Prime Computer, Inc.

FDR3059-101B

Assembly Language
Programmer’s Guide

Rev. 16.3

The Assembly Language Programmer’s Guide

The
Assembly Language
_Programmer’s Guide

by Rosemary Slnelds

Published by Prime Computer, Incorporated
Technical Publications Department
145 Pennsylvania Avenue, Framingham, MA 01701

Copyright © 1981 by Prime Computer, Inc.
Third Printing January 1981

All rights reserved.

The information contained in this document is subject
to change without notice and should not be construed
as a commitment by Prime Computer, Incorporated.
Prime Computer assumes no responsibility for any
errors that may appear in this document.

This document reflects the software as of Master Disk
Revision Level 16.

PRIMOSE® is a trademark of Prime Computer, Inc.
Credits.

Concept and Production

William I. Agush

Typesetting.

Allied Systems

Covers.

Mark-Burton

Text.

Eastern Graphics

1 March, 1979 i-5 FDR 3059

1 INTRODUCTION

Introduction 1-1
Organization and usage 1-1
Related documents 1-1

2 CONVENTIONS

Prime conventions 2-1
Instruction description conventions 2-1
Function group definitions 2-2

Table 2-1. Function definitions 2-3
Format definitions 2-3

Table 2-2. Format definitions 2-3
General data structure 2-3

Table 2-3. Data structures 2-4
Processor characteristic 2-5

Table 2-4. Processor characteristics 2-5

Terminal session example 2-5

3 ASSEMBLING

Invoking the Prime Macro Assembler (PMA) 3-1
File usage 3-1
Assembler messages 3-2
Listing format 3-2
Figure 3-1. A-Register details 3-3
Figure 3-2. Example of assembly listing 3-4

4 LOADING R-MODE PROGRAMS

Introduction 4-1
Using the loader under PRIMOS 4-1
Normal loading 4-1
Load maps 4-3
Loader concepts 4-4
Figure 4-1. Examples of load maps 4-7

Command summary 4-8

D LOADING SEGMENTED PROGRAMS

Introduction 5-1
Using SEG under PRIMOS 5-1
Normal loading 5-2
Load maps 5-3
Figure 5-1. Example of load map 5-5
Advanced SEG features 5-7
Command summary 5-8
SEG-level commands 5-9
LOAD subprocessor commands 5-10
MODIFY subprocessor commands 5-13

FDR 3059 i-6

1 March, 1979

Execution of unsegmented runfiles 6-1
Execution of segmented runfiles 6-2

Installation in the command UFD (CMDNCo0] 6-2
Run-time error messages 6-5

7 DEBUGGING

Tools 7-1

Advanced debugging techniques 7-2
Debugging-PRIMOS severe errors 7-2
Memory overflow errors 7-3

8 INTERFACING WITH THE SYSTEM LIBRARIES

Table 8-1. System libraries 8-1
Figure 8-1. SR Subroutine CALL conventions 8-2
Figure 8-2. VI subroutine CALL conventions 8-3

9 DATA AND INSTRUCTION FORMATS—SRVI

Data structures 9-1
Processor characteristics 9-8
Instruction formats—I-mode 9-16

Table 9-1. Address formation special case selection 9-18

10 MEMORY REFERENCE CONCEPTS (SRV)

Background concepts 10-1

Table 10-1. Memory reference instruction format 10-2
Memory reference instruction formats 10-4

Table 10-2. V-mode two word memory reference 10-9
Addressing mode summaries and flow charts 10-10

Figure 10-1. 16S address calculation 10-11

Figure 10-2. 32S address calculation 10-13

Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.
Figure 10-14.
Figure 10-15.

1 March, 1979

32R address calculation (1 of 5)
32R address calculation (2 of 5)
32R address calculation (3 of 5)
32R address calculation (4 of 5)
32R address calculation (5 of 5)
64R address calculation (1 of 5)
64R address calculation (2 of 5
64R address calculation (3 of 5)
64R address calculation (4 of 5)
64R address calculation (5 of 5)
64V address calculation {1 of 3]
64V address calculation (2 of 3)
64V address calculation (3 of 3)

10-16
10-17
10-18
10-19
10-20
10-23
10-24
10-25
10-26
10-27
10-31
10-32
10-33

FDR 3059

Field operations—FIELD 11-15
Floating point arithmetic—FLPT 11-16
Table 11-3. Floating point exception codes 11-16
Table 11-4. Floating point mantissa and exponent ranges 11-17

11 INSTRUCTION DEFINITIONS

Addressing mode—ADMOD 11-1
Branch—BRAN 11-2
Character string operations—CHAR 11-5
Clear register—CLEAR 11-7
Decimal arithmetic—DECI 11-8
Table 11-1. Decimal data type 11-9
Table 11-2. Edit sub-operations 11-14
Key Manipulation—KEYS 11-31
Logical operations—LOGIC 11-32
Logical test and set—LTSTS 11-33
Machine control—MCTL 11-34
Move data—MOVE 11-39
Program control and jump—PCTL] 11-43
Process exchange—PRCEX 11-49
Queue management—QUEUE 11-49
Shift group—SHIFT 11-50
Skip conditional —SKIP 11-53
Table 11-5. Combination skip group 11-55

12 1-MODE INSTRUCTIONS

Addressing mode—ADMOD 12-1
Branch—BRAN 12-1

Character operations—CHAR 12-3

Clear register and memory—CLEAR 12-14
Decimal arithmetic—DECI 12-5

Field Operations—FIELD 12-5

Floating point arithmetic—FLPT 12-6
Integer arithmetic—INT 12-9

Integrity check for hardware—INTGY 12-14
Input/output—I/0 12-14

Key manipulation—KEYS 12-14

Logical operations—LOGIC 12-15

Logical test and set—LTSTS 12-16
Machine control—MCTL 12-17

Move data—MOVE 12-17

Program control and jump—PCTL] 12-19
Process exchange—PRCEX 12-10

Queue management—QUEUE 12-10
Shift—SHIFT 12-21

13 INSTRUCTION SUMMARY CHART

Instruction summary 13-1

FDR 3059 i-8

1 March, 1979

1A - & A T TS T T T T e
12 LANGUAGE STRUCTURE

Introduction 14-1
Lines 14-1
Statements 14-1
Figure 14-1. PMA statements 14-2
Figure 14-2. PMA line format 14-3
Memory reference instruction format 14-5
Instruction formats—I-Mode 14-5
Table 14-1. Assembler formats 14-7

How to write V or I mode code in PMA 14-8

15 DATA DEFINITION

Table 15-1. Numeric constants 15-2

Terms 15-5
Figure 15-1. Floating point data formats 15-6
Table 15-2. Modes 15-8

Expressions 15-8
Literals 15-10
Assembler attributes 15-11

16 PSEUDO OPERATIONS

Introduction 16-1
Table 16-1. Pseudo-operation summary 16-2
Figure 16-1. Pseudo-operations 16-4

Assembly control psuedo-operations (AC) 16-5
Address definition pseudo-operations (AD) 16-7
Conditional assembly pseudo-operations (CA) 16-8
Data defining pseudo-operations (DD) 16-10
Listing control pseudo-operations (LC) 16-11
Literal control pseudo-operations (LT) 16-12
Loader control pseudo-operations (LO) 16-13
Macro definition pseudo-operations (MD) 16-16
Program linking pseudo-operations (PL) 16-18
Storage allocation pseudo-operations (SA) 16-20
Symbol defining pseudo-operations (SD) 16-20

17 MACRO FACILITY

Introduction 17-1

Macro definition 17-2
Macro calls 17-3

Nesting macros 17-5
Conditional assembly 17-6
Macro listing 17-6

1 March, 1979 i-9

FDR 3059

18 INTRODUCTION TO TAP, PSD, VPSD

Using TAP 18-1

Table 18-1. Debugging command summary 18-1

Using PSD 18-3
Table 18-2. PSD/VPSD versions 18-3

Using VPSD 18-3
Command line format 18-4

Table 18-3. Input/output formats (PSD and VPSD)

19 TAP COMMAND SUMMARY

TAP command summary 19-1
Table 19-1. TAP terminators 19-1
Table 19-2. Keys 19-3

20 PSD COMMMAND SUMMARY

PSD command summary 20-1
Table 20-1. PSD terminators 20-1
Table 20-2. Key values: R and S mode 20-4

21 vPSD COMMAND SUMMARY

Table 21-1. VPSD terminators 21-1
Table 21-2. Key values: R and S modes 21-4
Table 21-3. Key values: V mode 21-5

A ASSEMBLER ATTRIBUTES
B Ascii CHARACTER SET

C ERROR MESSAGES

FDR 3059 1-10

1 March, 1979

Introduti

INTRODUCTION

This document is a comprehensive user guide for the Prime Macro Assembler (PMA)
programmer. In this one document you will find almost everything you will need to know to
write, assemble, load, debug and execute an assembly language program. We assume the
following background: you are an experienced assembly language programmer although
you may be unfamiliar with Prime’'s PMA; and you have been introduced to Prime’s
PRIMOS operating system and its major utilities through the use of a high-level language
such as FORTRAN and COBOL. (If not, we recommend you read one of our other language
user guides before undertaking a PMA project.)

ORGANIZATION AND USAGE

This document is organized into five major parts:

Part 1. Overview and conventions (Sections 1 and 2)

Part 2. PMA Usage (Sections 3 through 8)

Part 3. Machine Formats and Instructions (Sections 9 through 13)
Part 4. PMA Reference (Sections 14 through 17)

Part 5. Debugging Utilities Reference (Sections 18 through 21)

In addition to a tutorial section for the new PMA programmer (Part 2), it contains complete
descriptions of:

Machine instructions

Data structures

Assembler pseudo operations
Assembler macro facilities

TAP, PSD and VPSD debugging facilities

RELATED DOCUMENTS
The FORTRAN Programmer’s Guide
Reference Guide, System Architecture
The New User’s Guide to Editor and Runoff
PRIMOS Commands Reference Guide
Reference Guide, PRIMOS Subroutines
PRIMOS Programmer’s Companion
FORTRAN Programmer’s Companion
Assembly Language Programmer’s Companion
Reference Guide, LOAD and SEG

1 March, 1979 1-1 FDR 3059

Conventions

PRIME CONVENTIONS

Symbols, abbreviations, special characters and conventions frequently used in this docu-
ment are defined below.

Prime filename conventions

Filename Function
B__filename Binary (object) file
L__filename Listing file

C_filename Command file
filename Source file

*filename Saved (executable) file
M__filename Map file

#filename SEG runfile

Note
Filenames may be a maximum of 32 characters.

Text conventions

An item in all capital letters must be included verbatim. Rust colored letters indicate
acceptable abbreviations. In TAP, PSD and VPSD commands enter only the rust colored
letters. A quote mark (apostrophe) preceding a number means octal.

INSTRUCTION DESCRIPTION CONVENTIONS

This section describes each of the instructions in the context of the mode where they are first
used. To avoid duplicate descriptions while facilitating retrieval, each instruction is

described once, but listed in I-mode if appropriate.

1 March, 1979 2-1 FDR 3059

2 PRIME CONVENTIONS

Format illustration:

Instruction name : Description of instruction

\ \ Instruction control flow in algebraic notation

LDA addr Load the A register /
(EA)16—A

Load the contents of location addr into the A register. The contents of the address are
unaffected; the previous contents of the A register are lost. MODES =SRV, FORMAT =MR
OPCODE =02, C =unchanged, L =unchanged, CC =unchanged.

Modes, format, opcode, condition codes, C and L bit settings

Instruction summary and description conventions

A Register (16-bits)

B Register (16 bits)

L L Register (A|B)

E E Register (32-bits)

F Floating Point Register
H

R

= >

Half Register (16-bits, I Mode)
Full register (32-bits, I Mode)

C C-Bit in the keys

L-bit L-Bit in the Keys

CC Condition Godes

LB Link Base Register

SB Stack Base Register

PB Procedure Base Register
XB Temporary Base Register
S S-Mode

R R-Mode

\Y% V-Mode

I I-Mode

FAR Field Address Register
FLR Field Length Register

> Replaces

FUNCTION GROUP DEFINITIONS

The instruction definitions are grouped by primary function, such as integer arithmetic.
Table 2-1 below contains the definitions for all the function groups and modes. If you wish
to find a particular instruction, Section 13 contains an alphabetic list.

FDR 3059 2-2 1 March, 1979

PRIME CONVENTIONS 2

Table 2-1. Function Definitions

Definition S R V 1
Addressing Mode X X X X
Branch X X
Character X X
Clear field X X X

Decimal Arithmetic X X
Field Register X X
Floating Point Arithmetic X X X
Integer Arithmetic X X X X
Integrity X X X X
Input/Output X X X X
Keys X X X X
Logical Operations X X X X
Logical Test and Set X X X X
Machine Control X X X X
Move X X X X
Program Control and Jump X X X X
Process Exchange X X
Queue Control X X
Shift X X X X
Skip X X X X

FORMAT DEFINITIONS

Each instruction has a format. The formats and their meaning are summarized in Table 2-2.
The specific bit definitions are defined in Section 9—Data and Instruction Formats and
Section 10—Memory Reference Concepts.

Table 2-2. Format Definitions
Mnemonic Definition S R V 1
GEN Generic X X X X
AP Address Pointer X X
BRAN Branch X
IBRN Branch I-mode X
CHAR Character X X
DECI Generic Decimal X X
PIO Programmed 1/0 X X X X
SHFT Shift X X X X
MR Memory Reference - X X X
Non I-mode
MRFR Memory Reference - X
Floating Register
MRNR Memory Reference X
Non Register
RGEN Register Generic X

1 March, 1979 2-3 FDR 3059

2 PRIME CONVENTIONS

GENERAL DATA STRUCTURES

Table 2-3. Data Structures—summarizes all the data structures manipulated by instructions.

Table 2-3. Data Structures

Class S R V 1
Integer (Unsigned)

16-bit X X X X
32-bit X X

Integer (Signed)
16-bit X X X X
31-bit X X
32-bit

<
e

Floating Point
32-bit X
64-bit X

Decimal

R S
PR

Character String
Word e R
- 16-bit X X
L azhit T A
; Halfword—,iﬁ bit , I
,IndirectPointer;[IP}k ; k ;
R
. 32:bit I T EE T
o 48bit
Address Pointer (AP)
 Segment Header
- Frame Header

>
=

SR

IR
B

Arpanioit Toinplata’s -+

Entry Control ‘Bi;yo‘(:'ky e f"", o

PR e XK

' Queue Control Block

FDR 3059 2-4 1 March, 1979

PRIME CONVENTIONS 2

Table 2-4. Processor Characteristics
"Class , S R VvV 1
Registers , o
S. R mode R X X
V. I mode ; X X
“Field Registers ‘ ‘ X X
Floating Registers : : , X X
Keys o : o
S. R mode ' ' XX e
V. I mode I o XX
~ C-Bit | X X X X
L-Bit B X X
Condition Codes X X
Modals X X

SAMPLE TERMINAL SESSION

% FIRST, CREATE THE FILE **%kx
OK, ED

GO

INPUT

EDIT
TAB 19 15 25

INPUT
\SEG

\RLIT
STR\LDA\="456
\STA\BUFF1
\STA\BUFF2
\PRTN

* %Kk kk DATA AREA *kxkk%k
\DYNM\STCK (1)
\LINK
BUFF1\BSS\1
BUFF2\BSS\1
\ECB\STR

\END

EDIT
FILE TTY

*kkkx

**kk* ASSEMBLE THE FILE **%%%
ok ok kok

1 March, 1979 2-5 FDR 30359

2 PRIME CONVENTIONS

OK, PMA TTY
GO

g0@9 ERRORS (PMA-REV 15.0)
*kkkk

*%k*xkx PMA LISTING *kk kk
kkkkk

OK, SLIST L_TTY

GO
SEG

(2901)
(3002)
2000008 02.000005 (0003)
Po0Ra1: P4.000400L (0004)
000002 02.000012S (2905)
P00003: 04.000401L (2006)
200004: gogell (B007)
(3928)
peoa12 (3009)
(0019)
pov403> (9911)
pen4a1> (9012)
000402> 203000 (9013)

pope14

poBo1l

Po0000

1774020

314009
00@422 (6014)

00025 00. 000456A

TEXT SIZE: PROC 000906 LINK 900022

BUFF1 PoR40eL 09094 @011
BUFF2 geo4Ad1L 0006 0012
STCK 0o9012S 0P05 0089
STR 000000 @003 0013

¢@9@ ERRORS (PMA-REV 15.0)

kkkkk

x%% LOAD THE FILE **¥***
kkkkk

OK, SEG

GO
LOAD

SAVE FILE TREE NAME: STTY1
s LOAD B_TTY

LOAD COMPLETE
$ SAVE

FDR 3059

STR

SEG

RLIT

LpA ='456
STA BUFF1
LDA STCK

STA BUFF2
PRTN

kkk DATA AREA kkkkk

BUFF1
BUFF2

(-]

DYNM STCK(1)
LINK

BSS 1

BSS 1

ECB STR

END

STACK 009013

1 March, 1979

PRIME CONVENTIONS 2

S MAP

*START (00000 000999 *STACK 004001 001006 *SYM 202083

SEG. # TYPE LOW HIGH TOP

204001 PROC## 221000 201005 010085

204032 DATA P00032 009021 200021

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.

i EiE 4202 209002 4921 001000 geg2l4 028022 4882 177480

DIRECT ENTRY LINKS
COMMON BLOCKS

OTHER SYMBOLS

*kkkk

*¥***% EXECUTE THE PROGRAM **x**
*kkkk

$ EXECUTE

ACCESS VIOLATION *¥%*%* ERROR — CALL VPSD **%**
ER! VPSD

GO

S$SN 4901

SA 1000:S

4001/ 1000 LDA# 1005
4001/ 1001 STA# LB%+ 400
4001/ 1002 LDAE SB%+ 12
4001/ 1003 STA§ LB%+ 401
4001/ 1004 PRTN

4001/ 1005 DAC 456

4001/ 1006 HLT
$B 1000

SR 1009
4001/ 190@: LDA# 1005 A=0 B=0 X=0 K=14000 R=0 Y=12614

$B 1004

S$PR
4001/ 1004: PRTN A=0 B=0 X=0 K=14009 R=0 Y=12614

SPR

ACCESS VIOLATION

ER! ED TTY

dkkkk

**%%% PROBLEM WAS INCORRECT ECB — NOTE THAT LOAD MAP *START
%%x% ENTRY HAD A ZERO VALUE. MAIN PROGRAM NEEDS END OPERAND

***%%* REFERENCING THE ECB LABEL.
*kkkk

GO
EDIT

1 March. 1979 2-7 FDR 3059

2 PRIME CONVENTIONS

TAB 10 15 25
L END
END
R \END\ECB1
N-1
ECB STR
c/ /ECBl/
ECB1 ECB STR
FILE
OK, PMA TTY
GO
P00@ ERRORS (PMA-REV 15.0)
SLIST L TTY
GO
SEG
(3001)
(3002)
000000: 22.000005 (2003)
goP001: g4.000400L (29004)
200002: 792.0000125 (8005)
000003: 04.000401L (90@6)
000004: 20611l (2087)
(2008)
0aga12 (8009)
(0010)
200406> (@011)
000401 > (0912)
200432> Q200200 (2013)
000a14
300011
000009
177400
B14000
000422 (B014)
200005: 00.000456A
TEXT SIZE: PROC 000006
BUFF1 po0400L @004 0011
BUFF2 000401L 0906 0012
ECB1 Q004@2L @913 0014
STCK 000212S @085 0099
STR 200000 0ge3 2013

090@ ERRORS (PMA-REV 15.0)

OK, SEG
GO

FDR 3059

STR

SEG
RLIT
LDA
STA
LDA
STA
PRTN

='456
BUFF1
STCK

BUFF2

kkk DATA ARFA *****

BUFF1
BUFF2
ECB1

LINK 0080822

DYNM STCK(1)
LINK

BSS 1

BSS 1

ECB STR

END ECB1

STACK 0008013

1 March,

1

]

7

9

PRIME CONVENTIONS 2

4 DELETE $TTY
4 LOAD

SAVE FILE TREE NAME: STTY
$ LOAD B_TTY

LOAD COMPLETE
$ SAVE

$ MAP
*START 004002 00P002 *STACK 004001 001006 *SYM 000003

SEG. # TYPE LOW HIGH TOP

204001 PROC ## 001009 9010085 231085

004002 DATA povog2 po0n21 200021

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.

HHE 4902 000002 4001 001000 0p00L4 000022 4002 177400

DIRECT ENTRY LINKS
COMMON BLOCKS

OTHER SYMBOLS

$ EXECUTE
*kkkx

#%%%* DROGRAM NOW WORKS. NOTE THAT LOAD MAP *START ENTRY HAS
*%%%% ADDRESS OF SEGMENT 4¢¢2 WORD 2, THE LOCATION TO START

¥%k*x% EXECUTION.
*kkkk

OK,

1 March, 1979 2-9 FDR 3059

Assembling

The Prime Macro Assembler (PMA) is a two pass assembler (three pass in SEG or SEGR
mode). The first pass generates a symbol table and identifies external references; the
second pass generates object code blocks for input to the loader and, optionally, creates a
listing. The three pass assembly in SEG or SEGR mode permits optimization of stack and link
frame references.

INVOKING THE PRIME MACRO ASSEMBLER (PMA)
PMA is invoked by the command:

PMA pathname [-option-1] [-option-2]. . .[-option-n]

where pathname is the pathname of the PMA source file and option-1, option-2, etc. are the
mnemonics for one of the options described below. All options must be preceded by a dash

oy

For example, the command: PMA ALPHA>BETA -ERRLIST means assemble the file
ALPHA located in UFD BETA and list only the errors, while PMA ALPHA means, assemble
the file ALPHA located in the home UFD and produce whatever listing the program
specifies (see listing pseudo-operations in Section 16 - Pseudo-Operations). The listing name
(if any) will be L__ALPHA. PMA ALPHA -LISTING BETA means, assemble the file ALPHA
located in the current UFD, generate a binary file, and produce whatever listing the program
specifies. The listing filename will be BETA.

Option Meaning
-INPUT treename Input treename
-LISTING treename Listing treename
-BINARY treename Object file treename
-EXPLIST Generates full assembly listing (overrides the
pseudo-operation NLIST) and forces listing file gen-
eration
-ERRLIST Generates errors-only listing, and forces listing file
generation
-XREFL Generates complete cross reference
-XREFS Omits from the listing symbols which have been
defined but not used
FILE USAGE
Three files may be involved during an assembly:
File Type PRIMOS File unit
Source 1
Listing 2
Object 3

1 March, 1979 3-1 FDR 3059

3 ASSEMBLING

PMA automatically opens files for listing and object output. B__source-filename is the default
object name; L_source-filename is the default listing name. Use the -BINARY option to
charge the object default and -LISTING option to change the listing default.

The PRIMOS commands LISTING and BINARY permit you to concatenate files, since they
remain open when the assembler returns control to PRIMOS.

ASSEMBLER MESSAGES

When the assembler reads the END statement of the input file on the second pass, it prints
a message, terminates assembly, and returns control to PRIMOS command level. The
message contains a decimal error count and the version number of the assembler, as in:

@P@1 ERRORS (PMA-REV 16.2)

LISTING FORMAT
Figure 3-2 shows a section of a typical assembly listing and illustrates the main features.

Each page begins with a header and a sequential page number. The first statement in a
program is used as the initial page header. If column 1 of any source statement contains an
apostrophe ('), columns 10-72 of that statement become the header for all pages that follow,
until a new title is specified.

User-generated messages may be inserted into the listing output by using the SAY pseudo-
operation in the source program. Such messages can be used to document the progress of a
complex conditional assembly operation.

FDR 3059 3-2 1 March, 1979

ASSEMBLING 3

DEVICE OPTIONS

LISTING CONTROL - OMIT , =NONE ,
QOVERRIDE ; UNUSED 1=USER TERMINAL
, SYMBOLS 3=Reserved For CARDS
LIST ; 4=Reserved for LINE PRINTER
ERRORS ' ONLY : 5=Reserved for MAGNETIC TAPE
Lo ~ 6=Reserved for CASSETTE
7=DISK

EL |LCOIOUS| - SOURCE LISTING | OBJECT

1 2 3 4 5 8 9 1¢11 12 13 14 15 16

Error listing (bit 2): If this bit is set, only the lines containing errors are listed.
Otherwise, listing is controlled by pseudo-operations in the source program.

Listing control override (bit 3): If this bit is set, the assembler overrides any listing
control pseudo-operations in the source program and lists all statements, including
lines within macro expansions and lines that would be skipped by conditional
assembly. Otherwise, listing is controlled by pseudo-operations in the source program.

Omit unused symbols (bit 4): If this bit is set, symbols which have been defined but not
referenced are omitted from the cross-reference.

Device options (bits 8-16): The last three octal digits of the A-register select source,
listing and object devices respectively.

Figure 3-1. A-Register Details

1 March, 1979 3-3 FDR 3059

3 ASSEMBLING

(9001)
o (ge2) |
000000: 02.000005 (P093) STR
000001: B4.000400L (0024) |
000002: @2.000012S (P005)
 0000B3: 04.000401L (0005)

- @00004: 000611 (0007)
e 000012 (9009)

S (eml@)
00P400> (p@ll) BUFFl
. @o@401> (g@12) BUFF2
. 008402> @P0GPP (PP13) ECBL
- geesisa
 pogoLl
000000
177408
014000
ezm4zz - (@014)

000005: ﬂz.we@456A
. TEXT sxzzef; PROC 0@@0@6 LINK GﬁﬁﬁZZ
~ BUFFL 000400L 0024 0Pl
 BUFF2 000401L 0006 0012

ECB1 000402L 0013 @0l4

STCK 0000125 0005 0909
STR 000000 0003 0013

@000 ERRORS (PMA-REV 16.2)

Figure 3-2. Example of Assembly Listing

SEG

RLIT

LDA ="456
STA BUFF1
LDA STCK

~ STA BUFF2

PRTN

- (0008) **kkk DATA AREA **kk%

DYNM STCK (1)

- LINK

BSS 1

o BSS 1
ECB STR

" END ECBI

STACK 000013

FDR 3059 3-4

1 March, 1979

ASSEMBLING 3

Cross-reference listing (concordance)

At the end of the assembly listing.appears a cross-reference listing of each symbol’s name
(in alphabetical order), the symbol’s location or address value, and a list of all references to
the symbol. The location and address values are in octal unless the PCVH pseudo-operation
specifies hexadecimal listing. Each reference is identified by a four-digit line number. The
NLST pseudo-operation suppresses the cross-reference listing; the option ~-XREFS sup-
presses symbols which have been defined but not used. ‘

1 March, 1979 3-5 FDR 3059

4 LOADING R-MODE PROGRAMS

PBRK Program Break. Resume loading at a new location.

CH,SS,SY,XP Symbol control commands.

EN ENtire save; saves copy of load session for building of program
overlays.

ER Controls action taken by loader following errors.

SZ Controls use of Sector 0.

COMMAND SUMMARY

Following is a summary of all LOAD commands, in alphabetical order. All file and directory
names may be specified by pathnames, except in the LIBRARY command. All numerical
values must be octal.

ATTACH [pathname]

Attaches to specified directory.

AUTOMATIC base-length

Inserts base area of specified length at end of routine if >'300 locations loaded since last
base area.

CHECK [symbol-name] [offset-1]. . .[offset-9]

Checks value of current PBRK against symbol or number. symbol-name is a 6 character
symbol defined in the symbol table. offset-1 through 9 are summed to form an address or
offset from symbol name. Numbers preceded by “-** are negative.

COMMON address
Moves top/starting COMMON location to address.
DC [END]

Defers definition of COMMON block until SAVE command is given. (Low end of COMMON
follows top of load.) END turns off DC.

ENTIRE pathname

Saves entire state of loader as runfile, along with temporary file, for building overlays.

ERROR n
Determines action taken in case of load errors.
n Meaning
SZ errors treated as multiple indirect, others act as n=1.
1 Display multiple indirects on terminal but continue LOAD; abort load of file
for all other errors.
2 Abort to PRIMOS

EXECUTE [a] [b] [x]

Starts execution with specified register values.

5 FORCELOAD l
F/ < LIBRARY [pathname] [parameters]
| LoAD

FDR 3059 4-8 1 March, 1979

LOADING R-MODE PROGRAMS 4

Forceloads all modules in specified object file. See LOAD for parameters,

HARDWARE definition

Specifies expected level of instruction execution.

CPU Definition

P450 and up 100

P350,P400 57

P300/FP 17 FP=Floating Point

P300 3

P200/HSA 1 HSA=High-speed arithmetic
P100/HSA 1

P200 0

P100 0

HARDWARE, if given, must precede loading of UII library.
INITIALIZE [pathname] [parameters]

Initializes LOADER and, optionally, does a LOAD. See LOAD for parameters.
LIBRARY [filename] [loadpoint]

Attaches to LIB UFD, loads specified library file (FTNLIB is default), and re-attaches to
home directory.

LOAD [pathname] [parameters]

Loads the specified object module. The parameters may be entered in three formats:

1. loadpoint [setbase-1]. . .[setbase-8]
2. * [setbase-1]. . .[sethase-9]
3. symbol [setbase-1]. . .[setbase-9]

In form 1, loadpoint is the starting location of the load. In form 2, the load starts at the
current PBRK location (*). In form 3, the load address can be stated symbolically (symbol).
The remaining numeric parameters (setbase-1, etc.) specify the size of linkage areas to be
inserted before and after modules during loading. If the last parameter is "177777, the loader
requests more setbase values.

MAP [pathname] [option]

Generates load-state map on terminal, or in a file, if pathname is specified.

Option Meaning
0 Load state, base area, symbol storage map; symbols sorted by address

(default)

Load state only

Load state and base area

Unsatisfied references only

Same as 0

System Programmer map

Undefined symbols sorted alphabetically

All symbols sorted alphabetically

Special symbol map for PSD (in a file)

N O U WD

U=y
o

1 March, 1979 4-9 FDR 3059

4 LOADING R-MODE PROGRAMS

D32R

D64R

D32S

Specifies address resolution mode for next load module (32K Relative, D32R, is default). If
used, MODE must precede other LOAD commands.

FORCELOAD |

P/< LIBRARY > [pathname] [parameters]
| LOAD)
Begins loading at next page boundary. See LOAD for parameters.
PAUSE

Leaves loader to execute internal PRIMOS command. Return via START.

[symbol-name] [offset-1]. . .[offset-9]
PBRK * offset-1 [offset-2]. . .[offset-9]

Sets a program break to value of symbol plus offset or a number. * treats sum of numbers as
offset from current PBRK. Offsets may be negative.

QUIT
Deletes temporary file, closes map file (if loader opened it), and returns to PRIMOS.

SAVE pathname

Writes a memory image of the loaded runfile to the disk.

[base-start] [base-range]
SETBASE % * [base-range] }

Defines starting location and size of base area. * is current value of PBRK.

SS symbol-name

Save symbol. Exempts specified symbol from action of XPUNGE.

| symbol-name [offset-1] . . . [offset-6]
SYMBOL { * offset-1 [offset-2] . . . [offset-6]

Establishes locations in memory map for common blocks, relocation load points, or to satisfy
references. * is current value of PBRK. Offsets are summed and may be negative.

YES
SZ {NO }
Permits/prohibits links in sector zero.

VIRTUALBASE bhase-start to-sector

Copies base sector from base-start to corresponding locations in to-sector. Used for building
RTOS modules.

XPUNGE dsymbols dbase
Deletes COMMON symbols, other defined symbols, and base areas.

FDR 3059 4-10 1 March, 1979

R-Mode programs

INTRODUCTION

The PRIMOS LOAD utility converts object modules (such as those generated by PMA) into
runfiles that execute in the 32R or 64R addressing modes. (Runfiles to execute in the 64V
mode must be loaded using the segmentation utility, SEG.)

The following description emphasizes the loader commands and functions that are of most
use to the PMA programmer. For a complete description of all loader commands, including
those for advanced system-level programming, refer to Reference Guide, LOAD and SEG.

USING THE LOADER UNDER PRIMOS
The PRIMOS command:
LOAD

transfers control to the R-mode loader, which prints a $ prompt character and awaits a
loader subcommand. After executing a command successfully. the loader repeats the §
prompt character.

If an error occurs during an operation, the loader prints an error message, then the $ prompt
charcter. Loader error messges and suggested handling techniques are discussed elsewhere
in this section and in Appendix C. Most of the errors encountered are caused by large
programs where the user is not making full use of the loader capabilities.

When a system error (FILE IN USE, ILLEGAL NAME, NO RIGHT, etc.) is encountered. the
loader prints this system error and returns its prompt symbol, $.

The loader remains in control until a QUIT or PAUSE subcommand returns control to
PRIMOS, or an EXECUTE subcommand starts execution of the loaded program.

Load subcommands can be used in command files, but comment lines result in a CM
(command error) message.

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward commands needed.
The loader also has many additional features to optimize runfile size or speed. perform
difficult loads, and deal with possible complications. The most frequently used load
commands and operations are presented first; this enables immediate use of the loader.
Advanced features are then described followed by a summary of all loader commands.

The following commands (shown in abbreviated form) accomplish most loading functions:
PRIMOS-Level commands:

FILMEM Initializes user space in preparation for load.

1 March, 1979 4-1 FDR 3059

4 1.0ADING R-MODE PROGRAMS

LOAD Invokes loader for entry of subcommands.
RESUME Starts execution of a loaded, SAVEd runfile.

LOAD subcommands:

MODE option

D64R.

LOAD pathname loads specified object file.

LIBRARY [filename] Loads library object files from UFD LIB. (Default is
FTNLIB.)

MAP [option] Prints loadmap. Option 3 shows unresolved refer-
ences.

INITIALIZE Returns loader to starting condition in case of com-
mand errors or faulty load.

SAVE pathname Saves loaded memory image as runfile.

QUIT or PAUSE Return to PRIMOS.

Most loads can be accomplished by the following basic procedure:

1.

7.

If these commands produce a LOAD COMPLETE message. then loading was accomplished.
If there is a problem, it will become apparent by the absence of a LOAD COMPLETE
message or by some other loader error message. (See Appendix C for a complete list of all

loader error

After a successful load, start runfile execution from LOAD command level, or quit from the
loader and start execution through the PRIMOS RESUME command. An example of such a

load is:

Use the PRIMOS FILMEM command to initialize memory to binary
zeroes.

Invoke LOAD.

Use the MODE command to set the addressing mode. if necessary (The
default is 32R mode.)

Use loader's LOAD subcommand to load the object file (B_pathname)
and any separately assembled subroutines.

Use loader's LIBRARY subcommand to load subroutines called from
libraries (the default is FTNLIB in the UFD LIB). Other libraries. such
as SRTLIB or APPLIB. must be named explicitly.

If you do not have a LOAD COMPLETE, do a MAP 3 to identify the
unsatisfied references, and load them.

SAVE the runfile under an appropriate name.

messages and their probable cause and correction.)

OK, LOAD

GO

$ MO D64R

$ BC

$ LO B _ARRAY

$ LI

Order of loading

The following loading order is recommended:

1.

Main program.

2. Separately assembled user-generated subroutines (preferably in order
of frequency of use).

FDR 3059

4-2 1 March, 1979

Sets runfile addressing mode as D32R (default) or

LOADING R-MODE PROGRAMS 4

2, Nthan Prime 1

thmanias (TT £
JliiCi 14111C 11JldiiEo ll—l.l L

1.
il

rame}.

i
4. Standard FORTRAN library (LI).

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-
routines in the library file FTNLIB in the LIB UFD. The appropriate subroutines from the
file are loaded by the LIBRARY command given without a filename argument. If sub-
routines from other libraries are used, such as MATHLB, SRTLIB, or APPLIB, additional
LIBRARY commands are required which include the desired library as an argument.

LOAD MAPS

During loading the loader collects information about the results of the load process, which
can be printed at the terminal (or written to a file) by the MAP command:

MAP [pathname] [option]

The information in the map can be consulted to diagnose problems in loading, or to optimize
placement of modules, linkage areas and COMMON in complex loads.

Load information is printed in four sections, as shown in Figure 4-1. The amount of
information printed is controlled by MAP option codes such as:

Option Load Map Information

None, 0 or 4 Load state, base area, and symbol storage; symbols sorted by
address

Load state only

Load state and base areas

Unsatisfied references only

Undefined symbols, sorted in alphabetical order
All symbols, sorted in alphabetic order

N W NN -

Load state

The load state area shows where the program has been loaded, the start-of-execution
location, the area occupied by COMMON, the size of the symbol table, and the UII status.
All locations are octal numbers.

*START: The location at which execution of the loaded program will begin. The default is
"1000.

*LOW: The lowest memory image location occupied by the program. Executable code
normally starts at "1000, but sector 0 address links (if any) begin at '200.

*HIGH: The highest memory image location occupied by the program (excluding any area
reserved for COMMON)]).

*PBRK: “Program Break': The next available location for loading. It normally is the location
following the last loaded module, but can be moved by PBRK or the LOAD family of
commands.

*CMLOW: The low end of COMMON.
*CMHGH: The top of COMMON.

*SYM: The number of symbols in the loader’s symbol table. This is usually of not concern
unless the symbol space crowds out the last remaining runfile buffer area. (There is room
for about 4000 symbols before this is a risk.)

1 March, 1979 4-3 FDR 3059

4 1.0ADING R-MODE PROGRAMS

*UIl: A code representing the hardware required to execute the instructions in loaded
modules. Codes and other information are described later in this section.

Base areas

The base area map includes the lowest, highest and next available locations for all defined
base areas. Each line contains four addresses as follows:

*BASE XXXXXX YYYYYY 277777 WWWWWW

XXXXXX Lowest location defined for this area
YYYYYY Next available location if starting up from XXXXXX
777777 Next available location if starting down from WWWWWW

WWWWWW Highest location defined for this area
Symbol storage

The symbol storage listing consists of every defined label or external reference name
printed four per line in the following format:

namexx NNNNNN
or
**namexx NNNNNN

NNNNNN is a six-digit octal address. The ** flag means the reference is unsatisfied (i.e., has
not been loaded).

Symbols are listed by ascending address (default) or in alphabetical order (MA 6 or MA 7).
The list may be restricted to unsatisfied references only (MA 3 or MA 6).

COMMON blocks

The low end and size of each COMMON area are listed, along with the name (if any). Every
map includes a reference to the special COMMON block LIST, defined as starting at
location 1.

LOADER CONCEPTS

When standard loading goes well, the user can ignore most of the loader’s advanced
features. However, situations can arise where some detailed knowledge of the loader’s
tasks, can optimize size or performance of a runfile, or even make a critical load possible.
From that viewpoint, the main tasks of the loader are:

e Convert block-format object code into a run-time version of the program (ex-
ecutable machine instructions, binary data and data blocks).

* Resolve address linkages (translate symbolic names of variables, subroutine entry
points, data items etc. into appropriate binary address values).

* Perform address resolution (discussed later).

* Detect and flag errors such as unresolved external references, memory overflow,
etc.

* Build (and, on request, print) a load map. The map may also be written to a file.
e Reserve COMMON areas as specified by object modules.

* Keep track of runfile’s hardware execution requirements and make user aware of
need to load subroutines from UII library.

FDR 3059 4-4 1 March, 1979

LOADING R-MODE PROGRAMS 4

The loader occupies the upper 32K words of the user’s 64K-word virtual address space.
Programs up to 32K words are loaded directly into the memory locations from which they
execute. Programs loaded in this manner can be started by the loader’s EXECUTE command
without being saved. For larger 64R-mode programs, the loader uses the available memory
as buffer space and transfers loaded pages of memory to a temporary file that accomodates
a full 64K-word memory image. When loading is complete, the file must be assigned a name
by the loader’'s SAVE command; it can then be executed either through the loader’s
EXECUTE command or the PRIMOS RESUME command.

The.loader remains attached to the working directory throughout loading, for access to the
temporary file. Files in other directories can be loaded by giving a pathname in a LOAD
command.

Use of pathnames

Pathnames can be used to specify object files in all commands except LIBRARY, which
accepts only a simple filename of a file within the LIB UFD.

Object code

Inputs to the loader are in the form of object code—a symbolic, block-format file generated
by all of Prime’s language translators. Prime's standard library files consist of subroutines
in this format.

The loader combines the user's main program object file with the object files of all
referenced subroutines (either those in the library, or those generated and separately
compiled by the user} into a single runfile. The runfile is then ready for execution, either

directly through the loader’'s EXECUTE command or through the PRIMOS RESUME
command.

Runfiles

A runfile consists of a header block followed by the runfile text in memory image format.
The header contains information that enables the runfile to be brought into memory by the
PRIMOS RESTORE or RESUME command. Contents of the header can be examined after a
RESTORE by the PM command. (See PRIMOS Commands Reference Guide.)

Selecting the addressing mode

The 32R addressing mode is retained as the loader’s default for compatibility with existing
command files. The only significant difference between 32R and 64R for small programs is
that 32R permits multiple indirect links, while 64R 2llows only one level of indirection. In
certain situations such as processing of multi-dimensional arrays, 32R mode may enable the
programmer to write a program that is somewhat more compact or runs slightly faster.
However, for programs that approach the 32K word boundary, 64R mode ensures successful
loading with no significant penalties of size or speed. Thus MODE D64R is recommended for
most applications.

Base areas

“Base Area" is discussed in Section 10—Memory Reference Concepts. When one of the
messages is printed:

BASE SECTOR 0 FULL

symbolname XXXXXX NEED SECTOR 0 LINK

1 March, 1979 4-5 FDR 3059

4 1,0ADING R-MODE PROGRAMS

This condition, usually encountered only when loading large programs, can be avoided in
several ways:

¢ Give the AUTOMATIC command to enable the loader to assign local linkage areas
before and after individual subroutines.

¢ Use setbase parameters with a LOAD or LIBRARY command to insert local
linkage areas where they are needed.

* Use the SETBASE command to designate a base areas where it is required.
¢ During assembly, use the SETB pseudo-operation.

UII handling

The loader can keep track of the CPU hardware required to execute the instructions
generated by the modules already loaded. This is shown in the UII entry in the load state
section of a load map. The codes are:

UII Value CPU Required
100 Prime 450 and up
57 Prime 350 or 400
17 Prime 300 with FP Hardware
3 Prime 300
1 Prime 100 with HSA or 200 with HSA
0 Prime 100 or 200

If the UII code on the load map is greater than the value for the target CPU. then it will be
necessary to load part of the UII library to make execution possible. When a CPU encounters
an instruction not implemented by hardware, a UIl (Unimplemented Instruction Interrupt)
occurs and control is transferred to the appropriate Ull routine. This routine simulates the
missing hardware with software routines.

However, the UlI routine must be loaded by the command LI UII, which should be the last
LOAD command before the program is saved. The appropriate routines will be selected
from this library to satisfy the additional hardware requirements of the program.

To make sure that only the required subroutines are loaded. the user can “subtract”
hardware features that are present in the CPU by entering a HARDWARE command. For
example, assume:

* A load session produces a ioad map UII vaiue of 57.

* The target CPU is a Prime 300 with floating point (UII value 17).

The command:

HA 17

reduces the load state UII value to 40 (i.e., '57-'17) and ensures that the floating point
subroutines do not occupy space in the runfile.

If, after a HARDWARE command, the load state UII value is 0, the UII library need not be
loaded.

System programming features

The following commands are primarily of interest to systems programmers. They are
described in more detail in the Reference Guide, LOAD and SEG:

F/ Prefix to LOAD and LIBRARY which forceloads unreferenced
modules.
P/ Prefix to LOAD and LIBRARY which starts loading on next page

boundary. (Can reduce paging time.)

FDR 3059 4-6 1 March, 1979

LOADING R-MODE PROGRAMS 4

*START 001000 *LOW 200208 *HIGH @87775 *PBRK 106376
*CMLOWN 977777 *CMHGH 077777 *SYM 000070 *II 200001

*BASE 000200 000225 @@0777 000777
*BASE 001534 001600 001685 001605
*BASE 002576 002660 002661 002661
*BASE 003624 003663 (@3665 003665
*BASE (04664 004706 004707 004707

**GHOST @01825 FSWA 201631 FSWX 9091037 FSIO gP1113
F$al 201606 FS$A3 001606 FSAS gp1613 FS$A2 291621
FSA6 791627 FS$A7 2091645 FSCB 202326 FSIOBF 085405
WRASC 905587 I0CSS @@5514 IOCSST 9085613 WATBL 095625
LUTBL 005644 PUTBL 005701 RSTRL @@5736 OSAD@7 ©@5773
OSADP8 (06136 0S$SAAQL 006200 PRSPES 06235 OERRTS 006427
ERRPRS 007433 PRWFSS 007436 WILINS 007441 ERRSET @07444
FSER 0@7447 FSHT pA7454 EXIT 297534 AC1 207537
AC2 #07540 AC3 297541 AC4 907542 AC5 9097543
TNOU 207544 TONL 207634 T10U 007641 T1IB Po7661
T10B P07666 FSAT 087673 FSAT1 0@75675 GCHAR 007749
SCHAR 907755

COMMON BLOCKS

LIST p20001 @e7776 076400
A. Full Map [MAP]

*START 001000 *LOW 200209 *HIGH @@7775 *PBRK 106376
*CMLOW 877777 *CMHGH 977777 *SYM 200072 *UII 000001

*BASE Q00200 000225 000777 600777
*BASE 901534 @@1509 0Blegs PaLGEs
*BASE 002575 002660 002661 002551

*BASE 003624 003663 PO3665 OO3AKS
*BASE 004554 (04706 BO4707 304707

AC1 a@7537 AC2 007540 AC3 207541 AC4 907542
ACS 327543 ERRPRS 007433 ERRSET 007444 EXIT 067534
FSAL 001606 FSA2 001621 F3SA3 201606 FSAS 091613
F$AG 201627 F$A7 2815645 FSAT 207673 FSATL 297675
FSCB 302326 FSER ag7447 FSHT 087454 FSIO 701113
FSIOBF 005405 FSWA 001931 FSWX p01037 GCHAR 097740

**GHOST 001025 I0CS$ @@5514 IOCSST 0085613 LUTBL 005644
OSAAML (96200 O$SAD@7 @05773 0$AD@8 896136 OERRTS$ 006427
PRSPES 006235 PRWFS$S 007435 PUTBL #@5701 RSTBL 985736
SCHAR @07755 T1iIB 207661 T10B 007666 T10U 007641
TNOU 287544 TONL 307634 WATBL 005625 WRASC 005507
WTLINS 307441

COMMON BLOCKS
0a7775 075400 LIST 000091

B. Symbols Sorted Alphabetically [MA 7]

Figure 4-1. Examples of load maps

1 March, 1979 4-7 FDR 3059

L0

segmented programs

INTRODUCTION

The PRIMOS SEG utility converts object modules (such as those generated by the PMA) into
segmented runfiles that execute in either 64V or 321 addressing mode and take full
advantage of the architecture and instruction set of the Prime 350 and up. Segmented
runfiles offer the following advantages:

* Much larger programs: up to 256 segments per user program (32 Megabytes).

* Access to V-mode and I-mode instructions and architecture (Prime 350 and up) for
faster execution.

* Ability to install shared code: single copy of a procedure can service many users,
significantly reducing paging time.

* Reentrant procedures permitted: procedure and data segments can be kept
separate.

The following description emphasizes the commands and functions that are of most use to
the PMA programmer. For a complete description of all SEG commands, including those for
advanced system-level programming, refer to the Reference Guide, LOAD and SEG.

USING SEG UNDER PRIMOS
SEG is invoked by PRIMOS command:
SEG [pathname]

A pathname is given only when an existing SEG runfile is to be executed. Otherwise, the
command transfers control to SEG command level, which prints a “#" prompt character and
awaits a subcommand. After executing a subcommand successfully, the loader repeats the
prompt character. SEG employs two subprocessors, LOAD and MODIFY, which accept
further subcommands. The subprocessors use the “‘$" prompt character.

If an error occurs during an operation, SEG prints an error message, then the prompt
character. Error messages and suggested handling techniques are discussed elsewhere in
this section and in Appendix C.

When a system error (FILE IN USE, ILLEGAL NAME, NO RIGHT, etc.) is encountered, SEG
prints the system error and returns the prompt symbol. SEG remains in control until a QUIT
subcommand returns control to PRIMOS, or an EXECUTE subcommand starts execution of
the loaded program.

SEG subcommands can be used in command files, but comment lines are accepted only
within the LOAD subprocessor.

1 March, 1979 5-1 FDR 3059

5 LOADING SEGMENTED PROGRAMS

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward commands needed.
SEG also has many additional features to optimize runfile size or speed, perform difficult
loads, load for shared procedures, and deal with possible complications. To facilitate
immediate use of SEG, the most frequently used commands and operations are described
first. Advanced features are then described, followed by a summary of all SEG commands.

The following commands (shown in abbreviated form) accomplish most loading functions:

SEG-Level commands:

DELETE Deletes segmented runfile.

HELP Prints a list of SEG commands at terminal.

LOAD Invokes loader subprocessor for entry of subcom-
mands.

LOAD subcommands:

LOAD pathname Loads specified object file.

LIBRARY [filename] Loads library object files from UFD LIB. (Default is
PFTNLIB and IFTNLB, in that order.)

MAP [option] Prints loadmap. Option 3 shows unresolved refer-
ences.

INITIALIZE Returns loader to starting condition in case of com-
mand errors or faulty load.

SAVE Saves loaded memory image as runfile.

RETURN Returns to SEG command level.

QUIT Return to PRIMOS.

Most loads can be accomplished by the following basic procedure:

¢ Invoke SEG from PRIMOS level.

e Enter the LOAD command to start the LOAD subprocessor ($ prompt)

e Use the load subprocessor's LOAD subcommand to load the object file (B—
filename) and any separately assembled subroutines.

e Use load subprocessor’s LIBRARY subcommand to load subroutines called from
libraries (the default is PFTNLB and IFTNLB in the UFD LIB). Other libraries,
such as VSRTLB or VAPPLB, must be named explicitly.

* If you do not have a LOAD COMPLETE, do a MAP 3 to identify the unsatisfied
references, and load them.

* SAVE the runfile.

If these commands produce a LOAD COMPLETE message, then loading was accomplished.
If there is a problem, it will become apparent by the absence of a LOAD COMPLETE
message or some other SEG error message. (See Appendix C for a complete list of all SEG
error messages and their probable cause and correction.)

After a successful load, start runfile execution from loader command level, or quit from the
loader and start execution through the PRIMOS RESUME command. An example of such a
load is:

FDR 3059 5-2 1 March, 1979

LOADING SEGMENTED PROGRAMS 5

OK, SEG
GO

LOAD

SAVE FILE TREE NAME: #ARRAY
$ LO B_ARRAY

$ LI

S SA

$ MA M ARRAY

S QU

Order of loading

The following loading order is recommended:
1. Main program.
2. Separately assembled user-generated subroutines (preferably in order
of frequency of use).
3. Other Prime Libraries (LI filename).
Standard FORTRAN library (LI).

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-
routines in the library file FTNLIB in the LIB UFD. The appropriate subroutines from this
file are loaded by the LIBRARY command given without a filename argument. If sub-
routines from other libraries are used, such as VSRTLB or VAPPLB, additional LIBRARY
commands are required which include the desired library as an argument.

LOAD MAPS

During loading, SEG collects (and stores, as part of the segmented runfile) information about
the results of the load process. This can be printed at the terminal (or written to a file) by
the load subprocessor's MAP command:

MAP [pathname] [option]

The information in the map can be consulted to diagnose problems in loading, or to optimize
placement of modules, linkage areas and COMMON in complex loads. If a file pathname is
given, the map is written to a file instead of being printed at the terminal. The loadmap is
particularly useful for:

* Location where program halted (Link Base (LB) address after a crash).
* Modules not loaded (MA 3 or MA 6).
* Reason for stack overflow (Stack Base (SB) address after a crash).

When a map file is specified, it is opened on PRIMOS Unit 13 and remains open until the
load session is completed. Any additional MAP commands specifying output to a file will use
the one already opened; exiting from the Loader {via EXECUTE, QUIT, or RETURN) closes
the map file. If the user has opened a file on PRIMOS Unit 13 prior to invoking SEG's loader,
then this file will be used for the map. In this case, leaving the Loader does not close the file.

1 March, 1979 5-3 FDR 3059

D LOADING SEGMENTED PROGRAMS

The full SEG load map consists of seven sections, not all of which may be present in any
load. (See Figure 5-1) In particular, Section III may not be present in small SEG loads. The
amount of information printed is controlled by MAP option codes:

Option Load Map Information

None, Extent, segment assignments, base areas, symbol storage (symbols

0or4 sorted by address), direct entry links, common blocks, and other
symbols.

1 Extent and segment assignments only

2 Extent, segment assignments and base areas

3 Undefined symbols, sorted by address

6 Undefined symbols, sorted alphabetically

7 Full map, symbols, sorted in alphabetic order
10 Symbols, sorted by ascending address

11 Symbols, sorted alphabetically

Section [—Extent

The extent area shows where the program has been loaded, the start-of-execution location,
and the size of the symbol table. All locations are octal numbers.

*START: The segment number and word location for the start-of-execution. At the beginning
of a load, the start address is initialized to 000000 000000. SEG fills in *START for the first
segmented procedure encountered (usually the main program).

*STACK: Segment number and word location of the start of the stack; initialized to 177777
000000 at the start of a load. This value is not changed until a loader SAVE or EXECUTE
command is invoked. The default stack is in the first procedure segment with 6000 (octal)
free locations at the top of memory.

*SYM: Address of the bottom of the symbol table (one word only as it is a 64R mode
address). Indicates to the user how much space is left for the symbol table. To determine the
location of the top of the symbol table, generate a map prior to loading; the top and bottom
of the symbol table will be identical and *SYM will also be the location of the top.

Section II—Segment assignments

Each segment is labeled as procedure (PROC) or data (DATA); the segment chosen for the
stack is identified by ## following the segment type. The list is sorted in order of segment
assignment.

LOW: Lowest loaded location in the segment. (Not necessarily the lowest assigned location.)
Initialized to '177777 (-1) at segment creation; if the segment is used only for uninitialized
COMMON areas, LOW is not changed.

HIGH: Highest loaded location in the segment. (Not necessarily the highest assigned

| PO T SO PN F At onoman 3 -3 3
location.) Initialized to '000000 at segment creation; if the segment is used only for

uninitialized COMMON areas, HIGH is not changed.

FDR 3059 5-4 1 March, 1979

LOADING SEGMENTED PROGRAMS 5

*START 004002 00PPP3 *STACK 004801 011728 *SYM 000146

SEG. # TYPE LOW HIGH TOP
204001 PROC#H## 200100 911723 911717
204002 DATA 002001 100462 190553

*BASE 0Q4001 000100 000177 000777 000777

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.

#i4d 4002 900003 4001 001000 000012 QeRB35 4092 177400
FSWB 4001 9085371 4001 Q01067 000060 040187 4002 075035
F$RB 4001 005331 4001 001072 000060 Q00107 40082 076035
FSDE 4981 005411 4001 801190 poga6n QORLOT7 4692 876835
FSEN 4091 095431 4201 901103 000058 000107 4002 076835
FSWA 4901 905351 40901 091123 peodcd 008187 4992 875035
FS$RA 4901 005311 4001 291126 000060 Q0017 4002 G76835
Féal 4081 905451 4001 001520 002060 000107 4092 076035
F$a2 4001 995471 4001 001523 go0o6n @PBLeT7 4602 0976835
FSAS 4901 005511 4901 901525 PooO6e 008187 4002 @760835
F$A6 4081 @@5531 4001 PP1S33 000063 000107 4902 076035
PSA7 4091 - 805551 4001 901536 0R0069 QOO1R7 4002 9760835
FS$CB 4901 905571 4001 902230 000060 000107 4002 @76835
RDASC 4001 @05736 4p01 095611 000026 0PO0e6 4002 076344
RDBIN 4001 @85756 4081 085656 000026 0000086 4002 @76344
WRASC 4001 805776 4001 985676 gens26 000006 4002 076344
WRBIN 4001 906016 4091 @@5716 000026 000006 4002 (76344

I0CS$ 4901 006136 4001 006044 000040 pOP004 4002 076352
10CSST 4001 006707 4001 006174 000010 089152 40082 075356
ATTDEV 4001 006727 4001 2662590 000814 000152 4002 076356
IOCSRA 4001 006747 4001 906313 200006 909152 4002 076356
ISBD@7 4001 907117 4001 007084 000036 Q0geP2 4002 076530
0SBDA7 4001 007236 4001 007142 000034 000002 4002 976532
OSADP8 4001 007350 40901 997261 000a34 000002 4002 076534
ISAAL2 4001 Q07516 4091 087373 008052 20pe13 4002 - 876536
0$AAQL 4001 007701 4001 007652 00003¢ 00002 4092 876551
FSIOER 4091 007752 4901 997722 200014 0000P6 4002 P76553
I$ADD7 4002 977179 4901 010015 200030 (09056 4002 075561
0S$AD@G7 4002 077246 4901 910131 00093¢ 0epes55 4902 076637
PRWFIL 4002 977323 4001 210245 020046 000055 4002 @76715
PRSPES 4092 @77377 4001 010444 000044 000054 4002 076772
SEARCH 4992 277460 4001 010605 200034 ¢00121 4602 077046
OERRTS 4002 077574 40901 0911014 200052 000662 4002 ©77167

FSERX 4091 9011209 4001 0611154 000020 000006 4002 108051
TONL 4001 911230 4091 p11221 ge0p12 000082 4002 108857
GCHAR 4901 @11251 4901 011271 00020 P00g00 4002 1008061
SCHAR 4001 011310 4001 ©11339 000024 000000 4002 100061
T10B 4001 011374 4001 @11355 000046 Q00002 4002 100061

GETERR 4001 0211460 4081 @11415 00p040 000000 4002 100063
ERRSET 4001 @11631 4901 @11500 200034 000071 4002 100063

DIRECT ENTRY LINKS

CNINS 4001 911652 ERKLSS 4001 011656 ERRPR$ 4001 p11662
EXIT 4091 011666 PRWFSS 4001 011671 RDLINS 4991 @11675
SRCHSS 4001 011701 TNOU 4081 0811705 TNOUA 4901 011719

WTLINS 4091 911714

COMMON BLOCKS
4002 00R@35 076400

OTHER SYMBOLS
FS$A3 4981 905451 **GHOST 4092 000233 F$IOBF 4002 @76544
PUTBL 4002 Q77012 RSTBL 4002 077346

Figure 5-1. Example of Load Map

1 March, 1979 5-5 FDR 3059

D LOADING SEGMENTED PROGRAMS

TOP: Highest assigned location in the segment. Top should not be lower than HIGH. If it is,
the user may have specified incorrect load addresses. When not using default values, the
user is responsible for loading into correct areas. TOP is initialized to 177777 (-1) at segment
creation. When space is reserved for large COMMON blocks, the loader will only set TOP
to a maximum of '177776 even though the entire segment to '177777 is reserved.

The reason for this is: a LOW, HIGH, and TOP of 177777 000000 177777 labels an empty
segment.

Section III—Base areas
*BASE VVVVVV WWWWW XXXXX YYYYYY 777777

VVVVVV Segment number

WWWWWW Lowest location for base area

XXXXXX Next available location if starting up from lowest location
YYYYYY Next available location if starting down from highest location
277777 Highest location for base area

The lowest default location for the sector zero base area is '100.

There may be a sector zero base area in each procedure segment; there must be none in data
segments. Base areas other than sector zero ones may be generated by PMA modules.

Section IV—Symbols

A main program or subroutine compiled in 64V or 321 mode is called a procedure. For a
complete discussion, see Sections 9 and 10 in this manual: also the Reference Guide, System
Architecture. A procedure is composed of a procedure frame (the executable code), an ECB
(the entry control block which points to the procedure frame), a link frame (static storage,
constants, transfer vectors) and a stack frame (dynamically allocated storage which is
assigned when the routine is called and released upon return from the routine). This section
of the map describes these items. The ECB is normally part of the link frame although the
programmer may place it in the procedure frame. The procedure frame will be located in a
segment reserved for procedure frames. Link frames and COMMON blocks will be located
in segments reserved for data.

The first pair of numbers in this section of the map is the segment and word address for the
ECB; the second pair is the segment and word address for the procedure.

ST. SIZE: is the size of the stack frame (working area) created whenever the routine is
called. Its segment (and location therein) are assigned at execution time.

LINK FR: is the size of the link frame.

The last two columns are the link frame segment and offset. Note that the offset is '400
locations lower than the actual position, for compatibility with the information printed by
the PRIMOS PM command. The segment number is usually that for the ECB.

Procedures with no names, specifically a main program, are identified by #### in the name
field.

Section V—Direct entry links

PRIMOS supports direct entry calls to the supervisor for certain routines. These are created
as fault pointers in the SEG runfile. Where references are satisfied by these fault pointers,
they will appear in the DIRECT ENTRY LINKS section of the map.

Section VI—COMMUON blocks

Lists each COMMON block, its segment number, starting word address in the segment, and
size.

FDR 3059 5-6 1 March, 1979

LOADING SEGMENTED PROGRAMS 5

Lists the symbol, its segment, and word address in that segment. As in Section VI, the format
is three symbols per line. Unsatisfied references are preceded by **

The numbers for unsatisfied references (segment and word address) locate the last request
for the routine processed by the loader. This allows the routines calling missing routines to
be identified.

ADVANCED SEG FEATURES

When standard loading goes well, the user can ignore most of the SEG's advanced features.
However, situations can arise where some detailed knowledge of SEG and segmented
runfile organization can optimize size or performance of a runfile, or even make a critical
load possible. The following topics are particularly valuable.

Segment usage

A segment is a 64K word block of user’s virtual address space. Segment '4000 is the segment
that SEG and other external commands occupy when invoked. Segment '4000 is the lowest-
valued non-shared segment in the PRIMOS system. SEG creates a runfile of up to 256
segments.

PRIMOS assigns memory segments to a user as they are accessed. These are not re-assigned
until logout. Since only a fixed number of segments are available for all users, extra
segments should not be invoked unless the user is actually executing or examining a
segmented program. Most of the functions of SEG use only one segment; only those options
which restore a runfile use extra segments, i.e., RESTORE, RESUME, and EXECUTE.

Segmented runfiles

A segmented runfile consists of segment subfiles in a segment directory. For this reason, you
cannot delete a SEG runfile with a PRIMOS-level DELETE command. Instead, use the
DELETE command in SEG. (The TREDEL command in FUTIL also works but is slower than
SEG’s DELETE.)

Note

It is good practice to use the PRIMOS DELSEG command to
release segments assigned by SEG during a load session.
Otherwise those segments remain assigned to the user until
logout, precluding their use by anyone else.

Each segment of the runfile consists of 32 ('40) subfiles of '4000 words each. Subfile 0 of the
runfile is used for startup information, the load map, and the memory image subfile map.
Memory image subfiles begin in segment subfile 1. Only the subfiles actually required for
the runfile are stored on the disk.

SEG’s loader

SEG has a virtual loader (i.e., it loads to a file rather than to memory) which requires the
name of the runfile before anything is loaded. The runfile may be new or may be a
previously used SEG runfile, and may be in any directory. A runfile compiled and loaded in
32R or 64R mode may not be used.

As the symbol table is always available, SEG’s loader may be used to add modules to an
existing runfile. Similarly, a partial load may be saved with the SEG SAVE command and
the load completed later. In addition, selected modules may be replaced in a SEG runfile.

1 March, 1979 5-7 FDR 3059

5 LOADING SEGMENTED PROGRAMS

Object files

Object files of the program modules must have been created using the SEG or SEGR pseudo-
operation. Modules written in other languages may also be loaded, if they have been
compiled or assembled in 64V or 32I mode.

Code and data are loaded in separate segments to support re-entrant procedures. Data
includes all COMMON blocks and link frames. The loader assigns code and data segments.
The first segment ('4001) is used for code. Usually segment '4002 will be used for data. The
loader loads data and code into appropriate segments and opens new segments as required.
It is possible to put both code and data in the same segment to save space, using the MIXUP
subcommand of the LOAD subprocessor.

The stack

The loader assigns a stack (a dynamic work area) when SAVE or EXECUTE is invoked. The
stack is usually assigned as the next free location in the first procedure segment with 6000
free words. If no such segment exists, a new data segment is assigned with the first location
in the stack set to 4; locations 0 to 3 are used for internal SEG information. The user may
force the location of the stack and/or may change its size.

Use of pathnames

Pathnames can be used to specify object files in all commands except LIBRARY, which
accepts only a simple filename of a file within the LIB UFD.

Base areas

Base areas normally present no problem unless the following message is printed:
SECTOR 0 BASE AREA FULL

This condition, which is extremely unlikely to occur, can be avoided by using the SETBASE
command or the SETB pseudo-operation to designate a base area where it is required.

Locating COMMON

SEG makes sure there is no overlap of procedures and COMMON. The user has the option
of moving COMMON by a COMMON or SYM command, but he takes on the responsibility
of making sure it doesn’t run into the stack.

COMMAND SUMMARY

Following is a summary of all SEG commands, in alphabetical order within three groups:
1. SEG-level commands
2. LOAD-subprocessor

3. MODIFY subprocessor

Files and directory names may be specified by pathnames, except in the LIBRARY
commands. All numerical values must be octal The fcllowing conventions are followed for
parameters.

addr Word address within a segment.

segno Segment number.

psegno Procedure segment number.

Isegno Linkage segment number.

[a][b][x] Values for A, B, and X registers.
Note

Segment numbers may be absolute or relative.

FDR 3059 5-8 1 March, 1979

LOADING SEGMENTED PROGRAMS 5

Commands at SEG level are entered in response to the “#’ prompt.

DELETE [pathname]

Deletes a saved SEG runfiles.

HELP

Prints abbreviated list of SEG commands at terminal.

[VILOAD[pathname]

Defines runfile name and invokes virtual loader for creation of new runfile (if name did not
exist) or appending to existing runfile (if name exists). If pathname is omitted, SEG requests
one.

MAP pathname-1 [pathname-2] [map-option]

Prints a loadmap of runfile (pathname-1 or current loadfile (*)) at terminal or optional file
(pathname-2).

Option Load Map information

Full map (default)

Extent map only

Extent map and base areas

Undefined symbols only

Full map (identical to 0)

System programmer’s map

Undefined symbols, alphabetical order
Full map, sorted alphabetically
Symbols by ascending address
Symbols alphabetically

== N OO WO

= o

MODIFY ([filename]

Invokes MODIFY subprocessor to create a new runfile or modify an existing runfile.

PARAMS [filename]
Displays the parameters of a SEG runfile.

PSD
Invokes VPSD debugging utility.

QUIT

Returns to PRIMOS command level and closes all open files.

RESTORE [pathname]

Restores a SEG runfile to memory for examination with VPSD.

RESUME [pathname]

Restores runfile and begins execution.

1 March, 1979 5-9 FDR 3059

5 LOADING SEGMENTED PROGRAMS

SAVE [pathname]
Synonym for MODIFY.

SHARE [pathname]

Converts portions of SEG runfile corresponding to segments below '4001 into R-mode-like
runfiles.

SINGLE [pathname] segno

Creates an R-mode-like runfile for any segment.

TIME [pathname]

Prints time and date of last runfile modification.

VERSION

Displays SEG version number.

VLOAD
See LOAD.

LOAD SUBPROCESSOR COMMANDS

ATTACH [ufd-name] [password] [ldisk] [key]

Attaches to directory.

A/SYMBOL symbolname [segtype] segno size

Defines a symbol in memory and reserves space for it using absolute segment numbers.

ABS
COMMON { [REL] } segno

Relocates COMMON using absolute or relative segment numbers.
IL ‘
LOAD
D/ LIBRARY
FORCELOAD
PL or RL

Continues a load using parameters of previous load command.

Note
D/ and F/ may be combined, as in D/F/LL

EXECUTE [a] [b] [x]

Performs SAVE and executes program.

FDR 3059 5-10 1 March. 1979

LOADING SEGMENTED PROGRAMS D

/1L \
LOAD
F/ LIBRARY
FORCELOA
PL
\ RL

Forceloads all routines in object file.

D [pathname][addr psegno Isegno]

IL [addr psegno Isegno]
Loads impure FORTRAN library IFTNLB

INITIALIZE [pathname]

Initializes and restarts load subprocessor.

LIBRARY [filename] [addr psegno Isegno]
Loads library file (PFTNLB and IFTNLB if no filename specified).

LOAD [pathname] [addr psegno Isegno]
Loads object file.

MAP [pathname] option
Generates load map (see SEG-level MAP command).
ON
MIXUP {[OFF] }

Mixes procedure and data in segments and permits loading of linkage and common areas in
procedure segments. Not reset by INITIALIZE.

MV [start-symbol move-block desegno]

Moves portion of loaded file (for libraries). If options are omitted, information is requested.

OPERATOR option
Enables or removes system privileges 0=enable, 1=remove. Caution: this command is
intended only for knowledgeable creators of specialized software.

PL [addr psegno [segno]
Loads pure FORTRAN library, PFTNLB.

IL

LOAD
p/) LIBRARY

FORCELOAD [pathname] option [psegno] [lsegno]
PL

. RL

Loads on a page boundary. The options are: PR=procedure only, DA=link frames only, none
=both procedure and link frames.

1 March, 1979 5-11 FDR 3059

D LOADING SEGMENTED PROGRAMS

QuIT
Performs SAVE and returns to PRIMOS command level.

RETURN

Performs SAVE and returns to SEG command level.

RL pathname [addr psegno Isegno]

Replaces a binary module in an established runfile.

R/SYMBOL symbol-name [segtype] segno size

Defines a symbol in memory and reserves space for it using relative segment assignment.
{Default=data segment).

SAVE [a] [b] [x]
Saves the results of a load on disk.

SETBASE segno length

Creates base area for desectorization.

(segno addr '
SPLIT < addr >
| addr segno addr lsegno)

Splits segment into data and procedure portions. Formats 2 and 3 allow R mode execution if
all loaded information is in segment 4000.

SS symbol-name

Saves symbol; prevents XPUNGE from deleting symbol-name.

STACK size

Sets minimum stack size.

SYMBOL [symbol-name] segno addr

Defines a symbol at specific location in a segment.

5 LIBRARY {
8/ /! ggﬁf&LOAD > [pathname] [addr psegno Isegno]
[RL or LOAD

Loads an object file in specified absolute segments.

XP dsymbol dbase

Expunges symbol from symbol table and deletes base information.

symbol Action
a Delete all defined symbols—including COMMON area.
1 Delete only entry points, leaving COMMON areas.

FDR 3059 5-12 1 March, 1979

LOADING SEGMENTED PROGRAMS 9

base Action
Retain all base information.
Retain only sector zero information.
Delete all base information.

N o= O ol

MODIFY SUBPROCESSOR COMMANDS

NEW pathname
Writes a new copy of SEG runfile to disk.

PATCH segno baddr taddr
Adds a patch (loaded between baddr and taddr) to an existing runfile and saves it on disk.

RETURN

Returns to SEG command level.

ssize
GK / segno addr
ssize 0 esegno
 ssegno addr esegno

Specifies stack size (ssize) and location. esegno specifies an extension stack segment.

START segno addr

Changes program execution starting address.

WRITE

Writes all segments above '4000 of current runfile to disk.

1 March, 1979 5-13 FDR 3059

This section treats the following topics:
* Execution of program memory images saved by the linking loader.
* Execution of segmented runfiles saved by SEG’s loader.
* Installation of programs in the command UFD (CMDNCO0).
* Use of run time.

EXECUTION OF UNSEGMENTED RUNFILES

Use the PRIMOS RESUME command to execute an unsegmented runfile:
RESUME pathname

where pathname is an R-mode runfile in the current UFD.

Programs which are resident in the user’s memory may be executed by a START command:
START

RESUME

RESUME brings the memory-image program pathname from the disk into the user’s
memory, loads the initial register settings, and begins execution of the program. Its format
is:

RESUME pathname

Example:
OK, R *TEST User requests program
GO Execution begins
THIS IS A TEST Output of program
OK, PRIMOS requests next command

RESUME should not be used for segmented (64V or 32 mode) programs; use the SEG
command (discussed later) instead.

START

Once a program is resident in memory (e.g., by a previous RESUME command) you can use
START to initialize the registers and begin execution. Its format is:

START {start-address]

Upon completion of the program, control returns to PRIMOS command level.

1 March, 1979 6-1 FDR 3059

6 EXECUTING

EXECUTION OF SEGMENTED RUNFILES

Use the SEG command to begin execution of a segmented program; e.g. SEG pathname
where pathname is a SEG runfile. SEG loads the runfile into segmented memory and starts
execution. SEG should be used for runfiles created by SEG’s Loader; it should not be used
for program memory images created by the LOAD utility.

Example:
OK, SEG #TEST user requests program
GO execution begins
THIS IS A TEST output of program
OK, PRIMOS requests next command

Upon completion of program execution, control returns to the PRIMOS command level.

You may restart a SEG runfile by the command: S 1000, provided both the SEG runfile and
the copy of SEG used to invoke it are in memory.

INSTALLATION IN THE COMMAND UFD (CMDNC0)

Run-time programs in the command UFD (CMDNCO) can be invoked by keying in the
program name alone. This feature of PRIMOS is useful if a number of users invoke this
program. Only one copy of the program need reside on the disk in UFD CMDNCO0.

Even more space is saved during execution by multiple users if the program uses shared
code (64V and 32I mode only).

Program memory images saved by LOAD

Installation in the command UFD is extremely simple, providing you have access to the
password. The runtime version of the program is copied into UFD CMDNCO using PRIMOS’
FUTIL file handling utility.

Example: Assume you have written a utility program called FARLEY. This utility acts as a
“tickler”” for dates. Using FARLEY, each user builds a file with important dates. The
FARLEY utility program, upon request, prints out upcoming events or occasions of interest
to the user.

Note

This utility does not necessarily actually exist; it is used as a
plausible example.

First, assemble the program.

OK, PMA FARLEY -64R Assemble in 64R mode

GO

@070 ERRORS (PMA-REV 16.2)ASSEMBLER MESSAGE

OK, LOAD Invoke the Loader

GO

$LO B FARLEY Load the object file; the default
name is used

S load other required modules

FDR 3059 6-2 1 March, 1979

EXECUTING 6

SLI Load the FORTRAN library
LOAD COMPLETE Load is complete

$SA *FARLEY Save the memory image

$QU Return to PRIMOS

OK, FUTIL Invoke the file utility

GO

>TO CMDNC@ ORDER Defines the TO UFD as CMDNCO;

password is ORDER
>COPY *FARLEY FARLEY Copies the runtime program
*FARLEY into UFD=CMDNCY
under the name of FARLEY
>QUIT Return to PRIMOS Command level

OK,

It was not necessary to define a FROM UFD: the default was used. Any user can now invoke
this program:

OK, FARLEY Invoke program

GO Execution beings

HON FAR: Asks for future time period
etc.

Segmented runfiles saved by SEG’s loader

A segmented program cannot be run directly from UFD CMDNCO because PRIMOS’
command processor cannot directly handle the SEG runfiles. The segmented program may
be invoked by means of a non-segmented interlude program in CMDNCo.

The procedure for creating an interlude is:

1. Create the desired SEG runfile.

2. Attach to UFD SEG.

3. Run the command file CMDSEG; it will ask for a runfile name—this
name is the new SEG runfile name used in step four. This command file
will create the interlude program under the name *TEST.

4. Make a copy of the SEG runfile in UFD SEG using FUTIL's TRECPY
command. The name of the new SEG runfile should be the name used
in step three.

5. A copy of *TEST should be placed in UFD CMDNCO0 using FUTIL’s
COPY command. The file name should be that by which the program
will be invoked.

Note

If a pathname is given in step three, the runfile need not
reside in UFD SEG (step four can be skipped).

Example:

1. Extensions to the FARLEY utility described above make it desirable to
assemble and load it as a segmented program.

1 March, 1979 6-3 FDR 3059

6 EXECUTING

OK, PMA FARLEY -64V Assemble in 64V mode
GO

J000 ERRORS (PMA-REV 16.2)

OK, SEG Invoke SEG utility

GO

LOAD #FARLEY Establish runfile name
$ LO B FARLEY Load object file

$. -

$ LI Load 64V mode FORTRAN library
$ SA Save the file

S Qu Return to PRIMOS

OK,

2. Attach to UFD SEG.

OK, A SEG
OK,

3. The command file CMDSEG creates the interlude program.

OK, CO CMDSEG

OK, * CMDSEG,SEG,CEH. @4/05/78

OK, * COMMAND.FILE.TO.CREATE.'CMDNC@' .SEG.RUNFILES
OK, R *CMDMA

GO

RUN FILE NAME: FARLEY

OK, PMA S$$SEG 1/5707

GO

0006 ERRORS (PMA-REV 16.2)

OK, FILMEM

OK, LOAD

$sz

$ER 2

SMO D64R

$CO 173409

SLO B_SSSSEG 173400

$aU 2

SLO CMDLIB * 12 14 14 0 @ 12 @ 0 12
SAU @

SLI

SMA 2

$SAV
‘SAT

3
3
3
3]

FDR 3059 6-4 1 March, 1979

EXECUTING 6

$QU

OK, DELETE SSSSEG
OK, DELETE B_S$$SEG
OK, CO TTY

OK,

4. UFD SEG contains the SEG runfiles which are actually executed by the interlude
programs. The SEG runfile is copied here from the UFD in which itwas SAVEd.

OK, FUTIL Invoke FUTIL
GO
>FROM MYUFD FROM UFD is user's old home UFD

>TRECPY #FARLEY FARLEY Make a copy under the invocation

Note
No TO UFD is defined since the default (home) is being used.

5. The interlude program *TEST is copied into the command UFD under the name
by which it will be invoked.

>FROM * New FROM UFD - the current home
>TO CMDNCH@ ORDER TO UFD=CMDNC@; password here

is assumed to be ORDER
>COPY *TEST FARLEY Copy the interlude
XQUIT Return to PRIMOS command level
OK,

When FARLEY is entered at the user terminal, the FARLEY interlude program in CMDNCO0
is executed. This program attaches to the SEG UFD, restores the segmented runfile FARLEY,
re-attaches to the user’'s home UFD and begins execution of the SEG runfile.

If the SEG runfile requires only one segment of loaded information (procedure, link frames,
and initialized common) in user space (segment 4000 and above) it is possible to include the
interlude in the SEG runfile.

RUN-TIME ERROR MESSAGES

Appendix C contains a list of error messages which you may receive during execution, along
with their meaning and origin.

1 March, 1979 6-5 FDR 3059

Debugging is really an art and an attitude, rather than a set of techniques. In accord with
this, we will present some tools and we hope you will use them, develop your own ideas, and
tell us about them.

TOOLS

You have a variety of tools from which to choose. Which you select is extremely context
sensitive. The partial list below is intended to be an initial guide.

Tool Where Described
PM command Described below
COMOUTPUT command Described below
PMA Error Messages Appendix C of this document
Load Maps Sections 4 and 5 of this document
Debugging Utilities Sections 18-21 of this document

RVEC parameters

The commands RESTORE, RESUME, SAVE, PM, and START process a group of optional
parameters associated with the PRIMOS RVEC vector. These parameters are stored on disk

along with a starting address (SA) and ending address (EA), for every program saved by the
SAVE command.

Initial values for the RVEC parameters are usually specified in the PRIMOS SAVE
command, or by the Loader’s SAVE command that stored the program on disk.

Each parameter is a 16-digit processor word represented by up to six octal digits.
PM command

The PM (Post Mortem) command prints the contents of the RVEC vector. PRIMOS first
prints labels for the items in RVEC, then prints the values on the line in the same order. PM
is an internal command and does not overlay user memory.

The Prime 350 and above contain additional registers which PM displays: the procedure
base register (PB), the stack base register (SB), the link base register (LB), and the temporary
base register (XB). These 32-bit registers are displayed at the user terminal on a text line
separate from the other registers. Each of the Prime 400 registers is displayed as two 16-bit
octal numbers separated by a slash (/) character.

Example:

OK, PM
SA,EA,P,A,B,X,K=
109 11763 5517 120240 20061 23534 14000

PB,SB,LB,XB:
62000/5517 64000/74012 4000/3400 11/15041

1 March, 1979 7-1 FDR 3059

7 DEBUGGING

The above example of PM under PRIMOS IV shows a PB of 64000/3043, which indicates: ring
3 (See the System Architecture Guide for a discussion of rings), segment '4000. The word
number portion of PB indicates the same number as the P parameter of PM. This number
specified the location within the segment to execute the next instruction upon possible
receipt of a START command. The other base registers shown in the example contain a 0,
indicating that they have not been used since LOGIN. Programs that run in one of the Prime
300 addressing modes use segment 4000 ring 3, and give values as a result of invoking PM in
the form shown by the example.

COMOUTPUT files

PRIMOS has a very useful tool for anyone who is debugging — or who wishes to record a
particular situation. You may direct all the interactive terminal dialog to a file. This means
that you can have a complete trace of a debugging session without a hard copy terminal. In
addition, you can edit this file, print it out and delete it as you chose. The command is:

COMOUTPUT pathname
where pathname is the output file. To stop the COMO file creation process, type:
COMO -END

ADVANCED DEBUGGING TECHNIQUES

Section 9—Instruction and Data Formats, contains useful debugging data structures, such as
ECB and stack frame layouts

DEBUGGING—PRIMOS SEVERE ERRORS

The following list describes several severe error conditions. In all cases the errors are fatal.

NO VECTOR A fault occured and there is no user vector in segment '4000 to
process it. There are several possibilities as to why this condition
occurs:

1. Stack Overflow—Usually there is no vector because the stack is
too small. Do a PM. If SB is close to top of its segment use SEG to
move stack and increase its size, or create a stack extension. With
the dynamic variables features of FTN, stack overflow may be-
come a problem.

2. FLEX (Floating Point Exception) If this occurs, your program
has wiped out segment '4000. Check to see that you are using '4000
properly. If so, your program is sick. To ascertain this, examine
location '74 with PSD or TAP. If 0 then it is wiped out.

3. Others. The implication is that your program has gone off into
random memory and has wiped things out.

POINTER FAULT Either there is a missing argument for some subroutine call, you
did not get a load complete when loading, or the program has
written over its link frame and/or procedure segment. Use VPSD
to examine the current stack frame and SEG to get a MAP 3 or
MAP 6.

ILLEGAL SEGNO Probably some pointer in a link or stack frame has been wiped out
(i.e., referencing an array with subscripts out-of-range). Use VPSD
to examine the current and past link and stack frames.

ACCESS VIOLATION An attempt was made to access a segment for which the user does
not have proper access rights. Cause usually the same as an illegal
segno

FDR 3059 7-2 1 March, 1979

DEBUGGING 7

Noie
Most frequent cause of ILLEGAL SEGNO and ACCESS VIO-
LATION is an improperly dimensioned local or common

array. Try getting common away from link frames by reload-
ing.

MEMORY OVERFLOW ERRORS (MO)

As user programs become larger, MO (memory overflow) errors will become more common.
Several causes and solutions to these errors follow:

When an MO error occurs, do a MA 2 and examine the resulting map for any of the following
situations:

1. The address of the bottom of the symbol table (*SYM) is at or close to
PBRK. This indicates that there is insufficient room below the loader
for the whole program. Using HILOAD will probably solve the problem,
unless of course the user is already using HILOAD. If this is the case
there are only two alternatives; redesign the entire program or make
hardware changes.

2. The sector zero base area is full. The next free location is '1000. The size
of the sector zero base area may be increased by using a SETB 100
command at the beginning of the load (if locations 100 to 200 are free).
An AU xx command may be used to insert base areas throughout the
load, where xx is a small octal number which sets the size of the base
area to be inserted.

3. *CMLOW is higher than *CMHGH. The total size of all the common
blocks is too large causing common to wrap around through zero to high
memory. Possibly common may be moved to the top of memory, if not
already done. If there is more than 64K of common, and this cannot be
reduced, the program cannot be run in “R”’mode. A segmented program
is required.

4. Others. The program requires initialized common. Common is usually
defaulted to overwrite the space used by the Loader. The locations
between the bottom of the symbol table and the top of the loader cannot
be initialized. This would destroy the loader. Use a COMMON com-
mand to move common out of the way of the loader. HILOAD can be
used to permit common to utilize locations normally used by LOAD.

1 March, 1979 7-3 FDR 3059

with the system 'ibl'amrie‘gs

Most of the commonly used subroutines — I/0, math functions and EXIT, are either
embedded in the operating system or are in one of the FORTRAN libraries. LOAD and SEG
automatically load the appropriate library when you type the command LI during a loading
sequence. Other libraries, such as APPLIB and MATHLIB require the specification of their

name following LI — e.g. LI APPLIB causes the application library to be searched for
unresolved references.

Table 8-1 lists the commonly available system libraries. See the Reference Guide, PRIMOS
Subroutines for complete descriptions of the system subroutines.

All routines, regardless of mode, should use the CALL pseudo-operation to call subroutines.
S and R-mode arguments use DAC pointers; V, and I-mode arguments use AP pointers (see
Section 16 for the DAC and AP pseudo-operation formats). Figure 8-1 illustrates the SR
calling sequences and associated subroutine code; Figure 8-2 illustrates VI calling se-
quences and associated subroutine code.

Table 8-1. System Libraries

Name Description Mode
FTNLIB FORTRAN Library R
PFTNLB FORTRAN Library pure pro-

cedures A
IFTNLB FORTRAN Library impure pro-

cedures \%
APPLIB Application Library R
VAPPLB Application Library \Y
SRTLIB Sort Library-Files R
VSRTLI Sort Library-Files \Y%
MSORTS Sort Library-Memory R
MATHLB Matrix Routines R

1 March, 1979 8-1 FDR 3059

8 INTERFACING WITH THE SYSTEM LIBRARIES

Main Program

CALL SUBX is equivalent to:

EXT SUBX
JST SUBX

Figure 8-1. SR Subroutine CALL Conventions

Two or More Arguments

No Arguments , One Argument
“CALL SUBX CALL SUBX
DAC A
Subroutine
ENT SUBX ENT SUBX
REL: o : REL
 SUBX DAC ** | SUBX DAC ** - SUBX
first instruction CALL FSAT
. DEC 1
. ') APTR DAC** APIR
. ; BPTR
JMP SUBX,* CPTR
JMP SUBX,*
Note

CALL SUBX
DAC A
DAC B
DAC C

DAC @

ENT SUBX
REL

-

DAC **

CALL FS$AT

DEC 3

DAC **

DAC **

DAC **

first instruction

JMP SUBX, *

FDR 3059 8-2

1 March, 1979

INTERFACING WITH THE SYSTEM LIBRARIES 8

; Main Program
No Arguments One Argument Two or More Arguments
CALL SUBX CALL SUBX CALL SUBX
AP A,SL AP A,S
AP B,S
AP C,S
AP n,SL
Subroutine
ENT SUBX, SBX1 ENT: SUBX,SBX1 ENT SUBX,SBX1
SEG SEG - SEG
SUBX first instruction SUBX ARGT SUBX ARGT
first instruction first instruction
PRTN PRTN PRTN
LINK
SBX1 ECB SUBX DYNM APTR (3) DYNM APTR(3)
LINK DYNM BPTR (3)
SBX1 ECB SUBX, ,APTR, 1 DYNM CPTR(3)
DYNM DPTR (3)
DYNM nPTR (3)
LINK
SBX1 ECB SUBX,,APTR,n
Note
CALL SUBX is equivalent to:
EXT SUBX
PCL SUBX
Figure 8-2. VI Subroutine CALL Conventions

1 March, 1979 8-3 FDR 3059

INSTRUCTIONS

B

Data and instruction
formats -SRVI1

DATA STRUCTURES
Word length

¢ 16
e 32

bits (SRV)
bits (1)

Byte length
e 8 bits (SRVI)

Character strings
e Variable length collection of bytes from 1 to 2**17-1.

Numbers

¢ Unsigned 16 bit integers (SRV)
e Unsigned 32 bit integers (SR VI)
e Unsigned 64 bit integers (I)
¢ Signed 16-bit integers (SRVI)

S S = 0 = positive

1 2 16 S =1 = negative
¢ Signed 31-bit integers (SR)

S 0 S =0 = positive

1 2 16 17 32 S =1 =negative
e Signed 32-bit integers (VI)

S S =0 = positive
2 16 17 32 S =1 = negative
e Signed 64-bit integers (VI)

S S = 0 = positive

1 2 32 33 64 $ =1 = negative
¢ Floating Point - Single Precision 32 bits (RVI)

S MANTISSA S = 0 = positive

1 2 16 S =1 = negative

MANTISSA EXPONENT (EXCESS 128)
17 24 25 32
1 March, 1979 9-1 FDR 3059

9 DATA STRUCTURES

* Floating Point - Double Precision 64 bits (RVI)

S MANTISSA S = 0 - positive
2 16 S =1 =negative
MANTISSA
17 32
MANTISSA
33 48

EXPONENT — (EXCESS 128)
49 64

e Decimal - one to 63 digits in five forms (VI)

Decimal control word format (VI)

To specify the characteristics of the operation to be performed. most decimal arithmetic
instructions require a control word to be loaded in the L register (general register 2 in I-
Mode).

The general format is as follows:

A|— |B|[C|—| T|D E F G H
1-6 789 10 11 12 13 1416 17-22 23-29 30-32
A (Bits 1-6) Field 1, number of digits
E (Bits 14-16) Field 1, decimal data type
B (Bit 9) If set, sign of field 1 is treated as opposite of its actual
value.
C (Bit 10) If set, sign of field 2 is treated as opposite of its actual
value. XAD, XMP, XDV, XCM only)
D (Bit 13) Round flag (XMV only)
F (Bits 17-22) Field 2, number of digits
H (Bits 30-32) Field 2, decimal data type
G (Bits 23-29) Scale differential (XAD, XMV, XCM and number of
multiplier digits in XMP)
T (Bit 12} Generate positive results always

Unused, must be zero
The fields used by each instruction are listed in the instruction descriptions. Fields not used
by an instruction must be zero.

The scale differential specifies the difference in decimal point alignment between the
operator and fields for some instructions. This field is treated as a signed 7 bit two's
complement number. Its value is specified as Fx=F1-F2, where Fx is the number of
fractional digits in Field x. A positive value indicates a right shifting of Field 1 with respect
to Field 2, and a negative value indicates a left shifting.

Address pointer (AP) {VI)

Two word pointer which follows AP instructions.

FDR 3059 9-2 1 March, 1979

DATA STRUCTURES 9

BITNO i — BR - WORDNO
1—4 5 6 7—8 9—16 17 32
BITNO (Bits 1-4) Bit number

I (Bit 5)
BR (Bits 7-8)

WORDNO (Bit 17-32)

Indirect bit
Base register

00 Procedure Base (PB)
01 Stack Base (SB)
10 Link Base (LB)

Word number offset from base register contents

Indirect word - one word memory reference (SRV)

11 X 14-bit address 16S
1 2 3 16
1 15-bit address 328
1 2 16 32R
16-bit address 64R
1 16 64V
I (Bit1) Indirect bit
X (Bit 2) Index bit

Indirect pointer - two word memory reference (IP) (VI)

F|{RR| O SEGNO WORDNO
1 23 4 5 16 17 32
F (Bit 1) Generate pointer fault if set. In the fault case, the

RR (Bits 2-3)
Bit4 = 0

SEGNO (Bits 5-16)
WORDNO (Bit 17-32)

entire first word (bits 1-16) forms a fault code, and no
other bits are inspected.

Ring of privilege - controls access rights

No third word. Bit number portion of effective ad-
dress is zero.

The segment number portion of the effective address
The word number portion of the effective address.

Indirect pointer - three word memory reference (IP) (V]

F/IRR| 1

SEGNO WORDNO BITNO

123 4 5 16 17

F (B

it1)

RR (Bits 2-3)
Bit4 =1

1 March, 1979

32 33 36 37 48

Generate pointer fault if set. In the fault case, the
entire first word (bits 1-16) forms a fault code, and no
other bits are inspected.

Ring of privilege - controls access rights.
The third word is present and gives the bit number
portion of the effective address.

9-3 FDR 3059

9 DATA STRUCTURES

SEGNO (Bits 5-16) The segment number portion of the effective address.
WORDNO (Bit 17-32) The word number portion of the effective address.
BITNO (Bits 33-48) The bit number portion of the effective address.

Stack segment header (VI)

FREE POINTER

WNN -0

EXTENSION SEGMENT

POINTER

Word
0,1

2,3

Meaning
Free pointer - segment number/word number of available location at
which to build next frame. Must be even.
Extension segment pointer - segment number/word number of loca-
tions at which to build next frame when current segment overflows. If
zero, a stack overflow fault occurs when current segment overflows.

PCL stack frame header (VI)

0-0

STACK ROOT SEGMENT NUMBER

RETURN POINTER

CALLER’S SAVED STACK
BASE REGISTER

CALLER’S SAVED LINK
BASE REGISTER

CALLER’S SAVED KEYS

W W N Oh WM - O

LOCATION FOLLOWING CALL

Word

2,3
4,5
6,7

FDR 3059

Meaning
Flag bits - set to zero by PCL when frame is created
Stack root segment number - for locating free pointer
Return pointer - segment number/word number of return location
Caller’s saved stack base register
Caller's saved link base register
Caller’'s saved keys
Word number of location following ca
transfer templates, if any

9-4 1 March, 1979

DATA STRUCTURES 9

frame header

XTITY
1

{

0 FLAG BITS

1 STACK ROOT SEGMENT NUMBER

2 RETURN POINTER

4 CALLER'’S SAVED STACK

5 BASE REGISTER

6 CALLER’S SAVED LINK

7 BASE REGISTER

8 CALLER’S SAVED KEYS

9 LOCATION FOLLOWING CALL

10 FAULT CODE

I FAULT ADDRESS

13

14 RESERVED

15

Word Meaning

0 Flag bits - set to one by CALF fault

1 Stack root segment number - for locating free pointer

2,3 Return pointer - segment number/word number of return location

4,5 Caller’s saved stack base register

6,7 Caller’s saved link base register

8 Caller's saved keys

9 Word number of location following call - beginning of argument
transfer templates, if any

10 Fault code

11,12 Fault address

13-15 Reserved

1 March, 1979

9-5 FDR 3059

9 DATA STRUCTURES

Entry control block (ECB) (VI)

0 POINTER TO CALLED

1 PROCEDURE

2 STACK FRAME SIZE

3 STACK ROOT SEGMENT NUMBER

4 ARGUMENT LIST DISPLACEMENT

5 NUMBER OF ARGUMENTS

6 LINK BASE REGISTER OF

7 CALLED PROCEDURE

8 KEYS

9

10

1

12 RESERVED

13

14

15
Word Meaning

0,1 Pointer (ring, segment, word number) to the first executable instruction

of the called procedure.

2 Stack frame size to create (in words). Must be even.

3 Stack root segment number. If zero, keep same stack.

4 Displacement in new frame of where to build argument list.
5 Number of arguments expected.

6,7 Called procedure’s link base (location of called procedure’s linkage

frame less '400).
8 CPU keys desired by called procedure.
9-15 Reserved, must be zero.

Entry control blocks which are gates must begin on a 0 modulo 16 boundary, and must
specify a new stack root.

FDR 3059

9-6 1 March, 1979

DATA STRUCTURES 9

’’’’’

Queue control biock (VIj

1 TOP POINTER 16
17 BOTTOM POINTER 32
v 000 HIGH ORDER ADDRESS
33| 34 36| 37 48
49 SIZE MASK 64
Bits Meaning
1-16 Top pointer-read
17-32 Bottom pointer-write
33 (V) Virtual/physical control bit

0 physical queue
1 virtual queue
34-36 Reserved - must be zero
37-48 Queue data block address
Segment number if virtual queue
High order physical address bits if physical queue
49-64 Mask - value 2**K-1

Queue control blocks must start on word boundaries which are divisible by four, if used for
DMQ. If not, a performance penalty is imposed, but the queue will work.

Argument transfer template (AP) (VI)

B|I |[—|BR|L|S | — WORDNO

1-4 5 6 7-8 9 10 11-16 17 32
B (Bits 1-4) Bit number

I (Bit 5) Indirect bit

BR (Bits 7-8) Base register

00 Procedure base (PB)
01 Stack base (SB)
10 Link base (LB)

L (Bit 9) Last template for this call

S (Bit 10) Store argument address. Last template for this argu-
ment.

WORDNO (Bits 17-32) Word number offset from base register

1 March, 1979 9-7 FDR 3059

9 DATA STRUCTURES

PROCESSOR CHARACTERISTICS

Registers (S)

Prime 100, 200 and 300 registers are 16 bits wide. All the program visible registers are
physically located in high speed memory and are addressed as memory locations 0-37. In
restricted mode (normal user operation) only 0-7 are accessable.

Memory
Address

Registers (R)

Register
Designation
X

A

B

VSC

P

PMAR (Prime 300 only)
FCODE

FAR

Reserved

DMA '20, '22,...'36

(8 total)

Function

Index Register

Arithmetic Register
Extension Arithmetic Register

Visible Shift Count
Program Counter

Page Map Address Register
Fault Code

Fault Address Register

Word Pairs for DMA channels
(address and word counts)

Prime 100, 200 and 300 registers are 16 bits wide. All the program visible registers are
physically located in high speed memory and are addressed as memory locations 0-37. In
restricted mode (normal user operation) only 0-7 are accessable.

FDR 3059

Memory
Address

Register

Designation

X

A

B

S

FLTH

FLTL

FEXP

P .
PMAR (Prime 300 only)
FCODE

PFAR

Reserved for microprogram
DMA 20, ’22,...'38

(8 total)

Function

Index Register

Arithmetic Register

Extension Arithmetic Register
Stack Register

Floating Point Accumulator - High
Floating Point Accumulator - Low
Floating Point Exponent

Program Counter

Page Map Address Register

Fault code

Page Fault Address Register

Word Pairs for DMA channels
(address and word counts

1 March, 1979

DATA STRUCTURES 9

Registers (VI)

Prime 350 and above registers are 32 bits wide. Short form instructions reference the same
registers as in R-mode.

Register addresses used in LDLR and STLR instructions are doubleword addresses. The
notation “2 H” means the high, or left 16 bits of register address 2, while “2 L” means the
low, or right 16 bits.

The following registers should not be written into by STLR instructions, or anomalous
behavior will result.

PB The procedure base should be changed only via LPSW or pro-
grammed transfers of control.

keys The keys should be changed only via LPSW or the various mode
control operations.

modals The modals should be changed only via LPSW or the various mode

control operations. In no case should an LPSW ever attempt to
change the current register set bits of the modals.

VI-mode register description

Definitions
TR Temporary Registers
TR?7 - Saved return pointer on a halt (automatic save)
RDMX Register DMX
RDMX1 - Used by DMC, buffer start pointer
RDMX2 - REA at time of DMX trap
RDMX3 - Save RD during DMQ
RDMX4 - Used as working register
RATMPL Read Address Trap Map to RP Low
RSGT Register Segmentation Trap
RSGT1 - SDW2 / address of Page Map
RSGT?2 - contents of Page Map / SDW2
REOIV Register End of Instruction Vector
ZERO/ONE Constants
PBSAVE Procedure Base Save
saved return pointer when return pointer used elsewhere
C377 Constant
PSWPB Processor Status Word Procedure Base
return pointer for interrupt return (also used for Prime 300
compatibility)
PSWKEYS Processor Status Word Keys
KEYS for interrupt return (also used for Prime 300 compatibility)
PPA Pointer to Process A
PLA Pointer to Level A
PCBA Process Control Block A
PPB Pointer to Process B
PLB Pointer to Level B
PCBB Process Control Block B
DSWRMA Diagnostic Status Word RMA
RMA at last Check Trap
DSWSTAT Diagnostic Status Word Status

1 March, 1979

9-9 FDR 3059

9 DATA STRUCTURES

DSWPB Diagnostic Status Word Procedure Base
Return pointer or PBSAVE at last check
RSAVPTR Register Save Pointer
Location of Register Save Area after Halt
GR General Register
FARO Field Address Register 0
FLRO Field Length Register 0
FAR1 Field Address Register 1
FLR1 Field Length Register 1
PB Procedure Base
PBH - RPH
PBL -0
SB Stack Base
LB Link Base
XB Temporary (auxiliary) base
DTAR Descriptor Table address registers
KEYS See below
MODALS See below
OWNER Pointer to PCB of process owning this register set
FCODE Fault Code
FADDR Fault Address
TIMER 1-millisecond process timer (used for time-slice)
MICROCODE SCRATCH ~ DMX CURRENTREGISTERSET(CR§)
RSO RS1 RS2 RS3 PRIME3w@ PRIME PRIME
_ADR HIGH LOW ADR HIGH LOW ADR ADR HIGH LOW 400 500
9 TRO e 40 = o 100 1a0 e e "~ GRO.
ot oo TR — v 41 — o= 10T 1 . - GR1
2. TR2 — 42— — 102142 HA) 2Bl L CGR2
3 - TR3 — 43 - S 108 add e R e GR3
4 - TR4 e 4 — 108 144 — = e -~ GR4
5 " TR5 = 45— = 105 145 3(8) — Y - GRs.
6 TRe — % — — 106 146 — — — GR6: =
7 TR7 it 47 = — 407 147 DX] e X GR7.
16 - RDMX1 e 50 — — 110150 13 = ~FALRO FALRO (FACO]
1t RDMX2 — 81— Lo = - FALRO FALRO (FACO)
1200 — : RATMPL 52 e — o112 0152 4({FACQ) 5(FAC) FALR1 (FAC) - FALR1 (FACT)
13 RSGT1 = © 53 e ~io01130 153 0 8{FAC) FAC FALR1 {FAC] FALR1 (FAC1)
14 RSCT2 — 54— —~ 114 1B — i PB ot o
15 RECC1 — 55 e — 115 155 14 15 SB -
16~ RECC2 Yy 56— — 116 156 16 17 1B -
17 — ; REOIV 57 — w117 157 — — XB -
20, ZERO ONE 60 {20} (21) 120 160 - 10 — DTAR3 o
21 PBSAVE - 61— 1o 6l e — DTARZ -
22 RDMX3 oo 62 - (22 [23). 122 162~ - DTAR1 &
23 RDMX4 P 63— —~ 71230 163 ¢ = e DTARD i
24 G377 C377 64 (24) (25} 124 164 — - KEYS/MODALS KEYS/MODALS
25— - 65— — 125 165 — - OWNER o
2% — — 66 (28] (27) 126 = 166 11(FCODE] — FCODE -
27 — — 87 . — 127 167 — 5 12{FADDR} FADDR —
30 PSWPB " 70 (30) (31) 130 170 — o TIMER i
3. PSWKEYS — 71— — 18t = RS p —
32° - PPA:PLA - PCBA 72 (32) (33) 182 172 — = S o
33 PPB:PLB PCBB 73— — 133173 — = el =
34 DSWRMA — 74 (34) (35) 134 174 — = - —
35 DSWSTAT = — 75— — 135 75— — — —
36 DSWPB . 76 - {36) (37) - 136 176 — — - -
37 RSAVPTR = — 77— — 13 AT e e - £
FDR 3059 9-10 1 March, 1979

DATA STRUCTURES 9

The eight general registers are numbered from 0-7. 1-7 may be used for index registers. All
are used as fixed point and logical accumulators in register to memory and register to

register operations.

Floating point register - single precision (RVI) (2 registers in I-mode)

Register Contents
Prime 300 Prime 400 Prime 500

04 121 104 Is] MANTISSA]
12 16
05 121 10L l MANTISSA |
17 32
06 13H 11H B EXPONENT (EXCESS 128) |
33 a8
FDR 3059

1 March, 1979 9-11

9 DATA STRUCTURES

Floating point register - double precision (RVI) (2 registers in I-mode)
Register Contents

Prime 300 Prime 400 Prime 500

04 12H 10H [s| MANTISSA |
12 16
05 12L 10L L MANTISSA |
17 32
02 13L 11L f MANTISSA J
33 48
06 13H 11H [EXPONENT (EXCESS 128)]
49 64

Floating point registers - 64 bits (I}

The two floating point registers are numbered 0 and 1. They are used as single and double
precision accumulators in register to memory and register to register operations. The two
floating point registers overlap the two field length address registers on the Prime 500 and
care must be used in moving between floating point and field registers.

Base registers (VI -Mode)

The four base registers:

Procedure Base Register PB
Stack Base Register SB
Link Base Register LB
Temporary Base Register XB

have the following format:

0 RING 0 SEGNO WORDNO

1 2 3 4 5 16 17 32
RING (Bits 2-3} Ring Number
SEGNO (Bits 5-16) Segment Number
WORDNO (Bits 17-32) Word Number

Field address and length registers (VI)

There are two address registers and two length registers for the manipulation of variable
length fields. They overlap the floating point accumulator.

0|RING |0 |SEGNO| WORDNO | LENGTH {BITNO| 0 | LENGTH
1 23 4 516 17-32 33-48 49-52 53-59 60-64

FDR 3059 9-12 1 March, 1979

DATA STRUCTURES 9

RING (Bits 2-3) Ring Number
SEGNO (Bits 5-16) Segment Number
WORDNO (Bits 17-32) Word Number
LENGTH (Bits 33-48, 60-64] Length

BITNO (Bits 49-52) Bit Number

The meaning of the value in the field length field depends on the data type being used. For

a discussion of the available data types see the decimal and character instruction descrip-
tions.

Keys (SR)

Process status information is available in a word called the keys, which can be read or set
by the program. Its format is as follows:

C| DBL | — | Mode 0 Bits 9-16 of location 6
1 2 3 4-6 7-8 9 - 16
C (Bit 1) Set by arithmetic error conditions
DBL (Bit 2) 0 - Single Precision, 1 - Double Precision.
MODE (Bits 4-6) The current addressing mode as follows:
000 16S
001 328
011 32R
010 64R
110 64V
100 321

C-bit (SR): Bit 1 in the keys. Set by arithmetic error conditions and shifts (Bit 1).

Keys (VI)

Process status information is available in a 16-bit register known as the keys. It may be
referenced by the LPSW, TKA, and TAK instructions.

C|0/L|MODE|F|X|LT EQ|DEX| O I S
12 3 46 7 8 9 10 11 12-14 15 16

C (Bit 1) C-Bit

L (Bit 3) L-Bit

MODE (Bits 4-6) Addressing Mode:
000 165
001 3258
011 32R
010 84R
110 64V
100 321

1 March, 1979 9-13 FDR 3059

9 DATA STRUCTURES

F (Bit7)

X (Bit 8)
LT (Bit 9)
EQ (Bit 10)

DEX (Bit 11)

I (Bit 15)
S (Bit 16)

C-bit (VI): Set by error conditions in arithmetic operations and by shifts.

Floating point exception disable:
0 take fault
1 set C-bit
Integer Exception enable
0 set C-bit
1 take fault
Condition code bits:
LT negative
EQ positive

Decimal exception enable

0 set C-bit
1 take fault

In dispatcher - set/cleared only by process exchange
Save done - set/cleared only by process exchange

L-bit (VI): Set by an arithmetic or shift operation except IRS, IRX, DRX. Equal to carry out
of the most significant bit (bit 1) of an arithmetic operation. It is valuable for simulating
multiple - precision operations and for performing unsigned comparisons following a CAS

or a SUB.

Condition code bits (VI): The two condition-code bits are designated “EQ" and “LT". EQ is
setif and only if the result is zero; if overflow occurs, EQ reflects the state of the result after

truncation rather than before. LT reflects the extended sign of the result (before truncation,
if overflow), and is set if the result is negative.

Modals (VI)

Processor status is available in another 16-bit register known as the “modals”.

E|V 0 CURREG MIO P S | MCK
2 3-8 9-11 12 13 14 15-16
E (Bit1) Interrupts enabled
V (Bit 2) Vectored-interrupt mode

CURREG (Bits 9-11)

MIO (Bit 12)

P (Bit 13

S (Bit 14)

MCK (Bits 15-16)

Never attempt to write into the keys or the modals with the
STLR instruction. The only valid way to change either the
keys or the modals is to use the LPSW instruction, the keys
operations OTK and TAK, or the various special-case instruc-
tions designed to manipulate specific bits of the status.
Furthermore, even LPSW should not be used to alter the in-
dispatcher and save-done bits of the keys or th
bits of the modals.

FDR 3059

Current register set (set/cleared only by process

exchange)

Mapped I/0 mode
Process-exchange mode
Segmentation mode
Machine-check mode

Note

9-14

the register-set

1 March, 1979

DATA STRUCTURES 9

GENERIC (SRVI)

1 16
The entire instruction word is an opcode. Bits 3-6 are always zero

SHIFT (SR)

oP SHIFT-NO

1 10 11 16
OP (Bits 1-10) Opcode - Bits 3-6 are always zero

SHIFT-NO (Bits 11-16) Two’s complement of the number of places to be
shifted. Zero means shift 63 places

I/0 (SR)
CLASS 1100 FUNCTION DEVICE
1 2 3 6 7 10 11 16
CLASS (Bits 1-2) Type of 1/0 instruction
00 Control
01 Sense
10 Input
11 Output
Bits 3-6 1100
FUNCTION (Bits 7-10) Subdivision of class. Device dependent
DEVICE (Bits 11-16) Device type
DECIMAL (VI)
AP
1 16
OP (Bits 1-16) Opcode. This instruction uses previously set up field

registers and a previously set up control word in

register L (general register 2 in I-Mode). See decimal
control word in Data Structures.

CHARACTER (VI

OP
1 16
OP (Bits 1-16) Opcode. This instruction uses previously set up field
registers.
1 March, 1979 9-15

FDR 3059

9 DATA STRUCTURES

GENERIC AP (VI)

oP
1 16
AP
17 32
AP
33 48
OP (Bits 1-16) Opcode
AP Bits (17-48) Address Pointer - see AP in Data Structures.
BRANCH (V)
oP
1 16
WORDNO
17 32
OP (Bits 1-16) Opcode
WORDNO (Bits 17-32) Word number offset from procedure base register.

Memory reference instruction format (SRV)

See Effective Addressing Formation in Section 10 - Memory Reference Concepts.

INSTRUCTION FORMATS — I-MODE
Purpose of I-Mode

The I-Mode instruction formats provide a 32-bit general register environment, particularly
useful for:

* Heavy floating point calculations.
* Heavy long integer calculations.
* Extensive complex computations with intermediate results.

Features

¢ V-mode data types are a subset of I-mode data types, so no conversion is needed.

e The user visible V-mode register set is a subset of the I mode registers, so data can
be passed in a common subset.

* The procedure call instruction automatically switches the addressing mode on a
subroutine basis so the programmer can organize programs to use the best of Vor
I mode.

* The generic format instructions have the same opcode and same function in V and

I mode.

The memory reference format permits convenient

t
in addition to the base, index, and displacement fields.

[

FDR 3059 9-16 1 March, 1979

DATA STRUCTURES 9

e All forms of indexing and indirection are supported.

¢ The same memory reference instruction can include register to register, register
to memory and immediate data forms-special instructions are not required.

¢ The 16-bit format (register and non register generic) is included for additional
efficiency. In addition, the register to register and floating register-source ad-
dressing formats do not use the second 16-bit part (bits 17-32) of the instruction
word.

FORMATS

Non-register generic

These instructions are a subset of the V-mode generics and are processed the same way.
Register generic

These instructions operate on the specified register, which may be general, field, or floating
register. This class includes the branch instructions, where the branch address, in the
second word, is a 16-bit procedure base displacement.

Memory reference
There are three types of memory reference instructions:

MRNR-memory reference non register:

OoP R AD S B D

1-6 7-9 10-11 12-14 15-16 17-32
Data types Integer, unsigned and logical
Location of 2nd operand Memory

MRGR-memory reference general register:

OP 110 opP AD S B D
1-3 4-6 7-9 10-11 12-14 15-16 17-32
Data types Integer, unsigned and logical
Location of 2nd operand Immediate, register memory

MRFR-memory reference floating register:
OP | 110 | OP FR OP | AD S B D

1-3 4-6 7 8 9 10-11 12-14 15-16 17-32
Data type Floating point
Location of 2nd operand Immediate, register and memory

Index registers: General registers 1 to 7 may be used as index register; 0 means no indexing.

Register to register: No indexing or indirection may be specified and the address field insert
may be an absolute value:

1. 0 or 1 if the instruction format is MRFR, or
2. 0 -7 if the instruction format is MRGR

1 March, 1979 9-17 FDR 3059

9 DATA STRUCTURES

Table 9-1. Address Formation Special Case Selection

AD S B Effective Address/Instruction Type
3 >0 — (D+B)*+S (indirect, post-index)

3 0 — (D+B)* [indirect)

2 >0 — {(D+B+S)* (pre-index, indirect)

2 0 — {(D+B)*{indirect]

1 >0 — D+B+S (indexed)

1 0 — D+B (direct)

0 >0 0 REG-REG (8 specifies source register)
0 0 1 Immediate Type 1

0 >0 1 Immediate Type 2

0 0 2 Immediate Type 3

0 1 2 Floating Reg Source (FRO)

0 2 2 Undefined (will not generate UII)
0 3 2 Floating Reg source (FR1)

0 4-7 2 Undefined (will not generated UII)
0 - 3 Undefined (will not generate UII)

Field Mnemonics:

OP Opcode

R Destination register

AD Address computation code
S Source register

B Base register

FR Floating register

Immediate: There are three immediate data formats:
Immediate type 1
D _
1 8 9 16

Require a 16-bit literal (no L suffix)

Immediate type 2

-— D

1 8 9 16
Sign extend full word general register instruction. Requires a 32-bit literal (with L suffix).
Bit 17, the low order sign bit, is extended through the high order 16 bits.

Immediate type 3
- D

16
ion (both single and double precision) requires floating point
e instruction.

1
Floating point register instruct _
literal. The fractional part is truncated to eight bits, store

[]
0 0

S ko)
—e
=]
—
=

FDR 3059 9-18 1 March, 1979

DATA STRUCTURES 9

1 March, 1979 9-19 FDR 3059

Memo ece
concepts-SRV

BACKGROUND CONCEPTS

Memory is addressed as a set of continuous word locations. The number of words that can
be addressed by an instruction, and the way in which the address is calculated depends on
the current addressing mode of the machine and the location of the address relative to the
instruction.

In turn, the addressing modes of the machine differ in the size of the instruction word, the
number of bits allotted to the provisional address displacement, and the number and
meaning of the bits allotted to the operation code.

To reduce the number of memory references, designers wish to do as much as possible in
one word. For example, in the S and R addressing modes, a one word memory reference
instruction has nine bits (512 words) of direct addressability, four bits for operation codes,
one bit for indirection, one bit for indexing, and one bit to control out-of-range addresses.

Within each addressing mode, there are the following tradeoffs:

1. Size of program address space

2. Levels of indirection

3. Levels of indexing

4. Whether indexing is performed before or after indirection
5. Number of operation codes available

Through the discussion of the S, R, and V addressing modes, we shall show how these
variables are defined.

Memory organization

Sectors: (S-Mode and R-Mode when S=0). A sector is a contiguous group of 512 words. S-
Mode memory reference instructions have nine bits (D field) of addressability to any
location in a sector and one bit, the S-bit, to specify Sector 0 (S=0) or the current sector
(S=1). D and S together give 10 bits, or 1024 words, of direct addressability.

Relative reach: (R-Mode and V-Mode when S=1). When S=1 the D field is interpreted as a
signed number in the range -255 to +256. When D<240 (R-Mode), or D224 (V-Mode), the
number is treated as a code, not as a displacement. When -240<D<256 (R-Mode) or -224<D
<256 (V-Mode), the address is relative to the program counter.

Segmentation: (V-Mode and I-Mode). See the System Architecture Reference Guide for a
discussion of segmentation.

Effective address formation

Each memory reference instruction calculates an effeciive address. This calculation and its
results vary depending on addressing mode and instruction format; variables include pre-
and post-indexing, indirection, and base registers. For maximum clarity, we discuss the

1 March, 1979 10-1 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

classes by format types and present addressing mode flowcharts. Both the format dis-
cussions and the addressing mode flowcharts are cross referenced to each other. Table 10-1
summarizes the format classes and gives the addressing modes where they are used.

Indexing: In general, if the X-bit of the instruction is set, the contents of the index register
are added to the D-field. If the indirect bit is set, the address mode and D-field determine
whether indexing occurs before or after indirection. The result is truncated to the number
of bits permitted by the addressing modes, and the high order bits are cleared. In V-Mode,
there are two index registers, X and Y. The displacement field determines which to use and
how to use it.
Note
The index register may be preset by the program to any value
between -32768 and +32767.

Indirection: In general, if the I-bit is set, the D-field plus index, if any, is an intermediate
address. The indirect address word at that location may, depending on the address mode,
also contain X and I bits. The specific addressing mode discussion gives the details.

Address truncation (S R): After effective address formation is complete, the resulting
address is truncated to the number of bits appropriate to the addressing mode in effect:

Mode Addressing Bits Size of Addressable Memory
16S 14 16K
328 15 32K
32R 15 32K
64R 16 64K

Since the higher order bits of the address are zeroes, an address cannot be formed that
addresses a memory location beyond the range of the current addressing mode. However, it
is possible for an executing program to increment the program counter out of the current
range (instead of overflowing to zero).

Table 10-1. Memory Reference Instruction Format

Type No. Words S! D2 CB: Maode

Basic 1 0 0-"'777 — SR

Sector Relative 1 1 0-"'777 — S

Procedure Relative 1 1 — 241 to + 255 — R

— 224 to + 255 — V

Stack Postincrement/ 1 1 — 256 to — 241 23 R
Predecrement

Base Register 1 0 0-'777 — \%
Relative

Long Reach 2 1 — 256 to — 241 02 R

Stack Relative : 1 — 256 to —241 1,3 R

Base Registers 1 — 256 to —224 — \"

1. Sector bit (S). Bit 7 in both one- and two-word memory reference
instructions. The meaning varies, depending on the addressing mode,
but in general is used to control out-of-range addresses.

2. Displacement field (D). Bits 8-16 in the instruction word. Bit 8 is sign bit
except in Basic, Sector Relative, and Base Register types of instruction.

3. Class bits (CB). Bits 15 and 16 of the R mode two-word instructions
distinguish between Long Reach and Stack Relative instruction types.

FDR 3059 10-2 1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

Instruction range

The range that an instruction can directly address is called its addressing range. The
assembler and the loader analyze the assembler statement and set up both in-range and out-
of-range addresses. In the discussion below we shall examine the sectored and relative
address ranges and how they are set up prior to execution. The segmentation concepts and
address ranges are discussed in the System Architecture Reference Guide.

Sectored: In S-mode, the memory reference instructions can address any location in sector
0 or in the sector of the instruction. When S=1, the nine bit displacement field is a location
in the current sector. When S=0, the nine bit displacement is in sector 0.

The software uses the S-bit to control out-of-range addresses in the following manner: the
assembler does a preliminary analysis of the relation of the displacement field (expression
or symbol) to the instruction location, and passes this information to the loader, which sets
up the final instruction for execution. The loader puts the object code received from the
assembler together with any other required routines (such as subroutines), resolves external
linkages and sets up sector 0, the communication and linkage area.

Sector 0 can also be directly addressed by the program, a useful feature for handling
common data fields.

Relative: In R-mode when S=1, the D field is interpreted as a signed number in the range
-226 to +255. When the two high order bits are one (D < 240) the number is treated as a code,
not as a displacement. When -240<D<255 the address is relative to the program counter.

The loader analyzes the displacement field and if the effective address will be out of
relative range (-240 to +255) sets $=0, I=1, and the displacement field to point to the address
word in sector zero. Thus, in 84R, if the address is out of range, no indirection is possible
because the loader uses the instruction word indirect bit.

Assembler
Notation Location of ADDR
Sector 0 Same Sector " Other
LDA ADDR $=0 S=1 S$=0
1=0 I1=0 1=1
D=location in sector 0.
D=displacement in D=first available
same sector. link in sector 0. At
that location an in-
direct word is con-
structed with 1=0.
pointing at ADDR
with a full 14 (168}
or 15 (32S. 32R} or 16
(64R} bit indirect
address.
LDA ADDR,* S=0 S=1 5=0
I=1 I=1 I=1

D=Location in sector 0 D=Location in same D=first available
which contains a pointer sector. It must contain link in sector 0. At
defined by the program pointer defined by that location an in-
program. direct word is con-
structed with I=1
and a full 14 (16S) or
15 (32S. 32SR) bit in-
directpointer to
ADDR. Not per-

mitted in 64R.

1 March, 1979 10-3 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

MEMORY REFERENCE INSTRUCTION FORMATS

BASIC (one word, S-bit=0) 16S, 328, 32R, 64R

| X op S D
1 2 3 6 7 8 16
I (Bit1) Indirect Bit
X (Bit 2) Index Bit
OP (Bits 3-6) Opcode
S (Bit 7) Sector Bit=0

D (Bits 8-16) Displacement in sector 0

The D-field is a displacement in sector 0. The effective address is equal to bits 8-16 of the
instruction, with bits 0-7 equal to zero. Indexing and indirection are a function of the I and

X bits and the addressing mode.

Addressing ST SR
x;de ~EA Type
S 0/D Direct
St 0'1D+X ' Indexed
it e I(’U}Dl o o Indirect
: - lo]D+X) Indirect,
ATEE e e pnatEi by preindexed
pradiyy o 0[D+X Indexed
- Iojpy - Indirect
- I0|D+X) Indirect,
R ~preindexed
- I{o|D)+X Indirect,
~ N postindexed
SECTOR RELATIVE (One word, S-bit=1) 165, 325
| X oP S D
1 2 3 6 7 8 16
I (Bit1) Indirect Bit
X (Bit 2) Index Bit
OP (Bits 3-6) Opcode
S (Bit 7) Sector Bit=1

D (Bits 8-16) Displacement within current sector

The D-field is a displacement in the current sector. The effective address is formed by
concatinating the D-field bits with the higher order bits of the program counter (P). Indexing
and indirection are a function of the I and X bits and the addressing mode. Bits 1 and 2 (165)
or1 (328) of the final effective address are cleared. In effect, the program counter gives the
sector number and the D-field, the location within the sector.

FDR 3059 10-4 1 March, 1979

MEMORY REFERENCE CONCEPTS—SRvV 10

Addressing ; ,
Mode 1 X S D EA Type
16S 0 0 1 0to'777 P|D Direct
6 1 1 0to'777 P|D+X Indexed
1 0 1 0to'777 I(P|D) ~ Indirect
1 1 1 0to’777 [{P|D+X) Indirect,
o= preindexed
328 0 0 1 0to'777 P|D Direct
0 1 1 0to'777 P|D+X ‘Indexed
1 0 1 0t'777 1(P|D) Indirect
1 1 1 0to'777 I(P|D)+X Indirect,
' S postindexed
PROCEDURE RELATIVE (One word, S-bit=1) 32R, 64R, 64V
| X opP S
1 2 3 6 7 8 16
I (Bit 1) Indirect Bit
X (Bit 2) Index Bit
OP (Bits 3-6) Opcode
S (Bit 7) Sector Bit=1
D (Bits 8-16) Location relative to the program counter

64V= — 224 to +255
64R= — 240 to +255

Addressing is relative to the current program counter value, which is the current instruction
location plus 1. The effective address is formed by adding the value of the D-field to the

updated program counter value (P). Indirection and indexing are a function of the I and X
bits and the addressing mode.

Addressing
Mode 1 S D EA Type
32R, 64R 0 0 1 — 240 to +255 P+D Direct
0 1 1 — 240 to +255 P+D+X Indexed
1 0 1 — 240 to +255 [(P+D) Indirect
1 1 1 — 240 to +255 [(P+D}+X Indirect,
postindexed
64V 0 0 1 — 224 to +255 P+D Direct
0 1 1 — 224 to +255 P+D+X Indexed
1 0 1 — 224 to +255 {P+D) Indirect
1 1 1 — 224 to +255 I[{(P+D)+X Indirect,
postindexed
1 March, 1979 10-5 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

STACK PREDECREMENT, POSTINCREMENT (One word, S-bit=1) 32R, 64R

| X oP 11000 XX cB
1 2 3 6 7 12 13 14 15 16

I (Bit 1) Indirect Bit

X (Bit 2) Index Bit

OP (Bits 3-6) Opcode

Bits 7-12 110000

XX (Bits 13-14) Opcode extension

CB (Bits 15-16) Class Bits

These classes use the stack pointer (SP) as the address displacement, and perform an
auxiliary postincrement or predecrement of the pointer. Instructions using these address
methods are always one-word instructions.

Addressing
Mode I S CB EA Type
32R, 64R 0 0 1 2 Sp Postincrement
0 1 1 2 I(SP)+X Postincrement,
indirect, post-
indexed
1 0 1 2 1(SP) Postincrement,
indirect
0 0 1 3 SP-1 Predecrement
0 1 1 3 " I(SP-1)+X Predecrement,
indirect, post-
indexed
1 0 1 3 1(SP-1) Predecrement,
indirect
Note
If a fault occurs during the execution of these classes.
anomalous behavior can result.
BASE REGISTER RELATIVE (One word, S-bit=0) 64V
| X oP S D
1 2 3 6 7 8 16
I (Bit 1) Indirect Bit
X (Bit 2) Index Bit
OP (Bits 3-6) Opcode
S (Bit 7) Sector Bit=0
D (Bits 8-16) Location relative to selected base register

This format provides 64V with one word based memory reference instructions, using the D-
field to encode both base and displacement.

30108 v Y i el

effective address of indirect instructions will be in the procedure segment.

All indirection will be through 16-bit poeinters in the procedure segment and the final

FDR 3059 10-6 1 March. 1979

MEMORY REFERENCE CONCEPTS—SRV 10

The effective address calculation is:

1 X § D Address Type
0 0 0 0-'7 register location Direct
10-'377 SB+D
'400-'777 LB+D
0 1t 0 0-377 if D+X<'10 then Indexed
EA=register location
else SB+D+X
'400-'777 LB+D+X
1 0 0 0-'7 I(REG) Indirect
"10-'777 I(PBD)
1 1 0 0-'77 I[PBID+X] Indirect
preindexed
1 1 0 '"100-'777 I[PBD]+X Indirect
postindexed
PB Procedure base register
LB Link base register
SB Stack base register
X Index register
D Displacement field
REG R-Mode registers, i.e., A,B,X, etc.

LONG REACH (Two word, S-bit=1) 32R, 64R
| X opP 11000 XX CcB
1 6 7 12 13 14 15 16

A
17 32
I (Bit 1) Indirect Bit
X (Bit 2) Index Bit
OP (Bits 3-6) Opcode
Bits 7-12 110000
XX (Bits 13-14) Opcode extension
CB (Bits 15-16) Class Bits

A (Bits 17-32)

Address word

The 16-bit address word in the location following the instruction plus the I and X bits in the
instruction combine in effective address calculation. The direct instruction reach is
extended to 32K words (32R) or 64K words (64R), since the address is in the word following
the instruction. In 32R, bit 1 is zero. In 64R, all 16 bits are used.

Mode
32R, 64R

Addressing

I X S
0 0 1
0 1 1
1 0 1
1 1 1
1 1 1

CB EA Type

0 A Direct

0 A+X Indexed

0 I{A) Indirect

0 I[(A+X) Indirect, preindexed
2 [[A)+X Indirect, postindexed

1 March, 1979

10-7 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

STACK RELATIVE (Two Word, S-bit = 1) 32R,64R
i X oP 11000 XX cB
1 2 3 6 7 12 13 14 15 16
A
17 32
I (Bit 1) Indirect Bit
X (Bit 2) Index Bit
OP (Bits 3-6) Opcode
Bits 7-12 110000
XX (Bits 13-14) Opcode extension
CB (Bits 15-16) Class Bits
A (Bits 17-32) Address word

This class is identical to two-word long reach except that the contents of the stack pointer
(SP) are added to the address word following the instruction word during the initial

effective address calculation.

Indexing and indirection take place under control of the I and X bits and the addressing

mode.

Addressing o

Mode I X S CB EA Type

32R, 64R 0 0 1 1 A+SP Direct
0 1 1 1 A+SP+X ~Indexed
1 0 1 1 I(A+SP) Indirect
1 1 1 1 I(A+SP+X) " Indirect, preindexed
1 1 1 3 I{A+8P)+X Indirect, postindexed

TWO WORD MEMORY REFERENCE

64V
| X orP 11000 Y XX BR
1 2 3—-6 7 11 12 13 14 15-16
A
I (Bit 1) Indirect bit
X (Bit 2) X bit
OP (Bit 3-6) Opcode
Bits 7-12 110000
Y (Bit 12) Y bit
XX (Bits 13-14) Opcode extension
BR (Bits 15-16) Base register: 00=PB, 01=SB, 10=LB, 11=XB
A (Bits 17-32) 16-bit word displacement relative to the base selected

by the BR bits

FDR 3059 10-8

1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

* Direct
Indexed by X
Indexed by Y

Indirect
Preindexed by X
* Preindexed by Y
* Postindexed by X

Postindexed by Y

32 possible address combinations:

All indirect words are either 32 or 48 bit format and the final effective address is always a

memory address (never a register). Table 10-3 shows all possible combinations.

r

X Y
0 ~‘ 0
i
0 1

1 0

1 1

0
1
2
3
0
1
2
3
0
1
2
3
0
1
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3

I(SB+D)

LB+D)
I{XB+D)
PBID+Y)
SB+D+Y)
LB+D+Y)
XB+D+Y)

D)+Y
SB+D)+Y

I{

(

(

(

(

(

(PB

(
(LB+DJ)+Y
(XB+D)+Y
(PBD+X)
(SB+D+X)
(LB+D+X)
(XB+D+X)
(PBID)+X
(SB+D)+X
(LB+D)+X
[(XB+D)+X

I
1
I
I
P
I
1
I
I
I
I
I
I
I
I

Table 16 i3, V-Mode Two Word Memory Reference

,BR Effectlve Address

“PBD

~ SB+D

- XB+D

© PBD+Y

 8B+D+Y
~ LB+D+Y

XB+D+Y =
- PBD+X

. SB+D+X
‘LB;+‘D+XV

- XB+D+X
I(PBD)

& ~Meaning

: DlreCt :

B ,Ih"dexed-byy‘ Yy o

Indexed by X

‘In'diretj';t ’

- Pre-indexed by Y
Post-indexed by Y
Pre-indexed by X

Post-indexed by X

LDX and STX instructions may only be direct or indirect.

1 March, 1579

10-9

FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

ADDRESSING MODE SUMMARIES AND FLOW CHARTS

16S summary
Address length: 14 bits; 16K word address space

Format:
11X opcode S D Instruction
1 2 3 6 7 8-16
Il X 14-bit address Indirect address word
1 2 3 16

Indexing: Multiple levels. In an indirect word, the index calculation is done before the
indirection.

Indirection: Multiple levels.

Assembler

I X s8$ D EA Notation Type

0 0 0 0to'777 oD LDA ADDR Direct

0 1 0 0to'777 0D+X LDA ADDR,1 Indexed

1 0 0 0to'777 I(0|D) LDA ADDR,* Indirect

1 1 0 0 to '777 [(0D+X) LDA ADDR,1* Indirect,

preindexed

0 0 1 0 to '777 PID LDA ADDR Direct

0 1 1 0 to '777 PD+X LDA ADDR,1 Indexed

1 0 1 0 to '777 I[(PD) LDA ADDR,* Indirect

1 1 1 0 to '777 I(PID+X) LDA ADDR,1* Indirect,

preindexed
. P Contents of program counter prior to instruction fetch
{pointing at instruction).

oD Displacement into sector 0. Sector bits of effective
address (bits 3-8) are zero.

PD Displacement in current sector formed by concatena-
tion of sector bits from program counter with dis-
placement field in instruction word.

X Contents of index register.

I(expression) Treat the effective address as indirect address.

ADDR Location addressed by the LDA.

Note
If D is 0-'7 and S=0, the effective address is a register.
FDR 3059 10-10 1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

I'= INST bit 0 (1)
X = INST bit 2 (X)
OP = INST bits 3-6

BITj (8)

__YES OF INST NO
SET
Y ~ ? \J
EA=P3_5ID EA=0ID
(Current sector) - {sector 0)

EA = EA +(X)

NO)
DONE

| = [EA] bit 1
X =[EA] bit2
EA = [EA] bits 3-16

|

Figure 10-1. 16S Address Calculation

1 March, 1979 10-11 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

325 (Includes 32R when 5=0) summary

Address length: 15 bits, 32K word address space

D Instruction Word

Format:
1] X opcode S
1 2 3 6 7 8-16
| 15-bit address
1 2 16

Indirect address

Indexing: One level. The 15-bit indirect address word eliminates the X bit. Done after all
indirection is complete, except for the special case shown in the table below.

Indirection: Mult

iple levels.

‘1 X s
00 0
0 1 0
10 0
1 1 0
1 1 0
0 0 1
0 1 1
1 0 1
1 1 1

P

0D

PD

X
I(expression)
ADDR

D ;
0 to 777

0to’777

C0to 777

C0t77

100 to 777 1

0to 777
0to 777
0to 777
0to '777

‘P;D:

PD+X
I(PD)

I(PD)+X

Contents of program counter prior to instruction fetch

~ Assembler
~Notation
 LDA ADDR

LDA ADDR,11
LDA ADDR*

~ LDA ADDR.1*

LDA ADDR*1

LDA ADDR

LDA ADDR/1
LDA ADDR,*
LDA ADDR,1*

(pointing at instruction).

Displacement into sector 0. Sector bits of effective

address (bits 3-8) are zero.

Displacement in current sector formed by concatena-
tion of sector bits from program counter with dis-
placement field in instruction word.

Contents of index register.

Treat the effective address as indirect address.

Location addressed by the LDA.

~ Direct

Ihdirect
~Indirect,
~ preindexed
~Indirect
postindexed

Type 1

Ihdex’ed F

Direct
Indexed
Indirect
Indirect
postindexed

If D is 0-'7 and S=0, the effective address is a register.

FDR 3059

1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

~pr=insTeitt(y |
| X=INSTbit2(x) |

BIT7 (SN
op INST N,

EA EA+(X) SRR

I = [EA] bit 1
EA = [EA] bits 2-16]

EA = EA + (X)

Come

Figure 10-2. 32S Address Calculation

1 March, 1979 10-13 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

32R summary

Address length: 15 bits; 32K word address space

Format:
11X! opcode |S D Instruction Word:
123 678 16 $=0 or §=1
D>=-240
Instruction Word:
1|1 X| opcode 110000 XX | CB S=1
123 6 7 12 13-14 15 16 D<-240
Address Word:
A Long Reach and
17 32 Stack Relative
1 15-bit address Indirect Address
1 2 16 Word
Indexing: One level.
Indirection: Multiple levels.
T e ~Assembler =
1 X 8 CBD -~ EA Notation ~’Type
S0 0 0 — 0to'777 op LDA ADDR Direct
01 0 — 0to'777 0D+X LDA ADDR/1 Indexed
10 0 — 0to'777 I(0D) LDA ADDR.* Indirect
1 1 0 — 0to'77 I(0D+X) LDA ADDR1* Indirect,
: ' ; - , ‘ ~ preindexed
1 1 0 — 100 to '777 1{oD)+X LDA ADDR,*1 Indirect,
' , , postindexed
0 0 1 — -240to +255 P+D LDA ADDR Direct
0 1 1 — -240to +255 P+D+X LDA ADDR/1 Indexed
10 1 — =240 to +255. I(P+Dj LDA ADDR* Indirect
1 1 1 — -240to +255 I(P+DJ+X LDA ADDR*1 Indirect,
postindexed
0 1 2 — SP LDA @+ Postincrement
o 1 1 2 - I(SP)+X LDA @+.*1 Postincrement,
indirect,
postindexed
1 0 1 2 — I(SP) LDA @+.* Postincrement,
indirect
0 0 1 3 — SP-1 LDA -@ Predecrement
0 1 1 3 — [(SP-1)+X LDA -@,*1 Predecrement,
indirect,
postindexed
1 0 1 3 — 1{SP-1) LDA -@,* Predecrement,
indirect

FDR 3059

10-14

1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

0o 0 1 0 —
o 1 -1 0 —
1 0 1 0 —
11 1 2 —
1 1 1 2 —
00 11—
001 11 —
10 1 1 —
1 1 1 1 —
1 1 1 3 —
»
oD
X
I(expression)
ADDR

A LDA% ADDR Direat,

: L long reach
A+X - LDA% ADDR,X Indexed,
o , ST long reach
I(A) LDA% ADDR,* Indirect,
o ,) - long reach
I(A+X) ~ LDA% ADDR,X* Indirect,
, o ~ preindexed
s -~ longreach
I(A)+X LDA% ADDR,*X Indirect,
PRI R - postindexed
: . longreach
A+SP LDA @+ADDR Direct, stack
B A AR ‘ relative
- A+SP+X LDA @+ADDRX Indexed, stack
. relative '
I{A+SP) LDA @+ADDR* Indirect, stack
R - relative
- 1(A+SP+X) LDA @+ADDR,X* Indirect,
R . preindexed,

stack reiative ;

I(A+SP)+X LDA @+ADDR*X Indirect,
: ‘rel'ati've i

Contents of program counter pmor to mstructmn fetch
(pointing at mstructlon} -

~ Displacement into sector 0. Sector bltS of effectlve
“address (bits 3-8) are zero. : :

" Contents of index register.
‘Treat the effective address as mdlrect address
Location addressed by the LDA.

1 March, 1979

10-15 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

I=INST BiIT 1
X =INSTBIT 2

BIT 7 (S}
OF INST
SET

'EA=‘,
P+ 1+Bits 816

| = [EA] bit 1
EA = [EA] bits 2-16 YES

EA = EA + (X}

DONE

Figure 10-3. 32R Address Calculation (1 of 5)

FDR 3059 10-16 1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

Bits 15,16 = 0?

Bits 15,16 = 1?

NO YES
Bits 15, 16 = 2?

YES YES

NO

O © OBNO

Figure 10-4. 32R Address Calculation (2 of 5)

1 March, 1979 10-17 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

EA=A+(S)

L EY f;;,[;Af:E’AﬂX)" M

t = [EA] bit 1
EA = [EA] bits 2-16

Figure 10-5. 32R Address Calculation (3 of 5)

DONE

FDR 3059 10-18

1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

EA=A EA=A+(S)

| = [EA] bit 1

EA = [EA] bits 2-16 EA = EA + (X)

Figure 10-6. 32R Address Calculation (4 of 5)

1 March, 1979 10-19 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

iiw b : ‘ | e
s=@+ ~ ; EA = (S)

I'= (EA] bit 1 NO
EA = [EA] bits 2-16
YES

EA = EA +(X)

Figure 10-7. 32R Address Calculation 5 of 5)

FDR 3059 10-20 1 March. 1979

MEMORY REFERENCE CONCEPTS—SRV

10

Address length: 16 bits; 64K word address space

Format:
X opcode) D Instruction Word
S=0 or S=1
12 3 67 8—16
D <-240
Instruction
I|X{opcode| 110000 | XX | CB S=1
123 6 7 12 13141516 D240
Address Word:
A Long Reach and
17 32 Stack Relative
16-bit address Indirect Address
1 16 Word
Indexing: One level.
Indirection: One level.
o ; R Assembler .
I X § CB D - EA ° -Notation - Type
0 0 0 — 0to'777 0D - LDA ADDR Direct
0 1. 0 — 0to'777 0D+X LDA ADDR.1 Indexed
1 0 0 — 0to'777 1(0D) - LDA ADDR,* . Indirect
1 1 0 — 0to'77 (0D +X) LDA ADDR,1* - Indirect.
’ o - preindexed
1 1 0 — "00to'777 I[(0D)+X LDA ADDR*1 Indirect,
' postindexed
0 0 1 — =240 to +255 P+D LDA ADDR Direct
0 1 1 — =240 to +255 P+D+X LDA ADDR/1 Indexed
1 0 1 — -240to +255 I(P+D) LDA ADDR.* Indirect
1 1 1 — -240 to +255 I[(P+D})+X LDA ADDR,*1 Indirect,
postindexed
0 0 1 2 —_ SP LDA @+ Postincrement
0 1 2 — I[(SP}+X LDA @+.*1 Postincrement.
indirect,
postindexed
1 0 1 2 - I(SP) LDA @+.* Postincrement.
indirect
0 — SP-1 LDA -@ Predecrement
0 1 3 — [{SP-1)+X LDA -@,*1 Predecrement
indirect,
postindexed
1 March, 1979 10-21 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

0D

X
I(expression)
SP

ADDR

1(SP-1) LDA -@* Predecrement,
indirect
A LDA% ADDR Direct,
long reach
A+X LDA% ADDR,X Indexed,
long reach
I(A) LDAY% ADDR,* Indirect,
long reach
IA+X) LDAY% ADDR,X* Indirect,
preindexed
long reach
I{A)+X LDA% ADDR,*X Indirect,
postindexed
long reach
A+SP LDA @+ADDR Direct, stack
relative
A+8P+X LDA @+ADDR,X Indexed, stack
relative
1(A+SP) LDA @+ADDR,* Indirect, stack
relative

I(A+SP+X) LDA @+ADDRX* Indirect,
preindexed, stack rela-
tive

I(A+SP)+X LDA @+ADDR,*X Indirect,
postindexed, stack rel-
ative

Contents of program counter after instruction fetch
(pointing at instruction plus 1).

Displacement into sector 0. Sector bits of effective
address (bits 3-8) are zero.

Contents of index register.

Treat effective address as indirect address.

Stack pointer.

Location addressed by the LDA.

FDR 3059

10-22 1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV

10

@YES

{=INST BIT 1
X = INST BIT2

BITS 8-16
D <-240?

EA=P+1+
BITS 8-16

BIT 7.(S)

"OF INST

SET .
2

TEA<TO0 N
AND
X=12

NO

CEAEAA(X)

X=0

EA = [EA]

YES

EA = EA + (X)

NO

(DONE)

Figure 10-8. 64R Address Calculation (1 of 5)

1 March, 1979

10-23

FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

Bits 15, 16 = 0?

Bits 15, 16 = 1?

NO YES

w

YES YES

. -
OO © @

Figure 10-9. 64R Address Calculation (2 of 5)

FDR 3059 10-24 1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

EA=A EA=A+(S)

NO

YES

EA =EA + (X)

EA = [EA]

Figure 10-10. 64R Address Calculation (3 of 5)

1 March, 1979 10-25 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

EA=A EA=A+(S)

NO
YES
EA = [EA]
EA =EA + (X)

DONE

Figure 10-11. 64R Address Calculation (4 of 5)

FDR 3059 10-26 1 March, 1979

MEMORY REFERENCE CONCEPTS—SRYV 10

EA =(S) S=1(S)-1
S={(S)+1 EA = (S)

Y
« =1?\ NO
YES

EA=EA+(X)

-
-

4
DONE

Figure 10-12. 64R Address Calculation (5 of 5)

1 March, 1979 10-27 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

64V PROCEDURE RELATIVE (One Word, S=1)
Address length: 16 bits; 64K word address space

Format:

1] X OoP S D Instruction Word

1 2 3 6 7 8-16

16-bit Indirect address word

Indexing: One level

Indirection: One level

I X S D EA Type
0 0 1 — 224 to + 255 P+D ~ Direct
0 1 1 — 224 to .+ 255 P+D+X Indexed
1 0 1 —224to +255 I(P+D) " Indirect
11 — 224 to -+ 255 I[(P+D)+X Indirect, postindexed
P Contents of program counter after instruction fetch
(pointing at instruction plus one).
D Procedure segment displacement.
X ~ Contents of X register.
I[expression] Treat effective address as indirect address.

64V BASE REGISTER RELATIVE (One Word, S=0)
Address Length: 3 64K segments

Format:

Instruction Word

N | X
0
0
(7))
@]

16-bit Indirect address word

Indexing: One level

Indirection: One level

FDR 3059 10-28 1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

I X s D " EA Type
0o 0 0 0-7 register location Direct
~ "10-'777 o SB+D
'400-"777 LB+D
0 1 0 0-'377 ~if D+X<'10 then EA =register Indexed
~ : location * else SB+D+X
, '400-'777 LB+D+X ;
10 0 07 ~ I(REG) Indirect
| ~ 102777 I(PBD) ~
1 1 0 077 ~ I(PBD+X) : Indirect,
= : BT : preindexed
1 1 0 '100-777 ~ I(PBD)+X o Indirect,
' o ' : ‘ postindexed
REG ' ~ R-mode registers, i.e., A, B, X, etc.
- PB ~ Procedure base register.
LB Link base register.
SB Stack base register.
X Index register.
D Displacement field.

R

(expression) Treat effective address as indirect address.
' : This is called an address trap.

64V TWO WORD MEMORY REFERENCE
Address length: 28 bits; 4096 64K segments

Format:
1| X OoP 11000 Y XX BR
1 2 3 6 7 11 12 13-14 15-16
A

17 32
F|RR|E SEGNO

1234 5 16

WORDNO

17 32
BITNO

33—36 37 48

Indexing: X and Y

Indirection: 48 bit word

1 March, 1979 10-29 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

I X
0 0
0 0
0 1
0 1
1 0
1 0
1 1
1 1

<

BR Effective Address

WY D W RO W P S W= O W= O Wiy D Wl RO W - o

PBD

SB+D
LB+D
XB+D

PBID+Y

SB+D+Y
LB+D+Y
XB+D+Y
PBD+X

SB+D+X
LB+D+X
XB+D+X

Meaning

Direct

Indexed by Y

Indexed by X

Indirect

Preindexed by Y

Postindexed by Y

Preindexed by X

Postindexed by X

FDR 3059

10-30

1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

EA_S=PC_S
EA_R=PC R

R =TRUE

BIT 7 {S)

YES OF INSTR. NO y
SET
?
NO YES
EA_W=PC W+d +1 EA_W =pld

EA_W <"100
AND

EA W=EA_W + ({X)
- X=1

X=0

YES
EA_W=EA_W+ (X)

NO

<
L

DONE

Figure 10-13. 64V Address Calculation (1 of 3)

1 March, 1979 10-31 FDR 3059

10 MEMORY REFERENCE CONCEPTS—SRV

7

EA_W=0ID

D < "400
YES

YES

EA_W=EA_W + (X)

EA_S=LB_S
EA_W=EA_W+LB_W
EA_R=EA_RVLB_R

R = FALSE

DONE

EA_S=SB_S
EA_W=EA_W+SB_W
EA_R=EA_R VSB_R

R = FALSE

DONE

DONE

M WHEN SEG ENABLED = "10
M WHEN SEG DISABLED = ‘40

Figure 10-14. 64V Address Calculation (2 of 3)

FDR 3059

10-32

1 March, 1979

MEMORY REFERENCE CONCEPTS—SRV 10

EA_S=BR_S
EA_W=BR_W+A
EA_R+“BR_RVEA_ R
R = FALSE

XY =001
IXY = 1007

EA_W = EA_W + {Y}

IXY =010
IXY =1107?

EAW=EA_W+{X)

YES

NO

PRSI S——
EA S - [EA] bits 5-16

EA_W={EA +1]
EA R=EA RV
[EA]} bits 2-3

!

IXY =000 V 001 V 010 >

YES |

Y
POINTER
FAULT

EA W - EA W +{Y)

EA_W=EA \N+(X)|

Figure 10-15. 64V Address Calculation (3 of 3)

DONE

1 March, 1979 10-33

FDR 3059

Instruction
definitions=-SRV

ADDRESSING MODE—ADMOD

Set the addressing mode of the machine.

| 4 E16S Enter 16S mode

Use 16S address calculations to form subsequent effective addresses and enable S-mode
interpretation of instruction. See section on address resolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=000011, C=unchanged, L=unchanged, CC=unchanged.

p E32S Enter 32S mode

Use 328 address calculations to form subsequent effective addresses and enable S-mode
interpretation of instructions. See section on address resolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=000013, C=unchanged, L=unchanged, CC=unchanged.

> E32R Enter 32R mode

Use 32R address calculations to form subsequent effective addresses and enable R-mode
interpretation of instructions. See section on address resolution for details. MODES=SRYV,
FORMAT=GEN, OPCODE=001013, C=unchanged, L=unchanged, CC=unchanged.

> E64R Enter 64R mode

Use 64R address calculations to form subsequent effective addresses and enable R-mode
interpretation of instructions. See section on address resolution for details. MODES=SRV,
FORMAT=GEN, OPCODE=001011, C=unchanged, L=unchanged, CC=unchanged.

> E64V Enter 64V mode

Use 64V address calculations to form subsequent effective addresses and enable 64V-mode
interpretation of instructions. See section on address resolution for details. MODES=SRYV,
FORMAT=GEN, OPCODE=000010, C=unchanged, L=unchanged, CC=unchanged.

> E321 Enter 32I mode

Use 321 address calculations to form su
interpretation of instructions. See section on address resolution for details. MODES=SRYV,
FORMAT=GEN, OPCODE=001010, C=unchanged, L=unchanged, CC=unchanged.

coniiant ~ffa P I Py pu]
S€{Jufeii €iie

1 March, 1979 11-1 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

BRANCH—BRAN

The branch instructions are two word generics which test the contents of a register or the
result of a previous ARITHMETIC or COMPARE operation, as indicated by the condition
codes (CC), the C-bit, and the L-bit. The bit layout is:

Word 1 = 1 1 0 0 OPCODE
1 2 3 4 5 - 16
Word 2 = 16-bit word address in current procedure segment

Condition code branches test six conditions based on the LT bit, the EQ bit, and the opcode.

Condition Meaning

< Branch if LT bit set and EQ bit cleared
< Branch if LT bit sct or EQ bit set

= Branch if EQ bit set

* Branch if EQ bit cleared

> Branch if LT bit cleared or EQ bit set

> Branch if LT bit cleared and EQ bit cleared

MODES=V, FORMAT=BRAN, OPCODE=see charts below, C=unchanged, L=unchanged,
CC=unchanged.

> Test condition code and branch

These instructions have the following format:

LT
LE
. s EQ
Branch if condition code NE
GE

\ 6T)

For example: BCLT addr means Branch to addr if the condition code is less than zero (LT bit
set and EQ bit cleared).

Mnemonic Function Opcode
BCLT addr If CC«, then addr-PC 141604
BCLE addr If CCg, then addr-PC 141600
BCEQ addr If CC=, then addr-PC 141602
BCNE addr If CC#, then addr-PC 141603
BCGE addr If CC, then addr—PC 141605
BCGT addr If CC>, then addr—-PC 141601

FDR 3059 11-2 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

These instructions have the following format:

LT
LE
Branch to addr if L=1 and condition code E%
GE
GT

For example: BMLT addr means Branch to addr if the L-bit is set and condition code is less
than 0 (LT bit set and EQ bit cleared).

Mnemonic Function Opcode
BMLT addr If L=1 and CC, then addr-PC 141707
BMLE addr If L=1 and CCg, then addr-PC 141711

BMEQ addr If L=1 and CC=, then addr-PC 141602
BMNE addr If L#1 and CC#, then addr-PC 141603
BMGE addr If L=1 and CC>, then addr-PC 141606
BMGT addr If L=1 and CC>, then addr-PC 141710

> Test C-bit and branch

0
Branch if C-bit { }
1

BCR addr Branch if C-bit reset (equals zero): If C-bit=0, then addr-PC. OPCODE=141705.
BCS addr Branch if C-bit set (equals one): If C-bit=1, then addr—-PC. OPCODE=141704.

Test L-bit

1

0
P Test L-hit { }

BLR addr Branch if L-bit reset (equals zero): If L-bit=0, then addr -PC. OPCODE=141707.
BLS addr Branch if L-bit set (equals one): If L-bit=1, then addr-PC.

> Branch on register
These instructions have the following format:

LT
A-Register (blank) -
Branch if g L-Register (L) % EQ 0
KFleating=Register &) NE
(GE
GT

N

1 March, 1979 11-3 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

For example: BLT addr means Branch to addr if the contents of the A register is less than
zero (LT bit is set and EQ bit is cleared). MODES=V, FORMAT=BRAN, OPCODES=see
chart below, C=unchanged, L=unchanged, CC=result.

>

Mnemonic Function Opcode
BLT addr If A<0, then addr—PC 140614
BLE addr If A0, then addr—PC 140610
BEQ addr If A=0, then addr-PC 140612
BNE addr If A#0, then addr-PC 140613
BGE addr If A>0, then addr-PC 140615
BGT addr If A>0, then addr-PC 140611
BLLT addr If L<0, then addr—PC 140614
BLLE addr If L0, then addr-PC 140700
BLEQ addr If L=0, then addr-PC 140702
BLNE addr If L0, then addr-PC 140703
BLGE addr If L>0, then addr—-PC 140615
BLGT addr If L>0, then addr-PC 140701
BFLT addr If F<0, then addr-PC 141614
BFLE addr If F<0, then addr-PC 141610
BFEQ addr If F=0, then addr-PC 141612
BFNE addr If F#0, then addr-PC 141613
BFGE addr If F>0, then addr-PC 141615
BFGT addr If F>0, then addr-PC 141611

Increment or decrement X or Y and branch

Increment X by 1 then branch to addr if result # 0
Decrement Y

/

MODES=V, FORMAT=BRAN, OPCODE=see chart below, C=unchanged, L=unchanged. CC
=unchanged.

Mnemonic Function Opcode
BIX addr X+1-X; if X0 then addr—-PC 141334
BIY addr Y+1-Y;if Y#0 then addr-PC 141324
BDX addr X-1-X; if X#0 then addr-PC 140734
BDY addr Y-1-Y; if Y«0 then addr-PC 140724

» CGT Computed GOTO
If 1<A<, then [PC+A]-PC else PC+n-PC

Instruction word followed by n further words: word 1 contains integer n and words 2-n
contain branch addresses within the current procedure segment.

If the contents of register A is less than n and greater than or equal to 1, then control passes
to the address in PC+A; otherwise no branch is taken and control passes to PC+n. MODES

=V, FORMAT=GEN, OPCODE=001314, C=unspecified, L=unspecified, CC=unspecified.

FDR 3059 11-4 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

These instructions use the field address and length registers (FALR) which have been set up
by field operation instructions prior to the use of these instructions. Character string
operations perform memory to memory operations on variable length character fields. The
FAR is used as a byte pointer and the bit offset (low order 3 bits) is ignored.

Data type: Characters are 8-bit bytes. The format is unspecified and may be determined by
programmer, e.g., ASCII, EBCDIC, etc. The translate instruction (ZTRN), for example uses
a table set up by the programmer to translate one character code into another.

[2 LDC FALR Load character

If field length register FLR is nonzero, load the single character pointed to by field address
register FAR into A register bits 9-16. A register bits 1-8 are cleared. The field address
register is advanced 8 bits to the next character, and the field length register is decremented
by 1. Set condition code NE (clear EQ). If the specified field length register is zero, then set
the condition code EQ. MODES=V, FORMAT=CHAR, FALR 0 OPCODE=001302, FALR 1
OPCODE=001312, C=unchanged, L=unchanged, CC=result.

> STC FALR Store character

Store bits 9-16 of the A register into the character pointed to by field address register. The
field address register is advanced 8 bits to the next character, and the field length register
is decremented by 1. Set the condition code NE. If the field length register is zero, set the
condition code EQ and do not store. MODES=V, FORMAT=CHAR, FALR 0 OPCODE=
001322, FALR 1 OPCODE=001332, C=unchanged, L=unchanged, CC=result.

> ZCM Compare character field

Compare field 0 to field 1 and set condition codes based on the results. If the fields are not
of equal length, the shorter field is logically padded with ASCII blanks ('240).

Setup:

FAR 0 Field 0 address (byte aligned).
FLR 0 Length of field 0 in characters.
FAR 1 Field 1 address (byte aligned).
FLR 1 Length of field 1 in characters.
Condition code Result

EQ Field 0=field 1
LT Field o0<field 1
GT ((LT and EQ)) Field 0>field 1

MODES=V, FORMAT=CHAR, OPCODE=001117, C=unchanged, L=unchanged, CC=results.

> ZED Edit character field

Move characters from field 0 into field 1 under the control of an edit program pointed to by
XB. Movement stops when the source field is exhausted or when the end of the edit program

1 March, 1979 11-5 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

Edit Program Word:

L Last entry if set.
0 Must be zero.

E Edit opcode.

M Edit modifier.

Opcode (E) Mnemonic Definition
0 CPC Copy M characters from source to destination.
1 INL Insert literal character M.
2 SKC Skip M characters.
3 BLK Supply M blanks (ASCII '240).
Setup:
FAR 0 Address of source field (byte aligned).
FAR 1 Address of destination field (byte aligned).
FLR 1 Number of characters to move and edit.
XB Address of edit program.

MODES=V, FORMAT=CHAR, OPCODE=001111, C=unchanged, L=unchanged, CC=un-
changed.

B ZFIL Fill field

Store the character contained in bits 9-16 of the A register into each character of field 1.

Setup:
A(9-16) Character to fill.
FAR 1 Destination field address (byte aligned).
FLR 1 Destination field length in bytes.

MODES=V, FORMAT=CHAR, OPCODE=001116, C=unchanged, L=unchanged, CC=un-
changed.

4 ZMV Move character field

Move characters from field 0 to field 1, going from left to right. If the source field is shorter
than the destination field, the destination field is padded with ASCII blanks (’240). If the
source field is longer than the destination field, the remainder of the source field is not
moved. The field address and length registers are left in an undefined state by this
operation.

Setup:
FAR 0 Source field address (byte aligned).
FLR 0 Source field length in bytes.
FAR 1 Destination field address length (byte aligned).
FLR 1 Destination field length in bytes.

MODES=V, FORMAT=CHAR, OPCODE=001114, C=unchanged, L=unchanged, CC=un-
changed.

FDR 3059 11-6 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

"
N
2
<
o
ot
e
©
<!
m
[+1)
<]
:l
[+
[
[T
(4]
=}
oct
-
£
Y=y
-
(4]
et
n-
7]

Move characters from field 0 to field 1. There is no padding or truncation since only the
number of characters to be moved is specified.

Setup:
FAR 0 Source field address (byte aligned).
FAR 1 Destination field address (byte aligned).
FLR 1 Number of characters to move.

MODES=V, FORMAT=CHAR, OPCODE=001115, C=unchanged, L=unchanged, CC=un-
changed.

> ZTRN Translate character field

Use each character in field 0 as an index into the 256 byte table addressed by the XB register.
Store each selected table character in the successive characters of field 1. Source and
destination length are the same, specified by field length register 1.

Setup:
FAR 0 Source field address (byte aligned).
FAR 1 Destination field address (byte aligned).
FLR 1 Number of characters to translate and move.
XB Address of 256-byte translate table.

For example: the source field contains a character A. The ASCII code is '301. Thus, the
translate table location '301, which contains a 8, is accessed. This $ is put into the destination
field.

MODES=V, FORMAT=CHAR, OPCODE=001110, C=unchanged, L=unchanged, CC=un-
changed.

CLEAR REGISTER—CLEAR

| 2 CAL Clear A left byte

0-A(1-8)
Clear bits 1-8 of register A without affecting bits 9-16. MODES=SRV, FORMAT=GEN,
OPCODE=141050, C=unchanged, L=unchanged, CC=unchanged.
P CAR Clear A right byte

0-A(9-16)
Clear bits 9-16 of register A without affecting bits 1-8. MODES=SRV, FORMAT=GEN,
OPCODE=141044, C=unchanged, L=unchanged, CG=unchanged.
> CRA (Clear the A register

0-A

Reset the contents of register A to zero. MODES=SRV, FORMAT=GEN, OPCODE=140040, C
=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-7 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> CRB Clear the B register
0-B

Reset the contents of register B to zero. MODES=SRV, FORMAT=GEN, OPCODE=140015, C
—unchanged, L=unchanged, CC=unchanged.

P CRE ClearE
0-E

Reset the contents of register E to zero. MODES=V, FORMAT=GEN, OPCODE=141404, C=
unchanged, L=unchanged, CC=unchanged.

> CRL Clear long
0-L

Reset the contents of register L to zero. MODES=SRV, FORMAT=GEN, OPCODE=140010, C
—unchanged, L=unchanged, CC=unchanged.

> CRLE Clear L and E
0-L, 0-E

Reset the contents of registers L and E to zero. MODES=V, FORMAT=GEN, OPCODE=
141410, C=unchanged, L=unchanged, CC=unchanged.

DECIMAL ARITHMETIC—DECI

These instructions use the field address and length registers which have been set up by field
operation instructions prior to the use of the decimal arithmetic instruction. The general
setup is:

EAFA 0 Source field address.
EAFA 1 Destination field address.
LDL Control word (described below) decimal operation.

Variations on this pattern are discussed in the appropriate instructions.

Decimal data types

o]

The decimal instruction set operates on five types of decimal data. Table 11-1 summarizes

the characteristics of each type.

FDR 3059 11-8 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

Table 11-1. Decimal Data Type.

Type

Leading

Separate

Sign

Trailing

Separate

Sign
Packed

Decimal

Leading

Embedded

Sign

Trailing

Embedded

Sign

Code

Size of

Decimal

Digit
8

Comments

A plus sign (+) or a space represents a
positive number. Operations generate +. A
minus sign (-] represents negative number.

Use 4-bit nibble to represent each digit, fol-
lowed by sign nibble. Requires odd number of
digits and must start on byte boundary.

A single character represents a digit and the

sign of the field. When more than one charac-

ter is listed, all will be recognized, but only
first will be given in result field.
Embedded sign characters are as follows:

Digit Positive Negative
0 0, +{ -1
1 1A]
2 2B K
3 3C L
4 4D M
5 5E N
6 6 F O
7 7 G P
8 8 H Q
9 91 R

1 March, 1979

11-9 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

Arithmetic instruction register usage (I-mode only)

All arithmetic instructions use general registers GR0, GR1, GR3, GR4, and GR6, FLRO, FLR1
as scratch registers. These registers are not guaranteed to remain the same if an arithmetic
instruction is executed.

Control word format

To specify the characteristics of the operation to be performed, most decimal arithmetic
instructions require a control word to be loaded in the L register (general register 2 in I-
mode).

The general format is as follows:

A — B|C|—|T]|D E F G H
1-6 7 8 9 10 11 12 13 14-16 17-22 23-29 30-32

Where:

Field 1, number of digits.

Field 1, decimal data type (see Table 11-1).

If set, sign of field 1 is treated as negation of its actual value.
If set, sign of field 2 is treated as negation of its actual value (XAD, XMP,
XDV, XCM only).

If set, then round (XMV only).

Field 2, number of digits.

Field 2, decimal data type.

Scale differential (XAD, XMV, XCM only).

Generate positive results always.

- Unused, must be zero.

O WM

PR

The fields used by each instruction are listed in the instruction descriptions. Fields not used
by an instruction must be zero.

The scale differential specifies the difference in decimal point alignment between the
operator and fields for some instructions. This field is treated as a signed 7 bit two's
complement number, where a positive value indicates a right shifting of field 1 with respect
to field 2, and a negative value indicates a left shifting.

Decimal exception (DEX)

There are two ways that an exception is handled. If the program is running in decimal
exception mode, the a directed fault (similar to floating exception) is taken with the
following fault codes:

DEX Type (High) Sub Code (Low)

Overflow 7 0
Divide by zero 7 1
Conversion 7 2

When not in decimal exception mode, the C bit is set and execution continues with the next
instruction.

> XAD Decimal add

FDR 3059 11-10 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

A - B| C E F G H
1-6 7 8 9 10 11 — 13 14-16 17-22 23-29 30-32

Add the source field to the destination field and place the results in the destination field.
The control word determines:

1. The operation—addition or subtraction.
2. The scaling of the results.

Operations: The B and C fields control whether the operation is an add or subtract.

B C Operation

0 0 + Source + Destination
0 1 + Source — Destination
1 0 — Source + Destination
1 1 — Source — Destination

Scaling: G Field. The scale differential field in the control word is used to adjust field 1 in
relation to field 2. If the scale differential is greater than zero, low order digits in field 1 will
only affect the initial borrow from the low order digit of field 2. If the scale differential is
less than zero, field 1 is considered to be logically extended with low order zeros when
applied to field 2. MODES=V, FORMAT=DECI, OPCODE=001100, C=overflow, L=un-
changed, CC=result.

P XBTD Binary to decimal conversion

A E H

1-6 7 13 1416 17 29 30-32

Converts a 16, 32 or 64 bit signed binary number to decimal. The H field in the control word
specifies the length and location of the binary source as follows:

0 16 Bits, located in EH
1 32 Bits, located in E
2 64 Bits, located in F

The condition codes are undefined for this operation. A conversion error exception is taken
on overflow - see decimal exception.

This instruction converts the binary field present in EH, E or F (depending on field type)
into a decimal field. Unlike the rest of the decimal arithmetic instructions, XBTD returns the
decimal field in what elsewhere is known as the “source” field address register. MODES=
V., FORMAT=DECI, OPCODE=001145, C=unchanged, L=unchanged, CC=unchanged.

> XCM Decimal compare

A - B| C E F G H

1-6 7 8 9 10 11 13 14-16 17-22 23-29 30-32

Sets the condition codes to reflect the comparison Field 2 :: Field 1 The scale difference
applies as in XAD.

1 March, 1979 11-11 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

The condition codes are set as follows:
GT =Field 2 > Field 1
EQ = Field 2 = Field 1
LT = Field 2 < Field 1

MODES=V, FORMAT=DECI, OPCODE=001102, C=unchanged, L=unchanged, CC=result.

> XDTB Decimal to binary conversion

)
m
I

1-6 7 13 14-16 17 29 30-32

Converts the decimal field to binary. The length of the binary field is specified in the H field
of the control word as follows:

0 16 Bits, returned in A.
1 32 Bits, returned in L.
2 64 Bits, returned in L/E.

A conversion error exception is taken on overflow. The condition codes are undefined for
this operation.

Field address register 1 is not used by this instruction and can be used as an accumulator for
indexed pointers.

This instruction returns a 16, 32 or 64 bit integer in either the A, L, or L/E registers,
depending on the destination field type. MODES=V, FORMAT=DECI, OPCODE=001146, C
=unchanged, L=unchanged, CC=unspecified.

> XDV Decimal divide

1-6 7 8 9 10 M 32

Divide destination field by source field, placing both the quotient and remainder in the
destination field.

The data type must be trailing sign embedded. To allow room for both quotient and
remainder the destination field must contain the same number of leading zeros as the length
of the source field.

After divide the destination field contains quotient of length (destination length—source
length) followed by remainder of source length. A decimal exception (DEX) occurs if the
source =0, the sign is not trailing embedded, or the destination is < source. MODES=V,
FORMAT=DECI, OPCODE=001107, C=unchanged, L=unchanged, CC=result.

FDR 3059 11-12 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

P XED Numeric edit

Processes an edit sub-program addressed by the temporary base register (XB) to control the
editing of the source field into the destination field. The source field must have leading
separate sign, and must have the same number of digits and the same decimal point
alignment as called for by the edit sub-program. Normal setup for the instruction would
consist of a decimal move to correct the type, length, and alignment of the number to be
edited. The A register must equal one if the source field is zero: otherwise the A register
must be zero.

The edit sub-program consists of a list of words formatted as follows:

L 0 E M
1 2-4 5-8 9 16
Where:
L Last entry if set.

E Edit opcode.
M Edit modifier.

The XED instruction maintains several internal variables during its processing which are
used to control the operation. These variables are:

* Zero suppress character—initial value is blank (ASCII ’240).
* Floating edit character—initially not defined.

* Sign of the source field—established by fetching the first character of the source
field.

* Significance flag—records the end of zero suppression.

MODES=V, FORMAT=DECI, OPCODE=001112, C=unchanged, L=unchanged, CC=un-
changed.

[4 XMP Decimal multiply

Al — |B|lCc|—-|T - E F G H
16 7.8 9 10 11 12 13 14-16 17-22 23-29 30-32

Multiply the multiplicand, in the source field, by the multiplier, in the destination field. The
product is right justified in the destination field. To avoid overflow the destination field
length must be greater than or equal to the number of significant digits in the multiplier plus
the number of significant digits in the multiplicand. For example, to multiply 1234 by 567 set
A=4, F=7, G=3. Note that the temporary base register (XB] is used by the instruction and may
change. MODES=V, FORMAT=DECI, OPCODE=001104, C=overflow, L=unchanged, CC=
result.

1 March, 1979 11-13 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

Table 11-2. Edit Sub-operations

Opcode Mnemonic Definition

00 VA Zero suppress next M digits. Digits are consecutively fetched
from the source field and the significance flag is checked. If the
significance flag is set, the digit is copied to the destination field.
If the significance flag is clear and the digit is non-zero, the
significance flag is set, the floating character inserted (if it is
currently defined), and the digit is copied. Otherwise the zero
suppress character is substituted for the zero digit in the
destination field.

01 IL Insert literal M in destination field.

02 SS Set zero suppress character to M.

03 ICS Insert literal M if the significance flag set: otherwise insert zero
suppress character.

04 ID Insert M digits. If significance flag is clear. it is set and the

floating edit character inserted (if currently defined). Then
copy M digits into the destination field.

05 ICM Insert M if sign is minus; otherwise insert zero suppress
character.

06 ICP Insert M if sign is plus; otherwise insert zero suppress charac-
ter.

07 SFC Set floating character to M.

10 SFP Set floating character to M if sign plus; otherwise set floating
edit character to zero suppress character.

11 SFM Set floating character to M if sign minus: otherwise set floating
edit character to zero suppress character.

12 SFS Set floating character to sign.

13]Z Jump M+1 locations ahead in edit sub program if source field
equals zero.

14 FS Fill next M characters with zero suppress character.

15 SF Set significance flag.

16 IS Insert sign.

» XMV Decimal move

A - B|{C|—|T]|D E F G H
1-6 7 8 9 10 11 12 13 14-16 17-22 23-29 30-32

Moves source to destination, changing the sign if the B bit in the control word is set, and
rounding if the D bit is set and G, the scale differential, is greater than zero. If the scale
differential is negative then zeros are supplied before field 1 is used for a source. The
condition codes are set to reflect the state of the destination after the move. MODES=V,
FORMAT=DECI, OPCODE=001101, C=unchanged, L=unchanged, CC=result.

FDR 3059 11-14 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

FIELD OPERATIONS—FIE

These instructions set up and manipulate the field address and length registers, which are
used by both the decimal and character string instructions. The interpretation of the value
in the field length registers depends on the data type and instruction using them.

> ALFA FAR Add L to field address
L+FAR-FAR

Add the 32-bit integer in register L, which represents an offset in bits, to the 26-bit unsigned
word and bit number fields of the field address register. The low-order 26 bits of the sum
replace the word and bit number fields of the field address register. All but the low order
20 bits of the sum must be zero. Example: to advance FAR 0 by 3 bytes, place 24 into the L
register and execute ALFA 0. MODES=V, FORMAT=GEN, FAR 0 OPCODE=001301, FAR 1
OPCODE=001311, C=unspecified, L=unspecified, CC=unchanged.

> EAFA FAR, addr Effective address to field address register
[EA]48-FAR

Place the complete effective address, including the bit portion, in field address register FAR.
The associated field length register is unchanged. MODES=V, FORMAT=AP, FAR 0
OPCODE=001300, FAR 1 OPCODE=001310, C=unchanged, L=unchanged, CC=unchanged.

» LFLIFLR,DATA Load field length register immediate
DATA-FLR

Place the 16-bit unsigned integer in the second word of the instruction into field length
register FLR. Clear the high order bits. This instruction loads the field length register with
a constant which is 65535 or less. The associated field address register is unchanged. MODES
=V, FORMAT=BRAN, FLR 0 OPCODE=001303, FLR 1 OPCODE=001313, C=unchanged, L=
unchanged, CC=unchanged.

[2 STFA FAR,addr Store field address register
FAR[EA|32 or [EA]48

Store contents of field address register FAR into addr as a hardware indirect pointer. If bit
number field of the field address register is zero, store the first two words of the pointer and
clear the pointer’s extend bit; if bit number field is non-zero, store all three words of the
pointer and set the pointer’s extend bit. MODES=V, FORMAT=AP, FAR 0 OPCODE=001320,
FAR 1 OPCODE=001330, C=unchanged, L=unchanged, CC=unchanged.

| 2 TFLL FLR Transfer field length register to L

FLR-L
Transfer the contents of field length register FLR to the L register as an unsigned 32-bit
integer. Clear the high order 11 bits of L. MODES=V, FORMAT=GEN, FLR 0 OPCODE=
001323, FLR 1 OPCODE=001333, C=unchanged, L=unchanged, CC=unchanged.
> TLFL FLR Transfer L-register to field length register

L-FLR
Transfer the 32-bit unsigned integer in the L register into field length register FLR. The high

order 11 bits of L must be zero to make the high order 6 bits of the field length register equal
to zero. This instruction is used to load the field length register with a value computed at

1 March, 1979 11-15 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

execution time. The maximum allowable field length is 2¥*20 (21 bits) - the number of bits
in a 64K segment. MODES=V, FORMAT=GEN, FLR 0 OPCODE=001321, FLR 1 OPCODE=
001331, C=unchanged, L=unchanged, CC=unchanged.

FLOATING POINT ARITHMETIC—FLPT

See Section 9 for a description of the processor dependent register formats and the floating
point data structures.

Normalization

The result of every floating point calculation is normalized. In normal form, the most
significant digit of the mantissa follows the binary point. If an operation produces a mantissa
that is smaller than normal, the mantissa is shifted left until the most significant bit differs
from the sign bit, and the exponent is decreased by one for each shift. Bits vacated at the
right are filled by zeros. If the result of an operation overflows the mantissa, it is shifted
right one place, the overflow bit is made the most significant bit, and the exponent is
increased by 1.

Floating point exceptions

In the basic arithmetic operations, increasing the exponent in the floating point register
beyond 32639 is an overflow; decreasing it below —32896 is an underflow.

An attempt to store a single-precision number with an exponent greater than 127 or less than
_128 in the two-word memory format results in a different type of exception - see Table 11-2.
The number in the floating point register is not altered by the FST operation and so can be
recovered if necessary.

Other detected exceptions are an attempt to divide by zero or to form an integer exceeding
+30 bits or about +1 billion decimal.

On the Prime 350 and up, the floating point exception is a fault rather than an interrupt and
is controlled by the floating point exception bit in the keys - see Section 9 - Data Formats.

Table 11-3§ Flaating.!’qim Exception Codes

 Register 11 (Precision) Register 12 ~ Type of Exception

Single ~~ Double " sl e

$100 e $200 =L Overflow/Underflow (Exponent exceeds ap-

St Lo prox. 10 +9800)

$101 R 71 R — Division by zero

$102 = (EA) Attempt to store single precision exponent
' exceeding 8-bit memory format (>127, <-128)

$103 — — Attempt to form integer exceeding capacity.

INT: AB (30 bits)
INTA: A (15 bits)
INTL: L (31 bits)
Note
$ indicates hexadecimal codes

FDR 3059 11-16 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

Table 11-4. Floating Point Mantissa and Exponent Ranges

Single Single ,
Precision- Precision- ' Double
Field : Memory Register ; Precision
Mantissa {two’s complement) ;
Bits 23 + Sign 31 + Sign 47 + Sign
Precision +8,388,607 +2,147,483,647 +140,737,488,355,327
Exponent
Bits : 8 16 , 16
Range 2128 to +127 -32896 to +32639 ~32896 to +32639
(10+38) (10+9823,-9902) (10+9823,-9902)

> DFAD addr Double precision floating add
F+[EA]64-F

Add the double precision number starting at addr to the double precision number in the
floating point register and leave the result in the floating point register. (Same procedure as
FAD except a 47-bit mantissa is produced.) MODES=RV, FORMAT=MR, OPCODE=06 02, C
=overflow, L=unspecified, CC=unspecified.

> DFCM Double precision floating complement
-F-F

Two’'s complement the precision mantissa in floating point register and normalize if
necessary. MODES=RV, FORMAT=GEN, OPCODE=140574, C=overflow, L=unspecified,
CC=unspecified.

> DFCS addr Double precision floating point compare and skip

If F>[EA]64 then PC~PC
If F=[EA|64 then PC+)1-PC
If F<[EA]64 then PC+2-PC

If the contents of the floating point register is greater than the contents of addr, execute the
next instruction.

If the contents of the floating point register equals the contents of addr, skip the next location
in instruction sequence and execute the instruction at second location following.

If the contents of the floating point register is less than the contents of addr, skip next two
locations in instruction sequence and execute the instruction at third location following.
MODES=RV, FORMAT=MR, OPCODE=11 02, C=unspecified, L=unspecified, CC=un-
specified.

> DFDV addr Double precision floating divide
F/[EA]64-F

Divide the contents of the floating point register by the number in addr and place the
quotient in the floating point register with the mantissa normalized. MODES=RV, FORMAT
=MR, OPCODE=17 02, C=overflow division by zero, L=unspecified, CC=unspecified.

1 March, 1979 11-17 ‘ FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> DFLD addr Double precision floating load
[EA]64-F

Load the double precision floating point number contained in the four memory words at
addr into the floating point register. MODES=RV, FORMAT=MR, OPCODE=02 02, C=
unchanged, L=unchanged, CC=unchanged.

4 DFLX addr Double precision floating load index
[EA]16*4-X

Quadruple the contents of the effective address and load the result into the index register
X. This instruction is useful for addressing arrays or tables of element size four words.
MODES=V, FORMAT=MR, OPCODE=15 02, C=unchanged, L=unchanged, CC=unchanged.

> DFMP addr Double precision floating multiply
F*[EA]64-F

Multiply the contents of the floating point register by the contents of addr and place the
products in the floating point register with the mantissa normalized. MODES=RV, FORMAT
—MR, OPCODE=16 02, C=overflow, L=unspecified, CC=unspecified.

> DFSB addr Double precision floating subtract
F-[EA]64-F

Subtract the double precision floating point number starting at addr from the double
precision floating point number in the floating point register. (Same procedure as FSB
except a 47-bit mantissa is produced.) MODES=RV. FORMAT=MR, OPCODE=07 02, C=
overflow, L=unspecified, CC=unspecified.

> DFST addr Double precision floating store
Fo[EA]64

Store the double precision floating point number contained in the floating point register into
the location specified by addr. Exponent and mantissa bit capacities are the same so that no
floating point exceptions are possible. MODES=RV, FORMAT=MR, OPCODE=04 02, C=
unchanged, L=unchanged, CC=unchanged.

> FAD addr Floating add _
F+[EA]32-F

Add the floating point number at addr to the contents of the floating point register and leave
the resulting floating point number in the floating point register. Addition of floating point
numbers is accomplished by right shifting the smaller number by the difference in the
exponents. After alignment, the mantissas are added.

If there is an overflow from the most significant bit (not the sign), the sum mantissa is shifted
right one place, the exponent is incremented by one and the overflow bit becomes the high-
order bit in the normalized mantissa. If the result is otherwise not in normal form (as when
numbers with unlike signs are added), the result is normalized. Overflow cannot occur. The
C-Bit is cleared. MODES=RV, FORMAT=MR, OPCODE=06 01, C=cleared, L=unspecified,
CC=unspecified.

FDR 3058 11-18 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

-F-F

Two’s complement the double precision mantissa in floating point register and normalize if
necessary. MODES=RV, FORMAT=GEN, OPCODE=140574, C=overflow, L=unspecified,
CC=unspecified.

4 FCS addr Floating compare and skip

If F>[EA]32, then PCoPC
If F=[EA]32, then PC+1-PC
If F<[EA]32, then PC+2-PC

If the contents of the floating point register is greater than the contents of addr, execute the
next instruction.

If the contents of the floating point register equals the contents of addr, skip the next location
in instruction sequence and execute the instruction at second location following.

If the contents of the floating point register is less than the contents of addr, skip next two
locations in instruction sequence and execute the instruction at third location following.
MODES=RV, FORMAT=MR, OPCODE=11 01, C=unspecified, L=unspecified, CC=un-
specified.

» FDBL Convert single to double float
F-F

Convert the single precision floating point number in the floating point register to a double
precision precision floating point number in the floating point register. MODES=V,
FORMAT=GEN, OPCODE=140016, C=unchanged, L=unchanged, CC=unchanged.

> FDV addr Floating divide
F/[EA]32-F

Divide the contents of the floating point register by the number in addr and place the
quotient. with the mantissa normalized, in the floating point register. MODES=RV, FOR-
MAT=MR, OPCODE=17 01, C=overflow division by zero, L=unspecified, CC=unspecified.
» FLD addr Floating load

|EA]32-F

Load the double precision number contained in the two successive words at addr into the
floating point register. MODES=RV, FORMAT=MR, OPCODE=02 01, C=unchanged, L=
unchanged, CC=unchanged.

> FLOT Convert 31-bit integer to float
Float(AB)-F

Take the 31-bit integer in the combined AB register and convert it into a normalized floating

point number in the floating point register. MODES=R, FORMAT=GEN, OPCODE=140550,
C=unspecified, L=unspecified, CC=unspecified.

1 March, 1979 11-19 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> FLTA Convert integer to float

FLOT(A)-F
Convert the 16 bit integer in register A to a single precision floating point number in the
floating point register. MODES=V, FORMAT=GEN, OPCODE=140532, C=overflow, L=
unspecified, CC=unspecified.
> FLTL Convert long integer to float

FLOT(L)-F
Convert the 32 bit integer in register L to a single precision floating point number in the
floating point register. MODES=V, FORMAT=GEN, OPCODE=140535, C=overflow, L=
unspecified, CC=unspecified.
p FLX addr Floating load index

[EA]16*2-X

Double the contents of the effective address and load the result into the index register X.
This instruction facilitates indexing sequences that involve double-word memory reference
operations. It works directly for two-word indexing, e.g., 31-bit or 32-bit integer or floating
point. MODES=RV, FORMAT=MR, OPCODE=15 01, C=unchanged, L=unchanged, CC=
unchanged.

> FMP addr Floating multiply

F*[EA]32-F

Multiply the contents of the floating point register by the contents of addr and place the
product in the floating point register, with the mantissa normalized. MODES=RV, FORMAT
=MR, OPCODE=16 01, C=overflow, L=unspecified, CC=unspecified.

4 FRN Round up

If bit 25 of the mantissa in the floating point register is 1, add 1 to bit 24 and clear 25. MODES
=RV, FORMAT=GEN, OPCODE=140534, C=overflow, L=unspecified, CC=unspecified.

> FSB addr Floating subtract

F_[EA]32-F
Subtract the contents of addr from the floating point register by aligning exponents, and
proceding as in FAD except that the [EA]32 is subtracted from the floating point register.
MODES=RV, FORMAT=MR, OPCODE=07 01, C=overflow, L=unspecified, CC=un-
specified.
| 4 FSGT Floating skip if greater than zero
If floating point register is greater than zero, skip next location. MODES=RV, FORMAT=
GEN, OPCODE=140515, C=unchanged, L=unchanged, CC=unchanged.
| 4 FSLE Floating skip if less than or equal to zero

If floating point register is less than or equal to zero, skip next location. MODES=RYV,
FORMAT=GEN, OPCODE=140514, C=unchanged, L=unchanged, CC=unchanged.

FDR 3059 11-20 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

| O AT -7 2 3.2 :p :
” Foivii Floating skip it minus

If the floating point register is less than 0, skip next location. MODES=RV, FORMAT=GEN,
OPCODE=140512, C=unchanged, L=unchanged, CC=unchanged.

[2 FSNZ Floating skip if not zero

If the floating point register is not equal to zero, skip next location. If the floating point
register is less than 0, skip next location. MODES=RV, FORMAT=GEN, OPCODE=140511, C
=unchanged, L=unchanged, CC=unchanged.

» FsPL Floating skip if plus

If the floating point register is greater than 0, skip next location. MODES=RV, FORMAT=
GEN, OPCODE=140513, C=unchanged, L=unchanged, CC=unchanged.

P FST addr Floating store
Fo[EA]32

Store the single precision floating point number contained in the floating point register in
two memory words starting at addr. Bits 24-31 of the 31 bit mantissa are truncated when
written into the 23-bit capacity memory storage. However, the mantissa may be rounded to
bit 24 by a FRN instruction which adds 1 to bit 24 if bit 25 is 1. MODES=RV, FORMAT=MR,
OPCODE=04 01, C=overflow, L=carry, CC=unchanged.

> FSZE Floating skip if zero

If the floating point register is equal to zero, skip next location. MODES=RV, FORMAT=
GEN, OPCODE=140510, C=unchanged, L=unchanged, CC=unchanged.

P INT Convert float to integer
Int(F)->AB

Convert the single precision floating point number in the floating point register into a 32 bit
integer in register L. The fractional part of the floating point register is lost. If the value in
the floating point register is less than -(2**31) or greater than 2**31-1, set the C-bit or initiate
a floating exception. MODES=V, FORMAT=GEN, OPCODE=140533, G=overflow, L=un-
specified, CC=unspecified.

P INTA Convert float to integer
INT(F)>A

Convert the single precision floating point number in the floating point register into a 16 bit
in integer in register A. The fractional part of the floating point register is lost. Overflow
occurs if the value in the floating point register is less than -(2**15) or greater than 2**15-1,
and sets the C-bit or initiates a floating exception. MODES=V, FORMAT=GEN, OPCODE=
140531, C=overflow, L=unspecified, CC=unspecified.

1 March, 1979 11-21 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

» INTL Convert float to long integer
INT(F)-L

Convert the single precision floating point number in the floating point register into a 32 bit
integer in register L. The fractional part of FAC is lost. If the value in the floating point
register is less than —(2**31) or greater than 2**31-1, set the C-bit or initiate a floating
exception. MODES=V, FORMAT=GEN, OPCODE=140533, C=overflow, L=unspecified, CC=
unspecified.

INTEGER ARITHMETIC—INT

These instructions operate on 16, 31-bit and 32-bit signed integers. See Section 9 for a
description of the data formats.

> Al1A Add oneto A
A+1-A

Add 1 to the 16-bit integer in register A and put the result into A. If the number incremented
is 2 **15-1, set C and give a result of -2**15; otherwise clear C. MODES=SRV, FORMAT=
GEN, OPCODE=141206, C=overflow, L=carry, CC=result.

> A2A Add twoto A
A+2-A

Add 2 to the 16-bit integer in register A and put the result into A. If the number incremented
is 2**15-2 or 2**15-1, set C and give a result of -2**15 or-(2**15-1); otherwise clear C.
MODES=SRV, FORMAT=GEN, OPCODE=140304, C=overflow, L=carry, CC=result.

p ACA Add C-bitto A
A+C-bitoA

Add the C-bit to the 16-bit integer in register A and put the result into A (C is treated as same
order of magnitude as bit 16 of A). If the number originally in A is 2**15-1 and C set, set C
and give a result of -2**15; otherwise clear C. MODES=SRV, FORMAT=GEN, OPCODE=
141216, C=overflow, L=carry, CC=result.

[2 ADD addr Add
A+[EA]16-A

Add the 16-bit integer at addr to the 16-bit integer in register A and put the result into
register A. If the sum is greater than 2**15 or less than or equal to -2**15, set C; otherwise,
clear C. In the first overflow case. tne result has a minus sign, but a magnitude in positive
form equal to the sum minus 2**15; in the second, the result has a plus sign, but a magnitude
in negative form equal to the sum plus 2**15. MODES=SRV, FORMAT=MR, OPCODE=06,
C=overflow, L=carry, CC=result.

P ADL addr Add long
L+[EA]32-L

Add the 32-bit integer at addr to the 32-bit integer in register L and put the result into L. If
the sum is greater than 2**31 or less than -2**31, set C; otherwise, clear C. In the first
overflow case, the result has a minus sign, but a magnitude in positive form equal to the sum
minus 2¥*31: in the second, the result has a plus sign, but a magnitude in negative form equal
to the sum plus 2**31. MODES=V, FORMAT=MR, OPCODE=06 03, C=overflow, L=carry,
CC=result.

FDR 3059 11-22 1 March, 1879

INSTRUCTION DEFINITIONS—SRV 11

P ADLL Add L bitto L
L+keys(L)-L
Add the link bit (L-bit in the keys) to the contents of the L register and put the result into the

L register. Overflow may be set.

This instruction is useful in implementing multiple precision arithmetic. MODES=V,
FORMAT=GEN, OPCODE=141000, C=overflow, L=carry, CC=result.

> CAS addr Compare A and skip

If A>[EA]16 then PC=PC

If A=[EA]16 then PC+1-PC

If A<[EA]16 then PC+2-PC
If the contents of the A register is greater than the contents of addr, execute the next
instruction.

If the contents of the A register equals the contents of addr, skip the next location in
instruction sequence and execute the instruction at the second location following.

If the contents of the A register is less than the contents of addr, skip the next two locations
in instruction sequence and execute the instruction at the third location following. MODES
=5RV, FORMAT=MR, OPCODE=11, C=unchanged, L=carry, CC=result.

> CAZ Compare A with zero

If A>0 then PC=PC
If A=0 then PC+1-)PC
If A<0 then PC+2-PC

If the contents of the A register is greater than zero, execute the next instruction.

If the contents of the A register is equal to zero, skip the next location in instruction
sequence and execute the instruction at second location following.

If the contents of the A register is less than zero, skip the next location in instruction
sequence and execute the instruction at third location following. MODES=SRV, FORMAT=
GEN, OPCODE=140214, C=unchanged, L=carry, CC=result.

P CHS Change sign
_A(1)>A(1)

Complement bit 1 of register A without affecting the rest of the register. MODES=SRYV,
FORMAT=GEN, OPCODE=140024, C=unchanged, L=unchanged, CC=unchanged.

> CLS addr Compare
If L>[EA]32 then PB+1-PB
If L=[EA]32 then PB+2-PB
If L<[EA]32 then PB+3-PB

If the contents of the L register is greater than the contents of addr, execute the next
instruction.

If the contents of the L register equals the contents of addr, skip the next location in
instruction sequence and execute the instruction at second location following.

If the contents of the L register is less than the contents of addr, skip next two locations in
instruction sequence and execute the instruction at third location following. MODES=V,
FORMAT=MR, OPCODE=11 03, C=unchanged, L=carry, CC=result.

1 March, 1979 11-23 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> CSA Copy sign of A
A(1)-C-bit;0-A(1)

Make C equal to bit 1 of register A and clear bit 1 of A without affecting the rest of the
register. Used when using single precision arithmetic to do double precision work. MODES
=SRV, FORMAT=GEN, OPCODE=140320, C=result, L=unspecified, CC=unchanged.

» DAD addr Double add
AB+[EA]31-AB

Add the 31-bit integer at addr and addr+1 to the 31-bit integer in registers A[B, and put the
result into AB. If the sum is >2**30 or <-2**30, set C; otherwise, clear C. In the first overflow
case, the result has a minus sign but a magnitude in positive form equal to the sum minus
2**30; in the second, the result has a plus sign but a magnitude in negative form equal to the
sum plus 2**30.

By definition, bit 1 of the low order word of a 31-bit integer must be 0. The instruction
executes only in double precision mode. MODES=SR, FORMAT=MR, OPCODE=06, C=
overflow, L=carry, CC=result.

> DBL Enter double precision mode

Enter double precision mode. Subsequent LDA, STA ADD and SUB instructions handle 31-
bit integers. MODES=SR, FORMAT=GEN, OPCODE=000007, C=unchanged, L=unchanged,
CC=unchanged.

> DIV addr Divide
AB/[EA]16-A;REM-B

Divide the 31-bit integer in register A|B by the 16-bit integer at addr and put the quotient into
A, and the remainder into B. Barring overflow, the results are defined such that A*[addr}+
B equals the original AB and the remainder in B has the same sign as the dividend. Hence,
-42 divided by 5 gives A=-8 and B=-2. Overflow occurs (and the C-bit is set) whenever the
guotient is less than -(2**15)or greater than 2**15-1; The AB register is unchanged. MODES
=SR, FORMAT=MR, OPCODE=17, C=overflow, L=unspecified, CC=unspecified.

P DIV addr Divide
L/[EA]16-A;REM-B

Divide the 32-bit integer in register L by the 16-bit integer at addr and put the quotient into
A, and the remainder into B. Barring overflow, the results are defined such that A*|addr|+
B equals the original L and the remainder in B has the same sign as the dividend. Hence, -42
divided by 5 gives A=-8 and B=-2.

Overflow occurs (and the C-bit is set) whenever the quotient is less than —(2**15) or greater
than 2**15-1. The PIDA instruction is useful for placing 16-bit dividends into L. MODES=V,
FORMAT=MR, OPCODE=17, C=overflow, L=unspecified, CC=unspecified.

> DSB addr Double subtract
AB-[EA]31-AB

Subtract the 31-bit integer at addr and addr+1 from the 31-bit integer in registers A|B, and
place the result into A|B. If the difference is »2**30 or <-2**30, set C; otherwise, clear C. In
the first overflow case, the result has a minus sign but a magnitude in positive form equal to
the difference minus 2**30; in the second, the result has a plus sign but a magnitude in
negative form equal to the difference plus 2**30.

FDR 3059 11-24 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

1

Bit 1 of the low order word of a 31-bit integer must be 0. The instruction executes only in
double precision mode. To negate one 31-bit integer, simply subtract it from zero. MODES
=SR, FORMAT=MR, OPCODE=07, C=overflow, L=carry, CC=result.

P DVLaddr Divide long

LIE/[EA]32-L;REMoE
Divide the 64-bit integer in registers L|E by the 32-bit integer at addr and put the quotient into
L, and the remainder into E. Barring overflow, the results are defined such that L*{addrj+
E equals the original LEE and the remainder in E has the same sign as the dividend. Hence,
+42 divided by -5 gives L.=-8 and E=+2.

Overflow occurs (and the C-bit is set) whenever the quotient is less than -(2**31) or greater
than 2**31-1. MODES=V, FORMAT=MR, OPCODE=17 03, C—overflow, L=unspecified, CC
=unspecified.

» MPL addr Multiply long
L*[EA]325LE

Multiply the 32-bit integer in register L by the 32-bit integer at addr, and put the 64-bit
integer result into LIE. This operation never overflows because there is always room for the
product. MODES=V, FORMAT=MR, OPCODE=16 03, C=cleared, L=unspecified, CC=
unchanged.

» MPYaddr Multiply
A*[EA]16oL

Multiply the 16-bit integer in register A by the 16-bit integer at addr, and put the 32-bit
integer result into L. This operation never overflows because there is always room for the
product. MODES=V, FORMAT=MR, OPCODE=16, C=cleared, L=unspecified, CC=un-
changed.

» MPY addr Multiply
A*[EA]16-AB

Multiply the 16-bit integer in register A by the 16-bit integer at addr, and put the 31-bit
integer result into registers A and B. If both the multiplier and multiplicand are -2**15 then
set C; otherwise clear C. MODES=SR, FORMAT=MR, OPCODE=1s, C=cleared, L=un-
specified, CC=unchanged.

> NRM Normalize
A1 A2.. .A16 B1 B2...B16

Shift the 31-bit integer in registers A and B left arithmetically, bringing zeros into bit 16 of
B, bypassing bit 1 of B, leaving bit 1 of register A unaffected, and dropping bits out of bit 2
of register A until bit 2 of register A is in the state opposite that bit 1 of register A. Since the
only data shifted out of bit 2 of register A is equal to the sign, no information is lost. Place
the number of shifts performed in bits 9-16 of the keys. MODES=SR, FORMAT=GEN,
OPCODE=000101, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-25 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

| 4 PID Position for integer divide
A(2-16)-B(2-16);0-B(1):A(1)»A(2-16)

Convert the 16-bit integer in register A to a 31-bit integer in AB by moving the contents of
bits 2-16 of register A to bits 2-16 of register B, clearing bit 1 of register B and extending the
sign in bit-1 of A through bits 2-16 of A. Intended to allow division of 16-bit A by 16-bit
[addr] resulting in two 16-bit integers. 16 in A to 31 in A[B simplifies integer arithmetic.
MODES=SR, FORMAT=GEN, OPCODE=000211, C=unchanged, L=unchanged, CC=un-
changed.

> PIDA Position for integer divide
A(1-16)-L(17-32);A(1)~A(2-16)

Convert the 16-bit integer in register A to a 32-bit integer in register L. by moving bits 1-16 of
A to bits 17-32 of L and extending the sign in bit 1 of A through bits 2-16 of A. MODES=V,
FORMAT=GEN, OPCODE=000115, C=unchanged, L=unchanged, CC=unchanged.

> PIDL Position for integer divide-long
LoE:L(1)-L(2-32)

Convert the 32-bit integer in register L to a 64-bit integer in registers L and E by moving the
contents of L to E and extending the sign in bit 1 of L through bits 2-32 of L. PIDL is useful
for placing 32 bit operands in LE. MODES=V, FORMAT=GEN, OPCODE=000305, GC=
unchanged, L=unchanged, CC=unchanged.

> PIM Position following integer multiply
B(2-16)—~A(2-16)

Convert the 31-bit integer in registers A[B to a 16-bit integer in A by moving bits 2-16 of B into
bits 2-16 of A. MODES=SR, FORMAT=GEN, OPCODE=000205 C=unchanged, L=un-
changed, CC=unchanged.

> PIMA Position following integer multiply
L{17-31)>A(1-16)

Convert the 32-bit integer in L to a 16-bit integer in register A by moving bits 17-32 of L into
bits 1-16 of A. Overflow if a loss of precision would result. MODES=V, FORMAT=GEN,
OPCODE=000015, C=overflow, L=unspecified. CC=unspecified.

P PIML Positien following integer multiply-long
LIE(33-64)>L(1-32)

Convert the 64-bit integer in registers LIE to a 32-bit integer in L by moving bits 33-64 of
register LEE into bits 1-32 of register L. Overflow if a loss of precision would result. MODES
~V, FORMAT=GEN, OPCODE=000301, C=overflow, L=unspecified, CC=unspecified.

> S1A Subtract one from A
A-1-A

Subtract 1 from the 16-bit integer in register A and put the result into A. If the number
decremented is —-2**15, set C and give a result of 2**15-1; otherwise clear C. MODES=SRV,
FORMAT=GEN, OPCODE=140110, C=overflow, L=carry, CC=result.

FDR 3059 11-26 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

A-2-A

Subtract 2 from the 16-bit integer in register A and put the result into A. If the number
decremented is -(2**15-1) or -2**15, set C and give a result of 2**15-1; otherwise clear C.
MODES=SRV, FORMAT=GEN, OPCODE=140310, C=overflow, L=carry, CC=result.

4 SBL addr Subtract long
L-[EA]32-L

Subtract the 32-bit integer at addr from the 32-bit integer in register L and put the result into
the L register. If the difference is greater than +2**31 or less than -2**31, set C; otherwise
clear C. In the first overflow case, the result has a minus sign but a magnitude in positive
form equal to the difference minus 2**31: in the second, the result has a plus sign but a
magnitude in negative form equal to the difference plus 2**31. MODES=V, FORMAT=MR,
OPCODE=07 03, C=overflow, L=carry, CC=result.

P SCA Load shift count into A
keys(9-16)-A (9-16);0~A(1-8)

Load the contents of bits 9-16 of the keys into bits 9-16 of register A and clear bits 1-8 of
register A. MODES=SR, FORMAT=GEN, OPCODE=000041, =unchanged, L=unchanged,
CC=unchanged.

| 4 SGL Enter single precision mode

Return to single precision mode. Subsequent LDA, STA, ADD and SUB instructions handle
16-bit integers. MODES=SR, FORMAT=GEN , OPCODE=000005, C=unchanged, L=un-
changed, CC=unchanged.

> SSM Set sign minus
1-A(1)

Set bit 1 of register A to one without affecting the rest of the register. MODES=SRV,
FORMAT=GEN, OPCODE=140500, C=unchanged, L=unchanged, CC=unchanged.

> SSP Set sign plus
0-A(1)

Clear bit 1 of register A without affecting the rest of the register. MODES=SRV, FORMAT
=GEN, OPCODE=140100, C=unchanged, L=unchanged, CC=unchanged.

> SUB addr Subtract
A-[EA]16-A

Subtract the 16-bit integer at addr from the 16-bit integer in register A and put the result into
register A. If the difference is >2**15 or <-2**15, set C; otherwise clear C. In the first
overflow case, the result has a minus sign but a magnitude in positive form equal to the
difference minus 2**15; in the second, the result has a plus sign but a magnitude in negative
form equal to the difference plus 2**15. MODES=SRV, FORMAT=MR, OPCODE=07, C=
overflow, L=carry, CC=result.

1 March, 1979 11-27 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> TCA Two’s complement A
—A-A

Form the two’s complement of the contents of register A and put the result into register A.
If the number is -2**15, set C and give a result of ~2**15; otherwise clear C. MODES=SRYV,
FORMAT=GEN, OPCODE=140407, C=overflow, L=carry, CC=result.
> TCL Two’s complement long

-L-L

Form the two’s complement of the contents of register L and put the result into L. If the result
is -2**31, set C and give a result of -2**31; otherwise clear C. MODES=V, FORMAT=GEN,
OPCODE=141210, C=overflow, L=carry, CC=result.

INTEGRITY CHECK FOR HARDWARE—INTGY
> EMCM Enter machine check mode

In machine check mode the microprogram responds to a machine parity error by causing a

machine check interrupt if there is a non-zero vector in the interrupt location. If this location

is zero the machine halts. MODES=SRV, FORMAT=GEN, OPCODE=000503, C=unchanged,
—unchanged, CC=unchanged. Restricted instruction.

P LMCM Leave machine check mode

A machine parity error sets the machine check flag, but does not cause a check (V-mode) or
generate an interrupt (SR-mode). MODES=SRV, FORMAT=GEN, OPCODE=000501, C=
unchanged, L=unchanged, CC=unchanged. Restricted instruction.

> MDEI Memory diagnostic enable interleave

Enable the memory interleave capability. MODES=V, FORMAT=GEN, OPCODE=001304, C
—unchanged, L=unchanged, CC=unchanged. Restricted instruction.

| 4 MDII Memory diagnostic inhibit interleave

Inhibit the memory diagnostic interleave capability. MODES=V, FORMAT=GEN, OPCODE
—001305, C=unchanged, L=unchanged, CC=unchanged. Restricted instruction.

> MDIW Memory diagnostic write interleaved

Write interleaved memory. MODES=V, FORMAT=GEN, OPCODE=001324, C=unchanged, L
—unchanged, CC=unchanged. Restricted instruction.

> MDRS Memory diagnostic read syndrome bits

Read memory syndrome bits. MODES=V, FORMAT=GEN, OPCODE=001306, C=un-
changed, L=unchanged, CC=unchanged. Restricted instruction.

> MDWC Memory diagnostic write control register

Write memory control register. MODES=V, FORMAT=GEN, OPCODE=001307, C=un-
changed, L=unchanged, CC=unchanged. Restricted instruction.

> RMC Clear machine check

Clear the machine check flag. MODES=SRV, FORMAT=CEN, OPCODE-000021, C=un-
changed, L=unchanged, CC=unchanged. Restricted instruction.

FDR 3059 11-28 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

: e manalafoi . L1 ___ _
> SMCR Skip on machine check reset

If the machine check flag is zero (indicating no machine detected parity error), skip the next
instruction in sequence. (When the processor is in machine check mode, this instruction has
no meaning and executes as a skip). MODES=SRV, FORMAT=GEN, OPCODE=100200, C=
unchanged, L=unchanged, CC=unchanged.

> SMCS Skip on machine check set

If the machine check flag is set (indicating a machine detected parity error}, skip the next
instruction in sequence. (When the processor is in machine check mode, this instruction has
no meaning and executes as a NOP). MODES=SRYV, FORMAT=GEN, OPCODE=101200, C=
unchanged, L=unchanged, CC=unchanged.

P VIRY Verify

Execute the verification routine, and if there is a failure of any kind, go on to the next
instruction with the number of the test that failed in register A. If there are no errors, skip
the next instruction in sequence.

If the processor does not have the verification routine, this instruction executes as no-op.
MODES=SRV, FORMAT=GEN, OPCODE=000311, C=unspecified, L=unspecified, CC=un-
specified. Restricted instruction.

> XVRY Verify the XIS board (Prime 500)

Executes a Prime 500 microcode diagnostic routine that checks the integrity of the XIS board.
If the XIS board is not functional, the machine will not skip the next instruction and the A
register will hold the failed micro-diagnostic test number. If the machine passes the verify
instruction, the next instruction is skipped. MODES=V, FORMAT=GEN, OPCODE=001113,
C=unspecified, L=unspecified, CC=unspecified. Restricted instruction.

The codes and tests are:

72 Data Move Test—Load and Unload XIS Board
'73 Normalize Test—Adjust Test

‘74 Binary Multiply

'75 Binary Divide

'76 Decimal Arithmetic

INPUT/OUTPUT—I/0

> CAI Clear active interrupt

Terminate the presently active interrupt so that the processor can recognize interrupt
requests from devices of lower priority (in higher slots) than the device for which the
current interrupt is being held. This instruction is effective only in vectored interrupt mode.
MODES=SRV, FORMAT=GEN, OPCODE=000411, C=unchanged, L=unchanged, CC=un-
changed. Restricted instruction.

4 EIO addr Execute 1/0

Perform the 1/0 instruction represented by the effective address. e.g., X="04 EIO '131000,X
will execute an INA with FUNC ='10 and DEV = "4, EQ = successful INA, OTA or SKS, NE
= unsuccessful INA, OTA or SKS. OCP always successful, sets NE. MODES=V, FORMAT—
MR, OPCODE=14 01, C=unchanged, L=unchanged, CC=result. Restricted instruction.

1 March, 1979 11-29 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

| 4 ENB Enable interrupt

Enable the external interrupt system so the processor will respond to interrupt requests over
the 1/O bus. This instruction takes effect following execution of the next sequential
instruction. MODES=SRV, FORMAT=GEN, OPCODE=000401, C=unchanged, L=un-
changed, CC=unchanged. Restricted instruction.

> ESIM Enter standard interrupt mode

Enter standard interrupt mode so that all interrupts are made through location '63. MODES
SRV, FORMAT=GEN, OPCODE=000415, C=unchanged, L=unchanged, CC=unchanged.
Restricted insiruction.

> EVIM Enter vectored interrupt mode

Enter vectored interrupt mode so that the interrupt priority of a device is determined by its
position on the 1/0 bus (with lower devices having higher priority) and each interrupt is
made through the location specified by the interrupting device. MODES=SRV, FORMAT=
GEN, OPCODE=000417, C=unchanged, L=unchanged, CC=unchanged. Restricted instruc-
tion.

p» INA FUNCDEV Inputto A

Input data from device DEV into register A. FUNC determines the type of data.If the device
does not respond ready, then do not perform the transfer, but execute the next instruction
in sequence. If the device responds ready, then perform the transfer specified by FUNC and
skip the next instruction in sequence. To perform the function specified by FUNC, the
processor reads the information from DEV into register A and performs whatever control
operations are appropriate to the function and the device. Depending on FUNC, the
information read may be data, status, an address, a word count, or anything else.

The number of bits brought into register A depends on the type of information, the size of
the device register, the mode of operation, etc.

INA instructions for any device except device '20 use a ready test and skip the next
instruction if the device was ready. MODES=SR, FORMAT=PIO, OPCODE=54, C=un-
changed, L=unchanged, CC=unchanged. Restricted instruction.

| 4 INH Inhibit interrupts

Inhibit the external interrupt system so the processor will not respond to interrupt requests
over the 1/0 bus. This instruction takes effect immediately. MODES=SRV, FORMAT=GEN,
OPCODE=001001, C=unchanged, L=unchanged, CC=unchanged. Restricted instruction.

> OCP FUNCDEV QOutput control pulse

Send a control pulse for the function specified by FUNC (bits 7-10) to the device specified
by DEV (bits 11-16). This instruction never skips and is used for such functions as initializing
a disk controller, or starting a transfer. MODES=SR, FORMAT=PIO, OPCODE=14, C=
unchanged, L=unchanged, CC=unchanged. Restricted instruction.

» OTA FUNCDEV Out from A

Transfer data from register A to DEV. FUNC tells the device which operation to perform. If
the device does not respond ready, then do not perform the transfer but instead execute the
next instruction in sequence. If the device responds ready, then perform the transfer and
skip the next insiruction in sequence. The processor sends the contents of register A to DEV
which performs whatever control operations are appropriate to the function and the device.

FDR 3059 i1-30 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

er of bits actually accepted by the device depends on the type of information, the
size of the device register, the mode of operation, etc. The contents of register A are
unaffected.

An OTA instruction for any device except device '20 uses a ready test and the skipping
procedure as stated in the description of the instruction. An OTA to device ’20 makes no test
and does not skip. MODES=SR, FORMAT=PIO, OPCODE=74, C=unchanged, L=unchanged,
CC=unchanged. Restriction instruction.

P SKS FUNCDEV Skip if satisfied

FUNC (bits 7-10) defines a condition to be tested by the SKS. When the condition is satisfied,
the device specified by DEV (bits 11-16) responds ready, and the next instruction in
sequence is skipped. MODES=SR, FORMAT=PIO, OPCODE=34, C=unchanged, L=un-
changed, CC=unchanged. Restriction instruction.

KEY MANIPULATION—KEYS

See Section 9 for the format of the keys.

> INK Input keys
Read the keys into register A. MODES=SR, FORMAT=GEN, OPCODE=000043, C=un-
changed, L=unchanged, CC=unchanged.

| 2 OTK Output keys
A-keys

Set up the keys from the contents of register A. Each bit position in register A corresponds
to the bit position in the keys, e.g., bit 1 of register A becomes the C-bit in the keys. MODES
=SR, FORMAT=GEN, OPCODE=000405, C=loaded by instruction, L=loaded by instruction,
CC=loaded by instruction.

P RCB Reset C-bit

0-C
Clear the C-bit in the keys. MODES=SRV, FORMAT=GEN, OPCODE=140200, C=cleared, L
=unspecified, CC=unchanged.

P SCB Set C-bit
1-C
Set the C-bit in the keys. MODES=SRV, FORMAT=GEN, OPCODE=140600, C=set, L=
unspecified, CC=unchanged.
4 TAK Transfer A to keys
A-keys

Transfer the contents of register A to the keys register. If the new value of the keys specifies
a different addressing mode, note that the new mode takes effect on the next instruction.
MODES=V, FORMAT=GEN, OPCODE=001015, C=loaded by instruction, L=loaded by
instruction, CC=loaded by instruction.
> TKA Transfer keys to A

keys—A

Transfer the contents of the keys register to register A. MODES=V, FORMAT=GEN,
OPCODE=001005, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-31 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

LOGICAL OPERATIONS—LOGIC

P ANAaddr ANDto A
A.AND.[EA]16-A

AND the contents of location addr with the contents of register A and place the result in
register A. A given bit of the result is 1 if the corresponding bits of both operands are 1;
otherwise the resulting bit is 0.

A BIT Memory Bit Resulting Bit
0 0 0
0 1 0
1 0 0
1 1 1

MODES=SRV, FORMAT=MR, OPCODE=03, C=unchanged, L=unchanged, CC=unchanged.

> ANL addr AND long
L.AND.[EA]32-L
AND the contents of register L with the 32-bit quantity at addr, putting the result in L.
MODES=V, FORMAT=MR, OPCODE=03 03, C=unchanged, L=unchanged, CC=unchanged.
> CMA Complement A
NOT. A-A

Form the ones complement of the contents of register A and put the result in register A. Each
one becomes a zero; each zero becomes a one. MODES=SRV, FORMAT=GEN, OPCODE=
140401, C=unchanged, L=unchanged, CC=unchanged.

> ERA addr Exclusive OR to A

A.XOR.[EA]16-A

EXCLUSIVE OR the contents of location addr with the contents of register A and place the
result in register A. A given bit of the result is 1 if the corresponding bits of the operands
differ; otherwise the resulting bit is 0.

A BIT Memory Bit Resulting Bit
0 0 0
0 1 1
1 0 1
1 1 0

MODES=SRV, FORMAT=MR, OPCODE=05, C=unchanged, L=unchanged, CC=unchanged.

> ERL addr Exclusive OR long
L.XOR.[EA]32-L

EXCLUSIVE OR the contents of register L with the 32-bit quantity at addr, putting the result
in L. MODES=V, FORMAT=MR, OPCODE—05 03, C=unchanged, L=unchanged, CC=un-
changed.

FDR 3059 11-32 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

A.OR.[EA]16-)A

INCLUSIVE OR the contents of register A with the 16-bit quantity at addr, putting the result
in A. MODES=V, FORMAT=MR, OPCODE=03 02, C=unchanged, L=unchanged, CC=
unchanged.

LOGICAL TEST AND SET—LTSTS

If the test is satisfied, then set the A register equal to 1. If the test is not satisfied, then set
the register equal to 0. These instructions simplify the analysis of complex logical ex-
pressions.

/ A Register (Blank) g

Condition Code (C) EQ
If < L Register (L) 0, then 1-A; else 0-A

Floating Point (F) gg

Register . GT

P A-Register test

Mnemonic Function Opcode
LLT If A <0, then 1-A; else 0~A 140410
LLE If A0, then 1-A; else 0-A 140411
LEQ If A =0, then 1-A; else 0-A 140413
LNE If A #0, then 1-A; else 0-A 140412
LGE If A >0, then 1-A: else 05A 140414
LGT If A >0, then 1-A; else 0-A 140415

MODES=SRV, FORMAT=GEN, C=unchanged, L=unchanged, CC=result.
| 2 Condition code test

Mnemonic Function Opcode
LCLT If CC < 0, then 1-A; else 0-A 141500
LCLE If CC <0, then 1-A; else 0-A 141501
LCEQ If CC =0, then 1-A; else 0-A 141503
LCNE If CC # 0, then 1-A; else 0-A 141502
LCGE If CC > 0, then 1-A; else 05A 141504
LCGT If CC > 0, then 1-A; else 0-A 141505

MODES=V, FORMAT=GEN, C=unchanged, L=unchanged, CC=unchanged.
> L register test

Mnemonic Function Opcode
LLLT If L <0, then 1-A; else 0-A 140410
LLLE If L <0, then 1-A; else 0-A 141511
LLEQ If L =0, then 1-A; else 0-A 141513
LLNE If L # 0, then 1-A; else 0-A 141512
LLGE If L >0, then 1-A; else 0-A 140414
LLGT If L > 0, then 1-A; else 0-A 141515

MODES=V, FORMAT=GEN, C=unchanged, L=unchanged, CC=result.

1 March, 1979 11-33 FDR 3059

11 1NSTRUCTION DEFINITIONS—SRV

> Floating register test

Mnemonic Function Opcode
LFLT If F < 0, then 1-A; else 0-A 141110
LFLE If F € 0, then 1-A; else 0-A 141111
LFEQ If F = 0, then 1-A,; else 0-A 141113
LFNE If F # 0, then 1-A; else 0-A 141112
LFGE If F > 0, then 1-A; else 0-A 141114
LFGT If F > 0, then 1-A; else 0-A 141115

MODES=V, FORMAT=GEN, C=unchanged, L=unchanged, CC=result.

4 LT Logic set A true
1-A
Set A equal to one. MODES=SRV, FORMAT=GEN, OPCODE=140417, C=unchanged, L=
unchanged, CC=result.
> LF Logic set A false
0-A

Set A equal to zero. MODES=SRV, FORMAT=GEN., OPCODE=140416. C=unchanged. L=
unchanged, CC=result.

MACHINE CONTROL—MCTL

> CXCS Control extended control store

Move the A register to control register on writable control store board. MODES=V,
FORMAT=GEN, OPCODE=001714, C=unspecified, L=unspecified. CC=unspecified. Re-
stricted instruction.
» EPMJ addr Enter paging mode and jump (Prime 300)

EA-PC

EPM] is a two-word instruction. The first word is the opcode; the second word contains a 16-
bit address pointing to the final effective address which is transferred to the program
counter: the associative memory registers are cleared, and paging mode is enabled. MODES
—SR, FORMAT=MR, OPCODE=000217, C=unchanged, L=unchanged, CC=unchanged. Re-
stricted instruction.

» EPMX addr Enter paging mode and jump to XCS {Prime 300}
EA-PC

EPMX is a two-word instruction. The first word is the opcode; the second word contains a 16-
bit pointer to the location of the micro-instruction. Paging is enabled. MODES=SR,
FORMAT=MR, OPCODE=000237, C=unchanged, L=unchanged, CC=unchanged. Restricted
instruction.
» ERMJ addr Enter restricted execution mode and jump (Prime 300)

EA-PC

ERM] is a two-word instruction. The first word is the opcode; the second word contains a 16-
bit address pointing to the final effective address which is transferred to the program

FDR 3059 11-34 1 March. 1979

INSTRUCTION DEFINITIONS—SRV 11

counter; restricted execution mode is enabled, and interrupts are enabied. MODES=SR,
FORMAT=MR, OPCODE=000701, C=unchanged, L=unchanged, CC=unchanged. Restrictea
instruction.

> ERMX addr Enter restricted execution mode and jump to XCS (Prime 300)
EA-PC

ERMX is a two-word instruction. The first is the opcode. The second word contains a 16-bit
pointer to the location of the micro-instruction. Restricted execution mode and interrupts
are enabled. MODES=SR, FORMAT=MR, OPCODE=000721, C=unchanged, L=unchanged,
CC=unchanged. Restricted instruction.

> EVM] addr Enter virtual mode and jump (Prime 300)
EA-PC

EVM] is a two-word instruction. The first word, which has the effect of an EPM] and ERM]
combined, is the opcode; the second word contains a 16-bit address pointing to the final
effective address which is transferred to the program counter. Paging, interrupts, and
restricted execution mode are enabled. MODES=SR, FORMAT=MR, OPCODE=000703, C=
unchanged, L=unchanged, CC=unchanged. Restricted instruction.

> EVMX addr Enter virtual mode and jump (Prime 300)
EA-PC

EVMX is a two-word instruction. The first word, which has the effect of an EPMX and ERMX
combined, is the opcode; the second word contains a 16-bit pointer to the location of the
micro-instruction. Paging, interrupts, and restricted execution mode are enabled. MODES—=
SR, FORMAT=GEN, OPCODE=000000, C=unchanged, L=unchanged, CC=unchanged. Re-
stricted instruction.

P HLT Halt

Halt the processor with the STOP indicator lit on the control panel and the program counter
pointing to the next instruction in sequence (the instruction that would have been executed
had the HLT been replaced by a no-op). The data lights display the next instruction. MODES
=SRV, FORMAT=GEN, OPCODE=000000, C=unchanged, L=unchanged, CC=unchanged.
Restricted instruction.

4 ITLB Invalidate STLB entry

Invalidate the Segmentation Translation Lookaside Buffer (STLB) entry whose address is in
L. This instruction must be executed whenever the page table entry for the given address is
changed.

If a Segment Descriptor Word (SDW) or a Descriptor Table Address Register (DTAR) is
changed, usually the entire STLB must be invalidated. This can be done by executing ITLB
once for each page of any single segment (except segment 0).

If the segment number portion of L is zero, the /O TLB entry corresponding to address L
is invalidated. MODES=V, FORMAT=GEN, OPCODE=000615, C=unchanged, L=unchanged,
CC=unchanged. Restricted instruction.

> LIOT addr Load I/0 TLB

Load the 1/0 Translation Lookaside Buffer with the following information:
1. Virtual address (VA) in segment 0. This is provided by the effective

1 March, 1979 11-35 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

address computed from the address pointer, addr.

2. Physical address (PA) which is the translation of the virtual address.
This is obtained by the processor from segment 0. If the fault bit is set,
a page fault will be generated.

3. Target virtual address (TVA) which is the segment number and page
number of the virtual address that will be used by procedures accessing
this information. This will be used to help invalidate the proper
locations in the cache. This is provided in the L register as a virtual
address. The low order 10 bits (word number in page) and the segment
number are ignored.

Summary:
Information Source
VA AP
PA Segment number page table
TVA L

MODES=V, FORMAT=AP, OPCODE=000044, C=unspecified, L=unspecified, CC=un-
specified. Restricted instruction.

| 4 LPID Load process ID
A-RPID

Load the process id register from bits 1-12 of Register A. MODES=V, FORMAT=GEN,
OPCODE=000617, C=unchanged, L=unchanged, CC=unchanged. Restricted instruction.

> LPM] addr Leave paging mode and jump (Prime 300)
EA-PC

LPM] is a two-word instruction. The first word is the opcode: the second word contains a 16-
bit address pointing to the final effective address which is transferred to the program
counter. Paging mode is disabled. MODES=SR, FORMAT=MR, OPCODE=000215, C=
unchanged, L=unchanged, CC=unchanged. Restricted instruction.

> LPMX addr Leave paging mode and jump to XCS (Prime 300)
EA-PC

LPMX is a two-word instruction. The first word is the opcode. The second word contains a
16-bit pointer to the location of the micro-instruction. Paging is disabled. MODES=S5R,
FORMAT=MR, OPCODE=000235, C=unchanged, L=unchanged, CC=unchanged.

> LPSW addr Load program status word

Load Program Status Word is a restricted operation which can change the status of the
processor. It can be executed only in ring zero. The instruction addresses a four-word block
at location addr containing a program counter (ring, segment, and word numbers) in the first
two words, keys in the third word and modals in the fourth. The program counter and keys
of the running process are loaded from the first three words, then the processor modals are
loaded from the fourth. If the new keys have the in-dispatcher bit (bit 16) off, the current
process continues in execution but at a location defined by the new program counter. If the
new keys have the in-dispatcher bit on, the dispatcher is entered to dispatch the highest
priority ready process. Whenever the current process again becomes the highest priority
ready process, it will then rcsume execution at the point defined by its new program
counter. The modals are associated with the processor and not the process, so in either case,
the new modals are effective immediately.

FDR 3059 11-36 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

This instruction is used to load the four words of the register set which cannot be correctly
loaded with the STLR instruction: the program counter (ring, segment, and word number),
the keys, and the modals. The STLR instruction should not be used to set these words, as it
does not update the separate hardware registers in which the processor maintains duplicate
information to achieve higher performance.

The LPSW instruction must never attempt to change the current-register-set bits of the
modals (bits 9-11). This implies that, unless for some reason the current register set in effect
for the execution of the program is known with certainty, any program wishing to execute an
LPSW must inhibit interrupts (to prevent an unexpected process and register exchange),
read the register set currently in effect from the present modals (as with an LDLR '24), mask
those register-set bits into the modals to be loaded, and then finally execute the LPSW.
Fortunately, in both usual applications of LPSW the needed register-set bits are predictable:
when LPSW is first used after Master Clear to turn on process-exchange mode, the current-
register-set bits should be 010 (the processor is always initialized to register set 2); and when
LPSW is used to return from a fault, check, or interrupt handled by inhibited code, whatever
register-set bits were stored away by the fault, check, or interrupt are still correct and can
simply be reloaded.

Similarly, except to load status correctly stored on a fault, check, or interrrupt, and LPSW
should never attempt to set either the save-done bit (bit 15) or the in-dispatcher bit (bit 16)
of the keys. The initial LPSW following a Master Clear should have both these bits off.
MODES=V, FORMAT=AP, OPCODE=000711, C=loaded by instruction, L=loaded by instruc-
tion, CC=loaded by instruction. Restricted instruction.

> LWCS Load writable control store

Load writable control store portion of extended control store board from the memory block
pointed to by XB. The control register loaded by CXCS modifies this instruction. MODES=
V, FORMAT=GEN, OPCODE=001710, C=unspecified, L=unspecified, CC=unspecified. Re-
stricted instruction.
> MIA addr Microcode indirect A
Microcode entrance. MODES=V, FORMAT=MR, OPCODE=12 01, C=unchanged, L=un-
changed, CC=unchanged.
> MIB addr Microcode indirect B
Microcode entrance. MODES=V, FORMAT=MR, OPCODE=13 01, C=unchanged, L=un-
changed, CC=unchanged.
> NOP No operation

PC+]—>PC
Do nothing, but go on to the next instruction. MODES=SRV, FORMAT=GEN, OPCODE=
000001, C=unchanged, L=unchanged, CC=unchanged.
» PTLB Purge TLB

Purge either the entire non I/O Translation Lookaside Buffer (TLB) or a specified physical
page. The physcial page number is provided right-justified in the L register. The high-order
bit of L is set to indicate a complete purge. MODES=V, FORMAT=GEN, OPCODE=000064,
C=unspecified, L=unspecified, CC=unspecified. Restricted instruction.

1 March, 1979 11-37 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> RRST addr Restore registers

Restore the general, floating and XB registers from the save area starting at location addr.
The format of the save area is as for RSAV below. MODES=V, FORMAT=AP, OPCODE=
000717, C=unchanged, L=unchanged, CC=unchanged.

P RSAV addr Save registers

Save the general, floating and XB registers in the save area starting at location addr. Only
those general and floating point registers which are not zero are saved. A save mask is
generated which identifies the registers which are not zero. With the exception of XB, which
is always saved, registers which are zero are not stored into the save area; their location
remains untouched.

The format of the RSAV area is:

Word Contents
1 Save Mask
2-5 FALR1 (FAC)
6-9 FALR 0
10 X
11-13 —
14 Y.S
15-17 —
18-19 E
20 ALH
21 B,LL
22-25 —
26-27 XB

Save Mask:

MUST BE ZERO FALR 1, FAC FALR 0 X Y,S E L,BA

1—4 5—6 7—28 9 10 11 12 13 14 15-16

The size of the RSAV area is 27 words. MODES=V, FORMAT=AP, OPCODE=000715, C=
unchanged, L=unchanged, CC=unchanged.

> STPM Store processor model number

Store the CPU model number and microcode revision number in an eight-word field pointed
to by the temporary base register (XB).

The first 32-bit field will define the processor model number. This field will not be modified
on any P400 or P500 since STPM executes as a SGL which is similar to a NOP. Thus the

program is required to put a zero into this field prior to executing the STPM. The following
long-integer codes are assigned:

OL P400, P500

3L P350
4L P450
5L P550
6L P650
7L P750

FDR 3059 11-38 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

The second 32-bit field will define the microcode revision. It will be a unique number that
changes at each revision. The P400 and P500 do not implement this. The remaining 64-bits
are reserved for future expansion.

The recommended sequence for the STPM is:

EAXB Memory Buffer
CRL

STL XB%

STPM

MOQODES=V, FORMAT=GEN, OPCODE=000024, C=unchanged, L=unchanged, CC=un-
changed. Restricted instruction.

4 SVC Supervisor call

An addressing mode independent method of making an operating system request. It is also
independent of operating system. The call protocol is such that an operation code (request)
followed by argument pointers (the 16-bit word number—on the Prime 400/500, segment
number is the segment in which the SVC resides) is made available to the operating system.
PRIMOS has defined a uniform set of operation codes to provide operating system
independent services.

Note

On the Prime 100-300 (and on the segmented CPU's in non
process exchange mode), the SVC is treated as an interrupt.
On the segmented CPU'’s, the SVC is treated as a fault with
offset '14.

MODES=5RV, FORMAT=GEN, OPCODE=000505, C=unchanged, L=unchanged, CC=un-
changed.

> WCS Writable control store

Reserved set of 64 op codes to serve as microcode entrances.
MODES=RV, FORMAT=GEN, OPCODE=0016xx, C=unchanged, L=unchanged, CC=un-
changed.

MOVE DATA—MOVE

> DLD addr Deouble load

[EA]32-AB
Load the contents of location addr into register A and the contents of location addr+1 into
register B. This instruction executes only in double precision mode. MODES=SR, FORMAT
=MR, OPCODE=02, C=unchanged, L=unchanged. CC=unchanged.
> DST addr Double store

AB-[EA]32

Store the contents of register A in location addr and the contents of ¢ i
addr+1. This instruction executes only in double precision mode. MODES=SR, FORMAT=
MR, OPCODE=04, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-39 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> IAB Interchange the A and B registers
AsB

Move the contents of register A to register B and the contents of register B to register A.
MODES=SRV, FORMAT=GEN, OPCODE=000201, C=unchanged, L=unchanged, CC=un-
changed. ,
> ICA Interchange characters in A
A(1-8) < A(9-16)
Move the contents of register A bits 1-8 to bits 9-16 and the contents of bits 9-16 to bits 1-8.
MODES=SRV, FORMAT=GEN, OPCODE=141340, C=unchanged, L=unchanged, CC=un-
changed.
> ICL Interchange and clear left
A(1-8)-A(9-16);0-A(1-8)
Move the contents of register A bits 1-8 to bits 9-16 and then clear the left byte (bits 1-8).
MODES=SRV, FORMAT=GEN, OPCODE=141140, C=unchanged, L=unchanged, CC=un-
changed.
> ICR Interchange and clear right
A(9-16)—A(1-8);0-A(9-16)
Move the contents of register A bits 9-16 to bits 1-8 and clear the right byte (bits 9-16). The
original contents of bits 1-8 are lost. MODES=SRV, FORMAT=GEN, OPCODE=141240, C=
unchanged, L=unchanged, CC=unchanged.
> ILE Interchange L and E
LeE

Move the contents of register L to register E and the contents of register E to register L.
MODES=V, FORMAT=GEN, OPCODE=141414, C=unchanged, L=unchanged, CC=un-
changed.
> IMA addr Interchange memory and the A register

[EA]16<A
Store the contents of the A register in location addr and load the original contents of location
addr into the A register. MODES=SRV, FORMAT=MR, OPCODE=13, C=unchanged, L=
unchanged, CC=unchanged.
| 2 LDA addr Load the A register

[EA]16-A

Load the contents of location addr into the A register. MODES=SRV, FORMAT=MR,
OPCODE=02, C=unchanged, L=unchanged, CC=unchanged.

4 LDL addr Load long
[EA]32-L

Move the 32-bit quantity at location addr to register L. MODES=V, FORMAT=MR, OPCODE
=02 03, C=unchanged, L=unchanged, CC=unchanged.

FDR 3059 11-40 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

2 LDLF

#
0

register(EAJW-L

Copy the contents of the register specified by the word number portion of addr into L. There
are three cases of this instruction which are summarized below. Only the word portion of
the effective address, (EA)W, is used.

Bit 2 of (EA)W = 1; Ignore Bits 1 and 3-9: (EA)W(10-16) - Absolute register number from
0-'177. Restricted instruction.

Bit 2 of (EA)W = 0: (EA)W(13-16) - Register 20-'37 in the current register set. Restricted
instruction.

Bit 12 of (EA)W = 0: (EA)W(13-16) - Register 0-'17 in the current register set.

MODES=V, FORMAT=MR, OPCODE=05 01, C=unchanged. L=unchanged, CC=unchanged.

» LDX addr Load X
[EA]16-X

Load the contents of location addr into the X register. The contents of addr are unaffected,
the previous contents of the X register are lost. This instruction cannot itself specify
indexing, although an address word retrieved in the effective address calculation may do so
in 165 mode. MODES=S8RV, FORMAT=MR, OPCODE=35, C=unchanged, L=unchanged, CC
=unchanged.
> LDY addr Load Y

[EA]32-Y
Move the 16 bit quantity at location addr to register Y. Cannot be indexed. MODES=V,
FORMAT=MR, OPCODE=35 01, C=unchanged, L=unchanged, CC=unchanged.
> STA addr Store the A register

A-[EA]16
Store the contents of the A register in location addr. The contents of the A register are
unaffected; the previous contents of addr are lost. MODES=SRV, FORMAT=MR, OPCODE
=04, C=unchanged, L=unchanged, CC=unchanged.
> STAC addr Store A conditionally

If [EA]16=B then A-[EA]16

Store the contents of A into location addr, if and only if, the contents of location addr equals
the contents of B.

The comparison and store are guaranteed not to be separated by the execution of any other
instructions. That is, it is not possible for any other instruction to change the contents of the
addressed memory word after the comparison has been made but before the store takes
place. The condition-code bits are set “equal’ if the store takes place, otherwise “‘unequal’’.
MODES=V, FORMAT=AP, OPCODE=001200, C=unchanged, L=unchanged, CC=result.

> STL addr Store long
Lo[EA]32

Store the contents of register L into the 32-bit long word at location addr. MODES=V,
FORMAT=MR, OPCODE=04 03, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-41 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> STLC addr Store L conditionally
If [EA]32=E then L[EA]|32

Store the contents of L into the 32-bit location at addr if and only if the contents of location
addr equals the contents of E.

STLC and STAC are provided to aid cooperating sequential processes in the manipulation
of shared data. They often permit removal of mutually exclusive critical sections, hence
possibly indefinite delays, from algorithms which would otherwise have required them.

Both of these instructions are interlocked against direct-memory input /output. Hence, these
instructions may be used to interlock a process with a DMA, DMC or DMQ channel, or to
interlock a memory location possibly being accessed by 1/0. MODES=V, FORMAT=AP,
OPCODE=001204, C=unchanged, L=unchanged, CC=result.
> STLR addr Store L into addressed register
Loregister (EA)W
Store the contents of L into the register location specified by addr. There are three cases of
this instruction which are summarized under LDLR. Only the word portion of the effective
address, ((EA)W), is used. MODES=V, FORMAT=MR, OPCODE=03 01, C=unchanged, L=
unchanged, CC=unchanged.
4 STX addr Store X register
X—[EA]16
Store the contents of the X register in location addr. The contents of the X register are
unaffected and the previous contents of addr are lost. This instruction cannot itself specify
indexing, although an address word retrieved in the effective address calculation may do so
in 16S mode. MODES=SRV, FORMAT=MR, OPCODE=15, C=unchanged, L=unchanged, CC
=unchanged.
> STY addr Store Y
Y-[EA]32

Store the contents of Y into the location specified by addr. Cannot be indexed. MODES=V,
FORMAT=MR, OPCODE=35 02, C=unchanged, L=unchanged, CC=unchanged.
4 TAB Transfer A to B

A-B
Move the contents of A to B. MODES=V, FORMAT=GEN, OPCODE=140314, C=unchanged,
L=unchanged, CC=unchanged.
| 4 TAX Transfer A to X

A-X
Move the contents of A to X. MODES=V, FORMAT=GEN, OPCODE=140504, C=unchanged,
L=unchanged, CC=unchanged.
| 4 TAY Transfer AtoY

A-Y

Move the contents of A to Y. MODES=V, FORMAT=GEN, OPCODE=140505, C=unchanged,
L=unchanged, CC=unchanged.

FDR 3058 11-42 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

mo. . _f__
i

B-A
Move the contents of B to A. MODES=V, FORMAT=GEN , OPCODE=140604, C=unchanged,
L=unchanged, CC=unchanged.
> TXA Transfer X to A

X-A
Move the contents of X to A. MODES=V, FORMAT=GEN, OPCODE=141034, C=unchanged,
L=unchanged, CC=unchanged.

| 2 TYA Transfer Y to A
YA

Move the contents of Y to A. MODES=V, FORMAT=GEN| OPCODE=141124, C=unchanged,
L=unchanged, CC=unchanged.

> XCA Exchange and clear the A register
A-B;0-A

Exchange (swap) the A and B registers; then clear A. MODES=SRV, FORMAT=GEN,
OPCODE=140104, C=unchanged, L=unchanged, CC=unchanged.

> XCB Exchange and clear the B register
B-A:0-B

Exchange (swap) the B and A registers; then clear register B. MODES=SRV, FORMAT=
GEN, OPCODE=140204, C=unchanged, L=unchanged, CC=unchanged.

PROGRAM CONTROL AND JUMP—PCTL]
> ARGT Argument transfer

The Argument Transfer operation must be the first executable instruction of any procedure
which takes arguments. It serves as a holding point for the program counter while argument
transfer is taking place into the new frame. The program counter is advanced past it when
argument transfer is complete. Procedures which specify zero arguments in their entry
control blocks must not begin with an ARGT.

The list of argument transfer templates following the caller’s PCL instruction is evaluated to
generate a list of actual argument pointers in the new frame. The format of each argument
transfer template is shown in Section 9. Each argument pointer may require one or more
templates for its generation. The last template for each argument has its S (store) bit set. The
last template for the last argument in the list has its L (last) bit set to terminate the argument
transfer.

Each template specifies the calculation of an address by specifying a base register, a word
and bit displacement from that register, and an optional indirection. If further offsets or
indirections are required to generate the final argument address, the template will not have
its store bit set, and the address calculated so far will be placed in the temporary base (XB)
register (ring, segment, word numbers) and X-register (bit number) for access by the next
template. Only one level of indirection can be specified by each AP.

Each time a template with its store bit set is encourtered, the calculated address is stored in
the next argument pointer position in the new stack frame. The first argument pointer

1 March, 1979 11-43 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

position is specified in the procedure’s ECB. If the address has a zero bit offset, the address
is stored in the two-word indirect format (with the E-bit clear) and the third word is not
modified. Otherwise it is stored in the three-word format (E-bit set). In either case, three
words are allocated to each pointer in the argument list.

If the caller’s template list generates fewer arguments than are expected by the callee (as
specified in the entry control block), argument pointers containing the pointer-fault bit set
and all other bits reset (pointer-fault code 100000, “omitted argument”) are stored for the
missing arguments. The second and third words are not modified. On the other hand, if the
caller’s list generates more arguments than are specified by the callee, the surplus
arguments are ignored. If the called procedure attempts to reference an omitted argument,
other than to simply pass it on in another call, it will experience a pointer fault. If it passes
on an omitted argument in another call, the argument will appear omitted to the newly
called procedure.

If a call intends to omit all expected arguments, it may be followed by an argument transfer
template with its last bit set but with its store bit cleared.

MODES=V, FORMAT=GEN, OPCODE=000605, C=unspecified, L=unspecified, CC=un-
specified.
P CEA Compute effective address

Interpret the contents of the A register as a 16-bit indirect address word in the current
addressing mode, calculate the effective address, and place the final effective address back
in the A register. MODES=SR, FORMAT=GEN, OPCODE=000111, C=unchanged, L=un-
changed, CC=unchanged.

> CREP addr Call recursive entry procedure
(P)+ ~ [(S) +1]
EA - (P)

Increment the program counter, P, and load P+1 into the location following the one specified
by the current R-mode stack pointer. Load addr into the program counter and continue
execution from that location.

The CREP instruction performs subroutine linkage for recursive or reentrant procedures.
CREP stores the return address in the second word of a stack frame created by the ENTR
instruction, rather than in the destination address as in a JST.

MODES=R, FORMAT=MR, OPCODE=10 02, C=unchanged, L=unchanged, CC=unchanged.

» EAA addr Effective address to A register
EA-A

Calculate the effective address and load it into register A. The contents of addr are
unaffected and the original contents of register A are overwritten and lost. MODES=R,
FORMAT=MR, OPCODE=01 01, C=unchanged, L=unchanged, CC=unchanged.

> EAL addr Effective address to L
EA-L

Calculate the effective address and put it into the L register. MODES=V, FORMAT=MR,
OPCODE=01 01, C=unchanged, L=unchanged, CC=unchanged.

FDR 3059 11-44 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

> EALB addr Effective address to LB
EA-LB
Calculate the effective address and put it into the link base, LB. MODES=V, FORMAT=MR,
OPCODE=13 02, C=unchanged, L= unchanged, CC=unchanged.
> EAXB addr Effective address to XB
EA-XB
Calculate the effective address and put it into the temporary base,XB. MODES=V, FORMAT
=MR, OPCODE=12 02, C=unchanged, L=unchanged, CC=unchanged.
4 ENTR n Enter R-mode recursive procedure stack
(8)1 - [(S)1-n]
(S)1-n - (S)2

Alter the R-Mode stack pointer by subtracting the value of N and store the previous value
of S in the new location. '

The ENTR instruction allocates a block of memory as a stack frame containing N locations:

The frame is created by subtracting N from the stack pointer contents, (S)1, to form (S)2, and
then storing (S)1 at that address. Thus, the first word of the frame points to the previous
frame. N may be negative or positive. MODES=R, FORMAT=MR, OPCODE=01 03, C=
unchanged, L=unchanged, CC=unchanged.
| 2 JDX addr Jump and decrement X

X=X-1;if X=0, then EA-PC;else PC=PC+1

Decrement the contents of the X register by one; then, if the contents of X are not equal to
zero, load addr into the program counter and continue sequential operation from that
location. Otherwise, execute the next sequential instruction. MODES=R, FORMAT=MR,
OPCODE=15 02, C=unchanged, L=unchanged, CC=unchanged.
> JEQ addr Jump if equal to zero

If A=0, then EA-PC

If the contents of the A register are equal to zero, then load addr into the program counter
and continue sequential operation from that location. MODES=R, FORMAT=MR, OPCODE
=02 03, C=unchanged, L=unchanged, CC=unchanged.
P JGE addr Jump if greater than or equal to zero

If A>0, then EA-PC

If the contents of the A register are greater than or equal to zero, then load addr into the
program counter and continue sequential operation from that location. MODES=R, FOR-
MAT=MR, OPCODE=07 03, C=unchanged, L=unchanged, CC=unchanged.

> JGT addr Jump if greater than zero
If A>0, then EA-PC

If the contents of the A register are greater than zers, then load addr into the program
counter and continue sequential operation from that location. MODES=R, FORMAT=MR,
OPCODE=05 03, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 11-45 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> JIX addr Jump and increment X
X=X+1;if X=0, then EA-PC; else PC=PC+1

Increment the contents of the X register by one; then, if the contents of X are not equal to
zero, load addr into the program counter and continue sequential operation from that
location. Otherwise, execute the next sequential instruction. MODES=R, FORMAT=MR,
OPCODE=15 03, C=unchanged, L=unchanged, CC=unchanged.

> JLE addr Jump if less than or equal to zero

If A0, then EA-PC

If the contents of the A register are less than or equal to zero, then load addr into the
program counter and continue sequential operation from that location. MODES=R, FOR-
MAT=MR, OPCODE=04 03, C=unchanged, L=unchanged, CC=unchanged.
> JLT addr Jump if less than zero

If A<0, then EA-PC
If the contents of the A register are less than zero, then load addr into the program counter
and continue sequential operation from that location. MODES=R, FORMAT=MR, OPCODE
—06 03, C=unchanged, L=unchanged, CC=unchanged.
> JMP addr Jump

EA-PC

Transfer control to location addr by loading addr into the program counter and continue

sequential operation from that location. MODES=SRV, FORMAT=MR, OPCODE=01, C=
unchanged, L=unchanged, CC=unchanged.

> JNE addr Jump if not equal to zero
If A+#0, then EA-PC
If the contents of the A register are not equal to zero, then load addr into the program
counter and continue sequential operation from that location. MODES=R, FORMAT=MR,
OPCODE=03 30, C=unchanged, L=unchanged, CC=unchanged.
> JST addr Jump and store
PC~[EA]16;EA+1-PC

Call a subroutine by storing the contents of the program counier {(which points to the next
location after the JST instruction) in location addr. Continue execution at location addr+1.
In non-restricted mode, interrupts are inhibited for one instruction cycle following a JST.

The return address is truncated according to the addressing mode before it is stored, and
higher-order bits of the memory location are not altered. It is thus possible to preset the I or
X bits of such locations:

Mode Preset Allowed
16S I X

328, 32R I

64, 64V -

FDR 3059 11-46 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

LAY P
iNULT

Cannot be used in shared code.
MODES=SRV, FORMAT=MR, OPCODE=10, C=unchanged, L=unchanged, CC=unchanged.

> JSX addr Jump and store return in X
(PC)W-X;EA-PC

Increment the program counter by one and load into the X register. Load addr into the
program counter and continue sequential operation from that location. MODES=RV,
FORMAT=MR, OPCODE=35 03, C=unchanged, L=unchanged, CC=unchanged.

> JSXB addr Jump and set XB
PC-XB;EA-PB

Save the 32-bit contents of the program counter in XB, and transfer control to location addr.
JSXB may be used to make both intersegment and intrasegment subroutine calls. MODES=
V, FORMAT=MR, OPCODE=14 02, C=unchanged, L=unchanged, CC=unchanged.

| 4 JSY addr Jump and set Y
(PC)W-Y;EA-PB

Save the word number of the program counter in the Y register and transfer control to
location addr. Only the word number portion of the return address is saved, [SY may
(usually) only be used to call subroutines that reside in the same procedure segment.
MODES=V, FORMAT=MR, OPCODE=14, C=unchanged, L=unchanged, CC=unchanged.

4 PCL addr Procedure call
Call procedure whose ECB is at addr. .

Step 1. Calculation of target ring number
1. If the caller has Read access to the segment (segment number of addr)
containing the ECB, new ring=current ring.

2. If the caller has gate access to the segment containing the ECB, new
ring=ring field of ECB(PB). The ECB must start on a modulo-16 bound-
ary in this case.

If neither 1. nor 2. holds, an access violation results.

Step 2. Stack frame allocation
1. If ECB(stack root)=0, then stack root=ECB(stack root), else stack root =
current stack segment.
2. Fetch the free pointer at location 0 of segment (stack root). If there is
sufficient room remaining (size needed given by ECB(SFSIZE), allocate
frame here and update free pointer in segment stack root.

3. If no room in this segment, fetch the extension pointer at location 2 of
the segment pointed to by free pointer. If 0, generate stack overflow
fault. Else, use extension pointer as a new free pointer and go to step 2.

Step 3. New frame header setup
1. The flag word (word 0) is set to 0.

2. The caller’s PB, SB, LB and keys are saved (X,Y and XB are lost) in the
frame header. The ring field of PB properly reflects the ring of

1 March, 1979 11-47 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

execution of the caller. The saved PB at this moment points to the word
following the PCL instruction. It will be updated when argument
transfer (if any) is complete to point beyond the argument templates.
Word 11 of the stack frame is set to the word number of this initial
value of saved PB (i.e., points to PCL+2).

Step 4. Callee state load
1. The callee’s PB, LB, and keys are loaded from the entry control block,
except that the ring field of PB has no effect if the ECB is not a gate. The
SB register is set to point at the new stack frame.

Step 5. Argument transfer

1. If ECB(NARGS] is 0, this step is skipped. Otherwise, the one or more
AP’s (argument templates) following the PCL instruction are processed
to load argument pointers into the callee’s stack frame. At least one AP
must follow PCL if the callee expects arguments; no AP may follow if
the callee expects no arguments. The saved PB in callee’s stack frame is
updated to point beyond the AP’s when argument transfer is done. See
the ARGT instruction for a description of argument transfer.

MODES=V, FORMAT=MR. OPCODE=10 02, C=unspecified. L=unspecified, CC=un-
specified

> PRTN Procedure return

Deallocates the current stack frame and returns to the environment of the procedure that
called it. The stack frame is deallocated by storing the current stack base register into the
free pointer. The caller's state is restored by loading his program counter, stack base
register, linkage base register, and keys from the frame being left. The ring number in the
program counter is weakened with the current ring number. The current stack frame
consists of the frame created upon entry to the current procedure plus all extensions created
during the execution of the current procedure. MODES=V, FORMAT=GEN, OPCODE=
000611, C=loaded by instruction, L=loaded by instruction, CC=loaded by instruction.

> RTN Return from R-mode recursive procedure
[(S)+1]-P[(S}]-8

Fetch the return address from word 2 of the previous stack frame and load the result in the
program counter; then transfer word 1 (the pointer to the preceding stack frame) to the S
register.

If the return address is 0, (S) is unchanged and a PSU (Procedure Stack Underflow) fault is
taken (interrupt through location '75 in physical memory is taken on the Prime 300). MODES
=SR, FORMAT=GEN, OPCODE=000105, C=unchanged, L=unchanged, CC=unchanged.

> STEX Stack extend

Obtains additional space in the procedure stack for automatic variables. Such space is
automatically deallocated and reclaimed for other uses when the procedure returns, just
like the original frame created when the procedure was entered. The L register specifies the
desired contiguous size of the extension in words. The size is rounded up to an even number
of words. The address of the extension is returned as a segment number/word number
pointer in the L register. It is possible that the extension may not be contiguous with the
initial frame (there may have been insufficient room left in the same segment). Any number
of extensions may be made. This instruction can cause a stack overflow fault. MODES=V,
FORMAT=GEN, OPCODE=001315, C=unspecified, L=unspecified, CC=unspecified.

FDR 3059 11-48 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

A 4
»d
b
A
w
o
&
e}
o
¢
]
H

Execute the instruction at location addr, but do not transfer control to that location. Not all
instructions can be executed by the instruction.

No multi-word instructions can be executed properly. All one-word instructions can be
executed properly except JMP, JST, and address-mode changing generics. Instructions
which skip do so relative to the XEC instruction. On any fault or interrupt, the saved
program counter is relative to the XEC instruction. MODES=RYV, FORMAT=MR, OPCODE
=01 02, C=unchanged, L=unchanged, CC=unchanged.

PROCESS EXCHANGE (RESTRICTED)—PRCEX

There are seven process exchange instructions:

Mnemonic Opcode C L CC
INBC 001217 unspecified unspecified unspecified
INBN 001215 unspecified unspecified unspecified
INEC 001216 unspecified unspecified unspecified
INEN 001214 unspecified unspecified unspecified
NFYB 001211 unspecified unspecified unspecified
NFYE 001210 unspecified unspecified unspecified
WAIT 000315 unchanged unchanged unchanged

See the System Architecture Manual for a complete discussion of the process exchange
mechanism. All process exchange instructions are restricted.

QUEUE MANAGEMENT IN STRUCTIONS—QUEUE

The instructions provided for queue manipulation are of the generic-AP class, in which a
following AP-pointer provides the address to the queue control block. Section 9 contains the
queue control block description.

Data is to or from register A and the results of the operation are given in the condition code
bits for later testing.

addr refers to a control block in virtual space. The virtual queue control block differs from
the physical in that a segment number is provided instead of a physical address. Ring zero
privilege is required to manipulate physical queues; any non-ring zero attempt to access
physical queues will result in a restrict mode violation fault. Also the ring number
determines the privilege of access into both the control block and the data block.

> ABQ addr Add to bottom of queue

Add the contents of the A-register to the bottom of the queue defined by the QCB at addr.
The condition codes are set EQ if the queue is full, e.g.,, the word could not be added,
MODES=V, FORMAT=AP, OPCODE=141716, C=unchanged, L=unchanged, CC=result.

4 ATQ addr Add to top of queue

Add the contents of the A-register to the top of the queue defined by the QCB (Queue
Control Block) at addr. The condition codes are set EQ if the queue is full, e.g., the word
could not be added. MODES=V, FORMAT=AP, OPCODE=141717, C=unchanged, L=un-
changed, CC=result.

1 March. 1979 11-49 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

P RBQ addr Remove from bottom of queue

Remove a single word from the bottom of the queue defined by the QCB at addr, and place
it in the A-register. If the queue is empty, set A=0 and condition codes EQ. MODES=V,
FORMAT=AP, OPCODE=141715, C=unchanged, L=unchanged, CC=result.

4 RTQ addr Remove from top of queue

Remove a single word from the top of the queue defined by the QCB at addr, and place it
in the A-register. If the queue is empty, set A=0 and condition codes EQ. MODES=V,
FORMAT=AP, OPCODE=141714, C=unchanged, L—unchanged, CC=result.

> TSTQ addr Test queue

Set the A-register to the number of items in the queue defined by the QCB at addr. If the
queue is empty, set condition codes EQ. MODES=V, FORMAT=AP, OPCODE=141757, C=
unchanged, L=unchanged, CC=result.

SHIFT GROUP—SHIFT

Shifting is the movement of the contents of a register bit-to-bit. The instructions in this group
shift or rotate right or left the contents of A or the contents of A and B treated as a single
register with A on the left. Although these instructions are similar in format and operation.
functionally some are logical and others arithmetic.

A shift is logical or arithmetic simply in terms of the way the data word is interpreted: a
logical shift treats it as a string of bits whereas an arithmetic shift treats it as a signed
number.

Rotation is a cyclic logical shift such that information rotated out at one end is put back in
at the other. The last bit rotated in at the right or left is also saved in C.

In a logical right or left shift, the contents of the register or registers are moved bit-to-bit with
0's brought in at the end being vacated. Information shifted out at the other end is lost. The
last bit shifted out goes to C.

A right arithmetic shift fills the vacated left positions with the sign bit. The C-bit reflects the
last bit shifted out on the right.

A left arithmetic shift includes the sign, but interprets a sign change as overflow. It fills the
vacated right positions with 0's and sets the C-bit on overflow.

Hence, arithmetic shifting is equivalent to multiplying or dividing the number by a power of
2, provided no information is lost. These operations also use the C-bit to detect the loss of
any bit of significance in a left arithmetic shift, and in all other cases to save the last bit
shifted out.

In a shift instruction word, bits 3-6 are all 0's and the group is indicated by 01 in bits 1 and
2. Bits 7-10 indicate the particular type of shift, and bits 11-16 specify the twos complement
of the number of places to be shifted. Mnemonics are available for the individual types, so
the opcode may be regarded as the Jeft four digits of the instruction word, with the word
completed by adding the right two digits for the number of places. Note that the mnemonics
are constructed using “logical” to mean a logical shift and “shift” to mean specifically an
arithmetic shift.

FDR 3059 11-50 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

» ALLn

Shift the contents of register A left n places, bringing zeros into bit 16; data shifted out of bit
1 are lost, except that the last bit shifted out is saved in C. MODES=SRV, FORMAT=SHIFT,
OPCODE=0414xx, C=shift extension, L=unspecified, CC=unchanged.

P> ALRn A left rotate

Shift the contents of register A left n places, rotating bit 1 into bit 16. The last bit rotated back
in at the right is also saved in C. MODES=SRV, FORMAT=SHIFT, OPCODE=0416xx, C=shift
extension, L=unspecified, CC=unchanged.

P ALSn A left shift

Shift the contents of register A left arithmetically n places, bringing zeros into bit 16. Data
shifted out of bit 1 are lost. The C-bit is initially cleared. If the sign (bit 1) changes state, set
C. A sign change indicates that a bit of significance (a one in a positive number, a zero in a
negative) has been shifted out of the magnitude part. MODES=SRV, FORMAT=SHIFT,
OPCODE=0415xx, C=overflow, L=unspecified, CC=unchanged.

4 ARL n A right logical

Shift the contents of register A right n places, bringing zeros into bit 1; data shifted out of bit
16 are lost, except that the last bit shifted out is saved in C. MODES=SRV, FORMAT=SHIFT,
OPCODE=0404xx, C=shift extension, L=unspecified, CC=unchanged.

| 2 ARR n A right rotate
Ce Al——Alﬁj

Shift the contents of register A right n places, rotating bit 16 into bit 1. The last bit rotated
back in at the left is also saved in C. MODES=SRV, FORMAT=SHIFT, OPCODE=0406xx, C
=shift extension, L=unspecified, CC=unchanged.

» ARSn A right shift

Shift the contents of register A right arithmetically n places, leaving the sign (bit 1)
unaffected, but shifting it into the magnitude part, zeros in a positive number, ones in a
negative. Data shifted out of bit 16 are lost, except that the last bit shifted out is saved in C.
MODES=SRV, FORMAT=SHIFT, OPCODE=0405xx, C=shift extension, L=unspecified, CC=
unchanged.

» LiLn Long left logical

Shift the contents of registers A and B left n places, bringing zeros into bit 16 of register B.
Bit 1 of register B is shifted into bit 16 of register A: data shifted out of bit 1 of register A are
lost, except that the last bit shifted out is saved in C. MODES=SRV, FORMAT=SHIFT,
OPCODE=0410xx, C=shift extension, L=unspecified, CC=unchanged.

1 March. 1979 11-51 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

> LLR n Long left rotate
L_A;—A4g <B;—Bjg & C

Shift the contents of registers A and B left n places, rotating bit 1 of register A into bit 16 of
register B. Bit 1 of register B shifts into bit 16 of register A. The last bit rotated from register
A back to B is also saved in C. MODES=SRV, FORMAT=SHIFT, OPCODE=0412xx, C=shift
extension, L=unspecified, CC=unchanged.

> LLS n Long left shift
8
A <As—A15 By Bo—B1g« 0
Shift the contents of the 31-bit integer in register AB left arithmetically n places, bringing
zeros into bit 16 of register B, bypassing bit 1 of register B; Bit 2 of register B is shifted into
bit 16 of register A. Data shifted out of bit 1 of register A are lost. If the sign (bit 1 of register

A) changes state, set C; otherwise, clear C. MODES=SR, FORMAT=SHIFT, OPCODE=
0411xx, C=overflow, L=unspecified, CC=unchanged.

> LLS n Long left shift
CeLq<Lo—Lgg <0

Shift the contents of the 32-bit integer in the L register left arithmetically n places, bringing
zeros into bit 32. Data shifted out of bit 1 are lost. If the sign (bit 1) changes state, set C;
otherwise clear C. MODES=V, FORMAT=SHIFT, OPCODE=0411xx, C=overflow. L=un-
specified, CC=unchanged.

> LRL n Long right logical

Shift the contents of register A and B right n places, bringing zeros into bit 1 of register A.
Bit 16 of register A is shifted into bit 1 of register B. Data shifted out of bit 16 of register B
are lost, except that the last bit shifted out is saved in C. MODES=SRV, FORMAT=SHIFT,
OPCODE=0400xx, C=shift extension, L=unspecified, CC=unchanged.

> LRR n Long right rotate
C&A1—Aq6-B;—Bg —

Shift the contents of register A and B right n places, rotating bit 16 of register B into bit 1 of
register A. Bit 16 of register A is shifted into bit 1 of register B. The last bit rotated from
register B back to register A is also saved in C. MODES=SRV, FORMAT=SHIFT, OPCODE
=0402xx, C=shift extension, L=unspecified. CC=unchanged.

> LRS n Long right shift

Shift the contents of the 31-bit integer in register A|B right arithmetically n places, leaving bit
1 of register A unaffected, bypassing bit 1 of register B, and shifting the sign (bit 1 of register
A) into the magnitude part (zeros in a positive number, ones in a negative). Bit 16 of register
A is shifted into bit 2 of register B; data shifted out of B bit 16 are lost, except that the last
bit shifted out is saved in C. MODES=SR, FORMAT=SHIFT, OPCODE=0401xx, C=shift
extension, L=unspecified, CC=unchanged.

FDR 3059 11-52 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

Shift the contents of the 32-bit integer in the L register right arithmetically n places, leaving
bit 1 unaffected. Data shifted out of bit 32 are lost, except that the last bit shifted out is saved
in C. MODES=V, FORMAT=SHIFT, OPCODE=0401xx, C=shift extension, L=unspecified,
CC=unchanged.

SKIP CONDITIONAL—SKIP

> DRX Decrement and replace X

X-1-X;if X=0 then PC+1-PC
Subtract 1 from the contents of the X register and place the result back in that register. Skip
the next word in sequence if the result is zero. MODES=SRV, FORMAT=GEN, OPCODE—
140210, C=unchanged, L=unchanged, CC=unchanged.
> IRS addr Increment memory, replace, and skip

[EA]16+1-[EA]16; if [EA]16=0 then PC+1-PC

Add 1 to the contents of location addr and place the result back in addr. Skip the next word
in sequence if the result is zero. MODES=SRV, FORMAT=MR, OPCODE=12, C=unchanged,
L=unchanged, CC=unchanged.
> IRX Increment and replace X

X+1-X; if X=0 then PC+1-PC

Add 1 to the contents of the X register and place the result back in that register. Skip the next
word in sequence if the result is zero. MODES=SRV, FORMAT=GEN, OPCODE=140114, C
=unchanged, L=unchanged, CC=unchanged.

> SAR n Skip on A-bit reset
If A(n)=0 then PC+1-PC

If bit n in the A register is 0, skip the next word in sequence,

Note

The assembler will convert n to octal equivalent of the bit
number minus one.

MODES=SRV, FORMAT=GEN, OPCODE=10026x, C=unchanged, L=unchanged, CC=un-
changed.
P SASn Skip on A-bit Set
If A(n)=1 then PC+1-PC
If bit n in register A is 1, skip the next instruction in sequence,

Note

The assembler will convert n to the octal equivalent of the bit
number minus one.

MODES=SRV, FORMAT=GEN, OPCODE=10126x, C=unchanged, L=unchanged, CC=un-
changed.

1 March, 1979 11-53 FDR 3059

11 INSTRUCTION DEFINITIONS—SRV

| 4 SGT Skip if A greater than zero
If A>0 then PC+1-PC
If the contents of register A is greater than zero, skip the next word in sequence. MODES=
SRV, FORMAT=GEN, OPCODE=100220, C=unchanged, L=unchanged, CC=unchanged.
> SKP n Skip group

Skip conditions are selected by individual bits or combinations of them.
* Bits 1-6 are always 100000.
¢ Bit 7=1 means if true, skip the next instruction.
e Bit 7=0 means if false, skip the next instruction.
¢ Bit 9=0 means test a combination of bits.

The various conditions, the bits that select them and the mnemonics and opcodes for them
are given in Table 11-5. MODES=SRV, FORMAT=GEN, OPCODE=100000, C=unchanged, L
=unchanged, CC=unchanged.
> SLE Skip if A less than or equal to zero
If A0 then PC+1-PC

If the number contained in A is less than or equal to zero, skip the next word in sequence.
MODES=SRV, FORMAT=GEN, OPCODE=101220, C=unchanged, L=unchanged, CC=un-
changed.
> SNR n Skip on sense switch reset

If sense switch n=0 then PC+1-PC
If sense switch n is off (not up), skip the next word in sequence. MODES=SRV. FORMAT=
GEN, OPCODE=10024x, C=unchanged, L=unchanged, CC=unchanged. Restricted instruc-
tion.
> SNS n Skip on sense switch set

If sense switch n=1 then PC+1-PC

If sense switch n is on (up), skip the next word in sequence. MODES=SRV, FORMAT=GEN.
OPCODE=10124x, C=unchanged, L=unchanged, CC=unchanged. Restricted instruction.

FDR 3059 11-54 1 March, 1979

INSTRUCTION DEFINITIONS—SRV 11

Mnemonic
‘NOP
SKP
SMI
SPL
SLN
SLZ
- SNZ
SZE
- 881
SR1-
882
SR2
S$S3
“SR3
854
 SR4
8§88

BARAR AR DA

=

SSR

$SC
SRC

: Selector
Bits

8
10
10

11

11
12
12

13

13

14

14

15

15
12-15

12-15

16 -
16

Table 11-5. Combination Skip Group

Bit 7
1 .

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1

0

‘Skip on Condition - Op Code
None (no-op) - '101000
Skip unconditionally "100000
A Minus (A(1) = 1) '101400
A Plus (A(1) = 0) 100400
LSB Nonzero (A(16) =1) 101100
- LSB Zero [A(16) =0) 100100
A Nonzero ~ '101040
A Zero 100040
Sense Switch 1 Set 101020
Sense Switch-1 Reset 100020
‘Sense Switch 2 Set ; '101010
Sense Switch 2 Reset 100010
Sense Switch 3 Set - ~'101004
Sense Switch 3 Reset 100004
Sense Switch 4 Set L 101002
Sense Switch 4 Reset © 100002
All Sense Switches 1-4 Set
‘ o 101036
Any of Sense Switches 1-4 Reset
. 100036
Set C 101001
Clear C - 100001

Skip conditions can be combined using SKP and giving the bit 7-16 configuration for the
combination in the address field. All conditions combined must agree on bit 7. If bit 7
is set then the skip will take place if all conditions are true. If bit 7 is clear then the skip
will take place if any of the conditions is true.

1 March, 1979

11-55 FDR 3059

Instruction definitions

ADDRESSING MODE—ADMOD

Defined in Section 11.

E16S Enter 16S Mode
E32R Enter 32R Mode
E32S Enter 32S Mode
E64R Enter 64R Mode
E64V Enter 64V Mode
E321 Enter 321 Mode

BRANCH—BRAN

The branch instructions are two word register generics which test the contents of a register
or the result of a previous ARITHMETIC or COMPARE operation as indicated by the
condition codes (CC), the C-bit, and the L-Bit.

The bit layout is:

Word1= | 0 |0} 1 0 REGISTER OP-CODE
1 2 3 4 - 6 7 - 9 10 - 16

Word 2 = 16-bit word address in current procedure segment
1 16

Condition code branches test six conditions based on the LT bit, the EQ bit, and the opcode.

Condition Meaning

Branch if LT bit set and EQ bit cleared

Branch if LT bit set or EQ bit set

Branch if EQ bit set

Branch if EQ bit cleared

Branch if LT bit cleared or EQ
AR

B.‘..“,.L SETT L ,JA.-.-, A ar
Tancii ir L1 Olu Cigarea ana

[[I/ANRVAN

AV VAR N

bit set
N Lt
\{UL

uleared

> Test Relation to 0 and branch if true

1 March, 1979 12-1 FDR 3059

12 INSTRUCTION DEFINITIONS—I

These instructions have the following format: LT
Register (R) E}(EQ
Branch if Half-Register (H) 0
Floating-Register (F) NE
GE
GT

For example: BRLT R,addr means Branch to addr if Register Less Than zero. FORMAT=
IBRN, OPCODES=See chart below, C=unchanged, L=unchanged, CC=result.

Mnemonic Function Opcode
BRLT R,addr If R<0, then addr—PC 104
BRLE R,addr If R0, then addr—PC 100
BREQ R,addr If R=0, then addr-PC 102
BRNE R,addr If R+0, then addr—PC 103
BRGE R,addr If R>0, then addr—PC 105
BRGT R,addr If R>0, then addr-PC 101
BHLT RH,addr If RH<0, then addr-PC 104
BHLE RH,addr If RHO, then addr-PC 110
BHEQ RH,addr If RH=0, then addr-PC 112
BHNE RH,addr If RH+#0, then addr-PC 113
BHGE RH,addr If RH>0, then addr-PC 105
BHGT RH,addr If RH>0, then addr-PC 111
BFLT F,addr If F<0, then addr-PC 124
BFLE F,addr If FL0, then addr-PC 120
BFEQ F,addr If F=0, then addr-PC 122
BFNE F,addr If F#0, then addr—PC 123
BFGE F,addr If F>0. then addr—PC 125
BFGT F,addr If ¥>0, then addr-PC 121

Test register bit and branch

BRBR R,BITNO,addr Branch if register bit reset (equals zero): If R(BITNO)=0. then addr
-PC. FORMAT=IBRN, OPCODE=040-077, C=unchanged, L=unchanged, CC=unchanged.

BRBS R,BITNO,addr Branch if register bit set (equals one}: If R{BITNOJ=1, then addr-PC.
OPCODE=006-037, C=unchanged, L=unchanged, CC=unchanged.

Branch on incremented or decremented register

These instructions have the following format:

1
{Increment } {Reglster } by 5 2 ;7 then branch if result=0
Decrement Half Register 2 4

For example: BRI1 R,addr means Increment the contents of the Register by 1 and then

Branch to addr if the result is not equal to zero. FORMAT=IBRN, OPCODES-Sec chart

below, C=unchanged, L=unchanged, CC=unchanged.

FDR 3059 12-2 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

Mnemonic Function Opcode
BRI1 R,addr R+1-R; if R#0, then addr—-PC 130
BRI2 R,addr R+2-R; if R#0, then addr-PC 131
BRI4 R,addr R+4-R; if R#0, then addr—-PC 132
BHI1 RH,addr RH+1-RH; if RH#0, then addr-PC 140
BHI2 RH,addr RH+2-RH: if RH+0, then addr—PC 141
BHI4 RH,addr RH+4-RH; if RH=0, then addr—PC 142
BRD1 R,addr 2-1-R; if R#0, then addr-PC 134
BRD2 R,addr R-2-R; if R0, then addr-PC 135
BRD4 R,addr R-4-R; if R#0, then addr—-PC 136
BHD1 RH,addr RH-1-RH; if RH#0, then addr-PC 144
BHD2 RH,addr RH-2-RH; if RH#0, then addr—PC 145
BHD4 RH,addr RH-4-RH; if RH+0, then addr—PC 146

[2 CGT R,n Computed GOTO
If 1<R<n, then |[PC+R|-PC, else PC+n-PC

Instruction word followed by n further words: word 1 contains integer n and words 2-n
contain branch addresses within the current procedure segment.

If the contents of register R is less than n and greater than or equal to 1. then control passes
to the address in PC+R: otherwise no branch is taken and control passes to PC+n. FORMAT
=IBRN, OPCODE=026. C=unspecified, L=unspecified, CC=unspecified.

Defined in Section 11:

BCEQ Branch on condition code equal

BCGE Branch on condition code greater than or equal
BCGT Branch on condition code greater than
BCLE Branch on condition code less than or equal
BCLT Branch on condition code less than

BCNE Branch on condition code not equal

BCR Branch if C-Bit=0

BCS Branch if C-Bit=1

BLR Branch if L-Bit=0

BLS Branch if L-Bit=1

BMEQ Branch if magnitude equal 0

BMGE Branch if magnitude greater than or equal 0
BMGT Branch if magnitude greater than 0

BMLE Branch if magnitude less than or equal 0
BMLT Branch if magnitude less than 0

BMNE Branch if magnitude not equal 0

CHARACTER OPERATIONS—CHAR

These instructions use the field address and length registers (FALR) which have been set up
by field operation instructions prior to the use of these instructions. Character string
operations perform memory to memory operations on variable length character fields. The
FAR is used as a byte pointer and the bit offset (low order 3 bits) is ignored.

1 March, 1979 12-3 FDR 3059

12 INSTRUCTION DEFINITIONS—I

Data type: Characters are 8-bit bytes. The format is unspecified and may be determined by
programmer, e.g., ASCII, EBCDIC, etc. The translate instruction (ZTRN]), for example, uses
a table set up by the programmer to translate one character code into another.

» LDC FALR,R Load Character

If the field length register FLR is nonzero, load the single character pointed to by field
address register FAR into register R, bits 9-16. Register R bits 1-8 are cleared. The low order
3 bits of the bit offset in the field address register are ignored, implying that the character
must be byte aligned. The field address register is advanced 8 bits to the next character, and
the field length register is decremented by 1. Set condition code NE (clear EQ). If the field
length register is zero, then set the condition code EQ. FORMAT=RGEN, FALR0 OPCODE
=162, FALR1 OPCODE=172, C=unchanged, L=unchanged, CC=result.

> STC FALR,R Store Character

Store bits 9-16 of register R into the character pointed to by field address register FAR. The
low order 3 bits of the bit offset of the field address register are ignored, implying that the
character must be byte aligned. The field address register is advanced 8 bits to the next
character, and the field length register is decremented by 1. Set the condition code NE (clear
EQ). If the field length register is zero, set the condition code EQ and do not store. FORMAT
—RGEN, FALR0O OPCODE=166, FALR1 OPCODE=176, C=unchanged. L=unchanged, CC=
unchanged.

Summary of instructions defined in section 11

ZCM Compare Character Field
ZED Character Edit

ZFIL Fill Character Field

ZMV Move Character Field
ZMVD Move Equal Length Fields
ZTRN Translate Character Fields

CLEAR REGISTER AND MEMORY—CLEAR

| 2 CR R Clear Register
0-R

Fill R with zeros. FORMAT=RGEN, OPCODE=056, C=unchanged. L=unchanged. CC=
unchanged.

> CRBL R Clear High Byte 1 Left
0-RH(1-8)

Fill bits 1-8 of R with zeros. FORMAT=RGEN, OPCODE=062, C=unchanged, L=unchanged,
CC=unchanged.

> CRBR R Clear High Byte 2 Right
0-RH(9-16)

Fill bits ¢ 16 of R with zercs. FORMAT=RGEN, OPCODE=063, C=unchanged, L=un-
changed, CC=unchanged.

FDR 3059 12-4 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

P CRHLR Clear Le
0-RH
Fill bits 1-16 of R with zeros. FORMAT=RGEN, OPCODE=054, C=unchanged, L=unchanged,
CC=unchanged.
| 2 CRHR R Clear Right Halfword
0-RL
Fill bits 17-32 of R with zeros. FORMAT=RGEN, OPCODE=055. C=unchanged, L=un-
changed, CC=unchanged.
> ZM addr Zero Memory Fullword
0-[EA|32

Fill contents of addr with zeros. FORMAT=MRNR, OPCODE=43, C=unchanged, L=un-
changed, CC=unchanged.

> ZMH addr Zero Memory Halfword
0-|EA|16
Fill contents of addr with zeros. FORMAT=MRNR, OPCODE=53. C=unchanged, L=un-
changed., CC=unchanged.
DECIMAL ARITHMETIC—DECI

Defined in Section 11:

XAD Decimal Add

XBTD Binary to Decimal Conversion
XCM Decimal Compare

XDTB Decimal to Binary Conversion
XDV Decimal Divide

XED Numeric Edit

XMP . Decimal Multiply

XMV Decimal Move

FIELD OPERATIONS—FIELD

These instructions set up and manipulate the field address and length registers. which are
used by both the decimal and character string instructions. The interpretation of the value
in the field length registers depends on the data type and instruction using them.

> ARFA FAR,R Add Register to Field Address Register
R+FAR-FAR

Add the contents of R to field address register FAR, putting the result in the field address
register. FORMAT=RGEN, FAR0 OPCODE=161. FAR1 OPCODE=171. C=unspecified. L=
unspecified, CC=unchanged.
> TFLR FLR,R Transfer Field Length to Register

FLR-R

Move the contents of field length register FLR to R. FORMAT=RGEN, FLR0 OPCODE=163,
FLR1 OPCODE=173, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 12-5 FDR 3059

12 INSTRUCTION DEFINITIONS—I

> TRFL FLR,R Transfer Register to Field Length Register
R-FLR

Move the content of R to field length register FLR. FORMAT=RGEN, FLR0 OPCODE=i65.
FLR1 OPCODE=175. C=unchanged, L=unchanged. CC=unchanged.

Summary of instructions defined in section 11

EAFA 0 Load Field Address Register 0

EAFA 1 Load Field Address Register 1

LFLI 0 Load Field Length Register Immediate 0
LFLI 1 Load Field Length Register Immediate 1
STFA 0 Store Field Address Register

STFA 1 Store Field Address Register

FLOATING POINT ARITHMETIC—FLPT

See Section 9 for a description of the processor dependent register formats and the floating
point data stuctures.

Normalization

The result of every floating point calculation is normalized. In normal form. the most
signficant digit of the mantissa follows the binary point. If an operation produced a mantissa
that is smaller than normal, the mantissa is shifted left until the most significant bit differs
from the sign bit, and the exponent is decreased by one for each shift. Bits vacated at the
right are filled by zeros. If the result of an operation overflows the mantissa. it is shifted
right one place, the overflow bit is made the most significant bit. and the exponent is
increased by 1.

Floating point exceptions

In the basic arithmetic operations, increasing the exponent in the floating point register
beyond 32639 is an overflow: decreasing it below -32896 is an underflow.

An attempt to store a single-precision number with an exponent greater than 127 or less than
128 in the two-word memory format results in a different type of exception—see Table 11-2.
The number in the floating point register is not altered by the FST operation and so can be
recovered if necessary.

Other detected exceptions are an attempt to divide by zero or to form an integer exceeding
+30 bits or about +1 billion decimal.

On the Prime 350 and up, the floating point exception is a fault rather than an interrupt and
is controlled hy the FLEX bit in the keys—see Section 9—Data Formats.

Single Precision—32 bits

> FA FR,addr Floating Add
FR1|EA|32-FR

Add the floating point number at addr to the contents of the floating point number in floating
point register FR, and leave the resulting floating point number in the floating point register.
Addition of floating point numbers requires that their exponents be the same power of two.
This is accomplished by right shifting the smaller number by the difference in the
expenents. After alignment, the mantissas are added. FORMAT=MRFR. FR0 OPCODE=14,
FR1 OPCODE=16, C=overflow, L=unspecified, CC=unspecified.

FDR 3059 12-6 ' 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

Flnn":v\n Masmarmana

FR::|EA|32
Compare the contents of floating point register FR with the contents of addr and set the
condition codes accordingly. FORMAT=MRFR, FR0 OPCODE=04. FR1 OPCODE=06. C—
unchanged, L=unchanged, CC=result.
> FCM FR Floating Complement
-FR-FR

Two’s complement the mantissa of floating point register FR and normalize if necessary.
FORMAT=RGEN, FR0 OPCODE=100, FR1 OPCODE=110, C=overflow. L=unspecified, CC=
unspecified..
> FD FR,addr Floating Divide

FR/|EA|32-FR

Divide the contents of floating point register FR by the number in addr and leave the
normalized quotient in the floating point register.]

FORMAT=MRFR. FR0O OPCODE=30. FR1 OPCODE=32. C=overflow. L=unspecified. CC=
unspecified.

[2 FL FR,addr Floating Load

|EA|32-FR

Load the floating point number contained in addr into floating point register FR. FORMAT
=MRFR. FR0 OPCODE=00, FR1 OPCODE=02, C=unchanged, L=unchanged, CC=unchanged.

P FLT FR,R Convert Integer to Floating Point

Float (R)-FR

Convert the integer in R to a normalized floating point number in floating point register FR.
FORMAT=RGEN, FR0 OPCODE=105, FR1 OPCODE=115, C=overflow, L=unspecified, CC=
unspecified.

> FLTH FR,R Convert Halfword Integer to Floating Point
FLOAT(RH)-FR

Convert the halfword integer in RH to a normalized floating point number in floating point
register FR. FORMAT=RGEN, FR0 OPCODE=102, FR1 OPCODE=112. C=overflow, L=
unspecified, CC=unspecified.

> FM FR,addr Floating Multiply

FR*|EA}32-FR
Multiply the contents of floating point register FR by the contents of addr and place the
product in the floating point register with the mantissa normalized. FORMAT=MRFR, FR0
OPCODE=24, FR1 OPCODE=26, C=overflow, L=unspecified, CC=unspecified.
> FRN FR Floating Round

If bit 25 of the mantissa in floating point register FR is 1. add 1 to bit 24 and clear 25.
FORMAT=RGEN, OPCODE=107, C=overflow, L=unspecified, CC=unspecified.

1 March, 1979 12-7 FDR 3059

12 INSTRUCTION DEFINITIONS—I

| 2 FS FR,addr Floating Subtract
FR-[EA|32-FR

Subtract the contents of addr from floating point register FR by aligning exponents. and
proceding as in FA except that the contents of addr are subtracted from floating point
register. FORMAT=MRFR, FRO OPCODE=20, FR1 OPCODE=22, C=overflow, L=un-
specified, CC=unspecified.
> FST FR,addr Floating Store

FR-|EA|32

Store the single precision floating point number contained in floating point register FR in
addr. Bits 24-31 of the 31 bit mantissa are truncated when written into the 23-bit capacity
memory storage. However, the mantissa may be rounded to bit 24 by a FRN instruction
which adds 1 to bit 24 if bit 25 is 1. FORMAT=MRFR, FR0 OPCODE=10, FR1 OPCODE=12,
C=overflow, L=unspecified, CC=unchanged.
> INT FR,R Convert Floating Point to Integer

Int(FR)-R

Convert the floating point number in floating point register FR to an integer in R. FORMAT
—RGEN, FR0 OPCODE 103, FR1 OPCODE 113, C=overflow, L=unspecified. CC=unspecified.

> INTH FR,R Convert Floating Point to Halfword Integer
Int(FR)-RH

Convert the floating point number in floating point register FR to a halfword integer in RH.
FORMAT=RGEN, FR0 OPCODE=101, FR1 OPCODE=111, C=overflow, L=unspecified. CC=
unspecified.

Double Precision—64 Bits

> DBLE FR Convert Single to Double
FR-FR
Convert single precision floating point number in floating point register FR to double
precision floating point number in the floating point register. FORMAT=RGEN, FRO
OPCODE=106, FR1 OPCODE=116, C=unchanged, L=unchanged, CC=unchanged.
| 2 DFA FR,addr Double Floating Add
FR+|EA|64-FR

Add the contents of addr to the contents of floating point register FR and put the result in the
floating point register. FORMAT=MRFR, FR0 OPCODE=15, FR1 OPCODE=17. C=overflow,
L=unspecified, CC=unspecified.

> DFC FR,addr Double Floating Compare
FR::[EA]64

unchanged, L=unchanged, CC=result.

FDR 3059 12-8 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

» DFCM FR Double Floating Complement
-FR-FR

Two's complement the double precision mantissa in floating point register FR and normalize
if necessary. FORMAT=RGEN, FR0 OPCODE=144, FR1 OPCODE=154, C=overflow, L=
unspecified, CC=unspecified.
> DFD FR,addr Double Floating Divide

FR/|EA|64-FR

Divide the double precision floating point number in floating point register FR by the double
precision floating point number starting at addr and leave the result in the floating point
register. Exponents are subtracted, and after the divisor mantissa is divided into the
dividend mantissa, the quotient is normalized. FORMAT=MRFR, FR0 OPCODE=31, FR1
OPCODE=33, C=overflow, L=unspecified, CC=unspecified.
P DFLFR,addr Double Floating Load

|EA|64-FR

Load the double precision number contained in the four memory words at addr into floating
point register FR. FORMAT=MRFR, FR0 OPCODE=01, FR1 OPCODE=03, C=unchanged. L=
unchanged, CC=unchanged.
> DFM FR,addr Double Floating Multiply

FR+|EA|64-FR

Multiply the double precision floating point number in floating point register FR by the
double precision floating point number starting at addr and leave the result in the floating
point register. Exponents are added and. after mantissas are multiplied, the product is
normalized. FORMAT=MRFR, FR0 OPCODE=25. FR1 OPCODE=27. C=overflow. L=un-
specified, CC=unspecified.
> DFS FR,addr Double Floating Subtract

FR -|EA|64-FR

Subtract the contents of addr from the contents of floating point register FR and put the
result in the floating point register. FORMAT=MRFR. OPCODE=21. FR0O OPCODE=21. FR1
OPCODE=23, C=overflow, L=unspecified. CC=unspecified.

> DFST FR,addr Double Floating Store
FR-|EA|64

Store the contents of floating point register FR into the four memory words at addr.
FORMAT=MRFR. FR0O OPCODE=11, FR1 OPCODE=13. C=unchanged. L=unchanged. CC=
unchanged.

INTEGER ARITHMETIC—INT

I-mode integer arithmetic instructions operate on 16 and 32 bit integers. See Section 9 for a
description of the data formats.

» A R,addr Add Fullword
R+|EA|32-R

1 March, 1979 12-9 FDR 3059

12 INSTRUCTION DEFINITIONS—I

Add the 32-bit integer at addr to the 32-bit integer in register R, and put the result into R.
FORMAT=MRGR, OPCODE=02, C=overflow, L=carry, CC=result.
> ADLR R Add Link to Register
if keys (L)=1 then R+11-R
If the L bit is set in the keys then add 1 to the contents of register R. FORMAT=RGEN.
OPCODE=014, C=overflow, L=carry, CC=result.
| 2 AH R,addr Add Halfword
RH+[EA|16-RH

Add the 16-bit integer at addr to the 16-bit integer in bits 1-16 of register R and put the result
into bits 1-16 of R. FORMAT=MRGR, OPCODE=12, C=overflow, L=carry, CC=result.
| 2 C R,addr Compare Fullword

R::|EA|32; set CC.
Arithmetically compare the 32-bit integer in R with the 32-bit integer at addr and set the
condition codes to reflect the results. FORMAT=MRGR, OPCODE=61. C=unchanged. L=
carry, CC=result.
P CHR,addr Compare Halfword

RH::[EA|16: set CC.

Arithmetically compare bits 1-16 of register R with the 16-bit integer at addr and set the
condition codes to reflect the results. FORMAT=MRGR, OPCODE=71. C=unchanged. L=
carry, CC=result.
[2 CHS R Change Sign

-R(1)-R(1)

Change bit 1 of register R to its opposite. FORMAT=RGEN. OPCODE=040. C=unchanged. L
=unchanged. CC=unchanged.

» CSRR Copy Sign
R(1)-C: 0-R(1)

Copy the sign bit of register R, (bit 1), into C and zero R(1). FORMAT=RGEN. OPCODE=041.
C=R (1), L=unchanged, CC=unchanged

| 2 D R,addr Divide Fullword

RIR+1/|EA|32-R; Remainder—-R+1

Divide the 64-bit integer in registers R and R+1 by the 32-bit integer at addr. and put the
result in R and the remainder in R+1. The least significant bit of the dividend is in bit 64.
Overflow if the quotient is less than -(2**31) or greater than 2**31-1. R must be an even
register. FORMAT=MRGR. OPCODE=62, C=overflow/div by 0. L=unspecified. CC=un-
specified.

> DH R,addr Divide Halfword
R/|EA]16-RH; Remainder-RH

FDR 3059 12-10 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

Divide the 32-bit integer in register R by the 16-bit integer at addr, and put the quotient into
bits 1-16 of R and the remainder into bits 17-32 of R. The least significant bit of the dividend
is in bit 32. Overflow if the quotient is less than -(2**15) or greater than 2**15-1. FORMAT
=MRGR, OPCODE=72, C=overflow/div by 0, L=unspecified, CC=unspecified.
> DH1 R Decrement Half Register by 1

RH-1-RH
Subtract one from RH and put the results into RH. FORMAT=RGEN, OPCODE=130, C=
overflow, L=carry, CC=result.
> DH2 R Decrement Half Register by 2

RH-2-RH
Subtract two from RH and put the result into RH. FORMAT=RGEN, OPCODE=131, C=
overflow, L=carry, CC=result.
[3 DM addr Decrement Memory Fullword

|EA|32-1-|EA|32

Subtract one from the 32-bit integer at addr and put the result into addr. FORMAT=MRNR,
OPCODE=60. C=unchanged, L=unchanged, CC=result.

> DMH addr Decrement Memory Halfword
|EA|16-1-|EA|16

Subtract one from the 16-bit integer at addr and put the result into addr. FORMAT=MRNXNR,
OPCODE=70, C=unchanged, L=unchanged, CC=result.

> DR1 R Decrement Register by 1
R-1-R

Subtract one from the contents of R and put the result into R. FORMAT=RGEN. OPCODE=
124, C=overflow, L=carry, CC=result.

> DR2 R Decrement Register by 2
R-2-R

Subtract two from the contents of R and put the result into R. FORMAT=RGEN. OPCODE=
125, C=overflow, L=carry, CC=result.

> IH1 Increment Half Register by 1
RH+1-RH

Add one to the contents of RH and put the result into RH. FORMAT=RGEN, OPCODE=126,
C=overflow, L=carry, CC=result.

> IH2 R Increment Half Register by 2
RH+2-RH

Add two to the contents of RH and put the result into RH. FORMAT=RGEN. OPCODE=127,
C=overflow, L=carry, CC=result.

1 March, 1979 12-11 FDR 3059

12 INSTRUCTION DEFINITIONS—I

> IM addr Increment Memory Fullword
[EA]32+1-[EA|32

Add one to the 32-bit integer at addr and put the result into addr. FORMAT=MRNR,
OPCODE=40, C=unchanged, L=unchanged, CC=result.

> IMH addr Increment Memory Halfword
[EA]16+1-[EA]16

Add one to the 16-bit integer at addr and put the result into addr. FORMAT=MRNR,
OPCODE=50, C=unchanged, L=unchanged, CC=result.

> IR1 R Increment Register by 1
R+1-R

Add one to the contents of register R and put the result in R. FORMAT=RGEN, OPCODE=
122, C=overflow, L=carry, CC=result.

g IR2 R Increment Register by 2
R+2-R

Add two to the contents of register R and put the result in R. FORMAT=RGEN, OPCODE=
123, C=overflow, L=carry, CC=result.

> M R,addr Multiply Fullword
R*[EA]32-R[R+1

Multiply the 32-bit integer in register R by the 32-bit integer at addr and put the 64-bit result
into R and R+1. The least significant bit is in bit position 64. R must be an even register.
FORMAT=MRGR, OPCODE=42, C=overflow, L=unspecified, CC=unchanged.

> MH R,addr Multiply Halfword
RH*[EA|16-R

Multiply the 16-bit integer in bits 1-16 of register R by the 16-bit integer at addr and put the
32-bit result into R. The least significant bit is in bit position 32. FORMAT=MRGR, OPCODE
=52, C=overflow, L=unspecified, CC=unchanged.

> PID R Position For Integer Divide

RoR+1; R(1)-R(2-32)
Convert the 32-bit integer in register R to a 64 integer in registers R and R+1 by moving the
contents of R to R+1, and extending the sign in bit 1 of R through bits 2-32 of R. FORMAT=
RGEN, OPCODE=052, C=unchanged, L=unchanged, CC=unchanged.
> PIDH R Position Half Register For Integer Divide

RH-RL; R(1)-R(2-16)

Convert the 16-bit integer in RH to 32-bit integer in R by moving the contents of RH to RL.
and extending the sign in bit 1 through bits 2-16 of R. FORMAT=RGEN, OPCODE=053, C=
unchanged, L=unchanged, CC=unchanged.

FDR 3059 12-12 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

> PIM R Position Afier Multiply
R+1-R
Convert the 64-bit integer in registers R and R+1 to a 32-bit integer in R by moving the

contents of R+1 to R. Overflow if a loss of precision would result. (i.e., bit 1 of R+1 is not the
same as all the bits of R). FORMAT=RGEN, OPCODE=50, C=overflow, L=unspecified, CC
=unspecified.
P PIMHR Position Half Register After Multiply

RL-RH

Convert the 32-bit integer in register R to a 16-bit integer in RH by moving the contents of RL
to RH. Overflow if a loss of precision would result. FORMAT=RGEN, OPCODE=51, C—=
overflow, L=unspecified, CC=unspecified.

> S R,addr Subtract Fullword
R-[EA]32-R

Subtract the 32-bit integer at addr from 32-bit integer in register R, and put the result into R.
FORMAT=MRGR, OPCODE=22, C=overflow, L=carry, CC=result.

> SH R,addr Subtract Halfword
RH-[EA]16-RH

Subtract the 16-bit integer at addr from the 16-bit integer in bits 1-16 of register R and put
the result into bits 1-16 of R. FORMAT=MRGR, OPCODE=32, C=overflow, L=carry, CC=
results.

» SSMR Set Sign Minus
15R (1)

Set the sign bit of register R, (bit 1), equal to one. FORMAT=RGEN, OPCODE=042, C=
unchanged, L=unchanged, CC=unchanged.

> SSP R Set Sign Plus
0-R(1)

Set the sign bit of register R, (bit 1), equal to zero. FORMAT=RGEN, OPCODE=043, C=
unchanged, L=unchanged, CC=unchanged.

| 2 TC R Two’s Complement Register
-R+1-R

Replace the contents of register R by its two's complement. FORMAT=RGEN, OPCODE=
046, C=overflow, L=carry, CC=result.

> TCHR Two’s Complement Half Register
-RH+1-RH

Replace the contents of RH by its two's complement. FORMAT=RGEN, OPCODE=047, C=
overflow, L=carry, CC=result.

1 March, 1979 12-13 FDR 3059

12 INSTRUCTION DEFINITIONS—I

p» TM addr Test Memory Fullword
[EA]32::0; set CC
Test the contents of addr and set condition code accordingly. FORMAT=MRNR, OPCODE=
44, C=unchanged, L=unchanged, CC=result.
> TMH addr Test Memory Halfword
[EA]16:0;set CC

Test the contents of addr and set condition code accordingly. FORMAT=MRNR, OPCODE=
54, C=unchanged, L=unchanged, CC=result.

INTEGRITY CHECK FOR HARDWARE—INTGY
Defined in Section 11.

EMCM Enter Machine Check Mode
LMCM Leave Machine Check Mode

MDEI Memory Diagnostic Enable Interleaved
MDII Memory Diagnostic Inhibit Interleaved
MDIW Memory Diagnostic Write Interleaved
MDRS Memory Diagnostic Read Syndrome Bits
MDWC Load Write Control Register

RMC Clear Machine Check

VIRY Verify

XVRY Verify xis

INPUT/OUTPUT—1/0
> EIO addr Execute 1/0

Interpret the low order 16 bits of addr as a Prime 400 PIO instruction. Set EQ on successful
INA, OTA, SKS: OCP always sets NE. FORMAT=MRNR, OPCODE=34, C=unchanged. L=
unchanged, CC=result.

Summary of instructions from section 11

CAI Clear Active Interrupt

ENB Enable Interrupts

ESIM Enter Standard Interrupt Mode
EVIM Enter Vectored Interrupt Mode
INH Inhibit Interrupts

IRTC Interrupt Return

IRTN Interrupt Return

KEY MANIPULATION—KEYS

Moves keys to and from registers. See Section 9 for the format of the keys.

2 INK R Input Keys
keys-RH

f keys in RH. FORMAT=RGEN, OPCODE=070, C=unchanged, L=unchanged.

Aern A
Save conten 1ged

CC=unchanged.

FDR 3059 12-14 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

K R Output Keys

>

Q
~3

RH-keys

Restore keys from RH. FORMAT=RGEN, OPCODE=071, C=loaded by instruction, L=loaded
by instruction, CC=loaded by instruction.

Defined in Section 11:
RCB Reset C-Bit (Clear)
SCB Set C-Bit
LOGICAL OPERATIONS—LOGIC

> CMH RH Complement Half Register
NOT.RH-RH
Ones complement the contents of RH. FORMAT=RGEN, OPCODE=045, C=unchanged, L=
unchanged, CC=unchanged.
> CMR R Complement Register
NOT.R-R

Ones complement the contents of R. FORMAT=RGEN, OPCODE=044, C=unchanged, L=
unchanged, CC=unchanged.
[2 N R,addr AND Fullword

R.AND.|EA|32-R
AND the contents of R and addr and put the result into R. FORMAT=MRGR, OPCODE=03,
C=unchanged, L=unchanged, CC=unchanged.
> NH R,addr AND Halfword

RH.AND.|EA|16-RH

AND the contents of RH and addr and put the result into RH. FORMAT=MRGR, OPCODE
=13, C=unchanged, L=unchanged, CC=unchanged.
[2 O R,addr OR Fullword

R.OR.|EA|32-R

OR the contents of R and addr and put the result into R. FORMAT=MRGR, OPCODE=23. C
=unchanged. L=unchanged. CC=unchanged.

> OH R,addr OR Halfword
RH.OR.|EA|16-RH

OR the contents of RH and addr and put the result into RH. FORMAT=MRGR. OPCODE=
33, C=unchanged, L=unchanged, CC=unchanged.

> X R,addr Exclusive OR Fullword
R.XOR.|EA|32-R

Exclusive OR the contents of R and addr and put the result into R. FORMAT=MRGR,
OPCODE=43, C=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 12-15 FDR 3059

12 INSTRUCTION DEFINITIONS—I

> XH R,addr Exclusive OR Halfword
RH.XOR.|EA|16-RH

Exclusive OR the contents of RH and addr and put the result into RH. FORMAT=MRGR,
OPCODE=53, C=unchanged, L=unchanged, CC=unchanged.

LOGICAL TEST AND SET—LTSTS
Logical Test and Set (Logicize)

If the test is satisfied. then set the register equal to 1. If the test is not satisfied. then set the
register equal to 0. These instructions simplify the analysis of complex logical expressions.
The general format is:

Condition Codes (C) LT
Register (blank) LE

If Half Register (H) EQ 0, then 1-R; else 0-R
Floating-Point [F] NE
Register GE
GT

For example: LCLT R means. if the condition code is less than zero then set R equal to one,
else set R equal to zero.)

Mnemonic Function Opcode
LCLT R If CC<0, then1 - R: else 0 - R 150
LCLER If CC0.then1-R:else 0 >R 151
LCEQ R If CC=0, then1 - R:else 0 -~ R 153
LCNE R If CC#0. then 1 - R; else 0 - R 152
LCGE R If CC>0.then1-R:else 0+ R 154
LCGT R If CC>0. then1- R; else 0 - R 155
FORMAT=RGEN, C=unchanged, L=unchanged. CC=unchanged.

Mnemonic Function Opcode
LLT R If R<0. then1-R;else 0 -R 000
LLE R If R0.thenl-R;else 0 -R 001
LEQR If R=0, then1 - R; else 0 - R 003
LNE R If R#0, then 1 - R: else 0 - R 002
LGE R IfR>0 then1->R;else0-R 004
LGT R If R>0, then1 - R; else 0 » R 005
LHLT R If RH<0, then1 - R: else 0 - R 000
LHLER fRH O then1-R;else 05 R nit
LHEQR If RH=0, then 1 - R; else 0 » R 013
LHNE R If RH#0, then1 - R; else 0 - R 012
LHGE R If RH>0 then1l-R:else0 >R 004
LHGT R If RH>0, then 1 - R; else 0 - R 015
LFLT R If F<0, then1 - R; else 0 - R 020,030
LFLE R If F 0, then1-R;else 0 -R 021.031
LFEQR If F=0, then1 - R; else 0 - R 023,033
LFNE R If F#0, then1 - R; else 0 - R 022,032
LFGE R IfF>0 then1-R;else 0 5 R 024,034
LFGT R If F>0, then1 - R;else 0 - R 025,035

FDR 3059 12-16 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

— T+
1ged, L=unchanged, CC-=result.

> LF R Logic set False

Set R equal to zero. FORMAT-=RGEN, OPCODE=016, C=unchanged, L=unchanged, CC=
result.

> LT R Logic set True

Set R equal to one. FORMAT=RGEN, OPCODE=017, C=unchanged, L=unchanged, CC=
result.

MACHINE CONTROL—MCTL

Defined in Section 11.

CXCS Control Extended Control Store
HLT Halt

ITLB Invalidate STLB entry

LIOT Load TLB

LPID Load Process ID

LPSW Load Program Status Word
LWCS Load Writable Control Store
NOP No Operation

PTLB Purge TLB

RRST Restore Registers

RSAV Register Save

STPM Store Process Model Number
WCS Writable Control Store
XVRY Verify xis

MOVE DATA—MOVE

These instructions move data from one location to another.

> I R,addr Interchange Register and Memory—Fullword
Res|EA[32

Swap the contents of R and addr. FORMAT=MRGR, OPCODE=41, C=unchanged. L=
unchanged, CC=unchanged.
> ICBL R Interchange Bytes and Clear Left

RH(1-8)RH(9-16): 0—|RH(1-8)]
Swap bits 1-8 and bits 9-16 of RH. Then set bits 1-8=0. FORMAT=RGEN, OPCODE=065. C
=unchanged, L=unchanged, CC=unchanged.
> ICBR R Interchange Bytes and Clear Right

RH(9-16)<-RH(1-8);0~RH(9-16)

Swap bits 9-16 and bits 1-8 of RH. Then set bits 9-16=0. FORMAT=RGEN, OPCODE=066, C
=unchanged, L=unchanged, CC=unchanged.

1 March, 1979 12-17 FDR 3059

12 INSTRUCTION DEFINITIONS—I

| 4 ICHL R Interchange Halfwords and Clear Left

RH«RL;0-RH
Swap halves of R and set RH=0. FORMAT=RGEN. OPCODE=060. C—unchanged. L=
unchanged, CC=unchanged.
> ICHR R Interchange Register Halfwords and Clear Right

RH<RL;0-RL
Swap halves of R and set RL=0. FORMAT=RGEN, OPCODE=061, C=unchanged, L=
unchanged, CC=unchanged.
> IH R,addr Interchange Register and Memory—Halfword

RH«[EA]16
Swap the contents of RH and addr. FORMAT=MRGR, OPCODE=51, C=unchanged, L=
unchanged, CC=unchanged.
> IRB R Interchange Register Bytes

RH(1-8)«-RH(9-16)
Swap bits 1-8 of RH with bits 9-16 of RH. FORMAT=RGEN, OPCODE=064. C=unchanged.
L=unchanged, CC=unchanged.
> IRH R Interchange Register Halves
RH«RL
Swap halves of R. FORMAT=RGEN, OPCODE=057, C=unchanged, L=unchanged, CC=
unchanged.
> L R,addr Load Fullword
[EA]32-R

Load the contents of addr into R. FORMAT=MRGR, OPCODE=01, C=unchanged. L=
unchanged, CC=unchanged.

» LDAR R,addr Load Addressed Register

Stores the contents of R into the register specified by addr. There are three special cases of
this instruction which are summarized in Section 11 under LDLR. FORMAT=MRGR,
OPCODE=44, C=unchanged, L=unchanged, CC=unchanged.

> LH R,addr Load Halfword
[EA}16-RH
Load the contents of addr into RH. FORMAT=MRGR, OPCODE=11, C=unchanged, L=
unchanged, CC=unchanged.
» LHL1R,addr Load Halfword Left Shifted by 1

[EA]16.LS.1-RH

Left shift the contents of addr by 1 and put the result into RH. FORMAT=MRGR, OPCODE
=04, C=unchanged, L=unchanged, CC=unchanged.

FDR 3059 12-18 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

B LHL2 Raddr Load Halfword Left Shifted by 2
|EA]16.LS.2-RH
Left shift the contents of addr by 2 and put the result into RH. FORMAT=MRGR, OPCODE
=14, C=unchanged, L=unchanged, CC=unchanged.
> ST R,addr Store Fullword
R-[EA|32

Store the contents of R into addr. FORMAT=MRGR, OPCODE=21, C=unchanged, L=
unchanged, CC=unchanged.

| 4 STAR R,addr Store Addressed Register

Stores the contents of the register specified by the contents of addr into R. There are three
special cases of this instruction which are summarized in Section 11 under LDLR. FORMAT
=MRGR, OPCODE=54, C=unchanged, L=unchanged, CC=unchanged.

| 2 STCD R,addr Store Conditional Fullword
If R+1=[EA|32 then R-[EA|32

If the contents of R+1 equals the contents of addr, then store the contents of R into addr.
FORMAT=MRGR, OPCODE=137, C=unchanged, L=unchanged, CC=result.

> STCH R,addr Store Conditional Halfword

If RL—[EA|16 then RH-|EA|16
If the contents of RL equal the contents of addr, then store the contents of RH into addr.
FORMAT=MRGR, OPCODE=136, C=unchanged, L=unchanged, CC=results.
> STH R,addr Store Halfword

RH-[EA|16

Store the contents of RH into addr. FORMAT=MRGR, OPCODE=31, C=unchanged, L=
unchanged, CC=unchanged.
PROGRAM CONTROL AND JUMP—PCTL]

These instructions either transfer control to a different location or manipulate effective
addresses. They differ from branch instructions in the ability to move across segments. They
differ among themselves in the complexity of operations performed and in the handling of
the return address.

P EALB addr Effective Address to Link Base
EA-LB
Store the effective address of addr inthe link base register. FORMAT=MRNR, OPCODE=42,
C=unchanged, L=unchanged, CC=unchanged.
P EAR R,addr Effective Address to Register
EA-R

Store the effective address of addr in R. FORMAT=MRGR, OPCODE=63, C=unchanged, L
=unchanged, CC=unchanged.

1 March, 1979 12-19 FDR 3059

12 INSTRUCTION DEFINITIONS—I

| 2 EAXB addr Effective Address to Temporary Base
EA-XB

Store the effective address of addr in the temporary base register. FORMAT=MRNR,
OPCODE=52, C=unchanged, L=unchanged, CC=unchanged.

> JMP addr Jump
EA-PC

Jump to addr. FORMAT=MRNR, OPCODE=51, C=unchanged, L=unchanged. CC=un-
changed.

> JSR R,addr Jump to Subroutine
- PC(16-32)-RH;EA-PC

Jump to addr and save the 16-bit word number position of the return address in RH.
FORMAT=MRGR, OPCODE=73, C=unchanged, L=unchanged. CC=unchanged.

> JSXB addr Jump and Set XB
PC-XB;EA-PC

Jump to addr and save the full 32-bit return address in XB. FORMAT=MRNR. OPCODE=61.
C=unchanged, L=unchanged, CC=unchanged.

Summary of instructions defined in section 11

ARGT Argument Transfer
CALF Call Fault Handler
PCL Procedure Call
PRTN Procedure Return
STEX Stack Extend

SvC Supervisor Call

PROCESS EXCHANGE—PRCEX

Defined in Section 11.

INBC Interrupt Notify
INBN Interrupt Notify
INEC Interrupt Notify
INEN Interrupt Notify
NFYB Notify

NFYE Notify

WAIT Wait

QUEUE MANAGEMENT—QUEUE

The instructions provided for queue manipulation are register generics with AP-pointer
providing the address to the queue control block. See Section 9 for a description of the queue
control block.

Data is to or from general register 2 and the results of the operation are given in the
condition code bits for later testing,

addr refers t

the physical in

Isck in virtual space
IU\JI\ All \rll lual Ok.)()

*%

ha wvrirtital Avinita canten 1 hlanl
I G

rty
1 ‘\« ir LuaL \{ucue uuuuu i

Aiffarg fram
Giii

c a contro
C a CoNniro
in

that a segment number is pr0v1d ed instead of a physical address. Ring zero

FDR 3059 12-20 1 March, 1979

INSTRUCTION DEFINITIONS—I 12

privilege is required to manipulate physical queues; any non-ring zero attempt to access
physical queues will result in a restrict mode violation fault. Also. the ring number
determines the privilege of access into both the control block and the data block.

> ABQ addr Add to Bottom of Queue

Add the contents of general register 2 to the bottom of the queue defined by the QCB (Queue
Control Block) at addr. The condition codes are set EQ if the queue is full, e.g.. the word
could not be added. FORMAT=RGEN, OPCODE=134, C=unchanged. L=unchanged. CC=
result.

> ATQ addr Add to Top of Queue

Add the contents of general register 2 to the top of the queue defined by the QCB at addr.
The condition codes are set EQ if the queue is full.. e.g.. the word could not be added.
FORMAT=RGEN. OPCODE=135. C=unchanged, L=unchanged. CC=result.

> RBQ addr Remove from Bottom of Queue

Remove a single word from the bottom of the queue defined by the QCB at addr. and place
it in general register 2. But, if the queue is empty. set general register 2=0 and condition
codes EQ. FORMAT=RGEN, OPCODE=133, C=unchanged. L=unchanged. CC=result.

> RTQ addr Remove from Top of Queue

Remove a single word from the top of the queue defined by the QCB at addr. and place it
in general register 2. But if the queue is empty. set general register 2=0 and condition codes
EQ. FORMAT=RGEN. OPCODE=132. C=unchanged. L=unchanged. CC=result.

[2 TSTQ addr Test Queue

Set general register 2 to the number of items in the queue defined by the QCB at addr. If the
queue is empty. set condition codes EQ. FORMAT=RGEN. OPCODE=104. C=unchanged. L
=unchanged. CC=result.

SHIFT—SHIFT DATA
Register Shifts

> ROT R,addr Rotate

Rotate the bits in R. The low order 16 bits of addr tell how many bits to shift. in what
direction and whether full or halfword.

Bit 1=0=left

Bit 1=1=right

Bit 2=0=word (32)

Bit 2=1=halfword

Bits 3-10=unused

Bits 11-16=two’s complement of number of bits to shift

FORMAT=MRGR. OPCODE=24, C=shift extension. L=unspecified. CC=unchanged.

1 March, 1979 12-21 FDR 3059

12 INSTRUCTION DEFINITIONS—I

> SHA R,addr Shift Arithmetic

Shift R arithmetically. The low order 16 bits of addr tell how many bits to shift. in what
direction and whether full or halfword.

Bit 1=0=left

Bit 1=1=right

Bit 2=0=word (32}
Bit 2=1=halfword
Bits 3-10=unused

Bits 11-16=two’s complement of number of bits to shift

FORMAT=MRGR, OPCODE=15, C=shift extension, L=unspecified. CC=unchanged.

> SHL R,addr Shift Logical

Shift R logically. The low order 16 bits of addr tell how many bits to shift. in what direction
and whether full or halfword.

Bit 1=0=left

Bit 1=1=right

Bit 2=0=word (32)
Bit 2=1=halfword
Bits 3-10=unused

Bits 11-16=two’s complement of number of bits to shift

FORMAT=MRGR. OPCODE=05. C=shift extension, L=unspecified. CC=unchanged.

P SL1R Shift Register Left 1

Shift R left one bit logically. FORMAT=RGEN, OPCODE=072. C=shift extension. L=
unspecified. CC=unchanged.

[2 SL2 R Shift Register Left 2

Shift R left two bits logically. FORMAT=RGEN, OPCODE=073. C=shift extension. L=
unspecified, CC=unchanged.

» SR1R Shift Register Right 1

Shift R right one bit logically. FORMAT=RGEN, OPCODE=074. C==shift extension. L=
unspecified, CC=unchanged.

» SR2R Shift Register Right 2

Shift R right two bits logically. FORMAT=RGEN, OPCODE=075, C=shift extension. L=
unspecified, CC=unchanged.

Half Register Shifts

[2 SHL1 R Shift Half Register Left 1

Shift RH left one hit logically. FORMAT=RGEN, OPCODE=076, C=shift extension. L=
unspecified, CC=unchanged.

FDR 3059 12-22 1 March. 1979

INSTRUCTION DEFINITIONS—I 12

crrr A o . R e,
5 SHLz R Shift Half Register Left 2

Shift RH left two bits logically. FORMAT=RGEN, OPCODE=077, C=shift extension. L=
unspecified, CC=unchanged.

> SHR1 R Shift Half Register Right 1

Shift RH right one bit logically. FORMAT=RGEN, OPCODE=120. C=shift extension. L=
unspecified, CC=unchanged.

> SHR2 R Shift Half Register Right 2

Shift RH right two bits logically. FORMAT=RGEN. OPCODE=121. C=shift extension. L=
unspecified, CC=unchanged.

1 March, 1979 12-23 FDR 3059

Instruction
ummary chart

INSTRUCTION SUMMARY

This chart contains a complete list of instructions for the Prime 100 through 500. Each
instruction is followed by its octal code, format, function information on addressing mode
and hardware availability, and a one line description of the instruction.

The columns in the list are as follows:

R RESTRICTIONS
blank regular instruction
R instruction causes a restricted mode fault if ex-
ecuted in other than right 0
P instruction may cause a fault depending on address

writable control store instruction, may be pro-
grammed in wcs to cause a fault

Machine specific—use only on specified CPU. Usu-
ally an instruction reserved for operating system,
such as EPM].

MNEM a mnemonic name recognized by the assembler PMA.

OPCODE Octal operation code of the instruction. The codes are indented so
that I/O instructions are isolated from generics, and the memory
reference and register instructions of the P500 are sorted apart
from the MR instructions of the P100-400.

RI Register (R) and Immediate (I) forms available (P500 memory
reference instructions only); Y = YES, N = NO.
FORM Format of instruction:
MNEMONIC DEFINITION
GEN Generic
AP Address Pointer
BRAN Branch
IBRN I-mode Branch
CHAR Character
DECI Decimal
PIO Programmed 1/0
SHFT Shift
MR Memory Reference—non I-mode
MRFR Memory Reference—Floating Register
MRNR Memory Reference—Non Register
RGEN Register Generic

1 March, 1979 13-1 FDR 3059

13 INSTRUCTION SUMMARY CHART

FUNC

MODE

123
Column

FDR 3059

Function of instruction

MNEMONIC DEFINITION

ADMOD Addressing Mode

BRAN Branch

CHAR Character

CLEAR Clear field

DECI Decimal Arithmetic
FIELD Field Register

FLOAT Floating Point Arithmetic
INT Integer

INTGY Integrity

10 Input/Output

KEYS Keys

LOGIC Logical Operations
LTSTS Logical Test and Set
MCTL Machine Control

MOVE Move

PCTL] Program Control and Jump
PRCEX Process Exchange
QUEUE Queue Control

SHIFT Register Shift

SKIP Skip

Addressing modes in which instruction functions as defined:
S Sectored
R Relative
V64V (P400-P500)
1 321 (P500)

How instruction is implemented

1 = Prime 100, 200, 300 series
2 = Prime 400 series
3 = Prime 500 series

Codes are:

- Not implemented. Do not use this mnemonic on this CPU.
H Implemented by standard hardware.
O Implemented by hardware option or UII library if option is
not present.
Implemented by UII library
UII on 100, 200, hardware on 300
Optional on 100, 200, hardware on 300
Not implemented on 100, optional on 200, 300
UII on 100, optional on 200, 300
Not implemented on 100, hardware on 200, 300
Not implemented on 100, 200, hardware on 300
Not implemented on 100, optional on 200, hardware on 300

How instruction affects C and L bits, codes are:
- Cand L are unchanged

C = unchanged, L = carry

C = overflow status, L = carry

C = overflow status, L. = unspecified

C = status extension, L = unspecified

C =result, L = unspecified

Qmmgoaow»C

Ul W N

13-2 1 March, 1979

INSTRUCTION SUMMARY CHART 13

8 C = unspecified, L = unspecified
7 C=loaded by instruction, L = loaded by instruction
CC How instruction affects condition codes, codes are:

- condition codes are not altered

1 condition codes are set to reflect the result of arithmetic
operation or compare

4 condition codes are set to reflect result of branch, compare or
logicize operand state.

5 condition codes are indeterminant

6 condition codes are loaded by instruction

7 special results are shown in condition codes for this instruc-

tion

DESCRIPTION a brief description of the instruction

R MNEM OPCODE RI FORM FUNC MODE 1 2 3 C CC DESCRIPTION
A 02 YY MRGR INT I — — H 2 1 Add Fullword
A1l1A 141206 GEN INT SRV H H H 2 1 AddOnets A
AZA 140304 GEN INT SRV H H H 2 1 AddTwoto A
ABQ 141716 AP QUEUE V — H H — 7 Add to Bottom of Queue
ABQ 134 AP QUEUE 1 — — H — 7 Add to Bottom of Queue
ACA 141216 GEN INT SRV H H H 2 1 AddC-Bitto A
ADD 06 MR INT SRV H H H 2 1 Add
ADL 06 03 MR INT \" — H H 2 1 AddLong
ADLL 141000 GEN INT A\ — H H 2 1 AddLinkBittoL
ADLR 014 RGEN INT I — — H 2 1 AddLinktoR
AH 12 YY MRGR INT I — — H 2 1 Add Halfword
ALFA 0 001301 GEN FIELD \" — H H 6 5 AddL to Field Address
ALFA 1 001311 GEN FIELD \" — H H 6 5 AddL to Field Address
ALL 0414XX SHFT SHIFT SRV H H H 4 — A Left Logical
ALR 0416XX SHFT SHIFT SRV H H H 4 — A Left Rotate
ALS 0415XX SHFT SHIFT SRV H H H 2 — A Left Shift
ANA 03 MR LOGIC SRV H H H — — AND
ANL 03 03 MR LOGIC Vv — H H — — AND Long
ARFA 0 161 RGEN FIELD 1 — — H 6 — AddR to Field Address
ARFA1 171 RGEN FIELD I — — H 6 — AddR to Field Address
ARGT 000605 GEN PCTLJ VI — H H 6 5 Argument Transfer
ARL 0404XX SHFT SHIFT SRV H H H 4 — A Right Logical
ARR 0406XX SHFT SHIFT SRV H H H 4 — A RightRotate
ARS 0405XX SHFT SHIFT SRV H H H 4 — A Right Shift
ATQ 141717 AP QUEUE V — H H — 7 Add to Top of Queue
ATQ 135 AP QUEUE 1 — — H — 7 Add to Top of Queue
BCEQ 141602 BRAN BRAN VI H H — — BranchifCC=0
BCGE 141605 BRAN BRAN VI — H H — — BranchifCC>0
BCGT 141601 BRAN BRAN VI — H H — — BranchifCC>0
BCLE 141600 BRAN BRAN VI — H H — — BranchifCC<o
BCLT 141604 BRAN BRAN VI — H H — — BranchifCC<o
BCNE 141603 BRAN BRAN VI — H H — — Branch if CC «NEe« 0
BCR 141705 BRAN BRAN VI — H H — — Branchif C-Bit=0
BCS 141704 BRAN BRAN VI — H H — — Branch if C-Bit =1
BDX 140734 BRAN BRAN \' — H H — — Decrement X and branch if X eNEe 0
BDY 140724 BRAN BRAN A% — H H — — Decrement Y and branch if Y «NEe 0
BEQ 140612 BRAN BRAN \% — H H — 4 BranchifA-0
BFEQ 141612 BRAN BRAN A" — H H — 4 BranchifF=0
BFEQ 122 IBRN BRAN I — — H — 4 BranchifF=0
BFGE 141615 BRAN BRAN A — H H — 4 Branchif F>0
BFGE 125 I[BRN BRAN I — — H — 4 BranchifF>0
BFGT 141611 BRAN BRAN \" — H H — 4 BranchifF >0
BFG 121 iIBRN BRAN I — — H — 4 BranchifF>0
BFLE 141610 BRAN BRAN A% — H H — 4 BranchifF<o
BFLE 120 IBRN BRAN I — — H — 4 BranchifF<o

1 Mareh, 1979 13-3 FDR 3059

13 INSTRUCTION SUMMARY CHART

R MNEM OPCODE RI FORM FUNC MODE 1 2 3 C CC DESCRIPTION

BFLT 141614 BRAN BRAN \" — H H — 4 BranchifF<o0
BFLT 124 IBRN BRAN I — — H — 4 BranchifF<0
BFNE 141613 BRAN BRAN v — H H — 4 Branchif F eNEeO
BFNE 123 IBRN BRAN 1 — — H — 4 Branchif F eNEe0
BGE 140615 BRAN BRAN \'% — H H — 4 BranchifA>0
BGT 140611 BRAN BRAN \" — H H — 4 BranchifA>0
BHD1 144 IBRN BRAN I — — H — — Decrement H by One; Branch if H +NEe 0
BHD2 145 IBRN BRAN I — — H — — Decrement H by Two; Branch if H «NEe 0
BHD4 146 IBRN BRAN I — — H — — Decrement H by Four; Branch if H e+NEs 0
BHEQ 112 IBRN BRAN I — — H — 4 BranchifH=0
BHGE 105 IBRN BRAN 1 — — H — 4 BranchifH>0
BHGT 1 IBRN BRAN 1 — — H — 4 BranchifH>0
BHI1 140 IBRN BRAN 1 — — H — — Increment H by One; Branch if H s+NEs 0
BHI2 141 IBRN BRAN 1 — — H — — Increment H by Two; Branch if H «NE« 0
BHI4 142 IBRN BRAN I — — H — — Increment H by One; Branch if H eNE« 0
BHLE 110 IBRN BRAN 1 — — H — 4 BranchifH<0
BHLT 104 IBRN BRAN I — — H — 4 BranchifH<0
BHNE 113 IBRN BRAN I — — H — 4 Branchif His not equal to 0
BIX 141334 BRAN BRAN \% — H H — — Increment X and Branch if X eNEe¢ 0
BIY 141324 BRAN BRAN A" — H H — — Increment Y and Branch if Y eNEe« 0
BLE 140610 BRAN BRAN \% — H H — 4 BranchifA<0
BLEQ 140702 BRAN BRAN \" — H H — 4 BranchifL=0
BLGE 140615 BRAN BRAN \" — H H — 4 BranchisL=>0
BLGT 140701 BRAN BRAN A" — H H — 4 BranchifL >0
BLLE 140700 BRAN BRAN \" — H H — 4 BranchifL<0
BLLT 140614 BRAN BRAN \% — 4 H — 4 BranchifL<0
BLNE 140703 BRAN BRAN A% — H H — 4 Branchif L eNEeO
BLR 141707 BRAN BRAN VI — H H — — Branchif L-Bit=0
BLS 141706 BRAN BRAN VI — H H — — Branch if L-Bit = 1 (Set)
BLT 140614 BRAN BRAN \Y — H H — 4 BranchifA<o0
BMEQ 141602 BRAN BRAN Vi — H H — — Branch if Magnitude = 0
BMGE 141706 BRAN BRAN VI — H H — — Branch if Magnitude is >0
BMGT 141710 BRAN BRAN Vi — H H — -~ Branchif Magnitude is >0
BMLE 141711 BRAN BRAN Vi — H H — — Branch if Magnitude is <0
BMLT 141707 BRAN BRAN Vi — H H — — Branch if Magnitude is <0
BMNE 141603 BRAN BRAN VI — H H — — Branch if Magnitude is eNEe 0
BNE 140613 BRAN BRAN \% — H H — 4 Branchif A eNEe0
BRBR 040-077 IBRN BRAN 1 — — H — — BranchifRbitn=0
BRBS 000-037 IBRN BRAN 1 — — H — — BranchifRbitn=1
BRD1 134 IBRN BRAN 1 — — H — — Decrement R by One; Branch if R +NEs 0
BRD2 135 IBRN BRAN I — — H — — Decrement R by Two; Branch if R eNEe §
BRD4 136 IBRN BRAN 1 — — H — — DecrementR by Four; Branch if R «NEe« 0
BREQ 102 IBRN BRAN I — — H — 4 BranchifR=0
BRGE 105 IBRN BRAN I — — H — 4 BranchifR>0
BRGT 101 IBRN BRAN 1 — — H — 4 BranchifR>0
BRI1 130 IBRN BRAN 1 — — H — — Increment R by one and branch if eNEe 0
BRI2 131 IBRN BRAN 1 — — H — — Increment R by 2 and branch if eNEe 0
BRI4 132 IBRN BRAN I — — H — — IncrementR by 4 and branch if eNE« 0
BRLE 100 IBRN BRAN 1 — — H — 4 BranchifR<0
BRLT 104 IBRN BRAN I — — H — 4 BranchifR<0
BRNE 103 IBRN BRAN I — — H — 4 Branchif R eNEe0
C 61 YY MRGR INT I — — H 1 1 Compare Fullword
R CAI 000411 GEN 10 SRVI H H H — — Clear Active Interrupt
CAL 141050 GEN CLEAR SRV H H H — — Clear A Left
CALF 000705 AP PCTLJ VI — H H 6 5 Call Fault Handier
CAR 141044 GEN CLEAR SRV H H H — — Clear A Right Byte
CAS 11 MR SKIP SRV H H H 1 1 Compare A and Skip
CAZ 140214 GEN SKIP SRV H H H 1 1 Compare A with Zero
CEA 000111 GEN PCTL] SR H H H — — Compute Effective Address
CGT 001314 GEN BRAN \" — H H 6 5 Computed GOTO
CGT 026 RGEN BRAN I — — H — 7 Computed GOTO
CH 71 YY MRGR INT I — — H 1 1 Compare Halfword
CHS 140024 GEN INT SRV H H H — — Change Sign

FDR 3059 13-4 1 March, 1979

INSTRUCTION SUMMARY CHART

13

CHS

CMA
CMH
CMR
CR
CRA
CRB
CRBL
CRBR
CRE
CREP
CRHL
CRHR
CRL
CRLE
CSA
CSR
R CXCS

DAD
DBL
DBLE
DFA
DFAD
DFC
DFCM
DFCM
DFCS
DFD
DFDV
DFL
DFLD
DFLX
DFM
DFMP
DFS
DFSB
DFST
DFST
DH
DH1
DH2
DIV
DIV
DLD
DM
DMH
DR1
DR2
DRX
DSB
DST
DVL
E16S
E32I
E32R
E32S8
E64R
E64V
EAA
EAFA ©

040

11 03
140401
045

44

056
140040
140015
062
063
141404
10 02
054
055
140010
141410
140320
041
001714
62

06
000007
106
15,17
06 02
05,07
140574
144

11 02
31,33
17 02
01,03
02 02
15 02
25,27
16 02
21,23
07 02
11,13
04 02
72

130
131

17

17

02

60

70

124
125
140210
07

04

17 03
000011
001010
001013
000013
001011
000010
01 01
001300

1 March, 1979

YY

YY

YY

YY

YY

YY

YY

YY

NN
NN

GEN
RGEN
RGEN
RGEN
GEN
GEN
RGEN
RGEN
GEN
MR
RGEN
RGEN
GEN
GEN
GEN
RGEN
GEN
MRGR
MR
GEN
RGEN
MRFR
MR
MRFR
GEN
RGEN
MR
MRFR
MR
MRFR
MR
MR
MRFR
MR
MRFR
MR
MRFR
MR
MRGR
RGEN
RGEN
MR
MR
MR
MRNR
MRNR
RGEN
RGEN
GEN
MR
MR
MR
GEN
GEN
GEN
GEN
GEN
GEN
MR
AP

LOGIC
LOGIC
LOGIC
LOGIC
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
PCTL]
CLEAR
CLEAR
CLEAR
CLEAR
MOVE
MOVE
MCTL
INT
INT
INT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
FLPT
INT
INT
INT
INT
INT
MOVE
INT
INT
INT
INT
SKIP
INT
MOVE
INT
ADMOD
ADMOD
ADMOD
ADMOD
ADMOD
ADMOD
MOVE
FIELD

SRV
SRV

— oy =

SRV

SRV

SRVI
SRVI
SRVI
SRVI
SRVI
SRVI

:5 =

T T
I T |

| >
|

I T x|

T |

| = w
|

>
jast

=1 9 =] 9

@
jav

> |
T |

IITrI I ITI LTI LTI II I I I I IITI I II I N IIIZIIIIIIISI LTI IS I OIS I I I I T TI NI T T T T T

ImT| T| 9w T
IT Iz T

> |

T IT T OT|

I T I | T T |

| | x| | T I |

T T

jast

13-5

W ow

W M ow W

G W G o

o e gow ||

o = o |

Change Sign

Compare L and Skip
Complement A

Complement H

Complement R

Clear

Clear A

Clear B

Clear High Byte 1 Left

Clear High Byte 2 Right
Clear E

Call Recursive Entry Procedure
Clear Left Half Register
Clear Right Half Register
Clear L

Clear L and E

Copy Sign of A

Copy Sign of R

Control Extended Control Store
Divide Fullword

Double Add

Enter Double Precision Mode
Convert Single to Double Float
Double Floating Add

Double Floating Add

Double Floating Compare
Double Floating Complement
Double Floating Complement
Double Floating Compare and Skip
Double Floating Divide
Double Floating Divide
Double Floating Load
Double Floating Load

Load Double Floating Index
Double Floating Multiply
Double Floating Multiply
Double Floating Subtract
Double Floating Subtract
Double Floating Store
Double Floating Store
Divide Halfword

Decrement H by 1
Decrement H by 2

Divide

Divide

Double Load

Decrement Fullword
Decrement Halfword
Decrement R by One
Decrement R by Two
Decrement and Replace X
Double Subtract

Double Store

Divide Long

Enter 16S Mode

Enter 321 Mode

Enter 32R Mode

Enter 32S Mode

Enter 64R Mode

Enter 64V Mode

Effective Address to A
Effective Address to Field Address
Register 0

FDR 3059

13 NSTRUCTION SUMMARY CHART

R MNEM OPCODE RI FORM FUNC MODE 1 2 3 C CC DESCRIPTION

EAFA 1 001310 AP FIELD VI — H H — — Efiective Address to Field Address
Register 1
EAL 01 01 MR PCTL] \" — H H — — Effective Address to L
EALB 42 NN MRNR PCTL] I — H — Effective Address to LB
EALB 13 02 MR PCTL] \" — H H — — Effective Address to LB
EAR 63 NN MRGR PCTL] I — H — Effective Address to R
EAXB 52 NN MRNR PCTL] 1 — — H — — Effective Address to XB
EAXB 12 02 MR PCTL] \" H H — - Effective Address to XB
R EIO 34 NN MRGR 10 I — — H — 7 Executel/O
R EIO 14 01 MR 10 \% H H — 7 Executel/O
R EMCM 000503 GEN INTGY SRVI E H H — — Enter Machine Check Mode
R ENB 000401 GEN 10 SRVI H H H — — Enable Interrupts
ENTR 01 03 MR PCTL] R A H H — — Enter Recursive Procedure Stack
EPM] 000217 MR MCTL SR H — — — Enter Paging Mode and Jump
R EPMX 000237 MR MCTL SR H — — — — Enter Paging Mode and Jump to XCS
ERA 05 MR LOGIC SRV H H H — Exclusive OR to A
ERL 05 03 MR LOGIC V — H H — — Exclusive ORtoL
R ERM] 000701 MR MCTL SR H — — — — Enter Restricted Execution Mode
and Jump
R ERMX 000721 MR MCTL SR H — — — — Enter Restricted Execution Mode
and Jump to WCS
R ESIM 000415 GEN 10 SRVI H H H — — Enter Standard Interrupt Mode
R EVIM 000417 GEN 10 SRVI H H H — — Enter Vectored Interrupt Mode
R EVM] 000703 MR MCTL SR F — — — Enter Vectored Mode and Jump
R EVMX 000723 MR MCTL SR F — — — — Enter Virtual Mode and Jump te WCS
FA 14,16 YY MRFR FLPT I — — H 3 5 Floating Add
FAD 06 01 MR FLPT RV A H H 3 5 Floating Add
FC 04,06 YY MRFR FLPT I — — H — 1 Floating Compare
FCM 140530 GEN FLPT RV C H H 3 5 Floating Complement
FCM 100 RGEN FLPT I — — H 3 5 Floating Complement
FCS 11 01 MR FLPT RV A H H 6 5 Floating Compare and Skip
FD 30,32 YY MRFR FLPT I — — H 3 5 Floating Divide
FDBL 140016 GEN FLPT v — H H — — Convert Single to Double Float
FDV 17 01 MR FLPT RV D HH 3 Floating Divide
FL 00,02 YY MRFR FLPT I — — H — Floating Load
FLD 02 01 MR FLPT RV A H H — — Floating Load
FLOT 140550 GEN FLPT R C H H 3 5 Convert31-Bit Integer to Float
FLT 105,115 RGEN FLPT 1 — — H 3 5 Convert Integer to Floating
FLTA 140532 GEN FLPT v — H H 3 5 Convert Integer to Floating
FLTH 102,112 RGEN FLPT 1 — — H 3 5 Convert Halfword to Floating
FLTL 140535 GEN FLPT \' — H H 3 Convert Long Integer to Floating
FLX 15 01 MR FLPT RV A H H — — Load Double Word Index
FM 24,26 YY MRFR FLPT I — — H 3 5 Floating Multiply
FMP 16 01 MR FLPT RV D H H 3 &5 Floating Multiply
FRN 140534 GEN FLPT RV D H H 3 5 Floating Round
FRN 107 RGEN FLPT 1 — — H 3 5 Floating Round
FS 20,22 YY MRFR FLPT 1 — — H 3 5 Floating Subtract
FSB 07 01 MR FLPT RV A H H 3 5 Floating Subtract
FSGT 140515 GEN FLPT RV C H H — — Floating Skip if >0
FSLE 140514 GEN FLPT RV C H H — — Floating Skip <0
FSMI 140512 GEN FLPT RV C HH — Floating Skip if Minus
FSNZ 140511 GEN FLPT RV C H H — — Floating Skip if Not Zero
FSPL 140513 GEN FLPT RV C H H — — Floating Skip if Plus
FST 10,12 NN MRFR FLPT I — — H 3 — Floating Store
FST 04 01 MR FLPT RV A H H 3 - Floating Store
FSZE 140510 GEN FLPT RV C H H - — Floating Skip if Zero
R HLT 000000 GEN MCTL SRVI H H H — — Halt
1 41 YN MRGR MOVE 1 — — H — — Interchange Register and Memory-
Fullword
IAB 000201 GEN MOVE SRV H H H — — Interchange A and B
ICA 141340 GEN MOVE SRV H H H — Interchange Characters in A
ICBL 065 RGEN MOVE 1 — — H — — Interchange Bytes and Clear Left
ICBR 066 RGEN MOVE 1 — — H — — Interchange Bytes and Clear Right

FDR 3059 13-6 1 March, 1979

INSTRUCTION SUMMARY CHART

13

ICHL

ICHR
ICL

ICR
IH

TH1
IH2

ILE
M

IMA
IMH

INA
INBC

INBN
INEC

INEN
INH

INK
INK

INT
INT

INTA
INTH

INTL
IR1

IR2
IRB

IRH
IRS

R IRTC
R IRTN

IRX
R ITLB
JDX
JEQ
JGE
JGT

JIX
JLE

JLT
JMP

JMP
JNE

JSR
1ST

JSX
JSXB

JSXB
ISY

"R mm mm

L
LCEQ

LCEQ
LCGE

LCGE
LCGT

LCGT
LCLE

LCLE
LCLT

LCLT
LCNE

LCNE

061
141140

141240
51

126
127

141414
40

13
50

54
001217

001215
001216

001214
001001

000043
070

140554
103,113

140531
101,111

140533
122

123
064

057
12

000603
000601

140114
0006175

15 02
02 03

07 03
05 03

15 03
04 03

06 03
51

01
03 03

73
10

35 03
61

14 02
14

01
141503

153
141504

154
141505

155
141501

151
141500

150
141502

152

1 March, 1979

YN

NN

NN

NN

NN

YY

RGEN
RGEN

GEN
MRNR

MR
MRNR

PIO
AP

AP
AP

AP
GEN

GEN
RGEN

GEN
RGEN

GEN
RGEN

GEN
RGEN

RGEN
RGEN

RGEN
MR

GEN
GEN

GEN
GEN

MR
MR

MR
MR

MR
MR

MR
MRNR

MR
MR

MRGR
MR

MR
MRNR

MR
MR

MRGR
GEN

RGEN
GEN

RGEN
GEN

RGEN
GEN

RGEN
GEN

RGEN
GEN

RGEN

B m e g W

RV

VI
VI

SRV

= oE R mR m® mF <«
=

<3
<

<= << —x

<«

H
H

-
T nT o

|
| T

jas)
| T
T T T TT oI T T T rT xT T 3T rE T rT T LT T T T T T 1T T T T I T T

|
| LT =T I 1T

I e
T 1T | =

!
!

| T T T T T T ozl

[2% »% »»

» T
anfe s

I -
] =l Tl =zl xTl T | T =z

|
T |

13-7

| © o2 ol

|2 e ww o |

.1 2 3 C CC DESCRIPTION

Interchange Halves and Clear Left

Interchange Halves and Clear Right
Interchange and Clear Left

Interchange and Clear Right
Interchange Register and Memory

Halfwerd

Increment by One
Increment by Two

Interchange L and E
Increment Fullword

Interchange Memory and A
Increment Halfword

Input to A
Interrupt Notify

Interrupt Notify
Interrupt Notify

Interrupt Notify
Inhibit Interrupts

Input Keys
Save Keys

Convert Floating to Integer
Convert Floating to Integer

Convert Floating to Integer
Convert Floating to Halfword Integer

Convert Floating to Integer Long
Increment R by One

Increment R by Two
Interchange Bytes

Interchange Halves
Increment Memory Replace and Skip

Interrupt Return
Interrupt Return

Increment and Replace X
Invalidate STLB entry

Jump and Decrement X
Jump if = 0

Jump if >0
Jump if >0

Jump and Increment X

— Jumpif<o

Jump if <0

Jump

Jump

Jump if eNEs 0
Jump to Subroutine
Jump and Store PC

Jump and Store Return in X
Jump and Store Return in XB

Jump and Store Return in XB

— Jump and Store Return in Y

Load

— Test CC Equal to 0 and Set A

Test CC = 0 and Set R
Test CC > 0 and Set A

Test CC > 0 and Set R

— Test GC >0 and Set A

Test CC > 0 and Set R
Test CC < 0 and Set A

Test CC <0 and Set R
Test CC < 0 and Set A

Test CC < 0 and Set R
Test CC oNEe 0 and Set A

Test CC eNEe 0 and Set R

FDR 3059

13 INSTRUCTION SUMMARY CHART

R MNEM OPCODE RI FORM FUNC MODE 1 2 3 C CC DESCRIPTION

LDA 02 MR MOVE SRV H H H — — LoadA
LDAR 44 NN MRGR MOVE I — — H — — Load From Addressed Register
LDC o0 162 RGEN CHAR 1 — — H — 7 Load Character
LDC 1 172 RGEN CHAR I — — H — 7 Load Character
LDC 0 001302 CHAR CHAR \Y% — H H — 7 Load Character
LDC 1 001312 CHAR CHAR \Y% — H H — 7 Load Character
LDL 02 03 MR MOVE V — H H — — LoadLong
P LDLR 05 01 MR MOVE V — H H — — Load From Addressed Register
LDX 35 MR MOVE SRV H H H — — LoadX
LDY 35 01 MR MOVE \' — H H — — LoadY
LEQ 140413 GEN LTSTS SRV H H H — 4 TestA=0;SetA
LEQ 003 RGEN LTSTS 1 — — H — 4 TestR=0;SetR
LF 140416 GEN LTSTS SRV H H H — 4 Logic Set A False
LF 016 RGEN LTSTS 1 — — H — 4 Logic Set R False
LFEQ 141113 GEN LTSTS V — H H — 4 TestF=0;SetA
LFEQ 023,033 RGEN LTSTS I — — H — 4 TestF=0;S5etR
LFGE 141114 GEN LTSTS V — H H — 4 TestF>0;SetA
LFGE 024,034 RGEN LTSTS I — — H — 4 TestF=>0;SetR
LFGT 141115 GEN LTSTS V — H H — 4 TestF>0;SetA
LFGT 025,035 RGEN LTSTS 1 — — H — 4 TestF>0;SetR
LFLE 141111 GEN LTSTS V — H H — 4 TestF<0;SetA
LFLE 021,031 RGEN LTSTS 1 — — H — 4 TestF<0;SetR
LFLI 0 001303 BRAN FIELD VI — H H — — Load Field Length Register 0
LFLI 1 001313 BRAN FIELD VI — H H — — Load Field Length Register 1
LFLT 141110 GEN LTSTS V — H H — 4 TestF<0;SetA
LFLT 020,030 RGEN LTSTS 1 — — H — 4 TestF<0;SetR
LFNE 141112 GEN LTSTS V — H H — 4 TestF «NEeD; Set A
LFNE 022,032 RGEN LTSTS 1 — — H — 4 TestFeNEeD;SetR
LGE 140414 GEN LTSTS SRV H H H — 4 TestA=>0;SetA
LGE 004 RGEN LTSTS 1 — — H — 4 TestR=>0;SetR
LGT 140415 GEN LTSTS SRV H H H — 4 TestA>0;SetA
LGT 005 RGEN LTSTS I — — H — 4 TestR>0;SetR
LH 11 YY MRGR MOVE I — H — — Load Halfword
LHEQ 013 RGEN LTSTS 1 — — H — 4 TestH=0;SetH
LHGE 004 RGEN LTSTS I — — H — 4 TestH>0;SetH
LHGT 015 RGEN LTSTS 1 — — H — 4 TestH>0;SetH
LHL1 04 YN MRGR MOVE I — — H — — Load Halfword Left Shifted by 1
LHL2 14 YN MRGR MOVE 1 — — H — — Load Halfword Left Shifted by 2
LHLE 011 RGEN LTSTS 1 — — H — 4 TestH<0;SetH
LHLT 000 RGEN LTSTS I — — H — 4 TestH<O0;SetH
LHNE 012 RGEN LTSTS 1 — — H — 4 Test HeNEeO; SetH
R LIOT 000044 AP MCTL VI — — H 6 5 Loadl/O TLB (Prime 750 only)
LLE 140411 GEN LTSTS SRV H H H — 4 Test A<O0;SetA
LLE 001 RGEN LTSTS 1 — — H — 4 TestR<0;SetR
LLEQ 141513 GEN LTSTS V — H H — 4 TestL=0;SetA
LLGE 140414 GEN LTSTS V — H H — 4 TestL>0;SetA
LLGT 14151 GEN LTSTS V — H H — 4 TestL>0:SetA
LLL 0410XX SHFT SHIFT SRV H H H 4 — Long Left Logical
LLLE 141511 GEN LTSTS V — H H — 4 TestL<0;SetA
LLLT 140410 GEN LTSTS V — H H — 4 TestL<0;SetA
LLNE 141512 GEN LTSTS V — H H — 4 TestL oNEe0;Set A
LLR 0412XX SHFT SHIFT SRV H H H 4 — Long Left Rotate
LLS 0411XX SHFT SHIFT SRV H H H 2 — Long Left Shift
LLT 140410 GEN LTSTS SRV H H H — 4 Test A<0;SetA
LLT 000 RGEN LTSTS 1 — — H — 4 TestR<U0;SetR
R LMCM 000501 GEN INTGY SRVI E H H — — Leave Machine Check Mode
LNE 140412 GEN LTSTS SRV H H H — 4 TestA oNEeO;SetA
LNE 002 RGEN LTSTS I — — H — 4 TestReNEeO; SetR
R LPID 000617 GEN MCTL VI — H H — — Load Process ID
R LPM] 000215 MR MCTL SR F — — — — Leave Paging Mode and Jump
R LPMX 000235 MR MCTL 5K F — — — — Leave Paging Mode and Jump to XCS
R LPSW 000711 AP MCTL VI — H H 7 6 Load Program Status Word

FDR 3059 13-8 1 March, 1979

INSTRUCTION SUMMARY CHART 13

R MNEM OPCODE RI FORM FUNC MODE 1 2 3 C CC DESCRIPTION
LRL 0400XX SHFT SHIFT SRV H H H 4 — Long Right Logical
LRR 0402XX SHFT SHIFT SRV H H H 4 — Long Right Rotate
LRS 0401XX SHFT SHIFT SRV H H H 4 — Long Right Shift
LT 140417 GEN LTSTS SRV H H H — 4 SetA=1
LT 017 RGEN LTSTS 1 — — H — 4 SetR-=1
R LWCS 001710 GEN MCTL VI — H H 6 5 Load Writable Control Store
M 42 YY MRGR INT 1 — — H 3 — Multiply Fullword
R MDEI 001304 GEN INTGY VI — H H 6 5 Memory Diagnostic Enable Interleave
R MDII 001305 GEN INTGY VI — H H 6 5 Inhibit Interleaved
R MDIW 001324 GEN INTGY VI — H H 6 5 Wriie interieaved
R MDRS 001306 GEN INTGY VI — H H 6 5 Read Syndrome Bits
R MDWC 001307 GEN INTGY VI — H H 6 5 Load Write Control Register
MH 52 YY MRGR INT I — — H 3 5 Multiply Halfword
MIA 64 NN MRGR MCTL 1 — — H — — Microcode Entrance
MIA 12 01 MR MCTL \% — H H — — Microcode Entrance
MIB 74 NN MRGR MCTL I — — H — — Microcode Entrance
MIB 13 01 MR MCTL \% — H H — — Microcode Entrance
MPL 16 03 MR INT A% — H H 3 — Multiply Long
MPY 16 MR INT \% — H H 3 — Multiply
MPY 16 MR INT SR B H H 3 — Multiply
N 03 YY MRGR LOGIC 1 — — H — — AND Fullword
R NFYB 001211 AP PRCEX VI — H H 6 5 Notify
R NFYE 001210 AP PRCEX VI — H H 6 5 Notify
NH 13 YY MRGR LOGIC I — — H — — AND Halfwerd
NOP 000001 GEN MCTL SRVI H H H — — No Operation
NRM 000101 GEN INT SR H H H — — Normalize
(0] 23 YY MRGR LOGIC I — — H — — ORFullword
R OcCp 14 PIO 10 SR H H H — — Output Control Puise
OH 33 YY MRGR LOGIC 1 — — H — — OR Halfword
ORA 03 02 MR LOGIC V — H H — — Inclusive OR
R OTA 74 PIO 10 SR H H H — — Output from A
OTK 000405 GEN KEYS SR H H H 7 6 RestoreKeys
OTK 071 RGEN KEYS I — — H 7 6 Restore Keys
PCL 41 NN MRNR PCTL] 1 — — H 6 5 Procedure Call
PCL 10 02 MR PCTL] \% — H H 6 5 Procedure Call
PID 000211 GEN INT SR B H H — — Position for Integer Divide
PID 052 RGEN INT I — — H — — Position for Integer Divide
PIDA 000115 GEN INT \% — H H — — Position for Integer Divide
PIDH 053 RGEN INT I — — H — — Position for Integer Divide
PIDL 000305 GEN INT v — H H — — Position Long for Integer Divide
PIM 000205 GEN INT SR B H H — — Position After Multiply
PIM 50 RGEN INT 1 — — H 3 5 Position After Multiply
PIMA 000015 GEN INT \Y% — H H 3 5 Position After Multiply
PIMH 51 RGEN INT 1 — — H 3 5 Position After Multiply
PIML 000301 GEN INT \% — H H 3 5 Position After Multiply Long
PRTN 000611 GEN PCTLJ VI — H H 7 6 Procedure Return
R PTLB 000064 GEN MCTL VI — — H 6 5 Purge TLB (Prime 750 only)
RBQ 141715 AP QUEUE V — H H — 7 Remove From Bottom of Queue
RBQ 133 AP RGEN I — — H — 7 Remove From Bottom of Queue
RCB 140200 GEN KEYS SRVI H H H 5 — Clear G-Bit (Reset)
R RMC 000021 GEN INTGY SRVI E H H — — Clear Machine Check
ROT 24 NN MRGR SHIFT I — — H 4 — Rotate
RRST 000717 AP MCTL VI — H H — — Register Restore
RSAV 000715 AP MCTL VI H H — — Register Save
RTN 000105 GEN PCTL] SR H H H — — Return
RTQ 141714 AP QUEUE V — H H — 7 Remove From Top of Queue
RTQ 132 RGEN QUEUE 1 — — H — 7 Remove From Top of Queue
S 22 YY MRGR INT 1 — — H 2 1 Subtract Fullword
S1A 140110 GEN INT SRV H H H 2 1 Subtract One from A
SZA 140310 GEN INT SRV H H H 2 1 Subtract Two from A
SAR 10026X GEN SKIP SRV H H H — — Skip on A Bit Clear
SAS 10126X GEN SKIP SRV H H H — — Skip on A Bit Set

1 March, 1979 13-9 FDR 3059

13 INSTRUCTION SUMMARY CHART

R MNEM OPCODE RI

SBL 07 03
SCA 000041
SCB 1406000
SGL 000005
SGT 100220
SH 32 YY
SHA 15 NN
SHL 05 NN
SHL1 076
SHL2 077
SHR1 120
SHR2 121
SKP 100000
R SKS 34
SL1 072
SL2 073
SLE 101220
SLN 101100
SLZ 100100
SMCR 100200
SMCS 101200
SMI 101400
R SNR 10024X
R SNS 10124X
SNZ 101040
SPL 100400
R SR1 100020
SR1 074
R SR2 100010
SR2 075
R SR3 100004
SR4 100002
SRC 100001
R SS1 101020
R SS2 101010
R SS3 101004
R SS4 101002
SSC 101001
5SM 140500
SSM 042
SSP 140100
SSP 043
R SSR 100036
R SSS 101036
ST 21 NN
STA 04
STAC 001200
STAR 54 NN
STC 0 166
STC 1 176
STC 0 001322
STC 1 001332
STCD 137
STCH 136
STEX 001315
STEX 027
STFA 0 001320
STFA 1 001330
STH 31 NN
STL 04 03
STLC 001204
P STLR 03 01
FDR 3059

FORM FUNC MODE 1 2 3
MR INT \% — H H
GEN INT SR H H H
GEN KEYS SRVI H H H
GEN INT SR H H H
GEN SKIP SRV H H H
MRGR INT I — — H
MRGR SHIFT I — — H
MRGR SHIFT I — — H
RGEN SHIFT I — — H
RGEN SHIFT 1 — H
RGEN SHIFT I — — H
RGEN SHIFT I — — H
GEN SKIP SRV H H H
PIO 10 SR H H H
RGEN SHIFT I — — H
RGEN SHIFT 1 — — H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN INTGY SRV E H H
GEN INTGY SRV E H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
RGEN SHIFT [— — H
GEN SKIP SRV H H H
RGEN SHIFT 1 — — H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
GEN INT SRV H H H
RGEN INT I — — H
GEN INT SRV H H H
RGEN INT I — — H
GEN SKIP SRV H H H
GEN SKIP SRV H H H
MRGR MOVE 1 — — H
MR MOVE SRV H H H
AP MOVE V — H H
MRGR MOVE 1 — — H
RGEN CHAR 1 — — H
RGEN CHAR i — — H
CHAR CHAR \4 — H H
CHAR CHAR v — H H
AP MOVE 1 — — H
AP MOVE 1 — — H
GEN PCTL] \4 — H H
RGEN PCTL] I - — H
AP FIELD VI — H H
AP FIELD Vi — H H
MRGR MOVE I — — H
MR MOVE V — H H
AP MOVE V — H H
MR MOVE V — H H

13-10

|-h_“-l> PN

|"“-¢:-|

CC DESCRIPTION

| o0 en N 9 9N <

Subtract Long
Load Shift Count into A
Set C-Bit in Keys

Enter Single Precision Mode
Skip if A Greater Than Zero

Subtract Halfword
Shift Arithmetic

Shift Logical
Shift H Left One

Shift H Left Two
Shift H Right One

Shift H Right Two
Skip

Skip if Satisfied
Shift R Left One

Shift R Left Two
Skip if A Less Than or Equal to Zero

Skip if LSB Nonzero (A(16)=1)
Skip if LSB Zero (A(16)=0)

Skip on Machine Check Reset
Skip on Machine Check Set

Skip if A Minus
Skip on Sense Switch Clear

Skip on Sense Switch Set
Skip if A Non-Zero

Skip if A Plus
Skip if Sense Switch 1 Clear

Shift R Right One
Ski_n if Sense Switch 2 Clear

Shift R Right Two
Skip if Sense Switch 3 Clear

Skili if Sense Switch 4 Clear
Skip if C-Bit is Clear

Skip if Sense Switch 1 Clear
Skip if Sense Switch 2 Clear

Skip if Sense Switch 3 Clear
Skip if Sense Switch 4 Clear

Skip if C-Bit is Set
Set Sign Minus

Set Sign Minus
Set Sign Plus

Set Sign Plus
Skip if Any Sense Switch is Clear

Skip if All Sense Switches are Set
Store Fullword

Store A
Store A Conditionally

Store into Addressed Register
Store Character

Store Character
Store Character

Store Character
Store Conditional Fullword

Store Conditional Halfword
Stack Extend

Stack Extend
Store Field Address Register

Store Field Address Register
Store Halfword

Store Long
Store L Conditionally

Store L into Addressed Register

1 March, 1979

INSTRUCTION SUMMARY CHART 13

R MNEM OPCODE RI FORM FUNC MODE 1 2 3 C CC DESCRIPTION

R STPM 000024 GEN MCTL VI — H H — — Store Processor Model Number
STX 15 MR MOVE SRV H H H — — StoreX
STY 35 02 MR MOVE v — H H — — StoreY
SUB 07 MR INT SRV H H H 2 1 Subtract
svC 000505 GEN PCTL] SRVI H H H — — Supervisor Call
SZE 100040 GEN SKIP SRV H H H — - Skipif A Zero
TAB 140314 GEN MOVE V — H H — — TransferAtoB
TAK 001015 GEN KEYS v — H H 7 6 Move A to Keys
TAX 140504 GEN MOVE V — H H — — Transfer A to X
TAY 140505 GEN MOVE V — H H — — TransferAtoY
TBA 140604 GEN MOVE \" — H H — — TransferBto A
TC 046 RGEN INT 1 — — H 2 1 Two's Complement R
TCA 140407 GEN INT SRV H H H 2 1 Two's Complement A
TCH 047 RGEN INT I — — H 2 1 Two’s Complement H
TCL 141210 GEN INT A" — H H 2 1 Two's Complement Long
TFLL 0 001323 GEN FIELD v — H H — — Transfer Field Length to L
TFLL 1 001333 GEN FIELD \% — H H — — Transfer Field Length to L
TFLR 0 163 RGEN FIELD I — — H — — Move Field Length to R
TFLR 1 173 RGEN FIELD 1 — — H — — Move Field Length to R
TKA 001005 GEN KEYS v — H H — — Move Keys te A
TLFL 001321 GEN FIELD \% — H H — — Transfer L to Field Length Register
TLFL 001331 GEN FIELD \% — H H — — Transfer L to Field Length Register
™ 44 NN MRNR MCTL I — — H — 1 Test Memory Fullword
TMH 54 NN MRNR INT I — — H — 1 Test Memory Halfword
TRFL 0 165 RGEN FIELD I — — H — — Transfer R to Field Length Register
TRFL 1 175 RGEN FIELD I — — H — — Transfer R to Field Length Register
TSTQ 141757 AP QUEUE V — H H — 7 Test Queue
TSTQ 104 RGEN QUEUE I — — H — 7 Test Queue
TXA 141034 GEN MOVE \" — H H — — Transfer Xto A
TYA 141124 GEN MOVE V — H H — — TransferY to A
R VIRY 000311 GEN INTGY SRVI G H H 6 5 Verify
R WAIT 000315 AP PRCEX VI — H H — — Wait
WCS 0016XX GEN MCTL RVI — O O — — Writeable Control Store
X 43 YY MRGR LOGIC I — — H — — Exclusive OR Fullword
XAD 001100 DECI DECI VI — U H 3 1 Decimal Add
XBTD 001145 DECI DECI VI — U H — — Binary to Decimal Conversion
XCA 140104 GEN MOVE SRV H H H — — Exchange and Clear A
XCB 140204 GEN MOVE SRV H H H — — Exchange and Clear B
XCM 001102 DECI DECI VI — U H — 1 Decimal Compare
XDTB 001146 DECI DECI VI — U H — 5 Decimal to Binary Conversion
XDV 001107 DECI DECI A% — U H — 1 Decimal Divide
XEC 01 02 MR PCTL] RV F H H — — Execute
XED 0071112 DECI DECI VI — — H — — Numeric Edit
XH 53 YY MRGR LOGIC I — — H — — Exclusive OR Halfword
XMP 001104- DECI. DECI VI — U H 3 1 Decimal Multiply
XMV 001101 DECI DECI VI — U H — 1 Decimal Move
R XVRY 001113 MCTL GEN VI — U H 6 5 Verify XIS
ZCM 001117 CHAR CHAR A1 — U H — 1 Compare Character Field
ZED 001111 CHAR CHAR VI — — H — — Character Edit
ZFIL 001116 CHAR CHAR VI — U H — - Fill Character Field
M 43 NN MRNR CLEAR I — — H — — C(Clear Fullword
7ZMH 53 NN MRNR CLEAR 1 — — H — — Clear Halfword
MV 001114 CHAR CHAR Vi — U H — - Move Character Field
ZMVD 001115 CHAR CHAR Vi — U H — — Move Equal Length Fields
ZTRN 001110 CHAR CHAR VI — U H — — Translate Character Fields

1 March, 1979 13-11 FDR 3059

Languag tc

INTRODUCTION

The Prime Macro Assembler’s language structure is both flexible and simple. For example,
here is a program which includes three pseudo-operations, a machine instruction and a
literal.

REL PSEUDO-OPERATION — USE RELOCATABLE ADDRESSING
Lpa ='123 MACHINE INSTRUCTION - LITERAL

CALL EXIT PSEUDO-OPERATION - SUBROUTINE CALL

END PSEUDO-OPERATION - END OF SOURCE CODE

This section describes the structure and function of PMA language statements, and the
elements, constants, symbols and expressions which comprise them.

LINES

Input to the assembler consists of instruction statements and comments (See Figure 14-1).
The basic unit of information is the line {See Figure 14-2). Fields, statements and comments
within a line can be delimited by either spaces, commas or colons, depending on the
construction.

There are three basic line formats:

Comment Line Column 1 contains an asterisk (*). The entire line is
treated as a comment.
Change Page Column 1 contains an apostrophe (). The rest of the
Heading Lines line is used as a page title for subsequent pages.
Statements See below.
STATEMENTS
Types

Statements may be:

¢ Mnemonic represeniations of machine instructions.
e Assembler pseudo-operations.
e Macro definitions and calls.

1 March, 1979 14-1 FDR 3059

14 LANGUAGE STRUCTURE

SOURCE FILE
MADE UP OF
SOURCE
STATEMENTS

1

SOURCE
STATEMENTS

ARE ;
I

1;

]

INSTRUCTION COMMENTS
EITHER | STATEMENTS OR| STATEMENTS
WHICH ARE
OF THREE
MAIN TYPES
= ASSEMBLER MACRO
e erions | OR | PsEUDO | OR | DEFINITIONS
e OPERATIONS | AND CALLS
WHICH ARE
COMPOSED OF
loneTO |
FOUR FIELDS |
 LABEL OPERATION OPERANDS COMMENTS
WHICH ARE
COMPOSED
OF
EXPRESSIONS
WHICH ARE WHICH ARE
COMPOSED COMPOSED
OF OF
COMBINATION CHARACTER
TERMS OR | oF TERMS STRINGS
WHICH ARE
COMPOSED OF
CHARACTERS
ASClI
CHARACTER
SET
Figure 14-1. PMA Statements
FDR 3059 14-2 1 March, 1979

LANGUAGE STRUCTURE 14

ONAL 1 ORMORESPACES ~ 2SPAGESORCOL.72
~ o e ,‘74 i o SO A
LR aL ‘ '
| wABeL | [| STATEMENT

oPTI

g

s

SINGLE
STATEMENT
- LINE o

\ CoMMENTS |

v

| comments |

|

]

| ,

| ' - :
MULTIPLE ;
STATEMENTS | ‘ LABEL | |
PERLINE | L1 |

]

- COLON i

STATEMENT | : | STATEMENT

T
1,
f
!

L o e i e i e -—.:—_—-_}

'SEMICOLON

el

S
| LABEL |

T
1
f

STATEMENT

MULTIPLE =
LINESPER
STATEMENT

« —— 41

- STATEMENT CONTINUED

APOSTROPHE

CHANGE . - —
PAPER HEADING ! : NEW PAGE HEADING TEXT
LINE .

ASTERISK

COMMENT LINE * COMMENTS

Figure 14-2. PMA Line Format

1 March, 1979 14-3 FDR 3059

14 LANGUAGE STRUCTURE

Syntax
Statements may have four possible fields, delimited by spaces:
[label] operation [operand] ... [comment]

Label: Assigns a name to a program location, such as a subroutine entry point, the address
of a constant, or a storage field.

The first character of a label must be in column 1 of a line. If a statement does not have a
label, the first column must be blank. Labels must be legal symbols.

Operation: Defines the action taken at assembly time (pseudo-operations, macro definitions
and calls) or at execution time (machine instructions). The operation is the only field
required in all types of instructions and must be entered exactly as shown in the individual
statement definition.

Operand: Contains information to be acted upon by the operation code. The number of
operands and their meaning is operation-specific. Some statements do not require an
operand; others require several.

Comments: Ignored by PMA except for printing in the listing. Comments document the
meaning of the operation. All text following either column 72 or two spaces after the last
operand (ten spaces with macro calls) is treated as a comment.

Elements

Statement elements — labels, operation codes and operands — are composed of constants.
symbols and expressions. These are a subset of the printing ASCII characters. The entire
ASCII character set, printing and non-printing, may be used in comments. macro instruction
operands and within literal text fields.)

Constants: Constants are explicit data values. A constant may be any of the following data
types.

e Decimal

e Binary

¢ Hexadecimal

e QOctal

e Character {ASCII)
e Address

Constants may be used in expressions to represent bit configurations, absolute addresses.
displacements and data. Section 15, Data Definition, contains a full discussion of data types
and formats.

Symbols: Symbols are alphanumeric strings which represent locations or data. They may be

from 1 to 32 characters in length. The first character must be a letter (A-Z). and the
remaining characters may be letters, numerals (0-9), the dollar sign (8), or underscore ().
Symbols containing more than 32 characters are allowed in the source code, but only the
first 32 characters are examined by the assembler.

Expressions: Expressions contain one or more constants or symbols, called terms, which
have single precision integer values. Multiple terms are joined by operators, which may be
arithmetic, relational, logical or shift. At assembly time, PMA evaluates an expression by
performing the indicated operations, if any, thus producing a single precision integer result.

Example Comment
A+3 Arithmetic expression consisting of a variable “A”

and a constant 3"

FDR 3059 14-4 1 March, 1979

LANGUAGE STRUCTURE 14

A/5) Shift expression consisting of a variabl
sub-expression (ALPA/5).
BETA.GE.A+8FF Logic expression consisting of a variable (BETA) and

a sub-expression (A+8FF).

3

e (A} and a

You may use expressions as:

* Instruction operands

* Literals

* Part of macro definitions and calls

® Symbol-defining pseudo-operation operands
Multiple statements per line: Statements may be packed two or more per line. Each
statement is separated from the one following by a colon (:). The PMA assembler processes
the first non-space character following the colon as the operation of a new statement. The
last statement in the line is terminated by two spaces or column 73, and the rest of the line
treated as a comment. If the line begins with a label, the label is assigned to the first
statement on that line. Since labels must begin in column 1, there can only be one label per
line, as in:

LABEL1 LDA = 123:LDA = 456 COMMENT?2

Multiple lines per statement: Any statement may be interrupted by a semicolon (;) and
continued on the next line. The rest of the line following the semicolon is treated as a
comment. Processing of the statement continues with the first non-space character in the
following line. Semicolons appearing within comments are not interpreted as continuation
requests.

MEMORY REFERENCE INSTRUCTION FORMAT (SRV)
Operation Field

Mnemonic: The operation field must include one of the memory reference instruction
mnemonics.

Triple asterisk (dummy instruction): A triple asterisk in place of an instruction mnemonic is
a pseudo-operation code that causes the assembler to form a memory reference instruction
with an op-code of zero. Another asterisk may be added to specify indirect addressing. The
variable field of such a statement is treated like any other memory reference instruction.

Percent sign (7): A % foI]owing the mnemonic tells the assembler to progess this instruction
in two word (long-reach) format.

Pound sign (#): A # following the mnemonic tells the assembler to process this instruction in
one word format.

Operand Field

The operand field of a memory reference instruction contains an address expression, which
may be modified by indirection, indexing, and by case register references.

Symbolic addresses: Addresses can be specified by any constant, symbol, literal, or
expression which can be evaluated as a 16-bit number.

Indexing: Indexing is optional and is specified by a “1"", X", or, in V or I mode, a “Y",
following the address expression. The form 0" is interpreted as non-indexing.

Indirection: An asterisk (*) tells the assembler that this address is a pointer to another
address.

1 March, 1979 14-5 FDR 3059

14 1. ANCUAGE STRUCTURE

Stack: An at sign (@) used alone in the address tells the assembler that this instruction
references the stack. This notation is not legal in 64V or 32I; stack base—SB%—notation is
used in these modes.

Base registers (V or I mode): A percent sign (%) following SB, LB, PB or XB tells the
assembler that the operand is relative to a particular base register.

Asterisk (current location): An asterisk (*) in the operand field represents the current value
of the assembler location counter.

Double asterisk (initial zero): A double asterisk (**) in the operand field causes the
assembler to load zeroes in the 9-bit address field and sector bit. (Indexing and indirect
addressing conventions are unchanged.) This convention is used when the desired location
is to be developed or modified by other instructions or is not known at the time of assembly.

Equals sign (literals): A literal is a constant preceded by an equals sign, as in:
LDA =100

The assembler associates the numerical value of each literal with the symbol used (100 in
this case) and reserves a storage location for a constant of the value. The value in the
operand field will be the address of the literal.

Special Cases

The assembler will generate a long instruction if any of the following cases apply:

1. Indexing by Y is specified.

2. A percent (%) opcode modifier is used.

3. The opcode does not have a short form (zero opcode extension).

4. If the mode of the address is external of common (SEG/SEGR mode
only).

5. The address is linkage relative and not in the range 400 to '777.

6. The address is stack relative and not in the range "10 to '377.

7. The address is temporary base relative.

8. Indirection is specified and a # opcode modifier is not used (SEG or

SEGR mode only).

ply and a # opcode suffix wa

‘‘‘‘‘ y of th PPy used, an error will be generated.

o

In SEG or SEGR mode, if the expression mode is absolute, it must be in the range 0 to 7 to
specify a compatible register address. If a long instruction is generated, an error will be
reported since register set addressing is only available with short instructions. Because of
rule 8 above, an instruction that specified indirection through a register must also have a #
opcode suffix.

INSTRUCTION FORMATS - I-MODE

The assmbler formats for I-Mode instructions are listed in Table 14-1. See Section 9, Data
Structures, for the I-Mode machine formats.

FDR 3059 14-6 1 March, 1979

LANGUAGE STRUCTURE 14

* IBRN bit test

Table 14-1. Assembler Formats {I-Mode)

Instruction Type Assembler
MRGR op r,addr
MRFR op f.addr
MRNR op addr
IBRN

51" 3
opll;} ,word

op r,bitno, word

RGEN op'r

GEN op

AP op ap

** RGEN field register op falr,r

** BRAN field register op falr,data
** AP field register op falr.ap

WORD
ADDR

AP

BIT
DATA
FALR

¥
OPCODE
R

* bitno selects a specific opcode
** FALR selects a specific opcode

Abbreviations

word number address field, no indirection or indexing

full segmented address field. optional indirection/indexing by

general registers 1-7

argument pointer, optional indirection
bit number (1-32)

16 bit data word

field register number {0-1)

floating register number (0-1)
instruction operation code

general register number (0-7)

1 March, 1979

14-7

FDR 3059

14 1. ANGUAGE STRUCTURE

(0@@1) ****** [_MODE ADDRESSING ILLUSTRATION ****x%
(8092) *
(000n3) *
(0004) SEGR
000004 (0905) IX EQU 4
(09085) *
000000: ©002240.000032 (0007) STRT L 1,DATA DIRECT
000002: 002540.000030 (3008) L 2,PTR,* INDIRECT
000004: 002674.000030 (0009) L 3,PTR,7 INDEXED
000005: 003174.000030 (3018) L 4,PTR,*7 POST-INDEXED, INDIRECT
000010: 003334.000030 (0011) L 5,PTR,7* PRE-INDEXED, INDIRECT
000012: 003550.000030 (0012) L 6,PTR,* (IX) POST-INDEXED, INDIRECT
000014: 003730.000030 (0013) L 7,PTR, (IX+2) * PRE-INDEXED, INDIRECT
(6014) *
200016: 002205.000100A (8015) L 1,='100L GENERAL REGISTER IMMEDIATE
000020: 003042.000400L (0016) L 4,="123456A71, GENERAL REGISTER LITERAL
P00022: 014002.040201A (9017) FL 0,=1.0 FLOATING REGISTER IMMEDIATE
000024: 014042.000402L (8718) FL. @,=3.14159 FLOATING REGISTER LITERAL
(0019) *
000026: 002214 (0028) L 1,3 REGISTER TO REGISTER
p00e27: $14216 (8021) DFL 4,1 FLOATING REGISTER TO REGISTER
(0022) *
(6023) *
000830: (0@24) PTR BSS 2
000032: (0025) DATA BSS 2
(0026) *
(8827) *
000034 (0928) END

HOW TO WRITE V OR I MODE CODE IN PMA

In order to take advantage of the PMA facilities, the structure of a V or I Mode program
should reflect the system architecture design for the separation of code and data (see
Reference Guide, System Architecture).

The recommended structure is:

Prologue

SEG/SEGR Sets up segmented address space
RLIT Puts literals in the procedure area
ENT Entry point declarations

Code

Executable code
Data Area

DYNM Stack variable declarations
LINK defines linkage area containing static variables
ECB entry control block

End

References ECB name.

PMA makes using the segmented architecture easy. Thus the programmer can write straight-
forward code, such as LDA ADDR. The assembler, depending on the definition of ADDR,
may generate a one word or two word instruction, and may reference either the stack area,
the linkage area, the procedure area or a temporary area. This is possible because symbols
carry a great deal of state information with them.

FDR 3059 14-8 1 March, 1979

LANGUAGE STRUCTURE 14

AAAAAA

ECB: The ECB (entry control block) describes the environment the program runs in. It
includes the location to start execution, the name of the first argument, if any, and the
number of arguments. The ECB is the link used by the system to run the module. It may be
located anywhere, but normally it goes in the linkage data area in order to produce pure
code.

Stack: The default stack size includes a stack frame header. Additionally, all the stack
variables defined by the DYNM pseudo-operation are added to the stack frame size and the
size is automatically put into the ECB definition. Stack variables are defined sequentially
and may be any size. For example DYNM STAR(1) generates one word, while argument
pointers, which are three word indirect pointers to the first word of an argument, would be
defined as, for example, DYNM STPTR(3). Definition of stack variables by DYNM allows
the assembler to build the appropriate addressing forms automatically e.g. DYNM STAR(1);
LDA STAR will cause the assembler to generate the address form explicitly shown by
LDA# SB%+STAR.

Code: The assembler automatically places code in the procedure segment; the PROC
pseudo-operation is not necessary unless you want to put some code after the LINK pseudo-
operation which defines the linkage area.

Note
Since the assembler picks the instruction length for you, be
careful about using skips and compares—they assume a one
word instruction following them. Also, be aware that, by
default, all pointers are long.

Linkage area: The LINK pseudo-operation tells the assembler to tag the variables which are
defined after it (using BSS, ECB, DATA, etc.) as linkage base relative. These are the static,
impure data and variables required for pure procedures.

Literals: The RLIT pseudo-operation will cause literals to be generated in the procedure
area.

Examples

The series of annotated examples beginning on page 14-10 below show a subroutine as a
programmer might write it in V-Mode, I-Mode, and R-Mode. Argument transfer and
referencing are also shown in Section 8—Interfacing with System Libraries.

1 March, 1979 14-9 FDR 3059

14 1.ANGUAGE STRUCTURE

ADDARY, jrw, ©1/11/79 -32I MODE-

(g@@l) * ADDARY, jrw, 01/11/79 -321 MODE-
(60@2) *
(gg@3) * Add the elements of a 10 dimensional array of 16-bit values, producing
(0004) * a 16-bit result and returning a count of the number of members of the
(000B5) * array which were zero. The result is printed on the user terminal.
(6006) *
(66B7) *
(0008) *
(0009) * Calling sequence (Fortran):
(ggle) *
(#011) * INTEGER ARY (10), NZERO, ADDARY, RESULT
(6912) * “es
(0@13) * RESULT = ADDARY (ARY, NZERO)
(6014) *
(@B15) *
(0016) * Calling sequence (PMA):
(9@17) *
(0318) * CALL ADDARY
(0319) * AP ARY,S ARRAY WHOSE ELEMENTS ARE TO BE SUMMED
(6020) * AP NZERO,SL RETURNED # ELEMENTS = @
(86021) * cos RESULT RETURNED IN (A) (GR2H)
(8922) *
(8023) *
(gB24) *
000400 (9025) ENT ADDARY ,ADDECB ENTRY DECLARATION
(8@26) *
(0027) SEGR 32I-MODE SEGMENTED ADDRESSING
(0028) RLIT PLACE LITERALS IN PROCEDURE FRAME
(0029) *
(0@30) *
60000 (¢031) ADDARY EQU * ECB CAUSES CONTROL TO BE PASSED HERE ON CALL
000000: 000605 (8032) ARGT TRANSFER POINTERS TO ARGUMENTS
(8@33) *
000001: 922201.177766A (0834) LH 1,=-1@ # ELEMENTS TO ADD
00060063: 134741.000015S (8635) ZMH NZERO, * INITIALIZE # ELEMENTS WHICH = @
P0PPB5: 022601.000000A (00636) LH 3,=0 INITIALIZE ACCUMULATOR
(8937) *
(#@38) *---LOOP TO PERFORM ACTUAL ADDITION:
200007 (¢039) ADDLP EQU *
000007: 022541.000012S (8049) LH 2,ARY,* PICK UP NEXT ARRAY ELEMENT
gp@ol1l: 020513.000015 (0041) BHNE 2,LP1@ TEST ZERO
900013: 134141.000015S (0042) IMH NZERO,* VALUE IS ZERO, BUMP COUNTER
g00B15: #2461¢@ (pB43) LP10O AH 3,2 COMPUTE NEW SUM (RESULT => GR3H)
0P@016: 134041.000013S (0044) IMH ARY+1 UPDATE WORD# OF POINTER TO NEXT ARRAY ELEMENT
$00020: 620340.0800607 (@045) BHI1 1,ADDLP BRANCH IF NOT DONE, PROCESS NEXT ELEMENT
(ge46) *
(6@47) *---PRINT RESULT ON USER TERMINAL...
00PP22: 062641.0000209S (0048) STH 3,5UM SO WE CAN PRINT SUM
200024: 114342.000420L (0049) CALL TNOUA
gPe026: 000100.000043 (0050) AP =C'RESULT IS ',S
000030: 000300.000050 (0651) AP =10,SL
go@032: 114342.000422L (6052) CALL TODEC PRINT DECIMAL RESULT
000034: 000700.0000208S (0053) AP SUM,SL
000036: 114342.000424L (0054) CALL TONL PRINT NEW-LINE
(6955) *
: (#@56) *--—THRU HERE WHEN DONE - RETURN WITH SUM IN THE GR2H (A-REGISTER).
000040: 022441.000020S (8057) LH 2,SUM
000042: 008611 (9058) PRTN BACK TO CALLER
(8059) *
(6060) *
(6@61) *-——DATA DEFINITION:
(6962) *
aa00812 (6063) DYNM ARY (3) ,NZERO(3) ,S5UM
p0PB15
0g0020

FDR 3059 14-10 1 March, 1979

LANGUAGE STRUCTURE 14

000400>

200043:
000044:
200045
000046:
000047
0060050 :

000420> 00P0C00.000000E
000422> (00000.000000E
000424> PP00P0.000PO0E

TEXT SIZE:

ADDARY
ADDECB
ADDLP
ARY
LP10
NZERO
SUM
TNOUA
TODEC
TONL

(0P64)
(80265)
(0066)
(8067)
200000 (0068)
0000822
208012
260002
1774009
010000
(6669)
(6070)
(g671)
200420 (8872)
00.151385A
0@.151725A
00.146324A
00.128311A
06 .151640A
00.000012A
PROC 400851
000000 0031 0068
000400L 0068
000007 00839 0045
2000125 0040 0044
000815 0041 0043
00PB15S BB35 P42
000020S 0048 0B53
POOOBOE 0049
200203CE 0052
0OQO0QE 00854

#0802 ERRORS (PMA-REV 16.2)

BO
qu

TTOM

1 March, 1979

*
*

*

LINK

ADDECB ECB

*
*
*

2063

0063
2057

END

LINK 0000826

068

0063

ADDARY, ,ARY, 2

STACK 288821

14-11

FDR 3059

14 [ANGUAGE STRUCTURE

ADDARY, jrw, ©1/11/79 -64R MODE-
(0981) * ADDARY, jrw, 61/11/79 -64R MODE-
(6002) *
(6003) * Add the elements of a 1@ dimensional array of 16-bit values, producing
(g004) * a 16-bit result and returning a count of the number of members of the
(0@05) * array which were zero. The result is printed on the user terminal.
(6E06) *
(9007) *
(0p08) *
(80@9) * Calling sequence (Fortran):
(0010) *
(@@11) * INTEGER ARY (14), NZERO, ADDARY, RESULT
(gg12) * cee
(0@13) * RESULT = ADDARY (ARY, NZERO)
(g014) *
(g@15) *
(0@16) * Calling sequence (PMA):
(@017) *
(6@18) * CALL ADDARY
(0019) * DAC ARY ARRAY WHOSE ELEMENTS ARE TO BE SUMMED
(8920) * DAC NZERO RETURNED # ELEMENTS = 0
(8p21) * DEC %] (TO TERMINATE ARG LIST)
(@p22) * STA RESULT RESULT RETURNED IN (A)
(8023) *
(0024) *
(B@25) *
0o0000 (6026) ENT ADDARY ENTRY DECLARATION
(0027) *
(0028) C64R CHECK 64R MODE ADDRESSING VIOLATIONS
(8029) REL RELATIVE MODE ASSEMBLY
(6930) *
(6@31) *
6000008: 00 .002000A (0032) ADDARY DAC *x RETURN ADDRESS SAVED HERE BY 'JST' INSTRUCTION
000001: 16.000000E (0033) CALL FSAT TRANSFER ARGUMENTS' ADDRESSES
000002: 000002 (0034) DATA 2 (2 ARGUMENTS)
000003: 00.000000A (0035) ARY DAC k% PTR TO ARRAY
000004: ?0.000000A (0036) NZERO DAC Lk PTR TO COUNTER FOR ELEMENTS W/ VALUE = 0
(9037) *
P008@5: 35.000033 (0038) LDX =-10 # ELEMENTS TO ADD
000006: 140040 (0039) CRA INITIALIZE COUNTERS
2000807: 04.000032 (0040) STA SUM
o00010: 44.000004 (0041) STA NZERO, * # ELEMENTS WHICH = @
(8@42) *
(#@43) *---LOOP TO PERFORM ACTUAL ADDITION:
900011 (6@44) ADDLP EQU *
2000811 : 42.000003 (0845) LDA ARY, * PICK UP NEXT ARRAY ELEMENT
000012: 101040 (0046) SNZ TEST ZERO
000013: 52.000004 (0047) IRS NZERO,* VALUE IS ZERO, BUMP COUNTER
p@o014: 06.000032 (B048) ADD SUM COMPUTE NEW SUM
000015: 04.000032 (9049) STA SUM
000016: 12.000003 (0050) IRS ARY BUMP POINTER TO NEXT ARRAY ELEMENT
2000817 140114 (2e51) IRX TEST DONE
000020: 01.000011 (6052) JMP ADDLP NOT DONE, PROCESS NEXT ELEMENT
(B6@53) *
(#@54) *-—-PRINT RESULT ON USER TERMINAL...
a00021: 10.000000E (8655) CALL TNOUA
200022 00.000034 (0056) DAC =C'RESULT IS ' TEXT TO BE PRINTED
000023: 00.000041 (8057) DAC =10 # CHARACTERS
000024: 200000 (8858) DEC [
228825: 18.230020% (@059) CALL TODEC PRINT DECIMAL RESULT
200026: 00.000032 (0060) DAC SUM
000027: 10.000000E (0061) CALL TONL PRINT NEW-LINE
(p@62) *
(§@63) *--—THRU HERE WHEN DONE - RETURN WITH SUM IN THE A-REGISTER.
200030: p2.000032 (9064) LDA SUM
#000931: 41.000000 (0065) JIMP ADDARY , * BACK TO CALLER
(6066) *
(6067) *
(6068) *-—-DATA DECLARATION:
(0069) *
p00GB32: (0@749) SUM BSS 1 TEMPORARY SUM
(8B371) *
(@g72) *
(8073) *
000033 (8874) END
0B8033: 88.177766A
pO0B34: 00.151305A
P@0035: 0@.151725A

FDR 3059 14-12 1 March, 1979

LANGUAGE STRUCTURE 14

290036:
000037
G00040:
200041 :

TEXT SIZE:
“2147914
ADDARY
ADDLP
ARY
F$AT
NZERO
SUM
TNOUA
TODEC
TONL

3003 ERRORS
BOTTOM

1 March,

00.146324A
00.120311A
P3.151640A
00.000012A

¢00342 WORDS

000008 00832
200811 @044
200003 0835
OOPRROE 0833
pepoe4 0036
200832 0040
POOOOBE 00855
0BOQO0E 0859
0OOP0CE 0061

(PMA-REV 16.2)

1979

#6865
2052
2045

3041
0348

60850

0947
8049

0068

gp64 0070

14-13

FDR 3059

14 LANGUAGE STRUCTURE

ADDARY, jrw, 01/11/79 -64V MODE-

(0@Q1) * ADDARY, jrw, 01/11/79 -64V MODE-
(60@2) *
(2003) * Add the elements of a 1¢ dimensional array of 16-bit values, producing
(6004) * a 16-bit result and returning a count of the number of members of the
(60@g5) * array which were zero. The result is printed on the user terminal.
(6006) *
(80Q7) *
(0008) *
(80809) * Calling sequence (Fortran):
(9019) *
(6011) * INTEGER ARY (10), NZERO, ADDARY, RESULT
(6@12) * e
(@013) * RESULT = ADDARY (ARY, NZERO)
(0014) *
(8015) *
(6016) * Calling sequence (PMA):
(8@17) *
(2@018) * CALL ADDARY
(0@19) * AP ARY,S ARRAY WHOSE ELEMENTS ARE TO BE SUMMED
(0029) * AP NZERO,SL RETURNED # ELEMENTS = @
(g@21) * es e RESULT RETURNED IN (A) (GR2H)
(8@22) *
(8923) *
(0@24) *
200400 (80825) ENT ADDARY ,ADDECB ENTRY DECLARATION
(6@26) *
(6027) SEG 64V-MODE SEGMENTED ADDRESSING
(0028) RLIT PLACE LITERALS IN PROCEDURE FRAME
(8029) *
(6@30) *
000000 (6@31) ADDARY EQU * ECB CAUSES CONTROL TO BE PASSED HERE ON CALL
000000: 200605 (8032) ARGT TRANSFER POINTERS TO ARGUMENTS
(8933) *
000001 : 35.0000837 (2034) LDX =-19 # ELEMENTS TO ADD
000002: 140040 (8235) CRA INITIALIZE COUNTERS
200003: 04.000020S (8036) STA SUM
000004: 051421.000015S (0837) STA NZERO, * # ELEMENTS WHICH = @
(g@38) *
(9639) *---LOOP TO PERFORM ACTUAL ADDITION:
200006 (8040) ADDLP EQU *
$008006: @945421.000012S (0041) LDA ARY,* PICK UP NEXT ARRAY ELEMENT
000010: 140613.000014 (0042) BNE LP19Q TEST ZERO
900012: 065421.0000815S (0043) IRS NZERO, * VALUE IS ZERO, BUMP COUNTER
200014: 06.000020S (0044) LP1lO ADD SUM COMPUTE NEW SUM
#00815: 04.000020S (0045) STA SUM
0000616: 12.0000135 (0046) IRS ARY+1 UPDATE WORD# OF POINTER TO NEXT ARRAY ELEMENT
@00B17: 141334.000006 (8@47) BIX ADDLP BRANCH IF NOT DONE, PROCESS NEXT ELEMENT
(0048) *
(0349) *---PRINT RESULT ON USER TERMINAL...
0000621: 961432.000420L (0050) CALL TNOUA
0000623: 000100.000040 (0051) AP =C'RESULT IS ',S
000625: 000300.000045 (0052) AP =14 ,SL
P000827: 061432.000422L (8@53) CALL TODEC PRINT DECIMAL RESULT
000031: 000700.000020S (0054) AP SUM,SL
0000833: 961432.800424L (2055) CALL TONL PRINT NEW-LINE
(0356) * :
(0@57) *---THRU HERE WHEN DONE - RETURN WITH SUM IN THE A-REGISTER.
G9aa35: 52.380623S (AB58) LDa SuUM
000036: 200611 (0059) PRTN BACK TO CALLER
(p260) *
(80d61) *
(#062) *---DATA DEFINITION:
(0063) *
200012 (0064) DYNM ARY (3) ,NZERO(3) ,SUM
200815
000020
(6065) *
(8066) *
(90867) LINK
(0068) *
000400> 030000 (#369) ADDECB ECB ADDARY, ,ARY, 2
200022
090012
000002
1774040
g1l4000

FDR 3059 14-14 1 March, 1979

LANGUAGE STRUCTURE 14

raaTIaN

\Wgivj

(8871)

(8072)

0060420 (8673)
0000837: 00.177766A
000040: 06.1513@85A
200041: 80.151725A
000042: 00.146324A
000843: $6.120311A
000044 : 20.151640A
0A0B45: 00.000012A
000420> 000000.000000E
000422> 300000.000000E
208424> P220G0C.000000E

TEXT SIZE: PROC 0000646

ADDARY po0B00 6031 0069
ADDECB 600400L 0069

ADDLP ge0006 0040 0047

ARY P800G12S 8041 0B46

LP1@ 0000614 0042 0044

NZERO 90003155 9@37 0043

SUM g00020S 0036 0044
TNOUA 000000E 0050
TODEC 000000E 0053
TONL @0@GB0E @055

#@06 ERRORS (PMA-REV 16.2)

BOTTOM

1 March, 1979

*

*

3064

0064
2045

END

LINK $00926

2069

0054

2058

STACK 80¢021

2064

14-15

FDR 3059

Data definition

This section discusses all aspects of the definition and usage of data constants within a
program.

CONSTANTS

Constants are divided into two major categories: numeric and character. They may be
explicitly defined by pseudo-operations, such as OCT and DEC, or implicitly defined by
usage within expressions and literals.

Constants are used in expressions, literals. and DATA statements. In expressions. each
constant must be one 16-bit word. See Data Defining Pseudo-Operations for a full discussion
of all data type pseudo-operations referenced in this section.

The format of a constant determines how PMA will process it. Table 15-1 shows the data
types and formats of all legal numeric constants. Normally, you would use DATA or DEC to
define stand-alone constants, and the form defined by data type symbol to express constants
in an expression or literal.

Integer constants

All integer constants are signed whole-number quantities and may be single or double
precision. Single precision is the default: double precision is expressed by appending the
letter L to the constant. The sign. if present, follows the data type symbol.

Precision Address Mode Range
Single SRVI From: —32.768 (—2**13)
To: +32.767 (25*15-1)
Double SR From: —1.,073.741.824 (—2**30)
To: +1,073,741.823 (27*30-1)
Double V1 From: -2,147,483,648 [-2**31]
To: +2,147,483,647 (2**30-1)

Decimal: \Whole number. base 10 quantities

Data Tvpe Svmbol: none

Precision Constant Listing Representation
Single Precision DATA 123 000173
DEC 123 000173
123 000173
Double Precision DATA 123L 000000 000173
DEC 123L 000000 000173
123L 000000 000173

1 March, 1979

15-1

FDR 3059

15 DATA DEFINITION

Table 15-1. Numeric Constants
Class Source Symbol Pseudo- Binary Notes Exponent Notes Precision Symbol Expression Example
Op Scale
1 D —_ DEC -— 1 — — Single — YES 123
Double L2 NO 1234L
0] ’ - OCT — — — — Single — YES 123
O ' OcCT — — — — Double L3 NO '1234L
H $ HEX — — —_ —_ Single — YES $1A8
X ° HEX — @— = — Double L NO $1A8L
B e — — — — - Single — — —
B ' — —_ = - - Double — — -
FX D —_— DEC B Req. E Opt. ~ Single — YES 12.5B2
BB Req. E Opt. Double — NO 12.5BB
BBB Req. E Opt.- Triple — NO 12.5BBB
BBBB Req. E Opt Quadruple — NO 12.5BBBB
FP D — — — 4 E Opt.- Single — NO 1.23E-2
— 4 D Req. Double — NO 1.23D-6
B Binary
D Decimal
FP Floating point
FX Fixed Point
0 Octal
1 Decimal integers have no decimal point, binary scaling or exponent.
2 Generates 32-bit long integers without holes.
3 Octal digits should leave hole in high order bit of second word if in non
SEG mode. ‘ :
4 Must be absent.

Octal: Whole number, base 8 quantities

Data Type Symbol: Apostrophe ('), letter O plus single quotes (O).

Precision Constant Listing Representation
Single Precision DATA '123 000123
DATA 0’123 000123
OCT 123 000123
123 000123
0123 000123
Double Precision DATA "123L 000000 000123
OCT 123L 000000 000123

"123L 000000 000123
Hexadecimal: Whole number, base 16 quantities. The hexadecimal digit values are:

Hexadecimal Decimal
0-9 0-9

10

11

12

13

14

k=4
i9

MmgoOow>

Data Type Symbol: Dollar Sign (8), letter X plus single quotes (").

FDR 3059 15-2 1 March, 1979

DATA DEFINITION 15

Precision Constant Listing Representation
Single Precision DATA $30BF' 030277
DATA X'30BF 030277
HEX 30BF 030277
X'30BF’ 030277
Double Precision DATA $30BFL 000000 030277
HEX 30BFL 000000 030277
$30BFL 000000 030277

The hexadecimal and octal are bit representations, not base conversions, so if you wish to
represent a 31-bit number (bit 17=0) you must explicitly specify the zero.

Binary: Whole number, base 2 quantities

Unlike the other integer data types (decimal, octal and hexadecimal), there are no special
binary pseudo-operations. The general data defining pseudo-operation, DATA, may be used
with the binary designator to define binary strings.

Data Type Symbol: Percent Sign (%), letter B plus single quotes (B’).

Precision Constant Listing Representation
Single Precision DATA 7:11100101 000345
DATA B'11100101° 000345
711100101 000345
B'11100101’ 000345
Double Precision DATA 7:11100101L 000000 000345

Fixed point decimal constants

Fixed point decimal constants must have an explicit binary point, expressed as a binary
scale factor (see discussion below). These constants may include a decimal point and/or an
exponent (see discussion below). The precision may be single, double, triple or quadruple
and is indicated by the number of Bs in the binary scale factor, e.g.,

B=single
BB=double
BBB=triple
BBBB=quadruple

Binary scaling: Binary scaling, which is valid only for fixed point decimal constants,
determines where the binary point will be. The figure below shows the single precision
binary point positions. Bit 1 is the sign bit.

1 2 3 L 5 6 7 8 9 |10 {11 12 |13 | 14 | 15 | 16

N A A A

B0 Bt B2 B3 B4 B5 B6 B7 B8 B9 B10 Bi1 Bi12 B13 B1i4 B15
Constant Listing Representation Bit Pattern
123B15 000173 |o|o[o\o\lo!o!oi0[011[1[1111011]1
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A
B1s
123B7 075400 NEEREEEENERE ﬁio[ﬁ}ﬁioiaiuioi
1t 2 3 4 5 6 7 8A9s 10 11 12 13 14 15 16
B7
1 March, 1979 15-3 FDR 3059

15 DATA DEFINITION

123B6 gives an assembly error because there is not enough room to the left of the binary
point to contain the whole number representation of 123. This is true for all addressing
modes—see Assembly Control Pseudo-Operations—and all precisions. Negative scaling is,
however, permitted.

Constant Listing Representation Bit Pattern
123B18 000017 ﬁ|o\oiuioioloioio 0 001 111_{_1]
1 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4

The binary digits that extend to the right of the word are truncated without error. If this were
double precision, these bits would continue into the second word. Normally, you will
probably use B15 for single precision fixed point numbers.

Constant Listing Representation Bit Pattern
123.5B7 075600 REEEEEREIEEERE 110\0[010\0[0[@
1 12 13 14 16

2345678?91011 15

B7
Note the handling of the fractional portion of the number relative to the binary point.

Precision: As stated above, there are four levels of precision for fixed point decimal
numbers:

B=single—one 16-bit word
BB=double—two 16-bit words
BBB=triple—three 16-bit words
BBBB=quadruple—four 16-bit words

The format varies between SEG and non-SEG modes — see Assembly Control Pseudo-
operations. In SEG mode, the sign bit (bit 1) of each subsequent word following the first is
included in the binary count. Thus, in the truncation example above, bits 1 and 2=0, 3 and
4—1. In non-SEG modes, the sign bit of all subsequent words is always 0, and binary point
counting continues from bit 2 of each word. The truncation example would have bit 1=0 and
bits 2 and 3=1 and 4=0.

To generalize—PMA converts a constant entered as K By to Ko (2*-nj, where Kuo is the
decimal constant, K: is the same constant expressed in binary, and n is the number following
the letter “B”, “BB”, “BBB”, or “BBBB"".

Powers of 10 (E): If an E code is present, it must precede the required B code. The decimal
value of the constant is multiplied by the power of 10, specified by the integer following the
E, before it is converted to binary. The exponent may be positive or negative.

Again, be careful to ensure that there is enough room to the left of the binary point to hold
all the digits. If not, an error will occur.

SEG examples:

Precision Constant Listing Representation
Double Precision 123E1BB17 000463 100000
Single Precision 123E0B15 000173

123E1B15 002316

Non-SEG examples:

Precision Constant Listing Representation
Double Precision 123E1BB17 000463 040000
Single Precision 123E0B15 000173

123E1B15 002316

FDR 3059 15-4 1 March, 1979

DATA DEFINITION 15

1g poini decimal constanis
Binary Scaling must not be used in floating point constants.

Single precision floating point: Single-precision floating point quantities are expressed by a
decimal fraction, with or without a decimal exponent (Emm).

Constant Listing Representation
1.28E2 040000 000210
1.28 050753 102601
—11.28 122702 107604
1.28E-14 071512 145122

The assembler converts the specified values to an 8 bit binary exponent and a 23 bit binary
fraction in two successive words, as shown in Figure 15-1. The exponent is represented in
excess-128 notation, and can range from 2**-127 to 2**+127 (roughly 10¥*-38 to 10**+38). An
error message is generated if the exponent exceeds this range. The assembler automatically
generates a normalized fraction of the largest possible value less than 1. Numbers specified
in this format have significant decimal digits.

Negative numbers are formed by generating a positive number of the specified magnitude
and then forming the two’s complement of both data words, excluding the exponent. The
number zero is assembled as two consecutive all-zero data words.

Double precision floating point: Double precision floating point quantities are expressed by
a decimal integer or fraction with a decimal exponent (Dmm).

The assembler converts the specified value to a 16-bit binary exponent and 47-bit binary
fraction, in four successive words, as shown in Figure 15-1. The exponent is represented in
the same excess-128 notation as single-precision floating point. The assembler automatically
generates a normalized fraction of the largest possible value less than 1.

Negative numbers are formed by generating a positive number of the specified magnitude
and then taking the two’s complement of all three fraction words, excluding the exponent.
The number zero is assembled as consecutive all-zero data words.

Character (ASCII) constants

ASCII character strings are specified by the letter C followed by the string enclosed in
apostrophes, and are packed two per 16-bit word. Colons (:) and semicolons (;) may be
encoded by preceding them with the PMA escape character (an exclamation point).

Constant Listing Representation
CAB 140702
cA 140640

Single characters defined by C™ are left-justified with the right half of the word filled with
a blank (ASCII representation '240). Single characters defined by R" are right-justified with
the left half of the word filled with zeros.

Constant Listing Representation
CA 140640
R'A 000301

TERMS

A term is the smallest element of PMA which represents a separate and distinct value. It has
a single precision integer value (fits in a 16-bit word) and may be a constant or a symbol.
Terms may be used alone or in combination with other terms to form expressions.

1 March, 1979 15-5 FDR 3059

15 DATA DEFINITION

| s | MANTISSA]
1 2 16

i MANTISSA 1 EXPONENT (EXCESS 128) |
17 24 25 32

A. Single Precision Floating Point

| s | MANTISSA }

1 2 16
| MANTISSA

17 32

MANTISSA J
33 a8

EXPONENT (EXCESS 128)

49

B. Double Precision Floating Point

Figure 15-1. Floating Point Data Formats

64

FDR 3059

1 March, 1979

DATA DEFINITION 15

Every term, whether used alone or in an expression, has both a value and a mode which are
either defined by the assembler or inherent in the term itself. Symbols defined by the EQU,
SET, and XSET pseudo-operations receive both the mode and the value of the term or
evaluated expression; labels take the current mode and value of the program counter (see
Origin Control pseudo-operations for a discussion of how the mode of the program counter
is set). Examples include:

123 Octal constant.

CA ASCII constant.

ALPHA Symbol.

1.23E2 Invalid because it is a floating point number: it does not have a
single precision integer value.

C'ABC’ Invalid because the value is too large for a 16-bit word.

Value

The value of a term is the numeric representation which is assembled into the object code.
It can be a location or data.

Symbol Usage Explanation

LABSYM LABSYM LDA LOC LABSYM is a label symbol whose value is a
location (program counter value) of the
instruction LDA LOC.

DATSYM DATSYM DATA 10 DATSYM is a label symbol whose value is
the location (program counter value) of the

. constant '10.

ADSYM ADSYM DAC LOC ADSYM is a label symbol whose value is
the location (program counter value) of the
address constant LOC.

ABSSYM ABSSYM EQU '10 ABSSYM is a symbol whose value is "10.
CHRSYM CHRSYM EQU C'A CHRSYM is a symbol whose octal value is
140640.

Mode

The mode defines whether the value associated with a symbol is absolute or relative. Table
15-2 summarizes the use of the modes defined below.

Absolute: The value of the symbol does not change upon program relocation. Symbols
equated to constants and the results of expression operations other than addition and
subtraction have a mode of absolute.

Stack relative: The symbol is defined relative to the start of the stack area. Variables
defined by the DYNM pseudo-operation or by a + value (non-segmented addressing modes)
or by SB%+value (segmented addressing modes) have a mode of stack relative.

External: The symbol is defined in a separately assembled module and is identified by an
EXT pseudo-operation.

Procedure absolute (SEG or SEGR only): The symbol is defined relative to the start of the
procedure segment and is identified by PB% +value.

Linkage base relative (SEG or SEGR only): The symbol is defined relative to the start of the
link frame and is identified by LB%+value, or * if the origin is LINK frame.
Temporary base relative (SEG or SEGR only): The symbol is defined relative to the contents

of the temporary base register and is identified by XB% +value.

1 March, 1979 15-7 FDR 3059

15 DATA DEFINITION

Relative (Procedure relative (SEG or SEGR): The symbol is defined relative to the start of
the module.

Common: The symbol is defined relative to a common data area which has been defined by
a COMM pseudo-operation. This common data area may be shared by several independen-
tly assembled routines.

Table 15-2. Modes

Mode Generated Symbol ~ Usage Value Listing
By Representation
Absolute Labels! ABSSYM - ABSSYM EQU 123 123 000123A
: Constants
Expression EXPSYM EXPSYM EQU '3+'4 7 DOHODOTA
Operations
Relative {non-SEG) Labels LABSYM ‘LABSYM LDA 1.0OC Current PC- Current PC
Procedure (SEG)
Relative
Common COMM Pseudo- B COMM A, B, C[3)., D 12 000001C
Operation
Stack Relative DYNM Pseudo- STKSYM DYNM (3] 3 0000038
Operation
@{Non-SEG mode) SKSYM2 SKSYM2 EQU @+'6 6 0000065
: SBY: (SEG modes) SKSYM3 SKSYM3 EQU SBv+'7 7 000007S
External EXT Pseudo- EXTSYM EXT EXTSYM 0 000000E
Operation
Procedure PBY: PBSYM - PBSYM EQU PB¢i+'2 "2 000002P
Absolute
Linkage Base LB LBSYM LBSYM EQU LB%+'5 '3 0000051
Relative LINK LBSYML LINK
LBSYM DAC 5 5 0000051
Temporary Base XB XBSYM XBSYM EQU XB%+'3 '3 000003T
Relative
Notes

1 = PB. or ABS .
2~ Offset from start of COMMON.

EXPRESSIONS

As described in Section 14 - Language Structure, expressions contain one or more terms
(constants or symbols} joined by operators.

Operators
Expressions may contain arithmetic, logical. relational and shift operators.

Arithmetic operators: Perform addition, subtraction, multiplication. and division opera-
tions:

Operator Meaning Example Result (Octalj
+ Addition 3+'4 000007
- Subtraction 10-'3 000005
* Multiplication 20%'10 000200
/ Division 20/°10 000002

Logical operators: Perform a logical operation on two 16-bit operands:

Operator Meaning Example Result (Octal)
.OR. Logical OR "123.0R. 456 000577
XOR. Logical
Exclusive OR "123.X0OR. 436 Hons75
AND. Logical AND "123.AND. 436 000002

FDR 3059 15-8 1 March, 1979

DATA DEFINITION 15

Relational operators: Perform a comparison of iwo 16-bit operands with a result of 0 if false
and 1 if true.

Operator Relation Example Result (Octal)
EQ. Equal "123.EQ."123 000001
"123.EQ. 456 000000
.NE. Not equal "123.NE."123 000000
"123.NE." 456 000001
.GT. Greater than 123.GT."123 000000
'456.GT."123 000001
.GE. Greater than 123.GE."123 000001
or equal "123.GE.' 436 000000
.LE. Less than "123.LE."123 000001
or equal "123.LE."456 000001
LT Less than "123.LT. 456 000001
456.LT."123 000000

Shift operators: Perform logical right or left shift of an expression. using the syntax:

argument-expression {.LS.; shift-count-expression

RS.
Operator Meaning Example Result (Octal)
LS. Left shift "123.1LS."3 001230
.RS. Right shift "123.RS.’3 000012

Usage

Space conventions: Operators may be preceded and/or followed by a single space (more
than one space causes PMA to treat the rest of the line as a comment).

Sign conventions: The operands for arithmetic operators may be signed.

Operator priority: In expressions with more than one operator. the operator with the highest
priority is performed first. In cases of equal priority. the evaluation proceeds from left to
right. You may use parentheses to alter the natural order of evaluation.

Priority Operator
Highest */
4=
RS, LS.
.GT. .GE. .EQ. .NE. .LE. LT.
AND.
.OR.
Lowest .XOR.

Resultant mode: For all operations other than addition and subtraction. the mode of both
operands must be absolute and the result is absolute.

When an addition operator is used. at least one of the operands must be absolute. and the
result mode is the mode of the other operand.

When a subtraction operator is used. at least the second operand must be absolute. and the
result mode is the mode of the first operand.

1 March, 1979 15-9 FDR 3059

15 DATA DEFINITION

LITERALS

A literal is an expression preceded by an equal-sign (=). as in:

= 37
= *4'37

You can use literals as operands in order to introduce data into your program. You cannot,
however, use a literal as a term in an expression.

The assembler places the data which you specified in a literal into a “literal pool™. It then
assembles the address of this literal into the object code of the instruction that contains the
literal specification. Thus the assembler saves you a programming step by storing your
literal data for you.

Literals may be one or more words in length and may contain any legal data item or
expression. Note, however, that if you use colon (:) or semicolon (:) in a character constant
construction. vou must precede it by an exclamation mark (!) escape character.

Non-SEG usage

When RLIT is used after a FIN statement. literals which have been already collected in a
literal pool by the FIN will not be redefined. For example:

_ REL
(3001) REL
(8002) RLIT
000000: 02.000001 (9003) LDA ='123 123 IS AN OCTAL LITERAL
000001: 00.000123A (0904) FIN
200002: 092.000001 (20@5) Lba ='123 '123 IS IN THE SAME LITERAL
* POOL AS '123 ABOVE
000003: 04.000005 (8006) STA BUFF
200004: 02.000006 (2007) LDA ='456 '456 WILL BE IN BUFFER PCOL
* AFTER END
0000085 00.000010a (00@8) BUFF DAC '10 DEFINE BUFFER AREA
200006 (8009) END END OF SOURCE CODE
000005: 20.000456A
SEG usage

Literals may be placed in either the procedure segment or in the linkage segment. If an RLIT
pseudo-op is used. literals will be generated in the same way as in a non-SEG assembly with
an RLIT. If an RLIT pseudo-op is not used. the literals will be placed in the linkage frame.

The FIN pseudo-op may still be used to control the placement of literals. but the assembly
origin at the time a FIN occurs can affect the literal placement.

If RLIT mode is specified and a FIN occurs while in linkage origin. the FIN will act as:

HERE EQU *
PROC
FIN
ORG HERE

FDR 3059 15-10 1 March, 1879

DATA DEFINITION 15

P L Yo T Sy P LR B T T RT TT snmnda armd 4 TTINT Armarme s2rhtla 3om smcmmadismm Attt o TPTAT
UUllCDkJUllulllsly, 1L 11U L 1l INLa L JHUUE dilu d Tl ULL UL S Wiliie i1 Pltﬂbcuulc Ullsl 1, UI€ il
will have the effect of:
HERE EQU *
LINK
FIN
ORG HERE
ASSEMBLER ATTRIBUTES
Assembler attributes can be specified by a number proceded by the pound character (4.

'The attribute number may be a variable. or an expression within parentheses. as long as
such variables have been previously defined as absolute integer values. Attribute refer-
ences are evaluated as absolute integer values. and may be used in both macro definitions
and macro calls. See Appendix A for a complete list.

1 March, 1979 15-11 FDR 3059

Pseudo-operations

INTRODUCTION

Pseudo-operation statements are commands to the assembler, rather than executable
machine instructions. Pseudo-operation functions include:

e Assembly control (AC)
* Address definition (AD)
e Conditional assembly (CA)
» Data definition (DD)

» Listing control (LC)

e Literal (LT)

e Loader control (LO)

e Macro definition {MD)
¢ Program linking (PL)

¢ Storage allocation (SA)
e Symbol definition (SD)

Table 16-1 contains an alphabetical listing of all the pseudo-operations, their functional class
and their restrictions, if any.

Pseudo-operations have an operation field and an operand field separated by spaces. Labels
are usually optional. but some pseudo-operations either require a label to be present. or
prohibit it (see Figure 16-1).

The operation field contains the mnemonic name that identifies the pseudo-operation.

The operand field may contain one or more terms separated by single spaces or commas.
Terms may be constants, symbols, or expressions as defined in Section 15. In certain
operations, such as BCI, terms may also consist of ASCII character strings.

Symbols used in the operand field must be previously defined. unless otherwise stated in
the pseudo-operation definition.

Address expressions are evaluated as 16-bit integer values and used as a 16-bit memory
address, unless otherwise stated. Certain statements (DAC and XAC) accept indirect
address (*] and indexing (,1) symbols. These are interpreted according to the addressing
mode which is in effect.

1 March, 1979 16-1 FDR 3059

16 PSEUDO-OPERATIONS

Table 16-1. Pseudo-Operation Summary

Name Function

ABS ‘Set mode to absolute

AP Argument pointer

BACK Loop back

BCI Define ASCII string

BES Allocate block ending with symbol
BSS Allocate block starting with symbol
BSZ Allocate block set to zeros

C64R Check 64R ‘

CALL External subroutine reference

CENT ~ Conditional entry

COMM FORTRAN compatible COMMON
D16S Use 168 address mode

D321 Use 321 address mode

D32R Use 32R address mode -

D328 Use 325 address mode

D64R Use 64R address mode

D64V Use 64V address mode

DAC Address definition (Prime 100-300)
DATA Define data constant

DDM Use default mode

DEC Define decimal integer constant
DFTB Define table block

DFVT Define value table

DUII Define Ull

DYMN Define stack relative symbol
DYNT Direct entry definition

ECB Entry control block

EJCT Eject page

ELM Enter loader mode

ELSE Reverse conditional assembly
END End of source statements

ENDC End conditional assembly area
ENDM End macro definition

ENT Define entry point

EVEN Outputs NOP if current address not even
EQU Fixed symbol definition

EXT External reference

FAIL Force error message

FIN Insert literals

GO Forward reference

HEX Define hexadecimal integer constant

IFTT If table true
IFTF If table false
IFVT If value true
IFVF If value false

IF If true
[Fx Arithmetic conditional if
1P Indirect pointer

LINK Put code in linkage segment

Class
AC

AD
CA
DD
SA
SA
SA
AC
PL
L.O
SA
LO
LO
LO
LO
LO
LO
AD
DD
1.O
DD
CA
CA
LO
SD
PL
PL
LC
LO
CA
AC
CA
MD
PL
AC
SD
PL
CA
LT
CA
DD
CA
CA
CA
CA
CA
CA
AD
AC

Restriction

Not in SEG/SEGR

MODE

SEG/SEGR mode
Macros only

SEG/SEGR mode

SEG/SEGR mode
SEG/SEGR mode

FDR 3059 16-2

1 March, 1979

PSEUDO-OPERATIONS 16

LIR
LIST
LSMD
LSTM
MAC
N64R
NLSM
NLST
OCT
ORG
PCVH
PROC
REL

RLIT
SAY
SCT
SCTL
SDM
SEG

SEGR

SET
SETB
SUBR
- SYML
VFD
XAC
XSET

Load if required

Enable listing

List macro expansions data only
List macro expansions

Begin macro definition

Not 64R

Don't list macro expansions
Inhibit listing

Define octal integer constant
Define origin location

Print cross reference values in HEX
Put code in procedure segment
Set mode to relocatable

Optimize literals

Print message

Select code within macro
Select code from macro list
Set default mode

‘Segmentation assembly - 64V

Segmentation assembly - 321

Changeable symbol definition
Set base sector

Define entry point

Allows long external names
Define variable fields
External address definition
Changeable symbol definition

LO

LC

LC

LC

MD

LO

LC

LC

DD

AC

LC

AC SEG/SEGR made

AC ‘Not in SEG/SEGR
MODE

LT

MD

MD

MD

LO

AC Must be first
statement in listing

AC Must be first

statement in listing

SD '

LO

PL

PL SEG/SEGR mode

DD

AD

SD

1 March, 1979

16-3

FDR 3059

16 PSEUDO-OPERATIONS

IF MORE THAN 10 SPACES FOLLOW THE
OPERATION FIELD, THE ASSEMBLER
ASSUMES THERE 1S NO OPERAND FIELD
AND TREATS THE REST OF THE LINE

AS COMMENTS.

Figure 16-1. Pseudo-operations.

SPACES OR COMMA
2 SPACES OR COL. 73
LABEL OPERATION FIELD OPERAND FIELD COMMENTS
T 4 * 4
 MAY BE NOTE 1 OPTIONAL
REQUIRED, PSEUDO-OPERATION
OPTIONAL MNEMONICS
OR NULL
~
TERM 1 TERM 2 TERM N
\ SINGLE /
SPACE
OR COMMA
NOTE:

FDR 3059 16-4

1 March, 1979

PSEUDO-OPERATIONS 16

AQCT'AID
[s 1v)

TV OCONTDN
43 WVADL L UUINIRUY

2!
-

nMN
u-

Q T
[2 VL W)

L D
Affect the actions of PMA during the assembly process.

Name Function Restriction

ABS Set mode to-absolute Not in SEG/SEGR mode

C64R Check 64R

END End of source statements

EVEN Outputs NOP if current address not

even.

LINK Put code in linkage segment SEG/SEGR mode

ORG Define origin location

PROC . Put code in procedure segment SEG/SEGR mode

REL Set mode to relocatable Not in SEG/SEGR maode

SEG Segmentation assembly - 64V Must appear before executable
code

SEGR Segmentation assembly -321 Must appear before executable
code

» ABS

Sets the assembly and loading mode to absolute, within the program address space. ABS
may be terminated by REL and vice versa. ABS mode is the default assembly mode.

> C64R

Directs the assembler to flag any instructions and/or memory reference not compatible with
64R addressing mode. The following cases are detected:
1. An indirect or indexed DAC

2. Anindirect, single-word memory reference instruction with an address
that is neither in sector zero nor within the relative reach of the
instruction.

> [label] END [address-expression]

Terminates assembly of the source program. All literals accumulated since either the start
of the program, or the last FIN statement. are assigned locations starting at the current
location count. If the program is segmented and literals are in the linkage segment. refer to
Literal Control Pseudo-Operations for further information.

If an address-expression is not specified. the first location of the first module becomes the
start address:; otherwise, the address-expression defines the start address.

» [label] EVEN

Outputs a NOP if the current address is not even. Forces even alignment only for the
instruction or data immediately following the EVEN.

4 LINK

Places subsequent code in the linkage frame. The program counter value is set to one more
than the highest value previously used in the linkage area. The mode is set to link. LINK may
be terminated by PROC and vice versa.

1 March, 1979 16-5 FDR 3059

16 PSEUDO-OPERATIONS

> [label] ORG address-expression
Sets the assembler location count equal to the value of the address-expression.

In non-SEG mode, the mode of the address-expression may be absolute, relative or common.
The value of the program counter is set to the value of the expression. If the mode of the
address-expression is common, then the mode of the program counter is set to common. If
the mode of the program counter is common, then it is set to the mode of the address-
expression. Otherwise, the mode of the program counter remains unchanged.

In SEG-mode, the mode of the address-expression may be absolute, procedure relative,
linkage or common. The value of the program counter is set to the value of the address-
expression. If the mode of the address-expression is absolute, then the mode of the program
counter remains unchanged. In all other cases whether relative, linkage, or common both
the mode and the value of the program counter are set equal to that of the address-
expression.

> PROC

Places subsequent code in the procedure segment. The value of the program counter is set
to one more than the highest value previously used in the procedure segment. The mode is
set to procedure relative. PROC may be terminated by LINK or vice versa.

» REL

Sets the assembly and loading mode to relocatable. REL may be terminated by ABS and vice
versa.

> SEG

Directs the assembler to create a 64V segmented mode assembly module. SEG must appear
before any instructions, pseudo-operations or macro calls which generate instructions, as
well as before any DYNM pseudo-operations. D84V (q.v.) only governs instruction formats;
it does not create a segmented module. Modules assembled in SEG mode must be loaded by
SEG — the PRIMOS segmented loader utility.

SEG has the following effects:

e Sets the assembler into three pass assembly mode to optimize stack and link frame
references.

* Removes restrictions on placement of DYNM pseudo-operations.

 Sets the instruction and address resolution mode to D64V.

e Initializes the assembler program counter to procedure relative zero.

P SEGR

Directs the assembler to create a 321 segmented mode assembly module. SEGR must appear
before any instructions, pseudo-operations or macro calls which generate instructions, as
well as before any DYNM pseudo-operation. D32 (g.v.) only governs instruction formats; it
does not create a segmented module. Modules assembled in SEGR mode must be loaded by
SEG — the PRIMOS segmented loader utility.

SEGR has the following effects:

* Sets the assembler into three pass assembly mode to optimize stack and link frame
references.

* Removes restrictions on placement of DYNM pseudo-operations.

e Sets the instruction and address resolution mode to D32L

* Initializes the assembler program counter to procedure relative zero.

FDR 3059 16-6 1 March, 1979

PSEUDO-OPERATIONS 16

ADDRESS DEFINITION PSEUDO-OPERATIONS (AD)

Create address constants which may be referenced by instruction statements.

Name Function Restriction

AP Argument pointer SEG/SEGR mode
DAC Local address definition

P Indirect pointer SEG/SEGR mode
XAC External address definition

» [label] AP address-expression [,modifier]

Generates an argument pointer in the form used by the 64 V/32I Procedure Call instruction
(PCL). address-expression is an argument variable, written in memory reference address
format. All 64V address forms may be used - except indexing. modifier controls the storage
of address-expression as follows:

S Set argument store bit.
SL Set argument store bit. Last argument.
*S Set argument store bit. Argument is indirect.

*SL Set argument store bit. Argument is indirect and last.
* Intermediate indirect argument. Do not store.

See Section 9 - Data Formats - for the argument pointer machine format.

> [label] DAC address-expression

Generates a 16-bit pointer in SR addressing format. address-expression is written in SR
addressing format, with indirect addressing and indexing specified by * and ,1 respectively.
If REL mode (see Assembly Control Pseudo-Operations) is in effect, the loader performs
relocation during loading.

The assembler generates a 16-bit constant which is acted upon by the loader as follows:

Addressing mode Address Length Index Indirection
16S 14 YES YES

328 15 NO YES

32R 15 NO YES

64R 16 NO NO

64V 16 NO NO

[label] DAC ** is a convention used to indicate a subroutine entry point (see Program
Linking Pseudo-Operations).
> [label] IP address-expression

Generates a 32-bit 64V/32I indirect pointer. address-expression must be one of the follow-
ing: procedure relative, linkage relative, common or external. SEG sets up the pointer at
load time.

P [label] XAC symbol

Generates a 16-bit pointer to the external symbol. The symbol name may be the same as a
local symbol without conflict. XAC is like a DAC except that it references external symbols.
The address of the external symbol is filled in at load time.

1 March, 1979 16-7 FDR 3059

16 PSEUDO-OPERATIONS

CONDITIONAL ASSEMBLY PSEUDO-OPERATIONS (CA)

Enable the programmer to selectively assemble portions of a source file.
 Name Fumcton ~ Restriction
L Loopback Macros only
~ Define table block an
~ Define value table
. ;*;R'e'verse‘ conditional assembly
~ End conditional assembly area
. Force error message
- Forward reference
~ Conditional
Cedenal
If table false =
If table true
F ifvaluefalse
U valuetrue

BACK

| 4 [label-1] { } label-2;

BACK TO

Directs the assembler to repeat source statements that have already been assembled.
beginning with the statement specified by label-2. Such backward references are permitted
only within a macro definition. Both the BACK, BACK TO and label-2 must lie within the

same MAC-ENDM range.
> label DFTB (symbol, absolute-expression-1),. . .

Creates a programmer symbol table. label is a table name, symbol is an argument whose
value is absolute-expression-1. The symbols defined have no conflict with existing symbols.

For example:

A EQU 5
X DFTB (A,1),(B,2)
X EQU 6

There are no conflicts since the two X's and A’s are different types.

If a DFTB is defined with the same name as a previously defined table, the contents are
appended to the previous table.

| 4 label DFVT (absolute-expression-1, absolute-expression-2),. . .

Creates a programmer value table. absolute-expression-1 is the locator value and absolute-
expression-2 is the value to be substituted.

| 2 ELSE

Reverses the condition set up by an IFx statement until the matching ENDC statement is
reached. If the IFx condition inhibited assembly, the ELSE statement enables assembly, and
vice versa. ELSE statements that lie within the bounds of other IFx-ENDC pairs nested
within the conditional assembly area are ignored.

FDR 3059 16-8 1 March, 1979

PSEUDO-OPERATIONS 16

Defines the end of a conditional assembly area started by an IFx statement. Every IFx
statement must have a matching ENDC.

p FAIL

Generates an F error in the listing.

> [label] IF absolute-expression, statement

Provides the ability to selectively assemble code based on the results of a test. The operand
consists of an absolute-expression followed by a statement. If the expression is true (has a
non-zero result) the statement is assembled: otherwise the statement is ignored and the next
line is processed. The operand of the IF statement cannot be continued onto the following
line, because the skip-if-false condition proceeds to the next physical, rather than logical,
line.

IFM
> [label]) IFP ! absolute-expression

IFZ

IFN

Sets specific tests to control code assembly. The absolute-expression is evaluated. and if the
result corresponds to the IF condition, assembly proceeds normally. Otherwise, the
assembler ignores all subsequent statements until an ENDC or ELSE statement is reached.

For every IFx statement there must be a matching ENDC statement. IFx and ENDC pairs
may be nested within each other. The nesting depth count is checked even in sections of
code that are being skipped by a previous IFx statement.

> label IFTF symbol

Searches the table, whose name is label, for symbol. If symbol is not found, puts its value in
assembler attribute 124 and assembles code to the matching ELSE or ENDC. If the symbol is
found, skip to the line following the matching ELSE or ENDC.

P label IFTT symbol

Searches the table, whose name is label, for symbol. If symbol is found puts its value in
assembler attribute 124 and assembles code to the matching ELSE or ENDC. If the symbol is
not found, skip to the line following the matching ELSE or ENDC.

4 label IFVF symbol

Obtains a value in a value table. If symbol does not equal a locator value in the value table
whose name is label, put its value in assembler attribute 124 and assemble the code to the
matching ELSE or ENDC. If the locator value is found, skip to the line following the matching
ELSE or ENDC.

P label IFVT symbol

Obtains value in a value table. If symbel equals a locator value in the value table whose
name is label, puts its value is assembler attribute 124 and assembles the code to the
matching ELSE or ENDC. If the locator value is not found, skip to the line following the
matching ELSE or ENDC.

1 March, 1979 16-9 FDR 3059

16 PSEUDO-OPERATIONS

> {((;}8 TO } tabel

Causes suspension of assembly of all subsequent statements until a statement having the
specified label is found. The GO or GO TO statement must point forward to a label that is
not yet defined. An error condition exists if the assembler reaches an END, MAC, or ENDM
statement before finding the specified label.

DATA DEFINING PSEUDO-OPERATIONS (DD)

Initialize memory locations to known starting values. For coding convenience, data and
address constants may be specified in a variety of formats. Simple coding conventions allow
the programmer to use decimal, octal, binary and hexadecimal integers. decimal floating
point, and ASCII character constants. The assembler interprets the notation and auto-
matically generates one, two or more data words in the proper internal binary format.

Name Function Restriction
BCI Define ASCII string

DATA Define data constant

DEC Define decimal integer constant

HEX Define hexadecimal integer constant

OCT Define octal integer constant

VFD Define variable fields

» [label] BCI {’string |
n, string |

Loads ASCII character strings by packing the specified ASCII characters two per word,
starting with the most significant 8 bits. Assembled words are loaded starting at the current
location count.

In the first format, the string is delimited by any character other than a digit. If an odd
number of characters is specified, the least significant half of the last word is filled with
zeroes.

In the second format, the string is preceded by a word count, n, which is the number of
characters divided by two and rounded up.

| 4 [label] DATA [(absolute-expression-1)] absolute-expression-2, . ..

Defines absolute-expression-2 absolute-expression-1 times. Absolute-expression-1 is
assumed to be 1 if omitted.

The operand expression(s) are assembled into the current location. The operand may
contain any number of subfields, separated by commas. Subfields are assembled in
consecutive locations starting with the left-most subfield. If an expression requires more
than one location (e.g. floating point), consecutive locations are used. See Section 15 - Data
Definition - for a full discussion of allowable formats.

» [label] DEC decimal-integer-constant, . . .

Defines decimal integers. Each decimal-constant in the operand is evaluated as a decimal
constant, converted into one or more binary words, and loaded starting at the current
location. All numeric formats accepted by the DATA statcment may be used with DEC.

FDR 3059 16-10 1 March, 1979

PSEUDO-OPERATIONS 16

- v

n ,
> {iabel] HEX hexadecimal-integer-constant, .

Defines hexadecimal integers by converting the hexadecimal-constants within the operand

to 16-bit integer values and loading them in consecutive locations starting at the current
location.

> [label] OCT octal-integer-constant, . . .

Defines octal integers. Each octal-constant in the operand is loaded at the current location.

| 2 [label] VFD absolute-expression-1, absolute-expression-2, . . .

Permits 16-bit data words to be formed with subfields of varying length. In the pairs of
constants, absolute-expression-1 gives the subfield size, absolute-expression-2 gives the
value. The first pair is the most significant subfield; subsequent field size value pairs load
less significant subfields of the 16-bit word. For any pair, if a value exceeds the specified
field size, the more significant overflow bits are exclusive-OR’ed with the subfield to the
left. No error message is generated. If the entire word is not specified, the least significant
end is filled with zeroes.

An error message is printed if the assembler attempts to load more than 16 bits.

LISTING CONTROL PSEUDO-OPERATIONS (LC)

Format the assembler listing.

Name Function Restriction
EJCT Eject page

LIST Enable listing

LSMD List macro expanslons data only

LSTM List macro expansions

NLSM Don’t list macro expanslons

NLST Inhibit listing

PCVH Print cross reference values in hexadecimal

» EjCT

Causes the listing device to eject the page (execute a form feed), print the current page title
and page number, and feed three blank lines before resuming the listing. This function is
operable only with devices having a mechanical form feed capability, such as a line printer.

» LisT

Lists all statements except those generated by macro expansions. Since this is the as-
sembler’s default mode, a LIST statement is not required unless a NLST statement has
previously inhibited listing.

» 1sMmD

Lists macro calls plus any data generated by macros.

» LsT™M

Lists macro call statements plus all lines generated by the macro expansion including code
and data values.

1 March, 1979 16-11 FDR 3059

16 PSEUDO-OPERATIONS

» NLSM

Inhibits listing of statements generated by macro expansion. Only the macro call is listed.
Ignored if -EXPLIST command line option is specified.

P NLST

Inhibits listing of all subsequent statements until a LIST statement is encountered. LIST and
NLST may be used together in source text for selective control over the sections to be listed.
The LSTM, LSMD, and NLSM statements provide control of listing for macro definitions.
Ignored if -EXPLIST command line option is specified.

» PCVH

Prints symbol values in the cross reference in hexadecimal instead of octal.

LITERAL CONTROL PSEUDO-OPERATIONS (LT)

Govern the placement of literals. Also see END, which is described under Assembly Control
Pseudo-Operations.

Name Function
FIN Insert literals
RLIT Optimize literals

Restriction

» [label] FIN

Controls the placement of literal pools. All literals defined since an RLIT statement, the start
of the program, or the last FIN statement, are assembled into a literal pool starting at the
current location. Processing of subsequent statements begins at the first location following
the literals. By using FIN, the programmer can distribute literals throughout the program,
and possibly reduce the number of out-of-range indirect address links that must be formed
by the loader to access literals.

» [label] RLIT

Directs the assembler to optimize literal allocation for relative addressing modes (32R, 64R,
64V, 321 modes). Normalily (i.e., without RLIT), literals are assigned locations following a
FIN or END statement. If a defined literal is referenced following a FIN, it is assigned
another location following the next FIN or END statement. However, in a program that
contains an initial RLIT, a literal that has already been defined and is still within the
relative or multiword reach (see Section 10 - Memory Reference) is referenced directly,
without allocating a new location.

Note
RLIT must precede executable code.

| N PN) P T A~ P
INOrmiaiy in SEG or SEGR d

 m t would be placed in the linka
of RLIT causes placement of literals in

he procedure segment.

FDR 3059 16-12 1 March, 1979

PSEUDO-OPERATIONS 16

Pel ool Pak nPats b 1 TITAT

Usage (non-SEG or SEGR]j: When RLIT is used with a FIN statement, literals which have
been already collected in a literal pool by a FIN will not be redefined. For example:

_ REL
(6001) REL
(0002) RLIT
800000: 02.000001 (0003) LDA ='123 '123 IS AN OCTAL LITERAL
000001: 00.000123A (2004) FIN
000002: 02.000001 (B00S) LDA ='123 '123 IS IN THE SAME LITERAL
* POOL AS '123 ABOVE
000003: £4.200205 (9026) TA BUFF
000004: 82.000006 (2007) LDA ='456 '456 WILL BE IN BUFFER POOL
* AFTER END
000005: 00.000010A (0008) BUFF DAC '18 DEFINE BUFFER AREA
000006 (0009) END END OF SOURCE CODE
000006: 00. 0004562

Usage (SEG/SEGR): The FIN pseudo-operation may still be used to control the

placement of literals, but the assembly origin at the time a FIN occurs and the use of RLIT
can affect the literal placement.

If RLIT is specified and a FIN occurs while in linkage origin, the FIN will act as:

HERE EQU *
PROC
FIN
ORG HERE

Correspondingly, if RLIT is not specified and a FIN occurs while in procedure origin, the
FIN will have the effect of:

HERE EQU *
LINK
FIN
ORG HERE

LOADER CONTROL PSEUDO-OPERATIONS (LO)

Provide control information for the loader. Addressing mode control pseudo-operations
(D16S, D32S, D64R, D64V, D32I) control the assembler memory reference instruction
processing as well as loader address resolution mode. Mode commands entered during
loading set the loader’s current mode only, and are overridden by mode control pseudo-
operations in the program.

Incompatible instructions (e.g., a 64V instruction in 32R mode), are flagged by the assembler.
The default mode of the assembler is relative, unless a SEG pseudo-operation is used, in
which case 64V mode is the default.

Note that DUII, LIR and CENT simplify the preparation of library packages that auto-
matically load the modules appropriate to the machine in which the code is to be executed.

1 March, 1979 16-13 FDR 3059

16 PSEUDO-OPERATIONS

Name Function Restriction
CENT = Conditional entry

D16S Use 16S addressing mode
D32S Use 328 addressing mode
D32R Use 32S addressing mode
D64R Use 64R addressing mode
D64V Use 64V addressing mode
D321 Use 321 addressing mode
DDM Use default mode

DUII Define UII

ELM Enter loader mode

LIR Load if required
N64R Not 64R
SDM Set default mode Not 64V or 321

SETB Set hase sector

> CENT symbol

Provides a conditional ENT capability. The loader will load a module containing a CENT
only if something else in the module — such as an LIR — tells it to load the module. This is
true even if the CENT symbol matches an unresolved external reference.

Typically, a module containing a GENT will be part of a library.

» D16S

Directs the assembler and the loader to use 16R address resolution.

» D3R

Directs the assembler and the loader to use 32R address resolution.

» Dazs
Directs the assembler and the loader to use 32S address resolution.
» DesR
Directs the assembier and the ioader to use 64R address resoluiion.
» Deav

Directs the assembler and the loader to use 64V address resolution.

> D321

Directs the assembler and the loader to use 32I address resolution.

» popm

Directs the assembler and

t he default addressing mode. The default mode
is initially set at the start o

FDR 3059 16-14 1 March, 1979

PSEUDO-OPERATIONS 16

Triggers the loading of a UII package. absolute expression-1 is a bit mask, defining
instruction sets that the UIIl package emulates, and absolute-expression-2 is a bit mask,
defining hardware instruction sets that must be present to execute the UII package.

Bit number Meaning

1-9 Must be 0
10 Prime 450 and up
11 Prime 300, 400
12 Undefined
13 Double Precision Floating Point
14 Single Precision Floating Point
15 Prime 300 Only
16 High Speed Arithmetic
» ELM

Causes the loader to generate an enter addressing mode instruction in the current loader
addressing mode at the current counter.

> LIR absolute-expression

Controls library program loading. The program will be loaded if any of the instruction
groups specified have been used in previously loaded code. absolute-expression is a bit

mask, defining instruction groups that are to trigger loading. Bit assignments are the same as
for DUIL

P [label] N64R

Informs the loader that the program is not to be loaded in the 64R addressing mode. If such
a program is loaded in the 64R addressing mode, the loader will report a ‘N6 errox.

> SDM absolute-expression

Directs the loader to set its default addressing mode to absolute-expression. Legal values of
the expression are:

0 16S Mode
1 325 Mode
2 64R Mode
3 32R Mode

SDM does not change the current addressing mode and cannot be used in 64V or 32I modes.

| 2 [label] SETB address-expression-1, absolute-expression-2

Specifies the starting-address address-expression-1 and the size absolute-expression-2 of a
base area for out-of-range indirect address links.

Normally, the loader generates address links starting at location '200 of sector zero. This
statement permits the loader to generate address links in the same sector as the instruction
which refers to them. Memory locations to be used for this purpose must be reserved by the
program.

The first SETB for a given base area determines the location at which the indirect word table
will begin in that sector. The table then grows upward (increasing addresses). Other SETB

1 March, 1979 16-15 FDR 3059

16 PSEUDO-OPERATIONS

pseudo-operations referencing the same sector do not redefine the table for that sector —
table filling resumes where it left off.

At the end of each module, the base sector reverts to sector zero. The loader maintains a
record of the last location used in each base sector. When the base sector reverts to zero, no
indirect words are lost.

MACRO DEFINITION PSEUDO-OPERATIONS (MD)

Create macros. See Conditional Assembly and Listing Control Pseudo-Operations for other
MACRO specific pseudo-operations.

Name = Description

ENDM End macro definition

MAC Begin macro definition

SAY Print message

SCT Select code within macro

SCTL Select code from list within macro
> ENDM

Terminates assembly of a macro definition. ENDM must be the last statement in a macro
definition — just as END is the last statement in an assembler program.

dummy-words, . . .
> label MAC< argument-values, . .
argument-identifiers, . . .

Begins the definition of the macro named by the label field. The name is formed in the same
way as any variable or label. Following MAC are statements that make up the macro
definition: for example:

TRANSFER MAC

DA <1>
STA <2>
The integers enclosed in angle brackets are argument references. During assembly they are

replaced by argument values specified in a macro call. Optional dummy words (“noise
words”) and argument identifiers (*‘positional noise words”) are described in Section 17 —
Macro Facility.

Macro definitions may contain macro calls to any depth, but macro definitions themselves
cannot be nested.

> [label] SAY ASCII-expression

Defines a message which is printed starting in columnm 1 of the listing. Normally, the SAY
message is used within a macro to generate error comments or other messages. Macro
argument references, enclosed by angle brackets are replaced by their equivalent character
string before output.

FDR 3059 16-16 1 March, 1979

PSEUDO-OPERATIONS 16

> [label] SCT absolute-expression

Assembles selected code groups based on absolute-expression. The expression must be a
constant or an expression that can be evaluated as a single-precision number. The argument
value may be positive or negative, with a range to + 4000. This value determines which code
groups are assembled.

Code groups: Code using SCT must be in groups delimited by marker lines, which have a
percent symbol (%) in column 1 followed by a numeric argument:

Marker Meaning

Yo Ordinary marker line.

%ol If the preceding section of code was assembled, continue assembly
from this marker to the next marker.

% 2 If no other sections of code have been assembled, assemble from this
line to the next marker.

%o/ End of control range.

The %2 marker is useful to identifiy a section of code that is to be assembled if the argument
value of the SCT statement is out of range.

Argument Assembly Condition
Value

0 Assemble from the SCT statement to the first % marker; then skip to the
%/ line.

1 Skip to the first % marker; assemble from there to the second %
marker; then skip to the %/ marker.

n Skip to the n’th % line marker, if any; assemble from there to marker n
+1; then skip to the %/ marker. If there is no n’th % marker, proceed as
for -n.

-n Skip to a %2 line marker, if any, and assemble from there to the next %

marker; then skip to the %/ line. If there is no %2 marker, skip to the
% line.

No other SCT statements may appear within the control range; SCT statements cannot be
nested. It is possible, however, to call another macro containing an SCT from within an SCT
area. ‘

> [label] SCTL absolute-expression-1, absolute-expression-2, . . .

Assembles selected code groups. The results of a comparison between the first absolute-
expression-1 and the rest of the argument list controls the selection of the code group.
Absolute-expression-1 and each expression in the argument list must be a constant or an
expression that can be evaluated as a single-precision number. The argument value may be
positive or negative, with a range to + 4000. This value determines which code groups are
assembled.

Code groups: Code using SCTL must be in groups delimited by marker lines, which have a
percent symbol (%) in column 1 followed by a numeric argument:

1 March, 1979 16-17 FDR 3059

16 PSEUDO-OPERATIONS

Marker Meaning

%o Ordinary marker line.

%1 If the preceding section of code was assembled, continue assembly
from this marker to the next marker.

%02 If no other sections of code have been assembled, assemble from this

line to the next marker.
%/ End of control range.

The %2 marker is useful to identify a section of code that is to be assembled if the argument
value of the SCTL statement is out of range.

Argument

Value Assembly Condition

0 Assemble from the SCTL statement to the first % marker; then skip to
the %/ line.

1 Skip to the first % marker; assemble from there to the second %
marker; then skip to the %/ marker.

n Skip to the n’th % line marker, if any; assemble from there to marker n
+1; then skip to the %/ marker. If there is no n'th % marker, proceed as
for -n.

-n Skip to a %2 line marker, if any, and assemble from there to the next %
marker; then skip to the %/ line. If there is no %2 marker, skip to the
% line.

Expression comparison: The position on the argument list of the expression which equals
absolute-expression-1 determines the result:

Expression Position Meaning
absolute-expression-1=absolute-expression-2 SCT 0
absolute-expression-1=absolute-expression-n SCT n
no match SCT -n

No other SCTL statements may appear within the control range; SCTL statements cannot be
nested. It is possible, however, to call another macro containing an SCTL from within an
SCTL area.

PROGRAM LINKING PSEUDO-OPERATIONS (PL)

Coordinate the interaction of the assembler and loader in resolving address references
between main programs and external subroutines.

Name Function Restriction
CALL External subroutine reference

DYNT Direct entry call

ECB Define entry control block SEG/SEGR
EXT Flag external reference

SUBR,

ENT Define entry point

P [label] CALL symbol
In non-64V modes, CALL generates a JST to symbol. which is defined by the assembler as

FDR 3059 16-18 1 March. 1979

PSEUDO-OPERATIONS 16

The operand must contain a single symbol (not an expression) of up to 6 characters, of which
the first must be alphabetic. A |1 for indexing and * for indirect addressing is optional.

In 64V and 321 modes, CALL generates a PCL instruction to an external symbol.

> DYNT address-expression

Defines a direct entry point into the operating system. System libraries only.

> [label] ECB entry-point, [link base], displacement, n-arguments [, stack-size]
[, keys]

Generates an entry control block to define a procedure entry. It must go in the linkage frame

with the subroutine entry point pointing to the ECB.

Parameter Meaning

entry-point Procedure relative value; entry point for subroutine.

link-base Link base register value.

displacement Displacement in stack frame for argument list. May
be stack relative or absolute expression.

n-arguments Number of arguments expected; default is zero.

stack-size Initial stack frame size. Default is maximum area
specified in DYNM statements.

keys CPU keys for procedure. Default is 64V addressing

mode, all other keys zero.

For example:

ENT ECBNAM
LAB1 LDA ='123
LINK
ECBNAM ECB LAB1
END

If the default value for a parameter is desired, the parameter may be omitted, leaving only
its delimiting comma. Any string of trailing commas may be omitted.

Note

The main program — that which you call PRIMOS level using
SEG#Name — is a subroutine to SEG and must, therefore,
have an ECB and the ECB name on the END statement. It
need not have an ENT because SEG will give a dummy entry
point name to a routine called at this level.

P [label] EXT symbol

Identifies external variables. The names appearing in the operand of this statement are
flagged as external references. Whenever other statements in the main program reference
one of these names, a special block of object text is generated that notifies the loader to fill
in the address properly. The assembler fills the address fields with zeroes.

Names defined by the EXT pseudo-operations are unique only in the first 6 characters
(loader restriction) and should not appear in a label field internal to the program.

1 March, 1979 16-19 FDR 3059

16 PSEUDO-OPERATIONS

> [label] SUBR symbol-1 or ENT symbol-1 [, symbol-2]

Link subroutine entry points to external names used in CALL, XAC or EXT statements in
calling programs. SUBR and ENT are identical in effect. symbol-1is the external name used
by calling program, whereas, symbol-2 is the entry name used in subroutine, if different
from symbol-1.

» symL SEG/SEGR

Allows long external names up to eight characters to be generated by the assembler. Must
follow SEG or SEGR but precede any generated code.

STORAGE ALLOCATION PSEUDO-OPERATIONS (SA)

Control the allocation of storage within the program address space.

Name Function Restriction
BSS Allocate block starting with symbol

BES Allocate block ending with symbol

BSZ Allocate block set to zeroes

COMM FORTRAN compatible COMMON

BSS
> [label] { BES} absolute-expression
BSZ

Allocates a block of words of the size specified in the absolute-expression starting at the
current location count. If there is a label, it is assigned to the first word of the block (BSS and
BSZ) or to the last word of the block (BES). For BSZ, all words within the block are set to
Zeroes. :

> [label] COMM symbol [(absolute-expression)]

Defines FORTRAN-compatible named COMMON areas. These areas are allocated by the
loader. The label assigns a name to the block as a whole, and the operand field specifies
named variables or arrays within the block. Additional COMM statements with the same
block name are treated as continuations. symbol alone reserves a single location; the
optional absolute-expression reserves locations equal to its value. In SEG mode, the loader
sets up a 32-bit indirect pointer in the linkage segment which points to the common area.

SYMBOL DEFINING PSEUDO-OPERATIONS {3Dj

Variables used as address symbols are usually defined when they appear in the label field
of an instruction or pseudo-operation statement. Symbols so defined are given the relocation
mode and value of the program counter at that location. The EQU. SET and XSET statements
make it possible to equate symbols to any numerical value, including ones that lie outside
the range of addresses in a program.

Name Function Restrictions
DYNM Declare stack relative R and V only
EQU Symbol definition

SET Symbol definition

XSET Symbol definition

FDR 3059 16-20 1 March. 1979

PSEUDO-OPERATIONS 16

} Teratasr TL 1..s a1 1T
LY INIVL [duauxuu::-cxpl. ©O01iUliT1,| lbylllu
[=absolute-expression-3], . . . |

Declares stack relative symbols. Since references to stack relative symbols generate two-
word instructions, stack relative symbols must be declared before they are used (REL mode
only).

expression-1 is the stack size, symbol is the name, expression-2 is the number of words to
allocate for that symbol and expression-3 is the stack offset.

In the following format descriptions, these abbreviations are used:
sC Current stack allocation count (initially=2)

Note

Initially '12 in SEG mode. Note also that subroutine argumen
addresses require three words and are specified: ARGn(3).

sm Maximum allocation count

symbol Symbol to be assigned stack relative offset

expl Expression defining number of words for symbol
exp2 Expression defining stack offset

Format Description

1. symbol

¢ symbol is assigned offset=sc

® sc=sc+1

o if {s¢ .GT. sm) sm=sc

symbol (exp1)

e symbol is assigned offset=sc

e sc=sc+expl

e if (sc .GT. sm) sm=sc

3. symbol=exp2
» symbol is assigned offset=exp2
o if (exp2+1 .GT. sm) sm=sc

. symbol (expl)=exp2

* symbol is assigned offset=exp2

¢ if (exp2+expl .GT. sm) sm=exp2+expl

= exp2

A

(=Y

ot

. sc:expz

> EQU
symbol {SET } absolute-expression [,symbol=absolute-expression]

XSET Format 1
» (EQU
SET symbol=absolute-expression, . .. Format 2

XSET

In format 1, the symbol in the field label is equated to the absolute-expression. which may
be any expression which is legal in the current addressing mode. Any symbols used in the
expression must already be defined.

In format 2, symbols are assigned numerical values by equality expressions in the operand
field. One or more equality expressions can be used, separated by commas.

1 March, 1979 16-21 FDR 3059

16 PSEUDO-OPERATIONS

Note that format 1 can be extended by symbol=value expressions.

EQU, SET and XSET perform the same functions; however, a symbol defined by EQU may
not be redefined, while a symbol once defined by SET or XSET may be redefined by
subsequent SET or XSET statements without causing an error message.

Symbols defined by XSET will not appear in the cross reference listing.

FDR 3059 16-22 1 March, 1979

INTRODUCTION

The macro facility enables the programmer to define functions using simple English, or
other language phrases. For example, the macro:

TRANSFER DATA TO SAVE

replaces the simple but cryptic assembly coding:

LDA DATA
STA SAVE

Once a macro function has been defined, it can be called any number of times within a
program. Different argument values (DATA and SAVE in the above example) can be
supplied with each call. Dummy words, such as TO or FROM. can be added to increase
intelligibility. These words must be identified during macro definition so that they will not
be treated as additional arguments in a macro call.

After a system-level programmer has defined a set of macros. a specialist in an application
field can formulate macro calls to solve his particular problems. The application specialist
gains the advantage of macro’s capabilities without becoming involved in the details of
assembly language programming.

The example below illustrates a simple macro definition and call. The discussion which
follows describes each element.

B REL
(2001) REL
(6002) LSTM
(0@03) TRANSFER MAC
(0004) LDA <1>
(0905) STA <2>
(6006) ENDM
(0007) TRANSFER DATA SAVE
000000: 02.000002 (MLOL) LDA DATA
000001 : 04.000003 (MLOL) STA SAVE
(MLOL) ENDM
00002: 000005 (8908) DATA OCT 5
000003: (0009) SAVE BSS 2
000005 (0910) END

1 March, 1979 17-1 FDR 3059

17 MACRO FACILITY

MACRO DEFINITION

Each macro definition must begin with a MAC pseudo-operation. The MAC statement must
have a label ('TRANSFER') and may have optional dummy words (FROM' 'TO') and
argument identifiers in the variable field. Statements which make up the macro definition
follow, terminated by an ENDM pseudo-operation.

Argument references

Argument references are expressions enclosed within angle brackets. Any field of a
statement within a macro definition may contain an argument reference. The expression
may contain variables as well as absolute integers, provided the variable has been
previously defined as an absolute integer. For example:

REL
LS™

TRANSFER MAC
DA <J>
STA <K>
ENDM

J EQU 1

K EQU 2
ENDM

is the same as the previous transfer macro example. The label field of the macro call is not
automatically assigned; it replaces argument <0>, if any, during assembly.

Assembler attribute references

Certain useful attributes of a macro can be specified by a number preceded by the pound
character (#). The attribute number may be a variable, or an expression within parentheses.
as long as such variables have been previously defined as absolute integer values. Attribute
references are evaluated as absolute integer values, and may be used in both macro
definitions and macro calls. See Appendix A for a complete list.

Local labels within macros

Local labels, which do not conflict with labels outside of the macro, can be assigned within
a macro definition by using the ampersand character (&) as the first character of the label.
The ampersand is replaced by a 4-digit macro call number, thereby assuring uniqueness of
the label regardless of the macro’s environment. Use of the ampersand outside of a macro
will result in the substitution of 4 zeros.

Examples:
Assigned
Local Label Evaluation As In Macro Call
ABC 002ABC 0002
X3A 1739X3A 1739

MACRO CALLS

A macro call is a special type of statement that uses the name of a defined macro in the

operation field:
arguments, . . .
[label] macro-name {dummy words, . . . }
argument identifiers, . .

FDR 3059 17-2 1 March, 1879

MACRO FAcILITY 17

For each macro call, the assembler enters the in-line code of the defined macro starting at
the current location. Argument references are replaced by argument values from the
variable field.

User defined macros must be defined in source statements preceding the macro call.

Argument values

The variable field of a macro call usually contains one or more argument value expressions.
An argument value expression begins with the first non-space character of the variable field
and continues until either a terminating comma or space appears. The comma or space is not
considered to be part of the argument expression.

Argument values in parentheses: Enclose argument value expressions in parentheses when
commas, spaces, or string delimiters within a single argument are desired. The outside
parentheses are not considered as part of the argument expression. A typical use of this
feature is in forming sub-lists of arguments for macro calls nested within a given macro
definition. See NESTING MACROS, below.

Argument substitution

During assembly of a macro call, the assembler substitutes the argument values in the macro
call variable field for the argument references in the macro definition. Argument ex-
pressions are matched to argument references in numerical order from left to right. The first
expression in the macro call is assigned as argument 1, the second as argument 2, and so on.

Variable Field Argument <1> Argument <2> Argument <3>
A A 0 0

A+3 A+3 0 0

X.Y-1.Z*A-1 X Y-1 Z*A-1

X,B-C (Z23X2) X B-C 2.3X2

(A. B-1). C A, B-1 C

(X, Y. (Z21+Z2).3) X.Y.(Z1+22).3 0 0

In the following call to the TRANSFER macro,

TRANSFER ARGl '1770
the variable ARG1 is argument 1 and the constant '1770 is argument 2. Thus, the TRANSFER
macro shown would be assembled as:

LDA ARG1
STA '1779

Arguments that are not assigned values in a macro call are set to zero by the assembler.

Self documentation of macros

An ordinary macro call like:

TRANSFER ARG1 ARG2

although complete. provides only a vague description of its function. Using additional words
in the variable field of a macro call. the programmer can communicate the exact nature of
the function. Macro calls are made self-documenting by a combination of meaningful
argument symbols, such as DATA. MESSAGE. and PRINTER, dummy words, such as TO and
FROM, and argument identifiers. Dummy words are for descriptive purposes only and are
ignored by the assembler, while argument identifiers act as argument keywords.

1 March, 1979 17-3 FDR 3059

17 MACRO FACILITY

Dummy words: Dummy words applicable to a given macro are defined in the variable field
of the MAC statement that starts the macro definition. For example:

TRANSFER MAC FROM TO

ba <1>
STA <2>
ENDM

In the above example, FROM and TO are defined as dummy words. In any subsequent call
to this macro, the assembler ignores the words FROM and TO; all other expressions in the
variable field are interpreted as argument values, proceeding in numerical argument order
from left to right. These values are substituted for the argument references in the macro
definition statements, e.g., when the TRANSFER macro is called by TRANSFER FROM
ALPHA TO '7770, the assembler ignores the FROM and TO, and assembles the macro as if
the call statement were TRANSFER ALPHA, '7770.

A dummy word string can be any combination and number of letters, numerals, periods and
$ signs, terminated by a comma. Any number of dummy word strings may be used. If the first
character of a dummy word string is an open parentheses, all characters, including spaces
and commas, up to the closing parentheses are considered part of the same string. The
parentheses are not considered part of the string.

Argument identifiers: While the self-documenting effect of dummy words improves the
description of macro calls, the programmer must still be careful to enter values for
arguments in the proper order. Argument identifiers increase the format flexibility of macro
calls by associating a particular argument number with a specific dummy word. regardless
of written order. In the TRANSFER macro, for example. identifiers can be defined so that
argument 2 follows the dummy word TO, and argument 1 follows FROM, regardless of the
order in which TO and FROM appear in a macro call.

Argument identifiers, like dummy words, are assigned in the variable field of a MAC
statement that starts a macro definition. To define an argument identifier. set a dummy
word, in parentheses, equal to the desired argument number:

TRANSFER MAC (FROM)=1 (TO)=2

A <1>
STA <2>
ENDM

When a call to the macro uses a defined argument identifier in its variable field. the first
non-dummy expression immediately following the identifier is taken as the value of the
argument:

_ REL
(9901) REL
(#@@2) TRANSFER MAC (FROM)=1, (TO)=2
(0093) LbA <>
(9904) STA <2>
(8005) ENDM
(0006) TRANSFER FROM ALPHA TO BETA
000000: 02.000004 (MLA1) LDA ALPHA
200001 : 04.000006 (MLO1) STA BETA
(9007) TRANSFER TO BETA FROM ALPHA
000002 g2.000004 (MLO1) LDA ALPHA
P00 3: 04.000006 (MLOA1) STA BETA
000004 (9908) ALPHA BSS 2
20006 (3039) BETA BSS 2
000010 (091 9) END

FDR 3059 17-4 1 March, 1979

MACRO FAcILITY 17

RAt
iUt

oy

ls have the same effect. The expression following the dummy word FROM
is taken as argument <1>, and the expression following TO is taken as argument <2>.
Argument identifiers and dummy words may be used together in the same macro. Ordinary
dummy words are ignored, as usual.

Arguments that are not associated with identifier words receive values in the usual
positional priority - the first non-dummy word is taken as the value for the first unspecified
argument, and so on. For example, the macro defined by:

MASK MAC (BY)=2, (TO)=3,MOVE, AND

LDA <>
ANA <2>
LDA <3>
ENDM
can be called by,
(000a1) REL
(0032) MASK MAC (BY)=2, (TO)=3,MOVE, AND
(0093) Lpa <1>
(0004) ANA <2>
(@8005) LA <3>
(0006) ENDM
(00087) MASK INPUT BY 7 AND MOVE TOQ BUFFER
P00003: 02.000903 (ML@1) LDA INPUT
000301 : 03.000007A (MLQL) ANA 7
200002 02.000004 (MLZ1) LDA BUFFER
200003: 223456 (3P@8) INPUT OCT 456
000004 (0009) BUFFER BSS 1
200335 (0010) END

Using the identifier words BY and TO. argument 2 is given a value of 7 and argument 3 is
equated to the label BUFF1. The only remaining variable in the call is INPUT. so it is
assigned as to the first unspecified argument. 1.

NESTING MACROS
Macro definitions may contain nested calls, as in the following example:

The WAIT1 macro. which calls another macro. TRANSFER. is defined by:

REL
TRANSFER MAC
DA <1>
STA <2>
ENDM
WAIT MAC
IRS <1>
JMP *-]
TRANSFER <2>
ENDM

1 March, 1979 17-5 FDR 3059

17 MACRO FACILITY

is called by,

REL
TRANSFER MAC
pa <1>
STA <2>
ENDM
WAIT MAC
IRS <1>
JMP *-1
TRANSFER <2>
ENDM

WAIT 10@, (INPUT,SAVE)
INPUT BSS 2
SAVE BSS 2

END

is assembled as:
WAIT 100, (INPUT,SAVE)

Macro definitions may not, however. contain nested macro definitions.

CONDITIONAL ASSEMBLY

There are a number of pseudo-operations which allow the programmer to control the
assembly of his macro. These pseudo-operations are discussed in the Conditional Assembly
Pseudo-operation section.

MACRO LISTING

Three levels of listing detail for macro calls are available.

LSTM Lists macro statements and all lines generated by expansion of the
macro, including code or data values.

LSTMD Lists macro call statements and any lines which generate code.

NLSM Inhibits the list of macro expansions. Only the call is listed.

The defauit condition is NLSM. which causes only the macro call statement to be listed. with
no expansion. These pseudo-operations remain in effect until a new macro listing control
pseudo-operation is specified.

FDR 3059 17-6 1 March, 1979

VPSD COMMAND SUMMARY 21

Table 21-3. Key Values: V MODE
lc/o|c] aor [Fx[N][z] 0
1 2 3 4 —6 7 8 9 10 M L e 16

Bit Name Meaning
1 G Carry Bit
D Precision; 0=Single; 1=Double
3 L ‘ Carry out of most significant bit
4-6 ADR Addressing Mode k ‘
00=16S
01=328
011=32R
010=64R
110=64V ;
7 F 0=Floating point exception faults
8 X 1=Integer exception faults
9 N Negative result
10 4 Zero result
11-16 Must be zero

» PROCEED [address] [a-reg] [b-reg] [x-reg] [keys]

Continue execution from breakpoint. Removes the current breakpoint if there is one,
optionally sets a new breakpoint at address, and does a RUN command to the current
program counter address. a-reg, b-reg, x-reg and keys have the same meaning as in the RUN
command.

> QUIT
Returns to the PRIMOS operating system. In SEG’s VPSD returns to SEG command level.

> RELOCATE value

Sets a new value for the access-mode relocation counter.

2 RUN |[start-add] [a-reg] [b-reg] [x-reg] [keys]

Runs the executable program starting at start-add location. Prior to program entry. a-reg, b-
reg, x-reg, and keys are optionally loaded. Control does not return to the debugging utility
unless a breakpoint is encountered.

In VPSD, use SN to specify the segment in which to run; start-add is just the 16-bit word
number.

> SB seg-no word-no

Loads the stack base register with a segment number (seg-no) and a word number (word-no).

4 SEARCH block-start block-end match-word [mask]

Searches memory from block-start to block-end for words equal to match-word under an
optional 16-bit mask.

1 March, 1979 21-5 FDR 3059

DEBUGGING

TAR. PSD and VPSD

Prime supplies three interactive debugging programs:

e TAP (Trace And Patch) - for sectored addressing modes
e PSD (Prime Symbolic Debugger) - for sectored and relative addressing modes

e VPSD (Virtual Symbolic Debugger) - for sectored, relative and virtual addressing
modes.

TAP is a small (one sector), octal format routine that examines, dumps and patches user
programs. It has a breakpoint capability and can trace 16S and 32S instruction execution.

PSD is a symbolic routine that can handle all of the PRIME-300 addressing modes. In
addition to the functions provided by TAP (except EXECUTE and PATCH) it has enhanced
functionality and additional input/outp 't formats.

VPSD is a symbolic routine that can handle the segmented addressing modes, as well as all
of the PRIME-300 addressing modes. The functionality (except for instruction tracing) is
essentially the same as PSD.

Table 18-1 gives a complete alphabetical listing of all debugging commands and the
programs which use them.

USING TAP

Load the object program, using the PRIMOS commands LOAD or RESTORE, and then enter
the command TAP. Since TAP is in user memory along with your program, be sure TAP has
not overlaid part of your program. When ready, TAP prints the $ prompt character and waits
for you to type in TAP command strings.

Terminating long operations: To terminate long operations such as DUMP, type CTRL P to
return to PRIMOS command level.

Restarting: Restart at 'XX00¢ where XX is the sector occupied by TAP. To determine this
value, RESTORE TAP and do a PM command to print the starting location (see Section 7 for
a complete description of the PM command).

1 March, 1979 18-1 FDR 3059

18

INTRODUCTION TO TAP, PSD AND VPSD

. Table 18-1. Debuggmg Command Summary [mput rust colored lettersin upper -case only].

” ’Command o : Meaning TAP PSD VPSD
AACCESS_ Access and prmt or alter contents of memory
o word" ; ~ o YES YES YES
: BREAKPOINT Insert up-to 10 breakpomts in program (TAP ;
. permitsonly 1 breakpomt] - "YES YES YES
BR - Display contents of base reglsters NO NO YES
COPY * Copy block to block YES YES YES
- DEFINE ~ Define local symbols NO YES NO
' DUMP ~ Print contents of block (or. in PSD and VPSD. ,
Lt write contents to optlon&l file) YES YES YES
EFFECTIVE - Search for effective address under mask NO YES ~YES
. EXECUTE ~ Execute a subroutme , YES NO NO
f,EXECUTE . f Execute segmented program NO NO YES
f‘FILL . * Fill block with constant YES YES YES
;'GO ' o ~Proceed from breakpomt AT ~NO YES NO
k'kk]UMPTRACEP' wTrace]MP]SI’ HLT mstructlons “YES. YES NO
| KEYS a;y‘”Update CPU status : ~ ~ NO YES YES
LB Load link base reglster ; "NO NO YES
LIST o Prmt contents of address : , YES YES YES
LS Load external symbols froin map file and L R ‘,
Cas iR enter symbahc address mode ~NO YES NO-
: MAP Lon v Type out all sxmbols with their values NO YES NO
'MODE ~ Address mode selection NO YES YES
'}MONITOR Execute program, reportmg any reference b7
~ the spemfled effective address YES YES NO
'ﬁNOT-E'QUAL - Not- equal searcH for constant under mask "YES YES YES ‘
OPEN - Open file for memery dump or svmbols " NO YES YES
PA’I‘CH S ,;Patch ob ect program YES NO NO
 PRINT ~ Print parameters NO YES YES
 PROCEED Remove breakpoint and proceed NO YES YES
QUIT ; ‘Return to PRIMOS (or SEG if SEG's VPSD) NO YES YES
'RELOCATE Alter relocation constant NO YES YES
RUN Run object program YES YES YES
' SB Load stack base register NO NO YES
- SEARCH Search memory block for constant under
mask YES YES YES
SN Set segment number NO NO YES
SYMBOL Enable/disable use of symbols in address
typeout NO YES NO
TRACE Trace object program YES YES NO
UPDATE Update memory word YES YES YES
VERIFY Compare contents of one block of memory
with another YES YES YES
VERSION Print PSD version and restart location NO YES YES
WHERE List location and remaining repeat counts for
all breakpoints NO YES YES
XB Load temporary base register NO NO YES
XR Load X register NO YES YES
YR Load Y register NO NO YES
ZERO Zero breakpoint location NO YES YES
FDR 3059 18-2 1 March, 1979

INTRODUCTION TO TAP, PSD AND VPSD 18

Load the object program, using the PRIMOS commands LOAD or RESTORE. and then
decide which of the three versions of PSD you need to use. Since PSD is resident in user
memory with your program, you must take precautions to prevent your program from being
overlaid. See Table 18-2 for the name, starting location and suggested usage of each version.
None of the three versions is relocatable. When ready, PSD prints the $ prompt character
and waits for you to type in PSD command strings.

Terminating long operations: To terminate long operations such as DUMP. type CTRL P to
return to PRIMOS command level.

Restarting: Restart at 'XXXXX where 'XXXXX is PSD’s starting address. To determine this
value, type a VERSION command to print the starting location.

Table 18-2. PSD/VPSD Versions

Name Location Comments

PSD20 20000 Use when vour system is small.
i.e.. 16k

HPSD 150000 Use when vour program is so
large that it overlays PSD

PSD 60000 Normal use

VPSD 60000 of segment 4000 Normal use

VPSD16 160000 Use when vour program is so
large that it overlavs VPSD

USING VPSD

There are two versions of VPSD: stand-alone VPSD and SEG's VPSD. Both reside in segment
"1000. There are three ways to enter VPSD. each of which has slightly different conse-
quences for debugging:

Action Usage/Consequence

1.

[s

1 March, 1979

Load the object file using SEG's loader.
Then return to*'#* level with the "RE"
command and issue the SEG command
PSD. Obtain the starting address of SEG's
VPSD with the VERSION command.
Memory may now be examined and
breakpoints set. Type "EX' to start the
program. If it crashes, issue the PRIMOS
level PM command to obtain the data at
crash time. Then issue the PRIMOS com-
mand START using SEG's VPSD starting
address.

l.oad the runfile and enter VPSD via the
“SEG filename 1/1"° command.

Load and execute the runfile using SEG.
When the program crashes. use the
PRIMOS command VPSD to call the
stand-alone version of VPSD.

18-3

Used when no runfile exists. WWhen
EXECUTE is given. the registers are
as SEG initialized them. Preserves
the entire program contents exactly
as it was at the time of the crash.
except for the program counter
whose value vou obtain via the PM
command.

Used when runfile exists. When
EXECUTE is given. the registers are
as SEG initialized them.

Use onlyv if SEG's VPSD has been

ha nmagictare ~ro ¢+t
dCDllU)Ud. TllC 168’10[613 ailt 11Ut

preserved.

FDR 3059

18 INTRODUCTION TO TAP, PSD AND VPSD

COMMAND LINE FORMAT

Each command is a one or two letter operation followed by one or more operands.
Separators may be spaces or commas, and values may be omitted by including extra
commas. Commands may be terminated by a carriage return or a semicolon.

The ACCESS command differs from the others in that it remains in control and allows you
to examine and/or alter more than one location without returning to command mode
(signalled by the prompt character). The next location to be accessed is selected by the
terminator used. (See ACCESS for details.)

A question mark (?) may be used to abort a command string and return to command mode.
If more than five octal digits are entered, only the last 16 bits are used.

In TAP, if the wrong function code letter is entered, simply follow it with the correct
character. (Only the last input letter of the command field is interpreted.) To cancel an
incorrect parameter, type an asterisk (*).

Effective address formation (PSD and VPSD only)

PSD processes input and output in all Prime-300 addressing modes: VPSD, in all Prime 350
and up addressing modes the mode is set by the MODE command.

When the index register is needed, the current value of the X register is used: VPSD may use
the Y register where appropriate and so specified.

When either VPSD or PSD prints an address, it applies the same address formation process
as the hardware, using the current values of the registers. For relative addresses, the access-
mode current location counter is used as the value of the P register.

Relocation constant (PSD and VPSD only)

PSD can process addresses in a relocatable mode (equivalent to assembler REL by
maintaining a relocation constant which points to the start of a module. All addresses that
are preceded by > are relative to this relocation constant. For a relocation constant of '3121.
both $A>0 and $A '3121 would open location "3121.

The relocation constant is set by the RELOCATE command. Setting the relocation constant
to 0 disables this mode.

For all output, any address which is larger than the relocation address is printed as > n.
where n is the address minus the relocation address. Setting relocation constant=0 disables
symbolic I/0 as does SY 0.

Input/output formats (PSD and VPSD only)

While the default command line scan is octal, PSD and VPSD can accept input parameters
and print output values in several different formats. The format is established by typing a
colon followed by a single format letter. All input to the right of that format specifier is
interpreted in that format until you type a new format specifier or a terminator. Format
specifiers control the input for just the current line but have a global effect on output until
you type a new format specifier. Table 18-3 describes the format specifiers. The following
example illustrates their effects.

Fill and Dump Example:

F 100 200 :HAFAF Fills octal locations 100 to 200 with hexadecimal digits
AFAF

D 129 130 The typeout on the terminal will be in hexadecimal.

FDR 3059 18-4 1 March, 1979

INTRODUCTION TO TAP, PSD AND VPSD 18

Symbolic instruction format: enables user to use standard PMA symbolic instruction format
for output and access mode input. The only restrictions are:

1. Expressions - only + and - operations

2. No literals

3. Symbol use - global symbols if the LS procedure has been used and any
symbols defned within PSD

4. Input is only legal in access mode, i.e., “S 100 200 :SAIA" is not legal

5. The suffixes “+ 1C” and “‘+ nB” may be used to indicate character and
bit offsets in VPSD ‘

Table 18-3. Input/Output Formats (PSD and VPSD)

Format Code Input Output

ASCII A Two characters accepted first- may Two characters are
notbe:>=@ % , NL/? + printed. An @ is sub-
- * () or blank Second is re- stituted for a nonprint-
quired and may not be: / ? .NL. ing character

Note—to input ASCII characters in
any format use 'CC (single quote
followed by two characters)

Binary :B Takes a sequence of 16 1's and 0's Prints a sequence of
sixteen 1's and 0's
Decimal :D Accepts up to five decimal {0-9) Prints decimal digits
digits
‘Hexadecimal :H Accepts up to four hexadecimal Prints hexadecimal
(0-9, A, B, D, C, E, F) digits digits \
Octal :0 Accepts up to six octal (0-7) digits Prints octal digits
Symbolic :S Symbolic instructions Symbolic instructions
(See below)
AP * :P Symbolic instructions Prints address pointers
Long * :L Accepts 32 bit octal integers Prints 32 bit octal in-
tegers

*~AP and Long are VPSD only.
Constants entered in :S mode are octal

Command line operands

These may be constants, constant expressions. or symbols. The format of a constant is:

[: format] [>] +digits [:format]
ASCII-constant |
where:
format format specifier (see Table 18-3)
> relocatable mode
ASCII-constant two letter constant in format described in Table 18-3
digit decimal, octal, binary or hexadecimal. depending on

which format is in control

1 March, 1979 18-5 FDR 3059

18 INTRODUCTION TO TAP, PSD AND VPSD

The format of a constant expression is:

constant [+ constant]
Current location pointer (PSD and VPSD)

In access mode, a current location pointer is maintained, starting with the value of the start-
address parameter of the ACCESS command. The location pointer determines the next
location to be accessed.

During each access operation, PSD replaces the value in the open location with the new
value (if specified) and uses the line terminator to compute the next value of the current
location pointer. For the comma or CR line terminators, the pointer is incremented after
each access. Other line terminators provide different options.

FDR 3059 18-6 1 March, 1979

TAP COMMAND SUMMARY

Enter rust colored letters in upper-case only.

> ACCESS address

Accesses a word in memory. The debugging program types the address and its contents and
then waits for keyboard input in the following form: [value] terminator, where value is an

octal number which replaces the contents of the accessed location, and terminator is one of
the characters shown in Table 19-1.

Table 19-1. TAP Termmators :
‘Terminater ~~ Function L
- CR- , Alters contents of current iocatmn (if a value is ngen] mdves to
- current location +1, and prints its contents. ~
“eor 1 ~Alters contents of current location (if a value is g1ven] moves to
~ current locatmn -1, and prints its contents.
/or? Exits from access mode. Does not close current location.

P BREAKPOINT location

Sets a breakpoint at the specified location. If the program is later executed and control
reaches the breakpoint location, the debugging program prints CPU status and awaits
further commands. One breakpoint is permitted. The actual breakpoint jump is placed in
the object program only at execution time, and is removed after each use, however, the

breakpoint address is retained for reuse. To remove the breakpoint completely, key in
B'17(CR).

> COPY source-start source-end target

Copies a block of memory from source-start to source-end into a new block of memory
starting at target. If the target location lies between source start and source end, the non-
overlapped portion is propagated through the target area. The size of the target area is
always equal to the size of the source. If source-end equals source-start, the contents of
location source-start will be copied into target.

1 March, 1979 19-1 FDR 3059

19 TAP COMMAND SUMMARY

P DUMP block-start block-end

Prints the contents of the block of memory at locations block-start through block-end on the
user terminal. The output format is eight octal words per line, preceded by the octal address
of the first word on the line. Repetitious words and lines are suppressed as follows:

1. If the remainder of the current line is identical to the word last printed,
the line is terminated.

2. If one or more subsequent lines are identical to the word last printed,
the terminal skips one line.

> EXECUTE sub-name [a-reg] [b-reg] [x-reg] [keys]

Executes a subroutine by branching to location sub-name. The A, B, and X registers and the
keys (see Table 19-2) may be changed prior to executing the subroutine. The subroutine
return should be via an indirect jump through its entry point, incremented by 0, 1 or 2,
depending on the number of arguments, if any.

Upon return from the subroutine, the 'TRACE’ program prints the register contents as noted
under RUN except that one or two meaningless words may precede the specified format to
indicate that the subroutine has incremented its return link by 1 or 2.

> FILL block-start block-end constant
Fills the memory block from block-start to block-end with the specified octal constant.

If block-end does not exceed block-start, only the first location is filled. FILL is useful to test
data area usage by pre-filling it with a visual pattern.

» JUMPTRACE [start-add] [a-reg] [b-reg]

Traces the execution of the object program starting with start-add (default is current
location). You may set the A register and B registers. [UMPTRACE, which is very useful for
control-flow tracing, produces a diagnostic printout in the following format prior to the
execution of any [MP, |ST or HLT instruction:

Location: instruction A= B= X= K= R=

Any typed character will stop the trace. SVC’s are not included in the trace.

> LIST address

Prints the contents of address. Unlike ACCESS, LIST does not transfer the pointer to that
location, a useful feature when you wish to examine a location without going there.

P MONITOR [start-add] [a-reg] [b-reg] address

Traces the object program from start-add (default is current location) to address. You may
set the A and B registers.

If a memory reference instruction whose effective address equals address is encountered,
data in trace format is printed on the terminal prior to the execution of that instruction.
MONITOR answers the question “Where is the address being clobbered?”

FDR 3059 19-2 1 March, 1979

TAP COMMAND SUMMARY 19

Table 19-2. Keys

[c[p] - | aom | - | SHIFT COUNT
1 2 3 4 5 — 6 7 — 8 9 — 16

Bit Name Meaning
C Carry Bit
D Precision; 0=Single; 1=Double
- Not used
4 - Not used
5-6 ADR Addressing Mode
00=16S
01=328
11=32R
10=64R
7 - Not used
8 - Not used

9-16 . SHIFT COUNT Shift count - low order 8 bits
of the floating point accumulator
exponent register

Typing any character will stop the trace after several more lines. The character typed is
considered part of the next command, so a space is the usual choice.

» NOT-EQUAL block-start block-end n-match [mask]

Searches memory between block-start and block-end for words not equal to n-match under
an optional 16-bit mask.

The masking function is a 16-bit logical AND. If no mask is specified, the entire word is
tested. When a non-match is found, the address and its contents are typed out and the search
continues to block-end.

> PATCH patch-loc branch-loc

Inserts a patch in the object program. The instruction at branch-loc is replaced by a jump to
patch-loc. The previous branch-loc instruction is inserted at patch-loc and the ACCESS sub-
processor is entered with the current location set to patch-loc. You may now enter the patch,
including a suitable return. Patch-loc must either be in the same sector as branch-loc or in
Sector 0.

> RUN [start-add] [a-reg] [b-reg] [x-reg] [keys]
Runs the executable program starting at start-add location.

Prior to program entry, a-reg, b-reg, x-reg and keys are optionally loaded. Control does not
return to the debugging utility unless a breakpoint is encountered.

1 March, 1979 19-3 FDR 3059

19 TAP COMMAND SUMMARY

> SEARCH block-start block-end match-word [mask]

Searches memory from block-start to block-end for words equal to match-word under an
optional 16-bit mask.

If a mask is not specified, the entire word is tested. When a match is found, the address and
its contents are typed out, and the search continues until location block-end has been tested.

P TRACE [start-add] [a-reg] [b-reg] { Evi‘:}tglal}

Dynamically traces executable program starting at start-add with a-reg and b-reg optionally
preset and prints a diagnostic printout prior to the interpretive execution of each object
instruction. The printout, defaults, and halt mechanism are described in the JUMPTRACE
command.

When p-val is specified, the printout occurs only when the program counter equals p-val. If
p-val is followed by 0, printout occurs the first time program counter equals p-val and every
instruction thereafter. .

When -1 interval is specified, printout occurs every interval instructions.

HLT instructions 'élways cause a printout followed by a return to command mode.

> UPDATE location contents

Puts contents into location and prints the old and new contents of location.

> VERIFY source-start source-end copy-start

Verify memory block at locations source-start to source-end against a copy starting at copy-
start.

The program types the address and content of each location in the block which does not
match the corresponding word in the copy.

FDR 3059 19-4 1 March, 1979

TAP COMMAND SUMMARY 19

-

1 March, 1979 19-5 FDR 3059

PSD COMMAND SUMMARY

Enter rust colored letters in upper-case only.

| 4 ACCESS address

Accesses a word in memory. The debugging program types the address and its contents and
then waits for keyboard input in the following form:

[:format-symbol] [value] [:new-format] terminator

where :format-symboel is one of the optional input/output format symbols (see Table 18-3).
The new format takes effect immediately. For example :HAF enters the hexadecimal value
AF, regardless of the previous input/output mode. value replaces the contents of the
accessed location. The format is the current input/output format. The :new-format symbol
is one of the optional input/output format symbols (see Table 18-3). The new format takes
effect immediately upon all subsequent output until a new format symbol is entered.
terminates is one of the characters shown in Table 20-1.

Long instructions are input and printed in the assembler format, e.g., LDA% 2000.

Table 20-1. PSD Terminators

Terminator Function v

CR Alters contents of current location {if a value is given), moves to
current-location +1 and prints its contents.
Alters contents of current location {if a value is given}, moves to
current location -1 and prints its contents.

/ or? Exits from access mode. Does not close current location.

.n(CR) Moves to current location +n and prints its contents (n is octal).
~n(CR) Moves to current location -n and prints its contents (n is octal).
@ For memory reference instructions of the form “INST* location”

only. Saves a return address (current location +1}, moves to the
effective address location, and prints its contents. Subsequent
accesses (terminated by CR, comma, ,. or . -} are relative to the
effective address. A\ returns to the return address.

Goes to effective address without indirection. but saves current
location as return address.

Returns to the return address saved by the last @.
Returns to the return address saved by the last (.

For memory reference instructions only; calculates and prints the
effective address and its contents. No change is made to the
current location or its contents.

! Close a location, setting it to a new value if one was supplied, and
return to command mode.

-

1 March, 1979 20-1 FDR 3059

20 PSD COMMAND SUMMARY

D> BREAKPOINT location

Sets a breakpoint at the specified location. If the program is later executed and control
reaches the breakpoint location, the debugging program prints CPU status and awaits
further commands. Up to ten breakpoints may be inserted.

The GO command allows you to continue, leaving the breakpoint set.

> COPY source-start source-end target

Copies the block of memory from source-start to source-end into a new block of memory at
target. If the target location lies between source start and source end, the non overlapped
portion is propagated through the target area. The size of the target area is always equal to
the size of the source.

Example:

F 1000 1010 :HFFFF Fill locations 1000-1010 with hex FFFF
F 1011 1020 :HAAAA Fill locations 1011-1020 with hex AAAA

D 1000 1020 Display locations 1000-1020
C 1010 1016 1012 Propagate alternate words of FFFF and AAAA
D 1000 1020 Display locations 1000-1020

> DEFINE symbol value

Defines a symbol. The value may be a constant or a constant expression. If the symbol has
already been defined, it is given the new value.

Examples: -
DE FOO 1000 FOO = OCTAL 1000
RE 1909 SET RELCCATION COUNTER
DE FOO >3 FOO = OCTAL 1003
DE FOO :AXX FOO = 'XX'
DE FOO*: HF-A FOO = 5
DE FOO :D>10 FOO = OCTAL 1012
Not allowed:
DE BAR FOO SYMBOLS NOT PERMITTED AS VALUES
DE FOO (1+>3) NO PARENTHESES
DE FOO >:HF BAD SYNTAX. SHOULD BE :H>F
DE FOO :AX MUST HAVE TWO CHARACTERS AFTER :A
DE FOO :A X FIRST CHARACTER AFTER :A MUST BE 8-9, A-Z
DE FOO :SLT :S IS AN OUTPUT SPECIFIER ONLY

> DUMP block-start block-end [words-per-line]

Prints the contents of the block of memory at locations block-start through Block-end on the
use terminal or, optionall, in an external file. Words-per-line is number of words to be
printed per line. The defaults is eight.

You must open a file before dumping to it. If there are several files open, DUMP will use
the last one opened. Close the dump file before ending your session. If you have used PSD
fo open a file for a program use and you wish to dump to a terminal, issue an OPEN
command with no parameters prior to issuing the DUMP command.

FDR 3059 20-2 1 March, 1979

PSD COMMAND SUMMARY 20

The default output format is eight octal words per line, preceded by the octal address of the
first word on the line. Repetitious words are suppressed unless the number of words-per-
line parameter only is specified.

Example:

O DMPFIL 1 2
D 1009 2000@
g a1 4

> EFFECTIVE block-start block-end address [mask]

Searches for an instruction with the specified effective address in the block from block-start
to block-end, under an optional 16-bit mask.

If no mask is specified, the entire address is tested. When a match is found, the instruction
and its address are printed at the user terminal. The search continues until location block-
end has been tested.

Mask is a 16-bit word which may be expressed in any of the legal formats.
EFFECTIVE is useful in finding locations where a particular location is referenced.

The current value of the X register is used in the calculation. Instructions are interpreted in
the current address/instruction mode as set by the MODE command and shown in the keys
by the PRINT command.

4 FILL block-start block-end constant :format

Fills the block of memory locations block-start through block-end with the specified
constant. If block-end does not exceed block-start only the first location is filled. :format
must be specified if you do not want the octal default. Specifying a format changes
subsequent output formats. FILL is useful to test data area usage bypre-filling it with a visual
pattern.

Example:
F 1000 1097 :HFFFF

D 1000 1097
1000 FFFF

> GO [count] [a-reg] [b-reg] [x-reg] [keys]

Proceed from the current breakpoint, first executing the instruction at the breakpoint
location. count is number of times to execute instruction at breakpoint location before
breakpoint is taken. Default is one. The A, B and X registers and the keys may be preset (see
Table 20-3).

A count may be overidden by resetting a breakpoint.

> JUMPTRACE |[start-add] [a-reg] [b-reg]

Traces the execution of the object program from start-add. The default is current location.
The A and B registers may be present; the default is old value.

1 March, 1979 20-3 FDR 3059

20 PSD COMMAND SUMMARY

Table 20-2. R and § Modes
[c]o] - [aom | - | SHIFT COUNT
1 2 3 4 5 — 6 7 — 8 9 — 16
Bit Name Meaning
1 C Carry bit
D Precision; 0=Single: I=Double
3 o Not used
4 - Not used
5-6 ADR Addressing Mode
00=168
01=328
11=32R
10=64R
7 S Not used
8 — Not used
9-16 SHIFT COUNT Shift count—low order 8 bits of the floating point ac
cumulator exponent register

JUMPTRACE, which is very useful for control-flow tracing, produces a diagnostic printout
in the following format prior to the execution of any JMP, JST or HLT instruction:

Location: instruction A= B=X= K= R=

Any typed character will stop the trace. SVC's are not included in the trace.

| 2 KEYS value

Sets CPU status keys to the specified octal value. The bit assignments vary depending on
which mode you are in.

P LIST address
Prints the contents of address in the current output format.

Unlike ACCESS, LIST does not transfer the pointer to that location, a useful feature when
you wish to examine a location without going there.

> 1s

Enables the usage of external symbolic references during instruction typein and typeout.

To use the load map symbols:
1. Load the program and make a symbol file.
2. Restore the user program, invoke PSD and load the converted file.

The LS command puts PSD into symbolic mode. All addresses are typed as an offset from the
nearest external symbol.

Once the load map is prepared in this manner, you can ena
interpretation with the SYMBOL command.

FDR 3059 20-4 1 March, 1979

PSD COMMAND SUMMARY 20

Tvarmn 1a-

LAA(JLJLIJIC.
0K, LOAD CALL THE LOADER
GO
S LOAD B_PRCG LOAD THE PMA BINARY OBJECT PROGRAM
LOAD COMPLETE
$ SAVE S$PROG SAVE THE RUNFILE
$ MAP ISYM 10 CREATE A SYMBOL FILE LSYM
$ QUIT
OK, RESTORE SPROG GET PROGRAM
OK, PSD GET PSD
GO
SOIsyM11 OPEN SYMBOL FILE ON FUNIT 1 FOR READING
S IS LOAD SYMBOLS
S 0 A14 CLOSE FUNIT 1
> MA

Types the symbols and their definitions.

> D16S
D328

MO D32R

D64R

D16S means use 16S address mode; D328, use 32S address mode: D32R, use 32R address
mode:; and D64R, use 64R address mode.

Controls how effective addresses are interpreted by setting the address mode bits of the
CPU status keys. See KEYS for a full discussion of the CPU status keys. Other status bits are
unaffected. MODE is a fast symbolic way of setting just the address mode, when you don't
care about the other CPU status key bits.

> MONITOR |[start-add] [a-reg] [b-reg] address

Traces the object program from start-add (the default is the current location) looking for
address. You may print the A and B registers.

If a memory reference instruction whose effective address equals address is encountered,
data in trace format is printed on the terminal prior to the execution of that instruction.
MONITOR answers the question ‘Where is the address being clobbered?”

Typing any character will stop the trace after several more lines. The character typed is
considered part of the next command. so a space is the usual choice.

> NOT-EQUAL block-start block-end n-match [mask]

Searches memory between block-start and block-end for words not equal to n-match under
an optional 16-bit mask.

The masking function is a 16-bit logical AND. If no mask is specified, the entire word is
tested. When a non-match is found, the address and its contents are typed out and the search
continues to block-end.

1 March, 1979 20-5 FDR 3059

20 PSD COMMAND SUMMARY

P OPEN file name file-unit key

Opens file name on file-unit to be used either as a DUMP output file or symbol table input
file. key may be 1 (open for reading), 2 (open for writing), 3 (open for reading and writing).
4 (close).

The parameters are the same as for the PRIMOS OPEN command.

» PRINT
Prints CPU/PSD parameters in octal as follows:
prgctr: breakpoint a-reg b-reg x-reg keys relcon
prgctr Program counter at the time of breakpoint
relcon Current value of the access mode relocation constant

> PROCEED [address] [a-reg] [b-reg] |x-reg] [keys]

Continue execution from breakpoint. Removes the current breakpoint if there is one,
optionally sets a new breakpoint at address, and does a RUN command to the current
program counter address. a-reg, b-reg, x-reg and keys have the same meaning as in the RUN
command.

P quIT
Returns to the PRIMOS operating system.

P RELOCATE value

Sets a new value for the access-mode relocation counter.

> RUN |[start-add] [a-reg] [b-reg] [x-reg| [keys]

Runs the executable program starting at start-add location. Prior to program entry. a-reg, b-
reg, x-reg, and keys are optionally loaded. Control does not return to the debugging utility
unless a breakpoint is encountered.

> SEARCH block-start block-end match-word [mask]

Searches memory from block-start to block-end for words equal to match-word under an
optional 16-bit mask.

If a mask is not specified, the entire word is tested. When a match is found, the address and
its contents are typed out, and the search continues until location block-end has been tested.

> SYMBOL .;,(1, s

Controls the use of symbols in address typeout: 1 means turn on symbol typeout; 0, turn off
symbol typeout.

] _ i P-val [0] }
[2 TRACE ([start-add] [a-reg] [b-reg] {_1 interval

Dynamically traces executable program starting at start-add with a-reg and b-reg optionally
preset.

A diagnostic printout is produced prior to the interpretive execution of each object
instruction. The printout, defaults, and halt mechanism are described in the JUMPTRACE
command.

FDR 3059 20-6 1 March, 1979

PSD COMMAND SUMMARY 20

When p-val is specified, the printout occurs only when the program counter equais p-val. If
p-val is followed by 0, printout occurs the first time program counter equals p-val and every
instruction thereafter.

When -1 interval is specified, printout occurs every interval instructions.

HLT instructions always cause a printout followed by a return to command mode.

| 4 UPDATE location contents

Puts contents into location and prints the old and new contents of a location.

P VERIFY block-start block-end copy
Verifies memory from block-start through block-end against a copy starting at copy.

The program types the address and content of each location which does not match the
corresponding word in copy.

The format of a VERIFY printout is:

location block-contents copy-contents

» VERSION

Prints the version number and restart address of the PSD you are using. If your program gets
into a loop or dies after a RUN command, you can issue a PR or GO command, starting at this
restart address. This causes pseudo breakpoint, saving the registers and entering PSD. Only
the program counter register value will be lost, and even this may be found by issuing a
PRIMOS P command prior to restarting PSD.

» WHERE

Lists all currently installed breakpoints and their remaining proceed counts. A proceed
count of one is not listed.

P XREGISTER value

Loads the X register with value—for example, before executing a RUN command or doing
an effective address calculation.

> ZERO [location]

Removes the breakpoint at the specified location.

If location is omitted, Z removes the breakpoint at the current program counter location. (P
will show the current location.)

1 March, 1979 20-7 FDR 3059

VPSD command
summary

Enter rust colored letters in upper case only.

| 2 ACCESS address

Accesses a word in memory. The debugging program types the address and its contents and
then waits for the keyboard input in the following form:

[:format-symbol] [value] [:new-format] terminator

where :format-symbol is one of the optional input/output format symbols (see Table 18-3).
The new format takes effect immediately. For example, :HAF enters the hexadecimal value
AF, regardless of the previous input/output mode. value replaces the contents of the access
location. The format is the current input/output format. The :new-format symbol is one of
the optional input/output format symbols (see Table 18-3). The new format takes effect
immediately upon all subsequent output until a new format symbol is entered. terminator is
one of the characters shown in Table 21-1.

Long instructions are input and printed in the same way as the assembler, e.g., LDA % 2000.

Table 21-1. VPSD Terminators
 Terminator Function : ‘ - ST : i
‘CR Alters contents of current location (if a value 1s given), moves to
current location +1 and prints its contents.

Alters contents of current location (if a value is given), moves to
current location -1 and prints its contents.

/ or? Exits from access mode. Does not close current location.

.n(CR) Moves to current location +n and prints its contents [n is octal).
-n(CR] Moves to current location -n and prints its contents (n is octal).
@ For memory reference instructions of the form “INST* location™

only. Saves a return address (current location +1), moves to the
effective address location, and prints its contents. Subsequent
accesses (terminated by CR, comma, ,. or . -) are relative to the
effective address. A \ returns to the return address.

{ Goes to effective address without indirection, but saves current
location as return address.

\ Returns to the return address saved by the last @.

) Returns to the return address saved by the last (.

i

For memory reference instructions only; calculates and prints the
effective address and its contents. No change is made to the
current location or its contents. If the instruction references a
register, the contents of the register are printed.

1 March, 1979 21-1 FDR 3059

21 vPSD COMMAND SUMMARY

P BREAKPOINT location

Sets a breakpoint at the specified location. If the program is later executed and control
reaches the breakpoint location, the debugging program prints CPU status and awaits
further commands. Up to ten breakpoints may be inserted.

| 2 BREGISTER

Prints the contents of the procedue base, stack base, link base and temporary base registers.

> COPY source-start source-end target

Copies the block of memory from source-start to source-end into a new block of memory at
target. If the target location lies between source start and source end, the non-overlapped
portion is propagated through the target area. The size of the target area is always equal to
the size of the source.

Example:

F 1000 1010 :HFFFF Fill locations 1000-1010 with HEX FFFF
F 1011 1020 :HAAAA Fill locations 1011-1020 with HEX AAAA

D 1000 1020 Display locations 1000-1020
C 1010 1016 1012 Propagate alternate words of FFFF and AAAA
D 1000 1020 Display locations 1000-1020

> DUMP block-start block-end [words-per-line]

Prints the contents of the block of memory at locations block-start through block-end on the
user terminal or optionally in an external file. words-per-line number of words to be printed
per line. The default is eight.

You must open a file before dumping to it. If there are several files open, DUMP will use the
last one opened.- Close the dump file before ending your session. If you have used VPSD to
open a file for program use and you wish to dump to a terminal, issue an OPEN command
with no parameters prior to issuing the DUMP command.

The default output format is eight octal words per line, preceded by the octal address of the
first word on the line. Repetitious words are suppressed unless the number of words-per-
line parameter is specified.

Example:

> EFFECTIVE block-start block-end address [mask]

Searches for an instruction with the specified effective address in the block from block-start
to block-end, under an optional 16-bit mask.

If no mask is specified, the entire address is tested. When a match is found, the instruction
and its address are printed at the user terminal. The search continues until location block-
end has been tested.

Mask is a 16-bit word which may be expressed in any of the legal formats.

FDR 3059 21-2 1 March, 1979

VPSD COMMAND SUMMARY 21

ul in finding locations where a particular location is referenced.

The current values of the X and Y registers are used in the calculation. Instructions are
interpreted in the current address/instruction mode as set by the MODE command and
shown in the keys by the PRINT command.

P EXECUTE

Begins execution of a segmented program by passing control to SEG. SEG sets the initial
register values; any other value at the time EX is issued is lost.

» FILL block-start block-end constant :format

Fillsthe block of memory locations block-start through block-end with the specified constant.
If block-end does not exceed block-start only the first location is filled. :format must be
specified if you do not want the octal default. Specifying a format changes subsequent
output formats. FILL is useful to test data area usage by pre-filling it with a visual pattern.

Example:

F 1000 1007 :HFFFF
D 19200 1007
4001/1000 FFFF

> FA regno

Accesses field address register regne. New values may be entered to replace old ones.
Carriage return advances to the “‘next’ register, and *

“("" will switch to access mode and display the location referenced by the field address
register in ASCIL. A “)” will return to “FA” mode.

> FL regno

Accesses field length register regno. New values may be entered to replace old ones.
Carriage return advances to the “next” register and *

> KEYS value

Sets CPU status keys to the specified octal value. The assignments vary depending on which
mode you are in. See tables 21-2 and 21-3.

> LB seg-no word-no

Loads the link base register with a segment number (seg-no) and word number (word-no).

> LIST address

Prints the contents of address in the current output format. Unlike ACCESS, LIST does not
transfer the pointer to that location, a very useful feature when you wish to examine a
location without going there.

/ D16S
D328
» MO ! D32R
D64R
D64V

D16S Means use 16S address mode; D32S, use 32S address mode; D32R, use 32R address
mode; D64R, use 64R address mode; and D64V, use 64V address mode.

1 March, 1979 21-3 FDR 3059

21 vPSD COMMAND SUMMARY

Controls how effective addresses are interpreted by setting the address mode bits of the
CPU status keys. See KEYS for a full discussion of the CPU status keys. Other status bits are
unaffected. MODE is a fast symbolic way of setting just the address mode, when you don't
care about the other CPU status key bits.

D64V prints the segment and word number for all addresses (initial segment number is
’4000) and interprets instructions as the Prime 400 hardware does. Base register references
for all long instructions are printed as PB%, SB%, LB%, or XB%. Short instructions which
reference SB or LB print SB or LB as part of the address.

P NOT-EQUAL block-start block-end n-match [mask]

Searches memory between block-start and block-end for words not equal to n-match under
an optional 16-bit mask.

The masking function is a 16-bit logical AND. If no mask is specified, the entire word is
tested. When a non-match is found, the address and its contents are typed out and the search
continues to block-end.

(2 OPEN file name file-unit key

Opens file name on file-unit to be used either as a DUMP output file or symbol table input
file. Key may be: 1 (open for reading), 2 (open for writing), 3 (open for reading and writing)
or 4 (close).

The key parameters are the same as for the PRIMOS OPEN command.

P PRINT

Prints CPU/PSD parameters in octal as follows:
prgctr breakpoint a-reg b-reg x-reg keys relcon |y-reg is VPSD]|
prgctr The program counter at the time of breakpoint
relcon The current value of the access mode relocation

Table 21-2. Key Values: R and S Modes

lc|o] - | aor | — | SHIFT COUNT
1 2 3 4 5 — 67 — 89 — 16

Bit Name Meaning
1 C Carry Bit
2 D Precision; 0=Single; 1=Double
3 - Not used
4 - Not used
5-6 ADR Addressing Mode
00=16S
01=328
11=32R
10=64R
7 - Not used
8 Not used

9-16 SHIFT COUNT Shift count—low order 8 bits of the floating point ac-
: cumulator exponent register.

FDR 3059 21-4 1 March, 1979

21 vpPsSD COMMAND SUMMARY

If a mask is not specified, the entire word is tested. When a match is found, the address and
its contents are typed out, and the search continues until location block-end has been tested,

> SN seg-no

Use seg-no as the segment number for all commands where only a word number is entered,
such as UPDATE, DUMP, etc. '

> UPDATE location contents

Puts contents into location and prints the old and new contents of location.

| 4 VERIFY block-start block-end copy

Verifies memory from block-start through block-end against a copy starting at copy. The
program types the address and content of each location which does not match the
corresponding word in copy.

The format of a VERIFY printout is:

location block-contents copy-contents

» VERSION

Prints the version number and restart address of the VPSD you are using. If your program
goes into a loop or dies after a RUN command, you can issue a PR or GO command, starting
at this restart address. This causes a pseudo-breakpoint, saving the registers and entering
VPSD. Only the program counter register value will be lost, and even this may be found by
issuing a PRIMOS P command prior to restarting VPSD.

» WHERE

Lists all currently installed breakpoints and their remaining proceed counts. A proceed
count of one is not listed.

> XB seg-no word-no

Loads temporary base register with a segment number (seg-no) and word number (word-no.

> XREGISTER value

Loads the X register with value—for example, before executing a RUN command or doing
an effective address calculation.

P YREGISTER value
Loads value into the Y index register.

> ZERO [location]
Removes the breakpoint at the specified location.

If location is omitted, Z removes the breakpoint at the current program-counter location. (P
will show the current location.)

FDR 3059 21-6 1 March, 1979

Assembler attribute

S

ASSEMBLER ATTRIBUTES

A list of the current assembler attributes follows. For a complete discussion of the use and
function of assembler attributes see section 17, Macro Famhty

’ bel Number Description , ~
; 0 ~ Number of arguments in current macro call
1 Current macro call number il
A reglster ‘
, B register
e X-reglster ; :
.cc o103 kCurrent character pomter : :
~ CCM 104 Character count max of source line
S ‘~J“Used by dynm (muw,v Precede cdyn)
; CDYN f":,Current dynanuc storage pomter e
- MDYN 107 = Maximum dynamic stack space used .
. 108 (spare) '
~ MCLS 109 Macro list. contml S D
~ MCRC 110 Current extent of macro call number s
B S V'[spare} ' ‘ el
~ MCRN 112 Current macro nest number
MODE 113 Current mode of assembler , ‘
"NCRD 114 ~ Current record number (card number)
" NERR 115 Number of lines in program with errors
'NMFL 116 No-macro-search flag (0=search)
PASS 117 Pass 1=0, pass 2=1
RPL 118 ~ Current program counter value
STAK 119 Current temporary store stack limit
TC 120 Last character fetched
TCHB 121 TC held back flag
TCNT 122 TC repeat count
IFLG 123 Indirect operator flag (0=indirect)
DFVL 124 Table search value
SEG 125 Seg mode flag (0, 1, -1)
ABM 126 Current abstract machine
0=S.R and 1=V,I
- PMB 127 Procedure size max
~ LBM 128 Link size max

1 March, 1979 A-1 FDR 3059

ASCII ’

The standard character set used by Prime is the ANSI, ASCII 7-bit set.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with devices. The
following points are particularly important to Prime usage.

* Qutput Parity is normally transmitted as a zero (space) unless the device requires
otherwise, in which case software will compute transmitted parity. Some con-
trollers (e.g., MLC) may have hardware to assist in parity generations.

* Input Parity is ignored by hardware and by standard software. Input drivers are
responsible for making the parity bit suit the host software requirements. Some
controllers (e.g., MLC) may assist in parity error detection.

* The Prime internal standard for the parity bit is one, i.e., 200 is added to the octal
value.

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical escape character " and
the octal value. The character is interpreted by output devices according to their hardware.

Example: Typing "207 will enter one character into the text.

CTRL-P ('220) is interpreted as a .BREAK.

.CR. ('215) is interpreted as a newline (.NL.)

v [1242) is interpreted as a character erase

? ('277) is interpreted as line kill

\ ('334) is interpreted as a logical tab (Editor)

1 March, 1979 B-1 FDR 3059

B ASCII CHARACTER SET

~ Table B-1. ASCII Character Set (Non-Printing)

- Octal ASCH S L : ; "~ Control

*L;Value Char Comments/ane Usage R ~ Char

,,'200 . ',NULL ; Null character- flller o ' ‘@

' SOH Start of header (communications) “A
 STX Start of text (communications] ' ‘B
ETX ‘End of text (communicaticns) ; - C

4 EOT End of transmission (communications} D
B ENQ " End of 1.D. (communications) < Cl ; "E
- ACK Acknowledge affirmative [communlcatlons] o F o
- BEL Audible alarm (bell}) , G
- BS ‘Back ‘space on position [carrlage control) - H
- HT ~ Physical horizontal tab S P |
~ LF Line feed; ignored as terminal 1nput R ERRE TR R
VT Physical vertical tab (carriage control) R K
~ FF Form feed (carriage control) - AR , L
~CR Carriage return (carriage control) (1] ' o '™
- 80 RRS-red ribbon shift o N
‘81 . BRS-black ribbon shift 0
~ DLE RCP-relative copy (2} ‘ L ‘P
" DC1 RHT-relative horizontal tab(s S Q
- DC2 ~ HLF-half line feed forward (carriage control) ‘ Rl
~..DC3 RVT- -relative vertical tab (4) o S
~ DC4 HLR-half line feed reverse {carrlage control) . “T
NAK Negative acknowledgement [commumcatmns) ~ U
“8YN ~ Synchronocity (communications) B Y
~ETB End of transmlsslon block (communications} W
CAN = Cancel- ‘ : : "X
EM Endof Medlum : , Y
SUB ‘Substitute ' ‘ - 'Z
ESC Escape ; ‘ 7
FS - File separator : N
GS Group separator !
RS Record separator :
us Unit separator o
Notes
1. Interpreted as .NL. at the terminal.
2. .BREAK. at terminal. Relative copy in file; next byte specifies number
of bytes to copy from corresponding position of preceding line.
3. Next byte specifies number of spaces to insert.
4. Next byte specifies number of lines to insert.
Conforms to ANSI X3.4-1968
The parity bit ('200} has been added for Prime-usage. Non-printing characters ("c)
can be entered at most terminals by typing the (control) key and the character key
simultaneously.
FDR 3059 B-2 1 March, 1979

ASCII CHARACTER SET B

Table B-2. ASCII Character Set (Printing)
Octal ASCII ~ Qctal ASCII ~ Octal ASCII :
Value Character ‘Value Character Value Character
240 SP. (1) 300 @ 340 (9]
241 ! o 3m A 341 a
242 "(2) 302 B 342 b
243 4(3) 33 C 343 ¢
244§ 304 D 344 d
245 Yoo o 305 E 345 e
246 & 386 F 346 £
247 4 .87 G 347 g
250 (30 H 30 h
/7 SO B < L (N 351 i
252 % 312] 352 i
4% B S S VA S GO 353 k
254 cAB) e B 354 1
285 o e 3 M 355 m
256 . oo o318 0 N 356 n
QBT e s g e] 357 o
260 0 320 P 360 p
261 1 321 Q 361 0 q
262 2 322 R 362 r
263 3 328 S 363 s
264 4 324 T 364 t
265 5 325 U 365 u
266 B 326V 366 v
267 7 327 W o367 owo
270 8 330 X 870 ox
271 g 38 Y 371y
QTR W T 380 372 7
273 P 333 | 873
-~ 274 < 334 N\ 374 i
275 - 335] 375 i
276 > 336 7 376 ~ {10)
277 ? (6 337 (8] 377 DEL (11
Notes
1. Space forward one position
2. Terminal usage - erase previous character
3. £ in British use
4. Apostrophe/single quote
5. Comma
6. Terminal usage - kill line
7. 1963 standard +; terminal use - logical escape
8. 1963 standard «
9. Grave
10. 1963 standard ESC
11. Rubout - ignored
Conforms to ANSI X3.4-1968
1963 variances are noted
The parity bit {"200) has been added for Prime usage.

1 March, 1979 B-3 FDR 3059

Error messages

INTRODUCTION

Error messages are given in the following order:

1. PMA Error Messages

2. Loader Error Messages

3. SEG Loader Error Messages
4. Run-time Error Messages

In each group errors are listed alphabetically.

Run-time error messages beginning with a filename, device name, UFDname, etc., are
alphabetized according to the first word which is constant. The user should have no trouble
in determining this word (the second word in the message). Leading asterisks, etc., are
ignored in alphabetizing. All run-time errors have been grouped together to facilitate lookup

by the user.

PMA ERROR MESSAGES

Coo:
Foo:
Fo1:
Fo2:
Fo3:
GO00:
GOo1:
100:

I01:

103:
104:

105:

106:

107:
108:

1 March, 1979

INSTRUCTION IMPROPERLY TERMINATED

ILLEGAL TERMINATOR ON ARGUMENT # EXPRESSION
UNRECOGNIZED OPERATOR IN EXPRESSION

FAIL PSEUDO-OP ENCOUNTERED

OPERAND FIELD EMPTY; OPERAND REQUIRED

GO-TO OR BACK-TO USED OUTSIDE OF MACRO OR ARGUMENT
IS NOT SYMBOL

END/ENDM PSEUDO-OP IS WITHIN GO-TO OR BACK-TO SKIP
AREA

TAG MODIFIER ILLEGAL ON GENERIC, I/0, OR SHIFT INSTRUC-
TION

TAG MODIFIED NOT PERMITTED ON 321 MODE FIELD INSTRUC-
TION

CAN'T MAKE THIS INSTRUCTION SHORT (#)

ILLEGAL TAG MODIFIED FIELD ON 64V MODE LDX CLASS IN-
STRUCTION

TAG MODIFIED NOT PERMITTED ON 64V MODE BRANCH IN-
STRUCTION

ILLEGAL INDIRECT OR INDEX SPECIFICATION WITH COMMON/
EXTERNAL SYMBOL

INDEX SPECIFIED INVALID WITH AP/IP PSEUDO-OP

TAG MODIFIED FIELD NOT PERMITTED ON 321 MODE BRANCH
INSTRUCTION

C-1 FDR 3055

C ERROR MESSAGES

FDR 5059

Loo:

Lo1:
L02:

Moo:
Noo:
0oo:
Oo1:

002:

Poo:

Qoo:
Qo1:
Qo2:

ROO:

RoO1:
Soo:
So1:
S02:;
Too:

Uoo:
vo1:
Vo1
Vo2:
Vo3:

Vo04:
Vo5:

Vo6:
Vo07:
V08:

Vo09:
V1io:

Vi1
Vi2:
V13:

Vi4:

V15:
V16:
V17:
Vis:
Vis:
Vao:

IMPROPER LABEL (CONSTANT OR TERMINATOR IN LABEL
FIELD)

EXTERNALL VARIABLE DISALLOWED IN LITERAL

ILLEGAL ARGUMENT IN EQU, SET, OR XSET

SYMBOL MULTIPLY DEFINED

‘END’ STATEMENT ENCOUNTERED WITHIN MACRO OR IF
UNRECOGNIZED OPCODE OR 32I-ONLY OPCODE IN NON-32I
MODE

THIS MEMORY REFERENCE INSTRUCTION ONLY PERMITTED IN
64V MODE

THIS MEMORY REFERENCE INSTRUCTION ONLY PERMITTED IN
S/R MODE

MISMATCHED PARENTHESIS

AP ONLY PERMITTED IN 64V/321 MODE

IP ONLY PERMITTED IN 64V/32] MODE

ENDM PSEUDO-OP DISALLOWED OUTSIDE OF MACRO DEFINI-
TION

ARITHMETIC STACK OVERFLOW: REDUCE THE COMPLEXITY OF
THE EXPRESSION AND TRY AGAIN

MULTIPLY DEFINED MACRO OR MACRO NAME FIELD EMPTY
INSTRUCTION REQUIRES DESCECTORIZATION (‘LOAD" MODE)
INDIRECT DAC DISALLOWED IN C64R MODE.

64V INSTRUCTION DISALLOWED IN C64R MODE

SYNTAX ERROR IN 321 MODE TAG MODIFIED FIELD
UNDEFINED SYMBOL IN ADDRESS FIELD OR EXPRESSION
UNDEFINED SYMBOL IN 60RG’ OR 6SETB’

CONTENTS OF BIT FIELD OUT OF RANGE

UNRECOGNIZED OPERATOR IN EXPRESSION

FUNCTION CODE OR DEVICE ADDRESS OUT OF RANGE IN 1/0
INSTRUCTION

SHIFT COUNT OUT OF RANGE IN SHIFT INSTRUCTION

NO COMMA FOLLOWS FAR SPECIFICATION IN FIELD ADDRESS
INSTRUCTION

NO COMMA FOLLOWS REGISTER # IN 32I MODE REGISTER GE-
NERIC

NO COMMA FOLLOWS REGISTER # IN 321 MODE FLOATING PT
REGISTER GENERIC

NO COMMA FOLLOWS REGISTER # IN 321 MODE BIT TEST IN-
STRUCTION

NO COMMA FOLLOW BIT # IN 321 MODE BIT TEST INSTRUCTION
BAD DELIMITER IN 321 MODE GENERAL REGISTER MEMORY
REFERENCE INSTRUCTION

BAD DELIMITER IN 321 MODE SHIFT INSTRUCTION

BAD SHIFT COUNT IN 321 MODE SHIFT INSTRUCTION

ILLEGAL TAG MODIFIED FIELD FOR 32I MODE SHIFT INSTRUC-
TION

BAD DELIMITER FOLLOWS REGISTER # IN 321 MODE PIO IN-
STRUCTION

LABEL REQUIRED ON DFTB/DFTV PSEUDO-OP

OPEN PARENTHESIS MISSING ON DFTB/DFVT ARGUMENT
CLOSE PARENTHESIS MISSING ON DFTB/DFVT ARGUMENT
LABEL REQUIRED ON IFTF, IFTT, IFVT, IFVF PSEUDO-OP
SYMBOL NOT FOUND IN IFTF, IFTT, IFVT, IFVF PSEUDO-OP
ABS/REL PSUEDO-OP ILLEGAL IN SEG/SEGR MODE

C-2 1 March, 1979

ERROR MESSAGES C

V29:

V3o:
V3i:
V32:
V33:
V34:
V35:
V36:
Vi7:
V38:
V39:
V4ao:
Vi1
V42:
V43:
Va4
X00:
Yoo:

Z00:
Z01:
Z02:
Z03:
Z04:

Z05:

Z.06:

707:
708:

SEG/SEGR PSEUDO-OP SPECIFIED AF
ERATED

PROC/LINK SPECIFICATION ONLY ALLOWED IN SEG/SEGR
MODE

FIELD OUT OF RANGE IN DDM PSEUDO-OP

ILLEGAL ARGUMENT FOLLOWS ‘EXT’ PSEUDO-OP

‘END’ PSEUDO-OP ENCOUNTERED WITHIN MACRO

SYNTAX ERROR IN DYMN PSEUDO-OP ARGUMENT(S)

ILLEGAL ARGUMENT FOLLOWS SUBR/ENT PSEUDO-OP

16 BITS NOT DEFINED BY VFD PSEUDO-OP (UNDEFINED BITS SET
TO 0)

OPERAND MISSING OR UNRECOGNIZED OPERATOR IN EX-
PRESSION

UNTERMINATED CHARACTER STRING

VALUE OVERFLOW IN FLOATING POINT NORMALIZE

VALUE OVERFLOW IN FLOATING POINT (RE-)]NORMALIZE
SIGNIFICANCE LOST IN SCALED BINARY DATUM

FLOATING POINT VALUE OUT OF RANGE

‘BCI' PSEUDO-OP REPEAT COUNT ERROR

ILLEGAL SYMBOL TYPE IN ‘BCI' REPEAT COUNT SPECIFICATION
‘CALL’' PSEUDO-OP FOLLOWED BY CONSTANT OR TERMINATOR
BAD ADDRESS FIELD FOLLOWING ‘COMN’ PSEUDO-OP

ILLEGAL REPEAT COUNT IN DATA DEFINITION PSEUDO-OP
ILLEGAL ARGUMENT FOLLOW DEC/OCT PSEUDO-OP

RLIT SPECIFIED AFTER CODE HAS BEEN GENERATED

WCS ENTRANCE OUT OF RANGE—MUST BE 0-63

SYML NOT PERMITTED AFTER CODE HAS BEEN GENERATED
SYML ONLY PERMITTED IN SEG/SEGR MODE

321 MODE REGISTER SPECIFICATION ERROR

PHASE ERROR—THE VALUE OF THE SYMBOL DEFINED ABOVE
DIFFERS BETWEEN PASS 1 AND PASS 2

ILLEGAL ABSOLUTE REFERENCE IN SEG/SEGR MODE
ABSOLUTE REFERENCE OUTSIDE OF 0-7 DISALLOWED IN SEG
ABSOLUTE REFERENCE IN AP/IP DISALLOWED

ONLY 1 EXTERNAL NAME IS ALLOWED WITHIN AN EXPRESSION
THE MODE ASSOCIATED WITH THE RESULT OF THE EXPRESSION
IS ILLEGAL WITH SPECIFIED INSTRUCTION

THE RESULTANT MODE OF THIS EXPRESSION IS ILLEGAL WHEN
USED WITH THE SPECIFIED OPCODE OR PSEUDO-OP

MORE THAN 1 OPERAND IS NON ABS/REL OR THE RIGHT-HAND
OPERAND IS NON ABS/REL

AN EXTERNAL NAME IS NOT PERMITTED

NON-16-BIT INTEGER IS ILLEGAL IN AN EXPRESSION

LOADER ERROR MESSAGES

ALREADY EXISTS!

An attempt is being made to define a new symbol; however, the symbol name is
already a defined symbol in the symbol table.

BAD OBJECT FILE

loading.

1 March, 1979

C-3 FDR 3059

C ERROR MESSAGES

BASE SECTOR 0 FULL

All locations in the sector zero base area have been used. Use the AU command to
generate base areas at regular intervals, or use the SETB or LOAD commands to
specifically place base areas.

CAN’T DEFER COMMON, OLD OBJECT TEXT

The Defer Common command has been given and a module created with a pre-Rev.
14 compiler or assembler has been encountered. It is not possible to defer Common
in this case. The module must be recreated with a Rev. 15 or later compiler or
assembler.

CAN’'T - PLEASE SAVE

The EXecute command has been given for a run file which has required virtual
loading. SAve the runfile and give the EXecute command.

CM$

Command line error. Unrecognized command given. Not fatal.

COMMON OUT OF REACH

COMMON above 100000 is out of reach of the current load mode (16S. 32S or 32R).
Use the MOde command to set the load mode to 64R.

COMMON TOO LARGE

Definition of this COMMON block causes COMMON to wrap around through zero.
Moving the top of COMMON - with the COMMON command - may help.

sname ILLEGAL COMMON REDEFINITION

An attempt is being made to redefine COMMON block sname to a longer length. The
user’s program should be examined for consistent COMMON definitions. At the
very least the longest definition for a COMMON block should be first.

xxxxxx MULTIPLE INDIRECT

A module loading in 64R mode requires a second level of indirection at location
xxxxxx. This message usually results when an attempt is made to load code compiled
or assembled for 32R mode in 64R mode. It can also happen if code has accidentally
been loaded into base areas as the result of a bad load command sequence.

sname xxxxxx NEED SECTOR ZERO LINK

At location xxxxxx a link is required for desectoring the instruction. No base areas
are within reach except sector zero. The last referenced symbol was sname. This
message is only generated when the SZ command has been given. Sname may be the

FDR 3059 C-4 1 March, 1979

ERROR MESSAGES C

4+
ck, the name of the

made, or the name of the module being loaded.

xxxxxx NO POST BASE AREA, OLD OBJECT TEXT

A post base area has been specified for module which was created with a pre-Rev.14
compiler or assembler. No base area is created. Recreate the object text with a
Rev. 15 or later compiler or assembler. This is not a fatal error.

PROGRAM-COMMON OVERLAP

The module being loaded is attempting to load code into an area reserved for
COMMON. Use the loader’s COmmon command to move COMMON up higher.

PROGRAM TOO LARGE

The program has loaded into the last location in memory and has wrapped around
to load in Location 0. The program size must be decreased. Alternatively, compile in
64V mode and use SEG.

f the routine to which the link should be

REFERENCE TO UNDEFINED COMMON

An attempt is being made to link to a COMMON name which has not been defined.
This usually happens to users creating their own translators.

SECTORED LOAD MODE INVALID

A module compiled or assembled to load in R mode has been loaded in S mode. Use
the MOde command to reset the load mode. It might be a good idea to be sure that
all modules are correctly written, since the default load mode is 32R.

SYMBOL NOT FOUND

An attempt is being made to equate two symbols with the SYmbol command and the
old symbol does not exist.

SYMBOL TABLE FULL

The symbol table has expanded down to location '4000. The last buffer cannot be
assigned to the symbol table. Rebuild LOAD to load in higher memory locations, or
reduce the number of symbols in the load.

SYMBOL UNDEFINED

An attempt is being made to equate two symbols; however, the old symbol is an
undefined symbel in the symbol table.

64R LOAD MODE INVALID

A module compiled or assembled to run in only 32K of memory is being loaded in
64R mode. Recompile or reassemble or change the load mode with the loader's
MOde command.

SEG LOADER ERROR MESSAGES
BAD OBJECT FILE

User is attempting to load file which has faulty code. The file may not be an object
file or it may be incorrectly compiled. Fatal error, the load must be aborted,

i March, 1979 C-5 FDR 3059

C ERROR MESSAGES

CAN’'T LOAD IN SECTORED MODE

The Loader is attempting to load code in sectored mode which has not been compiled
in sectored mode. This could arise if trying to load a module compiled or assembled
in 16S or 32S mode. It is unlikely that the average applications programmer will
encounter this. Fatal error, abort load.

CAN'T LOAD IN 64V OR 64R MODE

The Loader is attempting to load code in 64V mode which is not compiled in that
mode. This would arise if:

1. A program was compiled in a mode other than 64V.

2. A PMA module is written in code other than 64V and its mode is not
specified.

In case 1, the user should recompile the program.

In case 2, which the average applications programmer is unlikely to encounter, the
PMA module must be modified. Fatal error, abort load.

COMMAND ERROR
An unrecognized command was entered or the filenames/parameters following the
command are incorrect. Usually not fatal.
EXTERNAL MEMORY REFERENCE TO ILLEGAL SEGMENT
An attempt was made to load a 64R mode program. causing a reference to an illegal
segment number. Recompile in 64V mode. Fatal error, abort load.
ILLEGAL SPLIT ADDRESS
Incorrect use of the Loader's SPLIT command. Segments may be split at "4000
boundaries only (i.e.. '4000, 10000, '14000, etc.). Not fatal; resplit segment.
MEMORY REFERENCE TO COMMON IN ILLEGAL SEGMENT

An attempt was made to load a 64R mode program wherein COMMON would be
allocated to an illegal segment number. Recompile in 64V mode. Fatal error, abort
load.

NO FREE SEGMENTS TO ASSIGN

All SEG's segments have been allocated; no more are available at present. Use
SYMBOL command to eliminate COMMON from assigned segments, thus reducing
the number of assigned segments required. (User may need larger version of SEG
and PRIMOS). Fatal error, abort load.

NO ROOM IN SYMBOL TABLE

Unlikely to occur; no user solution. A new issue of SEG with a bigger symbol table
is required. Check with analyst. As a temporary measure, user may try to reduce
number of symbols used in program. Fatal error, abort load.

REFERENCE TO UNDEFINED SEGMENT
Almost always caused by improper use of the SYMBOL command to allocate
initialized COMMON. Initialized COMMON cannot be located with the SYMBOL
command: use R/SYMBOL or A/SYMBOL instead.

FDR 3059 C-6 1 March. 1979

ERROR MESSAGES C

A DYITT
SECTOR ZERO BASE AREA FULL

Extremely unlikely to occur. Not correctable at applications level. Check with
analyst. Fatal error, abort load.

SEGMENT WRAP AROUND TO ZERO

An attempt has been made to load a 64R mode program. The program has exceeded
64K and is trying to be loaded over code previously loaded. Recompile in 64V mode.
Fatal error, abort load.

RUN-TIME ERROR MESSAGES

ACCESS VIOLATION 64V mode
Attempt to perform operations in segments to which user has no right.

****AD R-mode function
Overflow or underflow in double-precision addition/subtraction (A$66,5366).

ALL REMOTE UNITS IN USE File System
Attempt made to assign a remote unit when none are available. (Network error)
[ESFUIU]

**** ALOG/ALOG 10 - ARGUMENT <=0 V-mode function
Argument not greater than zero used in logarithm (ALOG, ALOG 10) function.

filename ALREADY EXISTS Old file call
Attempt to create a file or UFD with the name of one already existing. |CZ|

ALREADY EXISTS File System

Attempt made to create, in the UFD, a sub-UFD with the same name as one already
existing. (CREASS) [ESEXST]

*EEXAT R-mode function
Both arguments are zero in the ATAN2 function.

¥*** ATAN2 - BOTH ARGUMENTS =0 V-mode function
Both arguments are zero in the ATAN2 function.

**** ATTDEV - BAD UNIT V-mode call
Incorrect logical device unit number in the ATTDEV subroutine call.

BAD CALL TO SEARCH Old file call
Error in calling the SEARCH subroutine, e.g., incorrect parameter. |SA|

BAD DAM FILE Old file call

The DAM file specified has been corrupted - either by the programmer or by a
system problem. [SS]

BAD DAM FILE File System

The DAM file specified has been corrupted - either by the programmer or by a
system problem. (PRWF$$, SRCHS$$). [ESBDAM)]

1 March, 1979 C-7 FDR 3059

C ERROR MESSAGES

BAD FAM SVC File System
System problem; will not be seen by applications programmer. [ESBFSV]
BAD KEY File System

Incorrect key value specified in subroutine argument. (ATCH$$, RDENS$S, SATRSS,
SRCH$$, SGDR$$) [ESBKEY]

BAD PARAMETER Old file call
Incorrect parameter value in subroutine call. [SA]
BAD PASSWORD Old file call

Incorrect password specified in ATTACH subroutine. Returns to PRIMOS level
attached to no UFD. [AN]

BAD PASSWORD File System

Incorrect password specified in ATCH$$ subroutine. Returns to PRIMOS level
attached to no UFD. [ATCHS$] [ESBPAS]

Note

To protect UFD privacy the system does not allow the user to
trap BAD PASSWORD errors.

BAD RTNREC PRIMOS
System error.
BAD SEGDIR UNIT File System

Error generated in accessing segment directory, i.e., PRIMOS file unit specified is
not a segment directory. (SRCHS$$) [E$BSUN]

BAD SEGMENT NUMBER File System
Attempt made to access segment number outside valid range. [ESBSGN]

BAD SVC PRIMOS
Bad supervisor call. In FORTRAN usually caused by program writing over itself.

BAD TRUNCATE OF SEGDIR File System
Error encountered in truncating segment directory. (SGDR$$) [ESBTRN]

BAD UFD File System

UFD has become corrupted. (ATCH$S, CREASS, GPAS$$, RDENSS, SATRSS,
SRCHS$$) |ESBUFD|. Calls to RDENSS return this as a trappable error: other
commands return to the PRIMOS command level.

BAD UNIT NUMBER File System

PRIMOS file unit number specified is invalid - outside legal range. (PRWF$S,
RDENS$$, SRCHS, SGDRS$$). [ESBUNT]

BEGINNING OF FILE File System
Attempt was made to access locations before the beginnin

s IO

ss locations before the beginning of the file. (PRWFS$S,

RDENSS, SGDR$$) [ESBO

FDR 3059 C-8 1 March, 1979

ERROR MESSAGES C

#*2%*N n R-mode funciion
Device error in REWIND command on FORTRAN logical unit n.
BUFFER TOO SMALL File System

Buffer as defined is not large enough to accomodate entry to be read into it.
(RDENSS) [ESBFTS]

#**%* DATAN - BAD ARGUMENT V-mode function
The second argument in the DATANZ2 function is zero.
****DE R-mode function

The exponent of a double-precision number has overflowed.

DEVICE IN USE File System
Attempt was made to ASSIGN a device currently assigned to another user. [E$DVIU]|
DEVICE NOT ASSIGNED File System

Attempt was made to perform I/O operations on a device before assigning that
device. [E§NASS]

DEVICE NOT STARTED File System

Attempt was made to access a disk not physically or logically connected to the
system. If disk must be accessed, systems manager must start it up. [ESDNS]|

***% DEXP - ARGUMENT TOO LARGE V-mode function

The argument of the DEXP function is too large; i.e., it will give a result outside the
legal range.

**** DEXP - OVERFLOW/UNDERFLOW V-mode function
An overflow or underflow condition occurred in calculating the DEXP function.

DIRECTORY NOT EMPTY File System
Attempt was made to delete a non-empty directory. (SRCHS$$) [ESDNTE]|

DISK FULL Old file call
No more room for creating/extending any type of file on disk.[D]]

DISK FULL File System

No more room for creating/extending any type of file on disk. (CREAS$, PRWFSS,
SRCHS$, SGDR$$). [ESDKFL]

Note

Space may be made available. Use the internal PRIMOS
commands ATTACH, LISTF, and DELETE to remove files
which are no longer needed.

DISK I/0 ERROR File System

A read/write error was encountered in accessing disk diately to
PRIMOS level. Not correctable by applications programmer. (ATTCHSS, CREASS,
GPAS$S, PRWF$$, RDENSS, SATRS, SRCHSS$, SGDR$$). [ESDISK|

1 March, 1979 C-9 FDR 3059

C ERROR MESSAGES

DISK WRITE-PROTECTED File System
An attempt has been made to write to a disk which is WRITE-protected. [ESWTPR]

DK ERROR Old file call
A read/write error was encountered in accessing disk. [WB]

****DL R-mode function
Argument was not greater than zero in DLOG or DLOG2 function.

**** DLOG/DLOG2 - ARGUMENT< =0 V-mode function
Argument not greater than zero was used in DLOG or DLOG?2 function.

****DN n R-mode function
Device error (end of file) on FORTRAN logical unit n.

**** DSIN/DCOS - ARGUMENT RANGE ERROR V-mode function
Argument outside legal range for DSIN or DCOS function.

*¥*** DSQRT - ARGUMENT <0 V-mode function
Negative argument in DSQRT function.

**** DT R-mode function
Second argument is zero in DATAN2 function. (D$22)

DUPLICATE NAME Old file call
Attempt to create/rename a file with the name of an existing file. [CZ]

****DZ R-mode function

Attempt to divide by zero (double-precision).

END OF FILE File System
Attempt to access location after the end of the file. (PRWF$$. RDENS$, SGDRSS)
|ESEOF]|

**EQ R-mode function
Exponent overflow. (A$81)

*RxxEX R-mode function
Exponent function value too large in EXP or DEXP function.

***%* EXP - ARGUMENT TOO LARGE V-mode function

The argument of the EXP function is too large, i.e., it will give a result outside the
legal range.

*¥*** EXP - OVERFLOW V-mode function

Overflow occurred in calculating the EXP function.

FAM ABORT File System
System error. [ESFABT]

FDR 3059 C-10 1 March, 1979

ERROR MESSAGES C

FAM - BAD STARTUP File System
System error. [E§FBST]

FAM OP NOT COMPLETE File System
Network error. [ESFONC]

****FE R-mode function

Error in FORMAT statement. FORMAT statements are not completely checked at
compile time. (F$IO)

FILE IN USE File System

Attempt made to open a file already opened or to close/delete a file opened by
another user, etc. (SRCH$$) [ESFDEL]

FILE OPEN ON DELETE File System
-Attempt made to delete a file which is open. (SRCH$$) [E$FDEL|

FILE TOO BIG File System
Attempt made to increase size of segment directory beyond size limit. (SGDR$$)
[ESFITB]

****FN n R-mode function
Device error in BACKSPACE command on FORTRAN logical unit n.

**** F$BN - BAD LOGICAL UNIT V-mode function
FORTRAN logical unit number out of range.

**** F$FLEX - DOUBLE-PRECISION DIVIDE BY ZERO 64V mode
Attempt has been made to divide by zero.

**** F$FLEX - DOUBLE-PRECISION EXPONENT OVERFLOW 64V mode
Exponent of a double-precision number has exceeded maximum.

**** FSFLEX - REAL => INTEGER CONVERSION ERROR 64V mode
Magnitude of real number too great for integer conversion.

**** F$FLEX - SINGLE-PRECISION DIVIDE BY ZERO 64V mode
Attempt has been made to divide by zero.

*¥** FSFLEX - SINGLE-PRECISION EXPONENT OVERFLOW 64V mode
Exponent of a single-precision number has exceeded maximum.

¥*** F$10 - FORMAT ERROR V-mode function

Incorrect FORMAT statement. FORMAT statements are not completely checked at
compile time.

**%* F$10 - FORMAT/DATA MISMATCH V-mode function
Input data does not correspond to FORMAT statement.
¥*** F$I0 - NULL READ UNIT V-mode function

FORTRAN logical unit for READ statement not configured properly.

1 March, 1979 C-11 FDR 3059

C ERROR MESSAGES

A || R-mode function

Exponentiation exceeds integer size. (E$11)

ILLEGAL INSTRUCTION AT octal-location R mode and 64V mode
An instruction at octal-location cannot be identified by the computer.

ILLEGAL NAME File System
Illegal name specified for a file or UFD. (CREA$$, SRCH$$) [E$BNAM]

ILL REMOTE REF File System
Attempt to perform network operations by user not on network. [ESIREM]

ILLEGAL SEGNO 64V mode

Program references a non-existent segment or a segment number greater than those
available to the user.

ILLEGAL TREENAME File System
The string specified for a treename is syntactically incorrect. [E$ITRE]

i 1LY | R-mode function
Overflow or underflow occurred during a multiply. (M$11, E$11)

filename IN USE Old file call

Attempt made to open a file already opened, or to close/delete a file opened by
another user, etc. [S]

INVALID FAM FUNCTION CODE File System

System error. [ESFIFC]
%% [%*] _ ARGUMENT ERROR V-mode function

Exponentiation exceeds integer size.

*kEX] (3 R-mode function

Argument not greater than zero in ALOG or ALOG10 function.

MAX REMOTE USERS EXCEEDED File System

No more users may access the network. [E§TMRU]

NAME TOO LONG File System
Length of name in argument list exceeds 32 characters. [ESNMLG|
NO AVAILABLE SEGMENTS 64V mode

Additional segment(s) required - none available. User should log out to release
assigned segments and try again later.

NO PHANTOMS AVAILABLE File System

An ailempi has been made iv spawn a phaniom. All confligured phanioms are
already in use. [E§NPHA]

FDR 3059 C-12 1 March. 1979

ERROR MESSAGES C

NO RIGHT File System

i

User does not have access right to file, or does not have write access in UFD when
attempting to create a sub-UFD. (CREA$S, GPASS$S, SATRSS, SRCH$S, SGDR$$)
[ESNRIT]

NO ROOM File System

An attempt has been made to add to a table of assignable devices with a DISKS or
ASSIGN AMLC command and the table is already filled. [ESROOM]|

NO TIME File System
Clock not started. System error. [E$NTIM]
NO UFD ATTACHED Old file call

User not attached to a UFD [AL, SL]. Usually occurs after attempt to attach with a
bad password.

NO UFD ATTACHED File System

User not attached to a UFD. (ATCHSS, CREASS, GPAS$S, SATR$$, SRCHS$S).
[ESNATT] Usually occurs after attempt to attach with a bad password.

NO VECTOR R and 64V mode
User error in program has caused PRIMOS to attempt to access an unloaded
element.

1. A UII, PSU, or FLEX to location 0
2. Trap to location 0
3. SVC switch on, SVC trap and location '65 is 0.

NOT A SEGDIR File System

Attempt to perform segment director operations on a file which is not a segment
directory. (SRCHS$) [E$NTSD]

NOT A UFD Old file call
Attempt to perform UFD operations on a file which is not a UFD. |AR|
NOT A UFD File System

Attempt to perform UFD operations on a file which is not a UFD. (ATCHSS$, GPASS$S,
SRCHS$$). [ESNTUD]

device-name NOT ASSIGNED PRIMOS

User program has attempted to access an I/O device which has not been assigned to
the user by a PRIMOS command.

filename NOT FOUND Old file call
File specified in subroutine call not found. |[AH, SH]

filename NOT FOUND File System
File specified in subroutine call not found. (ATCHS$S, GPAS$S, SATR$S. SRCHSS)
[ESFNTEF]

1 March, 1979 C-13 FDR 3059

C ERROR MESSAGES

filename NOT FOUND IN SEGDIR File System

Filename specified in subroutine call not found in specified segment directory.
(SRCHS, SGDRS$$) [ESFNTS]

NULL READ UNIT PRIMOS

Program has attempted to read with a bad unit number. This may be caused by a
program overwriting itself (array out of bounds).

OLD PARTITION File System

Attempt to perform, in an old file partition, an operation possible only in a new file
partition; e.g., date/time information access. (SATR$$) [ESOLDP]

*¥%¥%*PA n R-mode function

PAUSE statement n (octal) encountered during program execution

**%* PAUSE n V-mode function
PAUSE statement n {octal) encountered during program execution.
POINTER FAULT 64V mode

Reference has been made to an argument or instruction not in memory. The two
usual causes of this are an incomplete load (unsatisfied references), or incomplete
argument list in a subroutine or function call.

POINTER MISMATCH PRIMOS

Internal file pointers have become corrupted. No user remedial action possible.
System Administrator must correct. [PC, DC, AC]

PROGRAM HALT AT octal-location R mode and 64V mode

Program control has been lost. The program has probably written over itself or the
load was incomplete (R-mode).

PRWFIL BOF Old file call
Attempt by PRWFIL subroutine to access location before beginning of file. |PG]|

PRWFIL EOF Old file call
Attempt by PRWFIL subroutine to access location after end of file. |PE|

PRWFIL POINTER MISMATCH Old file call
The internal file pointers in the PRWFIL subroutine have become corrupted.

PRWFIL UNIT NOT OPEN Old file call

The PRWFIL subroutine is attempting to perform operations using a PRIMOS file
unit number on which no file is open.

PTR MISMATCH File System

Internal file pointers have become corrupted. No user remedial action possible.
(ATCHS$$, CREA$$, GPAS$$, PRWF$$, RDENS$$, SATRS$, SRCHS$$, SGDRSS).
|[E$PTRM|. Consult system manager.

REMOTE LINE DOWN File System

Remote call-in access to computer not enabled. [ESRLDN]

FDR 3059 C-14 1 March. 1979

ERROR MESSAGES C

*x%x*D] R-mode function
Argument is too large for real-to-integer conversion. (C$12)
**¥*RIN R-mode function

Device error or end-of-file in READ statement on FORTRAN logical unit n.

#x%*GQE R-mode function

Single precision exponent overflow.

SEG-DIR ER Old file call
Error encountered in segment directory operation. [SQ]
SEGDIR UNIT NOT OPEN File System

Attempt has been made to reference a segment directory which is not open.
(SRCH$$) [E$SUNO]

SEM OVERFLOW File System
System error [ESSEMO]
**** SIN/COS - ARGUMENT TOO LARGE V-mode function

Argument too large for SIN or COS function.

****8Q R-mode function
Negative argument in SQRT or DSQRT function.

**** SQRT - ARGUMENT<0 V-mode function
Negative argument in SQRT function.

****ST n R-mode function
STOP statement n (octal) encountered during program execution.

**** STOP n V-mode function
STOP statement n (octal) encountered during program execution.

****SZ R-mode function

Attempt to divide by zero (single-precision).

TOO MANY UFD LEVELS File System

Attempt to create more than 72 levels of sub-UFDs. This error occurs only on old file
partitions; new file partitions have no limit on UFD levels. |[ESTMUL|

UFD FULL Old file call
No more room in UFD. [SK]
UFD FULL File System

UFD has no room for more files and/or sub-UFD’s. Occurs only in old file partitions.
(CREASS, SRCH$$) [E$FDFL)|

1 March, 1979 C-15 FDR 3059

C ERROR MESSAGES

UFD OVERFLOW 0ld file call
No more room in UFD.

UNIT IN USE Old file call
Attempt to open file on PRIMOS file unit already in use. [SI].

UNIT IN USE File System
Attempt to open file on PRIMOS file unit already in use. (SRCH$$). |[ESUIUS]

UNIT NOT OPEN Old file call

Attempt to perform operations with a file unit number on which no file has been
opened. |PD, SD]

UNIT NOT OPEN File System

Attempt to perform operations with a file unit number on which no file has been
opened. (PRWF$$, RDENS$$, SRCHS, SGDR$$). [ESUNOP]

UNIT OPEN ON DELETE Old file call
Attempt to delete file without having first closed it. [SD]|

#*%*WN n R-mode function

Device error or end-of-file in WRITE statement on FORTRAN logical unit n.

*REEYY R-mode function

Integer argument >32767.

FDR 3059 C-16 1 March, 1979

Index X

usage in PMA 14-5
%, usage in PMA 14-5
&, ampersand character in
macros 17-2
*** dummy instruction 14-5
** initial zero 14-6
*, current location 14-8
*CMHIGH, R-mode load map
entry 4-3
*CMLOW, R-mode load map
entry 4-3
*HIGH, R-mode load map
entry 4-3
*HIGH, SEG load map entry 5-4
*LOW, R-mode load map
entry 4-3
*LOW, SEG load map entry 5-4
*PBRK, R-mode load map
entry 4-3
*STACK, SEG load map entry 5-4
*START, R-mode load map
entry 4-3
*START, SEG load map entry 5-4
*SYM, R-mode load map
entry 4-3
*SYM, SEG load map entry 5-4
*UII, R-mode load map entry 4-4
16S address calculation
flowcharts 10-11
16S summary 10-10
32R address calculation
flowcharts 10-16
32R summary 10-13
328 (includes 32R when S=0)
summary 10-12
32S address calculation 10-13
64R address calculation
flowcharts 10-23
64R summary 10-20
64V address calculation
flowcharts 10-31
64V base register relative 10-28
64V procedure relative 10-28
64V two word memory
reference 10-29
:, assembler notation 15-10
=, PMA literals 14-6
@ (non-SEG mode) assembler
notation 15-8

A

Aleftlogical, ALL, (SRV]) 11-51
Aleftrotate, ALR, (SRV) 11-51
A left shift, ALS, (SRV) 11-51
Aregister details 3-3

A right logical, ARL, (SRV) 11-51
Arightrotate, ARR, (SRV) 11-51
A right shift, ARS, (SRV) 11-51
A(l] 12-9

A2A (SRV) 11-22

ABQ () 12-21

ABQ (V) 11-49

ABS 16-5

Absolute integers 17-2

AGC, assembly control pseudo-
operations 16-1

ACA (SRV) 11-22

Access mode 18-6

AD, address definition pseudo-
operations 16-1

Add

1 March 1979

C-bitto A, ACA, (SRV) 11-22
fullword, A, () 12-9
halfword, AH, (I} 12-10
LbittoL, ADLL, (V) 11-23
L tofield address, ALFA,

vV} 11-15
link to register, ADLR,
(I} 12-10
long, ADL (V) 11-22
one to A, ALA (SRV) 11-22
register to field address
register, ARFA, (I} 12-5
to bottom of queue, ABQ,
M 12-21
to bottom of queue, ABQ,
(V) 11-49
to top of queue, ATQ, (1)
to top of queue, ATQ,
(V) 11-49
two to A, A2A (SRV)
ADD (SRV) 11-22
Adding modules to a SEG
runfile 5-7

Addition operator 15-9

Address
definition pseudo-operations,

AD 16-1
formation 18-4
special case selection 9-18
mode, selecting the 4-5
pointer (AP) 9-2
resolution, role of
assembler 10-3
resolution, role of loader 4-4,
10-3
space, virtual 4-5
truncation (SR} 10-2

Addresses
relative 18-4
symbolic, PMA 14-5

Addressing mode, ADMOD,

O 12-1
Addressing mode, ADMOD,
(V) 11-1

ADL (V) 11-22

ADLL (V) 11-23

ADLR (I) 12-10

ADMOD (I 12-1

ADMOD (V) 111

Advanced debugging

techniques 7-2
Advanced features in loader, use

12-21

11-22

of 4-4
Advanced SEG features 5-7
AH () 12-10
ALA (SRV) 11-22
ALFA (V) 11-15
ALL (SRV] 11-51
ALR (SRV) 11-51
ALS (SRV) 11-51
Ampersand character in macros
(&) 17-2
ANA (SRV) 11-32
AND fullword, N, (I} 12-15
AND halfword, NH, (I} 12-15
AND long, ANL, (V) 11-32
AND to A, ANA, (SRV) 11-32

ANL (V] 11-32

AP, argument transfer
template 9-7

AP, pseudo-operation 16-7

APPLIB, system library 8-1
Application library 8-1
ARFA (I) 12-5
ARGT (I) 12-20
ARGT (V) 11-43
Argument
identifiers, macro 17-2, 17-3,
17-4
pointer pseudo-operation,
AP 16-7
references, macro 17-2,17-4
substitution, macro 17-3
transfer template, AP 9-7
transfer, ARGT, (I) 12-20
transfer, ARGT, (V) 11-43
value expressions, macro 17-3
values in parentheses,
macro 17-3
values, macro 17-1, 17-3, 17-4
Arguments, macro 17-2
Arithmetic instruction register
usage (I-mode only) 11-10
Arithmetic operators 15-8
ARL (SRV} 11-51
ARR (SRV] 11-51
ARS (SRV) 11-51
ASCII 18-5
character set B-1
character strings 15-5
constants 18-5
Assembler
attribute references 17-2
attributes 15-11, A-1
error messages C-1
formats (I) 14-7
messages 3-2
Assembly control pseudo-
operations, AC 16-1
Asterisk (current location),
PMA 14-6
Asterisk, double, PMA 14-6
ATQ (I) 12-21
ATQ (V) 11-49
Attributes, assembler 15-11, 17-2,
A-1

B

BACK pseudo-operation 16-8

Base area problems, how to
resolve 4-5, 4-6, 5-8

Base areas, R-mode load map
description 4-4

Base areas, SEG load map
entry 5-6

Base register relative, memory refer-
reference instruction
formats 10-6

Base registers 9-12

Base registers, PMA formats 14-6

BCEQ (I) 12-3

BCEQ (V] 11-2

BCGE (I) 12-3

BCGE (V) 11-2

BCGT (I) 12-3

BCGT (V) 11-2

BCI pseudo operation 16-10

BCLE (I) 12-3

BCLE (V) 11-2

BCLT (I} 12-3

BCLT (V] 11-2

BCNE (V) 11-2

FDR 3059

X Index

BCNE (I) 12-3
BCR(I) 12-3
BCR (V) 11-3
BCS (I} 12-3
BCS (V) 11-3
BDI1 (I) 12-3
BDX (V) 11-4
BDY (V) 11-4
Begin macro definition pseudo-
operation, MAC 16-16
BEQ (V) 11-4
BES pseudo-operation 16-20
BFEQ (I) 12-2
BFEQ (V) 11-4

BFLE (V) 11-4
BFLE (I) 12-2
BFLT (I) 12-2
BFLT (V) 11-4
BFNE(I) 12-2
BFNE (V) 11-4
BGE (V) 11-4
BGT (V) 11-4
BHD1 (I) 12-3
BHD2 (I} 12-3
BHD4 (I) 12-3
BHGE (I) 12-2
BHGT (I) 12-2
BHI2 (I) 12-3
BHI4 (I) 12-3
BHLE (I) 12-2
BHLT (I} 12-2
BHNE (I) 12-2
Binary 18-5
constants 15-3
exponent 15-5
fraction 15-5
point 15-3, 15-4
scaling 15-3, 15-5
to decimal conversion, XBTD,
(1) 12-5
BIX, increment X and branch if not
zero, (V) 11-4
BIY, increment Y and branch if not
zero, (V) 11-4
BLE, branch if A register less than
or equal to zero, (V) 11-4
BLEQ, branch if L register equal to
zero, (V) 11-4
BLGE, branch if L register greater
than or equal to zero -
(V] 114
BLGT, branch if L register greater
than zero, (V) 11-4
BLLE, branch if L register less than
or equal to zero, (V) 11-4
BLLT, branch if L register less than
zero, (V) 11-4
BLNE, branch if L register not
equal to zero, (V) 11-4
Block allocation 16-20
BLR, branch if L-bit reset, (I) 12-3
BLR, branch if L-bit reset,
(V) 11-3
BLS, branch if L-bitset, (I) 12-3
BLS, branch if L-bitset, (V) 11-3
BLT, branch if A register less than
zero, (V) 11-4

FDR 3059

BMEQ, branch if magnitude is
equal to zero, (I) 12-3
BMEQ, branch if magnitude is
equal to zero, (V) 11-3
BMGE, branch if magnitude is
greater than or equal to zero,
(1) 12-3
BMGE, branch if magnitude is
greater than or equal to zero,
(V) 11-3
BMGT, branch if magnitude is
greater than zero, (V) 11-3
BMGT, branch if magnitude is
greater than zero, (I) 12-3
BMLE, branch if magnitude is less
than or equal to zero,
(I) 12-3
BMLE, branch if magnitude is less
than or equal to zero,
(V) 11-3
BMLT, branch if magnitude is less
than zero, (I) 12-3
BMLT, branch if magnitude is less
than zero, (V] 11-3
BMNE, branch if magnitude is not
equal to zero, (I) 12-3
BMNE, branch if magnitude is not
equal to zero, (V) 11-3
BNE, branch if A register not equal
to zero, (V) 11-4
BRAN, branch (I) 12-1
BRAN, branch (V] 11-2
Branch instruction format 9-16
Branch if
A register equal to zero, BEQ,
(V) 11-4
A register greater than or equal
to zero, BGE, (V] 11-4
A register greater than zero,
BGT, (V) 11-4
A register less than or equal to
zero, BLE, (V) 11-4
A register less than zero, BLT,
(V) 114
A register not equal to zero,
BNE, (V) 11-4
C-bit reset (equals zero), BCR,
(V) 11-3
C-bit reset, BCR, (I) 12-3
C-bit set, BCS, (I) 12-3
C-bit set, BCS, (V) 11-3
condition code equal, BCEQ,
(V) 11-2
condition code equal, BCEQ,
(i} 12-3
condition code greater than or
equal BCGE, (V) 11-2
condition code greater than or
equal, BCGE, (I} 12-3
condition code greater than,
BCGT, (V) 11-2
condition code greater than,
BCGT, (I) 12-3
condition code less than or
equal, BCLE, (V] 11-2
condition code less than or
equal, BCLE, (I) 12-3
condition code less than BCLT,

(V) 11-2

condition code less than, BCLT,
(1) 12-3
X-2

condition code not equal,
BCNE, (V) 11-2

condition code not equal,
BCNE, (I) 12-3

floating register equal to zero,
BFEQ, (I} 12-2

floating register equal to zero,
BFEQ, (V) 11-4

floating register greater than or
equal to zero, BFGE,
M 12-2

floating register greater than or
equal to zero, BFGE,
(V) 11-4

floating register greater than
zero, BFGT, (I} 12-2

floating register greater than
zero, BFGT, (V) 11-4

floating register less than or
equal to zero, BFLE,
() 12-2

floating register less than or
equal to zero, BFLE,
(V) 11-4

flpating register less than zero,
BFLT, (I) 12-2

floating register less than zero,
BFLT, (V) 11-4

floating register not equal to
zero, BFNE, (I) 12-2

floating register not equal to
zero, BFNE, (V) 11-4

half register greater than or
equal to zero, BHGE,
(1) 12-2

half register greater than zero,
BHGT, (I} 12-2

half register less than or equal
to zero, BHLE, (I) 12-2

half register less than zero,
BHLT, (I) 12-2

half register not equal to zero,
BHNE, (I) 12-2

L register equal to zero, BLEQ,
(V) 11-4

L register greater than or equal
to zero, BLGE, (V) 11-4

L register greater than zero,
BLGT, (V) 11-4

L register less than or equal to
zero, BLLE, (V] 11-4

L register less than zero, BLLT,
(V) 11-4

L register not equal to zero,
BLNE. (V) 11-

L-bit reset, BLR, (V] 11-3

L-bit reset, BLR, (I} 12-3

L-bit set, BLS, (V) 11-3

L-bit set, BLS, (I} 12-3

magnitude is equal to zero,
BMEQ, (I) 12-3

magnitude is equal to zero,
BMEQ, (V) 11-3

magnitude is greater than or
equal to zero, BMGE,
() 12-3

magnitude is greater than or
equal to zero, BMGE,
(V) 11-3

magnitude is greater than zero,

MGT, (I) 12-3

1 March 1979

Index X

magnitude is greater than zero,
BMGT, (V) 11-3
magnitude is less than or equal
to zero, BMLE, (I} 12-3
magnitude is less than or equal
to zero, BMLE, (V) 11-3
magnitude is less than zero,
BMLT, (I) 12-3
magnitude is less than zero,
BMLT, (V) 11-3
magnitude is not equal to zero,
BMNE, (I) 12-3
magnitude is not equal to zero,
BMNE, (V) 11-3
register bit reset, BRBR,
1 12-2
register bit set, BRBS, (I) 12-2
register equals zero, BREQ,
(1) 12-2
register greater than or equal to
zero, BRGE, (I) 12-2
register greater than zero,

BRGT, (I) 12-2
register less than zero, BRLT,
) 12-2

register less than or equal to
zero, BRLE, (I) 12-2
register not equal to zero,
BRNE, (I) 12-2
Branch, BRAN (I} 12-1
Branch, BRAN, (V) 11-2
BRBR () 12-2

BRBS (I] 12-2
BRD1 (I) 12-3
BRD2 (I) 12-3
BRD4 (I) 12-3
BREQ (I) 12-2
BRGE (I) 12-2
BRGT (I) 12-2

BRI1 (I) 12-3
BRI2 (I) 12-3

BRI4 (I) 12-3

Bringing a program into

memory 6-1

BRLE (I} 12-2

BRLT (I) 12-2

BRNE (I) 12-2

BSS pseudo-operation 16-20
BSZ pseudo-operation 16-20

C

C, compare fullword, (I)

C-bit 9-14

C64R, check 64R pseudo-
operation 16-5

CA, conditional assembly pseudo-
operations 16-1

CAI (I) 12-14

CAI (SRV) 11-29

CAL (SRV) 11-7

CALF stack frame header 9-5

CALF (I) 12-20

Call conventions (SR]) 8-2

Call conventions (V1) 8-3

Call fault handler, CALF,
I 12-20

CALL macro 17-1,17-2

Call recursive entry procedure,
CREP, (R] 1i-44

CALL pseudo-operation 16-18

CAR (SRV) 11-7

12-10

1 March 1979

CAS (SRV] 11-23
CAZ (SRV) 11-23
CEA (SRV) 11-44
CENT pseudo-operation 16-14
CGT (I) 12-3
CGT (V) 11-4
CH (I) 12-10
Change signs, CHS, (I) 12-10
Change sign, CHS, (SRV) 11-23
CHAR (V] 11-5
CHAR (I) 12-3
Character 9-14
operations, CHAR (V) 11-5
(ASCII) constants 15-5
edit, ZED, (I} 12-4
operations, CHAR (I) 12-3
CHS (I} 12-10
CHS (SRV) 11-23
Class bits in R-mode long reach
instruction format 10-7
Class bits in R-mode stack
instruction format 10-6, 10-7
Clear
Aleft byte, CAL, (SRV) 11-7
Aright byte, CAR, (SRV) 11-7
Aregister, CRA (SRV) 11-7
active interrupt, CAI (I} 12-14
active interrupt, CAI,
(SRV) 11-29
Bregister, CRB (SRV) 11-8
E,CRE, (V) 11-8
high byte 1left, CRBI, (I) 12-4
high byte 2 right, CRBR,
(I) 12-4
Land E, CRLE, (V] 11-8
left halfword, CRHL, (I} 12-5
long, CRL, (SRV) 11-8
machine check, RMC,
(1) 12-14
machine check, RMC,
(SRV) 11-28
register and memory, CLEAR
(I) 12-4
register, CLEAR (V) 11-7
register, CR, (I] 12-4
right halfword, CRHR, (I) 12-5
Clear (V) 11-7
Clear (I) 12-4
Clearing memory with
FILMEM 4-1
CLS (V) 11-23
CMA (SRV} 11-32
CMDNCO0, command UFD 6-2
CMH (I) 12-15
CMR (I) 12-15
Colon, assembler notation 15-10
COMM pseudo-operation 15-8
COMM, FORTRAN compatible
COMMON pseudo-
operation 16-20
Command files, loader
subcommands in 4-1
Command line
format 18-4
operands 18-5
options, PMA 3-1
Command summary, SEG 5-8
Command UFD, CMDNC0 6-2
Command UFD, installation in
the 6-2
Commands, SEG level 5-9

Comments, PMA 14-4
COMMON
block descriptions in R-mode
load maps 4-4
blocks 5-6
blocks, SEG load map
entry 5-6
data area 15-8
locating with SEG 5-8
COMOUTPUT files 7-2
Compare
A with skip, CAZ, (SRV) 11-23
A with zero, CAZ, (SRV] 11-23
character field, ZCM, (I} 12-4
character field, ZCM, (V) 11-5
CLS, (V] 11-23

fullword, C, (I) 12-10
halfword, CH, (I 12-10
Complement
A, CMA, (SRV] 11-32
Complement half register, CMH,
(I 12-15
Complement register, CMR,
() 12-15

Complement, FCM, (RV) 11-19
Compute effective address, CEA,
(SRV) 11-44
Computed GOTO, CGT, (I) 12-3
Computed GOTO, CGT, (V) 11-4
Concordance (cross
reference) 3-1,3-5
Condition code bits 9-14
Condition code test 11-33
Conditional assembly 17-6
Conditional assembly pseudo-
operations, CA 16-1
Constant expressions 18-5, 18-6
Constants 15-1, 15-8, 18-5
integer 15-1
numeric 15-1, 15-2
PMA 14-4
Control extended control store,
CXCS, (I) 12-17
Control extended control store,
CXCS, (V) 11-34
Control word format 11-10
Conventions
filename 2-1
instruction summary and
description 2-2
Prime 2-1
sign 15-9
space 15-9
text 2-1
Convert
31-bit integer to float, FLOT,
(R) 11-19
binary to decimal, XBTD,
V) 11-11
float to integer, INT, (V)
float to integer, INTA,
v) 11-21
float to long integer, INTL,
(V) 11-22
floating point to halfword
integer, INTH, (I) 12-8
floating point to integer, INT,
(0 12-8
halfword integer to floating
point, FLTH, (I} 12-7
integer to float, FLTA,

11-21

FDR 3059

X Index

(V) 11-20

integer to floating point, FLT,
o 12-7

long integer to float, FLTL,
(V) 11-20

single to double float, FDBL,
(V) 11-19

single to double, DBLE,
() 12-8

Copy signof A, CSA, (SRV) 11-24

Copy sign, CSR, (I} 12-10

CR(I) 12-4

CRA (SRV) 11-7

CRB (SRV) 11-8

CRBI (I) 12-4

CRBR (I) 12-4

CRE (V) 11-8

Creating a system command 6-2

CREP (R} 11-44

CRHL (I) 12-5

CRHR (I} 12-5

CRL (SRV) 11-8

CRLE (V) 11-8

Cross-reference listing
(concordance} 3-5

CSA (SRV) 11-24

CSR (I) 12-10

CXCS (I) 12-17

CXCS (V) 11-34

D
D () 12-10
D16S pseudo-operation 16-14
D32l pseudo-operation 16-14
D32R pseudo-operation 16-14
D328 pseudo-operation 16-14
D64R, R-mode load
command 4-10
D64R pseudo-operation 16-14
D64V pseudo-operation 16-14
DAC pseudo-operation 16-7
DAD (SRV) 11-24
Data
constants 15-1
definition pseudo-operations,
DD 16-1
structures, mode usage 2-4
structures, useful in
debugging 7-1
types, decimal 11-8
DATA pseudo-operation 16-10
DBL (SRV) 11-24
DBLE (I) 12-8
DD, data definition pseudo-
operations 18-1
DDM pseudo-operation 16-14
Debugging 7-1
access violation message 7-1
advanced techniques 7-2

floating exception (FLEX) 7-1

illegal Segno message 7-1
interactive programs 18-1
MO-memory overflow 7-1
no vector message 7-1
pointer fault message 7-1
PRIMOS severe errors 7-2
severe PRIMOS errors 7-1
stack overflow 7-1

using COMOUTPUT files 7-1

using the PM command 7-1
utilities 7-1

FDR 3059

DEC pseudo-operation 16-10
DECI 11-8,12-5
Decimal 9-2,9-14, 18-5
add, XAD, (I) 12-5
add, XAD, (V] 11-10
arithmetic, DEC 11-8
arithmetic, DECI (I} 12-5
compare, XCM, (I} 12-5
compare, XCM, (V] 11-11
constants 15-1
constants, fixed point 15-3
constants, floating point 15-5
control word format (VI} 9-2
data types 11-8
divide, XDV, (I) 12-5
divide, XDV, (V) 11-12
exception (CEX) 11-10
exponent 15-5
fraction 15-5
integer 15-5
move, XMV, (I} 12-5
move, XMV, (V] 11-14
multiply, XMP, (I} 12-5
multiply, XMP, (V) 11-13
Decimal to binary conversion,
XCTB, (I} 12-5
Decimal to binary conversion,
XCTB, (V) 11-12
Declare stack relative pseudo-
operation, DYNM 16-21
Decrement
and replace X, DRX,
(SRV) 11-53
half register by 1, DH1,
1 12-11
half register by 2 and branch,
BHD2, (I) 12-3
half register by 2, DH2,
(1) 12-11
half register by 4 and branch,
BHD4, {(I) 12-3
memory fullword, DM,
(1) 12-11
memory halfword, DMH,
(I 12-11
register by 1 and branch, BRD1,
(1) 12-3
register by 1, DR1, (I) 12-11
register by 2 and branch, BRD2,
(I) 12-3
register by 2, DR2, (I} 12-11
register by 4 and branch, BRD4,
() 12-3
X and branch if not zero, BDX,
(V) 1i-4
Y and branch if not zero, BDY,
(V) 11-4
Definition, macro 17-1, 17-2, 17-4
Deleting SEG runfiles 5-7
DEX, decimal exception 11-10
DFA () 12-8
DFAD (RV) 11-17
DFC (I} 12-8
DFCM (I) 12-9
DFCM (RV) 11-17
DFCS (RV) 11-17
DFD () 12-9
DFDV (RV) 11-17
DFL (I} 12-9
DFLD (RV] 11-18

DFLX (V) 11-18

DFM (I) 12-9

DFMP (
DFS (I)

RV) 11-18
12-9

DFSB (RV) 11-18
DFST (I) 12-9

DFST (RV) 11-18
DFTB pseudo-operation 16-8
DFVT pseudo-operation 16-8

DH (I)
DH1 (1)
DH2 (1)

Direct entry calls

12-10
12-11
12-11

5-6

Direct entry links, SEG load map

entry 5-6
Displacement field meaning

base register relative 10-6

basic format

10-4

procedure relative

format 10-5

sector relative format 10-4
two word memory reference
(V-mode) 10-8

DIV (SR) 11-24

DIV (V)
Divide

11-24

fullword, D, (1)
halfword, DH, (I)
DVL, (V) 11-25
DIV, (SR) 11-24
DIV, (V) 11-24
DLD (SR) 11-39

long,

Divide,
Divide,

DM (1)

12-11

DMH (I) 12-11

Double add, DAD, (SR) 11-24

Double asterisk (initial zero)
PMA 14-6

Double
add,

load,

floating

12-10
12-10

DFA, (I) 12-8
compare, DFC, (1) 12-8
complement, DFCM, (I} 12-9
divide, DFD, (I)
DFL, (I) 12-9
multiply, DFM, (I} 12-9
store, CFST, (I)
subtract, DFS, {I)
Double load, DLD, (SR) 11-39
Double precision 15-1
64 bits, floating point 9-2
floating add, CFAD,

(RV) 11-17

12-9

12-9
12-9

floating complement, DFCM,

(RV) 11-17

floating divide, DFDV,

(RV) 11-17

floating load index. DFLX,

(V) 11-18

floating load, DFLD,

(RV) 11-18

floating multiply, DFMP,

floating point

(RV) 11-18

15-5

floating point compare and
skip, DFCS, (RV) 11-17
floating point register 9-12
floating store, DFSB,

(RV) 11-18

floating subtract, DFSB,

(RV) 11-18

Double subtract, DSB,
(SRV) 11-24

DR1 (1)

12-11

1 March 1979

Index X

DR2 (I] 12-11

DRX (SRV) 11-53

DSB (SR) 11-24

DUII pseudo-operation 16-15

Dummy instruction, triple asterisk,
PMA 14-5

Dummy words

DVL (V) 11-25

DYNM pseudo-operation 15-8,
16-21

DYNT pseudo-operation 16-19

E

E16S (I) 12-1
E16S (SRV) 11-1
Es2l (I) 12-1
E32l (SRV) 11-1
E32R (I) 12-1
E32R (SRV} 11-1
E32S (I) 12-1
E32S (SRV) 11-1
E64R (I) 12-1
E64R (SRV) 11-1
E64V (I) 12-1
E64V (SRV) 11-1

17-1,17-2,17-4

EAA (R} 11-44
EAFA (I) 12-6
EAFA (V) 11-15
EAL (V) 11-44
EALB (V) 11-45
EALB (I) 12-19
EAR (I) 12-19
EAXB (I) 12-20
EAXB (V) 11-45
ECB

description in load map 5-6
entry control block 9-6
pseudo-operation 16-19
Edit
character field, ZED, (V] 11-5
program word 11-6
sub-operations 11-14
Effective address formation 10-1
Effective address formation (PSD
and VPSD only) 18-4
Effective address to
Aregister, EAA, (R) 11-44
field address register, EAFA,
(V) 11-15
L register, EAL, (V)
link base, EALB, (I) 12-19
link base, EALB, (V) 11-45
register, EAR, (I) 12-19
temporary base, EAXB,
I 12-20
XB, EAXB, (V)
EIO (I) 12-14
EIO (V] 11-29
EJCT pseudo-operation 16-11
Elements of PMA 14-4
ELM pseudo-operation 16-15
ELSE pseudo-operation 16-8
EMCM () 12-14
EMCM (SRV) 11-28
Enable interrupts, ENB,
(SRV) 11-30
Enable interrupts, ENB, (I)
ENB (SRV) 11-30
ENB{I} 12-14
END pseudo-operation 16-5
ENDC pseudo-operation 16-9

11-44

11-45

12-14

1 March 1979

ENDM pseudo-operation 16-16,
17-2
ENT pseudo-operation 16-20
Enter
165 mode, E16S, (SRV} 11-1
16S mode, E16S, (I) 12-1
321 mode, E321, (I} 12-1
321 mode, E32I, (SRV) 11-1
32R mode, E32R, (I) 12-1
32R mode, E32R, (SRV) 11-1
325 mode, E328, (I) 12-1
325 mode, E328, (SRV) 11-1
64R mode, E64R, (I} 12-1
64R mode, E64R, (SRV) 11-1
64V mode, E64V, (I) 12-1
64V mode, E64V, (SRV) 11-1
double precision mode-DBL,
(SR) 11-24
loader mode pseudo-operation,
ELM 16-15
machine check mode, EMCM,
(I} 12-14
machine check mode, EMCM,
(SRV) 11-28
paging mode and jump (Prime
300}, EPMJ, (R) 11-34
paging mode and jump to XCS
(Prime 300), EPMX,
(SR} 11-34
R-mode recursive procedure
stack, ENTR, (R) 11-45
restricted execution mode and
jump to XCS (Prime 300},
ERMX, (SR) 11-35
single precision mode, SGL,
(SR) 11-27
standard interrupt mode, ESIM,
(SRV] 11-30
standard interrupt mode, ESIM,
(1) 12-14
vector interrupt mode, EVIM,
I 12-14
vectored interrupt mode,
EVIM, (SRV) 11-30
virtual mode and jump (Prime
300), EVM]J, (SR} 11-35
virtual mode and jump (Prime

300), EVMX, (SR) 11-35
ENTR(R) 11-45
Entry control block, ECB 9-6
EPMJ (SR) 11-34
EPMX (SR} 11-34

EQU pseudo-operation 16-21
Equals sign (literals) 14-6
ERA (SRV) 11-32
ERL (V) 11-32
ERMX (SR) 11-35
Error messages
PMA 7-1
run-time 6-5
Errors (system), SEG's action 5-1
Escape character assembler
notation 15-10
ESIM (I) 12-14
ESIM (SRV) 11-30
pseudo-operation 16-5
EVIM () 12-14
EVIM (SRV) 11-30
EVM]J (SR) 11-35
EVMX (SR) 11-35
Examples, PMA 14-9

Exception codes, floating
point 11-6
Exceptions, floating point 11-16,
12-6
Excess-128 notation 15-5
Exchange and clear the A register,
XCA, (SRV) 11-43
Exchange and clear the B register,
XCB, (SRV) 11-43
Exclamation mark, assembler
notation 15-10
Exclusive OR
fullword, X, (I) 12-15
halfword, XH, (I) 12-16
long, ERL, (V) 11-32
to A, ERA, (SRV) 11-32
Execute I/0, EIO, (I) 12-14
Execute I/0, EIO, (V] 11-29
Execute, XEC, (RV] 11-49
Executing PMA programs 6-1
Execution of segmented
runfiles 6-2
Execution of unsegmented
runfiles 6-1
Exponent
binary 15-5
decimal 15-5
Expressions 15-1, 15-5, 15-8,
15-10, 18-5
constant 18-5
PMA 14-4
EXT pseudo-operation 15-8,
16-19

F
FA (I) 12-6
FAD (R) 11-18
FAIL pseudo-operation 16-9
Fault pointers 5-6
FC(I) 12-7
FCM (RV) 11-19
FCM () 12-7
FCS (RV) 11-19
FD () 12-7
FDBL (V) 11-19
FDV (RV) 11-19
Field address and length
registers 9-12
Field operations, FIELD, (I} 12-5
Field operations, FIELD,
(V) 11-15
FIELD (I) 12-5
FIELD (V) 11-15
File types, PMA 3-1
Filename conventions 2-1
Fill character field, ZFH, (I) 12-4
Fill field, ZFIL, (V) 11-6
FILMEM, PRIMOS clear memory
command 4-1
FIN pseudo-operation 16-12
FIN, use of 15-10
Fixed point decimal
constants 15-3, 15-4
FL(I) 12-7
FLD (RV] 11-19
Floating
add, FA, (I) 12-6
add, FAD, (RV) 11-18
compare and skip, FCS,
(RV) 11-19
compare, FC, (I) 12-7

FDR 3059

X Index

complement, FCM, (I) 12-7
divide, FD, (I} 12-7
divide, FDV, (RV) 11-19
load index, FLX, (RV) 11-20
load, FL, (I) 12-7
load, FLD, (RV) 11-19
multiply, FM, (I} 12-7
multiply, FMP, (RV) 11-20
point arithmetic, FLPT (I} 12-6
point arithmetic, FLPT
(V] 11-16
point decimal constants 15-5
point exception codes 11-18
point exceptions 11-16, 12-6
point mantissa and exponent
ranges 11-17
point register, double
precision 9-12
point register, single precision,
(RVI) 9-10
point registers, 9-12
point, double precision 15-5
point, double precision 64
bits 9-2
point, single precision 15-5
round, FRN, (I) 12-7
skip if greater than zero, FSCT,
(RV) 11-20
skip if less than or equal to zero,
FSLE, (RV) 11-20
skip if minus, FSMI,
(RV) 11-21
skip if not zero-FSNZ,
(RV) 11-21
skip if plus, FSPL, (RV] 11-21
skip if zero, FSZE, {(RV) 11-21
store, FST, (I} 12-8
store. FST, (RV) 11-21
subtract, FS, (I) 12-8
subtract, FSB, (RV) 11-20
FLOT (R) 11-19
FLPL (RV) 11-21
FLPT, floating point
arithmetic 11-16, 12-6
FLT (I) 12-7
FLTA (V) 11-20
FLTH (I) 12-7
FLTL (V) 11-20
FLX (RV) 11-20
FM () 12-7
FMP (RV] 11-20
Force loading 4-6
Format specifier 18-4
Formats
assembler {I-mode),
PMA 14-7
assembler, PMA 14-7
instruction 9-14
instruction, PMA 14-6
FORTRAN libraries 8-1
Fraction, binary 15-5
FRN (I) 12-7
FRN (RV] 11-20
FS() 12-8
FSB (RV) 11-20
FSCT (RV) 11-20
FSLE (RV) 11-20
FSMI (RV] 11-21
FSNZ (RV) 11-21
FST (I) 12-8
FST (RV) 11-21

FDR 3059

FSZE (RV) 11-21
FTNLIB library, use with SEG 5-3
FTNLIB, system library 8-1

G

General data structures, mode
usage 2-4
General registers, 32 bits 9-10
Generic
AP instruction formats 9-16
instruction formats 9-14
non-register instruction
formats 9-17
register instruction
formats 9-17
GO pseudo-operation 16-9

H

Halt, HLT, (I} 12-17

Halt, HLT, (SRV) 11-35
Header, stack segment 9-4
HEX pseudo-operation 16-11
Hexadecimal 18-5
Hexadecimal constants 15-2
HLT, halt, (I) 12-17

HLT. halt, (SRV) 11-35
HPSD 18-3

I

I-mode instructions
A 12-9
ABQ 12-21
ADLR 12-10
AH 12-10
ARFA 12-5
ARGT 12-20
ATQ 12-21
BCEQ 12-3
BCGE 12-3
BCGT 12-3
BCLE 12-3
BCLT 12-3
BCNE 12-3
BCR 12-3
BCS 12-3
BFEQ 12-2
BFGE 12-2
BFGT 12-2
BFLE 12-2
BFLT 12-2
BFNE 12-2
BHD1 12-3
BHD2 12-3
BHD4 12-3
BHGE 12-2
BHGT 12-2
BHIL 12-3
BHI2 12-3
BHI4 12-3
BHLE 12-2
BHLT 12-2
BHNE 12-2
BLR 12-3
BLS 12-3
BMGE 12-3
BMGT 12-3
BMLE 12-3
BMLT 12-3
BMNE 12-3
BMEQ 12-3

BRBR 12-2

]

BRBS 12-2
BRD1 12-3
BRD2 12-3
BRD4 12-3
BREQ 12-2
BRGE 12-2
BRGT 12-2
BRI1 12-3
BRIZ 12-3
BRI4 12-3
BRLE 12-2
BRLT 12-2
BRNE 12-2
C 12-10
CAI 12-14
CALF 12-20
CGT 12-3
CH 12-10
CHS 12-10
CMH 12-15
CMR 12-15
CR 12-4
CRBI 12-4
CRBR 12-4
CRHL 12-5
CRHR 12-5
CSR 12-10
CXCS 12-17
D 12-10
DBLE 12-8
DFA 12-8
DFC 12-8
DFCM 12-9
DFD 12-9
DFL 12-9
DFM 12-9
DFS 12-9
DFST 12-9
DH 12-10
DH1 12-11
DH2 12-11
DM 12-11
DMH 12-11
DR2 12-11
DR1 12-11
E16S 12-1
E321 12-1
E32R 12-1
E328 12-1
E64R 12-1
E64V 12-1
EAFA 12-6
EALB 12-19
EAR 12-19
EAXB 12-20
EIO 12-14
EMCM 12-14
ENB 12-14
ESIM 12-14
EVIM 12-14
FA 12-6
FC 12-7
FCM 12-7
FD 12-7
FL 12-7
FLT 12-7
SLTH 12-7
M

FRN 12-7
FS 128

FST 12-8

1 March 1973

Index X

HLT 12-17 MDWC 12-14 ZFH 12-4

I 12-17 MH 12-12 ZM 12-5

ICBL 12-17 N 12-15 ZMH 12-5

ICBL 12-18 NFYB 12-20 ZMV 12-4

IBCR 12-17 NFYE 12-20 ZMVD 12-4

ICHR 12-18 NH 12-15 ZTRN 12-4

IH 12-18 NOP 12-17 I-mode

IH2 12-11 O 12-15 instruction formats 9-16
IH1 12-11 OH 12-15 PMA 14-6

IM 1212 OTK 12-14 purpose 9-16

IMH 12-12 PCL 12-20 I[/0 9-14

INBN 12-20 PID 12-12 input/output (I) 12-14
INEC 12-20 PIDH 12-12 input/output (V] 11-29
INEN 12-20 PIM 12-13 IAB (SRV) 11-40

INH 12-14 PIMH 12-13 ICA (SRV) 11-40

INK 12-14 PRTN 12-20 ICBL (I} 12-17

INT 12-8 PTLB 12-17 ICBL (I) 12-18

INTH 12-8 RBQ 12-21 ICBR (I) 12-17

IR1 12-12 RCB 12-15 ICHR (I) 12-18

IR2 12-12 RMC 12-14 ICL (SRV) 11-40

IRB 12-18 ROT 12-21 ICR (SRV) 11-40

IRH 12-18 RRST 12-17 IF pseudo-operation 16-9
IRTC 12-14 RSAV 12-17 If (SRV) 11-34

IRTN 12-14 RTQ 12-21 IFTNLB library, use with SEG 5-2
ITLB 12-17 S 12-13 IFTNLB, system library 8-1
JMP 12-20 SCB 12-15 IFTT pseudo-operation 16-9
JSR 12-20 SH 12-13 IFVF pseudo-operation 16-9
JSXB 12-20 SHA 12-22 IFVT pseudo-operation 16-9
L 12-18 SHL 12-23 IFX pseudo-operation 16-9
LCEQ 12-16 SHL 12-22 1H halfword, (I) 12-18
LCGE 12-16 SHL1 12-22 H1 () 12-11

LCGT 12-16 SHR1 12-23 H2 (1) 12-11

LCLE 12-16 SHR2 12-23 ILE (V) 11-40

LCLT 12-16 SL1 12-22 IM(I) 12-12

LCNE 12-16 SL1 12-22 IMA (SRV] 11-40

LDAR 12-18 SR2 12-22 Images saved by load 6-2
LDC 12-4 SRL 12-22 IMH (I) 12-12

LEG 12-16 SSM 12-13 Immediate

LF 12-17 SSP 12-13 type 1, I-mode instruction
LFEQ 12-16 ST 12-19 format 9-18

LFGE 12-16 STAR 12-19 type 2, I-mode instruction
LFGT 12-16 STC 12-4 format 9-18

LFLE 12-16 STCD 12-19 type 3, I-mode instruction
LFLI 12-6 STCH 12-19 format 9-18

LFLT 12-16 STEX 12-20 INA (SR} 11-30

LFNE 12-16 STFA 12-6 INBC (I) 12-20

LGE 12-16 STH 12-19 INBC (V) 11-49

LGT 12-16 STPM 12-17 INBC (V) 11-49

LH 12-18 SVC 12-20 INBN (I} 12-20

LHEQ 12-16 TC 12-13 Inclusive OR, ora, (V) 11-33
LHGE 12-16 TCH 12-13 Increment

LHGT 12-16 TFLR 12-5 and replace X, IRX,

LHL1 12-18 ™ 12-14 (SRV) 11-53

LHL2 12-19 TMH 12-14 half register by 1 and branch,
LHLE 12-16 TSTQ 12-21 BHIL, (I} 12-3
LHLT 12-16 VIRY 12-14 half register by 1, IH, (I) 12-11
LHNE 12-16 WAIT 12-20 half register by 2 and branch,
LIOT 12-17 WCS 12-17 BHIZ, (I) 12-3

LLE 12-16 X 12-15 half register by 2, IH1,
LLT 12-18 XAD 12-5 I 12-11

LMCM 12-14 XBTD 12-5 memory fullword, IM,
LNE 12-16 XCM 12-5 1) 12-12

LPID 12-17 XDTB 12-5 memory halfword, IMH,
LPSW 12-17 XED 12-5 (1) 12-12

LT 12-17 XH 12-16 memory replace and skip, IRS,
LWCS 12-17 XMV 12-5 (SRV) 11-53

M 12-12 XVRY 12-14 register by 1 and branch, BRIL,
MDEI 12-14 XVRY 12-17 () 12-3

MDI1 i2-i4 ZCM 12-4 regisler by 1, IR1, (I} 12-i2
MDIW 12-14 ZDV 12-5 register by 2 and branch, BRI2,
MDRS 12-14 ZED 12-4 () 12-3

1 March 1979 X-7 FDR 3059

X Index

register by 2, IR2, (I) 12-12
register by 4 and branch, BRI4,
I 12-3
X and branch if not zero, BIX,
(V) 11-4
Y and branch if not zero, BLY,
(V) 11-4
Index registers 9-17,18-4
Indexing 10-2
Indexing, PMA 14-5
Indirect
links, 32R vs. 4R 4-5
pointer pseudo-operation,
IP 16-7
pointer, three word memory
reference 9-3
pointer, two word memory
reference 9-3
word, one word memory
reference 9-3
Indirection 10-2
Indirection, PMA 14-5
INEC (I) 12-20
INEC (V) 11-49
INEN (I 12-20
INEN (V) 11-49
INH (I) 12-14
INH (SRV) 11-30
Inhibit interrupts, INH,
(SRV) 11-30
Inhibit interrupts, INH, (I) 12-14
INK (I} 12-14
INK (SRV) 11-31
Input keys, INK, (I) 12-14
Input keys, INK, (SR} 11-31
Input parameters 18-4
Input to A, INA, (SR) 11-30
Input/output formats (PSD and
VPSD only) 18-4
Input/output, I/O (I) 12-14
Input/output, 170 (V) 11-29
Installation in the command
UFD 6-2
Instruction
description conventions 2-1
format (SRV), memory
reference, PMA 14-5
format, memory
reference 10-2
format, mnemonic
definitions 2-3
formats 9-14
formats, I-mode 9-16
formats, PMA 14-6
function group definitions 2-2
range, relative 10-3
range, sectored 10-3
summary and description
conventions 2-2
summary chart 13-1
INT (V) 11-21
INT (I) 12-8
INT (I) 12-9
INT (V) 11-22
INTA (V) 11-21
Integer arithmetic, INT (I) 12-9
Integer arithmetic, INT (V) 11-22
Integer constants 15-1
Integer value single
precision 15-5
Integers, absolute 17-2

FDR 3059

Integers, decimal 15-5
Integrity check for hardware,
INTGY (I) 12-14
Integrity check for hardware,
INTGY (V) 11-28
Interactive debugging
programs 18-1
Interchange
and clear left, ICL,
(SRV) 11-40
and clear right, ICR,
(SRV) 11-40
A and Bregisters, IAB,
(SRV) 11-40
bytes and clear left, ICBL,
(I 1217
bytes and clear right, ICBR,
(I 12-17
halfwords and clear left, ICBL,
(1) 12-18
LandE, ILE, (V) 11-40
memory and the A register,
IMA, (SRV) 11-40
register and memory, fullword,
L) 12-17
register and memory, halfword,
IH, (I) 12-18
register bytes, IRB, (I} 12-18
register halfwords and clear
right, ICHR, (I) 12-18
register halves, IRH, (I) 12-18
Interfacing with the system
libraries 8-1
Interlude program in
CMDNCO 6-5
Interlude programs 6-2
Interrupt notify
INBC, (I) 12-20
INBC, {V} 11-49
INBC, (V) 11-49
INBN, (I} 12-20
INEC, (I) 12-20
INEC, (V) 11-49
INEN, (I) 12-20
INEN. (V) 11-49
Interrupt return
IRTC, (I) 12-14
IRTN, (I) 12-14
INTGY () 12-14
INTGY (V) 11-28
INTH(I) 12-8
INTL (V] 11-22
Invalidate STLB entry, ITLB,
(1) 12-17
Invalidate STLE entry, ITLB,
(V) 11-35
IP pseudo-operation 16-7
IPVT pseudo-operation 16-16
IR1 (I) +12-12
IR2 (1) 12-12
IRB (I} 12-18
IRH (I) 12-18
IRS (SRV) 11-53
IRTC (I) 12-14
IRTN (I) 12-14
IRX (SRV) 11-53
ITLB () 12-17
ITLB (V) 11-35

!
JDX (R) 11-45

JEQ(R) 11-45
JGE (R) 11-45
JGT (R) 11-45
JIX (R) 11-46
JLE (R) 11-46
JLT (R) 11-46
JMP (I} 12-20
JMP (SRV) 11-46
INE (R) 11-46
JSR(I) 12-20
JST (SRV) 11-46
JSX (RV) 11-47
JSXB () 12-20
JSXB (V) 11-47
JSY (V) 11-47
Jump and
decrement X, JCX, (R) 11-45
increment X, JIX, (R) 11-46
set XB, JSXB, (I) 12-20
set XB, [SXB, (V) 11-47
setY,]SY, (V) 11-47
store return in X,]SX,
(RV}) 11-47
store, JST, (SRV] 11-46
Jump if
equal to zero, JEQ, (R) 11-45
greater than or equal to zero,
JGE, (R} 11-45
greater than zero, JGT,
(R) 11-45
less than or equal to zero, JLE,
(R) 11-46
less than zero, JLT, (R) 11-46
not equal to zero, [NE,
(R) 11-46
Jump to subroutine, SR, (I} 12-20
Jump, JMP, (I) 12-20
Jump, JMP, (SRV) 11-46

K
Key manipulation, KEYS (I) 12-14
Key manipulation, KEYS
(V) 11-31
Keys (SR) 9-12
Keys {(VI} 9-12
KEYS, key manipulation (I} 12-14
KEYS, key manipulation
(V] 11-31

L

L, load fullword, (I) 12-18

L-bit 9-14

Label, PMA 14-4

Labels 15-8

Language structure, PMA 14-1

LB% assembler notation 15-8

LG, listing control pseudo-
operations 16-1

LCEG (V) 11-33

LCEQ () 12-16

LCGE (V) 11-33

LCGE (I) 12-16

LCGT (I} 12-16

LCLE (V) 11-33

LCLE (I) 12-16

LCLT (V) 11-33

LCLT () 12-16

LCNE (V) 11-33

LCNE (I) 12-16

LDA (SRV) 11-40

LDAR (I} 12-18

1 March 1978

Index X

LDC (1) iz-4
LDC (V) 11-5
LDL (V] 11-40
LDLR (V] 11-41
LDX (SRV) 11-41
LDY (V) 11-41
Leave machine check mode,
LMCM, (I) 12-14
Leave machine check mode,
LMCM, (SRV) 11-28
Leave paging mode and jump
(Prime 300), LPM],
(SR) 11-36
LEQ (V) 11-33
LEQ(I) 12-16
LF(I) 12-17
LFEQ(I) 12-16
LFGE () 12-16
LFGT () 12-16
LFLE (I) 12-16
LFLI () 12-6
LFLI (V) 11-15
LFLT (I) 12-16
LFNE (I) 12-16
LGE (V] 11-33
LGE (I) 12-16
LGT (V) 11-33
LGT (I) 12-16
LH (I) 12-18
LHEQ (I) 12-16
LHGE (I) 12-16
LHGT (I) 12-16
LHL1 (I} 12-18
LHL2 (I] 12-19
LHLE (I) 12-16
LHLT (I) 12-16
LHNE (I} 12-16
LIB UFD library, use with
SEG 5-3
Library
subroutines, loading 4-3, 5-3
files sort 8-1
memory sort §-1
UIl 4-4
Line format, PMA 14-3
Line terminator 18-6
Lines, PMA 14-1
Link frame description in load
map 5-6
LINK pseudo-operation 16-5
Linkage area, PMA 14-9
LIOT (V) 11-35
LIOT (I} 12-17
LIR pseudo-operation 16-15
List pseudo-operation 16-11
Listing control pseudo-operations,
LC 16-1
Listing
files 3-1
format 3-2
page headers 3-1
user generated messages
in 3-1
Literal pool 15-10
Literal pseudo-operations
LT 16-1
Literals 15-1,15-10, 18-5
Literals, PMA 14-9
LLE (V) 11-33
LLE (I) 12-16
LLEQ (V) 11-33

1 March 1979

LLGE (V) 11-33
LLGT (V) 11-33
LLL (SRV) 11-51
LLLE (V) 11-33
LLLT (V) 11-33
LLNE (V) 11-33
LLR (SRV] 11-52
LLS (SR) 11-52
LLS (V) 11-52
LLT (V) 11-33
LLT () 12-16
LMCM (I) 12-14
LMCM (SRV) 11-28
LNE (V) 11-33
LNE (I) 12-16
LO loader control pseudo-
operations 16-1
LOAD, R-mode linking loader 4-1
LOAD
addressed register, LDAR,
(I) 12-18
character, LDC, (I) 12-4
character, LDC, (V] 11-5
command summary, R-
mode 4-8
field address register EAFA,
(1) 12-6
field length register immediate,
LFLL, (I) 12-6
field length register immediate,
LFLL (V) 11-15
fullwerd, L, (I) 12-18
halfword left shifted by 1,
LHL1, (I) 12-18
halfword shifted by 2, LHL2,
I 12-19
halfword, LH, (I) 12-18
/0 TLB, LIOT, (V) 11-35
L from addressed register,
LDRL, (V) 11-41
long, LDL, (V) 11-40
map entry (R-mode),
*CMLOW 4-3
map entry (R-mode),
*HIGH 4-3
map entry (R-mode),
*LOW 4-3
map entry (R-mode},
*PBRK 4-3
map entry (R-mode),
*START 4-3
maps 4-3
maps in SEG 5-3
procedures, basic 4-2
process ID, LPID, (I) 12-17
process ID, LPID, (V) 11-36
program status word, LPSW,
1 12-17
program status word, LPSW,
(V] 11-36
shift count into A, SCA,
(SR) 11-27
state 4-3
subprocessor commands,
SEG 5-10
the A register, LDA, (SRV)
error messages 4-1
functions 4-4
Loading
library subroutines 4-3, 5-3
on page boundaries 4-6

order of (R-mode) 4-2
order of (SEG) 5-3
R-mode programs 4-1
SEG mode programs 5-2

Local address definition pseudo-
operation, DAC 16-7

Local labels within macros 17-2

Location pointer 18-6

Logic
set A false, LF, (SRV) 11-34
set A true, LT, (SRV) 11-34
set false, LF, (I) 12-17
set true, LT, (I) 12-17

Logical
operations (I) 12-15
operators 15-8
test and set, LTSTS, (I) 12-16
test and set, LTSTS, (V) 11-33

Long
left logical, LLL, (SRV) 11-51
left rotate, LLR, (SRV) 11-52
left shift, LLS, (SR) 11-52
left shift, LLS, (V) 11-52
reach memory reference

instruction formats 10-6

right logical, LRL, (SRV) 11-52
right rotate, LRR, (SRV) 11-52
right shift, LRS, (SR) 11-52
right shift, LRS, (V) 11-53

LPID (I) 12-17

LPID (V) 11-36

LPMJ (SR) 11-36

LPMX (SR) 11-36

LPSW (I) 12-17

LPSW (V] 11-36

LRL (SRV) 11-52

LRR (SRV) 11-52

LRS (SR) 11-52

LRS (V] 11-53

LSMD pseudo-operation 16-11

LSTM 17-6

LSTM pseudo-operation 16-11

LSTMD 17-6

LT, literal pseudo-
operations 16-1

LT, (SRV) 11-34

LT (I) 12-17

LTSTS (I} 12-16

LTSTS (V) 11-33

LWGCS (I) 12-17

LWCS (V) 11-37

M
M) 12-12
MAC pseudo-operation 16-16,
17-2
Machine control, MCTL, (I} 12-17
Machine control, MCTL,
(V) 11-34
Macro
call number 17-2
calls 15-11,17-1,17-2
definition pseudo-operations,
MD 16-1
definitions 15-11, 17-1, 17-2,
17-4,17-5,17-6
facility 17-1
listing 17-6
nesting 17-5
self documentation of 17-3
Map files, using 5-3

FDR 3059

X Index

MATHLB, system library 8-1
Matrix routines 8-1
MCTL (I) 12-17
MCTL (V) 11-34
MD, macro definition pseudo-
operations 16-1
MDEI (V) 11-28
MDEI (I) 12-14
MDII (V) 11-28
MDII (I)12-14
MDIW (I) 12-14
MDIW (V) 11-28
MDRS () 12-14
MDRS (V) 11-28
MDWC (I) 12-14
MDWC (V) 11-28
Memory addressing
address truncation 10-1
indexing 10-1
indirection 10-1
parameters 10-1
Memory diagnostic
enable interleave, MDEI,
V] 11-28
enable interleave, MDEI,
() 12-14
inhibit interleave, MDII,
(V) 11-28
inhibit interleave, MDII, (I}
1M 12-14
read syndrome bits, MDRS,
) 12-14
read syndrome bits. MDRS,
(V) 11-28
write control register, MDWC,
(V) 11-28
write interleaved, MDIW,
I 12-14
write interleaved, MDIW,
(V) 11-28
Memory organization 10-1
Memory overflow errors
(MO) 7-3
Memory reference 9-17
concepts (SRV) 10-1
floating register, MRFR 9-17
general register, MRGR 9-17
instruction formats 9-16, 10-1,
10-2
instruction formats (SRV]),
PMA 14-5
instruction formats, base
register relative 10-1
instruction formats, base
registers 10-1
instruction formats,
basic 10-1, 10-4
instruction formats, long
reach 10-1
instruction formats, procedure
relative 10-1
instruction formats, sector
relative 10-1
instruction formats, stack
postincrement 10-1
instruction formats, stack
predecrement 10-1
instruction formats, stack
relative 10-1

on register, MRNR 8 17

1on
two word 10-8

FDR 3059

Messages, assembler 3-2
MH (I) 12-12
MIA (V) 11-87
MIB (V) 11-37
Microcode indirect A, MIA,
(V) 11-37
Microcode indirect A, MIB,
(V) 11-87
MO, memory overflow errors 7-3
Modals 9-14
Mode 18-4
Mode usage, general data
structures 2-4
Mode, access 18-6
Mode, resultant 15-9
Modify subprocessor
commands 5-13
Move
character field, ZMV, (I} 12-4
character field, ZMV, (V] 11-6
data, MOVE, (I) 12-17
data, MOVE, (V) 11-39
equal length fields, ZMVD,
(I) 12-4
equal length fields, ZMVD,
(V) 11-7
Move (I} 12-17
Move (V) 11-39
MPL (V) 11-25
MPY (V) 11-25
MRFR, memory reference floating
register 9-17
MRGR, memory reference general
register 9-17
MRNR, memory reference non
register 9-17
MSORTS, system library 8-1
Multiply fullword, M, (I} 12-12
Multiply halfword, MH, (I} 12-12
Multiply long, MPL, (V] 11-25

Multiply, MPY, (V] 11-25
N
N () 12-15

N64R pseudo-operation 16-15
Negative numbers 15-5
Negative scaling 15-4
Nested calls 17-5
Nesting macros 17-5
NFE (I) 12-20
NFYB (I) 12-20
NFYB (V) 11-49
NFYE (V) 11-49
NH () 12-15
NLSM pseudo-operation 16-12,
17-6
NLST pseudo-operation 16-12
No operation, NOP, (I} 12-17
No operation, NOP, (SRV] 11-37
Non-register generic instruction
formats 9-17
NOP (I} 12-17
NOP (SRV) 11-37, 11-55
Normalization 11-16, 12-6
Normalize, NRM, (SR} 11-25
Normalized fraction 15-5
Not 64R pseudo-operation,
N64R 16-15
Notify,
NFYRB, (1} 12-20
NFYB, (V) 11-49

X-10

NFYE, (I) 12-20

NFYE, (V) 11-49
NRM (SR] 11-25
Numeric

constants 15-1, 15-2

edit, XEC, (I) 12-5

edit, XED, (V) 11-13

0
o) 12-15
Object code, loader use of 4-5
Object file (SEG)
reorganization 5-8
Object files 3-1
Object files in SEG 5-8
OCP (SR) 11-30
OCT pseudo-operation 16-11
Octal 18-5
Octal constants 15-2
OH () 12-15
One word memory reference,
indirect word 9-3
Operand field, PMA 14-5
Operand, PMA 14-4
Operation field, PMA 14-5
Operation, PMA 14-4
Operations 15-8
Operator
addition 15-9
priority 15-9
subtraction 15-9
Operators 15-8, 15-9
arithmetic 15-8
logical 15-8
relational 15-9
shift 15-8,15-9
Optimizing program performance,
SEG 5-7
Optimizing program size,
SEG 5-7
Options, PMA command line 3-1
OR fullword, O, (I} 12-15
OR halfword, OH, (I) 12-15
ORA (V] 11-33
ORG pseudo-operation 16-6
Organization of memory 10-1
OTA (SR} 11-30
OTK (I) 12-14
OTK {SR) 11-31
Out from A, OTA, (SR) 11-30
Output control pulse, OCP,
(SR} 11-30
OQutput keys, OTK, (I} 12-14
Output keys, OTK, (SR) 11-31
Qutput values 18-4

P

Page headers listing 3-1
Parameter passing (SR) 8-1
Parameter passing (VI] 8-1
Pathname, use of in SEG 5-1, 5-8
Pathnames, use of 4-5

PB% assembler notation 15-8
PCL stack frame header 9-4
PCL (I) 12-20

PCL (V) 11-47

PCTL] (I} 12-19

PCTL] (V) 11-43

PCVH pseudo-operation 16-12
Percent sign, PMA 14-5
PFTNLB library, use with

1 March 1979

Index X

SEG 5-2
PFTNLB, system library 8-1
PID (I) 12-12
PID (SR) 11-26
PIDA (V) 11-26
PIDH (I) 12-12
PIDL (V) 11-26
PIM (I) 12-13
PIM (SR) 11-26
PIMA (V) 11-26
PIMH (I] 12-13
PIML (V) 11-26
PL, program linking pseudo-
operations 16-1
PM 18-3
PM command 7-1
PMA concepts and facilities
asterisk (current
location) 14-6
asterisk, double (initial
zero) 14-6
asterisk, triple (dummy
instruction) 14-5
base registers 14-6
code 14-9
command line options 3-1
comments 14-4
constants 14-4
elements 14-4
error messages
examples 14-9
expressions 14-4
file types 3-1
formats 14-7
I-mode 14-6
indexing 14-5
indirection 14-5
instruction formats 14-6
label 14-4
language structure 14-1
line format 14-3
lines 14-1
linkage area 14-9
literals 14-9
memory reference instruction
format (SRV) 14-5
operand 14-4
operand field 14-5
operation field 14-5
percentsign 14-5
pound sign (# 14-5
stack 14-6
stack 14-8
statements 14-1, 14-2
symbolic addresses 14-5
symbols 14-4
syntax 14-4
types 14-1
PMA V or I mode code, how to
write 14-8
Position
after multiply, PIM, (I) 12-13
following integer multiply, PIM,
(SR} 11-26
following integer multiply,
PIMA, (V) 11-26
following integer multiply-long,
PIML, (V] 11-26
for integer divide, PID, {ij 12-i2
(Iy 12-12
for integer divide, PID,

7-1, C-1

1 March 1979

(SR) 11-26
for integer divide, PIDA,
(V] 11-26
for integer divide-long, PIDL,
(V) 11-26
half register after multiply,
PIMH, (I) 12-13
half register for integer divide,
PIDH, () 12-12
Pound sign(# assembler
notation 14-5, 15-11
Powers of 10 (E) 15-4
PRCEX, process exchange (I) 12-20
PRCEX, process exchange (V) 11-49
(restricted) 11-49
Precision 15-4
double 15-1
single 15-1
Prime conventions 2-1
PRIMOS severe errors,
debugging 7-2
PROC pseudo-operation 16-6
Procedure
call, PCL, (I} 12-20
call, PCL, (V) 11-47
frame description in load
map 5-6
relative memory reference
instruction formats 10-4
return, PRTN, (I} 12-20
return, PRTN, (V) 11-48
structure load map
description 5-6
Procedures with no names,
identification in load
maps 5-6
Process exchange, PRCEX, (V)
11-49
Process exchange, PRCEX,
Iy 12-20
Processor characteristics 9-8
Program control and jump, PCTL],
IO 12-19
Program control and jump, PCTL],
(V) 11-43
Program linking pseudo-
operations, P 16-1
Program memory images saved by
load 6-2
PRTN, procedure return,
1 12-20
PRTN, procedure return,
(V) 11-48
PSD (Prime symbolic
debugger) 18-1,
18-3,18-4,20-1
command summary 20-1
terminators 20-1
using 18-3
PSD and VPSD input/output
formats 18-4
PSD. VPSD terminators 21-1
PSD30 18-3
Pseudo-operation summary 16-2
Pseudo-operations
ABS 16-5
AP 16-7
BACK 16-8
BCI 16-10
BES 16-20
BSS 16-20

X-11

BSZ 16-20
C64R 16-5
CALL 16-18
CENT 16-14
COMM 16-20
D16S 16-14
D321 16-14
D32R 16-14
D328 16-14
D64R 16-14
D64V 16-14
DAC 16-7
DATA 16-10
DDM 16-14
DEC 16-10
DFTB 16-8
DFVT 16-8
DUII 16-15
DYNM 16-21
DYNT 16-19
ECB 16-19
EJCT 16-11
ELM 16-15
ELSE 16-8
END 16-5
ENDC 16-9
ENDM 16-16
ENT 16-20
EQU 16-21
EVEN 16-5
EXT 16-19
FAIL 16-9
FIN 16-12
GO 16-9
HEX 16-11
IF 16-9
IFTF 16-9
IFTT 16-9
IFVF 16-9
IFVT 16-9
IFX 16-9
IP 16-7
IPVT 16-16
LINK 16-5
LIR 16-15
LIST 16-11
LSMD 16-11
LSTM 16-11
MAC 16-16
N64R 16-15
NLSM 16-12
NLST 16-12
OCT 16-11
ORG 16-6
PCVH 16-12
PROC 16-6
REL 16-6
RLIT 16-12
SAY 16-16
SCT 16-17
SCTL 16-17
SDM 16-15
SEG, 64V 16-6
SEGR, 321 16-6
SET 16-21
SETB 16-15
SUBR 16-20
VFD 16-11
XAC 16-7
XSET 16-21
PTLB (I) 12-17

FDR 3059

X Index

PTLB (V) 11-37 ESIM 11-30 SGL 11-27
Purge TLB, PTLB, (I} 12-17 EVIM 11-30 SGT 11-54
Purge TLB, PTLB, (V] 11-37 EVM] 11-35 SKP 11-54, 11-55
Purpose of I-mode 9-16 EVMX 11-35 SKS 11-31
EXB 11-43 SLE 11-54
Q FAD 11-18 SLN 11-55
Question mark (?) 18-4 FCM 11-19 SLZ 11-55
Queue control block (VI} 9-7 FCS 11-19 SMCR 11-29
Queue management, QUEUE FCST 11-20 SMCS 11-29
(1) 12-20 FDV 11-19 SMI 11-55
Queue management, QUEUE FLD 11-19 SNR 11-54
(V) 11-49 FLOT 11-19 SNS 11-54
QUEUE, queue management FMP 11-20 SNZ 11-55
I 12-20 FRN 11-20 SPL 11-55
QUEUE, queue management FSB 11-20 SR2 11-55
(V) 11-49 FSLE 11-20 SR3 11-55
FSMI 11-21 SR4 11-55
R FSNZ 11-21 SRC 11-55
Rregisters 9-8 FSPL 11-21 SRL 11-55
R-mode instructions FST 11-21 S51 11-55
A2A 11-22 FSZE 11-21 S§S82 11-55
ACA 11-22 HLT 11-35 SS3 11-55
ADD 11-22 IAB 11-40 S84 11-35
ALA 11-22 ICL 11-40 SSC 11-55
ALL 11-51 ICR 11-40 SSM 11-27
ALR 11-51 IMA 11-40 SSP 11-27
ALS 11-51 INA 11-30 SSR 11-55
ANA 11-32 INH 11-30 SS8S 11-55
ARL 11-51 INK 11-31 STA 11-41
ARR 11-51 IRS 11-53 STR 11-48
ARS 11-51 IRX 11-53 STX 11-42
CAJ] 11-29 JDX 11-45 SUB 11-27
CAL 11-7 JED 11-45 SVvC 11-39
CAR 11-7 JGE 11-45 SZE 11-55
CAS 11-23 JGT 11-45 TCA 11-28
CAZ 11-23 JIX 11-46 VIRY 11-29
CEA 11-44 JLE 11-46 WCS 11-39
CHS 11-23 JLT 11-46 XCA 11-43
CMA 11-32 JMP 11-46 XEC 11-49
CRA 11-7 JNE 11-46 R-mode programs, Loading 4-1
CRB 11-8 JST 11-46 RBQ (V) 11-50
CREP 11-44 JSX 11-47 RCB () 12-15
CRL 11-8 LDA 11-40 RCB (SRV) 11-31
CSA 11-24 LDX 11-41 Recursive entry, R-mode 11-44
DAD 11-24 LF 11-34 Register description VI-mode 9-9
DBL 11-24 LLL 11-51 Register generic 9-17
DFAD 11-17 LLR 11-52 Register, index 18-4
DFCM 11-17 LLS 11-52 Register save, RSAV, (I) 12-17
DFCS 11-17 LMCM 11-28 Register to register instruction
DFDV 11-17 LPMI 11-36 formats 9-17
DFLD 11-18 LPMX 11-36 Registers (R) 9-8
DFMP 11-18 LRL 11-52 Registers (S) 9-8
DFSB 11-18 LRR 11-52 Registers (VI) 9-9
DFST 11-18 LRS 11-52 Registers, base, PMA 14-6
DIV 1i-24 LT 11-34 REL pseudo-operation 16-6
DLD 11-39 NOP 11-37 Relational operators 15-9
DRX 11-53 NOP 11-55 Relative addresses 18-4
DSB 11-24 NRM 11-25 Relative base 10-6
E16S 11-1 OCP 11-30 Relative reach 10-1
E32l 11-1 OTA 11-30 Relocatable mode 18-4
E32R 111 OTK 11-31 Relocation constant 18-4
E328 11-1 PID 11-26 Remove
E64R 11-1 PIM 11-26 from bottom of queue, RBC,
E64V 11-1 RCB 11-31 () 12-21
EAA 11-44 RMC 11-28 from bottom of queue, RBC,
EMCM 111-28 SLA 11-26 (V) 11-50
ENB 11-39 S2A 11-27 from top of queue, RTQ,
EBTR 11-45 SAR 11-53 Iy 12-21
EPM] 11-34 SAS 11-53 from top of queue, RTQ,
ERA 11-32 SCA 11-27 (V) 11-50
ERMX 11-35 SCB 11-31 Replacing modules in a SEG

FDR 3059 X-12 1 March 1979

Index X

runfile 5-7
Reset C-bit (clear), RCB, (I) 12-15
Reset C-bit, RCB, (SRV) 11-31
Restore registers, RRST, (I) 12-17
Restore registers, RRST,
(V) 11-38
Resultant mode 15-9
Return from R-mode recursive
procedure, RTN, (SR} 11-48
RLIT pseudo-operation 15-10,
16-12
RMC () 12-14
RMC (SRV) 11-28
ROT (I) 12-21
Rotate, ROT, (I} 12-21
Round up, FRN, (RV)
RRST (I) 12-17
RRST (V) 11-38
RSAV (I) 12-17
RSAV (V) 11-38
RTN (SR) 11-48
RTQ(I) 12-21
RTQ (V) 11-50
Run-time error messages 6-5
Runfiles 4-5
saved by SEG’s loader 6-3
segmented 5-7
segmented, advantages of 5-1
RVEC parameters 7-1
RVI, single precision, floating
point register 9-10
S

S registers 9-8

S() 12-13

S2A (SRV) 11-27

SA, storage allocation pseudo-
operations 16-1

Sample terminal session 2-5

SAR (SRV) 11-53

SAS (SRV) 11-53

Save registers, RSAV, (V] 11-38

SAY pseudo operation, usage 3-1,
16-16

SB% (seg modes) assembler
notation 15-8

SBL (V) 11-27

SCA (SR) 11-27

Scale differential 9-2

Scaling, binary 15-5

Scaling, negative 15-4

SCB (I] 12-15

SCB (SRV) 11-31

SCT pseudo-operation 16-17

SCTL pseudo-operation 16-17

SD, symbol definition pseudo-
operations 16-1

SDM pseudo-operation 16-15

Sector relative memory reference
instruction formats 10-4

Sectors 10-1

SEG 18-3
filename 1/1 18-3
load map components 5-4
loader 5-7
VPSD 18-3

SEG level commands 5-9

SEG pseudo-operation 16-6

Segment directory subfiles 5-7

Segment usage by SEG 5-7

Segmentation 10-1

11-20

1 March 1979

Segmented programs, loading 5-1
Segmented runfiles 5-1, 5-7, 6-2,
6-3
SEGR pseudo-operation 16-6
Selecting the address mode 4-5
Self documentation of
macros 17-3
Semicolon, assembler
notation 15-10
Set C-bit, SCB, (I) 12-15
Set C-bit, SCB, (SRV) 11-31
Set sign minus, SSM, (I) 12-13
Set sign minus, SSM, (SRV) 11-27
Set sign plus, SSP, (I) 12-13
Set sign plus, SSP, (SRV) 11-27
SGL (SR) 11-27
SGT (SRV) 11-54
SH (I} 12-13
SHA (I) 12-22
Shift 9-14
arithmetic, SHA, (I)
data 12-21
group 11-50
half register left 1, SHL1,
1) 12-22
half register left 2, SHL,
I 12-23
half register right 1, SHR1,
1) 12-23
half register right 2, SHR2,
() 12-23
logical, SHL, ()
operators 15-8
operators 15-9
register left 1, SL1, (I}
register left 2, SL2, (I)
register right 1, SRL, (I)
register right 2, SR2, (I)
SHL (I) 12-23
SHL 12-22
SHL1 (I) 12-22
SHR1 (I) 12-23
SHR2 (I) 12-23
Sign bit 15-4
Sign conventions 15-9
Single precision 15-1
Single precision floating
point 15-5
Single precision integer
value 15-5
Skip conditional, SKIP (V) 11-53
Skip group, SKP, (SRV) 11-54
Skip if
A greater than zero, SGT,
(SRV) 11-54
less than or equal to zero, SLE,
(SRV) 11-54
condition A minus (a(1)=1),
SMI, (SRV) 11-55
condition A nonzero, SNZ,
(SRV) 11-55
condition A plus (a(1)=0), SPL,
(SRV) 11-55
condition A zero, SZE,
(SRV) 11-55
condition all sense switches 1-4
set, 88, (SRV) 11-55
condition any of sense switches
i-4 reset, 58K,
(SRV) 11-r=
condition clear C, SRC,

12-22

12-22

12-22

12-22
12-22
12-22

X-13

(SRV) 11-55
condition Isb nonzero (a(16)=1),
SLN, {SRV] 11-55
condition Isb zero (a(16)=0),
SLZ, (SRV) 11-55
condition sense switch 1 reset,
SRL, [SRV) 11-55
condition sense switch 1 set,
§81, (SRV) 11-55
condition sense switch 2 reset,
SR2, (SRV) 11-55
condition sense switch 2 set,
852, (SRV) 11-55
condition sense switch 3 reset,
SR3, (SRV] 11-55
condition sense switch 3 set,
$S3, (SRV) 11-55
condition sense switch 4 reset,
SR4, (SRV) 11-55
condition sense switch 4 set,
884, (SRV) 11-55
condition set C, SSC,
(SRV) 11-55
satisfied, SKS, (SR) 11-31
A bitreset, SAR, (SRV) 11-53
A bitset, SAS, (SRV) 11-53
machine check reset, SMCR,
(SRV) 11-29
machine check set, SMCS,
(SRV) 11-29
sense switch reset, SNR,
(SRV) 11-54
sense switch set, SNS,
(SRV) 11-54
Skip unconditionally, SKP,
(SRV) 11-55
SKIP, skip conditional (V)
SKP (SRV) 11-54
SKS (SR) 11-31
SL1(I) 12-22
SL2(I) 12-22
SLA (SRV) 11-26
SLE (SRV) 11-54
SLN (SRV] 11-55
SLZ (SRV] 11-55
SMCR (SRV) 11-29
SMCS (SRV) 11-29
SMI (SRV) 11-55
SNR (SRV) 11-54
SNS (SRV) 11-54
SNZ (SRV) 11-35
Sort library 8-1
Source files 3-1
Space conventions 15-9
Special case selection address
formation 9-18
SPL (SRV) 11-55
SR address truncation 10-2
SR keys 9-12
SR subroutine call
gonventions 8-2
SR1(I) 12-22
SRz (I) 12-22
SR2 (SRV) 11-55
SR3 (SRV] 11-55
SR4 (SRV) 11-55
SRC 11-55
SRL (SRV) 11-55
SRTLIB, system library 8-1
881 (SRV] 11-55
SS2 (SRV) 11-55

11-53

FDR 3059

X Index

SS3 (SRV) 11-55
S84 (SRV) 11-55
SSC (SRV) 11-55
SSM (I) 12-13
SSM (SRV) 11-27
SSP (I) 12-13
SSP (SRV) 11-27
SSR (SRV) 11-55
SSS (SRV) 11-55
ST (I) 12-19
ST.SIZE, SEG load map entry 5-6
STA (SRV) 11-41
STAC (V) 11-41
Stack
assignment (SEG) 5-8
extend, STEX, (I) 12-10
extend, STEX, (V) 11-48
frame description in load
map 5-6
frame header CALF 9-5
frame header PCL 9-4
overflow, SEG load map
information 5-3
postincrement address
formation 10-6
predecrement address
formation 10-6
relative (R-mode) memory
reference instruction
formats 10-8
segment header 9-4
Stack, PMA 14-6, 14-8
Stack, SEG assignment of 5-8
STAR (I) 12-19
START 18-3
Starting a loaded program 6-1
Statements, PMA 14-1, 14-2
STC (V) 11-5
STC (I) 12-4
STCD (I) 12-19
STCH (I) 12-19
STEX (I) 12-20
STEX (V) 11-48
STFA () 12-6
STFA (V) 11-15
STH () 12-19
STL (V) 11-41
STLC (V) 11-42
STLR (V) 11-42
Storage allocation pseudo-
operations, SA 16-1
Store
A conditionally, STAC,
(V) 11-41
addressed register. STAR,
() 12-19
character, STC, (I) 12-4
character, STC, (V] 11-5
conditional fullword, STCC,
[12-19
conditional fullword, STCH,
I 12-19
field address register, STFA,
(I) 12-6
field address register, STFA,
(V) 11-15
fullword, ST, (I} 12-19
halfword, STH, (I) 12-19
L conditionally, STLC,
(V) 11-42

L into addressed register, STLR,

FDR 3059

(V) 11-42
long, STL, (V) 11-41
process model number, STPM,
() 12-17
processor model number,
STPM, (V) 11-38
the A register, STA,
(SRV) 11-41
X register, STX, (SRV) 11-42
Y, STY, (V] 11-42
STPM (I} 12-17
STPM (V) 11-38
STX (SRV) 11-42
STY (V) 11-42
SUB (SRV) 11-27
SUBR pseudo-operation 16-20
Subroutine call conventions,
(SR) 8-2
Subroutine call conventions,
(VI) 8-3
Subroutine calling 8-1
Subroutines, loading library 4-3,
5-3
Subtract
fullword, S, (I) 12-13
halfword, SH, (I) 12-13
long, SBL, (V) 11-27
one from A, SLA, (SRV) 11-26
two from A, S2A, (SRV) 11-27
Subtract, SUB, (SRV} 11-27
Subtraction operator 15-9
Supervisor call, SVC, (I) 12-20
Supervisor call, SVC,
(SRV) 11-39
SVC(l) 12-20
SVC {SRV) 11-39
Symbol definition pseudo-
operations, SD 16-1
Symbol definitions in load
maps 4-4
Symbolic addresses, PMA 14-5
Symbolic instruction format 18-5
Symbols, PMA 14-4
Syntax, PMA 14-4
System error messages 4-1,C
System errors, SEG's action 5-
System libraries 8-1
System programming
features 4-6
SZE (SRV) 11-55

T
TAB (V) 11-42
TAK (V) 11-31
TAP (Trace And Patch) 18-1
command summary 19-1
terminators 19-1
using 18-1
TAX (V) 11-42
TAY (V) 11-42
TBA (V) 11-43
TC (I) 12-13
TCA (SRV) 11-28
TCH (I) 12-13
TCL (V) 11-28
Terminating long
operations 18-1,18-3
Terminators 18-4
Terminators, PSD 20-1
Terminatars, TAP 19-1
Terminators, VPSD 21-1

1

X-14

Terms 15-5
Test
A register equal to zero and set
A, LEG, (V) 11-33
A register greater than or equal
to zero and set A, LGE,
(V) 11-33
A register greater than zero and
set A, LGE, (V) 11-33
A register greater than zero and
setR, LGT, (I} 12-16
A register less than or equal to
zero and set A, LLE,
(V) 11-33
A register less than zero and set
A, LLT, (V) 11-33
A register not equal to zero and
set A, LNE, (V) 11-33
condition code equal to zero
and set A, LCEQ,
(V] 11-33
condition code equal to zero
and set R, LCEQ,
(1) 12-16
condition code greater than or
equal to zero and set A,
LCEG, (V) 11-33
condition code greater than or
equal to zero and set R,
LCGE (I) 12-16
condition code greater than
zero and set A, LCGT,
(V) 11-33
condition code greater than
zero and set R, LCGT,
1) 12-16
condition code less than or
equal to zero and set A,
LCLE, (V) 11-33
condition code less than or
equal to zero and set R,
LCLE, (I) 12-16
condition code less than zero
and set A, LCLT,
(V) 11-33
condition code less than zero
and set R, LCLT, {I) 12-16
condition code not equal to zero
and set A, LCNE,
(V) 11-33
condition code not equal to zero
and set R, LCNE,
(I) 12-16
floating register equal to zero
and set A, LFEQ,
(V) 11-34
floating register equal to zero
and set R, LFEQ, (I} 12-16
floating register greater than or
equal to zero and set A,
LFGE, (V) 11-34
floating register greater than or
equal to zero and set R,
LFGE, (I) 12-16
floating register greater than
zero and set A, LFGT,
(V) 11-34
floating register greater than
zero and set R, LFGT,
(I 12-16
floating register less than or

1 March 1979

Index X

equal to zero and set A,
LFLE, (V) 11-34
floating register less than or
equal to zero and set R,
LFLE, (I) 12-16
floating register less than zero
and set A, LFLT,
(V) 11-34
floating register less than zero
and set R, LFLT, (I) 12-16
floating register not equal to
zero and set A, LFNE,
(V) 11-34
floating register not equal to
zero and set R, LFNE,
(I) 12-16
half register equal to zero and
set R, LHEQ, (I} 12-16
half register greater than or
equal to zero and set R,
LHGE, (I) 12-16
half register greater than zero
and set R, LHGT,
1) 12-16
half register less than or equal
to zero and set R, LHLE,
() 12-16
half register not equal to zero
and set R, LHNE,
I 12-16
L register equal to zero and set
A, LLEQ, (V) 11-33
L register greater than or equal
to zero and set A, LLGE,
(V) 11-33
L register greater than zero and
set A, LLGT, (V) 11-33
L register less than or equal to
zero and set A, LLLE,
(V] 11-33
L register less than zero and set
A, LLLT, (V] 11-33
L register not equal to zero and
set A, LLNE, (V) 11-33
L-bit 11-3
memory fullword, TM,
() 12-14
memory halfword, TMH,
(1) 12-14
queue, TSTQ, (I} 12-21
queue, TSTQ, (V] 11-50
register equal to zero and set R,
LEQ, (I) 12-16
register greater than or equal to
zero and set R, LGE,
() 12-16
register less than or equal to
zero and set R, LLE,
I 12-16

register less than zero and set R,

LLT, (I) 12-16
register not equal to zero and

setR,LNE, (I) 12-16

Text conventions 2-1

TFLL (V) 11-15

TFLR (I} 12-5

Three word memory reference,

indirect pointer 9-3

TKA (V) 11-31

TLFL (V) 11-15

™ (I) 12-14

1 March 1979

AT Ty

IMH (I 12-14
TOP, SEG load map entry 5-6
Transfer
AorB, TAB, (V) 11-42
Atokeys, TAK, (V) 11-31
Ato X, TAX, (V) 11-42
Ato Y, TAY, (V) 11-42
Bto A, TBA, (V) 11-43
field length register to L, TFLL,
(V] 11-15
field length to register, TFLR,
@O 12-5
keys to A, TKA, (V] 11-31
Xto A, TXA, (V) 11-43
Yto A, TYA, (V) 11-43
Translate character field, ZTRN,
(V) 11-7
Translate character fields, ZTRR,
I 12-4
Triple asterisk (dummy
instruction), PMA 14-5
TSTQ (I 12-21
TSTQ (V) 11-50
Two word memory reference (V-
mode) 10-8
Two word memory reference,
indirect pointer 9-3
Two’s complement
A, TCA, (SRV) 11-28
half register, TCH, (I) 12-13
long, TCL, (V] 11-28
register, TC, (I) 12-13
TXA (V) 11-43
TYA (V) 11-43
Types, PMA 14-1

U

ull
handling 4-6
library 4-4

library, loader use of 4-4
Unsatisfied references 5-7
Unsegmented runfiles, execution
of 6-1

Using the assembler, terminal
session example 2-5

Using the R-mode loader under
PRIMOS 4-1

Using VPSD 18-3

\%

V-mode instructions
A2A 11-22
ABQ 11-49
ACA 11-22
ADD 11-22
ADL 11-22
ADLL 11-23
ALA 11-22
ALFA 11-15
ALL 11-51
ALR 11-51
ALS 11-51
ANA 11-32
ANL 11-32
ARGT 11-43
ARL 11-51
ARR 11-51
ARS 11-51
ATQ 11-49
BCEQ 11-2

X-15

CMA 11-32
CRA 11-7
CRB 11-8
CRE 11-8
CRL 11-8
CRLE 11-8
CSA 11-24
CXCS 11-34
DFAD 11-17
DFCM 11-17
DFCS 11-17
DFDV 11-17
DFLD 11-18
DFLX 11-18
DFMP 11-18
DFSB 11-18
DFST 11-18
DIV 11-24
DRX 11-53
DVL 11-25
E16S 11-1
E32] 11-1
E32R 1141
E328 11
E64R 1i-
E64V 11
EAFA 11-15

FDR 3059

X Index

EAL 11-44
EALB 11-45
EAXB 11-45
EIO 11-29
EMCM 11-28
ENB 11-39
ERA 11-32
ERL 11-32
ESIM 11-30
EVIM 11-30
EXB 11-43
FAD 11-18
FCM 11-19
FCS 11-19
FCST 11-20
FDBL 11-19
FDV 11-19
FLD 11-19
FLTA 11-20
FLTL 11-20
FMP 11-20
FRN 11-20
FSB 11-20
FSLE 11-20
FSMI 11-21
FSNZ 11-21
FSPL 11-21
FST 11-21
FSZE 11-21
HLT 11-35
IAB 11-40
ICL 11-40
ICR 11-40
ILE 11-40
IMA 11-40
INBC 11-49
INBC 11-49
INEC 11-49
INEN 11-49
INH 11-30
INT 11-21
INTA 11-21
INTL 11-22
IRS 11-53
IRX 11-53
ITBL 11-35
JMP 11-46
JST 11-46
JSX 11-47
[SXB 11-47
ISY 11-47
LCEQ 11-33
LCGE 11-33
LCGT 11-33
LCLE 11-33
LCLT 11-33
LCNE 11-33
LDA 11-40
LDC 11-5
LDL 11-40
LDLR 11-41
LDX 11-41
LDY 11-41
LEQ 11-33
LF 11-34
LFEQ 11-34
LFGE 11-34
LFGT 11-34
LFLE 11-34
LFLI 11-15
LFLT 11-34

FDR 3059

LFNE 11-34
LGE 11-33
LGT 11-33
LIOT 11-35
LLE 11-33
LLEQ 11-33
LLGE 11-33
LLGT 11-33
LLL 11-51
LLLE 11-33
LLLT 11-33
LLNE 11-33
LLR 11-52
LLS 11-52
LLT 11-33
LMCM 11-28
LNE 11-33
LPID 11-36
LPSW 11-36
LRL 11-52
LRR 11-52
LRS 11-53
LT 11-34
LWCS 11-37
MDEI 11-28
MDII 11-28
MDIW 11-28
MDRS 11-28
MDWC 11-28
MIA 11-37
MIB 11-37
MPL 11-25
MPY 11-25
NFYB 11-49
NFYE 11-49
NOP 11-37
NOP 11-55
PCL 11-47
PIDA 11-26
PIDL 11-26
PIMA 11-26
PIML 11-26
PRTN 11-48
PTLB 11-37
RBQ 11-50
RCB 11-31
RMC 11-28
RRST 11-38
RSAV 11-38
RTQ 11-50
S1A 11-26
S2A 11-27
SAR 11-53
SAS 11-53
SBL 11-27
SCB 11-31
SGT 11-54
SKP 11-54
SLE 11-54
SLN 11-55
SLZ 11-55
SMCR 11-29
SMCS 11-29
SMI 11-55
RMQ 11-54
SNS 11-54
SNZ 11-55
SPL 11-55
SR2 11-55
SR3 11-55
SR4 11-55

X-16

SRC 11-55
SRL 11-55
S§S81 11-55
SS2 11-55
8S3 11-55
S84 11-55
SSC 11-55
SSM 11-27
SSP 11-27
SSR 11-55
S8S 11-55
STA 11-41
STAC 11-41
STC 11-5
STEX 11-48
STFA 11-15
STL 11-41
STLC 11-42
STLR 11-42
STPM 11-38
STX 11-42
STY 11-42
SUB 11-27
SVC 11-39
SZE 11-55
TAB 11-42
TAK 11-31
TAX 11-42
TAY 11-42
TBA 11-43
TCA 11-28
TCL 11-28
TFLL 11-15
TKA 11-31
TLFL 11-15
TSTQ 11-50
TXA 11-43
TYA 11-43
VIRY 11-29
WAIT 11-49
WCS 11-39
XAD 11-10
XBTD 11-11
XCA 11-43
XCM 11-11
XDTB 11-12
XDV 11-12
XEC 11-49
XED 11-13
XMP 11-13
XMV 11-14
XVRY 11-29
ZCM 11-5
ZED 11-5
ZFIL 11-6
ZIMV 11-6
ZMVD 11-7
ZTRN 11-7
Values, output 18-4

VAPPLB library, use with

SEG 5-2,5-3

VAPPLB. system library 8-1

Variables, macro 17-2

Verify the XIS board (Prime 500),
XVRY, (V) 11-29

Verify XIS, XVRY, (I)
Verify XIS, XVRY, (I)

Verify, VIRY, (I) 12-

Verify, VIRY, (SRV]

12-14

12-17
14
11-29

VFD pseudo-operation 16-11

1 March 1979

Index X

Vi Zero memory halfword
decimal control word O 125
format 9-2 Zero, VPSD 21-6
keys 9-12 ZFH, fill character field, (I)
queue control block 9-7 ZFIL, fill field, (V)

registers 9-9
subroutine call
conventions 8-3

Virtual address space 4-5 (I} 12-5
Virtual loading 4-5 ZMV, move character field, (I)
VIRY (I) 12-14 ZMV, move character field, (V)
VIRY (SRV) 11-29 ZMVD, move equal length fields,
VPSD (virtual symbolic (I 12-4
debugger) 18-1, 18-3, 18-4 ZMVD, move equal length fields,
command summary 21-1 V) 117
terminators 21-1 ZTRN, translate character field,
using 18-3
VPSD16 18-3 (V) 11-7)
VSRTLB library, use with ZTRN, translaie character fields,
SEG 5-2,5-3 (1) 12-4

VSRTLB, system library 8-1

WAIT (I) 12-20
WAIT (V) 11-49
WCS (I) 12-17
WCS (RV) 11-39
Writable control store, WCS,
1 12-17
Writable control store, WCS,
(RV) 11-39
Writing and debugging a program,
example 2-5
Writing V or I mode code in
PMA 14-8

X

X () 12-15

XAC pseudo-operation 16-7
XAD () 12-5

XAD (V) 11-10

XB% assembler notation 15-8
XBTD () 12-5

XBTD (V) 11-11

XCA (SRV) 11-43

XCB (SRV) 11-43

XCM (I) 12-5

XCM (V) 11-11

XDTB (I) 12-5

XDTB (V) 11-12

XDV (I) 12-5

XDV (V) 11-12

XEC (RV) 11-49

XED (I} 12-5

XED (V) 11-13

XH (D) 12-16

XMP (I) 12-5

XMP (V) 11-13

XMV (1) 12-5

XMV (V) 11-14

XSET pseudo-operation 16-21
XVRY (V) 11-29

XVRY () 12-14,12-17

Z

ZCM (I) 12-4

ZCM (V) 11-5

ZED(I) 12-4

ZED (V) 11-5

Zero memory fullword, ZM,
1) 12-5

1 March 1979 X-17

ZM, zero memory fullword, (I)
ZMH, zero memory halfword,

FDR 3059

L TAN 3
FEY, L7,

AIDUS
Change sheet package

This is your ATDUS Change Sheet package for FDR3059, The Assembly Lan-
guage Programmer’s Guide. It contains replacement pages to update your
book to Master Disk Revision 17.

Two types of changes are indicated on these change pages. Changes that are
specific to Revision 17 are indicated by the following symbol: . The bar
extending up and down from the symbol, points out the overall area where
Revision 17 changes were made. Other changes, (errors fixed, information
missing at Revision 16 or earlier, or editorial changes) are shown by a simple
bar in the inner margin. All pages with changes of either type are now dated 1
January 1980 in the folio line.

Change Sheet Package Number: COR3059-001

Date: January, 1980

Revision Number: 17

Number of pages enclosed: 14 Pages with changes: 8

List of pages enclosed (pages with changes are underlined): 4-3, 4-4, 5-9, 5-10,
5-11, 5-18, 5-13, 6-0, 6-1, 6-2, 8-1, 8-, 16-19, 16-20 '

Copyright® 1980 by Prime Computer, Incorporated
Published by Prime Computer, Incorporated
Technical Publications Department
500 01d Connecticut Path
Framingham, MA 01701
The information contained on these change pages is subject to change without notice
and should not be construed as a commitment by Prime Computer, Incorporated. Prime
Computer, Incorporated assumes no responsibility for any errors that may appear in
this package.
PR1ME and PRIMOS are registered trademarks of Prime Computer.
PRIMENET and THE PROGRAMMER’S COMPANION are trademarks of Prime
Computer, Inc.
Printing date: January, 1980
All correspondence on suggested changes to this document should be addressed to:
Rosemary Shields
Technical Publications Department
Prime Computer, Inc.
8500 01d Connecticut Path
Framingham, MA 01701

LOADING R-MODE PROGRAMS 4

3. Other Prime libraries (LI filename).
4. Standard FORTRAN library (LI).

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-
routines in the library file FTNLIB in the LIB UFD. The appropriate subroutines from the
file are loaded by the LIBRARY command given without a filename argument. If sub-
routines from other libraries are used, such as MATHLB, SRTLIB, or APPLIB, additional
LIBRARY commands are required which include the desired library as an argument.

LOAD MAPS

During loading the loader collects information about the results of the load process, which
can be printed at the terminal (or written to a file) by the MAP command:

MAP [pathname] [option]

The information in the map can be consulted to diagnose problems in loading, or to optimize
placement of modules, linkage areas and COMMON in complex loads.

Load information is printed in four sections, as shown in Figure 4-1. The amount of
information printed is controlled by MAP option codes such as:

Option Load Map Information

None, 0 or 4 Load state, base area, and symbol storage; symbols sorted by
address :

1 Load state only

2 Load state and base areas

3 Unsatisfied references only

6 Undefined symbols, sorted in alphabetical order

7 All symbols, sorted in alphabetic order

Load state

The load state area shows where the program has been loaded, the start-of-execution
location, the area occupied by COMMON, the size of the symbol table, and the UII status.
All locations are octal numbers.

*START: The location at which execution of the loaded program will begin. The default is
"1000.

*LOW: The lowest memory image location occupied by the program. Executable code
normally starts at "1000, but sector 0 address links (if any) begin at '200.

*HIGH: The highest memory image location occupied by the program (excluding any area
reserved for initialized COMMON).

*PBRK: "‘Program Break'': The next available location for loading. It normally is the location
following the last loaded module, but can be moved by PBRK or the LOAD family of
commands.

*CMLOW: The low end of COMMON.
*CMHGH: The top of COMMON.

*SYM: The number of symbols in the loader's symbol table. This is usually of not concern
unless the symbol space crowds out the last remaining runfile buffer area. (There is room
for about 4000 symbols before this is a risk.)

1 January 1980 4-3 FDR 3059

4 1LOADING R-MODE PROGRAMS

*UIl: A code representing the hardware required to execute the instructions in loaded
modules. Codes and other information are described later in this section.

Base areas

The base area map includes the lowest, highest and next available locations for all defined
base areas. Each line contains four addresses as follows:

*BASE XXXXXX YYYYYY 277777 Wwwwww

XXXXXX Lowest location defined for this area
YYYYYY Next available location if starting up from XXXXXX
277777 Next available location if starting down from WWWWWW

WWWWWW Highest location defined for this area
Symbol storage

The symbol storage listing consists of every defined label or external reference name
printed four per line in the following format:

namexx NNNNNN
or
**namexx NNNNNN

NNNNNN is a six-digit octal address. The ** flag means the reference is unsatisfied (i.e., has
not been loaded). :

Symbols are listed by ascending address (default) or in alphabetical order (MA 6 or MA 7).
The list may be restricted to unsatisfied references only (MA 3 or MA 6).

COMMUON blocks

The low end and size of each COMMON area are listed, along with the name (if any). Every
map includes a reference to the special COMMON block LIST, defined as starting at
location 1. .

LOADER CONCEPTS

When standard loading goes well, the user can ignore most of the loader's advanced
features. However, situations can arise where some detailed knowledge of the loader's
tasks, can optimize size or performance of a runfile, or even make a critical load possible.
From that viewpoint, the main tasks of the loader are:

» Convert block-format object code into a run-time version of the program (ex-
ecutable machine instructions, binary data and data blocks).

o Resolve address linkages (translate symbolic names of variables, subroutine entry
points, data items etc. into appropriate binary address values).

o Perform address resolution {discussed later).

» Detect and flag errors such as unresolved external references, memory overflow,
etc.

e Build (and, on request, print) a load map. The map may also be written to a file.
e Reserve COMMON areas as specified by object modules.

» Keep track of runfile's hardware execution requirements and make user aware of
need to load subroutines from UII library.

FDR 3059 4-4 1 March, 1979

LOADING SEGMENTED PROGRAMS D

SEG-LEVEL COMMANDS

Commands at SEG level are entered in response to the “'#" prompt.

DELETE [pathname]

Deletes a saved SEG runfiles.

HELP

Prints abbreviated list of SEG commands at terminal.

[VILOAD[*] [pathname]

Defines runfile name and invokes virtual loader for creation of new runfile (if name did not
exist) or appending to existing runfile (if name exists). If pathname is omitted, SEG requests
one.

MAP pathname-1 [pathname-2] [map-option]

Prints a loadmap of runfile (pathname-1 or current loadfile (*)) at terminal or optional file
(pathname-2).

Option Load Map information

Full map (default)

Extent map only

Extent map and base areas

Undefined symbols only

Full map (identical to 0)

System programmer’s map

Undefined symbols, alphabetical order
Full map, sorted alphabetically
Symbols by ascending address
Symbols alphabetically

L i B2 1 B SN ST SR)

- O

MODIFY |[filename]

Invokes MODIFY subprocessor to create a new runfile or modify an existing runfile.

PARAMS ([filename]
Displays the parameters of a SEG runfile.

PSD
Invokes VPSD debugging utility.

QUIT

Returns to PRIMOS command level and closes all open files.

RESTORE [pathname]

Restores a SEG runfile to memory for examination with VPSD.

RESUME [pathname]

Restores runfile and begins execution.

1 January 1980 5-9 FDR 3059

9 LOADING SEGMENTED PROGRAMS

SAVE [pathname]
Synonym for MODIFY.

SHARE [pathname]

Converts portions of SEG runfile corresponding to segments below '4001 into R-mode-like
runfiles.

SINGLE [pathname] segno

Creates an R-mode-like runfile for any segment.

TIME [pathname]

Prints time and date of last runfile modification.

VERSION

Displays SEG version number.

VLOAD
See LOAD.

LOAD SUBPROCESSOR COMMANDS
ATTACH [ufd-name] [password] [ldisk] [key]

Attaches to directory.

AUTOMATIC base-area-size

Automatically places base areas between procedures.

A/SYMBOL symbolname [segtype] segno size

Defines a symbol in memory and reserves space for it using absolute segment numbers.

. N

COMMON {[ﬁgi] } segno

Relocates COMMON using absolute or relative segment numbers.

IL
LOAD
D/ LIBRARY
FORCELOAD
| PL or RL

Continues a load using parameters of previous load command.

Note
D/ and F/ may be combined, as in D/F/LI.

EXECUTE [a] [b] [x]

Performs SAVE and executes program.

FDR 3059 5-10 1 January 1980

LOADING SEGMENTED PROGRAMS D

IL
LOAD

F/ LIBRARY
FORCELOAD
PL
RL

Forceloads all routines in object file.

[pathname][addr psegno Isegno]

IL [addr psegno lsegno]
Loads impure FORTRAN library IFTNLB

INITIALIZE [pathname]

Initializes and restarts load subprocessor.

LIBRARY [filename] [addr psegno Isegno]
Loads library file (PFTNLB and IFTNLB if no filename specified).

LOAD [pathname] [addr psegno Isegno]
Loads object file.

MAP [pathname] option
Generates load map (see SEG-level MAP command).
ON
MIXUP { [OFF] }
Mixes procedure and data in segments and permits loading of linkage and common areas in
procedure segments. Not reset by INITIALIZE.
MV [start-symbol move-block desegno]

Moves portion of loaded file (for libraries). If options are omitted, information is requested.

OPERATOR option

Enables or removes system privileges 0O=enable, 1=remove. Caution: this command is
intended only for knowledgeable creators of specialized software.

PL [addr psegno [segno]
Loads pure FORTRAN library, PFTNLB.

IL
LOAD
p/ LIBRARY
FORCELOAD
PL
. RL

[pathname] option [psegno] [Isegno]

Loads on a page boundary. The options are: PR=procedure only, DA=link frames only, none
=both procedure and link frames.

1 March, 1979 5-11 FDR 3059

D LOADING SEGMENTED PROGRAMS

QUuIT
Performs SAVE and returns to PRIMOS command level.

RETURN

Performs SAVE and returns to SEG command level.

RL pathname [addr psegno Isegno]

Replaces a binary module in an established runfile.

R/SYMBOL symbol-name [segtype] segno size

Defines a symbol in memory and reserves space for it using relative segment assignment.
(Default=data segment).

SAVE [a] [b] [x]

Saves the results of a load on disk.

SETBASE segno length
Creates base area for desectorization.
segno addr

SPLIT | addr
addr segno addr Isegno

Splits segment into data and procedure portions. Formats 2 and 3 allow R mode execution if
all loaded information is in segment 4000.
SS symbol-name

Saves symbol; prevents XPUNGE from deleting symbol-name.

STACK size

Sets minimum stack size.

old-symbol-name [octal-number]
SYMBOL new-symbol-name) segno addr
*

Defines a symbol at a location and/or assigns a value of an already defined symbol or a
constant.

3YESE
SZ psegno | [NO]

Controls use of sector zero base area in procedure segments.

LIBRARY (
S/ FORCELOAD
PL or IL
RL or LOAD

[pathname] [addr psegno Isegno]

Loads an object file in specified absolute segments.

XP dsymbol dbase

Expunges symbol from symbol table and deletes base information.

FDR 3059 5-12 1 January 1980

LOADING SEGMENTED PROGRAMS B

symbol Action
0 Delete all defined symbols—including COMMON area.
1 Delete only entry points, leaving COMMON areas.

dbase Action

0 Retain all base information.
1 Retain only sector zero information.
2 Delete all base information.

MODIFY SUBPROCESSOR COMMANDS

NEW pathname
Writes a new copy of SEG runfile to disk.

PATCH segno baddr taddr

Adds a patch (loaded between baddr and taddr) to an existing runfile and saves it on disk.

RETURN
Returns to SEG command level.
ssize {
SK ! segno addr
ssize 0 esegno
segno addr esegno

Specifies stack size (ssize) and location. esegno specifies an extension stack segment.

START segno addr

Changes program execution starting address.

WRITE

Writes all segments above '4000 of current runfile to disk.

1 January 1980 5-13 FDR 3059

Execu

This section treats the following topics:
* Execution of program memory images saved by the linking loader.
» Execution of segmented runfiles saved by SEG's loader.
» Installation of programs in the command UFD (CMDNCO]).
e Use of run time.

EXECUTION OF UNSEGMENTED RUNFILES

Use the PRIMOS RESUME command to execute an unsegmented runfile:
RESUME pathname

where pathname is an R-mode runfile in the current UFD.

Programs which are resident in the user’'s memory may be executed by a START command:
START

RESUME

RESUME brings the memory-image program pathname from the disk into the user’s
memory, loads the initial register settings, and begins execution of the program. Its format
is:

RESUME pathname

Example:
OK, R *TEST User requests program
GO Execution begins
THIS IS A TEST Output of program
0K, PRIMOS requests next command
Note
As of Rev. 17 PRIMOS no longer prints GO in response to a

command.

RESUME should not be used for segmented {64V or 321 mode} programs; use the SEG
command (discussed later) instead.

START

Once a program is resident in memory (e.g., by a previous RESUME command) you can use
START to initialize the registers and begin execution. Its format is:

START [start-address]

Upon completion of the program, control returns to PRIMOS command level.

1 January 1980 6-1 FDR 3059

6 EXECUTING

EXECUTION OF SEGMENTED RUNFILES

Use the SEG command to begin execution of a segmented program; e.g. SEG pathname
where pathname is a SEG runfile. SEG loads the runfile into segmented memory and starts
execution. SEG should be used for runfiles created by SEG's Loader; it should not be used
for program memory images created by the LOAD utility.

Example:
OK, SEG #TEST user requests program
GO execution begins
THIS IS A TEST output of program
OK, PRIMOS requests next command

Upon completion of program execution, control returns to the PRIMOS command level.

You may restart a SEG runfile by the command: S 1000, provided both the SEG runfile and
the copy of SEG used to invoke it are in memory.

INSTALLATION IN THE COMMAND UFD (CMDNCD0)

Run-time programs in the command UFD (CMDNCO0) can be invoked by keying in the
program name alone. This feature of PRIMOS is useful if a number of users invoke this
program. Only one copy of the program need reside on the disk in UFD CMDNCO.

Even more space is saved during execution by multiple users if the program uses shared
code (64V and 32I mode only).

Program memory images saved by LOAD

Installation in the command UFD is extremely simple, providinlg you have access to the
password. The runtime version of the program is copied into UFD CMDNCO using PRIMOS’
FUTIL file handling utility.

Example: Assume you have written a utility program called FARLEY. This utility acts as a
“tickler” for dates. Using FARLEY, each user builds a file with important dates. The
FARLEY utility program, upon request, prints out upcoming events or occasions of interest
to the user.

Note

This utility does not necessarily actually exist; it is used as a
plausible example.

First, assemble the program.

OK, PMA FARLEY -64R Assemble in 64R mode

GO

@000 ERRORS (PMA-REV 16.2)ASSEMBLER MESSAGE

OK, LOAD Invoke the Loader

GO

$LO B_FARLEY Load the object file; the default
name is used

$ Load other required modules

FDR 3059 6-2 1 March, 1979

Most of the commonly used subroutines — [/0, math functions and EXIT, are either
embedded in the operating system or are in one of the FORTRAN libraries. LOAD and SEG
automatically load the appropriate library when you type the command LI during a loading
sequence. Other libraries, such as APPLIB and MATHLIB require the specification of their
name following LI — e.g. LI APPLIB causes the application library to be searched for
unresolved references.

Table 8-1 lists the commonly available system libraries. See the Reference Guide, PRIMOS
Subroutines for complete descriptions of the system subroutines.

All routines, regardless of mode, should use the CALL pseudo-operation to call subroutines.
S and R-mode arguments use DAC pointers; V, and I-mode arguments use AP pointers (see
Section 16 for the DAC and AP pseudo-operation formats). Figure 8-1 illustrates the SR
calling sequences and associated subroutine code; Figure 8-2 illustrates VI calling se-
quences and associated subroutine code.

Table 8-1. System Libraries

Name Description Mode
FTNLIB FORTRAN Library R
PFTNLB FORTRAN Library pure pro-

cedures \Y%
IFTNLB FORTRAN Library impure pro-

cedures \
PLIGLB PL/I'V and I Mode Library
NPFTNLB FORTRAN Library V-Mode, Pure, non-shared
APPLIB Application Library R
VAPPLB Application Library \Y%
SRTLIB Sort Library-Files R
VSRTLI Sort Library-Files \%
MSORTS Sort Library-Memory R
MATHLB Matrix Routines R

1 January 1980 8-1 FDR 3059

8 INTERFACING WITH THE SYSTEM LIBRARIES

Two or More Arguments

Main Program
No Arguments One Argument
CALL SUBX CALL SUBX
DAC A
Subroutine
ENT SUBX ENT SUBX
REL REL
SUBX DAC ** SUBX DAC ** SUBX
first instruction CALL FS$AT
. ' DEC 1
. | APTR DAC** APTR
. , : BPTR
- JMP SUBX,* CPTR
JMP SUBX,*
Note
CALL SUBX is equivalent to:
EXT SUBX
JST SUBX
Figure 8-1. SR Subroutine CALL Conventions

CALL SUBX
DAC A
DAC B
DAC C

.
.

DAC @

ENT SUBX
REL

DAC **

CALL FSAT

DEC 3

DAC **

DAC *%*

DAC **

first instruction

.

JMP SUBX, *

FDR 3059 8-2

1 March, 1979

PSEUDO-OPERATIONS 16

external. Unlike EXT, there is no conflict between a local variable and a CALL operand with
the same symbol.

The operand must contain a single symbol (not an expression) of up to 6 characters, of which
the first must be alphabetic. A ,1 for indexing and * for indirect addressing is optional.

In 64V and 321 modes, CALL generates a PCL instruction to an external symbol.

4 DYNT address-expression

Defines a direct entry point into the operating system. System libraries only.

> [label] ECB entry-point, [link base], displacement, n-arguments [, stack-size]
[, keys]

Generates an entry control block to define a procedure entry. It must go in the linkage frame
with the subroutine entry point pointing to the ECB.

Parameter Meaning

entry-point Procedure relative value; entry point for subroutine.

link-base Link base register value.

displacement Displacement in stack frame for argument list. May
be stack relative or absolute expression.

n-arguments Number of arguments expected; default is zero.

stack-size Initial stack frame size. Default is maximum area
specified in DYNM statements.

keys CPU keys for procedure. Default is 64V addressing

mode, all other keys zero.

For example:

ENT ECBNAM
LAB1 Lba ='123
LINK
ECBNAM ECB LAB1
END

If the default value for a parameter is desired, the parameter may be omitted, leaving only
its delimiting comma. Any string of trailing commas may be omitted.

Note
The main program — that which you call PRIMOS level using
SEG#Name — is a subroutine to SEG and must, therefore.
have an ECB and the ECB name on the END statement. It
need not have an ENT because SEG will give a dummy entry
point name to a routine called at this level.

> [label] EXT symbol

Identifies external variables. The names appearing in the operand of this statement are
flagged as external references. Whenever other statements in the main program reference
one of these names, a special block of object text is generated that notifies the loader to fill
in the address properly. The assembler fills the address fields with zeroes.

Names defined by the EXT pseudo-operations are unique only in the first 6 characters
(loader restriction) and should not appear in a label field internal to the program.

1 March, 1979 16-19 FDR 3059

16 PSEUDO-OPERATIONS

> [label] SUBR symbol-1 or ENT symbol-1 [, symbol-2]

Link subroutine entry points to external names used in CALL, XAC or EXT statements in
calling programs. SUBR and ENT are identical in effect. symbol-1 is the external name used
by calling program, whereas, symbol-2 is the entry name used in subroutine, if different
from symbol-1. All SUBR and ENT pseudo-operations must appear before any generated
code.

> SYML SEG/SEGR

Allows long external names up to eight characters to be generated by the assembler. Must
follow SEG or SEGR but precede any generated code.

STORAGE ALLOCATION PSEUDO-OPERATIONS (SA)

Control the allocation of storage within the program address space.

Name Function DT Restriction
BSS Allocate block starti'nygu with symbol
BES Allocate block ending with symbol
BSZ Allocate block set to ze
COMM FORTRAN compatible COMMON
BSS
> [label] {BES} absolute-expression
BSZ

Allocates a block of words of the size specified in the absolute-expression starting at the
current location count. If there is a label, it is assigned to the first word of the block (BSS and
BSZ) or to the last word of the block (BES). For BSZ, all words within the block are set to

zeroes.,

> [label] COMM symbol [(absolute-expression)]

Defines FORTRAN-compatible named COMMON areas. These areas are allocated by the
loader. The label assigns a name to the block as a whole, and the operand field specifies
named variables or arrays within the block. Additional COMM statements with the same
block name are treated as continuations. symbel alone reserves a single location: the
optional absolute-expression reserves locations equal to its value. In SEG mode. the loader
sets up a 32-bit indirect pointer in the linkage segment which points to the common area.

SYMBOL DEFINING PSEUDO-OPERATIONS (SD)

Variables used as address symbols are usually defined when theyv appear in the label field
of an instruction or pseudo-operation statement. Symbols so defined are given the relocation
mode and value of the program counter at that location. The EQU. SET and XSET statements
make it possible to equate symbols to any numerical value, including ones that lie outside
the range of addresses in a program.

Name Function Restrictions
DYNM Declare stack relative R and V only
EQU Symbol definition

SET Symbol definition

XSET Symbol definition

FDR 3059 16-20 1 January 1980

D CYIIDUTV
USER SURVEY

Tell us how we’re doing, and we'll send
you a free Programmer’s Companion.

Your name

Company or School

Address

City, State, Zip

1. What is your job title or function?

2. What specific task describes what you
do?

3. Does your company or school own a
Prime computer?
a. If YES, which model?

b. Is it networked with other Prime
computers?

c. Is it networked with any of these?

d. Which of these software packages do
you use?

e. Have you read any other Prime
documents?

f. If YES, which ones?

4. Are you presently evaluating Prime?
Is the documentation playing a part?

5. What book are you reviewing?

6. My initial reaction to this book was:

7. After reading it my reaction was:
If BETTER or WORSE why?

8. How often have you used this book?

9. Did the book have the content you
expected?

If NO, why?

10. Did you find the organization useful?
If NO, why?

[JYES []NO

[J4s0 [Js50 []e650 []750 [OTHER
(] YES []NO

(1]1BM []CDC []UNIVAC [] HONEYWELL
[] FORTRAN [J COBOL [] BASIC/VM

[] FORTRAN 77 [] PL/I-G [] POWER

[] MIDAS [] DBMS [] spss

[] RPGII [] FORMS [] PRIMENET
(] RJE [] PASCAL [] OAS

[] DBG [] DPTX

[(JYES []NO

[J YES [] NO

[JYES []NO

[J EXCELLENT [] GOOD [] FAIR
(] VERY GOOD [FAIR

[] BETTER [] THE SAME WORSE

(] EVERY DAY [] FAIRLY OFTEN
[] VERY OFTEN [] JUST GOTIT

] YES []NO

[JYES []NO

11.
12.
13.

14.
15.

16.

17.

18.

19.

How did you find the examples?
How did you find the illustrations?

Could you locate the information you
needed?

Was the index adequate?
Please evaluate our writing style and
edit quality?
a. Clarity
. Tone

b

¢. Technical level

d. General writing quality
e

. Editorial quality

Which of these manufacturers docu-
mentation have you used the most?

How is Prime compared to theirs?

Any comment on your rating?

Please evaluate the graphic quality:
a. Rate the general presentation

b. Do you like the paper color?

¢. Did you find any quality defects?

d. Do you like the way we've used color
for abbreviations and user input?

e. Did the shading over the tables and
charts make them EASIER or
HARDER to read?

f. Do you like the Programmer’s Com-
panion concept?

g. Which form of bindery do you find
most useful?

Do you know about the AIDUS

program?

Any other comments:

[] TOO MANY [] ABOUT RIGHT [] TOO
[] TOOMANY [ABOUT RIGHT [] TOO FEW

[JYES [JNO
[JYES []NO

[] VERY CLEAR [] AVERAGE [] UNCLEAR

[] CORRECT [] NEUTRAL [STILTED

[] TOOHIGH [] ABOUT RIGHT [] TOO LOW
[] EXCELLENT [] AVERAGE [] FAIRR [] POOR

[] EXCELLENT [] AVERAGE []FAIR [POOR
[] IBM] DIGITAL [] DG

[] HP [] cDC [] UNIVAC

[] HONEYWELL [] BURROUGHS [WANG

(] GE [] XEROX 0o

[] MUCH BETTER [A LITTLE WORSE
[] A LITTLE BETTER [] MUCH WORSE
[] SAME

[] EXCELLENT [] GOOD [] POOR
[] VERY GOOD [] FAIR

[JYES []NO
] YES []NO

[JYES []NO

[] EASIER [] HARDER
[JYES []NO

[] BOUND [LOOSE-LEAF

[] HAVEN'T SEEN ONE

[JYES [JNO

20. What book don't we offer that you'd like

to see?

Thank you for filling out the survey.
Check off which Programmer o Come
NLICTURN ULl vvillil 1 Auslaululcl D Uil

panion you would like to receive.

(] PRIMOS

[] FORTRAN 77

[] ASSEMBLY

[] ADMINISTRATOR

[] FORTRAN

] BASIC/VM

[] POWER

] WORD PROCESSING

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

PRIME

Attention: Technical Publications
Bidg 10B
Prime Park, Natick, MA 01760

NO POSTAGE
NECESSARY
iF MAILED
IN THE
UNITED STATES

	000
	001
	003
	005
	006
	007
	008
	009
	010
	1_0-00_Overview
	1_1-00
	1_1-01
	1_2-00
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	2_00-00_PMA_Usage
	2_03-00
	2_03-01
	2_03-02
	2_03-03
	2_03-04
	2_03-05
	2_03-08
	2_03-09
	2_03-10
	2_04-00
	2_04-01
	2_04-02
	2_04-03
	2_04-04
	2_04-05
	2_04-06
	2_04-07
	2_05-00
	2_05-01
	2_05-02
	2_05-03
	2_05-04
	2_05-05
	2_05-06
	2_05-07
	2_05-08
	2_05-09
	2_05-10
	2_05-11
	2_05-12
	2_05-13
	2_06-00
	2_06-01
	2_06-02
	2_06-03
	2_06-04
	2_06-05
	2_07-00
	2_07-01
	2_07-02
	2_07-03
	2_08-00
	2_08-01
	2_08-02
	2_08-03
	3_00-00_Machine_Formats
	3_09-00
	3_09-01
	3_09-02
	3_09-03
	3_09-04
	3_09-05
	3_09-06
	3_09-07
	3_09-08
	3_09-09
	3_09-10
	3_09-11
	3_09-12
	3_09-13
	3_09-14
	3_09-15
	3_09-16
	3_09-17
	3_09-18
	3_09-19
	3_10-00
	3_10-01
	3_10-02
	3_10-03
	3_10-04
	3_10-05
	3_10-06
	3_10-07
	3_10-08
	3_10-09
	3_10-10
	3_10-11
	3_10-12
	3_10-13
	3_10-14
	3_10-15
	3_10-16
	3_10-17
	3_10-18
	3_10-19
	3_10-20
	3_10-21
	3_10-22
	3_10-23
	3_10-24
	3_10-25
	3_10-26
	3_10-27
	3_10-28
	3_10-29
	3_10-30
	3_10-31
	3_10-32
	3_10-33
	3_11-00
	3_11-01
	3_11-02
	3_11-03
	3_11-04
	3_11-05
	3_11-06
	3_11-07
	3_11-08
	3_11-09
	3_11-10
	3_11-11
	3_11-12
	3_11-13
	3_11-14
	3_11-15
	3_11-16
	3_11-17
	3_11-18
	3_11-19
	3_11-20
	3_11-21
	3_11-22
	3_11-23
	3_11-24
	3_11-25
	3_11-26
	3_11-27
	3_11-28
	3_11-29
	3_11-30
	3_11-31
	3_11-32
	3_11-33
	3_11-34
	3_11-35
	3_11-36
	3_11-37
	3_11-38
	3_11-39
	3_11-40
	3_11-41
	3_11-42
	3_11-43
	3_11-44
	3_11-45
	3_11-46
	3_11-47
	3_11-48
	3_11-49
	3_11-50
	3_11-51
	3_11-52
	3_11-53
	3_11-54
	3_11-55
	3_12-00
	3_12-01
	3_12-02
	3_12-03
	3_12-04
	3_12-05
	3_12-06
	3_12-07
	3_12-08
	3_12-09
	3_12-10
	3_12-11
	3_12-12
	3_12-13
	3_12-14
	3_12-15
	3_12-16
	3_12-17
	3_12-18
	3_12-19
	3_12-20
	3_12-21
	3_12-22
	3_12-23
	3_13-00
	3_13-01
	3_13-02
	3_13-03
	3_13-04
	3_13-05
	3_13-06
	3_13-07
	3_13-08
	3_13-09
	3_13-10
	3_13-11
	4_00-00_PMA_Reference
	4_14-00
	4_14-01
	4_14-02
	4_14-03
	4_14-04
	4_14-05
	4_14-06
	4_14-07
	4_14-08
	4_14-09
	4_14-10
	4_14-11
	4_14-12
	4_14-13
	4_14-14
	4_14-15
	4_15-00
	4_15-01
	4_15-02
	4_15-03
	4_15-04
	4_15-05
	4_15-06
	4_15-07
	4_15-08
	4_15-09
	4_15-10
	4_15-11
	4_16-00
	4_16-01
	4_16-02
	4_16-03
	4_16-04
	4_16-05
	4_16-06
	4_16-07
	4_16-08
	4_16-09
	4_16-10
	4_16-11
	4_16-12
	4_16-13
	4_16-14
	4_16-15
	4_16-16
	4_16-17
	4_16-18
	4_16-19
	4_16-20
	4_16-21
	4_16-22
	4_17-00
	4_17-01
	4_17-02
	4_17-03
	4_17-04
	4_17-05
	4_17-06
	4_21-05
	5_00-00_Debugging_Utils
	5_18-00
	5_18-01
	5_18-02
	5_18-03
	5_18-04
	5_18-05
	5_18-06
	5_19-00
	5_19-01
	5_19-02
	5_19-03
	5_19-04
	5_19-05
	5_20-00
	5_20-01
	5_20-02
	5_20-03
	5_20-04
	5_20-05
	5_20-06
	5_20-07
	5_21-00
	5_21-01
	5_21-02
	5_21-03
	5_21-04
	5_21-06
	A-00
	A-000
	A-01
	B-00
	B-01
	B-02
	B-03
	C-00
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	_001
	_04-03
	_04-04
	_05-09
	_05-10
	_05-11
	_05-12
	_05-13
	_06-00
	_06-01
	_06-02
	_08-01
	_08-02
	_16-19
	_16-20
	replyA
	replyB
	replyC
	replyD

