified could not be found in the list of logged-in users on the system.

ESPRTL (117) Message operation partially blocked.

Not all of the users who were the target of a message sent by SMSGS$ received the message
(perhaps because they are deferring or rejecting messages).

ESNSUC (118) Operation unsuccessful,

When returned by the inter-user message facility (the SMSGS$ subroutine), this error code
indicates that the message reached none of the potential recipients. When returned by the
storage allocation subroutines (STR$FS, for example), this error code indicates a corrupted
memory allocation structure. Also returned by IOCS$_GET_LOGICAL_UNIT. This error
code is used as a generic positive severity code with a message slightly more meaningful than
that displayed for ESEOF and ESNULL.

ESNROB (119)
Not currently returned by PRIMOS.

ESNETE (120) Network error detected.

A problem occurred with a remote file access. Retry the operation. If this is not successful,
close all file-units on the remote system and attach to a directory on a different system before
retrying the remote access.

ESSHDN (121) Disk has been shut down.

The disk on which the file system object resides was shut down. The disk is not available for
use until the system operator has reenabled use of the disk.

ESUNOD (122) Unknown node name.
A subroutine that takes a node name has found that the named node does not exist.

ESNDAT (123) No data found.

No data was found. For example, a call to LON$R to read phantom logout information
returns this error code if there is no additional record of any phantom logout. A call to
LNS$SET returns this error code if the EPF contains no library information.

ESENQD (124) Enqueued only.
A cross-process signaling message has been enqueued, but the user has not yet received the

corresponding signal. This may be due to a low or idle user priority level or the message may
have been deferred.

Third Edition

PRIMOS Error Codes

ESPHNA (125) Protocol handler not available.
The desired communications protocol handier is not available.

ESIWST (126) ESINWT enabled by configuration,

An attempt to set attributes for a device failed because input was waiting, and the
configuration file specified inhibition of this operation when input is waiting.

ESBKFP (127) Bad key for this protocol.

An invalid key was supplied either in a call involving a communications device or when
validating a system parameter.

ESBPRH (128) Bad protocol handler specified.
An internal error in DPTCFG occurred.

ESABTI (129) I/0 abort in progress.

An /O abort was occurring during an attempt to output data or set aitributes for a
communications device.

ESILFF (130) Illegal DPTX file format.
An invalid file format for the configuration file read during DPTX initialization exists.

ES$STMED (131) Too many emulate devices.
DPTX did not initialize because there are too many devices to emulate.

ESDANC (132) DPTX already configured.
An attempt was made to configure DPTX after it was already configured.

ESNENB (133) Remote node not enabled.

A remote cperation cannot be performed because the remote node is not allowing remote file
access.

ESNSLA (134) No NPX slaves available.

The remote system on which the file system object resides has become overloaded with
remote file access requests. The operation may be attempted later, with possible success.

ESPNTF (135) Procedure not found.

The LINKAGE_FAULT$ condition was raised in the slave process on the remote system
while attempting to access a remote file system object.

Third Edition A-17

Advanced Programmer’s Guide, Volume 0

ESSVAL (136) Slave validation error.
The user’s remote ID for the system on which the file system object resides is incorrect. The
user must use the ADD_REMOTE_ID command, described in the PRIMOS Commands
Reference Guide, to establish the correct remote ID for the system. Until then, all attempts to
access data on that remote system will fail with this error code.

ESIEDI (137) I/0 error or device interrupt.
An error or interrupt occurred on a peripheral device on which low-level operations are being
performed by the user program.

ESWMST (138) : Warm start occurred.
A peripheral device should be reinitialized because a warm start was performed on that
system.

ESDNSK (139) PIO instruction did not skip.

A Programmed 1/O instruction to a peripheral device did not skip during a low-level operation
being performed by a user program.

ESRSNU (140) Remote system not up.
The remote system on which the file system object resides is in the process of starting up, but

is not yet honoring Remote File Access (RFA) requests because the operator has not yet set
the date and time at the supervisor terminal for that system.

ES$S18E (141)
Not currently retumed by PRIMOS,

ESNFQB (142) No free quota blocks.
Internal storage used to keep track of quota information for directories was exhausted.

ESMXQB (143) Maximum quota exceeded.
The operation requires an additional record to be allocated in a directory, but the maximum
quota on that directory or on one of its parent directories was already reached.

Some (but not all) operations are nonrecoverable after returning this error code. For example,
the WTLIN$ subroutine does not restore the file location pointer to the original location when
it encounters this error; the file location is undefined. Other operations, such as the PRWF$$

subroutine, reset the file location pointer to the value it held before the quota-exceeded error
was encountered.

ESNOQD (144) Not a quota disk.

An attempt was made to perform a quota operation on a nonquota (pre-Rev. 19 format) disk.
The DIRCR, QREAD, and Q$SET subroutines may all return this error code.

A-18 Third Edition

PRIMOS Error Codes

ESQEXC (145) Quota set below current usage.
A call to Q$SET set the maximum quota to a value that is below the number of records
currently used in the directory. Although this is not an error, it does mean that no new records
can be used in the directory until enough records are deleted so that the number of records
used falls below the maximum quota.

ESIMFD (146) Operation illegal on MFD.
An operation was attempted that is invalid on the MFD for a disk partition.

ESNACL (147) Not an ACL directory.

An attempt to set or list ACL information was made for a file system object that resides in a
password directory.

ESPNAC (148) Parent not an ACL directory.

An attempt to set or list ACL information was made for a file system object whose parent
directory is a password directory rather than an ACL directory.

ESNTFD (149) Not a file or directory.
The target object of a call to AC$CAT, ACSDFT, or KLMSIF is not a file, a segment
directory, or a file directory. You cannot protect an access category with another access
category, nor can you set an access category to default protection.

ES$IACL (150) Operation illegal on access category.

An attempt was made to open, close, delete, or set improper attributes on an access category.
Use ACSLST to read an access category. Use CAT$DL to delete an access category. The only

proper attributes to set on an access category are date/time attributes such as date/time last
modified.

ESNCAT (151) Not an access category.

The file system object is not an access category. The ACCAT, CATDL, and DIR$CR
subroutines are all capable of returning this error code.

ESLRNA (152) Like reference not accessible.
ACSLIK cannot access the like reference object due to insufficient access.

ESCPMF (153) Category protects MFD.

An attempt was made to call CAT$DL to delete an access category that protects the MFD of
a partition.

ESACBG (154) ACL too big.

An attempt was made to specify more access control information than can fit in a directory
entry. See Volume 1I of this series for a description of the limits on access control lists.

Third Edition

A-19

Advanced Programmer’s Guide, Volume 0

A-20

ESACNF (155) Access category not found.
The access category referenced in a call to AC$CAT or DIRSCR could not be found. A
common cause for this error is the lack of the .ACAT suffix in the call. None of the
PRIMOS access control subroutines add this suffix to a filename. Therefore, your program
should call APSFX$ to ensure addition of the suffix.

ESLRNF (156) Like reference not found.
The ACSLIK subroutine could not find the like reference. See Volume II of this series for
details on setting access on one object to be like that of another object. A common cause for
this error is the false assumption that supplying a simple pathname causes the like reference
to be searched for in the target object’s directory. In fact, it is searched for in the user’s home
directory.

ESBACL (157) Bad access control list format.

An invalid access control list was supplied to the AC$SET or AC$CHG subroutine. See
Volume II of this series for detailed information on the syntax for access control lists.

ESBVER (158) Bad version number.

A version number supplied by the calling program in a structure or in the calling sequence is
unrecognized or no longer supported. If this error occurs in an EPF file, it may be correctable
by resubmitting the file to BIND.

ESNINF (159) No information is accessible.
An error occurred while you were attempting to access a file system object in a directory to
which you have no List access. To prevent the determination of objectnames in the directory
by inference or by the process of elimination, PRIMOS does not report the original error to

the calling program or to the user. ESNINF is also returned by the LN$SET and DS$AVL
subroutines.

ESCATF (160) Access category found in directory.

The AC$SRVT subroutine cannot revert a directory (that is, change it from an ACL directory
to a password directory), because the directory still contains access categories.

ESADRF (161) ACL subdirectory found in directory.
ACSRVT retumns this error code to indicate that the directory to be reverted (changed from an

ACL directory to a password directory) still contains ACL subdirectories that must themselves
be reverted before their parent directory can be reverted.

ESNVAL (162) Validation error.
CHGS$PW returns this error code if the user’s entry could not be found in the EDIT_PROFILE
database (perhaps indicating that the user’s entry was deleted since the user logged in).

Third Edition

PRIMOS Error Codes

ESLOGO (163) (no message)
PRIMOS uses this error code for internal communication when calling the subroutine that
reinitializes a user’s command environment to indicate that the user is logging out. Neither the
error code nor the accompanying null message is ever returned to a user program or displayed
on a user’s terminal.

ESNUTP (164) No unit table available for phantom.
All unit tables are taken.

ESUTAR (165) Unit table already returned.
An internal PRIMOS error occurred when logging out a user.

ESUNIU (166) Unit table not in use.
A unit table that was not being used is being returned to the system.

ESNFUT (167) No unit table available.
No unit tables are available.

ESUAHU (168) User already has unit table.
An internal PRIMOS error occurred when logging in a user.

ESPANF (169) Priority ACL not found.

PASLST returns this error code to indicate that no priority ACL was placed on the disk
partition specified.

ESMISA (170) Command line argument missing.

A required argument was not specified on the command line. User-written programs may use
this error code for similar purposes.

ESSCCM (171) System console command only.

The desired operation can be performed only by a program running at the supervisor terminal
(User 1).

ES$BRPA (172)
Not currently returned by PRIMOS.

ESDTNS (173) Date and time not set.

DIR$CR and Q$SET subroutines return this error code to indicate that proper disk-quota
operations cannot be performed unless the system date and time are set.

Third Edition A-21

Advanced Programmer’s Guide, Volume 0

A22

ESSPND (174) Remote procedure call still pending.

A call to a remote system has not completed within a reasonable amount of time. This error
code indicates a non-recoverable network error.

ESBCFG (175) Network configuration mismatch.
The remote system on which the file system object resides does not agree with the network
configuration of the local system or the remote system requires a remote ID. Use the ARID
command to establish a remote ID. If the problem persists, contact your Network
Administrator for assistance.

ESBMOD (176) : Bad access mode.
The ACS$ subroutines return this error code if the access mode is not ALL, NONE, or one or
more of the letters A, D, L, O, P, R, U, W, or X. See Volume II of this series and the
PRIMOS User’s Guide for detailed information on the syntax rules for access control lists.

ES$BID (177) Bad user identifier.
ACSSET, VALIDS$, or CHG$SA return this error code to indicate an invalid identifier or user
name. AC$SET may also return this error code if two specifications of $REST occur in the
access control list. See Volume II of this series and the PRIMOS User's Guide for detailed
information on the syntax of an access control list.

ESST19 (178) Operation illegal on pre-19 disk.

An attempt was made to use file system features that are not available for files on the
specified disk. This is usually because the disk was formatted using an earlier revision of
PRIMOS that did not support these features.

ES$CTPR (179) Object is category-protected.
ACS$CHG returns this error code when an attempt is made to change the access of an object
that is protected by an access category. See Volume II of this series for information on how
your program can handle this situation. See the PRIMOS User's Guide for detailed
information on the rules governing access control lists.

ESDFPR (180) Object is default-protected.
ACS$CHG returns this error code when an attempt is made to change the access of an object
that is default-protected.

If you wish your program to force the change anyway, have it call ACSLIK with the target
object as both the target and reference objects; that is, set a specific ACL to match the
existing ACL. Then, call AC$CHG to change the specific ACL on the target object.

ESDLPR (181) File is delete-protected.

FIL$DL or SRCH$$ return this error code when an attempt is made to delete a file that was
delete-protected by SATR$$ (via the SET_DELETE command).

Third Edition

PRIMOS Error Codes

ES$BLUE (182)
Not currently returned by PRIMOS.

ESNDFD (183)
Not currently retumed by PRIMOS.

ESWET (184) Wrong file type.

The file specified is of the wrong type. For example, this error code is returned by CF$EXT,
CF$REM, or CF$SME if you specify a file that is not a CAM file.

ESFDMM (185) ' Format/data mismatch.

This error code is returned by the LISTSCMD subroutine if you specify an invalid wildcard
string.

ESFER (186) Bad format.

This error code is returned by the ISNSL, ISNSRC, and ISNSUC subroutines if the file
accessed is not formatted as a High Level Name File (HLNF).

ESBDV (187)
Not currently returned by PRIMOS.

ES$BFOV (188)
Not currently retumed by PRIMOS.

ESNFAS (189) Top-level directory not found or inaccessible.
The first directory name supplied in the pathname could not be located on any of the disks
that are active and visible to the calling system. This error can also occur if the named

directory does actually exist on one or more disks, but the user does not have List access to
any of them.

ES$APND (190) Asynchronous procedure still pending.

An attempt to initiate a new asynchronous remote procedure failed because there is a previous
asynchronous procedure call to that remote node. Terminate the previous asynchronous
procedure call and retry the operation.

ESBVCC (191) Bad virtual circuit clearing.
An error was made in clearing a virtual circuit when the user was terminating file access to a
remote node. It does not indicate an error in the user program; it most likely indicates that a
network problem occurred prior to the termination of the connection.

Third Edition A-23

Advanced Programmer's Guide, Volume 0

ESRESF (192) Restricted access file.

An attempt was made to access a file that is restricted to access by only a particular
subsystem (such as ROAM).

ESMNPX (193) Illegal multiple hops in NPX.

A disk partition residing on a remote node is listed on that remote node as residing on yet
another remote node, requiring a second remote access, which is not allowed. Ask your
System Administrator to modify the system startup file appropriately.

ESSYNT (194)
Not currently returned by PRIMOS.

ESUSTR (195) Unterminated string.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESWNS (196)
Not currently retumed by PRIMOS.

ESIREQ (197)
Not currently returned by PRIMOS.

ESVNG (198)
Not currently returned by PRIMOS.

ES$SOR (199)
Not currently returned by PRIMOS.

ESTMVV (200)
Not currently returned by PRIMOS.

ESESV (201)
Not currently returned by PRIMOS.

ESVABS (202)
Not currently retumed by PRIMOS.

A-24 Third Edition

PRIMOS Error Codes

ESBCLC (203) Bad compiler library call.
The compiler generated an invalid call to one of its runtime library routines. For example, the
first argument to most of the I/O routines is a key that indicates which optional arguments
have or have not been specified. If the compiler sets the key to indicate that a particular
argument will be passed, but the compiler does not pass that argument, the error ESBCLC is
raised. Contact your System Administrator for assistance.

ESNSB (204) BRMS-labeled tape was detected.
A non-BRMS product has tried to read a BRMS-labeled tape.

ESWSLV (205) Slave ID mismatch.

One of the nodes involved in your network connection has had the network restarted since
you last used this remote file access connection. Attach to a directory on a different system,
then reestablish attach points and retry the RFA operation.

ESVCGC (206) Virtual circuit was cleared.

The virtual circuit used for RFA access to a particular node was cleared by PRIMENET.
Close all units open to that node and issue the ORIGIN command to reset the condition, then
reestablish attach points and open files on the remote node as desired.

ESMSLV (207) Maximum slaves per user exceeded.

The maximum number of remote file accesses to remote systems per user has been reached
and no new RFAs to other remote systems are allowed.

ESIDNF (208) Slave ID number not found.
Internal RFA error.

ESNACC (209) Not accessible.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESUDMA (210) Not enough DMA channels.
There are too few DMA channels during a low-level operation on a peripheral device.

ESUDMC (211) Not enough DMC channels.
There are too few DMC channels during a low-level operation on a peripheral device.

ESBLEF (212)
Not currently retumed by PRIMOS.

ES$BLET (213) Bad tape record length and EOT.
PRIMOS uses this error code internally. It is not currently returned to the user.

Third Edition

A-25

Advanced Programmer’'s Guide, Volume 0

A-26

ESALSZ (214) Allocation request too small.

A call to STR$SAL to allocate memory specified too few halfwords to allocate. You must
allocate a minimum of four halfwords.

ESFRER (215) Free request with invalid pointer.

A call o STR$FR or STR$FS was made with an invalid pointer. An invalid pointer is a
pointer to an area of memory already freed, or to a location other than the beginning of an
allocated or freed area.

ESHPER (216) User storage heap is corrupted.
The heap storage for program-class storage was corrupted. Issue the ICE command to reset
the condition.

Alternatively, if you believe the program you were running caused the problem, issue the
DUMP_STACK command to trace the program’s history; then issue the ICE command to

reinitialize your command environment. (Errant user programs can corrupt program-class and
process-class storage.)

ESEPFT (217) EPF type invalid.
The EPF type is not valid for this revision of PRIMOS. The EPFSMAP subroutine is
typically the subroutine that returns this error code, although other EPF-related subroutines
also may retumn this error code. Resubmit the file to BIND. See Volume III of this series for
more information.

ESEPFS (218)
Not currently returned by PRIMOS.

ESILTD (219) EPF LTD linkage descriptor invalid.

An invalid LTD linkage descriptor type was found in an EPF file. The EPF file is corrupted
or an internal error occurred in BIND. Resubmit the file to BIND.

ESILTE (220) EPF LTE linkage descriptor invalid.

An invalid LTE linkage descriptor type was found in an EPF file. The EPF file is corrupted
or an internal error occurred in BIND. Resubmit the file to BIND.

ESECEB (221) Command environment breadth exceeded.
An attempt was made to invoke CP$, EPFSRUN, or EPF$INVK when the maximum
command environment breadth (as displayed by LIST_LIMITS) was already reached by the
running program. Use the RD$CE_DP subroutine to determine the current command
environment breadth and use the CE$BRD subroutine to determine the maximum command
environment breadth within your program.

Third Edition

PRIMOS Error Codes

ESEPFL (222) EPF file exceeds file size limit.
The EPF is too large for the EPFSMAP or EPF$RUN subroutine to handle. Consider
breaking up the program or library into separate program and library EPFs, if possible.

ESNTA (223) EPF file not active for this user.

REMEPFS$ and internal PRIMOS subroutines use this error code to indicate that an attempt
was made to remove from memory an EPF that was not mapped to memory for this user.

ESSWPS (224)
Not currently retumed by PRIMOS.

ESSWPR (225) EPF file suspended within this process.

The EPF being removed (by EPFDEL, EPFSRUN, or REMEPFS) is suspended (active)
within the user’s process. Removal of the EPF from memory is not allowed in this case.

ESADCM (226) System Administrator command only.

A user other than the System Administrator attempted to set system defaults for command
environment limits.

ESUAFU (227) Unable to allocate file-unit.

PRIMOS was unable to allocate a file-unit entry for a user because insufficient system-class
storage was available.

ESFIDC (228) File inconsistent data count.
Either a corrupted disk or a problem with the file system exists. This error is returned during
the truncation of a SAM file if the data count for the last record of the file implies that the
current position of the unit in the file is beyond the end-of-file mark. Contact your System
Administrator or system operations staff to determine whether the situation can be corrected.

ESINDL (229) Insufficient DAM file index levels.
A DAM file has an insufficient number of index record levels for its size. This error may be
retumed during the truncation of a DAM file by PRWF$$ or during the deletion of a DAM
file. Contact your System Administrator or system operations staff to determine whether the
situation can be corrected.

ESPEOF (230) Past end of file.
Either a corrupted disk or a problem with the file system exists. This error is returned during
the truncation of a DAM file if the data count for the last record of the file implies that the
current position of the unit in the file is beyond the end-of-file mark. Contact your System
Administrator or system operations staff to determine whether the situation can be corrected.

Third Edition A-27

Advanced Programmer's Guide, Volume 0

A28

ESEXMF (231) Extent map full.

The extent map of a Contiguous Access Method (CAM) file is full. The file cannot be
extended because no additional extents can be added to the extent map.

ESBKIO (232) Unit open for block mode I/O.

The file-unit is open for block mode I/O. Operations requiring locate mode cannot be
performed.

ESAWER (233) Asynchronous write error.
An error occurred during an asynchronous writing action.

ESRAMC (234) ROAM access mode conflict.
A ROAM error, not a file system error, exists.

ESRIER (235) ROAM internal error.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESNSLV (236) Process not a slave.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESRSIN (237)
Not currently returned by PRIMOS.

ESATNS (238) Attribute not supported in directory.

The target object does not have the date/time created (DTC) and date/time last accessed
(DTA) attribute fields. These attribute fields are not present because the object is not an entry
in a hashed directory. Attempts to set these attribute fields return this error code.

ESRSHD (239) Remote disk has been shut down.

A file system operation cannot be performed because it would take place on a remote disk
that was shut down from the supervisor terminal on the local system. No further accesses to
the disk are permitted from the local system. Accesses to the disk from other nodes on the
network, including the system on which the disk resides, may still be permitted.

E$NOPD (240) ' No paging device defined.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESNRFC (241)
Not currently returned by PRIMOS.

Third Edition

PRIMOS Error Codes

ESCPOV (242) Overflow of CPU seconds.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESIOOV (243) Overflow of I/0 seconds.
PRIMOS uses this error code internally. It is not currently returned to the user.

ES$BHOV (244) Overflow of CPU and I/0 seconds.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESAELE (245) ' Library is non-executable.
You tried to invoke a library EPF as a program EPE If you want an EPF to function as both

a program and a library EPF, you must use the MAIN subcommand of BIND to tell BIND
what to use as a starting address.

ESLIST (246) Search list not found or invalid.
A search rule subroutine specified the name of a search list that is not currently set for the
user’s process. This error code is also returned if you attempt to create a search list with an
illegal search list name. Use the LIST SEARCH_RULES command to determine which
search lists are set for your process. Search list names are not case sensitive.

ESRULE (247) Search rule not found or invalid.
A search rule subroutine specified a search rule that PRIMOS cannot find in the specified
search list. Sometimes this error code is issued because the search rule in the list and the one

specified in your subroutine differ in case. Use the LIST_SEARCH_RULES command to list
the rules in your search lists.

ESNTOP (248) Search rule not an optional rule.

You attempted to enable or disable a search rule that is not an optional search rule. You can
use the SRSREAD subroutine to determine if a search rule is optional.

ESNEST (249) Search lists nested too deeply.
You attempted 10 set a search list using a search rules file (template file) that contains -insert
keywords that result in either of the following conditions. Either these -insert keywords
would result in the nested insertion of template files in excess of 100 levels, or the -insert

keywords would result in a circular reference, such as two files that attempt to include each
other.

ESADMN (250) Administrator rules not modifiable.

You attempted to delete or modify an administrator rule in a search list, or you attempted to
insert a search rule before an administrator rule.

Third Edition

A-29

Advanced Programmer’s Guide, Volume O

A30

ESEOL (251) End of search list.
You attempted to read past the end of a search list.

ESADRL (252) Administrator rules contain error.
You attempted to create an illegal administrator rule.

ESIFCB (253) Insufficient free contiguous blocks.

Not enough contiguous disk blocks are available to extend the CAM file. (When CAM files
are extended, they are extended more than one record at a time.)

E$IMEM (254) Insufficient memory for extent map.

The user does not have enough dynamic memory to read in the CAM file’s extent map. The
extent map, which contains the physical location of the extents on the disk, is read into
memory when it is opened.

ESNRES (255) No resources available for request.

A system process was not available for use or not enough memory was available to carry out
the request.

ES$ILUS (256) Illegal use of PRIMIX gate.
The user called a gate reserved for PRIMIX. This error may be returned when the user is not
currently in PRIMIX or when that user’s PRIMIX state data was corrupted.

ESNCHD (257) No child found for this process.

A process attempted to wait for the termination of a child when the process has no children.
The PX$WAITP subroutine returns this error code.

ESINT (258) PRIMIX wait terminated by interrupt.

A process was taken off a PRIMIX wait by an interrupt. This error code is returned by
PX$WAITP and PX$PAUSP.

E$XSHD (259) PRIMIX can not be initialized when running.

The user attempted to start PRIMIX when PRIMIX is already active. This error code is
returned by PXS$INIT, called through the START_PRIMIX command.

ESNOPX (260) PRIMIX can not be shut down when not running.

The user attempted to stop PRIMIX when PRIMIX is not currently active. This error code is
retumed by PX$SHDN, called through the STOP_PRIMIX command.

Third Edition

PRIMOS Error Codes

ES$NOUS (261) PRIMIX process table has no users.

The PRIMIX process table is empty when at least one entry for the caller should have been
found. This error code indicates a serious problem with the PRIMIX process data structure.

ESINCO (262) PRIMIX process table returned is incomplete.
PX$SDUMP (the subroutine that returns the PRIMIX process table to the caller) ran out of

dynamic memory so that only a partial listing of the table was returned.

ESIREQ (263)

Returned only for PRIMIX users at Rev.

ESINAT (264)

ESILLN (265)
Returned only for PRIMIX users at Rev

ESBUID (266)

Returned only for PRIMIX users at Rev.

ESINRE (267)

Returned only for PRIMIX users at Rev.

ESNPSG (268)

Returned only for PRIMIX users at Rev.

ESUINF (269)

Returned only for PRIMIX users at Rev.

ESIVPT (270)

‘Returned only for PRIMIX users at Rev.

E$SNAL (271)

Returned only for PRIMIX users at Rev.

ESNATF (272)

Returned only for PRIMIX users at Rev.

ESND3S (273)

Returned only for PRIMIX users at Rev.

Third Edition

Illegal EPF registration.

21.0 and subsequent revisions.

Invalid number of initialization arguments.
Returned only for PRIMIX users at Rev.

21.0 and subsequent revisions.

Illegal link at EPF registration.

21.0 and subsequent revisions.

Bad user ID.

21.0 and subsequent revisions.

Invalid request.

21.0 and subsequent revisions.

Not enough per-user DTAR] segments.

21.0 and subsequent revisions.

User ID not found.

21.0 and subsequent revisions.

Invalid block pointer.

21.0 and subsequent revisions.

Segment not allocated.

21.0 and subsequent revisions.

Not able to free storage.

21.0 and subsequent revisions.

No DTAR3 segments available.

21.0 and subsequent revisions.

A-31

Advanced Programmer's Guide, Volume 0

E$BSMT (274) Null smt_ptr or bad field within SMT.
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESIALN (275) Illegal alias name.
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESBPTR (276) Bad pointer within SMT.
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESIDBT (277) ' Illegal database.
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

E$BDTR (278) Bad DTAR. -
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESLUNR (279) Library unregistered.
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESENRG (280) EPF has not been registered.
Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESNDRB (281) No directory block for unit.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESCQPT (282) Circular quota parent thread.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESAREA (283) Corrupted area encountered. —
A space allocation routine found an error in internal consistency.

ESNOWN (284) Not owner of resource.
You attempted to return space that you do not own.

ESBLOK (285) Bad block encountered.
A space allocation routine found an error in internal consistency.

A-32 Third Edition

PRIMOS Error Codes

ESISMR (286) Invalid static mode resume.
The command processor uses ESISMR to indicate that the module INVKSM was told to
restore a file that is not a valid static-mode program image. The CP$ subroutine returns
ESISMR if a program called CP$ exists to resume or restore an invalid image. ESISMR is
displayed as an error message when the user has attempted to restore or resume an invalid
image from command level.

ESBLIN (287) Bad line number.
A line number out of the legal range is passed to the gate.

ES$SBBUF (288) ' Bad buf fer number.
A buffer number out of the legal range is passed to the gate.

ES$BPRO (289) Bad protocol.
A protocol index out of the legal range is passed to the gate.

ESLNUS (290) Line in use.
A line type is being changed on a line that is already assigned to a user.

E$BFUS (291) Buffer in use.
The specified buffer number is already being used by another user.

ESIRBF (292) Invalid use of remote buffer.
A buffer number in the remote buffer range is specified for a local asynchronous line.

ESIABF (293) Invalid use of assign line buffer.
A buffer number in the assignable line buffer range is specified for a terminal user line.

ESIASD (294) Invalid ASD use.
An attempt was made to enable ASD on an assignable line or an NTS line.

ESIASP (295) Invalid sample speed for ASD.
The passed line speed used as the ASD sample speed is invalid.

ESILOD (296) Invalid use of DISLOG.
You tried to enable DISLOG on an assignable, remote, or NTS line.

ESNSNI (297) NSS database not initialized.
An attempt was made to access the Node Status database that was created.

Third Edition A-33

Advanced Programmer’s Guide, Volume 0

A34

E$SNSNC (298) Node/LAN naming conflict.

An attempt to add a node to the Node Status database failed because of a naming conflict.
The node name conficts with an existing LAN name, host name, or LTS name in the
database.

ESNSAC (299) Node/MAC address conflict.

An attempt to add a node to the Node Status database failed because of a MAC address
conflict. The node has a MAC address that conflicts with an existing MAC address in the
database.

ESNTHN (300) NTS host not configured.

NTS was started for a host that was not configured for that NTS in the NTS configuration
file.

ESNTNS (301) NTS not started.
NTS was not started and an operation requiring NTS was attempted.

ESNTST (302) NTS already started.
NTS was started and an operation requiring that NTS not be started was attempted.

ESNTCF (303) Not an NTS configuration file.

NTS was started with other than an NTS configuration file (for example, a PRIMENET or an
SNA configuration file). This error code is also returned when the NTS config subfile 0
cannot be opened, the NTS config file version number is not current, or the NTS config file
checksum is not accurate.

ESNTLC (304) LHC not configured.

An LHC is either not present or was not configured with an LHC directive, but that LHC was
specified in the NTS configuration file or the PRIMENET configuration file.

ESNTIN (305) NTS database not initialized.

An operation that requires access to the NTS database was attempted, but the NTS database is
not initialized.

ESNTDL (306) LHC not downline loaded.

An attempt was made to start PRIMENET/LAN300 or NTS on an LHC that is either broken
or was not downline loaded.

ESPLAA (307) NTS line already associated.
An attempt was made to associate an NTS line that was already associated.

Third Edition

PRIMOS Error Codes

ESLLAA (308) LTS line already associated.
An attempt was made to associate an LTS line that was already associated.

. ESNASO (309) Line not associated.

An attempt was made to unassociate an NTS line in PRIMOS or an LTS line that is not
currently associated.

ESNCFG (310) Line not configured.
An attempt was made to start NTS, but no NTS lines are configured.

ESNXCB (311) -XCB unavailable for request.
An operation requires a buffer to be sent to an LHC, but no control blocks are available.

ESDOQF (312) Device output queue full.
An operation requires a buffer to be sent to an LHC, but the output queue is full.

ESLNOC (313) Line not connected.

A request for a connection between an LTS line and PRIMOS has been rejected. This can
occur when another connection is pending, when a disconnection is pending, or when the line
is not connectable.

ESRQF (314) Request queue full.
The internal request queue to the NTS_SERVER s full.

ESCREJ (315) Connection request rejected.

An LTS line rejected a connect request from PRIMOS. This occurs when the line is already
connected.

ESCTMO (316) Connection request timed out.

An LTS line did not respond to a connect request (assignment) from PRIMOS. This occurs
when the LTS is not present or is not currently operational.

ESLHDN (317) LHC down.

An operation that requires an LHC to not be in the "down" state was requested when the LHC
is down.

ESLTDN (318) LTS down.

An operation that requires an LTS to not be in the "down" state was requested when the LTS
is down.

Third Edition

A-35

Advanced Programmer's Guide, Volume 0

A-36

ESNTSH (319) NTS is shut down.
An operation was attempted during an NTS shutdown.

E$SQFUL (320) Queue is full.
The controller queue is full.

E$QEMP (321) Queue is empty.
The controller queue is empty.

ESNOQ (322) Queue not found.

An operation was requested on a queue that does not exist. This queue does not exist because
it was not created by IGSFIND.

ESVAL (323) Validation error.

This error code is returned when a process request is rejected. A request is rejected if your
process does not have the proper access rights, if your process does not own the connection,
or if the logical connection ID has been corrupted.

ESCOMM (324) Command illegal.
This error code is returned if you specify a command for a routine that cannot accept
commands. A command is a fifteen-bit standalone quantity. Some data transfer routines, such
as IGSENQ and IG$DEQ, accept either buffers or commands. Other routines, such as
IG$SABUF and IG$RBUF, have arguments formatted to accept commands, but cannot take
commands. Specifying a command for these routines returns ESCOMM.

ES$AWIR (325) Page is already wired.
You tried to wire a page that is already wired.

ESIWIR (326) Page is not wired.
You tried to unwire a page that is not wired.

ESNPDA (327) No password directories allowed.

Password directories are disabled on the system and you tried to either create a password
directory or revert an ACL directory to a password directory.

ESNINT (328) Spooler subsystemnot initialized.

You tried to spool a file before the Spooler subsystem was initialized. The system operator
must initialize the Spooler, using the PROP —COLDSTART command, before users can
access the Spooler.

Third Edition

PRIMOS Error Codes

ESREIU (329) Registered EPF is in use.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESNBA (330) No buffers available.
No buffers are available to make a line a terminal line.

ESLNOW (331) Line not owned by you.

You tried to change line characteristics for a line other than your terminal line or a line
assigned to you.

ESLNP (332) Line not present on system.

ASSLIN returns this error code if you specify a line number that does not correspond to an
asynchronous line on the system.

ESLNA (333) Lock not allocated.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESLDES (334) Lock has been destroyed.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESLNY (335) Lock is not yours.
PRIMOS uses this error code internally. It is not currently returned to the user.

ESRMLN (336) Illegal operation on remote line.

ASSLIN returns this error code if you try to get a line number for a remote line. ASSLIN
returns line numbers of local NTS lines only.

ESITLB (337) Invalid use of terminal line buffer.

ASS$SET returns this error code if you try to set the user number for an assignable
asynchronous line.

ESIPS (338) Invalid parameter setting.

ASSSET returns this error code if you specify an invalid value for one of the asynchronous
line characteristics.

ESDPAR (339) Duplicate parameter.

ASS$SET returns this error code if you specify duplicate values for an asynchronous line
characteristic in the list of line characteristics.

Third Edition A-37

Advanced Programmer’s Guide, Volume O

A-38

ESPNS (340) Parameter not settable.

ASS$SET returns this error code if you specify a nonexistent asynchronous line characteristic,
or a characteristic that you are not permitted to modify.

E$BCHK (341)
Not currently returned by PRIMOS.

ESEXPD (342)
Not currently returned by PRIMOS.

ESDNTS (343) ' Density not selected.
Your attempt to specify a tape density when assigning a magnetic tape drive was rejected.
This can occur if the specified tape is not fully rewound.

ESSNTS (344) Speed not selected.

Your attempt to specify a tape speed when assigning a magnetic tape drive was rejected. This
can occur if the specified tape is not fully rewound.

E$BMPC (345) Magtape controller hung.
A magnetic tape drive did not respond to an I/O request within a reasonable amount of time.
This can occur if the power switch on the interface box between a 6250 tape drive and its
tape controller is off, or if there is a problem with the tape drive hardware.

ESGPON (346) Password generation on.
CHGS$PW returns this error code if you attempt to manually set a user password when
automatic generation of all login validation passwords is enabled. Either disable automatic
password generation or use the GEN$PW subroutine to create a computer-generated
password. The System Administrator can use the EDIT_PROFILE command to disable
automatic password generation.

ESNGPW (347) Password generation off.
GENS$PW returns this error code if you attempt to create a computer-generated password
when automatic password generation is not enabled. Either enable automatic password
generation, or use the CHG$PW subroutine to manually change the password. The System
Administrator can use the EDIT_PROFILE command to enable automatic password
generation.

ESISTA (348) Invalid state.
PRIMOS uses this error code internally. It is not currently returned to the user.

Third Edition

PRIMOS Error Codes

E$ZERO (349) Uninitialized block on robust partition.
An unintialized block was detected in a file on a robust partition. This usually happens
following a system halt that was recovered from by running FIX_DISK with the —FAST
option. The operation that returned this error code also reinitialized (zeroed out) the bad
block. Perform recovery procedures (if necessary) and rerun the program. To prevent multiple
E$ZERO errors, you can run FIX_DISK with the -FULL option. This reinitializes all bad
blocks on the robust partition.

Third Edition A-39

Alphabetical List of Error Messages

In the course of debugging and running application programs, you will undoubtedly encounter
errors. These are reported on your terminal in the form of one or more lines of text, the first of
which is a standard PRIMOS error message. The error message may be followed by additional
program-specific information.

The purpose of this appendix is to make it easier, when all you have is the text of the error
message, to find the corresponding error message description in Appendix A. The message
descriptions in Appendix A are ordered numerically.

In the list that follows, messages are listed alphabetically by the text of the displayed error
message. Following each error message is the numeric value for each error code in the form
nnn, and the mnemonic for each error code in the form E$xxxx.

Error Message Numeric Mnemonic
Value
(Null message) 37 ESNULL
(Null message for logout) 163 ESLOGO
Access category found in directory. 160 E$CATF
Access category not found. 155 E$SACNF
ACL subdirectory found in directory. 161 E$SADRF
ACL too big. 154 E$ACBG
Administrator rules contain error. 252 ESADRL
Administrator rules not modifiable. 250 E$SADMN
Allocation request too small. 214 ES$ALSZ
Already exists. 18 E$EXST
Asynchronous procedure still pending. 190 E$SAPND
Asynchronous write error. 233 E$AWER
Attribute not supported in directory. 238 E$ATNS
Bad access control list format. 157 E$BACL
Bad access mode. 176 E$BMOD
Bad argument in command. 71 E$BARG
Bad block encountered. 285 E$BLOK
Bad buffer number. 288 E$BBUF
Bad command format. 68 E$CMND
Bad compiler library call. 203 E$BCLC
Bad DAM file. 22 E$BDAM
Third Edition

B-1

Advanced Programmer’s Guide, Volume 0

Error Message Numeric Mnemonic
Value
Bad device number. 80 E$BDEV
Bad device number copied. 88 E$SBCF
Bad DTAR. 278 E$BDTR
Bad format. 186 E$FER
Bad key. 28 E$BKEY
Bad key for this protocol. 127 E$BKFP
Bad length. 79 E$BLEN
Bad line number. 287 E$BLIN
Bad number of words. : 101 E$BNWD
Bad output data. 78 E$BDAT
Bad parameter. 6 E$BPAR
Bad password. 24 E$BPAS
Bad pointer within SMT. 276 E$BPTR
Bad protocol. 289 E$BPRO
Bad protocol handler specified. 128 E$BPRH
Bad segment directory unit. 30 E$BSUN
Bad segment number. 45 E$BSGN
Bad stack format. 62 E$STKF
Bad stack format signalling. 63 E$STKS
Bad tape record length and EOT. 213 E$BLET
Bad truncate of segment directory. 26 E$BTRN
Bad unit number. 29 E$BUNT
Bad user ID. 266 E$BUID
Bad user identifier. 177 E$BID
Bad version number. 158 E$BVER
Bad virtual circuit clearing. 191 E$BVCC
Beginning of file. 2 E$BOF
BRMS-labeled tape was detected. 204 E$NSB
Buffer in use. 291 E$BFUS
Buffer is too small. 35 E$BFTS
Category protects MFD. 153 E$CPMF
Circular quota parent thread. 282 ESCQPT
Command environment breadth exceeded. 221 ESECEB
Command illegal. 324 E$COMM
Command line argument missing. 170 E$SMISA
Command line truncated. 74 ES$STRCL
Concealed stack overflow. 72 E$CSOV
Connection request rejected. 315 E$CREJ
Connection request timed out. 316 E$CTMO
Corrupted area encountered. 283 ESAREA
Corruption detected during use of EXIT. 70 ESNEXP
Crawlout unwind failed. 67 E$CRUN
Date and time not set. 173 E$DTNS
Density not selected. 343 E$DNTS

B-2 Third Edition

Alphabetical List of Error Messages

Error Message Numeric Mnemonic
Value
Device already attached. 77 ESDATT
Device forcibly detached. 85 E$DFD
Device in use. 39 E$SDVIU
Device not assigned. 48 E$NASS
Device not available. 76 ESDNAV
Device not connected. 100 E$SDNCT
Device not started. 42 E$DNS
Device output queue full. 312 E$DOQF
Directory is damaged. 34 E$BUFD
Directory entry list is full. 8 E$FDFL
Directory is not empty. 19 ESDNTE
Disk has been shut down. 121 E$SHDN
Disk /O error. 21 E$DISK
Disk is full. 9 E$DKFL
Disk is write-protected. 56 ESWTPR
DPTX already configured. 132 E$DANC
DPTX not configured. 86 E$DNC
Duplicate parameter. 339 E$DPAR
ES$INWT enabled by configuration. 126 ESIWST
End of file. 1 ES$EOF
End of search list. 251 ESEOL
Enqueued only. 124 E$ENQD
EPF file exceeds file size limit. 222 E$EPFL
EPF file not active for this user. 223 ESNTA
EPF file suspended within this process. 225 E$SWPR
EPF has not been registered. 280 ESENRG
EPF LTD linkage descriptor invalid. 219 ESILTD
EPF LTE linkage descriptor invalid. 220 ESILTE
EPF type invalid. 217 ESEPFT
Extent map full. 231 ESEXMF
FAM — invalid function code. 46 ES$FIFC
FAM — operation not complete. 53 E$FONC
Fatal error in crawlout. 65 ESCRWL
Field prohibited. 94 E$VFP
Field required. 93 E$VFR
File in use. 5 ES$FIUS
File inconsistent data count. 228 ES$FIDC
File is delete-protected. 181 E$SDLPR
File is too big. 36 ESFITB
File open on delete. 11 E$FDEL
File units all in use. 41 E$FUIU
Format/data mismatch. 185 E$FDMM
Free request with invalid pointer. 215 E$FRER
Nlegal 3270 command. 87 E$SICM
Third Edition B-3

Advanced Programmer's Guide, Volume 0

Error Message Numeric Mnemonic
Value
Illegal alias name. 275 ESIALN
Illegal database. 277 ESIDBT
Illegal DPTX file format. 130 ESILFF
Illegal EPF registration. 263 E$IREG
Ilegal link at EPF registration. 265 ESILLN
Illegal multiple hops in NPX. 193 E$SMNPX
Illegal name. 17 E$BNAM
Illegal operation on remote line. 336 ESRMLN
Tllegal remote reference. 38 ES$SIREM
Illegal treename. 57 ESITRE
Illegal use of PRIMIX gate. 256 ES$ILUS
Input waiting. 83 ESINWT
Insufficient access rights. 10 ESNRIT
Insufficient DAM file index levels. 229 ES$INDL
Insufficient free contiguous blocks. 253 ESIFCB
Insufficient memory for extent map. 254 E$IMEM
Invalid AID byte. 90 E$VIA
Invalid ASD use. 294 ES$IASD
Invalid block pointer. 270 ESIVPT
Invalid cursor address. 91 E$VICA
Invalid field address. 92 E$VIF
Invalid number of initialization arguments. 264 ES$INAI
Invalid parameter setting. 338 ESIPS
Invalid request. 267 ESINRE
-Invalid sample speed for ASD. 295 ES$IASP
Invalid state. 348 ES$ISTA
Invalid static mode resume. 286 ESISMR
Invalid use of assign line buffer. 293 ESIABF
Invalid use of DISLOG. 296 ES$ILOD
Invalid use of remote buffer. 292 ESIRBF
Invalid use of terminal line buffer. 337 ESITLB
Invalid VMFA window number. 105 ESIVWN
I/O abort in progress. 129 E$ABTI
I/O error or device interrupt. 137 E$IEDI
LHC down. 317 ESLHDN
LHC not configured. 304 ESNTLC
LHC not downline loaded. 306 ESNTDL
Library is non-executable. 245 ESAELE
Library unregistered. 279 ESLUNR
Like reference not accessible. 152 ESLRNA
Like reference not found. 156 ESLRNF
Line in use. 290 ESLNUS
Line not associated. 309 E$SNASO
Line not configured. 310 ESNCFG

Third Edition

Alphabetical List of Error Messages

Error Message Numeric Mnemonic
Value

Line not connected. 313 E$LNOC
Line not owned by you. 331 ESLNOW
Line not present on system. 332 ESLNP
Lock has been destroyed. 334 ESLDES
Lock is not yours. 335 ESLNY
Lock not allocated. 333 ESLNA
LTS down. 318 ESLTDN
LTS line already associated. 308 ESLLAA
Magtape command invalid. 99 ESIVCM
Magtape controller hung. 345 E$BMPC
Maximum quota exceeded. 143 ESMXQB
Maximum slaves per user exceeded. 207 ESMSLV
Message operation partially blocked. 117 E$PRTL
Name is too long. 32 ESNMLG
Network configuration mismatch. 175 E$BCFG
Network error detected. 120 ESNETE
No buffer space. 82 ESNBUF
No buffers available. 330 ESNBA
No child found for this process. 257 E$NCHD
No data found. 123 E$SNDAT
No directory attached. 7 ESNATT
No directory block for unit. 281 E$SNDRB
No DTAR3 segments available. 273 E$ND3S
No fault frame. 61 ESNFLT
No free quota blocks. 142 E$NFQB
No unit table available. 167 ESNFUT
No information is accessible. 159 E$NINF
No input available. 84 ES$SNINP
No more temporary segments. 108 ESNMTS
No more VMFA segments. 107 ESNMVS
No NPX slaves available. 134 ESNSLA
No on-unit found. 64 E$SNOON
No paging device defined. 240 E$NOPD
No password directories allowed. 327 ESNPDA
No phantoms available. 54 ESNPHA
No resources available for request. 255 E$NRES
No room. 55 E$SROOM
No SMLC DMC channels. 75 ESNDMC
No timer. 51 ESNTIM
No unit table available for phantom. 164 ESNUTP
Node/LAN naming conflict. 298 ESNSNC
Node/MAC address conflict. 299 E$NSAC
Not a DAM file. 109 E$NDAM
Not a directory. 12 ESNTUD

Third Edition

B-5

Advanced Programmer’s Guide, Volume 0

Error Message Numeric Mnemonic
Value
Not a file or directory. 149 ESNTFD
Not a quota disk. 144 ESNOQD
Not a segment directory. 13 ESNTSD
Not able to free storage. 272 ESNATF
Not accessible. 209 E$NACC
Not an access category. 151 ESNCAT
Not an ACL directory. 147 ESNACL
Not an NTS configuration file. 303 ESNTCF
Not enough DMA channels. 210 ESUDMA
Not enough DMC channels. 211 ESUDMC
Not enough per-user DTAR1 segments. 268 ESNPSG
Not enough segments. 103 ESNESG
Not found. 15 E$FNTF
Not found in segment directory. 16 E$FNTS
Not open for VMFA. 110 E$NOVA
Not owner of resource. 284 ESNOWN
NSS database not initialized. 297 E$NSNI
NTS already started. 302 ESNTST
NTS database not initialized. 305 ESNTIN
NTS host not configured. 300 E$SNTHN
NTS line already associated. 307 ESPLAA
NTS not started. 301 E$NTNS
NTS is shut down. 319 ESNTSH
Null smt_ptr or bad field within SMT. 274 E$BSMT
Null command line. 60 E$NCOM
Object is category-protected. 179 E$SCTPR
Object is default-protected. 180 E$SDFPR
Old partition. 27 E$OLDP
Operation completed successfully. 0 E$OK
Operation illegal on access category. 150 ES$IACL
Operation illegal on directory. 14 E$DIRE
Operation illegal on MFD. 146 ESIMFD
Operation illegal on pre-19 disk. 178 E$ST19
Operation unsuccessful. 118 ESNSUC
Overflow of CPU and I/O seconds. 244 E$BHOV
Overflow of CPU seconds. 242 E$CPOV
Overflow of I/O seconds. 243 ES$IOOV
Page is already wired. 325 E$SAWIR
Page is not wired. 326 ESIWIR
Parameter not settable. 340 E$PNS
Parent not an ACL directory. 148 E$PNAC
Password generation off. 347 ESNGPW
Password generation on. 346 E$GPON
Past end of field. 97 E$VPEF

Third Edition

Alphabetical List of Error Messages

Error Message Numeric Mnemonic
Value
Past end of file. 230 E$PEOF
PIO instruction did not skip. 139 E$SDNSK
PRIMIX can not be initialized when running. 259 E$XSHD
PRIMIX can not be shut down when not running. 260 ESNOPX
PRIMIX process table has no users. 261 E$NOUS
PRIMIX process table retumned is incomplete. 262 ES$INCO
PRIMIX wait terminated by interrupt. 258 ES$INT
Priority ACL not found. 169 E$PANF
Procedure not found. 135 E$PNTF
Process not a slave. : 236 E$NSLV
Protected field check. 95 E$VPFC
Protocol handler not available. 125 ESPHNA
Pointer mismatch found (FAM only). 23 E$PTRM
Queue is empty. 321 E$QEMP
Queue is full. 320 E$QFUL
Queue length exceeded. 81 E$QLEX
Queue not found. 322 E$SNOQ
Quota set below current usage. 145 E$QEXC
Receive enabled required. 112 ESNRCV
Registered EPF is in use. 329 E$REIU
Remote disk has been shut down. 239 E$RSHD
Remote line is down. 40 E$RLDN
Remote node not enabled. 133 ESNENB
Remote procedure call still pending. 174 E$SPND
Remote system has initialized. 237 ES$RSIN
Remote system not up. 140 E$RSNU
Request queue full. 314 E$RQF
Reserved character. 69 E$RCHR
Restricted access file. 192 ES$RESF
ROAM access mode conflict. 234 E$SRAMC
ROAM intemnal error. 235 ES$SRIER
Search list not found or invalid. 246 ESLIST
Search lists nested too deeply. 249 ESNEST
Search rule not an optional rule. 248 ESNTOP
Search rule not found or invalid. 247 E$RULE
Segment directory error. 33 E$SDER
Segment directory unit not open. 31 E$SUNO
Segment does not exist. 73 E$NOSG
Segment in use. 102 E$SGIU
Segment not allocated. 271 E$SNAL
Semaphore overflow. 50 E$SEMO
Slave ID mismatch. 205 ESWSLV
Slave ID number not found. 208 ES$IDNF
Slave validation error. 136 E$SVAL

Third Edition B-7

Advanced Programmer’'s Guide, Volume 0

B-8

Error Message Numeric Mnemonic
Value
Speed not selected. 344 E$SNTS
Spooler subsystem not initialized. 328 ESNINT
Stack overflow in crawlout. 66 E$CROV
System administrator command only. 226 ESADCM
System console command only. 171 E$SCCM
Too many emulate devices. 131 E$TMED
Too many subdirectory levels. 43 E$STMUL
Too many users. 59 E$TMUS
Top-level directory not found or inaccessible. 189 E$NFAS
Unable to allocate file-unit. 227 ESUAFU
Uninitialized block on robust partition. 349 E$ZERO
Unit in use. 4 ES$UIUS
Unit not open. 3 E$UNOP
Unit open for block mode I/O. 232 E$BKIO
Unit table already retumed. 165 ESUTAR
Unit table not in use. 166 E$UNIU
Unknown addressee. 116 ESUADR
Unknown node name. 122 E$UNOD
Unterminated string. 195 E$USTR
User already has unit table. 168 ESUAHU
User busy, please wait. 114 E$UBSY
User ID not found. 269 ESUINF
User not receiving now. 113 E$UNRV
User storage heap is corrupted. 216 E$HPER
User unable to receive messages. 115 ESUDEF
Validation error. 323 E$VAL
Validation error. 162 ESNVAL
Virtual circuit was cleared. 206 E$VCGC
Warm start occurred. 138 ESWMST
Window already in address space. 106 ESWAIN
Wrong file type. 184 ESWFT
XCB unavailable for request. 311 ESNXCB
Unused code. 20 E$SHUT
Unused code. 25 E$BCOD
Unused code. 44 ES$FBST
Unused code. 47 E$TMRU
Unused code. 49 E$BFSV
Unused code. 52 ESFABT
Unused code. 58 E$FAMU
Unused code. 89 E$VKBL
Unused code. 96 E$VNFC
Unused code. 98 E$VIRC
Unused code. 104 E$SDUP
Unused code. 111 E$NECS

Third Edition

Alphabetical List of Error Messages

Error Message Numeric Mnemonic
Value
Unused code. 119 ESNROB
Unused code. 141 E$S18E
Unused code. 172 E$BRPA
Unused code. 182 E$BLUE
Unused code. 183 E$NDFD
Unused code. 187 E$BDV
Unused code. 188 E$BFOV
Unused code. 194 E$SYNT
Unused code. 196 E$SWNS
Unused code. 197 ES$IREQ
Unused code. 198 E$VNG
Unused code. 199 E$SOR
Unused code. 200 E$TMVV
Unused code. 201 E$ESV
Unused code. 202 E$VABS
Unused code. 212 E$BLEF
Unused code. 218 ESEPFS
Unused code. 224 E$SWPS
Unused code. 241 E$NRFC
Unused code. 341 E$BCHK
Unused code. 342 E$SEXPD
Third Edition

B-9

New Features of Recent PRIMOS Revisions

This appendix lists new features significant to the system-level programmer in recent revisions
of PRIMOS. Summaries of new functionality appear in the Software Release Document for the
appropriate PRIMOS revision. For details on enhanced compiler functionality, consult the
" individual language guides. For further information on new or modified subroutines, consult the
Subroutines Reference series.

This appendix lists enhancements made in several recent PRIMOS revisions. The most recent
revision is listed first.

New Features at Revision 22.0

Subroutines
The following subroutines have been added at Revision 22.0:

e The SYNS$ subroutines permit you to create and destroy event synchronizers, post
notices on event synchronizers, wait for the posting of a notice on an event
synchronizer, and retrieve a notice from an event synchronizer. Other SYN$
subroutines enable you to group several event synchronizers into an event group and
wait for a notice or retrieve a notice from that event group. Additional SYN$
subroutines enable you to check the status of event synchronizers and event groups.
These subroutines are described in Subroutines Reference V: Event Synchronization.

e The TMR$ timer subroutines permit you to create timers that post a notice on a
specified event synchronizer after a specified interval. There are subroutines to
establish timers for a specified elapsed period of time, a specified time of day, or a
specified recurrent interval of time. These subroutines are described in Subroutines
Reference V: Event Synchronization.

e The TMR$GTIM and TMRS$GINF subroutines return current system time or
permanent time information. These subroutines are described in Subroutines
Reference Ill: Operating System.

e The TMR$UNIVCONVERT and TMR$LOCALCONVERT subroutines convert
Universal Time to local time and local time to Universal Time. These subroutines are
described in Subroutines Reference Ill: Operating System.

Third Edition

C-1

Advanced Programmer's Guide, Volume 0

C-2

The SRS$ subroutines permit you to determine the server name associated with a
process, the processes that share the same server name, and the list of all server
names on your system. These subroutines are described in Subroutines Reference V:
Event Synchronization.

The ISN$ subroutines permit you to catalog the server name of a process in a High
Level Name File (HLNF), thus making that server name available to other users, and
to look up the server name of a process by specifying the pathname of an HLNE
These subroutines are described in Subroutines Reference V: Event Synchronization.

The IS$ subroutines permit you to use the InterServer Communications (ISC) facility
to exchange messages between processes. The processes can be on the same system or
on different systems connected using PRIMENET. Subroutines are provided for
requesting a message exchange session between two processes, specifying event
synchronizers and other features used during the session, sending and receiving
messages, and terminating the session. There are also subroutines for retrieving
information about a session. These subroutines are described in Subroutines Reference
V: Event Synchronization.

The ASSET, ASLST, and ASSLIN subroutines permit you to set the characteristics
of an asynchronous line, retrieve the characteristics of an asynchronous line, and
retrieve the line number of an asynchronous line. These subroutines are described in
Subroutines Reference IV : Libraries and 1/0.

The ER$PRINT and ER$TEXT subroutines permit you to display an error message
on your terminal or return an error message to a variable. These subroutines replace
ERRPR$ and ERTXTS$, which are now considered obsolete. They are described in
Subroutines Reference Ill: Operating System.

CF$EXT extends or truncates a CAM file. This subroutine is described in Subroutines
Reference I1: File System.

CF$REM gets a CAM file’s extent map. This subroutine is described in Subroutines
Reference II: File System.

CF$SME sets a CAM file’s extent length value. This subroutine is described in
Subroutines Reference II: File System.

LNS$SET modifies a user’s search rules to permit dynamic linking to an EPF library.
This subroutine is described in Subroutines Reference II: File System.

GENS$PW generates a login validation password. This subroutine is described in
Subroutines Reference lII: Operating System.

GTROBS$ determines whether a specified file is on a robust partition. This subroutine
is described in Subroutines Reference II: File System.

ECL$CC and ECL$CL supervise editing of input from a terminal or a command file.
ECL$CC is callable from C. ECL$CL is an interface to ECL$CC for non-C
programs. These subroutines are described in Subroutines Reference Ill: Operating
System.

NTSLTS returns the characteristics of a PRIMOS network terminal service line. This
subroutine is described in Subroutines Reference IV: Libraries and 1/0.

Third Edition

New Features of Recent PRIMOS Revisions

¢ ICE$ has been enhanced to support synchronizers, timers, ISC sessions, and other
features of PRIMOS. This subroutine is described in Subroutines Reference IlI:
Operating System.

PRIMOS Commands

Revision 22.0 has the following new PRIMOS commands:

e The LIST_SESSIONS and LIST_SERVER_NAMES commands and the —-SERVER
option for the INITIALIZE_COMMAND_ENVIRONMENT (ICE) command support
servers and ISC sessions. '

e The LIST_CONTIGUOUS_BLOCKS and LIST_EXTENT_MAP (LEM) commands
support CAM files.

e The UX_TAPE command saves files to tape in a format that the UNIX CPIO and
TAR utilities can read. It restores files from a tape created by either CPIO or TAR.

The EDIT_CMD_LINE (ECL) facility has been enhanced to include the user’s ability to define
terminal key functions for editing a command line. ECL is described in PRIMOS Commands
Reference Guide and PRIMOS User’s Guide.

Subsystem Enhancements

The following subsystems have been enhanced with additional features and options. These are
further described in the Software Release Document and the documentation for the individual
subsystems.

e The Spooler subsystem has been enhanced with additional embedded control code
options and several new command features. The SPOOL command has four new
options: —XLATE for character set mapping, ~FROM and —TO for printing a part of
a document, and —SPOOL_W for printing a file while it is open for writing. The new
AUXILIARY command passes environment parameters to print handlers. The PROP
command -BACK option has been extended.

e MAGNET has been extended to handle the Prime Extended Character Set (Prime
ECS) and to support large tape buffers.

e Tape utilities (such as MAGSAV and MAGRST) at Rev. 22.0 permit a larger
maximum record size. This enhancement is due to a change in the T$MT subroutine.

New Features at Revision 21.0
Subroutines

The following subroutines are either added or enhanced at Revision 21.0:

Third Edition C-3

Advanced Programmer’s Guide, Volume 0

e DS$AVL returns data about a disk partition in a structure. Data returned includes the
version number of the structure to be returned, the name of the partition, its
maximum capacity, the number of free records, and the date and time the partition
was last backed up.

e DS$ENV returns data about the user’s process. Data returned includes the filename of
the currently active abbreviation file; the unit number of the current command input
file; the user’s current command level, erase character, and kill characters; the default
and current user timeslice; the CPU and login time remaining; the QUIT inhibit
count; the number and name of the ACL groups to which the user belongs; and the
number, name, node, user ID, and project ID for the user’s remote IDs.

e DS$UNI returns data about file-units. Data returned includes information about attach
points, the user number, access bits if the file is open on a local system, open mode,
the command output file-unit, and the system name if the file is open on a remote
system.

e GSNAMS is used by any program to determine the name of the system the program
is running on.

e GSMETR returns system metering information, such as that provided by the USAGE
command. This information can be for general system meters, file system meters,
interrupt process meters, system meters for an individual user, meters for memory
usage, meters for disk usage, and meters for ROAM usage. Returned information
includes the CPU, I/O, and real time used, the number of I/O operations since system
boot, the number of users configured, information about locate buffers, and read and
write operations performed.

e KLMSIF enables a program to obtain serialization data from a specified file. KLMS$IF
uses a simple filename, supplied by a program, and system search rules to obtain
serialization data from an installed product of that name. Data obtained about the
product can include its version number, its name, its revision number, its serial
number, the name of the licensed user, the software expiration date, PRIMOS
support, the name of the organization distributing the software, the name of the
individual responsible for software revision, the software distribution date, the order
number of the distributed software, and the customer service number for the product
license.

o LOVS$SW indicates if the login-over-login function is currently permitted.

e LUDEVS returns a list of devices that a user can access. The devices listed are those
that are specified by the user with the ASSIGN command. Information returned
includes the version number, the maximum number of devices that may be accessed,
and a list of devices that the user may access.

e MMS$MLPA makes the last page of a segment available.

e MMSMLPU makes the last page of a segment unavailable. Subsequent attempts to
access the page result in the OUT_OF_BOUNDSS$ condition.

e SGD$EX determines if there is a valid entry at the current position within the
segment directory on a specified unit.

C-4 Third Edition

New Features of Recent PRIMOS Revisions

SNCHKS$ checks the validity of the system name passed to it. SNCHK$ enables
subsystems that deal with system names at a command interface to check the names
for validity without knowing the syntax rules for system names.

SP$REQ inserts a file into the spool queue.

SR$ABSDS (or SR$ABS for FTN) disables optional search rules enabled by
SR$ENABL. SR$ABSDS absolutely disables an enabled rule, regardless of how
many times the rule has been enabled.

SR$ADDB (or SR$ADB for FTN) adds a rule to the start of a search list or before a
specified rule within the list.

SR$ADDE (or SR$ADE for FTN) adds a rule to the end of a search list or after a
specified rule within the list.

SR$CREAT (or SR$CRE for FTN) creates a blank search list. The created search list
does not contain any user-specified or system default search rules. This search list
does, however, contain administrator rules if the System Administrator has established
administrator rules for the search list.

SRS$DEL deletes a specified search list. Both the user’s search list and its contents
(including administrator rules) are deleted. The search rules file that was used to set
the search list is unaffected.

SR$DSABL (or SR$DSA for FTN) disables an optional search rule enabled by
SR$ENABL. This subroutine reverses a single SRS ENABL operation. Compare this
with SR$ABSDS.

SR$ENABL (or SR$ENA for FTN) enables an optional search rule. You can disable
enabled rules using SR$DSABL or SREABSDS.

SRSEXSTR (or SR$EXS for FTN) determines if a search rule exists in a specified
search list. The search rule can be a pathname, an optional search rule, or a search
rule keyword. SRSEXSTR determines the existence of both disabled and enabled
optional search rules.

SRS$FR_LS (or SRSFRL for FTN) frees list structure space allocated by SRS$LIST or
SR$READ. Invoke SR$FR_LS after every successful invocation of SRS$LIST or
SR$READ. SR$FR_LS deletes a structure by following the structure’s internal pointers.

SRS$INIT (or SRS$INI for FTN) initializes all search lists to system defaults. System
default rules include all rules found in the directory SEARCH_RULES*, including
system rules and administrator rules. If no system defaults exist for a search list,
SRS$INIT deletes the search list.

SRSLIST (or SR$LIS for FTN) returns the names of the user’s search lists. SRSLIST
copies information about all of the user’s search lists into a user-specified structure.
SRSLIST creates a separate structure entry for each of the user’s search lists.

SR$NEXTR (or SR$NEX for FTN) reads the rules from a search list, sequentially
and one at a time. Each invocation of SRENEXTR reads one rule. To read all of the
rules in a search list, use SRSREAD. SR$NEXTR reads locator pointer values.
SR$NEXTR does not read disabled optional search rules.

Third Edition

Advanced Programmer’s Guide, Volume 0

C-6

SR$READ (or SR$REA for FTN) reads all of the rules in a search list into a
structure established by the user. SRSREAD reads all rules, including disabled rules.
SR$READ creates a separate structure entry for each search rule.

SR$REM removes a search rule from a specified search list. SRSREM can delete
user-specified and system default search rules and keywords. SREREM cannot delete
administrator search rules.

SR$SETL (or SR$SET for FTN) sets or modifies the locator pointer for a search rule.
SR$SETL can set locator pointers of search rules in user-defined search lists and
search rules in the ENTRY$ search list.

SR$SSR sets a search list via a user-defined search rules file. SR$SSR can create a
new search list, overwrite an existing search list, or append rules to an existing search
list.

K$BKUP was added to SRSFXS$ to allow a file to be read by the backup facility.

Other New Features

Revision 21.0 has the following new features and changes:

Extension to the use of search lists and ability for the user to define search lists. See
the Advanced Programmer’s Guide, Volume II: File System for a complete discussion.

Prime ECS support (expanded character set).

CBL support of INCLUDES$ search rules, enhanced magnetic tape support, relative
file enhancements for MIDASPLUS™ and PRISAM,™ and new compiler options.

CC support of INCLUDES$ search rules, the UNIX/ANSI restriction on files opened
with FOPEN, and a new meaning of the returned value of OPEN().

F77 support of INCLUDE$ search rules, SHORTCALL functionality in I mode,
longer string constants, and optimization enhancements.

FTN generation of V-mode code as the compiler default.

PMA support of the MIP pseudo-op, mode determination of variables and
expressions, assembler listing, general register relative format, and IX-mode
instructions.

Pascal support of INCLUDES$ search rules and some changes concerning the ANSI/
IEEE standard.

VRPG support of INCLUDES$ search rule.
BIND support of COMPRESS and INITIALIZE_DATA.
EMACS interface with Prime Common LISP.

Third Edition

New Features of Recent PRIMOS Revisions

New Features at Revision 20.2

New Features

Revision 20.2 has the following new features and changes:

CBL_LIBRARY supports sequential file access and variable length tables and
records.

CC_LIBRARY resolves potential library routine and runfile conflicts.

System Library supports F77 octal and decimal formatting and an improved random
number generator.

VRSTLI becomes an Executable Program Format (EPF).

MATRIX_LIBRARY (MATHLB) becomes an Executable Program Format (EPF).
VRPG supports new options.

PL/I supports new options.

F77 supports new options, statements, constants, static mapping to tape unit, and
enhanced cross-reference functionality.

CC supports 32IX mode, new options, new switches, a FORTRAN interface, and has
changes in the ctype.h header file.

Pascal supports new options, conforms to the ANSI/IEEE standards, and provides
new options for ANSI/IEEE standards conformance.

The Source Level Debugger supports variable length records, octal and hexadecimal
constants, and has enhancements to MACRO.

BIND supports two new subcommands.

EMACS provides UNIX pathname support, two new PEEL functions, and a new
PEEL atom.

K$DTA and K$DTC keys added to SATR$$ to allow setting of date/time accessed
and date/time created.

The subroutine SRSFX$, which supports pathnames, can now be used to search for a
file. T$SRC, which was previously used, is obsolete at this revision.

System Library

The System Library supports the following changes at Rev. 20.2:

F77 octal and hexadecimal formatting
Random number generation

Third Edition

C-7

Advanced Programmer's Guide, Volume 0

New Features at Revision 20.0

Subroutines

The following subroutines are either added or enhanced at Revision 20.0:

DIR$CR creates a new directory. This subroutine accepts pathnames and replaces
CREA$$ and CREPWS$, which are obsolete at this revision.

DIR$RD reads the contents of a directory sequentially, entry by entry.
DIR$SE searches the directory with caller-specified selection criteria.

DKGEOQO$ counts the sectors of a disk that has been formatted in a nonstandard
manner.

IOCS$_FREE_LOGICAL_UNIT frees a logical file-unit number and makes it
available in the Logical Unit Table (LUTBL).

IOCS$GET_LOGICAL_UNIT provides an available logical file-unit number to the
calling program.

SIZE$ retumns the size of a file system entry without updating Date Time Accessed
(DTA).

UNIT$ reads the current minimum and maximum unit number for this user.

Other New Features

Revision 20.0 has the following new features and changes:

Directories are now organized as hashed ACL directories.

The new file attributes, date and time created (DTC) and date and time last accessed
(DTA) may appear in Rev. 20.0 or later directories (hashed directories).

e The structure returned after calls to DIRSRD or ENT$RD includes the new file

C-8

attributes DTC and DTA.

Third Edition

Master Index

Abbreviation

IT

ITI

Key to Master Index:

Document Title

Advanced Programmer'’'s Guide, Volume O:
Introduction and Error Codes

Advanced Programmer'’'s Guide, Volume I:
Bind and EPFs

Advanced Programmer'’'s Guide, Volume
II: File System

Advanced Programmer’s 7Gu:1de, Volume
III: The Command Environment

Document Number

DOC10066—-3LA

DOC10055-11A

DOC10056-2LA

DOC10057-11A

Master Index

Symbols

; (command separator character),
III: 2-3

~ (tilde), III: 2-2, 4-11

A
ABBREV command, III: 2-3

Abbreviation processor, III:
1-19

Abbreviations,
disabled at mini-command level,
IIT: 5-14

Absolute pathname, II: 1-12,
7-2, 7-5

ACS$CAT subroutine, II: 2-19,
7-2, 7-5

AC$CHG subroutine, II: 2-22,
v-2, 76, 7-7¢, 7-9

ACSTFT subroutine, II: 2-17,
7-2, 7-3

Index-1

ACS$LIK subroutine, II: 2-20, 7-8

AC$IST subroutine, II: 7-2, 7-9,
7-10

AC$RVT subroutine, II: 4-7

AC$SET subroutine, II: 2-18,
2-21, 7-2, 74, 76

Access calculation, II: 1-26
concepts, II: 1-19
how and when done, II: 1-19,
1-22
when attaching to a directory,
II: 1-21
when opening files, II: 1-21

Access category, II: 1-10, 1-18,
2-21
creating, II: 7-2

Access Control Lists (ACLs), II:

1-5, 1-18, 2-13, 7-11

(See also Access rights)

Access pairs limit, TII: 7-11

changing rights, II: 2-22

default, II: 2-7

deleting entries, II: 2-23

device, II: 7-1

entries structure, II: 2-16

Third Edition

Advanced Programmer’'s Guide, Volume O

Access Control Lists (ACLs) ACL-related subroutines,
(continued) structure, II: 2-16
functions, II: 2-16
limitations, II: 7-11 -added_disks, II: 36, 3-16
manipulating, II: 7-1
parsing, II: 7-9 ATDISK, command, II: 4-5
setting, II: 7-2
Addresses,
Access methods, actual, I: 1-10, 92
direct (DAM), II: 1-15 ECB in the BIND map, I: 96
sequential (SAM), II: 1-15 form of, I: 9-2
imaginary, I: 1-10, 1-14, 92
Access rights, (See also Access link frame in the BIND map, I:
Control Lists (ACLS)) 97
A access, II: 2-6 LIST_EPF cammand, I: 9-3
ALL access, II: 1-18, 26 mapping of, I: 9-1
changing, II: 2-23 offsets in, I: 923
creating a category, II: 2-2l procedure code in the BIND map,
D access, II: 2-6 I: 96
deleting, II: 2-23 segment numbers in, I: 9-2
L access, II: 2-6 stack frame in DUMP_STACK
needed to attach to directory, command, I: 9-9
II: 2-13
needed to change ACLs, II: Administrator search rules, II:
2-17 34
needed to create object, II: in search rules file, II: 3-10
224 process initialization, II:
needed to delete object, II: 3-11
2-12, 2-37
needed to open object, II: ALC$RA subroutine, III: 3-9,
2-:7 3-10, 3-13
needed to read object, II:
2-30 Allocating,
needed to write to object, II: linkage areas, via EPF$ALIC,
2-34 IIT: 4-34
NONE access, II: 2-6
O access, II: 2-6 ALS$RA subroutine, III: 3-9,
P access, II: 2-6 3-10, 3-12
R access, II: 26
setting a category, II: 2-19 ANY$ condition, III: 1-22, 5-15
setting specific, TII: 2-18
setting the same as another Applications,
object, II: 2-20 command environment support
setting to default, II: 2-17 for, III: 1-%
U access, II: 2-6 defined, III: 1-7
W access, II: 2-6
X access, II: 26 Arguments to program EPFs, I:
1-16

-ACCESS CATEGORY bit, III: 3-21,
4-33 AT$ subroutine, II: 2-15, 4-5,
4-7, 4-8, 4-10
Accessing text files, II: 5-2
AT$ABS subroutine, TII: 2-15,
4-5, 4-7, 4-9, 4-11

Third Edition Index-2

AT$ANY subroutine, II: 2-15,
4-5, 4-7, 4-8, 4-13

AT$HOM subroutine, II: 2-8,
2-14, 44, 46, 4-8

AT$OR subroutine, II: 2-13, 4-1,
42, 46

AT$REL subroutine, II: 2-185,
46, 4-7, 4-16, 4-17

ATCH$$ subroutine, II: 4-6

Attach,
to directory, II: 1-16, 2-13
to lower-level directory, II:
4-16
to specific directory, II: 4-8
to top-level directory, II:
4-9, 4-13

ATTACH$, II: 3-2, 36
-added_disks keyword, II: 3-16
default if not set, II: 3-7,

321
default value of, II: 3-6
-system keyword, II: 3-15
use by other search lists, II:
321

ATTACH command, II: 1-13, 1-16,
2-8, 2-14, 2-15, 4-3, 4-5,
4-9

Attach point,

cache, III: 6-2

current, II: 1-17, 2-5, 2-8,
2-13, 4-1, 4-5, 46, 49,
4-13

home, II: 1-20, 2-5, 2-8,
2-13, 4-1, 4-3, 4-13

initial, II: 2-5, 2-13, 4-1

manipulating, II: 4-7

questions, II: 4-24

search rules, II: 3-2

Attribute (See File attributes)

AVATL,, command, II: 9-1

Master Index

Bad sector, II: 1-7

Bed spot file (BADSPT), II: 1-7
.BIN file, I: 3-6, 3-7
BINARY$, II: 3-2, 3-8

Binary editors, I: 10-1

Binary files,
- searching directories for, II:

3-8

BIND, I: 1-2, 1-8

benefits of using, I: 1-9

BINARY$ search list, II: 3-8

DYNT subcommand, I: 5-5

ENTRY$ search list, II: 3-9

ENTRYNAME subcommand, I: 3-15

entrypoint subcommand, I: 6-8

initialization of static data,
I: 1-19

LIBRARY subcommand, I: 3-11

linking object files, I: 3-7

MATN subcommand, I: 3-15, 5-5

MAP subcommand, I: 9-5

NO_GENERATION subcommand, III:
2-2

NO_TTERATION subcommand, III:
2-2

NO_TREEWAIKX subcommand, III:
2-2

NO_WILDCARD subcommand, III:
2-2

RESOLVE_DEFERRED COMMON
subcommand, I: 3-15

SYMBOL subcommand, I: 3-11,
82, 84

treatment of common area, 1I:
3-11, 3-15

treatment of IPs, I: 3-10,
3-11

use of segment numbers, I:
3-10

BIND map, I: 9-5 to 97

determining ECB addresses, I:
9-6

determining link frame
addresses, I: 9-7

Third Edition

Advanced Programmer’s Guide, Volume O

BIND map (continued)
determining procedure code
addresses, I: 96
Bootstrap file (BOOT), II: 1-7
-BOTTOM _UP bit, III: 321

Building shared programs with
SEG, I: 1-8

c

Cache attach point,
as a static resource, III: 6-2

CALAC$ subroutine, II: 7-9

Calling sequences,
command, detailed, III: 3-15,
3-17

complete, III: 3-26, 3-29

data types in diagrams, O: 1-4

diagrams explained, O: 1-1

error codes, III: 3-5

for command functions, III:
36

for commands, III: 3-3, 34

for program EPFs, III: 3-1

for programs, III: 3-3

sample diagram, 0: 1-2

Cartridge Module Devices (CMDs),
II: 1-5
CH$MOD subroutine, II: 547

CLO$FN subroutine, II: 2-36,
5-21, 5-23, 5-48

CLO$FU subroutine, II: 2-36,
5-21, 5-22, 548, 6-2, 64

CLOS$A subroutine, II: 2-37

CLOSE command, II: 2~-36

Third Edition

Closing a file, II: 5-21

after EPF$RUN returns, III:
4-25

on abnormal program
termination, II: 1-30

on normal program termination,
II: 1-30

system object, II: 2-36

CNAMS$$ subroutine, II: 4-7, 643

Code argument,
for CP$, III: 4-12
for EPF$MAP subroutine, III:
4-29
for EPF$RUN, III: 4-22

Coding Guidelines,
general, O: 1-5
pointer usage, O0: 1-6
pointers, arrays, and

structures, 0O: 1-5

OOMI$$ subroutine, II: 47

COMINPUT files,
command environment support
for, III: 1-3

Command,
defined, III: 1-8
invocation, III: 1-10
name, determination of, III:
2-4

Command calling sequence, III:
3-3
arguments for, III: 3-3
error codes for, III: 3-5

Command environment, III: 1-1
(See also command processing

information)

abbreviation processor, III:
1-19

command features decoder, III:
1-21

command interface, III: 1-10

command line reader, III: 1-19

command preprocessor, III:
1-21

command processor, III: 1-20

command prompter, III: 1-19

default on-unit, III: 1-22

Index—4

Command environment (continued)

features for applications,
III: 1-%

features for COMINPUT files,
IIT: 1-3 '

features for CPL programs,
III: 14

features for interactive users,
III: 1-2

features for user-written
functions, III: 1-7

features for user-written

Master Index

Command interface, III: 1-10

for one program invoking
another, III: 1-11

levels of complexity, IITI:
1-10

Command invocation, (See also

command processing
information)

calling sequence, III: 3-2 to
34

command line, III: 1-12

programs, III: 1-6
key modules, III: 1-16
listener, III: 1-1%
program invokers, III: 1-22

defined, III: 1-11
error codes for, III: 3-5
limits on, III: 1-13
severity code, III: 1-12

Command features decoder, III: Command level, III: 1-17, 5-2
121 breadth, I: 5-3
defined, III: 1-17

Command file, listener, III: 1-17%
searching directories for, 1II: listener, the, III: 5-2
3-7 mini-command level, III: 1-18,

5-14
miltiple, III: 5-3
releasing, III: 5-5, 5-6
search rules, II: 3-2

Command function calling
sequence, III: 3-6, 3-8

Command function invocation,
via CP$, III: 4-13
via EPF$INVK, III: 4-27
via EPF$RUN, III: 4-18

Cormmand line,
accepted by EPF, III: 1-12
as argument in calling
sequence, III: 3-3
as argument to CP$, III: 4-11
use of tilde (-~) in fromt of,
III: 4-11

Command functirns, II: 2-1, 2-2;
III: 44
actions of, III: 36

arguments for calling sequence,

III: 3-7 Command line reader, III: 1-19
behavior when invoked as recursive invocation of, III:
commands, ITI: 44 6-1
needing command name, III:
3-7 Command names, determined by
needing local CPL variables, cammand processor, III: 2-4
III: 3-27

sample programs, III: 3-11
special cases of, III: 3-26
usable as commands, III: 3-27

Command preprocessor, III: 1-21

Command Procedure Language (CPL),
II: 22
Command information structure,
two versions of, III: 4-23
use of with EPF$RUN, III: 4-24

Command processing information,
ITI: 1-13, 3-15, 3-16, 3-18
-ACAT bit, III: 3-21, 4-33
-BOTTOM _UP bit, III: 3-21
command name, III: 3-19

Index-5 Third Edition

Advanced Programmer’'s Guide, Volume O

Command processing information

(continued)
CPL local variables pointer,
ITI: 3-20
-DIRECTORY bit, III: 3-21,
4-33
-FILE bit, III: 3-21, 4-33
iteration bit, TIII: 3-223
-RBF bit, III: 3-21, 4-33
sanple program, III: 3-22,
4-51
—SEGMENT DIRECTORY bit, III:
3-21, 4-33
treewalk bit, III: 3-22, 4-31
-VERIFY bit, III: 3-2l1, 4-33
version, III: 3-19
—WALK_FROM bit, III: 3-22
-WAIK_TO bit, III: 322
wildcard bit, III: 3-22, 4-3l1

Command processor, III: 1-20,

2-1

ABBREV commend, handling of,
III: 2-3

actions when invoked by CP$,
III: 4-7

calls STD$CP, III: 1-20

command separator character
(;), handling of, III: 2-3

determines command name, III:
24

determines command type, III:
2-5

evaluates function references,
III: 24

evaluates variable references,
IITI: 24

expression evaluator, III:
1-20

inhibition of features, III:
2-2, 2-5

interface with commards, III:
1-10, 1-11

invocation modules, III: 2-7

invokes commands, III: 2-7

iteration, handling of, III:
2-5

listener, III: 1-17

listener, the, III: 5-2

name generation, handling of,
IIT: 2-% :

-NO_VERIFY, handling of, III:
-7

Third Edition

Command processor (continued)
recursive invocation of, III:
6-1
removes null tokens, III: 24
RESUME command, III: 2-5
sequence of actions, III: 2-1
simple iteration, handling of,

ITI: 2-5

stack, viewed with DUMP_STACK,
III: 5-2

treewalking, handling of, III:
2-6

-VERIFY, handling of, III: 2-7
wildcards, handling of, III:
2-6

Command prompter, III: 1-19

Command separator character,
III: 2-3

COMMANDS$, search list, II: 3-2,
37

Command-information argument,
for EPF$RUN subroutine, III:
4-23

Command-line argument,
for EPF$RUN subroutine, III:
4-22

Commands, II: 2-1

DUMP_STACK, III: 5-10

external, III: 1-10

format of, III: 4-3

ICE, 1III: 1-16, 5-11

INITIALIZE COMMAND ENVIRCNMENT,
III: 1-6, 5-11

interface with command
processor, III: 1-11

internal, III: 1-9, 4-3

RDY, III: 54

recursive invocation of, III:
6-1

REENTER, III: 5-12

RELFASE LEVEL, III: 5-5

REN, TIII: 5-12

resident in CMINCO, III: 4-2

resident within PRIMOS, III:
4-2

RIS, III: 5-5

Index-6

Commands (continued)
START, III: 5-14
usable as command functions,
III: 3-27

Common area, I: 3-10, 8-1
defining a shared, I: 8-
initialization of, I: 3-
treatment of by BIND, I:

3-15

1
3-11,

Common blocks and dynamic link,
I:24

Cammon storage,
releasing, III: 5-6

OOMO$$ subroutine, II: 4-7

Compilers,
search rule support, II: 3-8
searching for include files,
II: 3-8

Complete calling sequence, III:
3-26, 3-29

Compressed files, II: 54

Conditions,
ANY$, TIII: 1-22
LINKAGE, FRROR$, III: 1-14
NO_AVATIL, SEGS$, III: 1-16
PAGING DEVICE FULL$, III: 1-16
QUIT$, III: 5-15
REENTER$, III: 5-12
STORAGE, III: 1-15
SYSTEM STORAGE$, III: 1-15

CONTROL~P (Quit), III: 5-15
(See also QUIT$ condition)

CP$ subroutine, I: 3-16; III:

1-20, 3-1, 4-9

actions of, III: 4-%

calling sequence, III: 4-10

command-line argument of, III:
4-11, 4-14

cpl-local-vars-ptr, III: 4-13,
4-15

error codes returned by, III:
4-17

error-code argument of, III:
4-12, 4-14

Index—7

Master Index

CP$ subroutine (continued)
flags argument of, IIT: 4-12
ftn-fon-ptr argument of, III:
4-14

function-call bit, III: 4-12,
4-14

inhibit-evaluation bit, III:
4-12, 4-15

rtn-fcn-ptr argument, IITI:
4-13

severity—-code argument of,
III: 4-12, 4-14

used for command invocation,
III: 4-9

used for function invocation,
ITI: 4-13

used for program invocation,
III: 4-9

used for recursive invocation,
III: 4-54

when to use it, III: 4-6

CPL, ITI: 2-2

abilities of programs, III:
44

command environment support for
programs, III: 14

functions and program EPFs, 1I:
1-16

program invoker, III: 2-7

variables pointed to by
cpl-local-vars-ptr, III:
4-15

variables used by command
functions, III: 3-37

cpl-local-vars-ptr,
argument to CP$, III: 4-13

CREA$$ subroutine, II: 2-24, 4-7
CREATE command, II: 2-24
Creating a file, II: 2-26

Creating file directories, II:
-4

Creating file system objects,
II: 2-24

CREPW$ subroutine, II: 2-25, 4-7

Third Edition

Advenced Programmer’'s Guide, Volume O

Current attach point, II: 1-17,
2-13, 4-1, 46, 4-9, 4-13
searching, II: 3-17

Current directory, II: 1-1¥
opening, II: 4-31, 4-22

Current object position, 1II:
1-23

Cylinders, II: 1-5

D

DAM (Direct Access Method), II:
1-15

DAM segment directory, II: 1-285

Data, II: 1-2
field, II: 1-2
file, II: 1-2
objects, II: 1-2
record, ITI: 1-2
storage, II: 1-2

Data file,
extending, II: 642
positioning in, II: 642

reading, II: 642
retrieval, II: 643
storage, II: 643
writing, II: 642

DATA segment, I: 3-7, 3-10, 3-19
access to, I: 3-16
Data types,
used in subroutine calls, O:
1-3
Database,

management, II: 6-1

Date and Time Created (DIC)
attribute, II: 1-33

Date and Time Last Accessed (DTA)
attribute, II: 1-32

Date anxd Time lLast Backed Up
(DIB) attribute, II: 1-35

Third Edition

Date and Time last Modified (DTM)
attribute, II: 1-33

Deallocation,
dynamic memory, I: 3-32

library EPFs, I1: 3-32
Debugging an EPF,

BIND command, I: 1-18

DBG command, I: 3-35

DUMP_STACK command, I: 1-18
LIST EPF command, I: 1-18
other useful commands, I: 1-19

. setting breakpoints, I: 1-18
VPSD command, I: 1-18, 9-6

Debugging information in EPFs,
I: 33, 3-7

Decoder, command features, III:
1-21
Default on—unit, III: 1-22
actions on catching QUITS,
III: 5-15
recursive invocation of, III:
6-1

Default search rules (See Systen
search rules)

DELETE command, II: 2-38
Deleting a file,
within a segment directory,
II: 6-23

Deleting file system objects,
II: 2-37

Detailed command calling
sequence, III: 3-15, 3-17

Device ACLs, II: 7-1
DF_UNIT_ (See Default on-unit)

DIR$CR subroutine, II: 2-24,
6-30, 6-32, 6-34

DIRS$LS subroutine, II: 2-31

Index-8

DIR$RD subroutine, II: 1-29,
2-31, 6-30, 6-39 to 641,
8-1, 8-3

DIR$SE subroutine, II: 2-31

Direct Access Method (DAM), II:
1-15

Directory, II: 1-3
attaching to, II: 1-16
creating file, TII: 2-25
current, II: 1-17, 4%
current file unit, II: 1-29
duplicate names, II: 3-21
file, II: 1-8, 1-25

home, II: 1-13, 1-20, 4-7, 4-9

home file unit, II: 1-29
opening file, II: 2-27
origin, II: 1-8, 4-1
origin file unit, II: 1-29
password, II: 1-18
quota, II: 1-39
quota information, II: 94
reading, II: 2-31
searching, II: 3-7, 3-8
searching partitions for, 1II:
3-6

segment, II: 1-9

top-level, II: 1-8
working, II: 1-13
writing, II: 2-34

-DIRECTORY bit, III: 3-21, 4-33

Disk, II: 1-5
(See also Disk partition)
formatting, II: 1-7
full, II: 7-11
logical, II: 1-7
organization, II: 1-5, 1-7
physical, II: 1-5, 1-%
storage, II: 1-2

Disk partitions, II: 1-5
as argument, II: 2-16
search all, II: 3-16
search named only, II: 3-16
searching, II: 3-6, 3-21

Disk record availability table
(DSKRAT), 1II: 1-7

Disk-shut-down flag, II: 1-26

Index-9

Master Index

Displaying common area addresses,

I: 3-15
DUMP_STACK command, I: 9-9;
ITI: 5-10
-ON_UNITS option, III: 5-2,
5-11

to display call history of a
program, III: 5-10

to track program errors, III:
1-18

to view command processor
stack, III: 5-2

to view your stack, III: 5-10

-use at mini-command level,

III: 5-14

Dumped bit, II: 1-38

Dumped/not-dumped attribute, II:
1-38

Dynamic link, I: 5-5
common blocks and, I: 24
definition of, I: 2-2
sample session, I: 24
snapping, I: 2-3, 3-21
to entry points in PRIMOS, 1I:

to entrypoints in Application
Library, I: 3-24

to entrypoints in PRIMOS, I:
3-26

to static-mode libraries, I:
3-28

Dynamic linking mechanism, I:
1-3, 2-1, 3-6, 3-19
advantages, I: 2-1

Dynamic links,
resolving, using ENTRY$, II:
3-9
Dynamic memory, I: 1-9
deallocation of, I: 3-32
in EPFs, I: 3-3
Dynamic resources, III: 6-2

Dynamically allocated storage,
releasing, III: 5-6

Third Edition

Advanced Programmer’s Guide, Volume O

DYNT, (See also Dynamic links)
as a subcommand of BIND, I:
5-5

E

ECB (emtry control block), I:
1-3

information contained in, 1I:
14

EDAC command, II: 2-22

EDB binary editor, I: 10-2 to
10-6
error messages, I: 10-5
obsolete commands, I: 10-86
subcommands, I: 10-3

EDIT ACCESS command, II: 2-22

End of file,
positioning to, II: 5-15

ENT$RD subroutine, 1II: 2-31,
6-30, 8-1 to 8-3

ENTRY$, II: 3-2, 3-9
[home_dir] keyword, II: 3-17
~-primos direct_entries keyword,
II: 3-1%
SR, I: 1-3
-static _mode_libraries keyword,
II: 3-16

Entry control block (See ECB)

ENTRYNAME,
as a subcommand of BIND, I:
3-15

Entrypoint, I: 2-2

as a subcommand of BIND, I:
6-8

determining, for library EFPFs,
I: 6-5

invocation, I: 3-19

main, of a program EPF, 1I:
54, 5-5

modifying the search list of,
I: 6-12, 6-13

reserved names, I: 6-5

Third Edition

Entrypoint (continued)

searching EPF libraries for,
IT: 3-9

searching PRIMOS system calls
for, II: 3-17

searching static-mode libraries
for, II: 3-16

subroutine, declaring, I: 6-8

Entrypoint search list, I: 6-12,
6-13, 6-32
(See also Search list)
advanced use of, I: 6-37
default, I: 6-32
examining, I: 6-38

EPF, (See also Library EPF;
Process-class library EPF;
Program EPF; Program-class
library EPF)

benefits of, I: 1-9

cache, I: 1-18, 3-34

coding guidelines for, I: 7-1

copies of link frame, I: 34

debugging information, I: 3-3

debugging of, I: 1-18, 3-35

definition of, I: 1-2

dynamic memory, I: 3-3

id, 1III: 4-24

information contained in, 1I:
1-18

invocation by CP$ subroutine,
I: 3-16; III: 4-9

invocation by EPF$INVK
subroutine, III: 4-27

invocsation by EPF$RUN
subroutine, I: 3-16; III:
4-20

invocation, forms of, I: 3-16

invoker, III: 2-7

library, I: 1-3

life of an, I: 3-5 to 3-34

linkage text, I: 3-2

mapped, I: 3-16

mechanism, I: 3-1

most flexible format for
programming instructions,

III: 44

multiple invocations of, I:
3-34

new versions, I: 1-2, 3-30,
3-34

old versions, I: 1-2, 3-34
organization of, I: 3-2

Index-10

EPF (continued)

procedure code, I: 32

program, I: 1-3; II: 1-24

program, calling sequence,
IIT: 3-1

reason for, I: 14

recursive invocation of, III:
4-54

removing from memory, I: 1-16,
3-6, 3-30

restrictions on writing in PMA,
I: 7-10 to 7-16

.RPn suffix, I: 1-2

.RUN suffix, I: 1-2

running a remote, I: 3-36

similtaneous use of, I: 3-35

stack space, I: 3-3

(See also Stack frame)

static information and, I: 4-7

suspending and restarting, I:
1-17

termination of, I: 3-6, 3-30,
3-31

types of, I: 1-3

unmapping, I: 3-34

writing in high-level
languages, I: 7-1

writing in PMA, I: 7-2

EPF calling sequence,
arguments for, III: 3-1
command sequence, III: 32
program sequence, III: 3-2

EPF generation and use,

phase 1 (compilation or
assembly), I: 3-7

phase 10 (removal), I: 3-33

phase 10 (removal from memory),
IITI: 4-37

phase 2 (linking), I: 3-7

phase 3 (invocation), I: 3-15

phase 4 (mapping), I: 3-16

phase 5 (linkage allocation),
I: 3-16; III: 4-34

phase 6 (linkage
initialization), I: 3-19;
III: 4-%4

phase 7 (entrypoint
invocation), I: 3-19; III:
4-37

phase 8 (dynamic links
snapped), I: 3-21

phase 9 (termination), I: 3-30

Index-11

Master Index

EPF generation and use
(continued)

phases in, I: 3-6

sample program, III: 4-47
stages in, I: 3-5

EPF libraries,
searching, II: 3-9

EPFSALIC subroutine, I: 3-6,
3-16; III: 4-34

calling sequence, III: 4-35
error codes, IITI: 442

III: 4-31
calling sequence, III: 4-32
epf-info structure, III: 4-31
error codes, III: 442
sample program using, III:
4-51
wildcard bit,

EPF$CP§' subroutine,

IIT: 4-31

EPF$DEL subroutine, I: 3-6,
3-33; III: 4-3%

calling sequence, III: 4-39
error codes, III: 444

EPF$INIT subroutine, I: 3-6,
3-19; III: 43
calling sequence, III: 4-36
error codes, III: 4-43

EPF$INVK subroutine, I: 3-6,
3-19; III: 3-1, 3-2
calling, III: 4-37
calling sequence, III: 4-38
compared with EPF$RUN, III:
4-8

error codes, III: 444

invoking EPF$ALIC before using,
III: 4-34

invoking EPF$CPF before using,
III: 4-31

invoking EPF$DEL after using,
ITI: 4-37

invoking EPF$INIT before using,
IIT: 4-34

invoking EPF$MAP for, III:
4-29

key argument, III: 4-34

opening file for, III: 4-28

steps in using, III: 4-27

Third Edition

Advanced Programmer’'s Guide, Volume O

EPF$INVK subroutine (continued)
used for recursive invocation,
ITT: 4-54
when to use it, III: 4-8

EPF$MAP subroutine, I: 3-6,
3-16; III: 4-29
access argument, III: 4-29
calling sequence, III: 4-30
code argument, III: 4-29
error codes, III: 4-40

key argument, III: 4-29
unit argument, TIII: 4-29

EPF$RUN subroutine, I: 3-5,
3-16; III: 3-1, 4-18
actions of, TIII: 4-8
calling sequence of, III: 4-21
returned code value,
III: 4-25
checking returned command
status, III: 4-25
command-information structure,
IIT: 423
command-line argument, III:
4-22
EPF id, TIIT: 4-24
error codes returned by, IIT:
4-26
error-code argument, III: 4-22
file-unit argument, III: 4-22
function-call bit, III: 4-24
invoking, TIII: 4-20
key argument, III: 4-20
opening EPF file before
calling, III: 4-19
rtn-fen-ptr, III: 4-24
severity-code argument, III:
4-22
steps in using, TIII: 4-18
used for recursive invocation,
IIT: 4-54
using and freeing returned
value structure, III: 4-25
when to use it, III: 4-8

EPF-info structure, III: 4-31

Error code,
argument of EPF$RUN subroutine,
III: 4-22
ing code returned by
EPF$RUN, III: 4-25
. data base, II: 6-1

Third Edition

Error code (continued)

returned by EPF$ subroutines,
III: 440

returned by EPF$ALIC, 1III:
442

returned by EPF$CPF, III: 442

returned by EPF$DEL, III: 444

returned by EPF$INIT, III:
4-43

returned by EPF$INVK, III:
444

returned by EPF$MAP, III: 440

returned by EPF$RUN, III: 4-26

. 8ide effects in subroutine

calls, 0O: 14
standard, use in subroutine
calls, O: 1-4

Error codes,

alphabetical listing, O: B-1

E$ACBG, II: 7-12

ESACNF, II: 6-33

ESATNS, II: 8-11

E$BARG, III: 3-5, 4-18, 443

E$BFTS, II: 4-21, 6-41

E$BKEY, III: 4-26, 441, 4-43

E$BNAM, II: 4-13, 4-15, 4-18,
6-9; III: 3-5, 4-18

E$BOF, II: 5-19, 5-38

E$BPAR, II: 4-12, 4-15, 4-18,
5-28, 6-33, 7-11, 8-11; III:
3-5, 441 to 444

E$BUNT, II: 549; III: 4-286,
4-41

E$BVER, II: 6-33; III: 4-18,
4-27, 441 to 444

ESCMND, III: 3-5, 4-18

E$DIRE, II: 1-25, 8-11; III:
4-17

E$IKFL, II: 5-13, 5-28, 5-39,
6-15, 6-20, 6-33

E$DINS, II: 6-34

E$ECEB, III: 1-14, 4494

E$EOF, II: 1-23, 5-19, 5-28,
5-36, 5-38, 6-11, 6-14, 6-28,
6-39; III: 4-17, 426

E$EPFL, III: 441

E$EPFT, III: 441 to 445

E$EXST, II: 6-33

ES$FDEL, II: 6-23

E$FIUS, II: 1-35, 5-12, 5-19,
6-8, 6-20, 104; III: 4-17

E$FNTF, II: 4-6, 4-13, 5-13,
5-47, 6-8, 6-33; III: 4-18

Index-12

Error codes (continued)

E$FNTS, II: 6-20, 6-23
E$FUIU, II: 5-49

E$IACL, II: 5-14, 8-11
E$TLID, III: 442, 443
E$TLTE, III: 443

E$TTRE, II: 4-8, 5-14; III:

3-5, 4-18

E$IVCM, III: 3-6

ESMISA, III: 3-6

E$MXQB, TII: 5-14, 5-28, 5-39,

6-9, 6-17, 6-21, 6-33
E$NATT, II: 4-3, 4-5, 4-13,
4-18, 4-21, 4-22

E$NDAM, III: 4-18, 440, 441

E$NFAS, II: 4-15, 6-9, 6-34

E$NINF, II: 5-14, 6-21; III:
4-18

ESNMIG, IIT: 3-5

ESNMTS, III: 4-26, 441

E$SNMVS, ITII: 4-27, 44l

E$NOQD, TII: 6-33

E$NOVA, III: 441

E$SNRIT, II: 4-22, 5-13, 6-8,
6-20, 6-33, 6-35, 8-11; III:
4-17, 440

E$NTSD, II: 1-25

E$NTUD, II: 1-25

E$PNAC, II: 6-33

E$ROOM, III: 4-26

E$SHDN, II: 1-26, 4-3, 45

E$SUNO, 1II: 6-23

E$SWPR, III: 445

E$UIUS, II: 549

E$UNOP, II: 5-19, 5- ,

28, 5-39

6-5, 6-12, 6-15, 6-28, 6-39;
IIT: 4-26, 440
E$WIPR, II: 6-9

numerical listing, O: A-2

Escape sequences,
as a static resource,

III: 64

ESR (See EXPAND_SEARCH RULES)

Evaluation of function and
variable references, III:
24

Executable code file, II: 3-17

Executable program format (See
EPF)

Index-13

Master Index

EXPAND SEARCH RULES (ESR) CPL
function, II: 3-19

EXPAND SEARCH RULES command, II:
3-2, 35, 3-19
ATTACH$ used as default, II:

3-6
COOMMANDS$ used as default, 1II:
37
partition names, II: 36
pathnames, II: 3-7
referencing dir option, II:
3-18
Expanded listings, I: 9-13
Expression evaluator, III: 1-20
External commands, III: 1-10

External linkage information, I:
3-7

F

Faulted IP, I: 1-3, 22, 3-11,
3-19, 3-21, 6-17

how to avoid sharing, I: 4-10
sharing of, I: 4-9

Field, II: 1-2

FIL$DL subroutine, II: 2-38,

4-7, 548

File, II: 4-8
appending to, II: 1-23
closing, II: 1-30, 521

(See also Closing a file)
closing after EPF$RUN returns,
ITI: 4-25
creating, II: 1-27, 2-26
DAM, II: 1-25
data, II: 642, 643
definition, II: 1-10
maximum length, II: 5-5
open, using search rule
subroutine, II: 3-19
, II: 229, 56
(See also Opening file)
opening for VMFA access, III:
4-19

Third Edition

Advanced Programmer’s Guide, Volume O

File (continued)
organization, TII: 6-2
pointer, II: 1-29
positioning, TII: 1-29

ing, II: 2-33
SAM, TII: 1-25
text, II: 1-10
truncating, II: 1-29, 5-17
type, II: 1-37
unit number, II: 1-28
user, II: 1-10
writing, 1II: 2-35

File access control, II: 1-16

File access methods, II: 1-15
Direct (DAM), II: 1-15
Sequential (SAM), II: 1-15

File attributes, II: 1-31, 8-1

date and time created (DIC),
II: 1-33

date and time last accessed
(DTA), II: 1-32

date and time last backed up
(prB), II: 1-35

date and time last modified
(DT™), II: 1-33

dumped/not-dumped, II: 1-38

file type, II: 1-37

read/write lock, II: 1-35

setting, II: 86

special/not-special, II: 1-38

-FILE bit, III: 3-21, 4-33

File directory, II: 1-8
attributes, II: 6-31
creating, II: 2-25, 6-31
manipulating, II: 6-30
opening, II: 6-34
scanning, II: 6-36

File names,
as a static resource, III: 6-3
creating dynamic file names,
IIT: 6-3
search order of, III: 1-10

File system, II: 1-1
communicating with, II: 2-1
interfaces, 1II: 2-1
objects, II: 1-5
search, II: 1-14

Third Edition

File type attribute, II: 1-37

File unit, II: 1-23, 2-8
abnormal terminate, II: 1-30
accessing, II: 1-23
calculated access to object,
II: 1-26

closing, TII: 1-23

current object position, II:
1-23

disk-shut-down flag, II: 1-26

dynamic number allocation, II:
1-27

miltiple opens, II: 2-9

" normal terminate, II: 1-30
object type, II: 1-25
object-modified flag, II: 1-25
open mode, II: 1-24
opening, II: 1-23
positioning, TII: 1-23
read/write lock, II: 1-26
static number allocation, II:

1-28

File unit argument,
of EPF$RUN subroutine, IIT:
4-22

File unit number,
as argument to EPF$MAP, III:
4-29

File units,
as a static resource, III: 6-1

Filename,
expand to full pathname, II:
3-5
getting pathname for, II: 3-2

Fixed-length record file,

blocking factor, II: 544,
5-45

calculating record position,
II: 546

end of file, II: 545

format, II: 544

incamplete read/write, 1II:
5-37

positioning, II: 5-31, 5-37,
542

reading, II: 5-31

record length, II: 5-44

Index-14

Fixed-length record file
(continued)
writing, II: 5-31
writing records to open file
unit, II: 5-39

Fixed-length records, II: 54
advantages, II: 54

Fixed-media disks (FMDs), II:
1-5

Formatting a disk, II: 1-7

FRE$RA subroutine, III: 445
calling , III: 446
when to use it, III: 4-8

nenory,
via FRE$RA subroutine, III:
4-45
via ICE command, III: 1-16

Freeing segments of R-mode
programs, I: 1-7

Full pathname,
determining, II: 4-18

Function invocation, (See also

Command function invocation)

command line, III: 1-12

defined, III: 1-11

returned character string,
IITI: 1-12

severity code, III: 1-12

via EPF$INVK, III: 4-27

via EPF$RUN, III: 4-18

Function references, evaluation
of, III: 24

Function-call,
argument, III: 3-9
bit, III: 4-12, 4-14, 424

Functions, (See also Command

functions)

command environment support
for, III: 1-7

defined, III: 1-9, 1-12

interaction with command
processor, III: 1-11

invocation of, III: 1-11

Index-15

Master Index

G
GPAS$$ subroutine, II: 47

GPATH$ subroutine, II: 4-7,
4-18, 4-20, 4-24, 643

H

Home attach point, II: 1-16,

Home directory, II: 1-16, 4-9
searching, II: 3-17

I
I-mode programs, I: 1-5

ICE command, III: 5-11
use of, III: 1-16

Imaginary addresses and EPF
sharing, I: 1-14

Impure code, I: 1-13
separation of pure code fram,
I:1-12, 7-2

IMPURE segment, I: 3-7, 3-10,
3-19
access to, I: 3-16

INCIUDES, II: 3-2, 3-8
if doesn’'t exist, II: 3-8

[referencing dir] keyword, II:
3-18

Include file,
searching directories for, II:
3-8
Indirect pointer (See IP)

Inhibit-evaluation bit, III:
4-12, 4-15

Inhibition of command processor
features, III: 2-5

Third Edition

Advanced Programmer’'s Guide, Volume O

Initial attach point, II: 2-13
searching, II: 3-17

Initialization,
of linkage areas, via EPF$INIT,
ITI: 4-34
of variables, I: 1-19
shared data, I: 8-3, 84

Initialize process,
search list created, II: 3-2
search list deleted, II: 36
search list set, II: 3-11
search rule set, II: 34

INITTALIZE_COMMAND_ENVIRONMENT
command, TIII: 5-11
use of, III: 1-16

Interactive users,
command environment support
for, III: 1-2

Internal commands, III: 1-9

Internal-command invoker, III:
2-7

Interprocess cammunication,

caveats, II: 104

competing servers, II: 10-7

concurrent access to data base,
II: 10-10

general concepts, II: 10-1

models, II: 10-5

read/write locks, II: 10-2

transaction file, II: 10-5

two-process transaction models,
II: 10-9

Invocation, (See also Command
invocation; Function
invocation; Program
invocation)

limits on, III: 1-13
of commands, III: 1-11
of commands, by command
processor, III: 2-7
of functions, III: 1-11
of programs, III: 1-10
of programs, from within
programs, III: 4-1
recursive, III: 4-54

Third Edition

Invoking an EPF, I: 1-3, 3-15,
5-1, 5-2
sample program, III: 447
subroutines for, I: 3-5

IP (indirect pointer), I: 1-3,
3-7
faulted, I: 1-3, 2-2, 3-11,
3-21, 6-17
how to avoid sharing faulted,
I: 4-10
resolution of at runtime, I:
3-10
sharing of faulted, 1I: 4-9
"~ treatment of by BIND, I: 3-10,
3-11

IPC (See Interprocess
cammunication)

Iteration,
handling of by command
processor, III: 2-5
simple, III: 2-5
Iteration bit, III: 3-22
Iteration processor,

recursive invocation of, III:
6-1

K
K$GETU key, III: 4-19

K$INVK key, III: 420
K$INVK_DEL key, III: 4-20
K$RESTORE, ONLY key, III: 4-20
K$VMR key, ITI: 4-19

Key,
K$BKUP, 1II: 5-11
K$CLOS, II: 2-37
K$CURA, II: 4-19
K$DELE, II: 2-39

K$OFLT, II: 8-9
K$OMPB, II: 8-7, 8-9
K$DTA, TII: 8-7
K$DTC, II: 8-7

Index-16

Key (continued)

K$DTIM, II: 8-7
K$EXCL, II: 8-9
K$EXST, 1II: 547

K$FREE, TII: 2-32, 6-26

K$FULL, II: 2-32, 6-26
K$GETU, II: 5-12, 5-48, 549,
6-5

K$HOMA, II: 4-19
K$INIA, 1II: 4-19
K$INIT, II: 1-29, 6-39
K$MSIZ, II: 2-34
K$NCAM, II: 5-12, 6-22

K$NDAM, II: 5-11, 6-22

K$NONE, II: 8-9

K$NSAM, II: 5-11, 6-22

K$NSGD, II: 5-12, 6-5, 6-22

K$NSGS, II: 5-12, 6-5, 6-22

K$POSN, II: 5-36

K$PREA, II: 5-36

K$PROT, II: 8-7, 8-9

K$RDWR, II: 5-11, 548, 64,
6-18

K$READ, II: 5-11, 5-36, 5-48,
6-4, 6-18, 6-3°

K$RPOS, II: 5-36

K$RWIK, II: 8-7, 8-9

K$sSoL,, II: 8-7

K$SETC, II: 2-16, 4-1, 4-12,
4-15, 4-16

K$SETH, II: 2-16, 4-1, 4-12,
4-15, 4-16

K$TRNC, II: 5-36

K$UPDT, 1II: 8-9©

K$VMR, II: 5-11, 6-18

K$WRIT, II: 5-11, 5-36, 548,
6-18

Key argument,

for EPF$INVK subroutine, IIT:
4-34

for EPF$MAP subroutine, III:
4-29

for EPF$RUN subroutine, III:
4-20

use in subroutine calls, O:
14

L

IB (See Linkage base)

Index-17

Master Index

ILB$SET subroutine, III: 3-27
LIBEDB binary editor, I: 10-1

LIBRARY,
as a subcommand of BIND, 1I:
3-11
external references resolved
by, I: 3-11

Library EPF, I: 1-3, 1-9
assembling the PMA entrypoint
file for, I: 6-10
. building a PMA entrypoint file
for, I: 6-8, 6-9
choosing the right type of, 1I:
64, 6-14, 6-15
coding a subroutine for, I:
64
compiling a subroutine for, I:
64
deallocation of, I: 3-32
definition of, I: 62
determining class requirements

of, I: 6-29
determining entrypoints of, I:
mgt—:.llmg a library file, I:
ing’;;.%ling the library EPF, I:
mS;llx}.ng, I:1-3

linking subroutines of, I: 6-7

mechanism, I: 6-39

modifying the entrypoint search
list, I: 6-12

process—-class, I: 3-33, 3-33

program’'s view of, I: 64

program—class, I: 3-33, 3-33

programmer's view of, I: 6-2

restriction on class mixing of,
I: 6-16

restriction on use of language
I/0, I: 6-1%

steps in building, I: 6-2, 64
to 6-13

storage allocation issues, I:
6-41

storing data in linkage area
of, I: 6-17

using DBG on, I: 6-30, 6-31

using EDB to generate a library
file, I: 6-10

Third Edition

Advanced Programmer'’'s Guide, Volume O

Limits on calling program EPFs,
I: 5-3

Link frame, I: 34, 3-5, 3-10

Linkage,
area, I: 3-32
area, storing data in, TI:

6-17, 6-18

base, I: 34
fault, I: 24
initialization, I: 3-19, 6-18
releasing areas, III: 5-6
text, I: 3-7
text, in EPFs, I: 3-2
text, in subroutines, I: 34

LINKAGE_ERROR$ condition, III:
1-14, 1-15

1oade£s, history of, I: 14

purpose of, I: 3-7

utilities, I: 1-2
LIST ACCESS command, II: 1-20
LIST EPF command, I: 9-3

LIST LIMITS,
use of, III: 1-14

LIST_SEARCH RULES command, II:

3-12
disabled search rules, II:
3-15
LIST SBEGMENT,
use of, I: 9-5; III: 1-14

Listener, III: 1-17, 5-2
and mini-command level, III:
5-14
multiple invocations, III: 5-3
recursive invocation of, III:
6-1
IoaD, I: 1-2, 14
Local objects, II: 1-5
Login (See Initialize process)

Long prompt, III: 5-5

Third Edition

Lower-level Directory, II: 1-9
ISR (See LIST SEARCH_RULES)
LV$GET subroutine, III: 3-27

M

MATN,
as a subcommand of BIND, 1I:
3-15, 5-5

MAKE command, II: 1-%7

MAP,
as a subcommand of BIND, I:
9-5

Mapping an EPF, I: 3-16
Maps and addresses, I: 9-1

Master file directory (MFD), 1II:
1-8

Memory,

allocation of, I: 1-10, 1-11

dynamic, I: 1-9

releasing via FRE$RA
subroutine, III: 445

statie, I: 1-9

system-wide limits on, III:
1-15

MFD (master file directory), II:
1-8

Mini-command level, III: 1-18,
5-14

Multiple invocations of an EPF,
I: 3-%4

N
Name generation,

handled by command processor,
ITI: 2-7

Index-18

Names of commands, determined by
command processor, III: 24

New Features,
Revision 20.0, O: C-8
Revision 20.2, O: C-%7
Revision 21.0, O0: C-3
Revision 22.0, O: C-1

NO_AVAIL, SBGS$ condition, III:
1-16

-NO_VERIFY option,
handled by command processor,
III: 2-7

Mull tokens, removal of from
command line, III: 24

NW$ filename prefix, III: 44

NX$ filename prefix, III: 44

o

Object,
closing, II: 2-36
creating, II: 1-15, 2-10

creating file system, II: 2-24
current position, II: 1-23
deleting, II: 2-12, 2-37
file system, II: 1-2, 1-5
local, II: 1-5
name, II: 1-11, 2-7, 4-8
naming, II: 1-15

, II: 2-11
opening file system, II: 2-27
reading, II: 2-11, 2-30 :
remote, II: 1-5
simple name, II: 4-8
specifying names, II: 2-7
type, II: 1-25
writing, II: 2-12, 2-34

Object file, TI: 3-7

Object naming conventions, II:
1-15
absolute pathname, II: 1-12

components, II: 1-11
full pathname, II: 1-14

Index-19

Master Index

Object naming conventions
(continued)
relative pathname, II: 1-12
simple pathname, II: 1-13

OPEN command, II: 2-27

Open mode, II: 1-24

EPF file for VMFA access, III:
4-19

file for VMFA read, possible
error codes, III: 440

Opening a file, II: 1-26, 2-29
file pointer, II: 1-29
file unit number, II: 1-28
file unit number allocation,
IT: 1-27
using search rules, II: 3-5
within a segment directory,

II: 6-17

Opening a file directory, II:
2-27

Opening a file system aobject,
IT: 2-27

CRIGIN command, II: 2-13

Origin directory, II: 1-8
searching, II: 3-17

?

PAGING DEVICE_FULL$ condition,
IIT: 1-16

Partition (See Disk partitions)
Password directory, II: 1-18
Pathname, II: 1-11

absolute, II: 1-12

full, II: 1-14, 4-18

partial, II: 32

relative, II: 1-12

simple, II: 1-13

PB (See Procedure, bese)

Third Edition

Advanced Programmer'’'s Guide, Volume O

PCL instruction, I: 34, 3-7,
3-19

Performance,
disk access, II: 3-3

Permissions (See Access Control
Lists (ACLs))

PHANT$ subroutine, II: 4-7

Phantoms,
search lists of, II: 32

PHNTM$ subroutine, II: 4%

PMA,
restrictions for EPF execution,
I: 7-10
writing EPFs in, I: 7-2 to
7-10

Pointer, returned value, III:
3-9

Positioning a file, II: 1-29

PRIMOS,

error codes ordered
alphabetically, O0O: B-1

error codes ordered
numerically, O: A-3

mnemonics for error codes, O:
A-1

Revision 20.0 new features,
Cc-8

Revision 20.2 new features,
c-7

Revision 21.0 new features,
C-3

Revision 22.0 new features,
Cc-1

PRIMOS commands,
searching for, II: 3-7
PRIMOS file system,
elements of, II: 14
tree structure, II: 1-5

PROC segment, I: 3-7, 3-10
access to, I: 3-15

Third Edition

o O O O

Procedure, II: 1-3

base, I: 34

code in EPFs, TI: 3-2

code in subroutines, I: 34
frame, I1I: 34

main, of a program EPF, I: 54
management, I: 34

text, I: 37

Procedure code storage,
releasing, III: 5-6

Process—class library EPF, 1I:
3-32, 3-33, 6-41
choice of, I: 6-14
link sequence for, I: 6-7
restrictions on use of, 1I:
6-14
using for shared data, I: 8-5

Program,
I-mode, I: 1-5
R-mode, I: 14, 1-5
S-mode, I: 1-5
static-mode, I: 14
V-mode, I: 1-5

Program EPF, I: 1-3, 1-9
arguments to, I: 1-16, 54
calling sequence, III: 3-1
command line preprocessing, I:

1-17
CPL functions, I: 1-16
data returned from, I: 5-3
data supplied to, I: 5-3
definition of, 1I: 5-1
invoking, I: 1-3, 5-1, 5-2
invoking program’s view of, I:
5-2
limits on calling, I: 5-3
main entrypoint of, I: 54,
7-2
main procedure of, I: 54
programmer’'s view of, I: 5-1
stacking of, I: 1-17
user’'s view of, I: 5-2
writing the main program, 1I:
54

Program invocation,
calling sequence, III: 3-2,
3-3

which interface to
use, III: 46

Program invocation (continued)
defined, III: 1-10
fram within programs, III: 4-1
limits on, III: 1-13

Program—class library EPF, 1I:
3-32, 3-33, 640
choice of, I: 6-14
link sequence for, I: 6-7

Programs,
command environment support
for, III: 1-6
format of, III: 4-3
interface with command
processor, III: 1-10

invoking programs from, III:
4-1
resident on disk, III: 4-2
Prompter, command, III: 1-19

Prompts, set by RDY command,
ITI: 5-5

PRTN instruction, I: 34

PRWF$$ subroutine, II: 2-35,
5-2, 5-16 to 5-18, 5-20,
5-29, 5-31 to 542

Pure code,
separation of impure code from,
I: 1-12, 7-2
sharing of, I: 1-13

Q
Q$READ subroutine, II: 9-1, 9-3

Q$SET subroutine, II: 9-5

QUIT$ condition, III: 5-15

as handled by default on-unit,
IIT: 5-15

how your program can handle it,
IIT: 5-15, 5-16

resignaling the condition,
IIT: 5-16

sample program, III: 5-16

Index-21

Master Index

Quota, II: 1-39
directory, II: 9-1
MFD, II: 9-2

Quota exceeded, II: 7-11

R
R mode, I: 14

R-mode programs, I: 14, 1-5
- freeing segments of, I: 1-7

-RBF bit, III: 3-21, 4-33

RDLIN$ subroutine, II: 5-2, 5-24
to 5-26, 5-31

RDY command, III: 54
in IOGIN.CPL files, III: 5-5

to specify system prampts,
III: 54

Read/write lock attribute, II:
1-35

Read/write locks, II: 1-26
documenting, II: 10-2
EXCL, II: 10-2
file, 1II: 10-2
per file, II: 10-3
safety check, II: 10-2
system, II: 10-2
UPDT, II: 102

Reader, command line, III: 1-19

Reading file system objects, II:
2-30

Record, II: 1-2
date, II: 1-2
fixed-length, II: 54
logical, II: 1-7
physical, II: 1-7
text, II: 1-2
variable length, II: 5-3

Recursive command environment,
IIT: 6-1
creating dynamic screen
handlers for, III: 6-3

Third Edition

Advanced Programmer’'s Guide, Volume O

Recursive command environment

(continued)

file units not recursive, III:
6-1 '

generating dynamic file names
for, III: 6-3

handling terminal escape
sequences in, III: 64

limits on use of cache attach
point, III: 6-2

Recursive invocation of EFFs,
III: 4-54
behavior of static storage
during, III: 4-54
redirecting terminal I/0
during, III: 4-55

REENTER command, III: 5-12
used with RELEASE LEVEL
cammand, III: 5-13

REENTER$ condition, III: 5-12
Referencing directory, II: 3-18
Relative pathname, II: 1-12

RELEASE LEVEL commend, III: 5-5,

5-7

releasing to a particular
level, TITII: 5-7

resources released by, III:
5-6

used to restart a suspended
program, III: 5-7

used with REENTER command,
III: 5-13

Releasing,
memory holding returned value,
III: 4-45
resources, III: 56

Ramote disks,
ATTACH$ search list for, II:
3-6

Remote File Access (RFA), II:
1-5

Remote objects, II: 1-5

Third Edition

Removal of EPFs, I: 1-16, 3-30
-from memory via EPF$DEL
subroutine, III: 4-3Y
process—class library, I: 3-33
program EPF, I: 3-33
program—class library, I: 3-33

REN command (See REENTER
command)

Replacing static-mode libraries,
I: 3-30

Reserved entrypoint names, I:
6-5
list of, I: 66

RESOLVE_DEFERRED COMMON,
as a subcommand of BIND, 1I:
3-15
to display common ares address,
I: 3-15

Resources,
dynamic, TIII: 62
per-user limits, III: 1-13
releasing, III: 5-6
static, III: 6-2
system-wide limits, III: 1-16

REST$$ subroutine, II: 4-7

Restarting suspended programs,
III: 5-7
with REENTER command, III:
5-13

RESU$$ subroutine, II: 4-7
RESUME command, II: 2-23
special treatment by command
processor, III: 2-5
Return codes, II: 2-9

Returned character strings, III:
1-12

Returned command status,
checking after EPFSRUN, III:
4-25 '

Returned function value pointer
(See Rtn-fcn-ptr)

Returned function value

structure, III: 4-15

accessed from FORTRAN, III:
4-15, 4-16

accessed from PL1G, III: 4-15

deallocating memory via FRE$RA,
III: 445

using and freeing it after
calling EPF$RUN, III: 4-25

Returned value,
defined, III: 3-6

freeing memory used by, III:
4-45

Returned value pointer (See
Rtn-fen-ptr)

Revision 20.0,
new features, O0: C-8

Revision 20.2,
new features, O0: C-7

Revision 21.0,
new features, O0: C-3

Revision 22.0,
new features, 0: C-1

RLS command (See RELEASE LEVEL
cammand)

.RPn suffix, I: 1-2
Rtn-fcn-ptr, III: 3-9, 4-13,

4-14

declaration of structure, III:
4-15

for EPF$RUN subroutine, III:
4-24

.RUN suffix, 1I: 1-2
Running a remote EPF, I: 3-36
RWLOCK

configuration divective, II:
10-2

Master Index

S
S mode, I: 1-5
SAC command, II: 2-17

SAM, TII: 1-15
segment directory, II: 1-25

Sample programs,
command functions, III: 3-11,
3-14
handling command processing
- information, III: 4-51
handling QUIT$ condition, III:
5-16
showing EPF invocation and
execution, III: 447
using command processing
information, III: 322

SATR$$ subroutine, II: 2-9, 4-7,
8-6, 8-8, 8-10, 10-3

SAVE$$ subroutine, II: 4-7
SB (See Stack baese)

Screen handlers, building, III:
6-3

Search list, II: 3-1

(See also Entrypoint search
1list)

appending to, II: 3-11

creating, II: 3-20

defaults, II: 32, 34

deleted autamatically, II: 3-6

deleting, II: 3-20

duplicate rules, 1II: 3-11

initializing, II: 3-20

listing all, II: 3-20

naming, II: 3-11

reading, II: 3-20

setting, II: 3-2, 3-9 to 3-11,
3-20

user-defined, II: 3-3, 3-5

Search order for filemames, III:
1-10

Third Edition

Advanced Programmer’'s Guide, Volume O

Search rule, I: 1-3, 6-12, 6-33 Search rules file, II: 3-1
to 6-36; II: 3-1 comments, II: 3-10
adding rule to list, 1II: 3-20 creating, II: 3-9
checking existence of, II: effect of changes to, II: 3-11
3-20 multiple files, II: 3-12
creating, II: 3-10 naming, II: 3-9
deleting rule from list, II: nesting, II: 3-12
3-20 used to set search list, 1II:
disabled/enabled, II: 3-15 3-11
duplicate rule, II: 3-11
enabling/disabling rule, II: SEARCH_RULES*, II: 34, 3-11
3-20
format, II: 3-21 sectors, II: 1-5
locator pointer, 1II: 3-5 ‘
nonexistent object, II: 3-11, SBG, I: 12, 14
3-21 building shared programs, I:
optional, II: 3-15 1-8
ing, II: 3-20 for invoking V- or I-mode
setting locator pointer, 1II: programs, I: 1-7
3-20 for shared procedure segments,
supplying at runtime, II: 3-18 I:1-8
user-specified, II: 3-3, 3-5 generating static-mode images,
I: 1-8
Search rule keywords, II: 3-12
-added,_disks, II: 3-6, 3-16 Segment access,
[home_dir], II: 3-17 as argument to EPF$MAP
—insert, II: 3-12 subroutine, III: 4-29
—optional, II: 3-15 to DATA segments, I: 3-16
[origin dir]), II: 3-17 to IMPURE segments, I: 3-16
-primos direct_entries, II: to PROC segments, I: 3-15
3-17
[referencing dir], II: 3-18 Segment directory, II: 1-9, 6-2
—-static mode libraries, II: closing, II: 64
3-16 deleting a file, II: 6-23
-system, II: 3-13, 3-15 ending position, II: 6-28
extending, II: 6-14
Search rule subroutines, II: extending full length, 1II:
3-2, 3-11, 3-12, 3-19, 3-20 6-15
OPSR$, 1II: 3-18 find free entry, II: 6-25
OPSRS$, II: 3-18 find full entry, II: 6-25
SR$ENABL, II: 3-15 opening, II: 6-3
SR$INIT, II: 3-11 opening a file, II: 6-17
SR$READ, II: 3-12 positioning in, II: 6-10
SR$SSR, IT: 3-11, 3-14 reading, II: 2-32
scanning, II: 6-25
Search rules facility, II: 3-1 size, II: 6-15
error in search list, II: 3-11 starting position, II: 6-26
invoking, II: 3-2 writing, II: 2-34
performance, II: 3-3
process-based, II: 3-2 Segment number,
search scope, II: 3-3 for IMPURE and DATA segment,
search sequence, II: 3-2, 3-3, I:9-3
3-21 for PURE segment, I: 9-3
using, II: 3-2, 3-3 in addresses, I: 92

Third Edition Index-24

Segment number (continued)
sign of, TI: 92, 9-3
use of by BIND, I: 3-10

~SEGMENT_DIRECTORY bit, III:
321, 4-33

Segments,
shared system-wide, I: 1-8,
8-3
static, I: 8-3

Separation of pure and
code, I: 1-13, 1-15

Sequential Access Method (SAM),
II: 1-15

Set search list,

3-11

nonexistent object, II: 3-11

relocating system rules, II:
3-14

suppressing system rules, II:
3-14

using multiple files, II: 3-12

II: 32, 3-9 to

SET_ACCESS command, II: 2-1%

SET_SEARCH RULES command, II:
3-11
error, II: 3-13
-no_system option, II: 3-14
reset option, II: 3-11

Severity code,
as argument to CP$, III: 4-12
as argument to EPF$RUN, III:
4-22
for command calling sequence,
IIT: 36
returned by EPF, III: 1-12

SGD$IL subroutine, II: 2-34,
2-38, 548, 6-2, 6-3, 6-24,
6-25

SGD$EX subroutine,
548, 6-2, 6-3

II: 547,

SGD$OP subroutine, II: 5-2, 5-7,
5-9, 548, 6-2, 6-3, 6-17,
6-19, 6-22

Index—25

Master Index

SGIR$$ subroutine, II: 2-31,
2-%4, 6-2, 6-3, 6-12 to 6-14,
6-16, 6-17, 6-25 to 6-29,
643

Shared applications,

Shared programs)

effect of EPFs on existing, 1I:
4-8

(See also

Shared data, I: 8-1 to 8-7
determining the address of, 1I:
8-2
how to update atomically, 1I:
- 8-7, 8-8
initializing, I: 8-3, 84
PMA subroutines for updating,
I: 8-9 to 8-11
process-wide, I: 8-1
system-wide, I: 8-1
using a process—class Library
EPF for, I: 8-5

Shared programs,
deleting old versions, I: 1-16
installing new versions, I:
1-8, 1-16
using SEG to build, 1I: 1-8

Shared system-wide segments, 1I:
1-8

Sharing faulted IPs, I: 4-9
how to avoid, I: 4-10

Sharing of pure code, I: 1-13
SHUTDN command, II: 1-26, 4-5
Simple pathname, II: 1-13

Simple program,
defined, III: 1-8

Simultaneous use of an EPF, 1I:
3-35

SLIST command, II: 4-9

Snapping dynamic links, I: 2-3,
3-21

Source code file,
directories for, II: 3-18

Third Edition

Advanced Programmer’'s Guide, Volume O

SPAS$$ subroutine, II: 4-7

Special/not-special attribute,
II: 1-38

SRCH$$ subroutine, II: 1-17,
2-26, 2-27, 2-36, 2-38, 47,
4-8, 4-21, 4-23, 52, 5-7,
5-10, 5-15, 5-47, 5-48, 6-3,
64, 6-7, 6-30, 6-34, 6-36,
6-38

used to open file for VMFA
read, III: 4-19

SRSFX$ subroutine, II: 1-17,
2-26, 2-27, 2-36, 2-38, 46,
4-24, 5-2, 5-7, 58, 547,
548, 6-3, 64, 6-6, 6-30,
6-34, 6-37, 643

used to open file for VMFA
read, III: 4-19

SSR (See SET_SEARCH_RULES)
Stack bese, I1: 34
Stack frame, I1I: 34
addresses of in DUMP_STACK
comand, I: 9-9
locating procedure, I: 9-10

Stack frames,
releasing, III: 56

Stack header, I: 34

Stack space,
in EPFs, I: 3-3
in subroutines, I: 34

Stack, command processor, III:
5-1

Stacking program EPFs, I: 1-17

Standard command processor, III:

1-20
(See also Command processor)

START command, III: 5-14

Static data, 1I: 3-7

Third Edition

Static information and EPFs,
command line information, I:
4-7
error information, I: 4-7

Static memory, I: 1-9

Static resources, III: 6-2
cache attach point, III: 6-2
escape sequences sent to

terminal, III: 64
file names, III: 6-3
user’'s display screen, III:
6-3

Static storage,
and recusive invocation, III:
4-54

Static-mode, (See also
Static-mode applications)
limits on flexibility of
programs, III: 44
program, I: 1-5
runfile, searching for, II:
-7

Static-mode applications, (See

also Static-mode program)
conversion strategy, I: 4-1
relation of EPFs to, I: 4-1

restriction on EPF use of, I:

4-2
suspending and continuing, I:
4-2

Static-mode library, I: 3-28;
II: 3-16
dynamic link to, I: 3-28
replacing, I: 3-30
restriction on EPF use of, I:
4-4

Static-mode program,
characteristics of, I: 1-6,
1-7
invoker, III: 2-%
STDCP$ subroutine, III: 1-20

Storage, II: 1-2
static, III: 4-54

STORAGE condition, III: 1-15

Index-26

Sub-UFD (See Lower-level
Directory)

Subdirectory (See Lower-level
Directory)

Subroutine, (See also library

EFF)

AC$CAT, II: 2-19, 7-2, 7-5

AC$CHG, II: 7-2, 76, 7-7, 7-9

ACSDFT, 1II: 2-17, 7-2, 7-3

ACS$LIK, II: 2-20, 7-8

ACS$1ST, II: 7-2, 7-9, 7-10

AC$RVT, II: 4-7

ACS$SET, II: 2-18, 2-21, 7-2,
74, 76

AT$, 1II: 2-15, 4-5, 4-7, 4-8,
4-10

AT$ABS, II: 2-15, 4-5, 4-7 to
4-9, 4-11

AT$ANY, 1II: 2-15, 4-5, 4-7,
4-8, 4-13, 4-14

AT$HOM, 1II: 2-8, 2-14, 44,
4-6, 4-8

AT$OR, II: 2-13, 4-1, 42, 46

AT$REL, II: 2-15, 4-6, 4-7,
4-16, 4-17

ATCH$$, II: 46

CALACS, II: 7-9

calls, II: 2-2

CH$MOD, II: 547

CILO$FN, II: 2-36, 5-21, 5-23,
5-48

CLO$FU, II: 2-36, 5-21, 5-32,
548, 6-2, 64

CLOS$A, TII: 2-37

CNAMS, TII: 4-7, 643

CoMI$S, II: 4-7

CoMO$$, II: 4%

converting nonreentrant to
reentrant, I: 6-21 to 6-25

CREASS, TII: 2-24, 4-7

CREPW$, TII: 2-25, 4-7

determining class requirements
of, I: 6-15, 6-16

determining the use of static
data by, I: 6-17, 6-18

DIR$CR, II: 2-24, 6-30, 6-32,
6-34

DIR$LS, II: 2-31

DIR$RD, II: 1-29, 2-31, 6-30,
6-39 to 641, 8-1, 8-3

DIR$SE, II: 2-31

dynamic linking of, I: 2-1

Index-27

Master Index

Subroutine (continued)

ENT$RD, II: 2-31, 6-30, 8-1 to
8-3

FIL$DL, II: 2-38, 4-7, 548

GPAS$$, II: 4-7

GPATH$, II: 4-7, 4-18, 4-20,
4-24, 643

invoking EPFs, I: 3-5

linkage text, I: 34

nonreentrant process—class, I:
6-20

optimizing conversion approach
to, I: 6-25 to 6-28

. organization of, I: 34

PHANTS$, TII: 4-7

PHNIM$, TII: 4-7

procedure code, I: 34

process—class, I: 6-15

program—class, I: 6-15

PRWF$$, II: 2-35, 5-2, 5-16 to
5-18, 5-20, 5-29, 5-31 to
542

Q$READ, II: 9-1, 9-3

Q$SET, II: 9-5

ROLIN$, II: 5-2, 5-24 to 5-26,
5-31

REST$$, II: 4-%

RESU$$, II: 4-7

SATR$$, II: 2-9, 4-7, 8-6,
8-8, 8-10, 10-3

SAVE$S, TII: 4-7

SGD$DL, II: 2-34, 2-38, 548,
6-2, 6-3, 6-24, 6-25

SGD$EX, II: 547, 548, 6-2,
6-3

SGD$OP, II: 5-2, 5-7, 5-9,
548, 6-2, 6-3, 6-17, 6-19,
6-22

SGIRS, II: 2-31, 2-34, 6-2,
6-3, 6-12 to 6-14, 6-16,
6-17, 6-25 to 6-29, 6-43

SPAS$$, II: 4-7

SRCH$$, II: 1-17, 2-26, 2-27,
2-36, 2-38, 4-7, 4-8, 4-21,
4-23, 5-2, 5-7, 5-10, 5-15,
547, 548, 6-3, 64, 6-7,
6-30, 6-3¢, 6-36, 6-38

SRSFX$, II: 1-17, 2-26, 2-27,
2-36, 2-38, 46, 4-4, 5-2,
5-7, 5-8, 5-4v, 548, 6-3,
64, 6-6, 6-30, 6-3¢, 6-37,
643

stack space, I: 34

Third Edition

Advanced Programmer's Guide, Volume O

Subroutine (continued)
storing data in linkage area
of, I: 6-18
TSRC$$, II: 2-26
WILIN$, II: 2-35, 5-2, 5-24,
5-27, 5-29

Subroutine libraries, I: 2-1
types of, I: 22

Subroutine not found condition,
I: 24

Suffixes, II: 3-7
search order of, III: 1-10,
4-3

Surfaces, II: 1-5

prograns,
restarting, III: 5-7

SYMBOL,
as a subcommand of BIND, I:
3-11, 8-2, 84
to locate common areas, I:
3-11

System Administrator,
default search riles, II: 34

System file, II: 1-10
System primitives, II: 2-3

System praompts, III: 5-5

System search rules, 1II: 34
in search rules file, II: 3-10
location in list, II: 3-13
process initialization, II:
3-11
reset to, II: 3-1l

SYSTEM_STORAGE$ condition, III:
1-15

3

Terminal I/0,

Third Edition

Terminal I/0 (continued)
redirection during recursive
invocation of EPFs, III:
4-55

Terminating an EPF, I: 3-6,
3-30, 3-31

Text,

retrieval, II: 5-1
storage, II: 5-1
strings, II: 5-1

 Text file, II: 5-1

(See also Fixed-length record
file; Variable-length record
file)

acoessing, II: 5-2

campression, II: 5-24

current position, II: 5-25

input line, II: 5-235

maximum line length, II: 5-35

open file unit, II: 529

opening, II: 5-6

output line, II: 525

positioning to end, II: 5-15

read variable-length, II: 5-24

, II: 5-6
write variable-length, II:
5-4
writing, II: 56

writing lines to, II: 5-29

Tilde, use of, III: 2-2

Top-level directory, II: 1-8

Tracks, II: 1-5

Tree structure,
creating, II: 1-5

Treewalk bit, III: 3-22, 4-31

handled by command processor,
III: 26

in command processing
information, III: 3-22

in epf-info structure, III:
4-31

options for, III: 2-6

Treewalking (continued)
specified in command

information structure, 1III:

4-23
specified in epf-info
structure, III: 4-31

Truncating a file, II: 1-29,
5-17

TSRC$$ subroutine, II: 2-26
used to open file for VMFA
read, III: 4-19

Types of EPFs, I: 1-3

U
Unmapping an EPF, I: 3-34
User file, 1II: 1-10

User programs,

recursive invocation of, III:

6-1

User-defined search list, II:
3-2

User-written functions,
command environment support
for, TIII: 1-7
User-written programs,
command environment support
for, III: 1-6

Users,
search lists of, II: 3-2

v
V-mode programs, I: 1-5

Variable references, evaluation
of, III: 24

Index-29

Master Index

Variable-length record file,
compression character, II:
544
format, TII: 542
pad character, II: 543
space compression, II: 543

Variable-length records, II: 5-3
advantages, II: 5-3
termination character, II: 5-3

-VERIFY bit, III: 3-21

-VERIFY option,
handled by command processor,

IITI: 2-7

Virtual memory file access read
(VMFA-read), II: 1-24

VPSD command, I: 1-18, 9-8

W

~WAIK_FROM bit, III: 3-22
~WAIK_TO bit, III: 3-22
Wildcard bit, III: 3-22, 4-31

Vildcards,

handled by command processor,
III: 2-86

in command processing
information, III: 3-21

in epf-info structure, III:
4-31

options for, III: 2-6

Vriting file system objects, II:
2-34

Writing files, II: 2-35

¥riting segment directories, II:
2-34

WILIN$ subroutine, II: 2-35,
5-2, 524, 5-27, 5-29

Third Edition

Surveys

Reader Response Form

Advanced Programmer’'s Guide, Volume 0: Introduction and Error Codes
DOC10066-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our
user publications.

1. How do you rate this document for overall usefulness?

[excellent [_Jverygood [_]good [lfair []poor

2. What features of this manual did you find most useful? °

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

(] Much better (] Slightly better (] About the same
(] Much worse (] Slighsly worse (] Can’t judge

5. Which other companies’ manuals have you read?

Name:
Position:
Company:
Address:

Postal Code:

{

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

First Class Permit #531 Natick., Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

Prime.

Attention: Technical Publications
Bidg 10
Prime Park, Natick, Ma. 01760

|| || ||||||

Reader Response Form

Advanced Programmer’s Guide, Volume 0: Introduction and Error Codes
DOC10066-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our
user publications.

1. How do you rate this document for overall usefulness?

[excellent [] very good [)good [_]fair []poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

(] Much better (] Stightly better (] About the same
(] Much worse (] Slightly worse [Can’t judge

5. Which other companies’ manuals have you read?

Name:
Position:
Company:
Address:

Postal Code:

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

Prime.

Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

{ I

Reader Response Form

Advanced Programmer’s Gulde, Volume 0: introduction and Error Codes
DOC10066-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our
user publications.

1. How do you rate this document for overall usefulness?

[excellent [very good [lgood [fair []poor

2. What features of this manual did you find most useful? -

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

] Much better (] Stightly better [C] About the same
(] Much worse (] Slightly worse [C] Can’t judge

5. Which other companies’ manuals have you read?

Name:
Position:
Company:
Address:

Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

Prime.

Attention: Technical Publications
Bidg 10
Prime Park, Natick, Ma. 01760

|

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

IR WA A -
DOC 1 BREE-3LA

	front cover
	i
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	Index-i
	Index-ii
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Index-8
	Index-9
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	Index-29
	Index-30
	Surveys-i
	Surveys-ii
	Surveys-1
	Surveys-2
	Surveys-3
	Surveys-4
	Surveys-5
	Surveys-6
	Surveys-7
	Surveys-8
	Surveys-9
	Surveys-1
	back cover

