MAN1674

FORTRAN IV
User Guide

Revision D
June 1976

PRIME
Computer, Inc.

145 Pennsylvania Ave.
Framingham, Mass. 01701

#
4

MANIBT4

Copyright 1976 by
Prime Computer, Incorporated
145 Pennsylvania Avenue

#ramingham, Massachusetts 01741

Ferformance characteristics are
subject to change without notice.

BeEv. D S | - 2

CONTENTS

CONTENTS

Page

SECTION 1 INTRODUCTION

FORTRAN VERSIONS

REFERENCE' DOCUMENTS

SCOPE OF MANUAL

COMPILING AND RUN TIME FEATURES

FORTRAN LIBRARY SUBROUTINES & FUNCTIONS
FORTRAN COMPILER SUBROUTINES

INDICATION AND CONTROL SUBROUTINES
INPUT/OUTPUT CONTROL S5YSTEM (IOCS)
FORTRAN MATH LIBRARY (MATHLB)

PRIME FORTRAN IV FEATURES

= b b e e b
[
BB DWW W N

SECTION 2 SOURCE PROGRAM FORMAT

BASIC TERMINOLOGY 2-1

CHARACTER SET 2-2

PROGRAM FORM 2-4
SECTION 3 ASSIGNMENT STATEMENTS

GENERAL PRINCIPLES 3-1

CONSTANTS IN A FORTRAN STATEMENT 3-2

SECTION 4 CONTROL STATEMENTS

UNCONDITIONAL GO TO STATEMENT
COMPUTED GO TO STATEMENT
ASSIGNED GO TO STATEMENT
ASSIGN STATEMENT
ARITHMETIC IF STATEMENT
LOGICAL IF STATEMENT

DO STATEMENT

CONTINUE STATEMENT

STOP STATEMENT

PAUSE STATEMENT

END STATEMENT

[T S S S R S S Y St e
|
OO BdWNDNDN -

SECTION 5 SPECIFICATION STATEMENTS

DATA TYPE MODE SPECIFICATION STATEMENTS 5-1

i - 3 July 1976

CONTENTS (Cont)

STORAGE SPECIFICATION STATEMENTS
COMPILATION AND RUN TIME CONTROL STATEMENTS
LISTING CONTROL STATEMENTS

SECTION 6

I/0 AND FORMAT CONTROL

GENERAL PRINCIPLES

READ AND WRITE STATEMENTS
FORMATTED RECORDS

PRINT & PRINTER CONTROL

END AND ERROR RETURNS

B8 FORMAT STATEMENT
UNFORMATTED (BINARY) RECORDS
DEVICE CONTROL STATEMENTS
ENCODE/DECODE STATEMENTS

SECTION 7

FUNCTIONS AND SUBPROGRAMS

GENERAL OVERVIEW

LIBRARY FUNCTIONS

INTRINSIC FUNCTIONS

STATEMENT FUNCTIONS

FUNCTION SUBPROGRAMS

SUBROUTINE SUBPROGRAMS

BLOCK DATA SUBPROGRAMS

LIBRARY SUBROUTINES

SENSE LIGHT/SWITCH SUBPROGRAMS

LINKING FORTRAN AND ASSEMBLY LANGUAGE PROGRAMS

SECTION 8

PROGRAMMING TECHNIQUES

MAXIMUMS

ATTACHING TO ANOTHER USER FILE DIRECTORY (UFD)
CLOSING AND OPENING FILES

RECORD LENGTH OPTION

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

REV. D

COMPILER ERROR MESSAGES
RUN-TIME ERROR MESSAGES
LIST OF STATEMENTS

PROGRAM EXAMPLES

PRIMOS SUBROUTINES SUMMARY

SUMMARY OF IOCS SUBROUTINES

O O O O
|
OV

APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

CONTENTS (Cont)

FORTRAN LIBRARY SUBROUTINES
FORTRAN MATH LIB SUMMARY
FORTRAN COMPILER SUBROUTINES
INDICATOR/CONTROLS

SUMMARY OF SORT ROUTINES

July 1976

ILLUSTRATIONS

ILLOUSTRATIONS

Figure No. . Title

3-1 Computer Internal Word Formats for
Constants and Variables

6-1 Format of External Input to Type
D,E,F, or G Field Descriptors

7-1 FORTRAN/Assembly Language Argument
Transfer (Without FSAT)

REV. D i - 6

Page

TABLES

TABLES
Table No. Title Page
1-1 Reference Documents 1-2
3-1 Operator Priority 3-18
3-2 Rules for Assignment of B to A 3-290

6-1 Characteristics of Formatted External Records
6-2 Logical Device and their IOCS Numbers

6-3 Summary of Output Field Descriptors

6-4 Summary of Input Field Descriptors

6-5 Interpretation of Gw.d Descriptors

|

o A Nea N ea o
]
NN

w W

i - 7 July 1976

FOREWORD

This handbook has been prepared as a handy reference guide to the
FORTRAN IV language as implemented by the Prime FORTRAN Compiler.

The handbook is organized for gquick look-up of syntax conventions,
data formats and the effects of statement execution. New material

is usually presented in terms of elements that have already been
defined. However, the handbook is not intended as a basic primer

on FORTRAN programming. Novice FORTRAN programmers may find valuable
supplementary information in the many excellent FORTRAN textbooks
currently in print. A few samples are:

E. I. Organick: A FORTRAN IV Primer, Addition-Wesley Publishing
Company (1967)

D. A. McCracken: A Guide to FORTRAN Programming, Wiley

The following document is the definitive reference for FORTRAN IV
language conventions:

American National Standards Institute: USAS X3.9 - 1966
(USA Standard Fortran)

Revision A updates the handbook for compatibility with Prime FORTRAN
compilers supplied on Revision 3 master disks and paper tapes. Changes
are identified by bars in the margin of the page.

Revision B adds Appendix F which describes enhancements introduced on
Revision 4 and 5 master disks and paper tapes. Altered compiler
A-register settings are shown in a revised Figure 8-1.

Revision C adds Appendix G which describes enhancements introduced on
Revision 6 and 7 master disks.

Revision D incorporates changes to REV 19 of the master disk and
the incorporation of appendices F and G.

REV. D i - 8

MAN1674 INTRODUCTION

SECTION 1

INTRODUCTION

FORTRAN VERSIONS

Three versions of the FORTRAN Compiler are available: 1)

a large
version (LFTN) (more than 16K PRIMOS system), 2) a sma2ll version
(SFTN) (a 16K PRIMOS system), 3) the PRIME 400 FORTRAN Compiler
(VFTN) . A program compiled by one version can be compiled by another.

However, the large version performs additional functions not available
in the small version. These include:

Text error messages

. Extended code optimization
In-line Desectorization option
Improved symbolic listing

. Undeclared variable check option

Cross-reference listing

VFTN is a modification of LFTN that includes the ability to generate
code in the 400 s segmented addressing mode (64V). The hardware and
software features available at Rev. 1@ allow FORTRAN programs nearly
two megabytes long (15 segments of 128K bytes) to be executed under
PRIMOS 1IV. VFTN retains the ability to produce non-segmented code
identical to LFTN that runs on the entire family of Prime computers.
VFTN will execute on all PRIME computers with over 16k memory, but code
generated in 64V mode will execute on the PRIME 406 only.

NOTE :
After installation, the FORTRAN compiler version
becomes known to the user as FTN. However, a reference

to each version will be made in this manual when required

to distinguish the capability of one version over
another.

REFERENCE DOCUMENTS

Table 1-1 lists the publications that are recdmmended to accompany this
handbook.

1 - 1 July 1976

SECTION 1 MAN1674

Table 1-1. Reference Documents

Publication Prime Document NO.
Prime CPU System Reference Manual l671
PRIMCS II & III Interactive 2602

User Guide

PRIMOS 11 & II1 Computer 2603
Room User Guide

PRIMOS II & III File System 2604
User Guide

Prime Program Development 1879
Software Guide

Prime CPU RTOS Reference Manual 1856
Prime Software Library User Guide 18890

USA Stendard FORTRAN (USAS X3.9-1966) =—---
American National Standards Institute

The procedures for loading the compiler, using it to compile source
programs, and loading and running object programs, are provided in the
Program Development Soft rare Guide (MAN 1879).

SCOPE OF MANUAL

This manual 1is & deteailed reference manual for the Prime FORTRAN 1V
Compiler. It is organized in eight sections for ease of reference.

Section 1 introduces the features and special capabilities of Prime
FORTRAN 1IV.

Section 2 describes the format of source programs prepared for
processing by the Compiler.

Section 3 contains reference information on assignment statements and
includes definitions of constants, variables, arrays, expressions, and
data formats,

Section 4 defines the control statements (GG TO, DO, etc.,) that guide
the sequence of program execution and provide for conditional program

REV. D ' 1 -

N

MANlo674 INTRODUCTION

branching, etc.

Section 5 describes the non-executable specifications statements which
supply information to the compiler concerning data mode typing, storage
allocation, data initializing, and run time TRACE.

Section 6 covers FORTRAN input/output and format control: the READ and
WRITE statements that transfer data between the processor and external
devices, ENCODE/DECODE, and formatting of input or output character s
strings. Device control statements (BACKSPACE, etc.) are also
covered.

Section 7 discusses statement functions, the intrinsic functions
(provided as a special feature of this Compiler), FUNCTION and
SUBROUTINE subprograms, and the available library subroutines.

Section 8 <contains programming hints and miscellaneous usage details.
The Appendices provide concise reference information:

Appendix A defines the FORTRAN compiler error messages; Appendix B
defines the RUN-TIME error messages; Appendix C summarizes the
FORTRAN statements; Appendix D provides program examples;

Appendix E summarizes PRIMOS subroutines; Appendix F summarizes
IOCS subroutines; Appendix G summarizes FORTRAN Library
subroutines; Appendix H summarizes the FORTRAN Math Library
subroutines; Appendix I summarizes the FORTRAN compiler
subroutines; Appendix J summarizes indicator and control
subroutines, and Appendix K summarizes SORT routines.

This manual is concluded by a computer—-generated subject index which
offers a quick cross reference to any subject covered in this manual.

COMPILING AND RUN TIME FEATURES
Refer to a summary in Appendix B and the compiler section of Prime’s
Program Development Software User Guide, MAN 1879 for general

information pertinent to compiling, debugging, and running of FORTRAN
programs.

FORTRAN LIBRARY SUBROUTINES & FUNCTIONS

Refer to Appendix G for a summary and to Prime’s Software Library User
Guide MAN 1880 for Prime’s Floating Point Arithmetic subroutines.

FORTRAN COMPILER SUBROUTINES
Refer to Appendix I for a summary and to Prime’s Software Library User

Guide, MAN 1880 for a detailed description of Prime’s FORTRAN compiler

1 - 3 July 1976

SECTION 1 MAN1674

subroutines.

INDICATION AND CONTROL SUBROUTINES

Refer to Appendix I for a summary and to Prime’s Software Library User
Guide, MAN 1880 for details of Prime’s Indication and Control
Subroutines.

INPUT/OUTPUT CONTROL SYSTEM (IOCS)

I0CS is comprised of subroutines that perform input/output between the
Prime computer and the disks, terminals and peripheral devices within
the system configuration. 1ICCS is used by programs that use FORTRAN
READ and WRITE statements. The device numbers used in these statements
correspond to ICCS 1logical device. Refer to Section 6 of Prime’s
Software Library User Guide, MAN 1880 or Appendix F of this manual for
a summary of IOCS subroutines.

'FORTRAN MATH LIBRARY (MATHLB)

MATHLB provides a set of subroutines to perform commonly used
applications such as routines to perform matrix opertions, solve
systems of simultaneous linear equations, and generate permutations and
combinations of elements. Refer to Appendix H of this manual.

PRIME FORTRAN IV FEATURES

Prime’s FORTRAN IV Compiler processes source programs prepared in USA
Standard FORTRAN, as defined in American National Standard ANSI
X3.9-1966. In addition, Prime FORTRAN has several powerful extensions
which improve the language’s ‘usefulness in writing high-level programs
such as disk or real time operating systems.

The one-pass compiler is compatible with PRIMOS II, PRIMOS III, PRIMOS
IV and Real Time Operating System, and is able to run in a stand-alone
environment as well. The compiler produces highly optimized code and
is supported by an extensive array of mathematical functions and
subroutines.

Object code generated by the compiler is in a binary format suitable
for loading by Prime’s (LOAD) Linking Loader. Library subroutines are
supplied in the same format.

Advantages of Prime FORTRAN

* Uses terms already familiar to the scientist, engineer
or mathematician; easy to learn and use.

REV. D 1 - 4

MAN1674 INTRODUCTION

* PpProcedure-oriented terms and statements eliminate
the need for detailed coding and reduce the
chance of coding errors.

* One statement replaces many assembly language
instructions; this reduces time and cost normally
associated with programming.

* Programs are virtually self-documenting; this
permits the work of one user to be referenced,
maintained or altered by another with ease.

* Program correction is simplified by error
diagnostics automatically inserted into program
listing.

* QOpens and closes PRIMOS files. This means that the code
is written within the FORTRAN program to update PRIMOS files.

* Assembly Language Prime library subroutines can be
called by a FORTRAN IV program.

Prime FORTRAN Extensions

* Intrinsic Functions: XOR, AND NOT, IABS, SHFT."
(In many cases, compiler generates in-line coding
instead of calling library subroutine.)

* Octal constants: @allowed in forms n0Odddd and :dddddd,
where n is the number of octal digits, 0" or “:” indicates
an octal constant and dddd is the actual number.

* Quoted Hollerith Strings: can be stated between
apostrophes in addtion to the standard format
(nH---). Example: ’“ABCD’ (same as 4HABCD)

* Global variable Type: if no argument appears in
a REAL, INTEGER, COMPLEX, DOUBLE PRECISION, or
LOGICAL mode type statement, all variables not
specifically designated as to type will be
in that mode.

* Protected Functions and Subroutines: the FUNCTION
or SUBROUTINE statements may be preceded by the
word PROTECTED; interrupts are then inhibited
upon entry to the subroutine and enabled upon
return to the main program.

* GSpecial Array LIST and LOC function: enables

FORTRAN user to reference absolute memory
locations, as an aid in systems programming.

1 - 5 July 1976 "

SECTION 1 MAN1674

REV.

(Note: The LIST feature does not apply to VFTN.)
Library of Real-Time Functions: as defined by the
workshop of Standardization of Industrizl Computar
Langueges, for operation under RTCS.

Concordance of symbol usage.

ENCODE, DECODE statements for format
conversion within program unit.

END= extensions for READ.

ERR= extensions for DECODE, READ & WRITE.
Mixed mode expressions permitted.
Provision for in-line comments.

Powerful format extensions (B specification).

D 1 - 6

MAN1674 SOURCE PROGRAM FORMAT

SECTION 2

SOURCE PROGRAM FORMAT

This section defines many of the basic features of FORTRAN: program
and subprogram organization, source statement 1line formats, the
character set, use of spaces, and other general features and
restrictions.

Line formats for comment, continuation, initial, and special control
lines are also described here. The general format of statement
lines 1is covered, but detailed requirements for the many different
types of FORTRAN statements are presented in later sections.

BASIC TERMINOLOGY

This section introduces some basic terminology and the meaning of
grammatical forms and particular words.

Program Units

The term program unit refers to either a main program or subprogram.

A program that can be used as a self-contained computing procedure
is called an executable program.

An executable program consists of precisely one main program and
possibly one or more subprograms.

A main program is a set of statements and comments not containing a
FUNCTION, SUBROUTINE, or BLOCK DATA statement.

A subprogram is similar to a main program but is headed by a BLOCK
DATA, FUNCTION, or SUBROUTINE statement. A subprogram headed by a
BLOCK DATA statement is called a specification subprogram. A
subprogram headed by a FUNCTION or SUBROUTINE statement is called a
procedure subprogram. (See Section 7).

Any program unit except a specificaton subprogram may reference an
external procedure.

An external procedure that 1is defined by FORTRAN statements is
called a procedure subprogram. External procedures also may be
defined by other means. An external procedure may be an external
function or an external subroutine. An external function headed by
a FUNCTION statement is called a function subprogram. An external

2 - 1 July 1976

SECTION 2 MAN1674

subroutine headed by a SUBROUTINE statement is called a subroutine
subprogram.

Any program unit consists of statements and comments. A statement
is divided into physical sections called lines, the first of which
is called an initial 1line and the rest of which are called
continuation lines. However, not all lines contain statements.
There is a type of line called a comment that is not a statement and
merely provides information for documentary purposes.

The statements in FORTRAN fall into two broad classes--executable
and nonexeacutable. The executable statements specify the action of
the program while the nonexecutable statements describe the use of
the program, the characteristics of the operands, editing
information, statement functions, or data arrangement.

The syntactic elements of a statement are names and operators.
Names are used to reference objects such as data or procedures.
Operators, including the imperative verbs, specify action upon named
objects. One class of name, the array name, deserves special
mention. An array name must have the size of the identified array
defined in an array declarator. An array name qualified only by a
subscript is used to identify a particular element of the array.

Data names and the arithmetic (or 1logical) operations may be
connected into expressions. Evaluation of such an expression
develops a value. This value is derived by performing the specified
operations on the named data.

The identifiers used in FORTRAN are names and numbers. Data and

Procedures are named. Statements are labeled with numbers and
input/output units are numbered.

At various places in this document, there are statements with
associated 1lists of entries. 1In all cases, the list is assumed to
contain at least one entry unless an explicit exception 1is stated.
Example:

SUBROUTINE s (al, a2, . . . an)
It 1is assumed that at least one symbolic name is included in the

list within parentheses. A list is a set of identifiable elements
each of which is separated from its successor by a comma.

CHARACTER SET
A program unit is written using the following characters: A, B, C,

b, g, ¥, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
e, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the following special characters:

REV. D 2 - 2

MAN1674 SOURCE PROGRAM FORMAT

Character Name of Character

Blank

Equals

Single Quote
Colon

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Dollar Sign

sl

e ~ ~—~X_ % | 4+ o

NOTES:

1. The order in which the characters are listed does not imply a
collating sequence.

2. Blank (space) characters have no meaning (except in character
string constants) in Prime FORTRAN IV programs. However, each
blank space counts as a character position.

A digit is one of the ten characters: @, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Unless specified otherwise, a string of digits will be interpreted
in the decimal base number system when a number system base
interpretation is appropriate.

An octal digit is one of the eight characters: @, 1, 2, 3, 4, 5, 6,
7.

Letters

A letter is one of the twenty-six characters: A, B, C, D, E, F, G,
g, 1, J, K, L. M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z.

Alphanumeric Characters

An alphanumeric character is a letter or a digit.

Special Characters

2 - 3 July 1976

SECTION 2 MAN1674

A special character is one of the eleven characters: blank, equals,
plus, minus, asterisk, slash, left parenthesis, right parenthesis,
comma, decimal point, dollar sign, single quote, and colon.

Blank Character

A blank character has no meaning except within Hollerith constants
and may be wused freely to improve the intelligibility of the
program. However, with formatted inputs or outputs, a blank is
considered one character position. (See Section 6).

PROGRAM FORM

Every program unit is constructed of characters grouped into lines
and statements. The required ordering of FORTRAN statements 1is

shown in Figure 2-1. TRACE and LIST control statements can be used
anywhere in the program.

The program can consist of any combination of statement, comment,

and special control lines, provided the last line contains an END
statement.

FORTRAN program may be handwritten on coding forms for unit record
keypunching or keyed directly into the computer with the aid of the
Text Editor. In either case, <certain rules regarding column
boundaries must be observed. Figure 2-2 illustrates a section of a
FORTRAN program as entered at an on-line teleprinter keyboard. This
also illustrates each of of the line/control functions given below.

REV. D 2 - 4

Figure 2-1.

MAN1674 SOURCE PROGRAM FORMAT

Header for FUNCTION or SUBROUTINE
statements, if any (Section 7)

Specification statements (Section 5)
DIMENSION, COMMON, EQUIVALENCE,

EXTERNAL, DOUBLE PRECISION, INTEGER
REAL, COMPLEX, LOGICAL

Executable Statements:
Arithmetic, logical (Section 3)

K=A+B*C
L=M .OR. N

Control (Section 4)

GO TO, ASSIGN, IF, DO
CONTINUE, PAUSE, STOP, RETURN

Input/Output (Section 6)

READ, WRITE, FORMAT,
REWIND, BACKSPACE, ENDFILE

Subroutine References (Section 7)

Order of Elements in a FORTRAN Source

Program

July 1976

SECTION 2 MAN1674

COLUMN

1 2 3 4 5 6 7
1234567898123456789012345678901234567890123456789012345678991234567890812

C PROGRAM
INTEGER P1,P2,P3
DIMENSION IAR(200),RAR(100)
EQUIVALENCE (IAR(1) ,RAR(1)),(IAR(1l) ,IAR]1l),(RAR(1) ,RAR])
P1=100
P2=100
P3=100
DO 196 1=1,P1
DO 100 J=1,P2
DO 100 K=1,P3
1390 CONTINUE
C FIXED POINT ARITHMETIC TEST
DO 206 1=1,P1
DO 200 J=1,200
IAR(J)=((((P1*10)+(P2/10))+P3)/100083)*20
C RESULT SHOULD EQUAL 29325
209 CONTINUE
C FLOATING POINT ARITHMETIC TEST
DO 38¥ I=1,P2
DO 309 L=1,100
AA=19006.90
BB3=9999.99
CC=10.32
RAR(L)=((((AA*10.06)+ (AA/10.0))+AA) /BB) *CC
C RESULT SHOULD EQUAL 114.552
300 CONTINUE
NOUT=1
WRITE (NOUT,400) IAR1,RARI]
400 FORMAT(15H FIXED VALUE IS,15,15H FLOAT VALUE IS F7.3)
CALL EXIT
END

Figure 2-2. Example of FORTRAN Source Program Input

REV. D 2 - 6

MAN1674 SOURCE PROGRAM FORMAT

A line is a string of up to 72 characters. All characters must be
from the FORTRAN character set except where otherwise stated.

The character positions in a line are called columns and are
consecutively numbered 1, 2, 3, through 72, from left to right.

Lines are subdivided into field, as shown in Figure 2-3.

STATEMENTS: MUST BE BLANK
COMMENTS: ANY CHARACTER
$=CONTROL SYMBOL CONTINUATION LINES: MUST CONTAIN A CHARACTER
C=COMMENT (ANY EXCEPT BLANK OR ZERO)
SEQUENCE
STATEMENT FIELD NUMBER
A
—— g - w— T v ——— e — e — — — ’ ———
I L] 5 LS
1 2 5 6 7 72 73 890
STATEMENT
NUMBER
Figure 2-3. Line Format

2 - 7 July 1976

SECTION 2 MAN1674

Comment Lines

If column 1 contains the letter C, the rest of the 1line 1is treated as
comments (i.e., is ignored by the compiler except for being reproduced on
the 1listing). The comment text may begin in column 2 and extend through
column 72. See example X5 in Appendix D for program example.

Inline Comments

Inline comments are permitted by using the following syntax:

/* comment */

The comments may not be used within Hollerith strings but may

appear
anywhere else. The end of a source record terminates the comment.

Statement Line

The statement field of a statement line contains any one of the statement
types defined elsewhere 1in this manual. The statement must begin in

column 7 and may extend to column 72. If a statement is longer than one
line, it may be continued. (See Continuation Line.)

Statement Number (Label)

Columns 1-5 of a statement line may be used for an optional statement
number. Statement numbers consist of 1 to 5 decimal digits positioned
anywhere in c¢olumns 1-5. Spaces and leading zeroes are ignored. A
statement number is requried only if the statement 1is referenced as a
label in a GO TO or similar statement.

Continuation Line

Continuation 1lines must be blank in columns 1-5 and must contain a
character (anything except blank or zero) in column 6. Columns 7-72 are
then interpreted as a continuation of the statment on the preceding line.
Any number of continuation lines for a given statement are permitted.

Sequence Number

Columns 73-80 may be used for seguential 1line identification numbers.

This field 1is ignoed by the compiler except for being reproduced on the
listing. It may be left blank.

MAN1674 SOURCE PROGRAM FORMAT

Spaces may be used freely between operators, constants, variables, etc.,
to improve legibility. Spaces have no meaning except within Hollerith

constants.

2 - 9 July 1976

MAN1674 ASSIGNMENT STATEMENTS

SECTION 3

ASSIGNMENT STATEMENTS

GENERAL PRINCIPLES

This section defines the form of the arithmetic and logical
assignment statements that are the main calculating tools in a
FORTRAN program. These statements, which resemble equations in
familiar mathematical notation, apply arithmetic, logical, or
relational operators to data values. These include:

CONSTANTS

Integer

Logical

Real

Double precision
Complex

VARIABLES

Subscripted Array
Array Storage

OPERATORS AND EXPRESSIONS

Arithmetic Operators
Relational Operators
Logical Operators
Mixed Expressions

In FORTRAN IV, data values take the form of arithmetic or 1logical
constants, variables, or expressions. This section also defines the
legal forms and ranges for numeric and logical data values.

Simple Statements

The arithmetic and logical statements take the basic form:
A=B
where A 1is a simple variable or array element, B is an arithmetic,

logical or relational expression, and the equals sign is the
replacement operator.

3 - 1 July 1976

SECTION 3 MAN1674

Arithmetic expressions use arithmetic operators, constants, and
numerically defined variables.

In the statement:

PI=3.14159
a variable PI is assigned the value of a constant, 3.14159, in real
format. Note that the equals sign has the meaning "let PI equal
--", or "assign PI the value of --",
A subsequent statement:

A=PI+1.2
would assign a value of the expression PI+1.2 to the variable A.
Logical expressions use relational operators on numerical constants
or variables to form a logical truth value (TRUE or FALSE) as a
result. These truth values are used to control program direction
when wused 1in IF and similar statements. A logical TRUE is stored
internally as an integer 1, and FALSE is stored as integer O.
In the expression:

A=PI.EQ.3.14159
the logical variable A is set TRUE if the variable PI équals the
real constant 3.14159. Relational expressions may also be used in
IF statements, as in:

IF (PI.EQ.3.14159) GO TO 19
Logical expressions also apply the common logical operators (AND,
OR, NOT) to logically defined (TRUE or FALSE) expressions. The
result is a logical TRUE or FALSE.
In the statement:

A=P.OR.Q

the variable A is assigned the truth value corresponding to the
loaical OR of logical variables P and 0.

Constant formats, rules for assigning variables, and rules for
forming arithmetic, logical, and relational expressions are defined
in detail in the following paragraphs.

CONSTANTS IN A FORTRAN STATEMENT

Constants maintain the same numerical, logical or ASCII value during

the execution of a program. Numerical constants may be expressed in

REV. D 3 - 2

MAN1674 ASSIGNMENT STATEMENTS

six different data type modes: integer (decimal or octal), logical,
ASCII, real, double precision, and complex. Computer word formats
for these data types are shown in Figure 3-1.

3 - 3 July 1976

SECTION 3 MAN1674

15 MAGNITUDE BITS

- ——————————————————— - ————————— i —————————————] ———— ——

7 _J
\"4 N
FIRST CHARACTER SECOND CHARACTER
[240 (BLANK) WHEN ONE CHAR PER
WORD]
B. ASCII

WORD 1 (MANTISSA)

2%*-1 2*§;15
| 8 | | | | | MANTISSA | | | | | | I | I
15 MOST SIGNIFICANT BITS OF FRACTION
WORD 2 (MANTISSA + EXP)
2%*%--16 2*%%-23
1 mantissa 11 | I oL L
8 LEAST SIGNIFICANT EXPONENT (EXCESS
BITS OF FRACTION 128 NOTATION)
C. REAL

Figure 3-1. Computer Internal Word Formats
for Constants and Variables

REV. D 3 - 4

MAN1674 ASSIGNMENT STATEMENTS

EA (MANTISSA)

1 “2 3 4 5 6 7 8 9 1 11 12 13 14 15 16

Binary Point

EA+1 (MANTISSA)

EA+3 EXPONENT (TWO'S COMPLEMENT)

D. DOUBLE PRECISION

Figure 3-1. Computer Internal Word Formats
for Constants and Variables (Continued)

3 - 5 July 1976

SECTION 3 MAN1674

Integer Data Types

nd mayr data types occupy one internal computer word (Figure 3-1A) a
positive,agnitude from -32,768 to +32,767 (decimal). It may assume
negative, and zero values. It may only assume integer values.

Decimal integers are represented by up to 5 decimal digits

preceded by an optional + or - sign. No decimal point is allowed.
Examples:
5 29 -13579 0 +000 -034

Octal integers are specified by the form:
:dddddd

where: dddddd is the actual number; or,
n0dddddd

where n is the number of octal digits, O is the letter 0, and dddddd
is up to six octal digits ranging from @ to 177777. Examples:

60177777 101 5010000
For program examples, see X1 and X14 in Appendix D.

Logical Data Types

Logical truth (data types) occupy one internal computer word. In
source programs, truth values are represented by the notation .TRUE.
or JFALSE.. The compiler represents the notation .TRUE. to a
memory location containing an integer 1 and represents the notation
.FALSE. to a 1location containing an integer zero. the notation
.FALSE. to an integer zero.

Examples:
I = .TRUE. LOG = .FALSE. IF I .EQ. LOG GO TO 50
(Logical expressions are described in more detail later.)

ASCII Data Type

An integer may be assigned the character codes of one or two ASCII
characters, represented in either a Hollerith or “quoted’ format.
The Hollerith format is the same as used for entering Hollerith data
in Format statements:

nHccececce o o W

REV. D 3 - 6

MAN1674 ASSIGNMENT STATEMENTS

where n is the number of characters and each ¢ is one of the ASCII
printing characters. The “quoted” format permits a string of
characters to be enclosed in single guotation marks, with no
character count or H designator required:

1HX 2HXY 6H-3.6E2 ‘X’ ‘XY’ ‘-3.6E2°
This will be discussed in more detail in Section 6.

ASCII data may be stored into any variable type. The number of

words associated with the type determines the number of 1/0
characters. ASCII constants of one to two characters are assigned
type integer; 3-4 are real and 5-8 are double precision. Over

eight characters are allowed in only subroutine calls or data
statements.

If only one character is assigned, it is left justified and a space
character (240 octal) is placed in the right half of the integer
word. (See Figure 3-1B.)

Real Data Types

Real data types occupy two computer words (Figure 3-1C) using the
single- precision floating-point data format. It may assume
positive, negative and zero values.

Real numbers are represented in source programs by a series of
decimal d ndex Real numbers digits including a mandatory decimal
point. Any number of digits may be wused but only the most
significant 7 digits are retained. A sign is optional; 1if omitted,
the quantity is assumed to be positive. An exponent, in the form
E+nn, is also optional. Real values can range 1in magnitude from
approximately 18(-38) to 18(+38). Examples.

1. +1.23456 123.E5 -123.E-5 1.23 E 5
0. 2.9 1234567.E32

Dpouble Precision Data Types

Double precision data types occupy four computer words (Figure 3-1D)
using the double-precision floating-point format. The exponent
range is 10(-9902) to 1@(+9825). Notation used in source programs
to represent double precision values is the same as for real values
except that up to 14 digits of accuracy are retained, and the letter
D identifies the exponent:

123.456789012D13 0.00000000001D-37 -77.777D2 27.DO

3 - 7 July 1976

SECTION 3 MAN1674

Complex Data Types

Complex data types are represented internally as two consacutive
real numbers. In source programs, complex values are specified as
two real numbers separated by a comma and enclosed 1in parentheses.
The first value represents the real part of the complex constant,
the second value is the imaginary part:

(123.456,2.E-4) (2.E3,.01) (-79.,2.34E-7)

Address Constants

A constant of the form:
Sn

has a value equal to the memory address of the first 1line of code
generated by statement number ‘n’. If an address constant is used
in an expression the result is integer. These constants are mainly

used as alternate return address arguments in subroutine calls.

VARIABLES IN A FORTRAN STATEMENT

A wvariable 1is a numerical, logical, or ASCII value that has been
assigned an alphanumeric label or "symbolic name". The actual value
of a variable may change during program execution under control of
assignment statements, READ or ASSIGN statements, or function or
subroutine calls.

Variable Name

A variable name consists of one to six alphanumeric characters, the
first of which must be alphabetic. 1Incorrect forms are detected
during compilation and cause an error message:

Correct Incorrect
A ALPHABET (too long)
ARG1 1ARG (first character

is a digit)
Variables may be assigned values in any of the modes specified for

constants. The first letter of the variable name causes an implicit
mode assignment in the absence of other mode control features. The

REV. D 3 - 8

MAN1674 ASSIGNMENT STATEMENTS

implicit mode typing convention is:

First letter of Implicit
variable Name Mode
I1,J,K,L,M, or N Integer
Other Real

Implicit mode assignments can be overridden by the mode statements
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL described in
Section 5. Note that double precision, complex, and logical
variables always must be mentioned in an appropriate mode statement;
there is no implicit assignment for these modes.

Subscripted (Array) Variables

The variables described so far are scalar - that is, they represent
a single quantity. Variable names may also be subscripted so that
one symbolic name can identify a set of data items.

The name part of a subscripted variable follows the same rules as
the name of a scalar variable.

Subscripts follow the array name, are enclosed in parentheses, and
consist of integer constants, variabales, or expressions of certain
limited forms. A given array can have up to seven subscripts
separated by commas.

Examples:

DATA (1) The first item of a one-dimen-
sional array named DATA

TABLE (1,4) Identifies the data item in
row 1, column 4 of a two-dimen-
sional array named TABLE

TABLE (I,J) Identifies the data item in row
I, column J of the array named
TABLE

DATA (5*ALPHA+11) The expression 5*ALPHA+11

is evaluated as an integer expression
that specifies one item of the
one-dimensional array DATA.

ALPHA must be a defined integer.

ARRAY (K,5, 5*ALPHA+11) Identifies a location in a

3 - 9 July 1976

SECTION 3 MAN1674

three~dimensional array ARRAY

as in row K, column 5, and at
depth 5*ALPHA+11; K and ALPHA must
be defined as integers.

Each array must be assigned a storage area by a DIMENSION or COMMON
statement or as part of a mode declaration statement. These topics
are discussed in full detail in Section 5.

Rule:

All elements of a given array must be of the same type (i.e., all
integer or all complex).

Expressions used in subscripts are limited to the following forms:

C*V+K
C*V-K
C*Vv
V+K
V-K

K

\Y

where (¢ and K are integer constants and V is the name of a variable
that is explicitly or implicitly defined as an integer. Expressions
and the rules for evaluating them are discussed in more detail in
the following paragraphs.

Array Storage Arrangement

In the object program, a two-dimentional array A 1is stored
sequentially in the order A(l,l1), A(2,1),...A(m,1; A(l,2),
B(2,2) e, A(M,2) 3000, A(m,n). Note that the first of the
subscripts varies most rapidly, and the last varies 1least rapidly.
The same principle applies to the subscripts of dimensional arrays
up to seven dimensions.

All arrays are stored forward in storage; i.e., the following
array:

A(l,1) A(2,1) A(3,1)

A(1,2) A(2,2) A(3,2)

A(l,3) A(2,3) A(3,3)

is stored in increasing absolute locations:

Location Array Element
1 A(l,1)
2 A(2,1)

REV. D 3 - 10

MAN1674 ASSIGNMENT STATEMENTS

A(3,1)
A(l,2)
A(2,2)
A(3,2)
A(1,3)
A(2,3)
A(3,3)

O W~Joy Ul W

See Example in Appendix D for program illustration.

OPERATORS AND EXPRESSIONS IN FORTRAN STATEMENTS

Expressions consist of constants, variables (scalar or array),
expressions, or function references linked by operators. Arithmetic
logical, and relational expressions are distinguished by the types
of operator used.

Arithmetic Operators

Arithmetic expressions consist of arithmetic constants, variables,
or function references linked by one or more of the following
arithmetic operators:

* % Exponentiation

- Unary minus

* and / Multiplication and Division

+ and - Addition and Subtraction

= Equals or Replacement
The compiler permits mixed mode arithmetic expressions except for
operations involving a complex and double-precision item. See
program examples X6 and X11 in Appendix D.
Order of Operations Rule:
Operations are performed in the order the operators are listed above

(from top to bottom). For operators of equal priority, operations
are performed from left to right:

Expression Result
3+5-7 1
3*5-7 8
3-5%7 -32

3 - 11 July 1976

SECTION 3 MAN1674

Caution is required when integers are used within expressions.
FORTRAN performs ‘"greatest integer" arithmetic on integers -
remainders after division are truncated. 1Inadvertent truncation can

be avoided by using real values, or by controlling the sequence of
evaluation.

Expression Result

3*4/2 6

3/2%4 4 (3/2 is evaluated
as the integer 1

3./2.%4, 6. (Real numbers are
evaluated)

3/6%4 Y (3/6 is evaluated
as 0)

Parentheses Rule:

Parentheses may be wused in much the same way they are used in
ordinary arithmetic expressions, to group and clarify operations.
In FORTRAN expressions, parentheses may also affect the order in
which operations are performed. All operations within a set of
parentheses are carried out before the result 1is processed by
operators outside of the parentheses. When parentheses are nested,
the innermost expressions are evaluated first:

Expression Result
3*7-5 16
3*¥(7-5) 6
(3-5)*7 -14
3./(6.%4.) .125
242%2% %) 19
((2+42)*2) **2 64

The examples above use only integer and real numbers for simplicity.
FORTRAN arithmetic expressions can use constants of all modes, as
well as variables:

2*A/ (ALPHA-8) Integers

2.3*BETA** (B+C-4.7E3) Real

REV. D 3 - 12

MAN1674 ASSIGNMENT STATEMENTS

1.9275D3*(3.27D0-ARG1l) Double Precision

(9.2,3.08)/3.7 Complex
Multiplication Rule:
Multiplication is never implied; the multiplication operator (*)
must be used. The expression AB means A*B in normal algebraic

notation, but will be interpreted by FORTRAN as a variable named AB.

Exponentiation Rule:

More than one stage of exponentiation requires parentheses for
correct evaluation. While the notation XYZ is valid in algebraic
notation, the FORTRAN expression X**Y**7 igs illegal. To represent
(XY)Z, the FORTRAN expression (X**Y)**Z should be used; X(YZ) is
represented correctly by the expression X** (Y**7).

Two operators cannot follow in succession:

X/-Y X/ (-Y) or -X/Y

The relational operators process two arithmetic arguments to form a
logical truth wvalue of .TRUE. or .FALSE. The arguments may be
constants, variabales, or expressions of any mode except logical.
Mixed mode is permissable except complex and double-precision.

The relational operators are:

.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE, Greater than or equal to

All have equal priority. The periods are a part of the operator and
cannot be omitted.

Examples of relational operator applications:

3 - 13 July 1976

SECTION 3 MAN1674

In Logical Assignment Statements:

A=P.LT.Q The variable A is set to a logical
value of TRUE if arithmetic variable
P is less than arithmetic variable
Q. Otherwise P is set to FALSE.

B=P.EQ.2.4D-2 Variable B is set to a logical value
of TRUE if arithmetic variable P is
equal to the specified double-
precision constant. Otherwise P is
set to FALSE. In this example, P
must be in double-precision, real,
or integer mode. The result is
logical mode.

NOTE

Logical variables (A and B, above) must be declared
by a LOGICAL specification statement.

See Appendix D, example X1 for program

example.

In Logical IF statements:

IF (P.LT.Q) GO TO 39
IF (I.EQ.2HAB) GO TO 50
(For more information on this usage, see Section 4.

Logical Operators

A logical operator combines one or two operands to form a result
that is a logical truth value of .TRUE. or .FALSE. The arguments
may be defined by statements using relational logical operators, or
by a LOGICAL specification statement. The logical operators are:

Operator Function

.NOT. Negates (reverses the logical
state of) the following argument,
as in:

A=_,NOT.P

REV. D 3 - 14

MAN1674 ASSIGNMENT STATEMENTS

T F

.AND. Generates the logical AND function
of two logical arguments, as in:

A=ARG1l.AND.ARG2

ARGl ARG2 A

F F F

F T F

T F F

T T T

.OR. Generates the logical inclusive OR

function of two logical arguments,
as in:

A=ARG1.0OR.ARG2

ARG1 ARG2 A

F F F

F T T

T F T

T T T

Examples of logical operator applications:

In Logical Assignment Statements:

A=pP .LT. Q .AND. Q .GT. R
B=pP .LT. Q .OR. R .EQ. S

In Logical IF Statements:

IF (P.LT.Q.AND.R.EQ.S) GO TO 15
IF (P.LT.Q) GO TO 20

Integer values can be subjected to full-word logical operations
using the intrinsic logical functions described in Section 7.

Order of Evaluation

The order in which a complicated expression is evaluated can be
determined precisely if a few ground rules are kept in mind. Each
torp in the evaluation involves a group consisting of a single opera
tnd one or two arguments. The order in which these operator/argumen

3 - 15 July 1976

SECTION 3 MAN1674

derups are evaluated depends primarily on operator priority. The or
er,priority for all FORTRAN operators is listed in Table 3-1. Howev
position from left to right, and the presence of parentheses, may
affect the order of evaluation. For example, in the expression:

SQRT (A** (B-C+2.))

the SQRT function has highest priority, but its argument consists of
and expression, 1in parentheses, that must be evaluated first.
Within the outer parentheses, the exponential operator has priority,
but one of its arguments (B-C+2.) 1is also an expression that must
be evaluated. 1In the latter expression both operators have the same
level of priority so they are evaluated from left to right; the
expression B-C is evaluated first, producing an intermediate result
n Rl" .

The complete evaluation sequence is:

Step Argument 1 Operator Argument 2 Result

1 B - c R1
2 R1 + 2 R2
3 A * % R2 R3
4 R3 SQRT -- Final Result

An expression of any complexity can be analyzed in this manner to
detect possible error conditions such as use of mixed modes, etc.

Among operators of equal priority, the laws of commutativity and
assocliativity are used to rearrange the order of evaluation.

REV. D 3 - 16

MAN1674 ASSIGNMENT STATEMENTS

Table 3-1. Operator Priority

Priority Operator Operation

First FUNCTIONS Function subroutine
** Exponentiation
* / Multiply or divide
+ - Add or subtract

.LT.,.LE.,.EQ.,
Relational operators
.NE.,.GT.,GE.

. NOT. Logical negate
.AND. , Logical AND
Last .OR Logical OR

Mixed Mode Expressions

nteger,tic and Relational operators may freely combine operands of i
real, double-precision, and complex modes. The restrictions are:

1) No operator can combine a complex and double precision
operand.

2) If operands of different modes are combined, the following

results:
Mixed Operands Results
Complex-Real Complex

3 - 17 - July 1976

SECTION 3 MAN1674

Complex-Integer Complex
DP - Real DP

DP -Integer DP
Real-Integer Real

3) Subscripts of array variables must be in integer mode:
ARRAY (3,1,J)

4) Arguments supplied to subroutines (for example in
CALL statements) must be in the mode required by

the subroutine.

Assignment Rules

In arithmetic assignment statements of the form:
A =B

different data modes may be used on either side of the replacemnt
operator, within the limits specified by Table 3-2.

REV. D 3 - 18

Table 3-2.

MAN1674

ASSIGNMENT STATEMENTS

Rules for Assignment Of B to A

Integer
Integer
Integer
Integer

Real
Real
Real
Real

Double
Double
Double
Double
Complex
Complex

Complex
Complex

Precision
Precision
Precision
Precision

Integer

Real

Double Precision
Complex

Integer

Real

Double Precision
Complex

Integer

Real

Double Precision
Complex

Integer
Real

Pouble Precision
Complex

Assign

Fix & Assign

Fix & Assign

Fix & Assign Real Part

Float & Assign

Assign

DP Evaluate & Real Assign
Assign Real Part

DP Float & Assign

DP Evaluate & Assign
Assign

P

Float & Assign Real Part
Zero Image Part

Assign Real Part Zero
Image Part

P

Assign

(1) P means prohibit combination.

(2) Assign means transmit the resulting value, without change,

to the entity.

(3) Real Assign means transmit to the entity as much precision
of the most significant part of the regulting value as a
real datum can contain.

(4) DP Evaluate means evaluate the expression,

then DP Float.

(5) Fix means truncate any fractional part of the result and
transform that value to the form of an integer datum.

(6) Float means transform the value to the form of a real datum.

(7) DP Float means transform the value to the form of a double

precision datum.

July 1976

MANlo674 CONTROL STATEMENTS

SECTION 4

CONTROL STATEMENTS

The statements of a FORTRAN program are usually executed 1in the
order 1in which they are 1listed 1in the source program. Control
statements make it possible to alter the sequence of execution,
branch conditionally to different statements depending on the result
of computations, form execution loops, call and return from
subroutines, and stop program execution. The control statements
described in this section are:

GO TO (unconditional, computed, and assigned)

IF (arithmetic and logical)

DO

CONTINUE

STOP

PAUSE

END
Also described in this section is the ASSIGN statement which is used
only in conjunction with assigned GO TO statements. The CALL and
RETURN statements are described in Section 7, together with other
information on subroutine references.
Statement labels used as arguments in control statements must be
assigned to executable statements in the same program unit as the
control statement itself.
UNCONDITIONAL GO TO STATEMENT
An unconditional GO TO statement is of the form:

GO TO k

where k is a statement label.

This statement causes the statement identified by the statement
label to be executed next.

Examples: See example in Appendix D.

4 - 1 July 1976

SECTION 4 MAN1574

COMPUTED GO TO STATEMENT
A computed GO TO statement is of the form:
GO TO (k(l), k(2), ... , k(n)), 1

where the k’s are statement labels and i is an integer expression
reference.

This statement causes the statement identified by the statement
label k(j) to be executed next, where j is the value of i at the
time of the execution. The result is a conditional branch to one of
the k destinations, depending on the value of i. If i is less than
1 or greater than n, then control will be transferred to the next
seguential statement.

Example:

GO TO (15,25,7),3d

If J is elsewhere assigned the value 2, control will be transferred
to statemant 25. For a program example, see X1@ in Appendix D.

ASSIGNED GO TO STATEMENT
An assigned GO 710 statement is of the form:
GO TO i, (k1l,k2, ... , kn)
NOTE: The parenthesized statement label list is optional.

where 1 is an integer variable reference, and the k’s are statement
labels. More than one statement reference is optional.

At the time an assigned GO TO statement is executed, the current
value of 1 must have been ASSIGNed to a statement label. The
statement identified by that label is executed next.

Example:

ASSIGN 20 TO ADCON

GO TO ADCON, (7,20,100)

ASSIGN STATEMENT

A GO TO assignment statement is of the form:

REV. D 4 - 2

MAN1674 CONTROL STATEMENTS

ASSIGN k TO 1

where k 1s & statement 1label and i is an integer variable neme.
After execution of such a statement, subseagquent exescution of =zny
assigned GO TO statement using that integer variable will cause the
statement identified by the assigned statement label to be execut=d
next, provided the variable has not been redefined.

Example:
ASSIGN 328 TO I

20 GO TO I,(100,316,320,499)
320 A =B + C

ASS1IGN 166 TO I

GO TO 24
160 Y = A*X

Once 1t has been mentioned in an ASSIGN statement, an integer
variable may not be referenced in any statement other than an
assigned GO TO statement (or as a statement number parameter in a
subroutine call) until it has been redefined.

ARITHMETIC IF STATEMENT
An arithmetic IF statement is of the form:

IF (e) K(1),k(2),k(3)

where e is any arithmetic expression of integer, real, or double
precision type, and the k’'s are statement labels.

The arithmetic IF is a three-way branch conditional upon the value
of expression e:

vValue of e Statement Executed Next
<@ (negative) k(1)
=0 k(2)
>3 (positive) k(3)
Example:

IF (TIME) 20,25,30

Here, if TIME is elsewhere assigned the value 2.5, control 1is

4 - 3 July 1976

SECTION 4 MAN1674

transferred to statement 30. Other examples of the format:
IF (A+B-C) 206,25,30
IF (A+1.133) 7,500,100

Additional examples are Example X2 and X9, Appendix D.

LOGICAL IF STATEMENT
A logical IF statement is of the form:
IF (e) S

where e 1s a logical expression and S is any executable statement
except a DO statement or another logical IF statement.

The logical expression e is evaluated. If e has the value .TRUE.,
statement S is eXxecutad. Otherwise, control passes to the next
statement. Examples:

IF (P.OR.Q) C=P1*D

IF (X.GT.Y) CALL XFER (A,B)

If (K.LT.L) GO TO 19

IF (INPT.EQ. X’) BFR=INPT

See Program example X1 in Appendix D.

DO STATEMENT
A DO statement is of one of the forms:
DO n i = m(l), m(2), m(3)
or
DO n i = m(l), m(2)
where:
(1) n is the label of an executable statement following the
DO statement in the same program unit. This statement, called
the terminal statement of the associated DO, must not be a
GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE, or

Do statement, nor a logical IF containing any of these forms.

(2) i is an integer variable called the index.

REV. D 4 - 4

MAN1674 CONTROL STATEMENTS

(3) m(l), m(2), and m(3) are the initial, limit, and increment
values of the index, respectively. They are each either an
integer constant or integer variable reference. 1If the
second form of the DO statement is used, m{(3) is assumed
to be 1. At time of execution of the DO statement,

m(3) must be greater than zero.

A DO statement causes looping or repeated execution of a series of
statements. The range associated with DO statement consists of all
executable statements following the DO, to (and 1including,) the
terminal statement.

During execution of a2 DO statement, i is set equal to m(1l), and all
executable statements within the range of the DO are executed at

least once. After each execution, the value of i is increased by
m(3) and if i is equal to or less than m(2), the same group of
statements 1is executed again. This process repeats until i is

greater than m(2) {the limit). After the last execution, control
passes to the statement following the terminal statement and the
index variable is left at an undefined value. This 1is called the
normal exit from the range. A control statement within the range
may also cause exit. Examples:

po 15 1 =1, 10, 1

This loop is executed 16 times. T is 10 during the last
execution.

DO 15 I = 3, 16, 2

Thnis loop is executed 4 times. I is 9 during the last
execution.

During execution, the index variable is available for use in
arithmetic statements to control the results of computation. For
example:

DO 5@ I 1, 9

53 A(I) I*¥3.14159

sets up a table of integer multiples of PI.

Nested DO Loops

A DO loop may include other DO loops which in turn may contain other
DO loops. The main rule for nesting 1is that the terminating
statement of an inner loop must occur before the terminating
statement of the next higher loop. An exception is that a single
terminator can terminate two or more loops. (See statement 5 in the
second example.) DO loops can be nested to any depth.

4 - 5 July 1976

SECTION 4 MAN1674

First example of Nested DO’s

DO 206 K=1,14,2
A(K,1) = 0.0
0O 15 +=4,31.3
15 A(K,1)=A(K,1)+K,L)
A(K,2)=A(K,1)/3.14
20 A(K,3)=A(K,1)/583.7

Second Example of Nested DO Loops:

PERMITTED NOT PERMITTED
Do 5,1=1,5 po 1,1=1,20,2
po 1,3=2,10,2 Do 2,J=1,5

1 CONTINUE 1 CONTINUE
DO 4,K=1,5 DO 3,K=2,20,2
DO 2,L=1,10,2 2 CONTINUE

2 CONTINUE 3 CONTINUE

DO 3,M=2,20,3
3 CONTINUE
4 CONTINUE

DO 5,N=1,3
5 CONTINUE

Extended Range

A DO is said to have an extended range if:

(1) A GO TO statement or arithmetic IF statement within the
of the innermost DO of a nest can cause control to pass
the next, and;

(2) A GO TO statement or arithmetic IF statement not within
st nest will cause control to return into the range of the
DO of the first nest.

range
out of

the
innermo

If both of these conditions apply, the extended range is defined as
all statements that may be executed from the time control leaves

the nest to the time control returns to the nest.

REV. D 4 - 6

MAN1674 CONTROL STATEMENTS

Restrictions

A GO TO statement or an arithmetic 1IF statement may not cause
control to pass into the range of a DO unless it is being executed
as part of the extended range of the DO.

The extended range of a DO may not contain another DO that has an
extended range.

When a procedure reference occurs 1in the range of a DO, that
procedure 1is considered to be temporarily within that range during
the execution of that reference.

The control variable, initial parameter, terminal parameter, and
incrementation parameter of a DO may not be redefined during the
execution of the range or extended range of that DO.

A statement label that is the terminal statement of more than one DO

statement may not be used in any GO TO or arithmetic IF statement
except one within the range of the DO most deeply contained within

that terminal statement.
CONTINUE STATEMENT
A CONTINUE statement is of the form:

CONTINUE
This statement terminates the current execution of a DO loop. If no
DO loop is in effect, control. transfers to the next executable
statement. CONTINUE may be wused as a labelled entry point, for

example as the target of a conditional GC TO statement. Example:

If A.EQ.B GO TO 120

120 CONTINUE

A =17
(etc.)

For additional program examples, see X1 and X14 in Appendix D.

STOP STATEMENT

4 - 7 July 1976

SECTION 4 MAN1674

A STOP statement is of the form:
S5TOP [n]

where 'n” is an optional string of one to five decimal digits. This
statement transfers control to the subroutine FS$SHT, which types the
letters **k**3T (followed by the octal equivalent of 'n” |if
specified) on the user terminal, and returns to the operating
system (or halts the CPU when paper tapz). After a START command,
the message is printed again.

PAUSE STATEMENT
A PAUSE statement is of the form:

PAUSE [n]
where n 1s an optional decimal constant. This statement transfers
control to the FS$HT subroutine, which types the message ****pp,
followed by the octal equivalent of the specified number. This
feature <can be used to stop the program temporarily and allow the
operator to change tape, set sense switches, etc. It 1s customary

for n to identify the PAUSE statement that caused the halt.

After a START command, the program continues operation at the first
executable statement following the PAUSE statement.

END STATEMENT

This statement must be placed at the end of every subprogram:

END

REV. D 4 - 8

MAN1674 SPECIFICATION STATEMENTS

SECTION 5

SPECIFICATION STATEMENTS

Specification statements are non-executable statements which supply
information to the compiler. For convenience, they are divided into
the following functional categories:

Data Type Mode Specification Statements

INTEGER

REAL

DOUBLE PRECISION
COMPLEX

LOGICAL

Storage Specification Statements

—— v ————————————— - ———— —— —— o —

DIMENSION
EQUIVALENCE
COMMON

External Procedure Specificaton Statements

EXTERNAL

Data Defining Statements

DATA

Compilation and Run Time Control Statements

TRACE
LIST
NOLIST
FULL LIST
SINSERT

DATA TYPIE MODE SPECIFICATION STATEMENTS

These statements are used to override the implicit mode assignments
controlled by the first letter of a variable name. Thus, variables
with names that begin with I, J, K, L, M, N,can be defined as REAL

5 - ~ July 1976

SECTION 5 MAN1674

or DOUBLE PRECISION, and so on.
A mode specification statement is of the form:
Mode v1, v2, ... Vn

where Mode is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LCGICAL,

and each v is a variable name, an array name, a function name, or an
array declarator.

A mode statement is used to override or confirm the implicit mode
assignment specified by the first letter of the name (I, J, K, L, M,
N, for integer), to declare entities to be double precision,

complex, or logical modes, and to supply array dimension
information.

A global mode assignment may be made by a mode statement without a
list of names. All variables that do not appear in another mode
specification statement are defined as the global mode.
NOTE :
The global mode assignment does not affect variables, arrays,
or function name occuring before a global mode statement.

INTEGER statements are used to declare integer mode for variables,
arrays, or functions.

INTEGER A5, MATRIX, B37

REAL statements may be used to assign real (single precision
floating point) mode to variables, arrays, or functions.

REAL J22, NEXT, MATRIX, IFX

DOUBLE PRECISION statements assign variables, arrays, or functions
to the double precision floating point mode:

DOUBLE PRECISION AMT, INT, STAT25

COMPLEX statements assign variables, arrays, or functions to complex
floating point mode:

LOGICAL statements assign variables, arrays or functions to logical
mode:

LOGICAL P, Q, R, XOR, IMPL

Alternate Methods of Declaring Arrays

The array is specified in the same manner as in the DIMENSION
statement, by following the array name with the maximum size of each
dimension within parenthesis. Examples:

REV. D 5 - 2

MAN1674 SPECIFICATION STATEMENTS

INTEGER X(10),Y,Z, (5,3,2)
REAL K1, K2(4,3)

DOUBLE PRECISION D(10)
COMPLEX ?l, C2(3,7)
LOGICAL L(4,4,4)

COMMON Al, B(9)

STORAGE SPECIFICATION STATEMENTS

As previously stated in Secton 3, arrays can have up to seven
subscripts separated by commas. Each array must be assigned a
storage area by a DIMENSION cr COMMON statement, or as part of a
mode declaration statement.

These statements provide the compiler with information on the size
of arrays, specify common storage areas for use by two or more
programs, and identify external subprogram names.

DIMENSION Statement

The DIMENSION statement is used to declare arrays and define their
sizes.

A DIMENSION statement is of the form:
DIMENSION v1(Il), v2(I2), e.., vn(In)

where each v is a variable that is assigned as the name of an array
(See Section 3), and each i is a series of one to seven dimensions
that define the dimensions of the array. The maximum number of
array dimensions is seven. The dimensions are positive non-zero
integer constants, or dummy variables, separated by commas. The
value of each dimension defines the maximum value for that
dimension. The DIMENSION statement thus establishes the name and
maximum storage requirement of an array. Example:

DIMENSION LST1(1600), TABLE(10,10,4), ARRAY(40,10)
For program example, see X13 in Appendix D.

An alterrate way to define arrays is described wunder Data Mode
Specificetion Statements.

An array must be re-declared when it is passed to a subprogram. 1In
both declarations, the mode, number of dimensions, and size of each

5 - 3 July 1976

SECTION 5 MAN1674

dimension must agree, but the name of the array need not agree. For
2xample:

DIMENSION TABL(100)

CALL STAT (TABL, PARAM)
SUBROUTINE STAT(JOB, J)

DIMENSION JOB(100)

In a FORTRAN subprogram where the calling program provides (and
declares) the array name and all variable subscripts, the

subscripts in a DIMENSION statement may be integer variables instead
of constants.

This feature adds to the flexibility of general purpose subroutines
that process arrays. Rather than specifying an array of fixed size
within the subroutine itself, the calling program can declare the
size of an array of any size (memory space permitting). Constant
dimensions must beused in the calling program, however. Example:

DIMENSION MATRIX (25,25)

CALL EVAL (MATRIX, 25, 1Z)

SUBROUTINE EVAL (TYPE, I,B)

DIMENSION TYPE (I, I)

In the subprogram’s DIMENSION statement, both the array’s name and
all variable subscripts must be dummy names.

EQUIVALENCE Statement

The EQUIVALENCE statement permits a program to share memory storage
by two or more variables or array elements within a single set of

parentheses.
An EQUIVALENCE statement is of the form:
EQUIVALENCE (kl1,k12,k13...),(k21,k22,k23...)
where each k is a variable, subscripted variable, or array name
separated by commas. Each element in the list is assigned the

same memory storage by the compiler. Subscripts appearing in an
equivalence list must be integer, positive, non-zero constants.

REV. D 5 - 4

MAN1674 SPECIFICATION STATEMENTS

An EQUIVALENCE statement equates single variables to each other,
entire arrays to each other, elements of an array to single
variables, or vice versa.

An element of an array may be expressed in an EQUIVALENCE statement
in any of three ways:

1. It may be expressed exactly as in a DIMENSION statement. Assume
the 2lement X (1,1) of the two-dimensional array X(5,5) 1is to

: be equated to variable Y (3) of the one-dimensional array Y (10)
the statement could be:

EQUIVALENCE (X(1,1),Y(3))

Note that this statement also equates X (2,1) with Y (4),
X (3,1) with Y (5) etc.

2. It may be expressed as the equivalent fictitious single-
dimensional subscript that indicates the order in which the
element is stored in memory. Again assuming
element X (1,1) is to be equated to variable Y (3),
the statement could be written:

EQUIVALENCE (X(1),Y(3))
where X (1) specifies that the element X (1,1) is stored in the
first location of the storage block resecrved for the two-
dimensional array X (5,5).

3. The array name may be stated without a subscript; a subscript
of 1 is assumed. Thus, elements X (1) and Y (3) could be
equated by:

EQUIVALENCE (X,Y(3))

The data type (mode) assigned to each element determines the number
of memory cells occupied by each element: ‘

Number of

Data Type (Mode) Memory Words
Integer, Logical 1
Real 2
Double Precision 4
Complex 4

If an INTEGER or LOGICAL data type (mode) variable is made
eguivalent to a REAL, DOUBLE PRECISION or COMPLEX mode variable, the
former variable shares memory storage with the first of the words

5 - 5 July 1976

SECTION 5 MAN1674

required by the latter variable.

Variables and array elements appearing in EQUIVALENCE statements may
also appear in COMMON statements. However, the EQUIVALENCE
statements must not re-origin a common block, as in:

REAL Y (19)

COMMON X (5) (Not permitted)
EQUIVALENCE (Y (9) ,X(2):

and must not re-order common, as in:

COMMON X,Y
EQUIVALENCE (X,Y)

or (Not permitted)

COMMON X,Y
EQUIVALENCE (X,A)
EQUIVALENCE (A,Y)

Dummy arguments for a subprogram cannot be used as elements within
an EQUIVALENCE statement contained in that subprogram.

COMMON Statement

A COMMON statement enables a program to share memory storage among
two or more program units, and o specify the names of variables and
arrays that are to occupy this area.

A COMMON statement is of the form:
COMMON/x1/al/ . . ./xn/an
where each a is a nonempty list of variable names, array names, or

array characters (no dummy arguments are permitted) and each x is a
COMMON block name or is empty.

A COMMON Dblock name may be unspecified (called blank common); if
such a block appears first in a COMMON statement, the first two

slashes may be omitted.
Names of COMMON blocks must not be identical with the name of a
subprogram called on by the program job, or the name of a subroutine
in the FORTRAN library. The following example illustrates some
acceptable COMMON statements:

COMMON P,Q,R (20)

COMMON // P,Q,R (20)

REV. D 5 - 6

MAN1674 SPECIFICATION STATEMENTS

COMMON / R1/X,Y,Z
10 COMMON P,Q,R(20)/R1/S,T,U
COMMON // P,Q,R(20)/R1/S,T,U
X /R2/V,W(21,4),J
2¢ COMMON /R1/S,T//P/R1/U//Q,R(20)
C STATEMENTS 19 AND 20 ARE EFFECTIVELY IDENTICAL

Data items are assigned sequentially within a COMMON block in the
order of appearance. The loader program assigns all COMMON blocks
with the same name to the same area, regardless of the program or
subprogram in which they are defined. Blank common data is assigned
in such a way that it overlaps the loader program, thereby making

the memory area occupied by the leader program available for data
storage.

NOTE :
The form // (with no characters except blanks between
slashes) may be used to denote blank common.

The number of words that a COMMON block occupies depends on the
number of elements, the mode of the elements, and the interrelations
between the elements specified by an EQUIVALENCE statement. COMMON
blocks that appear with the same block name (or no name) in various
programs or subprograms of the same job are not regquired to have the
elements within the block agree in name, mode, or order but the
blocks must agree in total words.

Special Common Block, “LIST *

As an aid to system-level programming, this compiler defines
absolute memory location ‘00001 as the origin of a common block
named ‘LIST.

It is customary to assign an array called LIST into the labeled

common area called LIST, such that the first word in this array is

location ‘00001, the sixth word location “@0@006, etc., as in:
COMMON/LIST/LIST(6@)

Effectively, the subscript of array LIST 1is the actual memory
address.

*This feature is not required when compiling in 64V mode with VFTN.

5 - 7 July 1976

SECTION 5 MAN1674

EXTERNAL PROCEDURE SPECIFICATION STATEMENT

The EXTERNAL statement permits the name of an external FUNCTION
subprogram (library or user defined) to be passed as an argument in

a subroutine call or function reference. An EXTERNAL statement is
of the form:

EXTERNAL v1, v2, ... , vn

where each v is declared to be an external procedure name. If an
external procedure name is used as an argument to another external
procedure, it must appear in an EXTERNAL statement in the program
unit in which it 1is so used. Only subprogram names used as
arguments need to be declared by an EXTERNAL statement. Example:

Main Program:

EXTERNAL SIN, COS
A=EVAL(SIN,X)
B=EVAL (COS,Y)

END

FUNCTION Subprogram EVAL:

FUNCTION EVAL(F,ARG)

EVAL=F (ARG) +F (ARG/2)
RETURN
END

In this example, the FUNCTION subroutine EVAL uses a dummy argument
F to be replaced by an external function name. 1In the main program,

the first reference to EVAL specifies SIN as the function name. In
the second reference, COS is specified.

DATA DEFINING STATEMENTS

The initial state of variables or array elements may be set up at
the time of loading by DATA statements.

REV. D 5 - 8

MAN1674 SPECIFICATION STATEMENTS

DATA Statement

The DATA statement sets variables or array elements to initial
values during loading of the object program. (The variables are not
re- initialized if the program is restarted without reloading.) A
DATA initialization statement is of the form:

DATA kl1/d1/,k2/d2/,...... , kn/dn/

where k is a list containing names of non-dummy variables or array
elements (with constant subscripts) separated by commas. Each 4 is
a corresponding list of constants with optional signs.

The name 1list and the data list must correspond in order and data
type. If the data 1list consists of a squence of identical
constants, the constant need only be written once and preceded by a
repeat count (integer constant) and an asterisk. For example:

/1.4,3%2.0,0.0
is equivalent to:
- /1.4,2.0,2.0,2.90,0.9/
Acceptable formats for constants used in data lists are:

Data Type Examples

INTEGER /11,-4096,1,+8,6*0/

REAL /11.0,-4.096E3,89E-2,+6.0,6*0./

DOUBLE /11.D,-4.096D3,89D-2,+0.6D1,6*0.D/

. COMPLEX /(1.6,-4.096E3) ,(89E-2,+6.0) ,6*(8.,0.)/
LOGICAL /.TRUE.,.TRUE., .FALSE./

The first DATA statement in the example below assigns the value
0.10762 to Al (4), l1.0E5 to X, 1 to K, etc. The assignment is done
at load time, not at execution time. A DATA statement 1s not
executable. Examples:

DIMENSION Al(10) ,B4(19)
DOUBLE PRECISION D1
LOGICAL L1, L2, L3

COMPLEX C1

5 - 9 July 1976

SECTION 5 MAN1674

INTEGER I(10)

DATA Al(4),X,K,D1,L1,J1,
1 Ci/96.19762,1.0E5,1,1.0D,
2 .TRUE., “XY’',(4,3,0.0)/

DATA P/23.7/, Q/d.1E-3/,

1 R/8./, J/4895/, L3/.F./,
2 B4(1),B4(2),B4(3),B4(4),
3 B4(5),B4(6),B4(7),B4(8),
4 B4(9) ,B4(10) ,/10*0.0/
DATA I/10%*93/

An ASCII constant may appear in the data list as a string of up to 8

characters (using either the nHxx format or the “xx~ format) . The
characters will be stored as ASCII <codes, left Jjustified if
necessary.

The variable or array element must be of a data type appropriate to
the number of characters:

DATA 1/°AB"/ (Integer)

DATA A/ ABCD "/ (Real)

DATA D/ ABCDEFGH '/ (Double Precision)
DATA C/ ABCDEFGH "/ (Complex)

An array or part of an array may be filled with a 1long Hollerith
string, as in:

INTEGER I(5)
DATA I/°01234567897/
DATA I/°01234°,°56789° "/

The following form is not permitted:
DATA I(1l),I(2). . I(5)/°01234567897/

dederical and ASCII values can be mixed within the same array, provi
enough items are specified to fill the entire array:

INTEGER A(7)
DATA A/3,°012345°,32767, 67897/

DEBUGGING AIDS

The following statements determine functions that take place while a
program 1is being compiled or executed. The TRACE function causes
Diagnostic printouts of the results of computation to facilitate

debugging. Three listing control statements, NOLIST, LIST and FULL
LIST are provided.

REV. D 5 - 19

MAN1674 SPECIFICATION STATEMENTS

TRACE Statements

TRACE statements are used as a program debugging function. TRACE
allows a 1listing of each of the current value of each assigned
variable.

TRACE statements can be used in two formats, item trace and area
trace.

Example:

The following is a partial program and a corresponding TRACE listing
format which contains both item trace and area trace.

PARTIAL PROGRAM TRACE LISTING
DIMENSION A(3,3) Y = 0.4740000000E 01
TRACE Y,A A (4) = 0.2370000000E 01
X = 3.24 Y = 0.5740000000E 01
Y = X + 1.5 (5) = 0.2870000000E 01
Z = Y**2 Y = 0.7740000000E 01
DO 48 ;=1,3 A (6) = 0.3370000000E 01
A(l,2)= Y/1 Y = 0.7740000000E 01
48 Y =Y + 1.0 (50)
X =0.0 X = 0.1000000000E 21
K = 2 () =-0.2000000000E 01
TRACE 62 (51)
50 X = X+1.0 K = 4
IF(X-3.0) 51,53,53 (50)
51 K = K*K K = 16
GO TO 540 (50)
53 IF(X.LE.Y) X=X+100.0 X = 0.3000000000E 01
62 X = X-1.0 () = 0.0000000000E 00
zZ =2 *X (53)
Y = 0.0 () = 1
.o X= 0.1030000000E 03
(62)
X = 0.1020000000E 03
Y = 0.0000000000E

Item Trace

Item trace allows the values of the variables to be listed in the
order of execution.In the above example, TRACE Y,A 1illustrate how
the values of Y and A are listed in the TRACE listing.

Item trace is in the form:

5 - 1 July 1976

SECTION 5 MAN1674

TRACE V1, V2,...Vn

where each V 1is a variable name or array name. When a program
containing such a TRACE statement is compiled, coding is 1inserted
into the object program following every statement where one of the
specified variables is redefined, until another TRACE statement that
specifies the same variable is encountered. During execution, the
TRACE statement causes a printout of the state of modified variable.
An item trace statement can be placed anywhere in a program, but
trace coding is not inserted until the TRACE statement is compiled.
Any number of item trace statements may be included. The following
example illustrates the on-off action of item trace:

K=10 (No tracing yet)

TRACE K (Enables tracing of K)
K=15*R (Result is printed)
TRACE K (Inhibits tracing of K)
K=ALP {No printout)

TRACE statements take effect in source program physical order, not
the logical order of 2=xecution.

Area Trace

Area trace allows the wvalues of the variables associated with a
statement number to be listed. In the above example, TRACE 62
causes the wvalues of X and Y to be listed starting with the TRACE
statement and ending with statement 62.

Area trace is specified by the form:
TRACE n
where n is any statement number that follows the TRACE statement.

Coding is also inserted after each statement number to cause a

printout that enables the programmer to follow the sequence in which
statements are executed.

An area trace statement should not be placed within the range of

another area trace statement, unless both statements refer to the
same statement number.

LISTING CONTROL STATEMENTS

These statements enable the programmer to choose the amount of
detail to be present in the listing file for different sections of a
program. The statements may appear anywhere in the source progran,
but they only affect the listing of subsequent source statements.

These statements override the A register settings made prior to
compilation.

REV. D 5 - 12

MAN1674 SPECIFICATION STATEMENTS

NOLIST - No source listing, No symbolic listing
LIST - Source listing, No symbolic listing
FULL LIST - Source listing, symbolic listing

Inserting Files

The INSERT statement accepts a tree file name specifier which allows
the 1insert of a file located in a different file directory or the
same file directory.

Format: SINSERT <treename>

The $INSERT statement must start in column 1 followed by the tree
name of the file.

Usage: A file containing COMMON specifications for an

executable program, insert statement in each program
unit rather than repeating COMMON specification.

5 - 13 July 1976

MAN1674 I-O AND FORMAT CONTROL

SECTION 6

I-O AND FORMAT CONTROL

GENERAL PRINCIPLES

Input/Output and format control statements are used to transfer and
control the flow of data between 1internal storage and an
input/output device such as a wuser terminal, printer, punch,
magnetic tape unit or disk storage unit.

Input/Output in FORTRAN IV is accomplished mainly by three types of
statements: READ for input, WRITE for output, and FORMAT for input
or output format specifications. In addition, device control
statements are provided for use with sequential access devices such
as magnetic tape transports and ENCODE/DECODE statements convert to
and from ASCII data.

The Input/Output statements described in this section are:

READ/WRITE STATEMENTS

READ
WRITE
FORMAT
PRINT

DEVICE CONTROL STATEMENTS

REWIND
BACKSPACE
ENDFILE

ENCODE/DECODE STATEMENTS

ENCODE
DECODE

READ AND WRITE STATEMENTS

Input/Output statements in FORTRAN perform data transfers between
storage locations defined in a FORTRAN program and records which are
external to the program. On input, a READ statement transfers data
from an external device (unit) to storage locations. On output, a
WRITE statement transfers data from diverse storage locations to an
external device (unit). An I/0 1list 1is wused to specify which

6 - 1 July 1976

SECTION 6 MAN1674

storage locations are used.

The READ and WRITE statements are identical in format; READ is used
for data input, and WRITE is used for data output.

The format is:
READ (u,f) list
or
WRITE (u,f) list

where “u’ is the unit number of the I/O device, “f° is the number of
a format statement 1included in the program being compiled, and
“list” is a list of the variables to supply or receive the data.

List

An I/0 list specifies which storage locations are used. An I/0 list
can contain variable names, array elements, array names or a form
called an implied DO.

’

Unit Number “u

The unit number is an integer constant or variable between 1 and 28
that is used by the I/0 Control System (IOCS) to refer to a logical
1/0 device. The actual device used depends on the current setting

of the TIOCS Logical Unit Table (LUTBL). Default logical device

assignments are listed In Table b-1-

NOTE: Only user terminal, paper tape and Funits 1-16 are supported.
s 1710

Reading Data Into Arrays

The following example illustrates how data is read into arrays. See
Section 3 for storage arrangement and Appendix D for illustrative
program examples.

Example:

Write a single statement to read 200 numbers from a paper tape,
placing the first 100 numbers in the X array and the next 100
numbers read in the Y array. The paper tape reader will be
referenced by the number "2".

Solution:

READ(2,1) (X(1),I = 1,100),(Y(I),I = 1,100)

REV. D 6 - 2

MAN1674 I-O AND FORMAT CONTROL

Two basic forms of the READ and WRITE statements are:

Form Purpose
WRITE (u,f) list formatted WRITE
" WRITE (u) 1list unformatted WRITE
READ (u,f) list formatted READ
READ (u) list unformatted READ
Table 6-1. Logical Device and their IOCS Numbers
FORTRAN Number Device
(Unit No.)
1 user terminal
2 paper tape reader or punch
3 MPC card reader
4 serial line printer
5 Funit 1
6 Funit 2
7 Funit 3
8 Funit 4
9 Funit 5
19 Funit 6
11 Funit 7
12 Funit 8
13 Funit 9
14 Funit 14
15 Funit 11
16 Funit 12
17 Funit 13
18 Funit 14
19 Funit 15
20 Funit 16
21 9-track magnetic tape unit @
22 9-track magnetic tape unit 1
23 9-track magnetic tape unit 2
24 9-track magnetic tape unit 3
25 7-track magnetic tape unit 0
26 7-track magnetic tape unit 1
27 7-track magnetic tape unit 2
28 7-track magnetic tape unit 3
6 - 3 July 1976

SECTION 6 MAN1674

Reading a Variable List

A variable list consists of one or more variables, subscripted
variables, or array names, separated by commas, as in:

READ (1,10) A,B,X(B), ARRAY

Variables may be of any mode provided each item 1is matched by an
appropriate format specification in the format statement.

The order of items in the list is significant. On output, (WRITE),
each item is delivered to the output device in the specified order.
On input (READ), the first data item in the input record is entered
into the first item on the list, and so on.

In the list of a READ statement, an integer variable used as a
subscript may appear as a variable in the same list to the lzft of
the subscripted variable. (See B and X (B) in the above example.)

Example:

Write a statement to read ten numbers and place them in the
variables A, B, C, D, E, F, G, H, O, and P, respectively. Use
associated statement number 1 in the READ statement.

Solution:
READ (1,1)A,B,C,D,E,F,G,H,0,P

Implied DO-Loops

This notation provides a concise way to specify sequential input or
output of array elements at the same level of subscripting. A
starting and ending value for a subscript is specified in much the
same way as in a DO loop. Consecutive items of the array at that
subscript 1level are processed as the subscript variable is stepped
through its range of values. For example, in:

READ (1,50) J, (Y(I),X(1,J),I=1,10)
The expression I=1,10 specifies the starting and ending values for
the subscript variable, 1I. The starting and ending values may be

integer constants or variables. An increment of +1 1is assumed.
This statement reads items in the following order:

I, Y(1) ,X(1,3),Y(2) ,X(2,3), « « « . . .¥(10),X(10,7)
The name “implied do 1loop” <comes from the resemblance to DO

statements. Note that the implied do loop statement and all items
containing the controlled variable as subscript are nested within

REV. D 6 - 4

MAN1674 I-O AND FORMAT CONTROL

the same outer parentheses. Two or more implied DO loops may appear
in a single statement, if they are properly grouped in parentheses:

WRITE (1,25) ((ARGH(I,J), I=1,3), J=1,10)
This statement outputs items in the following order:
ARGH(1,1) ,ARGH(2,1) ,ARGH(3,1) ,ARGH(1,2) . . .etc.

ITtems in the 1list are processed from left to right, with indexing
taking place at each open parenthesis (excluding the parentheses
containing subscripts).

While processing arrays, it 1is possible to select row-column or
column-row order by incrementing the subscripts in the proper order.

Processing Entire Arrays

To read or write an entire array, only the array name need be
specified; the subscripts can be omitted. For example, to process
a matrix of m * n elements named ARRAY, it is only necessary to
include the name ARRAY in the input/output list. This causes a
transfer of the entire array in its natural order, which 1is the
order that would be achieved by the following list entry: (The
innermost entry varies most rapidly.) See example X1, line 8081, in
Appendix D of this manual.

((ARRAY(I,J) ,I=1,m) ,J=1,n)

Positioning Data in Formatted Records

READ and WRITE statements specify the input or output device to be
used, select a FORMAT statement, and name the variables or arrays
containing, or to contain, the transferred data. The variables are
named in an input or output list. The specified FORMAT statement
must provide a format descriptor for each of the items in the input
or output list, in the same order. For example, in:

WRITE (1, 10) ARGH, TEMP, DATOl

10 FORMAT (I5, 3X, F8.5, 20X, E8.2)
the WRITE statement sets up the transfer of an output record on unit
1, (typically the Teletype) according to format statement 10. The
items in the output list are the variables ARGH, TEMP, and DATOl.
Format statement 18 contains a format descriptor for each of the
variables, and in addition provides some vertical and horizontal
spacing control as follows:

Assume that,

6 - 5 July 1976

SECTION 6 MAN1574

a. the 1/0 device is at the beginning of the next record. For a
Teletype, that is equivalent to being at column 1 of a new line.

b. the first descriptor in the list, I5, appblies to the first
variable, ARGH, in the output list of the WRITE statement; I5
treats ARGH as an integer and allows it a field of 5 spaces in

the output record. 1In this case, the field occupies Teletype
columns 1 through 5.

¢. the 3X descriptor inserts three spaces in columns 6 through 8.
d. the F8.5 descriptor interprets the variable TEMP as a real
(single precision floating point) datum and allows it a field
8 characters wide in columns 9-16, with 5 digits to the right of

the decimal point.

e. 20 more spaces are inserted by the 20X specification. These
occupy columns 17 through 36.

f. DAT@1 (also assumed to be a real number) is output in columns
37-44. The EB8.2 specification arranges for DATOl to be output
in scaled format (using a decimal exponent), in a field 8 spaces
wide and with 2 digits to the right of the decimal point.

The resulting Teletype output line might look like:

Column 4] 1 2 3 4 5 .
12345678901234567890123456789012345678901234567890

32767 12.34567 1.23E 03

For an illustrative program example, see examples X7 and X12 in
Appendix D.

The same principles apply for input. To read a line of data from
the user terminal, for example, the following READ statement might
be used:
READ (1,10) ARGH, TEMP, DATOQ1

The same format statement could be used, with the following effect:
Assume that,

a. the input is at the beginning of the next record.

b. the I5 descriptor causes the next five characters to be read,

converted to an integer, and stored as variable ARGH (the

corresponding item on the READ statement input list).

c. the 3X descriptor skips the next three characters on the input

REV. D 6 - 6

MAN1674 I-O AND FORMAT CONTROL

file.

d. the F8.5 desscriptor causes the next 8 characters to bhe read,
converted from mixed-number notation into a real guantity, and
stored as variable TEMP.

e. the 20X descriptor skips 20 more characters on the input file.

f. the E8.2 descriptor causes the next 8 characters to be read,
converted from scaled notation to a real quantity, and stored
as variable DAT@1.

FORMAT statements may also include literal text strings to be output
as comments or messages. For example, the message TEST could bDbe
output by the following statements:

WRITE (1,20)
20 FORMAT (4HTEST)

Note that the WRITE statement does not require an output list, since
the only item output by the FORMAT statement is the Hollerith string
"TEST". _

FORMATTED RECORDS

sSummary

Format statements do the translation between the external form of
data and the way it 1is stored internally within the processor.
FORMAT statements also provide for vertical and horizontal spacing
control. 1Internally, data 1is stored 1in one of six formats -
integer, real, double precision, complex, logical, or ASCII. These
are described in Section 4. The external form depends on the
peripheral device and the type of record.

Format statements have the general form:

SN FORMAT (dF1 dF2 dF3....Fn)
where SN 1is a mandatory statement number, each F is a format field
description and each 4 is a delimiter. The first d may be null.

The closing parenthesis of the format statement selects the next
record.

Delimiters will be discussed next followed by a discussion of the
field descriptors.

Delimiters (Slash and Comma)

The delimiters are the slash (/), meaning proceed to the next

(o2
|
~J

July 1976

SECTION 6 MAN1674

record, or the comma, meaning remain within the current record. Two
or more slashes may appear in a row to skip several records. A
slash at the beginning of the specification can be used for
additional vertical spacing.
Examples:
WRITE (1,19) 1,J,K
10 FORMAT (I6/16/16)

could print:

0 1 2
Column 1234567890123456789012345.
1
32767
-32767

The affect of a statement such as:
FORMAT (16///16)

depends on whether it is being used for input or output.

During output, two blank records are written; during input, two
records are skipped. For output, the statemerit writes a 5-column
integer in the current record, writes two blank records, and writes
another 5-column integer at the beginning of the next record. For
input, the statement reads a 5-column integer from the current

record, skips two records, and reads another 5-column integer from
the next record.

Record Length Options

See Section 8 for record length option details.

Format Field Descriptors

Execution of a formatted READ or formatted WRITE statement initiates
format control. Each action of format control depends upon format
field descriptors. These are of the forms:
srFw.d
srEw.d
srGw.d
0|

srDw.

REV. D 6 - 8

MAN1674 I-O AND FORMAT CONTROL

B '<character string>’
rIw
rLw
rAw
nHhhhhhh...
nX
Tn
where:
(1) The letters F,E,G,D,I,L,A,H,X, and T indicate the manner of
conversion and editing between the internal and external

representations and are called the conversion modes.

(2) w and n are nonzero integer constants representing the width
of the field in the external character string.

(3) d is an integer constant representing the number of digits in
the fractional part of the external character string (except
for G conversion code).

(4) r, the repeat count, is an optional nonzero integer constant

indicating the number of times to repeat the succeeding basic
field descriptor.

(5) s is optional and represents a scale factor designator.

(6) Each h is one of the characters capable of representation
by the processor,

For all descriptors, the field width must be specified. For

descriptors of the form w.d, the d must be specified even if it 1is
zero. Further, w must be greater than or equal to d.

Table 6-2 summarizes the output field descriptor and Table 6-3
summarizes the input field descriptor.

6 - 9 July 1976

SECTION 6 MAN1674

Table 6-2. Summary of Output Field Descriptors

FIELD *okkokok EXAMPLES ***%xxx
DESCRIPTOR CONVERSION INTERNAL STATEMENT OUTPUT

nlw INTEGERS NUMERALS
Converts internally stored +12345 I6 b12345

integers to a group of

numerals (0 to 32767).

Without decimal point . ~-12345 17 b-12345
only negative signs are

output.

nX n spaces are written
into current record

Tn Tabulation settings 19756 T19,14 1976
(note: For output, the
1 in 1976 starts in

Column 10)
nAw INTEGER, REAL or DOUBLE XY A2 XY
PRECISION variables ASCII
Lw LOGIC-IF NONZERO-TRUE +1 Ll T
-1F ZEKO-FALSE %} L5 bbbbF
nHstring Outputs headings, String 30HTEXTb- TEXTb-
messages, etc, in a STRING STRING

“string’” of ASCII
characters

rFw.d REAL or DOUBLE
PRECISION MIXED-
The Number of characters 10 digits F10.5
specified by w is con- 5 places 1234.56789
verted from real or
double precision format
to a mixed number
without an exponent.
Where n represents no.
of times to be repeated
and d represents the
number of characters
to the right of the
decimal point.

rEw.d REAL or DOUBLE +123.456 E10.4 0.1235Eb@3
PRECISION SCALED (scale factor)
external no.= internal
No. X 10, where the
power of 10 is the

REV. D 6 - 10

srGw.d

srbw.d

MAN1674 I-O AND FORMAT CONTROL

No. X 13, where the
power of 10 is the
scale factor.

FIELD WIDTH COMPAR- .123456 Gll.6 1.23456-
ISON - The magnitude of X122 (1) bbb

the input number is

comparaed with output field

width and either an E or F

conversion is made according

to available space.

DOUBLE PRECISION or

COMPLEX SCALED- The +123.456- D15.9 9.1234-
number of characters 56789D@3
specified by w is

converted from internal

double precision or

complex number to a

scaled number.

6 - 11 July 1976

SECTION 6 MAN1674

Table 6-3. Summary of Input Field Descriptors

FIELD *kkkk kX EXAMPLES***x k% k&% k%
DESCRIPTOR CONVERSION EXTERNAL FORMAT INPOUT
nlw Numerical 1Integers bbl123 I5 +123

(8 to 32767). Number
assumed positive when
no sign given. The
number is truncated
accordingly.

nX Skip n columns

Lw LOGIC-T set to +1 T Ll +1
-F set to @ F

srFw.qd REAL or DBL PREC 123.456789 Fl@.6 123.456789
MIXED. The number of
characters specified
by w is converted from
REAL or DOUBLE PRECI-
SION format to a mixed
number without an
exponent. N is
number of characters
and d is number of
characters after
decimal point and w
is field width.

srEw.d REAL or DBL PREC 0.12345E03 E10.4 +123.456
SCALED. The number of
characters specified
by w is converted to
scaled and n.

nAw REAL, INTEGER or XY A2 XY

DBL PREC variables
to ASCITI.

Integer-I Field Descriptor

The I field descriptor is used to process numerical guantities that
are represented internally as integers.

The format is:

REV. D 6 - 12

MAN1674 I-O AND FORMAT CONTROL

nlw

where n specifies the number of times the descriptor 1is to be
repeated, and w specifies the width of field (number of character
positions to be read or written).

I Output

I format descriptors convert internally stored integers to a grbup
of numerals ranging from @ to 32767, without a decimal point. Only
negative signs are output.

Each number is right justified within the specified field width.
Thus, if the specified field is wider than the number of digits to
be output, the number is effectively spaced away from the preceding
item. This feature can be used to space items on a line so that
successive lines form vertical columns of numbers, as illustrated in
preceding examples. (See the X descriptor for another method of
inserting horizontal spaces.) A + or - sign or blank uses one
character position.

I1f specified field width is less than the number of digits in the
number (including the sign, if negative), the number is truncated.
To show that truncation has occurred, a positive number is preceded
by a dollar sign ($) and a negative number is preceded by an equals
sign (=). Examples:

Internal No. I Conversion

(Integer) Descriptor Resulting Output

+12345 16 b12345
15 12345
14 $123

-12345 17 b-12345
16 -12345
I5 =1234

) Il)
15 bbbbd
NOTE

In these and subsequent examples, the letter ‘b’
represents blanks (space characters).

See example X1 in Appendix D for program example.

6 - 13 July 1976

SECTION 6 MAN1674

I format descriptors convert numerical fields in a data record into
internally stored integers. The external representation may range
from 9 to 32767. If no sign is present, the number is assumed to be

positive, a plus sign is interpreted as a blank. A + or - sign or
blank uses one character position. Numbers align from right to
left. There must be no decimal point. Spaces between numerals or

to the right of the number are ignored. If the specified field
width has fewer positions than the number, the number is truncated
accordingly. Examples:

Characters in I Format Converted
Input Record Descriptor Integer
bb123 I5 +bbl123
bl23b +bbl123
123bb +bb123
12345 +12345
123456 +12345
b+123 +b123
+0123 +b123
blb23 +b1b23
b-123 -b123
-123b -bl123
-1234 -1234
-12345 -1234
NOTE

Space characters (blanks) do not count as zeros.

Spaces-X Field Descriptor

——— . - ————— o ———— — — ——

The X field specification provides another way to insert spaces
between entries on a single line.

The format is:
nX

where 'n” is an integer constant that specifies number of spaces:

REV. D 6 - 14

MAN1674 I-O AND FORMAT CONTROL

5X I3 1I5 1I5 I5 20X I5
Column 123456789012345678901234567890123456789012345678941...

1 37 99 3278 24

19 FORMAT (5X,I3 3I5,20X,15)

On input, n columns are skipped; on output, n spaces are written
into the current record.

A negative value for ‘n’ is permitted. During output, this has the
effect of Dbackspacing and overprinting. For example, a real
variable with the value 123.000 would be printed as follows:

Descriptor | Characters Output
F6.0 123.
F6.0,-1X, " ° 123

(The F6.0 format descriptor and ~ * Hollerith string are described
later.)

During input, a negative value for ‘n’” can cause the program to read
part of an input record twice. For example, in:

READ (1,19) I,J
13 FORMAT (I5,-5X,5Al)
Five characters entered at the Teletype keyboard are both converted
to an integer value in variable I and stored as a 5-character ASCII

string in integer array J.

(TAB) -T Field Descriptor

The T field descriptor operates like a tabulation (tab) control.
The form is:

Tn

6 - 15 July 1976

SECTION 6 MAN1674

where ‘n” is an integer constant that specifies the column where the
next format descriptor will take effect.

Example:

Column 1234567890123456789012345678901234567890123456789012. . .
12345 32767 123

20 FORMAT (T16,I5, T25,I5, T45,I3)

Numerical data stored internally in real or double precision format
is processed by the E, F, or G field descriptors. Data stored
internally in real, double precision or complex format is processed
by the D field descriptor. Field specifications wusing these
descriptors have the following form:

nKkw.d
where:
1. The letter n is a positive integer representing the number of
times the format descriptor is to be repeated. If n is 1,

it may be omitted.

2. The letter K specifies the type of conversion to be used:
D, E, ¥, or G.

3. The letter w specifies the width of the field (number of
characters).

4. The letter d represents the number of characters to the right
of the decimal point.

NOTE

Scale factors will be described in subsequent
paragraphs.

Type F conversion is used when a number stored internally in real or
double precision format is represented externally as a mixed number

REV. D 6 - 16

MAN1674 I-O AND FORMAT CONTROL

(has a decimal point but no exponent), as in: 123.456, +3., 0.246,
-99.2.

Example:

Write a FORMAT statement to control the reading of three real
numbers, according to the following specification:

first number: 10 digits, 5 decimal places
second number: 8 digits, 3 decimal places
third number: 12 digits, no decimal places

Solution:
1 FORMAT(F16.5,F8.3,F12.0)

Type E conversion is used when an internal real or double precision
number is externally represented in scaled number format, i.e., as a
decimal fraction multiplied by a power of 18, as in:

0.12345E12
¥.13524E-3

Type G conversion compares the magnitude of the internal number with
the external field width, and performs either a type E or type F
conversion according to the space available.

Complex numbers are stored internally as two consecutive real
numbers and consequently are handled by two <consecutive field
descriptors of type F, E, or G.

Type D conversion 1is used for numbers stored internally in double
precision or complex format. The external notation is the same as
the scaled format of E output, but uses the letter D to identify the
decimal exponent:

0.123456789D12
0.123456789D-3

Because the output formats of these types differ, rules and examples
for each type of output statement will be presented. These types
have similar input characteristics, described following the
different output forms.

Mixed Number-F Output

A type F field descriptor causes a real or double precision number
to be output as a mixed number, with the decimal point and no
decimal exponent. Values less than 1 are preceded by a zero (0.123,
etc.). The sign is output only if it is negative.

6 - 17 July 1976

SECTION 6 MAN1l674

If the field width,
be output, the number

w, 1s greater than the number of characters to
is right justified in the field.

If the field width is smaller than required by the number (including
the decimal point and the negative sign, if present), the number is
truncated. As in the case of integers, a truncated positive number
is preceded by a dollar sign ($), and a truncated negative number is

preceded by an equals sign (=). Thus:
TRUNCATION
SIGN REASON FOR TRUNCATION
S Field width in format specification

smaller than positive

Field width in format
smaller than negative

number inputted.

specification
number inputted.

If the number of decimal places is wider than necessary, the field
is filled with zeroes to the right of the number. If the number of
decimal places is smaller than necessary, the number is rounded up
(if the field width permits).

Examples:

Internal No. F Conversion Resulting

(Real or DP) Specification Output

+123.456 F8.4 123.4560
F8.3 b123.456
F7.4 $123.45
F7.3 123.456
F7.2 bl123.46
F6.3 $123.4
F6.2 123.45

-123.456 F9.4 -123.4560
F9.3 b-123.456
F8.4 =123.456
F8.3 -123.456
F8.2 b-123.46
F7.3 =123.45
F7.2 -123.46

+.123456 F8.6 0.123456
F7.6 $6.1234
F7.3 bb@.123

@ F6.2 bbd .00
F4.2 0.00
REV. D 6 - 18

MAN1674 I-O AND FORMAT CONTROL

F4.0 bbad.
Example:

Using the statement READ(1,1)A,B,C,D,E, construct a suitable FORMAT
to specify the location of five real numbers, 14 digits per number
with 3 decimal places each.

Solution:
1 FORMAT(5F14.3)

Scaled Number-E Output

A type E field descriptor causes a real or double precision number
to be output as a scaled number, i.e., as a decimal fraction
beginning with @, a decimal point, and up to seven significant
digits, followed by the letter E, a space, and a decimal exponent
(power of 1@8) of one or more digits. Examples:

0.1234567Eb@2

0.234Eb99

9.0601Eb12
Field width and the number of decimal places are specified in the
same way as type F descriptors. For type E, however, it 1is also
essential to allow room for the leading 0, the decimal point, and

the four characters of the exponent. Truncated numbers are preceded
by $ or =, as in type F. Examples:

Internal No. E Conversion Resulting
(Real or DP) Specification Output
+123.456 E13.6 b@.123456Eb03
E12.6 ¥.123456Eb03
E1l1l.4 b@.1235Eb@3
E10.4 @.1235Eb@3
E9.4 $0.1235Eb
E8.4 $0.1235E
E7.4 $0.1235
E2.4 S0
El.4 $
-123.456 E14.6 b-0.123456Eb@3
E13.6 - =0.123456Eb@3
E12.4 b-0.1235Eb@3
E1ll.4 -0.1235Eb@3
E12.4 =@ .1235Eb?d
E9.4 =@.1235Eb

6 - 19 July 1976

SECTION 6 MAN1674

E8.4 =0.1235E
E7.4 =0.1235
E3.0 - =0.

2 E9.4 $0.0000EDb
E6.0 0.Eb0O
E5.90 $0.Eb

NOTE: For illustrative program example, see X12 in Appendix D.

Mixed Number or Scaled Number-G Output

A type G field descriptor causes a real or double precision number
to be output in the same way as either an F or an E field
descriptor, depending on the magnitude of the number and the ‘4d°’
part of the Gw.d field descriptor.

Table 6-4 shows how the descriptor is interpreted. TIf the magnitude
of the internal number lies between 0.1 and 1, the G descriptor acts
as an effective F conversion, in which w is reduced by d and 4
spaces are added at the right. Values between 1 and 10 are
converted in the same manner but d is reduced by 1. For other
ratios of magnitude and field 4 specification, see Table 6-4. Note
the values outside a particular range are output by an equivalent E
conversion. Examples:

Actual

Internal Data Magnitude Conversion Equivalent Examples of
(Real or DP) Specification Conversion Output
2.123456x10(9) Gl2.6 F8.6,4X 0.123456bbbb

(1=<5=<10)

Gl1l.6 F7.6,4X $0.123456bb
0.123456x10(1) Gll.6 F7.5,4X 1.23456bbbb
(.1=<8=<1)

Gl0.6 F6.5,4X $1.23456bb
0.123456x10(5) Gl1l.6 F7.1,4X 12345.6bbbb
(18** (5-2) =
<S=<1@**(S5-1))

Gl10.6 F6.1,4X $1.23456bb
9.123456x10(6) Gl1l.6 F7.0,4X 123456 .bbbb
(19**(s-1) =
<S=<10**(S))

Gl0.6 F6.0,4X $12345.6bb
0.123456c19(7) Gl2.6 E12.6 0.123456Eb@7

REV. D 6 - 20

MAN1674 I-O AND FORMAT CONTROL

Gl1l.6 E11.6 $0.123456EDb

Decimal Exponent-D Output

A type D field descriptor converts an internal double precision or
complex number to a scaled number, as in E conversions. However,
the letter D identifies the decimal exponent to show that the
internal value is double precision. Type D values may contain up to
14.5 significant figures. Type D is identical to type E with regard
to truncation. Examples:

Internal No. D Conversion Resulting
{Double Precision) Specification Output

+123.456789 D15.9 0.123456789Db@d3
D12.6 0.123457Db@3
D8.4 $0.1235D

-123.456789 D16.9 -9.123456789Db@3
D13.6 -0.123457Db@d3
D8.4 =0.1235D

D,E,F, and G Input

External numbers to be input under control of _these field
descriptors can be expressed in integer, mixed, or scaled notation.
The format is quite flexible; blanks are ignored; blanks contained
within number strings, or trailing, are ignored; a decimal point
and decimal exponent are optional. (See Figure 6-1). If a decimal
point 1is present, it overrides the positional decimal point set by
the format specification. The implied decimal point is assumed to
be placed to the left of the first D places from the right (i.e.,
count from right to left.

6 - 21 July 1976

SECTION 6 MAN1674

All external numbers are converted to the internal double-precision
floating point format, but if the descriptor is type E, F, or G, the
result is truncated to a single-precision real value.

If the input string contains any format errors, range errors, or
illegal characters, an error flag is set and a message 1is printed.
(See Appendix A.) The flag can be checked and reset by the OVERFL
function (See Section 7). The result of such an input is undefined.

Examples:

Input Input Format Resulting Internal
Characters Specification Number
bbbbbbb D,E,F or G7.3 +0.0
bbbbbbl +0.001
bbbbbl. +1.0
1.23bbb +1.23
bblbbbb +0.001
bblb23b +0.123
bbl1623b +10.23
1234567 +1234.567
123456 +1234.567
b123456 +123.456
12345678 +1234.567
1.234E3 +1234.000
1.234D3 +1234.000
1.23D3b +1.23X10(3)
1.23E-3 +8.123X19(-2)
1234E-3 +01234X10(-2)
12345-3 +0.12345X10(-1)
bl123456 E7.3 +123.456

F7.2 +1234.56
G7.1 +12345.6

REV. D 6 - 22

MAN1674 I-O AND FORMAT CONTROL

Table 6-4. Interpretation of Gw.d
Descriptors

Internal Data Effective
Magnitude Conversion
l—a=10 F(w-4).(d-1) ,4X

el—3ml F(w-4).d4,4X

19 (d-2)10(d-1) F(w-4).1,4X
19(d-1)a 10 (4d) F(w-4) .0,4X
Other Ew.d

6 - 23 ‘July 1976

SECTION 6 MAN1674

LEADING SPACES

ARE TREATED STRING OF DIGITS. OPTIONAL TRAILING SPACES
AS ZEROES SPACES ARE DECIMAL ARE IGNORED
IGNORED EXPONENT

D
bbbb-12345b6789.123b456 -12bbb

y :

NUMBER IS ASSUMED OPTIONAL MAY BE + OR SPACE
POSITIVE UNLESS DECIMAL POINT FOR POSITIVE
MINUS SIGN IS EXPONENT
PRESENT

NOTE:

D or I is not'optional if the exponent is specified.

Figure 6-1. Format of External Input to
Type D,E,F, or G Field Descriptors

REV. D 6 - 24

MAN1674 I-O AND FORMAT CONTROL

F,E,G, and D Scale Factor Designator

A scale factor designator for use with the F,E,G, and D descriptors
causes a multiplication by a power of 10. The form is:

nP

where n, the scale factor, is an integer constant with an optional minus
sign.

Once a scale factor has been specified, it applies to all subsequent
F,E,G, and D field descriptors, until another scale factor is
encountered. If n=0, an existing scale factor is removed. The scale
factor has no effect on type I,A,H,X, or L descriptors.

E and D Output Scale Factor

. ————————— S — v ——————

Before output conversion, the fractional part of the internal number is
multiplied by 10**n and the exponent is decreased by n. Examples:

Format
Internal No. Descriptor Resulting Output
+123.456 £12.6 0.123456Eb03
2PEl12.6 12.34560Eb01
-2PE12.6 0.001235Eb@5
-2PE14.6 bb@.801235Eb@5
7PE12.6 1234560.E-04
+123.456789 D15.9 0.123456789Db@3
7PD15.9 1234567.890D-04

F Output Scale Factor

The internal number is multiplied by 18**n, as in:

Format
Internal No. Descriptor Resulting Output
+123.456 F7.3 123.456
3PF7.0 123456.
-2PF7.3 1.235

G Output Scale Factor

6 - 25 July 1976

SECTION 6 MAN1674

The scale factor has an effect only if the internal number is in a range
that uses effective E conversion for output. 1In this case, the effect of
the scale factor is the same as in the corresponding E conversion:

Format
Internal No. Descriptor Resulting Internal No.
9.123456X106(7) Gl2.6 #.123456Eb37

3PG12.6 123,.4560Eb@4

D,E,F,G Input Scale Factor

The internal value 1is formed by dividing the external number by 1@**n,
However, if the external number contains a D or E exponent, the scals
factor has no effect.

Examples:

Input Format Resulting Internal
Input Characters Descriptor Number
b123456 F7.3 +123.456
3PF7.3 +.123456
-3PF7.3 +123456.

H *(Hollerith) Field Descriptor

The type H descriptor is used primarily to output headings, messages, and

other 1literal text strings. This descriptor also provides vertical

spacing control for the Teletype and line printer. The standard form is:
nHstring

where “string’ is a series of ASCII characters and n is a non-zero
integer equal to the number of characters following the H. If n is
omitted it is assumed to be 1. This compiler also accepts Hollerith
strings enclosed by single quotes, as in:

‘string”’
The H symbol and character count are not required.

H Output

The character string following H is written in the output record:

REV. D 6 - 26

MAN1674 I-0O AND FORMAT CONTROL

H Descriptor Characters Output
11HTEXTbSTRING TEXTbSTRING
"TEXTbSTRING’

15HbbTEXTbSTRINGbDb bbTEXTbSTRINGbb
"bbTEXTbSTRINGbb ’

The H descriptor does not require a corresponding item in the output list
of a WRITE statement:

WRITE (1,10) A, AARGH, MAT(1l)
19 FORMAT (5HLABEL,I13,I10,F15.5)

Other types of descriptor may follow a Hollerith string without an
intervening comma or slash. The statement:

5¢ FORMAT (INCOME=b$b F8.2)
could be used to print a line:
INCOME= $ 12345.67

A (Alphanumeric) Field Descriptor

Type A conversion transfers ASCII character codes between integer, real,
or double-precision variables or arrays and external devices.

The form is:
nAw

where n is the repeat count and w is the number of characters to be
transferred per variable or array element. ASCII characters are stored
two per integer variable, four per real variable, or eight per double
precision variable.

ASCII-A Output

Each type A descriptor provides for output of the ASCII character content
of one variable in the output list of the accompanying WRITE statement.
If n is greater than the number of characters in the variable, spaces
precede the content of the variable.

Examples:

Internal Data Descriptor Resulting Output

6 - 27 July 1976

SECTION 6 MAN1674

Xb Al X
a2 Xb

XY Al X
A2 XY
A3 bXY

ASCII-A Input

Each Type A descriptor provides for input of one or two ASCII characters
to one variable in the input list of the accompanying READ statement.

If more characters are input than the variable can hold, only the last n
characters are accepted.

Examples:

Resulting
Input Data Descriptor 1Internal Data
X Al Xb
A2 Xb
A3 bb
XY Al Xb
A2 XY
A3 Yb
bXY A3 XY
bXYb A3 Yb
bX¥b A4 Yb
XYbb A4 bb

Character Array String Transfer

If a repeat count is specified, a type A descriptor can transfer strings
of ASCII characters to or from an array. For example, the following
statements could be used to enter a line of up to 72 characters from the
Teletype keyboard:

REV. D 6 - 28

MAN1674 I-O AND FORMAT CONTROL

INTEGER LINE (36)

READ (1,10) LINE

10 FORMAT (36A2)

If fewer than 72 characters are entered, the rest of the array is filled
with blanks.

Logical-L Field Descriptor

Logical variables are represented internally by integer variables and
externally by the letters T and F:

Internal Value External Representation

.FALSE. F
.TRUE. T

Truth values formed by the logical and relational operators are +1 for
.TRUE. and @ for .FALSE.

Logical-L Output

The internal value is converted to the letter F (if zero) or the letter
T (if non-zero) and output right-justified in a field w characters wide.

Examples:

Internal Format Resulting
Value Descriptor Output
.FALSE. Ll F
.TRUE. Ll T
L5 bbbbT
Lo (None)

Logical-L Input

6 - 29 July 1976

SECTION 6 MAN1674

A field w characters from the external record is examined. Leading
spaces are ignored. The internal variable is set according to the first

non-space character:

Character Effect on Variable
T Set to +1
F Set to 0

Other Set to @ and error

flag is set

Any other characters in the field are ignored. The flag can be sensed by

the OVERFL function described in Section 7.

Repetltlon of Descriptors

All descriptors except H and X can be assigned a repeat count, n, that

causes the descriptor to be used n times in succession:
FORMAT (3D1%.5)

is equivalent to:
FORMAT (D19.5,D16.5,D10.5)

Using Parentheses

uroups of descriptors 1nc1ud1ng H and X descriptors may also be enclosed

in parentheses and assigned in repeat count:
FORMAT (2(3D19.5,X3))

is equivalent to:
FORMAT (3D19.5,X3,3D18.5,X3)

Nesting Repeat Groups

Repeat groups may be nested up to two levels deep:
FORMAT (3(2(10F.7,3X),I2,5X))

Example of Formatted Output

The following example illustrates the repetition of format
and the resulting typewriter or line printer output:

REV. D 6 - 30

descriptors

MAN1674 I-O AND FORMAT CONTROL

K
L
WRITE(1,106)1,J,
WRITE(1,106)I,J,
96 FORMAT(/4H ABC/2
' J
1 Jy
' Jy,

nown i
[eo B N N2 WV,]

WRITE(1,106)1
WRITE(1,106)1I
WRITE(1,106)1

-~ w w W =

K
K
(
K
K
K

Vb WHEND

The following output on a typewriter or line printer would result:

ABC

XY 56 7 8 5 6 Result of statement 1
XY 785 6 7

ABC

XY 567 8 5 6 Result of statement 2
XY

ABC

XY 567 8 5 6 Result of statement 3
XY 785 6 7 8

ABC

XY 567 8 5 6 Result of statement 4
XY 785 6 7 8

XY 5

ABC

XY S56 7 8 5 6 Result of statement 5
XY 785 6 7 8

XY 56 7 8 5 6

If a format 1list is exhausted before all items on an input/output list
are processed, the format list 1is repeated, starting at the opening
parenthesis that matches the last closing parenthesis in the list. (The
parentheses around the format list itself are used only if there are no
other parentheses.) Any repeat count preceding the selected opening
parenthesis is effective as usual.

During output, when a rescan of a format list is required, the current

record 1is padded with blanks and a new record is started. During input,
if a rescan is required, the rest of the current record is skipped and

6 - 31 July 1976

SECTION 6 MAN1674

the device is advanced to the beginning of the next record.

Entering Format Statements at Run Time

It is possible to enter format statements at run time by using a READ
statement to load the format statement into an array. The array can
later be referenced in lieu of a FORMAT statement, by the READ or WRITE
statement that handles the data. Arrays to be used for this purpose must
be assigned as integer type and must be dimensioned to accomodate the
format description, at two characters per word. The format description
is loaded into the array by a READ statement that references a type A
format statement:

DIMENSION FORM (6) ,TEXT(880)
INTEGER FORM
READ (1,20)FORM

20 FORMAT (6A2)

WRITE(1,FORM) (ARG(I) ,K(I),I=1,3)
These statements provide for an output format specification such as

(3(F7.3,1I7)) to be entered at run time. Note that the specification
must include opening and closing parentheses but not the word FORMAT.

REV. D 6 - 32

MAN1674 I-O AND FORMAT CONTROL

PRINT & PRINTER CONTROL

PRINT Statement

PRINT 1is an alternate method of specifying information be printed at the
user console,

The compiler supplies the logical unit number of 1 (user console). The
format is: '

PRINT f list
where “f° 1is the number of a format statement included in the program
being compiled, and “list’ is the list of variables to be printed at the
user console.
Example:

PRINT 5,I,J,K

is equivalent to:

WRITE(1,5) I,J,K

Vertical Spacing Control Symbols (Line Printer)

The first <character of each ASCII output record controls the number of
vertical spaces to be inserted before printing begins on a line printer.
The codes are:

First Character Vertical Spacing
Space One line

0 Two lines

1 Form feed (advance to

first line of next page)*

*Note: Effective only on devices with
mechanical form feed.

+ No advance - print over
previous line (line printer
only)

Other One line (character is

6 - 33 July 1976

SECTION 6 MAN1674

printed also)

A @8, 1, or + character 1is used for vertical spacing only and is not
printed.

A straight forward way to control spacing is to start a FORMAT statement
for an ASCII record with 1H@, where ¢ is the desired spacing control
character, as in:
WRITE (4,20) TEXT
20 FORMAT (1HO@, 36A2)

The 1HO@ entry inserts two line feeds before the output line is printed.

REV. D 6 - 34

MAN1674 I-O AND FORMAT CONTROL

END AND ERROR RETURNS

End and Error Returns in READ/WRITE Statements

—— — . ath —— —— - ——— i —————

READ and WRITE statement syntax has been extended to allow the following
forms:

READ (d, END=a) ; READ (4, f,END=a)
READ(d,ERR=b) READ (4, £,ERR=Db)
READ (4, ERR=b,END=a) READ (4, f,ERR=b,END=a)
READ(d,END=a, ERR=b) READ (4, £,END=a, ERR=Db)
WRITE (d, ERR=Db) WRITE (d, £,ERR=b)
where:
d - device specifier o

f - format specifier

a - statement number that control is to be transferred to
if an end of file condition is detected in the READ

b - statement number that control is to be transferred to
if a device error occurs in the READ/WRITE operation
B FORMAT STATEMENT
The B format has the form:
B <character string>’

No repeat count is allowed associated with format specifier itself, but a
B format may be included in a parenthetical repeat group. The length of
the character string defines the 1length of the field in the output
record. The character string is a template for the output field and may

consist of the following characters:

+-$, *7Z % . CR

The characters are interpreted as follows:
Plus sign (+):

1) A single leading plus sign (fixed sign) will be replaced
by a plus sign if the output number is positive; a minus
sign if the output number is negative.

2) Multiple leading plus signs indicate a floating sign. As

many of the plus signs as are required by the magnitude of
the output number will be used for digits of the number. The

6 - 35 July 1976

S3ECTION 6 MAN1674

3)

one preceding the M.S.D. of the number will contain a-sign
character as above, the remainder will be replaced with
spaces.

A trailing plus sign will be replaced by a sign character
as described above.

Minus sign (-):

The minus sign behaves the same as a plus sign except that for
positive numbers a space is inserted instead of a plus sign.

Dollar sign ($):

1)

2)

A leading dollar sign (preceded by at most a single fixed
sign) will cause a dollar sign to be placed in the corre-
sponding position in the output field.

Multiple leading dollar signs (preceded by at most a single
fixed sign) indicate a floating dollar sign. As many of the
dollar signs as required by the magnitude of the output number
will be used for digits of the number. The dollar sign will be
placed to the left of the M.S.D. and the rest will be replaced
with spaces.

Asterisk (*):

Multiple asterisks will be used for digits of the output
number as required and the remainder will be included in the

output field. Asterisks may be preceded by at most a fixed
sign and/or a fixed dollar.

Z is used to indicate a zero suppress digit position. 1If

the corresponding digit in the output number is a leading
zero, a space will be placed in the output field. Otherwise,
the digit in the number will be used.

s are used to indicate non-zero suppress digit positions.
The corresponding digit in the output number will be placed
in the output field.

Decimal Point (.):

A decimal point indicates the placement of the decimal point
in the output number. The decimal point may be followed
only by # characters and/or trailing sign.

Comma (,):

REV.

D 6 - 36

MAN1674

I-O AND FORMAT CONTROL

Commas may be placed in the field after any leading characters

and prior to the decimal point.

a comma, a comma will be placed in the output field;

If a significant digit precedes

if not, a

space will be output unless the comma is contained in an asterisk
field in which case an asterisk will be output.

Credit (CR):

The characters CR may be used as the final two characters in

the string.
replaced with spaces;

Examples:

Number

123
12345
@

123
1234
]

2
1.935
]
1234.56
123456.78
2

2

-2

2

-2

-234
234
-234
12345
-12345
123
-123
98

98
156789

UNFORMATTED (BINARY)

Memory-image data consisting of

Format

B ###t’

B ####

B 444’

B 2222

B 22272°

B 2222 °

B Z272%#°

B #.##’

B #.##°

B 227,222,724 .%%#"
B 22%,22%,%22%.44%"°
B'22%2,22%,%24%.%%"
B +###°

B +##4°

B -22%"

B -2%2#"°

B 7222722+
B 222272+
B 2%2272%-
B 222%2%-
B 22%,ZZ#CR’

B 2%2%,2Z2#CR"

B 44+, ++# 447
B +++,++# H# 7
B $S722222%%°

B $S$$$S8S4”

B's*** '***’**#.## ’

re
4
’
’

RECORDS

If the output number is positive, they will be
if negative,

they will be printed.

Output Field

1,234.56
123,456.78
.00
+0902
-092
2
- 2
234+
234~
234
234-
12,345
12,345CR
+123.00
-123.00
$ 98
$98
S****x]156,789.00

16-bit binary words can be processed

- 37 July 1976

SECTION 6 MAN1674

READ and WRITE statements without reference to a FORMAT statement. The
READ and WRITE statements are in the form:

READ (u) List
WRITE (u) List

where ‘u” is a logical device number and ‘List’ is a list of variables or
array names containing the data to be transferred.

An unformatted WRITE operation writes all words specified by the 1list 1in
binary format. If the list elements do not fill a record, the record 1is
padded with zero bits. If the 1list elements require more than one
record, multiple records are written automatically. The last record is
padded with zeroes, if necessary.

An unformatted READ operation reads records from the specified device and
enters the binary information into the items in the list. Enough records
are read to satisfy all the list items. 1If a record contains more items
than are required by the items in the 1list, the surplus items are
ignored. 1If no list is present, one record is read but ignored, for an
effective one-record forward spacing operation.

DEVICE CONTROL STATEMENTS
The REWIND, BACKSPACE, and ENDFILE statements are used for physical
positioning of sequential access devices such as magnetic tape

transports. DOS disk files are also treated as sequential records.

REWIND Statement

A REWIND statement of the form:
REWIND u
causes unit u to be positioned at its initial point.

BACKSPACE Statement

A BACKSPACE statement for a magnetic tape unit is of the form:

BACKSPACE u
If the wunit 1is positioned at its initial point, this statement has no
effect. Otherwise, the statement positions unit u so that the preceding
record becomes the next record.

ENDFILE Statement

REV. D 6 - 38

MAN1674 I-O AND FORMAT CONTROL

An ENDFILE statement for a magnetic tape unit is of the form:
ENDFILE u
causes the recording of an endfile record on unit u. The endfile record
is a unique record signifying a demarcation of a sequential file. Action
is undefined when an endfile record is encountered during execution of a
READ statement.
ENCODE/DECODE STATEMENTS
The ENCODE statement converts the elements of the I/0 list into ASCII
data according to the specified format and store the first ¢ characters
of the resultant 1line buffer 1into the specified array. The DECODE
statement has the opposite effect, converting the ¢ character record in
the specified array into the I/O list elements according to the specified
format.
Their syntax is:
ENCODE (c,f,a) list
DECODE (c,f,a) list
where:
¢ - number of ASCII characters to be transferred
f - format specifier
a - array name

list - I/0 list (as in READ/WRITE statements)

DECODE Statement ERR=0Option

The DECODE statement accepts an “ERR=sn’ parameter as in the READ/WRITE
statements. At run-time, the ERR= branch will be taken if a FORMAT/ DATA
mismatch is detected in processing the DECODE operation.

6 - 39 July 1976

MAN1674 FUNCTIONS AND SUBPROGRAMS

SECTION 7

FUNCTIONS AND SUBPROGRAMS

GENERAL OVERVIEW

Programming efficiency is usually increased if often-used calculations
or data processing operations can be coded once, and then referenced at
several points in a main program by a brief calling statement. New
arguments, which are the only elements that are different each time the
operation is performed, are supplied by each calling statement.
Programs organized in this way do not need to repeat identical sections
of code, and the same building blocks may be used in other programs, or
in alternate versions of the same program.

This effect can be obtained within a single program by using GO TO
statements which refer to the same statement number. However, code
used in this way is not accessible to other programs. An alternate way
is to define the operation as a function or subprogram. Either of
these can be invoked by a simple calling statement. In addition,
subprograms can be compiled separately and placed on a library tepe for
use with other programs.,

Functions are called by specifying a symbolic name followed by 2a list
of the arguments, in parentheses. For example, in the statement Y=SIN
(A), Y 1is set equal to the SIN (trigonometric sine) function of the
argument A. The function name may refer to one of the Prime FORTRAN
library functions, a user-defined statement function, or a subprogram
defined by a FUNCTION statement. As an extension to FORTRAN IV, Prime
also provides several intrinsic functions (XOR, AND, LOC, etc.) to aid
system programming.

Functions and subprograms discussed so far have in common the fact that
they produce a single output, or result. Calculations that produce
multiple results must be defined by SUBROUTINE statements and be
compiled separately from the main program. A subroutine subprogram is
referenced within a main program by a CALL statement which identifies
the subroutine by name and provides a list of arguments. For example:

CALL GRAPH(X,Y)

might involve a subprogram that calculates point plotting data for
arrays X and Y.

This section provides functions, subprograms and subroutines that are
available for use during compilation time. These include:

7 -1 - | July 1976

SECTION 7 MAN1674

PRIMOS SUBROUTINES,

LIBRARY FUNCTIONS,

INTRINSIC FUNCTIONS,

STATEMENT FUNCTIONS,

FUNCTIONS SUBPROGRAMS,

PROTECTED FUNCTIONS AND SUBROUTINES,
BLOCK DATA SUBPROGRAM,

LIBRARY SUBROUTINES,

SENSE LIGHT/SWITCH SUBROUTINES,

LINKING FORTRAN AND ASSEMBLY LANGUAGE PROGRAMS.

PRIMOS SYSTEM SUBROUTINES

PRIMOS subroutines are those which invoke PRIMOS II or PRIMOS III to do
the actual work. Each of these subroutines are identified in Appendix
E. Each subroutine does a specific job from attaching to a file
directory to transferring data from one device to another. These
system routines greatly enhance the capability of a user’ s FORTRAN
program.

LIBRARY FUNCTIONS

Supplied with the Prime FORTRAN IV compiler is a collection of library
subroutines, These are identified in Appendix G of this manual. Some
of these subroutines are required by the compiler itself; they are
called during compilation and appended to the main program during
loading. The 1library also includes a collection of mathematical
subroutines that can be called as functions by statements within a main
program. Subroutines that execute library functions referenced in a
main program are also appended during loading.

Using the Library Subroutines

Library function references are of the form:

NAME (ARGl, ARG2,ARGn)
where NAME is one of the 1library function names 1listed in Prime’s
Software Library User Guide, and each ARG is one of the arguments to be
processed by the function. Functions require at least one argument.

Arguments may be constants, variables, or expressions. Constants and

REV. D 7 - 2

MAN1674 FUNCTIONS AND SUBPROGRAMS

variables must be of the modes specified in Prime’s Software Library
User’s Guide. Expressions within the argument parentheses are
evaluated and the function is performed on the result. The mode of
expression must also agree with expected mode. Following are some
examples of the use of functions:

M=SIN (+ B)

VORT=AMOD (A,B*72.921+V)

PRIPE=AMAX1(A,B,C,D 5.,ARGH/37.31E3,PI**3)

Argument lists may contain references to other 1library functions (or
statement functions or FUNCTION subprograms, defined later). Examples:

R=SIN(B+AMOD(D,D))

P=ABS (R*FUNC (1.2E3+S))

INTRINSIC FUNCTIONS

This group of functions is an extension feature to increase the
efficiency of Prime FORTRAN IV in logical processing and system-level
programming on 16-bit integers. Also in this group is the LOC function
which returns absolute memory addresses.

Many of these functions are executed by two or three instructions of

in-line assembly language code; others result in calls to library
subroutines.

All of these functions except LOC are intended to process integer
arguments and form integer results. (If any argument 1is non-integer,
an error message will result.)

XOR (Logical Exclusive OR)

This function performs a logical exclusive OR of any number of
arguments. The result is integer mode. Examples:

XOR (ARG, 1)
XOR(J, K, L, M)
XOR(I)

AND (Logical AND)

This function performs a logical AND of any number of arguments.
The result is integer mode. Examples:

7 - 3 July 1976

SECTION 7 MAN1674

AND (ARG, I)
AND(J, K, L, M)
AND(I)

OR (Logical OR)

This function performs a logical OR of two arguments, forming an
integer-mode result. Examples:

OR (ARG, 1I)
OR(J, 16)

NOT (Logical Negation)

The NOT function generates an integer mode value consisting of the 1°'s
complement of its single argument. Examples:

NOT(1I)
NOT (ARG)

SHFT (Logical Shift)

The logical shift function is capable of fetching an integer variable
and performing one or two independent logical shifting operations in
either direction. The form is:

SHFT (IVAR,I,J)
where VAR 1is the name of an integer variable and I and J are integer
constants or variables that represent the number and direction of
shifts to be performed.

The function may have one, two, or three arguments. If only the first
variable is identified, the result of the function is the variable

itself (no function 1is performed). If I 1is specified, one shift
operation is performed. The sign of I determines the direction (+ 1is
right, - is left) and the absolute value of I determines the number of

places. Shifting 1is logical - i.e., vacated bit positions are filled
with zeroes. If J 1is also specified, a second independent shift
operation is performed, according to the sign and magnitude of J.

When three arguments are present, the first argument is fetched,
shifted I places, then shifted again by J places. This double shift
feature 1is wuseful for masking or masking-and-positioning as shown in
the following examples:

REV. D 7 - 4

MANl674 FUNCTIONS AND SUBPROGRAMS

SHFT(IVAR,11,-11) Set the right 11 bits to zero.
SHFT(IVAR,-11,11) Set the left 11 bits to zero.

SHFT(IVAR,-4,8) «ieees Set the left 4 bits to zero and
position to the right byte.

SHFT(IVAR,4,-8) Set right 4 bits to zero and
position to the left byte.

If I and/or J is not a constant, a call to the SHFT library subroutine
is dgenerated. Otherwise the function is implemented by in-line code.

Examples:
SHFT(IVAR, -6)
SHFT (A, 3)
SHFT (INT, +3, -18)
SHFT (K(5,27) ,J)
SHFT (M, 4,K)
SHFT (1HX, 8)
SHFT (15, -7)

LOC (Location)

The LOC function generates an integer value that represents the
computer memory address where the function’s argument is located. Only
one argument (a constant, a variable r array name, a subscripted array
element) is allowed. Examples:

NOTE:

Allowed only in arguments to functions or subroutines
of P40 64V mode. 1In 64V mode, result of LOC is

two word quantity representing segment number,

and word number of argument.

I = LOC(A)

J = LOC(3)

K = LOC(DUM) + 1

L = LOC (AR(3,115))

7 - 5 July 1976

SECTION 7 MAN1674

These functions are special versions of the SHFT function and are
provided for compatibility with other FORTRAN compilers. These

functions result in an integer mode value and require two arguments, as
in:

I = RS(IVAR,TI)
where VAR is the value to be shifted, and I specifies the amount and

direction of the shift. The equivalent SHFT for esach of the functions
is shown in the following table:

Operation Function Equivalent SHFT Function
Right Shift RS(}VAR!I) SHFT(I,S)

Left Shift LS(IVAR,I) SHFT (I, -S)

Right Truncate RT(IVAR,I) SHFT(I, S-16, 16-5)

Left Truncate LT (IVAR,I) SHFT (K, 16-S, S-16)

Intrinsic Function Library Subroutines

e ——— i —— — ——— ——— —

Several of the functions previously described will generate a call to a
library subroutine if any arguments are non-constant. In all cases,
the compiler assumes the result is an integer value in the A register
on exit from the subroutine. The subroutines are:

Library Function Procedure

OR(A1,A2) OR 16-bit values Al and A2

SHFT (Al,A2) shift Al by A2 bits

SHFT(Al1,A2,A3) Double shift Al and A2 then
by A3 (bits)

LT (Al,A2) Save left A2 bits of Al

RT (Al1,A2) Save right A2 bits of Al

LS (Al,A2) Shift Al left by A2 bits

RS(Al,A2) Shift Al right by A2 bits

REV. D 7 - 6

MAN1674 FUNCTIONS AND SUBPROGRAMS

STATEMENT FUNCTIONS

Any calculation that can be expressed 1in a single statement, and
produces a single result, may be assigned a function name and
referenced in the same way as a library function. A statement function
is defined in the form:

NAME (ARGl, ARG2, ARGn) = Expression

where NAME is the symbolic name assigned to the function, and each ARG
is a dummy variable that represents one of the arguments. The
following rules apply to statement functions:

1. The name may consist of one to six alphanumeric characters, the
first of which is alphabetic. It must differ from all other
function names and variable names used in the main program.

2. The argument list follows the name and is enclosed in parentheses.
There must be at least one argument. Multiple arguments
are separated by commas. Each argument must
be a single nonsubscripted variable. These arguments are only
dummy variables, so their names may be the same as names
appearing elsewhere in the program. The dummy variable names
do indicate argument mode, however, by implicit or explicit
mode typing.

3. During each call of a function, the values supplied as the
argument variables must be in the same mode as the arguments were
when the function was defined.

4.Implicit mode typing of the result of a function is determined
by the first letter of the function name. Functions that begin
with I1,J3,K,L,M, or N product INTEGER results; others produce

real results. Regardless of the first letter, the result mode
can be set to REAL, INTEGER, DOUBLE PRECISION, COMPLEX or LOGICAL

by an appropriate mode specification preceding the statement.
(See Section 5.)

5. The expression that defines the function may use library functions,
previously defined function statements, or FUNCTION subprograms, but
not the function itself. Dummy variables cannot be subscripted.

6. Variables in the expression that are not stated as arguments are
treated as parameters - i.e., are assumed to be variables
appearing elsewhere in the main program.

7. Statement functions must be defined following specification and
DATA statements but before the first executable statements of
a program.

The following example shows how a statement function HYP might be
defined and used:

7 - 7 July 1976

SECTION 7 MAN1674

HYP (A,B) =SQRT (A**2+B**2)

A=PI*1.23

50 YDS=HYP(HGT,3.724)

60 MAT=1+ABS (HYP (A,3.724))

In statement 50 the HYP function is defined using A and B as dummy
variables. 1In statement 50, the actual variable HGT is substituted for
the dummy variable A, and the dummy variable B is equated to 3.724.
Statement 60 shows the HYP function nested within a standard library
ABS function. Note that an actual variable A, defined elsewhere in the

main program, has no relationship to the dummy variable A (except the
same mode) .

FUNCTION SUBPROGRAMS

Statement functions are limited to a single statement and must be coded
within and compiled with a main program. FUNCTION subprograms, on the
other hand, can consist of many statements and be coded and compiled

separately. This permits them to be used in the same way as library
functions.

FUNCTION subprograms must be prepared as separately compiled
subprograms that produce a single result, in the following format:

Mode FUNCTION “Name’ (Argl, Arg2, . . .Argn)

(Any number of FORTRAN statements which
perform the reguired calculations, using
the supplied arguments as values.)

“Name’” = Final Calculation

RETURN

FUNCTION Statement

The FUNCTION statement, which must be the first statement of a FUNCTION
subprogram, assigns the name of the function and identifies the dummy
arguments. In the preceding example, ’‘Name’ 1is a symbolic name
assigned to identify the function, and each “Arg’ is a dummy argument.

The function name must conform to the normal rules for all symbolic

REV. D 7 - 8

MAN1674 FUNCTIONS AND SUBPROGRAMS

names (Section 2) with regard to number of characters, etc. Implicit
result mode typing occurs according to the first letter of the name.
Implicit mode typing can be overridden by preceding the word FUNCTION
with one of the mode specifications, INTEGER, REAL, DOUBLE PRECISION,
COMPLEX or LOGICAL. The function name must differ from any variables

used in the function subprogram or in any main program which references
the function.

There must be at least one dummy argument, in the form of a non-
subscripted variable or array name. Array names must be cited in a
DIMENSION statement within the subprogram. The arguments may be any of

the variable names that appear in executable statements of the function
subprogram.

Body of Subprogram

The body of the function subprogram can consist of any 1legal FORTRAN
Statements except SUBROUTINE, BLOCK DATA, or other FUNCTION statements.
The statements that evaluate the function use constants, variables, and
expression in the normal way. The program must produce a single result
for a given set of argument values. The subprogram must equate the
assigned symbolic function name ‘name’ to the result, by using ’‘name’
on the 1left side of an assignment statement. It is the function name
itself, used as a variable, that returns the result to the main
program.

RETURN Statement

The RETURN statement consists of a single word RETURN. It terminates
the subprogram and returns control to the main program. The RETURN
statement must be the last statement in the subprogram (logically, not
physically; that is it must be the last statement to which control
passes) .

Calling Function Subprograms

FUNCTION subprograms are referenced within main program expressions in
the following form:

Name (V1, V2, . . . Vn)

where “‘Name’ is the function name assigned by the FUNCTION statement
that begins the subprogram, and each V is a value expression to be
substituted for the corresponding dummy argument in the argument 1list
of the FUNCTION statement.

The 1list of values may contain any legitimate constant, variable
(subscripted or not), expression, subprogram name, or name of any array
provided the corresponding dummy variable in the subprogram has the
same mode. The argument list following the function name in the main

7 - 9 July 1976

SECTION 7 MAN1674

program and the list of dummy variables in the FUNCTION statement must
agree in number, order and mode. The subprogram must contain the same
DIMENSION statements as the main program. Function names included 1in
argument 1lists must also appear in an EXTERNAL statement in the main
program.

For example, a function subprogram that determines the Ith root of a
real number R might start with the following statement:

FUNCTION ROOT (I,R)
A main program would call this function with a statment such as:

ANS=ROOT (9,1.22793E-11)
In this example, 9 1is substituted for the dummy variable I and the
other value 1is substituted for dummy variable R. The function
subprogram calculates the root using these for arguments I and R, and
returns control to the main program with the answer in variable ANS.
Values contained in arrays are passed to subprogram functions in the
same way. For example, a subprogram that determines the median value
of data in a 10@0-item array might begin with the statement:

FUNCTION MED (DAT)
where DAT refers to a 100-item array dimensioned within the subprogram.
The calling main program might call this function with a statement
like:

I=J+MED (STD)
where STD 1is a 1l@0-item array dimensioned and assigned values by the
main program. STD (in the main program) and DAT (in the subprogram)
must be of the same mode.
Examples:

Function subprogram for function AVRG:
1 FUNCTION AVRG(ALIST,N)
DIMENSION ALINT (N)
SUM = ALIST(1)

DO 19 1=2,N

19 SUM = SUM + ALIST(I)

AVRG = SUM/FLOAT (N)

REV. D 7 - 10

‘MAN1674 FUNCTIONS AND SUBPROGRAMS

RETURN
END
Main program call to AVRG function:

DIMENSION SET(500)
READ(2,5) (SET(I), I=1,200)

5 FORMAT(6F12.8)
TEXT = AVRG(SET,208)
WRITE(2,10) TEXT

10 FORMAT(20H1 AVERAGE OF SET IS El4.5)
STOP

END

SUBROUTINE SUBPROGRAMS

Subroutine subprograms are very similar to FUNCTION subprograms. They
are prepared in the form:

SUBROUTINE NAME (ARGl, ARG2, . . . ARGn)

(any number of FORTRAN statements which perform
the required calculations, using the supplied
arguments (if any) as values).

RETURN

END

SUBROUTINE Statement

The SUBROUTINE statement, which must be the first statement of a

SUBROUTINE subprogram, assigns the name of the subprogram and
identifies the dummy arguments, if any.

The subprogram name must conform to the normal rules for symbolic names
with regard to number of characters, but the first letter does not set
the data mode of the results. The name must be unique to both the
supbrogram and a main program which calls it.

7 - 11 July 1976

SECTION 7 MAN1674

The argument list usually consists of a series of dummy variables which

are processed by the subroutine and return arguments to the main

program. FEach argument may be a variable, array, or function name. If

an argument is the name of an array, it must be mentioned in a

DIMENSION statement following the SUBROUTINE statement. Arguments that

return values to the main program must not be constant or expressive in
call.

A subroutine with no arguments is allowable. Such a subroutine might
obtain arguments from, and return results to, common. Or it might be
used to output a message or control function to a peripheral device.

Body of Subroutine

The body of the subroutine can consist of any legal FORTRAN statements
except SUBROUTINE, BLOCK DATA, or FUNCTION statements. The results of
calculations may be stored in variables used by both the subprogram and
main program, or they may be placed in common. Variables may be wused
freely on either the right or 1left side of the equals sign in
assignment statements. Each variable that represents a result must
appear on the left side of at least one assignment statement, in order
to present the result to the main program.

The subroutine is terminated by a RETURN statement (described
previously). The last physical record in a subroutine must be an END
statement.

Calling Subroutines (CALL Statement)

SUBROUTINE functions are referenced within main programs by CALL
statements, of the form:

CALL Name (V1, V2. Vn)

where ’‘Name’ is the symbolic name assigned by the SUBROUTINE statement
that begins the subroutine, and each V is a value expression to be
substituted for the corresponding dummy argument in the argument list
of the SUBROUTINE statement. Each value may be a constant, variable
(including array name), subscripted variable, array, expression, or
function name. Arguments used by the subroutine and the main program
must agree in number, order, and mode; and the main program must
contain the same DIMENSION statements as the subroutine. Address
constants ($n) can be used to specify statement numbers of alternate
returns Examples:

MAN1674 FUNCTIONS AND SUBPROGRAMS

Main Program:

1 DIMENSION X(10,15), Y(15,12), Z(1¢,12), JOB(3)
DATA JOB/ MATMPY '/
READ(2,4) ((X(I,J), J=1,15), I=1,10),
X ((x(1,3), J=1,12), 1=1,15)
4 FORMAT(6E12.6)
5 CALL MATMPY(X,1¢,15,12,2)
DO 13 J=1,12
13 WRITE(4,15) (z(1,J), I=1,10
15 FORMAT(2H@ 6E17.6)
CALL EXIT (JOB)

END

Subroutine MATMPY:

——— - ——— - o ———

1 SUBROUTINE MATMPY(A,N,M,B,L,C)
DIMENSION A(N,M), B(M,L), C(N,L)
DO 5 I=1,N
DO 5 J=1,L
C(1,J3) = 0.0
DO 5 K=1,M

5 C(1,J) = C(1,J) + A(I,K)*B(K,J)
RETURN
END

Subroutine EXIT:

SUBROUTINE EXIT (JOBA)

7 - 13 July 1976

SECTION 7 MAN1674

DIMENSION JOBA(3)
WRITE(1,5) LIST

5 FORMAT(12H END OF JOB , 3A2, /)
RETURN

END

PROTECTED FUNCTIONS AND SUBROUTINES

This feature prevents FUNCTION and SUBROUTINE subprograms used in a
real time environment from being interrupted before they have completed
their calculations. It is only necessary to place the word PROTECTED
before the statement that introduces the SUBROUTINE or FUNCTION.
Interrupts are disabled when a protected subroutine is entered and
enabled when control returns to the main program. Examples:

PROTECT/PROTECTED SUBROUTINE ALPHA (Al, A2)
PROTECTED SUBROUTINE BELL
PROTECTED FUNCTION BETA (X,Y,Z)

PROTECTED DOUBLE PRECISION FUNCTION JAM (M)

BLOCK DATA SUBPROGRAMS

This type of subprogram labels common areas and then initializes data
values within the area by means of DATA statements. Any COMMON block
area that overlaps memory used by loader cannot be initialized.

The first statement of such a program must be a BLOCK DATA statement of
the formg

BLOCK DATA
BLOCK DATA subprograms are processed per ANSI standard.

The body of the block data subprogram may contain only type statements
plus EQUIVALENCE, DATA, DIMENSION, and COMMON statements.

If any element of a given common block is initialized, the subroutine
must include a complete set of specification statements for the entire
block, even though some of the elements do not appear in DATA
statements. More than one block may be initialized by a single
subprogram. Examples:

BLOCK DATA
COMMON /COM1/C2,C3,ARR/COM2/X,%,C

REV. D 7 - 14

MAN1674 FUNCTIONS AND SUBPROGRAMS

DIMENSION ARR (40)
EQUIVALENCE (C1,ARR(1),(C4,ARR(2))
INTEGER X
COMPLEX C
pDATA C1, C2, C3, C4 /4*@.0/,
X 1,C/45,(1.3,3.14)/
END

LIBRARY SUBROUTINES

Library subroutines are referenced using the CALL statement described

previously. Standard Prime library subroutines are summarized 1in
Appendix B.

SENSE LIGHT/SWITCH SUBROUTINES

Subroutines identified in Appendix J permit the program to communicate
with the control panel sense switches, lights, and error flag.

These routines allow the program to test for error conditions and
report any errors to the front panel lights.

LINKING FORTRAN AND ASSEMBLY LANGUAGE PROGRAMS

FORTRAN and assembly language programs may be intermixed freely in a
memory load, provided the proper «calling conventions (Reference MAN

1889) are observed and communication 1links are set up to pass the
arguments back and forth.

In the object code of a compiled FORTRAN program, every subroutine call
(CALL statement) is converted into an assembly-language CALL
pseudo-operation. (The actual object coding is equivalent to a JST
instruction followed by an EXT pseudo-op, both of which specify the
subroutine name.) If any arguments are specified, the compiler enters
a series of DACS containing pointers to the argument variables. This
can be seen 1in Figure 7-1, which illustrates a FORTRAN bench- mark

program timed by two assembly language routines that turn the real time
clock on and off.

7 - 15 July 1976

SECTION 7 MAN1674

SENSE LIGHT/SWITCH SUBROUTINES

Subroutines identified in Appendix J permit the program to
communicate with the control panel sense switches, lights, and error
flag.

These routines allow the program to test for error conditions and
report any errors to the front panel lights.

LINKING FORTRAN AND ASSEMBLY LANGUAGE PROGRAMS

FORTRAN and assembly language programs may be intermixed freely in a
memory 1load, provided the proper calling conventions (Reference MAN
1888) are observed and communication links are set up to pass the
arguments back and forth.

In the object code of a compiled FORTRAN program, every subroutine
call (CALL statement) 1is converted into an assembly-language CALL
pseudo-~-operation. (The actual object coding is equivalent to a JST.
instruction followed by an EXT pseudo-op, both of which specify the
subroutine name.) If any arguments are specified, the compiler
enters a series of DACS containing pointers to the argument
variables. This can be seen 1in Figure 7-1, which illustrates a
FORTRAN bench- mark program timed by two assembly language routines
that turn the real time clock on and off.

REV. D 7 - 16

MAN1674

FORTRAN
PROGRAM
DIMENSION AC198)>
5 CALL CLKOH
goomos ELM
oOEEBL JHP OOB000 91609069
LINK 06091 17000014
QO9Z1Z CALL CLKOM
DD 1 J = 4,108
©26313 LDA =-0000041 020EB0EH L <—
eoez14 STA I B4BEEGRL
DO 1 I=1, 10D
QEEBI1S LDA = 6060wl @2En3132
e3B3ie STA I 84900091
%=1
eeO317 LD 1 02093162
oPeZ28 CALL C$12
PEBIZ1 CALL HE22
enazzz DAC X QEEEEDES
—
CALL CLKOFFCI)
POBISS CALL CLKOFF
ERO3ISE DAC 1 OR03412 —I
MRITE ¢1.2) 1 l
00e3ST LOA =‘000051 02083152
POBIES CALL FEWM
ome3eL DAC 2 20900505
PEe362 CALL F3Al
©P0363 OCT Doee9l 0ooRE200
000354 DAC I EDEAzSE2
00e365 CALL F$ce
2 FORMAT C///7HTIME = 16)
LINK -2 17002614
oBOZE6 JHP ©OEven ©1000000

Figure 7-1 FORTRAN/Assembly Language

FUNCTIONS AND SUBPROGRAMS

515151515 M
a0l
(51515 Jedn
aaea3:
SRS
Bnnas:
QS ;
(515 [n]1% P
29310
<1515 0 B
aaglz:

oavog
088383

a3, IEIRn
148340
a4, agasi
922328
41, G900
89, JEva0
n3BZ2o
a2, ouasl
35. QengS
€4, aBoRd
21, esool
6YEalz3

Argument Transfer (Without FS$AT)

ASSEMBLY LANGUAGE

SUBROUTINES
(8081 SUBR CLKON, OM
a2 SUER CLKOFF, OFF
@Be3) REL
{eRR4> QN DAC »%
(Ba8aS5> CRA
(4515119 STR 761
(EB97) ocP ‘26
<a0as) JHP* O
{8ad2> OFF DAC #w
9316> ocP 220
(B31L) LA ‘€1
Be1z2> LOX OFF
L2913 STR+« 6,1
Cgaid)d JHP 1, %
(9a15> END

July 1976

SECTION 7 MAN1674

In the assembly language subroutine, entry points are defined by
SUBR pseudo-ops. A DAC is provided at each entry point to hold an
address value, to be deposited by a JST from the calling program.
If no arguments are to be passed, the value is a pointer to the next
executable instruction of the calling progranm. Customarily, the
subroutine returns to the calling program by an indirect jump
through this address vector.

However, if arguments are to be passed, the value deposited by the
JST 1is a pointer to the first of the argument variables. That is
the case for the CALL CLKOFF statement; the CLKOFF subroutine
returns one argument (the elapsed time count) to the FORTRAN
program. This is done by storing the A register indirectly through
the pointer placed in the OFF entry point by the FORTRAN program.
The subroutine then returns to that location plus one. Note the use
of indexing to obtain the offset.

Assembly Language Interface

To call a FORTRAN subprogram from an assembly language program, use
the PCL (procedure call) instruction followed by APs (argument
pointers) for each argument. The last bit must be set in the AP of
the last argument.

Example:

SEG
EXT FTNSUB

PCL. FTNSUB
AP ARG1,S
AP ARG2,S
AP ARG3,SL

An assembly language subprogram callable from a FORTRAN program must
contain an ECB pseudo-op. If the subprogram has arguments, ARGT
(argument transfer) must be the first instruction in the procedure
frame.

Example:
SEG
SUBR PMASUB
ENTRY ARGT
PRTN
DYMN ARG1(3), ARG2(3), ARG3(3)

REV. D 7 - 18

MAN1674 FUNCTIONS AND SUBPROGRAMS

LINK
PMASUB ECB ENTRY,, ARG1,3

END

Using FSAT*

The library subroutine FSAT may be wused in assembly 1language
subroutines to simplify the tracking down of argument addresses.
The assembly language calling sequence is:

CALL FSAT

OCT n
ARG1 DAC **
ARG2 DAC **
ARGn DAC **

* Does not apply to P440 64V mode program.

where ‘n” is the number of arguments to be transferred, and each ARG
is an argument name. The CALL F$SAT statement must be the first
statement in the subroutine following the DAC ** entry point. FS$AT
could have been used in the CLKOFF subroutine of Figure 7-1 as
follows:

OFF DAC **
CALL FSAT
OCT 1
TIME OCT @ FSAT WILL PUT ADDRESS LINK HERE
OCP “220
LDA ‘61
STA* TIME
JMP* OFF NORMAL RETURN

,his coding has exactly the same effect as the example in Figure 7-1
but execution time is slower. However, it is more convenient to use
FSAT when several arguments are involved.

NOTE :

If the subroutine has more than one argument,
DAC in call is followed by 0 word.

7 - 19 July 1976

MAN1674 PROGRAMMING TECHNIQUES

SECTION 8

PROGRAMMING TECHNIQUES

MAXIMUMS

Accuracy of Numbers:

Single Precision: Any number of digits may be used and the seven
most significant digits are stored internally.

Double Precision: Any number of digits may be used and fourteen
most significant digits are stored internally.

ATTACHING TO ANOTHER USER FILE DIRECTORY (UFD)

A user program can operate in more than one UFD by calling the
ATTACH subroutine. However, care should be taken that the rules for
ATTACH (see Section 3, PRIMOS II and III File System User Guide (MAN
26@4) .

The ATTACH subroutine has the same effect as the ATTACH internal
command. The calling sequence is:

CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)
NOTE:
The reference subkeys are shown in Appendix E.

In attaching to a directory, the subroutine ATTACH specifies where
to 1look for the directory. ATTACH either specifies a user file
directory in the master file directory (MFD) on a particular
logical disk or a file directory in the current UFD, or the home UFD
as the directory to be attached. ATTACH may specify a file unit
number on which a segment directory 1is open. In the segment
directory reference, the file directory to be attached is the one
whose beginning disk address is given by the word at the file
pointer of the file unit.

8 - 1 July 1976

SECTION 8 MAN1674

CLOSING AND OPENING FILES

CONTROL Subroutine

A CONTROL subroutine call (i.e., CALL CONTRL (key, name,
logical-device, altrtn) 1is a method of operning and closing files.
Functions not applicable to a certain device are ignored. This
means that with CONTRL subroutine calls, functions can be requested
in a device independent way.

SEARCH Subroutine

A SEARCH subroutine <call (i.e., CALL SEARCH (KEY, NAME, FUNIT,
ALTRTN) can be written within a FORTRAN program to either open or
close a PRIMOS File.

The following information describes the search operation. However,
the rules for using the SEARCH subroutine are describd in Section 3
of the PRIMOS II and PRIMOS III File System Users Guide (MAN 2604).

SEARCH is used to connect a file to a file unit (open a file) or
disconnect a file from a file unit (close a file). After a file is
connected to a unit; PRWFIL and other routines may be called,
either to position the current- position pointer of a file unit
(file pointer) or to transfer information to or from the file
(using the file unit to reference the file).

On opening a file, SEARCH specifies allowable operations that may be
performed by PRWFIL, and other routines. These operations are read
only, write only or both read and write.

On opening a file, SEARCH also specifies where to look for the file
or where to add the file, if the file does not already exist, and
also SEARCH specifies the file is to be opened for writing or both
reading and writing. SEARCH either specifies a filename in the
currently attached user file directory or a file wunit number on
which a segment directory 1is open. In the segment directory
reference, the file to be opened or <closed is the one whose
beginning disk address is given by the word at the current position
pointer of the file unit.

On creating a newfile, the user specifies to SEARCH the file type of
the new file.

The subroutine SEARCH may be used to perform actions other than
opening and closing a file. SEARCH may delete a file, rewind a file
unit, or truncate a file.

On a call to close a file, SEARCH attempts to close file NAME and

generates an error message or goes to the alternate return if NAME
is not found. FUNIT 1is ignored unless NAME is @#. If NAME is @,

REV. D 8 - 2

MAN1674 PROGRAMMING TECHNIQUES

SEARCH ensures that FUNIT is closed. That is, it closes FUNIT 1if
FUNIT 1is open but does not generate an error message if the file
unit is closed. Example:

CALL SEARCH (1, “OBJECT m 1, ERR)

Searches for a file, OBJECT, in the current UFD and opens it for
reading.

The user 1is allowed to open the current UFD for reading via a call
to SEARCH. The calling sequence for this feature is:

CALL SEARCH (1, -1, Funit, Altrtn)

This call opens the current UFD for reading on Funit. The user must
have owner access rights to the UFD; 1i.e., the owner password must
have been given in the most recent call to ATTACH (or ATTACH
command) . Control goes to Altrtn if there is no UFD attached, if
Funit 1is already in use, or the user does not have owner rights to
the UFD.

Direct Positioning Subroutine - “POSFIL’

A standard FORTRAN IV (or assembly 1language) library subroutine
exists that allows direct positioning to any record in a disk file.
This subroutine “POSFIL’, functions with both segquential access
(SAM) and direct access (DAM) files, although it is most often
used with the latter. The only requirement in file organization is
that all records in a file must be of equal length. This presents
no problem with unformatted (binary) files, as the binary disk
output routine (@$BD@7) automatically generates fixed 1length
records. Formatted (ASCII) files must be specified by the
programmer as fixed length records when defining the record size.
See example below.

‘POSFIL” operates under control of any of Prime’s operating systems
(single user DOS, multi-user DOS/VM, Real Time Operating System and,
virtual DOS running is a background task under RTOS).
Calling Sequence:

CALL POSFIL (I,J,K)
where:

I = FORTRAN logical unit number. This must be a disk

file open for reading only or, open for reading

and writing.

J = Integer expression representing desired record.
(Record numbering starts a 1)

8 - 3 - July 1976

SECTION 8 : MAN1674

K = Optional alternate return. If present, this
represents the statement to which control is
passed if error or end of file conditions are
detected. 1If this value is 0 or omitted, errors
will cause the program to abort to operating
system level and print an error message.

End of file positioning may be done with ‘POSFIL by specifying a
record number of 32767 and an alternate return value corresponding
to the normal return statement. An appropriate error statement
should immediately follow the “CALL POSFIL’.

"POSFIL postions the file pointer at the start of the desired
record by locating the record size in I0CS, adding 1 to compensate
for the word added by the FORTRAN disk output drivers, multiplying
by the record number minus 1, dividing by the number of words per
physical record and making a call to "PRWFIL to position the file
at an absolute record and word.

Examples: The following program illustrates how to create an ASCII
file suitable for direct access and reading, which is performed 1in
the second part of the program. The exact same coding could be used
with -unformatted reads and writes in the case of a binary file.

REV. D 8 - 4

MAN1674 PROGRAMMING TECHNIQUES

Example:
C PROGRAM TO WRITE AN ASCII FILE SUITABLE FOR POSFIL
C AND TO READ BACK RANDOM RECORDS
C
INTEGER TEXT(6)
C ’ .
C DEFINE UNIT #5 AS DISK FILE OF FIXED LENGTH ASCII RECORDS, DOS
FILE UNIT #1, SIX WORDS PER LOGICAL RECORD
C
CALL ATTDEV (5,8,1,6) /* 6 1S RECORD LENGTH
C
C OPEN NEW DAM FILE ON DOS FILE UNIT #1 FOR READING AND WRITING
C
CALL SEARCH (:2003, "SAMPLE’,1)
C
C WRITE 9999 FIXED LENGTH ASCII RECORDS
C
DO 10 I=1,9999
19 WRITE (5,1000) I
1000 FORMAT (RECORD # ,I4)
C
L ASK FOR RECORD NUMBER, LOCATE, READ, AND WRITE TO USER TERMINA
C
20 CALL TNOU (ENTER RECORDS $°,I4)
CALL TIDEC (I)
IF (I) 20,30,25 /* @ CAUSES PROGRAM TO TERMINATE
25 CALL POSFIL (5,I,$35)
READ (5,1001) TEXT
CALL TNOU (TEXT,12)
GO TO 20
C
C CLOSE FILE AND EXIT
C
30 CALL SEARCH (4,0,1)
CALL EXIT
GO TO 20
C
C CONTROL PASSES TO HERE IF POSFIL ENCOUNTERS AN ERROR OR EOF
C
35 CALL PRERR /* PRINT ERROR MESSAGE
GO TO 20 /* TRY AGAIN
C
1681 FORMAT (6A2)
C

END

8 - 5 July 1976

SECTION 38 MAN1674

RECORD LENGTH OPTION

ATTDEV Subroutine

While the formatted record length is 120 characters (maximum), a
user can define a larger size using ATTDEV subroutine.

CALL ATTDEV (logical unit, device, unit, buffer size)
Subroutine ATTDEV can be used:
1) To change the record size associated with a unit number.
2) To change the unit number to physical device mapping.

ATTDEV performs these functions by manipulating entries in tables
in library module CONIOC.

Argument Explanation

logical unit FORTRAN unit number (used in

READ and WRITE statements)
(See Table 6-1 in Section 6)

device ~ Position of physical device in CONIOC
device~-type tables. The default configuration:

1 -> user terminal
7 -> file system (disk)

unit - For multi-unit devices (i.e.,
mag tape). If device is the file system,
the unit is FUNIT (see Table 6-1)

buffer size - The maximum record size in words
(number of characters plus 1)/divided
by two) for logical unit.

F$SIO Subroutine

F$I0 provides a buffer equal to the maximum record length to be used
for FORTRAN transfers. The default buffer size is 132 characters.
When a 1larger buffer 1is required, it is defined by the following
statement:

COMMON/FSIOBF/IBUF (size)

where: SIZE is number of characters divided by 2.

MAN1674 PROGRAMMING TECHNIQUES

NOTE: Only the common block name, F$IOBF, and the size of the array
specified in the common block are significant; the array name
itself is arbitrary.

8 - 7 July 1976

MAN1674 COMPILER ERROR MESSAGES

APPENDIX A

COMPILER ERROR MESSAGES

COMPILER ERROR MESSAGES FOR LARGE SYSTEMS (LFTN)

Table A-1 lists each compiler error and the corresponding definition
of the error.

The general format of the error messages is:

%,INE nnnn [context] name - message

where:

LINE nnnn - nnn is the source line number that the statement

context

name

message

in error started on. All lines read from an insert
file have the same source line number. In the case
of an undefined statement number error, nnnn is the
line number of the last reference to the undefined
statement number, not the line number of the END
statement where it was detected. If an error
detected in an EQUIVALENCE statement, the word
"EQUIVALENCE’ is substituted for ‘LINE nnnn’.

context consists of the last 1-10 nonblank

characters processed by the compiler before detecting
the error. This field can be used to isolate the
position in the statement that error occurs.

If the error is directly related to the misuse of a
specific name, that name will be included in the
error message. Otherwise the field will be
omitted.

A message of up to 20 characters in length
describing the error. A list of all messages is
included below.

COMPILER ERROR MESSAGES FOR SMALL SYSTEMS (SFTN)

Table A-2

lists each compiler error message code and the

corresponding error definition.

A - 1 July 1976

APPENDIX A

Table A-1.

Error Messages

ARG LIST REQUIRED

ARRAY NAME REQUIRED
CHAR STRING SIZE

COMMON NAME ILL.

COMPILER OVERFLOW
CONSTANT REQUIRED

CONSTANT TOO LARGE
DATA MODE ERROR

EXCESS SUBSCRIPTS
FUNCT VAL UNDEFINED
ILL.DO TERMINATION

ILL. EQUIVALENCE

ILL. LOGICAL IF
ILL.
ILL.
ILL.

STMT NO. REF
UNARY OP USAGE
USE OF ARG

ILL. USE OF STMT

INCONSISTENT USAGE

REV. D

MAN1674

Compiler Error Messages (LFTN)

Definition

Argument list not specified in FUNCTION
statement.

Something other than an array name appeared
in a position where only an array name

is allowed.

A character string was not terminated, or a
string in a DATA statement was longer than the
associated name list.

Illegal use of a name already declared in
common.

Insufficient memory to compile program.

A name appeared where only a constant

is allowed.

Constant exponent excessive for data type.
Illegal mode mixing in an expression,
expression mode not of required type, or
constant in DATA statement is of different
mode than associated name in variable 1list.
Too many subscripts in EQUIVALENCE or

DATA list item.

The function name was not assigned a

value in a FUNCTION subprogram.

Improper DO loop nesting, or an illegal
statement terminating a DO loop.

EQUIVALENCE group violates EQUIVALENCE

rules or specifies an impossible
eqguivalencing.

A logical IF contained in a logical IF,

or a DO statement contained in a logical IF.
Reference to a specification statement number.
Improper use of an operator in an expression.
SUBROUTINE or FUNCTION argument used in
COMMON, EQUIVALENCE, or DATA statement.
Statement illegal in context of the program.
For example, RETURN in a main program,
SUBROUTINE not the first statement, or
specification statements out of order. 1If

an undeclared array name is used on the left
in an assignment statement, the compiler will
assume it is a statement function definition
and therefore generate this error.

The use of the name listed in the

error message conflicts with earlier usage.
This message also will be generated at the END

INTEGER REQUIRED

MULT DEF STMT NO.
NAME REQUIRED
NO END STMT

NO PATH TO STMT

NONCOMMON DATA

PARENTHESIS MISSING

STMT NAME SPELLING

STMT NO. MISSING
SUBPGM/ARR NAME ILL
SUPBROGRAM NAME ILL
SYMBOLIC SUBSCR ILL
SYNTAX ERROR

UNDECLARED VARIABLE

UNDEFINED STMT NO.

UNRECOGNIZED STMT

MAN1674 COMPILER ERROR MESSAGES

statement in a SUBROUTINE subprogram if the
subroutine name is used within the subprogram.
A non-integer name or constant appeared
where only an integer name or constant is
allowed. ,

The statement number of the current line
has already been defined.

A constant appeared where only a name is
allowed.

The last statement in a subprogram was not
an END statement.

The current statement does not have a
statement number d the previous statement was
an unconditional transfer of control.

A BLOCK DATA subprogram initialized

data not defined in common or contained
executable statements.

Incorrect parenthesis used in an

implied DO loop in an I/0 statement.

A statement name was recognized by its
first four characters, but the remaining
spelling was incorrect.

A FORMAT statement appeared without a
statement number.

Illegal usage of subprogram or array nhame.
Illegal usage of subprogram name.

Illegal usage of a symbolic subscript

in a specification statement.

General syntax error, context usually shows
offending character(s).

The listed variable did not appear in a
specification statement (generated when the
undeclared variable check option is
enabled) .

The listed statement number was not

defined in the subprogram. The listed line
number is the line number of the last
reference to the statement number.

The compiler could not identify the statment.

A - 3 July 1976

APPENDIX A MAN1674

Table A-2. Compiler Error Messages (SFTN)

CODE DEFINITION

AR Item not an array name.

BD Code generated within a block data subprogram.

BL Block data not first statement.

CE Constant s exponent exceeds 8 bits (Over 255).

CH Improper terminating character (punctation).

CM Comma outside parenthesis, not in a DO statement.
CN Improper constant (data initialization).

CR Illegal common reference.

DA Illegal use of dummy argument.

DD Dummy item appears in an equivalence or data list.
DM Data and Data Name mode do not agree.

DT Improper DO termination.

EC Equivalence group not followed by comma or CR.

EQ Expression to left of equals, or multiple equals.
EX Specification statement appears after cleanup.

FA Function has no arguments.

FD Function name not defined by an arithmetic statment.
FS Function/Subroutine not the first statement.

HD Hollerith string too long in DATA statement.

HS Hollerith data string extends past end of statement.
IC Impossible common equivalencing.

ID Unrecognizable statement.

IE Impossible Equivalence grouping.

IF Illegal IF statement type.

IN Integer required at this position.

10 Error in Read/Write statement syntax.

IT Item not an integer.

MM Mode mixing error.

MO Data pool overflow.

MS Multiply defined statement number.

NA Name required.

NC Constant must be present.

ND Wrong number of dimensions.

NE No END statement prior to Control statement.

NS Subroutine name not allowed

NT Logical NOT, not an unary operator.

NU Name already being used.

oP More than one operator in a row.

PA Operation must be within parenthesis.

PH No path leading to this statement.

PR Parenthesis missing in a DO statement.

PW * preceded by an operator other than a *.

RL More than 1 relational operator in a relational example.
RN Reference to a specification statement’s number.
RT Return not allowed in main program.

sC Statement number on a continuation card.

MAN1674 COMPILER ERROR MESSAGES

SP Statement name misspelled.

ST Illegal statement number format.

SU Subscript incrementer not a constant.

TF "TYPE" not followed by "FUNCTION" or List.

TO Assign statement has word TO missing.

Uuo Multiple + or - signs, not as unary operators.
Us Undefined statement number.

VD Symbolic subscript not dummy in dummy array, or

symbolic subscript appears on a non-dummy array.

A - 5 July 1976

MAN1674 RUN-TIME ERROR MESSAGE

APPENDIX B

RUN-TIME ERROR MESSAGE

When a library subroutine detects an error condition, it types a two
character error message on the ASR, then continues, usually with
unpredictable results. Some subroutines do not check for errors but
call other subroutines which do. For example, DLOG1l#d does not check

for arguments less than or egual to @, but it calls DLOG2 which
does. Error codes are preceded by "¥*x*U",

B - 1 July 1976

APPENDIX B MAN1674

Code Definition

AD Overflow/underflow occurred (AS$66) (S$66).
AT ARG = ARG2 = @ for ATAN2

BN Device error in REWIND command (Note 1).
DE Double precision exponent overflow

decode FORMAT/DATA MISMATCH (literal)

DL Argument is not greater than zero (DLOG, DLOG2).

DN Device error (end file). (Note 1).

DT Second argument is zero (DATAN2).

DZ Division by zero (D$22).

EQ Exponent overflow occurred (AS81).

EX Exponent overflow (EXP).

FE Format error (FSIO).

FN Device error in BACKSPACE command, (Note 1).

II Improper power value (ES11).

IM Overflow or underflow occurred (M$1ll, ES1l).

LG Argument is not greater than @ (ALOG, ALOGld).

RI Number too large for integer conversion (C$12).

RN Device error or end of file in READ statement. (Note 1.)
SE Single precision exponent overflow.

SQ Argument is negative (SQRT).

SZ Single precision divide by zero.

WN Device eror or end of file in WRITE statement. (Note 1.)
XX ARG > 32767

REV. D B - 2

MAN1674 RUN-TIME ERROR MESSAGE

Notes:
1. Device error codes are printed in the form: ****cc n

where n is the FORTRAN logical unit number of the device.

B - 3 July 1976

APPENDIX B

P-300 P-400

DT DATAN

SQ DSQRT

RI DSIN/DCOS
EX DEXP

RI DEXP

DL DLOG/DLOG?2
SQ SQRT

RI SIN/COS
AT ATAN2

LG ALOG1/ALOG1%
RI EXP

EX EXP

11 I**]

BN F$BN

FE F$I0

- FSIO

- FSIO

ST STOP (n)
REV. D

MAN1674

Definition

Bad Argument
Argument < @

Argument range
error

Overflow/under-
flow

Argument too
large

Argument < = @

Argument < @

Argument too
large

Both arguments
=0

Argument < = @

Argument too
large

Overflow
Argument error
Bad logical unit
Format errdr

Null Read Unit

Format/Data
Mismatch

Explanation

A2 = 9
A<®D

A too hi/too low

Result too lg/sm

A too 1lg

A < or =90

A<D

A too 1lg

Al & A2 = 0

]
=

A < or
A >> 0
Result >> @

Al**A2 > 32767

LU out of range

Bad FMT stmt

Read Lunit not
configured

Input data doesn’t
correspond with FMT

statement

STOP Start
Encountered

MAN1674 RUN-TIME ERROR MESSAGE

PA PAUSE (n) PAUSE Start
Encountered

- ATTDEV Bad Unit Bad Lunit to
ATTDEV

B - 5 July 1976

MAN1674 LIST OF STATEMENTS

APPENDIX C

LIST OF STATEMENTS

ENCODE (c,f,a) list

The ENCODE statement converts the elements of the I/0O 1list into
ASCII data according to the specified format and stores the first c
characters of the resultant line buffer into the specified array

where ¢ 1is the number of ASCII characters to be transferred, f is
the format specifier and a is the array name.

DECODE (c,f,a) 1list

The DECODE statement converts the ¢ character in the specified array
into the I/0 list elements according to the specified format, where
¢ 1is the number of ASCII characters to be transferred, £ the format
specifier, and a the array name.

PRINT f list

The PRINT statement performs the same function as the WRITE
statement.

FORMAT SN FORMAT (dF1 dF2 dF3....... Fn)
The FORMAT STATEMENTS DO THE TRANSLATION BETWEEN THE EXTERNAL FORM
OF DATA AND THE WAY IT IS STORED INTERNALLY WITHIN THE PROCESSOR,
where SN 1is a mandatory statement number, each F is a format field
description and each d is a delimiter (slash or comma).

REWIND u

A REWIND statement causes unit u to be positioned at its initial
point.

BACKSPACE u

A BACKSPACE statement positions unit u so that the preceding record
becomes the next record.

ENDFILE u

C - 1 July 1976

APPENDIX C MAN1674

The ENDFILE statement causes the recording of an ENDFILE record on
unit u.

Mode v1,v2,v3...,vn

where mode is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL
and each v is a variable name, an array name, a function name, or. an
array declarator.

DIMENSION v1(il), v2(i2),...,vn(in)

Establishes the name and maximum storage reguirement of an array.
The variable ‘v° 1is an assigned name of an array. Each ‘i’ is a
series of one, two or three subscripts that define the dimensions
and size of the array.

EQUIVALENCE (kl), (k2),...,(kn)

Equates single wvariables to each other. Each k is a list of 2 or
more variables, subscripted variables or array names separated by
commas.

COMMON/x/al/.../xn/an/

Data items are assigned sequentially within a COMMON block in the
order of appearance. Each a is a nonempty list of variable names,
array names, or array declarators and each x is a COMMON block name
or is empty.

EXTERNAL v1,v2,...,Vn

Permits the name of an external function subprogram (library or user
defined) to be passed as an argument 1in a subroutine call ot
function reference, where each v is declared te be an external
procedure name.

DATA kl1l/d1/,k2/42/,....,kn/dn/

Sets variables or array elements k to initial values during loading
of the object program along with corresponding constants d.

TRACE vl1,v2,...Vn

Causes diagnostic printouts of the results of computation to

facilitate debugging, where each v is a variable name or array.

REV. D C - 2

MAN1674 LIST OF STATEMENTS

GO TO k

Causes the statement identified by the statement 1label k to be
executed next.

GO TO (kl1l,k2, ... ,kn), i

A computed GO TO statement causes the selection of the 1lst, 2nd,...
or nth label according to the computed value of i (1,2,....,n).

GO TO i, (kl,k2,...,kn)

Assigned GO TO statement which assigns a current value of 1 to a
statement label. The statement identified by that label is executed
next.

ASSIGN k TO i

A GO TO assignment statement causes the statement identified by the
assigned statement label to be executed next.

IF (e) k1l,k2,k3

An arithmetic IF statement where e is any arithmetic expression of
integer real, or double precision type, and the k’s are statement

labels. The value of e determines one of 3 possible branches as
follows:

value of e Statement Executed Next
< @ (negative) k1l
=@ k2
> @ (positive) k3
IF (e) S

A logical IF statement where e is a logical expression and S is any
executable statement except a DO statement or another 1logical 1If
statement. The 1logical expression e is evaluated. 1If e has the
value .TRUE., statement S is executed. Otherwise, control passes to
the next statement.

C - 3 July 1976

APPENDIX C MAN1674

DOni=ml,ml,m3 or DO n i = ml,m2

A DO statement where n is the label of an executable statement
following the DO statement in the same program unit; i is an
integer variable called the index and ml,m2,and m3 are the initial,
limit, and increment values of the index respectively. Default
value of m3 is one.

CONTINUE

The CONTINUE Statement terminates the current execution of a DO
loop. If no DO 1loop is in effect, control transfers to the next
executable statement.

STOP (n)

where n is an optional string of one to five decimal digits. A STOP
statement transfers control to the subroutine FS$HT.

PAUSE (n)

where n 1is an optional decimal constant. A PAUSE statement
transfers control to F$SHT. A subsequent START command continues the
operation.

END

The END statement is placed at the end of every program.

FULL LIST

The FULL LIST statement specifies a source listing, and a symbolic
listing.

SINSERT Filename

The INSERT statement causes the text in file to be compiled in place
of the SINSERT statement.

WRITE (u,f)list

The WRITE statement is used for data output where u is the unit
number of the I/0 device and f is the format statement number.

NOLIST

REV. D C - 4

MAN1674 LIST OF STATEMENTS

The NOLIST statement specifies no source listing, and no symbolic
listing.
LIST

The LIST statement specifies a source 1listing and no symbolic
listing.

END AND ERROR RETURNS IN READ/WRITE STATEMENTS

READ (d,END=a) READ(d, f,END=a)

READ (d, ERR=b) READ(d, £, ERR=Db)

READ (d, ERR=b, END=a) READ(d, £,ERR=b,END=a)

READ (d,END=a,ERR=b) READ (4, £ ,END=a, ERR=Db)

WRITE (d, ERR=Db) WRITE (d,f,ERR=Db)
where:

d - device specifier
f - format specifier

a - statement number that control is to be transferred to
if an end of file condition is detected in the READ

b - statement number that control is to be transferred to
if a device error occurs in the READ/WRITE operation

C - 5 July 1976

MAN1674 : PROGRAM EXAMPLES

APPENDIX D

PROGRAM EXAMPLES

Appendix D contains numerous FORTRAN IV illustrated examples that
serve as an aid in understanding the FORTRAN IV specification.

X1 ARRAY EXAMPLE

A. PROGRAM

(9001) INTEGER T (100),L(100) ,A,B
(0002) DO 31 1=1,100

(0003) 31 T(I)=0

(0004) DO 20 1=1,100

(0005) L(I)=I**2

(000V6) T(I)=T(I)+L(I)

(8007) 20 CONTINUE

(6008) A=1

(60089) B=5

(00190) 21 WRITE(1,1) (L(K) ,K=A,B), (L(KK) ,KK=A,B)
(9011) 1 FORMAT (2 (5(I5)))

(6912) A=A+5

(9013) B=B+5

(0014) IF(A. GE. 100)CALL EXIT
(8015) GO TO 21

(0016) END

B. COMPILE & RUN

OK, FTN X1

GO

000® ERRORS (FTN-1082.L11)
OK, LOAD

GO

$ LO B X1

SLI

LC

$ SA *X1

D - 1 July 1976

APPEND

$QU

OK, R
GO

IX D

*X1

C. oOuTpUT

1

36
121
256
441
676
961
1296
1681
2116
2601
3136
3721
4356
5041
5776
6561
7396
8281
9216

REV. D

4

49
144
289
484
729
1024
1369
1764
2209
2704
3249
3844

4489

5184
5929
6724
7569
8464
9409

9

64
169
324
529
784
1089
1444
1849
2304
2809
3364
3969
4624
5329
6084
6889
7744
8649
9604

16
81
196
361
576
841
1156
1521
1936
2491
2916
3481
4096
4761
5476
6241
7056
7921
8836

25
100
225
400
625
9009

1225
1600
2025
2500
3025
3600
4225
4900
5625
6400
7225
8100
9025

980110000

1

36
121
256
441
676
961
1296
1681
2116
2601
3136
3721
4356
5041
5776
6561
7396
8281
9216

MAN1674

4

49
144
289
484
729
1024
1369
1764
2209
2704
3249
3844
4489
5184
5929
6724
7569
8464
9409

9

64
169
324
529
784
1089
1444
1849
2304
2809
3364
3969
4624
5329
6084
6889
7744
8649
9604

16
81
196
361
576
841
1156
1521
1936
2401
2916
3481
4096
4761
5476
6241
7056
7921
8836

25
100
225
400
625
900

1225
1600
2025
25009
3025
3600
4225
4900
5625
6400
7225
8100
9025

980110009

MAN1674 PROGRAM EXAMPLES

X2 FORMAT STATEMENTS

A. PROGRAM

(0001) C THIS PROGRAM ILLUSTRATES THE USE OF IF STATEMENTS
(0002) C AND FORMAT STATEMENTS.
(0003) I=100

(0004) 5 WRITE(1,190)

(POB5) READ(1,20) X

(P006) IF(X-I)30,40,50

(0007) 30 WRITE(1,60)I

(0008) GOTO5

(0009) 40 WRITE(1,70)1I

(0010) GOTO5

(6011) 50 WRITE(1,80)1I

(0012) GOTO5

(0013) 10 FORMAT ("INPUTANYNUMBER ")

(0014) 20 FORMAT (I6)

(8015) 60 FORMAT ("YOURNUMBERWASLESSTHAN ", I6)

(0016) 70 FORMAT ("YOURNUMBERWAS ', 16)

(8017) 80 FORMAT ("YOUR NUMBER WAS GREATER THAN °,1I6)
(0018) CALL EXIT

(0019) END

B. COMPILE & RUN

OK,
FTN X2

GO
0000 ERRORS (FTN-1082.L11)

OK, LOAD
GO

$ LO B_X2
$ LI

LC

$ SA *X2
$ QU

OK, R *X2
GO

C. OuUTPUT

INPUT ANY NUMBER

D - 3 July 1976

APPENDIX D MAN1674

77

YOUR NUMBER WAS LESS THAN 100
INPUT ANY NUMBER

=717

YOUR NUMBER WAS LESS THAN 100
INPUT ANY NUMBER

@

YOUR NUMBER WAS LESS THAN 100
INPUT ANY NUMBER

QuUIT,

REV. D D - 4

MANl674

X3 ASSIGN GO TO

A. PROGRAM

(9001) C *COMPUTED GO TO EXAMPLE*
(00G2) 205 WRITE (1,50)
(90083) 50 FORMAT (“TYPE I HERE")

(P0B4) READ(1,55) I

(000B5) 55 FORMAT (I5)

(0006) X =48

(00087) B = I*5

(0008) C = I+5

(0009) A =B+ C

(0010) Y = X + A

(PO11) 20 GO TO(100,310,320),1I
(9012) WRITE(1,185)

(9@13) 195 FORMAT(ERROR - I OUT OF
(0014) GO TO 200

(6@915) 100 WRITE(1,106) Y

(0P16) 196 FORMAT('Y = "I3, WHEN I
(9917) GO TO 205

(0918) 320 PRINT 110,Y

(#019) 110 FORMAT('Y = “I3, " WHEN I

(0029) GO TO 2805

(p921) 310 PRINT 115,Y

(#022) 115 FORMAT('Y = ‘I3, " WHEN I
(9023) GO TO 205

(0924) 200 CALL EXIT

(0025) END

9000 ERRORS (FTN-1082.L11)

B. COMPILE & ROUN

OK, FTN X3
GO
@000 ERRORS (FTN-1082.L11)

OK, LOAD
GO

$ LO B_X3
SLI

LC

$ SA *X3
$ QU

OK, R *X3
GO

RANGE ")

17%)

37)

27)

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

C. OuTepuT

TYPE I HERE

Y = 59 WHEN I = 1
TYPE I HERE

2

Y = 65 WHEN I = 2
TYPE I HERE

3
Y = 71 WHEN I = 3

TYPE I HERE

4

ERROR - I OUT OF RANGE

OK,

REV. D D - 6

MAN1674 PROGRAM EXAMPLES

X4 SIMPLE CALCULATION

This

example

illustrates format statements within a simple program

to compute and print the square of a number.

A. PROGRAM

ON@P1) C
(0002) C
(80B3) 5
(000 4)
(90085)
(0006)
(60Q7)
(0008)
(8B09)
(8010)
(9011)

10
20
30

B. COMPARE

OK, FTN X4
GO

P00 ERRORS
OK, LOAD
GO

$ LO B_X4

$ LI

LC

$ SA *X4

$ QU

OK, R *X4
GO

C. OUTPUT

THIS IS A SIMPLE PROGRAM WHICH ILLUSTRATES THE INTERACTI
BETWEEN THE READ, THE WRITE AND THE FORMAT STATEMENTS.
WRITE(1,10)

READ(1,20)R

R=R*%*2

WRITE(1,30)R

GO TO 5

FORMAT ("GIMME A NUMBER!!")

FORMAT (F20.6)

FORMAT (“THE SQUARED NUMBER IS: 'F20.6/)

END

(FTN-1082.L11)

GIMME A NUMBER!!

37.999

THE SQUARED NUMBER IS:

1443.9233490

GIMME A NUMBER!!

45.987

THE SQUARED NUMBER IS:

2114.803711

July 1976

APPENDIX D MAN1674

X5 FORMULA CALCULATION
Given:

The equation for determining the current flowing through
alternate current circuit is:

E

v
R2+(2nfl- -1 2
(Zm Znfc)

A. PROGRAM

(0001) C THIS PROGRAM NAME IS X5
(0002) C

(8003) C

(0004) WRITE(1,10)

(POO5) 10 FORMAT(/ ‘GIVE ME THE FOLLOWING VALUES")
(0006) WRITE(1,15)
(P007) 15 FORMAT (/ "OHMS: ")

(0088) READ(1,20) OHMS
(0009) 20 FORMAT (E20.6)

(9010) WRITE (1,25)

(PB11) 25 FORMAT("FREQ: ")

(0012) READ(1,30) FREQ

(0013) 36 FORMAT (E20.6)

(0014) WRITE(1,35)

(6015) 35 FORMAT (// "HENRY: ")

(0016) READ(1,30) HENRY

(0017) WRITE(1,36)

(P018) 36 FORMAT(“VOLTS:)

(0G19) READ(1,40) VOLT

(0020) 40 FORMAT (E5.2)

(9021) WRITE (1,45)

(9022) 45 FORMAT ("FARADS:)

(9023) READ(1,50) FARAD

(0024) 50 FORMAT (E20.12)

(00 25) AMPS = VOLT/SQRT (OHM**2 + ((6.2832*FREQ*HENRY)-1/
(9026) X(6.2832*FREQ*FARAD)) **2)
(00827) WRITE(1,55) AMPS

(0828) 55 FORMAT(‘AMPS =",E20.12)
(90 29) CALL EXIT

(0030) END

B. COMPILE & RUN

—— ——— o — —— i — -

REV. D D - 8

an

MAN1674 PROGRAM EXAMPLES

OK, FTN X5
GO

0090 ERRORS 8FTN-1882.L11)
OK, LOAD
GO

$ LO

$ LI

LC

$ SA *X5
$QU

OK, R *X5
GO

C. OUTPUT

GIVE ME THE FOLLOWING VALUES

OHMS: 75 FREQ: 60.

HENRY: 2.8875 VOLTS: 68. FARADS: 0.00057 AMPS = 0.372357025146E
92

OK,

D - 9 July 1976

APPENDIX D

X6 FLOATING POINT FORMAT

MAN1674

This example illustrates input and output formats.

A. PROGRAM

(0001)
(0002)
(2003)
(0004)
(0005)
(0006)
(8007)
(0008)
(0009)
C

(0019)
(P011)

C *CALCULATES VOLUME OF A B@X.*

REAL LENGTH
WRITE(1,50)

50 FORMAT(“GIVE LENGTH, WIDTH, AND HEIGHT')
READ(1,100) LENGTH, WIDTH, HEIGHT

100 FORMAT(3F10.3)

VOLUME = LENGTH*WIDTH*HEIGHT
WIDTH,HEIGHT, VOLUME

WRITE(1,105) LENGTH,
105 FORMAT(LGTH: ,F6.2, X W: ,F6.2,° X HT: ,F6.2, =VOL

F19.3)
CALL EXIT
END

B. COMPILE & RUN

OK, FTN X6 0990 ERRORS (FTN-1082.L11) OK,

GO

$ LO B_X6

$ LI
LC

$ SA *X6

$ QU

OK, R *X6

GO

C. OuTpUT

GIVE LENGTH, WIDTH, AND HEIGHT

12.,56.,87.

LGTH:

REV. D

12.80 X W:

56.080 X HT:

87.00=VOL:

LOAD

58464.000

s,

’

MAN1674 PROGRAM EXAMPLES

X7 DO LOOP

This example illustrates output formats.

A. PROGRAM

(0091) C *PHIS PROGRAM EXAMPLE DEMONSTRATES A DO LOOP*
(guw02) C *CALCULATES VOLUME OF A BOX.*

(000 3) REALLENGTH

(P004) WRITE(1,18)

(0005) 18 FORMAT ("HOW MANY BOXES?)

(0006) READ(1,19) N

(0007) 19 FORMAT (I5)

(0098) DO 1890 I = 1,N

(9009) 5 FORMAT ("ENTER LENGTH: 7)

(0010) WRITE(1,5)

(0011) READ(1,6) LENGTH

(0012) 6 FORMAT (F6.3)

(0013) WRITE(1,10)

(B014) 10 FORMAT ("ENTER WIDTH: °)

(9015) READ(1,7) WIDTH

(9016) 7 FORMAT (F6.3)

(0017) WRITE(1,15)

(0018) 15 FORMAT ("ENTER HEIGHT: °)

(0019) READ (1,8)HEIGHT

(9020) 8 FORMAT (F6.3)

(0021) 9 VOLUME = LENGTH*WIDTH*HEIGHT

(9022) WRITE(1,20) LENGTH, WIDTH,HEIGHT, VOLUME
(8023) 20 FORMAT('LGTH: ' ,F10.3,3X, 'WI: ,F10.3,3X, "HT: 'F10. 3, 3X,
(0024) *‘yoL: " ,F10.3,5X,///,5X%)

(P@25) 100 CONTINUE

(0026) WRITE(1,105) N

(0627) 105 FORMAT('I HAVE CALCULATED ,I2,3X 'BOXES’)
(9928) 21 CALL EXIT
(0029) END

B. RUN AND COMPILE

OK, FTN X7 0000 ERRORS (FTN-1982.L11) OK, LOAD
GO

$ LO B X7

$ LI

LC

$ SA *X7

$ QU

OK, R*X7
GO

D - 11 July 1976

APPENDIX D

C. PROGRAM OUTPUT

HOW MANY BOXES?

gNTER LENGTH:

éﬁTER WIDTH:

5. ENTER HEIGHT:

géTH: 3.000 WI: 5.000 HT:

ENTER LENGTH:
E&TER WIDTH:
;ﬁTER HEIGHT:

LGTH: 5.000 WI: 7.000 HT:

ENTER LENGTH:
g&TER WIDTH:
éﬁTER HEIGHT:
ZéTH: 5.000 WI: 2.000 HT:

I HAVE CALCULATED 3 BOXES

OK'

REV. D

MAN1674

6.000 VOL:

9.000 VOL:

9.800 VOL:

90.000

315.000

90.000

MAN1674 PROGRAM EXAMPLES

X8 FINDING THE SQUARE ROOT

A. PROGRAM

MAT@1l) C THIS PROGRAM ILLUSTRATES A VARIETY OF READ/WRITE AND FOR
C STATEMENTS

(0002) 5 WRITE(1,10)

(P003) WRITE (1,20)

(0004) READ(1,30)A

(2005) WRITE(1,30)

(0006) WRITE(1,40)

(0007) READ(1,50)B

(0008) WRITE(1,60)

(0009) READ(1,70)C

(0010) R=SQRT (A** (B-C+2))
(0011) WRITE(1,90)A
(0012) WRITE(1,100)B
(0013) WRITE(1,110)C
(0014) WRITE(1,80)R
(0015) GO TO 5

(9016) 10 FORMAT (/ “FIND YOUR SQRT OF FUNCTION A")
(0017) 20 FORMAT ("INPUT A)
(0018) 30 FORMAT (F5. 3)

(8019) 40 FORMAT (/ "INPUT B")

(0020) 50 FORMAT (F5.3)

(P021) 60 FORMAT (/ "INPUT C°)

(0022) 70 FORMAT (F5. 3)

(0023) 90 FORMAT(// ‘A="F5.3)

(0024) 100 FORMAT(B="F5.3)

(0@25) 118 FORMAT('C="F5.3)

(0026) 80 FORMAT (// "ANSWERIS: 'F7.3)
(0027) CALL EXIT

(0028) END

B. COMPILE & RUN

OK, FTN X8
0000 ERRORS (FTN-1682,L11)

OK, LOAD
GO

$ LO B_X8
$ LI

LC

$ SA *X8
$ QU

OK, R *X8
GO

D - 13 July 1976

APPENDIX D MAN1674

C. OuTrUT

FIND YOUR SQRT OF FUNCTION A
INPUT A
9.5

INPUT B
8.7

INPUT C
7.7

A= 9.500
B= 8.700
C=7.700

ANSWER IS: 29.281

REV. D D - 14

MAN1674 PROGRAM EXAMPLES

X9 IF EXAMPLE

This example illustrates the use of IF statements anq hea
corresponding output. The following program examines each given
number to determine if the number is negative, 2zero or positive.
With the appropriate GO TO statement, it directs the sequence to the
appropriate output.

A. PROGRAM

(0001) C IF STATEMENT EXAMPLE.

(00@2) C *THIS IS AN EXAMPLE DEMONSTRATING THE ARITHMETIC IF
C STATEMENT*

(0003) DO 469 I=1,5

(9004) WRITE(1,5)

(0005) 5 FORMAT("GIVE ME A NUMBER'//)

(0006) READ(1,19) Y

(9607) 10 FORMAT (I5)

(0008) IF (Y) 100,310,320

(900P9) 100 WRITE(1l,35)

(PB10) 35 FORMAT (“YOU GAVE A NEGATIVE NUMBER!!“//)
(0011) GO TO 4080

(0@812) 319 WRITE(1l,40)

(0013) 40 FORMAT("YOU GAVE A ZERO!!“//)

(0014) GO TO 400

(0815) 320 WRITE(1l,25)

(8616) 25 FORMAT("YOU GAVE A POSITIVE NUMBER!!"//)
(0017) 400 CONTINUE

(P218) 909 CALL EXIT

(6019) END

B. COMPILE & RUN

OK, FTN X9

0000 ERRORS (FTN-1082.L11)
OK, LOAD

GO

$ LO B_X9

$ LI

LC

$ SA *X9

$ QU

OK, R*X9
GO

D - 15 July 1976

APPENDIX D MAN1674

C. OUTPUT

GIVE ME A NUMBER

45
YOU GAVE A POSITIVE NUMBER!!

GIVE ME A NUMBER

-99
YOU GAVE A NEGATIVE NUMBER!!

GIVE ME A NUMBER

2
YOU GAVE A ZERO!!

GIVE ME A NUMBER
YOU GAVE A POSITIVE NUMBER!!

GIVE ME A NUMBER

19
YOU GAVE A POSITIVE NUMBER!!

REV. D D - 16

MAN1674

X19 COMPUTED GO TO EXAMPLE

A. PROGRAM

(0001)
(2002)
(000 3)
(00Q4)
(0005)
(0006)
(0007)
(0008)
(0009)
(0010)
(8011)
(0012)
(0013)

310

20
320

100

110

=S
U1+ o
*
H O

w o
I

@)

T

w O

(100,310,320) ,1
+

H:vmm-aowx

]
Ll |

WRITE (1,119)Y
FORMAT (1I5)
CALL EXIT

END

B. COMPILE & RUN

—— v ——————

OK, FTN X140

9900 ERRORS (FTN-1082-L11)
OK, LOAD

GO

$ LO B_X10

$ LI
LC

$ SA *X10

$ QU

OK, R *X140

GO

C. OUTPUT

240

OK,

17

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

X11 SIMPLE CALCULATIONS

This example illustrates the relationships of simple input and
output statements.

A. PROGRAM

AGPBl) C *THIS PROGRAM WILL CALCULATE THE AREA OF A RECTANGLE OR
C TRIANGLE*

(8002) 5 FORMAT ("ENTER BASE: ")

(0003) WRITE(1,5)

(0004) READ(1,6) BASE

(6005) 6 FORMAT (F6.3)

(0006) 10 FORMAT ("ENTER HEIGHT: ")

(8007) WRITE(1,19)

(0008) READ(1,12)HEIGHT

(0009) 12 FORMAT (F6.3)
(0010) 15 AREA=BASE*HEIGHT

(0011) WRITE(1,20) BASE,HEIGHT,AREA

(6012) 20 FORMAT(‘BA: " ,3X,F6.3,5X, 'TIMESHT: 3X,F6.3,5X, = AREA:
C F10.3)

(8013) CALL EXIT

(0014) END

B. COMPILE & RUN

OK, FTN X1l
0000 ERRORS (FTN-1082.L11)

OK, LOAD
GO

$ LO B X11

$ LI

LC

$ SA *X11

$ QU

OK, R *X11
GO

C. OUTPUT
ENTER BASE:
3.0098

ENTER HEIGHT:
9.435

BA: 3.010 TIMES HT: 9.435 = AREA: 28,397

REV. D D - 18

MAN1674 PROGRAM EXAMPLES

X12 OPENING & CLOSING FILES

The following example illustrates how files are opened and closed in a
FORTRAN program.

A. PROGRAM

(99921) DOUBLE PRECISION ANSWER{19:

(1332) CALL CONTRL(1, ‘DATA °,6,$29)
GELE)) READ(6,10,END=190) (ANSWER(I) ,I=1,7)
(0004) GO TO 102

(0B0R5) 10 FORMAT(E20.7/E20.7,6X,E20.7,6X,E20.7/E20.7,6X,E20.7/E20.7)
(PBR6) 102 WRITE(1,5) (ANSWER(I),I=1,7)

(9907) 5 FORMAT(“HERE IS YOUR DATA ~ //(E20.7,5X,E20.7,5X,E20.7))
(0008) GO TO 200

(0009) 20 CALL TNOU(ERROR’,5)

(9010) GO TO 200

(6911) 120 WRITE(1,101)
(6012) 101 FORMAT(END OF FILE RuaD 3EFORE DATA TERMINATED)
(#313) 200 CALL CONTRL(4, DATA ~,6)

(0014) CALL EXIT
(89015) END
B. DATA

OK, SLIST DATA GO]

1234567898987.7654321

2976546789075.7654321 -987654321234.9876543 -0.0005678
1234567890123.1234567 1234567890123.1234567
1234567890123.1234567

C. COMPILE & RUN

OK, FTN X12

0000 ERRORS (FTN-1082.L11)
OK, LOAD

GO

$ LO B_X12

S LI

LC

$ SA *X12

D - 19 July 1976

APPENDIX D MAN1674

$ QUIT
OK, R *X12
GO

D. oureygr

JERE IS5 YOUR DATA

0.1234568E 13 0.2976547E 13-0.9876543E 12
-0.5678000E-03 0.1234568E 13 0.1234568E 13
OK,

REV. D D - 20

MAN1674 PROGRAM EXAMPLES

X13 EXAMPLE OF SUBROUTINE CALLS

The following example illustrataes how subroutines are called. The
purpose of this program is to print out the time when the program was
started, the time the program ended and the time used. The actual time
to run this program was 68 ticks. Two subroutines were called: SEARCH
and TIMDAT. SEARCH (line 9007) opens the file called ‘OUTPUT and the
TIMDAT routine calculates the actual time.

A. PROGRAM

(90021) INTEGER OUTPUT

(0002) INTEGER UTM,UTS,UTT,UCS,UCT,UPS,UPT
(9003) INTEGER STM,STS,STT,SCS,SCT,SPS,SPT
(0004) INTEGER TTM,TTS,TTT,TCS,TCT,TPS,TPT
(0005) DIMENSION IAREA(9),ITIME(15)

(0006) DATA IAREA/1,2,3,4,5,6,7,8,9/
(8007) CALL SEARCH(2, 'OUTPUT ,2,$10)

(0008) CALL TIMDAT(ITIME,15)

(92009) UTM=ITIME (4)

(0010) UTS=ITIME(5)

(9011) UTT=ITIME (6)

(0012) UCS=ITIME(7)

(0013) UCT=ITIME (8)

(9014) UPS=ITIME (9)

(9015) UPT=ITIME (10)

(8016) WRITE(6,1) (ITIME(I),I=1,15)

(0017) 1 FORMAT(‘DATE: “,10X,2A2,41,/

(0018) * “TIME MINUTES: ,2X,I5,/

(0019) * “TIME SECONDS: ,2X,15,/

(0020) * “TIME TICKS: ,4X,I5,/

(8021) * ‘CPU SECS USED: " ,1X,I5,/

(0022) * “CPU TICKS USED: ,15,/

(0023) * "PAGING SECONDS: " ,15,/

(9024) * "PAGING TICKS: ,2X,I15,/

(8825) * “PICKS PER SEC: ,1X,I5,/

(9026) * “USER NUMBER: ", 3X,1I5,/

(8027) * "USER NAME: ,5X,3A2)

(0028) DO 90 K=1,10

(0029) 90 WRITE(6,2) IAREA
(0030) 2 FORMAT (912)

(0031) CALL TIMDAT(ITIME,15)
(9032) STM=ITIME (4)

(6033) STS=ITIME (5)

(0634) STT=ITIME (6)

(8035) SCS=ITIME(7)

(9036) SCT=ITIME (8)

(8037) SPS=ITIME (9)

(06038) SPT=ITIME(18)

(8039) WRITE(6,1) (ITIME(I),I=1,15)

D - 21 July 1976

APPENDIX D MAN1674

(0040) TTM=STM-UTM

(0041) TTS=STS-UTS

(0042) TTT=STT-UTT

(0043) TCS=SCS-UCS

(0044) TCT=SCT-UCT

(0045) TPS=SPS-UPS

(0046) TPT=SPT-UPT

(0047) WRITE(6,3) TTM, TTS,TTT,TCS,TCT, TPS, TPT
(0048) CALL SEARCH(4, ‘OUTPUT’, 2)

(6049) 3 FORMAT (“TOTAL TIME MINUTES: ,I5/
(0050) * “TOTAL TIME SECONDS: ,I5/
(0651) * “TOTAL TIME TICKS: ~,I5/
(8052) * "TOTAL CPU SECONDS: ~,15/
(8053) * “TOTAL CPU TICKS: “,I5/
(0054) * "TOTAL PAGING SECS: ~,I5/
(8055) * "TOTAL PAGING TICKS: ,I5)
(0056) CALL EXIT

(0057) 10 CALL TNOU(PROBLEMS WITH OPENING FILE ,25)
(0@58) END
9000 ERRORS (FTN-1082.L11)

B. OUTPUT

DATE: 05046
TIME MINUTES: 8¢8
TIME SECONDS: 33
TIME TICKS: 169
CPU SECS USED: 19
CPU TICKS USED: 82
PAGING SECONDS: 28
PAGING TICKS: 135
TICKS PER SEC: 330

USER NUMBER: 9
USER NAME: DAWES
1 234567829
1 234567829
1234567829
1 234567829
123454672829
1 2345467829
12345672829
1234567829
1 2345467829
1 23456789
DATE: 05046
TIME MINUTES: 808
TIME SECONDS: 33
TIME TICKS: 237

CPU SECS USED: 19
CPU TICKS USED:150

REV. D D - 22

MAN1674

PAGING SECONDS: 28
PAGING TICKS: 135
TICKS PER SEC: 330
USER NUMBER: 9
USER NAME: DAWES
TOTAL TIME MINUTES: @
TOTAL TIME SECONDS: 0
TOTAL TIME TICKS: 68
TOTAL CPU SECONDS: @
TOTAL CPU TICKS: 68
TOTAL PAGING SECS: 0
TOTAL PAGING TICKS: @

23

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

X14 INTEGER/DO LOOP EXAMPLE

The object of this example is to illustrate a simple DO loop and to show
the relationship of the format statement and actual output.

A, PROGRAM

(9001) INTEGER BUFF (18, 3)
(0002) NUM=1

(00083) L=1

(0004) M=2

(0005) N=3

(0006) DO 19 I=1,18
(0B7) DO 20 II=1,3
(0008) BUFF(I,II)=NUM
(0009) NUM=NUM+1

(0010) 20 CONTINUE
(0011) 10 CONTINUE

(0012) DO 30 I=1,18
(8813) WRITE(1,15)BUFF(I,L) ,BUFF(I,M) ,BUFF(I,N)

(0014) 30 CONTINUE
(9015) 15 FORMAT (31I3)
(0016) CALL EXIT
(0017) END

B. RUN & COMPILE

OK, FTN X14
0090 ERRORS (FTN-1£82.L11)

OK, LOAD

GO

$ LO B_X14

$ LI

LC

$ SA *X14

$ QU

OK, R *X14

C. OUTPUT
1 2 3
4 5 6
7 8 9

10 11 12
13 14 15

REV. D D - 24

18
21
24
27
30
33

39
42
45
48
51
54

MAN1674

25

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

X15 OVERLAY EXAMPLE

The following example illustrates a simple program overlay. Program B
in this example overlays program A. B is called using a CALL RESUME
routine after program A has been run. Each program is compiled
separately.

A. PROGRAM

(9001) C PROGRAM A

(9002) COMMON /A/P1D,IC1,IC2,1C3,IC4,1IC5
(9003) INTEGER P1D(19) ,P2D(19)

(9804) DATA P2D/1HA,1HB,1HC,1HD,1HE,1HF,1HG,1HH,1HI,1HJ/
(0005) WRITE(1,100)

(0006) 180 FORMAT(START PROGRAM A")

(9087) DO 5 I=1,10

(00B8) 5 P1D(I)=P2D(I)

(0009) WRITE(1,1)

(001a) 1 FORMAT ("INPUT ANY FIVE CHARACTERS’)
(0011) READ(1,2)IC1,IC2,1IC3,IC4,IC5

(9012) 2 FORMAT (5A1)

(0013) WRITE(1,3)P1D

(0014) 3 FORMAT (10 (1X,Al))

(8B15) WRITE(1,4)IC1,1C2,IC3,IC4,IC5
(9016) 4 FORMAT (5(1X,Al))

(0017) WRITE(1,101)

(0@18) 101 FORMAT(END PROGRAM A")

(0019) CALL RESUME ("PROGB 7)

(0020) CALL EXIT

(0021) END

#0909 ERRORS (FTN-1082.L11)

(9001) C PROGRAM B
(0002) COMMON /A/ P1D,IC1,1C2,1C3,IC4,IC5
(2003) INTEGER P1D(10)

(0004) WRITE(1,100)

(0065) 100 FORMAT(START PROGRAM B’)
(0006) WRITE(1,1)

(0007) 1 FORMAT ("OUTPUT FROM PROGRAM B’)
(9008) WRITE(1,2)ICl1,IC2,IC3,1C4,1IC5
(0009) 2 FORMAT (5(1X,Al))

(00109) WRITE(1,3)P1D

(0011) 3 FORMAT (16 (1X,Al))

(9012) WRITE(1,4)

(6013) 4 FORMAT ("END PROGRAM B’)

REV. D D - 26

MAN1674

(0014) CALL EXIT
(8015) END
0000 ERRORS (FTN-1082.L11)

C. OUTPUT

OK, R PROGA

GO

START PROGRAM A

INPUT ANY FIVE CHARACTERS

DUMMY
ABCDEFGHTIUJ
DUMMY

END PROGRAM A

START PROGRAM B
OUTPUT FROM PROGRAM B
DUMMY
ABCDEFGHIJ

END PROGRAM B

OK,

27

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

X16 ASSIGN STATEMENT

A. PROGRAM
GO EXAMPLE 16
C *THIS IS AN EXAMPLE DEMONSTRATINC THE ASSIGN STATEMENT*
ASSIGN 320 TO I
20 GO TO I1,(100,310,320)
ASSIGN 310 TO I
GO TO 20
100 WRITE (1,35)
35 FORMAT('I = 100°)
310 WRITE(1,40)

40 FORMAT('I = 310°7)

320 WRITE(1,25)

25 FORMAT("STATEMENT 3209 RSULTED IN THIS ACTION’)
CALL EXIT
END

B. COMPILE & RUN

OK,
FTN17

GO

0000 ERRORS (FTN-1082.L11)

OK,
LOAD

GO

$ LO B X18

S LI

LC

$ SA *X17

$ QU

OK, R *X17

GO

C OUTPUT

STATEMENT 320 RESULTED IN THIS ACTION

OK,

REV. D D - 28

MAN1674 PRIMOS SUBROUTINES SUMMARY

APPENDIX E

PRIMOS SUBROUTINES SUMMARY

The following table summarizes most of the PRIMOS subroutines. For a
detailed description of each subroutine, refer to the PRIMOS II and III
interactive users guide (MAN 2602).

FUNCTION SUBROUTINE Calling Seguence

ATTACH to a UFD ATTACH CALL ATTACH (Ufd,Ldisk,
Passwd ,Key,Altrtn)

To interrupt a BREAKS CALL BREAKS(.TRUE.) or-

running program CALL BREAKS (.FALSE.)

Command line READ CMREAD CALL CMREAD(Array)

Rename File CNAMES CALL CNAMES (Oldnam,
Newnam,Altrtn)

Reads a Command Line COMANL CALL COMANL i

Allows PRIMOS to read COMINP CALL COMINP(Name,Funit,

commands from a file Altrtn)

Compares left-most COMEQV Value-COMEQV

characters of 2 strings (Stringl,String2)

Gets next character ClIN CALL ClIN(Char)

from terminal

Initialize disk devices DSINIT CALL DSINIT(Pdisk)

Sets system vector ERRSET CALL ERRSET(Altval,

then takes an alter- Altrtn,Messag,Num)

native return CALL ERRSET(Altval,
Altrtn,Name,Messag,Num)

ERRSET CALL ERRSET(Altval,

Altrtn)

Return to PRIMOS EXIT CALL EXIT

Updates disk FORCEW CALL FORCEW(®,Funit)

E - 1 July 1976

APPENDIX E

Moves words from ERRVEC
into Xervec

Moves characters from
buf fer

Moves n words in Xervec

Compares two 6-char-
acter names

Prints error message
on user terminal

Copies a file

Inserts characters into
a buffer to form a six-
character name

Tells system to cycle
next user

Reads up to 80
characters

Inverse of the SAVE

Same as RESUME command

READS one disk record
SAVEs disk file
Connects a file to a
file unit

Reads a char and echoes

Supplies time inform-
ation

Reads a number from
a terminal

Moves a card of data

REV. D

GETERR

GETWRD

GINFO

NAMEQV

PRERR

PRWFIL

PUTC

RECYCL

RDCOM

RESTOR

RESUME

RREC

SAVE

SEARCH

T1IN
TIMDAT
TIOCT
TIDEC
TIMEX

TSCMPC

MAN1674

CALL GETERR(Xervec,n)

CALL GETWRD(Buff,Array)

CALL GINFO(Xervec,n)

Value=NAMEQV (namel,
name?2)

CALL PRERR
CALL PRWFIL(Key, Funit,
Pbuff ,Nwords,Position,

Altrtn)

CALL PUTC(Buf,Char)

CALL RECYCL

CALL RDCOM (Buf)

CALL RESTORE (Rvec,Name,
Altrtn)

CALL RESUME (Filname)

CALL RREC(Bptrs,Blen,
N,Ra,Pdisk,Altrtn)

CALL SAVE (Vect,
Filename)

CALL SEARCH(Key,Name,
Funit,Altrtn)

CALL T1IN(Char)

CALL TIMDAT (Array,Num)

CALL TIOCT, TIDEC,
TIMEX (Num)

CALL TSCMPC(Unit,Buffer-

from Card Reader

One line of data from
terminal to line
printer

Magnetic tape input or
output, read a ‘Raw’
tape

Provides control over
a SYN multi-line
communications device

Gould Printer/Plotter
control

Types out character
Prints characters from
array with carriage

return

Types octal converted
ASCII number

Prints characters from

array-no carriage return

Updates current UFD

TSLMPC

TSMT

T$SLC

TSVG

T10U

TNOU

TOOCT

TNOUA

UPDATE

Writes record onto disk WREC

MAN1674

PRIMOS SUBROUTINES SUMMARY

Address,Word-Count,
Instruction,Status Vector)

CALL TSLMPC(Unit,Buffer-
Address,Word-Count,
Instruction,Status-Vector)

CALL TSMT(Unit ,Buffer-
Address,Word-Count,
Instruction,Status-Vector)

CALL TSSLC(Key,Line,
Loc, (block) ,Mwds)

CALL T$VG(Unit,Loc
(buffer) ,words,inst,statv)

CALL

CALL

CALL

CALL

CALL

CALL

T10U (Char)

TNOU(Array,Nchars)

TOOCT (Number)

TNOUA (Array,Nchar)

UPDATE (Key,1,0)

WREC (Bptrs,Blen,

N,Ra,Altrtn)

July 1976

MAN1674 SUMMARY OF IOCS SUBROUTINES

APPENDIX F

SUMMARY OF IOCS SUBROUTINES

The following tables summarize the input and output device handling
subroutines. Refer to Section 6 of the Software Library User Guide (MAN
1880) for detailed information. Because this summary does not include
the respective rules for each element in subroutine <calls, it is
necessary that the Software Library User Guide be consulted before using
these subroutines.

DEVICE SUBROUTINE
OPERATION FUNCTION CALL
Disk Open named file CALL SEARCH(1l, ‘Name’,Funit,
files for reading Altrtn)
Disk Open named file CALL SEARCH(2, 'Name ,Funit,
files for writing Altrtn)
Disk Open named file CALL SEARCH(3, 'Name’,Funit,
files for both reading

and writing
Disk Close named file CALL SEARCH(4, ‘Name’,Funit,
files Altrtn)
Disk Delete named file CALL SEARCH(5, 'Name’ ,Funit,
files Altrtn)
Disk Rewind file CALL SEARCH(7, 'Name’,Funit,
files (repositions to Altrtn)

first record of

FUNIT)
Disk Truncate named CALL SEARCH(8, 'Name’,Funit,
files file Altrtn)
Disk Performs a tree CALL TRSRCH (Func, ‘Name”,
files search(performs funit,Altrtn)

ATTACH and SEARCH
calls) needed to
open the specified
file. Use SEARCH
function numbers.

F - 1 July 1976

APPENDIX F

Disk
files

Write
Disk
files

Write
Disk
files

Read
Disk
files
Write
Disk
files

Moves
Raw Data

GETA
Terminal

ATTACH
DEVICE

ATTACH
DEVICE

WRITE
DEVICE

REV. D

MAN1674

Read or write
disk file

‘Write ASCII data

from Buff onto

a disk file(in
compressed ASCII
format)opened on
unit.

Write ASCII data

from Buff onto

a disk file (in

fixed length records).

Read ASCII data
from file open
on unit

Write Binary data
to a file opened
on unit

Move raw data from

the terminal, or
command file n to user
program s address space

Gets next character
from the terminal

data

Attaches specified
device by initializing
both LUTEL, associating
logical device to
physical device.

Attaches logical units

1-5 under control of the
rightmost five octal

.digits of the argument

to SETIOS, FLAG

Contents of Buff
(ASCII data) moved
from memory to named
output device.

CALL PRWFIL (Key, Funit,

Pbuffer,Nwords,Position,Altrtn)

CALL OS$SAD@7 (Unit,buff,
Count,Altrtn)

CALL OSAD@8 (Unit,Buff,
Count,Altrtn)

CALL ISAD@7)Unit,Buff,
Count,Altrtn)

CALL O$BD@7(Unit,Buff,
Count,Altrtn)

CALL CNINS(Buffer,Char-
Count,Actual Count)

CALL ClIN(char)

CALL ATTDEV(logical-device,
physical-device,unit,
FTN-Buff-size)

where FTN-Buf-Size is the
maximum size of the I/0
Buffer. Default is 120
bytes (240 bytes with
VFTN)

CALL SETIOS (FLAG)

CALL WRASC(logical-device,
Buff,Count,altrtn)

READ
DEVICE

WRITE
DEVICE

READ
DEVICE

SEARCH
DISK

POSITION
DISK

USER
TERMINAL

CONTROL
USER
TERMINAL

CONTROL
USER
TERMINAL

CONTROL
USER
TERMINAL

CONTROL
H.S. Paper
Tape
Reader or
Punch

CONTROL
H.S. Paper
Tape Reader
or Punch

CONTROL
H.S. Paper
Tape Reader
or Punch

MAN1674

Fetches one (ASCII)
record into memory

Count of words of
Buff are written to
the specified named
output device

Count of words of
Buff are init-
ialized to zero.

Calls SEARCH with
same arguments

Allows direct posi-
tioning to any record
in a disk.

Outputs ASCII data
to user terminal
or ASR Punch.

Close Device

Turn on Punch
and Punch Leader

Punch Trailer

Close Device

Turn on Punch
1& Punch Leader

Punch trailer

w

CALL

Buff,

CALL

SUMMARY OF IOCS SUBROUTINES

RDASC(logical-device,
Count,Altrtn)

WREIN(logical-device

Buff,,Count,Altrtn)

CaLL

Buff,

CALL

RDBIN(logical-device,
Count,Altrtn)

CONTRL (Key,Name,

Logical-device,Altrtn)

CALL

POSFIL(Logical-device,

Rec,Altrtn)

CALL

Buff,

CALL

CALL

CALL

CALL

CALL

CALL

0$AAQ] (sub-unit,

Count,Altrtn)

C$AQ1(1,Name,Unit,Altrtn)

CS$SAQl(2,Name,Unit,Altrtn)

CSAQ]1(4,Name,Unit,Altrtn)

CSP@P2(1l,Name,Unit,Altctn)

CS$PP2(12,Name,Unit,Altrtn)

CSP@P2(4,Name,Unit,Altrtn)

July 1976

APPENDIX F

CONTROL
9-track
mag tape

READ
USER
TERMINAL

READ

USER
TERMINAL
OR STORAGE
DEVICE

WRITE
TERMINAL

WRITE
H.S.Paper
Tape Punch

READ
H.S.Paper
Reader

WRITE
H.S.Paper
Tape Plnch

CONTROL
LINE
PRINTER

CONTROL
Line
Printer

DEVICE
OPERATION

READ H.S.
Paper Tape
reader

WRITE H.S.
Paper Tape
Punch

READ H.S.

Paper Tape
Reader

REV. D

MAN1674

Open for Read

Input ASCII data
from user terminal
or ASR reader

Input ASCII data
from the command
stream(either

from a user terminal
or from a command
file)

Outputs binary data
to an ASCR Punch

Outputs ASCII data
to the H.S.Punch

Inputs ASCII data
from the H.S.

Outputs binary data
to the H.S.Punch

Centronics line
Printer

Parallel Interface
line printer

FUNCTION

Input 1 character
to the A register

Output 1 character
from A register
to punch

Input 1 character
from paper tape

CALL C$M@5(1,Name,Unit,Altrtn)

CALL ISAA@G]1(Sub
Count,Altrtn)

unit,Buff,

CALL IS$SAAl(Sub unit,Buff,

Count,Altrtn)

CALL 0O$BA@1(Sub
Count,Altctn)

CALL OSAP@2(Sub
Count,Altrtn)

CALL ISAPO2(Sub
Count,Altrtn)

CALL OS$BP@2(Sub
Count,Altrtn)

unit,Buff,

unit,Buff,

unit,Buff,

unit,Buff

CALL @SAL@4(Unit,Buff,

Count,Al trtn)

CALL OSAL@6 (Unit,Buff,

Count,Altrtn)

CALLING SEQUENCE

CALL PlIB(Char)

CALL Pl19B(Char)

CALL PlIN(Char)

WRITE H.S.
Punch

Write
User
Terminal

Read
user
terminal

WRITE
user
terminal

Read
user
terminal

Control
Line
Printer

Read
Card
Reader

Read
Card
reader

Writes
User
terminal

Read
Card
Reader

Read or
Write a
Mag tape

User

terminal
to line
printer

MAN1674

Output 1 character
to H.S.Punch

Outputs Count
characters to
the user terminal

Reads one character
from the user
terminal to the

A register

Writes one character
from A register
to user terminal

Reads one character
from user terminal
(New line for

CR)

Versatec Printer/
Plotter

Reads input from
parallel card

Reads input
from serial
card Reader

Writes one character
to the users terminal

Raw data mover
from MPC card
reader to user’s
spare

Moves Raw Data
between Mag
tape and user
address space

Moves information
from the user to
the line printer

SUMMARY OF IOCS SUBROUTINES

CALL P1lOU(Char)

CALL TNOU(Buff,Count)
CALL TNOUA (Buff,Count)

CALL T1IB(Char)

CALL T1lOB(Char)

CALL T1IN(Char)
CALL O$ALl14(Unit,Buff,
Count ,Altrtn)

CALL ISAC@3(Unit,Buff-Address,
Name ,Word-Count ,Altrtn)

CALL ISAC@9 (Unit,Buffer-Name,
Word-Count ,Altrtn)

CALL T10U(Char)

CALL TSCMPC

CALL T$MT(Unit,Pba,Word-Count,
instruction, statv)

CALL TSLMPC(Unit ,Buffer-
Address,word-count,instruction
statv)

5 July 1976

APPENDIX F

Raw Data

Moves data from

to Versatec Buffer to

Printer/
Plotter

DEVICE

Versatec Printer

MAN1674

CALL TS$VG(unit,LOC(Buff),
Nwds,instruction,statv)

MAGNETIC TAPE OPERATIONS

FUNCTION

CALLING SEQUENCE

CONTROL
9-track
mag tape

CONTROL
9-track
mag tape

CONTROL
9-track
mage tape

9-track Tape
(ASCII &
BINARY)

9-Track Tape
EBCDIC &
BINARY

REV. D

Open for Write

Open for Read

& Write

Rewind and
Close file

Write ASCII

Read ASCII
Write Binary
Read Binary
Control

see Kgy
Functions)
Write EBCDIC
Read EBCDIC
Write Binary

Read Binary

CALL C$M@5(2,Name,Unit, Altrtn)

CALL C$M@5(3,Name,Unit,Altrtn)

CALL C$M@5 (4 ,Name,Unit,Altrtn)

CALL 0SAM@5

CALL IS$SAM@S
CALL O$BM@5
CALL IS$BM@5

CALL CSM@5(Key,Name,Altrtn)

CALL OSAM13
CALL I$SAM13
CALL O$BM13

CALL IS$SBM13

MAN1674

Control
(See Key
functions)

7-Track Tape Write ASCII

ASCII &

BINARY
Read ASCII
Write Binary
Read Binary
Control
(see Key
functions)

Control Open for Read

7-track mag

tape.

ASCII Drivers

Read BCD data

format

Control Open for Write

7-track mag

tape. ASCII

drivers read

BCD data

format

Control Open for Read

7-track mag & Write
tape. ASCII

drivers read

BCD data format

Control Rewind & Close
7-track mag file

tape. ASCII

drivers Read

BCD data

format

SEARCH Open for Read
Mag tape

SEARCH Open for Write
Mag tape

SEARCH Open for Read

SUMMARY OF IOCS SUBROUTINES

CALL C$M13(Key,Name,Unit,
Altrtn)

CALL OSAM19

CALL ISAM1#
CALL O$BM19
CALL IS$BM19

CALL CSM19 (Key,Name,Unit,
Altrtn)

CALL C$M16(1,Name,Unit,Altrtn)

CALL C$M10@(2,Name,Unit,Altrtn)

CALL C$M1@(3,Name,Unit,Altrtn)

CALL C$M10(4,Name,Unit,Altrtn)

CALL SEARCH(1l,Name,Unit,Altrtn)

CALL SEARCH(2,Name,Unit,Altrtn)

CALL SEARCH(3,Name,Unit,Altrtn)

7 July 1976

APPENDIX F
Mag tape & Write
SEARCH Rewind & Close
Mag Tape file
7-track tape Write BCD
BCD &
Binary
Read BCD

Write Binary

Read

Binary

Control

(see

Key

functions)

Key Functions:

MAN1674

CALL SEARCH(4,Name,Unit,Altrtn)

CALL OS$AM11

CALL ISAM11
CALL 0$BM11
CALL I$BMI11

CALL CS$M1l1 (Key,Name,Unit
Altrtn)

Since the subroutines are similar, they will be described in groups.

C$M@S (Key, Name, Unit, Altrtn)

csM10
C$M11

Select Key for appropriate

Key = -4 for

-3 for

-2 for

-1 for
1 for
2 for
3 for
4 for
5 for
6 for
7 for
8 for

Name

Unit a, 1,

Rewind to
Backspace
Backspace

operation:

BOT (Beginning of Tape)
one file mark
one record

Write file mark

Open to read

Open to write

Open to read/write

Close (Write file mark and rewind)
Move forward one record

Move forward one file mark

Rewind to

BOF (Beginning of File)

Select device and read status

is ASSIGNed)

Not Applicable (may be anything)

2, or 3 (Depending on which device

Altrtn = 1Is the alternate return. 1If Altrtn=g,
it means that alternate return is not desired.

REV. D

MAN1674 FORTRAN LIBRARY FUNCTIONS

APPENDIX G

FORTRAN LIBRARY FUNCTIONS

The following list of functions are available to perform a variety of
mathematical operations. Refer to Section 2, Prime Software Library
Users Guide (MAN188¢) for more details on the FORTRAN library functions
(e.g., arguments).

DESCRIPTION FUNCTION
Compute absolute value ABS

of SP number giving

SP result

Convert the imaginary AIMAG

part of a CP number
to an SP number

Truncate fractional AINT
bits of an SP number

Compute logarithm ALOG
(base e) of an SP

number

Compute logarithm ALOG10

(base 16) of an SP
number giving an SP
number

Find maximum of a list AMAXD
of integers

Find maximum of a list AMAX1
of SP numbers

Find a minimum of a list AMING
of integers

Find minimum of a list AMIN1
of SP numbers

Compute remainder of AMOD

G - 1 July 1976

APPENDIX G MAN1674

guotient of two SP
numbers

Compute the principal ATAN
value of the arctangent
of a SP number

Compute the principal ATAN2
value of the arctangent

of an SP number divident

byu an SP number

Compute the absolute CABS
Compute cosine of a CP CCos
number

Compute the exponential CEXP

of a CP number

Convert two SP numbers CMPLX
to a CP number

Compute the conjugate CONJ
of a CP number

Compute the cosine Cos
of an SP number

Compute sine of a CP CSIN
number
Compute the square root CSQRT

of a CP number

Compute the absolute DABS
value of a DP number

Compute the principal DATAN
value of the arctangent
of a DP number

Compute the principal DATAN2
value of the arctangent

of a DP number divided

by another

Convert SP number DBLE
to DP number

Compute the cosine DCOS
of a DP number

REV. D G - 2

Compute exponential
of a DP number

Compute positive
difference of two SP
numbers

Truncate fractional

Compute logarithm
(base e) of a DP
number giving a DP
number

Compute logarithm
(based 2) of a DP
number

Compute logarithm
(base 16) of a DP
number

Find MAX of a variable
list of DP numbers

Find MIN of a variable
list of DP numbers

Compute the remainder
of a DP number
divided by another DP
number

Combine magnitude of
a DP number and the
sign of another DP
number

Compute the sine
of a DP number

Compute the square
root of a DP number

Compute exponential
of SP number giving
SP result

Convert integer to
SP number

Compute positive
difference of two

MAN1674

DEXP

DIM

DINT

DLOG

DLOG2

DLOG19

DMAX1

DMIN1

DMOD

DSIGN

DSIN

DSQRT

EXP

FLOAT

IDIM

FORTRAN LIBRARY FUNCTIONS

July 1976

APPENDIX G

REV.

integers

Convert DP number
to an integer

Convert user specified
SP number to an integer

Convert an SP number
number to an integer

Invoke REAL random
number generator giving
integer result

Combine magnitude of an
integer with sign of
another integer

Shift an integer left
by a specified number
of bits (i.e.,

left shift

Save the specified
number of left most
bits of an integer
(i.e., left-truncated

Find maximum of
a variable list of
integers

Finde maximum of a
variable list of
SP numbers

Find minimum of a
variable list of
integers

Find minimum of a
variable list of
SP numbers

Compute the remainder
of one integer
divided by another

Perform a logical OR
of 2 16-bit integers
giving an integer
result

D

MAN1674

IDINT

IFIX

INT

IRND

ISIGN

LS

LT

MAX0O

MAX1

MIN@

MIN1

MOD

OR

Convert real part of
a CP number to an
SP number

Invoke REAL random
number generator
giving SP result

Shift an integer
right by a specified

number of bits (i.e.,

right shift

Save a specified
number of right-most
bits of an integer

(i.e., right truncate)

Shift an integer

by a specified number

of bits

Combine magnitude of
an SP number and the
sign of another SP
number giving an SP
result

Compute the sine
of a SP number

Convert a DP number
to a SP fixed point
number

Compute square root
of an SP number
giving SP result

Compute hyperbolic
tangent of an SP
number

MANl674

REAL

RND

RS

RT

SHFT

SIGN

SIN

SNGL

SQRT

TANH

FORTRAN LIBRARY FUNCTIONS

July 1976

MAN1674

APPENDIX H

FORTRAN MATH LIB SUMMARY

The Math Library contains subroutines to solve math problems

determinants,

FUNCTION

Sets the sgare matrix MAT
equal to the N by N identity
matrix.

Sets the N by M matrix MAT
equal to the constant
value CON.

Sets the N by M matrix
MATO equal to the scalar
product of the N by M
matrix MATI and the
scalar constant SCON.

Sets the N by N sqguare
matrix MATD equal to the
transpose of the N by N
matrix MATI.

Sets the N by M matrix
MATS equal to the matrix
sum of the N by M matrices
MAT1 and MAT2.

Sets the N by M matrix MATD
equal to the matrix
difference of the N by M
matrices MAT] and MAT2.

Sets the N1 by N3 matrix

permutations,
information about each subroutine,
Library User Guide (MAN 1884).

combinations. For more
refer to Section 92 of the

CALL SEQUENCE

CALL MIDN [DMIDN,IMIDN,CMIDN]
(MAT,N)

CALL MCON [DMCON, IMCON,CMCON]
(MAT,N,M, CON)

CALL MSCL [DMSCL, IMSCL,CMSCL]

(MATO,N,M,SCON)

CALL MTRN [DMTRN, IMTRN,CMTRN]
(MATO,MATI,N)

CALL MADD [DMADD, IMADD,CMADD]
(MATS,MAT1,MAT2,N, M)

FORTRAN MATH LIB SUMMARY

such as
detailed
Software

CALL MSUB [DMMSUB,IMSUB,CMSUB]

(MATD,MAT1,MAT2,N,M)

CALL MMLT [DMMLT,IMMLT,CMMLT]

July 1976

APPENDIX H

MATP equal to the matrix
product of the N1 by N2
matrix MATL (left) and the
N2 by N3 matrix MATR (right).

Sets N by N square matrix
MATO equal to the inverse
of the N by N matrix MATRI.

Sets N by N square matrix
MATO equal to the adjoint
of the N by n matrix MATI.

Sets DET equal to the
determinant of the N by N
square size N used as
work arrays.

Sets COF equal to the
(I,J3) signed cofactor of
the square N by N matrix MAT.

Sets the N by L column
vector XVECT equal to the
solutions (X1,X2,%3,..., Xn)
of the system linear
equations,

PERM is a loopless algorithm
for computing the next
permutation of N elements
(N>2) with a single
interchange of adjacent
elements.

COMB is a algorithm (not
loopless) for computing the
next combination of NR out
of N elements with single
interchange of elements.

REV. D

MAN1674

(MATP,MATL,MATR,N1,N2,N3)

CALL MINV [DMINV,CMINV]
(MATO,MATI,N,WORK,NP1,
NPPN, IERR)

CALL MADJ [DMADJ,IMADJ,CMADJ[
(MATO,MATI,N,IWl,IW2,IW3,IW4,IERR)

CALL MDET [DMDET,IMDET,CMDET]
(DET,MAT,N,IWl,IW2,IW3,IW4,IERR)

CALL MCOF [DMCOF,IMCOF,CMCOF]
(COF,MAT,N,IW1l,IW2,IW3,IW4,I,J,IERR)

CALL LINEQ [DLINEQ,CLINEQ]

(XVECT,YVECT,CMAT, ,WORK<KN<NP1, IERR)

CALL PERM (IPERM,N,IW1l,IW2,IW3,
LAST, RESTRT)

CALL COMB (ICOMB,N,NR,IWl,IW2,
IW3,LAST,RESTRT)

MAN1674 FORTRAN COMPILER SUBROUTINES

APPENDIX I

FORTRAN COMPILER SUBROUTINES

SUBROUTINES INTERNAL TO FORTRAN The following programs are called by the
compiler:

Subroutine Function

FSTR Performs the function of the FORTRAN TRACE routine.
FSRN Read with no alternate returns.

FSRNX Read with ERR= and END= alternate returns.

FSWN® Write with no alternate returns.

FSWNX Write with ERR= alternate return.

FSDN Close (END-FILE) logical device specified.

FSFN Provides backspace function to FORTRAN run-time
programs.

FS$BN Rewinds logical device specified.

FSIO

FSCB Interprets the format last character by character.
FSAl

FSA2

FSA3

FSAS

FSA6

FSIOBX Checks record size.

FSCG FORTRAN computed GOTO processor.

FSRA Read ASCII, no alternate returns

FSRB Read BINARY, no alternate returns

FSRAX Read ASCII, with ERR= and END= alternate returns
FSRBX Read BINARY, with ERR= and END= alternate returns
FSRX Common rad handler.

FSWA Write ASCII, no alternate returns

FSWB Write BINARY, no alternate returns

I - 1 July 1976

APPENDIX I MAN1674

FSWAX Write ASCII with ERR= and END= alternate returns
FSWBX Write BINARY, with ERR= and END= alternate returns
FSWX Common write handler

FSEN Encode statement processor

FSDE Decode statement processor

FSDEX Decode statement processor with ERR=

FSIOBF FSIO buffer definition

ACl

AC2 Storage locations to hold complex accumulator
AC3

AC4

ACS Storage locations to hold error code

FSRTE FORTRAN RETURN statement processor

FSAT FORTRAN argument transfer subroutine

FSATI FORTRAN argument transfer subroutine for

PROTECTED subroutine

INTRINSIC FUNCTIONS

The following subroutines are the FORTRAN 1library intrinsic function
handlers:

FSLT Left truncate

FSRT Right truncate

FSLS Left shift

FS$RS Right shift

F$SH General shift

FSOR Inclusive OR
FLOATING POINT EXCEPTIONS
The FLEX (and FSFLEX) subroutines are invoked by the compiler or
system. This subroutine is the floating point exception interrupt
processor. It determines the exception type, which may be:

Exponent overflow/underflow

Divide by zero

Store exception

Real-integer exception

REV. D I - 2

MAN1674 INDICATOR

APPENDIX J

INDICATOR/CONTROLS

SUMMARY

The Indicator and Control subroutines allow a program to test for error
conditions and report errors to the front panel lights. For more
details, see the Software Library User Guide (MAN 1880).

FUNCTION CALLING SEQUENCE
Updates the sense light CALL DISPLY (Al)
settings according to an CALL DISPLY ()
argument Al: 1=0ON; #6=0FF CALL DISPLY (1)
Check the overflow condition. CALL OVERFL (Al)

If an error has occurred,
Al is set to 1. Otherwise
it is set to 2

Sets specified sense light CALL SLITE (Al)
ON or sets all sense lights CALL SLITE (@)
OFF. Iff Al=0, all sense

lights are reset to off.

Tests the setting of a sense R=SLITET (Al)
light specified by the

argument Al. The result of

this test (1 for ON, 2 for

OFF) is stored in the

location specified by the

argument R.

Tests the setting of a R=SSWTCH (Al)
sense switch specified

by the argument Al. The

result of this test (1 for

ON, 2 for OFF) is stored in

the location specified-by the

argument R.

J - 1 July 1976

MAN1674 SUMMARY OF SORT ROUTINES
APPENDIX K

SUMMARY OF SORT ROUTINES

This appendix summarizes the SORT and SEARCH LIBRARY routines contained

in Section 8 of the Software Library User Guide (MAN 1880).

TYPE OF SORT

Based on a non-threaded
binary tree structure

Partition exchange
sort

Diminishing increment
sort. SHELL utilizes
the straight inser-
tion sort (INSERT)

on each of its passes.

Straight insertion
sorting is based

upon ‘percolating’ each
element into its final
position.

A simple interchange
SORT.

Binary Sort

PARAMETERS

PTABLE

NENTRY
NWORDS

NKWORDS

CALLING SEQUENCE

CALL HEAP (PTABLE,NENTRY,NWRDS, FWORDS,
NKWORDS , TARRAY, NPASS,ALTBP)

QUICK (PTABLE,NENTRY,NWRDS,FWORD,
NKWORDS , TARRAY ,NPASS, ALTBP)

SHELL (PTABLE,NENTRY,NWORDS, FWORD, NKWORDS,
NPASS ,ALTBP)

INSERT (PTABLE,NENTRY,NWORDS, FWORD,NKWRDS,
NPASS,ALTBP, INCR)

BUBBLE (PTABLE,NENTRY,NWORDS, FWORD,
NKWORDS , ARRAY, NPASS,ALTBP, INCR)

BNSRCH (PTABLE,NENTRY,NWORDS,FWORD,

NKWORDS ,SKEY,FENTRY, INDEX, OPFLAG,ALTNF,
ALTBP)

DESCRIPTION

Integer pointer to thefirst word of the
table.

Numbers of table entries (not words).
Number of words per entry.

Number of words in key field.

July 1976

$ 2-9

$INSERT 5-12

SINSERT STATEMENT 5-12
SN 7-12

"LIST " 5-7

p$SBDE7 7-14

16-BIT INTEGERS 7-3
5-COLUMN INTEGER 6-9

A FIELD DESCRIPTOR
6-27

A INPUT 6-28
A OUTPUT 6-28

ABSOLUTE MEMORY
ADDRESSES 7-3

ABSOLUTE RECORD 7-15
AC1 I-2
AC2
AC3 I-2
AC4
ACS
ACCESS FILES 8-2

ADDRESS CONSTANTS 3-8,
7-12

ADDRESS VALUE 7-18

ADVANTAGES OF FORTRAN
1-5

ALPHANUMERIC
CHARACTERS 2-3

ALPHANUMERIC FIELD
DESCRIPTOR 6-27

INDEX

ALTERNATE METHODS OF
DECLARING ARRAYS 5-2

AND 3-16, 7-2, 7-3
ANS 7-10
ARCTANGENT G-2
AREA TRACE 5-11

AREA TRACE STATEMENT
5-12
ARGUMENT LIST 7-7,
7-10

ARGUMENTS 7-1,
7-18

7-3,
ARITHMETIC ASSIGNMENT
STATEMENTS 3-1

ARITHMETIC CONSTANTS
3-1

ARITHMETIC EXPRESSION
5-12

ARITHMETIC IF
STATEMENT 4-3, 4-7

ARITHMETIC OPERATORS
3-12, 3-18

ARRAY 3-10, 7-12

ARRAY DECLARATOR 2-2

ARRAY ELEMENTS 5-6,
6-28

ARRAY NAME 2-2,
5-11, 6-5

5_5,

ARRAY STORAGE
ARRANGEMENT 3-11, 8-1
ARRAY X 7-2

ARRAY Y 7-2

ASCII 3-6, 6-1, 6-8

ASCII CHARACTERS 6-2,
6-28

ASCII CONSTANTS 3-7
ASCII DATA 3-7
ASCII FILES 7-14
ASCII-A INPUT 6-28
ASCII-A OUTPUT 6-28

ASSIGN STATEMENT 4-1,
4-2

ASSIGNED GO TO
STATEMENT 4-2

ASSIGNMENT RULES 3-19

ASSIGNMENT STATEMENTS
3-1

ATTACH 8-2

ATTACH DEVICE F-2
ATTACHING TO ANOTHER
USER FILE DIRECTORY
8-1

B FORMAT STATEMENT
6-35

BACKSPACE STATEMENT
6-39

BASIC TERMINOLOGY 2-1
BINARY FILES 7-14
BINARY RECORDS 6-38
BLANK CHARACTER 2-4
BLANK COMMON 5-6, 5-7
BLANK RECORDS 6-9

BLOCK DATA STATEMENT

INDEX

2-1, 7-9, 7-12, 7-17 CALL CSIN G-2 CALL IFIX G-4
BLOCK DATA SUBPROGRAM CALL CSQRT G-2 CALL INT G-4
7-17

CALL DABS G-2 CALL IRND G-4
BLOCK NAME 5-7

CALL DATAN G-2 CALL ISIGN G-4
BODY OF SUBPROGRAM 7-9

CALL DATAN2 G-2 CALL LS G-4
BODY OF SUBROUTINE
7-12 CALL DBLE G-2 CALL LT G-4
BRIEF CALLING CALL DCOS G-2 CALL MAXO G-4
STATEMENT 7-1

CALL DEXP G-3 CALL MAX1 G-4
CALL ABS G-1

CALL DIM G-3 CALL MIN@ G-4
CALL AIMAG G-1

CALL DINT G-3 CALL MINl G-4
CALL AINT G-1

CALL DISPLY J-1 CALL MOD G-4
CALL ALOG G-1

CALL DLOG G-3 CALL OR G-4
CALL ALOG1® G-1

CALL DLOG1# G-3 CALL OVERFL J-1
CALL AMAXO G-1

CALL DLOG2 G-3 CALL POSFIL 7-14
CALL AMAX1 G-1

CALL DMAX1 G-3 CALL REAL G-5
CALL AMING G-1

CALL DMIN1 G-3 CALL RND G-5
CALL AMIN1 G-1

CALL DMOD G-3 CALL RS G-5
CALL AMOD G-2

CALL DSIGN G-3 CALL RT G-5
CALL ATAN G-2

CALL DSIN G-3 CALL SHFT G-5
CALL ATAN2 G-2

CALL DSQRT G-3 CALL SIGN G-5
CALL CABS G-2

CALL EXP G-3 CALL SIN G-5
CALL CCOS G-2

CALL F$AT STATEMENT CALL SLITE J-1
CALL CEXP G-2 7-19

CALL SNGL G-5
CALL CLKOFF STATEMENT CALL FLOAT G-3

7-18 CALL SQRT G-5
CALL FUNCTION
CALL CMPLX G-2 SUBPROGRAMS 7-9 CALL STATEMENT 7-2,
7-12, 7-18
CALL CONJ G-2 CALL IDIM G-4

CALL TANH G-5
CALL COS G-2 CALL IDINT G-4

CALLING CONVENTIONS
7-18

CALLING SUBROUTINES
7-12

CARD EQUIPMENT 6-2
CARDS 6-2

CARRIAGE RETURN 6-2
CASE A 8-1

CASE B 8-1

CENTRONICS LINE
PRINTER F-4

CHARACTER ARRAY STRING
TRANSFER 6-29

CHARACTER ARRAYS 6-29
CHARACTER SET 2-2

CLKOFF SUBROUTINE
7-18, 7-19

CLOSE DEVICE F-3
CLOSE NAMED FILE F-1

CLOSING AND OPENING
FILES 8-3

CODING 5-11
CODING FORMS 2-4
COMB H-3
COMBINATIONS H-1
COMMA 6-9

COMMENT LINES 2-9
COMMENTS 2-9
COMMON 5-1, 5-3

COMMON AREAS 7-17

INDEX

COMMON BLOCKS 5-6,
5-7, 5-17

COMMON I 5-2

COMMON STATEMENT 5-6,
7-17

COMMON STORAGE AREAS
5-3

COMMUNICATION LINKS
7-18

COMPILATION AND RUN
TIME CONTROL 5-1

COMPILATION AND RUN
TIME CONTROL
STATEMENTS 5-11

COMPILING AND RUN TIME
FEATURES 1-4

COMPLEX 3-9,
6-8, 7-7

5"'1, 5_3'

COMPLEX DATA TYPES 3-8

COMPLEX
5-6

MODE VARIABLE

COMPLEX MODES 3-18

COMPLEX NUMBERS 6-18

COMPLEX STATEMENTS 5-2

COMPLEX VALUES 3-8
COMPUTE ABSOLUTE VALUE
OF SP NUMBER G-1

COMPUTE COSINE OF A CP
NUMBER G-2

COMPUTE LOGARITHM OF
AN SP NUMBER G-1

COMPUTE REMAINDER OF
QUOTIENT OF TWO SP
NUMBERS G-2

COMPUTE THE ABSOLUTE
G-2

COMPUTE THE
EXPONENTIAL OF A CP
NUMBER G-2

COMPUTE THE PRINCIPAL
VALUE G-2

COMPUTED GO TO
STATEMENT 4-2

CONSECUTIVE ITEMS OF
THE ARRAY 6-5

CONSOLE TELETYPE 6-2
CONSTANT 7-12
CONSTANTS 7-3

CONSTANTS IN A FORTRAN
STATEMENT 3-2

CONTIGUOUS CHARACTERS
6-2

CONTINUATION LINE 2-9
CONTINUE STATEMENT 4-7
CONTROL F-5

CONTROL LINES 2-9

CONTROL PANEL SENSE
SWITCHES 7-18

CONTROL STATEMENTS 4-1
CONTROL VARIABLE 4-7

CONVERT THE IMAGINARY
PART OF A CP G-1

CORRECTING TYPING
ERRORS 2-19

COS 5-8

CREATING A NEW FILE
8-3

CURRENT UFD 8-2

D FIELD DESCRIPTORS
6-17

D OUTPUT 6-21

D’ E, F’ G, INPUT 6—26

D’ EI F, G’ INPUT
SCALE FACTOR 6-26

DAC ** 7-19

DACS 7-18

DAM 7-14

DAT 7-10

DATA 5-1

DATA DEFINING 5-1

DATA DEFINING
STATEMENTS 5-9

DATA MODE 7-12

DATA MODE
SPECIFICATION 5-1

DATA MODE

SPECIFICATION
STATEMENTS 5-4
DATA NAMES 2-2

DATA STATEMENTS 5-9,
7-7, 1-17

DATA TRANSFERS 6-2
DATA TYPE MODE
SPECIFICATION
STATEMENTS 5-1
DATA VALUES 3-1, 7-17

DECODE STATEMENT 6-39,
6-40

DELETE A FILE 8-3

INDEX

DELETE NAMED FILE F-1
DELIMITERS 6-9
DETERMINANTS H-1
DEVICE CONTROL 6-1

DEVICE CONTROL
STATEMENTS 6-39

DIAGNOSTIC PRINTOUTS
5-11

DIGITS 2-3
DIMENSION 5-1
DIMENSION STATEMENT
5-3, 5-4, 5-5, 7-12,
7-17

DIRECT POSITIONING
SUBROUTINE 7-14

DIRECTORY 8-2
DISK 6-2

DISK OPERATING SYSTEM
1-5

DO LOOP 4-5

DO STATEMENT 4-4
DOLLAR SIGN 2-9

DOS 6-39, 7-14

DOS/VM 7-14

DOUBLE PRECISION 3-9,
3-18' S_l' 5_2, 5—3’

6-8, 7-7

DOUBLE PRECISION DATA
TYPES 3-7

DOUBLE PRECISION MODE
VARIABLE 5-6

DOUBLE PRECISION

STATEMENTS 5-2

DOUBLE PRECISION
VARIABLE 6-28

DOUBLE SHIFT FEATURE
7-5

DUMMY ARGUMENT 5-8,
7-12

DUMMY ARGUMENTS FOR A
SUBPROGRAM 5-6

DUMMY NAMES 5-4

DUMMY VARIABLES 5-3,
7-7

E AND D OUTPUT 6-25

E AND D OUTPUT SCALE
FACTOR 6-25

E FIELD DESCRIPTORS
6-17

E OUTPUT 6-19

ELAPSED TIME COUNT
7-18

ELEMENT X 5-5
ENCODE STATEMENT 6-39
ENCODE/DECODE 6-1

END AND ERROR RETURNS
6-35

END OF FILE
POSITIONING 7-14

END STATEMENT 2-4,
4-8, 7-12

ENDFILE STATEMENT 6-39
ENTERING FORMAT

STATEMENTS AT RUN TIME
6-32

EQ 3-14
EQUIVALENCE 5-1

EQUIVALENCE STATEMENT
5_4' 5_6, 5_7, 7_17

ERASE CHARACTER " 2-10
ERR=OPTION 6-49

ERROR FLAG 7-18

ERROR FLAG SET 6-22
ERROR MESSAGE 8-1
ERROR STATEMENT 7-14
EVAL 5-8

EVALUATION SEQUENCE
3-17

EXECUTABLE 2-2
EXECUTABLE PROGRAM 2-1
EXIT 7-13

EXPONENTIATION 3-14

EXPRESSIONS 3_1, 3_11'
3_12, 4—3’ 7_3' 7—7,
7-12, 7-18

EXT PSEUDO-OP 7-18
EXTENDED RANGE 4-6
EXTERNAL 5-1

EXTERNAL DEVICE 6-2
EXTERNAL FORM 6-8
EXTERNAL FUNCTION 2-1
EXTERNAL PROCEDURE 2-1

EXTERNAL PROCEDURE
NAME 5-8

INDEX

EXTERNAL PROCEDURE
SPECIFICATION
STATEMENT 5-8

EXTERNAL PROCEDURE
SPECIFICATION 5-1

EXTERNAL STATEMENT
5-8, 7-10

EXTERNAL SUBPROGRAM
NAMES 5-3

EXTERNAL SUBROUTINE
2-1

F FIELD DESCRIPTORS
6-17
F OUTPUT 6-18, 6-25

F OUTPUT SCALE FACTOR
6-25

FS$Al
FSA2 I-1
FSA3 I-1
F$SAS5 I-1
FSA6
FSAT I-2
FSATI I-2
FSBN I-1
FSCB I-1
FSCG I-1
FSDE I-2
FSDEX I-2
FSDN I-1
FSEN I-2

FSFLEX I-2

FSFN I-1
F$HT SUBROUTINE 4-8
F$IO 6-35
FSIO 6-8
F$IO I-1
F$IOBF 6-8
FSIOBF I-2
F$SIOBX I-1
FSRA I-1
FSRAX I-1
FSRB I-1
F$RBX I-1
FSRN I-1
FSRNX I-1
FSRTE I-2
FSRX I-1
FSTR I-1
FSWA 1I-1
FSWAX I-2
FSWB I-1
FSWBX I-2
FSWN I-1
FSWNX I-1
FSWX I-2

F,E,G, AND D SCALE
FACTOR DESIGNATOR 6-25

FALSE 3-2

FIELD 2-7

FIND MAXIMUM OF A LIST
OF INTEGERS G-1

FIND MAXIMUM OF A LIST
OF SP NUMBERS G-1

FIND MINIMUM OF A LIST
OF SP NUMBERS G-1

FLEX I-2

FLOATING POINT
EXCEPTIONS I-2

FORMAT 6-1
FORMAT CONTROL 6-1

FORMAT CONVERSION
SUBROUTINE 6-8, 6-35

FORMAT DESCRIPTOR 6-6
FORMAT ERRORS 6-22
FORMAT FIELD
DESCRIPTOR SUMMARY
6-10

FORMAT FIELD
DESCRIPTORS 6-9

FORMAT SPECIFICATION
6-5

FORMAT STATEMENT 6-5,
6-7, 6-8, 6-27, 6-32,
6-38

FORMATTED FILES 7-14
FORMATTED RECORD 6-2

FORMATTED RECORD
LENGTH 6-8

FORTRAN COMPILER
SUBROUTINES 1-4, I-1
FORTRAN DISK OUTPUT
DRIVERS 7-15

INDEX
FORTRAN IV 6-1, 7-2

FORTRAN IV COMPILER
7-2

FORTRAN LIBRARY
FUNCTIONS 7-2

FORTRAN LIBRARY
SUBROUTINES &
FUNCTIONS 1-4

FORTRAN MATH LIBRARY
1-5

FORTRAN STATEMENT 7-12
FORTRAN SUBPROGRAM 5-4

FORTRAN VERSIONS 1-2

FULL LIST 5-1, 5-11
FUNC 7-3
FUNCTION AVRG 7-10

FUNCTION NAME 7-2,
7-8, 7-10, 7-12

FUNCTION STATEMENT
2_1, 7_2, 7—8, 7—9'
7-190, 7-12

FUNCTION SUBPROGRAM
5_8, 7"'3, 7—7I 7--8l
7-17

FUNCTIONS 5-11, 7-2

FUNCTIONS AND
SUBPROGRAMS 7-1

FUNIT 8-3

G FIELD DESCRIPTORS
6-17
G OUTPUT 6-20, 6-25

G OUTPUT SCALE FACTOR
6-25

GE 3-14

GETS NEXT CHARACTER
F-2

GLOBAL MODE ASSIGNMENT
5-2

GO TO ASSIGNMENT
STATEMENT 4-2

GO TO STATEMENT 4-7,
7-2

GT 3-14

H FIELD DESCRIPTOR
6-26

H INPOUT 6-27
H OUTPUT 6-26

HOLLERITH DESCRIPTOR
6-27

HOLLERITH FIELD
DESCRIPTOR 6-26

HORIZONTAL SPACING
CONTROL 6-6, 6-8

I FIELD DESCRIPTOR
6-13

I INPUT 6-15

I OUTPUT 6-14

1/0 CHARACTERS 3-7

I/0 CONTROL SYSTEM 6-3
I/0 LIST 6-2, 6-3
IDENTIFIERS 2-2
IF 3-2

IF STATEMENT 5-12

IMPERATIVE VERBS 2-2

IMPLICIT MODE 3-9, 7-7

IMPLICIT MODE
ASSIGNMENT 3-9

IMPLIED DO 6-3
IMPLIED DO-LOOPS 6-5

INCREMENTATION
PARAMETER 4-7

INDICATION AND CONTROL
SUBROUTINES 1-5, J-1

INITIAL PARAMETER 4-7
INLINE COMMENTS 2-9

INPUT ASCII DATA FROM
THE COMMAND STREAM F-4

INPUT ASCII DATA FROM
USER TERMINAL F-4

INPUT F-1 CHARACTER
F-7

INPUT F-1 CHARACTER
FROM PAPER TAPE F-7

INPUT FIELD DESCRIPTOR
6-190

INPUT STRING 6-22
INPUT/OUTPUT 6-1

INPUT/OUTPUT CONTROL
SYSTEM 1-5

INPUT/OUTPUT
STATEMENTS 6-2

INPUTS ASCII DATA FROM

THE H.S.READER F-4
INSERT 5-1
INSERT STATEMENT 5-12

INSERTING FILES 5-12

INDEX

INTEGER 3-9, 3-18,
5_'1' 5_3' 6_8, 7_7

INTEGER CONSTANT 5-5,
6-3

INTEGER DATA TYPES 3-6
INTEGER MODE 7-6

INTEGER MODE VARIABLE
5-6

INTEGER STATEMENTS 5-2
INTEGER VARIABLES 5-4,
6-28

INTRINSIC FUNCTION
LIBRARY SUBROUTINES
7-6

INTRINSIC FUNCTIONS
7-3, I-2

I0Cs 1-5, 6-3, 7-15
ITEM TRACE 5-11

ITEM TRACE STATEMENTS
5-11

JST INSTRUCTION 7-18
KEY 8-3
KILL CHARACTER ? 2-10

L FIELD DESCRIPTOR
6-29

L INPUT 6-30
L OUTPUT 6-29
LABEL 2-9

LE 3-14
LETTERS 2-3

LIBRARY FUNCTIONS 7-2,
7-7

LIBRARY SUBROUTINES
7-2, 7-18

LIGHTS 7-18

LINE PRINTER 6-2, 6-33
LINEQ H-3

LINES 2-7

LINKING FORTRAN AND
ASSEMBLY LANGAUGE
PROGRAMS 7-18

LIST 5-11 5—ll’ 6—3

LIST CONTROL STATEMENT
2-4

LISTING CONTROL
STATEMENTS 5-12

LISTING FILE 5-12

LITERAL TEXT STRINGS
6-26

LoC 7-2, 7-5
LOCATION ‘00601 5-7
LOCATION ‘00006 5-7
LOCATION 7-5

LOG FUNCTION 7-3

LOGICAL 3-9,
6-8, 7-7

5_1, 5—3,

LOGICAL AND 7-3
LOGICAL ASSIGNMENT
STATEMENTS 3_1, 3—15,
3-16

LOGICAL CONSTANTS 3-1
LOGICAL DATA TYPES 3-6

LOGICAL EXCLUSIVE OR
7-3

LOGICAL EXPRESSIONS
3-2, 3-6

LOGICAL FIELD
DESCRIPTOR 6-29

LOGICAL IF STATEMENTS
3-15, 4-4

LOGICAL MODE VARIABLE
5-6

LOGICAL NEGATION 7-4

LOGICAL OPERATOR
APPLICATIONS 3-16
LOGICAL OPERATORS 3-15
LOGICAL OR 7-4
LOGICAL SHIFT 7-4
LOGICAL STATEMENTS 5-2
LOGICAL TRUE 3-2

LOGICAL
3-6

TRUTH VALUES

LOGICAL UNIT TABLE 6-3
LOGICAL-L INPUT 6-30
LOGICAL-L OUTPUT 6-29
LS 7-6
LT 3-14, 7-6
LUTBL 6-3

MADD H-2

MADJ H-3

MAGNETIC TAPE 6-2

MAGNETIC TAPE
TRANSPORTS 6-39

MASKING 7-5

INDEX

MASKING AND
POSITIONING 7 5

MASTER FILE DIRECTORY
8-2

MATH LIB H-1

MATHEMATICAL
SUBROUTINES 7-2

MATHLB 1-5

MATMPY 7-13
MAXIMUM VALUES 8-1
MAXIMUMS 8-1

MCOF H-3

MCON H-2

MDET H-3

MEMORY LOAD 7-18
MEMORY STORAGE 5-5
MFD 8-2

MIDN H-2

MINV H-3

MIXED MODE EXPRESSIONS
3-18

MIXED NUMBER-F OUTPUT
6-18

MMLT H-2

MODE DECLARATION
STATEMENT 5-3

MODE SPECIFICATION
STATEMENT 5-2

MODE STATEMENT 5-2

MOVE RAW DATA F-2

- MOVES DATA FROM BUFFER

F-8

MOVES INFORMATION F-8
MOVES RAW DATA F-8
MSCL H-2

MSUB H-2

MTRN H-2
MULTIPLICATION 3-14
NAME 7-2

NAME 7-7

NE 3-14

NESTED 3-13

NESTED DO LOOPS 4-5
NOLIST 5-1, 5-11
NON-ZERO CONSTANT 5-5
NONEXECUTABLE 2-2
NONOWNER STATUS 8-2
NOT 3-16, 7-4

NOT FUNCTION 7-4
NUMBER OF ELEMENTS 5-7

NUMERICAL CONSTANTS
3-2

OBJECT 8-3

OBJECT CODE 1-5
OCTAL DIGIT 2-3
OCTAL INTEGERS 3-6
OFF ENTRY POINT 7-18

ONE-DIMENSIONAL ARRAY

Y 5-5
ONE-PASS COMPILER 1-5

OPEN
F-4,

FOR READ & WRITE
F-6

OPEN FOR READ F-4, F-6
OPEN
F-6

FOR WRITE F-4,

OPEN NAMED FILE FOR
BOTH READING AND
WRITING F-1

OPEN NAMED FILE FOR
READING F-1

OPEN NAMED FILE FOR
WRITING F-1

OPENING A FILE 8-3
OPERATORS 2-2

OPERATORS 'IN FORTRAN
STATEMENTS 3-12
OR 3-16, 7-4

ORDER OF EVALUATION
3-16

OUTPUT CONVERSION 6-25

OUTPUT F-1 CHARACTER
F-7

OUTPUT F-1 CHARACTER
TO H.S. PUNCH F-7

OUTPUT FIELD
DESCRIPTOR 6-10

OUTPUT FIELD
DESCRIPTORS 6-11

OUTPUT OF ARRAY
ELEMENTS 6-5

QUTPUTS ASCII DATA TO
THE H.S.PUNCH F-4

INDEX

OUTPUTS BINARY DATA
F-4

OUTPUTS COUNT
CHARACTERS TO THE USER
TERMINAL F-7

OWNER PASSWORD 8-2
OWNER RIGHTS 8-3

OWNER STATUS 8-2

PAPER TAPE 6-2

PAPER TAPE UNIT 6-2

PARALLEL INTERFACE
LINE PRINTER F-4

PARENTHESES 3-13
PAUSE STATEMENT 4-8

PERFORMS A TREE SEARCH
F-2

PERM H-3
PERMUTATIONS H-1
PHYSICAL RECORD 7-15

POINT PLOTTING DATA
7-2

POSFIL 7-14
POSITIONING DISK F-3
POSITIVE CONSTANT 5-5

POSITIVE NON-ZERO
INTEGER CONSTANTS 5-3

PRIME FORTRAN
EXTENSIONS 1-6

PRIME FORTRAN IV
FEATURES 1-5

PRINT & PRINTER
CONTROL 6-33

PRINT STATEMENT 6-33

PROCEDURE SUBPROGRAM
2-1

PROCESSING ARRAYS 6-8

PROCESSING ENTIRE
ARRAYS 6-8

PROGRAM FORM 2-4
PROGRAM UNITS 2-1
PROGRAMMER 5-12

PROGRAMMING EFFICIENCY
7-1

PROTECTED 7-17

PROTECTED FUNCTIONS
AND SUBROUTINES 7-16

PROTECTED SUBROUTINE
7-17

PUNCH TRAILER F-3, F-4
R=SSWTCH J-1

RANGE ERRORS 6-22

RAW DATA MOVER F-8
READ 6-1
READ ASCII DATA F-2
READ ASCII F-5
READ BCD F-6

READ BINARY F-5, F-6

READ DEVICE F-3

READ
FILE

OR WRITE DISK
F-2

READ
6-27,
6—38,

STATEMENT 6-2,
6_28, 6—32,
6-39

READ/WRITE STATEMENTS
6-35

READING DATA INTO
ARRAYS 6-3

READS INPUT FROM
PARALLEL CARD READER
F-8

READS INPUT FROM
SERIAL CARD READER F-8

READS ONE CHARACTER
F-7

REAL
5—2 ’

REAL
REAL I 5-2
REAL MODE VARIABLE 5-6

REAL NUMBERS 3-7, 3-8

REAL STATEMENTS 5-2

REAL TIME OPERATING
SYSTEM 1-5, 7-14

REAL VARIABLE 6-28

RECORD CHARACTERISTICS
6-1

RECORD LENGTH OPTION
6-7

RECORD NUMBER 7-15
RECORD SIZE 6-2

REFERENCE DOCUMENTS
1-2

REFERENCE SUBKEYS 8-3

RELATIONAL OPERATORS
3_2, 3"14’ 3_18

RESCANNING FORMAT

INDEX

LISTS 6-32
RETURN STATEMENT 7-9

REWIND
F-6

& CLOSE FILE

REWIND A FILE UNIT 8-3

REWIND FILE F-1
REWIND STATEMENT 6-39
RIGHTS 8-2
RS 7-6

RT 7-6

RTOS 7-14
SAM 7-14
SCALAR 3-10

SCALE FACTOR 6-25,
6-26

SCOPE OF HANDBOOK 1-3
SEARCH 8-3

SEARCH DISK F-3
SEARCH SUBROUTINE 8-3

SEARCHES FOR A FILE
8-3

SENSE LIGHT/SWITCH
SUBROUTINES 7-18

SEQUENCE NUMBER 2-10

SEQUENTIAL ACCESS
DEVICES 6-39

SEQUENTIAL INPUT 6-5
SHFT 7-4

SHFT FUNCTION 7-6

SHFT LIBRARY
SUBROUTINE 7-4

SIMILAR STATEMENTS 3-2
SIMPLE STATMENTS 3-1
SIN 5-8, 7-2

SINGLE VARIABLE 3-1

SINGLE-BIT TRUTH
VALUES 7-3

SIZE OF ARRAYS 5-3
SLASH 6-9

SLASHED CHARACTERS
2-10

SLITET J-1

SOURCE PROGRAMS 3-7
SPACES 2-10, 6-15
SPECIAL CHARACTERS 2-3

SPECIAL COMMON BLOCK
5-7

SPECIFICATION

STATEMENTS 5-1, 7-17

SPECIFICATION
SUBPROGRAM 2-1

STANDARD PRIME LIBRARY
SUBROUTINES 7-18

START SWITCH 4-8

STATEMENT FUNCTIONS
7-6, 7-7, 7-8

STATEMENT LABELS 4-1,
4-7

STATEMENT LINE 2-9

STATEMENT NUMBER 2-9

STD 7-19

STOP COMPILATION 2-9
STOP STATEMENT 4-7
STORAGE 6-3

STORAGE LOCATIONS 6-2

STORAGE SPECIFICATION
5-1

STORAGE SPECIFICATION
STATEMENTS 5-3

STRING 2-7
SUBPROGRAM 2-1

SUBR PSEUDO-OPS 7-18
SUBROUTINE CALL 8-2
SUBROUTINE CALLS 3-7

SUBROUTINE INTEGER S
5-2
SUBROUTINE STATEMENT
2_'1, 7—2, 7—9[7"11,
7-12

SUBROUTINE SUBPROGRAM
2-2, 7-11, 7-17

SUBROUTINES INTERNAL
TO FORTRAN I-1

SUBSCRIPTED VARIABLES

3-1¢, 5-5, 6-5,. 7-12
SUBSCRIPTS 3-10
SUBSEQUENT SOURCE
STATEMENTS 5-12
SUMMARY OF INPUT FIELD

DESCRIPTION 6-13
SYMBOLIC NAME 3-1, 7-2

SYNTACTIC ELEMENTS 2-2

INDEX

TAB 6-156

TABULATION CONTROL
6-16

TERMINAL PARAMETER 4-7
TEXT EDITOR 2-4
TRACE 5-1

TRACE CONTROL
STATEMENT 2-4

TRACE OBJECT CODING
5-12

TRACE STATEMENT 5-11,
5-12

TRANSLATION 6-8
TREE FILE NAME 5-12

TREE FILE NAME
SPECIFIER 5-12

TRIGONOMETRIC SINE 7-2
TRUNCATE A FILE 8-3

TRUNCATE FRACTIONAL
BITS OF AN SP G-1

TRUNCATE NAMED FILE
F-1

TRUNCATION 3-13

TURN ON PUNCH AND
PUNCH LEADER F-3

TWO-DIMENSIONAL ARRAY
3-11

TWO-DIMENSIONAL ARRAY
X 5-5

TYPE A DESCRIPTOR 6-28

TYPE A FORMAT
STATEMENT 6-32

TYPE D CONVERSION 6-18

TYPE D FIELD
DESCRIPTOR 6-21

TYPE E CONVERSION 6-18

TYPE E FIELD
DESCRIPTOR 6-20

TYPE F CONVERSION 6-17
TYPE G CONVERSION 6-18

TYPE G FIELD
DESCRIPTOR 6-21

TYPEWRITER 6-2

UNCONDITIONAL GO TO
STATEMENT 4-1
UNFORMATTED FILES 7-14

UNFORMATTED RECORDS

6-38
UNIT NUMBER "U° 6-3

UNIT RECORD
KEYPUNCHING

2-4
USER PROGRAM 8-2
USER TERMINAL F-3

USER-DEFINED STATEMENT
FUNCTION 7-2

USING F$AT 7-18

VALUE EXPRESSION 7-12

VAR 7-4, 7-6
VARIABLE 5-5, 5-12,
6-3, 6-28, 7-12

VARIABLE LIST 6-4
VARIABLE NAME 3-8

VARIABLE SUBSCRIPTS

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	G-01
	G-02
	G-03
	G-04
	G-05
	H-01
	H-02
	I-01
	I-02
	J-01
	K-01
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11

