MAN1673

MACRO ASSEMBLER
User Guide

Revision A
May 1975

PRIME
Computer, Inc.

145 Pennsylvania Ave.
Framingham, Mass. 01701

First Printing January 1973
Revision A April 1975

Copyright 1975 by
Prime Computer, Incorporated
145 Penhsylvania Avenue

Framingham, Massachusetts 01701

Performance characteristics are

subject to change without notice.

MAN 1673

CONTENTS

SECTION 1 INTRODUCTION
SCOPE OF HANDBOOK
REFERENCE DOCUMENTS
PRIME 200 ASSEMBLY LANGUAGE

Basic Assembly Language Elements

Symbolic Instructions

Constants, Literals, Variables, and
Expressions

Symbolic Names

Pseudo Operations

Macro Facility

USING THE MACRO ASSEMBLER

Two-Pass Assembly

Object Output

Listing Format

Location Count

Symbol Cross Reference Listing

ASSEMBLER/LOADER INTERACTION
Desectorizing and Address Resolution
" Extended Addressing Mode
Loading Subroutines
Memory Map

LOADING AND OPERATING PROCEDURES

SECTION 2 GENERAL ASSEMBLY LANGUAGE RULES
FREE-FORM INPUT TEXT
Line Format
CONSTANTS, VARIABLES AND "EXPRESSIONS
Constaﬁfs

Variables
Expressions

1-13
1-15
1-15

1-16
1-16
1-17
1-17
1-18

1-18

SECTION 3 INSTRUCTION STATEMENTS
INSTRUCTION STATEMENT GENERAL FORMAT
Label
Operation Field
Variable Field
MEMORY REFERENCE INSTRUCTIONS

Operation Field
Variable Field

INPUT/OUTPUT INSTRUCTIONS
SHIFT INSTRUCTIONS

BIT REFERENCE INSTRUCTIONS
GENERIC INSTRUCTIONS

SECTION 4 PSEUDO-OPERATIONS
STATEMENT FORMAT
ASSEMBLY CONTROLLING PSEUDO-OPERATIONS

ABS (Set Mode to Absolute)

REL (Set Mode to Relocatable)
ORG (Define Origin Location)
FIN (Insert Literals)

MOR (More Input Required)

END (End of Source Statements)
CF1 Through CF5

GO, GO TO (Forward Reference)

LISTING CONTROL PSEUDO-OPERATIONS

LIST (Enable Listing)
NLST (Inhibited Listing)

EJCT (Eject Page)

* LOADER CONTROLLING'PSEUDO-OPERATION
EXD (Enter Extended Addressing Mode)
LXD (Leave Extended Addressing Mode)
SETB (Set Base Sector)

ii

3-14
3-16
3-18
3-20

&
] 1

' 1]] t 1

] 1 i]
0 NNOCOOOARDLEAE B e

Lo = =~ ~ Ll S I~ ~ S g - N =
] '
ol iolVo] Vo] oo o

DATA DEFINING PSEUDO-OPERATIONS

DATA (Set Data Constant)

DEC (Set Decimal Constant)

DBP (Set Double Precision Constant)
OCT (Set Octal Constant)

HEX (Set Hexadecimal Constants)

VFD (Define Variable Fields)

BCI (Define ASCII String)

DAC (Local Address Definition)
XAC (External Address Definition)

%#%% (Dummy Memory Reference Instruction,

VARIABLE (SYMBOL) DEFINING PSEUDOJCPERATIONS

EQU (Define Variable),
SET (Redefine Variable)

STORAGE ALLOCATION PSEUDO-OPERATIONS

BSS (Block Starting with Symbol)
BES (Block Ending with Symbol)
BSZ (Block Set to Zeroes)

SETC (Set Common Base Address)
COMN (Define Common Items)

PROGRAM LINKING PSEUDO-OPERATIONS

EXT (Flag External References)
CALL (External Subroutine Reference)
SUBR, ENT (Define Entry P$ints)

CONDITIONAL ASSEMBLY PSEUDO-OPERATIONS

IF (Conditional Statement)

IFM (Continue Assembly if|Minus)
IFP (Continue Assembly if|Plus)

IFZ (Continue Assembly if! Zero)

IFN (Continue Assembly if!Not Zero)

ENDC (End Conditional Assembly Area)

ELSE (Reverse Conditional

Assembly
FAIL (Force Error MesSageb e

iii

Page
4-11

4-11
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31

4-32

4-32
4-32

4-34

4-34
4-34
4-34
4-35
4-36

4-38

4-38
4-39
4-40

4-44

4-44
4-45
4-45
4-45
4-45
4-46
4-46
4-47

SECTION 5 MACRO FACILITY

MACRO DEFINITIONS AND CALLS

MAC (Begin Macro Definition)
ENDM (End Macro Definition)
Argument References

Macro Calls

Arguments Values

Argument Substitution

Argument Values in Parentheses
Dummy Words

Argument Identifiers

Assembler Attribute References
Local References Within Macros

MACRO LISTING AND ASSEMBLY CONTROL

LSTM (List Macro Expansions)

LSMD (List Macro Expansions - Data Only)
NLSM (No Listing of Macro Expansions)
BACK, BACK TO (Loop Back - Macros Only)
SAY (List Message to Operator)

MACRO EXAMPLES

SECTION 6 SOURCE FILE MERGING COMMANDS

&G M m o 0o w

$ INSERT
$UPDATE
$COoPY
$DONE

APPENDICES

PRIME 200 Instructions (Op Code Order)
PRIME 200 Instructions (Class Order)
PRIME 200 Instructions (Mnemonic Order)
I/0 Device COdes

ASCII Character Codes
~Object File Formats

Assembler Error Messages

iv

vivrut o o ot o o N
1
CONUVTUT S B WN

i

5-10

5-10
5-11
5-12
5-13
5-13

5-15

Figure

1-1

ILLUSTRATIONS

Title

Example of PRIME 200 Macro Assembly
Language Statements

Interpretation of Symbolic Instruction
Example of Assembly Listing

Example of Memory Map

Source Input Line Formats

General Format of Instruction Statements

Assembly and Loading of Memory Reference
Instruction

Assembly and Loading of Input/Output
Instruction

Assembly and Loading of Shift Instructions

Assembly and Loading of Bit Reference
Instructions

Assembly and‘Loading of Generic Instructions
General Format of Pseudo-Operation Statements
Single Precision Fixed Point Constants
Double Precidion Fixed Point Constants

Floating Point Word Formats

TABLES
Summary of PRIME 200 Instruction Codes
Summary of Pseudo-Operations

Numerical Formats in DATA Statemehté

1-7
1-14
1-19

3-8
3-12

3-15

3-17
3-19

3-21
4-3

4-14
4-17
4-19

3-2
4-2
4-13

SECTION 1
INTRODUCTION

SCOPE OF HANDBOOK

This handhook is a detailed reference manual for the
PRIME 200 Macro Assembly Language. It is organized in
six sections for ease of reference.

This section introduces the assembly language, describes
the action of the program, and discusses the interaction
of the assembler with its companion program, the PRIME
200 Linking Loader.

Section 2 discusses statement formats and language features
common to all types of assembly language statements.

Section 3 contains the rules for forming instruction
statements using PRIME 200 instruction mnemonics.

Section 4 describes pseudo-operations (directives to the
assembler and loader).

Section 5 defines the Macro facility, a way to define
program statements that can be called for execution by
easily interpreted English language statements.

Section 6 defines commands used to invoke functions of
RDALN, routine that merges lines from two or more source
files during assembly.

The handbook is concluded by several appendices and a
detailed subject index.
REFERENCE DOCUMENTS
The following publications are recommended to supplement
this handbook:

PRIME 200 Programmer's Reference Manual

PRIME 200 Operator's Guide

PRIME 200 DOS Reference Manual

PRIME 200 RTOS Reference Manual
1-1

PRIME 200 ASSEMBLY LANGUAGE

The PRIME 200 Macro Assembly Language has the usual
provisions for symbolic instructions, symbolic addresses,
and control pseudo-operations expected by computer
users. It also offers many other advanced features:

* Free Format:

* Symbols:

* Constants:

* Expressions:

* Pseudo-Operations:

Source statements are independent

of column boundaries and permit

free use of spaces. Multiple
statements per line are permitted,
and statements may be continued from
line to line.

Symbols or Variables assigned to
address and data locations may contain
up to 32 characters.

Wide variety of constant forms:
decimal, octal, hexadecimal, ASCII,
double precision, floating point,
literals.

Symbols and constants may be linked
in expressions using 14 different
arithmetic, logical, and shift
operators.

Over 50 pseudo-operations for assembly
control, listing control, loader con-
trol, data definition, variable
definition, storage allocation, program
linking, and conditional assembly.

* Macro Facility: Programmer can define macros to be
called by application-related
language statements. Arguments are
identified by position or flagged
ty key words. Looping, local
references, and nesting are permitted.

The main purpose of an assembly language is to reduce the
clerical chores required to prepare a hinary program that
can be executed by the computer. Of course, it is possible
to look up the binary code for a given instruction and key
it into a memory location using front panel controls. For
example, an instruction to load the A register from
location '377 of sector O would be the octal code '004377.
The octal code for any PRIME 200 instruction can be determ-
ined from the Programmer's Reference Manual. (Also see
Table 3-1.)

But manual key-in of programs is tedious, error prone, and
the bare binary codes can only be interpreted by a pains-
taking analysis. This mode of program entry is usually
limited to key-in loader bootstrap programs and short test
sequences. A symbolic assembly language has become the
universal means of preparing programs of any size. An
assembly language provides a vocabulary of symbolic, or
mnemonic, codes - and a grammar of statement forms - to
represent machine language instructions in a format that
is easily read and interpreted by the original programmer
or any other reader familiar with the language.

Basichssembly Language Elements

Figure 1-1 illustrates a section of a typical program
written in PRIME 200 Macro Assembly Language. The basic
unit of information processed by the PRIME 200 assembler
is the line. When originated at an ASR-33 Teletype key-
board, a Iine consists of up to 72 ASCII characters (75
for ASR-35) occurring between carriage return - line feed
characters. When input is from unit record equipment, a
line consists of an 80-character card field.

There are statement lines, comment lines and change page
heading lines. A statement line has a space in column 1,

an optional label, one or more statements, and an optional
comment field. A comment line has an asterisk in column 1;
the rest of the line is ignored except for listing purposes.

1-3

A change page heading line has an apostrophe in column 1;
the rest of the Iine becomes the page heading for all

subsequent listing pages.

A label is an ASCII character string that identifies the
locations count of the first statement in the line.
Examples are the name of the entry point for a subroutine
or the symbolic name of a storage location. These and
other common features of the language are described in
detail in Section 2.

The PRIME 200 processes four types of statements, each
with a unique format: instructions, pseudo-operations,
macro calls, and file merging commands. These are
described in detail in Sections 3 through 6, respectively.

1-4

MSHOET DEMD PROGEAM ERAMPLE

CISFLAY A REG TH PAMEL THD

FCIFA DETAH ITHRICATORS COUMT SLOMLY
FrTL CDELIBERATE ERROR LINE
JHE (S
s 0T TSR
AR
FH

Figure 1-1. Example of PRIME 200 Macro
Assembly Language Statements

Symbolic Instructions

The A Register load operation mentioned above can be
represented in the form:

LDA '377

where LDA is the mnemonic of the LDA instruction and

'377 is the octal representation of the memory address
where the data is located. The programmer may also control
the flag and tag hits symbolically, as in:

LDA* '377,1

where the asterisk specifies indirect addressing and the ,1

specifies indexing. After being processed by the assembler

and loader, this statement would be converted into a

hinary instruction word, shown in Figure 1-2. The resulting
word would have an octal value of '144377,

1-6

LDA* '377.1

o

e . g N

v C = —
| | O 011 O 0|0
1 L i

I X |<-c83:-: ——I ~+———ADDRESS

SECTOR BIT
(DETERMINED BY LOADER)

Figure 1-2. Interpretation of
Symbolic Instruction.

1-7

Constants, Literals, Variables, and Expressions

This assembler permits a variety of forms for data
constants, thereby eliminating conversions from decimal
to binary, octal, or hexadecimal. Examples:

1123 1777 11777 Octal
$89AB -$FFFF $-00FF Hexadecimal
1234 -9999 32767 Decimal

The constant forms shown above are all single-precision
(ie. are converted to a single 16-bit data word - 15
magnitude bits plus sign). For decimal numbers, double
precision and floating point quantities may be specified:

1.23BB6 1.23EE2BB6 Fixed Point
Double
Precision

1.23E2 1.1092 Floating Point

Single Precision

1.23EE2 Floating Point
Double Precision

The assembler also accepts ASCII constants:

C'A? (The letter A, left
justified in a 16-bit
word)

C'AB' (The letters A and B

packed into a 16-bit word.)

1-8

Another form of constant with a self-defining symbolic
name is the literal:

= '77 Octal
= §39FB Hexadecimal

= 199 Decimal

C'X' (one character) ASCII

i

C'XY' (two characters)

Variables, also called symbols or symbolic names, may

be assigned to identify memory locations. Symbols are
defined by being used in the label field of a statement,
or by the EQU or SET pseudo-operations. The assembler
accepts alphanumeric symbols of up to 32 characters:

A

ALPHA

ABCDEFGHIJKLMNOPQRSTUVWXYZ123456
Expressions may be formed using constants or variables,

Tinked by 14 different arithmetic, logical and shift
operators:

A+ 3 ALPA* (4 - B) A .LS.(ALPA/S)
A .AND. '3737 BETA .GE.A+$FF

Symbolic Names

Symbolic names may be coined by the programmer and assigned
to memory locations, so that data locations and program
entry points can be specified by self-explanatory codes
rather than numerical values. For example, the load A
instruction could be coded as

LDA* DATA,1
provided the symbol DATA is defined somewhere in the

program as equal to memory location '377. During the first
pass of an assembly operation, the assembler builds a

1-9

symbol table that relates each symbol (also called
variable, or symbolic name) to the location where it
is defined. On the second pass, the numerical value
of each symbol is substituted for the alphanumeric
expression, wherever 1t is used in an address field.

Symbolic names can, in many cases, be modified or
processed by arithmetic operators, as in

LDA DATA-1
LDA DATA*4-1

Pseudo Operations

In addition to instruction statements, the assembly
language provides pseudo operation statements that
give the programmer control of the assembly process
itself and of the loading operation that follows
assembly.,

In the example of Figure 1-1, several pseudo-operations
are used. The program example begins with an ABS,
specifying absolute loading mode. An ORG statement sets
the assembler's location count (discussed later) to
'3000. A NCT statement equates the symbol NDOS to the
octal quantity '30000. The program example ends with a
mandatory END statement. These and many other pseudo-
operations are described in detail in Section 4.

Macro Facility

The macro feature of this assemhler enahles the programmer
to define functions that can bhe expressed in easily
interpreted English (or other) language statements:

TRANSFER DATA T0O DAC

TURN ON VALVE 312
Statements of this sort are made possible by a process
called macro definition. With the aid of the MAC and

ENDM pseudo-operations, a system programmer can create
macro prototypes.

1-10

The TRANSFER statement, above, might be defined by the
following sequence of statements:

TRANSFER MAC TO

LDA <1>
OTA <2>
ENDM

The MAC pseudo-operation introduces the macro definition

by assigning the name TRANSFER to the macro and identifying
the word TO as a dummy word (a word that can be used to
increase the intelligibility of macro calls without

being mistaken for an argument).

Variable fields of the LDA and OTA instructions call for
arguments, symbolized by numerals enclosed within angle
brackets. Values for arguments are supplied by the macro
call statements. For example the statement TRANSFER DATA
to DAC calls for the TRANSFER macro to be assembled, with
the symbol DATA substituted for argument <1> , and the
symbol DAC substituted for argument <2>. The TRANSFER
macro would then be assembled as follows:

After a set of macros has been defined by a system-level
programmer, a specialist in a particular application field
can formulate macro calls in plain language to solve his
application problems, without becoming involved in the
details of assembly language programming. Definition,
listing, and assembly are discussed in detail in Section 5.

1-11

USING THE MACRO ASSEMBLER

The Macro Assembler translates ASCII source files and
produces an object file, for processing by the Linking
Loader, and an optional listing file, to be printed as

a record of the source language statements and the

octal codes to which they have been translated. The

files may be printed or punched on tape during assembly

or they may simply be stored (on disk, for example) until
they are needed. Device options are specified gy register
settings at the start of assembly.

Two-Pass Assembly

The assembler program itself is first loaded into
computer memory. The assembler occupies approximately
4K memory locations; the absolute location in CPU
memory depends on the amount of memory available, and
the type of system (DOS-based, stand-alone, etc.).

To use the assembler, the operator sets up an input
device containing a source program file. Devices to
receive the object files and listing output (optional)
are specified by entries in CPU registers and the
assembler is started.

This two-pass assembler first reads the source file to
locate and assign values to any alphanumeric variables
(symbols) used in instruction or pseudo-operation
variable fields. The source file is then returned to

the beginning and read again. On the second pass, the
assembler substitutes numerical values for all variables
and evaluates expressions, thus converting symbolic
references to 16-bit binary quantities. The assembler
then outputs the object file and a listing, if requested.

Object Output

The object output of the assembler is in a special format
suitable for input to the Linking Loader. Instructions,
data constants, and directives to the Loader are encoded
as blocks of data in various sizes and formats. (For
details, see Appendix F.) When object files are punched
on paper tape, they are in an "invisible'" character
format; none of the frames punched on the tape will cause
printing on an ASR. (This saves paper by eliminating
nonsense printout when the ASR is used as the loading
device.)

1-12

Listing Format

The object file is in an arbitrary binary format that is
meaningful only to the loader, but the optional listing
file pairs an octal representation of the ohject code
with the actual source input statements they represent,
in a format that is meaningful to the programmer.

Figure 1-3 shows a section of a typical assembly listing
and defines the main features. The format is organized
in columns, but when long labels or other free format
features are encountered, extra space is used as required.

Each page of the listing begins with a header provided
by the source statements, and a sequential page number.
The first statement in a program is used as the initial
page header, unless it starts with a quotation mark (").
If column 1 of any statement contains an apostrophe ('),
columns 2-72 of that statement become the title for all
pages that follow until a new title is specified.

Columns 1-4 are reserved for error flags. (See Appendix G.)
Columns 5-9 contain an octal assignment address location
count and columns 11-19 contain the octal ohject code
generated by each statement. Columns 21-26 contain a
decimal line sequence number and columns 28-108 contain

the source statement (ASCII Image) truncated if necessary
depending on printer limitations.

HSHOET DEMD FROGRAM EXAMPLE
-

e

R

Fi TR
JrE H CATA IMDICATORS

B PR EL TEERATE ERROR
e DELIBERATE ERROR

AL
FET L.
JdHF
oS Dot
BRI

WTTH FRRETRS

Figure 1

]

CWERT O L BEL

Example of Assembly Listing

1-14

DISPFLAY A REG IH FAREL IHD

Location Count

The assembler assigns a sequential location count to each
element in the object code that will be converted to a

CPU memory location. (Instruction statements always
generate one line of code; data defining pseudo-operations
may generate one or more lines, depending on the constant
format.)

The starting value for the location count is zero, unless
another origin is specified by the ORG pseudo-operation.
The assembler normally increments the location count by 1
after each entry but a new count can be established by
another ORG statement at any point in a program. In the
example of Figure 1-3, an ORG statement sets the origin
to '3000 and the location count is stepped sequentially
from that value.

Figure 1-3 also shows how symbols are assigned numerical
values in relation to location counts. The symbol A for
example, is equated to '3000 when it is used in the 1label
field of the IRS instruction in that location.

The address field of the JMP instruction in location 3005
contains a reference to the symbol A. Notice that the JMP
instruction is assembled with the assigned value of A
('3004) in its address field.

Symbol Cross Reference Listing

At the end of the assembly listing appears a cross-
reference listing of each symbol's name (in alphabetical
order), the symbol's assignment address or value, and a
list of all reference to that symbol. Each reference is
identified by a 4-digit decimal line number.

The information necessary for the cross-reference listing
is stored in the symbol table. If, during assembly, the
symbol table becomes full, cross-reference information is
sacrificed in order for assembly to continue. If this
occurs, the cross-reference listing will contain only

the alphabetic symbol names and their assignment addresses.

If listing is inhibited (by NLST pseudo-operation), the
cross reference listing is not listed. The same listing
device is used for the cross-reference as is used for the
Pass 2 assembly listing. '

The last line of the listing specifies the version of the
assembler and the number of lines containing error flags.

1-15

ASSEMBLER/LOADER INTERACTION

The Linking Loader is required to interpret the object

code blocks, form 16-bit binary instruct}on and dapa

codes, and load them in the proper locations of main

memory. The actual location in which a word is loaded

depends on whether absolute (ABS) or relocatable (REL)

mode has been specified. (ABS is the assembler's ‘

default mode.) In absolute mode, the assembler-ass;gned
location count becomes the actual instruction location.

I1n relocatable mode, an address offset, entered into a register
‘at the start mode of loading, is added to the location count.
The F32R and E64R addressing modes further modify this procedure.

Two or more relocatable programs can be packed together anywhere
in memory without wasted space, even though the final locations
are unknown at the time of programming. The "linking" feature
of the assembler-loader combination permits main programs and
subroutines to share common data locations and entry points.

Desectorizing and Address Resolution

In assembly language there is no way to specify that the
sector bit of memory reference instructions is to be set,
except to count instructions and data locations and
deliberately keep track of the current sector. In a
program of any length, bookkeeping of this type would
become tedious. Instead, the assembler and loader take
over this function. They jointly keep track of sector
information and set or clear the sector bit of each memory
instruction at the time it is loaded.

The binary object code output of the assembler includes

a 14-bit or 15-bit address for each memory reference
instruction, depending on whether or not extended addressing
is in effect. (See EXD pseudo-operation).

In 16¥ sectored addressinoe mode (E16S). the assembler
presents a 14-bit binary address to the loader, along

with an indirect bit and indexing bit. As the loader
processes the instruction, it compares the instruction's
14-bit address with the current location count. If the
instruction and the address are in the same sector, the
loader truncates the address to 9 bits, loads it into
the instruction address field (bits 8-16) and sets the
instruction's sector bit (bit 7).

However, if the instruction's 14-bit address specifies

a different sector than the one containing the instruction,
the loader assigns a location in a table of cross-sector
indirect words and loads the 14-bit address (plus

indirect and indexing bits) in that location. The

indirect bit and address field of the instruction word
itself are set to point to the indirect word. Since

the indexing bit is moved to the indirect location, the
index bit of the instruction itself is cleared.

Ordinarily, the table of indirect words begins at location
1100 of Sector zero and grows upward as required. However,
another base sector can be specified by the SETB pseudo-
operation, and the starting location for the links can

be altered by a register setting at the time of loading.

Extended Addressing Mode

I1f extended addressing mode has been set up by the EXD
pseudo-operation, the assembler presents 15-bit addresses
to the loader. (Bit 2 of the address is interpreted as

a magnitude bit rather than the index bit.) The check for
cross-sector references is made as usual, and an indirect
1ink is formed if necessary. The full 15-bit address

is stored in a resulting indirect link location (indexing
cannot be specified).

It is important to specify that code be loaded in the
mode in which it is to execute. If the source program
contains a EXD pseudo-operation, extended addressing mode
must also be set up for the CPU by an E32S or E3ZR
instruction.

Loading Subroutines

If the main program calls for external subroutines, the
loader halts and waits for the user to assign the library
or other files containing subroutines to the input device
already selected. The loader then identifies and loads
every subroutine called by the main program. Subroutines
are desectorized and linked together in consecutive
memory locations unless new ORG values are assigned.

Memory Map

At any time during loading of a series of programs and
subroutines, the loader can be directed to print a
memory map. The map shows the locations occupied by

the program in memory, specifies locations for common
storage, shows subroutine entry locations, and identifies
subroutines that have been called but are not yet loaded.
A memory map for the program example discussed earlier
appears in Figure 1-4,

LOADING AND OPERATING PROCEDURES

Loading and operating procedures for the Macro Assembler
vary according to the type of installation, memory size,
and supporting software. Appropriate procedures are
available in one of the following documents:

PRIME 200 Operator's Guide

PRIME 200 DOS Operator's Guide

¥ TART 01004 *HIldn JoJl4 *NAMES 200385 *CSUMd 28777
*PBRK 03014 *BASe V0100 LIST Juuul

Figure 1-4. Example of Memory Map

1-19

SECTION 2
GENERAL ASSEMBLY LANGUAGE RULES
The following language features are common to all types of

statements. Features that are peculiar to instruction

statements, pseudo-operation statements, and macro calls
are defined in later Sections.

FREE-FORM INPUT TEXT

Input text for the PRIME 200 assembler may be prepared in

a number of ways. Perhaps the most common is text prepared

at a teleprinter with the aid of the PRIME 200 text editor.
The resulting source program exists as a file in memory OT

on the disk, and can be punched on paper tape in ASCII

format. For text prepared in this way, the basic unit of
information is a line, as delimited by carriage return-line
feed (CRLF) characters. Because of the mechanical limitations
of most teleprinter devices, lines are usually limited to

72 or 75 characters.

Input text may also be coded by hand on paper forms which
are then keypunched to produce unit record cards. Each
card is equivalent to one teleprinter line, but may contain
up to 80 characters.

Line Format

PRIME-200 assembler input lines consist of labels, statements,
and comments strung together in a free (column independent)
format without regard for tabulation positions or arbitrary
column boundaries. The assembler recognizes statements within
a line, and subfields within statements, by delimiters
consisting of spaces, colons, commas, backslash (tab character),
and semicolons. (Labels and comments are optional.) For
examples see Figure 2-1.

Labels: Labels are used to assign mnemonic codes to memory
jocations - for example, the name of a subroutine entry
location or the symbolic address of a constant or storage

cell. Labels are optional. If a line includes a label,

the first character of the label must be in column 1 of the
line. (Otherwise column 1 must be blank.) Labels must
conform to the character set and size prescribed for variables.

2-1

7/

A
(“/1 1\
I\ 7/ I
SINGLE ' Ay '
STATEMENT | | LABEL /| STATEMENT ,\\ COMMENTS
LINE ! L -
A I
\ / COLON \
N ' L\
I
MULTIPLE | ! -
STATEMENTS | (LABEL STATEMENT | : | STATEMENT COMMENTS
PERLINE | ! |
:ASTERISK | !
| ! |
! |
COMMENT LINE | % | COMMENTS :
|
| | |
(. ! : SEMICOLON
N ‘ '
LABEL STATEMENT] ;
MULTIPLE
LINES PER '
STATEMENT
STATEMENT CONTINUED
APOSTROPHE
CHANGE

PAPER HEADING
LINE

OPTIONAL
A

\

| ORdMORE SPACES

2 SPACES OR COL.72

NEW PAGE HEADING TEXT

Figure 2-1.

Source Input Line Formats

Statements: The PRIME 200 assembler accepts four types of
statements: symbolic instructions, pseudo-operations, macro
calls and commands to the RDALN source file update program.
Each of these has a different sub-field format, and 1is
described in a later section of this manual.

If the line does not have a label, the first statement begins
with column 2 or the first non-space character. Otherwise
the statement begins with the first non-space character
following the label.

A statement is terminated by two spaces or column 73,
whichever comes first. Subsequent characters are assumed
to be comments and are ignored except for listing.

Multiple Statements per Line: Statements can be packed two

or more per line, separated by colons (:). The first

non-space character following the colon is processed as

the first character of the next statement. The last

statement in the line is terminated by two spaces or column 73,
and the rest of the line treated as comments.

If the line begins with a label, the label is attached to
the first statement during assembly.

Continued Statements: The last statement in a line may be
Interrupted by a semicolon (;) and continued on the next line.
The rest of the line following the semicolon is treated as
comments. Processing of the statement continues with the

first non-space character in the following line. Semicolons
occurring within comments are not interpreted as a continuation
request.

Comments: All text following column 72, or following a
statement and two or more spaces, is treated as comments,
and ignored except for listing. Comments can contain all
printing ASCII characters.

Comment Lines: If column 1 of a line contains an asterisk
(*) the rest of the line is treated as comments. (Comment
lines can be used to continue comments begun in the preceding
statement line.)

Change Page Heading Lines: A line that contains an apostrophe
(") in column 1 iIs assumed to contain the text of all
subsequent page titles.

2-3

The following assembl

Examﬁles:
of the free-form input features.

B
p]

,.,
ST
P O

=

-
PO

VIO of o

SETOOF I
FIE

LA 1

2-4

FREE

WL T TFLE

e DEFC TEEC CRA S

y listing illustrates many

LR FALFA

ENV SR Z RS TR

FORPET ARG LTHE CORT THUAT DO

FILF L

COPMEMT
L
COMPFERT

THETRLC

TITOMS PER LIME
D = =TH i

TR

CONSTANTS, VARIABLES AND EXPRESSIONS

Constants

Symbolic names and address expressions used within the
assembler program statements may contain decimal, octal,
hexadecimal or ASCII constants.

Magnitudes: Numerical constants used in expressions are
Timited to the magnitudes that can be represented by the
single-precision (16-bit) PRIME 200 binary arithmetic word:

Type Max. Negative Max. Positive
Decimal -32768 +32767
Octal -'100000 +1777777
Hexadecimal 54000 +$ 7FFF

Leading zeroes can be omitted. If the sign is omitted, the
quantity is assumed to be positive.

Double precision and floating point constants may be set
up using the data defining pseudo-operations described in
Section 4. However, these constants cannot be used within
expressions.

Decimal Constants: All numerical quantities are assumed to
be decimal (base 10) unless they are tagged with the octal,
hexadecimal or ASCII designator symbols shown below.

Octal Constants: Octal constants (base 8) are identified
by an apostrophe or O designator:

1123 or 0'123" or 0'123
'+123 or 0'+123' or 0'+123
'-123 or 0-123" or 0'-123
Note that the sign follows the octal désignator. In

expressions, however, theminus operator must precede the
designator: SYMBOL-'123 is legal, but SYMBOL+'-123 is not.

Hexadecimal Constants: Hexadecimal constants (base 16) are
identified by a dollar sign or X designation:

$30BF or X'30BF'
$-30BF or X'-30BF'

2-5

Here also the sign follows the designator, but in expressions
the minus operator must precede the designator: SYMBOL-$30BF
is legal, but SYMBOL+$-30BF is not.

The hexadecimal digit values are:

Hexadecimal Digit Decimal Value

0

o]

0-9
10
11
12
13
14
15

THmOoO W >

ASCIT Constants: One or two eight-bit ASCII character
codes can be represented by the following notation:

C'A" Represents the ASCII code for the
character A, left-justified in a 16-bit

field with a trailing space character.

C'AZ' Represents the codes for the ASCII
characters A and Z, packed into a 16-bit
field with A left justified and Z
occupying the rightmost 8 bits.

Any printing character of the ASCII character set can be
used.

Examples:

i

-,
T
i
-
<

LA P

U

oy

-

it i
il 1

- d

-

L

-

2-6

Variables

Variables are alphanumeric strings, often called 'symbols"
or "symbolic names'", that are equated to numerical values
in various ways. If a variable is used as the label of a
statement, it is assigned the value of the location count
for that statement. Variables may also be defined by the
SET, EQU and DAC pseudo-operations described in Section 4.

Variables can be from 1 to 32 characters long. The first
character must be a letter (A-Z), and the remaining characters
may be letters, numerals (0-9) or the dollar sign ($).

Variables containing more than 32 characters

are allowed but only the first 32 characters are recognized
by the assembler. Variable names must be unique (cannot be
defined more than once).

Examples: The following examples show some of the ways a
variable "VARI35§'" can be used.

(21 ey L. WHRTIEEE
e LD WHR T ESEFT TV
WARTESE SET Tl

R JEF WRIR L EEE T

2-7

Expressions

Expressions consist of constants or variables joined by
operators. All variables within an expression must be
defined as single precision values or addresses. Absolute,
relative and external values cannot be used in the same
expression.

Examples:

R A A s LB

DRl TR L N SR R RS I -
STH TR N T ok S o R 1

Co A

Operators: The PRIME 200 assembler is able to process the
following arithmetic, logical, relational and shift operators
while evaluating expressions in instruction address fields,
arguments in macro calls, etc.

* Arithmetic Multiply
/ Arithmetic Divide
+ Arithmetic Add

- Arithmetic Subtract
.OR. Logical OR (16 bits)
. XOR. Logical XOR (16 bits)

.AND. Logical AND (16 bits)

.EQ. Relational EQ (resulting in 0 or 1)
.NE. Relational NE (resulting in 0 or 1)
.GT. Relational GT (resulting in 0 or 1)
.LT. Relational LT

.GE. Relational GE (resulting in 0 or 1)
.LE. Relational LE (resulting in 0 or 1)
.RS. Logical Right Shift (16 bits)

.LS. Logical Left Shift (16 bits)

2-8

Space Conventions: Operators may be followed by a single
space (optional). The logical, relational and shift operators
must be preceded with a space so that the period beginning
these symbols will not be interpreted as a decimal point.

Operator Priority: In expressions with more than one operator,
the order of evaluation is governed by operator priority.

The operator with the highest priority is performed first.

In cases of equal priority, the evaluation proceeds from

left to right. Parentheses may be used to alter the natural
order of evaluation. '

Priority Operator(s)
Highest * /
+ -
.RS. .LS.
.GT. .GE. .EQ. .NE. .LE. .LT.
.AND.
.OR.
Lowest . XOR.

Relational Operators: These are most often used in the
argument field of IF pseudo-operations. However they may
be used in other expressions. Examples of the correct
syntax are:

ST ORFLATIONAEL OPERATORS

PETEOS 0BG S S ER Al B ER D

CETAEOOENE. S, S ME A0 & ME T

DETA ® GT % 5 O GT. &0 & GT 5

o
=
T
n
i
—
0
il
i
—
24
a)

S LT 5

CETAR S . GE. S5 GE. A, o GE S

R CAHTA S LE S 5 0 LE & CLE 5

ad]

Shift Operators: The shift operators perform a logical
right or left shift of an expression, using the syntax:

Argument LS. Shift Count Expression

Expression
.RS.

where the shift count expression has a numerical value from
1 to 16,

Examples:

A 4
e e TEST SHIFT OFERATOR

P
2!

LETH T d@d | RS %0 C91BLe LS T, C40m

R e B O TR N = 1 R I - -

2-10

Logical Operators: Examples are shown below.

NI

AN
s

FT F

Sign Conventions: In expressions containing the + and -
operators, integer constants may be signed:

Fusld L Lafy EILCH-$2E
LI FILCH %
LD FILFHF--
LI FILFHF -+

FILCH LEC G

FiL FHFY DETR S

2-12

SECTION 3

INSTRUCTION STATEMENTS

This section defines the form of all PRIME 200 instruction
statements, shows how instructions are processed by the
assembler and loader, and covers syntax elements peculiar
to instruction statements.

Table 3-1 lists the instruction mnemonics acceptable to the
assembler. Note that some instructions have two mnemonics;
those in parentheses are accepted for compatibility with
other assemblers. Mnemonics in Table 3-1 are in order by
functional type. The instructions are sorted by op-code

in Appendix A, by class in Appendix B, and by mnemonic in
Appendix C.

INSTRUCTION STATEMENT GENERAL FORMAT

The essential elements of an instruction statement are an
operation field and a variable field, separated by spaces,

a comma, or a backslash tab symbol (\), as shown in

Figure 3-1. The content of each field depends on the type

of instruction being processed. Memory reference instructions
have different requirements than I/0, shift, bit reference,

or generic instructions. Label and comment fields are
optional.

Label
ff a label is nresent. it is assigned the current location

count and entered in the symbol table.

Operation Field

The operation field must contain one of the PRIME 200
instruction mnemonics listed in Table 3-1. An asterisk,
for indirect addressing, applies to memory reference
instructions only. Parentheses are ignored:

LA 1
CLDFHE 18
LD e 16
DA 18,1

Table 3-1. Summary of PRIME 200
Instruction Codes

) ASS DR CDDE FREMONTT S DEFTHTITION

ot o e s e trsns sre g o 1ot 1ot e e s e e o o mint oot e

FFGISTER OFERATE

CLEAR #

CLERAR B

CLERAR LLOMG OF FMRD B

LOAD A

STORE A

LOAD THDE - SSEMBLER SETS THDES BITH
STORE THDE= CASSEFMBLER CLEARS THDES BIT
THTERCHAMGE MEMORY AND H

ITHTERCHAMNGE M AMND B

TRAMSFER B TD B AMD CLERRE H

TRAMSFER B TO R AND CLEAR B

COMPFLUTE EFFECTIVE ARDRESS

5
1
I3
iR
Ml
feife
Piife
Q15
i
i
I
X1

ARITHMETIC
ik (5 A ADD MEMOEY T A
rp 7 b M SLEBTRACT MEMORY FROM A
;i 141205 FOE CRLAD RDDe ONE T A
i LediaEma ALy TW T A
0 'Jﬂllﬂ CSAAD SLBTEACT ONE FROM A
(K] SUIBTEACT THWO FROM A
AR C--B1T TD R
S S IGH TO C=-RIT. SET STGH OF A FLLS
SET SIGH OF A FLLS
SET O OSTGH OF A MINLS
CHAMGE STGH OF A
TS COMPLEFENT H
FOZITION FOR INTEGER MULTIFLY
FOSITION FOoR ITHNTEGER DIVIDE
MLILTIFLY
[P IWIDE

L
Li
i
{3
i
¥
i
RIS MR
Fik 1+

Table 3-1 (Cont)

RI DOUBLE FRECISION LDOAD

[o=T DOUBLE PRECTISION STORE

IIE 1N DOUEBLE FPRECTSION RADD

I DOUBLE FPRECISION SLUBTRACT

ik
Mk
ik e
FiF B

=
Al
3 S

L)

,.

THFUTATUTRUT

CIITEUT COMTRIOL FLLSE

SEIFOIF SET

IMPLIT TO A

CIITFUT FROM A

IMFLIT SERTAL THTERFACE TO A
DOLITPLUT SERIAL IHMTERFACE FROM A
SET THTERRUFPT MAZE

(RN
10
e
11
i

(K1

T

CORTROL
i HEREIERED HL.T HAL.T
i : HOF MC OFERAT IO
] B SET C-EIT
FiCE RESET C-BIT
Sk EMTER SINGLE FRECISTON MODE
DEL EMTER DOUBLE FPRECTIZION MODE
FIM EMTER MACHINE CHECE MODE
LM LEAYE MACHIMNE CHECK MODE
R CcRMPY RESET HHFHINE CHECK
I“1I'l].1 EleSolsAs EMTER 18K SECTOR ADDRESSIHNG MODE
B E ExFAs EMTER CSECTOR ADRDREESSING MODE
A ELE ! EMTER * RELATIVE ADRDRESSIMG MODE
: CLFERW TS0R CARLL
WTF VERIFY

¥
3
K]
i
i3
5]
I3
X
X
K1
[

1_‘ :"l

]

i "'(i_,_i fax] izl o

i—k
iﬁﬂlm

o]

[axiEexi
T
D ot
Ty T
Cends’ el
t."s _ﬁ
B
i
-+

>

3-3

Table 3-1 (Cont)

LG TIZAL
FiF B FMNA AMC T A
Fl= 5 B EFRA E-CLUSIVE OFR TO A
£ A A COMPLEMERNT A
i B S LEE COMWERT A=0 TO TRUE
(i 14H4lh LHE COMVERT 7 CR=G2 TO TRUE
fi AR ESE A LLE COMYERT AC=0 TO TRLUE
i3 1l LGE COMWERT AZ=0 T TRLUE
A 1 Had1E LLT COMYERT RSO TO TRLUE
3 148415 LT COMWYERT AZD TO TRUE

{i EME EMABRLE INTERRLIFT

8] THH THHIEIT IMTERRUFT

i FoTm EMTER STANDARD THTERRLUFT MODE

[EXIM EMTER WECTORED INTERRUFT HMODE

K CHT CLEAR ACTIVE INMTERRUFT

ii T HE TERAMNZFER CIMFUT» STATUS KEYS TO A
] CTE TEAMSFER COUTFUT» A TO STATLS EEYS

=H (S AL CLGL

.H SR TEE ARL. CLIGR D

4 LeahdM FILF

M AR MM ARF

SH H."I'-IH AL LEFT SHIFT

“H L' AT ARE FRIGHT SHIFT

“H B 1 aMN Lt LOMG LEFT LOGTICAL
t' 1_1L1NN L.EL. LOMG RIGHT LOGICAL

LEFT LOGICAL
FIGHT LOGICAL
LEFT ROTATE
FIGHT ROTATE

s
"'l
b (0 ¢ e 2 0 1 R 1]

“H 1L EMM L.
=H 111.._NN L.
=H H. 1HM L

LOMG LEFT ROTATE
LONG RIGHT ROTATE
LOMG LEFT SHIFT

l.
;:
l.:

nT‘T_'l

3-4

(K]
Ui
i
K]
i

E1ed LM

141348
I I 1
I R
1AL EEE
I R

B
16
12
1468114
14E21A

1a1aal

188Eal

I e e s
1LRRBZEE

Table 3-1 (Cont)

LR
FFI

Sl

EYTE MAMIFULAT IO

T THTERTHARGE BYTES
T IMTERCHAMGE BYTES OF A AWD CLEAR LEFT BYTE
IMTERCHAMGE EBYTES OF A AND CLEAR RIGHT EYTE

LONG RIGHT SHIFT
NORMALIZE
TRAMSFER SHIFT COUMTER TO A

oF A

AL CLEARR LEFT BYTE OF A
(1 CLEAR RIGHT BYTE 0OF A

TRAMSFER FAND SEIF

LIHCOWE T T TOMAL,

JLIMF

JUMETOER + 1 AMD
LHCOMD T TIOMNAL. SKIF
THCREMENT. REFLACE
THCREMEMT, REFLACE

STORE P IH ER

FMC Sk
FrE

MEMORY
THDE.

IF

SEIF

COMFARE
COMPARRE
CEGE Y SEIR DM
CSLT e SEIF O
CSEGRDY SEIF DM
CSME Y SEIF DM
SEIF DM
SEIFR O
SEIF DN
t SEIFP OM

I I RS

I s.T_iii’

S SEIF M
SAREM SEIF M
R I SEIF O

SR SEIF O
SHMOSCERS Y SEIFP OM
SHMCRCSPHY SEIF 0N

DECEEMEMNT

T I T T LTI DL DD

C-BIT
C-BIT
MACHIMNE CHECE
MACHINE CHECE

FEFLACE THDEX AMD SEIF

MITH MEMORY
WITH ZERD
FLLIS

MIMLIS

ZERD

HOT ZERD
GREATER THAKM
LEZS THRHN OF
BIT 1& ZERD
EIT 1& ONE
EIT W SET
EIT M RESET
SET
REZET

FERD
EGJAL.

SET
REZET

TO ZERO

Table 3-1 (Cont)

I LELAZE SEIF OH ANY OF SEMSE SHWITCHES 1-4 SET
i 1EEA 3 SEIF QM HOME OF SEMSE SWITCOHES 1-4 SET
% SEIFR OM SERSE SHITOH NOSET
1

ik
SEH SEIF OW SERSE SWITCH W RESET

Eife
o

MOTES

b DOLBLE PRECISTION MODE MUST BE IM EFFECT CSEE GEL. SGL

w4 ESECUTED BY TRAF TO SLERDLTIMHE

ALTERMATE FHEMOMIC FOR COMPATIBILITY WITH OTHER RASIEMBELERS

CLASS CODES:

ER — EIT REFEREMCE

G - GEMERIC

In IMFUT o QUTRUT
ik MEMORY REFEREHNCE
ZH ~ ZSHIFT

1

3-6

Variable Field

All except the generic instructions require an entry in the
variable field that can be evaluated as a 16-bit single-
precision quantity. The types of expression that can be
used are summarized in Figure 3-1. If the expression is
followed by ",1" (memory reference instructions only) the
index bit is set.

For memory reference instructions, the variable field,
indirect address bit, and indexing bit, interact to form the
instruction's effective address.

Input/Output instructions interpret the variable field as
the device code and function code of an I/0 device
controller.

For shift instructions, the variable field specifies the
number of bit positions the A and B registers are to be
shifted.

For bit reference instructions, the variable field specifies
the panel sense switch (1-16) to be tested.

Generic instructions ignore the variable field.

Asterisk (Current Location): An asterisk in the variable
field represents the current value of the assembler location
counter. The asterisk is used in address expressions that
describe a displacement from the current location:

COUNT IRS ALPHA
JMP *-1

JMP COUNT

Both JMP instructions point to the same location, but the
one using the asterisk does so without using a symbolic
name.

Double Asterisk (Initially Zero): A double asterisk in

the variable field causes the assembler to load zeroes in
the. 9-bit address field and the sector bit. (Indexing and
indirect addressing are normal.) This convention is used
when the desired location is to be developed or modified by
other instructions or is not known at the time of assembly.
For example:

3-7

/

BACKSLASH (TAB)
SPACES OR COMMA

\

LABEL OPERATION FIELD VARIABLE FIELD
OPTIONAL
(FIRST STATEMENT

IN A LINE ONLY)

' N\
MNEMONIC »* EXPRESSION N
ASTERISK SPECIFIES ,| SPECIFIES
INDIRECT ADDRESSING INDEXING
(NOTE 2) (NOTE 2)
‘30)
' 40 CONSTANTS
$20
NOTES EXAMPLE
I. IF MORE THAN 10 SPACES " SYMBOLIC NAMES:
FOLLOW THE OPERATION ALPHA VARIABLES OR
FIELD,THE ASSEMBLER SENDSTYP«CHAR ENTRY POINTS
ASSUMES THERE IS NO
g o
EXAMPLE*2=]1+ALPHA EXPRESSIONS
THE LINE AS COMMENTS. EXAMPLE LS. 5
2. OPTIONAL. APPLIES
MY a1
: =*37 LITERALS
=$SAF
=AXY
*+3 RELATIVE TO
*x='77 CURRENT LOCATION
*+ALPHA

Figure 3-1.

3

! \
NOTE |
(— N

} TO BE ASSIGNED
%

General Format of Instruction Statements

-8

Equals Sign (Literals): A literal is a constant preceded
by an equals sign, as in:

Pl L L =] TR

The assembler associates the numerical value of each literal
with the symbol used ('100 in this case) and reserves a
storage location for a constant of that value. Any later
reference to a literal of the same value addresses the same

reserved location, even if a different constant format is
used:

LEafA i i) CHE D E D T AL S
LT = ed CREC T RIEL

Literals are self-defining. The name of the literal
identifies the values of the constant to anyone reading the
listing, whereas names assigned to constant locations by
SET or similar pseudo-operations are meaningful only to
the original programmer:

K100 SET '100
LDA K100+3

Actual locations containing literals are not assigned until
the assembler reaches a FIN or END pseudo-operation. All
literals assigned up to that point are then assigned
sequential locations. On the final assembly pass, the
address fields of statements that reference the literals
are filled with the appropriate locations:

e TEST CF LITERALS FAND FIH PSEURO-OF
LLoF =L
A = LA
STH m LA
ETM pUMF LITERALS HERE

R LD =] GEMERATE MEM LITERA.
O AR, 0D ==] ERE

", STH = L EE

e 1 e FIN

e L.LF =

515 AL =l L

RS =TH = LS

)
i,

BEZASd CEETERD Erdls
BERSG BERd a5
5 e 2 Lt AR

ASCIT Literals: Literals can be set to equal the binary
codes of one or two ASCII characters. The form = Cry!

a character (X, for example) into the 1left-hand byte
(bits 1-8), and loads a space character into bits 9-16:

R L.LF =0T

loads
EEEDE OGS I ASCIT DIGIT . FACKED LEFT

The form =AXY is loaded as two characters (X and Y, for

example), with X in the left-hand byte (bits 1-8) and Y in
the right-hand byte (bits 9-16):

TR BT s B v 1 Wl I

LT

= D g FSCIT DIGITS ey
(For ASCIT character codes see Appendix E.)

5G9
15433)

3-10

MEMORY REFERENCE INSTRUCTIONS

Memory reference instructions are assembled as shown in
Figure 3-2 and the following listing examples.

CEALSED e EMORY REFEREHCTMG INSTRUCT IO
CELEE D ALFA TP R 1%
CILET L.k AL.FHA
LR FHMAE ALFA
CELEAY BETA OSTH FALFHE. A
ERF+ ALFA. 1
FE L ALFH
nLE BETH
J9T R

IR EETH
EETH
BETH
GAMA
THA GiErA
MFY <

Lot EETH

e EETH

-
T T

-
'
T

X BN

i,

S Y
JACLER SR
¥

oot
¥

= T

.,_
s

[D)

G

s
e

£ N
LRV I % I 5)

,.
)

-

]

oy

L L BETH
Lol BETH
DT BETH
RIS EETH
[T S I P

P
il g5

!

oy
L

I

.,_..,..
S8 1
e

3-11

SOURCE STATEMENT ERA% ALPA,

I ‘ rj\ﬁ :;!A='I2lb

-_l..

11 o0 o0
——
OCTAL PART 1]
OF ASSEMBLY 012211 65, 81215 (©160)
LISTING == |
ASSUMES LOAD MODE
IS ABS, ALPA IS IN
SAME SECTOR AS
INSTRUCTION
! ! l
INSTRUCTION ' s 16
woroFORMED |t l1 o 1o 1 1]o 1 olo o 11 |
BY LOADER L 1 L 1 L 1] 1
|\ J |\
‘ I X ~— s ~—
oP ADDR

Figure 3-2. Assembly and Loading of
Memory Reference Instruction

3-12

Operation Field

Mnemonic: The operation field must include one of the PRIME 200
memory reference instruction mnemonics shown above and
listed in Table 3-1.

Asterisk (Indirect Addressing): An asterisk following the
mnemonic specifies that the instruction word's indirect
address bit is to be set.

Triple Asterisk (Dummy Instruction): A triple asterisk in
place of an instruction mnemonic is a pseudo-operation

code that causes the assembler to form a memory reference
instruction with an op-code of zero. Another asterisk may
be added to specify indirect addressing. The variable field
of such a statement is treated like any other memory
reference instruction:

X

-,
PRtLER

o,

e e AT TP B T PR
w1
wobw LB
i A6
& g

P
=

(E15
i
ETh)
155

it

T
"
TP it o
L

Do

DA R I
Y T

T O
[5]

-,

L2

-
oS
B

ol
il

Variable Field

The variable field of a memory reference instruction contains
an address expression (symbolic address) and an optional
indexing symbol (,1).

Symbolic Addresses: Addresses are specified by any constant,
variable, literal, or expression that can be evaluated as

a single-precision 16-bit number. The sign (bit 1) 1is
disregarded, and the magnitude bits (2-16) are interpreted

as a memory location in the range from 0 to 32,767.

Addresses may be processed further by the loader if
relocatable load mode is specified by the REL pseudo-
operation. After loading, the way the CPU interprets the
address depends on the addressing mode, controlled by E16S,
E32S, and E32R instructions.

3-13

Indexing (,1): Indexing is specified by a '",1" following the
address expression (optional). The form ",0" is interpreted
as non-indexing. Therefore the 1 or 0 can be replaced by

an expression using relational operators that returns a
value of 0 or 1. For example in the statement

CeEPELLE DA ALFHA TEST B 5
= wE T 5

indexing results because the variable TEST equals 5 at the

time of assembly. This feature would be useful mainly tor
conditional assembly operations.

For the LDX command, the assembler set the index bit, and
for STX, the assembler clears the index bit. Indexing
cannot be specified in these instructions.

INPUT/OUTPUT INSTRUCTIONS

Input/Output instructions are assembled in the form shown
in Figure 3-3. Label and comment processing is normal.

Input/Output instructions are identified by a 6-bit operation
code that occupies the indirect bit and indexing bit positions.
Therefore, indexing and indirect addressing are not permitted.

The variable field must contain a four-bit function code
concatenated with six-bit device address code. The resulting
10-bit code is usually specified in octal notation, as in
Appendix D, but any kind of constant, variable, or expression
is acceptable if it can be converted into a meaningful

10-bit code.

Examples:

CELAE D e T THSTRIIGT TOMS
53 s N I TR
& ok 2 181
x| LA 1EE
5 CRIL el THA L
=] O 5 e N DOTA TLEE
O 5 I TR

3-14

SOURCE STATEMENT OTA '123

OCTAL PART

OF ASSEMBLY

LISTING

INSTRUCTION
WORD FORMED
B8Y LOADER

01210 170123 (wl45)

it + 1o o ojJo O t]J]Oo I OO0 I 1

1 | A A 1 'l A | A i

FUNCTION DEVICE
- OP CODE '{‘ CODE ™™ ADDRESS

Figure 3-3. Assembly and Loading of
Input/Output Instruction

3-15

SHIFT INSTRUCTIONS

Shift instructions are assembled in the form shown in
Figure 3-4. Label and comment processing is normal.

Shift instructions are identified by a 10-bit operation code
that occupies the indirect bit and indexing bit positions.
Therefore, indexing and indirect addressing are not permitted.

The variable field must contain an expression that can be
evaluated as a positive number representing the number

of shifts to be executed. (The assembler forms the 2's
complement of the quantity before setting it into bit
position 11-16 of the instruction word supplied to the loader.
Any variables in the expression must be defined numerically
by EQU or SET pseudo-operations (Section 4).

Examples:

o SHTFT THSTRLCT IONS
SR EMTE LGL k3
SRS FiL.L. %)
335 s 1
s B s s FREF &
SRS .Gk =
(ERIME HEL. I
NI AHL= B
Bl 7 AL.F b
5 I L.FL.)
#1177 LES v
el et] L.EF R
(5 LLL o
15 Ll.= NS
(5N LLFE 3.

3-16

SOURCE STATEMENT LRR

2s
COMPLEMENT

1l

OCTAL PART
OF ASSEMBLY 01200t 004D270 (V135)
LISTING —-—r—-
v
r— e N
| 16
INSTRUCTION
WORD FORMED o|t O O|]O O O}O IO O O
BY LOADER 1 1 L A A A 'y A
- NO OF SHIFTS
OP CODE IN 2's COMPL
Figure 3-4. Assembly and Loading of

Shift Instructions

3-17

BIT REFERENCE INSTRUCTIONS

Bit reference instructions test the condition of the panel
sense switches; they are assembled as shown in Figure 3-5,
Label and comment processing is normal.

Bit reference instructions are identified by a 12-bit
operation code that occupies the indirect and indexing bit
positions. Therefore these operations are not permitted.

The variable field must contain an expression that can be
evaluated as a positive number between 1 and 16 decimal.
The number becomes the code that selects the sense switch
to be tested. Any variables in the expression must be
defined numerically by EQU or SET pseudo-operations
(Section 4).

Examples:

L =BT REFEREMCE ITHSTRIICT IONS,
K 1E RS LN 1
{5l 16 RN Y =
SN 1Er CEL S SRS 15
K, 1EE LT SHE 16

3-18

SOURCE STATEMENT SAR
|]
o U AL
r N N\
!l 0 0 0 0 0 O O [[
OCTAL PART
OF ASSEMBLY 01214: 100277
LISTING -_
f| | N\
INSTRUCTION
WORD FORMED I1]0 0 0ojJO O O (N T I R
BY LOADER — 1L 4 SE&SEJ .
= OP CODE SWITCH
CODE
'00=SWITCH |
'1'7 =SWITCH 16
Figure 3-5. Assembly and Loading of

Bit Reference Instructions

3-19

GENERIC INSTRUCTIONS

Generic instructions (Figure 3-6) are fully defined by their
operation codes and do not require operands, addresses, or
other arguments in the variable field. The variable field
must be null. Labels and comments are handled normally.

Examples:

e GEPE R T TS TRLICT L0RS
S TRT LT
” 17 F:L'

-1
Ty
k!
T
L

X
]

-
"
P
—

i

Tp T

&8

Fecie
[RR]
Ry
X
3]

i
D
=,
=

T

¢

e
)
Ty
T T

ot

—
i ~.I
Pt i

Sl

PR
!
pesy

K

Pt
Ea

P
i
T

-
o
R
!

THE

KX
"t

i
1

fx]
D Iy

LFrd
EFrT
qa BT
AT AL
EME

K T

CHY

Eoim
EW TR
Lo P
KIS B

-
i
D S
o -
PR

i
£t
-t
.
-

s 4T
[

-

|

[
LA
ﬂ&#i’aj-i'-#-."—

.,_

L
-~
L

UL iy
Lt ikt
=

R "

Rt)

NECEALY

-
iogd inl i
s

D]
]

o

= T

VD
T
e’

i)
Py
't}

,.
]
-t
g

Y]

EhY
LRy

R
ind il
By
T
XX

-
-

-

Y
v
Ea]

,.
AR

.
Lo

Do)
=

! =

,_
ot I
By
-
=
D)

X)
Wl 1o U

-, -,

By i

-

!

PR
]
]
LN
i 1
-~
=
T

,.
]
R
-

LR

.,
I8
=
A}
)
X8
-
T T
[y
]
)

bt
=

T
]
L)
i
T

3-20

SOURCE STATEMENT MCB

OF ASSEMBLY YT
LISTING 01153 140204 (8112)
N
rI

INSTRUCTION

WORD FORMED | i1 0 0jO 0 O|JO I O©O}JO0 O

BY LOADER i A 1] 4 '} i
OoP CODE

Figure 3-6. Assembly and Loading of

Generic Instructions

3-21

1é".
SRR
1A

e -
PRUBE R IR B v Y By T

AT

A F 1 e

Ty
-

J‘ X)

.,_,._
P]

—
]

i

.
DU

)
Thon i

1T
e

1t

oy
e

(RN

T
et

50
!

k)

LA
CTS TSR]
- LA
S AR

,_
x

,
atn’

i

!

- T
B N B kY]

e’
d

T T
LR
Pl

o3 i) i)

P
ot

-
L

L b b oLy L i

1AEET A
14361
47 14
148116
1463136
14a119
143369
1B E
143214

e

-
AR U I

AR A B Y IR Y IR B Y B RY
D R R U R U K B Y Y
Py

—
(]

[y
-
L

e
FCiA

1ebeiaddd
oI T
bl
1Ladead 4
5 e

3-23

SECTION 4

PSEUDO-OPERATIONS

Pseudo-operation statements are commands (or directives) to
the assembler or loader, rather than instructions to be
assembled and executed in a user's program. Various classes
of pseudo-operation are provided, to control the assembly and
load modes, assign values to symbols and data constants,
define macros, link programs, allocate storage, and control
conditional assembly. The mnemonics of all the PRIME 200
assembler pseudo-operations are listed in Table 4-1.

Pseudo operations are described in this section according to
class, except for those used in Macro definitions (Section 5).

STATEMENT FORMAT

Pseudo-operations have an operation field and a variable field
separated by spaces, the backslash tab character, or a comma
((see Figure 4-1). In addition, some pseudo-operations
require a label to be present or absent. Therefore the
statement format description in the following paragraphs
includes the label field.

Constants, variables, and expressions used in pseudo-operations
conform to the general features defined in Section 2.

The operation field contains the mnemonic that identifies the
pseudo-operation.

The variable field may contain one or more arguments,

separated by single spaces or commas. Arguments may be
constants, variables, or expressions as defined in Section 2.
Arguments for certain operations such as BCI may also consist
of ASCII character strings. (Spaces and commas occurring
within such strings are not interpreted as argument delimiters.)

Symbolic names or other variables used in the variable field
must be previously defined, unless otherwise stated in the
pseudo-operation definition.

Address expressions are evaluated as single-precision values

and used as an absolute 16-bit memory address. If the relocatable
mode is in effect during loading, the relocation factor is

added to the address. Certain statements (DAC, XAC, ***) accept
the indirect address (*) and indexing (,1) symbols. These

are interpreted according to whether the extended addressing

mode is in effect. (See EXD and LXD pseudo-operations.)

4-1

Table 4-1. Summary of Pseudo-Operations

Mnemonic Definition Class*
ABS Set Mode to Absolute AS
BACK (TO)| Loop Back (Macros Only) MA
BCI Define ASCII String DA
BES Define Block Ending with Symbol ST
BSS Define Block Starting with Symbol ST
BSZ Define Block Set to Zeros ST
CALL External Subroutine Reference ST
CF1-CF5S Ignored (Provided for Compatibility with Other AS
Assemblers)
COMN Define Common Items ST
DAC Local Address Definition DA
DATA Set Data Constant DA
DBP Set Double Precision Constant DA
DEC Set Decimal Constant DA
ENT Define External Entry Points ST
GO (TO) Forward Reference AS
EJCT Eject Page (Start New Page) LI
ELSE Reverse Conditional Assembly Cco
END End of Source Statements A
ENDC End Conditional Assembly Area Cco
ENDM End of Macro Definition MA
EQU Define Variable SY
EXD Enter Extended Addressing Mode LO
EXT Flag External References ST
FAIL Force Error Message SP
FIN Insert Literals AS
HEX Set Hexadecimal Constants DA
1F Conditional Statement CO
IFM Continue Assembly if Minus co
IFN Continue Assembly if Non-Zero co
IFP Continue Assembly if Plus Cco
IFZ Continue Assembly if Zero co
List Enable Listing LI
LSMD List Macro Expansions (Data Statements Only) MA
LST™M List Macro Expansions (All Statements) MA
LXD Leave Extended Addressing Mode LO
MAC Start Macro Definition MA
MOR More Input Required AS
NLSM No Listing of Macro Expansions MA
NLST Inhibit Listing LI
OCT Define Octal Constants DA
ORG Define Origin Location AS
SAY List Message to Operator (Within Macro Definitions) MA
SET Redefine a Variable SY
SETB Set Base Sector LO
SETC Set Common Base Address ST
SUBR Define Entry Points ST
REL Set Mode to Relocatable AS
VED Define Variable Fields DA
XAC Define External Address DA
ek Dummy Memory Reference Instructions DA
* CLASSES: AS - Assembly Control LO - Loader Control

CO - Conditional Assembly MA - Macro Definition
DA - Data Defining ST - Storage Allocation

LI - Listing Control SY - Symbol Defining
4-2

BACKSLASH,

SPACES OR COMMA 2 SPACES OR COL.73
LABEL ﬁ’ERATlON FIELD VARIABLE FIELD COMMENTS
REQUIRED / NOTE 1| T OPTIONAL
BoR OTHERS, PSEUDO-OP
MUST BE MNEMONICS
NULL (SEE TABLE 4-1)
By
r /A 1
ARGUMENT | ARGUMENT 2 RGUMENT N
SINGLE SPACE
OR COMMA
NOTES

I. IF MORE THAN 10 SPACES
FOLLOW THE OPERATION
FIELD, THE ASSEMBLER
ASSUMES THERE IS NO
VARIABLE FIELD AND
TREATS THE REST OF
THE LINE AS COMMENTS.

Figure 4-1. General Format of Pseudo-Operation Statements

ASSEMBLY CONTROLLING PSEUDO OPERATIONS

ABS (Set Mode to Absolute)

Lahel Operation Field Variable Field

Optional ABS Must be vacant

Sets to absolute the assembly and loading mode of all subse-
quent memory reference instructions. ABS may be terminated
by REL and vice-versa. The ABS mode is the normal default
mode of assembly ,

REL (Set Mode to Relocatable)

Label Operation Field Variable Field

Not Used REL Must be vacant

Sets to relocatable the assembly and loading mode of all
subsequent memory reference instructions. REL may be terminated
by ABS.

ORG (Define Origin Location)

Label Operation Field Variable Field

Optional ORG Address Expression

Sets up a new assembler location count equal to the value of the
address expression. This new origin is considered absolute

or relocatable depending on the current mode of the assembler

and loader. In absolute mode, program loading continues at

the location specified by the address expression. In relocatable
mode, program loading continues at the location specified by

the address expression plus the loader's relocation factor.

If the statement includes a label, the label variable is set
equal to the location count before the ORG is executed.

4-4

Examples:

XX}
i Ty

3]

Ty T T
AR BRI
=

it

B

L1
Ty

-
=t

$TY T
Lt R

oot tare

-,
igi
- -,
TR

(HMOS

h
ST BN I R SR R
i o]

i
RN)

.
oot

o]
LR

al
o
b

T e

Xt

-
1ot i

[RARE
fix
ol

L I

!

o
s
bt

R
S LETR
LTH DHATH

DEMOMSTRATES REL

FEL.
M
PN
STH
e
TR
JPE
]]

AHES

iR LD

STH
THF
REL.
L
LDF
HLT
DFTF

M

YA
A SR
CTE

A
T EEE

FAME

ABS

STARET RELOCATRELE

SAVE REGISTERS

LIFDATE COUNTER

JURF TO ABSOLUTE LOCATION

STARTS AT LOCATION

RETURM T RELOCATAE

REZTORE REGISTERS

=t

LE

FIN (Insert Literals)

Label Operation Field Variable Field

Optional FIN Not used

All literals defined since the beginning of the program

(or the last FIN statement) are assembled into a "literal
pool", starting at the current location count. Processing of
subsequent statements begins at the first location count
following the literals. FIN performs the same functions as
the END statement, but does not terminate the assembly. By
using FIN, the programmer can distribute literals throughout
the program, and possibly reduce the number of cross-sector
indirect address links that must be formed by the loader.
(However it is important to make sure that the program

will jump over the pool of literals and not attempt to
execute them as instructions.)

MOR (More Input Required)

Label Operation Field Variable Field

Optional MOR Not used

When entered as the last statement on a source tape, MOR

causes the input device to stop. A continuation tape can

then be mounted. When the computer START switch is pressed,
assembly continues with the first statement on the continuation
tape.

END (End of Source Statements)

Label Operation Field Variable Field

Optional END Address expression

Terminates processing of the source program. All literals
accumulated since the beginning of the program (or the last
FIN statement) are assigned locations starting at the current
location count.

4-6

In a two-pass assembly, the computer halts on the first pass
when the END statement is reached. The operator must then
return the source tape to its starting point and restart the
computer to begin pass two. (New assembly parameters can be
specified on the second pass, if additional outputs are
required.)

When the END statement is reached on the second pass, the
address expression is included in the object text for action

by the loader, which can be directed to start program execution
at the specified location. If the address field is null,

the starting location is assumed to be the first location of
the program.

CF1 Through CF5

Pseudo-operations CFl through CF5 have no effect on this
assembler. However, these statements are accepted without
generating error messages, in order to maintain compatibility
with other assemblers.

50, GO TO (Forward Reference)

Label . Operation Field Variable Field
Not used GO Statement label
or
GO TO

Assembly is suspended for all statements following this one
until a statement having the specified label is found. The

GO (GO TO) statement must point forward to a statement label
that is not yet defined- An error condition exists if the
assembler reaches an END, MAC, or ENDM statement before finding
the specified label.

Examples
GO TO KSi
GO T174
IF (OPTION .EQ. 3) GO TO AL28
LDA X : ADDY : GO TO Z20

LISTING CONTROL PSEUDO-OPERATIONS

LIST (Enable Listing)

Label Operation Field Variable Field

Not used LIST Not used

Causes all statements to be listed except those generated by
macro expansion. This is the assembler's default mode - a
LIST statement is not needed unless a NLST statement has
previously inhibited listing.

NLST (Inhibited Listing)

Label Operation Field Variable Field

Not used NLST Not used

Inhibits listing of all subsequent statements until a LIST
statement is encountered. LIST and NLST may be used together
in source text for selective control over the sections to be
listed. The LSTM, LSMD, and NLSM statements provide control
of listing for macro definitions; for details, see Section 5.

EJCT (Eject Page)

Label Operation Field Variable Field

Not used EJCT Not used

Causes the listing device to eject the page (execute a form
feed), print the current page title and page number, and feed
two blank lines before resuming listing. This function is
operable only with devices which have a mechanical form feed
capability, such as a line printer,

4-8

LOADER CONTROLLING PSEUDO OPERATIONS
The following statements generate special messages in the

object text that provide control information to the linking
loader.

EXD (Enter Extended Addressing Mode)

Label Operation Field Variable Field

Optional EXD Not used

Notifies the loader that extended (32K) addressing mode is

in effect. The loader processes subsequent indirect address
words as having a 15-bit address field and an indirect bit,
but no index bit. The CPU must be set to extended addressing
mode by an E32S instruction.

LXD (Leave Extended Addressing Mode)

Label Operation Field Variable Field

Optional LXD Not used

Causes loader to leave extended mode and resume 16K addressing
mode (the normal default mode of the loader). In this mode

the loader processes indirect address words as having a

14 bit address field, an indirect bit, and an index bit.
However, the operator can override the LXD mode during loading,
and force extended addressing.

SETB (Set Base Sector)

Label Operation Field Variable Field

Optional SETB Address expression

4-9

Specifies a base sector and starting address for cross-sector
indirect address links.

Normally the loader generates address links starting at
location '100 of Sector zero. This statement permits the
loader to generate some address links in the same sector
as the program which refers to them. Memory locations to
be used for this purpose must be reserved by the program.

Examples:
ceaRzy ORG 7 S STHRT LIMES AT BEGIMNHING OF SECTOR S
CEEad s TR e+ 2L JUME OWER LTHES
CREEsy SETE +
CERREY BES e ALLOCATE 26 LOCATIONS FOR ADDRESS

LIMES STRRTIMG AT ~ 5681

The first SETB pseudo-op for a given base sector determines
the location at which the indirect word table will begin

in that sector. The table then grows upward in successively
higher locations. Other SETB pseudo-ops referencing the same
sector do not re-origin the table for that sector --- table
filling resumes where it left off. During loading, the B-
Register setting may be used to assign a starting address

for the links; if so the B-Register setting is treated like

a SETB pseudo-operation preceding the first word to be
loaded.

At the end of each subprogram, the base sector reverts to
sector zero. The loader retains knowledge of the last
location used in each base sector. When the base sector
reverts to zero, no indirect words are lost.

Note that in general cross-sector reference pools may grow
unpredictably and overwrite program areas during loading,
so that extreme care must be used in assigning SETB areas.

4-10

DATA DEFINING PSEUDO-OPERATIONS

This group of pseudo-operations is used to initialize memory
locations to known starting values. Data and address constants
may be specified in a variety of formats, for coding convenience.
Simple coding conventions allow the programmer to use ASCII,
hexadecimal, octal, or fixed and floating point decimal
notation to specify constant values. The assembler interprets
the notation and automatically generates one, two, Oor more
data words in the proper internal binary format for single or
double precision, fixed or floating point arithmetic.

DATA (Set Data Constant)

This is the basic PRIME 200 pseudo-operation for presetting
memory locations to equal expressions, ASCII strings, or
numerical constants. Constants can be expressed in decimal,
octal, or hexadecimal form. Decimal quantities can be specified
in single or double precision, fixed or floating points, formats.
The basic format of the DATA statement is:

Label Operation Field Variable Field

Optional DATA One or more expressions,
ASCII strings, or numerical
data constants

The current location is set equal to the expression(s) in the
variable field. The variable field may contain any number

of subfields, separated by commas. Subfields are assembled
in consecutive locations starting with the leftmost subfield.
If an expression requires more than one location (e.g.
floating point), consecutive locations are used.

ASCII Strings: ASCII character strings are specified by the
Tetter C followed by the string enclosed in apostrophes. ASCII
characters so specified are packed two per word during assembly.
Single characters are left-justified with the remainder of the
word filled with zeroes. The number of characters per statement
is not limited.

The string portion of a data statement cannot be continued

on the next line. Within the string itself, the (!) character

permits the assembler to encode restricted characters such

as ' (end of string), <(start of macro arg. ref.) or CR

(end of statement). Examples:
I 15 o A A [T B e
I L e v P T T e

141 Ve

14278

14EVEZ O R

123681

1TLRAE 4-11

DARTH N &
LATH - ABCDEF”

R

R B B R X A |
A RO R L R e,
: h s h ns :

D)
o
1 b
i)

Ja

Numerical Constants: The form in which a constant is specified
determines whether the assembler will process it as single or
double precision, fixed or floating point. The general format
for numerical constants is:

[(:) Number] [EE (+) mm:| []BSB (+) nn]

- v | N J | J
Number Decimal Binary
Exponent Scaling

If the number part of the statement is a decimal integer or
fraction, it can in some cases be modified by a decimal
exponent (E for single precision, EE for double precision)

or a binary scaling factor (B for single precision, BB for
double precision). Table 4-2 summarizes the legal combinations
of number, exponent, and scaling designators.

Fixed Point Single Precision: Constants in fixed point

single precision format are assembled to form a sign bit and

15 magnitude bits, as shown in Figure 4-2A. The CPU internally
treats such arithmetic quantities as binary fractions ranging
between -1 and slightly less than +1. The assembler, however,
handles single precision words as signed integers ranging
between -32,768 and +32,767. Constants in DATA statements

may be expressed as integers within that range, using decimal,
octal, or hexadecimal notation.

Expressions must be capable of being evaluated as single-
precision constants only. Variables used in expressions must
be previously defined.

Examples:
Hexadecimal Octal Decimal Expressions
X'12AB' 0'1234" 12 X*2+3
X'-12AB' 0'-1234' -12 ALPHA
$12AB 0'1234 0 Y .AND. '77
$-12AB '1234
X'12AB '-1234
$EFFF 1077777 32767
$8000 100000 -32768

1.23B6 (using binary scaling)
1.23E3B12 (using decimal exponent
and binary scaling)

4-12

Table 4-2.

Numerical Formats in DATA Statements

Form of Number

Decimal
Exponent

(E or EExmm)

Binary
Scaling
(B or BBitnn

Assembler Inter-
prets Constant As:

Expression using

Symbolic Variables - -

Hexadecimal

Octal

Decimal Integer

Decimal Integer
or Fraction

Single Precision
Fixed Point

Decimal Fraction

-- B

E B

-- BB Double Precision
Fixed Point

EE BB

EE -- Double Precision
Floating Point

E -- Single Precision

Floating Point

4-13

CPU CALCULATIONS ASSUME BINARY
POINT IS HERE
BIT 1¥2 3 4 5 6 7 8 9 101l 12 13 14 15 6V
s
i 1 1 1 1 L 1 | 1 1 [}] 1 1 ASSEMBLER
I- e JQ%W%%M
SIGN I5 MAGNITUDE BITS IS HERE UN-
LESS OTHER-
WISE SPECI-
FIED BY "B*
NOTATION
A. DATA FORMAT
BIT | 2 3 4 5 6 7 8 9 10 Il 12 13 14 I5 16
s
1 1

1 1 1 1 L 1 1 1

R O O O I N B R I B Y

B CODE FOR—s=B-1 BO Bl B2 B3 B4 BS B6 BT B8 B9 BIO BIl BI2 BI3 BI4 BIS
BINARY POINT

POSITION ASSEMBLER'S NORMAL BINARY POINT

B."B" CODES FOR BINARY SCALING

Figure 4-2. Single Precision Fixed Point Constants

4-14

Powers of 10 (E) and Binary Scaling (B): For single-precision
decimals only, the E and B notation provides flexibility in
scaling data constants. Expressions with binary scaling are
formed by a decimal integer or fraction in the range from
-32768 to +32767, followed by the letter B and an integer

from -1 to +15.

Examples:
Assembled As: Decimal Equivalent
12.5B6 0 001 100,100 000 000 6400
B6

0.5B8 0 000 000 Og} 000 000 64

B8
5B8 0 000 001 0%@ 000 000 640

B8

In general terms, a constant entered as KigBn is converted to
KZ(Z’n), where Kio is the decimal constant, K, is the same

constant expressed as a binary fraction, and n is the number
following the letter B. Positions for B values -1 through 15
are shown in Figure 4-2B. Any bits of the repositioned
binary fraction that extend to the left or right of the

15 magnitude bits of the data word are truncated.

In the first example, the fraction 12.5 is converted to the
binary value 1 100.1 and positioned in the 16 bit data word
so that the binary point is at position B6. The result is
equivalent to decimal 6400.

If an E code is present, the decimal value is multiplied by

the power of 10 specified by the integer following the E before
it is converted to binary. Thus a constant entered as KjEmBn
is converted as Kz(lom)(z_n). The exponent, m, may be

negative (-) or positive (+ or unspecified).

In fixed-point single precision constant expressions, an
exponent (E) cannot be used unless binary scaling (B) is

also specified. If E is used alone (as in '"'5E2") the expression
is interpreted as floating point (described later).

4-15

Fixed Point Double Precision: The assembler handles fixed
point double precision words as integers ranging between -(230)

and +(230-1). (230 = 1,073,741,824.) Such constants are
assembled as two consecutive data words, in a format determined
by the CPU's double precision arithmetic procedures. (See
Figure 4-3A.) The first word must load in an even location;

if the location count happens to be odd, one location is
skipped. Negative numbers are represented in two's complement
notation, but bit 1 of the second word is always 0.

When expressed in DATA statements, fixed-point double precision
constants must include a binary scale factor (BBn). A decimal
exponent (EEn) is optional.

The BB codes for binary scaling are interpreted in the same
way as single precision B codes, but extend into the second
word of precision as shown in Figure 4-3B. The EE code, if
present, is interpreted in the same way as single precision
E codes and can only be used when a BB code is also present.

ExamEles:

Assembled as: Decimal Equivalent

12.5BB6 word 1 0 001 100 100 000 000 6400.00000
or 6.4EE3BB15 word 2 0 000 000 000 000 000

7BB16 word 1 0 000 000 000 000 011 3.50000
word 2 0 100 000 000 000 000

Bits of the scaled binary quantity that extend to the left
of word 1 or right of word 2 are truncated.

4-16

BITI23456789IOII|2|3I4|5|6‘ i

WORD [s ASSEMBLER
| 1 1 i L1 U B | PR R B R SR | ASSUMES
BNARY POINT
SIGN 15 MOST SIGNIFICANT MAGNITUDE BITS I R
‘ FIED BY-Bb-
WORD | o NOTATION
2 1 1 1 1 1 i | 1 | i 1 1 L 1
ALWAYS 15 LEAST SIGNIFICANT MAGNITUDE BITS

A. DATA FORMAT

;%B';g?"%%;et; a’a ja ja Ja ja ja :a ja B.'B B’B ja al’e e’a je BéB BB

WORD
2 o

Bt B+B B’B Bt jB 38

8. "88" CODES FOR BINARY SCALING

Figure 4-3. Double Precision Fixed Point Constants

4-17

Single Precision Floating Point: Floating point data formats
are defined by the procedures of the floating point math
routines in the FORTRAN/Math Library. (See Figure 4-4.)

Single-precision floating point quantities are expressed by
a decimal fraction, with or without decimal exponent (Emm).
(Binary scaling must not be specified.)

Examples:
FIE G a6, LV CHTH 1 EREZ
SIS
£ RN CFTH 1. E2R
(5
@rF | GATH ~1. &

e
B

3]
o
-:."

fl

T

The assembler converts the specified values to an 8 bit binary
exponent and 23 bit binary fraction in two successive words,

as shown in Figure 4-4A. The exponent is rggresent%d in
excess-128 notation, and can range from 2 127to 2+127 (roughly 10-38

to 10*38). An error printout occurs if the exponent exceeds
this range. The assembler automatically generates a normalized
fraction of the largest possible value less than 1. Numbers
specified in this format have about 6.8 significant decimal
digits (+ 8,388,607).

Negative numbers are formed by generating a positive number

of the specified magnitude and then forming the two's

complement of both data words, including the exponent. The
number zero is assembled as two consecutive all-zero data words.

Double Precision Floating Point: Double-precision floating
point quantities are expressed by a decimal integer or fraction
with a decimal exponent (EEmm). (Binary scaling must be
specified.)

The assembler converts the specified value to an 8-bit binary
exponent and 39-bit binary fraction, in three successive words,
as shown in Figure 4-4B. The exponent is represented in the
same excess-128 notation as single-precision floating point.
The assembler automatically generates a normalized fraction

of the largest possible value less than 1. Numbers specified
in this format can have about 11.5 significant decimal digits
(+549,755,000,000).

Negative numbers are formed by generating a positive number

of the specified maghitude and then taking the two-s complement
of all three data words, including the exponent. The number
zero is assembled as -three consecutive all-zero data words.

4-18

WORD | s EXP
| 1 1 1 1 | | 1 1 1 1 1 1 1
’ \ — J__
V
SIGN EXPONENT (EXCESS 7 MOST SIGNIFICANT
128 NOTATION) BITS OF FRACTION
WORD
2 1 1 i | L 11 1 3 1 | 1 1 [|
“
N
16 LEAST SIGNIFICANT BITS OF FRACTION
A. SINGLE PRECISION (REAL FORMAT)
WORD [s EXP
| 1 L1 1 1 1 1 1 1 1
’ I\
~ Yl
SIGN EXPONENT (EXCESS 7 MOST SIGNIFICANT
128 NOTATION) BITS OF FRACTION
WORD
2 1 1 1 1 1 1 1 ! 1 1
|\
g .
16 NEXT-MOST SIGNIFICANT BITS OF FRACTION
WORD
3 L1 1 1 1 1] 1 1 1
- _J

N

16 LEAST SIGNIFICANT BITS OF FRACTION

8. DOUBLE PRECISION

Figure 4-4. Floating Point Word Formats

4-19

Examples:

A
ficn IR BN]
oL

oy
£
fo

[ex]

=95
15 (5L 3]
SRS BETE

4-20

Repeated Constants: Constants that do not start with a digit
oT a decimal point may be preceded with a repeat count '"n"
(positive integer) which will cause the value to be generated
n times.

Examples:

3X'12AB'
9C ' XX

15'16

6 (ALPHA+1)
3(1.5E6)
5(-0.012EE-3)

Multiple and Implied DATA Statements: A DATA statement can
Contain more than one constant, separated by commas.
Constants are converted to the appropriate number of data
words and loaded into consecutive memory cells starting with
the current location count. :

The assembler will process any statement that starts with a
constant (not counting the optional label field) as an implied
DATA statement.

Examples:

DATA 16

DATA 3, 10, -2, -3, 0, 0, 10, AP3

DATA 3, '12, X'-02', -X'3', 20'0', $A, AP3+2-1;
16, 3, 10, -2, XYZ-2

100

DATA -4, 1.23E4, +1176EE3BB24, 16(0.0)

DATA 4(X6%*2-1)

4-21

The following examples show many varieties of

Summary:
DATA statements.

Table 4-2 summarizes the legal combinations

of constants, B and BB codes, and E and EE codes in numerical

values.

L
)

B IR

~j =]
5 BN IS B RN
" 3 .

wr)
ih 1L

T b

.,._
X

LATA
DATA

4-22

1
A8 -2 208 B, 18, AR

12
R BT & P = A = 3=

I

1

X

DEC (Set Decimal Constant)

Label Operation Field Variable Field

Optional DEC One or more decimal, octal,
or hexadecimal constants
(separated by commas)

This statement is provided for compatibility with other
assemblers. FEach constant in the variable field is evaluated
as a decimal constant, converted into one or more binary words,
and loaded starting at the current location count. All formats
accepted by the DATA statement may be used with DEC except

the repeated constant format (3X'12AB'). (See Table 4-2.)
Hexadecimal and octal constants are interpreted as single
precision fixed point.

Examples:

N

DENT 16
L T I 5 P WS ROPR: 2 S R+

P

o
o

.
[ax]

Fa i}

o
N
P}

hex]
”n
-t

B

P gt x|

i

)
g

4-23

DBP (Set Double Precision Constant)

Label

Optional

Operation Field

Variable Field

DBP

One or more decimal, octal,
or hexadecimal constants
(separated by commas)

This statement provides compatibility with other assemblers.
Each constant in the variable field is evaluated as a decimal
constant, converted to double precision binary format, and
loaded in consecutive memory cells starting at the current

location count.

whether the result will be fixed or floating point.

The format of each expression determines

For

fixed point quantities, the assembler is forced to assign
the first word to an even location count.

count is odd, it is skipped.)

Examples:

%)
Cmeb!
3

Voo T
nn

e

T T
T 0

!

VT T O Sy O
T r:

%l
L

]

XN
oy

PRI

..
[xx]
=

WX
e}

)

)
(]

Y
o

DEF

LEF

DEF

CEF

4-24

[l

)

1}

i

U]

(If the current
The repeating constant format
of the DATA statement is not permitted.

FIXED POINT

BE HWTART . ®FL A2

FLOATING FOINT

OCT (Set Octal Constant)

Label Operation Field Variable Field

Optional OCT One or more octal constants
(separated by commas)

This statement is provided for compatibility with other
assemblers. Each constant in the variable field is evaluated
as an octal constant, converted to single precision fixed point
binary, and loaded at the current location count. Only the
following constant forms are allowed.

Examgles:

S B S BRI 2 DR QT 12

BIEAL GFRELY CERdE QT TEELT, < Z2L. 677

bR PO I

I E3 HEEE

5 } 177 wIEIER T TATEVEV. =L =7 AE LTV +7 ATV
S 17

£ = 177

& v EIEIEY:

BT ETEE B

4-25

HEX (Set Hexadecimal Constants)

Label Operation Field Variable Field

Optional HEX One or more hexadecimal
constants (separated by
commas)

This pseudo-op is provided for compatibility with other
assemblers. It converts the hex constants within the variable
field to single precision binary values and loads them in
consecutive locations starting at the current location count.
Only the following constant forms are allowed.

HE. 12AE
HE F.%F. ~FFFL, -¥FFF 1, ¥~FFF1

o

! e

CERSE HE = FLZRE, +L2AE, +ELEAR, $+12AE

U T
P B R k]

D B s B B R B B o
MiniRiR AR A N iR~
-’

[a R]

VED (Define Variable Fields)

Label Operation Field Variable Field
Optional VED One or more subfields of
the form:

Field Size,Value

This statement permits 16-bit data words to be formed in
subfields of varying length by pairs of constants (field size,
value) in the variable field. The first constant of each pair
specifies a number of adjacent bits, starting at the most
significant end of the 16-bit word. The second constant of

a pair is the value to be loaded. Subsequent field size value
pairs load less significant subfields of the 16-bit word. For
any pair, if a value exceeds the specified field size, the
more significant overflow bits are exclusive OR'ed with the
subfield to the left. (No error message is generated.)

If the entire word is not specified, the least significant end
is filled with zeroes. An error message is printed if the
assembler attempts to load more than 16 bits.

Examgles:
VFD 8,C'A'-2, 8, 0
VED sz/4, X, Sz/4, Y, SZ/4, Z, Sz/4, X'F!

4-27

BCI (Define ASCII String)

Label Operation Field Variable Field
Optional BCI "'STRING; (where ' is any
non-zero, non-digit delimiter)
or

#,STRING (where # is the
number of character pairs)

This statement loads ASCII character strings by packing the
specified ASCII characters two per word, starting with the
most significant 8 bits. Assembled words are loaded starting
at the current location count.

In the first format, the string is delimited by any character

other than zero or a digit:
3 B CAB

BCI SHBLEA SRS

i E;J
If an odd number of characters is specified, the least
significant half of the last word is padded with zeroes.

In the second format, the character string is preceded by a
word count (the number of characters divided by 2 and rounded up) :

BEETD L2848 CHESS Bl * #* 012 SPRCES?
BSITI 128248

BEET4 128246

BEETE

BEETA

L5 S

BEGEE B 1. AE

AS461 5 e BT 4, RBEC2Z480

Bo4RZ 14: =

(s bt T Il 13168

AS4ad 1ZE33E6

EBE4E5 - 1282468 ECI o ClE SPACES)
[BT Lo 128246

BE4ET 128248

@418 - 12E246

Lt 5 128246

Bh412 128245

4-28

DAC (Local Address Definition)

Label Operation Field Variable Field
Optional DAC Address Expression
or or
DAC* (indirect Address Expression,l
addressing) (Indexing)

This statement loads the current location with an address word
consisting of up to 15 address bits, with optional indexing

and indirect address bits. The address is specified by the
expression in the variable field. Indexing and indirect
addressing may be specified symbolically as in memory

reference instructions (* and,l). Address words formed by

DAC are subject to the effects of the EXD pseudo-operation

and the E16S, E32S, and E32R instructions. If relocatable

mode is in effect the loader performs relocation during loading.

Examgles:
(5 Gt B R 15) S LA ALFHA
(e L 0 I S v = RS Lol HFEZE+E
ASaLS . 28 %1 T A R T K
[Lo S R 16) DRSS G J o
AS4AT 0 sl it T S (o] = T TR s U
BSSRR . BE BRET Y SUEL DA o CTYFICAL SUBRDUTINE ENTRN:

In the assembler, the DAC pseudo-op generates a 16-bit
constant. The loader truncates this constant to 14 bits

if in the LXD mode, 15 bits if in the EXD mode, or does not
truncate it if absolute. The loader merges the index bit
with the address constant. It merges the indexing bit in
normal addressing mode, and ignores it in extended (E32S)
mode.

4-29

XAC (External Address Definition)

Label Operation Field Variable Field
Optional XAC External variable
or or
XAC* (Indirect External Variable,l
addressing) (Indexing)

Generates the same type of data word as DAC. However, the
variable field is interpreted as an external variable that

has no relation to, or conflict with, an internal variable
of the same name.

Examples:
543 0 B O CRHBEE D A FLAGS
AS423: 93§ CRRESY T2 HAL s 2
e b P s 15 A CEETE WAL T$1, 1
ASdsd - AR 9 CERETL WA T$1
B542% 0 48 & CRRAT2 =AC+ TFi.1

4-30

*%% (Dummy Memory Reference Instruction)

Label Operation Field Variable Field
Optional *hx Address Expression
or or
*%%% (Tndirect Address Expression,l
Addressing) (Indexing)

Causes the assembler to create a dummy memory referencing
instruction with zeroes in the op-code field. Indirect
addressing is indicated by an asterisk, as usual (resulting
in a four-asterisk operation field) and indexing may be
specified. This statement is used when the op-code is to be

calculated and placed in the op-code field at run time, prior
to execution.

4-31

VARIABLE (SYMBOL) DEFINING PSEUDO-OPERATIONS

Variables used as address symbols are usually defined when

they appear in the label field of an instruction or pseudo
operation statement. Symbols so defined are given the numerical
value of the statement's location count. The EQU and SET
statements make it possible to equate symbols to any numerical
value, even ones that lie outside the range of addresses in a
program.

EQU (Define Variable),
SET (Redefine Variables)

Label Operation Field . Variable Field
Format A Contains a EQU or SET Address Expression
variable
Format B Blank EQU or SET One or more symbol

equality expressions
(separated by commas)

In format A, the variable in the label field is equated to
the address expression. Any variables used in the address
expression must already be defined:

BEGAET CEETIN I E z
BTFTEET CEET4Y ALFHA ZET IETET

1FPFPT CRBTS) FRIME EQ SATFPTEV
BYFTYE COETEY BETHA SET AL FHA -

In format B, symbols are assigned numerical values by equality
expressions in the address field. One or more equality
expressions can be used, separated by commas:

el
=
)

Eil

X

HEEAET CEavys I=2

BEGTFT CRETED E J=%£3I3FF, k=" 7777 L= AZ
FREASS CEETR SET k=15

[ESITE CBAEED SET K=J+%FF

Formats A and B can be combined in a single statement:

T

GREEERE CDeEL I SET 3, J=$30FF. K="F777

EQU and SET perform the same finctions; however, a variable
defined by EQU may not be redefined, while a variable

4-32

once defined by SET may be redefined by subsequent SET
statements without causing an error message.

Examples:

#DEMONSTRATES EQL AMD SET
FEL. '
CHAML B T2 DA CHAMMEL. 1
STRTARDRE SET BLFL STARTING ADDRESS 1.0 TEAMNSFER
MCIF
HIF
HCIF
LOE STRTADE
=TH CHAML SET STARTIMNG ARDDRESS TO BUFL
MR
HOF
MO
SET STRTADR=BLUFZ THAMGE STARTING RODRESS
LOA STRTHDE
ZTH CHAML SET STRARTING ADDRESS TO BLFD
MOIF
MO
M
EMD

I
i
=
2!

-
Ll

b
3
2

]

i,

O T
Do]

AR
T
=

x
=
Al

R v
L)

=

T

P DA AR
]
PO

1

-t
= -
Ficx B\ Bt B B Bt B ux B)

- =
Pl O o

[xx}
o
o

,.
hx)
=

=

oL
FRx
o

o
Do)

fxx)

&
L '[
= =
R B B]

Lt

5,

]

ficx]

B

wad
=
e’

Gt
A

,.._,. .,.
Dot B B]
=

T =

A

ix}
bex

]
]

e
it
Y

ELIF:L
ElIF =
CHEAM.

STRTADE

[y B
Ty T
o o
[l
T AT

Dy]

-

[T |
Ty T
iy i

ENER

.,

fex}
=

v
=

B B R B

X

D xx]
Y]

-
[xx)
D]
-~
-
[
Kx
Py
R
-~
ha]
o
ks’

4-33

STORAGE ALLOCATION PSEUDO-OPERATIONS

BSS (Block Starting with Symbol),

BES (Block Ending with Symbol),

BSZ (Block Set to Zeroes)

Label Operation Field

Variable Field

Optional BSS, BES or BSZ

Expression that specifies
number of words to be
allocated

These statements allocate a block of words of the size specified
in the variable field, starting at the current location count.
If there is a label, it is assigned to the first word of the
block (BSS: and BSZ) or to the last word of the block +1. (BES).
For BSZ, all words within the block are set to zeroes.

Examgles:
L1 BSS
BSS
T1 BES
BES
Z1 BSZ
BSZ

20
(I+3)/2

40
N*#3-2

100
(AB-2)*3

4-34

SETC (Set Common Base Address)

Label Operation Field Variable Field

Not used SETC Address expression

The address expression specifies a location near the top of
memory to be used by the loader as the COMMON base (the highest
location in a pool of common items). In systems with over

16K of memory, the expression specifies an address in the
current 16K of memory. Variables in the address expression
must be defined and the result must be absolute.

Examples:
SETC 117770

SETC END-8

4-35

COMN (Define Common Items)

Label Operation Field Variable Field
Optional COMN One or more variables

(separated by commas)

This statement loads common variables in the COMMON area at
the top of memory. Each of the variables in a COMN statement
is assigned an address starting with a common base selected
by the loader or set by a SETC statement. Variables are
assigned addresses in the order they appear in the variable
field, and addresses are assigned in decreasing order. The
loader keeps track - of the last COMMON address assigned, and
in subsequent COMN statements continues to assign lower
COMMON locations in sequence, until another SETC statement

is encountered.

Examples:

CEEEL Y +PROGEAM A

nEIETE: FEL

OO SETET TAETVY SET COMMON BARSE

CEBAES D DO FIFL FAE. A ASSIGH THREE LOCATIONS IH COMMOMN
L. =1
“TH HFIF SET FLAG AR
IR FC LIPLATE COLMTER AC
HL.T FINISHED

EM

=
el

=

i

=
fx]

—

I DI
PR T
]
x¥]
]
Lo
hix]
¥x]
=
)
4

4-36

o T
AL R
==

il

1]

P
P

" PRIMGERAM

K
FEL.
SET
DRNIR TS

L.

TR
Ll
STH
Bl

CFORTRAM?

HRREOGRAM B

CLEFEY

EAL BES B EBD

e T B

SET

CHECE

LIFDATE

COrMgM BRSE
ASSTGH FOLIR

FROGEAM FLAG

COUNTER BR

SET FLAG BE

o DECLARE COMMOM TH THE REVERIE ORDER OF FHMA EXRMPLES

16 CE=CE+1
¢ SFT FLAG OF
CALL
DA
ZHLL
CHC
CALL
LAz

L IHE

AERE1E LOA
: CALL
CHLL
(sl z i
HELL
LAz
JHF

it
LFi
L ITHE
oY
ooT

FRHELE

L IHE

F.

ROGRAM C

4-37

LIOCATIONS

IN

Lo

PROGRAM LINKING PSEUDO-OPERATIONS

This group of statements coordinates the interaction of the
assembler and loader in resolving address references between
main programs and external subroutines. EXT and CALL are
used in main programs to identify external names. ENT and
SUBR are used in subroutines to tell the loader what names
appear in the subroutine.

EXT (Flag External References)

Label Operation Field Variable Field

Optional EXT One or more external
entry point names

The names appearing in the variable field of this statement

are flagged as being external references. Whenever other state-
ments in the main program make reference to one of these names.
a special block of object text is generated that notifies the
loader that it must fill in the address properly. (The
assembler fills the address fields with zeroes.) If the

loader encounters any EXT statements while loading a main
program, it will print the MR message after loading is complete,
to notify the operator that the external subroutines containing
the names must be loaded also.

Names defined by the EXT pseudo-op are unique only in the first
6 characters (Loader restriction) and should not appear in a
label field internal to the program.

Examples:
LDA TST2
EXT TST2

If TST2 is a location in an external subroutine, the EXT
statement is required. Otherwise the loader will be unable
to resolve the address reference.

4-38

CALL (External Subroutine Reference)

Label Operation Field Variable Field
Optional CALL External Entry Point
(* for indirect (,1 for indexing 1is
addressing is optional)
optional)

This statement generates object coding that has the same
effect on the loader as a JST to the name specified in the
variable field followed by an EXT statement that defines
that name as external. For example, the statement CALL TST1
generates object coding that is equivalent to the statements:

JST TST1
EXT TST1

The variable field must contain a single variable (not an
expression) of up to 6 characters.

Examples:
CALL SIN
B3 CALL F$10

CALL* TLIST
CALL TABLEG6,1
CALL* ARRAY,1

4-39

SUBR, ENT (Define Entry Points)

These pseudo-operations are identical in effect. They are
used in external subroutines to link subroutine entry points
to external names used in CALL, XAC, or EXT statements in
main programs. Both mnemonics are provided for compatibility
with other assemblers. The form is:

Label Operation Field Variable Field
Optional SUBR or ENT Extname
or

Extname, Entryname

where Extname is the external name used in the main program,
and Entryname is the name of the entry point in the subroutine,
if different from Extname.

Examgles:

Main
Program CALL TST1

External SUBR TST1
Subroutine .

TST1 DAC **

JMP * TST1
END

This is a simple case where external name TST1 is linked by
a SUBR statement to entry point TST1 of the external sub-
routine. When the main program uses a different external
name, the SUBR statement can equate names as follows:

4-40

Main CALL MAINTI1
Program .

External SUBR MAINT1,TST1
Subroutine .

TST1 DAC **

JMP * TSTI1
END

The name MAINT1 is equated to the actual entry point TST1 by
the SUBR statement.

ENT statements have the same effect as SUBR statements but
usually identify entry points or locations other than the
main subroutine entry point. For example:

Main CALL MAINT1,TST1
Program .

LDA TST2

JMP TST3

EXT TST2

EXT TST3

4-41

External SUBR MAINT1,TST1
Subroutine ENT TST2

ENT TST3
TST1 DAC **
TST2 OCT '77

TST3 LDA XYZ

Here, the main program refers to two locations in the external
subroutine, TST2 and TST3. The EXT statements in the main
program notify the loader that the names are external. The
ENT statements in the subroutine notify the loader that the
subroutine contains those names.

ENT statements also permit the main program to use different
names from those used in the subroutine; for example,

Main JMP TEST2
Program .

EXT TEST2
External

Subroutine ENT TEST2,TST2

TST2 LDA XYZ

4-42

As many SUBR or ENT statements may be used as are needed, and
the statements may appear anywhere within the subroutine.
However, only the object code following the pseudo-operation
will be loaded. Thus several subroutines can be packed in a
single tape or file, and only the ones that are specified by
SUBR or ENT statements will be loaded.

Since the loader restricts external names to 6 characters
maximum, only the first 6 characters of any name in the
variable field of the ENT or SUBR statement are used as the
name internal to the main program.

4-43

CONDITIONAL ASSEMBLY PSEUDO OPERATIONS

IF (Conditional Statement)

Label Operation Field Variable Field

Optional IF (Expression) (Statement)
(Statement): (etc.)

The variable field consists of an expression followed by one
or more instruction or pseudo-operation statements separated
by colons. If the expression is true (has a non-zero result)
the rest of the line is assembled. Otherwise the rest of the
line is ignored and the next line is processed. The variable
field of the IF statement must not be continued into the
following line, because the skip-if-false condition proceeds
to the next physical rather than logical line.

Examgles:

IF FLAG SET FLAG=0 ; GO TO A24

IF («COUNT .LT. MAX) SET COUNT = COUNT + 1
IF (CONTROL .EQ. 134) GO TO FIXC

IF (N .NE. M) LDA N : AOA ; STA M

IF (OPTION .AND. '01000 .EQ. 1) GO TO S130

4-44

IFM (Continue Assembly if Minus)
TFP (Continue Assembly 1f Plus)

1fZ (Continue Assembly if Zero)

IFN (Continue Assembly 1f Not Zero)

This group of pseudo-operations is provided for compatibility
with other assemblers.

Label Operation Field Variable Field
Optional IFM Expression

IFP

IFZ

IFN

The expression in the variable field is evaluated. If the
result matches the IF condition, assembly proceeds normally.
Otherwise, the assembler ignores all subsequent statements
until an ENDC statement is reached.

For every IFx statement there must be a matching ENDC statement.
IFx and ENDC pairs may be nested within each other. The

nesting depth count is checked even in sections of code that
are being skipped by a previous IFx statement.

Examples:
IFP B20 (continue assembly if B20 is 2 0)

IFM (I+3-24) (continue assembly if expression < 0)

IFZ (ALPHA-6) (continue assembly if expression 0)

IFN X24-1 (continue assembly if expression # 0)

4-45

ENDC (End Conditional Assembly Area)

Label Operation Field Variable Field
Not Used END C Not Used

Defines the end of a conditional assembly area started by an
IFP, IFM, IFZ, or IFN statement. Every IFx statement must
have a matching ENDC.

ELSE (Reverse Conditional Assembly)

Label Operation Field Variable Field
Not Used ELSE Not Used

Reverses the condition set up by an IFx statement until the
matching ENDC statement is reached. If the IFx condition
inhibited assembly, the ELSE statement enables assembly,

and vice versa. ELSE statements that lie within the bounds

of other IFx-ENDC pairs nested within the conditional assembly
area are ignored.

Examgles:

#e-——-=TEST OF ELZE CMITH CLD-STYLE IFS)
IFF FIvVE
FELSE
EMDa
IFF M0
ELZE
ErMLZ
IGF FT I
IFF FIVE
ELSE
EMND
ELZE
LA
BN

,.
ey}
=
D
=

Y ~ — o
DR I B B I oy B o B) Y R

WX

R,
LU

-

BLEGRZ 0 G2 Baany

T
I)
o
o
Xy}

4-46

FAIL (force Error Message)

Label Operation Field Variable Field

Optional FAIL Not used

The assembler responds to a FAIL statement by printing the
error message "F'". This notifies the operator of a logical or
range error, for example within the range of a conditional IFx
statement, that has caused the assembly to proceed to an
undesirable location.

4-47

SECTION 5
MACRO FACILITY

The macro feature of this assembler enables the programmer
to define functions that can be expressed in easily
interpreted English (or other) language statements, such
as:

TRANSFER DATA TO DAC
TURN ON VALVE 312

Once a macro function has been defined, it can be called
for use over and over again within a program. New argu-
ment values (DATA, DAC, ON 312) can be provided with every
call. Dummy words (TO, VALVE) can be used to increase
intelligibility. Such words can be identified during
macro definition so that they will not be treated as
arguments when they appear in a macro call.

After a set of macros has been defined by a system-level
programmer, a specialist in a particular application field
can formulate macro calls to solve his application problems,
without becoming involved in the details of assembly
language programming.

Macros are defined by the MAC and ENDM pseudo-operations.

These and other features of macro definition, listing, and
assembly are discussed in detail in this section.

5-1

MACRO DEFINITIONS AND CALLS

Two pseudo-operations are provided for macro definition:
The MAC and ENDM statements.

MAC (Begin Macro Definition)

Label Field Operation Field Variable Field

Name of macro MAC Optional dummy

(to be used words and/or

in operation argument

field of macro identifiers

calls) (see text)
separated by
commas.

A MAC statement begins the definition of a macro named

by the label field. The name is formed in the same way

as any variable or label. Following the MAC statement are
the statements that make up the macro definition; for
example:

TRANSFER MAC
LDA <1>
STA L2>
ENDM
The integers enclosed in angle brackets are argument
references. During assembly they are replaced by
argument values specified in a macro call. Optional

dummy words ('"'moise words') and argument identifiers
("positional noise words'") are described later.

Macro definitions may contain macro calls to any depth,
but macro definitions themselves cannot be nested.

ENDM (End Macro Definition)

The macro definition must be concluded by an ENDM statement:

Label Operation Field Variable Field

Optional ENDM Ignored
This statement terminates assembly of the macro.

Argument References

Argument references (in angle brackets) may be specified
in any field of a statement within a macro definition.
The number within the angle brackets may be a variable
or an expression, provided all variables within the
expression are previously defined as absolute integer
values at the time the macro is called.

Example: LDA <I> + <£J-I+1>
Argument references may be nested to any desired depth.
Example: <I + <3 - <KJ>» -17

Arguments <1> and up are replaced by argument values from
the variable field of a macro call during assembly.

Argument <0> is replaced by the label field of the macro
call during assembly. The label of the macro call is
not automatically assigned.

Example: <0> LDA <K3> - 1

Macro Calls

A macro call is a special type of statement that uses
the name of a defined macro in the operation field:

Label Operation Field Variable Field

Optional Name of User- Argument value
Defined or expressions, plus
Library Macro optional dummy

words or argument
identifiers,
separated by commas
or blanks

For each macro call, the assembler enters the in-line code of
the defined macro starting at the current location. Argument
references are replaced by argument values from the variable

field. o

5-3

UIser-defined macros must be defined in source statements
preceding the macro call.

Here is a a typical call to the TRANSFER macro defined
above:

TRANSFER ARG1, '1770

Argument' Values

The variable field of a macro call usually contains one
or more expressions to be interpreted as argument values.
An argument value expression starts with the first non-
space character of the variabhle field and continues until
a terminating comma or space occurs. (The comma or space
is not considered part of the argument expression.)

Argument Substitution

During assembly of a macro call, the assembler substitutes
the argument values in the macro call variable field for
the argument references in the macro definition.

Argument expressions are matched to argument references

in numerical order from left to right:

Variable Field Argument <1> Argument <2 > Argument <3>
A A 0 0

A+3 A+3 0 0
X,Y-1,Z2%A-1 X Y-1 Z*A-1

X,B-C (Z3X2) X B-C 73X2
(A,B-1), C A,B-1 C

(X,Y,(Z1+22),3) X,Y,Z1+22),3 O 0

The first expression in the macro call is assigned as
argument 1, the second as argument 2, and so on. In the
following call to the TRANSFER macro -

TRANSFER ARG1l, '1770

The variable ARGl is argument 1 and the constant '1770

is argument 2 . Thus, the macro example is assembled
as:

LDA ARGl

STA '1770

Arguments that are not assigned values 1in a macro call
are set to zero by the assembler.

5-4

Argument Values in Parentheses

Argument value expressions may be enclosed in parentheses
to permit the use of commas, spaces, or string delimiters
within a single argument. (The outside parentheses are
not included as part of the argument expression.) One
use of this is in forming sub-lists of arguments for
macro calls nested within a given macro definition.

Examples:
MACRO [WAIT MAC
DEFINITION IRS <1>
CONTAINING] JMP * -1
CALL TO TRANSFER <2
"TRANSFER" ENDM
MACRO

CALL TO WAIT 100, (ARGl, ARG2)
- WAIT MACRO

ASSEMBLED IRS 100
AS JMP * -1
LDA ARGl
STA ARG2Z

Dummy Words

An ordinary macro like:

TRANSFER ARG1, ARG2Z
is simple, but cryptic. A few extra words in the variable
field of the macro call can improve the intelligibility
greatly as in:

TRANSFER ARGl TO ARG2

TRANSFER DATA TO PRINTER

TRANSFER MESSAGE TO TTY

TRANSFER FROM CONSOLE TO DISPLAY

5-5

and so on. These macro calls are made self-documenting
by a combination of meaningful argument symbols (DATA,
MESSAGE, PRINTER etc.) plus "dummy" words, such as

TO, FROM. Dummy words are ignored by the assembler
(ie., not mistaken for argument symbols).

Dummy words applicable to a given macro are assigned in
the variable field of the MAC statement that starts the
macro definition, as in:

TRANSFER MAC TO

;

i

1
ENDM

In this statement, TO is defined as a dummy word. In any
subsequent call to this macro, the assembler ignores the
word TO (does not mistakenly assume it to be a symbol to
be substituted for an argument). All other expressions
in the variable field are interpreted as arguments
(proceeding in numerical argument order from left to
right) and substituted for the argument numbers in the
macro definition statements as usual. When TRANSFER
macro is called by a statement

TRANSFER ALPHA TO '7770

the assembler ignores the TO and assembles the macro as
if the call statement were TRANSFER ALPHA, '7770.

A dummy word string can be any number of ASCII characters
(letters, numerals, period and $ sign). Any number of
dummy word strings may be used in a macro call, separated
by commas. If the first character of a dummy word string
is an open parenthesis, all characters (including spaces
and commas) up to the closing parenthesis are considered
part of the same string. (The surrounding parentheses are
not included).

Here are some possible variations of the TRANSFER macro:

MAC Statement Macro Call
TRANSFER MAC DATA, FROM, TO TRANSFER DATA FROM ALPHA TO '7770

TRANSFER MAC VOLTS,TO,DIG OUT TRANSFER 3.22 VOLTS TO DIG OUT 14
TRANSFER MAC COUNTS,TO,PULSER TRANSFER 3374 COUNTS TO PULSER $FF

Arguments are underlined.

5-6

Other examples of typical macro calls using dummy words:
INPUT S1, M1, S2, S3 AND M6
ADJUST K2 BY K3, T4 BY K3 AND TS5 BY Tl
MOVE 3 WORDS FROM X31 TO Z21
SUM X1, X2, X3 AND X4
DISPLAY ALPHA

CONNECT 7.0 VOLTS TO PIN 5 ON CONNECTOR 1

Argument Identifiers

The self-documenting effect of dummy words improves the
intelligibility of macro calls, but the programmer must be
careful to enter values for arguments in the proper order.
Argument identifiers increase the format flexibility of
macro calls by associating a particular argument number
with a specific dummy word, regardless of order. For
example, identifiers can be defined so that argument 1
follows the dummy word "TO'", and argument 2 follows "FROM",

regardless of the order in which TO and FROM appear in the
macro call.

Argument identifiers, like dummy words, are assigned in
the variable field of a MAC statement that introduces a
macro definition. An argument identifier word consists of
a dummy word enclosed in parentheses and equated to an
argument number:

TRANSFER MAC (FROM) = 1, (TO) = 2

ENDM

When a call to the macro uses a defined argument identifier
in its variable field, the first non-dummy expression
immediately following the identifier is taken as the value
of the argument:

TRANSFER FROM ALPHA TO BETA

TRANSFER TO BETA FROM ALPHA
Both of these calls have the same effect: the expression

following the dummy word FROM is taken as argument <1>, and
the expression following TO is taken as argument <2>.

5-7

Argument identifiers and dummy words may be used together
in the same macro. Ordinary dummy words are ignored, as
usual.

Arguments that are not associated with identifier words
receive values in the usual positional priority - the
first non-dummy word is taken as the value for the first
unspecified argument, and so on. Example:

Macro
Definition: MASK MAC (BY)=2, (TO)=3, MASK, TRANSFER, AND

LDA <1>
ANA <2>
STA <3>
ENDM
Macro
Call: MASK INPUT BY =7 AND TRANSFER TO BUFF1

Here, argument 2 is =7 and argument 3 1is BUFF1, as
located by identifier words BY and TO. Argument 1 is
assigned the value of the expression INPUT (the only other
non-dummy word in the variable field).

Assembler Attribute References

Certain useful attributes of a macro can be specified by a
number preceded by the pound character (#). The following
assembler attributes are presently available to the macro
programmer:

#1 Current Macro Call Number.

#2

Number of Arguments in Current Macro Call.
(others may be assigned later)

The attribute number may be a variable, or an expression
within parentheses, as long as such variables are previously
defined as absolute integer values. Attribute references
are evaluated as absolute integer values.

Examples: #3
#XYZ
#(I+2)
<3>

5-8

Local References Within Macros

Local labels can be assigned within a macro definition by
using the ampersand character (§) as the first character
of the label. Local labels do not conflict with labels
outside of the macro. The ampersand is replaced by a
4-digit macro call number, thereby assuring uniqueness of
the label regardless of the macro's environment. Use of
the "§'" outside of a macro will result in the substitution
of 4 zeros.

Examples: Local Label Evaluated As In Macro Call

GABC 0002ABC 0002
GX3A 1739X3A 1739

5-9

MACRO LISTING AND ASSEMRLY CONTROL

Three levels of listing detail for macro calls are provided.
The default condition is NLSM, which causes only the Macro
call statement to be processed (no detailed output). These
pseudo-ops are global in that they remain in effect until

a new macro listing control pseudo-op is specified.

The BACK (TO) and SAY statements control assembly of macros.

LSTM (List Macro Expansions)

Label Operation Field Variable Field

Optional LSTM Not used
Directs assembler to list macro call statements and all
lines generated by expansion of the macro, including code
or data values.

Example:

HTRARNSFER MAICRD EXAMPLE

LT
ETHRET IR LS
TEAMSFER MA T
L.TsF T
CiTH L
b i
L0 [FTH
TH Lopn
DT e
LA SET
E

IR e

(5 B T T O b N =

5-10

LSMD (List Macro Expansions - Data Only)

Label Operation Field Variable Field
Not used LSMD Not used
only those

Directs assembler to list macro calls plus any lines
generated in the expansion of the macro that generate

data.

NLSM (No Listing Of Macro Expansions)

Label Operation Field Variable Field

Not used NLSM Not used

Inhibits listing of statements generated by the assembler
during macro expansion. Only the macro call is listed.

5-12

BACK, BACK TO (Loop Back - Macros Only)

Label Operation Field Variable Field
Optional BACK
or Statement label
BACK TO

This statement directs the assembler to repeat source
statements that have already been assembled, beginning
with the statement specified in the variable field. Such
backward references are permitted only within a macro
prototype. (Both the BACK, BACK TO and the specified
statement label must lie between the same MAC statement
and its corresponding ENDM).

Examples:
BACK TO AB16
BACK AB16
IF (X .NE. 0) BACK T0O START+3

SAY (List Message to Operator)

Label Operation Field Variable Field

Optional SAY Any ASCII text string

The assembler responds to a SAY statement by printing the
content of the variable field, starting at column 1 of the
listing. Usually, the SAY statement is used within a macro
to generate error comments or other messages to the
operator. Macro argument references (enclosed by angle
brackets) are replaced by their equivalent character string
before output. :

SAY statements generate output regardless of the setting of
the listing options, as long as a listing device is assigned.

5-13

Macro Definition:

(@351) OLDMAC MAC USING, AND

(@352) NLST

(8353) SAY

(@4354) GAY ® 2k kr kxR A X R AR E RN KA KRR KR KRR K KRR TR KRR kR R R
(#3%5) @AY OLD MACDONALD HAD A FARM, E-,~E-I-0.

(B3%6) HAY AND ON THIS FARM HE HAD SOME <1>, E-1-E-I1-0.
(A357) SAY WITH A <2> <2> HERE AND A <2> <2> THERE,

(A59H86) SAY HERE A <2>, THERE A <2>,

(B359) LAY EVERYWHERFE A <2> <2>,

(R364¥) SAY OLD MACDONALD HAD A FARM, E-I1-E-1-0.

(B361) SAY ok ok ok ok ok ok ok ok ok k% kK ok %k ko ok ok ok ok Kk ok ok 3k ok ok ok ok Xk K ok ok ok ok ok ko ok sk ok Kk R ok R R
(03+2) SAY

(@363) LIST

(B364) ENDM

Macro Calls:

(A365) OLOMAC, USING CHICKS AND CHEEP

kK kKK K R kR R R K K R R ok R R K ok R ok K K K K kR KR R ok K ok ok Ok oK R KR ok oK ok ok ok ok K K K K ok
OLD MACDONALD HAD A FARM, E-1-E-1-0.
AND ON THIS FARM HE HAL SOME CHICKS, E-I-E-1-0.
WITH A CHEEP CHEFP HERE AND A CHFEFP CHEEP THERE,
HERE A CHLEP, THERE A ChHEEP,
EVERYWHERE A CHELEP CHEEP,
OLD-MACDONALD HAD A FARM, E-1-E-1-0.

sk ok ok ok ok ok ok ok kK ok kK oK K K R K ok K ok ok Ak ok ok ok ok ok ok ok sk ok ok koK ok ok ok ok ok ok ok ok ok ok %k oK ok ok K % K ok K

(B366) OLDPMAC, USING DUCKS AND QUACK

2k ok ok ok ok ok kK K kR ok Rk R Kk ok ok Kk ok o ok ok ok R K K K o K K o ok K kK Kk K K Rk
OLD MACDONALD HAD A FARM, E-1-E-1-0.
AND ON THIS FARM HE HrD SOME DUCKS, E-I1-E-1-0.
WITH A QUACK QUACK HERE AND A QUACK QUACK THERE,
HERE A QUACK, THERE A QUACK.,
EVERYWHEKE A QUACK QUACK,
oLD MACDONALD HAD A FARM, E-I1-E-1-0.

s ak ok ok ok ok sk ok ok ok ok ok kK X ok sk ok K ok ok % ok kK ok ok ok 3k K ok ok ok ok b 3k ok ok o kK i ok K ok % ok A ok ok ok ok ok sk ok K ok Xk

(8369) OLDMAC, USING NEWLYWEDS AND [BeEP]

oAk K K K Kk ok % K K K ok ok ok K R R ok kR R R Rk K R K ok ok K ROk R R R KK Rk Sk K KRk ok Kok
OLD MACDONALN HAD A FARM, E-1-E-1-0.
AND ON THIS FARM HE HaD SOME NEWLYWEDS, E-1-E-1-0.
WITH A [BEFPY [HEEP] HERE AND A [3:27P3 [BEEP] THERE,

HERIS A LY 2), THRERE A [SEEPD,

EVERYWHERL A [BHER] [BEEPD,
OLD HMACDONA!O HAD A FARM, E-I1-E-1-0.
e L s e s e R R R R AR AR R e R R

5-14

MACRO EXAMPLES

The following macro example makes use of local symbols,
assembly attributes, and looping. The number of arguments
processed by this macro is variable.

Definition:
ADJUST MAC BY, AND
SET &GN =1
L1 IF (§N .GT. #2) GO TO §L2Z
LﬁA (&N) ARG. #1, 3, 5, ETC.
MPY (§N+1) ARG. #2, 4, 6, ETC.
STA (&N)
SET GN = &GN + 2
BACK TO +L1
$L2 ERDN
Macro Calls: ADJUST A3 BY 16, A4 BY 20 AND A5 BY 3
ADJUST METER1 BY 100
ADJUST X1,2 X2,2 X3,2 X4,50 X5,50 X6,2
Definition:

MOVE MAC WORD, WORDS, FROM, TO
IF (<1> .E0. 1) LDA <2>: STA <3>: GO TO &X
LDX = <1>
LDA <2> -1,1

STA <3> -1,1

pXs 1,1
JMP ®-5
gX ENDM

5-15

Macro Calls: MOVE 1, ALPHA, BETA

MOVE 20, LIST, TABLE

MOVE 1 WORD FROM ALPHA TO BETA

MOVE 20 WORDS FROM LIST TO TABLE

MOVE 3, FROM X31 to Z21
The following macro does not generate any coding, just an
answer. It demonstrates how macros can be used to

construct interpreters as well as compilers.

Definition:

FACTORIAL MAC OF
FACTA <1> ,1
ENDM

FACTA MAC
IF (<1> .E0. 0) DATA <2>
SET A2 = <1> * <2>, Al = <D -1
IF (<2> .NE. 0) FACTA Al,A2
ENDM

Macro Calls: FACTORIAL OF 5§

FACTORIAL 7

5-16

The following example shows the type of 'language" that
can be provided for business applications when a suitable
set of macros are prepared in advance. (The macro defini-
tions are not shown.)

L FILE AND FIELD DEFINITION.
INPUTREC FILE CONTAINS 80 WORDS FROM UNIT 5
OUTPUTREC FILE CONTAINS 80 WORDS ON UNIT 6

AMOUNT FIELD OF INPUTREC FROM COLUMNS 25 TO 20, €@ DECIMAL
POSITIONS

CODE FIELD OF INPUTREC FROM COLUMNS 25 TO 30
NAME FIELD OF INPUTREC FROM COLUMNS 65 TO 75
NAMEOUT FIRLF OF OUTPUTREC FROM COLUMNS 1 TO 10
CODEOUT FIELD OF OUTPUTREC FROM COLUMNS 11 TO 16

AMOUNTOUT FIELD OF OUTPUTREC FROM COLUMNS 17 TO 23,
2 DECIMAL POSITIONS

Remmmm oo - START EDITING PHASE OF PROGRAM.
START READ INPUTREC, IF END OF FILE, GO TO EOF
MOVE AMOUNT TO AMOUNTOUT
MOVE CODE TO CODEOUT
MOVE NAME TO NAMEOUT
WRITE OUTPUTREC
TO TO START

Boemem e - FILE PROCESSING COMPLETE.
EOF END

5-17

SECTION 6
SOURCE FILE MERGING COMMANDS

The assembler includes a function called RDALN (read
alternate lines) that has the ability to merge lines from
two or more source files during assembly. File merging is
controlled by special command statements in the primary
source file that begin with a dollar sign:

$ INSERT
$UPDATE
$COPY
$DONE

The primary source file is the file (or device) specified
in the usual manner at the start of assembly. Secondary
files stored on disk or mounted on a specific input-gqutput
device are selected by a filename or device code specified
in the variable field of a $INSERT or $UPDATE command.

Only disk-resident files can be identified by filename., When
non-disk devices are used, a device code is used instead
of a filename:

(A) ASR ' (P) PTR (C) CARDS
(M) MAG TAPE (K) Cassette

The parentheses must be included in device codes. Only the
first character is needed to identify the device; other
characters may be included for documentation (as in ASR or
PAPER TAPE READER) but the extra characters are ignored.

File merging commands are allowed in the primary source file
only, not in secondary files.

$ INSERT
Label Operation Field Variable Field
Optional $INSERT Filename or device code

When the assembler reaches an $INSERT command in the primary
source file, it opens the specified file (or starts the device)
and starts reading statements from the secondary file. The

6-1

secondary file is read in entirety, up to but not including
the end-of-file mark. The assembler then returns to the
primary file and resumes at the line following the $INSERT
command. Nesting of $INSERT commands is not allowed.

$UPDATE
Label Operation Field. Variable Field
Optional $UPDATE Filename or device code

When the assembler reaches an $UPDATE command in the primary
source file, it opens the named file (or starts the device)
but continues reading from the primary source file until a
$COPY command is found in the primary file.

If the primary file contains more than one $UPDATE command,
the one most recently processed determines the secondary
file to be accessed by $COPY commands.

$COPY
Label Operation Field Variable Field
Optional §COPY m,n

When a $COPY command is found in a primary source file, lines
m through n of the secondary file specified by the most
recent $UPDATE command are input to the assembler. After
line n has been processed, the assembler returns to the
primary file and processes the record following the $COPY
command.

$COPY commands may also be entered in the following forms:

$COPY m Copy line m of secondary
file only
$COPY ,n Copy from current position

in secondary file up to and
including line n

6-2

$DONE

Label Operation Field Variable Field
Optional $DONE Not used

Upon reaching a $DONE statement, the assembler closes all
open files and shuts down all devices used for secondary

input.

APPENDICES

PRIME 200 Instructions (Op Code Order)

PRIME 200 Instructions (Class Order)

PRIME 200 Instructions (Mnemonic Order)

1/0 Device Codes

ASCII Character Codes

Object File Formats

Assembler Error Messages

&1
5
i
&
K
i
G
X}
i
K
X
3
3
i
I
B
(i
i
K}
G
i
I
3
G
K
fi

i
RIS
MR
MR
ME
MK
M
=H
=H
SH
=H
SH
=M
=H
SH
SH

(AL AL Rl

BBRRES

o~
P
R

)
3,

a3,

O L N N L o P

-

-

o
)
ot

>

-

il
-,
L

P

=,
ol
T
o
& &

]

K R
(]

XN
DD E LM PP

"l
[ix]

.,.
oy

%5

B b R]
-
LR O

fcs RS BN B U icn B B R

i1
e x|

)
=

,.
G
T

fa)
d

%
e o Y
i

AN R R R iy

P I o I s B oy B
EU I B By B I
P By By oy |
>
[]
LN

e
bR B

-‘I
™
154

o
1 S L |

T

fx]
=
-
=4

e
i
-
==
ind &

el

fxxi
-
)

3N
ot

-
B nm
]

D AN Aad s bR

S B

e

fx x|
Ty
e’

=T O

T

B ﬁ!
ol
=
=

fa]
'.E

Fiox]
- ury
N E X
-

1

-

ABEMM
1 G MM
ABTMM
CENERTNY
Bl B
1 BIEHN
B4 LANM
CERRLY
GEREIY

[

B

R R

&

HL.T
HOF
A K1
L.
El1e
E=2
R
=A
THE
tHF
ZEA
1AE
FIM
FID

EHE
Tk
AT

APPENDIX A
PRIME 200 INSTRUCTIONS
(OP CODE ORDER)
HFLT
MO OFERAT IOH

EMTER SIMNGLE FREZISIOM MODE
EMTER DOUIBLE FRECISION MOCE

Sl EMTER 1k SECTOR ALDRESSIMNG
SCEHEAY ENTER Z2K SECTOR RADDRESSIMNG

CREMPY RESET MACHINE CHECE
TEANSFER SZHIFT COUMTER T2 A

TRAMSFER CIMFUT? STATUS EEYS

MNORMAL T ZE
COMPLUTE EFFECTIVE ADDRESS
IHTERCHAMGE A RAHD B

MOGE
MODE

T A

FOSITION FOR INTEGER MULTIFLY

FOSITION FOR IMTEGER DIVIDE

- WIRY VERTFY

ENAREBLE IMTERRUFT

TRAMSFER COUTRUT) A TO STARTLU=

CLERR RCTIWVE INTERRUFT

FEY=

E=TM EMTER STAMDARD INMTERRUFT MOLE
EMIM EMTER VECTORED INTERRLUFT MODE
L.MCH LEAYE MACHIME CHECK MODE
EriCM EMTER HMACHIME CHECE MODE

::3: l.'lt |::
(R
RN ¢
IHH

SURERNISOR CALL
IMFLIT SERIAL INTERFACE TO H

DLTFUT SERIAL INTERFACE FROM H

IMHIEIT INTERRLIFT

EZZFR EMTER 2K RELATIVE RADDRESZTHG Mol

JHF
faLps
LA
FitF
LT
=TH
L.RL.
LR
LER
FARL
ARS
ARE
LLL
Ll
LLF

CMCOHG T T IOMAL. JUMP

LOUSLE FPRECISION LORD

LOAD A

AMD T A

DOUBLE FRECISION STORE

STORE A

LOG RIGHT LOGICAL

LOMG RIGHT SHIFT

LONG RIGHT ROTATE
CLGRY A RIGHT LOGICHL

A RIGHT SHIFT

A RIGHT ROTATE

LOMG LEFT LOGTCAL

LOWG LEFT SHIFT

LOMG LEFT ROTHTE

A-1

Rt |
Hh
]
Rl
Q1
N1
=
X1
3
3
i
X
i
K
Fife
ik
K
[
X
K]
K]
5]
¥
ik
FR
i
Pk
(H]=4
Pif
T
3
3
i3
K]
K1
R
K
K]
0
i
K]
K]
K]
5]
i
K]

G

I3

el M
11 dgid
J.::rJrJ

IR A RRLL RN

o
e

ol gl I R I s
-
3

i.i

lmluul
i I R
TELA4H
1RL1E3

AL CLGL s
AL
AL
ERA
CAFs
FTala
[=E
LR
JET
SHEP
SR
SER
SFE CSERD

SR CSFRS

1,”1 '-«'H R B

LERLZEE+M o

1EL486
1

1.2

1%

1.4

1 4EFFLEA
1aEE1g
148024
14ﬁﬁ4n
1+ulm4
143118
14E114
14Ezae
148289
148218
14214
1dE=Eg
145218
143Z28
1@
146407
14@416
14@41d
146412

A LEFT Lim3ToAL

R LEFT SHIFT

A LEFT ROTATE

EWCLUSIVE OR TO A

CIBELE FRECISION ADD

ADD MEMORY TO A

LOUBLE PRECISION SUBTRACT

SUBTEACT MEMORY FROM A

JUME TO EA + 4 AMD STORE P IN EA
LIMCORG T TIONAL SEIF

SEIR O C-BIT RESET

SEIFR OM HOWE OF SEHSE SWITCHES 1-4 SET
SEIP OM A ZERD

SEIFR OM A BIT L& ZERO

SEIFR OM MACHIME CHECE RESET

SEIF O A GREATER THAM ZERD

SEIF OM SEMSE SWITCH H RESET

SEIF OH A BIT N REZET

SEIFR OM A PLLS

SEIFP O T-EIT SET

=3 DAY OF SEMSE SHITOHES 1-4 SET
i A HOT ZERD

M A BIT 4E OME

O MACHINE CHECKE SET

O R LESS THAM OF EQUAL TO ZERO
O SEMSE SHWITCH H SET

SEIF OW A BIT H SET

SEIF O A MINOS

COMFARRE A WITH MEMORY

THCREMENT, REPLACE MEMORY AHD SEIF
IMTERCHAMGE MEMIRY AMD H

DUTRUT COMTROL FLILSE

CLEAR LOMG <R ARD B2

CLEAR B

CHAMGE SIGH OF R

CLEAR A

SET SIGH OF /R PLUS

TRAMSFER A TO B AMD CLEAR A
SUBTRACT OHE FROM A
THCREMEMT. REFLACE IMDEX AMD SEIF
FEZET C-~EBIT

TRAMSFER B TO & ANMD CLEAR B
DECREMENT EEFLACE IMODERX AMD SKEIF
COMPERE A WITH ZERD

AL TWO T A

SUBTRACT THO FROM A - _
COPY SIAM TO C-BIT. SET SIGM OF A FLUS
COMPLEMEMT H

TWO S COMPLEMEMT H

CONYERT A<D TO TRUE

COMVERT A<=0 TO TRLUE

COMYERT ~cA=@s TOo TRUE

]
k]
3
i
i
15
i3
i
;i
i
&
i

rF
Rz
ME
ME
10
I
T
10

148417
148414
14@415
1 T
LS G
14189

14121E
1441248
141LE48
15
15
1
17
g
Sk
v

74

LEC
L.GE
LGT
A |
=CE
CHFE
CAl.
Tl
ANA
HICH
IR
TTH
LG
=T
MEY
[:I]‘ ll"’
])
THA
OTH
Sk

T

I

COMWERT A=0 TD TRUE

CONVERT Ax=0 TO TRLE

COMNVERT AT T TRUE

SET =IGH OF A MINUS

SET C-BIT

CLEAR RIGHT BYTE OF R

CLERR LEFT BYTE OF H

IMTERCHAMNGE BYTES OF A AMD CLEAR LEFT BYTE
ADD OME TO A

ADD C-BIT TO R

IHNTERCHAMGE BYTES OF A AMD CLERR FRIGHT BEYTE
IMTERCHANGE BYTES OF H

LOFE INDEX <ASSEMELER SETS INDES EBIT>
STORE INDEY CASSEMELER CLERRS IHDEAX BIT?
MULTIFLY

DINVIDE

SEIF IF SET

IHMFUT TO A

COUTFUT FROM A

SET IMTERRUFT MASK

GiE
FiE
Bk
(2]

%]

+

T T

O]
v w -w
B B

St
+

3
&=
4
&

SR Ay

B g e by R P I e

Fce i

A I

|
b}
oy
[
=

1

o

i

o,

—

tase!

ST
far g

o R R

1) ficA R 2 YR
R BN O i)

g

1
1
1.
1
1

%]
5

R T S e s BLY

1 BB B
1E1BEL
1ELBEE
161640
1BLLER
101290

A

APPENDIX B

PRIME 200 INSTRUCTIONS

R

A
THE
HF
CEM
IAE
1
FID
WIEY
EHE
DT
(=])
E=Ti
ENIM
L
EMCH
5 l,'_l ':"
Tl
IR

B

ol
MR CSFM D
SGT

SPL CSGED
S
AR

SHE CSHE
SLN

SHZS OGRS

SEIF
SEIF
SEIF
SEIFP
HALT

ik
ik
okl
]y

(CLASS ORDER)

ZWITCH W RESET
A BIT M RESET

CSEMSE SHMITCH N SET

A EBIT KW SET

SENSE

MO OFERAT ION

EMTER
EMNTER
EMTER
EMTER 32
RESET
TRAMNSFER
TRAMSFER

SIMGLE FPRECISION MODE
DOUBLE FRECISION MODE
1ak

SECTOR ARDRESZIMG
ko OSECTOR ADDRESSING

MODE
MobE

MACHINE CHECE

SHIFT COLMTER TO H

CIHPUTY STATUS EEYS TO A

HORMAL. I ZE
COMFUTE EFFECTIVE ADDEESE

THTERCHAMGE A
FOSITION FOR

ML E
IHTEGER MULTIFLY

FOSITION FOR INTEGER DIVIDE
VERIFY
EHABLE IHTERRELFT

TREAMNZFER

COUTFUTY A TO STATUS KEYS

CLERR ACTIWVE IMTERRLUFT

EMTER
ENTER

STARMDARD
VECTORED
LERVE MACHINE CHECE
EMTER MACHIME CHECE
SUFERY TS0

THFUT SERIAL

INTERRUFT MODE
INTERRUFT MODE
MODE

MODE

CALL

IMTERFACE TO H

QUTFUT SERIAL INTERFACZE FROM A
THHIBIT INTERRELUFT
EMTER Z2K RELATIVE ADDREZSING MODE

LIMCOMDT T TOMAL

=k IP
ZHIF
SkHIF
= e
SkIF
SkIF
SEIP
SKIF
SKIP
SEIF
SKIP
SKIF

M
]
iy
]
(12
M
ul
1]
124
g
oM
i

B-1

SKIF
C-EIT RESET
HOME OF SEMNSE
A ZERD

A BIT 18 ZERO
MARCHIME CHECK RESET

A GREATER THAM ZERO

A FLUS

cC-BIT SET

AMY OF SENSE SWITCHES 1-4 SET
A HNOT ZERO

A EBIT 18 OHE

MACHINE CHECE SET

SWITCHES 1-4 SET

i
i
K]
]
G
3
i
I
K
13
i
I
G
I
i
I
3
i
I
I
I
Iy
i
L3
i
I
i
I
i
i
5]
K]
I
I
Ty
10
T
T
T
N1
ik
Fik
Fk.
R
iy
QIE
Pife
riF:
Pk
Mz
MF:
iz
M

141n11n
T [
AAEEZS
1SS
1AELaa
14ELag
: 4lL11l1

{1L21a

I4H1ﬁ1
1aEsEs
1ebda1im
14E411
14@ad1z
A SIS L S
1480114
148415

14156
S I B
P e s T
141248
I 3 el ¥
141283
14
Ed
Sidg

o
iR R I P Y

=

B DD

ha

SEIF OM A LESS THAM OF EQURL TO FERD
SEIF OM A MIKDS

CLEAR LOMNG TR AMD B

CLEAR E

CHAMGE SIGH OF A

CLEAR A

SET SIGH OF A PLUS

TEAMNSFER A TO B AHD CLEAR H

SLUETRACT OME FROM A

THCREMENT. REFLACE IMDEX AMD SEIF
FREZET C-BIT

TREAMSFER B TO A AMD CLEAR B
DECREMENT REFPLACE ITHDE:X AMND SKIF
COMPARE A WITH FERO

ADD THO TGO A

SLUETEACT TWO FROM A

COFY SIGH TO C-BIT. SET SIGH OF A PLLUS
COMFLEMEMT A

TW % COMPLEMEMNT H

CORNVERT RO TO TRUE

COENYERT AC=0 TO TRUE

CORVERT “ CR=G T TRUE

COMVERT A= T TRUE

CORYERT AZR=0 TO TRLIE

COMVERT AZD TO TRIJE

SET SIGH OF A MIMUS

SET C-BIT

CLEAR RIGHT BEYTE OF A

CLERR LEFT BYTE OF A

INTERCHANGE EYTES OF A AMND CLERR LEFT EYTE
ADD OME TO A

ALy C-BIT TO A

INTERCHAMGE BEYTES OF A AMD CLEAR RIGHT BYT
INTERCHANGE BYTES OF A

OUTFUT COWMTROL PILSE

SEIF IF SET

IMFUT TO A

CLUTFUT FROM A

SET IMTERRUFT MASE

CUHCOMD T TIONAL JUMP

LOUELE FRECISION LIOAD

LORAD A

AND T H

DOLELE FRECIZSION STORE

STORE A

E-CLUSINE OR TO R

DOUBLE PRECIZION ADRD

ALD MEMORY TO A

COUBLE FRECISION SUBTRACT
SUBTREACZT MEMORY FROM A

JURMF TO EA + 1 AWND STORE P IN ER
COMPARRE A WMITH MEMORY

THCREMENT, REFLACE MEMORY AWD SKIF

B-2

oy
e

1z

15

15

1.E

17

F A
eI MM
Ak B MM
A i MM
Et RSN
1 BEdM
A L E
(RER R
B Rl
B T
e N 1 2
(% W

= 5

i ot

i,

THA
L.
ST
MFEY
[:' I I."I
L.EL.
LES
l.FE
Ak
ARE
ARk
L.L.L
L=
LLE
AL
AL
AR

LLLGER D

clLGL S

THTERCHAKGE MEMORY ANE A
SETS IMDER BITX

LOAD IHMDEX CASSEMBELER
STORE THDEX CRASSEMELER

MULTIPLY

LIWIDE

LOMG RIGHT LOGICAL
LIOMG RIGHT SHIFT
LIOMG RIGHT ROTRTE
A RIGHT LOGICAL

A RIGHT SHIFT

H RIGHT ROTHTE
LOMG LEFT LOGEICAL
LOMG LEFT SHIFT
LG LEFT ROTATE
A LEFT LOGICAL

A LEFT SHIFT

A LEFT ROTATE

CLEARS

THDE.

EBIT?

R

i
T“

Hl

HF

K
I
i
I
i
K
]
ik
K]
WL
Pk
i
ik
Il
I
i
¥
i
i
RIS
K]
K]
13
i
5
G
G

1 EzERG
1l E1E
A

£ L MM
SRR
i 1 5N
(5 xA

13l EBE
E1ed e FAr
Gk St
FAGMN
ARl
141858
191844
11

148214
BEEl1l
14@E24
NICEEAGE
1R G R
LeAmELd
1 EELa
14@azze

lo
(1 ey

oo my ok
o= ’~1
3 !"'.‘ I:':
2 I K%

o e e

K%
ok
By
-t

K o K K
AR IR R B B)
y Fon .]

.
&

1 -M 1.__]_;1

B bl Ll b

APPENDIX C
PRIME 200 INSTRUCTIONS
(MNEMONIC ORDER)

ADD TWO TO A
AL C-BIT To A
ADD MEMORY TDOHA
CLGLY A LEFT LOGICAL
A LEFT ROTHTE
A LEFT SHIFT
AMOC TO A
AL OME T A
A RIGHT LOGICAL
A RIGHT ROTHTE
A RIGHT SHIFT
CLEAR ACTIVE INTERREUFPT
CLERR LEFT EYTE OF A
CLEAR RIGHT BYTE OF A
COMPARE A WITH MEMORY
COMPARE A WMITH ZERD
COMPLUTE EFFECTINE RADDRESS:
CHAMNGE SIGH OF A
COMPLEMENT A
CLERAR H
CLERR E
CLEAR LOMG CA ARMD B
COEY SIGH TO C-BIT. SET SIGM OF A PLU=
LOUBLE FRECISTION ADD
EMTER DOUBLE FRECISION MODE
DIWIDE
COLELE FRECISION LORD
DECREMEMT REFPLACE IHDER AMD SEIF
COLBLE PRECISION SUBTRACT
COUBLE FFEII IO STORE
EMTER 1&k SECTOR ADDRESSIHG MODE
EMTEF 2 RELATIVE ADDRESSING MODE
CEWAY EMTER ¢ SECTOR ADDRESSING MODE
FHIH EMTER MACHIME CHECE MODE
EME ENAELE THTERREUFT
ERA EmCLUSIVE OR TOH
E=TM EMTER STHMDARD IHMTERRLUFT MODE
ENIM EMTER “ECTORED INTERRLUFT MODE
HLT HALT
TARE INTERCHANGE A AND E
1A INTERCHAMGE EYTES OF A
T IMTERCHAMGE EBYTES OF A AND CLEARR LEFT EYTE
TCR INTERCHANGE EBYTES OF A AND CLEAR RIGHT EYTi

AR
HIZH
A
ALL
FL

P
amn

b

Cc-1

I

I

(K]
G
ER

1iald4
BEES1l
=

15

14iE41=
1G9
1 4GS
145411
N RS
s R R L
A1 mmN
LebfAck e
AR SEL
143412
E1d AN

FEEE1EL
1.4
L5 1% T K b R

=

o
1E 1 1EE

(5]
3
5]
5]

o
—
]
D)
-
Do)

1126
16143

LRk &
D]

[N
X%

AR 0

IR

Dol]

i b)
Ml
Sk
SHE
SR
SFL
SR
SRH

CSPH

CERS

CELT

CEME S
CESARD
CEGED

THTERCHAMNGE MEMORY AMD A
THFUT TGO A

THHIEIT IMTERRLUPT

TRAMSFER CIMPUT: =2TATUS EEYS
THIZREMEMT. REFLACE MEMORY AMD
THCREMEMT, REFLACE IMDEX AMD
IMFUT SERTAL IHTERFACE TO A
LIMCOMD T TIONAL JUMP
JUMF TO ER + 4 AR
LOAD A

LOAD THDEX CASSEMBLER SETS
CORMVERT A=0 TO TRUE
COMYERT AZ=0 TO TRLUE
COMRYMERT A0 TO TRUE
CIMHYERT AC=0 TO TRUE

LONG LEFT LOSICAL

LOWGE LEFT ROTATE

LOMG LEFT =HIFT

COMYERT RSO TO TRUE

LEAYE MACHIME CHECE MODE
COMYMERT “CA=82 T TRUE
LOMG RIGHT LEOGICAL

LOMG RIGHT ROTARTE

LOMG RIGHT =HIFT

MWL TIPLY

MO OFERAT IOMN

HORMAL IZE

CLITRUT CONTEREOL PLULSE
QOUTFLIT SERIAL IMTERFACE FROM A
DUTFUT FROM A

TEAMSFER COUTRLITY A TO STARTLS KEYS
FOSITIONM FOR IMTEGER DINVIDE
FOSITION FOR IMTEGER MULTIFLY
FESET C-BIT

FESET MACHIMWE CHECE

SUETRACT THWI FROM A&

SEIF M A BIT M RESET

SEIF OM A BIT W SET

TEAMNSFER SHIFT COUNTER TO A

SET C-BIT

ENTER SIMGLE FRECISIOM MODE

SEIF DM A GREATER THAEM ZERD
VIMCOMDITIONAL SEIF
SEIF IF =SET

SEIP OM A LESS THAM OF
SEIF OM A BIT 18 OME
SEIF OM A EBIT 16 FERD
SKIF OM MACHINE CHECEK
SEIF OW MACHIME CHECE
SEIR OM A MIRKGS

SET IMTERFLUFT MASEKE
SEIFP OM A HNOT ZERO
SUBTRARCT ONME FROM A
SEIRF OH /R PLUJS

SEIF OM C~-EBIT RESET
SKIFP OM SEMSE SWITCH M RESET

TGO A
SEIF
SEIFR

STORE P IN ER

EQLIRL TO

RESET
SET

C-2

THDEY BITH

ZERDO

K
i
1214

Li

i3
Ui
Ak
feip
il
K]
15
i
K]
K
i

AL
1A 3T =
LEALESR+M SEM
I 1l el
LERRES
LELEES
Bt

15

ARAZEI L WIEY
14689 WA
1ebEzEg L =

SKIF O C-BIT SET

SET SIGH OF A MINMNUS

SKEIF OM SEMSE SHWITCH MW SET

SET SIGH OF A FLUS

SKIF CW MOME OF SEMSE SHMITCHES 1-4 SET
SEIF OM RAMY OF SEMSE SWITCHES 1-4 SET
STORE A

STORE INDEX CASSEMBLER CLEARS INDEX BITS
SUETRACT MEMORY FROM A

SUPERNMISOR CALL

SEIF O A ZERD

THOE S COMPLEMENT A

WERIFY

TRAMSFER A TO B AWND CLEAR A

TRAMSFER B TDO A AND CLEAR B

Cc-3

APPENDIX D
I/0 DEVICE CODES

APPENDIX E
ASCII CHARACTER CODES

Octal Octal Octal
Character Code Character Code Character Code
0 260 X 330 SOM 201
1 261 Y 331 EOA 202
2 262 yA 332 EOM 203
3 263 (blank) 240 EOT 204
4 264 241 WRU 205
) 205 " 242 RU 206
6 266 # 243 BEL 207
7 267 $ 244 FE 210
8 270 245 H TAB 211
9 271 G 246 LINE FEED 212
A 301 ' 247 V TAB 213
B 302 (250 FORM 214
C 303) 251 RETURN 215
D 304 * 252 SO 216
E 305 + 253 S1 217
F 206 , 254 DCO. 220
G 307 _ 255 X-ON 221
H 310 . 256 TAPE AUX
I 311 / 257 ON 222
J 312 : 272 X-OFF 223
K 313 ; 273 TAPE OFF
L 314 274 AUX 224
M 315 = 275 ERROR 225
N 316 276 SYNC 226
0 317 277 LEM 227
P 320] 300 SO 230
Q 321 333 S1 231
R 322 334 S2 232
S 323 335 S3 233
T 324 336 S4 234
U 325 337 SS 235
\'4 326 RUBOUT 377 S6 236
W 327 NUL 200 S7 237

E-1

APPENDIX F

OBJECT FILE FORMATS

F-1

nwn ™ o "W o =2 X

APPENDIX G

ASSEMBLER ERROR MESSAGES

Definition

Macro argument number not found, unrecognized
operand type, or FAIL pseudo-op executed.
Improper GO TO refergnce; or END or ENDM within a skip
area.

Improper indirect flag.

Improper label, or external label in a literal, or
missing label.

Multiply defined.

END within a Macro definition or an IF area.
Unrecognized Operator.

Mismatched parentheses.

ENDM not within a Macro definition.

Expression stack overflow, or improper Macro name.
Address out of range (LOAD mode), or improper string
termination,

Symbol table overflow.

Undefined variable.

Value is too large for field, has undefined variable,
is missing, is illegal type, or END pseudo-op is
within a Macro definition.

MAC pseudo-op is within a Macro definition.

Improper index tag, or improper external name.
G-1

APPENDIX H

ASSEMBLER IMPROVEMENTS - DISK REVISIONS 3 & 4

This appendix details additions and improvements to the assembly
language introduced on master disk revisions 3 and 4. Information

in this appendix was obtained from Prime internal memos PE-TN-47
and PE-TN-50.

H-1

PMA TMPROVEMENTS

The following improvements have beern made in PMA for the Rev. 3 Master
Disk:

SUBR/ENT Logic

PMA formerly truncated the internal name of an entry point to four
characters when looking up the value for the entry point. The new
SUBR logic will first search for the name as given, and then, if
it was not found, *truncate it to four characters and search again.
Because of this change, symbol references in SUBR/ENT statements
will not be included in the concordance.

Multi-Word Literals

Literal expressions may now be multi-word data items. For example:

DAC
DAC

C'012345678"
2.51E4

non

PCVH Pseudo-0Op

The PCVH pseudo-op directs the assembler to print symbol values in
the concordcnce in hexadecimal instead of octal.

Phase Error Detection

The assembler will now flag phase errors (a symbol having a different

value in pass 2 than in pass 1) with a 'Y' error diagnostic.

XSET Pseudo-Op

The XSET pseudo-op is functionally equivalent to the SET pseudo-op,
except that symbcols defined with XSET will not be included in the
concordarnce.

B and Y Register Attributes

The initial value of the B and X registers at the start of an assembly

ere now available as attribute numbers 101 and 102 respectively.

H-2

PMA LOADER CONTROL PSEUDO-0PS

The following loader control pseudo-ops have been added to FMA:

D16S - Desector in 1€K Sectored Mode

The D16S pseudo-op directs the loader to enter 16K sectored
desectorizaticn mode. It is equivalent to the LXD pseudo-op.

D32S - Desector in 32K Sectored Mcde

The D32S pseudo-op directs the loader to enter 32K sectored
desectorization mode. It is equivalent to the EXD pseudo-op.

D32R - Desector in 22K Relative Mode

The D32R pseudo-op directs the loader tu enter 32K relative
desectorization mode.

D6LR Desector in 64K Relative Mcode

The D64R pseudo-op directs the lcader to enter 64K relative
desectorizavion mode.

SDM - Set Default Desectorization Mcce

The SDM pseudo-op directs the loader *c set ites default desec-
torization mode to the mode defined by the expression in the
variable field of the SDM pseudo-op. Legal values of the
expression are:

16K Sectored Mode
32K Sectored Mode
64K Relative lNode
32K Relative Mode

w = O

The SDM pseudo-op does not change the current desectorizatiocn
mode.

DDM - Desector in Default Desectorization Mode

The DDM pseudo-op directs the loader to enter the desectorization
mode defined by its default desectorization mode. The default de-
sectorization mode is initially set at the start of a load and is
only changed by a SIM pseudo-op.

REV. 4 PMA EXTENSIONS

The following PMA extensions have been implemented for the Rev 4
master disk:

New Constant Forms

The following new constant forms arec now proccssed:

1. Binary Constants
A percent sign followed by a string of binary digits or
the characters B' followed by a binary digit string fol-
lowed by a ' will be processed as a binary constant.

Examples:

Briol’

5
%$11011 !

wonu

33
2. Single Character Constants

The form R'c', where c is any character, will be prucessed
as the character code of c.

Examples:

R'A!
R'"

'301
1247

nn

C64R (Check 64K Relative) Pseudo-Op

The C64R pseudo-op directs the assembler to flag (with an 'S’
diagnostic) any instruction that is incompatible with the 64K
relative addressing mode. The following cases are detected:

1. An indircct DAC

2. An indirect single word memory refercicce instruction whose

address is not in either scector zero or within the relative
reach of the instruction.

N64R (Not 64K Relative) Pseudo-Op

The N64R pseudo-op directs the assembler to output a flag
in the object text to inform the loader that the program
is not to be loaded in the 64K relative addressing mode.
If such a program is loaded in the 64K relative addressing
mode, the loader will report a 'N6' error.

SETB Pseudo-Op Extension

An additional form of the SETB pseudo-op is now processed
to allow the size of the desectorization to be specified.
The format is:

SETB expl, exp2
where:

expl - starting address of desectorization
area

exp2 - size of desectorization area

EQU, SET, and XSET Pseudo-Op Extensions

The EQU, SET, and XSET pseudo-ops will allow the assignment
of stack relative and external valucs to symbols.

DUII (Define UII) Pseudo-Op

The DUII pseudo-op is used to trigger the loading of a UII
package bascd on the instruction set used by previously
loaded code and the hardware available on the machine the
program is to execute on. The format is:

DUII expl, exp2
where:

expl - bit mask defining instruction groups
that UII package emulates

exp2 - bit mask defining instruction sets
that must be available for the execu-
tion of the UII package

The bit assignments for instruction set options are as
follows:

13 - Double Precision Floating Point
14 - Single Precision Floating Point
15 - P300 only instructions

16 - High Speed Arithmetic
LIR (Load Is Required) Pseudo-Op

The LIR is used to trigger the loading of a program based
on the instruction groups used by previously loaded code.
The format 1is:

LIR expl
where:
expl - bit mask defining instruction groups
that are to trigger loading. Bit

assignments are the same as for DUII.

The program will beloaded if any of the instruction groups

LS

specified have been used in previously loaded code.

CENT (Conditional Entry) Psecudo-Op

The CENT pseudo-op is equivalent to the ENT pscudo-op except
that the loader will only process it if the decision tc load
a module containing a CENT pseudo-op had been made prior to
the occurrence of the CENT statement.

DYNM (DYNAMIC) Pseudo-Op

The DYNM pscudo-op is used to declare stack relative symbols.

Since references tostack relative symbols generate two-word
instructions, stack relative symbols must be declared before
they are used. The format of A DYNM statment is:

DYNM s1,s2,....,8N
where:

si = a specifier in one of the following
formats:

1) symbol

2) symbol (expl)

3) symbol = exp2

4) symbol (expl) = exp2
5) = exp?2

H-7

In the following descriptions of the formats, the following
abbreviations are used:

sc - current stack allocation count (#106)(initially = 2)
sm - maximum allocation count (#107)
symbol - symbol to be assigned stack relative offset
expl - expression defining number of words for symbol
exp2 - expression defining stack offset
1. symbol
- symbol 1is assigned offset = sc
- sc =sc +1
- if (sc .GT. sm) sm = sc
2. symbol (expl)
- symbol is assigned offset = sc
- sC = sc + exp2
- if (sc .GT. sm) sm = sc
3. symbol = exp2
- symbol is assigned offset = exp2

- if (exp2 + 1 .GI'. sm) sm = scC

4. symbol (expl) = exp2

symbol is assigned offset = exp2

- if (exp2 + expl .GT. sm) sm = exp2 + expl
5. = exp2

- sc = exp2

Index Field Extensions

The index field has becn expanded to allow the specification
of both indexing and indirection. The possible contents of
this field are:

. | indexed

, indirect

y 1% pre-index, indirect
, *1 indirect, post-index

H-8

Indirection may still be specified by an asterisk appended
to the op-code.

Expression Evaluation Extensions

The following modifications have been made to the expression
evaluator:

1.

mode of
left
operand

Stack Pre-Decrement Expression

A stack pre-decrement expression is an expression con-
sisting only of the characters -@. It may only be used
in the address expression of a memory reference 1nstruc-
tion.

Stack Post-Increment Expression

A stack post-increment expression is an expression con-

sisting only of the characters @+. It may only be usecd

in the address expression of a memory reference 1nstruc-
tion.

Stack Relative Special Symbol

The symbol '@' has been the value of a zcro offset from
the stack base when used in an expression (other than in
the preceding two special cases).

Resultant Mode of Arithmetic Operations

All arithmetic operations other than addition and sub-
traction will give a result mode of absolute. 'The
resultant mode of an addition or subtracticn operation
depends on the modes of the left and right operands, as
shown in the following tables.

mode of right operand

+ abs m*rel stack + j*®*rel
abs abs m*rel stack + j*rel
n*rel n*rel (m+n)*rel stack +

(j+n)*rel
stack + stack + stack + P
i*rel i*rel Cem) frel

mode of right operand

- abs m*rel stack + j*rel

mode of
left abs abs -m*rel P
operand

n*rel n*rel (n-m)*rel P

stack + stack + stack + p

i*rel i*rel (i-m)*rel

NOTES: P = Prohibited
l1*rel = rel
0*rel = abs

5. Resultant Mode of Expression

The resultant mode of an expression must be one of the

following:

Absolute
l*rel

Stack + absolute

- External

If the final
above, a 'Z'

Stack pre-decrement
Stack post-increment

mode of an expression is not one of the
diagnostic will be reported. Also, the

result mode must be one consistant with its usage.

For example,

if a relocatable expression appeared in

the address field of a BSS statement, a 'Z' error would
be reportcd since BSS cannot correctly process a relocat-

able value.

Support of New Instructions

A1l PRIME 300 and floating point instructions will be pro-
cessed by the assembler.

H-10

Generation of Special Relative Address Forms

A special relative address form will be generated for a
memory reference instruction if any of the following con-
ditions are met:

1. The address is stack relative.

2. The address is stack pre-decrement (-@).

3. The address is stack post-increment (@+).

4. If the instruction is pre-indexed (1*) with a non-
absolute address, or an absolute address 2 '100.

5. The instruction is post-indexed (*1) with an absolutc
address <4 '100..

6. If the instruction does not have a non-special relative
form (non-zero op-code extension).

7. A percent sign (%) is appended to the op-code.

Assembly Listing Changes

The following changes have been made in the assembly listing:
1. All addresses are printed as six digits.
2. All instruction (and address constant) addresses have a

character appended to the end to indicate the .wode of
the address. The following characters are used:

A - Absolute

space - Relocatable

E - External

S - Stack Relative

New Object Text Generation

The object text generated by the assembler is in a new format
only accepted by the Rev 4 (and subsequent) loaders.

H-11

(2L

Geoorsug 313 (LA T80
(STOF)
o CPIGAD
228 S0t SR o) S 3 B SRR SRR AT A S S A # (TEAEY
¥ Jd0-03N3ISd 3135 * * HM@@;
2B R TE T T8 I S T SRR T AR I T Y # (TGO
(ATEON
+ (82330
HOU3Y 3JAILYUN3Y 40 LMD 1034 1anI L2EZ+* #4377 (223 224000 2+ P00 S
JH] L3Z2AICNI 994 3 #®233 (LT3 UO008D8 8 +oBbag S
H$F2T CRZED)
* (SIEE)
* (FIEF)
R b o Bl Ay B O ST S Y # (LZEO)D
* JdO0-0AMDEd HEPIT # * {ITIEADN
LR IE L T T LU EE T SR I S R T # {TEO90)
(QZ0OB)>
* (ETO35
* (2TGD)>
2EIang FEOOO00
SAHYLITNOD A3LTHEMHUHT 3OS PIRIC PG PR | BHiend CATERD £8T0ag [reA5alsigit
WO LH3U3LATT LHUISHOD Sus RS RICH o o s ©HiU3d COTOE) TITO09 L TEODRg
IHHLSHOD AXUNIG AR IS) o O S Bleg CSTOED T2ATO00 Bsinisicisic]
* CPTLIG)
* CETAG)
ZTHED
sk dak dobadohibatsk g ke poged # (TTOE
SE0d LRILISMNOD M3N k # (DTAG)
R e R S o T e e D e e #: _:JQJ
UTNAA
o AT
13 COMBE
¥ (SDR3)
o (FBEaN
(TERE
* (CRO0
£

SHOISHILAD Wld ¢ "AZY JO0 S3TdiuX3

H-12

*
@
I~
3
o
s

UEITo00 98 orongog

208TH I3 CE2AE)D +THo0R L 2TAB0H

SETA00

AZTHRo0

SEANREs

£O0RR0

ZAW3L ‘TAN3L (B2 NIAANA D INEN 1S5382QY 13} 0 ERe] LESTRIR1S B 88009
2SR
W SV
R R T L T L U e # (SOODD
JO-0JN33d KHAQD * # (FIEDD
BT AT PR T 0 YT S S A T # (EEEAD
L A i B
4 PSR
CERI2AD
Q35N 1HIOd DMNILH0d ITEaNogd H$0/JMJd 3OrIS 41 Qunny aBaTTe 31T LIS D
* (2ZEA
R QEAS 1% B
(TG
N T R D B S R # (SEAG

% JO~0OANTSd H¥IT * 4 (PEARD it
B S G S T # (ICO9 o
(ZTTEID
% (TSOGE
NOILND3:3 MO4 JI13WHLIINY 33345 HOIH SIPIND3N * (GSEAD
QuY INIOJd SHILHOIY HOISIDIdd 3INEn0d JNE ITTHIS # CGFEAD
SIIA45I1HS 1-HL 3OuMIUd 1IN U 804 1IMmd T +T. I11Ng REE) s
+ (JFOBD
* (UFEAD
* (SFE3)D
e PRI P PR R R ST LU T S 0 ChPEED
J0-03M35d 1IMd # (SEeO)
TR D S L TR TR R Lo tD R e 28 TR I R A + (ZFA5>
CTHE0D)
S «@*uma
#* (GER8)
s 553 Jsya r@M@Du 209930

CWNAD YU NI Q3MUTI030

37 IILAY WH0d

LHOHS 25NW033 AJ™INS3Y X,

TH -
T 4@

SUM JdhD T D43

T 307

@
+g

T+d
W07
SWNO04 3AILETIEN WIN34S

T 007
W07

T 307
207

SHA04 3A&TIWTEY WID3LAS5-HON H€Nod 3HL

T

i LT L T 0 0 T 28 T 0 8 8 LT R A S P SV Ors B S SRR AN
* 377 U JO SKH0Z TY 40 NOIIYH3INGS +
LR L o AT T S TR T TS0 PRV T YR 0 SNy RV A PN

12l Tl 'as=

a7
[=Asin]

tQ7

“Han

b=l |
518 k!

1337
a7
9T 3L
#4
#4477
Ba7
Elol]
SYId

£53

WHAG

WHAG

*

JEUGJ

* % F F ¥ XX

(BATAD
L€ A% 5 By
25080

[xy]
)
(’j o
L Y Y Y Y,

I

W Pe QOO @~ O kb

K

o
et S

ol

2

i

Fas s U P S
Y A

La IR

Fe Pe e - 0D

MOOARNTn a3

~

-+

I-

Q
&
W

A

Fa Y =y
Za00D0 3 @:mxmcnc'aaacbdaa
S

~
(%]
[
QD
o
i

~
-y
I~
@
&
s

et R
ZorS09
«mmmwu
THOEee e
0a+So0

T+EDon 22
THaBe0 Tr
Traoon 22
Trooen 2o

pe R Y Y
AU v] D)
(A B AT A B
Ln A B A B

[
PLRDI

s Bl

¥

A A

Q
Q
[
)

TROn09
Rl lalsial
L LSRG
e imaluisl
L GEr0g
L HEEGED

- SEOO08
B g RIS 1%)]
CEaDon
FaEoeng

ErBoRe

H-14

S3MIIBI3M MOWLS T 00 LONRWD 8+8
JAILIYIEN HMOWLS LDWH1ONS LOHNUD -+
yOMNI 13y + MIWis II i5N53d # 4§
MO sau 4+ MIWLS SI 1TNS3d - kR

HOodN3 3xwZ S1 LTINS 3H
MO 3+T 51 1TNE3Y

Pt iE o R
h—g -t bk il

[ETSTRAY R CRY RS LR 18 ER AU S R A g o I o o o i e g BIRTD BRI AL 11 G Y AR R S
S3A0W MOISS3ULXI THO3NTT o+ WSIT
NIRRT RN R RO B I S D B e R Ll R R e S £

T ‘SLIAIAY

PeT.,> "Q3XM3ANI-1Z0d T+ QL -
L QRASSTNS b 1018 1=

agatT, =< “J3X30NITud *#T 307
¥ D

18

* T3l

#* 007

3

=37
yuaJn
H94aT
=180

237
=10}

yan

37

(510 08

37

(ELO NN

#1437

B3

=T

*

¥ F ¥ ¥ ¥ ¥ EE

CLZTD
CRETED
(SZTa)
CEZTOD
CEZTED
n~tH®v

TZT3>

(azTan
CSTTaY
CETTED
CLTTED
CATTBD
(STTAM
CFTTD
CETTAD
(2TTa
CTTTED
(BTTa>

CEATa

coTad

N e ~N
ﬁ1¢lﬂtﬁ fa
QOO0 o

i =

G(ﬂ Pl

Y [

lala)

(ZaTEd

C(TBTa>

LOT009

cgmgu@mmm
HSOTO0n 20
HeRTOan =0
SoOREoR Ba
TE+Se0
HZoZaes Za
ooToN0 28

SEOACOO PO
IRESET
LOCOO00 B0

+5HT
sisists sl

oD

TrRaan 8o
BorsoT

+ 1 W I

o i

o
jo

u«uc.ﬁ |._
TCATOCO
LEOTEO0
LEaToag
L 2ATa00

FOT020

‘9BTRO0

- [
BOIWA]

..

SN T (R

o
o R
Q9 DR

D0
i
QORI G

-
L
-
]

2 QL
W
Q0

[I~

: Nm.&@@@

rRIN

N

H-15

CTTD '@20T--Ud>d SA0NMNI 2200

SD0R SAZTO80 ZdW3L

ZaTe 2201 SAZTO0A T4W3L

2409 SOT0E0g £l

400 SSIo00a Z4

NLDG SrIZoooo T1

LoB@ ERCE TSI O00 3

26TO TOTS DGlD ToODD JST00 ZEPY SZE0 PEOA aned THoo g 207
TIOR3 55100 4343

23083 S23ZN1J0 34403

a2 DTon 29000 3543

EOT8 2078 S208 LIo0nng SS3NMQAa9
TiD0 SELNOD0 a3y

H-16

COMM PSEUDO-OP (FORTRAN COMPATIBLE COMMON)

This pseudo-op is for definition of FORTRAN-compatible named COMMON
areas, which are defined downward starting from the highest location

occupied by the loader version in use during actual loading. The
syntax is:

Label comM S1, S2,....5n

where 'Label' is the name of the common block and each 's' is a
specifier in one of the formats defined for the DYNM pseudo-operation.
'Label' assigns a name to the block as a whole and each 's' specifies
named variables or arrays within the block. Two counters are main-
tained on a per common block basis - a current allocation count and

a maximum allocation count - as in DYNM:

Initial

Counter Value
sC 0
sm 0

Additional COMM statements with the same block name are treated as
continuations of the earlier block.

RLIT PSEUDO-OP (LITERALS OPTIMIZED FOR RELATIVE MODES)

RLIT is a specification-type pseudo-operation that directs the
assembler to handle literals in a way that is optimized for relative
addressing modes. Normally (i.e., without RLIT), literals are
assigned locations following a FIN or END statement. If a defined
literal is referenced following a FIN, it is assigned another location
following the next FIN or END statement. However, in a program that
is proceeded by RLIT, a literal that has already been defined and is
still within the relative or multiword reach is referenced directly.
(A new location is not allocated.)

H-17

INDEX

FTOFY COMPARND £

FIMEFE EZ RIS TR
FUFDATE COMMARD
ARSOLUTE HF) ﬁI' F ‘H"'ll“‘*F:

ARGLIMENT ILENTIFT
HEGUMEHT REFEREN
FRGLMERT SUBSTITUT TOM, :
FEGUMENT WRLUES. FRACROS Sed
HSCIT CHARRCTER CODES E-
HECTT COMSTAMTS 26

TRIMNGE A1

T BTTRIBUTE REFERFHCES, WMACROE S-8
B anrrw THTERACLTION 1-Lf
SRATIONS d-d
TS AT
STHTEMENTS 15

BN L_HHL:l thff- EH... II FLE:H'..
ELY LANGUAGE. FHEAMPLE OF
LAMGUIAGE, FEARTURES
COLBELE CINITIALLY ZE :
STMGLE CCLURREMT LINZAT IO -

ARy

H" TER]
H=TER] LR IHGLE CTHDIRECT ADDREESSINGS
HSTERISE, TRIFLE CDUMRY THETRILGCT TOM
HTTRTRUTE FEFEREMCES, ASSEMBLER R R
FoOAMD REE OROTATION CDARTA CONSTAMT O -
FromERy SEL TG OF POCT T T
RIT RFFERENTE TR F?.',l HT O R o
CHLLS, MRICREDS B

CHAMGE FAGE HEMD th T e -

CUMMERNTS o

COMOTTIONAL ASSERFLY ErnE L - T E R AT TN .
COETEMNTS 1

COETANTS, DEFITRED "]
COMSTENTS, MUMER AL el 2
I3

i

INETANTS. REFERTFD 43

ROSS REFFREMCE LIATING 1-15

DATA BEFIMING FEEUDO OPERATIONS 4-11

RETH STATEMENTE. MULTIFLE AND TRFLIED &-2d
RATH STATEMENTS. MULTIFLE AHD IRPLIED s-21
DECTHAL CONSTANTS &-5

DESECTORTSING 01

DEVICE CODES. INPUTCOUTRUT DEVICES D-1
DOUBLE ASTERISE CINITIALLY ZEROD E-7
COUBLE FPRECISION FIMED FOINT 4-16

BOUEN E PRFECISTON FLOATING FOINT =4-1%

DUMMY LORIS, MACROS -5

FOAND EE NOTATION CDATA CONS TANTSS 9-13
CHUALS STGH CLITERRALS K

FRROR MESSAGES. ASSEMELER G-1

X-1

INDEX (Cont'd)

FePRESS TOMS
TR A
FRTERDED ADORESS TG
FIWED FOINT COUBLE FPREC]
FTSEDR POTHT STHGLE FREC
FLOATIMG POTHNT P”HFLE FF
FUORTTIMNG POINT STHGLE FE
FORMAT. TRZTRLC I Tk STATE HFH T=
FORMAT, ORJECT FILES e
FORMATS. MUMERTOAL G-
FREE-FORM IMNFUT TEST
GEMERTC TRESTRUCTIOMS
HESXRDED THMAL CIORSTHMTS ‘
THMFLIEDR DATH ,lHY!HFHFﬁ
THDESTRG O,

1n % -4
TRFUTATITRUT THS frunTlun TFewr] s
THETREUCT TONS . FEMIOREY FEFEEEHCE
TRSTELCT TON MMNEMOR TS T
THRETRINZTION :TH1FHIHT”
THETRUCTIONS, BIT f'FFFthE
THZTRICTTOMNS, CLASS ORDER
THS TFHLT[HH: GEMEFRTC T
THRSTELUCTIOMNS, THPUTADUTEFLT
1“ TRUOCTTIONS, MEEMOKTL ORDER

METELUCTIONS. OP-CORE ORDER
THSTRUCTIDNZ, SHIFT RSN
FABEL ., IHSTRUCTION STATEMEMTS
LHEBEL™S 2-1
L THE FORMAT. ASTSEMELY
LISTIHG ZOMTROL
1 TSTING FORMAT
LISTIHG: ASSEMELY
| ITSTTIMG. SYMEOL CROSS
]
|
[

!

H-1

LACGILIAGE

-1
1-4Z
REFERFEMCE
| ITERRL 1-2
ITERHAL. T
 ITERFALS. ASIZII
DR TRIOLL TG
L CFRDERASASSEMELER THTERACT IOM
L ORGTHG SUERCUT T RES 1~-17
| CAL REFEREMCES WITHIM MRACREDZ
) MUCATTOM CIDUMNT 1-15
LOGICAL OFERRTORS 211
MHCRD ASSEMELER. LISTIMNG
MHCRD ASSFHMELER. 1LORDING
MACRD ASSEMELER. OBJECT OUTRUT
MACED ASSEMBLER. LISTHNG 1-12
MAECRD ASSEMBLY LAMGLIRGE.

R R

E-dd

L ORDER

FIORMAT

=14
-1

FREUDO-OFERAT TOMNS

MRACRE
MACRD
MRZED
MAIZRO=,
MACREOS.,
MACROS,

FROILITY

FRCILITY. T
ARGLUMENT
FRGLUMENT
FARGLIMENT

DEFIMITIONS

ARG CALLS
S-1
HTERODICT TON 1-
THENTIFIERS -

REFERENCES 5-=
S-4

SUESTITUTION

X-2

-1

Zed

31

=1

A -

PSELDD-DFERAT IOMS
1~1&

i-
AMND JFERATIMG

1

A4—i

15

=3

12

1-12

G-

ficx)

l

GEMERAL RULES

g3

FROCEDLURES

a1

1-12

INDEX (Cont'd)

FEACRDS, ARGUMENT WALLIES Eom ik
FEHCETE, DRSS e
MECREOS, DUMMY WORDES e 54
MAECROS, LISTIMG AR ¢ MFIT iHHFPHL T,
FIFHCRDS, L CHCEL PFFI 5
MIFHGH T TLIDES
FEF . PIEMOHE R RS
FEMIEY REFEREMNCE THETRLICTIONES Z-11
FIRERMOM TS, THSTRUCT IO et
MULTIPLE DATA STRTEMEMTS -zl
MULTIFLE STATEMEMTS FER LITHE g
OEJECT QUTPUT OF ASSEMBLER I
FHETAL COHSTAMTS -
NEERATION FIELD, THSTRLCTION STATEMENTS -1
MFERFATION FIELD, MEMORY FEFEREMCE INSTRUCTIONZ
FEERATORS (AR TTHMET T, LOGTOAL, RELATIOMAL AND
FOMERS OF 18 CE3 MOTATION B i
FRICGRITY. OFERRTORS R
i =10 LIW%IHM I?tuﬂu IR ERAT TOMS G0
FEELRO -~ AT DO -1
EESELDOD-CIPERAT IR, dde G20
FES -t :
SIS SEMBELY COMTREOLL THNG 4~

£

.-
L

H
BRCESBACE TO =
FiZT i

&E:

sEig] 2] Y

COMNDITIONAL AZSEMBLY -9
i e T

CATH 11

DATR DEFIMIMG 4-11

DEF =

[N -
E I_T |:: T .:Zl, e E:
ELSE 4-—98
EMD oy
D A
EHDM B
E G-T3
Bl o} -y
EST G-TE

E~-1Z

SHIFTR

FSEL-CF R BAT T,

FrEL F-1

I FERERCE BOCLMENTS
DFERFATIRE
RELOCATAELE CREL
SETFE TF HANCEOIE
SHIFT THETRUCTTONS

BELAT TUA

SHIFT DPERATORS
TGN COMYENT IOHS
“INGLE PRECTSI
SIMGLE PRECT

STATEMEMTS 2-1
STRTEMEMT .

STRIMOGT. FASTTT
.HFFHHT[HE?

O FTISED FOTHT
STOM FLOATING FOIRT

SOURCE FILE MERGTHG CORFMARDS =
SRACE COMNWYERT IONS,

INDEX (Cont'd)

FATL a7

FIM)

GOTE T G

HE = T

TF - ih il
TFMATFFATFESTFMH L 3
THTROTT Tk IR N 5]

| I=T -

LTETIMG CONTROL S
fOEDER CONTROLL THG choen S
=i el

N e

Lol oo
A Ty 22

PIRCERD DEFTHITION AHD CALLS F
FIFZRD L TETTHG AND ASSERBLY COMNTRIOL
IR iy

PIEA
HLET
T e
NI ek
FRVIGRA L IMETHIG
FEL. cfod

L

STRTEMENT FORMAT
STORAGE ALLDICATION
SUBR g

VAR TEELE ©SYHMEOL
WED deET

=T

G-t

DEFTRIMNG

4-3z

1
MGoE 11

1.

e

L

-1z
AL
ERE-

HO I Y
1
IS

CFERATORS

COT THRUEDR -

SYORAGE AL LJCAETTON PSEUDO-ORERAT TIHNES
R A
LA TG

4~ 5

117

16

INDEX (Cont'd)

SWMEDL (VYARIAELED DEFINING FSEUDD-OFERATIONS 4-32
TYMEDL. CROSS REFFREMCE LISTING 119

SYMEOLTC ARDRESSES 313

SYMEOLTIE TMSTRUCTION 4-8

SHMEOL TG TMSTRUCTTON, IMTERFRETATION OF 1-7
SWMEOL TG MAMES — 1-3

THO-FASS HYSEMELY 1-13

WARIARLE CSYMEDL Y DEFIMING FSEUDD OPERATIONS 4-32
VARIARLE FIELD. IMSTRUCTION STRTEMEMTS -7
YERTABLE FIELD. MFMORY REFEREMCE IMSTRUCTIONS 3-13
VARTARLES — 1-%

PRIMI

PRIME Computer, Inc., 145 Pennsylvania Avenue, Framingham, Massachusetts 01701

	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	A-0
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	E-1
	E-2
	F-1
	F-2
	G-1
	G-2
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	X-1
	X-2
	X-3
	X-4
	X-5
	_back

