Prime Computer
User Guide

MAN-675

For
Disk and Virtual Memory
Operating Systems

REV. 78 350 PAGES.

MAY, 1775

PRIME COMPUTER, INC., 145 PENNSYLVANIA AVENUE, FRAMINGHAM, MA. 01701

DISK AND VIRTUAL MEMORY
OPERATING SYSTEMS
USER GUIDE

Revision A

May 1S75

PRIMIE,
COMPUTER, INC,)
[145 Pennsylvania Ave., Framingham, Mass., 01701)

MAN1675

MAN1675

Copyright 1975 by
Prime Computer, Incorporated
145 Pennsylvania Avenue

Framingham, Massachusetts 01701

Performance characteristics are
subject to change without notice.

ii

SECTION 1 INTRODUCTION
SCOPE OF DOS AND DOS/WM
DOS FEATURES
DOS/VM FEATURES

SECTION 2 FILE STRUCTURES

CONCEPTS

FILE

FILE ACCESS

FILE CREATION

SOME TYPICAL FILE CONTENT
WHY A FILE SYSTEM?
SUMMARY

USING THE FILE SYSTEM
OPENING A FILE

USING AN OPEN FILE

AQCESS

ACCESS AND FILE POINTER
POSITION

TRUNCATION

CLOSING A FILE

DELETING A FILE

CONCEPT CONCLUSIONS
PHYSICAL DISK CONSIDERATION
MORE ON FILE DIRECTORIES
SEGMENT DIRECTORY USE

FILE SYSTEM
TYPES OF FILES

SAM FILES
DAM FILES
FILE RECORDS
FILE CONTENTS

DIRECTORIES

MFD AND UFD

MASTER FILE DIRECTORY (MFD)
USER FILE DIRECTORY (UFD)
SEQMENT DIRECTORY

DISK RECORD AVAILABILITY TABLE (DSKRAT)

iii

MAN | 679

]) ' []] [] 1

NN OONNDNDND NN
[N T T B
VTN U8 BB B LG DD B e ot pod et

N~
Voo [}

~N~I OO (o, W o)}

CONTENTS

FILE SYSTEM OPERATIONS OVERVIEW
DISK ORGANIZATION

FILE UNITS

OPENING, CLOSING FILE UNITS
FILE HANDLING SUBROUTINES
FILE HANDLING IN USER PROGRAMS
STARTUP

ATTACHING TO A UFD

DOS/VM FILE ACCESS CONTROL
OTHER FEATURES OF FILE ACCESS
DOS FILE ACCESS CONTROL
COMMANDS

FILE ACCESS METHODS

DOS/USER INTERACTION
LOADING AND INITIALIZING DOS
COMMAND FILES
SAVING PROGRAMS
FILE MAINTENANCE (FIXRAT)
DOS MEMORY USAGE

FLOATING DOS
SIGNIFICANT LOCATIONS

SECTION 3 DOS OPERATION AND SYSTEM MAINTENANCE

BOOTSTRAPS AND DISK BUILDING
LOADING DOS FROM MASTER DISK
STARTING EQUIPMENT

BOOTING DOS

BOOT OPERATION

BUILDING BOOT

DIRECT PANEL LOAD OF DOS FROM DISK
DOS BOOT TAPE, PANEL LOAD

DOS BOOT TAPE, KEY IN LOADER

LOADING OF DOS
STARTUP OF DOS

DATA TRANSFER BETWEEN DISKS
PARTITIONING DISKS
PHYSICAL DEVICE NUMBERS USAGE

STARTUP OF DOS

iv

Lyt I a8 -l
! Y
L{%

1 Ihl

1]
Pt b el ot el pued e fad ot ped pd ek fonad
00 ~1 1O U U U 8 B e st pd

™~ NNNNNP'QNNNPJM

BB NN '
]]

DO bed bk pet g

OO O oo [+

g

1
DN bt ok bt

MML{J(AM
N O B

(]
1
oo 3

(V]
1
ek
[y

3-13
3-13

3-15

MAN 675

CONTENTS

SECTION 3 (Cont)

INITIAL OPERATING SESSION
ATTACHING TO UFD
DISK BUILDING (COPYING MASTER DISK PACK)

FORMAT OF DOS DISK

BUILDING A DOS DISK FROM PAPER TAPE
.CREATING ADDITIONAL DOS DISKS
ENTERING NEW UFDS

BACKUP

GENERAL
USE OF MAGSAV

SHUTDOWN

CHANGING DISK PACKS
USING FIXRAT
TURNING POWER OFF

RESTARTING DOS
EXAMPLE INITIALIZING DOS AND PROGRAM DEVELOPMENT

SECTION 4 COMMANDS
COMMAND STRUCTURE

COMMAND FORMAT

LEVELS OF COMMUNICATION

DOS COMMANDS ALLOWED IN DOS/WM
ERROR CORRECTION

DOS AND DOS/VM NAMES

DISK VS. DOS OR DOS/VM INITS

SUMMARY AND INTRODUCTION TO COMMANDS

INTERNAL COMMANDS
HYBRID COMMANDS
EXTERNAL COMMANDS

COMMAND DESCRIPTIONS

ASRCWD
ASSIN
ATTAH
AVAIL

'
—t

'
N W W -

L BRI~ - A - g
[

t
£

[
L

4:'-4?-4':4;: + I N
bd e e ot

SECTION 4 (Cont)

BASIC
BASINP
BINARY
CLOSE
(MPRES
CNAME
COMINPUT
CREATE
DBASIC
DELAY
DELETE
ED

EDB
EXPAND
FILBLK
FILMEM
FILVER
FIXRAT
FIN
FUTIL
HILOAD
INPUT
LBASIC
LISTF
LISTING
LFIN
LOAD
LOGIN
LOGOUT
MACHK

MAGSAV, MAGRST

MAKE
MCG

MDL,
NUMBER
OPEN
PASSWD
PROTECT

PM (POST MORTEM)

PMA
PRERR
PSD
PSD20
PTCPY
PTRED
RESTORE
RESUME
RTOSRA

CONTENTS

vi

[[[T | [
Vo bbb b b DG T WAL DN
D OUONNNT I N O UNNNEN = O P (N pd pd SO OO 00~

] 1 1 L]]] '] t 1 1)] t

CONTENTS

SECTION 4 (Cont)

RT128F
SAVE
SHUTIN
SIZE
SLIST
SORT
SPOOL
START
STARTUP
STATUS
TIME
UNASSIGN
USERS
VDOS32
VRTSSW
*

SECTION 5

INTRODUCTION
CALLING AND

FILE SYSTEM AND TERMINAL I/0 LIBRARY

LOADING LIBRARY SUBROUTINES

CALLING SEQUENCE NOTATION
FILE SYSTEM AND TERMINAL I/0 SUBROUTINES

ATTACH
BREAK$
CMREAD
C1IN
ENAME
COMINP
COOMANL
D$ INIT
ERRSET
EXIT
FORCEW
GETERR
GINFO
PRERR
PRWFIL
RECYCL
RESTOR
RESIME
RREC
SAVE
SEARCH
TNOUA
TOOCT
TIMDAT
T$SOMPC

MAN 11,75

&
[
¢}

L f
Voo oy

] t]] 1]

NN EOONIA WO OO

G A I AR
[
[X N e e W WO RN N RT R R R N AR A

LUt U
[

]) t 1)] i
E O Y

)
DO DD B B RO B b et o b et ot b pd e et e b fd O WD 0O 0O 3
O 00 0O QD = = 0D 00 00 00 (i LA R R 1N 1= b= © O

1 1 1]

]

1 t 14 ' [}]]]]]

1

CONTENTS

SECTION 5 (Cont)

T$IMPC
T$MT
T$SLC
UPDATE
WREC

SECTION 6 DOS/VM OVERVIEW AND STARTUP
DOS/VM SYSTEM OVERVIEW

SHARING FILES

FILE ACCESS PROTECTION
BYPASSING BAD MEMORY
INACTIVITY TIMEOUT

DOS/VM SYSTEM CONFIGURATION
DOS/VM SYSTEM INITIALIZATION
DOS/VM SYSTEM TERMINAL COMMANDS

CONFIG
DISKS
MESSAGE
SETIME
STARTUP.
SHUTDN
STATUS
USRASR

WARM RESTART FOR DOS/WM

SECTION 7 . INPUT/OUTPUT WITH DOS/WM

1/0 VIRTUALIZATION

SYSTEM CONTROLLER CONTROL WORD
INPUT,/OUTPUT BUFFERS

SKIPS

PAPER TAPE READER
PAPER TAPE PUNCH
CPU CONTROL PANEL
DISK

MAGNETIC TAPE

MPC LINE PRINTER
MPC CARD READER

viii

1 [1
NN B b= —

O\O\C'J'\ [eaW e Wa N o, [«
1 i

e Y

—

]

NNV S LN

OI\ [W= W e W W e We N
]

[I S P R S R T S R T WY

~3

NN\
1]
[I SR SO

\J\I\J\J\'J\J\l
i 1 i 1 1
LI o B e

SECTION 7 (Cont)
SVC VIRTUALIZATION
OTHER VIRTUALIZATION
APPENDIX A FILE AND HEADER FORMATS
FILE RECORD HEADER FORMAT
UFD FORMAT
FORMAT OF DSKRAT
APPENDIX B BOOTSTRAPS

BOOTSTRAPS :
CONTROL PANEL BOOTS

CONTROL PANEL u-CODE
PRIME PRE-BOOT
DEVICE SPECIFIC BOOTS
PROM GENERATION

SECOND LEVEL DISK BOOTS (BOOT)

APPENDIX C CREATING SEQMENT DIRECTORIES AND FILES

INTRODUCTION
SAMPLE PROGRAM, GENFIL

APPENDIX D DATA BASE MANAGEMENT

FEATURES THAT FACILITATE DBM DEFINITION OF DATA

BASE MANAGEMENT

DATA BASE TERMINOLOGY
ACCESSING THE DATA BASE

FILE SYSTEM PERFORMANCE

DATA ACCESS TIME
FILE SECURITY

ix

PUY Do
[V NV RO [N

CONTENTS

APPENDIX E FIXRAT

INTRODUCTION

FIXRAT DESCRIPTION

RUNNING FIXRAT

FIXRAT OUTPUT LEXAMPLE

BROKEN FILE STRUCTURE MESSAGES
SEGMENT DIRECTORILS

PITFALLS AND RESTRICTIONS

BAD BOOT

DIRECTORY NESTING LIMIT
WRITING INTO DIRECTORIES
DELETING DIRECTORIES

FIXRAT ERROR MESSAGES

DESCRIPTION OF MESSAGES
DISKRAT BAD

BAD DISK ADDRESS

BAD RECORD ID

BRA POINTER MISMATCH

FATHER POINTER MISMATCH
BACK POINTER MISMATCH

BAD WORD COUNT

BAD FILE TYPE

TWO FILES POINT TO SAME RECORD
BAD DAM POINTER

UFD LONGER THAN RECORD

BAD UFD HEADER

DIRECTORIES NESTED TOO DEEP
(HECK FOR MFD INTEGRITY

FIXRAT AND 30-MILLION WORD DISK

APPENDIX F FUTIL

INTRODUCTTON
FILE STRUCTURE
DESCRIPTION OF FUTIL COMMANDS

' oot
O OOLe W o000 I = b

!

[} 1 1

i

™
'

et

]

] ']]])
b ek pod et o e ok o pd fd fod o o pd
B0 DD bt bt el pod ot ot b e el D O O OO

i

APPENDIX F (Cont)

QUIT
FROM

TO
ATTAH
CopY
COPYSAM

RESTRICTIONS
ERROR MESSAGES

ALREADY EXISTS

BAD NAME

BAD PASSWORD

BAD SYNTAX

CANNOT ATTA(H TO SEG DIR
CANNOT DELETE MFD
DIRECTORIES NESTED TOO DEEP
DISK ERROR

DISK FULL

IN USE

IS A DIRECTORY, CANNOT COPY IT
NO RIGHT -
NO ROOM USE DOS32

NO UFD ATTACHED

NOT -A DIRECTORY

NOT FOUND

POINTER MISMATCH

PRWFIL EOF

SEG-DIR ER

UFD FULL

UNRECOVERED ERROR

-l
1Y)
}g

]
bd fd WWEo 00~ ~JI~)~1INU U &b

[2 o]

T l"'rl".l'l"‘rl s lir) ’ﬁ'l'l’ﬂ“ﬁ"lﬂ‘ﬁ’ﬂﬂ"ﬂ‘ﬂ“ﬂ'ﬂ"ﬂ

[

P b b et b e el e b ek b e e b o o d e fd ond
R R R R R R G R L R R T R N N N N O N N Ny I R)

APPENDIX G LIBRARIES
DOS MASTER DISK
CONTENTS OF MFD
CONTENTS OF COMMAND FILE (MDNCO

xi

MAN 1675

[ep RepRop]
TN

APPENDIX J

APPENDIX M

CONTENTS

APPENDIX G (Cont)

CONTENTS OF LIB

CONTENT'S OF SRCLIB

FORTRAN/MATH LIBRARY SUBROUTINES (SUMMARY)
10CS

REAL TIME LIBRARY

MATRIX LIBRARY

VIP LIBRARY

APPENDIX H USE OF DOS FILE SYSTEM

INTRODUCTION
PROGRAM EXAMPLE

APPENDIX I ERRVEC CONTENTS

AND DISK STATUS

DOS ERROR MESSAGES
DISK ERRORS

APPENDIX K DISK DRIVE OPERATION

PERTEC MOVING HEAD DRIVES

OPCRATING CONTROLS

CARTRIDGE HANDLING AND STORAGE
DISK DRIVE PREPARATION
UNLOADING A CARTRIDGE

LOADING A CARTRIDGE

SELECTING WRITE PROTECTION
STARTING THE DISK DRIVE
STOPPING THE DISK DRIVE
DESIGNATING UNIT NUMBER

APPENDIX L PRIME ASCII CHARACTER SET

APPENDIX N FIXRAT OF MASTER DISK (REV 7)

Xii

DOS ERROR MESSAGES AND DISK ERRORS

SUMMARY OF DOS § DOS/VM COMMANDS

+ i i

RAR RN R X = =™
)
~IONON O U U e e

=
)
—

M-1

N-1

Table No.

2-1

3-1
3-2
3-3

4-1
4-2
4-3

4-4
4-5
4-6
4-7

6-1
6-2

MAN 1675

TABLES

Title

Memory Areas and DOS File Units

Physical Disk Assignments

Head Offset Definitions

A Number of Heads Definition

Internal Commands

External and Hybrid Commands

‘Value for Virtual Control Word and Port

Assignment

Device Names

Partitioned Disk SIZE Specification

FUTIL Commands 7

RECORDS Parameters for 30 Million Word Disk

Disk Space Required for 32K Per User
Disk Space Required for 64K Per User

File Record Header format
UFD Format

Format for DSKRAT

xiii

Page
2-22

3-9
3-14
3-14

4-5
4-6
4-12

4-13
4-22
4-29
4-40

6-8
6-9

A-1

A-4

A-1

E-1
E-2

F-1
F-2

K-1

LIST OF ILLUSTRATIONS

Title

Hypothetical DOS File. Hierarchy with SAM
and DAM File Structures

Memory Allocation in 16K System
UFD File Format and Use

Sample File Structure

Typical FIXRAT of File Structure

Sample File Structure (Directory Tree)

Typical Traverse of Directory Tree by
FUTIL During LISTF

- PERTEC D300 Operating Controls

xiv

E-3
E-4

F-2
F-11

K-3

MAN 1675

FOREWORD

This manual provides operating and programming information for the
Prime Disk Operating System (DOS) and the Prime Virtual Memory Disk
Operating System (DOS/VM). The version of these systems described
herein are each implemented on master disk as Revision 7 (Rev. 7.0).

Users must be familiar with FORTRAN or Prime macro-assembly language
programming and also familiar with operation of the Prime CPU Control
Panel as described in the operator's guide.

Information is organized as follows:

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

General information on DOS, DOS system configuration,
and DOS relationships to other operating system.

Definition of a DOS file, DOS file types, an
overview of the DOS file system and file structures.
This section includes a primer on files and is
further supported with detailed information.

Information on bootstrapping; installing and copy-
ing master disk; initializing and running DOS for
the first time; DOS backup; DOS shutdown procedures.

DOS and DOS/WM user commands. First, an overview
of the commands and their functions arranged in a
logical sequence (i.e., the widely used to the

less used). Next, detailed descriptions of commands
normally used for programming development and
productions, arranged alphabetically.

Description of subroutines available to the user
for file system and terminal I/O.

Introduces the Virtual Memory Disk Operating
System (DOS/VM), describes system configuration,
and gives detailed information on DOS/VM startup
and shutdown. This section also describes commands
normally issued from the DOS/VM supervisor terminal
by a system operator.

Describes how input/output is virtualized on DOS/VM.

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix 1

Appendix J

Appendix K

Appendix L
Appendix M

APPENDICES

Describes the format of DOS file record headers and
the physical organization of DOS files; also
describes UFD format and the format of the DSKRAT.

Describes the BOOTSTRAPS available for hardware
configurations.

Gives specific examples that show the user how to
Create Segment Directories and DAM files.

Discusses Data Base Management (DBM) and those
features of the DOS (DOS/VM) file system that
support DBM.

Is entitled "All About FIXRAT"'. It describes FIXRAT
in detail for both old and new users. It also lists
all FIXRAT messages.

Is a discussion of the File Utility FUTIL and the
file manipulation command available when operating
under control of that file utility. This appendix

‘also lists messages that may occur while using FUTIL.

Is a summary of the FORTRAN libraries and the Input
Output Control System (IOCS) library. Some of this
Information may be obsolete and will be replaced by
the library manual.

Is a definitive example of use of the DOS file system,
particularly if the user wishes to learn how to use
the subroutines SEARCH, PRWFIL, and ATTACH.

Describes the contents of ERRVEC, the system error
vector, for both error return and normal return.

Lists the DOS (DOS/VWM) error messages and value of
the disk status word. ‘

Describes disk hardware operation for typical moving
head disk drives comnected to DOS or DOS/VM.

Lists the Prime ASCII character sets.
Is a summary of the DOS and DOS/VM commands and their

formats. The last page of this appendix lists
obsolete commands for old users who may be interested.

MAN 675

Title

Prime CPU Operator's Guide (Console and peripheral
device operation)

Prime CPU System Reference Manual (instruction set,
addressing modes, input/output programming)

Macro Assembler Language Reference Manual

Program Development Software Manual (Editor, Loader,
TAP, etc.)

Library Subroutine Manual*
FORTRAN IV Language Reference Manual
Magnetic Tape Controller User Guide

System Option Controller User Guide

Disk Controller User Guide

*Currently undergoing development

xvii

The following Prime documents should be available for reference:

Manual No.’

MAN1672
MAN1671

MAN1673
MAN1879

MAN1674
MAN1940
MAN1944

SYMBOLS AND ABBREVIATIONS

Symbols and abbreviations and special characters used frequently in
the rest of this handbook are defined below:

Symbol Meaning
Nurber)
representations:
1000 1000 decimal
'1000 1000 octal
$1000 1000 hexadecimal
Teletype
functions:
CR -"Carriage Return
LF Line Feed
\\ Backslash (upper case L)

used as tab character (Editors only)

" Delete character (cancels last typed
character); do not use in DOS command
strings. However, this delete
character may be used in DOS/VM lines.

? Kill character (deletes all
characters in current line).

R -In the editor, ED, separates multiple
commands on a line.

4+ or A Signal escape (see Editor in

Program Development Systems
Manual).

xviii

Symbol
Miscellaneous:

SA
EA
[]

Unde-rlining

Altrtn
Ra

CPU
DSKRAT

Filename

Funit
Ldisk

MAN 1675

Meaning

Starting address of progran’; of memory
block.

Ending address of program or memory
block.

Brackets enclose optional parameters
in command strings.

Indicates user input in examples of
user/DOS dialogues.

Spaces (in command strings)

Blanks or space characters (in
Hollerith or ASCII strings).

Abbreviations

Alternate return program step in case
of I/0 errors, missing EOF, etc.

Buffer Address (I0OCS).

Central Processor Unit (the Prime
computer proper as opposed to peripheral
devices or main memory).

" Disk Record Availability Table

A DOS filename (in the current UFD,
unless otherwise specified).

DOS File unit (1-16)

Logical disk unit number as assigned
by STARTUP command.

Xix

Password
Punit
UFD

Ufd

Meaning
Logical device number, (1-15) as used in
FORTRAN READ and WRITE statements. 4Same
as I0CS logical device number.)
Master File Directory
A DOS password
IOCS Physical device number (1-15)
User File Directory
In FORTRAN calling sequence: pointer to

a UFD name (Hollerith expression or
3-word array) .

Filename Conventions

BXXXX
LXXXX
CeXXXX
XXX
000X
SXXXX
UXXXX

Binary (Object) file
LISTING file

Command file

Source file

SAVED (Executable) file
Segment Directory

User File Directory (UFD)

SECTION 1
INTRODUCTION

SCOPE OF DOS AND DOS/WM

DOS is the Disk Operating System for the entire Prime family of
computers. It is a memory-resident operating system that provides
a complete working environment for the user's software development
process and for user program development and production use of the
various Prime disk options.

DOS/VM has the same capabilities as DOS; and in addition, allows a
sharing of the computer resources among a commmity of up to 31
simultaneous users and a variety of peripheral devices. DOS/VM also
gives each user a virtual memory environment.

DOS may function in any of the possible Prime computer system config-
urations. DOS allows direct memory addressing of up to 64K. It
operates under control of a Prime 100, 200, or 300 central processor
with or without available options. A broad range of disks are supported
by DOS. Up to four disk units, each with a capacity of 30 million words,
can be attached to a disk controller (type 4001/4002, which handles up to
four disk pack units as weil as one fixed head disk (either iZ8K or

256K word capacity). Alternatively, mass storage (disk) configurations
supported by DOS include moving head cartridge disks providing

1-.5-, 3.0- and 6.0-million word capacities, and high-speed fixed-head
disks storing 128K, 256K or 512K words (using a Type 4000 Disk Controller).
Finally, diskette drives (floppy disks) are supported by DOS and DOS/VM
via a diskette controller. All disk units are supported interchangeably
by DOS and other Prime system software. DOS configurations may also
include a high-speed paper tape reader for system generation. The DOS
System Terminal is either any Teletype (or compatible terminal) or a
CRT type terminal attached to the system option controller rumning at

» 110 baud. Peripherals that are supported by IOCS running under DOS

control include: up to four 7- or 9-track magnetic tape transports on
one controller, card reader (one per system), character printer (one per
system, connected to the system option controller), line printer (one

-per system), and paper tape reader/punch (one per system). For further

MAN |75

details about DOS configuration, refer to Section 3.

The DOS/WM operating system requires a Prime 300 system with a minimum
of: 32K of high-speed memory, disk system terminal, and 1 to 31 user
terminals. DOS/VM fully supports virtual memory and up to 256K of real
memory. For details of the DOS/VM configurations, refer to Section 6.

The minimum configuration upon which DOS operates is a Prime computer
with a Teletype for a System Terminal, 16K of memory, and mass storage
consisting of diskettes; DOS is upward compatible and it operates on any
Prime computer system configuration that is more sophisticated than the
minimum.

1-1

DOS FEATURES

1. DOS operates in several environments. DOS, when run as the
chief operating system of the computer system, functions as a
batch operating system, providing automatic job and data stream
routing; by storing command sequences on disk. In addition,
the Prime RTOS (Real Time Operating System) and the DOS/WM ,
(Virtual Memory Operating System) are started from DOS. Users
of these systems must know at least how to start up DOS and
then start up their systems from DOS as well as how to shut down
DOS. Furthermore, once RTOS or DOS/VM is rumning, DOS can be
Tun as a background job in RTOS, or DOS can be started up from
DOS/VM. The former is a fairly common and useful practice; the
latter is a bit esoteric, but it has been done.

2. The fundamental unit with which most DOS commands and concepts
: deal is the file. Each disk is organized into a system of
files, permitting the user to reference programs and data by
file name only. Consequently, there is no need for the user
to identify specific physical records or to have knowledge
of the format of the disk. An overview of files and the
associated file system is presented in Section 2.

3. DOS provides an interactive command language for summoning
programs and manipulating the file system. The command
language interfaces the user to DOS by simple commands
entered at the terminal. The same command functions may also
be performed by programs, reducing the amount of operator
involvement. Software written for stand-alone -execution may
be run under DOS with no changes. Section 4 describes DOS
commands .

4, All standard Prime software is available under DOS and makes
use of its command structure and file-handling abilities.
DOS/VM FEATURES

DOS/WM includes all the features of DOS and in addition allows
sharing of the computer resources in a virtual memory environment.

1-2

&~
~3

SECTION 2
FILE STRUCTURES

CONCEPTS

The following paragraphs define terms used in describing a disk-based
operating system (DOS or DOS/VM).

File

A file is a named set of information organized and stored on a
magnetic disk in such a way that a computer program can use the
information.

For Prime DOS, a file consists of a list of 16-bit binary words; a
binary word is the smallest item of information that can be moved to
or from a file at one time. .

File Access
The process of moving information from a file stored on disk to a
iocation in high-speed memory is cailed reading from a fiie. Moving

information from a location in high-speed memory to a file stored on
disk is called writing to a file. :

File Creation

Files may be made through the use of a DOS system editor at a

terminal (Teletype or CRT keyboard type); they may be made by copying
information stored on paper tape, punched cards, etc.; or they may be
generated by computer programs.

Some Typical File Content

1. Lists of employee names, addresses, salaries, etc. stored as
files for payroll and bookkeeping programs to use.

2. Computer programs coded in languages that may be read by humans
and stored as files in order that other programs may be used to
translate the human-readable program into a program that is both
meaningful to a computer and can be run on a computer.

2-1

Why a File System?

The purpose of having a file system is to simplify the manipulation
of large quantities of data using the computer. The major goals of the
file system are listed below:

1. File creation without manual pre-allocation of the storage
medium

2. Ability to reference a file by name

3. Clustering like files together.

The first goal is implemented by keeping a file on each disk that
lists the available space for the disk. Since the whole process
is automatic, the average user does not need to concern himself
with this process, other than to know that it works.

Referencing files by name means the desired file may be selected for
operation by giving the system an array of alphanumeric characters.
The file system does this by having a file that is used as a directory;
it contains the names of other files and their locations on the disk.
The systen can find this Master File Directory (MFD) because its name
is always the same and its location is always the same.

The third goal is achieved in two ways. The first is to have many
file directories; this allows like files to have their names and
locations saved in the file directory file. The second way is by
nesting file directories. This means some of the filenames saved

in a file directory can be the names of other file |
directories. Thus, files may be classified to an arbitrary extent.

A side-effect of clustering files in a file directory (files whose
names are stored in a file directory are often said to be "in' the
directory) is that some degree of access protection can be built in
by associating a password with each file directory. In order to
examine the files in a directory, the user must first supply the
password for that directory.

Summary

A file directory is a file that contains the names of other files on
the disk and the location on the disk of these files. A file
directory may contain the names of other file directories. In order
to access files stored in a directory, the password for that directory
must be given.

2-2

Using the File System

To access files, the user must be attached to some file directory.
This means the file system has been supplied with the proper file
directory name and password, and it has found and saved the name and
location of the file directory. It can therefore find and operate-on
all files contained in that file directory.

The major operations on files are: initialization for access {open) ;
access; shutdown and resource deallocation (close); and deletion.

Opening a File
A file may be opened for reading only, for writing only, o r for both

reading and writing. If a file is opined tur reading only, it may be
read; but it cannot be changed.

The operation of opening a file does the following:

1. searches the file directory to see if lpe filename requested
is there; .

2. sets up tables and initializes buffers in the operating
system;

3. defines a pseudonym for the file. This pseudonym is called
the file wit number and is the only name used for transfer
of data to and from the file.

If a file is opened for writing only, or for reading and writing, it
may be changed; and if the filename is not found in the directory,

the filename is added to the file directory, and a new file is created.
When a new file is created at the time of opening, no information is
contained in the file.

Using an Open File

Once a_file has been opened, a file pointer is associated with the
file. The file pointer indicates the next binary word to be accessed.
To understand how the file pointer works, imagine that the words in a
file are serially mumbered from 0. The file pointer is then the
number of the next word to be accessed in the file.

Access

On an open file, information may be read from the file starting at the
file pointer into high speed memory or information may be written to the
file starting at the file pointer.

Access and File Pointer

-

When a file is accessed, the file pointer is incremented once for each
binary word accessed.

2-3

MAN [575

Position

The file pointer may also be moved backward and forward within a
file without moving any data. This is called positioning a file.
The value of a file pointer is called the position of the file.
Positioning a file to its beginning is often called rewinding a file.

Truncation

It is possible to shorten a file by truncating it. When a file is
truncated, the part of the file that is at or beyond the file pointer is
eliminated from the file. If the file pointer is positioned at the
beginning of the file, all of the information in the file is removed
but the filename remains in the file directory.

Closing a File

A file that has been opened may be closed. The file unit number
(pseudonym) and the corresponding table areas in the operating system
are ''cleaned up" and released for reuse.

Deleting a File

The filename of a file that is deleted is removed from the file
directory, and all of the disk memory that the file occupied is
released for use by other files. '

2-4

MAN (675

The fundamental operations possible using the DOS file system have now
been described. The following paragraphs re-examine files and file
directories in more detail and introduce the idea of how files are put
together, and how they are related to directories.

Physical Disk Consideration

A disk storage medium is composed of many separate blocks of data
recording space (disk records or sectors). How these blocks are put
together to make a file can affect the efficiency of positioning

by several orders of magnitude. Because of this, the file system has
two different ways of linking physical disk records together to form
a file. One way, SAM (Sequential Access Method), is stored more
compactly on the disk and requires less computer fast memory for
efficient operation, but is much slower for repeated random positioning
over a file. The other way, DAM (Direct Access Method), is quick for
positioning over a file, but requires more disk space and more fast
memory. SAM and DAM files are functionally equivalent in all other
respects. .)

More on File Directories

File directories were previously described as files containing the
names and locations of other files on the disk. This kind of file
directory is referred to elsewhere in the documentation as a User
File Directory (UFD). The file system supports a second kind

of file directory called a segment directory. Segment directories
differ from UFDs in one fundamental respect: they contain file
locations but not file names. As far as the file system is concerned,
the files in a segment directory have no names. This means that the
file system user is charged with all of the bookkeeping involved in
the use of a segment directory.

Segment Directory Use

Each binary word in a segment directory is assumed to hold a legitimate
file location on the disk. The segment directory file is opened for
reading/writing on a unit of the user's choice. The segment directory
file is then positioned to the word containing the location of the
desired file.

If the desired file is a UFD, the user may attach to it by passing
the file unit number to the file system in place of a file name.
Similarly, the desired file may be opened, closed, deleted or
truncated by giving the file unit number of the segment directory
file rather than filename.

FILE SYSTEM

The DOS (and also DOS/VM) file system consists of a hierarchy of
files and file directories. There are two types of files and
types of directories. These are described in this section.

TYPES OF FILES

The two types of files are: Sequential Access Method files (SAM
files) and Direct Access Method files (DAM files). The structural
differences between these two file types are transparent to the user.

SAM Files

A SAM file is the basic way of structuring disk records into an
ordered set; i.e., a threaded list of physical disk records. The
following example shows this structure:

BEGINNING 0 1 n
RECORD >

SAM File Structure

In DOS, a SAM file consists of a collection of disk records chained
together by forward and backward pointers to and from each record
(see Appendix A). Further, each record in a SAM file (or any file)
contains a pointer to the beginning record address (BRA) of the file.
The file system maintains the record headers and is responsible for
the structure of the records on the disk.

Figure 2-1 shows an example of how SAM files may be related within
a DOS file system hierarchy.

DAM Files
A DAM file is a direct access file. DAM file organization uses the
SAM file method of making an ordered set; but for purposes of rapidly

accessing the i'th data record, a special trick is used:

Physical disk record 0 of a DAM file is reserved for use by
the system. No user data is ever written in this record.

2-6

MAN 1675

The first disk record (logical record 0) to contain
user-written data is the second record of the threaded
list of disk records. The first disk record 0 contains
pointers to the second, third, ... i'th 440th disk record
of the file as shown in the following example:

D 0 1 2. ‘3
RECOgg s I a5 | ’h__m,,* 451 | 1230

425
450
421

1230

A 4

DAM File Structure

Figure 2-1 shows a typical relationship of DAM files within a DOS
file hierarchy.

Note that a DAM file can continue to grow beyond 440 records. In

this case, the records beyond the 440th will be threaded and referenced
as if they were records in a SAM file. For example, to access the
445th record of a DAM file, the file system would go to the 440th
record directly and seek through the remaining five records
sequentially. For an example of how to create a DAM file, refer to
Appendix H.,

File Records

All files on Prime DOS disks are stored in fixed length 448-word
records, chained together by forward and backward pointers. The

first eight words of a record is the record header. Specific content
of record headers is discussed in Appendix A. After the record header,
all remaining words within the record may be used to store ASCII
character pairs or 16-bit words.

File Contents

A file is a series of records of the type described above, with
the distinction that the first record in such a chain is reached
from a pointer within a User File Directory or an entry in a
Segment Directory.

2-7

MFD

DSKRAT

DSKRAT O—

ALPHA O

BETA O—

Figure 2-1.

A1
UFD
ALPHA
A2
UFD
BETA B
B1
B SEG
B SEG (1)
1 o—+4——
2 (o e
3 O 2 B SEG (2)
4 O——“
D,
l B SEG (4) B SEG (3)
1
B SEG (4) 2 ot+——
IS ANOTHER -
SEGMENT 3 o
DIRECTORY [~ -

Hypothetical DOS File Hierarchy

File Structures

2-8

with SAM and DAM

MAN 1675

Every file contains a series of 16-bit words. The format depends on
the type of data in the file and how they were originally entered into

the file system.
DOS Systems:

Line Image

Line Image
Compressed

Object Format .

(Relocatable
- Binary)

Saved Memory
Image

Directories
(UFD and

Segment)

The following types of files are in general use in

ASCII character text, packed two characters
per word, as entered from a terminal or from
the Prime card reader, paper tape readers,
etc.

Same as above, but successive spaces are
replaced by a relative horizontal tab char-
acter followed by a space count, and lines
are terminated by a LINE FEED character.

Block-format object code as generated by
the Macro Assembler and FORTRAN Compiler
for processing by Linking Loader.

Header block followed by a direct transcrip-
tion of high-speed memory -between limits
Starting Address (SA) and Ending Address (EA).

See Appendix A for Format details.

2-9

DIRECTORIES

Directories are specialized files that contain entries that point to
files or, in some cases, other directories. Directories are the
nodes in the file system tree structure hierarchy, whereas files are
the branches. Figure 2-1 illustrates this concept. The types of
directory are UFD's and Segment Directory.

Segment Directories may be organized as SAM files or DAM
files, depending on the kind of file structure the user wishes
to build.

MFD and UFD

Each disk pack (or device, in the case of non-removable media) has
one User File Directory called a Master File Directory (MFD) that
contains an entry for each User File Directory (UFD) in the MFD.
In turn, each UFD contains an entry for every file or directory

file in that directory. UFD's and MFD's are accessed in the same
way as other files, : ‘

Master File Directory {(MFD)

Each disk unit contains one MFD file as an index to the first
physical record of each UFD in the MFD. The MFD has the same :
format as any UFD. The first record of the MFD begins at physical
record one of the disk. Figure 2-1 shows a chain of pointers
extending from the MFD to UFD and Segment Directories, and to

a DAM or SAM file.

User File Directory (UFD)

A User File Directory is a file that links DOS filenames to the
physical record of a file,

A UFD, in the format shown in Appendix A, is associated with each
system user. The UFD header consists of a word count followed by the
password. After the header, the UFD contains an entry for every file
or directory named by the user. Each entry consists of a filename and
a word that contains the address of the first physical record of the
file (called the beginning record address or BRA). Currently, each
UFD can contain up to 72 entries. The first physical record of each
UFD is accessed from a pointer (entry) in a UFD or is accessed from an
entry in a Segment Directory. Details of the contents of the UFD
Header and entries are given in Appendix A.

2-10

Segment Directory

A segment directory is formatted just like a UFD except that instead
of several words per entry, there is only one: the pointer to the
beginning record of a file. For information on how to create a
segment directory, refer to Appendix C.

Disk Record Availability Table (DSKRAT)

DOS maintains a file, formerly always named DSKRAT, that stores the
status of every physical record on the disk. The name of this file

may also be the name of the disk (which is referred to as the Packname).
Each record is represented by a single binary bit; a '1" means the
record is available, and a '"0" means it is in use. On a typical

DOS disk, the DSKRAT file is allocated one record. The DSKRAT file

is maintained as a file on the disk, starting at physical record 2.

The format of DSKRAT is shown in Appendix A.

Disk Organization

DOS supports the use of all the Prime disk options. (Refer to
Section 1.) DOS also permits the user to write a programming
package that supports blocked, random access device (ISAM).
Multiple disks are organized so that every fixed disk and every
removable disk is a self-consistent volume with its own bootstrap,
DSKRAT and MFD.

Logical record zero is cylinder zero, head zero, sector zero on
all options except the dual (fixed and removable) device which has
two logical zeros -- one on a fixed disk (head 2) and one on

the removable disk (head 0).

File Units

When a disk file is made active for reading or writing, to hold one
or two disk records at a time, it must be assigned one buffer in
high-speed memory if the file is a SAM file, or two buffers if the
file is a DAM file. The buffer, plus associated pointers and status
indicators, serves as an access port for the exchange of data
between the disk file and the active program. A user generally is
concerned with file wnits; he is not aware of a buffer, except

when DOS runs out of memory or overwrites a user program. One file
at a time can be assigned to each unit; therefore, a maximm of 15
files can be active (open) at any one time. However, DAM files use
two buffers, so that a maximm of 12 DAM files may be open at any one
time. The files may be open on several different logical disk
units at once. Under DOS/VM, no space is used in the user's address
space for file buffers.

2-11

MAN 1b75

Opening, Closing File Units

Refer to the discussion on file units, buffers, and opening files
in the first part of this section.

Various ways are provided to associate a specific filename (Filename)
tc one of the memory buffers (Funit numbers). One method is the
OPEN command, for example:

" OPEN Filename Funit Status

Filename is the name of a file listed in the UFD to which the user

is currently attached; Funit is a DOS file unit number ('1-'17),

and Status is 1 for reading, 2 for writing, etc. Note, the character '
is used to denote an octal number. (For full information, see Section
4 "OPEN".) In response to this command, DOS selects an unassigned
buffer area, assigns one or two buffers the specified Funit number,

and uses it as the data buffer when reading from or writing to the
named file. Whether one buffer or two buffers are assigned depends

on whether Filename specifies a SAM file or a DAM file. The file is
then said to be open. The 448-word memory buffers are allocated down-
ward starting from the beginning of DOS itself. DOS associates a
Funit number to the highest unassigned block when a file is opened.
From the terminal, the user can open files with the OPEN, BINARY, INPUT
and LISTING commands, and close them with the CLOSE command. The
command INPUT opens unit 1 for reading (for example, to provide a
source input file to the Assembler or Compiler). The BINARY command
opens unit 3 for writing (of the object output), and LISTING opens
unit 2 for writing (of the listing file). The OPEN.command allows a
user to assign a file to a unit of his choice and specify the activity -
rﬁading, writing, or both. File units 1 to 15 may be specified by

the user.

Unit 16 should not be opened by the user; it is used by DOS for read-
ing and writing of system files such as DSKRAT and user file directories.
Under DOS/VM, unit 16 may be opened as it is not used by DOS/WM.

When the user is commmicating with the file structure through one
of the standard Prime translator or utility programs, he refers to
files by name only. DOS, or the program itself, handles the details
of opening or closing files and assigning file umnits. For example,
the user can enter an external command such as ED FILE1l, which loads
and starts the text editor and takes care of the details of assigning
the file FILEl to an available unit for reading or writing.

Because open files are subject to alteration (deliberate or accidental),
the user must keep files closed except when they are heing accessed.
The CLOSE ALL command returns all open file units to : closed and
initialized state.

2-12

File-Handling Subroutines

All file ha:ndliﬁg is done by a collection of special subroutines, some

internal to DOS or DOS/VM, and others available as library routines.

These routines are used in common by DOS and all Prime system software
for simplified and uniform file handling.

In addition, they can be

called from FORTRAN or assembly-language user programs. The
principal routines are:

ATTACH
GETERR

GINFO

PRWFIL

RESTOR
RESUME

SAVE

SEARCH

Attaches user to a specified UFD or device.

Moves n words from the system error vector
ERRVEC into a specified array.

Moves n words of information about DOS
(or DOS/VM) into a special array.

Reads 16-bit words from a specified file unit
to high speed memory and writes 16-bits words

from memory to a specified file unit. (For details,

see Section 5.)

Restores to memory an executable program
previously filed by a SAVE operation.

Restores to memory and starts an executable
program previously filed by a SAVE command.

Saves a section of high-speed memory as a named
file. High and low address limits, the start-
execution address, and other key parameters are
saved with the program.

Assigns a named file to a file unit and opens the
file for reading and writing.

The ATTAMH » RESTORE, RESUME, and SAVE routines have exactly the
same functions as the commands of the same name. These and other
file and character handling subroutines are described in detail

in Section 5.

MAN (675

2-13

All of the file handling subroutines called by the user are loaded
with the user's program when the FORTRAN library is loaded. Most of
these subroutines are interlude subroutines which issue supervisor

calls to DOS or DOS/VM. The appropriate subroutine in DOS then executes
the appropriate file operation.

File Handling in User Programs

The subroutines (refer to Section 5) simplify commmication between
the DOS or DOS/WM file structure and user programs. In FORTRAN
programs, for example, the symbolic device unit numbers in formatted
READ and WRITE statements can be associated with DOS file umits.

The following default assignments are set up by the compiler:

FORTRAN Unit (u) File Unit (Funit)

5 1
6 2
7 3
8 4
9 5
10 6
11 7
12 8
13 9
14 10
15 11
16 12
17 13
18 14
19 15
20 16

Example: to write a record to file unit 1 (FORTRAN unit 5), the
user could enter the command OPEN Filename 1 2. The OPEN command
associates the file Filename with the file unit 1 and opens the
file for writing (code 2). During subsequent execution of a
program containing a formatted WRITE statement such as:

WRITE (5,10) LINE

the contents of array LINE are written as one record to the FORTRAN
unit 5 (file unit 1) according to FORMAT statement 10.

At the program level, a Filename and Funit number can be associated
by the DOS subroutine SEARCH, that has the form:

CALL SEARCH (2, 6HTEXTbb, 1, $50)
to open the file named TEXT on Funit 1 for writing. Besides maintain-

ing the file directories, SEARCH also initializes tbe DOS data base
when a file is opened and updates it when the file is closad.

2-14

MAN 1675

Users normally call the IOCS subroutine OONTRL to open or close a
file read or written by FORTRAN read or write statements. (See the

Library manual.) The appropriate call that replaces the call to
SEARCH 1is:

CALL CONTRL (2, 6HTEXTbb, 5, $50)

Startgp

When DOS is loaded and started, it prints the message OK: on the
terminal as a cue that it is ready to receive commands. The first
command a DOS user enters must be a STARTUP. This command assigns
logical unit mumbers to the physical disk drives in the particular
system. The STARTUP command determines which disk surface is
accessed for MFD and the other command functions, and determines the
order that DOS searches disk surfaces for UFD's, Use of the

STARTUP command is discussed in greater detail in Section 3.

Attaching to a UFD

To access files or use DOS utility functions, the user must be
attached to a UFD. Typically, during program development, each

user attaches to a UFD reserved for program files with the ATTACH
command. For further information, refer to Section 4. Within execu-
table programs, the user can attach to other UFD's, for example, to
access data or to call subroutines. At the program level, this is
accomplished by the subroutine ATTAC(H, described previously.

For further information on the ATTACH subroutine, refer to Section 5.

DOS/VM File Access Control

DOS/VM gives a user (owner) the ability to open their file director-
ies to other users with restricted rights to the owner's files.
Specifically, the "owner' of a file directory can declare, on a per-
file-basis, the access rights a "nonowner'' has over each of the owners
files. These rights are separated into three categories:

. Read Access (includes execute access)

. Write Access (includes over-write and append)

. Delete/Truncate rights
The owner of a UFD can establish two passwords for access to any
file in the UFD; the owner password and the nonowner password. The
owner password is required by owner to obtain owner privileges. The
nonowner password (if any) is required to obtain nonowner privileges.
The command:

PASSWD Owner-Password Nonowner-Password

replaces the existing passwords in the UFD with a new owner-password
and a nonowner-password. This command must be given by the owner

2-15

while attached to the UFD. A nonowner cannot give this command.
The command:

PROTECT Filename Okey Nkey

replaces the existing protection keys on Filename in the current
UFD with the owner (Okey) and nonowner (Nkey) protection keys.
Valid numbers for these keys are: ’

No access allowed

Read access only

Write access only

Read and Write access

Delete/Truncate only

Delete/Truncate and Read

Delete/Truncate and Write

All access allowed (Read/Write/Delete/Truncate)

N OOV AR WO

The owner can restrict his own access to a file by the mechanism.
This can be very useful to prevent accidental deletion or over-
writing by an owner of an important file. A nonowner cannot give
the PROTECT command.

A user obtains owner status to a UFD by attaching to the UFD giving
its name and owner password in the ATTACH command. (Refer to
Section 4). A user obtains nonowner status to a UFD by giving its
name and nonowner password in the ATTACH command.

A user can find out his owner status through the -LISTF command.
LISTF types the name of the current UFD, its logical device, O, if
the user is an owner, or N if the user is a nonowner. LISTF then
types the names of all files in the current UFD. An owner can find
out the protection keys on all files in the current UFD through use
of the FUTIL LISTF command. (Refer to Section 4).

Other Features of File Access

The owner/nonowner status is updated on every ATTACH and separately
maintained for the current UFD and home-UFD.

A user's privileges to files under a segment divectory are the same
as his privileges to the segment directory. Attaching to UFD under
a segment directory establishes new privileges for files under it.
The protection keys of a newly created file are:

owner has all rights

nonowner has none

2-16

MAN 675

The passwords of a newly created UFD are:
owner password is Blank

nonowner password is Zero (any password will
match)

A nonowner cannot create a new file in a UFD, or give the CNAI\'fE,
PASSWD or PROTECT commands.

Furthermore, a nonowner cannot open his current UFD for reading
or writing. (Refer to Section 5).

In the context of file access control, the MFD has all the features
of a UFD.

If file access is violated, the error message is:
NO RIGHT

DOS File Access Control

The stand alone DOS operating system does not have file access control
over individual files, but it is compatible to a degree with DOS/VM.
Under DOS, a user cannot obtain access to a UFD by Attaching using the
nonowner password. If the owner password has been given, the Attach
is successful but subsequent access to files in the directory is

not checked. Files created under DOS are generated with the same
protection keys as under DOS/VM. The passwords of a newly created
UFD are the same as under DOS/VM.

Cormnandé

DOS commands fall into two major categories: the internal commands
(implemented by subroutines that are memory-resident as a part of
DOS) and external commands (executed by programs saved as disk
files in the command UFD, CMDNCO).

On receiving a command at the system terminal, DOS checks whether it
is an internal command, and if so, executes it immediately. Otherwise,
DOS looks in the command directory of logical disk unit 0 for a

file of that name. If the file is found, DOS RESUMEs the file

(loads it into memory and starts execution). All files in the
command directory are SAVEd memory image files, ready for execution.
Most are set up to return automatically to DOS when their function

is complete or errors occur. The cormand line that caused the
execution of the saved program is retained and may be referenced

by the program to obtain parameters, options, and filenames. To

add new external commands, the user simply files a memory image
program (SAVEd file) under the command directory UFD (CMDNCO).

Memory image files may also be kept in other directories and executed
by the RESUME command.

2-17

With the aid of the DOS subroutine PRWFIL, the user can bypass
formatted FORTRAN I/0 and write directly from memory arrays to
disk files, as in:

CALL PRWFIL (1,1 PTEXT, 36, 0, 0)

This statement reads 36 words from the file associated with Fu{xit 1
to memory array TEXT, where PTEXT is a pointer to the beginning‘of
array TEXT. PTEXT may be set up by a call to the FORTRAN function
LOC. The statement to set up PTEXT would be:

PTEXT = LOC (TEXT)

File Access Methods

Under DOS, the means of file access is the Sequential Access Method
(SAM) or the Direct Access Method (DAM). With both methods, the file
appears as a linear array of words indexed by a current position
pointer. The user may read or write a number of words beginning at
the pointer, which is advanced as the data is transferred. A file
I/0 module service call (PRWFIL) provides the ability to position the
pointer anywhere within an open file. File data can be transferred
anywhere in the addressing range (up to the full 64K). When a file
is closed and re-opened, the pointer is automatically returned to
the beginning of the file. The pointer can be controlled by the
FORTRAN REWIND statement, also it can be controlled by PRWFIL
positioning.

With the DAM method of access, the file appears to be a linear array
of words also, but this method has faster access times in positioning
commands. DOS and DOS/VM keep an index that allows for positioning of
the first 440 disk records of a file.

DOS/USER INTERACTION

Loading and Initializing DOS

The DOS monitor is a saved-memory-image file under the UFD named
DOS. It must be loaded into the high-speed memcry with the aid of
a bootstrap loading program. The bootstrap is loaded on the devices
available under control of CPU microcode. A system with full disk
bootstrap microcode can load DOS directly from the master disk
through the panel LOAD function. Other configurations may require
a key-in loader and paper tape bootstrap. For information on

this and other operating procedures, see Section 3.

2-18

MAN

i

75

™MC anAd TNC M -:n+¢=1~nla1 anAd aviarmnal ~Aammande ava Aacrcrrilhad S. Carnsel e
AU QlIU JAJD/ Vit ALIVC Ll 4d QiU CTALT11idd VUKD AlT UCOLV1AUTU 111l JULULLIVIL

Prime system programs (compiler, assembler, editor, etc.) requiring
detailed operation instructions are described in the pertinent manuals
referenced and summarized in part in the appendices in this manual.

Command Files

As an alternative to entering commands one at a time at the terminal,
the user can transfer control to a command file by the command:
COMINPUT. This command switches command input control from the
terminal to the specified file. All subsequent commands are read
from the file. One can assign any unit for the COMINPUT file.

This means that command files may call other command files. For
detailed information on the COMINPUT command, refer to Section 4.

Command files are primarily useful for performing a complicated series
of commands repeatedly, such as loading an extensive system in the
debugging stages when it is necessary to recampile and reload often.
Command files are also useful in system building when many files

must be assembled, concatenated, loaded, etc. (for example,
configuring an RTOS system or generating library files).

Saving Programs

After compiling or assembling a program and loading the object
version along with library routines, the user can save the program
development efforts by the SAVE command:

SAVE Filename SA EA PC A B X Keys
This command string assigns a file, Filename, in the current UFD, saves

the memory image between limits SA (starting address) and EA (ending
address) and enters other parameters into the header block:

PC Program Counter setting (address at which
to start program execution)

A A Register value

B B Register value

X X (Index) Register value

Keys Status keys (as processed by INK, OTK
instructions)

2-19

The preferred way to save newly loaded programs is to use the loader's

SAVE command. Refer to the Program Development Software User Guide
for details.

When a program is restored to operation by a RESTORE or RESUME
command, these parameters are retrieved with the file and replaced
in the registers from which they were obtained. These are the
RVEC parameters, described in more detail in Section 4.

A program saved in the command UFD (CMDNCO, for example) can be

invoked by name like any other external DOS command. All standard
Prime translator and utility programs are supplied in this form.

File Maintenance (FIXRAT)

To give the user an efficient and thorough way to check the integrity
of data on a DOS disk, DOS provides a file maintenance program,
FIXRAT, filed under the command directory, CMDNCO. When FIXRAT is
invoked as an external camand, it checks for self-consistency

in the structure of pointers in every record, file, and directory on
the disk. If there are breaks in the continuity of double-strung
pointers, discrepancies between the DSKRAT fiie and the reconstructed
record availability map, or other error conditions, FIXRAT prints
appropriate error messages. FIXRAT asks the user to specify whether
or not to take specific steps to repair a damaged file structure on
a specified logical disk wnit. For details and examples, refer to
FIXRAT description in Section 4 and Appendix E.

DOS MEMORY USAGE

DOS occupies approximately nine sectors at the top of the available
memory plus a variable nurber of 448-word file unit buffers. Figure
2-2 shows a typical memory map for a system with 16K of high-speed
memory. DOS/VM takes no part of the user's virtual address space.

Ploating;DOS

Three versions of DOS are supplied in the UFD, DOS. These versions
load DOS starting at locations '27000, '47000 and '67000. The boot-
strap program selects the version of DOS that is nearest to the top of
high-speed memory. The values in Figure 2-2 mav be increased
accordingly to 20,000 locations and 40,000 to give an approximation
of memory allocation tor 32K and 64K systems. It desired, a parti-
cular DOS may be selected by manually setting the sense switches
(refer to '"BOOT" in Section 3).

2-20

MAN 1675

Other Locations

Sector 0 is reserved. Locations 0 through '177 are dedicated to the
Prime CPU's register file and the vector locations for interrupt and
IMX. Locations '200 and above are used to store the cross-sector
indirect address links generated by the loader, but the user may,
with caution, use locations in this area.

For 16K configurations, locations '1000 through '17777 may be used
without restrictions unless a symbol table is present. The high end
limit is usually determined by the start of the loader, which may be
memory-resident during loading. However, FORTRAN common may set the
upper limit if it extends below '020000.

FORTRAN common overlaps part of the area that can be occupied by DOS
file unit buffers. Up to three SAM file units can be open at a time
without the risk of writing over part of common.

Default location of FORTRAN common is the top of the loader extending
down in memory. There are two implications:

1. common cannot be loaded with 'BLOCK DATA' statements,

2. only three disk units may be open at any one time.
(DOS restriction only.)

This problem can be avoided through use of the loader's COMMON
command, which permits the moving of common to a user specified
location. ’

If a program is to be debugged with the aid of Trace and Patch (TAP),
only two files can be open at a time. However, TAP can relocate
itself elsewhere in memory if this is a problem. For information
on TAP, refer to the Program Development Software User Guide.

Memory areas occupied by the DOS file unit buffers are listed
in the following table.

2-21

Table 2-1
Memory Areas and DOS File Units

Number Top of
Open File Available
Units Memory
16K 24K 32K
| System System System
0 126777 '46777 '66777
1 126077 '46077 '66077
2 125177 '45177 '65177
3 124277 144277 '64277
4 123377 '43377 '63377
5 122477 142477 '62477
6 121577 '41577 '61577
7 120677 140677 '60677
8 '17777 137777 '57777
9 '17077 '37077 '57077
10 '16177 '36177 '56177
11 115257 '135277 | '55277
12 114377 134377 154377
13 113477 133477 153477
14 '12577 132577 '52577
15 '11677 131677 '51677
16 '10777 '30777 '50777

Notes: 1. 448 words for each SAM file open.
2. 896 words for each DAM file open.

3. There is a difference of octal 700 as the number of
open file units increases. Users can estimate the
correct figures if they know how much memory is
available and the number of open file units.

4. The above figures assume only SAM files. Up to date

information may be gathered by the use of the STATUS
and GINFO commands.

2-22

SECTOR

QN BN N

USER PROGRAMS

17 17777 -
20000

ATIY
LOADER

(IF USED)
23777

A
22 DOS COMMON
FILE UNIT ‘*

BUFFERS

o B el et

(C/:)
8

2“'7"7"1

Q771

26 Y 26777

27 ')'70(\“
i livuv

33 DOS

37 37777

Figure 2-2. Memory Allocation in-16K System

2-23

MANIEL7S

SECTION 3
DOS OPERATION AND SYSTEM MAINTENANCE

This section describes how to load and start DOS, summarizes the
essential operator tasks during an operating session, and describes
procedures for data backup and system shutdown.

BOOTSTRAPS AND DISK BUILDING

The process of converting a ''cold-iron' computer to a useful tool
begins with getting that first program into memory (bootstrapping).
Then the first program can read other programs and data into memory.
A parallel step in bootstrapping DOS and DOS/VM into memory is the
preparation of the mass storage media.

LOADING DOS FROM MASTER DISK

DOS and DOS/VM are usually supplied in the form of a master disk
cartridge to be installed as the removable surface of a Pertec (or
equivalent) moving-head disk drive. The master disk includes DOS,
the command UFD, (CMDNCO), DOS/VM (filed in CMDNCO), and library files

(filed under UFD LIB). For information on the library files supplied
on the master disk, see Section 5 and the Library Manual.

NOTE: Special instructions accompany versions of DOS supplied on a
fixed-head disk drive or other media.
STARTING EQUIPMENT
1. Turn on power to the equipment in the system in the following order:
a. CPU
b. Fixed Head Disk Drive (if present)
c. Moving Head Disk Drive _
d. ASR, high speed tape equipnient, etc.
NOTE: Refer to the Prime Operator's Guide for operating
instructions for the computer panel, the terminal, and
the high-speed paper tape reader/punch. Operating

procedures for the various Prime disk drives appear in

Appendix K.

3-1

-

I\

2. Install the DOS master disk cartridge in the moving-head disk
drive. Press RUN/STOP to start drive. Wait for READY light.

CAUTION: Place the removable surface in WRITE-PROTECT mode

to ensure that accidental operating errors cannot
write over the DOS software.

BOOTING DOS

DOS must be transferred from the master disk to CPU memory, where
it will take control of subsequent events. In order to do this,
the CPU must be loaded ('booted') with the DOS BOOT program. DOS
BOOT may be supplied as a self-loadlng paper tape to be read by

the panel LOAD function or a key-in loader. However, if the CPU is
equipped with microcode for direct booting of DOS from the disk, no
paper tape is needed. The various procedures for booting DOS,
according to the types of equipment and LOAD microcode, appear in
Appendix B.

BOOT Operation

BOOT performs the following functions:
Cleans up parity, non-destructively, throughout memory.
Sizes available memory.
Requests, from the operator, which device to boot from.
Attaches to the MFD on that device.
Attaches to the UFD, DOS.

Depending upon memory size and/br sense switches, reads
*DOS16, *D0OS24, or *DOS32 into memory and starts the version
of DOS read in.

There are three possible outcomes of a boot operation: (1) a success-
ful boot, in which case DOS takes control; (2) a detected error, in
which case the boot returns and again requests, from the operator,
which device to boot from; or (3) an undetected error, such as
non-existent device; in the latter case, the boot pauses. -

When started, the boot prints:

PHYSICAL DEV =

3-2

MAN |

b75

The operator response must be the physical umit mumber as defined for
the DOS STARTUP command. Possible unit numbers are defined in
Table 3-1.

Sense

Switches 1-10: See the following paragraphs

11-13: Type =0 option 4000 MHD (moving head disk)
option 4000 FHD (fixed head disk)
option 4300 (diskette)
option 4002 9 sector MHD
option 4002 64 sector MID
option 4002 32 sector MiD
option 4001/4002 20 surface MHD
reserved

NV R NN O

Sense

Switches 14-16: Unit = physical drive number. For option
4000 and option 4002 MID's, EVEN units
are upper platters and ODD units are
lower platters of the drive number in
bits 14 and 15.

The version of DOS (*DOS16, *D0S24, *D0S32) that is read in is
determined by either memory size or Sense Switches 1, 2, and 3 in
the following manner:

If all sense switches are reset, the highest memory DOS that fits
in available memory is read. For booting DOS from diskette, the
user must specify *DOS16 by setting the sense switches as described
below:

If any of these sense switches are set, they are treated as the
most significant bits of the high address of memory + 1 as shown
in the following example:

Sense Switch Address - DOS
0 highest that will fit
120000 error
'30000 *D0S16
'40000 *D0S16
150000 *D0S24
'60000 *D0S24
'70000 *DOS32

'1X0000 (X=don't care) *D0S32

Once the boot has been successfully brought into memory by the control
panel boot, it can be re-executed by pressing MASTER CLEAR and STARTing
at '1000. If a status error is detected on the device, BOOT restarts
automatically. Both the option 4000 and diskette drivers wait for the
device to come ready, but the option 4002 driver treats device not ready
as a status error.

3-3

Building BOOT

The BOOT program is stored as a normal DOS SAVE file on a normal DOS
format record (=0). Consequently, physical record 0 contains first
an eight-word DOS record header, second an 8-word DOS SAVE file
header, and finally the BOOT program itself. The eight-word DOS
record header is .eliminated by reading the record starting at '770

but starting execution at '1000; the first word of the eight-word SAVE
file header is preserved.

The SAVE file header is as follows:

start address (SA((must = '3011)
end address (EA) (must be correct)
program counter (PC)

A-register

B-register

X-register

Keys

unavailable

unavailable

z
5
oL
[em]

LS T | O T A | A { A [

OOV AW

[

Since execution starts at '1000, the start address must be '3011 which
is also a MJP '1011 (the boot is guaranteed to be executed in 16S mode
either by MASTER CLEAR or the control panel boot). The boot executes
in sector '1000 and so must be stored there (at '1011), then later
moved (by means of PSD or TAP) to '3011 and SAVEd there (the end
address must be correct). Because BOOT can never be executed as a
user or system terminal command (it cannot execute in sector 3),

the PC, A-register, B-register, X-register, and Keys are available as
constants to be used by BOOT. They are defined as follows:

PC = '160000 mask for Sense Switches 1, 2 and 3

A = '110 master clear default control register

B = 127 SOC master clear default control register 1
X = '74000 SOC master clear default control register 2
Keys = '260 ASCII 0

Once a BOOT has been placed on a disk, it can be copied to another
disk with the following command sequeiice:

A MFD XXXXXX Lunit
RESTORE BOOT .
A MFD XXXXXX Lunit
SAVE BOOT

Since the SAVE parameters can be specified, the A, B, and X registers
can be set to other than master clear defaults to allow other types
of system terminals. When changing these values, care must be taken
not to change any of the others.

3-4

The command file C<BOOT on UFD=FILAID produces a file named **BOOT with
SAVE parameters defined as above. The following command sequence
produces a file (which must be named BOOT) suitable for placing on a
disk (User input is underlined).

OK: RESTORE **BOOT
OK: PM
SA, EA,-P, A, B, X, K=
001011 high 031721 031723 000110 000027 75000
OK: PSD
$ C 1011 high 3011
g V 1011 high 3011

Q
OK: SAVE *BOOT 3011 (high + '2000) 31721 31723 11027 74000
OK:

NOTE: high is the EA and varies depending on the revision or the version
of BOOT read. It must be correct.

Direct Panel Load of DOS from Disk

Use these procedures if the CPU contains microcode for direct booting
from the disk:

i. Set Sense Switches.

To indicate what disk to boot from, set the rightmost sense switches

as follows:
Physical Disk Number (octal) Sense Switches (octal)

0 XX0004

1] XX0044

10 XX0003

20 XX0006

30 XX0014

31 XX0054

40 XX0013

XXX050 XX0014

XXX051 XX0054

XXX250 _ XX0034

XXX251 ‘ XX0074

NOTES: Physical disk number is associated with disks as shown in
Table 3-1. The X's represent don't care octal digits.

3-5
MAN 1675

A particular DOS (DOS at 16K, 24K, 32K) can be selected by setting
the leftmost sense switch as follows:

DOS Sense Switches
highest DOS that will fit in memory 00XXX
*DOS16 040X
*D0S24 063X
*DOS32 100).0.0.0.6

Turn rotary switch to STOP/STEP and press MASTER CLEAR. Turn
rotary switch to LOAD and press START. The control panel boot
should read in record 0 from the disk containing the DOS BOOT,
transfer control to it, and print: PHYSICAL DEVICE = .

Refer to the next major topic "LOADING OF DOS".

DOS BOOT Tape, Panel LOAD

Use this procedure if the CPU contains microcode for‘ a panel LOAD
from a paper tape device - the ASR Teletype (low-speed reader) or
the HSR (high-speed reader).

1'
2.

Mount the DOS BOOT tape on the available device (ASR or HSR).
Set sense switches as follows:

Device Sense Switches

ASR '000001
HSR '000002

Turn rotary switch to STOP/STEP, press MASTER CLEAR, turn to
RUN and press START. DOS BOOT tape loads from tape and prints:
PHYSICAL DEVICE = .

Refer to the next major topic, "LOADINC OE Dos".

3-6

nmMS MNT Tana Yarvr-.+mn T AnA T

VY AANSA AGEPV g NGy Al Wwe

1. Prepare the CPU to read self-loading paper tapes by entering
the appropriate key-in loader and second-level bootstrap
tape as described in the Prime CPU Operator's Guide.

2. Mount the DOS BOOT paper tape on the available device (ASR or
HSR).

3. After the second-level bootstrap is loaded, the CPU is ready to
read a self-loading tape from the available device. Turn
the CPU rotary switch to RUN and press START. The DOS BOOT
tape reads into memory and types: PHYSICAL DEVICE =

4. Refer to the next major topic, “LOADING OF DOS".

LOADING OF DOS

In all cases, once DOS has been booted into memory, -the system terminal
prints:

PHYSICAL DEVICE =

Physical Device codes are assigned as follows:

Device (disk types) Codes Controller
Moving head disks 0-7 "~ 4000
Fixed head disks 10 - 11 4000
Floppy disks 20 - 27 4300
Moving head disks .30 - 37 4002
Fixed head disks 40 4002
Moving head disks 50 - 57 4002

(32 Sector/Track)
30 million word disks 5050-5056 4001/4002
(even numbers
only)
30 million word disks 5250+5256 4001/4002
(even mumbers
only)

For further information refer to Table 3-1.

3-7

MAN |75

The user types the physical device code at the terminal and presses
CARRIAGE RETURN. Then DOS/BOOT loads and starts DOS, which prints a
label line such as:

DOS REV. 5.0 5/10/74 (AT 070000)

When DOS is ready to receive commands from the user it prints:
OK:

at the system terminal. However, if an error of some kind is
discovered, BOOT retypes the message:

PHYSICAL DEVICE =
Errors that result in this message are the following:

1. disk does not exist on the system or is not turned on, spinning
and ready;

2. unrecovered disk error attempting to read *DOS16, *DOS24, or
*D0S32 from the disk;

3. disk does not have an MFD, the UFD DOS within the MFD or, the
files *D0S16, *D0S24, or *D0S32 in UFD DOS;

4, the MFD, DOS, *D0S16, *D0S24, or *D0S32 has a bad structure.

STARTUP OF DOS

When DOS prints the message OK:, the DOS system is loaded into memory
and ready to receive commands from the user. The first command to be
entered must be a STARTUP command that connects a physical disk to
logical disk unit 0. DOS expects to find all its command files on
unit 0. For detaiied information on the STARTUP command, refer to
Section 4. The usual initial STARTUP is: '

" OK: STARTUP 0 1

This assigns the removable surface of the moving head disk (the master
disk pack) as logical unit 0 and the fixed surface as logical 1.

3-8

vaeiral Nawvris~a A .frv\vv\/\ﬂt

Physical
Disk
Drive Controller
Number Option Description Sectors/Track
0 4000 Removable surface of first MH ’ 8
(moving head) disk drive (upper
surface)
1 4000 Fixed surface of first MH disk 8
drive (lower surface)
2 4000 Removable surface of second M{ disk 8
drive (upper surface)
3 4000 Fixed surface of second MH disk 8
drive (lower surface)
4 4000 Removable surface of third Mi disk 8
drive (upper surface)
5 4000 Fixed surface of third MH disk drive 8
(lower surface)
6 4000 Removable surface of fourth MH disk 8
drive (upper surface)
7 4000 Fixed surface of fourth MH disk drive 8
: (lower surface)
10 4000 First fixed head disk drive 8
20 4300 First floppy disk drive 4
21 4300 Second floppy disk drive 4
22 - 4300 Third floppy disk drive 4
23 4300 Fourth floppy disk drive . 4
24 4300 Fifth floppy disk drive 4
25 4300 Sixth floppy disk drive 4
26 4300 Seventh floppy disk drive 4

27 4300 Eighth floppy disk drive 4

3-9
MAN 1675

Table 3-1. Physical Device Assignments (Cont)

Physical
Disk
Drive Controller
Number Option Description) Sectors/Track
30 4002 " Removable surface of first MH 8
(moving head) disk drive (upper
surface)
31 4002 Fixed surface of first MH disk drive 8
(lower surface)
32 4002 Removable surface of second MH disk 8
drive (upper surface)
33 4002 Fixed surface of second MH disk drive 8
(lower surface)
34 4002 Removable surface of third MH disk drive 8
(upper surface)
35 4002 Fixed surface of third MH disk drive 8
(lower surface)
36 4002 Removable surface of fourth MH d1sk 8
drive (upper surface)
37 4002 Fixed surface of fourth MH disk drive 8
(lower surface)
40 4002 Fixed head disk drive 64
50 4002 Removable surface of first MH (moving 32
head) disk drive (upper surface
51 4002 Fixed surface of first MH disk drive 32
(lower surface) »
52 4002 Removable surface of second M dlsk drive 32
(upper Qurface)
53 4002 Fixed surface of second MH disk drive 32
(lower surface)
54 4002 Removable surface of third MH disk drive 32
(upper surface)
55 4002 Fixed surface of third MH disk drive 32

(lower surface)

3-10

Table 3-1. Physical Device Assignments (Cont)

Physical
Disk
Drive Controller
Number Option Description ’ Sectors/Track
56 4002 Removable surface of fourth MH disk 32
drive (upper surface)
57 4002 Fixed surface of fourth MH disk drive 32
(lower surface)
5050 4001/4002 First 30-million word moving head 32
disk drive (controller address = 21)
5052 4001/4002 Second 30-million word moving head 32
disk drive (controller address = 21)
5054 4001/4002 Third 30-miilion word moving head 32
disk drive (controller address = 21)
5056 4001/4002 Fourth 30-million word moving head 32
disk drive (controller address = 21)
5250 4001/4002 First 30-million word moving head disk 32
drive (controller address = 23)
5252 4001/4002 Second 30-million word moving head disk 32
4 ' drive (controller address = 23)
5254 4001/4002 Third 30-million word moving head disk 32
drive (controller address = 23)
5256 4001/4002 Fourth 30-million word moving head disk 32

drive (controller address = 23)

3-11
MANIL]S

NOTES TO TABLE 3-1:

The logical-to-physical assignment depends on the order in which the
physical device numbers are listed as parameters in the STARTUP command.
The physical device number specified in the Ldisk0 position is assigned
as logical disk unit 0, the physical device number specified in the
Ldiskl position is assigned as logical disk unit 1, and so on. Efample:

STARTUP 2 3 5 7
The physical disks are 2, 3, 5, and 7; where:

physical 2 is logical 0, physical 3 is logical 1, physical 5
is logical 3, and physical 7 is logical 4. The number of
parameters in STARTUP indicate to DOS the number of logical
drives assigned to the system.

CAUTION: When changing disks, a SHUTDN is required. Otherwise,
DOS and DOS/VM will use parameters (such as record availability)
applicable to the previous disk and the newly replaced disk with
possible disastrous results.

The codes shown in Table 3-1 are used in the STARTUP command (refer to
Section 4) and the ASSIGN command (refer to Section 4). The codes are
also used by the utility commands FIXRAT, MAKE, and COPY (refer to
Section 4).

The physical device codes are the same for three- or six-million word
disk drivers commected to the controller.

Data Transfer Between Disks

An 8 sector/track disk pack written on a drive comnected to the 4000
controller cannot be read on a drive comnected to the 4002 controller
and vice-versa, because the method of computing hardware checksum
written on the pack is different on the two controllers. A special
conversion program to convert packs written on one controller to read on
the other controller must be written. A 32-sector/track pack

cannot be read or written on a drive comnected to the 4000 controller.
An attempt to read a 32-sector/track pack using physical device numbers
for an 8-sector/track pack will fail. Similarly, an attempt to read
an 8-sector/track pack using physical device numbers for a 32-sector/
track pack will fail. It is important to keep straight the identifi-
cation of the disk pack. It is suggested that each pack be labeled
with the range of physical device numbers appropriate to the disk pack.

Unlike the other disks, only even numbered physical disk drive

numbers are allowed for the 30-million word disk drives. There may
be up to four drives connected to a type 4001/4002 controller that is

3-12

configured to the system. The default device address for a type
4001/4002 controller is 23, and the disk drive numbers associated
with this drive are 5250, 5252, 5254, 5256. Similarly, a 4001 or 4002
controller may have a device address of 21, and disk drive numbers
associated with this controller are 5050, 5052, 5054 and 5056. A
system configuration could have two type 4001/4002 controllers and up
to eight 30-million word disks connected.

Partitioning Disks

A user may partition a 30-million word disk into two or more sub-
disks, via use of the MAKE commad (refer to Section 4). Each parti-
tion of a disk (sub-disk) is treated by the system commands, DOS,
DOS/VM, FIXRAT and COPY, as if it were a physically separate disk.
Each partition contains its own MFD, DSKRAT, BOOT, CMDNCO, ETC.

A partition is defined by a starting head address, relative to head 0
of the disk, and a number of contiguous heads. The minimm partition
contains two heads (i.e., three million words). When a partition of a
30-million word disk is present, the physical disk number varies from
those shown in Table 3-1. The number of heads is reflected in the
second two digits. Tables 3-2 and 3-3 are useful in constructing
partitions. (The X's represent don't care octal digits).

The physical disk number defining a partition on a disk that is parti-
tioned is generated by merging the head offset with the number of heads
and with the disk device number. For the purposes of forming a physical
disk number for a partitioned disk, the physical disk device numbers are
considered to be: 50, 52, 54, and 56 for disks 1 to 4 on the type
4001/4002 controller.

Example: The physical disk number for a disk partition having a head
offset of 00 and the number of heads of 50 would be calculated as
follows: (assume that the device address of the type 4001/4002
controller is 23). First look up at the appropriate numbers in
Tables 3-Z and 3-3, then

head offset + number of heads + physical disk device number

00XXXX + XX52XX + 56 = 005256
As another example, consider a disk split into two partitions with the
disk being the first disk on the type 4001/4002 controller with device
address 21; the first portion has head offset = 0 heads and number of
heads = 10. The physical disk for the first partition is:

00200X + XX24XX + 50 = 002450

The second partition has head-offset = 10 heads and number-of-heads = 10.
The physical disk for the second partition is:

05XXX + XX24XX + 50 = 05250

Physical Device Numbers Usage

The physical device codes described previously in this section are used
in the ASSI&N, CONFIG, DISKS, SHUTDN, STARTUP, STATUS, and UNASSI®N
commands. These device codes are also used by the utilities FIXRAT,
FUTIL, MAKE and COPY.

MAN 1675 3-13

Table 3-2. Head Offset Definitions

Offset Physical Disk Numbers
0 heads 00XXXX
1 head 01XXXX
2 heads 020X
4 heads 03XxXXX
6 heads 04X0XX
8 heads 05XXxXX
10 heads 06XXXX
12 heads 070X
14 heads 111).0.0.0.
16 heads 11X00X

Table 3-3. Number of Heads Definition

Number of Heads

Type 4001/4002 Controller
Address = 23
Physical Disk Number

Type 4001/4002 Controller
Address = 21
Physical Disk Number

2 heads (default)

2 heads (explicit)

4 heads
6 heads
8 heads
10 heads
12 heads
14 heads
16 heads
18 heads
20 heads

XX02XX
XX06XX
XX12XX
XX16XX
XX22XX
XX26XX
XX32XX
XX36XX
XX42XX
XX46XX

XX52XX

XX00XX
XX04XX
XX10XX
XX14XX
XX20xX
XX24xXX
XX30XX
XX34XX
XX40XX
XX44XX
X50XX

3-14

MAN |bT5

DOS/WM is started from DOS, once DOS is started and rumning. For
details, refer to Section 6. Note that the response of DOS/VM to

a valid command is: OK, ("'OK" followed by comma, not a colon). This
is one indication which of the operating systems has control.

INITIAL OPERATING SESSION

Attaching to UFD

After a STARTUP, the user must attach to a User File Directory in
order to execute DOS commands and create or manipulate

files. Each master disk provides several blank UFD's named
SPARE1, SPAREZ2, etc., and the user may attach to any of these
with an ATTACH command (Section 4). To determine what spare UFD's
are available, ATTACH to the MFD and do a LISTF:

OK: A FD XXXXXX

OK: LISTF

UFD=FD 0

DSKAAT ilFD BOOT CMDNZO LIB SACLIB DIAG PiiA
FORTAN Lb# BASIC FLIA! FLIR2 FLIB3 FLIRA FLIBS
FLIB6 LIB7 LIBS3 I10Cs AILS ED BINED T &M
DJs 2TOS pOSVH ATO3VM T WUEX SPAHEZ SPAREZ SPARE4

SPARES SPARES SPARET

Note that the MFD has a password, XXX0XX. This is assigned at the time

the master disk is prepared, to discourage casual or inadvertent use
of this important directory.

CAUTION: Do not attach to MFD for a program development or normal
file handling tasks. Be very careful in entering commands
while attached to this UFD. If any of the files in this
MFD are damaged, the master disk is spoiled.

DISK BUILDING (COPYING MASTER DISK PACK)

Disk building consists of three phases: format the disk; move run
files of DOS (*DOS16, *D0S24, *D0OS32 as appropriate) onto the UFD DOS;
and move any desired external commands onto the UFD CMDNCO and/or
move libraries onto the UFD LIB.

Format of DOS Disk

I1f a DOS master disk (or any other DOS disk) is available, it can be
COPY'd onto the virgin disk.

If no DOS disk is available or an empty disk is desired, the MAKE
program can be run. The COPY and MAKE programs are described in
Section 4. When a disk is formatted using MAKE, any needed files are
then copied from the master disk onto the new disk. 1If this new disk
is to be boot loaded from, then UFD DOS must contain the files

*D0S16, *DOS24 and *D0S32. MAKE ensures that an executable and correct
BOOT is written onto record 0 of the disk.

Building a DOS Disk from Paper Tape

If no DOS formatted disks are available, one must be created from
Prime-supplied paper tapes. All tapes proviced are MDL sclf-loading
tapes and are loaded into memory using the control panel toot. The
following procedure must be followed:

1. Load BDOSVZ (DOS bootstrap tape) This loads the loader *DOS16
as well as other necessary modules. :

Start at '6765

After the header is typed and DOS prompts OK:, type the following
commands :

STARTUP (Pdev) where Pdev is a physical device number.

ATTACH DOS
SAVE *DOS16 7000 17777 31000 20000 0 O 2000

2. Boot the new *DOS16 from the disk using either:
Control panel boot (Sense Switch 2 set)

Paper tape DOSBOOT (SLT—start:at '1000). Set Sense Switch 2
after the tape has been loaded.

3. Any other command can be added by loading it into memory (control
panel boot), starting at '30000 (DOS, ATTACHing to CMDNCO and
SAVEing the command). (Refer to Section 4 for a description of
these commands.)

3-16

4, Use EDR to read any binary files (e.g., FINLIR)

5. Use ED to read any source files (e.g., DRATIT)
Once the drive is.READY, the user can resume DOS operation.
A new STARTUP is required; example:

OK: STARTUP 1 O

This establishes the fixed surface as logical unit 0; all DOS

automatic disk activity supporting the assembler, compiler, editor
(etc.) uses logical umit 0.

Creating Additional DOS Disks

Every DOS disk must contain a BOOT, a DSKRAT file, an MFD, the command
UFD (e.g., CMDNC0), the command programs FIXRAT, COPY, and the

UFD's required by the user. The easiest way to convert a blank disk
pack to a DOS disk is to run the MAKE program. Refer to the MAKE
command description in Section 4. Another method is to copy the
active DOS disk from its present location. (For example, from the

fixed surface to the removable surface of a moving head disk drive.)
This is done as follows:

OK: A MDNCO

OK: COPY (Copy operation begins).

Any number of DOS-compatible disk packs can be made in this way.

Of course, much of the available file space on an original master

DOS disk is occupied. To make room, the user can delete UFD's or

files as required. Only the DOS disk assigned as logical unit 0 needs to
have the full set of DOS command files, UFD's, library, etc. On

other disks to be used mainly for user's data or program files, the
surplus UFD's, and the files within them, can te deleted. To

determine which files will provide the most space, run a FIXRAT

to observe the mmber of disk records occupied by each UFD. To

delete UFD's, attach to the MFD and enter DELETE commands; example:

OK: A MFD X2000X

FUTIL
> TREDEL LIB
> TREDEL PMA

. ..> TREDEL FORTRAN

> QUIT
OK:
MAN 1675 3-17

Alternatively, if the user needs many UFD's, he could use CNAME to
change the UFD names, then attach to the UFD's and delete the files
within them using FUTIL. See Section 4.

Entering New UFD's

Another method to coin new UFD names is to attach to the MFD and use the
CREATE command. For example:

OK: A MFD XXXXXX

OK: CREATE NEWUFD

The user must attach to a UFD other than the MFD as soon as possible to
reduce the likelihood of spoiling any of the MFD files.

Program Development Using DOS

From this point, the user is free to use DOS and its supporting
software to create, assemble or compile, load, save, and execute

user programs. The internal and external DOS commands are described
in Section 4. The appropriate manuals provide detailed information

on the Editors, FORTRAN, BASIC. The Macro Assembler, Loader and other
programs are described in the Programs Software Development User Guide.

At the end of this section, is an example of the terminal printout
resulting from the development of a simple FORTRAN program. The
user may study the example and use its procedures as a guide during
initial program development efforts.

Recovering from Errors

If an equipment failure or program error causes the CPU to leave DOS
control, it is usually possible to return to DOS by starting the CPU
at location '30000, '50000, or '70000, depending on the hardware

configuration. See the Operators Guide for instructions to restart
at these locations.

Installing New External Commands

The user can install his own custom utility or device control programs
to be invoked by external command to DOS. One way this is done is by

restoring a program from the user's UFD, and then saving it under the

command UFD CMDNCO. Assume for example that the user wants to install
a cassette recording and playback monitor program to be invoked by the
name CASS:

3-18

When DOS prints the message, OK:, the first command to be entered must
be a STARTUP command that assigns the disk logical unit 0. DOS expects
to find all its command and utility files on unit 0. For detailed
information on the STARTUP command, refer to Section 4. The usual
initial STARTUP is: 4

OK: STARTUP 0 1

This assigns the removable surface of the moving head disk (the master
disk pack) as logical unit 0, and the fixed surface as logical unit 1.

OK: A USER1

OK: REST CSETV1

OK: PM

SA,EA,P,A,B,X,K=

000100 011100 001000 000000 000000 000000 000000
OK: A QMDNCO

OK: SAVE CASS 100 11100 1000 0 D 0

OK: A USER1
OK: CASS
GO

(CASS program begins running.)
In this example, the user restores file CSETV1 from his own UFD (USER1),
and does a PM to determine the RVEC parameters (discussed in Section 4).
He then attaches to CMDNCO and saves the program under the name CASS,

with the same parameters as the original. Thereafter, when he uses the
name CASS as an external command, DOS resumes the saved CASS program.

Another way to install a new external command is:

OK: A NEWUED

OK: FUT

> FROM USER1

> TO CMDNCO

> COPY CSETV1 CASS
> QUIT

OK:

MAN 1675 3-19

BACKUP
General

Each installation can develop its own procedures to save copies of
files and disks for backup purposes. The techniques are simple.
Individual files can be saved on paper tape through the Te.t or Binary
Editors. DOS disks can be copied to removable disk packs by caréful
use of the COPY command described in Section 4.

To copy the fixed disk surface to a removable backup pack (not the
master disk); first, do a FIXRAT of the fixed surface and do not

proceed until an error-free FIXRAT pass is obtained. Then, do the
appropriate STARTUP, attach to some UFD, and use the COPY command.

CAUTION

Before entering the COPY command, make sure the
FROM surface is in WRITE PROTECT mode.

Use of MAGSAV

If magnetic tape devices are present, files are copied to them by

the MAGSAV command. This is the most convenient and simplest method
of implementing system backup. Alsc the tapes produced by MAGSAV can
be read back into the system configuration by use of the MAGRST
command .

SHUTDOWN

Before terhinating an operating session with DOS by loading another
operating system or turning off power, enter the following commands :

OK: FIXRAT (This step is optional)
OK: SHUTDN '

See Section 4 for details. The SHUTDN command writes to disk
DOS data that is buffered in memory.

Changing Disk Packs

To change removable disk packs in the moving-head disk drive, shut

down DOS as above. Then power down the disk drive and replace the

pack. If DOS/WM is the system in control, SHUT DOWN the physical disk
drive with the DOS/WM SHUTDN command then power down the disk drive.
Restart the disk drive; when the unit is READY, give a STARTUP command
appropriate to the operation with the new pack ard resume typing commands.

3-20

Using FIXRAT

The external command FIXRAT loads and starts the DOS maintenance
program that checks the file integrity on any disk pack. FIXRAT)
fully supports nested UFD's and nested Segment Directories. Section 4

gives further information on the FIXRAT command, and.Appendlx E also
describes all features of FIXRAT.

FIXRAT must be run whenever there is reason to expect that the
file structure is damaged - for example, if a program being debugged
runs wild and writes over part of DOS. Until the user gains exper-

ience with the system, he should run FIXRAT at the close of every
operating session.

The suggested procedure is to maintain a DOS disk pack and to run
FIXRAT every morning, and if no error occurs, to copy the disk pack
onto a daily backup disk pack. If any files are truncated or deleted,
these may be copied from the daily backup disk pack, if they were
stored previously on the daily backup disk pack.

Turning Power Off

After a shutdown, the CPU can be used to run other software or
power can be turned off. The following power- -down order is
recommended:

1. Moving-Head Disk

2. ASR, high-speed tape unit, and other peripheral devices

3. PRIME CPU

MAN 1675 3-21

RESTARTING DOS

CAUTION

If you are unfamiliar with the system, do not
attempt to restart DOS. Check with someone
who knows the system's hardware status, the .
contents of all disk surfaces, and the cor-
rect STARTUP procedure for the particular
installation.

A typical procedure to restart DOS after a shutdown is:

1.
2.

Turn on power and boot DOS into control as described earlier.
Give the appropriate STARTUP command. For example, in a system
with a fixed/removable moving head disk drive, the usual
startup is STARTUP 1 0. This establishes the fixed surface

as the DOS command disk.

ATTACH to an authorized UFD and resume operation.

3-22

EXAMPLE - INITIALIZING DOS & PROGRAM DEVELOPMENT

The following printout is the actual terminal record of an operating
session in which a DOS master disk is installed and copied. DOS is
then initialized and used to demonstrate the development of a simple
FORTRAN program.

PHYSICAL DEV = 0O <« When the master disk has been loaded, the computer has

been started, and DOS has been booted.
DOS REV. 5.0 5/10/74 (AT 070060) phys‘i’fial dev?ﬂi ;mfsinﬂle
2

Sign on messagg from DOS. this case, the user types 0.

OK: STARTUP 0 <« Starts up the top surface of the drive
OKs A CMDNCO <« Attach tc some UFD.

OK: COPY
G0
~¢——— This copies tne sk

PHYSICAL FROM-TO: O 1 to the fived sur?ﬁéécr disk contents down
DONE - ’
OKs STA?SHUTDN <« Shutdown to show what happens
glé! ST. - +« New startup lets us work from fixed surface

A MFD XXXXXX . A . .
OK: LISTF during first operating session.

%ﬁt'fms)ee what UFD names are listed in
e .

UFD=MFD 0«Logical device number.
MDDV1 MFD BOOT CMDNCO LiIB SRCL.IB TaM FLIBi
FLIB2 FLIB3 FLIB4 FLIBS FLIB6 LIB?7 LIBS 10CS
AIDS BINED DOS RTOS1 RTOS2 RTOS3 RTOS4 INDEX
MATHLB U=-CODE Ull DBASIC DVBIN BASIC RUNDQV
OK?

*__CNAME MDDVI ?
OK: CNAMF MDDV1 DOSDEM <+ CNAME to change DSKRAT name; can be used to change
name of any file or directory.

} « Create to create new UFD's; now do a LISTF again

OKs CREATE MIKE to note changes.

OK: LISTF

UFD=MFD 0

DOSDEM MFD BOOT CMDNCO LIB SRCLIB T&M FLIB1
FLIB2 FLIB3 FLIBA FLIBS FLIB6 LIB7 LIB8 10CS

AIDS BINED DOS RTOST RTOS2 RTOS3 RTOS4 INDEX
MATHLB U-CODE Ull DBASIC DVBIN BASIC RUNDQV GEDRGE
MIKE

OK: A MIKE <« Attach to UFD Mike for program development
OKs LISTF

UFD=MIKE 0 } Note LISTF of "empty" UFD; now let's enter editor and
create a file(2).

MAN 1675 3-23

OKs In response to ED, DOS loads editor and puts user in
@ / INPUT mode. Anything typed is stored in editor's buffer
INPUT as text.

CO\DUMMT*Y FORTRAN PRQGRAM EXAMPLE

_DIMENSION BUFF(32,32) We enter trivial FORTRAN example.
\..COMMON BUFF Backslash (shift L) is tab
A=?\ A = 3, character. 'erases last ¢

\B= 4 ~ character, ?kills line up to

N\ C = SQRT(A*%*2 + B#*x2 that point.

\.WRITE (1,1000) A,B.C.

1000\ FORMAT(HYPOTENUSE OF TRIANGLE WITH SIDES'F8.4, 'AND''F8.4,'1S'F8.4
)

\CALL EXTI

\ END

3 <« Note, one way to switch from INPUT to EDIT modes is by typing semicolon.
EDIT
L = 4P
BOTTOM. Oops.
TsL = 4,P
= « That's better.
Cr4a/4. + Have to put a decimal point after the 4.

BAD C « Forgot the closing /.
C/4/4+/,P +« Change made correctly,

2 fo+ confirmed by print.
L « Remembered that a quote is missing!
—

7000 FORMATCHYPOTENUSE OF TRIANGLE WITH SIDES'F8.4, 'AND'°'F8.4, *IS'F8.4
C/HY/ *HY/P

_I;'Gbo FORMAT(*HYPOTENUSE OF TRIANGLE WITH SIDES'F8.4, 'AND'"'F8.4,'1S5'F8.4
T,P20 +« To print entire program for cursory inspection.
+NULL.
c DUMMY FORTRAN PRQGRAM EXAMPLE
DIMENSION BUFF(32,32)
COMMON BUFF
A = 30
B = 4
C = SQRT(A*%2 + Bxx2
WVRITE (1,1000) A.B,C
1000 FORMAT('HYPOTENUSE OF TRIANGLE WITH SIDES*F8.4,°'AND''F8.4,'1S'F8.4

CALL EXTI
END

BOTTOM

3-24

L 3,P <+ Write line looped no continuation; let's try to fix it
PIMENSION BUFF(32, 32)

L) * Located wrong expression, let's

P . keep trying.
WRITE (1,1000) A,B,C

L),P

)

n - »

¥ <« Use of semicolon to switch from EDIT to INPUT mode

INPUT

\X) <« Typing double CARRIAGE RETURN also switches from INPUT to EDIT.

EDIT

P_

X) <+ Fixed at last.
+ Looks OK. Let's file it and
try compiling it.

E

0Ks FTN TEST

G0

@WRITE (1,1000) A,B,C
ttkxnkCHakkk

0CALL EXTI
ttkkkxHSkEx%

*% ERRORS (FTN-1082.006)s «+< Errors.
OK: ED TEST
G0. .
EDIT
L Bx*2
P .
C = SQRT(A*%2 + B¥%2 <+ Forgot to close the paren

C/Bx%2/B%%x2)/ after the 2.
P
- C = SQRT(A*%2 + B%%*2) <« That's better.
g_ < Let's switch to editors verify mode.
_ WRITE (1,1000) A,B,C <« N command caused next line to be printed
N automatically.

1600 FORMAT(°'HYPOTENUSE OF TRIANGLE WITH SIDES'F8+4, 'AND**'F8.4, 'I1S5'F8.4
Csvv/v/ <+ Ye gads! another error

1000 _FORMAT('HYFOTENUSE OF TRIANGLE VITH SIﬁES'FB.A..’AND'FB.A;'IS'FB-A
FILE TEST *+ Seems to be fixed, let's file program and recompile it.

MAN 1675 3-25

OK: ETN TEST
60
NO ERRORS (FTN-1082.006).

OKs LOAD?FILMEM <«—ttsettttteesee That time it compiled OK. Let's

a load it. FILMEM loads unoccupied
memory with zeroes; useful if you want

OK: LOAD . to make an MDL tape after loading the

6. — $ is LOAD prompt; now the program. B<TEST is binary file

$ LO B~TEST« Load program. generated by compiler.

s TIB Toads library. 1

s MA 1+ No load complete (LC) message; try a load map.
*«START 001000 =LOV 000Q74 *HIGH 010545 *PBRK 010546

*CMLOW 057758 *CMHGH 063752 =SYM 057211 =Ul1 00000S
Note, UII should be 000000; anything else means UII

$ LIB UIl < Load UII requirements not met.
$ MA 3 < Check to see if all subroutines loaded

EXTI 001106%* < Oops, specified non-existent subroutine.
$ QUIT +«Let's leave loader

OKs ED TEST<Edit to specify correct subroutine
a0
EDIT
y
L EXTI
CALL EXTI

CZEXTI/EX]IT/
CALL EXIT

FILE <« Note, no need to specify name if ED was invoked with a Filename argument.

OK: FILMEM < Whoops, we have to recompile; no harm done, however
a0

OK: FIN TEST
ao

NO ERRORS (FTN-1082.006).

0X: FILMFM
.)

OK: LOAD

€0 |

$ LOAD TEST?LO B=TEST <« To load B<test. This line shows use of ? to

s L1 cancel incorrect command, .

L¢ < Note, LC Load Complete is spurious unless UII requirements are satisfied.
Let's check this time by making a full load map.

3-26

CNTBL
ISDWMS
OSLASC
ISPASC
ISPBIN
VBITE
PUTC
TNOUA
Pi10U
P1IR
FSATI

$ LIB UIl +* Load UII package, now we can believe LC message.

LC

001000
057752

000200

000001
001302
001720

oogeae .-

005410
003414
005431
004713
004153
005153
005462
006553
007025
007655
007747
010116
010244
010462
010503

Py e

010545
057216

*PBRK
*UL]

Indigates UII if not 0 -+ ¢

sLOV 000074 sHIGH
#CMHGH 063752 *STHM
800352 00077 000777
SQRT 001127 ES2)1
Fsl0 001360 FSA)
FSAS 0011720 FSAS
FSFLEX 004155 FSER
AC2 0044811 AC3
RDASC. 004415 RDBIN
CONTRL 004532 ATTDEV
RBTBL 004723 VATBL
LUTBL 004163 PUTBL
OSDASC 005154 OSDBIN
ISCASC 006247 IDCASC
OSAASC 006714 OSPASC
QSABIN 0017336 OSPBIN
SEARCH 007706 EXIT
T1IN 010005 Ti0U
TNOU 010133 TO0CT
CsP 010262 CSA
T11B 010467 Ti10B
057752

001221
001714
001725
004323
004312
0034521
005603
004733
004774
005346
006247
006720
007350
007711
010076
010167
010356
010474

8 SA T?SA *TEST« Use of loader SAVE command to save *TEST
$ EX « To execute *TEST.

HYPOTENUSE OF TRIANGLE WITH SIDES

OK: R #TEST <« Resume *TEST for the fun of it.

FSWN
FSA3
#SIORS

FSHT

AC2
VRASC
SETIOS
VBTBL
ISDASC
I1SDBIN
ISAASC
ISABIN
READ
OPSCHK
TONL
P1IN
P10B
FSAT

3.0000AND 4.00001S 5.0000

Yy Y vy

001213

001714
002201
004330
004413
004425
004632
004743
005005
005415
006545
007004
007624
007716
010118
oio0ges
010456
010501

,f.
Program output, it works!
Note, at this point, we
have returned to DOS

armA Tarral

COnmnallia i€veld.

HYPOTENUSE OF TRIANGLE WITH SIDES 3.0000AND 4.0000IS $.0000

GK: PM <« Let's do a few more commands, e.g., PM

SA.EA,P,A.B.X,E=
000066 Q12252 001107 120240 006726 000000 006203
0Xs STATUS

UFD=MIKE 0

MAN 147G

3-27

POSLO FINITS
067000

LDEV PDEV
] 01
1 00

OK: AVAIL
ao

000433 .+« Note, tells us 413 (octal) records still i i i
s LISTE () still available on disk (logical §).

UFD=MIKE 0

P~TEST TEST *TEST Note that compiler generated binary

filename B+TEST; Loader generated file *TEST
OK3 SHUTDN . : | . '
X3 Shutdown the disk to remove the master disk pack.

3-28

SECTION 4
COMMANDS

COMMAND STRUCTURE

When properly loaded and started, DOS prompts the operator with the
message OK:, and DOS/VM prompts the operator with the message

OK,:. This response indicates that the operating system is ready to
receive and process a command string. This section defines the form
and effect of all legal DOS and DOS/VM commands, both internal
(processed by the operating system) or external (executed by system-
level programs that are called by DOS or DOS/VM).

A1l commands consist of a command name and an optional list of argu-
ments typed on a single line and entered by the carriage return

key (CR). The operating system analyzes and executes the command,
if possible. Blank lines are ignored. Errors in the command string,
or caused by the programs that execute external commands, result in
an error message.

A series of DOS or DOS/VM commands may be prepared by the Text Editor

and stored in a command file for automatic execution under control of
the COMINDPUT command,

Command Format

The general syntax of a command is:
COMMAND . Namel . Name2 ., Argl Arg? ... Arg9 (CR)

where COMMAND is the command name, usually each Name is a Filename

or UFD name (or is a meaningful identifier) and each Arg is an octal
argument, or parameter, of up to six octal digits. (If more than

six digits are specified, the last six are used.) Up to three names
and nine arguments are allowed. Spaces (&) must be used following the
command name and between each Filename or argument. The ellipsis

(. . .) indicates that the preceding item can be repeated. The follow-
ing examples demonstrate the notation used in this section to represent
command formats:

RESUME Filename [Pc] [A] [B] [X] [Keys]

In this example, RESUME is the command name. The letter R is underlined
as the acceptable abbreviation. The command must specify a Filename,

a legal filename existing in the UFD to which the user is currently
attached. The remaining items in the command string are the RVEC
parameters, described later. Items enclosed in brackets are optional.
Parameters that are omitted are assumed to be zero. Parameters are
identified by the operating system according to their position in the
command string.

MANIL]S 4-1

An ordinal value followed by a slash and a value can be used to give an
octal parameter. For example:

R FILENAM 3/1000
sets the value of X.

Items enclosed in vertical lines are alternatives, of which one must be
chosen, as in

Filename
Items in all capital letters (e.g., CONTINUE) must be entered literally.

Items in initial caps (e.g., Filename) are variables to be assigned
values or names by the user.

Levels of Communication

There are two levels of commmication between a user at a terminal and
DOS/WM (or the user at the terminal in DOS). The user either interacts
with the supervisor, or with a program currently being executed under
control of the operating system. When interacting with the supervisor,
terminal input is interpreted as system commands. This is referred to
as command level. If the user is interacting with a program that is
running under control of DOS or DOS/VM, terminal input is interpreted
as data significant to that program, and it is passed from the super-
visor to the running program to be interpreted by that program.

(The LINE FEED character is ignored by DOS/VM). In DOS/VM, there is
one exception to the interpretation of terminal input in either mode.
When the CONTROL-P character is input, it is always interpreted by

the supervisor as a QUIT character. Whenever a user program or system
command has completed execution, the user returns to command level ready
to commmicate with DOS/VM. Upon normal completion of a command or
program, DOS/VM prints the prompt:

0K,
or DOS prints the prompt:
OK:

If an error occurs, the operating system prints an error message and the
message:

ER!

4-2

_ PR — e 2
DOS Commands Allowed in DOS/VM

All user commands used in DOS, and described in Section 4, are available
for use with DOS/VM. The following commands are not allowed for users
at user terminals under DOS/VM: STARTUP and SHUTDN. In addition, the
system terminal (operator) commands described in Section 6 are needed,
or are useful, for DOS/WM system operation.

Error Correction.

Errors typed into the command line may be corrected by using the kill
character (?). It deletes everything previously typed on the line;
the command must be retyrped in entirety. Do not use the editor's
erase character (') to rub out single characters in a command line
under DOS (i.e., at DOS command level). Under DOS/VM, both ? and "
work in command lines.

DOS and DOS/VM Names

DOS and DOS/VM names, or UFD names, consist of one to six ASCII
characters. For compatibility with the command string interpreter

and the text editors, the first character must be non-numeric; the others
may be any printing character except the question mark (?) or quotation
mark (*"). Examples:

Legal Illegal
CMDNC2Z 2CMDNC (Begins with numeral)
LDRSA LDR A (Contains space) '

- TEST1 TESTER1 (First six characters
TEST2 TESTER2 not unique)
#%1.) #%2.) (Contains question mark)

Disk vs. DOS or DOS/WM Units

DOS file wnits (1-16) or DOS/WM file units (1-32) referenced by the
BINARY, CLOSE, INPUT, LISTING, and OPEN commands are identified by the
‘abbreviation Funit. These are not to be confused with the logical disk
units referenced by the abbreviation Ldisk in the ATTACH, BOOT and
CREATE commands. Physical disk drives are assigned logical disk unit
numbers by the STARTUP command (refer to Table 3-1); thereafter, only
the logical unit numbers are meaningful to DOS.

MAN 1675 3

SUMMARY AND INTRODUCTION TO COMMANDS

Internal Commands

Internal commands are executed in the space occupied by DOS or DOS/VM
itself, as opposed to the external commands which are external to the
operating system and execute in user space. Most internal commands
have to do with the file handling and with saving or restoring of
filed programs and associated register values. The internal commands
are described here in alphabetical order, and also listed in Table 4-1
in an order of most commonly used to least commonly used. This table
also indicates those commands that in addition to being useful to users
when they are functioning as programmers, are also useful to users when
they are functioning as operators. Detailed information about each
internal command is given in the last part of this section. The
descriptions include all commands, both internal and external, and they
are arranged in alphabetical order. The internal commands described are:

ATTACH LISTF RESUME
BINARY LISTING SAVE
CLOSE OPEN SHUTDN
COMINPUT PM START
DELETE PRERR STARTUP
INPUT RESTORE *

Hybrid Commands

DOS recognizes four external commands that are restored into low memory
on top of user space. These commands accept an internal command line
interpretation, but destroy user memory space. Furthermore, in DOS/VM,
they function as internal commands. The file containing hybrid commands,
is in CMDNCO and is named DOSEXT. The versions of DOS all use the same
hybrid command file. The hybrid commands are: C(NAME, CREATE, PASSWD,
and STATUS. The hybrid commands CREATE, PASSWD, CNAME, and STATUS act
as internal commands in DOS/VM. (They act as external commands in DOS.)
They are listed in Table 4-2 along with the external commands.

Detailed descriptions of the hyvbrid commands are given in the last part
of this section, arranged alphabetically along with all the other
command descriptions.

External Commands

The external commands are commands to load and start system programs in
the command UFD (e.g., CMDNCO). They are external to the operating
system and execute in user space (i.e., they may reside in a UFD). In
general, these programs include the translators, utilities, and
debugging programs used in Prime application program development.
However, any type of program can be filed in CMDNCO and called for
thereafter by filename. Some of the external commards, like FUTIL, CRSER
and PRSER, control data transfers to or from peripheral deviccs. The
user may want to add programs to CMDNCO to perform functions peculiar to
his system.

4-4

STARTUP
SHUTDN
ATTACH
LISTF

RESTOR!
START

RESUME
PM
SAVE

DELETE
COMINP
OPEN
CLOSE
INPUT
LISTING
BINARY
*

PRERR

MAN 1675

FUNCTION
Initialize disk drive configuration
Perform tasks necessary to shut down DOS
Assign user to a UFD
List names of files in current UFD

Restore a memory image from disk to high-speed
memory

Initialize processor keys and start or restart
execution of a memory image or user program

Combines operation of RESTORE and START
Print contents of DOS RVEC vector

Save a memory image by writing it from memory
to disk

Delete a file

Execute a file consisting of DOS command lines
Open a file for the specified operation

Close a file (or all files)

Open ASCII source file for Reading

Open FORTRAN Listing file on Unit 2

Open file on Unit 3 for Writing

Indicates Command Line

Print last error message stored in DOS ERRVEC

4-5

FREQUENTLY USED
BY OPERATOR

Yes
Yes
Yes

Yes

Yes

Yes

COMMAND

Editors

ED

EDLIN
EDB

Table 4-2. External and Hybrid Commands

USED BY
FUNCTION OPERATOR

Create and Edit a File (Usually Source Programs
and Data)

Simple line editor version of ED (no BOX edit mode)

Edit binary file

Language Processors

FIN
PMA
MCG
BASIC
DBASIC
LBASIC
BASINP
NUMBER

Invoke the FORTRAN Compiler to compile a program
Invoke the Prime Macro Assembler to assemble a program
Translates Microcode assembly results into ROM

Invoke BASIC interpretative language

Invoke double-precision version of BASIC

Invoke a version of BASIC with matrix and print-using
Read paper tapes containing foreign BASIC programs

Utility to number BASIC program statements

Loader and Utilities

FIILMEM
LOAD

LOAD20
HILOAD

Fills Memory with zeroes
Loads and Starts the Linking Loader (32K DOS)
Loader for 16K DOS

Loader for loading programs to run in full 64K

Run-time Debuggers

TAP
PSD
PSD20

Load and start interactive debugging program
Load and start Prime Symbolic Debugger (32K DOS)
Load and start Prime Symbolic Debugger (16K DOS)

4-6

Table 4-2. (Cont)

USED BY-

COMMAND FUNCTION OPERATOR *
File Utilities _
CNAME Change the name of a file
SPOOL Queue a copy of a file for off-line printing on

systems high speed printer
CREATE Create a new UFD
CRMPC Read cards from parallel interface card reader
CRSER Read cards from serial interface card reader
FUTIL Invokes file utility
HELP Print information file in ufd INFO
PRMPC Print a file on parallel line printer
PRSER Print a file on serial line printer
STATUS List current UFD and boundary of DOS buffers Yes
AVAIL . Print number of available records
SIZE Print number of records used by file
SLIST Print contents of a file at the users terminal
SORT Sort the contents of an ;\SCII file
CMPRES . Convert ASCII file to compressed format
EXPAND Convert compressed format file to ASCII
FILVER Compare two files and verify similarity or

print message if dissimilar
MAGSAV Save contents of magnetic tape to disk
MAGRST Read contents of magnetic tape to disk
MIDLSK Read or write disk to magnetic tape

MAN 1675 4-7

Table 4-2. (Cont)

COMMAND FUNCTION

File Access Control

PASSWD Assign a password to a UFD or assign "owner"
and "other user' passwords to a UFD

PROTEC Assign access attributes (read, write, delete,
execute, etc.) to a file in an owned UFD

RTOS

RTOSRA Establish RTOS random access file

RT128F Write unstructured RTOS records

FILBLK Read or write 128-word record from memorf

in a previously created RTOS random access file

Paper Tape Utilities

PTCPY Utility program that duplicates and verifies
paper tapes

MDL Memory dump onto paper tape

PTBOOT \ Paper tape boot strap

LOADAP Paper tape linking loader

BPTREP Paper tape Editor with-box editing

PRTED Paper tape Editor

Operator Utilities

CopY Copies from one disk volume to another

FIXRAT Loads and starts a DOS maintenance program that checks
file integrity

MAKE Creates a DOS disk with a basic DOS structure

4-8

COMMAND

Table 4-2. (Cont)

USED BY
FUNCTION OPERATOR

Operator Utilities

MACHK
DOSVM

Run computer in or out of machine chek mode Yes

Start DOS/WM from DOS Yes

Virtual Utility

VDOS32

Start DOS from DOS/WM Yes

DOS/VM User Commands

LOGIN

LOGOUT
STATUS
PASSWD
PROTEC

TIME

USERS

DELAY

ASRCWD

SVCSW

VRTSSW
VDOS32

Allows user to obtain access to DOS/WM (i.e.,
start user terminal session) ‘

Terminates user terminal session

Gives information about the system.* Yes
Allows assignment of owner and NONOWNET PaSSWOTUS
Defines access attributes for a file .

current value stored in time accounting

Prints number of users currently logged-in

Defines a time delay .function to be used to del

the printing of a character after a CARRIAGE RE

h]
5\2

N
Sets the virtual control word as specified

Controls handling of SVC instructions in the
virtual memory environment

Allows setting the virtual sense switches

Invokes a version of DOS that may be run under Yes
control of DOS/VM

* STATUS function in DOS/WM is very similar to its function in DOS.

However,

For these reasons, STATUS

MAN 1675

STATUS when used in DOS/WM returns additional information.
is redescribed in the following paragraphs.

4-9

ASSIQN
UNASSIGN
MESSAGE

Table 4-2. (Cont)

FUNCTION
Obtains control- over a disk or peripheral device
Releases control over a disk or peripheral device

Invokes system message facility

4-10

USED BY
OPERATOR

Yes

An example configuration for CMINCO is as follows:

OK: ATTACH MDNCO
OK:

UFD = CMDNCO
FILBLK RTOSRA MCG NUMBER TAP

FILVER CMPRES EXPAND COPYB AVAIL
PTBOOT COPY MAGSAV MAGRST LFIN
LBASIC DBASIC SLIST MIDSK SPOOL
ED PRTED VDOS32 DOSEXT PTCPY

MACHK MAKE SORT

RT128F BASINP SIZE LOADAP CNVT45

PSD
CRSER
LOAD
FUTIL

FILCPY UFDCPY PMA FIN
CRMPC PRMPC PRSER BASIC
LOAD20 MDL FILMEM PSD20
FIXRAT HILOAD DOSVM EDB

Unless otherwise specified, programs invoked by external commands return
to command level after they have completed execution.

The external commands are listed along with hybrid commands in Table 4-2
in an order that more or less reflects most common usage to least common
usage. Commands of special interest to operators as well as programmers

are so noted.

The external commands and the hybrid commands listed alphabetically
(as are descriptions of all commands) are arranged in the last part of

this section) as follows:

AVAIL
BASIC
BASINP
BPTRED(See ED)
CMPRES
CNAME
COopY
CREATE
CRMPC
CRSER
DBASIC
DOSVM
ED
EDLIN
EDB
EXPAND
FILCPY
FIIMEM

*In top example.

MAN]6TS

FILVER
FIXRAT
FIN
FUTIL
HELP
HILOAD
LBASIC
LFIN
LOAD
LOADZ0
MACHK
MAGRST
MAGSAV
MAKE
MCG
MDL.
MIDISK

4-11

NUMBER
PASSWD
PMA
PRMPC
PRSER
PSD
PTBOOT
PTCPY
PTRED(See ED)
RTOSRA
RT128F
SIZE
SLIST
SORT
STATUS
TAP *
VDOS32

COMMAND DESCRIPTIONS

All command descrlptions (internal, external and hybrid) are arranged
in alphabetical order in the following paragrgphs. Programs that have
operating procedures or an extensive command repertoire may be
described in detail in appendices, or in the Program Development
Software User Guide (MAN 1879). In the following detailed descriptions
of commands, the elements in all capital letters are command names.
Elements in initial capital letters are arguments. If an argument

is enclosed in square brackets, the argument is optional. The
abbreviation of a command name is underlined, and commands unique to
DOS/W are flagged.

A__S_R_CWD ***DOS/VM***
The ASRCWD command allows changing the virtual control word (see I/0
virtualization). This control word is used to select one of four
devices as effective output and one of four for input. The control
word sets the devices output by the OTA 4 instruction and the device
input by the INA 4 instruction.
Syntax :

ASRCWD X200XXX

ASR XX303X

where XXXXXX is an input or output number as specified in Table 4-3.

Device or Port No.| Input (Bits 11A~l§l (Output 13-16)
1 00 User terminal 00 or 10 User terminal
2 01 CENPR (J2) Octal 4 CENPR (J2)
3 10 CE2PR (J3) Octal 2 CE2PR (J3)
4 11 CARDR (J4) Octal 1 CARDR (J4)

Table 4-3, Value for Virtual
Control Word and Port Assignment

Example:
ASR 10

4-12

e e ol T I ore rade e e
ARTe o v v

ASSIGN
The ASSIGN command obtains complete control over a disk or a peripheral
device (e.g., printer, paper tape reader) from the user terminal.
Syntax:

ASSIGN Device

AS Device

ASSIGN Device [WAIT]
AS Device

ASSIGN DISK Number

AS DISK Number

where Device is an available device.

A1l assignable devices are named aé shown in Table 4-4.

CARDR - General Card Reader (AMLC Line No. 6)
CENPR - First Centronics printer (System Option Controller port No.2)
CEZPR - Second Centronics printer (System Option Controller port No.3)

CRT - MPC Parallel Card Reader
DISK 0 - Physical disk 0
DISK 1 - Physical disk 1
DISK 2 - Physical disk 2
DISK 3 - Physical disk 3
DISK 4 - Physical disk 4

DISK 57 - Physical disk 57
DISK 5256 - Physical disk 5256
DISK 002452 - Physical disk partition
- = Magnetic Tape Unit 0 Dial = 0
- Magnetic Tape Unit 1 Dial =1
- Magnetic Tape Unit 2 Dial = 2
- Magnetic Tape Unit 3 Dial = 3

]

MPC Parallel Interface Line Printer
Paper Tape Reader ’
- Paper Tape Punch

EEEREEE

Table 4-4. Device Names

For disk assignment details, refer to Table 3-1.

MAN 1675 4-13

A user may only ASSIGN a disk that is not already assigned and appears
in the assignable disks table. This table is initially empty, and it
is altered from the supervisor terminal using the DISKS command. This
restriction provides a degree of system integrity because it prevents
users from assigning a disk without the supervisor terminal operator's
knowledge; it prevents users from assigning nonexistent disks and
partitions; and it prevents users from assigning disks or partitions
the operator wishes to reserve for special use.

If the Device 1s currently assigned to another terminal, the system
replies:

ER! DEVICE IN USE
unless the optional argument WAIT was supplied. In this case, the

ASSIGN command is queued until the device is UNASSIGNED by another
user, or until the user presses the QUIT key.

If the user does not ASSIGN a device and attempts to perform I/0
to or from the device, the error message;

DEVICE NOT ASSIGNED

ER!

is printed at the terminal.

In order for a disk to be ASSIGNed to a user, it must not be ASSIGNed
to another user, nor may it be a disk specified in a previous STARTUP
command, and it must not be the paging disk. To ASSIGN a disk that

has been started up by STARTUP, it must first be shut down by the
SHUTDN command at the supervisor terminal.

Disks, or devices, ASSIGNed by another user are released when the user

invokes the UNASSIGN command and/or when the user invckes the LOGOUT
command.

Examples:
ASSIGN CENPR WAIT

assigns the Centronics printer and queues the assignment if the printer
is already assigned.

AS PIR

assigns the paper tape reader.

4-14

AS DISK 0
AS DISK 54
assigns disk drives as defined in Table 3-1.

The maximum number of disk drives that may be ASSIGNed to all users
at any one time is 10. If an attempt is made to ASSICN too many disks,
the message: °

ASSIGN TABLE FULL
is printed.
ATTACH "ifd [Password Ldisk Key]

In order to access files, DOS must be attached to some User File
Directory. This implies DOS has been supplied with the proper file
directory and either the owner or nonowner password, and DOS has found
and saved the location of the UFD. After a successful attach, the
name, location and owner/nonowner status of the UFD is referred to as
the current UFD. As an option, this information may be copied to
another place in DOS, referred to as the home UFD. The user obtains
owner status if the owner password is specified or nonowner status

if the nonowner password is specified. The owner of a file directory
can declare on a per-file-basis what rights a nonowner has over the
owner's files. The nonowner password may be specified only under
DOS/VM. Refer to Section 2 and the commands PASSWD and PROTEC for
more information . In attaching to a directory, ATTACH specifies

a file directory in the Master File Directory (MFD) on a particular
logical disk or a file directory in the current UFD or the home UFD
as the directory to be attached. The most common ATTACH command is:

ATTACH Ufd Passwd

The meaning of this command line is: search for UFD in the MFD on all
started up logical devices 0, 1, 2 ... n, and attach to the UFD whose
Ufd name appears in the MFD of the lowest numbered logical device.
Also, -the command line indicates attach to Ufd only if Passwd matches
the password of UFD Ufd, then set the home UFD to Ufd.

The user may specify the logical disk of the MFD to be searched as in
the command: '

ATTACH Ufd Password Ldisk

Ldisk is specified as an octal integer,

Finally, the user may specify a key as in the command:
ATTACH Ufd Password Ldisk Key

[——

If Key is 177777, the MFD of the currently.attached disk is searched
for Ufd. If Key is 100000, all disks are searched in logical order.

MAN 175 4-15

The keys are as follows:

Key Meanin

0 attach to Ufd in MFD on Ldisk; set home UFD

1 attach to Ufd in current UFD; do not set hone UKD

2 attach to Ufd in current UFD; set home UFD to current
UFD

177777 attach to Ufd in MFD on Ldisk; do not set home UFD

To attuch to the home ‘UFD, use ATTACH (blanks)
Exanple:
ATTACH GOUDY ABCABC
Search for GOUDY in the MFD on all started up disks. -Attach to GOUDY
Sgnfhe lowest logical disk where found. Check the password. Set home
ATTACH
Attach to home UFD (GOUDY)
ATTACH CARLSO XXXXX 7

Attach to CARLSO. Look for CARLSO with a password of XXXXX in the
MFD of logical disk 7. Set home UFD to CARLSO.

Attach is an internal command.

AVAIL

Gives the number of disk records available for use in the specificd
logical disk (in octal). The tommat 1is:

AVAIL

AVAIL ZERO
AVAIL ONE
AVAIL TWO

AVAIL NINE
AVAIL Packname

If no argument is specified, AVAIL types the number of available
records on the logicaul disk of the current UFD. If Packname is
specified instead of ZERO...NINE, the number of available records on
the logical disk with DSKRAT name Packname 1is printed. AVAIL is an
external command. Ixamples:

4-16

OK: AVAIL

&0

000113

OK: AVAIL FOUR
(e4)

001273

OK:

AVAIL TSDISK
0

000113

OK,

AVAIL DUD
0

001273

OK,

BASIC

Loads the Prime BASIC Language interpreter. For further information,
refer to the BASIC manual. On the original master disk the version
of BASIC that has both the matrix functions and print using functions
is named LBASIC. Also, a version called DBASIC, that uses double-
precision floating point arithmetic, is available. BASIC is an
external command.

BASINP Filename

The BASINP command invokes a program that loads from paper tape a BASIC
program that has been written for a computer system_other than a Prime
computer. Filename is the name of the file into which the contents of
the paper tape are to be read. BASINP is an external command.

EJNARY Filename

Opens a file for writing on DOS (DOS/VM) file unit 3, usually as a
binary output file for use by the compiler or assembler. The file is
assigned the name Filename in the current UFD.. Binary is an internzl
comand. This command has the same effect as OPEN Filename 3 2.

PMA and FIN automatically open a file named B+ XXXX as the
binary output file (XXXX is the first four letters of the input
(source) filename.) A BINARY command is required only if the
user wants the output file to have a different name.

MAN 1675 4-17

CLOSE | [Filcname] ([Funit] . . [Funit]
ALL

Closes the named files and specified file units. The form C ALL
closes all files and units. (In a command file, specify each item

to be closed; do not use C ALL or the command file itself will be
closed.) CLOSE is an internal command. !

The CIOSE ALL command also makes sure that buffers are retrieved
properly and resets the state of the file system. If the user is
even slightly uncertain about the state of the file system, he should

enter a)CLOSE ALL. (The STATUS command prints the state of the file
system.

If the file named cannot be found, an error message is printed and
the CLOSE command returns to command level.

CMPRES Filenamel [FilenameZ]

The input ASCIT file, Filenamel, is translated into the output ASCII
file, Filename2, using the relative copy character ('220). The byte
following the relative copy character specifies the number of characters
to copy from corresponding positions in the preceding line. If Filename2
is omitted, the output replaces Filenamel. The amount of space saved

is a function of the structure of Filenamel. (MPRES handles a line size
of up to 720 characters. (MPRES is an external command. FExample,
contents of typical Filenamel named STEST: :

c PROGRAM TO TEST DSQRT
c

DOUBLE PRECISION A
READ (0) A

CALL DSQRT(A)
VRITE (0 A
END

Command line:
(MPRES STEST CTEST

Contents of Filename2, CTEST

c PROGRAM TO TEST DSQRT
C

DOUBLE PRECISION A,B
t280¢t00TREAD (0) A,B
t2201007CALL DSQRT(A)
1220t007#RITE (0) A
1820100 7:MD

To reverse the effect of the CMPRES command, use the EXPAND command.
4-18

CNAME Oldname Newname

Changes the name of the file named Oldname to Newname. This command

operates within the current UFD. If the user is attached to the MFD,

this command can be used to change the name of a UFD. CNAME is a

gbrid command. Under DOS/VM, CNAME requires owner status to the UFD.
ample: ‘

OK: A MFD
OK: CNAME SPARE2 JHNDOE

assigns a new UFD name JHNDOE in the place of the old name SPARE2.

COMINPUT

The available forms of this command are:

COMINPUT | TTY [Funit]
Filename

CONT INUE
PAUSE

CO Filename causes DOS or DOS/VM to read commands from Filename in the
current UFD, rather than for the temminal. The file is usually
prepared and filed by the text editor (ED). Each line of the file
must be a legal command string, one command per line. This type of
file is referred to as a command file. Command files may be chained.
If the last line in a COMINP command file is of the form:

CO Filenamex

the current command file is closed and DOS or DOS/W reads commands
from the new command file Filenamex. This feature allows chaining of
comand files. The last command in the last command file must be

CO TTY to return control to the terminal. Note that "TTY', "'CONTINUE"
and '"PAUSE" are reserved words for DOS (and DOS/VWM), and they must not
be used for other purposes. '

COMINP is an internal command.

DOS or DOS/VM reads commands from the command file, Filename, by opening
unit six and reading, the executing, one line at a time. When the
comnand CO TTY is encountered, DOS takes subsequent commands from the
terminal. The user must specify a.file unit (Funit) for COMINP TTY if
not using the default unit. Any error message causes command input to
be returned to the terminal. However, the command input file is left
open allowing a user to retype the command that caused the error
message, then continue reading from the command input file by typing

Q0 CONTINUE

Use of the conmaﬁd CLOSE ALL in a command input file closes the command
input unit and causes the message PRWFIL UNIT NOT OPEN to be printed.

MAN Lb]5 4-19

The form:
COMINP Filename Funit
has the additional capability of specifying the file unit upon which

the command file is to be open. Thus, the user can set up a complex
set of interacting command files. Example:

Assume the command file PMLISTE contains the following:

PM

LISTF

COMINP PMPM 7
CLOSE 7

PM

COMINP TTY

and the commnand file PMPM contains the following lines:

PM
STATUS

PMWINP CONTINUL 6
Then typing the command line:
COMINP PMLISTF
from DOS (DOS/VM) command level causes both command files to be Tun.

Example: The COMINP command is useful for updating large programs
that consist of many files, use several library files, or require
special loading procedures. For example, suppose a user with the UFD
USER]1 has a program consisting of three FORTRAN source files MAIN,
SUR1, and SUBZ.

This program requires two libraries, GRALIB and FINLIB. A uscr makes
up the following command input file DPROG:

FIN MAIN
FIN SUB1
FIN SUB2
FILMEM
LOAD

LO BeMAIN
LO BeSUBI
LO B«SUB2
LIB GRALIB
LIB FINLIB
MAP

QUIT

co TTY

4-20

After the programs are corrected and ready to be compiled, the user
enters the command 00 DPROG. The DPROG file then provides the commands
that cause the programs to be compiled, loaded, and a load map printed.
DPROG also documents the source files and loading procedure.

The form:
COMINPUT PAUSE

leaves the current command input unit open and returns to command
level. Thus, a user can invoke other commands or use COMINP to start
another command file on another unit before issuing a COMINP CONTINUE
line to continue the original command file.

CopY

COPY is an external command that copies and verifies a disk. COPY
copies any disk to any other disk, either under DOS or DOS/VM. Under
DOS/WM, both disks must be ASSIQNed before invoking COPY. After the
user types COPY at the temminal, the COPY command responds by
printing:

PHYSICALL. FROM TO SIZE:

The user must specify the disk to be copied from (FROM), and the disk
to be copied to (TO), and the size (SIZE) of the disk to be copied.
The line of parameters specified are then terminated by the CARRIAGE
RETURN (CRj. The SIZE parameter is optional and may be omitted. The
FROM and TO parameters are physical device numbers separated by a
space (ASCIT space character) or a hyphen (-). FROM and TO device
numbers are listed in Table 3-1.

Possible SIZE numbers are:

Disk Type SIZE Number Abbreviation
1.5-million word disk pack . 1.5M 1
3-million word disk pack 3.0M 3
30-million word disk pack 30.0M 30

128 thousand word fixed head disk 128K 128

(32 track)

136 thousand word diskette ? 136K 136

256 thousand word fixed head disk 256K 256

(64 track)

512 thousand word fixed head disk 512K 512

(128 track)

1024 thousand word fixed head disk 1024K 1024
(256 track)

MIA IV 1[679 4-21

If SIZE is omitted, the default size assumed is 1.5M, unless either
disk being copied is a diskette. In that case, the diskette size is
assumed to be 136K. The SIZE parameter does not need to be given if
the disk is 1.5M or a diskette.

If FROM and TO are equal, or if FROM or TO is not a valid physical
disk number, or if SIZE is not a valid number or abbreviation, COPY
repeats the request message and waits for input. If these parapcters
are acceptable, COPY inititates the copy operation.

If the 30-million word disk is partitioned, the user may COPY an indiv-
idual partition of the disk. These other SIZE parameters are as follows;

Partition Ipisk Number STZE Abbreviation
2 head (default) | XX025X M 3
2 head (explicit)] XX065X M 3
4 head XX125X 6M 6
6 head XX165X oM 9
8 head XX225X 12M 12
10 head XX265X 15M .15
12 head XX325X 18M 18
14 head XX365X 21M 21
16 head XX425X 24M 24
18 head XX465X 27M 27
20 head XX525X 30M 30

Table 4-5. Partitioned Disk SIZE Specification

In Table 4-5, The X's represent octal digits that rust be set appropri-
ately. The leftmost X's indicate head offset; and the rightmost X
indicates one of the four possible drives connected to the controller.
Example:

100252

means a 3M word size partition with a head offset of 10 on the disk that
1s connected to the second drive (drive 2) connected to the controller.

Note: (OPY does not allow rewriting of the same disk. For example:
PHYSICAL FROM 10 SIZE: 5-5

is an illegal specification of COPY parameters.

WARNING: A TO disk number must not be a disk connected to DNS by

the STARTUP command. It is good practice when running COPY under NS,
to place all active disks in WRITE PROTECT before initiating the (OPY
command except for the disk to be written to (TO disi'. It is good
practice when running under DOS/VM, to place all disks assigned to the
user terminal at which the COPY command is to be initiated in WRITE ‘
PROTLC, except the 10 disk, before initiating the COPY.

4-22

gggx Method: COPY copies disk records from the FROM disk to the TO

sk and when done verifies the copy by reading each record from both
disks and performing a word-by-word comparison in memory. During this
process, COPY displays the disk record number it is processing in the
DATA lights on the processor console panel, bits 2-16. Bit 1 is off -
during the copy operation and on during the verify operation. When
done, COPY prints DONE and returns to DOS or DOS/VM, which prints OK.
If any disk read errors occur during the copy, the read is fetried nine
times. Each error results in an error message of the form:

DISK RD ERROR device number DOS Record-number Status

See Appendix J for explanation of Status.

If the read operation is not successful after ten tries, DOS/VM (DOS)
ignores that record and prints the message:

ERROR READING DISK Device-number RECORD Record-number
ERROR IGNORED, COPY CONTINUED

Then, DOS/VM (DOS) continues the copy operation. If any disk write
errors occur, COPY retries nine times. Each error results in an
error message of the form:

DISK WI ERROR Device-number DOS-Record-number Status

If the write operation is not successful after ten tries, COPY aborts,
prints the error message, UNRECOVERED ERROR, and returns to DOS (or
DOS/WM). If on either read or write a DISK-NOT-READY status is
detected, a single disk error message is printed with the status 177776.
The software then retries the read or write, waiting for the disk to
become ready. If while verifying the copy, a discrepancy is detected,
COPY prints VERIFY ERROR and returns to DOS or DOS/VM.

COPY Success or Abort: If the COPY is successful, the message

DONE

is printed at the terminal (only if both the copy and verify were
successful).

Exgggle:
OK: COPY
(e0]
PHYSICAL FROM-TO: 1 Q
DONE
OK:

MANIbL7S 1-23

CREATE Newufd

Creates a new UFD named Newufd in the current MFD. CREATE is a hybrid

command. The passwords of the new UFD are:

owner password is Blank,

and the nonowner password is Zero (any password will match).

K: A MFB XXXXXX

OK:s CREATE BETTY

OKs LISTF
UFD=MFD]

TSPISK MFD
BARBOU STUMPF
M.JOHN AROSS
JCVB DAV1S
BRIGGS COHEN
ETTA RUNDQV

s

CRMPC Filename

BOOT
GILES
KROY
UDIN
GOUDY
RUNDQ

CMDNCO
LIB
GRUBIN
BROWN
DUMAS
BETTY

PODUSK
SPORER
DEMO
SEV
BRODPIE

JBRWNS GIBSON GREATA
BASIC DOS VEYLER
JSKOL KAY CURREV
LEWIS PRNGL BUTTER
CARLSO PLANIT WVEBB

Reads cards from the parallel interface card reader connected to the
MPC controller and loads card image ASCII data into the file Fil: -ame.
Reading continues until the end of the deck or a $E is read in

colums 1-2 of a card.

closes the file.

The $E causes a return to DOS or DOS/VM and
If the reader runs out of cards before a $E card is

read, the processor returns to the operating system but the file is
not closed. 'The user can load more cards and enter S (i.e., START)

to resume reading
E

if there was no

is an external command.

CRMPC command is given.

CRSER Filename

cards into the same file.

At completion of reading,
card; enter CLOSE ALL to close the open file. CRMPC
Under DOS/VM, CR1 must be assigned before the

Reads cards from the serial interface card reader. Reading continues
until the end of the deck or a $E is read in columns 1-2 of a card.

The $E causes a return to DOS or DOS/WM and closes the file. If the
reader runs out of cards before a $E card is read, the processor
returns to the operating system but the file is not closed. The user
can load more cards and enter S (i.e., START) to resume reading cards
At completion of reading, if there was no $E card;
Under DOS/VM, CARDR must be

into the same file.
enter CLOSE ALL to close the open file.
assigned before the CRSER command may be given.

an external command.

4-24

The CRSER command is

DBASIC

Loads the Prime BASIC interpretative language version that has double
precision arithmetic capabilities. DBASIC is an external command.

DELAY *%2DOS/VME**

The DELAY command defines a time function to be used to delay the
printing of a character after a line feed (LF) has been output
to a terminal. Syntax:

DELAY [Minimum] [Maximum] [Rmargin]

Minimum defines the number of character-times (time it takes the system
to type a character on a line) to delay when CR is output at the left
margin. Maximum defines the number of character-tjmes to delay when
CR is output at the right. Rmargin defines the number of characters
required to move to tke right margin. If a CR is typed at some point
within a line, the time delay is proportional to the number of
characters typed. If Rmargin is not specified, 72 is assumed; if
Maximum is not specified, 12 is assumed. If the command, DELAY, is
given with no parameters, the default values 6, 12 and 72 are assumed;
these values are adequate for most 30 cps terminals. Example:

DELAY 0 10 100

DELETE Filename

Frees the disk storage space used by Filename and removes the name
from the current UFD. DELETE is an internal command.

WARNING: Do not delete a directory until all files within the director
have been delete@. Otherw1§e, available disk storage space is lost l
until the next time FIXRAT is run. If you wish to delete a directory,
use the TREDEL subcommand of the FUTIL command.

MAN Jb75 4-25

ED [Filename]

Loads and starts ED, the most commonly used version of the text editor.
If a filename is specified, it is loaded into the editor's text buffer
in high-speed memory and the editor is started in EDIT mode. Otherwise,
the editor is started in high-speed INPUT mode with an empty text buffer.
Files and units are automatically opened and closed. ED is an external

command. For details of ED operation, refer to the Program Development
Software User Guide (MAN 1879).)

If the user accidentally returns control to DOS or DOS/WM, the user can

restart the ED without losing any of the text buffer by issuing the
command :

START 1000

There are exceptions to this. Refer to Section Z of the Program
Development Software User Guide for details of Recovery Procedures.

EDB Inputfile [Outputfile]

Loads and starts EDB, the binary editor, which prints ENTER and waits
for command input. The input and output files may be on disk or paper
tape. If paper tape is used for either file, use the filename (PTR).
If an output filename is specified, a file of that name is created

in the current UFD. If the filename already exists, it is overwritten
by the output file. EDB is an external command. For details, see
Section 2 of the Program Development Software User Guide.

EXPAND Filenamel [Filename2]

Inverts the operation of CMPRES. If Filename2 is omitted, output is
placed in Filenamel. EXPAND handles line sizes up to 720 characters.
EXPAND is an external command.

FILBLK

Permits reading or writing from high-speed memory to any 128-word
record in a previously created RTOS random access files. For a means
to create RTOS random access file, refer to "RTOSRA" in this section;

and for further details, refer to the RTOS User Guide. FILBLK is an
external command.

4-26

FILMEM

Fills the memory locations '100 to the top of 32K if under DOS/VM,
with zeroes. If running under DOS, FILMEM clears '100 to the top of
32K except for those locations occupied by DOS.

FILVER Filenamel Filename?2

Causes Filenamel and Filename2 to be compared for equivalence. If any
differences exist, a message is printed indicating failure to verify.
If the file Filenamel and Filename2 are exactly the same, a message

is printed that confirms successful verification. FILVER is an
external command.

FIXRAT [OPTIONS]

Loads and starts a maintenance program that checks the file integrity
of any disk pack. Under DOS/WM, the disk to be checked must be
ASSIGNed before invoking FIXRAT. FIXRAT is an external command.

If OPTIONS is typed, FIXRAT requests printout options; otherwise,

it defaults to printing the name and octal number of records used in
the MFD and each directory file in the UFD. After the command line
is typed, FIXRAT asks the question: FIX DISK?. If the answer is
YES followed by a CARRIAGE RETURN (CR), FIXRAT truncates or deletes
defective files and generates a corrected DSKRAT file. FIXRAT
truncates or deletes files in the MFD as well as files in other
directories, FIXRAT then asks the question: PHYSICAL DISK DRIVE = .
The user must respond by entering the physical disk drive number

in octal on which FIXRAT is to be run followed by a CR. A complete
discussion of FIXRAT, along with examples, is given in Appendix E.

FIN Filename [1/A]

Loads the Prime FORTRAN IV Compiler and starts compilation of an

ASCIT source file, Filename in the current UFD. FIN is an external
command. A is the A register setting. If no A register value is
specified, a default value is used - typically, 1707. (List errors

on terminal, use disk for all input/output.) Other common options are:

1/1777 List errors on Teletype
(system terminal)

1/40777 Generate listing file that
includes symbolic instructions

MABN 1678 4-27

Unless it is preceded by BINARY and LISTING commands, the compiler
will automatically open unit 3 to write a binary file named B«XXXX,
and open unit 2 to write a listing file named L«XXXX, where XXXX is
the first four letters of the input filename. The compiler closes
any units that it opens. (Units opened by BINARY and LISTING commands
are not closed.) The listing file can be printed by using the text
editor or the PRMPC, PRSER, or SPOOL commands.

For more information, refer to The Program Development Software
User Guide, The Subroutine Library User Guide and the FORTRAN
Reference User Guide.

FUTIL

FUTIL invokes a file utility command that provides subsystem commands
for the user to copy, delete, and list both files and directories.
FUTIL also has an ATTACH command that allows attaching to subdirecto-
ries by giving a directory pathname from either the MFD or home UFD
to the specified subdirectory. FUTIL allows operations not only with
files within UFD's but also files within segment directories. FUTIL
may be run from a command file.

For a detailed discussion of subsystem commands available under
control of FUTIL, refer to Appendix F.

A sumary of FUTIL commands is listed in the following table (command
abbreviations are underscored).

4-28

Table 4-6. FUTIL Commands

Command Syntax

QUIT

FROM Directory Pathnéme

TO Directory Pathname
ATTACH Dircctory Pathname
copy Filel [,File2] [,File3]
TFile 411...

COPYSAM Filel [,File2] [,File3]
[Filed]] ,...

coPYDAM Filel [,File2] [,File3]
TFile4]] ,...

TRECPY Dirl [,Dir2] [,Dir3]
[,Dird] ...

UFDCPY
DELETE Filel [,File2] ...

TREDEL Dirl [,Dir2] ...

UFDDEL

LISTF [level] [LISTFIL] [PROTECT]

[SIZE] [TYPE]

~ .
Command Function

return to DOS or DOS/VM command
level

defines FROM dircctory
defines TO directory

moves the Home UFD to the directory
defined by Directory-Pathname

copies a file or files in the FROM
directory to the 10 directory

same as COPY, but sets file type
of file in TO directory to SAM.

same as COPY, but sets file type
of file in TO directory to DAM.

copy directory tree specified

copies all files and directories
in the FROM directory to the TO
directory

deletes the directory tree
specified

delete the directory tree specified

delete all files and directory trees
within the FROM directory

Lists at the terminal thce FFROM
directory pathname; the TO directory
pathname; and all files and directo-
ries in the FROM directory

For details on the concepts of pathname and FROM and TO directories,

refer to Appendix F.

MAN 1675

HILOAD

See LOAD.

INPUT Filename

Opens an ASCIT source file on unit 1 for reading by the compiler or
assembler. The file is assigned the name Filename in the current
UFD. This command has the same effect as OPEN Filename 1 1. (For
PMA and FIN, the source filename is usually provided with the command
that starts assembly or compilation.) INPUT is an internal command.

LBASIC

Invokes a version of the BASIC interpretive language that contains
both MAT fumctions and PRINT USING functions. For details, refer to
the BASIC manual. LBASIC is an external command,

LISTF

Prints the current UFD name, the logical device upon which the UFD
resides, and all filenames in the UFD at the terminal. LISTF is an
internal command. Attributes of files such as type, size, and
protection may be examined using the LISTF subcommand of the FUTIL
command.

OK: LISTF
UFD=BARBER 1

FDAT FATI PHAT FLN ARG B«FDAT DFAT BeDFAT
B~FATI Be«ARG B~FLN SLITE NG6 N2 2 DIV B«~DSuUB
B~DADD B«MPY B«DIV B«UIIT UII MA4 ULIT NEWMA
P22} MT1 coOMIOC 1I0cs- B«COMI B«1J3CS C«PMA MYPMA
OLAPRN B«OLAP PMV2 *UIIT TRR P21l FSUII QNEWMA
MC1 B«FTN2 MYFORT FIST

OK:

For DOS/VM, the LISTF command prints the letter O followed by the
device number upon which the UFD resides if the user is an owner or
types the letter N followed by the device number upon which the UFD
resides if the user is a nonowner. The concept of owner and nonowner
is described in Section 2 under the heading "File Access' and is
associated with the DOS/VM commands PASSWD and PROTEC.

4-30

LISTING Filename

Opens a file for writing on File Unit 2, usually as a listing
output file for the campiler or assembler. The file is assigned
the name Filename in the current UFD. LISTING is an internal
command. This command has the same effect as OPEN Filename 2 2.

NOTE
If no LISTING command has been entered, PMA and FIN
automatically open a file named L«XXXX as the listing

file (if listing is requested). (XXXX is the first
four letters of the source filename.)

LFIN

Invokes a version of the FORTRAN compiler that can perform Sector ()
optimization. The name LFIN is the name of this version on the
master disk; it may be changed by the user in his copy of CMINCO.
LFIN is an external command. For further operating details, refer
to the description of the FIN command. ‘

LOAD

Loads and starts LOAD, Prime's Linking Loader. LOAD has a command
structure and, therefore, a single entry point. LOAD is an externail
command. For an example of the use of LOAD, refer to Section 3.

For a complete discussion of LOAD, refer to the Program Development
Software User Guide.

A number of versions of loader are available on the original master
disk. The versions of the loader are:

Name Function

LOAD (Loader 60000-63777) P-Register = 61000
Normally used with 32K DOS.

“LOAD20 (Loader 20000-23777) P-Register = 21000
Normally used with 16K DOS.

LOADAP Paper tape loader.

HILOAD (Loader 174000-177777) P-Register = 175000
Normally used to load programs longer
than 32ZK.

MAN /675 4-31

Other than the functional and configuration differences noted above,
the internal function and user :rterface is the same. Any version of
the loaders may be used on a system configuration equal to or greater
than the one specified. If the user chooses, he can rename his parti-
cular load command using the CNAME command after deleting the '"uld
LOAD''. (e.g., ONAME LOAD40 LOAD). The user is cautioned that 1f his
programs make usc¢ of FORTRAN COMMON, then he must be careful to load
the correct version of LOAD to avoid a part of the loader being loaded

over part of the COMMON area.
LOGIN *RXDOS/VM***

LOGIN is the command the user must type at the terminal to obtain access
to the DOS/WM system. Syntax:

LOGIN Ufdnam [passwd] [Device]

where Ufdnam must be a valid UFD name on any of the disks available
to the system, Passwd is an optional argument that specifies the
owner or nonowner password, and Device is an optional argument that
specifies logical device numbers to be searched for Ufdnam.

If the UFD has a password, the user must supply it at LOGIN time.

When LOGIN is successful, the user is attached to the UFD spedified

by Ufdnam. The time-accounting registers for the user are cleared, and
some initialization is performed on the users 'virtual machine'

(i.e., VRTSSW, ASRCWD, and SVCSW are initialized), then a login
message is printed at the terminal and at the supervisor terminal.

The LOGIN command sets the virtual control word to 0 indicating
that both input and output are to be from the user termminal. Examples:

LOGIN JHNDOE
logs in the user and the UFD, JHNDOE,-is attached.
LOGIN JHNDOE GIMINI

logs in the user and attaches the UFD, JHNDOE, if the password GEMINI
is correct.

A typical system response to this login at the terminal and at the
system supervisor terminal is: :

JHNDOE (2) LOGGED IN AT 12'39 0304

The number in parenthesis is the line number of the user terminal
(e.g., in this case, (2)).

4-32

The prompt:

0K,
is printed at the terminal in addition to the login message.
The user may give the ATTACH command, as under DOS. The name given
in the argument to the LOGIN command is remembered and printed upon
LOGOUT, no matter which UFD is currently attached.
LOGOUT ***mS/VM***

LOGOUT (or LO) is the last command the user issues when giving up
access to the system.

During LOGOUT, all user files are closed, all devices ASSIGNed to the
user's terminal are released, the UFD is detached, and a logout message
is printed at the user's terminal and at the supervisor terminal.

The syntax is: .

LOGOUT
LC
Example:

LOGOUT

Typical response at the terminal and at the supervisor console:

JHNDOE (2) LOGGED OUT AT 13'16 0304
TIME USED = 00'37 03'01 00'54

The first number after '"TIME USED =" is the connect time in hours and

minutes; the second number is CPU time in minutes and seconds, and the
third number is paging time in minutes and seconds.

MAN 1675 4-33

MACHK

Causes the Prime computer that DOS is configured upon to be run in
machine check mode. MACHK is an external command. Unless the command
specifies otherwise, DOS normally operates out of machine check mode;
DOS/VM normally operates in machine check mode.

MAGSAV, MAGRST MAGNETIC TAPE - FILE UTILITIES

MAGSAV and MAGRST are utility programs which move disk files to

nine-track magnetic tape and vice versa. The files may be SAM, DAM,

segment directories, UFD's, or an entire disk. Whenever a directory

is specified, the directory and all components (the subtree) are transferred.

Logical Tapes

A logical tape consists of a header record, a file mark, file records,
and two file marks. A logical tape may span multiple physical tapes
or a single physical tape may contain multiple logical tapes. The
header record contains the tape name, data, and revision number. All
tape records are 512 words long, the maximum size permitted by DOS/VM.

Tree Names

A disk file appears on tape as a record containing a tree name followed

by as many data records as are required for the file. The tree name
contains the path from the file specified by the user to the current

file. When an entire disk is saved, all tree names begin in the MFD.

For example, an ordinary SAM file might have a tree name of MFD>UFD>JUNK or
MFD>UFD>SUBUFD>JUNK.

4-34

<

AA MPC AT
IWOOA Y

v

Requests information in the following order:

TAPE UNIT: The proper response is the physical umit number
of the disk or the partition.

ENTER LOGICAL The response is 1 for the first logical #fape,

TAPE NUMBER: . 2 for the second, etc. MAGSAV rewinds the tape,

then positions itself correctly. A response of
0 implies the tape is already positioned correctly
and MAGSAV takes no action. :

TAPE NAME: Any six-character name.

DATE: The response format is MMbOObYY where b represents
a blank.

REV NO: An arbitrary number.

NAME : NAME asks the user what to save. The response

is either a file name or one of the alternate
action commands: $A, $I, $R, $Q. $A changes the
home UFD via an attach, e.g., $A USER3 PASSWDS5.

$Q and $R each temminate a logical tape and return
to the operating system. $R also rewinds the tape.
$1 causes an index to be printed at the terminal.
$I followed by a blank and level number indexes

to the level indicated. For example, $I 3, prints
an index of the MFD, any UFD's and any Filemanes.
NAME: will be typed whenever writing has completed
so that further writing may be requested or the
current logical tape may be terminated. If the
user does not respond correctly to the query

NAME, or when the operation specified is complete;
MAGSAV again asks NAME:. The user then must give
another action command.

To save an entire disk, the user must respond to the query name with MFD.
To save a UFD, the user must attach ($A) to the MFD then give the name
of the UFD that is to be saved. To save a file with the UFD, the user
must attach to the UFD (e.g., $A Ufdnam) and then give the name of the
file.

MAGRST

All restore operations take place in the home UFD. MAGRST asks for the
tape unit and logical tape number exactly as in MAGSAV. MAGRST then
prints the name, date, and revision on the user terminal and asks:

MAN 1675 4-35

READY TO RESTORE

TREE NAME:

PHYSICAL END OF TAPE

The responses are YES, NO, PARTIAL (abbreviated

Y, NO, PA), or NW level. YES will cause a restore
of the entire tape. NO will cause a request for
another tape unit and logical tape combination.
PARTTAL will permit a restore of part of the tape.
NW followed by a level number gives an index of the
magnetic tape but does not write it to disk!

This is typed when a partial restore is requested.
The response is in the form

NAME1>NAMEZ>.... NAMEn

Any file on the tape whose tree name begins with
the sequence entered will be restored. Example -
All tree names in a save of the entire disk begin
with MFD. The tree name to restore UFD would be
MFD>Ufdnam. The tree name to restore a file would
be MFD>Ufdnam>Filename

When this condition is encountered in either MAGSAV or MAGRST, a message
is logged on the console and a new tape unit is requested. The new unit
may be the same as the old unit.

ERRORS

Tape read or write errors are retried five times and are then considered

unrecoverable.

Both recovered and unrecovered errors are logged. The

first record on a tape is not retried.

EXAMPLES OF MAGSAV

OK: MAGSAV
GO
TAPE UNIT : 1

ENTER LOGICAL TAPE NUMBER: 0

TAPE NAME: DUD

DATE: 05 23 75

NAME: MFD
NAME; $R
OK:

4-36

Another example of MAGSAV:
User input is underscored.

OK, STARTUF 0 4
OK, A MFD YXOXXX

OK, MAGSAV

G0

TAPE UNIT: 0

ENTER LOGICAL TAPE NUMBER: 0
TAPE NAME: MD7V1 -
DATE: 05 18775

REV NO: 2
NAME: $I 3
NAME: MED MAGSAV responds to each command input and again

asks for name
(During the save, MAGSAV lists directories and files saved for example)

MFD

MFD >CMDNCO

MFD >DOS

MFD >CPU

MFD >CPU >0P3FLT
MFD >CPU >P221B

MFD >LPRCDR
MED >LPRCDR >PCRDO3

When the listing is complete, MAGSAV again asks:

NAME: R§ The MAGSAV rewind command causes the tape to
be rewound and exit to be made to command level.
0K,

EXAMPLE OF MAGRST

OK, MAGRST

GO

TAPE UNIT: 1

ENTER LOGICAL TAPE NUMBER: 1
NAME: MCARCH

DATE: 05-06-75

REV NO: 1

REEL NO: 1

YOU ARE NOT ATTACHED TO AN MFD
READY TO RESTORE: NW_3

Response to NW 3 is to list the contents of MCARCH as follows:

MAN!675 4-37

MFD > CMDNCO

MFD > DOS

MFD > CPU

MFD > CPU > OP3FLT

MFD > SMLC > MS374K
INDEX COMPLETE ,
0K+ Tape is not restored to disk in this case.

Another example of MAGRST:

OK: MAGRST

G

TAPE UNIT: 1

ENTER LOGICAL TAPE NUMBER: 1

REEL NO: — 1
READY TO RESTORE: YES

OK:

4-38

MAKE

MAKE creates a disk for any disk supported by DOS or DOS/VM.

MAKE runs under both DOS and DOS/VM. Under DOS/VM, the disk to be
created by the MAKE command must be ASSIGNed before MAKE is invoked.
MAKE creates a DOS disk that has the following:

DSKRAT
MFD
BOOT
DOS
CMDNCO

The MAKE program writes the bootstrap (BOOT) into Record 0 of the disk.
To run MAKE, type the command:
MAKE
The response is:
PHYSICAL DISK
The user then must type the number of the physical disk to be

created. This disk must not be a disk connected to DOS by the
STARTUP command. Possible disk numbers are listed in Table 3-1.

It is recommended that when running MAKE under DOS, all rumning disks
be write protected except the disk to be created by MAKE. Under DOS/VM,
it is recommended that only the disk to be created by MAKE be assigned
to the terminal.

After the user specifies PHYSICAL DISK, MAKE then types:

RECORDS (OCTAL)
The user types the number of records, in octal, that are to be included
in the file structure part of the disk pack. Under most conditions,

the entire disk pack is used for the file structure. Possible
parameters for RECORDS for using the entire disk are:

Disk Octal Records
Diskette ' 460
1.5 million word disk 6260
3.0 million word pack 14540
30 million word disk 176700
128 thousand word fixed head disk (32 track) 400
256 thousand word fixed head disk (64 track) 1000
512 thousand word fixed head disk (128 track) 2000
1025 thousand word fixed head disk (256 track) 4000

MAN 1675 4-39

If the 30-million word disk is partitioned, other RECORDS parameters
may be:

Partition Disk Number Records
2 head (default) XX025X 14540
2 head (explicit XX065X 14540
4 head XX125X 31300
6 head _ XX165X 46040
8 head _ Xx225X 62600
10 head XX265X 77340
12 head XX325X 114100
14 head XX365X 130640
16 head XX425X 145400
18 head XX465X 162140
20 head XX525X 176700

Table 4-7. RECORDS Parameters for 30-Million Word Disk

In Table 4-7, the X's represent octal digits that must be set
appropriately. (Refer to Table 4-5).

For a 128 thousand word fixed head disk, a diskette or a 1.5 million
word disk pack, the user can type carriage return and MAKE defaults
to the correct number of records for that disk. MAKE echoes the user
input as follows:

DEVICE NUM RECORD COUNT where <number> is
" <number> <number> a one of the above
octal numbers

OK?

If the number is correct, type YES in response to the OK? query
followed by CARRIAGE RETURN. If not, type NO followed by CARRIAGE
RETURN and MAKE requests the input again. After the number of records
are specified, MAKE then asks the question:

VIRGIN DISK?

I1f the user answers YES followed by CARRIAGE RETURN, MAKE writes the
first RECORD-COUNT records of the disk with the first word of each
record set to the record address and with a record size of 448 words.
This action also writes a valid hardware checksum for each record. If
the user answers NO followed by CARRIAGE RETURN, MAK:Z does not initial-
ize the records. The records need not be initialized if all the records
have been initialized by a previous run of MAKE. However, it is
strongly recommended that the user answers YES to the VIRGIN DISK ?
question at each invocation of MAKE.

4-40

MAKE then asks the question:
VERIFY DISK

I the user types YES, MAKE reads every record in the file
of the disk to Verify’that each record can be read. system part

During the reading and the writing of all records, MAKE displays the
record number it is processing in the DATA lights. When done, MAKE
types DISK CREATED and returns to the operating system, which types
OK,. If any disk write errors occur, MAKE retries nine times. Each
error results in an error message of the form:

DISK WI ERROR device # DOS record # status

See Appendix J for a description of status.

If the write is not successful after ten tries, MAKE aborts, prints
the message, UNRECOVERED ERROR, and returns to the operating system.
If a DISK-NOT-READY status is detected, a single disk error message
is typed with a status of 177776. The software then retries to
write, waiting for the disk to become ready. If the user runs MAKE,
the answers YES to VIRGIN DISK ? and VERIFY DISK ?, it is possible

to find out immediately if there is any problem in the file structure
part of the disk pack.

After MAKE is run, the user must use FUTIL to copy *D0S16, *D0S24,

and *DOS32 from UFD DOS on a master disk to UFD DOS on the newly
created disk. The BOOT file in the MFD that is read from the disk by
the control panel boot expects these files to be in UFD DOS in order
to bootload DOS using the newly created disk pack. The user must also
use FUTIL to copy DOSEXT from UFD CMDNCO on a master disk to UFD CMDNCO
on the newly created disk.

It may be desirable to use part of a disk pack for the file structure
and part for the paging device under DOS/VM. The user must follow
the directions given in Section 6.

MCG Filename

Translates results of microcode assembly into proper code for the
ROM simulator. MCG is an external command.

MDL

Punches paper tapes of specified sections of memory in a self
loading format that can be read by the panel LOAD operation (or
equivalent operation). MDL tapes load into the same memory locations
from which they are punched. MDL is an external command, refer to
Program Development Software User Guide.

MAN LTS 4-41

NUMBER

Invokes a utility program that numbers or re-numbers statements in a

BASIC program. NUMBER is an extermal command. For further informationm,
refer to the BASIC manual.

OPEN Filename Funit Key

Opens the specified File Unit (1-16), associates it with the specified
Filename, and assigns a Status according to the Key. OPEN is an
internal command. ’

The argument, Key, for OPEN is significant. Key consists of octal
values for the type of file, and the action to be taken when the
file is opened. The format of Key is as follows;

Bits Meanin

1-5 New file (file type) key, octal values are:

000X File is sequential threaded file (SAM)
200X File is sequential directed file (DAM)
400X File is a SAM segment directory

600X File is a DAM segment directory
1000X File is a UFD

11-16 Action Key, octal values are:

1 Open for reading
2 Open for writing
3 Open for reading and writing

PASSWD Owner-Password [Nonowner-Password]

Under DOS/VM, the PASSWD command replaces any existing passwords in the
current UFD with two new passwords. The first is the owner password;
the second is the nonowner password. The nonowner password is optional,
and if it is not specified, then the PASSWD command functions in the
same way as it does under DOS. The PASSWD command must be given by

the owner while attached to the UFD. A nonowner cannot give this
command. Example:

OK, A JHNDOE OLDPW

OK, PASSED US THEM

If a nonowner attempted the above PASSWD command, the message:

NO RIGHT
is printed.
Under DOS, the password comman.d also replaces any existing passwords in
the current UrD. However, only one password, the owner password, may be

given. Example: OK: ATTACH JHNDOE
PASSWD US

4-42

PROTECT ***mS/VM***

A user (hereafter called the owner) has the ability to open his file
directories to other users giving restricted access rights to his files.
This declaration of access rights can be made on a per file basis.
Access rights to a file are declared and specified through the

PASSWD and PROTEC commands. The syntax of this command is:

PROTECT Filename Keyl Key2
Filename is the name of the file to be protected.

Keyl is an integer that specifies the owners access rights
to Filename.

Key2 is an integer that specifies the nonowners access
rights to Filename.

Possible values and their associated meaning for Keyl and KeyZ are:

No access of any kind allowed
Read only

Write only

Read and write

Delete only

Delete, truncate and read

Delete, truncate and write
A1l

NN RGN O

Example:

OK, PASSWD US THEM
OK, PROTEC MYPROG 7 1
OK, PROTEC OLDLIS 7 7

Gives the owner all access rights to MYPROG and gives nonowners

read-only access rights to MYPROG, and gives both owners and nonowners
all access rights to the file OLDLIS.

MAN 1675 443

The following brief example is intended to give a user an idea of the
use of the PASSWD and PROTEC commands:

LOGIN JHNDOE
JHNDOE (2) LOGGED IN AT 10'25 02255
OK, PASSWD JHNDOE US THEM gives owner password US and
' nonowner password THEM to
UFD JHNDOE ’
OK, LISTF

UFD = JINDOE 2 0
TIMING FUNCT MNEMOS MYPROG OLD

OK, PROTEC TIMING 7 O Gives JHNDOE all access
nonowners no access to TIMING

OK, PROTEC MYPROG 7 1 Gives owner access = all
nonowners access = read

OK, PROTEC OLD 7 7 nonowners access = all
owner access = all

0

JHNDOE (2) LOGGED OUT AT 10'34 02255
TIME USED = 00'03 00'04 00'01

OK, LOGIN MSMYTH
MYSMYTH (2) LOGGED IN AT 11'34 02255

OK, A JHNDOE THEM

OK, LISTF

UFD = JINDOE 2 N

TIMING FUNCT MNEMOS MYPROG OLD
OK, DELETE TIMING

TIMING NO RIGHT MYSMYTH, who is a nonowner, cannot
even read timing since he has no
access.

ER! ED MYPROG

GO MYSMYTH can enter editor and
P2; read MYPROG since read access
.NULL. has been granted.

C PROGRAM TO TEST DATA
¢ JOIN DOE 02 02 75

4-44

INPUT
C_ WITH CHANGES INSERTED BY MSMYTH

EDIT

LE_MYPROG
MYPROG NO RIGHT
4

“SK Might as well quit

ED_ OLD
GO

2
INPUT

MSMYTH attempts to change
MYPROG; he seems to have
succeeded.

Cannot change file since
write access has been denied
by JHNDOE -

C_CHANGES BY MSMYTH WILL BE RECORDED HERE

-
EDIT

FILE OLD
OK,

MAN 1675 4-45

Since all access has been
granted for OLD, the changes
are made successfully.

PM (POST MORTEM)

Prints contents of the RVEC vector (described later in this
section). DOS first prints labels for the items in RVLC, then
on the next line prints the values in the same order. PM is an
internal command. Example:

OK: REST CSETV1

OK:

SA,EAP,A,B,X,K=

000100 011100 001000 000000 000000 000000 000000
OK:

PMA Filename [1/A]

Loads the Prime Macro Assembler and starts assembly of a source file
Filename from the current UFD. A is the A register setting that
specifies listing detail and input/output devices. If A is not
specified, the default value is:

A 000777 "Normal listing detail, all input
and output files on disk

For other values, refer to the Program Development Software lUser
Guide and the PMA Reference Manual (MAN 1673).

Unless it is preceded by BINARY and LISTING commands, the assembler
automatically opens Unit 2 to write a binary file named B«XXXX, and
opens Unit 3 to write a listing file named L«XXXX. where XXXX is the
first four letters of the input filename. The assembler closes any
units that it opens. (Units opened by BINARY and LISTING commands
are not closed.) PMA is an external command.

PRERR

Prints the message stored in ERRVEC and the first six locations of
ERRVEC in octal. The PRERR commuand is useful in debugging a program,
On encountering an error condition, DOS or DOS/VM sets up an internal
vector called ERRVEC with several pieces of information. One of these
pieces is an error message, unless the user has called a system
subroutine with a non-zero alternate return. Refer to Appendix I for
a description of ERRVEC.

Using the system subroutine ERRSET (Refer to Section 5), a user may
set the content of the error message and have the messape printed or
not printed depending upon the alternate return being zc¢ro or nonzero
in a user subroutine. If the user routine was thc last routine to
set ERRVEC, PRERR prints the user-stored message.

4-46

PSD

g program vwhich assumes

(=2
control and waits for a command string. For details, refer to the
Program Development Software User Guide. To return to DOS, enter the
command string R 30000, R 50000 or R 70000 (under DOS) or pressing
CTL-P under DOS/VM. PSD occupies location 60000 to 65777,

)
=]

< o1 ~
o Uil a3 1o

PSD20

PSD20 is a version of PSD for 16K DOS. PSD20 occupies locations
20000 - 25777.

PTCPY

Loads PTCPY, a utility program that duplicates and verifies paper tapes
using the high speed reader-punch. Operation is controlled by P-
register and sense switch settings. PTCPY is an external command.

For details, see The Operators Guide.

To return to DOS, restart the processor from the systems terminal at
location '30000; or '50000; or '70000, depending on system configuration.
Under DOS/WM, the command ASSIGN PTR and ASSIGN PTP must be given before
PTCPY is invoked.

PTRED

Edits files read from paper tape. Refer to the description of ED
and the Program Development Software User Guide.

RESTORE Filename

Restores a program Filename in the current UFD from disk to high-speed
memory using the SA and EA values SAVEd with the file. The SAVEd RVEC
parameters (refer to next side head) are also loaded into RVEC to be
ready for a START command RESTORE is an internal command. Example:

RESTORE *GENFIL

OK: PM ’

SA: EA,P,A,B,X,K= :

000200 011710 001000 075072 000001 177771 006001
~OK:

RVEC Parameters: The commands RESTORE, RESUME, SAVE, PM and START
process a group of optional parameters associated with the DOS RVFC
vector. These parameters are stored on disk along with a starting
address (SA) and ending address (EA), for every program saved by the
SAVE command.

Initial values for these parameters are usually specified in the
SAVE command or by the loader's SAVE command that stored the program
on disk.

Each parameter is a 16-bit processor word, represented by up to six
octal digits.

MAN 1675 4-47

Processor

Memory
Parameter Location Definition
SA - Starting Address (first memory
word used by program)
EA , - Ending Address (last memory
vord used by program)
PC 7 P Register (Program Cowiter)
A 1 A Register (Arithmetic)
B 2 B Register (Arithmetic)
X 0 Index Register
Keys -- Status keys associated with INK,

OTK instructions

The RVEC parameters are optional in the command string. Any item that
is specified replaces the previous value in RVEC, which is saved with
the program. Thus, for any parameters that are not specified, the value
previously stored in RVEC is saved with the program.

RVEC parameters specified in RESUIME or START commands replace the
previous values in RVEC. Also, when a program returns to DOS through
the EXIT subroutine, RVEC is loaded from the processor values in effect

at the time of exit. Only the SAVE command alters the values of RVEC
stored on disk with the program.

RESTORE returns a program from disk to memory and loads thte SAVE
parameters into RVEC in preparation for a START command.

START sets the processor registers to the values currently stored in
RVEC and starts execution at location PC. The START command may also
specify new parameters to override (and replace) the previous values in
RVEC

RESUME combines the functions of RESTORE and START.

PM lists the current values of the RVEC parameters,

4-48

External commands have RVEC parameters that can be modified at the time
the command is started. (e.g., . PMA Filname 1/740).

Keys: The item [Keys] among the RVEC parameters refer to the processor
status keys handled by the INK and OTK instructions. These are
represented by a single 16-bit word in the following format:

}e—Shift Count ——

CP**ADR**
1

1 1 1 | i 1 1 1 1

Bit 1 2 3 4 56 7 8 8 16

where:

C = State of C (Carry) bit

P = Arithmetic mode; 0 - single precision,
1 double precision ‘

* = Must be zero

ADR = Addressing Mode:

Bits 5-156 fode

'

XXX 16K Sectored
2XXX 32K Sectored
6XXX 32K Relative
4XxXX 64K Relative

shift Count = Bits 9-16 of Location 6, which may
contain a nommalize shift count

If [Keys] are not specified, they are unchanged.

RESWME Filename [PC] [A] [B] [X] [KEYS]

RESUME is equivalent to a RESTORE and START command, combined. The
program Filename in the current UFD is loaded from disk to high-speed
memory, using the SAVEd values of SA and EA. RVEC is loaded from the
SAVEd RVEC parameters or from any new values specified in the command
string. The processor registers and keys are then set from RVEC and
the program is started at location PC. RESUME is an internal command.

MAN 1675 | 4-49

RTOSRA

Establishes an RTOS mapped random access file using 128-word structure.
Usage instructions are printed when the command is invoked. RTOSRA
is an external command.

RT128F

RTOS off-line utility command to read and write non-DOS (128-word & t
format) disk. See RTOS manual for details. (wenen

CAUTION: Do not use this command under DOS or DOS/WM except as di
in the RTOS User Guide. P trected

SAVE Filename SA EA [PC] [A] [B] [X] [KEYS]

Saves the content of high-speed memory from SA (starting address) to
EA (ending address) as a file named Filename in the current UFD. SAVE
is an internal command.

As discussed at the beginning of this Section, the contents of the DOS
vector RVEC are saved along with the program. RVEC may be altered

by new parameters specified in the SAVE command string before the
program and parameters are stored. For any parameters that are

not specified, the previous values of RVEC remain in effect and are
stored with the program. The RVEC parameters are used to initialize

the processor registers and keys when the program is RESTOREd or
RESUMEd. Example:

SAVE PROG1 200 2600 1000 0 0 0 O

This command saves the program PROG1 from locations '200 to '2600.
Execution starts at '1000, the A, B and X registers are set to 0,
and all bits of the keys are set to 0 (carry bit is 0, arithmetic
mode is single precision, addressing mode is 16K Sectored, and shift
count is zero). Start this save at '200 to preserve address links
in Sector 0.

All FORTRAN programs begin with ELM, Enter Load Mode. If macro
assembler (PMA) users have ELM as the first instruction in the program,
there is no need to set the keys after loading. The preferred way to
save a memory image is to use the loader SAVE command.

SHUTDN

The DOS command SHUTDN performs tasks necessary to shutting down DOS
in an orderly manner. Refer to the examples in Section 3 for use of
the DOS SHUTDN command. SHUTDN has extended capabilities in DOS/VM,
refer to Section 6. SHUIDN is an internal command. SHUTDN must also
be entered before closing down a DOS system or changing disk packs.
The command does some incidental DOS housekeeping that makes sure all
the information in memory buffers is written to disk properly.

4-50

SIZE Filename

Gives the size of Filename in records. Example:
OK: SIZE PRPLOT
GO

000002 RECORDS IN FILE
OK:

SLIST Filename

Prints the content of the file Filename at the users terminal. SLI$T
is often used to obtain source listings of short program or data files.
SLIST is an external command.

SORT

Sorts an ASCII file and writes the sorted file in the current UFD.
The SORT program requests input and output files, mmber of columns,
and starting and ending columns for the sorting operation. SORT is
an external command. Its format is:

" SORT

SORT BRIEF
SORT SPACE

SORT MERGE

The options BRIEF; SPACE; or MERGE, or a combination of these options,
may be entered following the command SORT. Only two options can be
implemented at a time. (Note, the names of the options may be abbre-
viated: BR, SP or ME.) The meaning of these options when specified
is as follows: -

tion Meaning

BRIEF SORT program messages are not
printed at the users terminal.

SPACE Any blank lines are deleted from
the SORT output file.

MERGE A maximm of ten unsorted files can
be merged at a time. The SORT program
asks for the names of the merged files.
The user at the terminal types the file-
names on one line, separated by spaces.

MANILTS 4-51

Reverse Sorting

Sorting can be specified to be in descending order by typing the
letter R separated by a space after the ending column of the desired
keys.

Command File

The SORT command can be run from a command file, since it does not
close Unit 6.

OK, SORT
G0
SORT PROGRAM PARAMETERS ARES
INPUT FILE NAME -- OUTPUT FILE NAME FOLLOWED BY
NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS.
INFILE QUTPUT 3
INPUT PAIRS OF STARTING AND ENDING COLUMNS
ONE PAIR PER LINE--SEPARATED BY A SPACE.
FOR REVERSE SORTING ENTER “R™ AFTER DESIRED
ENDING COLUMN--SEPARATED BY A SPACE.
15
15 85
30 35

BEGINNING SORT

'PASSES 3 ITEMS 266

OK»

Respond to the first inquiry with the input file name, output file
name and number of pairs of columns.

Respond to each inquiry with the appropriate starting and ending
colurm numbers (character positions).

During operation of the SORT program, the console DATA indicators
display a count of the numper of passes completed. When the sort
is completed, SORT prints the number of passes and number of items
(1ines in the input file), and return to DOS.

4-52

lename] ***DOS/VM*#**

Queues a copy of a file in the UFD SPOOL for off-line printing on the
DOS/WM system configuration line printer. SPOOL allows a user to get
output printed without specifically ASSIGNing the printer and then
waiting until the printing operation is complete before being able to
issue another command at the terminal. Example:

OK, FIN MYPROG
" OK, SPOOL L < MYPRO

GO
YOUR SPOOL FILE IS PRNT10

OK, FIN NEWPRG

Using SPOOL, terminals are not tied up waiting for the printer, and
terminals and files can be used while copies of the files are being
printed.

One terminal in the DOS/WM configuration must be dedicated to rumning
SPOOL (i.e., SPOOL must be logged-in as if it were a user).

The SPOOL program copies the specified file Filename into the UFD
SPOOL and changes its filename to prevent naming conflicts. Each file
in the UFD SPOOL is deleted after it is printed.

There are two programs in the UFD SPOOL that control printer output.
The SPLCEN program prints files in UFD SPOOL on the Centronics line
printer, and the SPLMPC program prints files in the UFD SPOOL on the
high-speed line printer. Only entire files can be printed using SPOOL.

After a successful file copy of Filename to the UFD SPOOL, SPOOL
responds:

YOUR SPOOL FILENAME IS PRNTnn

where nn is a two-digit decimal integer that is part of the new filename
in the SPOOL directory. ’

MAN]S 4-53

SPOOL Output Format

The SPOOL filename is printed on the header page before the file is
printed. A header page with the UFD of origin and Filename is
generated as the first page of each SPOOL job.

Errors

An INPUT FILE ERROR or LINE SIZE ERROR results in an error message at
the terminal dedicated to SPOOL. The file causing the error is deleted
and SPOOL continues, printing the next file in UFD SPOOL.

A DISK FULL error results in an error message being printed at the

user terminal, and the copy of the file, Filename, in the UFD SPOOL
is deleted without being printed.

DEFAULT

SPOOL typed with no Filename argument opens File Unit 2 for writing
in the SPOOL directory. SPOOL responds by typing the SPOOL filename.
A user program may then write directly to File Unit 2. When the
program finishes, the user may close File Unit 2 with the command:

CLOSE ALL

or may close the unit at the end of the program. The file produced
in this manner is subsequently printed by SPLCEN or SPLMPC, whichever
is appropriate.

Example 1:

OK, PMA FILE

Qo

NO ERRORS

OK, SPOOL _L<FILE

GO

YOUR SPOOL FILENAME IS PRNT1f
OK, DELETE L<FILE

0K,

the above example, a user assembles the program named FILE and
é:nerates the 1?2£ing, I«FILE, and a binary file B«File. The user then
issues the command: SPOOL L<FILE. This command causes L+EILE to_be
copied to PRNT1# in the UFD SPOOL. If SPLMPC, or SPLCEN, is running 1
in UFD SPOOL (logged in on another terminal); the file PRNT1§ is printe
on the line printer. The user may then DELETE the file L<FILE since
what is desired is a printed copy of the listing.

4-54

0K, SPOOL

8

YOUR SPOOL FILENAME IS PRNT1§
OK, PMA FILE

GO

NO ERRORS

OK, CLOSE ALL

0K,

In this example, the user issues the command SPOOL with no Filename
argument before invoking the assembler. SPOOL opens PRNT1§ in UFD
SPOOL for writing on File Unit 2. The command: PMA FILE first checks
if Unit 2 is open. Because Unit is open, PMA does not open and write
L<FILE in the users UFD; instead, it outputs the assembly listing
to the file already open on File Unit 2, which happens to be PRNT1f#
in the UFD SPOOL. When the assembly is done and PMA returns to
command level, PMA leaves File Unit 2 open. The user gives the
CLOSE ALL command which closes Unit 2. (Note, the user could have
not given this command but proceeded to invoke a series of assemblies
or compilations with the result that a listing file consisting of
a series of listings would have been created). After File Unit 2

is closed, and if SPLCEN or SPIMPC is rumning, the file PRNT1§ is
printed on the line printer.

LOGGING IN AND STARTING UP THE SPOOL DAEMON

To start SPIMPC or SPLCEN at a terminal, proceed as follows (user
input is underlined):

LOGIN SPOOL _ SPLOUT
OK, ASSIGN CENPR

OK, RESUME SPLCEN
GO

For the High-Speed Printer:

LOGIN SPOOL SPLOUT
0K, ASSIGN PRl

OK, RESUME SPLMPC
GO

The SPIMPC or SPLCEN program looks.for files with names: PRNT1#, PRNT11,
PRNT12, etc. in the current UFD and prints them if any exist. SPLMPC

or SPLCEN always processes files first-in, first-out (FIFO). An

INPUT FILE ERROR or a LINE SIZE ERROR results in an error message at

the terminal from which SPOOL was logged in. The spool-file

(PRNT1@, 11, ... etc.) is deleted and the next file is processed.

If a user decides not to print a file that is queued for printing by

SPOOL, it is possible to ATTACH to the UFD SPOOL and DELETE the)
appropriate file (named PRNTmn where nn is a number 10, 11, 12, etc.).

MAN 1675 4-55

If printing of the file to be deleted has started, the attempt to
DELETE it fails. However, the user can request the operator at the
terminal from which SPOOL was logged-in to stop the file from printing;
or the operator may stop printing a file if he perceives that the file
is incorrect. The operator or user proceeds to do this by:

CONTRUL+P (Operator presses QUIT)
QUIT, CLOSE ALL
OK, ATTACH SPOOL SPLOUT

OK, DELETE PRNTnn (nn = number for whatever
file is appropriate)
OK, RESIME SPLMPC (or RESUME SPLCEN)
GO
CAUTION

SPOOL reuses available names. Thus, after
PRNT1# is printed and deleted, the name PRNT1#
is available for use by SPOOL again and may be
given to a subsequent Filename argument in a
subsequent SPOOL request. If deleting files
from the UFD SPOOL, be sure you are deleting
the right one.

START [PC] [A] [B] [X] [Keys]

Initializes the processor's registers and keys from the cormand line
(or from RVEC, for any values not specified in the command line)

and starts execution at location PC. This command assumes a pro-
gram has been loaded into memory by a previous RESTORE, RESUME, or

LOAD command. START is an internal command.

START can also restart a program that has returned control to DOS
(for example, because of an errcr, a FORTRAN PAUSE or CALL EXIT
statement). If START is typed vithout a value for PC, the prograr
resumes at the PC value where execution was interrupted. To restart
the program at a different point, specify an octal starting location
as the PC value.

4-56

STARTUP Pdisk0 [Pdiskl] [Pdisk2] [Pdisk3] ... [Pdisk8]

Initializes the configuration of disk drives by relating

physical disk drive numbers to DOS logical disk unit numbers. STARTUP
is an internal command. Physical device numbers for disks are those -
shown in Table 3-1.

The logical-to-physical assignment depends on the order in which the
physical device numbers are listed as parameters in the STARTUP command.
The physical device number specified in the Pdisk0 position is assigned
as logical disk unit 0, the physical device number specified in the
Pdiskl position is assigned as logical disk unit 1, and so on.

The number of parameters indicate to DOS the number of logical drives
assigned to the system. Example:

STARTUP 3 0 1

This command makes the following logical/physical disk assigmments:

Logical Unit Physical Unit
0 3
1 0
2 1
3 Not Assigned

STARTUP has some extended capébility in DOS/VM; refer to
Section 6.

MAN 1675 4-57

STATUS

Lists the current UFD - the logical device upon which the UFD resides,
the low boundary of DOS plus buffers, the open file umits, and the
physical-to-logical device correspondence. STATUS lists physical
device numbers as described in Table 3-1 and Section 3. Example:

OK: STATUS

UFD=GOUDY "0

DOSLO 67000 FUNITS

LDEV PDEV
0 01
1 00
2 04

In DOS/VM, the STATUS command prints the packnames of the disks also.
Rather than typing the current UFD, the login UFD is typed. Example:

OK, STATUS
UFD=GOUDY 0

FUNITS

DISK LDEV PDEV
TSDISK 0 01
COMAND 1 00
DUD 2 04

The disk name (Packname) is the name of the DSKRAT on that disk pack.
The DSKRAT name can be changed by the CNAME command.

The STATUS command may be used to monitor the usage of DOS/VM. When
entered at the system terminal, the STATUS command prints status
information that consists of the information given at the user terminal
and; in addition, prints the paging device, the command de:.ce, and a
list of current logged-in users, and the devices that each user has
currently assigned. Disks assigned to a user are printed as:

DISK <octal number>. Following each user name in the list, the user
terminal number and the numbers of the physical disks currently used
by the user are printed. A disk is considered to be in use by a user
(1) if his home UFD or current UFD resides on the disk or (2) if the
user has opened a file on that disk. Some typical instances where
the STATUS command must be used are:

1. Prior to mounting a new disk pack to determine what
physical disk assignments are available.

2. After a request that all users release a given disk or
disks to determine that they have done so before shutting
down the given disk or disks.

4-58

-

J.

Example:

As a check that all users have logged out before shutting
down DOS/VM. (No harm to the system results if the users

of a particular disk are still logged-in when the disk or
the system is shut down. However, users will be disconnected
and the message: DISK d DETACHED; YOUR FILES CLOSED will

be printed at their terminal.

STATUS comamnd and response when issued at system terminal.

STAT

USER = SYSTEM 0

FUNITS

DISK LDEV PDEV
TS#1 0 250

DUD#2 1 40250

COMAND 2 4

ETCH3 3 0

TS#2 4 20250
MD6V2 5 6

TRANS 6 50250

DOSDVM 7 60250

PAGDEV = 10250 COMDEV = 250

USER

LINE PDEVS

SPOOL 3 40250 PR1
PDAVIS 4 20250 MI0 DK1
1

PDAVIS 5 40250 DK20 DK2
GRUBIN 7 50250
GREATA 8 250
SPORER 9 20250
SVCSW #%APOS/VME &%

The SVCSW command controls the handling of SVC instructions in the
virtual memory environment. Syntax:

MAN 1675

SVCSW 0
SVCSW 1
SVC 0
SvC 1

4-59

The normal mode (SVC 0) causes all SVC instructions to be trapped and
processed by the system supervisor. If the SVC SWITCH is ON (SVC 1),
almost all SVC instructions cause a virtual trap, and SVC instructions
are handled through the users location 65. The class of SVC instructions
always processed by the DOS/VM operating system regardless of the SVCSW
command are those determined by FUNCTION code 5XX (currently the

SVC's are RREC, WREC (for reading and writing to disk), TIMDAT

(for obtaining the time and date from DOS/VM), and RECYCL.

The SVC switch is initialized to 0 by the LOGIN command. The SVCSW
command allows a special version of DOS called VDOS32 to be run under
DOS/VM.
TIME **XDOS/VMA**
The TIME command prints the current value stored in the time account-
ing registers. The three values printed are the same as the three -
values in the logout message, namely:
Connect time (hours, minutes) Time since LOGIN
Compute time (minutes, seconds) Time accumulated
executing commands or
using programs (does
not include paging time).
Paging time (minutes, seconds) Time accumulated taking
page faults and bringing
pages into memory.
The syntax is:
TIME

T

Example:
T
Typical Response:

00'51 01'32 00'28

4-€0

UNASSIGN *ARDOS /YMA**

The UNASSIGN command may be entered at the user terminal to which a
device is currently ASSIGNed or may be entered at the supervisor
terminal. The UNASSIGN command, entered at the system terminal,
unconditionally deassigns the peripheral assigned to any user.
Entered from a user terminal, UNASSIGN only deassigns the device
that was previously assigned to the user. On selected devices,
this command turns off the device and clears the associated I/0
buffers. Syntax:

UNASSIGN Device
U Device

where device is a previously assigned device named as shown in
Table 4-4.

From the system terminal, this command is useful to release a device
if the user who assigned it has forgotten to log out and has left
his terminal.

Example:
UNASSIGN CENPR
unassigns the Centronics printer.
U PIR
unassigns the paper tape reader.

Before a disk may be assigned to a terminal, it must not be assigned
to either DOS/WM or another user. If the disk is assigned to DOS/WM,
it must be released using the SHUTDN command at the supervisor
terminal. A disk that has been ASSIGNed by a user camnot be entered
as an argument in the STARTUP command. The supervisor terminal can
UNASSIGN a device that may be assigned. Devices ASSIGNed by another
user are released when the LOGOUT command is invoked by that user.

USERS **XDOS/VME**
The USERS command prints the number of users currently logged into
DOS/VM. This command is useful to estimate how fast response will
be. A user may decide on the basis of this command whether or not
to run a long program. Example:

OK, USERS

USERS = 7

OK,

MAN 1675 4-61

VDOS32 ***mS/VM***

Starts a version of DOS that may be run under DOS/VM.
Example:

SVC 1
VDOS32

VRTSSW *#3DOS/VM*#*

The VRTSSW command allows setting the virtual sense switches. The
16-bit configuration specified by the numeric parameter of the
VRTSSW command, is stored and made available. Syntax:

VRTSSW [300000K]

where XXOXXXX is an octal number that specifies a 16-bit configuration;
when XXXXXX is not specified, it value is 0.

The 16-bit configuration specified by the numeric parameter of VRTSSW
is stored and made available to the user when a program written in
PMA executes an INA 1620 (read sense switches) instruction. For
further details, see the Assembly Language Reference Manual.

Example:

vV 10100

The virtual sense switches are initialized to 0 by the LOGIN
command.

WARNING: The instructions, skip on sense switch, always refer to
the actual sense switches, not to the virtual sense switches.
* [Comment]
The internal command named, *, indicates the beginning of a comment
line. * must be followed by a space and have a correct command
line form (1 to 3 names followed by 0 to 9 octal parameters).
Example:

* PROGRAM.1 JULY.14.1974

This command is useful to include comment lines in COMMAND files.

4-62

SECTION 5
FILE SYSTEM AND TERMINAL I/O LIBRARY

INTRODUCTION

DOS and DOS(VM provide the user with a powerful and general file system.
The key definitions of SEARCH, PRWFIL, and ATTACH are complicated. To
keep things straight, the definitions of these file system subroutines
have been written with mnemonic keys (Refer to Appendix C).

CALLING AND LOADING LIBRARY SUBROUTINES

When a FORTRAN user calls a subroutine, a call to the required subroutine
is automatically inserted in the FORTRAN object program by the compiler.

After a FORTRAN or Macro Assenbler main program is loaded, library
subroutines are loaded by using the loaders LIB (or LI) command.

CALLING SEQUENCE NOTATION
‘The following conventions apply to the FORTRAN calling sequence formats

described in the rest of this section. For assembly language calling,
refer to the PMA Manual.

Items in capital letters are to be reproduced literally. Items in
initial caps are variables to be assigned actual names or values by
the user. For example, the calling sequence:

CALL CMREAD (Array)
means that the user must enter CALL CMREAD, as specified, but may

coin his own array name. Common abbreviations such as Funit, Ldisk,
etc. are defined in the Foreword.

MAN 1675 >-1

File names and UFD names used in routines such as ATTACH,

RESTOR, etc., may be specified either by a Hollerith string or

an array name. The Hollerith form allows the file or UFD name

to be expressed literally in a 6-character Hollerith string such
as 6HFILNAM. 1If an array narme is used instead, it must designate
a 3-word integer array that contains the file or UFD name. For
example, the user could specify an array NAM that contains filename
FILNAM in the following form:

NAM(1) FI
NAM(Z) LN
NAM(3) AM

In either the Hollerith or Array form, the name must be specified
as exactly six characters; if the actual name has fewer than six
characters, it must be left justified and the Hollerith string
(or array) filled with space characters (b). For example, the
filename FIL1 should be treated as follows:

6HFIL1bb or NAM(1) or Fill - = FI
NAM(2) =11
NAM(3) = bb

Numerical values such as Funit, Ldisk, etc. must be specified by

decimal integer expressions. The error return Altrtn must be set by
an ASSIGN statement to the value of a statement number within the

user's program. (The form §n, where n is the statement mumber, is also
acceptable.)

Example: The ATTACH subroutine has the general form:
CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)
The user might code an actual call to this subroutine as follows:
CALL ATTACH (6HUSER1 , 0, PWD, 060001, $50)
where:
a. 6HUSERl, literally identifies the user's UFD, '"USER1 '';
b. The USER1 UFD is on logical disk unit 0 (Ldisk is an integer)

c. The user stores his current password in 3-wcrd integer array PWD

5-2

d. The variable KEY (declared as integer mode in the user's
program) controls the way that the file is referenced and
the home-UFD setup;

e. In case of uncorrectable error, control passes to statement
label 50 in the user's program.

/MANIETS 5-3

FILE SYSTEM AND TERMINAL I/O SUBROUTINES

DOS and DOS/WM provide a collection of subroutines that simplify disk
input-output, permit user programs to commmicate with the DOS supervisor
and file structure, and provide various input-output and control
functions. The subroutines SAVE, RESTOR, RESUME and ATTACH have, the

same effect as the commands of the same name, but they are called

from, and return control to, a user program. The calling sequence
provides the parameters that are normally entered from the terminal.

Most routines, like SEARCH, SAVE and RESTOR are implemented by code
within DOS itself. A small interlude program executes a supervisor

call to DOS or DOS/VM to do the work in each case.

Subroutines from this group are loaded from the main library file
FINLIB if they are called in a user's FORTRAN program. They are
described in this section in alphabetical order:

ATTACH D$INIT PRWFIL T1IN TNOU
BREAK$ ERRSET RECYCL T10U TNOUA
CMREAD EXIT RESTOR TIMDAT TOOCT
ClIN FORCEW RESUME T$CMPC UPDATE
CNAME GETERR RREC T$IMPC WREC
COMINP GINFO SAVE TSMT

COMANL PRERR SEARCH T$SLC

ATTACH

The ATTACH subroutine has the same effect as the ATTACH internal
command. The calling sequence is:

CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)
Definition of ATTACH

To access files, the file system must be attached to some User File
Directory. This implies that the file system has been supplied with
the proper file directory name and either the owner or nonowner
password, and the file system has found and has saved the name and
location of the file directory. After a successful attach, the name,
location, and owner/nonowner status of the UFD is referred to as the
current UFD. As an option, this information may be copied to another
place in the system, referred to as the home UFD. The user gets owner
status if he gives the owner password or gets nonowner status if he
gives the nonowner password. The owner of a file directory can declare
on a per-file-basis what rights a nonowner has over the owner's files.
The nonowner password may be given only under DOS/W. (Refer to the
description of the commands PASSWD and PROTECT in Section 4 for more
information.)

5-4

In attaching to a directory, the subroutine ATTACH specifies where to
look for the directory. ATTACH either specifies a file directory in the
master file directory (MFD) on a particular logical disk or a file
directory in the current UFD, or the home UFD as the directory to be
attached. ATTACH may specify a file unit number on which a segment
directory is open. In the segment directory reference, the file
directory to be attached is the one whose beginning disk address is
given by the word at the file pointer of the file unit. Syntax:

ATTACH is used as in the following call:
CALL ATTACH (NAME, LDISK, PASSWORD, KEY, ALTRTN)
KEY is composed of two subkeys that are combined additively. They are

REFERENCE and SETHOME. All calls require a REFERENCE subkey. The
REFERENCE subkeys are shown in the following table:

REFERENCE Octal Value Meaning

MFDUFD 0 attach to NAME in MFD on LDISK
CURUFD 2 attach to NAME in current UFD.

SEGUFD 4 attach to directory whose location on

the disk is given by the word at the
file pointer of the file umit given
by NAME (1). The file unit opened
previously by a call to SEARCH must be
an open segment directory.

The SETHOME subkeys are required on all calls; these subkeys are shown
in the following table:

SETHOME Octal Value Meaning
--- 0 do not set home UFD to current
UFD after attaching.
SETHOM 1 set home UFD to current UFD after
attaching.

MANIG7S >3

The meaning of the remaining parameters on a call to ATTACH is as

follows:

NAME

LDISK

PASSWORD

ALTRTN

If the key is 0 and NAME is 0, the home UFD is attached.

If the reference subkey is MFDUFD or CURUFD, NAME is
either a six-character Hollerith expression or the name
of a three word array that specifies a Ufdname to be
attached.

If the reference subkey is SEGUFD, NAME is a file unit
on which a segment directory is open.

If the reference subkey is MFDUFD, LDISK is the logical
disk on which the MFD is to be searched for UFD NAMI,

LDISK must be a logical disk that has been started up by
the STARTUP command. The special LDISK octal code 100000
signifies: search all started-up logical devices in order
0, 1, 2 ... n and attach to the UFD whose NAME appears in
the MFD of the lowest numbered logical device, The special
LDISK octal code 177777 signifies: search the MFD.of the
Ldisk currently attached for NAME.

1f the reference subkey is CURUFD or SEGUFD, or NAME is 0,
LDISK is ignored and is usually specified as 0.

If the reference subkey is MFDUFD, CURUFD, or SEGUFD,
PASSWORD is either a six-character Hollerith expression
or the name of a three-word array that specifies one of
the passwords of UFD NAME. If the password is blank, it
is specified as three words of two blank characters.

An integer variable assigned the value of a label is the
user's FORTRAN program to be used as an alternate return
in case of error. If this argument is 0 or omitted, an
error message is printed and control returns to DOS or
DOS/VM if any error should occur while using ATTACH.

A UFD attached through a segment directory reference does not have a
name. On LISTF, such a UFD is listed with a name of six asterisks.

If an error is encountered and control goes to Altrtn; ERRVEC(1), a
DOS vector, is set to the error type as follows:

Code Message

AH Name NOT FOUND

AL No UFD ATTACHED

AR Not a UFD (detected by DOS/VM only)

5-6

DDVEL +hvn
L VRN %

hrough a ca

+~ (ETEDD Tha arw
(RO ERE I

Y
PR LY i Cilw IR =TT PR Wy

11
printed if one of the following errors occur:

2. NAME is not found in the specified directory.
3. LDISK is out of range or not started up.

4. 1In a segment directory reference, NAME(1) is a closed umit or
the unit is at end of file.

If the error BAD PASSWORD is obtained, the alternate return is never
taken, and both the home UFD and current UFD are set to 0 to indicate
that no UFD is attached. This feature is a system Security measure to
prevent a user from writing a program to try all possible passwords on
a UFD.

Examples of ATTACH:
CALL ATTACH ('JHNDOE', -1, 'JJJ', 0, ERR)

Searches for the UFD, JHNDOE, in the MFD (as specified in the Key) on
the current logical device. If JHNDOE is found and the password, JJJ,
matches the recorded password, then UFD JHNDOE is attached. The
current UFD (now JHNDOE) is not set as the home UFD (This is specified
in the Key). The DOS vector that points to the current UFD is set to
this new directory.

BREAK$

The calling sequence is:

CALL BREAK$ |(.TRUE.) |
(.FALSE) |

Under DOS/VM, the BREAK$ routine, called with argument .TRUE:
CALL BREAKS (.TRUE.)
inhibits the CTL-P or BREAK$ key from interrupting a running program.
CALL BREAK$ (.FALSE)
enables the CTL-P or BREAK$ characters to interrupt a running program.
The LOGIN command initializes the user terminal so that the CTL-P or

BREAK keys cause interrupt.
Under DOS, BREAK$ has no effect. °

MAN 1675 >-7

CMREAD

The calling sequence is:

CALL CMREALD (Array)

(MREAD reads 18 words which represent the last command line
typed into Array as follows:

Array(1) Command (or spaces)

Array(2)

Array (3)
(4) Namel (or spaces)
(5)
(6) ‘
(7 Name2 (or spaces)
(8)
(9)
{10) Parl (or zero)
(11) Par2 (or zero)

|
Array(18) Par9 (or zero)

The command line may then be accessed directly from ARRAY. The
'Name's are normally UFD's or filenames and the 'Par's are parameters.

C1lIN
This routine gets the next character from the terminal if the command
stream comes from a terminal or from a Command (text) file if the command
stream comes from there, The calling sequence is:

CALL C1IN (Char)

The next character of a command file is read and loaded into Char .
If the character is (R or a line feed, Char is set to NL (pew line).

The command file must be specified by a preceding COMINPUT conimand.

The user's program that contains the call to C1lIN is usually started
by one of the command lines in the command file.

5-8

CNAME {

The CNAME routine allows the same action at user program level as the
CNAME command allows at command level. The calling sequence is:

CALL CNAME§ (Oldnam, Newnam, Altrtn)

CNAME changes the name of Oldnam in the current UFD to Newnam. The
user must have owner status to the UFD, The arguments are:

Oldnam A filename to be changed

Newnam The new filename for Oldnam

Altrtn If not 0, control goes to Altrtn if any error
occurs. If 0, an error message is printed and

control returns to DOS/VM if any error occurs.

If an error is encountered and control goes to Altrtn, ERRVEC(1) is
set to the error type as follows:

Code Message

CA Newnam BAD NAME

CZ Newnam DUPLICATE NAME
SH Oldnam NOT FOUND

SI Oldnam IN USE

SL NO UFD ATTACHED

SX Oldnam NQO RIGHT

A user obtains ERRVEC through a call to GETERR. (NAME does not run on
DOS, only DOS/VM.

COMINP

The COMINP routine allows the user to perform the same action at
program level as the user command COMINPUT allows at command ievel.
Refer to Section 4 for details of the COMINPUT command. Briefly,
COMINP causes DOS or DOS/VM to read commands from a file rather
than a terminal. The calling sequence is:

CALL COMINP (Name, Funit, Altrtn)

The arguments are:

Name Either a three-word array‘ containing a filename
of a command file or the words TTY, CONTIN, or PAUSE.

Funit A File Unit number (range 1 to 16; 1-15 under DOS)
that is to be used for reading the command file.

Altrtn If not 0, control goes to Altrtn in the event of
an error while opening Name. If 0, an error message
is printed and control returns to the operating
system in the event of an error while opening Name.

MAN 1675 5o

If an error is encountered and control goes to Altrtn, ERRVEC(1) is
set to the error type as follows:

Code Message

SD UNIT NOT OPEN
SH Name NOT FOUND
SI Name IN USE

SI UNIT IN USE

SL NO UFD ATTACHED
SX Name NO RIGHT

A user obtains ERRVEC through a call to GETERR.

COMANIL

COMANL causes a command line to be read from the terminal or

from a command file, depending upon the source of the command stream.
The calling sequence is: -

CALL COMANL
Example:

CALL COMANL
CALL CMREAD (ARRAY1)

Assume a user wishes to get a file name typed at the terminal via

a program. The user program calls COMANL followed by CMREAD (ARRAY1).
The filename is contained in the first three words of the array,
ARRAY1.

D$INIT

The D$INIT routine is called to initialize a disk device. The calling
sequence is:

CALL D$INIT (Pdisk)

when Pdisk is the physical disk number to be initialized. D$INIT

initializes the disk controller and performs a seek to cylinder 0

on Pdisk. D$INIT must be called prior to any RREC or WREC calls.

Pdisk must be assigned by the DOS/VM ASSIGN command before calling
this routine. D$INIT is not normally used by users but is used by
system utilities such as FIXRAT, COPY, and MAKE

5-10

ERRSET

ERRSET sets ERRVEC, a system vdctor, then takes an alternate return
or prints the message stored in ERRVEC and returns control to the
system. ERRSET has these forms:

CALL ERRSET (Altval, Altrtn) (Form 1)
CALL ERRSET (Altval, Altrtn, Messag, Num) (Form 2)
CALL Errset (Altval, Altrtn, Name, Messag, Num) (Form 3)

In Form 1, Altval must have value 100000 octal and Altrtn specifies
where control is to pass. If Altrtn is 0, the message stored in

ERRVEC is printed and control returns to the system. Forms 2 and 3
are similar; therefore, the arguments are described collectively as

follows:

Altval A two-word array that contains an error code that
replaces ERRVEC(1) and ERRVEC(2). Altval(l) must
be not equal to 100000 octal.

Altrtn If Altrtn is nonzero, control goes to Altrtn.
If Altrtn is zero, the message stored in ERRVEC is
printed and control returns to DOS.

Name The name of a three-word array containing a six-letter
word. This name replaces ERRVEC(3), ERRVEC(4), and
ERRVEC(5). If Name is not an argument in the call,
ERRVEC(3) is set to 0.

Message An array of characters stored two per word. A pointer
to this message is placed in ERRVEC(7).

Num The number of characters in Message. Num replaces

ERRVEC(8).

If a message is to be printed, six characters starting at ERRVEC(3)

are printed at the terminal and ERRVEC(8) characters from a message
pointed to by ERRVEC(7) are printed at the terminal. If ERRVEC(3) is

0, only the message pointed to by ERRVEC(7) is printed. The message
stored in ERRVEC may also be printed by the PRERR command or the PRERR
subroutine. The contents of ERRVEC may be obtained by calling subroutine
GETERR.

EXIT

The EXIT subroutine provides a way to return from a user program to
DOS or DOS/VM, that prints OK; (or OK,) at the terminal and resumes
control. The calling sequence is:

CALL EXIT

The user may open or close files or switch directories, and restart
a FORTRAN program at the next statement by typing S (i.e., START) .

MAN 675 5-11

FORCEW
Calling sequence is:

CALL FORCEW (0, Funit)

The FORCEW subroutine, under DOS/VM, immediately updates to the disk
the file that is currently open on Funit. Normally this action is not
needed since the system automatically updates all changed file system
information to the disk at least once per minute. Under DOS, the
FORCEW routine acts as a no-operation (i.e., it does nothing).

GETERR

A user obtains ERRVEC contents through a call to GETERR.

Calling sequence is:
CALL GETERR (Xervec, n)
GETERR moves n words from ERRVEC into Xervec.

On an alternate return:

error code (returned in B register);
ERRVEC(1)

alternate Value'(returned in A register);
ERRVEC(2)

GINFO

Calling sequence is:
CALL GINFO (Xervec, n)

GINFO moves n words in Xervec.

5-12

On a normal return:

PRWFIL:
ERRVEC(3) record number
ERRVEC(4) word number

Key of read/write convenient:
ERRVEC(2) no. of words
transferred

SEARCH :
ERRVEC(2) File type

The information acquired is:

DOS

low bound of DOS and buffers

. high bound of DOS

. count of started devices
(from STARTUP command)

4. data word count of current

(N B
.

DOS/W

1. 0
2. 0
3. max. possible device count
4. data word count of device 0
5. data word count of device 1

device

12) data wérd count of device 8

PRERR

Calling sequence is:
CALL PRERR
PRERR prints an error message on the users terminal.

Example of Use

A user wants to retain control on a request to open a unit for reading

if the name was not found by SEAR(H. To accomplish this, the user

calls SEARCH and gets an alternate return. He then calls to GETERR and
determines if another type of error occurred other than NAME NOT FOUND.
The user then wishes DOS or DOS/VM to print the error message, but to keep
control, he calls PRERR.

PRWFIL
Definition of PRWFIL

PRAFIL is used to read, write, and position a file open on a file unit.
A typical call to PRWFIL will read into a user buffer N words from a
file open on Funit starting at the file pointer in the file. A user
may instead move the file pointer forward or backward relative to its
current position or move the file pointer to an absolute position in
the file. The two operations of reading and positioning or writing
and positioning may be combined in a single call with position
occurring either before or after the read or write operation. Syntax:

MAN 1675 >-13

PRWFIL is used as in the following call:

CALL PRWFIL (KEY, FUNIT, PBUFFER, NWORDS, POSITION, ALTRIN)
KEY is composed of three subkeys that are combined additively. They
are RWKEY, POSKEY,’aqd MODE. The POSKEY is only required on those
calls in which positioning is requested. Subkeys whose values are 0 may
be omitted from the call. The PRWFIL call may be represented as:
CALL PRWFIL (RWKEY+POSKEY+MODE,FUNIT,PBUFFER, NWORDS,POSITION,ALTRTN)

The RWKEY subkeys are shown in the following tatle,

RWKEY Octal Value Meaning
PREAD 1 read NWORDS from FUNIT into a buffer

whose address is in PBUFFER.

PWRITE 2 write NWORDS from a buffer whose
address is in PBUFFER to FUNIT.

The POSKEY subkeys are shown in the following table:

POSKEY Octal Value Meaning
PREREL 0 move the file pointer of FUNIT POSITION

words relative to the current position
before reading or writing.

POSREL 20 move the file pointer of FUNIT POSITION
words relative to the current position
after reading or writing.

PREABS 10 move the file pointer of FUNIT to an
absolute position specified by POSITION(1)
and POSITION(2) before reading or writing.

POSABS 30 ~ move the file pointer of FUNIT to an
absolute position specified by POSITION(1)
and POSITION(2) after reading or writing.

5-14

The MODE subkeys are shown in the following table:

MODE Octal Value Meaning
- 0 read or write NWORDS.
POONV 400 read or write a convenient number of

words. The number transferred is
NWORDS. See explanation below.

The meaning of the remaining parameters in a call to PRWFIL are as
follows:

FUNIT a file unit number 1 to 16 (1 to 15 for DOS) on which a file
has been opened by a call to SEARCH or a command. PRWFIL
actions are performed on this file umit.

PBUFFER réading or writing is done beginning at the memory location
whose address is contained in PBUFFER. PBUFFER is therefore
a pointer to a user buffer or array used in reading or

writing. (Use the LOC function of FORTRAN to generate a
pointer,) ‘

NWORDS If the mode subkey is 0, NWORDS is the number of words
- to be transferred to or from a file unit and a user buffer.
"If NWORDS is 0, no words are transferred.

If the MODE subkey is PCONV, NWORDS is the maximum number of
words to be transferred. The number actually transferred is

a number between 1 and NWORDS that is convenient and fast for
PRWFIL to transfer. If NWORDS is 0, no words are transferred.
The user can find how many words were transferred from ERRVEC (2) .

For either mode, NWORDS may be between 0 and 65535.

POSITION If the POSKEY is PREREL or POSREL, POSITION is a single
signed integer word for relative positioning. Positioning
is forward and backward from the file pointer depending on
the sign of POSITION. If POSITION is 0, no positioning
is done. ‘

If the key is PREABS or POSABS, POSITION is a two-word integer
array (record-number, word-number) for absolute positioning.
If POSITION is (0,0) (both values 0), the file pointer is
moved to the beginning of the file.

ALTRIN An integer variable assigned the value of a label in the user's
FORTRAN program to be used as an alternate return in case of
uncorrectable errors. If the argument is 0 or omitted, an
error message is printed and control returns to DOS or DOS/VM
if any error occurs while using PRWFIL.

MAN 1675 5-15

If an error is encountered and control goes to ALTRTN, ERRVEC(1) is
set to the error type. This is a two-character code as follows:

Code Message Meaning

PD PRWFIL UNIT NOT OPEN bad key or file unit not open for
read/write.

PE PRWFIL EOF end of file reached on read or
position.

PG PRWFIL BOF beginning of file reached on read

or position.
DJ DISK FULL no room left on disk

A user obtains ERRVEC through a call to GETERR, which is described.
in this section. A user may wish to handle one type of error and have
the system type all other error messages and return to DOS or DOS/VM.

The user can call PRERR to print the error message that would have been
printed without ALTRIN,

On a PRWFIL EOF or PRWFIL BOF error, ERRVEC(2) is set to the number of
words left to be transferred in the read or write requests. On all
normal returns from PRWFIL, ERRVEC(3) and ERRVEC(4) are set to the
file pointer of the file as a two-word array (recora-number, word-number).

Onag call with the PCONV subkey, ERRVEC(2) is set to the number of words
read.

On a D;SK FULL error, the file pointer is set to the value it had at the
beginning of the call. The user may, therefore, delete another file and
restart the program by typing START. This feature only works with DOS/VM,

The positioning operation of PRWFIL is now discussed in more detail.
For every open file, the system maintains a file pointer of a file.
Because a file may contain more than 65,535 words, the largest unsigned
integer that can be represented in a 16-bit word, the file pointer
occupies two words. The method of representation chosen is two words,
the first of which is the record number and the second of which is a
word mumber. Each record contains 440 words of data, corresponding to
one disk record so the word number has a range of 0 to 439. The record
number has a range of 0 to 32767. When a file is opened by a call to
SEARCH, the file pointer is set so the next word read is the first
word of the file. The position pointer contains record 0, word 0, or
briefly (0,0). If the user calls PRWFIL to read 490 words and does no
positioning, at the end of the read operation the file pointer is
(record 1, word 50) or briefly (1,50). The user is cautioned that the
number of data words per record (440), although the same for all disk-
like devices in DOS, is not promised to be 440 for all times and

all devices. The user must call GINFO to determine the data record
size. The data record size is needed to convert a (record number,

word number) representation of the file pointer into one number
(possibly in floating point notation).

5-16

A call to read or write N words causes N words to be transferred to or
from the file starting at the file pointer in the file. Following a
call to transfer information, the file pointer is automatically moved

to the end of the data transferred in the file. Using a POSKEY of
PREABS or POSABS, the user may explicitly move the file pointer to
(record number, word number) before or after the data transfer operation.
Using a POSKEY of PREREL or POSREL, the user may explicitly move the file
pointer forward POSITION words from the current position, if POSITION

is positive. Using a POSKEY of PREREL or POSREL, the user may move the
file point backward POSITION words from the current position, if
POSITION is negative. The maximm position that can be moved in the
call is therefore plus or minus 32767 words. Positioning takes place
before or after the data transfer, depending on the key. If NWORDS

is 0 in any of the calls to PRWFIL, no data transfer takes place, so
PRWFIL does only a pointer position operation. On normal returns from
PRWFIL, ERRVEC (3) and ERRVEC (4) contain the file pointer as

(record number, word number).

The MODE subkey of PRWFIL is now discussed. In most cases, the user
wants to transfer a specific number of words on a call to PRWFIL. In
these cases, the MODE is 0 and is normally omitted in PRWFIL calls. In
some cases, such as in a program to copy a file from one file directory
to another, a buffer of a certain size is set aside in memory to hold
information, and the file is transferred a buffer-full at a time. In
this case, the user doesn't care how many words are transferred at each
call to PRWFIL, as long as the number of words is less than the size

L At S YL S

In fact, the user would prefer to use a number of words convenient to
the system, so that his program runs as fast as possible. The PCONV
subkey is used for this purpose. In the call to PRWFIL; NWORDS, or less,
are transferred. The number of words transferred is a number convenient
to the system. The number of words actually transferred is put in
ERRVEC (2).

For an example of PRWFIL wuse in a program, refer to Appendix H.

MAN 1675 5-17

RECYCL

The RECYCL subroutine is called under DOS/VM to tell the system to
cycle to the next user. It is a "I have nothing to do for now'" call.
Under DOS, RECYCL does nothing. The calling sequence is:

CALL RECYCL

RESTOR

RESTOR has the same effect under program control as the RESTORE
command. The calling sequence is:

CALL. RESTOR (Vect, Filename, Altrtn)

RESTOR performs the inverse of the SAVE operation. The SAVEd para-
meters for a Filename previously written to disk by SAVE are loaded
into the 9-word array VECT. The program itself is then loaded into
high-speed memory using the starting and ending address provided by
VECT (1) and VECT (2).

If an error is encountered and control goes to Altrtn, ERRVEC(1) 1is
set to the error type as follows:

Code Message

SH Name NOT FOUND
SI UNIT IN USE

SI Name IN USE

SL NO UFD ATTACHED
SX NO RIGHT

PE PRWFIL EOF

RESUME

RESUME has the save effect under program control as the RESUML
command. The calling sequence 1is:

CALL RESUME (Filename)

RREC

Subroutine RREC reads one disk record from a disk into a buffer in
memory. RREC may optionally scatter the information recorded in the
disk record into one, two or three buffers. For instance, the first X
words of the record may be sent to buffer A, the next Y words of the
record may be sent to buffer B and the last Z words of the record may be
sent to buffer C. Before RREC is called, the disk must be assigned by

ghe DOS/VM ASSIGN command and D$INIT must be called to initialize the
isk.

5-18

The RREC routine is not used normally by users but is used by system
utilities such as FIXRAT, MAKE and COPY.

The calling sequence is:

CALL RREC (Bptrs, Blen, N, Ra, Pdisk, Altrtn)

~ where:
Bptrs is an array of dimension N giving a list of buffer pointers.
Blen is an array of dimension N giving a list of buffer lengths
(number of words).
N bits 9-16 contain the dimension of Bptrs and Blen (1, 2, or 3)
bit 1 set means do current record address check
bit 2 set means ignore checksum error
bit 3 set means read an entire track beginning Ra into a
buffer 3520 words long beginning at the buffer pointed to
by Bptrs (1). This feature may only be used if RREC is
running under DOS and is reading a driver connected to
the 4001/4002 controller.
Ra is the disk record address. Legal addresses depend on the
size of the disk.
Size Ra Range
Floppy disk 0-303
1.5M disk pack 0-3247
3.0M disk pack 0-6495 -~
30M disk pack 0-64959
128K fixed head disk 0-255
256K fixed head disk 0-511
512K fixed head disk 0-1023
1024K fixed head disk 0-2047

Pdisk is the physical disk number of the disk to be read. Pdisk
numbers are the same numbers available for use in the
ASSIGN and STARTUP commands.

Altrtn is an integer variable in the user's program to be used as
an alternate return in case of uncorrectable disk errors.
If this argument is 0 or omitted, an error message is
printed if any error occurs.

MAN 1675 5-19

If an error is encountered and control goes to Altrtn, FRRVEC is set

as follows:

Code Message Meaning
ERRVEC(1) = WB on supervisor temminal: 10 times disk hardware or
ERRVEC(2) = 0 DISK RD ERROR Pdisk Ra Status WRITE PROTECT error

on user terminal:

UNRECOVERED ERROR
ERRVEC(1) = WB on user terminal: 10 times current record
ERRVEC(2) = CR DISK RD ERROR Pdisk Ra Status address error

followed by
UNRECOVERED ERROR

See Appendix .J for a description of status error codes.

Notes:

The sum of the buffer lengths, Blen, must be between 0 and 448,
If this number is not 448 and Pdisk is 20-27, (diskette) a
checksum error always is generated. This can be bypassed by
setting N bit 2 = 1 to ignore the checksum error. No check is
made for legality of Ra.

On a DISK NOT READY, RREC simply waits for the disk to become
ready under DOS/VM and prints no message. Under DOS, RREC
prints a single error message and waits for the disk to become
ready.

On any other read error, an error message is printed at the
system terminal followed by a seek to cylinder zero and a reread
of the record. If 10 errors occur, the message UNRECOVERED
ERROR is typed to the user or Altrtn is taken.

The parameters Bptrs and Blen allow scatter-gather operation for up to
three of the physical records.

5-20

SAVE
SAVE has the same effect under program control as the SAVE command.
The calling sequence is:

CALL SAVE (Vect, Filename)

The user sets up a nine-word vector VECT before calling SAVE. VECT(1)
must be set to an integer which is the first location in memory to be
saved and VECT(2) must be set to the last location to be saved. The
rest of the vector may be set up at the programmer's option.

Location
VECT(3) P Register ‘
VECT(4) A Register 1
VECT(5) B Register 2
VECT(6) X Register 0

VECT(7) Keys -
VECT(8) Spare --
VECT(9) Spare .-
SAVE writes, to the named disk file, the nine-word vector VECT

followed by the memory image starting at VECT(1) and ending at VECT(2).

SEARCH

For some program examples that show the use of SEARCH, refer to
Appendix H.

Definition'of SEARCH

SEARCH is used to connect a file to a file unit (open a file) or
disconnect a file from a file unit (close a file). After a file is
connected to a unit; PRWFIL and other routines may be called, either
to position the current-position pointer of a file unit (file pointer)
or to transfer information to or from the file (using the file umnit teo
reference the file).

On opening a file, SEARCH specifies allowable operations that may be
performed by PRWFIL, and other routines. These operations
are read only, write only or both read and write.

MAN 1675 >-21

On opening a file, SEARCH also specifies where to look for the file or
where to add the file, if the file does not already exist, and also
SEARCH specifies the file is to be opened for writing or both reading
and writing. SEAR(H either specifies a filename in the currently
attached user file directory or a file unit number on which a segment
directory is open. In the segment directory reference, the file to be
opened or closed is the one wﬁgge beginning disk address is given by the
word at the current position pointer of the file unit.

On creating a new file, the user specifies to SEARCH the file type of
the new file.

The subroutine SEARCH may be used to perform actions other than opening
and closing a file. SEARCH may delete a file, rewind a file unit, or
truncate a file.

Upon opening a file, SEARCH sets the file pointer to the beginning

of the file. Subroutines PRWFIL, and others cause information

be transferred to or from the file unit starting at the file pointer
of the file. After the transfer, the pointer is moved past the data
transferred, A call to SEARCH to rewind a file causes the file
pointer to be set to the beginning of the file. Subsequent calls to
PRWFIL, and other routines cause information transfer to occur as if the
file had just been opened. A call to SEARCH to truncate a file causes
all information beyond the file pointer to be removed from the file.
This call is useful if one is overwriting a file with less information
than originally contained within the file.

Syntax:
SEARCH is used as in the following call:
R3]

CALL SEARCH (KEY, NAME, FUNIT, ALTRIN)
KEY is composed of three subkeys that are combined additively. They
are ACTION, REFERENCE and NEWFILE. Not all subkeys are required on
every call, and subkeys whose values are zero may be omitted from the
call. The SEARCH call may therefore be represented as:

CALL SEARCH (ACTION+REFERENCE+NEWFILE, NAME,FUNIT, ALTRTN)

5-22

All calls require an ACTION subkey. The ACTION subkeys are shown in
the following table:

ACTION Octal Value Meaning

OPNRED 1 open NAME for reading on FUNIT

OPNWRT 2 open NAME for writing on FUNIT

OPNBTH 3 open NAME for both reading and writing
on FUNIT

CLOSE 4 close file by NAME or by FUNIT

DELETE -5 delete file NAME

REWIND 7 rewind file on FUNIT

TRNCAT 10 truncate file on FUNIT

The REFERENCE subkeys are shown in the following table:

REFERENCE Octal Value Meaning
UFDREF ' 0 search for file NAME in the current

user file directory as defined by a
previous ATTACH and perform the action
in the ACTION subkey on the specified file.

SEGREF 100 perform the action specified in the ACTION
subkey on the file whose disk location .
is given by the word indicated by the file
pointer of the file unit specified by
NAME(1). This file unit must be an open
segment directory.

Only those calls to SEARCH that reference a file in a UFD or Segment
Directory need the reference key. Calls that reference file units
do not need this key, and it is ignored.

The following table lists the NEWFIL subkeys:

NEWFIL Octal Value Meaning

NTFILE 0 new threaded (SAM) file

NDFILE 2000 new directed (DAM) file

NTSEG 4000 new threaded (SAM) segment directory
NDSEG 6000 new directed (DAM) segment directory
NEWUFD 10000 new user file directory (SAM)

Only those calls to SEARCH that generate a new file require a NEWFIL
subkey. On other calls, this subkey is ignored.

MAN 1675 s

The name of the remaining parameters in a call to SEARCH are as
follows:

NAME If the reference subkey is UFDREF, NAME is either a six
character Hollerith expression or the name of a three-word
array that specifies a filename (existing or not).

If the reference subkey is UFDREF and NAME(1) is -1, the
current UFD is opened. NAME = -1 must only be used in
configuration with ACTION subkeys 1, 2, or 3. Owner status
of the current UFD is required.

1f the reference subkey is SEGREF, NAME is a file unit
(1-16; 1-15 under DOS) on which a segment directory is open.

On calls in which the ACTION key requires only a file umit to
specify the file to be acted-on, NAME is ignored and is usually
specified as 1. If -1 is specified, then name is the current
UFD.

FUNIT On calls that require a file unit number, FUNIT is a number
1 to 16 (1-15 under DOS). On calls that require no unit number,
FUNIT is ignored and usually specified as 0.

ALTRIN ALTRIN is an integer variable assigned the value of a label in
the user's FORTRAN program to be used as an alternate return
in case of uncorrectable errors (e.g., attempting to open a
file that is already open). If this argument is 0 or omitted,
an error message is printed; and control returns to DOS or
DOS/WM, if any error should occur while using SEARCH.

If an error is encountered and control goes to ALTRIN, ERRVEC (1)
is set to the error type, a two-character code as follows:

Code Message Meaning

SA BAD CALL TO SEARCH some parameter in call is invalid.

SD UNIT NOT OPEN attempt to truncate or rewind
a file on a closed unit.

SD Name OPEN ON DELETE self-explanatory.

SH Name NOT FOUND file Name not in UFD.

SI Name IN USE file Name is already open.

SI UNIT IN USE file unit is already open.

SK UFD FULL self-explanatory.

SL NO UFD ATTACHED self-explanatory.

SQ SEG-DIR ERROR *SEG-DIR ERROR

SX NO RIGHT access rights violation.

DJ DISK FULL no room left on di:k.

5-24

*SEG-DIR ERROR: Meaning

1. If attempting to open an existing file in the
segment directory means:

a. the segment directory unit specified in NAME
is not open for reading.

b. the file pointer of the segment directory umit
is at end of file, therefore points to no disk
address.

c. the file pointer of the segment directory unit
points to a 0 entry,

2. If attempting to open a new file in the current
segment directory means:

The segment directorv wmit specified in NAME is
not open for both reading and writing.

A user obtains ERRVEC through a call to GETERR, which is described in
this section. Any of the above errors cause a control to go to ALTRIN,
A user may wish to handle one type of error and have the system type

all other error messages and return to DOS or DOS/VM. The user can call
PRERR to print the error message that would have been printed without

AT T 1
ERIPR S AN 3L I

ERRVEC(2) is set to a file type on a normal return of a call to SEARCH
to open a file, using action keys of OPNRED, OPNWRT, or OPNBTH. The

LR

codes are:

ERRVEC (2) File e
0 threaded file (SAM)
1 directed file (DAM)
2 threaded segment directory (SAM)
3 directed segment directory (DAM)
4 user file directory (SAM)

MAN 1675 5-25

Access Rights and Call to SEARCH

Under DOS/WM, the access rights of files are checked when a user
attempts to open a file through a call to SEARCH. Under DOS, access
rights ar¢ not checked.

A STARCH call that creates a new file gives that file default access
rights. ‘Default access rights are: owner has all rights; non owner has
no rights (Refer to Section 4 for a detailed description of access).

Adding and Deleting Files

The action of SEARCH in adding or deleting files from file directories
is now explained in more detail. For references to user file
directories, a call to SEAR(H to open a file for writing or both reading
and writing causes SEARCH to look in the current User File Directory
for the file. If the file is not found in the UFD, the file name

and beginning disk address of a new file is appended to the UFD, and
the file is opened for the appropriate activity. Currently, UFDs are
restricted to 72 files. An attempt to open a new file to a full UFD
generates the message: UFD FULL. A call to delete a file from a UFD
causes the name and beginning disk address to be removed from the UFD
and causes the UFD to be shortened.

For references to segment directories, a call to SEARCH to open a file
for writing or reading and writing causes SEARCH to examine the word

at the file pointer of the referenced segment directory file umit,

If the word is not zero, SEARCH considers the word to be a beginning
record address of an already created file. SEARCH opens the file for
writing or reading and writing. If the word is zero, SEARCH writes the
beginning disk address of a new file in that word and opens the file.

If the file pointer is positioned at the end of file, the file is
lengthened one word and SEARCH writes the beginning disk address of a
new file in that word, and opens the file. A call to delete a file
from a segment directory causes the beginning disk address of a file

at the file pointer of the segment directory to be replaced by zero.

The segment directory is not shortened. An attempt to open a file for
reading in a segment directory whose file pointer points to zero or
whose file pointer is at end-of-file, generates a SEG-DIR error. In

no case is the file pointer of a segment directory moved. Generating a
segment directory and filling it with files is quite involved. Examples
are presented in Appendix H under the title "Example' and in Appendix C,

5-26

el

Closing and Opening Files

On a call to close a file, SEARCH attempts to close file NAME and
generates an error message or goes to the alternate return if NAME is
found. FUNIT is ignored unless NAME is 0. If NAME is 0, SEARCH
ensures that FUNIT is closed. That is, it closes FUNIT if FUNIT is
open but does not generate an error message if the file unit is
closed. Example:

CALL SEARCH (1, 'OBJECT', 1, ERR)

Searches for a file, OBJECT, in the current UFD and opens it for
reading.

The user is allowed to open the current UFD for reading via a call to
SEARCH. The calling sequence for this feature is:

CALL SEARCH (1, -1, Fumit, Altrtn)

This call opens the current UFD for reading on Funit. The user must
have owner access rights to the UFD; i.e., the owner password must have
been given in the most recent call to ATTACH (or ATTACH command).
Control goes to Altrtn if there is no UFD attached, if Funit is already
in use, or the user does not have owner rights to the UFD.

T1IN

————

The calling sequence is:
CALL T1IN (Char)

T1IN reads a character from the terminal into Char, and echoes CARRIAGE
RETURNS for LINE FEEDS. (Also, LINE FEED is returned if CARRIAGE RETURN
is typed.)

T10U

The calling sequence is:
CALL TiOU (Char)
T10U types out Char. If Char is LF, both CR and LF are typed.

TNOU
The calling sequence is:
CALL TNOU (Array, Nchars)

TNOU prints Nchars characters from Array and adds CARRIAGE RETURN
and LINE FEED characters at the end of Nchars.

MAN 1675 5-27

TNOUA

The calling sequence is:
CALL TNOUA (Array, Nchars)

TNOUA prints Nchars characters from Array but does not add a
CARRIAGE RETURN and a LINE FEED.

TOOCT

The calling sequence is:
CALL TOOCT (Number)

TOOCT types the ASCII representation of Number converted to octal as
an unsigned six-digit number.

TIMDAT

The calling sequence is:
CALL TIMDAT (Array, Num)

TIMDAT may be called to pick up additional useful information, namely
the user's unique number on the system and his login UFD name. The
information is obtained by increasing the Array size and Num before
calling TIMDAT.

TIMDAT returns the date, time, CPU time, and paging time used since
LOGIN in an array as follows:

Array (1) two ASCII characters representing month.
(2) two ASCII characters representing day. Example: 30
(3) one ASCII characters representing year. Example: 4
(4) integer time minutes.
(5) integer time seconds.
(6) integer time ticks.
(7) integer CPU time used, seconds.
(8) integer CPU time used, ticks.
(9) integer paging time used, seconds.
(10) integer paging time used, ticks.
(11) integer number of ticks per second.
(12) user number.
(13) o |
v (14) six-character login name, left justified. Fxample: MSMITH
(15)

Num words of Array are set. This routine only runs under [¥)S/VM.

5-28

T$aMPC
The calling sequence is:
CALL T$QMPC (Unit, Buffer-Address, Word-Count, Instruction, Status-Vector)

The T§CMPC routine is the raw data mover that moves a card of information
from the MPC card reader to the user's space.

T$CMPC is called by the IOCS card reader driver I$AC03. The user
normally reads cards under program control using either a FORTRAN READ
statement or a call to I$AC0O3 (Refer to the Subroutine Library Manual).

However, it is possible to call T$QMPC directly. The arguments to
T$CMPC are:

Unit Card reader number. (Currently ignored.
Generally only one card reader is connected
to a DOS (DOS/WM) configuration).

Buffer-Address A pointer to a buffer to hold a card of
information read from the card reader.

Word-Count The number of words to be read
from the current card.

Instruction The instruction required to be sent to the
card reader. Valid instructions are:

Instruction , Meaning

tead status

read card in ASCII
format

read card in BINARY
format

100000 (octal)

40000 (octal)

60000 (octal)

Status-Word is a three-word vector that contains device
code, status of reader, and number of words
transferred. Possible status of the card
reader is as follows:

Octal Value ' Condition
200 ON-LINE
-40 I1legal ASCII
20 DAX overrun
4 Hopper Empty
2 Motion Check
1 Read Check
5-29

MAN 1675

Example:
40 DO I = 1, 23
50 CALL T$MPC (0, CARDS, 40, 40000, STATUS)
60 CALL 0§....
GO to 40

Reads an 80 character card of ASCII data and places the contents
in CARDS.

Card Reading Operation

Under DOS/VM, card reader input is buffered. The user must insert the
card deck in the card reader, then give the command:

ASSIGN CR1

About ten cards are read, enough to fill up the input buffer. The user
then starts up the program that uses the card reader. If T$CMPC is
called and the buffer is empty, the user is placed in INPUT-WAIT

state. Later, when the buffer is no longer empty, the user 1is
rescheduled by the operating system and the call to T$CMPC is

retried.

The user may issue a status-request call to check if the input buffer
is empty. If the buffer is empty, the ON-LINE status is not set.
Using this feature, a user may check for input, then read a card if
one is available, or do another computation if no card is available.

Under DOS, card reader input is not buffered; and the card reader is
never OFF-LINE.
T$LMPC
The calling sequence is:
CALL T$LMPC (Unit, Buffer-Address, Word-Count, Instruction, Status-Vector)

The T$IMPC routine is the raw data mover that moves information from
the user to one line on the MPC line printer.

T$LMPC is called by the IOCS line printer driver O$AL06. The user
normally prints lines under program control using either a FORTRAN
WRITE statement or a call to O$ALO6. However, it is possible to call
T$IMPC directly. The arguments are:

Buffer-Address A pointer to a buffer to hold information
to be printed on the line printer. Inform-
ation is expected to be packed two characters

per word.
Word-Count Number of words to print on the current line.
Instruction - The instruction required to be sent to the

line printer. Valid instructions are:

Instruction (Octal) Meaning
100000 Read Status
40000 Print a line
20012 Skip a line
20014 Skip to top of page
200XX Skip on control tape
channel
Status-Vector is a three-word vector that cContains device

code, status of printer, and a space.
Possible printer status is as follows:

Octal Value Condition
200 ON-LINE
100 Not Busy

Under DOS/VM, line printer output is buffered. If T$IMPC is called
and the buffer is full, the user is placed in OUTPUT-WAIT state.
Later, when the buffer is no longer full; the user is rescheduled,
and the T§IMPC call is retried. The user may issue a status request
call to check if the buffer is full. If the buffer is full, then
the Not-Busy status is reset. Using this feature, a user program
may check that the buffer is not full, then output a line, or do
another computation if the buffer is full.

Under DOS, output is not buffered, and control does not return to the
user until printing is complete.

T$MT

The calling sequence is:

CALL T$MT (Unit, Buffer-Address, Word-Count, Instruction, Status-Vector)
The T$MT routine is the raw data mover that moves a record of information
from one of four magnetic tape drives to the user address space, or

vice-versa. T$MT is called by the IOCS routines concerned with control-
ling, reading and writing both seven- and nine-track magnetic tapes.

MAN 1675 5-31

(For details, refer to the Subroutine Library Manual and/or the
Magnetic Tape Controller User Guide). The user normally controls,
reads, and writes magnetic tape under program control using either
FORTRAN READ, WRITE, REWIND, and END FILE statements or calls to
the appropriate IOCS driver. However, it is possible to call T$MT
directly. The arguments are:

Unit Magnetic Tape Drive (=0, 1, 2, or 3)

Buffer-Address’ A pointer to a buffer from which to read or
write a record of information.

Word-Count Number of words to transfer. This number must
be between 0 and 512 words.

Instruction The instruction request to the magnetic tape
driver.

Magnetic tape I/0 is not buffered under DOS/VM A call to T$MT

returns immediately before the operation is complete. When the

magnetic tape operation is completed, the Status Flag in the user

space is set to 0. Therefore, a user program may loop waiting for
completion and do another computatlon while waiting. If a user initiates
another call to T$MT before the first call has completed its magnetic
tape operation, the second call does not return to the user until the
first magnetic tape operation has completed.

Under DOS, T$MI does not return to the user until the magnetic tape
operation is completed.

T$SLC

The driver T$SLC is available on the master disk and provides user
control of a synchronous multi-line communications device.

Control

The driver is loaded in supervisor space. A user program communicates
with the driver via FORTRAN-format calls to T$SLCh. The driver
communicates with the user address space via bufi:rs in the user
address space specified by the user program. There is a data structure
provided by the user that is used by the driver. It is referred to as
the control block. The control block is created by the user program
in the user address space. It contains pointers to the user status
buffer and pointers to buffers containing a message to be transmitted
or buffers set to receive a message. The details of the data structure
are sumamrized in the subsequent paragraphs. A special control block is
required for each line.

The commmications lines must be assigned to a user space before they
can be used. The proper command is:

0
1
ASSIGN SMLC |2
3

The ASSIGN command is given at the user terminal. One or more lines
may be assigned to a user space.

Timing

The user space program runs asynchronously with message transfers.
A call to T$SLCO returns immediately after executing the control
function required. The progress of the commmication must be
monitored by the user program by examination of the user space
status buffer contents. For interpretation of the status codes, see
the Prime Computer User Guide for Synchronous Multiline Controller
(UG-0001 Rev. 2). '

Hardware Requirements

The SMLC driver assumes the presence of a 520X synchrous multi-line
controller with 3 52486 SMIL.C option The address of the controller
CONTTOLIET Wit & 3y VAL UpLiUiie. {iIC aUUiITSS Ui LiiT LUIILIVAL LTI

is 568.

Software Requirements

DOS/VWM: File TSSLC in UFD DVBIN on Master Disk Vol. I is a DOS/VM
executable memory image file with the synchronous-line controller
option. It can be created by file C«LSLC (see UFD DVSRC on Master
Disk Vol. II). In particular, file TMAIN (UFD DVSRC) must be
assembled with the B-register set to 200043 and the modules that
comprise T$SLCO (refer to the SMLC User Guide) must be locked

in memory.

There is a memory conflict among special drivers: the same memory
and table entries are used by T$SLCO, the Gould printer/plotter code,
and the digital input/output controller code.

User Level Software Responsibilities: A user address space program is
given direct control of most of the functionality of the SMLC controller;
therefore, the prospective user is assumed to know the User Guide.

A specific limitation is that no more than four message blocks may be
chained at a time in a given direction (transmit or receive) for a

given line.

MAN 1675 5-33

Controller status is collected as it is produced. This status is moved
from interrupt response code buffers in the supervisor address space to
user-space buffers at the next possible DOS/VM cycle (after any
currently executing and interrupted supervisor code). However, the
user bus/program does not get a chance to execute and act on the
reported status until its turn in the round-robin cycle. If system
usage is heavy enough, there will be excessive delay in line response
by the user-level program.

A1l details of implementation of a commmications protocol are left to
the user program with one exception: the driver program automatically
disables an active transmitter when the LAST CHARACTER OUT status is
detected for that line.

Information that is provided the user program in the user program's
status buffer consists of all status words received from the controller
plus two special codes. One is a code indicating the time at which

the LAST CHARACTER OUT (LCT) status was detected by the driver
interrupt code. This time is always inserted following a LAST
CHARACTER OUT status word in the status data stream. The time is taken
from VCLOK,. The value can be related to the (seconds, tics) time
value obtained from a call to TIMDAT as follows:

LCT time (sec) = floor [(status time - vqutm,)/clock]
LCT time (tics) = remainder [LCT time (sec)]

where: vqutmg = -60 clock
clock = buf (11) of call to TIMDAT

The status time is given modulo (''one minute')

The other status code indicates that the stream of contrcller status
data has overflowed either an internal supervisor buffer or the user
program status buffer. If this is detected, status information has
been lost. The status buffer overflow code is the integer -1
(supervisor buffer) or -2 (user buffer).

User Calls to the SMLC

The form of.the user call to the supervisor is (in FORTRAN):
CALL T$SLCO (Key, Line, Loc (Block), Nwds)

where: 1 < Key & 5;
0 < Line g 3;

Loc (Block) is the memory address of a buffer
used in the call;

Nwds is the word count of Block.

5-34

y ar
Key Meaning
1 User control block is undefined. Status information is

no longer moved to user program space. The state of
controller is not altered. Requires two arguments
(key, line).

2 Control block is defined to be '"block. The block is
structured as in Table 5-1. It defines an area to store
status information and, optionally, a message chain for
reception or transmission.

3 Buffer Block contains four or five data words to be sent
to the controller. These control words configure the
line, set line control, define the programmable sync
character and optionally set the internal programmable
character-time clock. Refer to Table 5-1 for the block
structure.

4 Buffer Block contains one word to be uséd as the next data
set control word. See "OTA 01XX'" in the SMLC User Guide.

5. Buffer Block contains one word which is used as the next
receive/transmit enable word. See "OTA 14XX" in the
SMLC User Guide. Half-duplex looping for odd-even line

pairs is not allowed.

Table 5-1. Structure of SMLC Hardware Configuring Block

Word Meaning

0 Receiver line configuration word. See "OTA 00XX' in the
SMLC User Guide.

1 Transmitter line configuration word. See "OTA 00XX' in the
SMLC User Guide.

2 Line Control Word. See "OTA 02XX'"' in the SMLC User Guide.

3 | Synchronizing characters. See "OTA 03XX" in the SMLC
User Guide.

4 Clock control constant. This word is optional. Note that
this word controls the clock rate for all lines on the
controller. See "OTA 17XX" in the SMLC User Guide.

MAN 1675 5-35

UPDATE
The calling sequence is:
CALL UPDATE (Key 1, 0)

The possible value for Key is:

Value Meaning
1 Update CUFD (current UFD); DSKRAT

buffers to disk, if necessary; and
tndefine RAT in memory.

WREC

Subroutine WREC writes the disk record to a disk from a buffer in
memory. The arguments and rules of the WREC call are identical to those
of RREC except for bits 1 and 2 of N which have no meaning on write.

For a call to write a record on the diskette, the buffer length Blen
must be 448 words.

The calling sequence 1is:
CALL WREC (Bptrs, Blen, N, Ra, Altrtn)

The meaning of the parameters is the same as described under RREC

in this section, except that the function of the command is to write
the specified records instead of to read them. Like RREC, WREC is
available only under DOS/VM. The user is cautioned that indiscriminate
use of WREC could cause destruction of the operating system.

An attempt to write on a write protected disk generates the message:

DISK WI' ERROR Pdisk Ra Status
WRITE PROTECT

on the supervisor terminal and the message UNRECOVERED ERROR at the
user termiral; ERRVEC(1) will contain error code WB, unless Altrtn is
taken. Otlier write errors are retried ten times similar to read
errors (Refer to RREC).

SECTION 6
DOS/VM - OVERVIEW AND STARTUP

DOS/VM SYSTEM OVERVIEW

DOS/WM achieves a sharing of the computer resources émong a Commumity

o_f up to 31 simultaneous users and in addition, provides each user
with a virtual memory environment.

The resources shared are the central processor, high-speed memory, the
file system, and the peripheral devices. Each user is provided with a
terminal to interact with DOS/VM. Each user is provided with a 64K
word virtual memory space. Any user can access files on disks using the
same commands and system subroutines that are available when running
under DOS. Other peripheral devices, such as the paper tape reader,
may be used in the same mamner as they are used under DOS, provided they
are first assigned to the user, using the ASSIGN command. Under DOS/VM,
users are protected from interfering with each other, and user

privacy is assured. No user can peek into another ‘user's memory to
find out what the other user is doing, and no user can alter another
user's memory. Under both DOS and DOS/VM, disk files are protected

by passwords on file directories.

Sharing Files

Sharing of files is possible under DOS/VM. Two or more users

may be attached to the same UFD at the same time. Furthermore, two or
more users may have the same file open for reading, and thus may be
reading the same file at the same time. File interlocks are provided,
as um_ier DOS, to prevent one user from reading the file while another
is writing. This interlock may be modified by the DOS/WM system
configurator.

MAN 1675 6-1

File Access Protection

Under DOS/VM, a user (hereafter called the owner) has the ability to
open his file directories to other users giving restricted access
rights. The owner of a file directory can declare the access rights

that nonowner users have over each file. File access protection is
not available under DOS.

The declaration of access can be made on a per-file basis, thus the
owner has a degree of flexibility in the manner that file access is
specified. Access rights are separated into three categories.

Read Access (includes execute access)

Write Access (includes overwrite access and append
access)

Delete/Truncate access

The access rights to a file are declared and specified through the
PASSWD and PROTECT commands. (Refer to Section 4). -

The owner of a UFD can establish two passwords for access to any file
in the UFD. An owner password is required by the owner to obtain
owner privileges, and a nonowner password (if any) is required to
obtain nonowner priveleges.

The PROTECT command replaces the existing protection keys on a file.
It is used by an owner to specify the access rights to be given
other users of a specific file.

Bypassing Bad Memory

DOS/WM includes features to help Field Service or users to detect and
bypass bad memory chips. These features are categorized as follows:

. On a START, DOS/WM performs a simple data and parity check of all
memory locations above 32K.

. I1f memory chips are known to be bad, DOS/WM can be modified (and
SAVEd) so as not to use these bad pages (chips).

. If the system crashes while running, a self-contained routine can
be started that tests all available memory to locate any memory
call that contains incorrect parity.

When any user of the system 10OGS IN or LOGS OUT, the program LOGIN in
(MDNCO is RESWMEd if it exists. This program may be custom-written by
a given installation to perform special LOGIN/LOGOUT functions such as
accounting or restricting system access.

The program is RESUMEd with BREAK inhibited so as to prevent the user’
from exiting LOGIN via Control-P or BREAK. The LOGIN program performs *
a CALL BREAK$ (.FALSE.) before exiting.

The command line that called LOGIN is available via CMREAD.

Accounting information is available via TIMDAT.

The LOGIN program exits via CALL EXIT and must not encounter any
uncontrolled errors that result in EXIT being bypassed.

Inactivity Timeout

Users logged in at a temminal but inactive are automatically logged
out after N inactive minutes, where N is a system configuration
parameter. A user is considered inactive if the terminal is waiting
for a DOS/WM command or a user program is waiting for terminal input
or card reader input. The default is 1000 minutes, which effectively
disables this feature. ’

DOS/VM SYSTEM CONFIGURATION

Upon obtaining a master disk from Prime, the system configurator (user)
must install a DOS/VM for his installation into CMDNCO. DOS/VM supports
1 to 31 users and a variety of peripheral devices except the SMLC.
DOS/VM is delivered as a run file in the UFD, DVBIN, called TSAMLC.

This version supports a system containing a System Option Controller or
Option A Controller, and one or two 8 or 16 line asynchronous multi-
line controllers. The run file (TSAMLC) determines what controllers
are comnected to the machine and configures itself accordingly. The
user may configure the following combinations:

AMLC Hardware Paging Device Required No. of Terminal Users
One 8 line AMLC 512K fixed head disk 5
One 8 line AMLC 1.5M platter 7
One 16 line AMLC 1.5M platter 11
One 16 line AMLC 3.0M platter or partition 15
One 16 line and 3.0M platter or partition 23

one 8 line AMLC

Two 16 line AMLCs 3.0M platter and 1.5M platter 31
or two 3.0M platters

MAN 1675

6-3

A1l AMLC lines are set to run at 1200 baud. System configurators who
wish to set lines for other speeds should see the discussion of ''Changing

Configuration Table. The file, DOS/WM, in the UFD CMDNCO is a copy of
TSAMLC.

Systems without an AMLC use the serial interface to connect to user
terminals. These systems require the system configurator to copy

file TS330 from UFD DVBIN on the master disk to CMDNCO and rename it
DOS/VM. TS330 supports 1 to 4 user terminals running at 110 baud. *

It requires a 330 cycle clock. TS300 in UFD DVBIN supports 1 to 4 user
terminals running at 300 baud for output and 75 baud for input. It
requires a 300 cycle clock. A 1.5M platter is required for paging.
TSSMLC in UFD DVBIN is the same as DOS/VM but it also supports the
SMLC controller.

The system configurator may wish to limit all users to a 32K address
space to run more users with less disk space allocated for paging.
This is especially true for those installations that use a fixed head
disk for paging. To configure DOS/WM for 32K address space per user,
do the following:

1. Run command file CMKM32 using the COMINPUT command um’ UFD DVBIN.
This command file generates the page maps for DOS/VM for 32K
per user as a file called PAGMAP.

2. Incorporate the custom file PAGMAP into DOS/VM by doing the

following:

User: RESTOR TSAMLC
Response: 0K

User: RESTOR PAQMAP
Response: OK

User: SAVE DOS/VM 60 64777 1000
Response: 0K

User: FUTIL

Response: >

User: TO CMDNCO
Response: >

User: COPY DOS/WM
Response: >

User: QUIT

Response: OK

6-4

The version of DOS/VM requires disk space for paging as follows:

AMLC Hardware Paging Device No. of Users
One 8 line AMLC 256K fixed head disk 5

One 8 line AMLC 512K fixed head disk ’ 6
One 8 line AMLC 1.5M Platter 7

One 16 line AMLC 1.5M Platter 15

One 16 line AMLC 512K fixed head disk 13

One 16 line AMLC 1.5M Platter 21

and one 8 line AMLC
Two 16 line AMLC 3.0M Platter 31

A system configurator may wish tdAcustom-modify the DOS/WM page maps
to:

. Tun some users with 64K address space and other users with 32K
address space,

. Tun some users on the fixed head disk and others on a moving
head disk.

To accomplish this, the system configurator must modify the sgurce
programs MAKM64 or MAKM32 found in UFD DVBIN to generate the appropriate
page maps. These programs generate page maps based on a table at the
beginning of the program. The page maps are generated as file PAQMAP
by running the command files CMKM64 or CMKM32Z and incorporating these
maps into DOS/VM as described above.

The system configurator may wish to use part of a disk surface for
paging and the rest for the file system.

On a normal disk, the file system uses space from 0 to NRECS, where
NRECS is the number of 448 word records that may be written on the disk.
On a split disk, NRECS must be specified as something less than the
maximum and the remainder of the disk space is used for paging. This
is shown by the following diagram:

6496 for 3.0M

. platter
Normal disk |, File System NRECS
6496
Split disk NRECS PAGES
0 File System Paging

MAN 1675 6-5

The amount of paging space required is calculated as follows:

Paging space on the moving head disk is 256 records per user (64K
address space) plus 352 records for the supervisor.

Paging space on the fixed head disk is 128 records per user (64K
address space) plus 176 records for the supervisor.

For an n-user DOS/WM configuration, where n is the number of users,
the amount of paging space needed is:

PAGES
PAGES

Example:

256 X n + 352 records on MID

128 X n + 176 records on FHD

For a 6 user system on a moving head disk:

NRECS = 6496-2488=2008.

6.0M disk drive.

PAGES = 256X6+352=2488 and

This assumes the disk is one platter of a

To make a split disk, mount a scratch pack on the drive and do the

following:

User:

Response:

User:

Response:

User:

Response:

User:

Response:

User:

Response:

User

Response:

User

Response:

MAKE

PHYSICAL DEVICE =

Type number of Physical Device

RECORD SIZE

(Carriage Return)

RECORDS

3720

DEVICE NUM

(=20081q)

PARAMETERS OK?

YES

VIRGIN DISK?

YES

VERIFY DISK

YES

DISK CREATED

RECORD COUNT

(after a while)

6-6

The system configurator must then copy the BOOT into the MFD, use the
UFDCPY feature of FUTIL to copy the UFD's: (MDNCO and DOS from the
master disk.

NOTE

The split disk must be used as the command
. device under DOS/VM.

Refer to the sideheads CONFIG and STARTUP in the following paragraphs:

Many systems are shipped with just one disk - a 30M word disk. It is
suggested that the user does not run the 30M word disk as a split disk.
When a disk is shipped, it is partitioned into two subdisks; a 3.0M
disk partition number 250 with the rest of the disk blank. The system
configurator should make a 3.0M word partition for paging if DOS/WM is
for 23 or fewer users or two 3.0M word partitions if DOS/VM is for

24 or more users. The system configurator does this using the command
MAKE, to make physical device 10250, for example. The rest of the
disk must then be made as 1 or more partitions. .If it is made as one
partition, the disk number would be 24250.

Tables 6-1 and 6-2 provide a guide to disk addresses for system
configurators. They show disk space required for the supervisor and
up to 31 users on both 32K and 64K configurations.

CHANGING CONFIGURATION TABLE

The baud rate for the AMLC configuration can be changed easily by

modifying the line configuration table for lines 0-6. The line
configuration table is identified by a comment in the DOS/VM source
program; its location is currently '55044. The values that may be
specified are: WO)
2033 B 100005 \b WL DAY
110 baud: XX0033 p000f S FuLt oupP
300 baud: x0213 241D woROB

1200 baud: XX0313 23(% SN e

(" ¢

~

MAN /é75 6-

User

Table 6-1.

MHID Disk Addresses

Supervisor

limit 1.5M platter
= 3248

0-351
352-479
480-607
608-735
736-863
814-991
992-1119

1120-1247
1248-1375
1376-1503
1504-1631
1632-1759
1760-1887
1888-2015
2016-2143
2144-2271
2272-2399
2400-2527
2528-2655
2656-2783
2784-2911
2912-3039
3040-3167

3168-3295
3296-3423
3424-3551
3552-3779
3780-3907
3908-4035
4036-4163
4164-4291
4292-4419
4420-4547

6-8

Disk Space Required for 32K Per User

FHD Disk Addresses

limit 256K disk=512

0-175
176-239
240 503
304- 367
368-431
432-495
496-559
560-623
624-687
688-751
752-815
816-879
880-943

limit 512K disk=1024 944-1007

1008-1072

Table 6-2. Disk Space Required for 64K Per User

User MHD Disk Addresses FHD Disk Addresses
Supervisor 0-351 0-175
1 352-607 176-303
2 - 608-863 1imit 256K 304-431
3 864-1119 432-559
4 1120-1375 560-687
5 1376-1631 limit 512K ' 688-815
6 1632-1887 816-1044
7 1888-2143
8 2144-2399
9 2400-2655
10 2656-2911
11 1limit 1.5M platter 2912-3167
= 3245
12 3168-3423
13 3474-3779
14 3780-4035
15 4036-4291
16 4292-4547
17 4548-4803
18 4804-5059
19 5060-5315
20 5316-5571
21 5572-5827
22 5828-6083
23 1limit 3.0M platter 6084-6339-
Tose © a3 3 LE%
24 <255 pagedev 2
25 256-511 "
26 512-767 "
27 768-1023 "
28 1024-1279 "
29 1280-1535 "
30 1536-1791 "
31 ‘ 1792-2047 "

MAN 1675 6-9

DOS/VM SYSTEM INITIALIZATION

Once the system configurator has installed and appropriately modified
DOS/VM in OMDNCO as explained in the preceding paragraphs, DOS/VM is
started from DOS by the system operator at the beginning of each day.

The steps to get DOS/VM running are:

1. Turn on machine and disks, and bootload DOS as explained in
Section 3.

2. STARTUP Command-Disk-Number
3. ATTACH CMDNCO
4. DOSWM
Response is:
DOSVM REV X.X
XX.X K MEMORY IN USE
PLEASE ENTER CONFIG AND DATE

At this point, DOS/WM is running. The operator must give SETIME,
CONFIG, and STARTUP commands before the system is ready for the users.
The operator may optionally give the DISKS command which de:ines the
disks that user's are allowed to access outside of the DOS/\M file
system. The STARTUP command starts the disks that users are allowed
to access through the DOS/VM file system. :

If DOS/WM fails to type its introductory message and halts, it usually
means that DOS/VM has detected bad memory. Refer to Appendix for a
description of how to recover from the situation. The following rxample
shows a typical operator procedure to bring up DOS/WM for use. Arter
the example, the operator terminal commands issued at the start and
during the running of DOS/VM are explained in detail. An example
startup of DOS/VM follows:

6-10

OK: A CMDNGO
OK: DOSVM
@

64.0 K MEMORY IN USE

PLEASE ENTER CONFIG AND DATE.

OK, CONFIG 12 S5 1

0K, SE -0423 -0905

OK, STARTUP 1 0 2 4

OK, UDIN (6) LOGGED IN AT 09'07 0423
JHNDCE (3) LOGGED IN AT 09'10 0423

DOS/VM SYSTEM-TERMINAL COMMANDS

When started, DOS/VM prints QUIT on every active user terminal and
waits for a command at the supervisor terminal. A typical sequence
of command is:

SETIME
CONFIG
STARTUP

These commands and their arguments are described in the following _
paragraphs. All system commands are issued at the supervisor terminal,

After DOS/W is started, the DOS system terminal becomes the DOS/VM
system terminal. Unless the USRASR command is given, the system
terminal can only be used for a restricted set of operator commands,
given in this section. Since the system terminal operates in the
supervisor address space, any external commands, and in addition, the
RESTOR, RESUME, and START commands will crash DOS/VM if they are given
at the system terminal. Normally, the system terminal is used only
to STARTUP and SHUTDN disks, UNASSIGN devices, check STATUS, and to
collect a record of LOGIN and LOGOUT messages.

MAN 1675 6-11

CONFIG

The CONFIG command defines five system parameters that are specified
once per system session. The CONFIG command is disabled after its
first use during a session.

CONFIG Nuser Pagedevl Comdev [Availm] [PagedevZ]

Nuser is an integer less than or equal to octal 40 that defines
the number of users, including the supervisor. (e.g., for
a four-user system, enter 5; for a seven-user system,
enter 10).

Pagedevl is a physicalrdisk number that specifies the device to be
used for paging. See Table 3-1 and Table 4-3 for possible values.

Comdev specifies the physical device number initially assigned
as logical 0. When a user invokes an external command, the
command directory, CMDNCO, is searched on this device. If
Comdev and Pagedev are the same, the disk is considered to
be split into a file system and a paging part. The boundary
between the partitions is defined by the DSKRAT header, and
it may be set by the MAKE program. (See the paragraph on
configuration at the beginning of this section.

Availm is an optional argument that defines available physical
storage. It corresponds to the last sector number (octal)
to be used. If Availm is omitted, all of available memory
1s used. The values for Availm and associated storage
used are as follows:

blank or 0 all of memory
(must be at least 32K)
:117 40K
'137 48K
'157 56K
177 64K
Y777 256K

6-12

Pagedev2 CONFIG may specify either one or two disk devices on which
paging is to take place.

ble Pagedev and Comdev
e

The CONFIG command uses the range of acceptabl
n Table 3-1.

codes (Physical Disk Numbers) as shown in T

(&3]

Example: A system terminal operator may wish to specify two paging

devices, for example, to run a 30-user system using 3.0-million word
disk packs. If each user's virtual space is set to be 64K, only 23

users will fit on a 3.0-million word disk pack. Thus the use of two
paging devices is required. The command line:

CONFIG 30 0 0 0 1

would allow paging device to be physical devices 0 and 1 for a 30-user
system. :

DISKS [NOT] Pdisk0 [Pdiskl] ... [Pdisk8]

The DISKS command may only be given from the supervisor terminal.

The DISKS command adds the specified physical disk(s) to the assignable
disks table or, removes the specified physical disks from the assignable
disks table. Pdisk0 ... Pdisk8 are physical disk numbers. No more than
ten disks may be entered into the assignable disks table. A physical
disk number must be specified in this table before a user may invoke

the ASSIGN command to assign that disk.

When the optional argument NOT is specified in the DISKS command line,
the subsequently specified physical disks are removed from the assignable
disks table. Removing a physical disk number from the table does not
cause the disk to be unassigned; the operator must give the UNASSIGN
command in order to unassign a disk from a user.

Example:

OK, DISK 1 20250 50250 60250 70250 10020 110250 20252

adds the specified physical disks (disk 1) and partitions (20250, etc.)
to the assignable disk table. These disks and partitions may now be
ASSIGNed by the users or operators. The command sequence:

OK, DISK NOI' 20250
OK, UNASSIGN 20250

removes the physical disk partition 020250 from the assignable disks
table and unassigns that partition.

MAN 1675 6-13

MESSAGE

The DOS/WM command MESSAGE provides a message facility that allows a
user, at a user terminal, to communicate with the operator, at the
supervisor terminal; allows an operator, at the system temminal, to
commmicate with all users at all terminals connected to the system;

or allows an operator to communicate with a specific user at a specific
terminal. The format for user to operator messages is:

MESSAGE
text of message

where (text of message) is a one-time message. Two lines are printed
at the supervisor terminal. Their format is:

%% uu hh'mm
text of message

where: uu is the user number; hh'mm is the time of day in hours and
minutes.

The format of operator to user messages is:

MESSAGE ALL [NOW]

The operator can send messages to all users or to a single user. When
the parameter ALL is specified, the message is sent to all users. The
parameter -uu is a minus followed by the user number. When the para-
meter -uu is specified, a message is sent to the user specified. If the
optional argument NOW is not specified, the message is stored in a
Broadcast Buffer (ALL) or a Single User Buffer (-uu). The message is
printed at the users terminal when that user returns to DOS/VM command
level. A message that is in the Broadcast Buffer is also printed

after LOGIN.

If the argument NOW is specified, the message is printed immediately.
This is an unfriendly thing to do if the user is in the midst of a

sensitive operation. When NOW is specified, stored messages are not
affected.

Also, when NOW is specified, the format of the message at the user
terminal is:

%% BULLETIN **#

text of message

If the operator attempts to send a message to a single user before the
previous message to a single user has been received, the error line:

' MESSAGE NOT SENT

is printed at the systems terminal.

To cancel a stored message, a null line must be entered as the text of
message.

SETIME

The SETIME command sets date and time. It can be entered at any time
during system operation. Syntax:

SETIME -mmddy -hhmm

where mmddy are digits that represent the month, day and year (last
digit only), and hhmm are digits that represent the time in hours and
minutes. The two arguments to SETIME must be separated by spaces and
start with a minus sign as the first character. Example:

SETIME -09294 -1630
sets the data and time: September 29, 1974, 4:30 PM.

STARTUP

The STARTUP command defines a list of physical disk devices to be
used by DOS/VM. A disk is considered started if it has been mentioned
in a previous STARTUP command. Additional disks may be started if the
new list in a subsequent STARTUP command does not conflict with

the list in a previous STARTUP, and if no user has assigned a disk
specified in the list. Syntax:

STARTUP Comdev [Pdevl Pdev2 ... Pdevn]

where Comdev and Pdevl ... Pdevn are items in a list of physical disk
(device) numbers. The argument, Comdev, must be specified in the
" initial STARTUP command; the remaining device numbers are specified
optionally. The order of the list defines the logical number sequence
of the devices (e.g., Comdev is logical 0, Pdevl is logical 1, etc.).
Physical Device codes are listed in Table 3-1.

MAN Jb75 6-15

Comdev must match the Comdev specified in the CONFIG command. Example:
STARTUP 2 7 3

defines that physical devices 2, 7 and 3 are to be used with DOS/WM
and associates the following logical device numbers with the physical
device numbers specified: 2 is logical 0; 7 is logical 1; and 3 is
logical 2. In DOS/VM, logical device mumbers may also be specified’ as
arguments to the STARTUP command. In this case, they must be followed
by a slash and the associated physical device number. Examples:

STARTUP 0/2 1/7 2/3
STARTUP 4/100250

SHUTDN

The SHUTDN command performs tasks necessary to shutting down the DOS/VM
system in an orderly manner. Syntax:

SHUTDN ALL
SHUTDN Pdev0 [Pdevl Pdev2 ... Pdevn]

The command form: SHUTDN ALL performs a complete system shutdown. All
user files are closed, physical disks are closed, and the DOS/VM system
shuts down by inhibiting interrupts, exiting page mode, stopping the
system clock and halting. .

If the SHUTDN command is issued with a list of physical devices

(Pdev0 ... Pdevn), the listed devices are closed by closing all files
opened on the listed devices and by detaching all users attached to the
listed devices. Refer to Section 3 and Table 3-1 for a complete dis-
cussion of physical device numbers. Then, the specified disks are not
available for DOS/VM file I/0 operations until the devices are specified
on a subsequent STARTUP command. SHUTDN must be given before shutting
down or changing a disk pack on a drive if that drive is currently
started up with the STARTUP command. The STATUS command can be used to
list the devices currently started up. Unlike the STARTUP command, the
Pdev's do not have to be given in logical drive order.

CAUTION: Do not shut down the physical device associated with logical 0.

If this is done, DOS/VM loses the command directory (from its memory,
not the disk). To recover, STARTUP the disk and ATTACH CMDNCO.

Example of Selective Shutdown

Assume the initial STARTUP command was:

STARTUP 1 0 6 4

6-16

The operator wishes to replace the pack on physical device 6, which is
logical device 2. The operator gives the command SHUTDN 6, stops the
drive, replaces the pack and restarts the drive. The operator then
gives the command:

STARTUP 2/6

to startup physical drive 6 as logical drive 2.

STATUS

The STATUS command may be used to monitor the usage of DOS/VM. When
entered at the system terminal, the STATUS command prints status
information that consists of the information given at the user terminal
and, in addition, prints a list of current logged-in users. Following
each user name in the list, the user terminal number and the numbers
of the physical disks currently used by the user are printed. Also,
devices that a user has assigned are listed after the number of the
physical disk that is currently used. A disk is considered to be in
use by a user (1) if his home UFD or current UED resides on the disk or
(2) if the user has opened a file on that disk. Some typical instances
where the STATUS command must be used are:

[
.

Prior to mounting a new disk pack to determine what
physical disk assignments are available.

2. After a request that all users release a given disk or
disks to determine that they have done so before shutting
down that disk or disks.

3. As a check that all users have logged out before shutting
down DOS/VM. (No harm to the system results if the users
of a particular disk are still logged-in when the disk or
the system are shut down. However, the users files are
closed and a message is printed at the terminal to that
effect.

MAN 1675 6-17

Examples:

1. Example of a STATUS command issued at the supervisor temminal:

OK, STATUS

USR = SYSTEM

FUNITS

DISK LDEV PDEV
TS 0 250
SPOOLD 1 250
DUD 2 20250
DSKRAT 3 0
ADMIN 4 110250
ETH 5 40250
PMFII 6 100250
MD6V2 7 4
TRANS 10 .~ 50250
PAGEDEV = 10252 COMDEV = 250

USER LINE PDEVS
JOEL 2 110250
SPOOL 3 252 PR1
COHEN 4 0 PIR PUNCH
MERRIC 5 250

GOUDY 8 20250
PODUSK 13 250
JDOAKS 16 110250
OK,

2. Example of a STATUS command issued at a user terminal:

OK, STAT

USR = GOUDY

FUNITS

DISK LDEV PDEV
TS 0 252
SPOOLD 1 250
DUD 2 20252
ETCH 3 40252
LSTFIL 4 50250
DOSDVM 5 60252
WORKII 7 100252
ADMIN 10 110252

6-18

MAN 1675

USRASR

The USRASR command allows the supervisor temminal to be associated with
a different address space to allow it to be used as a user terminal.
After invoking USRASR, it is still possible to invoke supervisor commands

at the supervisor terminal. Syntax:
USRASR Usrtno
where’Usrno js a user number. Example:
USRASR 4
Restrictions: The USRASR works only if the associated commmications
1ine is not enabled on the AMLC. If connected to a current loop

bit-banger line, the input leads must be shorted (or a terminal must
be connected to the line).

Return: To return to operations as a normal supervisor terminal, type:

USRASR 1

WARM RESTART FOR DOS/VM

If DOS/VM halts because of an error or because of a machine-check,

it is usually possible to restart DOS/VM. The procedure for a Warm
Restart is as follows:

1. At the control panel set the rotary switch to STOP/STEP. Press
MASTER CLEAR.

2. START at 1001 for machineé check or 1002 for no machine check.
Store the starting address (e.g., 1001) in Location 17 and
~ set rotary switch to RUN.

3. Set START.

4. At each terminal connected to DOS/VM at the time of the halt,
type:

S

followed by a CARRIAGE RETURN.

6-19

SECTION 7

INPUT/OUTPUT WITH DOS/VM

I/0 VIRTUALIZATION

Since all user programs running under DOS/WM are executed in restricted
mode, all I/0 instructions executed by a user program cause traps to
the supervisor.

Since user I/0 instructions in virtual memory operation cause a trap,

a mechanism is provided for user programs to perform a supervised form
of 1/0. This is accomplished by defining a functional means of allowing
certain devices to operate via user I/0 commands (I/0 virtualization).
These devices are listed in Table 7-1 along with the implemented

values of the Virtual Memory Systems Controller Board Control Word
values for input and output, and the associated port to which the devices
are connected. ’

Fport' No. CONTROI, WORD VALUES evice
Input (Bits 11, 12] Output (Bits 13-16)
1 00 000 (or 10 (octal)}User Terminal
2 01 100 (4 (octal)) [CENPR (J2)
3 10 010 (2 (octal)) |[CE2PR (J3)
4 - 11 001 (1 (octal)) |CARDR (J4)

Table 7-1. System Controller Board Control Word,
Device, and Port Relationships

A subset of all possible I/0 functions that can be performed with a given
device are defined, and the DOS/VM system provides a mechanism for
calling the supervisor to perform these 1/0 functions.

MAN 1675 7-1

The Prime DOS/VM operating system provides a functional interpretation
of most I/0 instructions relating to the virtual memory systems
controller. With the System Controller Option, these I/0
instructions include the following:

OCP 4, OCP 104

INA 4, INA 1004, INA 1204, INA 1304
OTA 4, OTA 104

SKS XX04

SYSTEM CONTROLLER CONTROL WORD

For every user terminal connected (logged-in) to the DOS/VM operating
system, a register is maintained that stores a virtual-memory-systems-
command. (The instructions to initialize this register are OCP 4,
OCP 104). The control word is set equal to the A-register by the
instruction OTA 104, and the control word can be read by executing
the instruction INA 1204.

The control word may also be set by the ASRCWD command. Only the port
select fields of the control word (Bits 11-16) are used when the INA 4,
OTA 4 instruction sequence is executed.

INPUT/OUTPUT BUFFERS

I/0 with Port 1 selected is performed through the user terminal buffers
maintained by the operating system supervisor. I/0 is always full-
duplex. Ports 2, 3, and 4 have three associated buffers. Access to
these buffers is only allowed if the corresponding I/O device has been
assigned to the user's process by means of the ASSIGN command.

DATA TRANSFERS

Input: Execution of the INA 4 (INA 1004) instruction causes a transfer
of a character from the buffer associated with the assigned device to
the A-register. If the buffer is empty, the user's process is placed
in INPUT-WAIT state, and the supervisor cycles to service another user's
process. The user process is rescheduled when the requested input
arrives.

7-2

Output: Execution of the OTA 4 instruction causes a transfer of a
character from the A-register to the buffer associated with the assigned
device. If the buffer fills up, the user's process is placed in the
OUTPUT-WAIT state. Users are removed from the OUTPUT-WAIT state once

per second. At that time, the user process is rescheduled to the location
following the OTA instruction; no skip occurs.

Emptying and Filling Buffers: The device interface modules finterrupt
routines) empty and fill their associated buffers. The physical device
may be different than the logical I/0 device. For example; when an
INA 4, OTA 4 instruction sequence is executed in the virtual memory
system, the system performs output on the serial interface in the (PU
using ISI, OSI instructions.

SKIPS

DOS/VM, on encountering an SKS instruction, always skips (with the
exception of SKS 704, skip if receiver ready, and SKS 604). The SKS
704 skips only if there is input available either in the buffer
associated with the user terminal or in the port that is specified by
the virtual control word. The virtual control word is initially

set to the user terminal, either by the ASRCWD command or the OTA

104 instruction. SKS skips only if there is room in either the
output buffer associated with the user temminal, or in the port that is
specified by the virtual control word.

A user program may SKS for temminal input and input a character if

one is available or do other computation if no character is available.
Previously, the SKS would always skip and a subsequent INA instruction
issued to an empty user terminal input buffer would put the user into
input-wait state until a character was typed. Similarly, a user
program may SKS for room in the terminal output buffer and output a
character if there is room or if not do some other computation instead.
Previously, the SKS would always.skip and an OTA issued to a full
terminal output buffer would put the user into output-wait state

until the buffer became less than full. No existing IOCS routines

or other teletype routines such as T1IN, TIOU, TNOUA etc. in the
FORTRAN library does an SKS 704 or SKS 604.

MAN 675 7-3

Paper Tape Reader

To interface a paper tape reader with virtual memory, interpretation
of the following instructions is provided:

OCP XX01 (treated as NOP's)
SKS XX01 (a.ways SKIP)
INA 1, INA 1001
Execution of the INA 1 (INA 1001) instruction causes a transfer of a
character from the paper tape reader buffer to the A-register, and
the INA instruction skips. If the buffer is empty, the INA is
handled as NOP. The reader must be ASSIGNed by the user. An interrupt

routine (PTRDIM) maintains the buffer full by reading the paper tape
as long as there is room in the buffer.

Paper Tape Punch

To interface a paper tape punch with virtual memory, interpretation
of the following instructions is provided:

OCP XX02 (treated as a NOP)
SKS XX02 (always a SKIP)
OTA XX02 (output character)

Execution of the OTA XX02 instruction causes a transfer of a character
from the A-register to the paper tape punch buffer, and the OTA instruc-
tion skips. If the buffer is full, the user process goes into OUTPUT-
WAIT state for up to one second. A restart is then made to the location
following the OTA (no SKIP). An interrupt routine (BRPDIM) punches
characters from the punch buffer wntil the buffer is empty. The punch
must be ASSIGNed by the user.

CPU Control Panel

To interface the CPU control panel with virtual memory, interpretation

fe it 1]

of the following instructions is provided:
INA 1620 (read sense switches)
OTA 1720 (output lights)

A virtual sense-switch-register and a lights-register are maintained
for each user that is logged-in. The sense-switch register is set by
the VRTSSW command and read by the instruction INA 1620. The lights-
register is set from the A-register by executing an OTA 1720 instruc-
tion. The lights-register is displayed on the control panel by entering
the memory address on the panel sense switches and setting the ADDRESS/
DATA switch to DATA. The memory address is computed by taking the sum
of 12377 plus the terminal number (number typed on login).

Disk

The disk interfaces with virtual memory through a supervisor call
(SVC) instruction to perform a READ or WRITE operation on a single
physical record of a physical disk. The disk must be assigned to the
terminal by the ASSIGN command. Refer to RREC and WREC in Section 5.
For information about the SVC instruction, refer to the Systems
Reference Manual and the PMA User Guide.

Magnetic Tape

Input/output operations for magnetic tape are effected by DOS/WM
through SVC calls. Refer to T$MI in Section 5.

MPC Line Printer

Output to the parallel interface line printer is accomplished through
SVC calls. Refer to T$LMPC in Section 5.

MPC Card Reader

Input from the parallel interface card reader is controlled through
SVC calls. Refer to T§MPC in Section 5.

MAN 1b75 7-5

SVC VIRTUALIZATION

To allow debugging or execution of other operating systems, DOS/VM

allows virtualization of all SVC calls except a class of SVC's considered

exclusive to DOS/VM. (Function codes XXX5XX). This capability is turned

off on LOGIN and can be set by the following commands:

SVCSW 1 . turn-on virtual SVC handling
SVCSW 0 turn-off virtual SVC handling

If the SVCSW is turned-on, the SVC instruction executed by a user
program that has a word following the SVC that is not of the form
XXX5XX, results in a virtual trap through location '6S5.

Example:

Assume that a version of DOS that performs disk I/O using the
DOS/VM RREC/WREC SVC calls is stored in the UFD CMDNCO under the

name, VDOS32.

Thus, a user may ASSIGN a disk to a terminal, turn

on SVC calls and run DOS. The following sequence shows a typical

operation.

User Ingut
ASSIGN DISK 2
AS DISK 3
SvC1

VDOS32

0

STARTUP 2 3
A LIB ‘
FIXRT

COPY

GO

FROM-TO: 2 3

SHUTDN

Press 'QUIT'

Effect

assigns physical disk 2 to user.

assigns physical disk 3 to user.

turn on SVC virtual memory interface.

bring DOS into virtual memory and start
execution. DOS types its usual message and
types OK: -

informs DOS to use physical disks 2 and 3.
attach to any desired UFD.

performs VIRTUAL FIXRAT
copy physical 2 to physical 3.
direct DOS to perform normal clean up functions

prior to shutting down.

return to DOS/VM command level.

7-6

MAN

User Input Effect
UNASSIGN DISK 2 release physical disk 2.

UNASSIGN DISK 3 release physical disk 3.

SVC turn off SVC virtual memory interface.

Table 7-2 is a 1list of SVC codes used by DOS/VM.
OTHER VIRTUALIZATION

Unimplemented Instructions (UII), floating point exceptions (FLEX)
and Procedure Stack Underflow (PSU) are also virtualized (i.e.,
these cause interrupts that vector the trap location in the users
virtual address space. For optimal performance, the appropriate
hardware configuration is recommended.

1675 7-7

SVC Number Associated Call

100 ATTACH (ufdnam, 1dev, passwd, key, altrtn)
1 SEARCH (key, name, unit, altrtn)
2 SAVE (rvec, name)

3 RESTOR (rvec, name, altrtn)
4 RESUME (name)
5 EXIT
6 ERRTN (altrtn, al, a2, a3)
7 UPDATE (1,0)
110 GETERR (buff, nw)
1 PRERR
2 GINFO (buff, nw)
3 CNAME (oldnam, newnam, altrtn)
4 ERRSET (altval, altrtn, al,a2,a3)
5 FORCEW (key, unit)

200 READ (unit, buff, nw, altrtn)
1 WRITE (unit, buff, nw, altrtn)
2 RDLIN (unit, line, nw, altrtn)
3 WILIN (unit, line, nw, altrtn)

300 PRWFIL (key, unit, LOC(buff), nw, posv, altrtn)

500 RREC (pbav, nwv, nchn, ra, pdev, altrtn)
1 WREC (pbav, nwv, nchn, ra, pdev, altrtn)
2 TIMDAT (buff, nw)

3 -- reserved
4 -- reserved
S RECYCL

6 D$INIT (pdev)

7 BREAK$ (onoff)

510 T$MT (unit, LOC(buff), nw, inst, statv)
1 T$IMPC (unit, LOC(buff), nw, inst, statv)
2 T$CMPC (unit, LOC(buff), nw, inst, statv)

600 COMANL
1 CLIN (char)

2 (MREAD (buff)
3 COMINP (name, unit, altrtn)

700 T1IN (char)

1 T10U (char)
2 TNOU (msg, cnt)
3 TNOUA (msg, cnt)
4 TOOCT (num)

1000 T$MT See 510
1 T$SLC (key, line LOC(buff), nw)

1100 T$IMPC See 511

1200 T$CMPC See 512

Table 7-2. SVC's Numbers Used by D05/VM

Other SVC numbers are available for the user implemented SVC's.
7-8

APPENDIX A
Table A-1. File and Header Formats
File Record Header Format

Word

0

6
7

All remaining words in the record
pairs or 16-bit words.

Content

"This" record address

Parent Record Address or
Beginning Record Address
(BRA)

Forward

Backward

Data Count

Spare 1

Spare 2

Remarks

Consists of the DOS
address of the record.

If record is a beginning
record, this word
contains a pointer to
the parent (immediately
superior) segment
directory, or UFD.

Records forward pointer
to the next record.
(May be a null pointer
if last record).

" Records backward

pointer to the immed-
jiately preceding

record. (May be a null
pointer if first record).

Records number of words
of data in this record
(excludes header).

Only in the beginning
record.

0 = SAM File

1 = DAM File

2 = SAM Segment Directory

3 = DAM Segment Directory

4 = SAM User File Directory
Reserved

Reserved

may be used to store ASCII character
Data is assumed to continue from the last word in

the record to the eighth word of the physical record specified in Word 1.
The forward and backward pointers make it easy for DOS to traverse a
file in either direction, and at the same time provide a large measure

of protection against snowballing disk errors.

The pointer to the

begimning record address makes it possible to identify a 'lost" record.

MAN 1675

A-1

Table A-2. UFD FORMATS

Word Content Remarks

UFD Header, where:

0 Word Count = 8 (size of header)

1-3 Owner Password Six ASCII characters
4-6 Nonowner Password

7 Spare

8-13 UFD Entries See table below
14-19

UFD ENTRY FORMAT

Word Conten't Remarks

Word numbers are
relative to beginning

of entry
0 BRA Beginning Record
: Address of file
1-3 Filename Currently six ASCII
characters
4 Spaces ‘ Reserved for future
: use
5 "~ Protection keys Bits 1-8 owner protection

Bits 9-16 non-owner protection

Figure A-1 shows UFD file format and use schematically.

POINTER FROM UFD OR

SEGMENT DIRECTORY

SIX
WORD

ENTRY

RECORD
HEADER
(See Appendix A)

Key: o= ASCII SPACE

MAN 1675

“WORD COUNT
________ UFD
_________ HEADER
PASSWORD
B - ~\\\\\\~\\ﬁ‘
F ___ |
"L _R”__ | RECORD_HEADER _ |
-3 W N
—_ =
TSPARE) -
UFD
ENTRIES
 RECORD_HEADER _ _
| RECORD HEADER _ |
Nth
RECCRD

Figure A-1. UFD File Format and Use

A-3

FWD &
BACK PIRS
TO OTHER
RECORDS

SECOND
RECORD

Table A-3
FORMAT OF DSKRAT

The DSKRAT file has a special header block as follows:

Word " Contents Meaning
0 WRDCNT Words in header block (5).
1 RECSIZ Disk record size.
2 NRECS Number of records for
file system.
3* CYLS Cylinder count.
4 HEADS , Head count for disk or

partition
*not currently used by DOS file system.

WRDCNT allows an expansion of the block size while still maintaining
a compatible disk. The header is followed by DSKRAT data, a 1 bit for
each record in the file system (NRECS).

During all file transactions, DOS and DOS/WM update the DSKRAT file to
reflect the state of records occupied or released, as files or portions
of files are added or deleted. The DSKRAT file also contains data on
the total disk record count.

In the Virtual Memory Operating System (DOS/VM), the name of DSKRAT
file(s) may be obtained by using the STATUS command. Example:

OK, _STATUS
UFD=BAUDY O
FUNITS

4

DISK LDEV - PDEV
TSDISK 0 01
DUD 1 00
PCBRD 2 02
COMAND 3 04
OK,

A-4

APPENDIX B
BOOTSTRAPS

BOOTSTRAPS

Prime bootstraps are either control panel boots (and key-in supstitutes)
or mass storage resident second-level bootstraps.

CONTROL PANEL BOOTS

Control Panel u-code

A control panel can have either 256 or 512 16-bit words of PROM from
which bootstrap programs can be loaded into memory. After pressing
MASTER CLEAR and dialing the selection switch to the LOAD position,
pressing the START switch causes the control panel p-code to read PROM
locations '0 to '50 into memory locations '6 to '56 and begin execution
in 16S mode at the address loaded into Location 7. This initial program,
the pre-boot, can then read succeeding PROM locations into memory with
the following instruction sequence:

LDA (PROM address)

OTA '1720 (address setup - same as display data lights)
INA '1420 (input PROM location)

STA (memory location)

For some applications, the initial '51 words may be sufficient to code
a complete bootstrap. Caution must be exercised when coding a program
to execute in the register file (locations '0 to '37) because some
instructions alter registers.

Prime Pre-Boot

The Prime pre-boot saves the A-register in location '57 and then selects
among three classes of bootstraps and stores the appropriate code from
the PROM into memory. The three classes of bootstraps are auto-start,
paper tape, and mass storage boots. The user selects the desired boot
by setting Sense Switches 14, 15 and 16 as follows:

= 14 15 16 Code
0 0 0 =0 Auto-start
0 0 1 =1 ASR paper tape (MDL format)
0 1 0 =2 High speed paper tape (MDL format)
0 1 1 =3 Fixed head disk
1 0 0 =4 Moving head disk
1 0 1 =5 Magnetic tape
1 1 0 =6 Floppy disk (Diskette)
1 1 1 =7 Spare

MAN 1675 B-1

Device Specific Boots

Auto-Start (0): Enters 64R mode and jumps to the location specified

in Sense Switches 1 to 10 ('100 to '177700). If no address is specified,
a default of '1000 is used.

Paper Tape (1 § 2): Modifies itself for either ASR or high speed paper
tape (by sense switches) and reads a second-level MDL boot into memory.
This boot requires -that the first nonzero frame on the tape be '20

and the next two frames be '004/'010 = '2010 = JMP '10. If the

initial A-register setting (saved by the pre-boot in location '57)

is to be used, it must be saved before location '57 is loaded by the
bootstrap. The first zero frame on the tape causes the JMP '10 instruc-
tion in location '20 to be skipped. When execution starts at location '21,
the following locations have been set up:

Location Contents Instruction (X=1 for PTR, =4 for ASR)

2 *3000X OoCP X
3 '13100X INA '100X

'10 '13100X INA '100X

'11 '002010 JMP *-1

'12 1141240 ICR

'13 '13000X INA X

'14 '002013 JMP *-1

'15 '050000 STA 0,1

'16 '140114 IRX

'17 '100040 SZE

'20 '002010 JMP '10 (from tape)

Mass Storage (3-7): Performs further selection for fixed head disk
(FHD) , moving head disk (MD), magnetic tape, diskette and spare, all
of which are loaded by the pre-boot.

FHD (3): Sense Switch 13 is used to select between controller 4001
(SS 13 reset) and controller 4002 (SS 13 set). The boot reads record
0 (448 word DOS record format) of the disk starting at location '770
and begins execution a '1000 (via a JST '777). This boot waits for
the drive to come ready and retries on status errors.

MID (4): Moving head disks come in two varieties: two platter drives
(3M or 6M words) On either 4000 or 4002 controllers and 20 surface
drives on 4001/4002 controller. Sense Switches 11, 12 and 13 are used
as follows (X - don't care):

ss= 11 12

4000, upper surface
4000, lower surface
4002, lower surface
4002, upper surface
4001, (20 surface)

KOO
OO BN

—
OO 'w

B-2

In all cases, record 0 (448 words DOS record format) of the selected
surface of physical drive 0 is read into memory starting at location
'770 and execution begun at '1000 (via a JST '777). This boot waits
for the drive to come ready and retries on status errors.

MT (5): Sense Switch 12 is used to select between 9 track (SS 12 reset)-
and 7 track (SS 12 set) drives. The boot starts up the drive, insures
that the tape is set a loadpoint (space forward, abort, and rewind),

and reads one tape record into memory starting at location '200 and
through '7777 (4K). Execution begins at '1000 (via a JST '777).

FLOPPY (6): Reads record 0 (track 1, sector 1) into memory starting

at location '770. To maintain IBM compatibility, the boot alternately
tries to read a 448 word DOS record and a 64 word IBM record. Execution
then begins at '1000 (via a JST '777). This boot waits for the drive

to come ready and retries on status errors.

SPARE (7): Intended as a user-supplied down line loader. Currently,
halts at location '57.

PROM Géneration

Generation of control panel PROM is a three-step operation: write,
assemble (PMA) and load (LOAD) the control panel boot program (CPBOOT);
generate a PROM simulator paper tape with the CPBGEN program; and
physically make the PROM.

CPBOOT: CPBOOT is the standard Prime control panel bootstrap program.
It resides on UFD=AIDS on the master disk. There are three general
rules for generating a control panel boot:

1. It must be loaded at '1000 in 16S mode, but executable in
sector zero (all sector bits reset).

2. All unused locations in sector '1000 must be set to 0.

3. A maximum of 256 locations can be used (512 for larger
- control panels).

Rules 1 and 2 are satisfied by the use of absolute offsets to the
proper values and added to all addresses in memory reference
instructions and an initial instruction sequence of:

D16S

ABS

ORG '1000
BSZ 512
ORG '1000

MAN 1676 B-3

Offsets are computed and used as follows:

PBD EQU 6-* (*="1000)
'1000 PB2 DATA 7 at '1000, to be loaded at 6
'1001 LDA *-1+PBD (*='1001, '1001-1+6-'1000=6)
'1002 LDA PB2+PBD (PB2="'1000, '1000+6-'1000=6)
OVER EQU '1042 for subsequent device boot offsets
. actual location ='50

STD EQU OVER+PBD-* (*='1051)

'1051 START ANA S1+STD (81='1056, '1056+'1042+6-'1000-"'1051="55)
'1052 SN
'1053 JMP* STE+STD (STE='1060, '1060+'1042+6-'1000-'1051="57)
'1054 E64R
'1055 JMP* 1
'1056 S1 DATA '177700
STE EQU *+]1 (next location contains '1000)
'1057 DATA '1000

The number of locations in the auto-start boot is computed by STE-START=
'1060-'1051=7. Each device boot, as well as the pre-boot, defines its own
base offset to make the code easier to read. The use of these bases as
memory reference modifiers requires that no literals be used. A FIN
pseudo-op is placed at the end of each boot to allow easy identification
of any literals so that they may be replaced with appropriately named
locations. Since the boot program must be wholly contained within
sector 1 (no LOAD generated cross sector links), instructions of the form
LDA -1, 1 cannot be used. The command file C«CPB, also on UFD=AIDS,
produces a SAVE file named *CPB. CPBOOT occupies 240 ('360) locations of
PROM.

CPBGEN: CPBGEN punches a PROM simulator tape of locations '1000-'1777.
Since the control panel u-code expects the PROM to contain the one's
complement of the desired locations, CPBGEN performs a preliminary
backscan and inverts all locations except the unused trailing zeroes
(a 0 is inherently more reliable than a 1 in PROM). Since PROM comes
in 8 X 512 bit chips and the PROM simulator loads two parallel 8-bit
banks, CPBGEN first punches all left bytes and then all right bytes.

A given byte is punched as two ASCII hexadecimal digits followed by an
ASCII apostrophe. For example, the bit pattern 10100110 is viewed as
1010/0110 = C6 and is punched as '303/'266/'247. A TAPE-ON ('222) turns
the reader on and a TAPE-OFF ('224) turns the reader off. The final
tape format is:

leader (48 inches): TAPEON: 1left bytes (0-'777): TAPEOFF:
blank tape (48 inches): TAPEON: right bytes (0-'777): TAPEOFF:
trailer (48 inches)

B-4

CPBGEN resides on UFD=AIDS of the master disk and the command file
C<CPBG produces a run file named *CPBG. To punch a paper tape of
CPBOOT, the following sequence of instructions must be used:

FIIMEM insure sector '1000 filed with zeroes ¢
RESTORE *CBP into '1000-'1777

ASSIGN PUNCH (DOS/VM only)

RESUME *CPBG at '2000

UNASSIGN ~ PUNCH (DOS/VM only)

Physical PROM: To create the physical PROM, load the paper tape produced
by CPBGEN into the PROM simulator and verify that the load is good. Use
the PROM simulator to blow the actual PRM chips and insert them into the
control panel.

Key-In Substitues for Control Panel Boots

Since the auto-load control panel PROM function is eptional on some
Prime computers, hand keyed-in programs are necessary. Because programs
keyed in are likely to disappear after one use, these programs can be
as long as desired, but should be as short as possible.

SECOND LEVEL DISK BOOTS (BOOT)

The control panel disk bootstraps (FHD/MHD/FLOPPY) read one 448 word
DOS record from record 0 of the selected device into memory starting
at location '770 and begin execution at '1000 in 16S mode. Regardless
of the device booted from, the second level boot is the same and can,
in turn, read DOS into memory from any DOS disk in the system. The
source is named BOOT and resides in the UFD FILAID on the master disk.
The run file on record 0 is also named BOOT and resides in the MFD.

M /Av/l(475 B-5

APPENDIX C
CREATING SEGMENT DIRECTORIES AND FILES

Ufd's may be created at command level by the CREATE cofmand. However,
building a segment directory is a bit more involved. The following
two source program listings show a means of creating a directory and
files within the created directories. The program KEYCOM provides
memonic keys for PRWFIL, SEARCH, and ATTACH to make programming
easier. The second, GENFIL, creates segment directories that are both
threaded (SAM) and directed (DAM) and shows how to create SAM and DAM
files within the created directories by programming means.

MAN 1675 c-1

C KEYCZOM

TREC ZE2a MAY A2 T7T<

C KEYCOM JPC 20 MAY 1574
C PROVIDES MMEMOMIC KEYS FOR FRWFIL. SEARCH. AND ATTACH
INTEGER FRERD. FURITE. PREREL. PRERBE, FUSREL, FOSABS, PCONY,
b OFNRED. OFMWRT. OFHNETH. CLOSE. DCELETE, REWIND,
= TENCAT, UFDREF. SEGREF, NTFILE, HLF ILE, NTSEG, NDSEG, NEWUFD,
* MFDUF L CURUFD. SEGUF D, HOMUFD, SETROM

DATA PREARD. PURITE, FREREL., PEEHE-;FHTFEL;rUJHBb FCONY

® P)
DATR OFNRED.
“ s 1
DATA UFDREF
» s,

DHTA MFDUFD, CLURUFD,

}‘. -" ‘1.

2. goh R =8 . D ZEL - 48gs

ﬁPNHPT ﬁFNElH CLOSE. DELETE;RENIND;TFHCHT
2 i 4, T s = s

”FGEEF MTFILE. NOFILE, NTSEG, NDSEG, NEWUFD
S1Ea, R LEang. daRs. SB8d, 18050,

EGUFD HOMUF D SETHOM

& i o

£ "

s_'

C GENFIL., JPC 28 MAY 1374
C GENEFSTES FILE STRUCTURES FOR FIXMRAT TO CHECK

c
C LOCAL VARIARELES
INTEGER BUF<20688>, BUFL(2005)

C
C KEYCOM COMNTARINMGS MHEHUNIL LEYS FOR SERRCH., FRWFIL. AND ATTACH
O .
FINSERT KEYCOM
C
DARATH BLUFAZER0+ 1234598,
DATA BLUFL1/28004 6224251
C
C GEMERATE DFAM FILE LOMSER THRMN 940 RECORDS
CALL ZERRICHY HFNHK +MOLF ILEFUFDREeErF, "DRMFIL . 1)
DO 26 I=1.50 '
C . ’
CLOC IS A FUNCTION THRT EETURME R FOINTER TO ITS ARGUMENT.
C
. CRLL FPRNFILI{FMREITE. 4. LOCCEDF », 4480

24 COMTINLIE
CALL SERRCHCCLOSE. 9,43

[)

GEMEFATE THREADED SEGMENT DIRECTORY
CALL SERRCHOOPNETH+NTIEGHUFDREF, "TSDIR 7, 40

OPEM NEM THREZADED FILE OR UNIT & IM CURRENKT FOSITION OF
SEG [IR OPEH OM LNIT 1
CARLL SEARRCHOOPMWRET+NTFILE+SEGRER. 1. 22

D M

o0

WRITE CTUFF I THE Fliz. THEM CLGzE 1T
CALL QPTIKCUFTTF -(;”g.puﬁ.;;ggg'

CHRLL ’EHFEHtELD_E

0

RELIIZATE FOINTER IHW ZEGS DIR TO EOF
CALL PRUWFIL(FREAD+FREREL. 1. 8, 8. 13

C OFEN ANOTHER THREARDED FILE IN SEG GIR, WRITE STUFF, THEN CLOSE
CALL SERRCHIOFNHRT+MTFILE+SEGREF. 1, 20
CALL PRWFIL{PWRITE. &, LOCC{EUFL Y, 208G
CALL SEARCHICLOSE. @, 23

CLOSE SEGMENT DIRECTORY
CALL SEARCHCCLDSE, 8. 1)

GENERATE DIREZTED ZEGHMEMT DIRECTORY
CALL SEARCHIOPNETH+MDSEGHIFUREF, "DSDIR 7. 42>

00 00 00

WRITE A THRERADED FILE IR IT
CALL SERRCH{OPHUWRT+MTFILE+SEGREF. 1. 2>

MAN 1675 c-3

O GEMEFE I L P =EE Ay AT

CALL PRLFILCFMRITE, 2 LOCCEUFL . 26080
CALL SEARCHCCLOSE. &, 2%

i N

CLOSE SEG DIR
CHLL SEARCHOCLOSE. 8. 1%

GEMNERATE DIRECTED ZE5 DIR LONGER TdAM 1 RECORD
OFEM DIFECTED SEG DIR MNAMzZD LOMSEG OW UNIT 1 IM CURRENT UFD
CALL SERRCHIGRMNETHNGIEG, "LONSESG . 12

YT,

TED FILES I SEGHMENT DIR

SEMERATE 568
DO 1@ I=1, S ‘

CALL SERRCHCOFHWRT +NGF ILE+SEGREF, 1, 23
CALL PRWFILCPHRITE. 2, LOCCBUF 2, 180
CALL SEARCHCCLOSE, G, 20
CALL FRHFILCPRERAD+FREFEL. 1. &,

1B CONTINUE

-

C CLOSE SEG DIF

CALL SEARCHCCLOSE. & 10

CIR
+ SEIE

l"l

CHLL EXIT

EHMC

GENERAL INFORMATION

This appendix describes the features of DOS and DOS/WM software that
facilitate development of Data Base Management (DBM) System. The
data base structures are defined and then used in several examples
that show the speed and flexibility of Prime supporting software.

Features of DOS and DOS/WM that facilitate DBM are:
. Sequential file access (SAM)
. Directed file access (DAM)
. Segmented structures with multiple growth points
. Relative and absolute positioning
. Pre-and post-access positiohing
. Expandable file dimensions
. Security at the UFD, sub-UFD, and segment directory levels
. Multiple user access to any file (DOS/VM)
. FORTRAN callable file manager
. Associative buffering (DOS/VM)
. 2400 RPM Moving Head Disks

. 30 Megaword storage per device

DEFINITION OF DATA BASE MANAGEMENT

The objective of DBM systems is to use the processing power of the
computer to collect and organize data and to make data easily accessible
to the user. DBM systems consist of a set of programs that create and
maintain complex data structures known as data bases, and a set of
library procedures that enable users to access, modify, and report on
the content of the data bases.

Data Base Terminology

To make the discussions and examples that follow meaningful, it 1is
necessary to establish a data base structure. The data base structure
consists of three basic structures: data items, data entries, and
data sets.

MAN 675 D-1

The data item is the smallest accessible data element. Each data item
1s a value and is referenced by a data item name. Usually, many data
item values are referenced by the same data item name. For example:

DATA ITEM NAMES DATA ITEM VALUES
CITY DENVER, BOSTON, MIAMI
STATE COLORADO, MASS, FLORIDA
ZIP : 01767, 01752, 07353

The data item is defined as N words (or bytes) of a physical disk
record.

The data entry is an ordered collection of related data items and is
defined by an ordered listing of the data item names. Data entries
are all the same length and are stored in physical disk records.

For example:

DATA ENTRY DATA ITEM NAMES

NAME CITY. STATE

DISK RECORD N SMITH DENVER COLORADO
N+1 JONES BOSTON MASS
N+2 GREEN MIAMI FLORIDA

The data set is a collection of data entries sharing a common definition.
A data set name references any or all of the data entries of a data

set. The number of data entries in a data set is limited by available
disk space.

There are two types of data sets: master data sets and detail data
sets.

Detail data sets contain ''line item'" information, e.g., in the detail
data set PERSONNEL, each person's location, education, etc., is stored.

Master data sets serve as indices to detail data sets. The data
entries of a master data set contain pointers to corresponding detail
data sets.

In general, access to data within a data base is carried out at the
data entry level. Each CALL to a DBM procedure accesses some or all
of the data items within a data entry. The functions provided by DBM
procedures inc:ude adding a new data set, deleting a data entry from
a data set, reading some or all of the data items of a data entry,
and changing the values of items in a data entry.

Accessing the Data Base

Although access time to specific data in a data base is dependent on
the structure of the master and detail data sets, the speed and fle:xi-
bility of the underlying disk file manager is also significan:.

D-2

MAN

SAM files are a linear array of records threaded with forward and
backward pointers. Therefore, to access the last record of a lengthy
SAM file (data set) of 47 records, all previous records must be read
47 access times to locate and read the last record. However, the
same data set using a DAM file structure would require only three
access times to read the same record. The DAM file consists of a
record directory maintained by the file system. To atcess any record
in a DAM file takes one disk accses to read the directory, and one
additional access to read the desired record if it is not the first
record in the target file. For 30M word disk, with an average

total disk access time of 47.2 ms, the difference is roughly 2-1/2
seconds vs. 1/10 of a second.

However, for applications where files are only one or two
records in length, the SAM file structure is as fast or faster.
DAM files require one disk access just to retrieve the record
directory.

Another feature of the SAM file is the way in which the file system
computes the best method for locating a record within the file. If
the pointer to a SAM file with ten records is positioned at record
#8, and the next access addresses record #3, the file system
determines whether traversing the file backwards or positioning at
the beginning record and traversing forward is faster. In this
example, the latter method is selected; thus three accesses instead
of five wiil be made.

Positioning in a SAM or DAM file can be done relatively with a + or
- 32767 words (+ or - 74 records) parameter or absolutely with
record number, word number parameters. The moving of the

file pointer can be pre- or post- the disk access.

For example, let a data set be defined as a SAM or DAM file in a
segment directory. A segment directory is a named SAM or DAM file
that contains pointers (physical record addresses) to SAM or DAM
files (data sets). Thus, each data set has its own growth point.
Any number of data sets can be grouped together in a single segment
directory providing disk space is available. The segment directory
is then defined as the data base.

A tree structure for a file may be developed consisting of a single
segment directory and 440 DAM files (see Figure D-1). To access a
single word out of 85 million (three times the capacity of a 20
surface device) requires only four disk transfers. If repeated
accesses are performed over the entire tree, each additional access
requires at most three additional disk transfers. If repeated
accesses are done within a local part of the file (193,600 words),
each additional access requires, at most, one additional disk
transfer.

1675 D-3

Figure D-1

SEGMENT DAM FILE |———(" RECORD
DIRECTORY
40 -1 7 =l 440/1/

Pointers) Records Words
(Data Sets) (Data Entries) (Data Items)

In Figure D-1, the segment directory is shown with only 440 pointers,
this is not a limit. The segment directory can be expanded just like
any ordinary file. However, a segment directory with 440. pointers

can directly address 7,744,000 words of data. Segment directories can
have '"holes'". For example, directory entries 1, 3, and 5 can contain
valid data set pointers while entries 2 and 4 are not used. This is
useful when data sets are arranged logically in a segment directory
and additional data sets need to be incorporated later.

FILE SYSTEM PERFORMANCE

No file in the system has a fixed length providing disk space is
available. However, as files become larger, an eventual decrease in
performance occurs. For the SAM <ile, more and more disk accesses are
necessary to traverse the file. The DAM file, however, has a boundary
where performance falls off. The DAM file directory can handle cnly
440 record addresses; so as the file becomes larger, the 441st, 442nd,
etc. records are not directly addressable and must be read sequentially.
This only occurs, however, when DAM files exceed 193,600 words.

DISK ACCESS TIME

30 million word disk:

SEEK ROTATION ACCESS TIME
Average = 35 ms -~ 12.5ms 47.5 ms
Maximum = 70 ms 25. ms 95 ms

D-4

The DOS/W file system has passwords and access attributes associated
with the user file directories (UFD's) and sub-UFD's. Both the owner
and nonowner passwords are defined with the command PASSWD. The
PROTECT command allows the association of access attribute with files
in a UFD to limit their use if desired. The UFD is always a SAM file
and contains up to 72 named files, segment directories, and sub-UFD's.
Once a user is attached to a UFD or sub-UFD, he has access privileges
to files in that UFD within limits that may be defined by the PASSWD
and PROTECT commands (Refer to Sections 2 and 4). UFD's can be
created that contain executable DBM programs for different levels

of security. The user, although attached to the UFD has no way to
dump, modify, or delete the executable programs if the command
directory (CMDNC§) was empty or protected by an owner password
unknown to him, or by a combination of passwords and protection
attributes.

Under multi-user (DOS/VM), more than one user has access to a file
simultaneously, provided it is opened for reading only. If on the
other hand, the file is opened for writing by one user, other users
are prevented through a locking algorithm from reading or writing it.

Under DOS/VM, associative buffering is implemented with 32 buffers.
Each buffer contains one disk record (440 words). A least recently
used (LRU) algorithm is used when a record not in the buffer is
accessed. This greatly decreases access time for a DBM system
because the master data set directories (the indexes to all data)
tend to remain in buffers because of the high number of references
to them.

To further illustrate the capability of the file system, several
examples are given that show different data base structures, and
the access times and resources required when traversing them.

This example uses a file structure consisting of a segment directory
with 440 SAM files and then with 440 DAM files to show the difference
in average access time. All the files are five records long,

(2200 words).

MAN 1675 D-5

440 x 2200 (968,000 words)

SAM FILES DAM FILES
Seg. Dir. 440 (SAM) Seg. Dir. 440 (SAM)
[1] DAM Dir. [1]
[2] SAM FILE [2] DAM FILE
[2] (2200 Words) [3] (2200 Words)
(4] [4]
[5] [5]
DISK ACCESSES DISK ACCESSES
OPEN Seg. Dir. 1 OPEN Seg. Dir. 1
OPEN SAM file 1 OPEN DAM file 1
AVG file access 2 AVG file access 1
TOTAL 4 TOTAL 3

E_x___a.nggle #2:

This example is similar to Example #1 but with much larger files.
All files are 50 records long (22,000 words).

440 x 22,000 (9,680,000 words).
DISK ACCESSES DISK ACCESSES
OPEN Seg. Dir. 1 OPEN Seg. Dir. 1
OPEN SAM file 1 OPEN DAM file 1
AVG file access 24.5 AVG file access 1
TOTAL 26.5 TOTAL 3

Example #3

This example uses two levels of segment directories and the SAM/DAM
comparison. The first directory contains pointers to ten other
segment directories which each contain pointers to 440 files. The
files are five records long (2200 words).
10 x 440 x 2200 (9,680,000 words)

SAM FILES DAM FILES
1st Seg. Dir, 10 (SAM) 1st Seg. Dir. 10 (SAM)

2nd Seg. Dir. 440 (SAM) 2nd Seg. Dir. 440 (SAM)

[1] DAM Dir. 1]
(2] [2] DAM FILE
[3] SAM FILE [3] (2200 words)
[4] (2200 words) . 4]
[S] ‘ [S]
DISK ACCESSES DISK ACCESSES
OPEN Seg. Dir. #1 1 OPEN Seg. Dir. #1 1
OPEN Seg. Dir. #2 1 OPEN Seg. Dir. #2 1
OPEN SAM file 1 OPEN DAM file 1
AVG file access 2 AVG file access 1
TOTAL 5 TOTAL 4

Example #4 shows a more complicated file structure. A segment
directory which contains one pointer to a master index file (DAM),
50 pointers to master data sets (DAM files), and 50 pointers to data
segment directories. The data segment directories contain the
pointers to the detail data sets (SAM files of 880 words).

MAN 16175 D-

~J

The time and resources to read randomly into this file structure
follow.

D-8

Initialize DISK ACCESSES BUFFERS UNITS

OPEN SD 1 1 1

OPEN sd 1 1 1

OPEN M 2 2 1
T

Read master directory to select index

ACCESS M 1 0 0

Read index

OPEN m 2 2 1

ACCESS m 1 0 0

Read data

OPEN SAM i 1 1

ACCESS SAM .5 0 0
5.5 7 5

The maximum number of buffers available under DOS is 16, under DOS/VM
there are 32. Example #4 shows seven buffers open which occupies 3.1K
words of memory. There are 16 units available under both DOS-DOS/VM.

MAN 1675 Dog

ALL ABOUT FIXRAT

INTRODUCTION

The external command FIXRAT loads and restarts a maintenenance program
that checks the DOs file integrity on amny disk pack. FIXRAT fully
supports nested UFDs and nested Segment Directories. FIXRAT handles
all current available disks. The command FIXRAT runs under either

DOS or DOS/WM

FIXRAT DESCRIPTION

The external command FIXRAT runs either under DOS or DOS/VM; it loads
and starts a maintenance program that checks the file integrity. Before
reading this document, the user should read a description of the file
structure found in Section 2. Existing DOS users should also read this
section for a description of Segment Directories, nested directories

and FIXRAT printout options.

FIXRAT reads every record in every file, UFD, and segment directory,
and checks that information in each record header is consistent with
record headers in the rest of the file and consistent with the file
directory that contains the record.

Any inconsistencies generate an error message. FIXRAT also builds a
record availability table (RAT) from the existing file structure

and compares it to the DSKRAT file for agreement. If discrepancies
are found, FIXRAT prints an error message.

If requested, FIXRAT will not only check the file structure but also
Tepairs pointers (if possible) or truncates or deletes defective files
and generates a corrected DSKRAT file. Up to two repetitions of FIXRAT
may be necessary to repair a damaged file structure. The recommended

procedure is to repeat FIXRAT until an error free printout is obtained.

FIXRAT must be run whenever there is reason to expect that the file
structure is damaged - for example, if a program being debugged runs
wild and writes over part of DOS. Until the user gains experience
with the syste, he should run FIXRAT at the close of every operating
session. Never attempt to run FIXRAT after a COPY has aborted.

The suggested procedure to maintain a disk pack is to run FIXRAT

every morning and, if no errors occur, to copy the pack onto a daily
backup pack. If any files are truncated or deleted from the pack,

they are copied from the daily backup disk, if they exist there, to the

;MA/VI{D 7.5 E-1

disk-pack before copying that pack onto an updated daily backup disk.
The owners of the bad files must be notified that those files have
been copied from the backup and any modifications to those files may
have been lost.

Running FIXRAT

The command is:
FIXRAT [OPTIONS]

If the word OPTIONS is included, FIXRAT requests printout options,
otherwise, FIXRAT prints the name and number of records used (in octal)
in the MFD and in each directory in the MFD. When entered, FIXRAT asks
the question:

FIX DISK ?

If the answer is YES, .CR., FIXRAT truncates or deletes defective files
and generates a corrected DSKRAT file in addition to checking the file
structure and repairing all file structure errors. FIXRAT then asks
the question:

PHYSICAL DISK DRIVE =

The user types the physical disk drive in octal on which FIXRAT is to
be nm followed by .CR., FIXRAT then prints the disk pack identifi-
cation (which is the name of the DSKRAT) and begins processing the file
structures. The DSKRAT is always the first file in the disk pack ID.
The default name given to DSKRAT is DSKRAT.

The following is a sample DOS file structure:

E-2

Toot

MFD | branch level 1
.\ / o \ W -
| DskraT |[BOOT | - ~~ |UFD1| mode N UED2 |, level 2
s '
e \
o’ \
T
e \
-
y \ / |
/ SUFD11 | SUFD12 I SUFD21 level 3
/)
[/
| FILEA FILEB |/ FILE C_|
\ / Tevel 4
\ directory tree =~/
\ = /
N s
~ 7~
S \\ //

MAN 1675

Figure E-1. Sample File Structure

E-3

The file structure on any disk pack is a tree structure where the
MFD is the root or trunk of the tree, the links between directories

and files or subdirectories are branches; and the directories and
files are nodes.

A directory tree consists of all files and subdirectories that have
their root in that directory. In Figure E-1, the directory tree for
UFD1 is circled. The level of a file is the depth of that file in
the tree. For example, as shown in Figure E-1, the MFD is at level 1
in the tree, UFD1 is at level 2 in the tree, and FILEC is at level 4.

FIXRAT traverses the file structure as shown by the snaked line gener-
ating typeout at the various points below.

BEGIN MFD \QD—MFD

MFD
DSKRAT| | BOOT UFD 1 UFD 1 UFD2 oF UFD 2
BEGIN UFD 1
BEGIN
SUFD 11
END
END - BEGIN —
surD 11| SUFD 1T Isurp 12 SUFD 12 SUFD 21 END
BEGIN SUFD 21
SUFD 12
FILEA FILEB

Figure E-2. Typical FIXRAT Traverse of File Structure

E-4

The temminal output appears as follows for the above file structure:

BEGIN MFD
BEGIN UFD
BEGIN SUFD11
END SUFD11 10

BEGIN SUFD12

END SUFD12 10
END UFD1 21
BEGIN -UFD2

BEGIN SUFDZ1

END SUFDZ21 10
END UFDZ 11

END MFD 35
RECORDS USED = 35
RECORDS LEFT = 6223
DSKRAT OK

OK,

FIXRAT prints the word BEGIN followed by the directory name when beginning
processing of a directory tree. On leaving a direttory tree, FIXRAT
prints END Directoryname followed by the number of records (in octal)
used by all files and directories in the directory tree. In the above
example, the number following MFD ,35, is the same as the total number
of records used as the MFD directory tree and consists of all files

and directories on the disk pack. FIXRAT indents the printed output

one space for each ievel down in the tree in which the directory is
located. This format makes it easy to understand the relationship of
each directory to the other directories in the tree. To prevent
excessive output, FIXRAT as a default, only prints out directory names
at levels 1 and 2 in the tree corresponding to the MFD and all directory
names in the MFD file. Unless OPTIONS are specified, FIXRAT processing
of the tree shown in Figure E-1 generates the following default output
rather than the complete output shown above:

BEGIN MFD

BEGIN UFD1

END UFD1 21
'BEGIN UFD2

END UFDZ 11
END MFD 35

RECORDS USED = 35
RECORDS LEFT = 6223
DSKRAT OK

OK,

If the command FIXRAT OPTIONS is given, FIXRAT asks the question
FIX DISK? and PHYSICAL DISK DRIVE =, as before, and also asks:

TYPE DIRECTORIES TO LEVEL =

MAN 1675 B

The user must type an octal number corresponding to the lowest level
in the tree structure that directory names are to be printed. The
following table describes the output:

LEVEL Output
blank all directories

1 MED only (level 1 directory)

2 MFD and all directories in MFD file

(level 2 directories)

3 all output for level 2 and all directories
at level 3 (level 3 directories)

etc. etc.
FIXRAT will then ask:
TYPE FILE NAMES ?

If the answer is YES, followed by .CR., FIXRAT prints all filenames

in all directories, indented appropriately. This option is useful to
list the contents of a disk. Note that unless the user requests
suppression of directory name output by answering the TYPE DIRECTORIES
TO LEVEL = question with the parameter one, directories are printed
three times - twice as directories and once as files.

FIXRAT will then ask:
TYPE FILE CHAINS *?

If the answer is YES, followed by .CR., FIXRAT prints the disk address
of all records in all files on the disk. All files consist of one or
more records chained together by pointers. This option is useful to
see how files are scattered on a disk. FIXRAT begins processing the
disk after this point as it would if the OPTIONS parameter was not
specified.

Following the file structure analysis printout, FIXRAT prints the
number of records used on the pack and the number of records left on
the pack for file system use. Finally, FIXRAT compares a record
availability table built from the existing file structure against the
DSKRAT. If they match, FIXRAT types DSKRAT OK and exits to DOS or
DOS/VM. If they do not match, FIXRAT types DSKRAT FILE DIRECTORIES
MISMATCH.

E-6

FIXRAT Output Exampie

The following is sample FIXRAT output generated after all questions have
been answered:

DISK PACK ID IS DSKRAT

BEGIN MFD

BEGIN CMDNCO

END CMDNCO 000021
BEGIN DOS

END DOS 000011
END MFD 000035
RECORDS USED = 000035
RECORDS LEFT = 006223
DSKRAT OK

OK:

The first line prints the disk pack identification as the name of the
DSKRAT. The DSKRAT is always the first file in the MFD, so FIXRAT
prints the name of the first file as the disk pack name. The default
name given to the DSKRAT is DSKRAT.

The next section of output concerns FIXRAT examining the file structure
on the disk for consistency. This ample output is generated from a
disk that contains only two directories, (MDNCO and DOS, in the MFD.

if either of these directories contains subfile directories, FIXRAT
traces the nested directory structure but does not print the name of
the subfile directories. Each directory is printed twice: following
the word BEGIN when FIXRAT enters the directory and following the word
END when FIXRAT is finished processing the directory and any subfile
directories nested within it. Directories that are files in the MFD
are indented one space when typed to show the nested structure.

Following the directory name, FIXRAT prints a number that is the
number of records used in the directory and all files nested within
that directory. Since all files on a pack are nested within the MFD,
the number of records used in the MFD always matches the number of
records used on the disk pack.

Following the file structure analysis typeout, FIXRAT prints the number
of records used on the pack and the number of records left on the pack
for file system use.
Finally, FIXRAT will compare a record availability table (RAT) built
from the existing file strucrure against the DSKRAT. In the preceding
example, they match and FIXRAT prints:

DSKRAT OK

and exits to DOS or DOS/WM.

MAN 1675 .

If the RAT and DSKRAT totals do not match, FIXRAT prints:
DSKRAT, FILE DIRECTORIES MISMATCH

If the user typed YES to the question FIX DISK?, FIXRAT repairs the
DSKRAT and types:

DSKRAT FIXED

then exits to DOS or DOS/VM. Otherwise, FIXRAT asks the user: FIX DISK?
If the user answers YES, .CR. the DSKRAT is repaired. This option is
useful if there are no file structure errors but there is a bad DSKRAT.

If the user typed YES to the question FIX DISK? acked at the beginning,
FIXRAT repairs the DSKRAT and types DSKRAT FIXED, ':en exits to DOS

or DOS/VM. Otherwise, FIXRAT asks the user FIX ['75K?. If the user
answers YES, followed by .CR., the DSKRAT is repaired, DSKRAT FIXED is
typed, and control exits to DOS or DOS/VM. This option is useful if
there are no file structure errors but there is a bad DSKRAT.

Broken File Structure Messages

When FIXRAT detects a problem in the file structure, it prints an
error in the following format:

reason for error

FILE - filename BAD RECORD = octal record address.
DIRECTORY PATH = 1list of directories

FILE DELETED, FILE TRUNCATED or blank

The directory path is the list of nested file directories needed to

get from the MFD to the bad file. For example, if FILEC in Figure E-2
was broken, the directory path would be MFD, UFD2, SUFD21. Because all
files have the MFD as a root, "MFD" is not printed as part of the path.

After printing the directory path, FIXRAT prints how it disposed of the
bad files. - If the FIX DISK question was answered NO, FIXRAT does
nothing to the file, therefore prints nothing. Otherwise, FIXRAT
either truncates the file before the bad record and prints FILE
TRUNCATED, or finds no part of the file can be saved, removes the file
directory entry from a UFD, or zeroes the entry in a segment directory
and prints FILE DELETED. '

Segment Directories

A segment directory may contain references to files, other segment
directories and User File Directories (UFD). The distinction between

a UFD and a segment directory is that entries in a UFD are referenced
by name and those in a segment directory by position. Recall that each
entry in a UFD consists of a one-word disk address that is the beginning

E-8

record address of the file, followed by a six letter name and two spare
words. (Refer to Appendix A.) 1In a segment directory, FIXRAT prints
the absolute position of the file in the segment directory as an octal
number-pair (record number, word number). For example, the first entry
in a segment directory is printed as (0, 0}, the second entry as (0, 1),
the 440th as (0, 440), and the 441st entry as (1, 0). Notice that as -
with user file directories, indentically named files in different
segment directories represent unique files.

If FIXRAT is requested to FIX DISK and detects a bad file, it either
truncates or deletes the file depending on where in the file a problem
is detected. If FIXRAT deletes a file, the action taken depends on the
type of directory the file is entered in. If the directory is a UFD,
FIXRAT removes the entry from the directory similar to the action of
the DELETE command. If the directory is a segment directory,

FIXRAT sets the entry to zero. On the next pass, FIXRAT skips the

zero entry. The convention, then, is that a zero in a segment directory
represents a null file.

PITFALLS AND RESTRICTIONS
Bad BOOT
If the BOOT file in the MFD is accidentally deleted or broken, DOS will
allocate record number 0 to the next new file. FIXRAT will complain
if any file except the BOOT in the MFD contains record 0. The message
given is:

BAD DISK ADDRESS BAD RECORD = 0

If this occurs, RESTOR from a good MFD and SAVE the BOOT into the MFD

before doing anything else.

Directory Nesting Limit

FIXRAT will trace nesting of directories to a depth of 100 levels only.

Writing Into Directories

Since directories may be nested, the possibility of accidentally
writing bad data into directories is increased. This generates a bad
file structure detected by FIXRAT. To minimize this possibility, it
is suggested that users preface all except those in the MFD by U« and
all segment directories by Se.

Deleting Directories

Do not delete a UFD or segment directory before deleting all files
contained in the directory. If this is not done, the records used by
files in the directory are not returned to the DSKRAT. When the next
file FIXRAT is run, the message DSKRAT, FILE DIRECTORIES MISMATCH is
given, and the records of files not deleted explicitly are not
recovered for use.

MAN 1675 E-9

FIXRAT ERROR MESSAGES
This appendix lists all error messages generated by FIXRAT and gives an
expanded explanation of them. The user should be familiar with the
details of the file structure. Error messages are of the form:

reason for error

FILE = filename BAD RECORD = octal number

DIRECTORY PATH = 1list of nested directories

Description of Messages

DSKRAT BAD

This message is obtained if the DSKRAT file contains any bad record
pointers, the DSKRAT date header word is not 5, or the number of data
words in the DSKRAT file does not match (NRECS+15)/16-+5. If the DSKRAT
is BAD, FIXRAT reconstructs it using parameters typed by the user in
response to the following questions. If the user types CARRIAGE RETURN
to any of the questions, default values are used. The questions are:

INPUT OCTAL RECORD SIZE =

INPUT OCTAL FILE SPACE RECORD COUNT =
INPUT OCTAL CYLINDERS =

INPUT OCTAL HEADS =

The default values are respectively, 700, 6260, 313, 2. FIXRAT types
these values back to the user for verification then asks "OK?". If
the answer is YES, FIXRAT repairs the DSKRAT and continues, or else
it requests the parameters again.

BAD DISK ADDRESS

A pointer to a disk record is out of range. Acceptable range is between
1 and NRECS -1, where NRECS is the number of records available for file
system use. NRECS is stored in the DSKRAT data header. A record
address of 0 is acceptable only for the disk bootstrap loader file BOOT
in the MFD.

BAD RECORD ID

The first word of a record contains a number unequal to the record
address of the record. This message is preceded by 10 disk error
messagse as this problem could indicate a disk drive problem.

FIXRAT has difficulty determining whether the error is a disk drive
error or a broken file. This case occurs if a record has a bad

record identification word. The disk driver retries 10 times producing
10 disk error messages, then returns to FIXRAT, which ~rints the message
BAD RECORD Ii:. Be sure to allow FIXRAT 10 disk error rcssages beisre
assuming there is cisk drive trcuble.

E-10

&l

vl
b
o)
E
g
2
5

n
D

The second word of the second record (or greater) of a file does not
point to the beginning record of the file.

FATHER POINTER MISMATCH

The second word of the first record of a file does not pointsto the
beginning record address of the file directory of the file.

BACK POINTER MISMATCH

The back pointer of a record, word 4, does not point to the previous
record of the file, or if the current record is the first record of
a file, the back pointer is not 0.

BAD WORD COUNT

The data word count, word 5 of a record is not between 0 and 440.
Note that it is OK for a record to contain a word count of 0 which
indicates an empty record. .

BAD FILE TYPE

Word 6 of the first record of a file is not between 0 and 4, the legal
file types for Rev. 5 DOS.

TWO FILES POINT TO SAME RECORD

Two files point to the same first record. FIXRAT prints the name of
the second file only. This error may occur if the DSKRAT is changed
by a user overwriting DOS. Records already used have been erroneously
made available to new files.

BAD DAM POINTER

A DAM data file or DAM segment directory has a bad index in the first
record of the file. The nth index of the file must point to the nth
record of the file for all records of the file, or this message is
given. This error is repaired by FIXRAT.

UFD LONGER THAN RECORD

A UFD is longer than 1 record. DOS expects all UFDs to be only 1
record long.

BAD UFD HEADER

Data word 1 of a UFD file does not contain 8 (decimal), the first word
of a UFD header.

MANV 675 E-11

DIRECTORIES NESTED TOO DEEP

Directories may be nested to a depth of 100 levels. FIXRAT cannot
follow the directory tree because the user has nested directories to
more than 100 levels.

BAD STRUCTURE MESSAGES

FILE = MFD BAD RECORD = 7
DIRECTORY PATH = MFD
FIXRAT ABORTED

A MFD has been altered and damaged. The best action to take is to
copy the backup disk onto the "daily user disk" and continue from there.

DSKRAT NOT IN MFD
FIXRAT ABORTED

The DSKRAT has been accidentally deleted from the MFD. Suggested action
is same as above.

RECORD READ OK NOW CHECKS BAD
POSSIBLE DRIVE ERROR, FIXRAT ABORTED

Suggested action is to run the disk diagnostic on a scratch pack at
this point.

DIRECTORY RECORD READ OK NOW CHECKS BAD
POSSIBLE DRIVE ERROR, FIXRAT ABORTED

Suggested action is same as above.

CHECK FOR MFD INTEGRITY
FIXRAT checks that the first three entries in the MFD are DSKRAT, MFD
and BOOT. The DSKRAT may have any name and the name is used on the
disk pack ID (identification). The error messages thay may arise as
a result of one of these entries missing are:

DSKRAT NOT IN MFD, REPLACE IT?

MFD NOT IN MFD, REPLACE IT?

BOOT NOT IN MFD, REPLACE IT?

MFD HAS BAD NAME, REPLACE?
If YES (followed by CR) is responded to each of these questions, the
specified action asked in the message is performed. The user must not

delete or alter the DSKRAT, MFD, or BOOT since these are system files
used by DCS and DOS/\M.

E-12

FIXRAT and 30-Million Word Disk

FIXRAT supports the 30-million word disk. If the 30-million word disk
is treated as a single disk device (no partitioning), the disk numbers
0, 1, 2, 3, attached to the controller are 5252, 5253, 5254 and 5256, *
respectively. If the disk is partitioned, disk numbers inc]ude head-
offset and number-of-heads information. If the user gives an incorrect
disk number, one of the following messages is printed at the terminal:

DEVICE, DSKRAT DIFFER IN HEAD COUNT. ABORT?
DISK READ ERROR with status of 17777
The user must restore FIXRAT (via the RESTOR command) with the correct

disk number, which is the one used normally with the large disk on
DOS, DOS/WM and COPY (Refer to Table 3-1).

7
MAN 1615 E1s

FILE UTILITY

(FUTIL)

INTRODUCTION

FUTIL is a file utility command that provides commands for the user to
copy, delete, and list files and directories. FUTIL has an attach
comand that allows attaching to subdirectories by giving a directory
pathname from either the MFD or the home-UFD to the subdirectory.

FUTIL allows operations not only with files within User-File-Directories
(UFD's) but also files within segment directories. For complex
operations, FUTIL may be run from a command file.

FILE STRUCTURE

A user should be generally familiar with the Prime file structure.

Refer to Section 2 entitled "File Structures'. Some new terms that
are used to describe FUTIL commands are now described. Figure F-1

is a sample file structure.

The DOS/VM file structure on any disk pack is a tree structure where
the MFD is the root or trunk of the tree, the links between director-
ies and files or subdirectories are branches; and the directories and
files are nodes. A directory tree consists of all files and sub-
directories that have their root in that directory. In Figure F-1,
the directory tree for UFD1 is circled. An MFD directory pathname
consists of a list of directories and passwords necessary to move down
the tree from the MFD to any directory. For example, the MFD pathname
for SUFD11 is: .

MFD MFDPASSWORD > UFD1 UFDIPASSWORD > SUFD11 UFD11PASSWORD

The character '">'" separates directories in the pathname and suggests
that one is proceeding down a tree structure.

An MFD directory pathname may optionally omit the MFD and may option-
ally include the logical disk number of the pack or the packname.
Examples:

UFD1 UFD1PASSWORD > SUFD11 SUFD11PASSWORD
< 1 > UFD1 UFDIPASSWORD > SUFD11 SUFD11PASSWORD
< TDISK > UFD1 UFDI1PASSWORD > SUFD11 SUFD11PASSWORD

MAN 1675 o

root

MED branch
DS BOOT UFD1 |node UFD2
; L I
SUFD11 SUFD12 SUFD22
[| ‘
FILEA FILEB FILEC
Directory Tree
Figure F-1. Sample File Structure.

F-2

level 1

level 2

level 3

level 4

follow the first UFD as follows:

The logical disk mumber may optionally

UFD1 UFD1PASSWORD 1 > SUFD11 SUFD11PASSWORD

If no pack name or disk number is given, the logical disk referred to

is the lowest numbered logical disk in the MFD in which UFD1 appears.

A user, using the ATTACH or DOS/VM LOGIN command may specify a parti-
cular user-file-directory in the file structure as the home-UED.
Additional FUTIL ATTACH commands may refer to either the MFD or the
home-UFD as the starting point. A home-UFD directory path name consists
of a list of directories and passwords necessary to move down the

tree from the home-UFD to any directory that has the home-UFD as the
root. For example, if the home-UFD is UFD1, the home-UFD path name

to SUFD11 is:

* > SUFD11 SUFD11PASSWORD
"1 represents the home-UFD. The home-UFD path-name to UFD1 is simply ®,

A user-file-directory is a file that consists of a header and a number
of entries (0-72). Each entry consists of 1 to 6 character filenames,
protection attributes of the file, and a disk record address pointer
to the file. A segment directory is a file consisting of an unlimited
number of entries, each entry being a disk record address pointer to
the file. A null pointer indicates no file at that entry. To refer
to a particular file in a segment directory, a user must specify the
file position of the entry in the segment directory. Refer to

Section 5 (PRWFIL) for details of file positioning. A user may
specify the position as an absolute position (record-number, word-
number) where record-number is between 0 and 32767 and word-number

is between 0 and 439. There are 440 data words in each disk record

so there are 440 files in each record of segment directory. The first
file can be referred to as (0,0), the second as (0,1), the 440th file
as (0,439), and the 441st file as (1,0). The construction (record-
number, word-number) is referred to as a segment directory filename.
In FUTIL, arguments to the commands are either user-file-directory
filenames or segment directory filenames depending on the directory
type the file is under. Furthermore, names specified as parameters to
the LISTF command of FUTIL are of either type depending on the directory

type.
DESCRIPTION OF FUTIL COMMANDS

To invoke FUTIL, type FUTIL. When loaded, FUTIL prints the prompt
character, >, and awaits a command string from the user terminal.
To terminate long operations such as LISTF, type CIRL P and restart
FUTIL at 1000. A user must type a command followed by a carriage
return and wait for the prompt character before using the next
command. The erase character " and the kill character ? may be used
to modify the command string as in other commands such as the text
editor ED. In the following description of commands, underlined
letters represent the abbreviation of the command or argument. []
surround optional arguments. ... means the previous element may be
respected.

MAN 1675 F-3

* Indicates following information is a comment.

QIT
return to DOS/VM

FROM Directory-pathname

where Directory-pathname is of format:

<Ldisk Directory [Password] [Ldisk]> Directory [Password]

<Packname>

FROM defines the FROM directory in which files are to be
searched for the commands COPY, COPYSAM, COPYDAM, DELETE,
LISTF, TRECPY, TREDEL, UFDCPY, and UFDDEL. The directory
is defined from the directory-pathname whose format is
given above. The pathname may contain up to 10 directories
that may be segment directories as well as user-file-
directories. If segment directories are specified, the
user must have read access rights to them. If any error
is encountered, the FROM directory is set to home-UFD.

The first directory in the pathname may be *, which refers
to the home-UFD. The default FROM directory is the
home-UFD.

Examples:
FROM 0 CARLSO

Set FROM directory to CARLSO on logical disk 0. CARLSO must be
in the MFD on logical disk 0 and have a blank password.

FROM CARLSO ABC

Search the MFD on all started disks for CARLSO in logical disk
order 0 - 8. Set the FROM directory to the first directory named
CARLSO that is found. One of the passwords of CARLSO must be ABC.

FROM <TSDISK> CARLSO > SUB1 > SUB2

Set the FROM directory to SUB2. SUBZ must be a directory in SUB1;
SUB1 must be a directory in CARLSO; and CARLSO must be a directory
in the MFD on a disk with pack name TSDISK. The directories CARLSO,
SUB1, and SUBZ must have a blank password.

FROM *

Set the FROM directory to the home-UFD. The home UFD is
normmally the last UFD the user has logged into, or attached
to with either the ATTACH or FUTIL ATTACH command. If one
were logged into CARLSO, the above command sets the FROM
directory effectively to CARLSO. This command does not have
to be given again if the user changes the home UFD.
Furthemmore, this command does not have to be given at all
unless the FROM directory has been made something other

than the home UFD, since home UFD is the default. Example:

FROM * > SUB1

Sets the FROM directory to SUBl. SUB1 must be a directory
in the home UFD and have a blank password.

TO Directory-Pathname

TO defines the TO directory in which files are searched for
the commands COPY, COPYSAM, COPYDAM, TRECPY, and UFDCPY.

The directory is defined from the Directory-pathname. The
pathname may contain at most 10 directories that may be
segment directories as well as UFD's. If segment directories
are specified, the user must have read, write, and delete/
truncate access to them. The first directory in the pathname
may be *. The default TO directory is the home UFD. If any
error is encountered, the TO directory is set to home UFD (*).

ATTACH Directory-Pathname

ATTACH moves the home UFD to the directory defined by the
directory-pathname. The pathname may contain at most 10
directories. The first directory in the pathname may be *.
The last directory in the pathname must be a UFD. If segment
directories are specified within the pathname, the user must
have read access rights to them.

MAN 1675 e

COPY

FILEA [FILEB] [, FILEC [FILED]] .

Copy FILEA in the FROM directory to FILEB in the TO
directory and optionally FILEC in the FROM directory to
FILED in the TO directory. If FILEB is omitted, the new
file is given the same name as the old file. FILEA and
FILEC must be SAM or DAM files and cannot be directories.
Read access rights are required for FILEA and FILEC. If
FILEB exists prior to the copy, it must be a SAM or DAM
file and the user must have read, write, and delete/truncate
access rights to the target file (FILEB in this case). If
FILEB exists, it is deleted, then FILEA is copied to FILEB.
The file type of FILEB will be the same as FILEA.

Examples:
COPY FILEA

Copies FILEA in the FROM directory to FILEA in the TO
directory.

COPY FILEA , FILEB , FILEC.

Copies FILEA, FILEB, and FILEC in the FROM directory to
FILEA, FILEB, and FILEC in the TO directory.

COPY FILEA FILEB
Copies FILEA in FROM directory to FILEB in TO diréctory.
COPY FILEAl FILEA2,FILEB1 FILEB2,FILEC1 FILEC2

Copies FILEAl, FILEB1, and FILEC1 in the FROM directory to
FILEAZ, FILEB2, and FILEC2 in the TO directory.

COPY (0,0)

In this case, the FROM directory and TO directory must each
be segment directories. Copy the file at position (0,0) of
the FROM directory to position (0,0) of the 10 directory.
There are no access rights attached to these files, so
DOS/VM checks instead the access rights of the directory.

A user cannot set the FROM and TO directories if they are
segment directories without access rights to them. No
spaces are allowed in the name (0,0).

copy (0,0) (0,1)
Copies the file at position (0,0) of the FROM directory to

position (0,1) of the TO directory, both of which are
segment directories.

F-6

‘COPYSAM FILEA [FILEB] [, FILEC [FILED]] . . .

same as COPY but also sets file type of FILEB and FILED
to SAM instread of copying the type of FILEA and FILEC.

COPYDAM FILEA [FILEB] [, FILEC FILED] . . .

same as COPYSAM but sets file type of FILEB and FILED to
DAM

TRECPY DIRA [DIRB] [, DIRC [DIRD]]

Copies the directory tree specified by directory DIRA

to directory DIRB, and optionally DIRC to DIRD. DIRB
and DIRD must be new directories. If DIRB is omitted,
DIRA is taken as the name of the directory to be copied
to. A directory tree consists of all files and subdirec-
tories that have their root in that directory. DIRA and
DIRC must be in the FROM directory. DIRB and DIRD are
created in the TO directory. Read access rights are
required for DIRA and DIRC but no access rights are
required of files or subdirectories within them.

DIRB and DIRD are created with the same directory type and
passwords as DIRA and DIRC and with default access rights.
The names, access rights and passwords of all files and
subdirectories copied are also copied.

Example:

FROM MFD
TO MFD
TRECPY CARLSO CARNEW

Copies the directory tree specified by CARLSO in the MFD to
a new directory, CARNEW, in the MFD.

UFDCPY Copies all files and directory trees from the FROM directory
to the TO directory. The user must have owner rights in the
FROM directory. Furthermore, all files and directories in
the FROM directory must have read access rights. Files
already existing in the TO directory with names identical

to those in the FROM directory are replaced. The user

must have read, write, and delete access rights to files’
that are to be replaced.

MAN 1678 F-7

DELETE

TREDEL

Directories already existing in the TO directory with
names identical to those in the FROM directory cause the
copy operation to stop. Files and directories created in
the TO directory will have the same file type as the old
files with default access rights. The names, access rights
and passwords of all files and subdirectories within direc-
tory trees being copied are also copied. Other existing
files and directories in the TO directory are not affected.
UFDCPY is effectively a merge of two directories. Both

the FROM and the TO directory must be UFD's.

Example:
FROM CARLSO
TO CARNEW
UFDCPY

copies all files and directories from CARLSO in the MFD to
CARNEW in the MFD. Note that unlike the example for TRECPY,
the user has not specified the MFD as the FROM directory,
therefore, does not need to know the MFD password. In the

- example, CARNEW exists prior to the UFDCPY. With the

TRECPY example, CARNEW does not previously exist.
FILEA [FILEB] . . .

Deletes FILEA and optionally FILEB from the FROM directory.
FILEA and FILEB cannot be directories. The user must have
read, write and delete access rights to each file specified.
1f FILEA and FILEB are in a segment directory, rcad, write,
and delete rights are required for the FROM directory.

Examples:

DELETE FILEA

DELETE FILEA * FILEB FILEC FILED
DIRA [DIRB] . . .

Deletes the directory tree specified by directory DIRA and
optionally delete DIRB from, the FROM directory. DIRA and
DIRB must be directories. The user must have read, write,
and delete rights to the DIRA and DIRB; however read, write,
and delete rights are not required for files and subdirect-
ories nested within DIRA or DIRB. If FILEA and FILED are

in a segment directory, read, write, and delete access rights
are required for the FROM directory. Note that the operating
system DELETE command must not be used to delete directories
because it does not free the disk space used by files within
the directory for system usage. TREDEL correctly frees disk
space to the system.

UFDDEL

Deletes all files and directory trees (specified by
directories) within the FROM directory. User must give

the owner password in the FROM command and have read, write,
and delete access to all files and directories within the
FROM directory. These rights are not required for files
and subdirectories nested within the directories in the
FROM directory.

LISTF [Level] [LSTFIL] [PROTEC] [SIZE] [TYPE]

Lists the FROM directory pathname, the TO directory pathname
and all files and directory trees in the FROM directory at

the terminal. LISTF optionally follows each filename by its
protection attributes, size in disk records, and file type.

If the LSTFIL option is given, the list of files is sent

to a file named LSTFIL in the home UFD instead of to the
terminal. At a later time, a user may print that file on a
line printer. Level is a number specifying the lowest level in
the FROM directory tree structure to be listed. (See Figure
F-1). The following list describes the output.

Level Output
0 the FROM directory name
1 the FROM directory and all files

and directories within it. (level
1 directories)

2 all output at level 1 and all files
and directories within level 1
directories

If the level is omitted, the default is 1.
The protection attribute of each file is printed as
Owner-Key Nonowner-Key

These keys are mumbers with a range 0-7 that have the
following meanings:

no access allowed

read access only

write access only

tead and write access
delete/truncate only
delete/truncate and read
delete/truncate and write
all access allowed

NN AN O

MAN 1675 o

The possible file types are:

SAM for SAM file

DAM for DAM file

SEGSAM for SAM segment directory
SEGDAM for DAM segment directory
UFD for User File Directory

LISTF traverses the file structure as shown by the snaked line in
Figure F-2 generating printed messages in sequence as shown in the
circles adjoining the snaked line.

Using LISTF to produce a list of the sample file configuration shown
in Figure F-2, the output level is set to 3 and with the SIZE option,
the printed list appears as follows:

[}
*

FROM-DIR

FROM-DIR
TO-DIR

MFD
* MFD

non
*

BEGIN MFD 1
DSKRAT 1 BOOT 1

BEGIN UFD1 1
BEGIN SUFD11 1

FILEA 1

- END SUFD11
BEGIN SUFD12

[l 38)

FILEB 1
END SUFD12 2
END UFDI 5
BEGIN UFD2 1
FILEC 1
END SUFD21 2

END UFD2 3
END MFD 1

F-10

4
— /
—|
DSKRAT UFD 1 UF
.
BOOT
BEGIN
I-————J UFD 2
SUFD 11 SUFD 12

BEGIN
SUFD 12,

FILEA FILEB FILEC
Q_EA/ @ . FILEC

—/

D)

Figure F-2. Typical Traverse of Directory Tree
by FUTIL during LISTF.

MAN 1 bT5

LISTF upon encountering a directory prints the word BEGIN followed by
the name of the directory and its size in records. On leaving a
directory, LISTF prints END followed by the number of records used
by all files and directories within the directory tree headed by the
directory file. On encountering a file, LISTF simply prints its name
and size, squeezing as many file names as fit on each line. LISTF
skips a line whenever a directory follows a file or a file follows

a direcotry. LISTF does not count records in files lower than the
specified Level in -the FROM directory tree.

In the above example output, the number following MFD, 11, is the total
number of records used by the MFD directory tree and consists of all
files and directories on the disk pack. LISTF indents the printed
output one space for each level down in the tree the directory is
located. This format makes it easy to understand the relationship

of each directory to other directories in the tree.

RESTRICTIONS

In using FUTIL under DOS/VM, certain operations may intérfere with
the work of other users. For example, a UFDCPY command to copy all
files from a UFD currently used by another logged-in user may fail.

If any file in that directory is open for writing by that user, UFDCPY
encounters the error FILE ALREADY OPEN, and aborts. If the user
attempts to open one of his files for writing while UFDCPY is rumning,
the user may encounter that error. The FUTIL: LISTF, and TRECPY
commands cause the same interaction problems. Other FUTIL commands
such as COPY and DELETE can also interfere with the other user, but
the problem is not as serious as only one file is potentially
involved in a conflict. To prevent the conflicts, users working
together and involved in operations using each other's directories
must coordiante their activities. If two users consistently use the
same UFD at the same time, they must avoid the LISTF command of FUTIL,
and use the system LISTF command instead.

FUTIL operations when using the MFD must be done carefully. Never

give the command TREDEL MFD as the command deletes every file on the
disk except the MFD, DSKRAT and 300T. A LISTF or UFDCPY of the MFD
must be done only if no other user is using any files or directories

on that disk. A UFDCPY of the MFD to the MFD of another disk has

the effect of merging the contents of two disks onto one disk. A

user must be sure there is enough available space on the TO disk before
attempting this operation if it aborts. Also, the names of files and
directories on the two disks may conflict. To avoid the name conflict,
it may be desirable to UFDCPY the MFD of one disk into a UFD on another
disk. Each directory originally on the FROM disk becomes a subdirectory
in that UFD on the TO disk. For example, the contents of 10 diskettes
could be copied into 10 User File Directories on a 1.5M disk pack.
Note, a UFDCPY of an MFD does not copy the DSKRAT, MFD or BOOT to the
TO directory.

F-12

The effect of a UFDCPY from the MFD of a disk in use to the MFD of a

disk that was newly produced by the MAKE command is to reorganize the disk
files so that all files are compacted; that is, files have their records
close to each other on the new disk. After such a compaction, the

access time to existing files on the new disk is effectively reduced

from the access time on the old disk. Furthermore, new files tend

to be compact since all free disk records are also compacted. The

use of a compacted disk may improve the performance of DOS/VM er DOS.

Users must not abort COPY or DELETE operations under DOS, but allow
them to run to completion. Aborting a COPY or DELETE operation may
cause a directory to contain incorrect entries. For example, this
may result in a file with a pointer mismatch or bad file structure

or a directory with a partial entry. DOS or DOS/VM will not run
correctly with a directory with a partial entry. FIXRAT must be run
immediately if these conditions are encountered. Under DOS/VM,
critical areas of code are surrounded by calls to BREAK$, a subroutine
that inhibits the CNTRL-P key. As a result, interruption of FUTIL
does not result in a bad file structure.

Error Messages

The following error messages are generated by FUTIL. In many cases,
FUTIL prints error messages generated by DOS or DOS/VM and retains
control, so users must be familiar with operating system error messages.
The 1list given here includes messages that may be encountered by

FUTIL. Most messages are preceded by a filename identifying the

file causing the error. Some of the error messages have the format:
reason for error
FILE = filename

DIRECTORY PATH = directory pathname

-

Unrecognizable command

ALREADY EXISTS

An attempt has been made to TRECPY, to a file that already exists,
or UFDCPY has attempted to copy to a directory that already exists.
If you intend to do the operation, the file in the TO directory
must first be deleted.

BAD NAME
A segment directory filename was given to a command that expected a

UFD filename or vice versa. The type of filename must match the type
of directory the file is contained in. ”

MAN |b75 F-13

BAD PASSWORD

An incorrect password has been given in a FROM, TO or ATTACH command.
DOS/VM does not allow FUTIL to maintain control in case of a bad pass-
word so the FUTIL command must be given to restart FUTIL. The FROM
directory and TO directory are reset to home UFD in this case.

BAD SYNTAX
The command line précessed by FUTIL is incorrect.

CANNOT ATTACH TO SEGDIR

The last directory in the directory pathname to an ATTACH command is
a segment directory. It must be a UFD, because ATTACH sets the home
UFD to the last directory in the path.

CANNOT DELETE MFD

User has given the UFDDEL command while attached to the MFD. This
is not allowed.

DIRECTORIES NESTED TOO DEEP

Directories may be nested to a depth of 100 levels. User has attempted
to exceed this limit.

DISK ERROR

May indicate a disk error or may indicate a FUTIL attempt to process
a badly constructed segment directory. Running FIXRAT (Appendix E)
is recommended.

DISK FULL

The disk has become full before FUTIL has finished a copy operation.

For operations involving many files, some files are not copied, creating
only partially copied directories that may be of limited use. It is
suggested that the user delete such a structure immediately to prevent
confusion as to what has been copied.

IN USE

Indicates a FUTIL attempt to process a file in use by some other
user. It may also indicate an attempt.to copy a directory to a
subdirectory within itself.

IS A DIRECTORY, CANNOT COPY TO IT

Same as ALREADY EXISTS.

F-14

=% DNARXEIL

User has attempted an operation on a file that violates the file
access rights assigned to that file. These rights may be changed by
the DOS/VM PROTEC command, if the user has given the owner password
on ATTACH.

NO ROOM USE DOS32

User is using FUTIL under DOS16 and has attempted an operation that
has caused FUTIL to run out of room. This message is not likely to
occur as long as all segment directories processed are SAM segment
directories.

NO UFD ATTACHED

Self-explanatory.
NOT A DIRECTORY

User has given a directory-pathname which includes a file that is not
a directory.

NOT FOUND
Self-explanatory.
POINTER MISMATCH

Indicates a bad file structure. Rumning FIXRAT is recommended.
PRWFIL EOF

User has attempted to reference a nonexistent file beyond the end of
a segment directory.

SEG-DIR ER

User has attempted to reference a file in a segment directory with an
entry of 0, which indicates file does not exist or the user has
attempted to reference a file beyond the end of the segment directory.
UFD FULL

Self-explanatory.

UNRECOVERED ERROR

Indicates either the user has attempted to write to a write-protected
disk, or disk error, or an attempt to process a bad file structure.
Running FIXRAT is recommended if the disk was not write-protected.

MANM 1615 F-15

DOS MASTER DISK

For systems to operate under DOS, all standard PRIME software is
supplied in the form of files stored on a master DOS disk. The user
can generate a listing of the contents of the master disk with the help
of the FIXRAT command. (For example, see Appendix T.) Of the many
files shown in the listing, those in the UFD's MFD, CMDNCO (or other
command UFD), and LIB (Library) are most important to DOS and the user.
These files contain saved command execution programs and both the source
and object forms of all standard library subroutines.

Contents of MFD

The MFD of a master disk typically contains the following entries:

MAN 1675 G-1

Each entry in the MFD is itself a UFD. On the Mster Disk only, each
entry in the MFDis an index of all UFD's in the system. Some typical
UFD's that are actively accessed by DOS itself or the user are:

DSKRAT Contains the Disk Record Availability Table.

MFD MFD itself.

AIDS Source modules for various external utility
commands.

BINED Source modules and command files for EDB.

BOOT Contains the bootstrap program that is ready by a
DOS BOOT paper tape program or by panel LOAD
microcode.

DOS Run file of DOS.

DVBIN DOS/WM support. Includes three different sets of

DOS/VM supervisor for three different configurations
(Refer to Section 6).

ED Source modules and command files for ed and FILED.

INDEX Command files, including INDEX1 and INDEX2 that list
all files in Volumes I and II of the master disk.

10CS Source modules for IOCS.

LIB - Object versions of all standard library programs.

For details of contents refer to the Subroutine
LIBRARY manual.

MATHLB Source modules for the library of matrix manipulation
subroutines.

RTOS Source modules and command files for RTOS.

1, 2, 3,4

U-CODE Microcode source.

SPARE An empty UFD.

SRCLIB Contains general-purpose source programs to be assembled

as required by user.
T&§M Test and maintenance programs. (For information on

the use of these programs, refer to the Prime
Installation and Maintenance Manual.)

G-2

SPARE2, etc. are empty UFD's available to store the user's program and
files. The names can be changed by the CNAME command. New UFD's may
be created by the CREATE command.

UFD's such as PMA, FLIB1, etc. contain source and object versions of
Prime software for the sophisticated user who wants to generate custom
versions of PMA, the library, the loader, etc. (Prime provides source
files as a convenience only, and does not guarantee operation of versions
that are modified and assembled by the user.)

Contents of Command File CMDNCO

The command file UFD (typically CMDNCO) contains the names of the SAVEd
program files that execute DOS external commands.

Contents of LIB

The UFD LIB contains source and object versions of all standard Prime
FORTRAN/Math/I-O library routines. Library software is described in
the Subroutine Library manual. LIB also includes the IOCS subroutines.

FORTRAN library subroutines satisfy all the ANSI standard functions.

Also included are a collection of arithmetic and formatted I/0 operations.
These are run-time operations and are invisible to the FORTRAN programmer.
These subroutines exist where it would be inefficient for the compiler

to generate in-line code because of its size, especially when the time

to execute the CALL is a small fraction of the subroutines execution

time.

MAN 1675 G-3

Contents of SRCLIB

The UFD SRCLIB is reserved for source programs or subroutines to be
assembled or compiled by the user. Among other programs, SRCLIB contains
the microcode assembler. This macro-package must be inserted before any
microcode instructions that are contained in the source file. For
further information, refer to the Prime Microcoders Handbook..

G-4

FORTRAN/MATH LIBRARY SUBROUTINES (SUMMARY)

The FORTRAN/Math Library is an extensive collection of. sub-
routines that perform mathematical operations and functions,
mode conversions and input/output operations. Math and
conversion routines are provided for all modes of variables:
single and double precision, fixed and floating point, complex
and integer.

Scaled Fixed Point Math and Trig Functions

These PMA-compatible subroutines are most useful where high
speed is critical and the programmer is willing to forego the
convenience of floating point. The user should read the
listing carefully for calling sequence and handling of results.

Single Doublie
Function Precision Precision

ADD -- DADD
SUBTRACT -- DSUB
MULTIPLY MPY DMPY
DIVIDE DIV DDIV
ROUND ROND RODD
TWO'S COMPLEMENT -- TWOS
ARCTANGENT ATNX1 DATNX1
COSINE COSx1 DCOSX1
SINE SINX1 DSINX1
EXPONENTIAL BASE 2 EX2X1 DEX2X1
EXPONENTIAL BASE E EXEX1 DEXEX1
LOG BASE 2 LG2X1 DLG2X1
LOG BASE E LGEX1 , DLGEX1
SQUARE ROOT SQRX1 DSQRX1

To use these functions in a CPU that does not have the high-
speed arithmetic options, the user must force-load the unimple-
mented instruction package.

MAN 1675 G-3

FORTRAN Math/Trig Functions

The following routines support the standard ANSI FORTRAN functions
and are also assembly language compatible. (Obtain listings from
source files.)

Function Source Argument Result

Name Filename* Mode Mode Function Definition
SIN SINCOS - REAL REAL Sine(R) (Radians)
DSIN DOUBLE DOUBLE
CSIN COMPLEX COMPLEX
Cos SINCOS REAL REAL Cosine(R) (Radians)
DCOS DOUBLE DQUBLE
CCOoSs COMPLEX COMPLEX
ATAN ATAN-2 REAL REAL Arctangent (R)
DATAN DOUBLE DOUBLE
ATANZ ATAN-2 REAL(2) REAL Arctan(R1/R2)
DATANZ DOUBLE(2) DOUBLE ’
TANH REAL REAL Hyperbolic Tan(R)
SQRT REAL REAL Square Root
DSQRT DOUBLE DOUBLE
CSQRT COMPLEX COMPLEX
EXP REAL REAL E**R
DEXP DOUBLE DOUBLE
CEXP ; COMPLEX COMPLEX
ALOG REAL REAL Natural Log(R)
DLOG-2 DOUBLE DOUBLE
CLOG COMPLEX COMPLEX
ALOG10 ALOG REAL REAL Common Log(R)
DLOG10 DOUBLE DOUBLE
ABS ‘ REAL REAL Absolute Value
IABS INTEGER INTEGER
DARBS DOUBLE DOUBLE
CABS COMPLEX REAL : SQRT (R**2+1**2)
AMOD REAL(2) REAL R1(MOD R2)

MOD INTEGER(2) INTEGER

DMOD DOUBLE(2) DOUBLE

AINT REAL REAL Truncate to Integer
INT IFIXINT REAL INTEGER

IDINT DOUBLE INTEGER

* Same as function name unless otherwise specified.

G-6

FORTRAN Math/Trig Functions (Cont'd)
Function Source Argument Result

Name Filename* Mode Mode Function Definition
AMAX0 MAXO IN’I’EGER (>1) REAL Choose Largest Argument
AMAX1 MAX1 REAL (>1) REAL
MAX0 INTEGER (>1) INTEGER
MAX1 _REAL (1) INTEGER

DMAX1 DOUBLE (>1) DOUBLE
AMINO MINO INTEGER (>1) REAL Choose Smallest Argument
AMIN1 MIN1 REAL (>1) REAL
MINO ~ INTEGER (>1) INTEGER
MIN1 REAL (>1) INTEGER

DMIN1 DOUBLE (>1) DOUBLE
FLOAT INTEGER REAL Change Argument Mode
IFIX IFIXINT REAL INTEGER

SNGL DOUBLE REAL
C$52 COMPLEX REAL
AIMAG COMPLEX REAL
DBLE REAL DOUBLE
CMPLX REAL(2) COMPLEX

SIGN REAL(2) REAL Value of Rl with Sign of R2
ISIGN INTEGER(2) INTEGER
DSIGN DOUBLE(2) DOUBLE
DIM REAL(2) REAL Positive Difference

IDIM INTEGER(2) INTEGER)
CONJG ~ COMPLEX COMPLEX Complex Conjugate
OR) INTEGER(2) INTEGER 16-BIT Logical OR
SHFT INTEGER(2) INTEGER Shift Al by AZ Bits
SHFT INTEGER(3) INTEGER Shift Al by A2, Then A3 Bits
LT INTEGER(2) INTEGER Save Left A2 Bits of Al
RT ¢ F$SHFT INTEGER(2) INTEGER Save Right A2 Bits of Al
LS : INTEGER(2) INTEGER Shift Al Left by AZ Bits
RS INTEGER(2) INTEGER Shift Al Right by A2 Bits

/

* Same as function name unless

MAN 1675

otherwise specified.

G-7

Special FORTRAN Subroutines

Subroutine Source
Name Filename* Definition
OVERFL Check for Arithmetic Overflow
SLITE Set Panel Lamp
SLITET . SLITE Test and Clear Panel Lamp
SSWTCH SLITE Test Sense Switch
RND Random Number Generation
TRND Random Number Generation
DISPLAY Random Number Generation

Miscellaneous Conversion and Compiler Support Routines

These routines are invoked by the Compiler, but may also be
called by the user in assembly language programs. (See source
program listings for details.) .

The names are formed according to the following conventions:

Functions Modes
A = Add 1 = Integer
C = Convert 2 = Peal
D = Divide 5 = Complex
E = Exponentiation 6 = Double precision
F = FORTRAN Utility 8 = Exponent
H = Store (hold)
I = Input
L = Load
M = Multiply
N = Negate
0 = Output
S = Subtract
Z =

Clear (zero)

* Same as subroutine name unless otherwise specified

Cuslhanmrade o n
QUUVL VUL LT

Name

7 v~

c
DUULLT

Filename*

AC1-ACS
ARG$

A$52
A$55
A$62

A$81

C$12
c$16
c$21
C$25
C$26
c$52
c$61
C$62
c$81

D§52
D$55
D$62

E$11
E$21
E$22
E$26
E$51
E$61
E$62
E$66

F$AT
F$BN
F$DN
F$ER
F$FN
F$HT
F$I0
F$RN
F$TR
FSWN

ACCN

F$ER

Definition

Pseudo-accumilators 1-5
Convert Address from Indirect to Direct

C=R+C
C=C+C
D=R+D

D=D* (2%*I)

Note:

R=

C=COMPLEX
D=DOUBLE PRECISION

Convert I to R
D
I
C I=INTEGER
D
R

Convert I to
Convert R to
Convert R to
Convert R to
Convert C to
Convert D to I

Convert D to R

Convert D to I (the exponent)

L=LOGICAL

=C/R
=C/C
=D/R

(=N Np!

I=T**]
R=R**I
R=R*#*R
D=R**D
C=C**I
D=D**1
D=D**R
D=D**D

Transfer a Variable Number of Arguments
Rewind ‘

Backspace

Print Error Message

End File Statements

Process Pause and Halt

Format Conversion

FORTRAN READ (Calls IOCS F$R1-8)
FORTRAN TRACE Statements

FORTRAN WRITE (Calls IOCS F$Wl-8)

* Same as subroutine name unless otherwise specified.

MAN 1675

G-9

Subroutine Source

Name Filename* Definition
H$55 Store Complex Number
L$55 Load Complex Into Pseudo Accumulators
M$52 C=C*R
M$55 C=C*C
M$62 ' D=D*R
N$55 C=-C
S$52 C=C-R
S$55 C=C-C
S$62 D=D-R
2$80 Replace Binary Exponent with Zero

*Same as subroutine name unless otherwise specified.

G-10

10CS

The Input Output Control Subsystem was developed in order to
achieve uniformity of I1/0 and a degree of device independence.

The user (of FORTRAN IV, Macro Assembler, DOS, etc.){ by specifying
a logical function number and a logical I/0 transfer function,

can reach a physical unit through a series of tables that are
initialized by the operator.

In addition to this logical/physical mapping, the Input Output
Control Subsystem also contains all the device dependent
input/output subroutines. Also, there are some very basic
teletype and paper tape I/0 routines which other subroutines
may use to communicate with these devices. There are tables
to allow for tab stops whether physically in the hardware as
in a typewriter, or simulated by using the "form" key in a
teletype.

MAN 1675 o1

Input/Output Control System (IOCS) Summary:

Logical Unit (LUNIT) Standard Device Numbher
Conventions (DEVNQ) Assignments

1 source/binary input 0 pseudo output device
2 1listing output 1 ASR ’
3 binary output 2 Paper tape reader/punch
4-8 others as required 3 Card reader/punch
4 Line printer
5 Mag tape
7 Disk/diskette

Initialization

CALL SETIOS (flag) Assign logical units to physical units.

bit 1 = zero ,

bits 2-4 = DEVNO for LUNIT = 5
bits 5-7 = DEVNO for LUNIT = 4
bits 8-10 = DEVNO for LUNIT =1
bits 11-13 = DEVNO for LUNIT = 2
bits 14-16 = DEVNO for LUNIT = 3

CALL ATTDEV (LUNIT, DEVNO, PUNIT) Equate a logical unit (LUNIT
to a device number (DEVNO) and a physical unit
(PUNIT) i.e. which mag tape transport or, for
- disk, which DOS file unit number.

Logical Unit I/0

CALL CONTRL (KEY, NAME, LUNIT, ALTRTN) Perform control function
(KEY) for file name (NAME) on logical unit (LUNIT);
ALTRTN is entry point if command cannot be satis-

- fied.
KEY = 1 = open for read 5 = delete file
2 = open for write 6 = read/write by record
3 = open for read/write 7 = rewind
4 = close

CALL RDASC (LUNIT, BUFR, N, ALTRTN) Read ASCII record of "N"
words into buffer (BUFR) from logical unit (LUNIT).

CALL WRASC (LUNIT, BUFR, N, ALTRTN) Write an "N" word ASCII
record.

CALL WRBIN (LUNIT, BUFR, N, ALTRTN) Write an "N" word binary
record.

Physical Device Formatted I/O

CALL C$X (KEY, NAME, PUNIT, ALTRTN) Perform control function

X = A = ASR L = Printer
P = Paper tape M = Mag tape
C = Cards D = Disk/diskette

CALL I$XASC ([PUNIT,] BUFR, N, ALTRTN) Read ASCII record.

If X = M or D, specify PUNIT; otherwize omit.
CALL O$XASC ([PUNIT,] BUFR;HN, ALTRTN) Write ASCII record.
CALL I$XBIN ([PUNIT,] BUFR, N, ALTRTN) Read binary record.
CALL O$XBIN ([PUNIT,] BUFR, N, ALTRTN) Write binary record.

Physical Device Unformatted I/0

CALL T1IN read one teletype character

CALL T1OU type one teletype character

CALL T1IB basic teletype input

CALL T10B basic teletype output

CALL P1IN read one paper tape character
CALL P10U punch one character on paper tape
CALL P1IB basic paper tape input

CALL P10B basic paper tape output

MAN 1675 G-13

REAL TIME LIBRARY

Executive Functions

RQST Request program RTNRLK Return block
SCHED Schedule 1label RTNSTG Return a string
CONCLK Connect clock of blocks
DISCLK Disconnect Clock PBLEND Put block at end
CONINT Connect interrupt of -queue
DISINT Disconnect interrupt PBLTOP Put block at top
TERM Terminate of queue
XWAIT Wait PSTEND Put string at end
FBLCK Fetch Block of queue
CFBLCK Conditional fetch PSTTOP Put string at top
block of queue
TAKBLK Take block from
top of queue
CHECKB Check block count
ERPRNT Error print
GTBLPQ Get block, put on
queue
ISA FORTRAN Extensions FORTRAN Interrupt Extensions
START INTSET Set entry point
TRNON INTACK Execute parameter
DELAY ISKED Exit interrupt code
WAIT FETPAR Fetch parameter(s)

Real Time

Equivalents of FORTRAN/IOCS Subroutines

RTF$HT
RTF$ER
RTFLEX
RTIOS

HALT and PAUSE statements

ERROR print out

Floating point exceptions

Basic teletype driver (I$ASC, 0$ASC)

File Management Extensions

ABRTST

RTEXIT

RTGETA

DOSINT

Return to real time program after ABORT from file
management system.

Equivalent to CALL EXIT. Returns control to RTOS
executive.

Equivalent to GETA. Fetches alternate return value
passed by file management system.

Interface to file management systems teletype
routines

G-14

Real Time Virtual Instruction Package (VIP)

A1l the VIP available are written so they can be
interrupted and a single copy of VIP can serve
multiple programs.

RTOS System Components

RTOS Executive Modules

RTEXEC RTOS executive

FIFO Queueing routine for parameter passing
SYSLDR Loader for 128 word block via MHDLNG driver
DOSLDR Loader for DOS SAVE files

FM File management system

SIM Sample system information module

Off-Line DOS Commands

FILBLK Transfer data to/from random access file, 128 word
blocks, under FM.

RTOSRA Generate 128 word block random acce;s file under FM.
RT128F Transfer data to/from non-DOS disk in 128 word

format.

On-Line Utilities

UDROOT Base segment of overlayed on-line utilities.
UDDOS - Overlay for background supervisor.
UDEXEC Overlay for executive function capability.

UDDBUG Overlay for TAP.

UMEXEC Non-Overlay version of executive functions.
UMDBUG - Non-Overlay version of TAP.

UMXD Non-Overlay version of both TAP and executive functions.

Real Time Device Drivers

ASR Teletype

TASR Terminating version of ASR
MHDSHT Moving head disk, DOS compatible
MHDLNG MHDSHT plus 128 word format

FHD Fixed head disk

MTUD Mag tape

PTPDRV Paper tape punch driver

PTRDRV Paper tape reader driver

MAN 1675 G-15

Real Time Device Drivers (cont)

AISD Analog input system

AOSD Analog output system

DISD Digital input system

DOSD Digital output system

AMLC Asynchronous Multiline Controller

Real Time Device Exercisers

MOTST 9 track mag tape

M7TST 7 track mag tape

ADTST Analog input system

DATST Analog output system

DITST Digital input system

DOTST Digital output system

TAMLC Asynchronous multiline controller

DSKTST Disk

ASRTST Teletype

PTPTST Paper tape punch
PTRTST Paper tape reader

G-16

MATRIX LIBRARY

Command format: XMYYY, where X = 'blank' = real

D = double precision

I = integer

C = complex
XMIDN(A, N) A (N,N) = I(N,N) Identity matrix .
XMCON (A, N, M, K) A(N,M) = K(N,M); aij = k ¥
XMSCL(A,B,N,M,K) A(N,M) = K*B(N,M); aij = kbij
XMTRN (A, B,N) A(N,N) = B(N,N)T; aij = bji
XMADD (A,B,C,N,M) A(N,M) = B(N,M)+C(N,M); aij = bij + cij
XMSUB(A,B,C,N,M) A(N,M) = B(N,M)-C(N,M); aij = bij - cij

XMMLT (A,B,C,N1, N2, N3)A(N1,N3) = B(N1,N2)*C(N2,N3)

XMINV (A,B,N,WORK,NP1, NPN,IERR) A(N,N) = B(N,N) 1
(X#1) Scratch area WORK of size NP1 X NPN
where NP1=N+1; NPN=N+N

IERR returned as 0 inversion successfully
completed
matrix was non-invertible

1
2 NP1#N+1 or NPN # N+N

XMADJ (A,B,N,IW1,IW2,IW3,IW4,IERR) A(N,N) adjoint of 4 B(N,N)
IW1,IW2,IW3,IW4=work area X(N)

IERR = 0 adjoint found successfully
= 1 (N«2, no adjoint possible
aij = signed cofactor of Bij
XMDET (DET,B,N,IW1,IW2,IW3,IW4,IERR)

DET
IERR

determinant of B(N,N)
0 determinant found successfully
1 N=20, no determinant possible

XMCOF (COF,B,N,IW1,IW2,IW3,IW4,1,J,IERR) COF=(I,J) signed
cofactor of B(N,N)

IERR = 0 cofactor successfully found

= 1 no cofactor found or subscript
error

MAN 1675 G-17

XLINEQ(X,Y,A,WORK,N,NP1,IERR) Solve for X in Y(N)=A(N,N) X(N)
(X=1)

IERR = 0 solution successfully
found
1 matrix was singular
2 NP1#N+1

PERM (IPERM,N,IW1,IW2,IW3,LAST [,RESTRT]) Compute the next
permutation of N elements.

COMB(ICOMB,N,NR,IW1,IW2,IW3,LAST [,RESTRT]) Compute the next
combination of NR out of N elements.

G-18

VIP LIBRARY (Virtual Instruction Package)

The following subroutines are provided to execute unimplemented
instructions (UII's)

High Speed Arithmetic

DLD Double precision load PIM Position for int%ger multiply
DST Double precision store PID Position for integer divide
DAD Double precision add MPY Multiply

DSB Double precision subtract DVD Divide
NRM Normalize

PRIME 300

EAA Effective address to JLE Jump if less than or equal
A-register JGT Jump if greater than

ENTR Enter subroutine on JLT Jump if less than
stack JGE Jump if greater than or equal

CREP Call recursive entry © JDX Jump and decrement X
procedure JIX Jump and increment X

RTN Return from subroutine JSX Jump and store X

JEQ Jump if equal
JNE Jump if not equal

Floating Point Arithmetic

Precision
SingTe Double
FLD DFLD Load
FST DFST Store
FAD DFAD Add
FSB DBSB Subtract .
FMP DFMP Multiply
FDV DFDV Divide
FCS _ DFCS Compare and Skip
FCM DFCM Complement
FLX - Load floating index
FLOT - Float
INT - Fix as integer
FRAC - Fix as fraction
FRN - Round up
FSZE - Skip if zero
FSNZ - Skip if not zero
FSMI - Skip if minus
FSPL - Skip if plus
FSLE - Skip if less than or equal to zero
FSGT - Skip if greater than zero

MAN 1675 G-19

INTRODUCTION

This appendix gives guidance in and examples of how to use the file
system. The expanded key definitions of SEARCH, PWRFIL, and ATTACH have
been rewritten in this appendix with mnemonic keys. The following
examples use variables defined and initialized by the insert file KEYCOM.

A user wishing to use these keys must have the statement INSERT KEYCOM
in his FORTRAN program after the storage specifiecation statements

and before any data statements. The user will have to copy KEYCOM to
the appropriate UFD before compiling the program(s). This appendix
provides examples of use of the file system. (Refer to 'Examples'.)

The following example programs are:

Program Neame Function

KEYCOM Provides mnemonic keys for PRWFIL,
SEARCH, and ATTACH,

SAMWRT Writes a SAM data file.

DAMWRT Writes a DAM data file.

REDFIL | Reads a SAM or DAM file or unlimited

length and prints the largest integer
in the file. This program also shows
how to use altermate return.

RDLREC Reads logical record number n from a file
of fixed-length recorded.

CRTSEG Creates a segment directory.

REDSEG Reads file on a segment directory
and prints a specified word (record)
in that file.

RIVREC Reads logical record number n from a

file on variable-length records.
GPTRFL Generates a pointer file that consists

of two-word pointers to each logical
record in another file.

MAN I 675 H-1

C KEYCOM JPC 326 MRY 1974
C FROVIDES MMEMOMIC KEYS FOR PRWFIL. SEARCH. AMND ATTACH
IHTEGER PREAD. PHRITE, PREREL. PREAES, POSREL. POSAES. PCONY,
¥ OPHRED, OPNWRT, OPNETH, CLOSE, DELETE. RENIND.,
bl TRNCAT, UFDREF, EGREF:NTFILE;NDFILE,NT‘EG;NDCEGJNEUUFD
X MFDUFD. CURUFD, SEGUFD., HOMUFD, SETHOM

C .
DATA PREAD, PNRITE. PREREL. FREAES, POSREL, POSAES, PCONY
bt A0, 1 2. 18, 14, 128 ., 128, ;- 488,/
DATA OFMNRED, OPMIWRT. OPMNETH. CLOSE. DELETE., REMIMND. TRMCAT
A - 2, 2, 4, G, 7. e <
DRTA UFDREF, SEGREF. NTFILE., NDFILE. NTSEG. NDSEG, MENUFD
- s a. 11606, 18, 1268068, 4800, (5080, 15006,
DATA MFDUFD;CURUFD;SEGUFD;HDMUFD, SETHOM
b R - 2. 4. c, 1 o

SAMWRT, CARLSON JULY 18, 1974
PROGRAM SAM-WRITE TO WRITE A SAM DATA FILE
THE FILE IS 1200 HORDS WRITTEN FROM ARRAY BUFF.

RESTRICTIONS : SAMFIL SHOULD MOT EXIST BEFORE RUNMMING THE PROGRAM.

IHTEGER BUFF(1860>, PBUFF, FUNIT4
VARIABLE DEFIMITIONS:
BUFF- ARRAY TO BE WRITTEN TO A FILE
FBUFF- POIMNTER TO BUFF
FUNITI- CONTRINS 4. REFERS TO FILE UMIT 1

ROUTINES CALLED
LOC, SEARCH, PRINFIL., EXIT

KEYCOM COMTARINS FILE KEY DEFINITIONS

-ITNSERT KEYCOM

DATA FUNIT1/1/

OO0 O0HROOOOO0O0O0COO000 O0O0O00O00000

INITTALLIZE BUFFER CONTENTS
DO 18 I=1,16008
BUFFC(IX=1
e COMNTINUE

o

LOC RETURMS A POINTER TO ITS ARGUMENT

- PRBUFF=LOCCBUFF >

OPEN A HEN SAM DATA FILE CALLED SAMFIL IM THE CURREMT UFD

FOR WRITIMG OM FILE UMIT 4.

O MOST CRLLS THE UFDREF KEY IS OMITTED SINMCE ITS VALUE 1S @
THE FOLLOWING STATEMENT MWMILL BE COMPILED RS IF IT WERE WRITTER
TEMP=0PNIRT+NTFILE+UFDREF

CALL SEARCHCTEMP. “SAMFIL-, FUNIT1. Q>

THE USE OF MULTIPLE MMEMOMIC KEYS WILL GENERATE MORE CODE THRAM
THE USE OF NUMERIC KEVYS.

CALL SEARCHIOPMWRT+NTFILE+UFDREF, “SAMFIL”, FUNITL, 8>
WRITF 16866 WORDS FROM BUFF INTO FILE UNIT 1.
CALL PRUFILC(PWRITE. FUNIT1, PBUFF. 1660, 8, 8>

CLOSE FILE. THIS RELEASES FILE UMIT 1 FOR REUSE AND INSURES
ALL FILE BUFFERS HAYE BEEN WRITTEM TO THE DISK

CALL SEARCH(CLOSE. 8, FUNIT1, 82
RETURM TO DOS

cALL EXIT

O OO0 O0O00 OO0 OO00O00O000000 OO0

END H-3

el
[

MAN 1675

cOoOOO00n

OO0 O®OODODOOO0O00 OO0

1
C
C
C
C
C

0O OO0 O0O00 000

DAMIWRT, CARLSON. JULY 18,1374
PROGRAM DAM-WRITE TO WRITE A DAM DATA FILE

NOTE THRT THF OMNLY DIFFEREMNCE FROM PROGRAM SAMFIL 1S THE
NEW FILE KEY SUPPLIED TO SEARCH IM CREATING THE FILE.

RESTRICTIONS: DAMFIL SHOULD MOT EXIST BEFORE RUMMIMG THIS PROGRAM.

IHTEGER EBUFF(1888>, PEBUFF, FUNIT1

VARIREBLE DEFINTIONS

BUFF- ARRAY TO BE WRITTEN TO A FILE
PEBUFF~- FPOINTER TO BUFF

FUMITi- COMTARIMS 4. REFERS TO FILE UMIT 1

ROUTIMES CALLED
LOC, SEARCH, PRWFIL, EXIT

IMSERT KEYCOM

DATH FUMITLI AL/

IHITIRLIZATION

DO 186 I=1, 1860
BUFF (I =]

a COMTIMNUE

PEBUFF=LOCC(BUFF>

OFE A MEW DAM DATA FILE CALLED DAMFIL IM THE CURRENT
UFD FOR WRITIMG OM FILE UMIT 1.

CARLL SEARCHIOPMWRTHMDFILE+UFDREF, “DAMFIL Y, FUNITL, 62
WRITF 1886 WORDES FROM BUFF INTO FILE UNIT 1

CALL PRIOFILCFWRITE, FUMITL, PEUFF, 1806, 8, @5
CLOSE FILE

AL SEARRCHCCLOSE, 8. FUNITL. 6>
RETURM TO DOS

CALL EXIT

EMND

*
®

C REDFIL., CARLSON. JULY 16.1974
C
C PROGRAM REFAD-FILE TO READ A SAM OR DAM FILE OF UNLIMITED LEMNGTH
C AMD» PRINT THE LARGEST IMTEGER IM THE FILE.
C
C THIS PROGRAM SHOWS HOW TO USE THE ALTERMATE RETURM FEATURE
C OF SEARCH ANM PRWFIL AND HOMW TO USE GETERR AMD PRERR IM
C COMJIECTION WITH THE ALTERMATE RETURM. NOTE THART THE PROGRAM
C DOESM’T CHECK IF THE FILE IS SAM OR DAM TO THE USER. fSAM AND
C 0AM FILES ARE FUMCTIOMALLY EQUIVALENT.
c
C RESTRICTIONS: NOME
c
C
THTEGER BUFF (188>, PEUFF, UERVECC(4 >, FUNITL LARGET. FHAMECZM, N
c
C WARIABLE DEFIMNITIONS
C BUFF- BUFFER TO HOLD INFORMATION READ FROM FILE
C FPBUFF- POINTER TO BUFF
C UERVEC- USEFR ERROR VYECTOR. HOLDS ERROR VECTOR QETAIMED FROM DOZ
C FUMIT1- COMTAIMS 1, USED TO REFER TO FILE UMIT 1
¢ LARGSET- VARIAELE TO HOLD LARGEST IMTEGER IM FILE
C FHAME- HOLDS A FILE MNAME
C
C ROUTIMES CALLED
C LOC. SEARCH. FRWFIL, GETERR., PRERR. EXIT
C
FIMNSERT KEYCOM
C
DATA FUNITLA LS
C
c .
C IMNITTALIZATION
C

FRUFF=LOCCBUFF D

| ARGST=-S07ET
c .
C ASK {ISER FOR FILE MAME. FORTRAM UMNIT 1 IS THE USER TERMIMAL.
c
i9 WRITECL, 18885
1688 FORMATCTYFPE FILE NAME'>
c
C READ FILE MAME

READCL, 1MAI8M (FHRAMECT)Y, I=1. 20
1618 FORMAT(ZAZD
C -
C OPEM FNAME IM THE CURREMT UFD FOR READING OM FILE UNIT 1.
C IF ANY ERROR. GO TO LAEEL 160
Cc

CALL SEARCHCOPHRED, FHAME, FUMNITL, £16a)

MAN 1675

READ FILE 188 WORDS AT A TIME. SET LARGET TO THE LARGEST INTEGER
READ. WHEM EMND OF FILE IS REACHED, THE ALTERMATE RETURM OF
FRWFIL SEMDS CONTROL TO LABEL 50.

gtﬁf)ﬂtﬁf)

CALL PRWFILC(PREAD, FUNITL, PEBUFF. 100, 8, $50)

C N
C 198 WNHRDS READ INTO BUFF. SET LARGET
C
0O 48 I=1,100
IF (LARGST. LE. 9. AND. BUFF{I>. GE. 8) LARGST=BUFF (I
C

C THE ABOVE TEST IS DOME BECAUSE IF BUFFC(IM-LARGST IS GREATER
C THAM 32767, THE FOLLOWING COMFARISOM FAILS DUE TO ARITHMETIC OVERFLOW
C

IF (LARGST. LT. BUFFC(I>» LARGST=BUFF{I>
8 CONTIMNUE
LOOP BACK TO READ MORE DATA FROM FILE

GO TO 39

OO0 OGO &

ALTERKATE RETURM TAKEM ON PRWFIL. SET ERROR TYFE FROM ERRVEC
THROUGH R CALL 7O GETERR.

L) CALL GETERRCUERVEC, 4>

IF ERROR TYPE NOT END OF FILE (CODE “PE-“>, PRINT THE
ERROR MESSAGE WITH PRERR AMD RETURM TO DOS.

g RsNeNo N NeNy)

IF CUERVECCA> EQ. “PE”“> GO TO €8
CALL PRERR
CALL EXIT

EMD OF FILE. MUMBER OF WORDS IM FRWFIL CALL LEFT TO EE
TRAMSFERRED IS IN UERVEC(2>
M IS SET TO HUMBER OF WORDS TRANSFERRED OM LAST CALL.

)

8 H=106-UERVEC (2>
IF (M. EQ. 6> GO TO 26

SET LARGST

OO 6000

DO 78 I=1. N
IF <(LARGST. LE. 8. AND. BUFFCI>. GE. @8> LARGST=BUFF(I>
IF (LARGST. LT. BUFFC(IX) LARGST=BUFF{I>
76 COMT INUE)
C
C THE FOLLONWIMG PRWFIL CALL ACTS AS A NO-OPERATION OM THE FILE
C BUT PUTS THE FILE POINTER IN ERRVEC

H-6

0 O
®

CALL PRNFIL(PREAD. FUNIT1. 8, 6,8, 8>
CALL GETERRC(UERVEC, 4>

FILF POINTER IS (RECORD-NO..,HWORD-NO. > IM UERVEC(2) AMD UERVEC(4).
IF FILE POINTER IS <(@,8> AT THIS POINT. IT INDICATES THE FILE
CONTARINS NO DATA. -

IF CUERVECC(3> EQ. 0. AND. UERVEC(4>. EQ. 8> GO TO 1i@

FILE HOT EMPTY. PRINT LARGET.

D00 O0OO0OO0O

WRITECL, 16282LARGET
1620 FORMATC'LARGEST INTEGER IM FILE IS “I&)

O

C CLOSE FILE AMD RETURN TO DOS
Cc
sg CALL SERRCHICLOSE, 6. FUNITL, 8>

CALL EXIT :

0O

C ERROR IN ATTEMPT TO OFEN FILE
C PRIMT MESSAGE AMD GET ERROR CODE.

c
186 CALL PRERR
CALL GETERRC(UERVEC. 1>
C ' .
C IF ERROR IS HAME NOT FOUND (CODE “SH > GO TO LABEL 16 TO ASK
C FOR A KHEW NAME OTHERWISE GIVE UP AND RETURM 7O DOS.
c .
IF CUERVECCL> EQ “SH > GO TO 14
CALL EXIT
c
C FILE EMPTY
c

116 WRITEC4, 18262

1838 FORMARTCFILE EMPTY >
GO TO 96

c
EMD

$£a

MAN 1675

RDLREC, CARLSOM. JULY 18,1974

RDLFEC—- READ LOGICAL RECORD
PROGRAM TO READ LOGICAL RECORD MNUMBER N FROM A FILE CONSISTING
OF FIMED LENGTH RECORDS

IN THIS PROGRAM THE FILE ACCESSED IS COMSIDERED TO CONTAIN

AN UNLIMITED HUMBER OF LOGICAL RECORDS, ERCH RECORD CONSISTING

OF M WORDS. THE PROGRAM READS AND TYPES THE CONTENTS OF RECORD

NUMBER M RS M INTECERS. THE FIRST RECORD OF A FILE IS RECORD NUMBER €.
NOTE THART £ LOGICR. RECORD IS MEARLY A GROUPING OR WORDS IN

A FILF. IT HAS NO RELATION TO THE PHYSICAL DISK RECORD.

RESTRICTIONS: RECORD SIZE MUST BE BETHWEEN 1 AND 1680
RECORD MNUMBER MUST BE BETHWEEM © AND 327E7
CRECORD-SIZE M+ (RECORD-NUMBER> MUST BE LESS THANM
£, 388, €02 (223> BECAUSE FLOATING POINT NUMBERS ONLY REPRESENT
€. 8 DIGITS. -
THE RECORD MUST BE IN THE FILE

OO0O0O00OCGO0O0CO000000000

INTEGER FBUFF. BUFF(1888>, FUNIT4., FHAME(3), RECSIZ, RECNUM. POSITN,
X ABSPOS(2)

RERL FRECSZ., FRCHUM. FPOSTM, PRECSZ

VARIABLE DEFINTIONS
BUFF- BUFFER USED TO HOLD A LOGICAL RECORD
PBUFF- POINTER TO BUFFER
FUNIT4—- COMTAIMS 1. USED TO REFER TO FILE UNIT 1
FNAME- HOLDS A FILE HNAME
RECSIZ- LOGICAL RECORD SIZE
RECHUM- LOGICAL RECORD NUMBER
POSTTN- RELATIVE POSITION TO POSITION TO REQUESTED RECORD
ABSPOS- ABSOLUTE POSITICH TO POSITOM TO REQUESTED RECORD
FROCHUM- FLOATING POINT LOGICAL RECORD HNUMBER
FRECSZ- FLOATING POINT L2GICAL RECORD SIZE
FPOSTH- FLOATING POINT FOSITIOM MEEDED TO POSITION TO REQUESTED RECORD
PRECSZ- PHYSICAL DISK RECORD DATA SIZE. USED TO FORM
TWO WORD ABSOLUTE POSITIOM.

ROUTINES CALLED
LOC, SEARCH, FLOAT, INT, AMOD, GINFO. PRWF IL, EXIT, GETERR. PRERR

SO0000C000000000000 O

$INSERT KEYCOM
c
DATA FUNITA/1/
c
c
C INITIALIZATION

PBUFF=LOCCBUFF>

ASK FOR FILE MAME

o060 0O

WRITEC1, 1808>
1686 FORMATC/TYPE FILE MAME->
C A
C READ FILE MAME
c

READCAL, 18182 (FNAMECI >, I=1. 32
1616 FORMAT(ZAZ)

c
C OPEN FMNAME IM THE CURRENT UFD FOR RERDING OM FILE UMIT 1
C
CHLL SEARCHCOPNRED, FMNAME. FUNITL, 62
c
C ASK FOR RECORD SIZE
Cc

28 WRITECL, 18200
1626 FORMATC TYFE RECORD SIZE"D
READ(L, 16ZRXRECEIZ
1636 FORMATISR
IF (RECSIZ. GE. 1. AND. RECSIZ LE. 19666 GO TO 28
WRITE(L, 10482
1846 FORMATCBAD RECORD SIZE- D

G0 TO 20
c
C ASK FOR RECORD MUMEER. FIRST RECORD IS MUMEERED 6.
c

38 WRITECL, 18582
1856 FORMATC'TYFE RECORD NUMBER”2
READCL, 1838 RECHUM
IF (RECHUM. GE. 8 GO TO 30
WRITE(L, 1651>
1851 FORMATC “EAD RECORD MNUMEBER 2
GO TO =8
Cc
C CHECK IF RECORD IS MORE THRAM 22767 WORDS FROM BEGIMMIMG OF
C FILE IF SO. USE ABSOLUTE POSITIOMING ELSE USE RELATIVE
C POSITIONING. .

WO

S FRECSZ=FLORT(RECSIZX

FRCHUM=FLOAT (RECHUM>

FPOSTH=FRECSZ+FRCMUM

1F (FPNSTN. LT. £328€6E. » GO TO 48

WRITEC1, 18552
1855 FORMAT ¢ “RECORD-MNUMBER+RECORD-SIZE IS TOOD LARGE >
GO TCO 286

49 IF (FPOSTM. GT. 327€7. » GO TO 186

MAN 1675 H-9

RECORD IS LESS THRAN 32767 WORDS FROM BEGINMING. USE RELATIVE
POSITIONING.
NOTE THAT ABSOLUTE POSITIONING COULD HAVE BEEN USED FOR A RECORD
ANYWHERE IN THE FILE, NOT JUST FOR THOSE RECORDS BEYOND WORD
32767. RELATIVE IS SHOWM IN HERE OMLY FOR AN EXAMPLE.
POSITH=RECS I Z+RECNUM
POSTTION TO THE RECORD AND READ RECSIZ WORDS INTO THE BUFFER
CALL PRWFILC(PREAD+PREREL, FUNIT4, PBUFF, RECSIZ, POSITN, $300)
GO TN 208 TO TYPE RECORD CONTENTS
GO TO 268

RECORD MORE THAM 32767 WORDS FROM BEGINMNING OF FILE. USE
ABSOLUTE POSITIONING
GET PHYSICAL DISK DATA RECORD SIZE FROM DOS

DOO00 000 D00 OaO0000

106 CALL GINFOCBUFF., 4>
PRECSZ=FLOAT(BUFF (4> .
C 9
C CAL.CULATE ABSOLUTE POSTION (RECORD-MNUMBER, WORD-NUMBER>
C THAT RECORD STARTS AT AND PUT IM ABSPOS(A)} AND ABSPOS(2>
C
ARSPOS (1 >=1INT(FPOSTN/PRECSZ>
ABSPOSC2)=INT (AMOD (FPOSTN, PRECSZ))>
Cc
C POSTTION TO THE RECORD AMND READ RECSIZ WORDS INTO THE BUFFER
c .
CALL PRWFILC(PREAD+PREAES, FUNIT1, PBUFF, RECSIZ, ABSPOS, $308)
C

C RECORD READ, MOW TYPE IT.

C

200 WRITE(1, 1668 RECHUM. RECSIZ

1666 FORMATC/RECORD “I€, © CONTAINS “I€.,” ENTRIES AS FOLLOWS”)
WRITE(4, 18783 CBUFF (1), I=1,. RECSIZ)

1078 FORMAT48I7> -

c
C RETURN TO DOS AFTER CLOSING THE FILE
C -
CALL SEARCHCCLOSE. @, FUNIT1)
CALL EXIT
C
C ERRMR WHILE ATTEMPTING TO READ THE RECORD
>
388 CALL GETERR(BUFF, 1)
CALL PRERR
IF CBUFF(1>. EQ. “PE’> GO TO 285
CALL EXIT
c
C END (F FILE REACHED. REMIND FILE AND TRY AGRIN.
c
385 CALL SEARCHC(REWIND, ©, FUNITL, @)
GO TO 20
c
END

2 H-10

sv- - -

CRTSFG, CARLSON. JULY 12, 1974

CRTSEG- CREATE-SEGMEMT-DIRECTORY

THIS PROGRAM SHOWS HOW TO CREATE & SEGMENT DIRECTORY AMND WRITE

FILES INTO IT.

RESTRICTIONS: SEGDIR SHOULD MOT EXIST BEFORE RUMNING THE PROGRAM.
INTEGER PBUFF, BUFF(10>, SGUMIT. FUNIT

VARTABLE DEFINITIONS

BUFF- BUFFER TO WRITE TO SEGMEMT DIRECTORY FILES

PEUFF~ POINTER TO BUFF

SGUMTT- CONTARINS 1. FILE UNIT USED FOR SEGMEMT DIRECTORY

FUMIT- CONTAINS 2, FILE UNIT USED FOR DATA FILES

THSERT KEYCOM

DATA SGUNIT, FUNITA1, 2/

INITIALIZATION

0000 OROOCOOOO00 ODOOO0OO00

PBUFF=LOCCBUFF>
0O 186 I=1.486
BUFF{I=I
a COMT INUE

OPEM A NEW SAM SEGMENT DIRECTORY CALLED SAMDIR IMN THE
CURRFNT UFD FOR READIMG AND WRITING OM FILE UMIT SGUMIT.

CALL SEARCH{OPMNETHHMNTSEGHUFDREF, “SEGDIR”, SGUNIT. @)
OPEM A MNEW SAM DATA FILE FOR WRITING OM FILE UNMIT FUMIT. WRITE
THE DTSK LOCATIOM OF THIS MNEMW FILE AT THE FILE POINTER OF
THE SEGMENMT DIRECTORY OPEM OM FILE UMIT SGUMIT.
THE FILE POIMTER POINTS TO WORD MUMEBER 6 OF THE SEGMENT DIRECTORY.
CHLL SEARCHCOFPHNMRT+NTFILE+SEGREF, SGUMIT, FUNIT, @)
WRITE 18 WORDS FROM BUFF IMTO THE DATAR FILE
CHLL PRWFILCPWRITE, FUNIT, PBUFF, 18. 8, 8>
CLOSE THE DATA FILE

CALL SEARRCH(CLOSE. 8, FUNIT., 8>

OO0 000 000 O000aO0 0000k

REPLACE BUFF WITH HEN DATA

H-11
MAN 1675

Ly

2]

oOcOoOOoOOO0n

0O 000 OO0 000 000

DO 28 I=1.18
BUFF(I>=I%108
CONTIMUE
OFEM A DIFFEREMT NEMW SAM DATA FILE OM FUNIT. PUT THE
DISK | NCATION IM WORD MUMEBER 1 OF THE SEGMENT DIRECTORY.
THIS 1S DONE IH TWO STEPS. FIRST BY POSITIOMING THE FILE

FOIMTER OF THE SEGMENT DIRECTORY FORWORD OME WORD AMD THEM
BY CALLING SEARCH AS SHOWM ABOVE.

fALL PRWFILCPREADSPREREL, SGUNIT. 8, 1. 8>
CHLL SERRCHCOPMWRT+NTFILE+SEGREF, SGUMIT., FUNIT, 8>

WRITF 16 WORDS IM THE FILE ‘
CALL PRNFIL{PNRITE;FUNITQPBUFF;i@;GaB)
CLOSE THE DATA FILE
f:ALL SEARCHCCLOSE. 8, FUMIT, 8>
CLOSKE THE SEGMENT DIRECTORY
CALL SEARCHC(CLOSE. 8. SGUNIT, B>
RETURM fO DOsS
cCALL EXIT

END

H-12

RED<EG, CRRLSOM. JULY 12, 1974

REDEEG- RERD-FILE-IN-SEGMENT-DIRECTORY
THIS PROGRAM READS FILE NUMBER M IMN A SEGMENT DIRECTORY AND
TYPES WORD NUMBER M IN THAT FILE. THE FIRST FILE IN THE DIRECTORY
IS FILE NUMBER 8. THE FIRST WORD IN THE FILE IS MWORD NUMBER ©.
RESTRICTIONS: THE FILE HUMBER MUST BE BETWEEH 8 AMND 22757

THE FILE MUST BE IN THE SEGMENT DIRECTORY.

THE WORD NUMBER MUST BE BETWEEN 8 AND 3227&7.

THE WORD MUST BE IN THE FILE

NOO0O00O0OOO000

IHTEGER PBUFF, BUFF., SGUNIT, FUMIT, SEGDIRCZ>, UERVECC(2)>, FILNUM,
» WRDMNUM

VARIABLE DEFIMITIONS

BUFF- HOLDS WRDHUM WNORD OF FILMUM FILE OF SEGDIR

PEUFF- POINTER TO BUFF i
SGUNIT- COMTAIMS 1., FILE UNIT USED FOR SEGMENMT DIRECTORY
FUMTIT- COMTARINS 2, FILE UNIT USED FOR DRTR FILE

UBERVEC- HOLDS ERROR VECTOR OBTRINEDR FROM DOS

FILMUM- HOILDE FILE HUMBER OF SEGDIR TO RERD

MRDMU- HOLDS WORD NUMBER OF NTH FILE TO REARD

SEGDIR- HOLDS SEGMENT DIRECTORY NAME

IMSERT KEYCOM

DATA SGUNIT, FUNIT/1, 2/

INITIALIZATION
PEUFF=L OCCBUFF

INGURE UMITS ARE CLOSED ANMND

ASK FOR AND READ SEGMEMT DIRECTORY NAME

EPOOOO OO0 OWOOOOO0OO000000

®

CALL SERRCHICLOSE, 8, SGUNIT, a2

CALL SEARCHICLOSE. @, FUNIT, 9>

WRITE(1, 16806

1666 FORMATC TYPE SEGMEMT DIRECTORY NAME-’) -
READCL, 1601082 (SEGDIRCI >, I=1, 3>

1618 FORMAT(ZA2)

c
C OPEM THE SEGMENT DIRECTORY FOR READING ON SGUNIT
c
rALL SEARCHY<OPNRED+UFDREF, SEGDIR, SGUNIT, 8
c

C GET FILE TYPE FROM ERRVEC AND MAKE SURE FILE IS A SEGMENT DIRECTORY.
C ALLOWABLE TYPE CODES ARE SAMSEG AMND DAMSEG. WVYALUES 2 RAND 2.

MAN 1675 H-13

CRALL GETERRC{UERVEC. 2>
IF CUERVEC(2) EG 2. OR. UERVEC(2>. EQ. 3> GO TO 28

C NOT £ SEGMEMT DIRELTORY., TRY AGAIN -

WRITEC1, 1626>
18260 FORMATC’FILE IS NOT A SEGMEMT DIRECTORY”)

GO TO 106
[!
C ASK FOR FILE IN SEGMEMT DIRECTORY
|

26 WRITE(L, 1836

1838 FORMATC'TYFE FILE NUMEBER”>
READCL, 1848 FILNUM

1848 FORMAT(ISD

C ASK FOR WWORD IN FILE
WRITECL, 1825>

1835 FORMARTC'TYPE WORD NUMBER”)
READCL, 1848 WRDMNUM

TRY TO POSITIONM TO FILNUM FILE IM THE SEGMENT DIRECTORY.
IF ERROR GC TO 168

CALL PRWFIL(PREAD+PREREL. SGUNIT. 6, 8. FILHNUM, $£160>

s

OPEM FILE IN SEGMENT DIRECTORY FOR READING OM FUMIT
GO TO 126 IF AMY ERROR.)

CRLL SEARCHCOPMRED+SEGREF, SGUMIT. FUNIT, £128)>

POSITIOMN TO FILWRD WORD IM DATA FILE AMD READ IT INTO BUFF
GO TO 206 IF ANY ERROR. .

CALL PRUWFIL(PREAD+PREREL, FUNIT. PEUFF, 1., WRDMUM, $266>

PRIMNT THE WCORD, CLOSE FILES AMD RETURM TO DOS

00 OO000 000G O0O00

WRITECL, 1658 WRDNUM, FILNUM, (SEGDIRC(IN, I=1. 3>, BUFF
1856 FORMATC"WORD“I€, © OF FILE“IE. ~ IM “3RA2, © CONTRINS-IED
Se CALL SEARCHCCLOSE, 8, FUNIT, 8>
CALL SERARCHC(CLOSE. 8, SGUNIT. 8>
CALL EMIT
c
C FILF NOT IM SEGMEMT DIRECTORY
C “PE’ IS THE CODE FOR PRWFIL EQF
C PG’ S1 THE CODE FOR PRNFIL BOF
c

H-14

188 CALL GETERRCUERVEC, 15
IF (UERVEC<1)>. EQ. “PE“. OR. UERVEC<1> EQ. PG> GO TO 118
CALL PRERR :
GO TO 56
C :
1109 WRITECL, 182X (SEGDIRCID, I=1, 3D
1868 FORMATC(FILE MOT IN “2R2>

GO TO 18
c _
C ERROF IM ATTEMPTING TO OPEM FILE IM SEGMEMT DIRECTORY
c
1268 CARLL GETERRCUERVEC, 1>
c
C SEE TF SEGMENT DIRECTORY ERROR TYFE
c

IF CUERVECC4L) EQ “SG“> GO TO 138

CALL PRERFR '
CALL EXIT

c
C YES, FILE POINTER IF SGUNIT IS AT END OF FILE OR DISK ADDRESS
C OF FILE IS @ INDICATIMG NO FILE AT THIS FILE POINTER
C IM E1THER CASE, THE ERROR INDICATES THE REQUESTED FILE IS NOT
C IN THE SEGMENT DIRECTORY.
C THIS ERROR CODE IS PALSO GIVEM IF MO FILE IS OPEN FOR READING
C ON SGLIHIT IF SEARCH IS OPENMING AM EXISTING FILE IM A SEGMENT
C DIRECTORY OR IF NO FILE IS OPEN FOR BOTH READIMG AMD WRITING
C OM SGIHIT IF SEARCH IS OPEMING A NEMW FILE IN A SEGMEMT DIRECTORY.
O THESE ERROR COMNOITIONS CRM MEVER QCCUR IM THIS PROGRAM.
c ’ .
1z GO TO 148
c
C WORD MOT IM FILE
c

N

@@ CALL GETERR({UERVEC, 1)
IF CUERVECCA). EQ. “PE”. OR. UERVEC(1). EQ. “PG*) GO TO 210
CALL PRERR
CALL EXIT

219 MRITE (4, 1878 2WRDMUM, FILNUM, ¢CSEGDIRCI>, I=1, 3>
1878 FORMATC WORD-IE, © NOT IM FILEZIE, 7 IN “3R2)
GO TO 19

END
$£0

MAN 1675 H-15

OO0OGOO0O0000000000000000000000

nwnnnnnnnnnnnnnn

RDVREC, CARLSON. JULY 16,1974

RDVRFC~ READ-VARIABLE-LENGTH-RECORD

PROGRAM TO READ LOGICAL RECORD NUMBER N FROM A FILE COMSISTING
OF A GROUP OF YARIABLE LEMGTH RECORDS AND TYPE THE PECOPD

OM THE TERMINAL.

THE FILE VARREC COMSISTS OF LOGICAL RECORDS. EACH LOGICAL
RECORD COMSISTS OF A HERDER MWORD WHICH COMTAIMS THE SIZE
OF THE RECORD FOLLOWED BY THE DATA IN THE RECORD.

THE FIRST RFCORD OF THE FILE IS RECORD MUMBER ©.

THE METHOD USED IS TO FIRST GEMERATE PTRFIL. AN

ANCILLARY FILE OF 2 WORD POSITION POINTERS TO EACH RECORD

IM THF FILE VARREC. THIS IS DOME BY THE PROGRAM GFTRFL
(GEMFRATE POINTER FILE> FOLLOWING THIS FROGRAM. RODVREC

USES THE MNTH FILE FOINTER IN PTRFIL TO ACCESS THE MTH LOGICAL
RECORT: IN VARREC. MNOTE THAT PTRFIL MEEDS TO BE GEMERATED

OMLY ONCE. AFTER THAT THE USER CAM MAKE AMNY MNUMBER OF
REFFRENCES TO VARREC. FOR FAST ACCESS., BOTH PTRFIL

AMD VARREC SHOULD BE GEMNERATED AS DAM FILES., HAMDLING OF PRWFIL
ERFFORS IS OMITTED TO SIMPLIFY THIS EXAMPLE.

RESTRICTIONS: FILE VARREC MUST EXIST IN THE CURRENT UFD
FILE FPTRFIL MUST EXIST IM THE CURRENT UFL.
RECORD SIZE MUST BE BETWEEN 41 AND 18@6.
THE RECORD REQUESTED MUST BE BETWEEM 9 AMD 16382
THE RECORD MUST BE IN THE FILE VARREC.

INTEGER FUMIT. SIZE. RE HUM, AESPOS(2), FRESFS, BUFFC1068),
¥ PBUFF, FEUFFZ

VARIABLE DEFIMITIONS

FUMIT- COMNTAINS 1. USED TO REFER TO FILE UMIT 1
SIZE- HOLDS SIZE OF LOGICAL RECORD

RECH!IM= HOLDS LOGICAL RECOFPD MUMBER REQUESTED
RESPOS- HOLDS FILE POINTER

PRESFS- POINTER TO ABSPOS

BUFF~ HOLDS RECHUM LOGICAL RECORD

PEUFF- POINTER TO BUFF

PEUFFZ- POINTER TO BUFF<{2>

ROUTIMES CALLED
SEARCH, PRWFIL, EXIT, L&C

THSERT KEYCOM

DATA FUNMITA 1/

H-16

C INITIRLIZATION

Cc
PABSFS=LOC(ABSPOS)
FPEUFF=L0OC(BUFF >
PRUFF2=LOC(BUFF (2>}
C .
C ASK FOR RECORD NUMBER. BST RECORD IS MUMBERED 1.
C ‘ ’

WRITE(L, 1688>
1888 FORMATC(TYPE RECORD NUMBER”)
: READ(1. 1618 RECHNUM
1816 FORMAT(IED
OPEM FILE OF 2-WORD FILE POINTERS CALLED PTRFIL OM FUNMIT
CALL SEARCHC(OPHRED. ‘PTRFIL ., FUNIT. @)
POSTITION TO REQUESTED FILE POINTER AMD READ IT INTO RBESPOS
CALL PRWFIL(PREARD+PREREL., FUNIT, PRESFS, 2. RECHUM*2, 82
CLOSE FUNIT
CALL SEARCH(CLOSE, @, FUNIT, @)
OFEN VYARREC FILE
CALL SEARCH(OPMRED. “YARREC”, FUMIT. @)

POSITION TO THE RECORD USING THE FILE POINTER IN ABSPOS AMD
READ THE RECORD SIZE INTO BUFF(1D

CALL PRIFIL(PREAD+PREARS, FUMIT, PEUFF, 1, ABSPOS, 82

O 0000 000 000 OO0 000

SIZE=BUFF 1)
IF CSIZE LT 41 OR SIZE GT. 1688> GO TO 1086

REAr: THE RECST OF THE EBLOCK IMTO BUFF(2)> . BUFF (M)
CALL PRWFIL(FPREARD, FUNIT, PRUFF2. SIZE-1. 8. 6>

WRITF THE RECORD TO THE TERMINAL

000 000

WRITE(1, 1628 RECHUM. S1ZE .
1028 FORMAT(/RECORDIE, © 1S716, 7 WORDS AS FOLLOWS: 7>
WRITE(4,1836> (BUFF<I>, I=1,SI1ZE>
1828 FORMAT(41BI7)
C .
C CLOSK FILE AND RETURMN TO DOS

96 CALL SEARCH(CLOSE. 8, FUNIT. 8>

CALL EXIT
Cc
C RFCORD S1ZE ERROR
c

i0e WRITE(1, 1040>

1048 FORMAT/BAD RECORD SIZE’D
GO TO 96

c

MAN 1675 BN H-17

0000 O0#HOOCOO0OO0O0ODOO00D00 OO0 O00a00

0oO00O00 000 000

GPTHRFL, CARLSOM, JULY 1€. 1574

GPTRFL- GENFERATE-POINTER-FILE

PROGRAM TO GEUERATE A FILE PTRFIL OF 2-WORD FILE POINTERS
TO EATH LOGICAL RECORD IM FILE VARREC. VRARREC COMSISTS
OF LOGICAL RECORDS EACH OF WHICH CONSISTS OF A HEARDER WORD
THAT CONTAINS THE 'SIZE OF THE RECORD FOLLOMWED BY THE DATAR
IN THE RECORD.

RESTRICTIONS: RECORD SIZE MUST BE BETWEEN 1 AND 1600.
PTRFIL SHOULD NOT EXIST BEFORE RUMMIMG THE FROGRAM.
VARREC MUST EXIST IN THE CURRENT UFD.

THTEGER FUMIT, PTRUMT, UERVEC<4)>, PUERVC, PUERV3, PSIZE. SIZE

VARIABLE DEFIMITOMS

FUNIT— CONTAINS 1, REFERS TO FILE UNIT 1 ON WHICH VARREC IS OPEN
PTRUNT- COMTAINS 2, REFERS TO FILE UNMIT 2 ON WHICH PTRFIL IS OPEM
UERVET- USER ERROR VECTOR., HOLDS ERRVEC OBTRINED FROM DOS

SIZE- HOLDS SIZE OF LOGICAL RECORD

PSIZE- POINTER TO SIZE

PUERVC~ POINTER TO UERVEC

PUERYZ~ POINTER TO UERVEC(Z>

ROUTINES CALLED
LOC. SEARCH. PRWFIL. GETERR. PRERR. EXIT

THSERT KEYCOM

DATA FUNIT, PTRUNT/1, 2./

INITIALIZE

FUERVC=L.OCCUERVEC<1
PUERVZ=LOC(UERVEC(Z
PSIZE=LOC{SIZE>

22
a2

OPEM VARREC FOR READIMNG ON FUMIT
FALL SEARCH(OPMRELD. “VARREC”, FUNIT, 8>

OPEM A MEW DAM FILE PTRFIL FOR WRITING OM PTRUMT
CHLL SEHRCH(GPNNHT+NQFILE;’PTRFIL’;PTRUMTJB)

SET SI1ZE FOR FIRST TIME THROUGH LOOF. SIZE IS SET SO

NO POSITIONING TAKES PLACE OM 1ST CALL TO PRWFIL. ERRVECC(ZD
AND ERRVEC(4) ARE SET TO FILE POINTER OF 45T RECORLD.

H-18

SI1ZE=1

DnCTTTnM TO MEVT t O T [=] =p] n: '.Janb" l..: [¥7=1% -
v Ta Y & v 8 Lttt

LR TAF TRt u—wv.v-u— BN e e P FH T

ALREADY READ ONE WORD OF RECORD SO TO GET TO BEGINNING OF
NEXT RECORD WE MUST POSITON FORMWORD SIZE-1 WORDS.

00000

CALL PRHFIL(PREAD+PREREL., FUNIT, 8. 8. SIZE-1, $58)
GET FILE POIHTER FROM ERRVEC
fALL GETERRCUERVEC, 4>

FILE POINTER IS IN UERVEC(3) AND UERVEC(4)>. WRITE 2 WORD
FILE POINTER INTO PTRFIL.

CALL PRWFILC(PHRITE, PTRUNT. PUERVZ., 2, 8, 8>

READ: 1ST WORD OF HENT LOGICAL RECORD IMNTO SIZE. 41ST WORD
1S SIZE OF MEXT LOGICRL RECORD.

CALL PRWFIL(PRERD, FUMIT. PSIZE. 1. 8. $168>
IF S1ZE OK. LOOP TO READ MEMT RECORD.
JF (SIZE GE. 1. OR. SIZE. LE. 1668> GO TO 19

ERROR

000 OO0 O0O0O0 0000 OO0k

WRITEC(1. 1688>
1888 FORMAT(’A RECORD HRS A BARAD HEARDER WORD)

GO TO 119
c
C FILF EMDES IM MIDDLE OF A RECORD
c .
o8 CALL GETERRCUERVEC, 1>

IF C(UERVECCL)M ME. “PE“> GO TO 128
WRITECL, 4616>
1018 FORMATCFILE ENDS IN A PARTIAL RECORD >

GO TO 1196
c
C PRWFIL ERROFR RETURM. CHECK TYFE.
c

180 CALL GETERRC(UERVEC, 1>
IF (UERVECC1> HE. “PE“> GO TO 129
c
c
C FTLE EMNDS MORMALLY. CLOSE FILE AND RETURM TO DOS
c ”
119 CHLL SEARRCHCCLOSE, 6, FUNIT, 8>
CALL SEARCHC(CLOSE. 8, PTRUNT. 8>

CALL EXIT
c
120 CALL PRERR

cALL EXIT
Cc

END

MAN 675 H-19

APPENDIX I

ERRVEC CONTENTS

ERRVEC consists of eight words whose contents are as follows:

Word

ERRVEC (1)

(2)

(3)
(4)
(5)
(6)

r~
~1
-

(8)

Content

Code

Value

>4 24 < e
e Raka

pointer to
message

message

PRWFIL Error Codes

nn
Yy

PE

PG

MAN 1675

ATt AT

UNIT NOT OPEN

PRWFIL EOF (End
of File)

PRWFIL EOF
(Beginning of
File)

Remarks

Indicates origin of error and nature
of error.

On alternate return, this is the
value of the A-register. On normal
return, this may have special
meaning, (e.g., refer to PRWFIL
and SEARCH error codes).

ERRVEC (3), ERRVEC (4),

ERRVEC (5), and ERRVEC (6)

contain a six-character Filename
of the routine that caused the
error [ERRVEC (6) is available for
expansion of names]

For DCS (DOS/VM) supervisor
usage.

For DOS (DOS/VM) supervisor
usage.

Number of words left.
(Information is in ERRVEC(2))

Number of words left.
(Information is in ERRVEC(2))

I-1

PRWFIL Normal Return

ERRVEC (3) = Record Number
ERRVEC (4) = Word Number

PRWFIL Read-Convenient

ERRVEC (2) = Number of words read.

SEARCH Error Codes

ERRVEC (1) = Meaning
SA SEARCH, BAD PARAMETER
SD UNIT NOT OPEN (truncate)
SD UNIT OPEN ON DELETE
SH <Filename> NOT FOUND
SI UNIT IN USE
SK - UFD FULL
SL NO UFD ATTACHED
SQ ‘ SEG-DIR-ER
DJ DISK FULL

SEARCH Normal Return

ERRVEC (2) = Type where Type has the following values:

e = Meaning

0 File is SAM

1 File is DAM

2 Segment Directory is SAM
3 Segment Directory is DAM
4 UFD is SAM

ADDENDTY J

AN L AW L

DOS ERROR MESSAGES AND
DISK ERRORS AND DISK STATUS WORD

DOS ERROR MESSAGES

MESSAGE REMARKS

BAD <COMMAND-NRME> EXAMPLE: BRAD STARTUP

BRD CALL TO SERRCH

BAD DAM FILE

BAD PARAMETER

BAD PASSWORD

BAD RTNREC

BAD SVC BAD SUPERYISOR CALL

DEVICE IN USE

DISK <X> NON DOS

DISK FULL

DK ERR SEE DISK ERROR EXPLANATION BELOW.

DUPLICARTE NAME

FATAL ERROR IN DOSEXT

<FILENRME> NOT FOUND

SFILENAMES> IN USE

<FILMAME> ALREADY EXISTS

ILLEGRL INSTRUCTION AT <OCTAL LOC. >

<NAME> NOT RASSIGNED

NO UFD ATTACHED

NO VECTOR : USER HRS GOTTEN R UII, PSU. OR FLEX,
OR TRAP TO A LOCARION THAT IS @,
OR SVC SWITCH IS ON AND USER GOT AN SYC TRAF
AND LOCATION ‘65 WRS @.

NOT R UFD

POINTER MISMATCH RUN FIXRAT
PROGRAM HALT AT <OCTAL LOC. >
PRWFIL BOF

PRWFIL EOF

PRWFIL POINTER MISMATCH
PRWFIL UNIT NOT OPEN
SEG-DIR ER

UFD FULL
UFD OVERFLOW -

UNIT <X> CLOSED THIS LINE AND THE NEXT TWO LINES
DISK <X> CLOSED ARE PART OF THE SAME

YOUR FILES DETACHED MESSAGE.

UNIT IN USE

UNIT NOT OPEN
UNIT OPEN ON DELETE

MAN LT85

DISK ERRORS

There is no alternate return caused by a detected disk error. A message
is printed and the operation is retried forever, in DOS; in DOS/WM the
operation is tried ten times.

DK ER P# <Physical device #> <DOS record address > <disk status word>

Status Word

The status word typed as the third octal number of a disk error depends
on the type of controller as follows:

4000 Controller

Status Word Meaning
177777 bad record identifier
177776 device not ready
100000 data transfer complete (good if present)
040000 read/write past end of record
004000 seek complete (good if present)
002000 write protect violation
000400 command error
000200 checksum error
000100 DMX overrun
000040 stack overflow

4001 Prime Controller

Status Word Meaning
177777 bad record identifier
177776 device not ready
100000 bit 1 always set
040000 DMX overrun
020000 disk is write protected
010000 checksum error
000100 disk drive seeking
000040 disk drive seeking
000020 disk drive seeking
000010 disk drive seeking
000004 illegal seek
000002 malfunction detected

J-2

Diskette Controller

MANILTS

Status Word

177777
177776
100000
040000
020000
010000
002000
001000
000400

Meanin

bad record identifier

device not ready

normal end of instruction (good if present)
sector not found

checksum error on sector 1D

track error; head is mispositioned

deleted data mark read

DMX overrun

checksum error, write protect violation of file
inoperable on write or format

J-3

A TIMTAM T vV

ArrcCNUIA N

DISK DRIVE OPERATION

This appendix describes cartridge loading and operating procedures
for the various PRIME disk drive options.

PERTEC MOVING HEAD DRIVES

Operating Controls

Operating controls for the PERTEC D3000 are shown in Figure A-1.
Control functions are as follows:

CONTROL FUNCTION

OFF/ON Switch-Indicator Turns main power on and off. Indicator
lights when power is on.

SAFE Indicator Lights when drive is not rotating and
is safe to install or remove disk packs.

RUN/STOP Switch Indicator Push switch to start or stop drive
motion. Indicator lights when drive
is running.

READY Indicator Lights when drive is up to speed

and ready to communicate with CPU.

PROT/PTOR Indicators Indicates write protection status
of upper (removable) and lower
(fixed) disk platters.

Unit Number Selector Determines physical unit number
Thumbwheel of disk drive.

WRITE PROTECT Switches Assigns or removes write protection
(LOWER, UPPER) behind for upper (removable) or lower

door (fixed) platters.

Cartridge Handling And Storage

The magnetic coatings on the disk surface have the ability to
retain recorded intelligence for an indefinite period. However,

the physical recording medium is susceptible to damage. The disk
cargridge must be properly handled and stored to maintain the
integrity of the recorded data. A damaged or contaminated cartridge
can impair or prevent recovery of data and can result in damage to
the disk drive.

MAN 1675 k-1

CAUTION

Do not attempt to install or use a cartridge which is suspected
of contamination or damage.

A disk drive which has been damaged or contaminated due to use of
a defective cartridge should not be operated with other cartridges
until the disk drive has been inspected and/or reconditioned by
qualified service personnel.

K-2

WRITE PROTECT SWITCHES
(BEEIND DOOR)

LOWER UPPER
ON
WRITE
PROTECT
OFF
DOOR HANDLE
(PULL OUT AND
DOWN TO OPEN)
/

A}
\
RUN ‘
READY
STOP ON
1
1 [
SAFE PROT OFF
* PROT

l
UNIT CONTROL PANEL

NUMBER
SELECTOR
THUMBWHEEL

Figure K-1.

PERTEC D3000 Operating Controls

MAN 1675 k-3

The following methods will ensure maximum protection of disk cartridges.

1. The head port door on front-loading cartridges should be
kept closed when the cartridge is not inserted in a disk
drive. This keeps dirt out and secures the disk internally.

2. Cartridges can be stored either horizontally or vertically.
Front loading cartridges must always be positioned to avoid
objects which could damage the hub or cause the air inlet
door to be pushed open.

CAUTION
Do not stack cartridges more than five high.

3. Avoid exposure of the cartridge to magnetic flux in excess
of 50 gauss or loss of stored data may result. The 50 gauss
flux level is reached at a distance of approximately three
inches from a motor, generator, transformer, or similar source.

4. Do not store the cartridge in direct sunlight. Temperatures
outside the range of 33°F (0.6°C) to 140°F (60°C) should be
avoided for non-operational storage.

5. If a cartridge is dropped, it should be inspected by a qualified
service representative before it is used. Internal, as well as
external, damage to the cartridge can result.

6. Top loading cartridges should be labeled only in the handle

recess area. Placement of labels in areas other than these
may cause improper operation or contamination.

Disk Drive Preparation

An initial check-out procedure must be performed by a qualified
field service representative brfore the drive is operated by
regular users.

Regular users should do the following initial preparation before
attempting to insert a cartridge into the drive.

1. Position the power ON/OFF switch to the ON position and
observe that the associated indicator becomes illuminated.

2, Observe that the SAFE indicator located on the operator control
panel becomes illuminated within two seconds of the ON
indicator illumination. The disk drive is now conditioned to
safely insert or remove the cartridge.

K-4

1. Verify that the SAFE indicator is illuminated.
CAUTION
Do not attempt to force removal of a disk cartridge when the
safe indicator is extinguished. Failure to observe unsafe
condition can result in damage to the equipment.

2. Grip the door handle formed by the top of the front bezel
and move the handle out and downward, opening the door.

3. Crip the cartridge by the molded-in handle and pull the cartridge
slowly out of the receiver.

4. Unless another cartridge is to be inserted immediately into

the drive, close the disk drive door; this will exclude dirt
and contamination from the interior of the drive.

Loading a Cartridge

1. Verify that the SAFE indicator is illuminated.

2. Grip the handle formed by the top of the front bezel and
move the handle out and downward; this will open the disk
drive door and move the cartridge receiver into position
to accept a cartridge.

3. Grip the cartridge by the molded handle, and position the
cartridge in the receiver opening. Make sure that the flap
portion of the cartridge top is aligned between the guide
rails at the top of the receiver. Slant the cartridge to
match the slope of the bottom of the receiver.

4. Press the cartridge slowly but firmly most of the way into
the receiver. Relax the grip on the cartridge handle and
press the cartridge fully into the receiver, seating it
completely within the receiver.

5. Close the door on the front of the disk drive by moving
the door handle (top of the front bezel) up and toward the
driver. As the door is closed, the cartridge will be po-
sitioned into the spindle. -

CAUTION
If the cartridge is not properly inserted in the receiver,
the door will not close. Do not attempt to force the door

closed or damage to the cartridge and the disk drive will
result; repeat steps 1 through 5.

MAN 1675 K-S

Selecting Write Protection

When the disk drive is equipped with WRITE PROTECT switches, the
operator should select the appropriate switch setting at the time
the cartridge is inserted. The switches are mounted inside the
door, behind the operator switch panel; the drive must be in a
safe condition as indicated by the SAFE indicator in order to open
the door and gain access to these switches.

To select protection for a particular platter, set the applicable
switch to the ON position. To enable writing for a particular
platter, set the applicable switch to the OFF position.

When a WRITE PROTECT switch is set to the ON position, the particular
disk is protected from write operations regardless of any write com-
mands which may be received. When a WRITE PROTECT switch is set

to the OFF position, write operations may then be executed.

Starting The Disk Drive

After a cartridge is loaded, the disk drive may be started as
follows:

1. Depress and release the RUN/STOP switch/indicator located
on the operator control panel. Illumination of RUN/STOP
indicates that there are no inhibiting conditions and that
the drive mechanism is rotating the disk(s).

2. Observe that the READY indicator becomes illuminated within
60 seconds after actuating the RUN/STOP switch/indicator.
The READY indicator indicates that the disk drive is ready
to accept interface commands.

Stopping The Disk Drive

When it is desired to stop the disk drive while the RUN/STOP
indicator is illuminated, perform the following procedure.

1. Depress and release the RUN/STOP switch/indicator.
2. Observe that the SAFE indicator becomes illuminated within

25 seconds. This indicates that the disk(s) has come to
a stop and the cartridge may be removed or changed.

K-6

Designating Unit Number

When the disk drive is equipped with a Unit Number Selector Switch,
the setting of this switch establishes the device (unit) number
used during BOOT loading of DOS, etc. The operator should set ,
the switch to the position required by the system and software *
operating procedures for the particular installation.

The switch is set by moving the thumbwheel up or down until the
desired number appears in the window adjacent to the thumbwheel.

MAN 1675 k-7

PRIME ASCII CHARACTER SET

The standard character set used by PRIME is the ANSI, ASCII
7-bit set shown in Figure C-1. Control characters are described
in Table C-1. .

The defined code set is basically a communications set complete
with header and acknowledge procedures. The code is designed to
allow a collating sequence, a 64 character subset, and subset-
ting of graphic and display motion primitives. Extensions to
the communication aspects of ASCII regarding parity, control,
are code extensions all contained in references 2, 3, and 4. An
excellent survey of Data Communication Control Procedures is in
reference 5.

PRIME USAGE

PRIME hardware and software uses standard ASCII for communications
with devices. The following points are particularly important to
PRIME usage.
1. Output Parity is normally transmitted as a zero {(space)

unless the device requires otherwise, in which case soft-

ware will compute transmitted parity. Some controllers

(e.g., MLC) may have hardware to assist in parity generations.

2. Input Parity is ignored by hardware and by standard soft-
ware. Input drivers are responsible for making the parity
bit suit the host software requirements. Some controllers
(e.g., MLC) may assist in parity error detection.

3. The PRIME internal standard for the parity bit is zero.
However, much existing software expects a one for the
eighth bit. As a consequence, new software should be
written so as to ignore the parity bit on internal
characters.

INTERNAL STANDARDS

The following standards apply to internal usage.of character
codes, excluding communications and control functions.
Internal Standards are composed of Storage Definitions and
Table C-2 explains the internally redefined codes for the

characters shown in Figure C-2.

MAN 1675 L-1

00 NUL
01 BS
02 DLE
03 CAN
04 SP
05 (
06 0
07 8
10]
11 H
12 P
13 X
14 *
15 h
16 P
17 X
1V

0
00 NUL
o1 BS
02 KCP
03
04 SpP
05 (¢
0é -0
07 8
10 e
i1 H
12 P
13 X
14 ’
15 h
16
17 .

1 2 3 4
SOH STX ETIX EOT
HT LF VT FF
DC1 DC2 DC3 DC4
EM SUER ESC FS
! . [1] ‘ s

) * + »

1 2 3 4

9 H H <

a B C D

1 J K L

4] R S T

Y Z C \

a b c d

i j k 1

q T S t

y z { |

Figure L-1. ASCII Communications Codes

~° N

1 2 3 4
HT NL Vi FF
RH1 HLF k1 HLk
! " # L)

) * + »

1 2 3 4

9 H ; <

A B C D

I J K L

Q R S T

Y Z € N

a b \ c d

i j k 1

q T S t

y z { |

Figure L-2. Internal ASCII Codes

L-2

ENQ
Ck
NAK

wWe 3o -wCXMOH W |aag

Ck

w O S3 o wCXITmHALmt N

6

ACK
SO
SYN,

1< BT CZM Vo o

EKS

2<=M-CZ"'1VOOQO

BEL
EkS

EOMVU N\

O 0q

Basically, an internal message (''file') is composed of a number

of ASCII 1lines terminated by a New Line character .NL. (012).

The .NL. character is printed as a .CR. (Carriage Return) followed
by a .LF. (Line Feed) followed (possibly) by a number of .NUL.
(Null) characters for timing.

Within each ASCII line, carriage motion is defined by the follow-
ing characters: ‘

NAME CODE MEANING

.SP. ‘ (240) Space Forward One Position
.BS. (210) Space Backward One Position
HT. (211) Physical Horizontal Tab
VT, (213) Physical Vertical Tab

.FF. (214) Form Feed - (Top of Form)
.CR. (215) Carriage Return

JRHT. (221) Relative Horizontal Tab, following byte
Defines a mumber of .SP. to insert

JHLF. (222) Half Line Feed Forward
.RVT. (223) Relative Vertical Tab, following byte

Defines a number of .LF. to insert
JHLR. (224) Half Line Feed Reverse

In addition, the following characters are used internally for
specific device action.

.BEL. (207) Audible Alarm
.RRS. (216) Red Ribbon Shift
.BRS. (217) Black Ribbon Shift

MAN 1675 L-3

The following characters are used for packing and compression:

NAME CODE MEANING

-NUL. (200) Allowed and ignored in any position
-RCP. (220) Relative Copy - following byte specifies

number of characters to copy from corres-
ponding positions of preceding line

VISIBLE STANDARDS

Several standards have been adopted for keyboard interfaces
with standard software. Specifically:

" (242) ECrase, i.e., ignore last character typed on
the current line

? (277) Kill, i.e. restart current line

N (234) Logical Tab, i.e. space to logical tab of IOCS
(shift L)

' (236) Logical Escape, visual escape for limited

graphic devices

.CR. (215) Interpreted as .NL. on Keyboard
.LF. (212) Input

The logical escape conventions at present include:

t ddd Three octal digit representation of unprintable
character such as t007 (BEL)

v Backspace
tU All subsequent letters are upper case
1L All subsequent letters are lower case until end of line
Standard convention for PRIME Systems software is to formulate
names for ASCII constants by the standardized names in Figure C-1
preceded by an "A", e.g.,

ANL for New Line

ASP for Space

L-4

REFERENCES

1. CAM, Vol 8, No. 4, April 1965, pg. 207
2. CACM, Vol 9, No. 9, Sept. 1966, pg. 685
3. CAQM, Vol 9, No. 2, Feb. 1966, pg. 101
4. CAM, Vol 9, No, 10, Oct. 1966, pg. 759
5. SAM, Vol 4, No. 4, Dec. 1972, pg. 197

MAN 1675 L-5

Table R-1. Control Characters

CONTROL CHARACTERS FOR COMMUNICATIONS

Code Name ’ Use

201 SOH Used at the beginning of a sequence of char-
acters (a heading) containing address, routing,
and possibly other information.

202 STX Precedes a sequence of characters which is
to be treated as an entity (a message or a
message block) and passed to the destination
station. STX terminates the heading, if any is

present.

203 ETX - Terminates a sequence of characters (a message)
begun with STX.

204 EOT Terminates transmission.

205 ENQ A request for a response from a remote station.
It may be used to request station identification
or status.

206 ACK An affirmative acknowledgement returned to

the sender from the receiver.

220 DLE An "'escape' character which changes the meaning
of an immediately following string of characters.
DLE was provided so that new control functions
could be added using this extension character.
Several two-character extension sequences have
already been added.

225 NAK A negative response returned to the sender by
the receiver.

226 SYN Used in synchronous transmission systems to
provide a signal pattern from which synchronism
may be attained or maintained. It is placed at
the beginning of all transmitted character
sequences and inserted in a sequence of charac-
ters in the absence of a data character to be
transmitted,

227 ETB Terminates a transmission block (heading or
text) which is not the last block of message.

L-6

MAN 1675

Base Graphic

$

Alternate

L-7

National Currency
Underbar :
Conflict with 137

Logical Not

Table R-2. Notes On Internal ASCII

Code Name Use
200 NUL Filler

201 . SOH Print Header Line

207 BEL Audible Response

212 NL New Line, .CR. + .LF. on ASR
216 RRS Red Ribbon Shift

217 BRS Black Ribbon Shift

220 CRP Relative Copy

221 RHT Relative Horizontal Tab
222 HLF Half Line Forward

223 RVT Relative Vertical Tab
224 HLR Half Line Reverse

Command Syntax

ASRCWD Number

ASSIGN
ASSIGN
ASSIGN

Device
Device WAIT
DISK Number

Ufd

Ufd [Password]

Ufd [Password Ldisk]
Ufd [Password Ldisk

Key]

ATTACH
ATTACH
ATTACH
ATTACH

AVAIL

. AVATI, ZERO

" AVAIL ONE

AVATL TWO

AVAIL NINE
AVAIL Packname -

BASIC

BASINP

BINARY Filename

CLOSE Filename
CLOSE Filename [Funit...]
CLOSE ALL

(MPRES Filename [Filename2)

MAN 1675

Function

Change the virtual control word
to select one of four devices
for effective 1/0.

Obtain complete control over

a disk or peripheral device from
the user terminal (Refer to
Table 4-2 for device names and
Table 3-1 for disk numbers).
WAIT queues the assignment

until the device is ready.

Attach DOS (or DOS/WM user
space) to the specified UFD.

Print the number of disk
records available for use on
(1) the current logical disk;
(2) the specified logical disk;
(3) the logical disk specified
by Packname.

Invoke the BASIC language
interpreter, in order to write
and execute programs in BASIC.

Load a paper tape containing
programs written in BASIC
language on a computer other
than a Prime computer.

Opens file specified by
Filename for writing on File
Unit 3, usually as a binary
output file.

Closes the named files and
specified file units; or if
ALL is specified, closes all
files and units. :
Translate an input file into an
output ASCII file using the
relative copy character ('220)

M-1

Remarks

"~ DOS/WMrfonly

DOS/W only. The
disk assigned must
be an assigned disk.

For DOS/VM. Password
‘may be owner or nonowner
password.

Under DOS/VM, only
AVATL Packname is
correct.

EXPAND is the opposite
of CMPRES.

Command Syntax

CNAME Oldname Newname

COMINPUT Filename

COMINPUT Filename Funit

COMINPUT CONTINUE

COMINPUT PAUSE

COMINPUT TTY

CoPY

CREATE Newufd

CRMPC Filename

CRSER Filename

DBASIC

DELAY

DELAY [iinimum]

DELAY [Minimum Maximum]

DELAY [Minimum Maximum
Rmargin]

APPENDIX M (Cont)

Function

Change name of a file named
Oldname to Newname.

Read commands from the file
specified by Filename in the
current UFD, rather than from
the terminal.

Read commands from the file
specified by Filename or the
logical unit specified by
Funit.

Continue reading commands from
a command file after a pause or
interruption.

Leave the current command

input unit open and return to
operating system command level.

Read subsequent commands from
the terminal.

Copies and verifies a disk.

Create a new UFD, Newufd, in
the current UFD.

Read cards from the parallel

interface card reader and place

their image in the file speci-
fied by Filename.

Read cards from the serial
interface card reader and
place their image in the file
specified by Filename.

Invoke a version of BASIC that
provides double precision
arithmetic capabilities.

Define a time function to be
used to delay the printing of
a character after a LINE FEED

has been output to the terminal.

M-2

Remarks

Should be last line of
command file or the
last commnand file in
a chain.

Use this command with

acumen (i.e. know what
you are doing).

First card in deck
should be #E.

First card in deck
should be #E.

DOS/W only.

ED Filename

MAN 1675

APPENDIX M (Cont)

Function
Load and start the system text
editor (in INPUT mode if no
Filename is specified; in EDIT

mode if Filename is specified).

Editor commands are:

LINE Mode
Editor Commands:

APPEND String
BOTTOM

BRIEF
CHANGE/Stringl/String2/ [nG]
DELETE [n]

DELETE To String
DUNLOAD Filename [n]
DUNLOAD Filename To String
ERASE Char

FILE ,

FILE Filename

FIND String

INPUT Device

INSERT String

LOAD Filename

LOCATE String

MODE PRUPPER

MODE PRALL

MODE PROMPT

MODE NPROMPT

MODE LINE

MODE BOX
MODIFY/Stringl/String2/[nG]
MOVE Bufferl Buffer2
NEXT [n]

OUTPUT TTY

OUTPUT

OVERLAY String
PAUSE

PRINT [n]

PTABSET Tab...

PUNCH (ASR) n

PUNCH (PTP) n

QUIT

RETYPE String
SYMBOL Name Char
TABSET Tab...

TOP

UNLOAD Filename [n]
UNLOAD Filename To String
VERIFY

WHERE

XEQ Buffer

* [n]

M-3

Remarks
Editor Commands are
described in the
Program Development
Software User Guide
in detail.

z
k4

Command Syntax

APPENDIX M (Cont)

Function Remarks

BOX Mode
Editor Commands:

BOX v h +D# +D#
BOXIN Filename (MODIFY)
BOXIN Filename (OVERLAY)
BOXOUT

BRIEF

DISPLAY

ERASE Char

FILE Filename

FIND String

KILL Char

MODE PRUPPER

MODE PRALL

MODE PROMPT

MODE NPROMPT

MODE LINE

MODE BOX v h
MODIFY/Stringl/String2/[G]
MOVE Bufferl Buffer2
OUTPUT

OVERLAY String

POINT v h 4D# 4+D#
PRINT

PTABSET

QUIT

RFIND String

RLOCATE String
PPOINT v h +D# +D#
SYMBOL Name Char
VERIFY

WHERE

XEQ

*[n]

Command Syntax

EDB Inputfile [Outputfile]
EDB (PTR) [(PTP)]

EXPAND Filenamel [FilenameZ]

FILBLK

FIILMEM

FILVER Filenamel Filename2

FIXRAT
FIXRAT OPTIONS

MAN 1675

APPENDIX M (Cont)

Function

Loads and starts the binary
editor; EDB Commands are:

BRIEF

COPY Name
COPY ALL
ET

FIND Name
FIND ALL
GENET [G]
INSERT Name
NEWINF [Name]
OMITET [G]
OPEN [Name]
QUIT

RFL

SFL

TERSE

TOP

VERIFY

Inverts the operation of
CMPRES

Reads or writes from high speed
memory to any 128-word record
in a previously created RTCS
random access file.

Fills memory locations with
zeroes from '100 to the top
of 32K, except for those
locations occupied by DOS.

Compares contents of file
specified by Filenamel with
contents of file specified by
Filename2 for equivalence

and prints message that
verification is either confirmed
or is not confirmed.

Loads and starts a maintenance
program that checks file
integrity of any disk pack.

Remarks

For details of EDB
commands, refer 'to
the Brogram Develop-
ment Software User
Guide.

Refer to RTOS User
Guide.

Under DOS/VM, all
locations from '100

to top of 32K are
filled with zeroes.

For DOS/VM, the disk
being checked must
be ASSIGNED.

Refer to Appendix E
for complete details
about FIXRAT.

Command Syntax

FIN Filename [1/A]

FUTIL

HILOAD

INPUT Filename

LBASIC

LISTF

LISTING Filename

LFIN

APPENDIX M (Cont)

Function Remarks

Loads Prime FORTRAN IV and
starts compilation of a program

Invokes a file utility that Refer to Appendix F
provides subsystem commands to for a detailed
copy, delete and list both description of FUTIL.

files and directories. FUTIL
commands are:

ATTACH Directory Pathname
COPY Filel [,File2...]
COPYDAM Filel [,File2...]
COPYSAM Filel [,File2...]
DELETE Filel [,File2...]
FROM Directory Pathname
LISTF [level] [LISTFIL]
[PROTECT] [SIZE] [TYPE]
QUIT
TO Directory Pathname
TRECPY Dirl [,Dir2...]
TREDEL Dirl [,Dir2...]
UFDCPY
UFDDEL

See LOAD

Opens an ASCII source file
on Unit 1 for reading by
a compiler or assembler.

Invoke a version of BASIC
with MAT and PRINT USING.

Print the current UFD name, For DOS/VM, LISTF
the logical device, and all also prints O or N
Filenames in the UFD at the for owner or nonowner

terminal. status.

Opens the file specified by
Filename for writing on
File Unit 2, usually as a
listing output file.

Invokes a version of FORTRAN
that can perform Sector 0
optimization.

Command Syntax

LOAD

LOADZ0
LOGIN

LOGOUT

MACHK

MAGSAV

MAGRST

MAN 1676

APPENDIX M (Cont)

Function

Loads and starts Prime's
Linking Loader. LOAD provides
the following commands: .

ATtach [Ufd][Password] [Ldisk]

[Key]
COmmon Address

EXecute [AReg] [BReg] [XReg]
FOrce Filename [Loadpoint]
[Linkstart] [Linkrange]

HArdware Definition

INitialize [Filename] [Loadpoint]
[Linkstart] [Linkrange]

LOad Filename [Loadpoint]
[Linkstart] [Linkrange]

LIbrary [Filename]
MAp [Option]

MOde Mode

Quit

REcover

SAve Filename [AReg][BReg][XReg]
SErbase Linkstart Linkrange
Virtuaibase Startlinks To sector

See LOAD

Connect to the DOS/VM system
for a terminal session.

Give up user-access to the
DOS/VM system. (Exit from a

terminal-session).

For DOS, causes computer to
operate in machine check mode.

Write all or part of the
contents of a disk to magnetic

tape.

Read the contents of a
magnetic tape, to a disk or

portion of a disk.

M-7

Remarks

Loader 60000-63777.
P-register=61000.

LOAD will now send~
maps to Disk Unit 2.

Unit 2 must be open
for writing.

Loader 20000-23777.
P-register=21000

DOS/WM only.

DOS/VM only.

DOS/WM default is
machine check mode.

Command Syntax

MCG Filename

MDL

NUMBER

OPEN Filename Funit Key

PASSWD Owner Password

PASSWD Owner-Password Non-
owner Password

PASSWD

PROTECT Filename Keyl Key2

APPENDIX M (Cont)

Function Remarks

Creates a disk supported by DOS
or DOS/VM that contains the
following:

DSKRAT
MFD
BOOT
DOS
(MDNCO

Translates results of microcode
assembly into proper code for
the ROM simulator.

Punches paper tapes of specified
sections of memory in a self-
loading format.

Utility to number or renumber
a BASIC program.

Opens the file specified by
Filename on the File Unit,

Funit; Key specifies type of
file and action to be taken.

Replace any existing Password DOS version of

in the current UFD with a new Password.
password.

Same as above, except assigns For DOS/M. See
both owner and nonowner Section 2 for a
passwords. discussion of file

access protection.

Replace existing passwords

with null (no) password. ° Both DOS and DOS/VM.
Open file directory giving DOS/WM only.
restricted access rights to Keyl or Key2=:
Filename as specified by 0 = No access
Keyl and Key2. 1 = Read only
2 = Read and write
3 = Delete only
4 = Delete, truncate,
and read
5 = Delete, truncate,
and write
6 = All access

M-8

Command Syntax

PM

PMA Filename [1/A]

PRERR
PSD

PSD20
PTCPY

PTRED

RESTORE Filename

RTOSRA

RT128F

SAVE Filename

SHUTDN

L

SHUTDN - [Pdisk...]
SHUTDN ALL

MAN 1675

Function

Prints contents of the RVEC
vector.

Load the macro assembler and
start assembly of Filename in
the current UFD.

Prints message stored in
ERRVEC.

Load and Start the interactive
debugging program.

Invoke version of PSD for
16K DOS.

Loads a utility program that

duplicates and verifies paper

tapes.

Edit files read from paper tape.

Restore Filemane in the current
UFD to high speed memory, using
the SA and EA values SAVEd with
Filename.

Establish RTOS mapped random
access file.

RTOS off-line utility to read
and write 128-word segment
formatted files.

Save the content of high-speed
memory using SA (starting
address) to EA (ending address)
on a file named Filename in
the current UFD.

For DOS, shutdown the system
(no parameters).

For DOS/VM, shutdown the
specified physical disk (Pdisk)
or shutdown the entire system
(ALL)

Remarks

-

£

Default value of A

is 000777 which
signifies: normal
listing detail, all
input and output files
on disk.

Refer to the descrip-
tion of RVEC in
Section 4.

Use only as directed
in the RTOS User
Guide.

Command Syntax

SIZE Filename
SLIST Filename

SORT

SORT BRIEF
SORT SPACE
SORT MERGE

SPOOL [Filename]

START [PC] [A] [B] [X] [Keys]

STARTUP Pdisk [Pdiskl...]

STATUS

SVCSW

TIME

APPENDIX M (Cont)

Function

Prints the size of Filename in
records, at the terminal.

Prints the content of Filename
at the temminal.

Sort an ASCII file and write
the sorted file in the current
UFD.

BRIEF =: no messages

SPACE =: delete blank lines
from output

MERGE =: merge (up to 10)

unsorted files.

Queues a copy of Filename in
the UFD SPOOL for off-line
printing. SPOOL typed with
no Filename opens File Unit 2
for writing in the UFD SPOOL
and prints them after they are
closed(either by the user er
the end of the program).
SPOOL with no Filename argument
is a convenient way to get
listings and LOAD maps printed.

Initializes the registers and
keys from the command line
(or from RVEC) and starts
execution at the location PC.

Initialize the configuration
of disk drives by relating
physical disks to logical dis
unit number.

Print status information
at the temminal. -

Controls the handling of SVC
instructions in the virtual
memory environment.

Prints the current value of
the time accounting registers.

M-10

Using

Remarks

SORT command

gives instructions
(messages) as it is
executing.

SORT asks for names
of files to be merged.

DOS/VM only.

START can also
restart a program
(refer to Section 4).

STARTUP has extended
capabilities for
DOS/WM (refer to
Section 6).

STATIS information
varies for DOS and
DOS/VM; for details,
refer to Section 4.

DOS/VM only.

DOS/VM only.

Command Syntax

UNASSIGN

VDOS32

VRTSSW

MAN 1675

Function

Deassigns peripheral devices
or disks.

Starts a version of DOS that
may be run under DOS/VM.

Allows setting of the virtual
sense switches.

Indicates comment line.

M-11

Remarks

DOS/WM only. .
UNASSIGN may be entered
from &ither a user
terminal or the system
terminal (refer to
Section 4).

DOS/W only.
DOS/W only.

* must be followed
by a space and have
the correct command
line form (1 to 3
names followed by

0 to 9 parameters).

APPENDIX M (Cont)

OBSOLETE COMMANDS

Names of Obsolete Commands Replaced By
CARDIN CRSER
LOAD74, LOAD40, LOAD70 HILOAD
PRINT PRSER
FILCPY FUTIL
BOOT deleted
COPYWM , CcoprY
VFIXRT FIXRAT
CNVT45 deleted -
VMAKE MAKE

M-12

APPENDIX N

FIXRAT OF MASTER DISK (REV 7)

861N UFICPY BEGIN ESE6

BEGIN MING

BEGIN SLIST BISIN E366 BEGIN FLOAT
BEGIN C.CPB BEGIN AS6S BEGIN IFXINT
BEGIN CPBEEN BEGIN Ss62 BEEIN CSi8 -
BEGIN C.CPBG BESIN NS62 BRGIN Cs21
PEGIN CMPRES - BEGIN DS62 BEGIN MIN1
BEGIN EXPAND BEGIN AS6l BEAIN IRND
BEGIN PTCPY BEGIN 5361 DESIN ESI11
BEQIN LCHR BEGIN M$61 BESIN ISIGN
BESIN C.PTCP BESIN D361 BEGIN IDIN

BB AIBSZ 183 BEGIN C$26 SEGIN AsS21
BEGIN SPARE BEGIN Csé2 BEGIN $321
BEGIN SPARE BEGIN C361 BEQIN M2l

END SPARE 1 BEGIN ASS! BEQIN PS21
BEGIN BOSSRC SEGIN DEXP BEGIN C.FLBA
BEGIN BOSSRC BEGIN BS@RT BEGIN L.FLBA
BEGIN C1IN BEGIN BLOG-E BEGIN BFLIBA
BEGIN GETBUF SEGIN BLOGIN DI FLIBA 3t
BEGIN RINBUF SEQIN C.FLBI BEGIN FLIBS
BEGIN COMANL BEGIN L_FLB! BEGIN FLIBS
BEGIN CMREAD BEGIN BFLIPI BEGIN C.FLBS
BEGIN ERRRIN BEGIN BATAN BEGIN L_FLBS
BEGIN ERR BEGIN BSNCS BEGIN LEEXI
BEGIN RESUME D FLIBl sS4 BEGIN EXEX1
BEGIN RESTOR SZQIN FLIB2 BEGIN EXEX1
BEGIN SAVE BEGIN FLIBZ BEGIN PSARXI
BEGIN READ BEGIN CSQRT BEGIN BEXEXI
BEGIN BOSEXT BEGIN CCOS BEGIN DEXEX!
BRGIN ERRS BEGIN CSIN BEGIN BATNXI
BEGIN COMINP BEGIN CLOG BEGIN COSX1
BEGIN RTNREC BEGIN CEXP BEGIN DCOSX1
BEGIN BOSCOM BEGIN CABS BEGIN BLGEX]
BEGIN GETREC BEGIN ESS1 BEGIN ATNXL
BEGIN GINFO BEGIN ASSE BEGIN BLGEX1
BEGIN PRWFIL BEGIN S$52 BEGIN BSINX1
BEGIN BSRISK BEGIN M$S2 PEGIN LE2XI1
BEGIN K3IMAC BEGIN BSS2 BEGIN DSUB
BERIN POSVC PIGIN ASSS BEGIN BMPY
BEGIN FSAT BEGIN S$55 BEGIN BADD
BEGIN CNEGV BEGIN M3SS - BESIN ROND
BEGIN SCHAR BEGIN BSSS BEGIN ROBP
BEGIN GCHAR BEGIN CONJG BEGIN TWOS
SESIN MOVE BESIN C325 BEGIN WPY
BEGIN FILL BEGIN CMPLX BEGIN IV
BEGIN TEXTOK BEGIN N$SS BEGIN SINX1
BEGIN TYPERS BEGIN LSSS BEGIN BFLIBS
BEGIN PBOSEX BEGIN H$SS5S BEGIN S®RX1
BEGIN F$C@ BEGIN AIMAG END FLIBS L1
BEGIN 3OSLOV BEGIN ASS) BEGIN FLIDG
BEGIN MCBEF BEGIN SsS! PEGIN FLIBG
BEGIN INTRO BEGIN 355! BEGIN FSUI
BEGIN C.FIN BESIN C_FLB2 BEGIN ACCN
BEGIN C.PMA BEGIN L_FLB2 BEGIN OVERFL
BEGIN QETERR BEGIN MSS1 BEQGIN FSBN
BEGIN PRERR BEGIN BFLIBZ BEGIN FSBN
BEGIN WRITE BEGIN REAL BEGIN FSFN
BEGIN GRINSB BEGIN CssSg BEGIN SLITE
BESIN C.DOSE END FLIB2 37 BEGIN F$CG
BEGIN C.LDSS SEGIN FLIBI BEGIN F$SH
BEGIN *LBUT BEGIN FLIB3 BEGIN FSFLEX
BEGIN LOADUT BEGIN ASS BEGIN FATI
BESIN ATTACH SEAIN AMOD REQIN C.FLBS
BEGIN PMAIN BEGIN BIM BEGIN L.FLBé
BEGIN SEARCH BEGIN SIGN BEGIN BFLIBG
BEGIN BOSSUB BEGIN FND BESIN FSRN
BEGIN UPBATE BEGIN ATAN BEGIN FSBE
BEGIN VBIO BESIN ATANE PEGIN FSDN
BND BOSSRC 11 BEGIN ESee BESIN FSTR
BEGIN FLIBI BEGIN SGRT BESIN FSER
BEGIN FLIBI BEGIN ALOG BEGIN F$10
BEGIN BDATANZ BESIN C3216 BESIN FSWN
BEGIN Z$8¢ BEGIN C.FL33 ™y FLIG 108
BEGIN Cs§1 . BEGIN L_FLB3 BEGIN AIDS
BEGIN CS$16 BEGIN TANH BEQIN AIDS
SESIN NP BERIN ES21 BEGIN TAP
BEGIN BS1GN BBGIN EXP. - BESIN NBL
BEGIN BABS BEGIN AINT BEGIN PSP
BEGIN PBLE SEZSIN BFLIB3 IND ALDS 108
BEGIN BMAXL BEGIN SINCOS my W 3147
BEGIN BMINI ™y FLi®3 as RECORDS USEB(BECINAL)= 1147
BEGIN DINT BEGIN FL1IB4 RECORDS LEFT= 101
BEGIN ES62 BEGIN FLIBa BSKRAT OK

BEGIN ES6l BEGIN MAXS

BEGIN NAX1

MAN 1675 N-1

APPENDIX N (Cont)

OK» AS BISK § BEGIN MSLCS!
OX, FIXRAT OPTION BESIN MSLCS2 BESIN C_BCOP
- I BEGIN MSLCS3 BESIN RBODEC
REV. 7.8 BEGIN MSLCS4 BESIN COPYB
FIX BISK? N BEGIN MSLCT1 BEGIN C.COPY
PHYSICAL BISK = 8 BEGIN A/DST1 BEGIN RVREC
TYPX DIRECTORIES 70 LEVEL (CR) BEGIN BISCTI BEGIN C.FIXR
TYPE FILE NAMES? YES BESIN HSRPTE BEGIN FXOPMA
TYPE FILE CHAINS? ~ WO SEGIN MSRTT2 BEGIN MOVE
BEGIN BPIOT1 BESIN FILL
BISK PACK ID 1S MPTVE BESIN HSAPT) BEGIN FIXRAT
BEGIN MFP BEGIN BST) BESIN K3MAC
BEGIN MFD BEGIN PSKTTI BEGIN FIXCOM
BEGIN MPTV2 BEGIN WCSP BEGIN MAKA
BEGIN BOOT BEGIN BRATIT BEGIN C.MAKE
BEGIN CMBNCS BEGIN PISOT) BEGIN BOOT
BEGIN CMINCS BEGIN HSMT2 BEGIN C.BOOT
BEGIN COPYB BEGIN SBOT BESIN COPY
BEGIN BOSEXT BEGIN C.PSKT BEGIN MTPSK
BEGIN COPY END TEMSRC 1251 BEGIN MTRIOC
SEGIN FIXRAT BEGIN BVSAC BEGIN C.MTPS
END CMBNCH 26 BEGIN DVSRC BEGIN MAKE
BEGIN BOS BEGIN DIGDIM BEGIN MAGRST
BEGIN 3OS BEGIN TFVBF BESIN MASSAV
BEGIN *30S32 BEGIN DIGIN BEGIN MAGCOM
BEGIN *30S24 BEGIN DILIB BEGIN C_MSAV
BEGIN *BOS16 BEGIN TUTILS BEGIN C.MRST
END BOS 34 BEGIN BBDIM BEGIN SVRSTR
BEGIN PMA BEGIN ASCCOM BEGIN C.TRSM
BEBIN PMA BEGIN FSCE BEGIN, C.FUTI
BEGIN PMAIOL BEGIN FSAT BEGIN FUTCOM
BEGIN PMAIOZ2 BEGIN CNEQV BEGIN PFUTIL
BEGIN C.PMA1 BEGIN AMLBUF BEGIN FOBEC
BEGIN C.PMA2 BEGIN C.FTH BEGIN *BOOT
BEGIN PMA BEGIN CRBDIN END FILAID 207
END PHA 163 BEGIN DVCPEF BEGIN ED
BEGIN FORTRN BEGIN LOCATE BEGIN EB
BEGIN FORTAN BEGIN TEXTOK BEQRIN EDFLAG
BEGIN FINIOI BEGIN GCHAR BEGIN EBCOM
BEGIN FIN1O2 BEGIN TFLIOB BEGIN EBMAIN
BEGIN C.FTN} BEGIN BELAY BEGIN EBSOX
BEGIN C_FINZ BEGIN SCHAR BESIN EDFSUB
BEGIN FIN ' BESIN C.SELE BEGIN PTREFS
END FORTAN 220 BEGIN BFGETR BEGIN EDIO
BEGIN LBR BEGIN KIMAC BESIN EDPSUB
BEGIN LBR BEGIN CPMAML BEGIN C.ED
BEGIN LOAMAP BESIN MPCINT BEGIN C.EMI
BEGIN LOAD BEGIN MPCBIM BEEIN C.PTED
BEGIN C_LOAD BEGIN PBPIOS BEQIN C.BPTE
IND LBR 112 BEGIN FORCEW BEGIN EFS
BEGIN BASICI BEGIN DVPISK BEGIN EB
BEGIN BASICI BEGIN USRCOM BEGIN *ED
IN® BAaSIC) 1 BEGIN INIT BEGIN *EBLI
BEGIN T&MSRC BEGIN FATI NP ED 159
BEGIN TaMSRC BEGIN TTYPER BEQIN BINED
BEGIN CPUT2 BEGIN ASRDIM BEGIN BINED
PEGIN CPUT3 BESIN BVFC BEGIN EPBCOM
BEGIN TTYTI BEGIN FSOR BEGIN C.EDS
BEZGIN RTCT! BESIN MTINT BEGIN EBB
BEGIN WBTTI BEGIN MTDIM END BINED 14
BEGIN AMLCTI BEGIN PVMCOM BEGIN AlDSe
BEGIN MTUT! SESIN NLKCOM BEGIN AIDS2
BEGIN FLT! BEGIN AMLDIM BEGIN PRSER
BEGIN FLTPTI BESIN DVFA BESIN PRMPC
BEGIN C.FLTP BEGIN TMAIN BEGIN CRSER
BEGIN BFLT BEGIN CPM33$ BEGIN CRMPC
BEGIN DFT2 BEGIN CPH30O BEGIN SPOOL
BEGIN C.®FLT BESIN TSLCI® BEGIN SPLMPC
BEGIN GPIB BEGIN SLCCOM BEGIN SPLCEN
BEGIN CPUT} BERIN SLCIIM BEGIN AVAIL
BEGIN RAMP BEGIN TSSLCS BEGIN CPB0OOT
BEGIN BIGINP BEGIN C.SLC BEGIN BOOTGN
BEGIN LPTSTi BEGIN CPMSLC BEGIN C.BTGN
BEGIN PAST! BEGIN DVFB BEGIN ASREOT
BEGIN FLTPS EN® BVSRC 282 BE6IN PTRBOT
BEGIN MACITI BEGIN FILAID BEGIN SIZE
BEGIN IPCT) BEGIN FILAID BEGIN NUMCOM
BEGIN BPCARD STeIN RIOP BEGIN NUMBER

BESIN BSCTST
BEGIN TTYT2
BEGIN RTCT2
SEGIN HSMTI
BEGIN K3MAC
BEGIN MSLCD!

BEGIN HCONVT
BEGIN C.CNVT
BISIN CONVRT
BEGIN AYENAY
BEGIN BADDSK
BESIN RPROOT

N-2

BEGIN C.NUNB
BEGIN FILVER
BEGIN MCE

BEGIN FILMEM
BEGIN AIBMAX
BEGIN PES

BEGIN FILCPY

INDEX

1.5 MILLION WORD DISK 4£-39, L=50,5-12,7-2
4-4 A REGISTER SETTING 427,446
16-81T1T CONFIGURATION 4-62 ABRREVIATION 4-1
16=817T WORD 2~Tr4-47 ABSCLUYF POSTTION 5-13,5-14
3 MILLION wORD DISK 3-12 ACCESS 2-1,2-3,2-1"
3.0 MILLION wQRD PACK 4-39 ACCESS FILES 5-4
6 MILLION wORD DISK 3-12 ACCESS KEYS Lb=43,6-2
8 LINF amL(6-3 PACCESS PORT 2-10
16 LINE AMLC 6-3 ACCESS PROTECTION 2-2,6-2
16K CONFIGURATIOAS 2-21 ACCESS RIGHTS L4-43,5-26,6~2
16K DOS 4-31,4-47 ACTION KEY 4=42,5-22 - 5-24
16K SECYORED 4-49 ACTION OF SEARCH 5-26
145 MODE 3-4,8-1 ADD A FILE 5-22
20 SURFACE ™MHD ADDING FILES 5-24
30 MILLION WORD DISK 3-7 - ADDRESS 5-15
3-14,4~22,4-39,6~7 ADDRESS SPACE 5-32
3¢ TRACK 4-30 ADDRESSTING MODES 4-49
32K DOS 4-31 AH 5~6
32K RELATIVE 4-49 AL 5-6
32K SECTOFRED 4-49 ALL ACCESS 4-43
¢4 TRACK 4=39 ALLOWABLE OPERATIONS 5-21
64K RELATIVE 4-479 ALREADY EX]ISTS F-13
4R MODE B-2 ALTERNATE RETURN L-4t,5~6,
12% THOUSAND WCRD FHD 4-39, 5-11,5-14
4=-4) ALTFRNATE VALUF 5-12
128 TRACK 4-39 : ALTRTN 5-6,5-%,5-11,5-14,5-15,
318 WORD SEGMENT FORMAT 4-50 5=16,5-19+,5-24
128 WORD RECORD 4-206 ALTVAL 5-11
256 THQUSAND W#ORD FHD 4-39 AMLC 6=-3 - 67
256 TRACK 4-39 AMLC HARDWARE 6-3
L4D 4ORDS OF DATA 5-16 AMLLC LINES b4
448 WORD RECORDS 2-7 APPFEND ACCESS 6-2
512 THOUSAND WORD FHD 4-39 AR 5-6
1025 THOUSAND WORD FHD 4~39 ARGUMEMTS 46-1
4000 COUNTROLLER STATUS WORD ; ARITHMETYIC MCDF 4L+-49
4=-2 ARRAY S=6:5-8,5-10,5-15,5-2¢
4001 CONTROLLER STATUS WORD AS 4-13
J-2 ASCI1 4=3,4-21,5-21
ocor?? 4-46 ASCII O I-4
177777 =15 ASCII CHARACTER PAIR -7
$E L4-24 ASCIY CHARACTER PAIRS A-1
1220 4L-1% ASCIY! CHARACTER SET t=1 - L-8
* b=b4,4-562 ASCI] FILE 4-18,4-51
**BO0OT 3-5 ASCII SOURCE FILF 4-27,4-30)
*p0S16 3-2,3-3,3-6,3-86,3-16, ASR 3-1,3-6,3-7,3-21
L-41 ASR PAPER TAPEL 3-1,FR-1
*DOS24 3-2,3-3,3-6,3-8,3-16" ASP TELETYPE 3-6
L-41 ASRCWD 4=12 ,4-32,7-2
*D0S32 3-2+,3-3,3-6,3-8,3-16.,» ASSEMBLER L-17,4-30.4-31
4&-41 ASSEMBLER CLOSFS L-4b
- < ASSEMBLY L& b
A 2=-19,4-48,4-56 ASSEMBLY-LANGUAGF 2-12
A (ATTACH) 3-4 ASSIGN 3-12,3-13,4-13,4~-21,
A FILE UNIT NJMBER 5=-9 4-27,4-39,4-39,4-53,4-61,5-17,5-3
A REGISTER 2-19,3-4,B-1,4-48, 5-30,5~-33,7-2

MAN)4 75 ¥ o

ASSIGN A DISK L=-14
ASSIGN CENPR 4-54
ASSIGN DEVICE 4-13
ASSIGN DEVICE WAIT
ASSIGN DISK NUMBER
ASSIGN PRT 4-56

ASSIGN PTP b-47
ASSIGN PTR G-47
ASSIGN SMLC 5-313
ASSIGN STATEMENT
ASSIGN TABLE FULL 4-15
ASSIGNABLE DEVICES 4«13
ASSIGNABLE DISKS TABLE
6-13
ASSIGNED 4-58
ASSOCIATED POINTERS
ASTERISKS S5-6
ASYCHRONOUS 5-33
ATTACH 2-9+2~12,2-15,3-15,
3=22sb6=3,4=4,4-15,4~56+,5125-4,
5«5,5=-23,5-27,6-11

4=13

4-13

5-2

4-14.,

2-11

ATTACH (BLANKS) 4-16

ATTACH SUBROUTINE 5-2
ATTACH, DEFINITION OF S~4
ATTACH: CONCEPT 2-3

ATTACH: FUTIL COMMAND 4=-29
ATTACHED TO A UFD b=42
ATTACHING T0 A UFD 2=-15,3-15
AUTO START B=2

AUTO=-START RBQOTSTRAP R=1,B-2
AVAIL L=-16

AVAILABLE MEMORY 2-22,3-2

AVAILABLE SPACE 2-¢
AVAILM 6-12
g

B 2-19,4=48,4-50,4-56
8 REGISTER 2=19,3-4,4L-48,5-12,

5-33
BACK POINTER
BACKGKOUND
BACKUP 5-20
BACKWARD 2=4
BACKWARD FCINTER
BAD BOOTY E-°
BAD CalLL TO SUARCH
BAD COMMAND NAME
BAD DAM FILE J-1
BAD DAM PUINTER
BAD DISK ADDRESS F=-10
BAD FILE TYPE [
RAD KFY S=-7,5-16
BAD MEMQORY E-2,6-10
BAD NAME F~-13
B AD PARAMETER
BAD FASSWORD

MISMATCH E-11

1-2
2=6s2-7sA-1

5<2,4-1
J=1

E-11

J-1
S=7+F=-14,J-1

INDEX

BAD RECORD ID E-10

BAD RTINREC J-1

BAD STRUCTURF MESSAGES E-12

BAD STRUCTURE ON DISK 3-8

BAD SVC J=1

BAD SYNTAX F=14

BAD UFD HEADER E-11

BAD WORD COUNT E~-11

BASIC 4-17

BASIC LANGUAGE INTERPRETER
4-17

BASIC PRUOGRAM §+42

BASINP 4-17

BASINP FILENAME 4=-17

BATCH OPERATING SYSTEW 1-2

BAUD 6-4

BpNS32 3-16

BEGINNING DISK ADDRFSS 5-26

BEGINNING OF FILE 5-16,5-22

BEGINNING RECORD A~1

BEGINNING RECORD ADDRESS =6+
2=-10,A-1

BINARY b=32bh~b,4=17,4~44%

BINARY COMMAND 4L=2°7

BINARY EDITOR L-26

BINARY FILE L=28,4-46

BINARY OUTPUTFILE 4=-17

BINARY WORD 2=1s2-3,2-5

BLANK LINES L-1

BRLANK PASSWORD 5-6

SLFN 5-19

BLOCK e=-11

BLOCK DATA STATEMENT =21

BLOCK FORMAT OBJECT CODE 2-9

BLOCK SIZE EXPANSION A=

BLOCKS 2-5

RCOT 3-13,3-97+4-3,4~-39,8-1

BOOT FILE 4-41

BOOT COPERATION

BOOT ¢
BNOT:
GGOT 2
BONTY:
BOOT:
3007
BOOT:
BOOT:

BCOTING DOS
ROOTING FrOM DISK

3-2+,3-3
CONTROL PANEL B-1
DEVICE SPECIFIC B=~2
KEY=In B-1

MASS STORAGF RFSIDENT B-1
OPERATION 3-2
PROGRAM 3-2+3-4
RESTART 3-3
SECOND LEVEL B-1
3-2

3-5

BCOTSTRAP CLASSES B-1
BOUTSTRAP PROGRAMS BR-1

BOOTSTRAP:
BOOTSTRAP:
ROOTSTRAP:
BOOTSTRAPPING

AUTN-START B-1,B-2
MASS STORAGE R-1
PAPER TAPE EB-1

3-1

BOOCTSTRAPS 2=11,3-1,B-1 - B-5

BFTRS 5-19%

B R 4-51

RRA 2=6,2-10,A-1

BRA POINTER MISMATCH FE-11

BRACKETS 4-1

ERANCHES 2-10

BREAK 6-2

RREAK INKHIBRITED 6-0

HdREAK S S5-7et=~3

BRIEF 4-51

BROADCAST RUTFEK 6-14

RRCKEN FILE STRUCTURF MESSAGES
E-7

BROKEN FILE STRUCTURE E-7

BUFFER 4=3645-14,5-17,5-17,
5=32,7-2

BUFFER ADDRESS 5-14,5-29,5-31.,
5-32

RUFFER LENGTHS S«20

BUFFERS 2=3,2-11,2-12,4-18,
4-58

BUILDING A DOS DISK FROM PAPER
TAPE 3I-16

BUILDING BOO0OT 3-4

BULLETIN 6-14

BYPASSING BAD MEMQRY 6-2

RYTE 4-18

B_XXXX 46-17 ,4-46

C
C ALL 4-18
¢ BIT 4-49

C1IN 5-t

CA 5-9

CALL 5-16

CALL ATTACH 5-6,5-5
CALL BREAXS 5-7,6-3
CALL CTIN 58

CALL CMREAD 5-8
CALL CNAME 5-9

CALL COMANL 5-10
CALL COMINP 5-9
CALL DSINIT 5-1d
CALL FRRSET 5-11
CALL EXIT 5-11,6-3

CALL FUORCFW 5-12
CALL GETERF 5-12
CALL GINFO 5-12
CALL PRERP 5-13
CALL PRWFIIL 5-14
CALL RECYC(CL 5S-1%
CALL RESTOR 5-18
CALL RESUME S-1R
CALL RREC 5-19
CALL SAVE 5-20
CALL SFARCH 5-22

MAN 1675

INDEX

CALL T3C¥PC 5-29
CALL TFL™PC 5
CALL T3MT 5-31
CALL TT1IK 5=-27
CALL TIMDAY £-2¢
CALL TlOU 5-27
CALL TNOU 5-27
CALL THOUR 5-2¢&
CALL TGO SFEARCH
CALL T0OCT 5-2¢&
CALL UFPDATE 5-34%
CALL WREC 5-36
CALLING LIPRARY SUBROUTINES

5-1
CALLING SEGUEWNCE NOTATIOW 5-1
CANCEL MESSAGE 6-15%
CANNOT ATTACH TO SEGDIR F-14
CANNOT DELETF MFD F=14 ‘
CAPITAL LETTERS 4~ 2
CARD 5-29
CARD OF INFORMATION 5-29
CARD READER 1-1,2-5,4-13%,5-29/
CARC READPER DRIVER 5-30
CARD RFADER INSTRUCTIONS 5-29
CARDM READER NUMBER 5-29
CARD READING OPERATION 5~30
CARDR 4'1814'1315”24

5‘2415‘26

CARDS 2=1:4-24

CAPRIAGE RETURN 3~8,4-1,4-21,
5-27,
5-22

CAPRY BIT 449

CE2PR 4-12,4-13 .

CENPR 4-12,4-13 ’

CENTRAL PROCESSOR 1-1,6+~1

CENTRONICS LINE PRINTER b=54

CHAINED MESSAGE BLOCKS 5~33

CHAIHING OF COMMAMD FILES 4L-19

CHANGING A FILF 2=-3

CHANGING DISK PACKS

CHANGING DISKS 3-12

CHARACTER PRINTER 1-1

CHECK FOR MFD INTEGRITY E-12.,
€E-13 .

CHECKSUM ERRCR 5-20C

CHIPS 6-¢

CLOCK 64

CLOSE 2-3,2-4,4-3,4-4,4-1F

3-20,3~21

CLOSE ALL =1¢ab=24
CLOSE FILE BY HNAMF 5-23
CLNSE FILES 5-11

CLOSE KEY 5-23
CLtOSED UNIT -7
CLOSING A FILF
5-21,5-27
CLUSTERING LIKE FILES ’=2

2=3,2-4,4-32,

-2

CMDNCOD 2~20+,3-1,3-13,3-17,
4~11,4-31,4-39,0-10,6-11,6~1?

CMPRES 4-18,4-26

CMREAD 5-8,6=3

CMNAME 3-18,4=-4,4-19,4~-32,5-9

CNAME CO™MMAND 4

€O CONTINUF 4=1
cC 171Y 4-19
COLD-1RON 3-1
COLON 3-15
COMANL 5-1D
COMDEV 6-12
COMINP 5-8
COMINPUTY 2=-19.4
COMINPUT COMMAND
COMINPUT PARUSE
ComMMma 3-15
COMMAND 1-2

COMMAND DESCRIPTIONS

-58
8

“1s6~4,4-19,5~9
2=19,5-8
4=21

4=12 -

L=-62
COMMAND DEVICF 4-5%
COMMAND FILE 2=19,3=5,3=-R,4~1,
b=13,4-19,4-10,5-%
COMMAND FILE = C_ROOT 3-5
COMMAND FILE: QPEN 4~20
COMMAND FILES: INTFRACTING
4=2170
COMMAND FORMAT 4L-1
COMMAND INPUT 4-26
CCMMAND LANGUAGE 1-2
COMMAND LEVEL 4-3,4-11
CUMMAND LINE 4-3,4-56,5-3,5-10
COMMAND NAME 4-1
COMMAND PFR L INE 4-19
COMMAND SFQUEMCES 1-2
COMMAND STRING 4=-1,4-3,4+19,
4=47
COMMAND STRUCTURE 4-1
COMMAND UFD 3-1,3-17
COMMAND: ASRCWD 4=-12
COMMANMD: ASSIGN 4=13 - 4-15
CUMMA~D: ATTACH 4=15,6-16
COMMAMD: AVAIL h=-1e alb=17
COMMAND: BASIC 4-17
COMMAND: JQASINP 4=17
COMMAND: BINARY L=3,4-4,4-17
COMMAND: CLOSE 4-1¢t
COGMMAND: C(MPRFS 4-18
COMMAXND: CNAME 4-10
CUMMAND: COMINPUT £-19 - 4-21
COMMAND: CCNFIG £=-12
COmMMAND: CUPY 4-21 - 4-273
COMMAND: CREATE bh=c 4
COMMAND: CRMPC 4=-24
COMMAND: C(RSFR 4=24

INDEX

COMMAND: DBASIC 425
COMMAND: DELAY 4-25
COMMAND: DELETE 4-4 ,4-25
COMMAND: DISKS 3-13,6-13
COMMAND: DOS 3-13
COMMAND: DOSVM 3-13,6-10,6-11
COMMAND: ED 4-26
COMMAND: EODB 4=26
COMMAND: EXPAND 4-2¢6
COMMAND: FILBLK 426
COMMAND: FILMEM 4-27
COMMAND: FILVER 4-27
COMMAND: FIXRAT 4~27,E-1
COMMAND: FTN 4-27,4-28
COMMAND: FUTIL 4=2%,F=1
COMMAND: HILDAD 4-209
COMMAND: INPUT 4-30
COMMAND: LBASIC 4-3C
COMMAND: LFTN 4-31
COMMAND: LISTF 4+30
COMMAND: LISTING 4~31
COMMAND: LOAD 4-31
COMMAND: LOADZD 4-31
COMMAND: LOADAP 4-31
COMMAND: LOGIN 4-32,4-33
COMMAND: LOGOUJTY 4-33
COMMAND ¢ MACHK 4-34
COMMAND : MAKF 4L-39 - 4L-41
COMMAND: MCG 4=-41
COMMAND: MDL b=-41
COMMAND : MESSAGE 6-14
COMMAND: NUMBER L-4?
COMMAND: OPEN 4-42
COMMAND: PASSWD 4-42
COMMAND: PM 4-46
COMMAND: PROTECT 4-43
COMMAND: PSD 4-47
COMMAND: PSD2J 4-47
COMMAND: PTCPY 4-47
COMMAND: PTRED L-47
COMMAND: RESTONRE 4=-47
COMMAND: RESUME 4-49
COMMAND: RT12EF 4~50
COMMAND: SAVE 4-5C
CCMMAND: SETIME 6-15
COMMAND: SHUTDN 4-50
COMMAND: SIZE 4-51
COMMAND: SLIST 4-51
COMMAND: SORT 4-51
COMMAND: SPOOL 4-53
CGMMANDS 2=17+43-8,4~-1 - 4L=-52,
5<9,6-1,M-1 - ¥=-13
COMMENTY 4-6¢
COMMON 2-21,4-32
COMMON COMMAND 2-21

INDEX

COMMUNICATION 2-14,5-33 Ck1 4-13,4-24,5-30
COMMUNICATIONS LINFES 5-33 CRASH 6-11
COMMUNICATIONS PROTOCOL 5-34 CREATING FILES c-1
CCMPARING FILES 4-21 CREATE 2‘11;3‘1815‘3:4'414’25
COMPARISON 1IN MEMJIRY 4~-23 CREATE A NFW FILE 5-26
CCMPATIBILITY 1-1 CREATING SEGMENT DIRECTORIES
COMPATIRLE DISK A-4 -1
COMPTILER 4-17,4~27,6-30,4-31, CRMPC FILENAME L-24

5-1 CRSER FILENAME 4L=24
COMPLETE SYSTEM SHUTDOWN H-=106 CRT 1-1
COMPUTE TIME 4 -At CRY TYPF TERMINAL 1-1
CONFIG 3-15,6-/4b6=10,6-11, CTL-P b=47

“‘*12;6‘13;‘1"1(; CTRL-P 10’2
CONFIGURATION 1-1,72-18,3-18, CUfp 5-36

L-32 CURRENT DEVICE 5-13
CAORFIGURINMG dusS/va FTR 32K CUKRENT L INE 5-31

h=4 »,6=5 CURRENT LOGGED=-IN USERS L=5K
CONNFCT A FILE 5-21 CURRENT MFD L=24
CONNECT TIME 4-33,4-460 CURRFENT POSITION 5-14
CONTI 5-9 CURRFNT POSITION PNINTER 5-21
CONTTI JUE 4-19 CURRENT RECUORD ADNRESS ERROR
CONTRL 2-15 5-24
CONTROL 5-3¢ CURRENT UFD 4-15+4-17,4-19,
CCNTROL 3LGCK S~-32 4’?5;4’26'4'3014'31t“”&?tﬁ'ﬁﬁrﬁ“k?l
CONTRCL FUNCTION 5-4,5~33 A’58’5‘415‘515*7p5‘22t5‘2315’2&:
CONTRL PANFL 7-5 $5-27,5-36,6-17
COKTRSL PANEL POOT T-h, 315, CURUFD 5=5.5-¢

4=4%.8-1 CYCLF T0O MEXT USFER 5-18
CONTROL PANEL ™ICRIACIDE B-1 CYLINDER ZERO 2-11,5-10
CONTROQL-P 4-2,4=47,6-3 CYLsS Ay
CONTROLLER ADDRESS = 21 3-14 cl1 5-9
CONTRULLER ADDRESS = 23 3I-14 c_LSLE 5-33
CONTROLLER ADDRESS = 50 5-33 D
CONTROGLLER QORTION $4=9 -~ 3-12 DEINIT 5-10,5-1R
CONVERSLIQON PROGRAM 3-12 Dam 25 = 2=7,2-10,2-18,4~34
CONVERT 5-14 DAM FILE 2=542~10,2~22 401
[§ 3-12,8-13,3-16,3-17,3-20, pam FILE STRUCTURF 2-7

L=21 - 4-23%.,5-12,5-19 DAM FILES 2~bs2-7
corPY A FILE 5-17 DAM SEGMENT DIRECTORY L=42,A-1
CCPY AHORT (=273 DAMAGED FTLE STRUCTURF 2-21
crvyYy DISK 4-21 DATA 2-11
cCepPyYy METHOD 6-23 DATA BASE MANAGEMENT p-1 - D=9
CCPY SUCCESS 4-23 DATA CHECK o-¢
COPY: FUTIL COMMAND L=-29 DATA COUNT A-1
COPYDAM: FUTIL COM™MAMND 4-29 Data LIGHTS 4-23%,4-41
CLPYING ®ASTER DISK + ACK 3-16 DATA KECCRD SI1ZE 5-16

- 3-18 DATA STREAM 1-2
COPYSw: FUTIL COMMAND 4-29 DATA STRUCTUPRPE 5-32
CCRRECTED DSKRAT 4-27 DATA TRAXSFER PETWEEN DISKS
cruy 1’1;1‘213‘1:5'?:3’413'71 3-12.3-13

3-21 DATA TRANSFER OPLRATION S-17
CiU MICRODCLDE 2-1%8 DAYTA TRAWNSFERS 7=
CPU ROTARY SWiTCH 57 DATA WCRD COUNT 5-12
CPU TIME 4-355,5-28 DATA WORDS PCR RICORD 5-14
Ck 5-%,5-2°0 DATE 5=2¢

MAN 1675 ¥ -5

DATE AND T IME 6-15

DAX GVERRUN 5-2%

DRASI(L=17,4-25

DEHN D-1

DFBEUGGING b=bb b4 7

DEBUGGRING FROGRAMS L-4

DECLARATION OF ACCESS RICHTS
4'45;6“2

DEFAULT 4-54

NPEFAULLTY ACCESS 5<26

CEFAULY COMTRCL ReGISTEF 3-4

DFFAULT DEVICE ADDRESS 3-13

DEFAULT LUCATION GF FURTRAN
COMMON 2-21

DEFAULT MACHINE C(MECK MQDF
CONDITION 4-34

DEFAULY SI2E PARAVETEKR L4=22

DEFECTIVE FILES LW=2T7,E~?

DEFIN!TION OF SEARCH 5-21

DFLAY 4-25%

DELAY IN LINE RESPONSF b=-34

DFLAY PRINTINS OF A CHARACTFR
AFTER LINE FEED 4-25

DELETE b=4,4~25,5-16

DFLETE KEY 5-212

DFLETE A PIRECTCRY 4=25

DELETE A FILE 5-22

DFLETFE FILE RY MNEME 5~23

DFLETE OMLY b-43

DFLETE TRUWCATF aND RFAD 443

DFLETE YRUNCATE AND wRITE L-43

DELETE/TRPUNCATE 2=15,¢-1¢

DELETF/TRUNCATE ACCESS RICHTS
6~2

DFLETF: FUTIL COMMAND 4-29

DELEYING A FILE 2=3,2-4

DFLETING DIRECTORIES E-¢F

DELETING FILES 5=-24

DELETION 2-3

DESIGNVNATING DISK UNIT NUMPER
K=7

DFVICE 2=10,2-11,3-2,%3-3,3~6,
3'704'1414’3?:5*13

DEVICE CODE 5~31

DEVICE IN USE J=-1

DEVICE NAMFS 4-13

DFVICE NOT ASSIGNED 4-14

DEVICE NOT READY 3-3

DEVICE NUMBER L-12,4=-30

DEVICE SPFCIFIC BOCI B-2

DEVICES 4-58

DIGITAL 1/0 CONTROLLER 5~33

DIRECT ACCESS METHND 2=-5 -
?‘7:?’18

DIRECT HOOTING 3-5

INDEX

DIRECT PANEL LOAD 3-5

DIRECTED FILF (DAM) 5«25

DIRECTED SEGMENT DIRFCIORY
(DAM) 5-25

DIRFCTORIES
4-43,5-11

DIRECTORIES NFESTED TOO DEFP
F=12,F-14

DIRECTORY 5-5

DIRECTGRY FILF ¢-10

DIRECTORY NAME F-1

DPIRECTORY NESTING LIMIT E-£

DIRFCIORY PATH = LIST OF DIRS
£~7

DIRECTORY TRFE F =4

DISCONNECT A FILE 5-21

DISK 1=1+,1-2,2=1,2-11,3~5,

2‘912'1[14”34n

3-6,3-16,3~20,4-26,4-47+5-10,7-5

7-5

DISK KON DUS J=1

DISK .N. CLUSED ... YCUR FILES
DETACHED J-1

DISK I Ah=13

BISK 02452 4-13

DISK 1 4-13

DISK 2 4~-13

DISK 3 4=-13

DISK 4 4-173

DISK 5 4-13

DISK 5256 4-13

PISK 57 4-13

DISK 4 4-13

PDISK 7 4-13

DISK <OCTAL NUMBER> 4-58

DISK ASSIGNMENT 4-13

DISK BASED OPERATING SYSTEM
2=-1

DISK BUILDING 3-1,3-16

DISK CARTRIDGE 3-2

DISK CONTENTS 3-17

DISK CONTROLLER 1-1,3-7 =~
3-14+5-10

DISK CONTROLLER TYPF 43C0 1-1,
3-7, =~ 3-14

DISK CONTROLLER TYPE 4900 1-1,
37 =~ 3-14

DISK CONTROLLER TYPF 401101/400¢2
1-1,3-7 - 3-14

DISK CREATED 4-41

DISK DETACHED 4-59

DISK DCES NOT EXIST i-g

DISK DOES NOT HAVE AN MFD 3-8

DISK DRIVE OPERATION K=-1 - K=7

DISK DRIVE PREPARATION K=4

DISK DRIVES 3=1,3-7 - 3-14

IADE X

DISK =FROR F=14,0=2 4-22,4-39,4-40.,5-20,8-1
DISK FILE c=-11 DISKETTE CONTROLLER 1-1
DISK FURWAT 3-16 DISKFTITE DRIVERS -3
DISK FULL 494,910,524, F-14, DISKFITE SIIE 4=-22
J-1) DISKE 6E-13
DISK FULL ERR)R 5-16 DISKS ASSIGNED 4~-5%
DISK HARDUYARE £-20 NISKS AVAILAPLE L4-32
DISK INPUT=0UTHUT 5-4 DISKS COMMAND 3-13,4-14,6-10,
DISK LUCATION 5-23 h=-13
DISK N&aME 4458 DJ f=16,1-2
DISK MOT #FADY STATUS L-23, DK ERR J=1
4-41,5-20 DOKE 4L-23
DISK ~OT TURKNED ON - nas 1+141-2,2-1,2"5%,2-13.,2-18&»
DISK A\NUMSLR 4-40,5-10 3"’113‘i1l5"8l3‘1txlf‘fb"‘t‘!”’}!"""s}‘i"?[
PISK PERETINZ COYUTRMLS K-1 419,6=21,6-27+4~364,4=39,4~bbrb~47
DISK OPERATING SYSTE™® 1-1 G=blsb~50,6~58,6=62,5-1+5-4.
DISK DMRGANIZAT[OH 2-11 DOS =% 6-10
DISK PACK 1-1,70-10,4~-27,4-39, nNNS BO00T PAPER TAPE 3-7
4=41,4-58 DDS BOOT PROGRAM 3-2,3-6,72-8
pPISK PaCK IDENTIFICATION 3-12 DHS BOOT TAPE 3~6,3-7
DISK POSITIONING 2-3 DIS COMMAND 3-13
DISK (D ERROR 4=23.,5-20 POS COMMAND LEVEL 4-3
DISK RFAD FRR RS 4-21 PGS COMMANDS ALLOWED IM DDS/VM
DISK READY 3-8 4-3 ‘
DI1SK RECORD ADDRESS 5=-19 DCS CONFIGURATION REQUIREMENTS
CISK RECNRD AVAILARILITY TARBLE 1-1
2-11 NOS ERROR MESSAGES J-1
DISK RECORD MNUMDER 4-27% pnNs FEATURES 1-2
D1SK RFCIOKRDS 2=3,2-642=7+4=23, posS FILF STRUCTURE =14
H-1%,5~-5¢ neS FILE UNIT 3 L-17
DISK SECTORS =5 DOS FILE UNITS 2-22¢s4-3,4-17
DISK SPACE ?=2+2-5 DOS MEMORY UTAGE 2=2C - 2-23
DISK SPACE REGUIREMEMNLS b-8.6-9 nNOS OPERATION 31 = 3-27
DISK SPINNING AND RFADY I-5 DOS RESTRICTION =21
DISK STATUS #0ORD J=2,3-3 DS SAVE FILE 3-4
DISK STORAGF 2-5 PGS STARTUP COMBAND -3
DISK STARACF SPACE 4=25 DOS SURRCUTINES =14
DISK STORAGE TRUNCATE AND WwRITE NOS UNITS 43
=13 DOS VECTNR RVEC 4-50
0ISK T RFE CO*IED TO (=21 DUS-FORMAT RECGRO 3-54
DISK 10 3 CHPIED 4~21 DCS/USER INTERACTION 2-1¢
HDISK TO ™MEMORY L~4 R DOS/VM 1-1,1-2,2-1+2-6,2-12,
DISK TYPFS 3-7 - 3-14 ?‘130?’?0:3"103’15:‘3‘561r4"314*121
DISK UNTT NUMAER K=-7 4= 15,4-19,4-21,4-22,6~25,4-27,4~
PNLISK JNITS ¢=21,4-3,5-23 4-30,6-32,4-34,4-39,4-41
DISK WRITF ERKORS 4-213 4-57,4~-5R,4L~S9,4~6N,
DISK W4T ERROR 4-23,4-61,5-30 G=62+,5-1+5-4,5-7,5-9,5-12,5-12,5~1
DISK: 3O ¥ wWOPD 1-1. 3-7 - C—18,5-1%,5-26,5~31,5-36,4=-1 - A=1H
3-14 6=18,7=1 = ?2=7,r-4
DISK: FIXED HFAD 1-1,3%3-7 - DAS/VYM ASSIGM COMMAND 5-1°70
i=14 , DeS/VM CUMMAND LEVFL 4=3
DISK: FLOIPPRY $-7 - 3-14 DOS/VE CNMMAND LEVFEL 5-14
DISK: MOVING H[AD 1-1+3-7 - NOS/VM COMMAND: COMNFIG A-12
I-1u NOSIVYM COMMAND: DISKS 6-13
DISKETIE 1-1,3-3,3-7 -~ 3-14., NGS/VY COMMAND: MESSACE 6-14

MAN 1675 Y -7

PeS/Vr COAMAND: SETIAE 6-15

DOS/VM COIwMAND: SHUTDN h~16

PDOS/VYM COMMAND: STARTUP 6-15

COS/VM COMMAND: STATUS h=17

DCS/V'A COMMAND: USRASR 6-119

DOS/VM CONFIGURATION
REGUIRECENLTS 1-1

DOS/V™M CYCLE 5~34

DCS/VM™M FEATURES 1-¢

DOS/v4 FILE ACCESS CONTROL
2~15,6-?

DLSAVNM FLILE UNIT 3§ 4-17

DOLS/IVNM FILE UNITS L=3,4-17

DOS/ym 1170 -1

PDOS/IV™ ONLY 4-12,4-13

DOS/V™ OVFERVItU A=1 - 6£=-9

DOS/VM SYSTE™ CONFIGURATION
6-3 - &4-9

DCS/ymM SYSTEY INITIALIZATION
=10 =« £-12

DOS/VM SYSTFY TERMAINAL COWMMANDS

6-11

DOGS/¥M UNITS 4-3

DUSEXT 4=bsb=41

DOSVM 3-13,6-10G.,6~11

DCSVYM COMYAND 3-13

DOUBLE PRECISINM 6-49

DOUBLE PRECISION ARITHMETIC
4=25

DOURLE PRECISION FLOATING POINT
ARTITHMETIC 4-17

DOUUBLE QUTNTE CHARACTER 4-3

DRATIT 1-17

DRIVE NUMKHER =3

DRIVERS 3-3

DRIVES 4=22

DSKRAT 2-11,3-13,3-16,4-39,
4=-5Y

DSKRAT BAD £E-10

DSKRAT FILF 2-11

DSKRAT FORWATY A-4

DSKRAT HEADER 6-12

DSKRAT: CNRRECTED BY FIXRAT
427

DUAL 2-11

DUPLICATE NAME J-1

DUPLICATI®G PAPER TAFES L=47

E

EA 2=9,2-19,3-4,4=-47,4-48,4-50

ECHOES 4=-41)

ED 3-V7,4-25,4~47

EDB 3-17,4-26

EDIT MODE 4-76

EDITOR 2'1!4‘144’27

EDITOR'S TEXT BUFFER 4-26

INDEX

EDITCRS 3-24

ELLIPSIS 4-1

EL™ 4=-5y

END OF DECK 4-24

END OF FILE 5-7

END OF FILE RFACHED S-16

ENDING ADDRESS (EA) 2=9,2-19,
34,448 ,4=50

ENTER 4-26

EMTFR CONFIG AND DATE 5-1C

ENTER LOAD MODF 4£=5()

EFNTRIES =14

ER! 42

ERASE CHARACTER 4-3

ERKQR CODE 5-12

ERKROR CONDITION H=4 ¢~

FRROR CORRECTION 4-3

ERROR IGNURED, COFY CONTINUES
§-2%

ERROR MESSAGL 4-144-14,4~159,
b=?23+b4~66,5-6,5-9,5-13,5~-15

ERRCR READING DISK L-23

ERKOR RECOVERY 1-18

EKRORS 3-8+ 4-1R8,4=2,4~54,5~6,
5-24

ERRORS IN COMMAND STRING 4-1

EGRSET b=44,5-11

ERRVEC 2=13,4~46,5-7,5-10.,
5«11,5-12,5-2L,5~25

ERRVEC COWNTENTS I-1,1-2

ERRVEC TN OCTAL =4t

EPRVEC(Y) 5-4+5-0,5-10,5-11.,
5-12:5-16,5-20,5-36,1-1

ERRVEC(?) 5=11,5-12,5-16.,5~-17,

5=-19,1-1

FRRVEC(3) 5-11,5=-12,5=-16,5-17,
I-1

ERRVEC(4) §5-11,5-12+,5-16.5-17,»
-1

ERRVEC(S) 5~11,1-1%

ERRVEC(A) -1

ERRVEC(7) S=-11,1-1

ERRVEC(8) 5-11,1-1

EVEN NUMBFRED PhRYSICAL DISK
3-12

EVFN UNITS 3-3

FXAMPLE OF FILF SYSTEM USE H-1

EXFCUTE ACCESS 5-2

EXIT 5-11

EXIT SUBROUTIHE 4-4 R

EXPAND COMMAND 4=-12,4-26

EXTERNAL 4-1,4-11

EXTERNAL COMMAND b=4,4-6,4-10,
L=17,4-18,4=-21.4-24 - 4-27,4-31,
L4-34 441,466,447 ,4-49,5~-11,6(~

4-12

SXTERNAL COMMANDS

: F

FATAL ERROR 1IN DOSEXT J=1

FHD 3-3

FHD DISK ADDRESSES

FILBLK L-26

FILE 1”2:2‘1 - 2“23;5’9:5’13’
5-15+5-16,5-17

FILE ACCESS 2=1+2=-16.4-3C

FLLE ACCESS CONTROL e~17,6-2

FILE ACCESS "METHODS 2-18

FILE ACCESS PROTECTION 62

FILE CLOSING L=26

FILE CLUSTERING 2-2

FTLE CONTENT 2~1.2-7

FILE CREATION 2=1,2-2,2~-3

FILE DELETED, FILE TRUNCATED OR
FELANK £E-7

FILE DFLETION -4

FILE DIRECTORIES
55,526

FILE DIRECTORY
S5=4 .6~

FILE DOES NOT ALREADY EXIST
5-22¢

FILE FILENAME BAD RELCRD = E-7

FILE FORMAT A=

FILE HANDLING 1-2,3-158

FILE HANDLING IN YSER PROGRAMS
2-14 ’

FILE HANDLING SUBROUTINES 2-13

FILE INTEGRITY 3-21,4-27

FILE INTERLOCKS 61

FILE 1S CLOSED 4-16

FILE LOCATIONS 2-5

FILE MAINTENANCF 2-20

FILE MARK 4-34

FILE NAMES 5-7

FILE SFHEN 3-13

FILF QPENED 5-16

FILE QPENING 4L=-246

FILE OPERATIOMS 2-3

FILE FUINTEFR 2-3+2-4+5-5,5-13,
5-14,5-16,5-17,5-21,5-23

FILE POSITIONINC -4

FILE RECORDS 2-7

FILE RECURDS ON MAGNFTIC TAPF
4-34

FILE SHARING 6-1

FILE STRUCTURE 2-1 - 2-23,
L-39,4=-461,5-4,E-3,F~4,F-]

FILE SYSTEM -1 = ¢=25,4-1¢%,
Y =4 25=12,0-1,0-10C

FILE SYSTEM ADVANTAGES 2-2

4’4914’50

6-8,6-9

2-2+2-3.2-5,

2’312‘4:4’15:

MAN 1675

INDEX

FILE SYSTEM HIFRARCHY 2=6,2-R
FILE SYSTEM L IRBRARY L-62
FILE SYSTFM USF 2-2

FILE TYPE 4=42,5-12,5-22
FILE TYPES F=8,7~7,t-101
FILE UMIT 2-322-12+2-13,2-14,

2”?204'?0:4’?6:5‘515“13:5‘21!5'?3

5~23.5~24&

FILE UMIT 2 4-31,4-54

FILF UNIY RUFFERS c-21

FILF UNIT CLOSIMNG =26

FILE UNIT NUMgFK 2=342~6s2-5,
5“5:5‘15:5‘22

FILF UNIT QPENING 4-26

FILE UNITS 4-3,4-1%

FILF UTILITY L~2KsF~1 - F=15

F1LE: CLGSING 2-3.,2-4

FILE: REWINDING 2-4

FILE: TRUNCATION 2-4

FILEHAME 2=1,2-3,2bs2-5,2-100

2'1214‘114'1714‘19t4‘?41€’2514'3

4=31,4~466,5-9.5-22,2-2
FILENAME ALRFADY £XISTS J-1
FILFNAME NOT FOUND J=1

FILES YN le=20,4=28 634,
4‘43:5’26
FILES: COMPARED FOR FOGUIVALENCEF
L=27

FILVMEM L=27
FILVER 427
FIRST &40 DISK RECOHRDS Pad N
FIRST & LOCATIONS OF FRRVEC IN
OCTAL L=4 b
FIRST COMMAND TG AF ENTERED
I-8
FIRST DISK RFCORD -7
FIRST PHYSICAL RECORSD 2-10
FIRST FROGRAM INTN MEMORY 2-1
FIRST RECORD OF TnE MFD 2-10
FIKSY WORD 9-16)
FIx DISK? G427 21 -2
FIXED AND REMOVABLE 2-11
FIXED DISK 2-11
FIXED HERD DISK
3'1L:B’1
FIXED HEAD DISK DRIVE 31-1
FIXED LENGTH RFCORD -7
FIXED SURFACE 3-8 - 3-11
FIXKAT 2-20L+3-12,2-1%,3-17,

1'1:3‘103‘? -

3-25;3~21;k—25»4~2('5—10,5—18,E-1 -

- £E-13
FIYRAT

£-13
FIXPRAT DESCRIPTION F-1
FIXRAT EKKOR MESSAGES

30 MILLTION WORD DISK

E-1¢ -

E-13
FIXRAT OFTIONS 3-2N,4=27,E=2
FIXRAT OQUTFUTY (-7
FIXRAT PITFALLS AND
RESTRICTIONS F-¢&
FIXRAT TERMINAL OUTPUT E~S
FIXRAT TRAVERSE -4
FIXRAT: RUNNING £-2
FLEX 7-7
FLOATING DUOS e-20,72-21
FLOATING PNINT 5-16
FLUATING POINT EXCEPTION -7
FLOPFY DISK 1=1,3=-7 - 3-14,8~1
FORMAT OF DISK 3-14
FORMATTED FORTRAN 1/C 2-18
FORMATTED RFAD AND WRITE
STATEMENTS e=14
FURTRAN PROGRAN 5-11,5~24

FORTRAN 2=13%3,2-14.,4~31+5-1»
5-15

FORTRANM CALLIMG SEQUENCE
FORMATS 5-1

FORTRAN COMMON 2=21,4-32

FCRTRAN COMMON: DEFAULT
LOCATION 2=-21

FORTRAN FUNCTION LNC 2-18

FCRTRAN IV 4-27

FORTRAN LIBRARY 2-14

FORTRAN ORJECT PROGRAM 5-1

FORTRAN PROGRAM™S 4=50

FORTRAN READ STATEMENT 5-29

FORTRAN REWIND 2=-1&

FGRTRAN UNIT 2~-14

FORTRAN WRITE STATEMENT 5=-31

FURWARD 2-4

FORWARD POINTER 2=54+2-7+A-1

FROM AND TO PARAMETERS 4=21

FROM DISK 4-21,4-23

FROM: FUTTL COMMAND 4~29

FTN 4'1?;4’2714'2Rr4‘51

FINLI® 3-17

FULL UFD S=24

FUNDEMENTAL FILF SYSTEM
CPERATICGNS 2-5

FUNIT 2-14,4-19,5-2,5-12,.5-13,
S5=14,5-15,5-24

FUNIT NUMEFRS =12

FUNIT POSITION S-14

FUTIL 3-13,3-12,4-25,4-28,
b=61,F-1 - F-15

FUTIL COMMANDS F~3

FUTIL FRROR MESSAGES F-13

FUTIL RESTRICTIONS F=-12

FUTIL: » F-4

FUTIL: ATTACH COMMAND F-5

IMNDEX

FUTIL: COPY COMMAND F~-6
FUTIL: COPYDAM COMMAND F=-
FUTIL: COPYSAM COMMAND F
FUTIL: DELFTE COMMAND F-8
FUTIL: FROM COMMAND F-4
FUTIL: LISTF COMMAND f=~9
FUTIL: QUIT COMMAND F=-4
FUTIL: TO COMMAND F-5
FUTIL: TRECPY COMMAND
FUTTL: TREDEL COMMAND
FUTIL: UFDCPY COMMAMD
FUTIL: UFDDEL COYMMAND
G
GENERAL CARD READER 4-13
GFMFRATE LISTING 4-27
GFTFRR ?=13,5-7,5-9,5-10,5-11,
5<12,5-16,5~25
GINFO e-13,5-12,5-16
GINFO COMMAND 2-22
GOULD PRINTER/PLOTTER 5-3%
H
HAPDWARE CHECKSUM 3-12
HARDWARE CORFIGURATION I-1%
HARDWARE REQUIREMENTS 5-33
HEAD 3-13
HEAD OFFSFETY 1-13,3-14,4-22
HEAD OFFSET DEFINITIONS 3-14
HEAD ZFRC 2-11
HEADER BLOCK 2-9,A-1
HEADER FORMAT A-1,A-7
HEADFR PAGE 4-5¢%
HEADER RECORD
HEADS 3-13,R~4
HEADS: NUMBER CF
HIGH ADDRESS 3-3
HIGH ADDRESS OF MEMOKY 33
HIGH BCUND OF DOS 5-13
HIGH SFEED LINE PRINTER 4-54
HIGH SPEED MEMCRY L-47,4-50,
6-1
HIGH SPEED PAPFER TAPE -1,
3-21,8-1
HIGH SPEED PAPFR TAPE READER
1-1
HIGH SPEED READER PUNCH =47
HIGH SPEED READER 3I-¢
HIGHEST MEMORY -2

f

- ™
t
O~ W N

L4~34 , A1

3-1%,3-14

HILOAD 4-29,4-31

HOLLERITH 5-2+5-6:5-24
HGLLERITH EXPRESSION 5-6,5-24
HOME UFD 4+15,4-16,4-28,4~-58,

5‘5 - 5‘716‘170F‘3
HOPPER ENPTY 5-29
HSR 3-6,3~7

HYPRID COYMMANDS b=b,ob=6,4-10,

10

IMDEX

4=-13,46-24 10€s 2=15,5=2%,5-29,5=-2%21
HYFPHE 4=21 I0CS CARD KEADEK DRIVER S5->¢4
I IS A DIRFCTIPY, CALNDY CoiPpy (7
I1aC7 4 5=-29 F-14
1/7¢ 4=14 [San 2-11
I/0 BUFFERS 4-51 J
I1/0 FUNCTIONS -1 Jmp 3I-4
I/70 INSTRUCTINONS /=1 J iR 1-2
1/C LIFRARY 5-1 K
170 SODULE SERVICE =18 KEY 6-14,5~5,5-14
I70 VIFTURLIZATION (=1 - /-5 KFY (SmLC) 5=35
IDENTIFIER 4-1 KEY BED S5—-7
ILLEGAL ASCIT 5-29 KEY-IN BOOT /-1
TLELREGAL INSTRUCTION AT .LOC. KEY-IN LOADFFR C=1843-2,3=-7
J=1 CEYCOM C-1,(~-¢
I USFK 5-2b4.F=14 KEYS 219,34 448 = L£-50,4~-56
INA 15820 &4-62 ' KILL CHARACTER 4-3
INACTIVITY TIMEOUTY H=-3 L
INCREMENTING FILE POINTER 2=3 L 4=2
INDEX REGISTER e-19.,4-4 4 LAREL S~6+,5-15,5-24
INFORMATION TRAMSFER 5-17 LABFL LIME 3-b
INITIAL CAPITOL LETTERS 4=2 LAEELS G445 .
INIETL1AL OPERATING SESSION LARGEST UNSIGNED INTFGER S=-14
=15 - 3-23 LAST CHARACTCR ONT 5-34
INITIAL STARTUP - LAST RECORD A-1
INITIAL STARTYUP COMMAND 6-15 LBASIC 4=17,4-30
INITLALIZATION FOR ACCFESS 2-3 LCT 5~34
INITIALIZE DTISK 5=-18 LETSK 4-15,4-16,5~¢
INITTALIZING DUS 3-22 - 3-2¢% LDISK NOT STARTLD-UP 5-7
INPUT 4=S8,4-bysbt-12,72 LRISK OUT OF RAKGE 5-7
IMPUT BUFFER 5-3) LEFTMOST SEMNSE SWITCH -6
INPUT COMMAND 4 =30 LETTER N L=-30
INPUT FILT ERKNR 4-54 LFTTER C 4=Ar
IMPUT FTILENAME L4 & LeveEl OF THREF STRuUCTUKE E~-&
INFUT FILFS ON DISK b=4 6 LEVELS QF COvMAUN TCATION 4-2
INPUT MODE L=2¢ LF 425
INPUT WAILY 5-30,7-¢ LI 5-1
INPUT/0UTPUT RUFFERS =273 LIB 5-1
INPUT/OUTFUT DEVICES L-644 LIRRARIES T-14,0-1
INPUT/OUTFUT FUNCTIONS S5-4 LIERARY 2-13
INPUT/OUTPUT “ITH DOS/VM 7-1 LIZRARY FILE H=-20
INSTALLING NEW COMAANDS 3-18 LIFERARY SUBRO2UTIYHES 5-1
INSTRUCTION 5-27,5-31 L INF 4-1
INTEGER VARIAALE 5-15 LINE FEED 2-9,4-2,5-9,5-27,
INTERACTING COMMAND FILES 4-210) 5-24
INTERACTION 42 LINE IMAGE -9
INTERACTIVE DEBUGGING PROGRAM LIMF IMAGE COAPRTSSFED 2-9
L=47 LINE PRINTER 1-1,4-13,5-31
INTERNAL 4-1 LINE PRIMTER DRIVIR 5-31
INTER'JALVCOMMRND b~bL,4~-5,4~1¢, LINE SIZE L4=13,4-2h
4=17,4-18,4-19,4-25,4=30,4-31, LINE SIZE FRROP 4-54
4=-50,4-51,4-55 4-57,4-62,5-4 LINF SPEEDS 6-4 - 6(-f
INTERWAL VECTOR 4-44 LINKING LCADER 2=9,6=-31
INTERRUPT RESPONSE CODE BUFFER LIST ERRORS b=27
5-34 LISTF 3=15,4-4,4-30,5-5

X - 11

MAN | 675

LISTF: FUTIL COMMAND 4-2G,4-3N
LISTING 4—5'4'414‘271A°3114-46
LISTING COMMANMD 4=2x
LISTING DETAIL 4-45
LISTING QUTPUT FILE 4-31
LITERAL 4-2
LOAD COMMAND
LOAD SWITCRH 3-1
LOADZ2S 4-31
LOAD: (SWIYCH POSITION) 3-4
LCADAP 4-31
LOADER 2-21
LCADER 10000-145/777 4-31,4-32
LCADER 200 (0=-23777 4-31
LOADER HLCC0D-63777 4-31
LOADER: START OF
LOADERS 5-1
LUADERS COMMON COMMAND 2=21
LCADERS SAVE CuMMAND 2=20s4-47
LOADING AND INITIALIZING DOS
=1 ’
LOADING BOCTSTRAP PROLRAMS B-1
LOADING DISK CARTRIDGE ¥K=-5
LUADING nS 3-1,3-0 =-3-14
LCADIMNG D0S FRIM MASTER DISK
3-1
LOADING LIBRARY SHARRMUTINES
5-1
LOADS CARD IMAGE ASCIT DATA
4~24
LGC FUNCTION 5-15
LOCATION 2=23
LOCATION "100 10 717/7C0 4~27
LOCATION '1001 3-4
LCCATION *57 R=-1
LOCATION 7 3=-1
LOCATION 771 3~4
LOCATION A 4=49
LOCATION FC 4-4>
LOCATIONS NCCUPTED RY DNS 427
LOCATIONS OF JFD 4-15
LOCGED=IN 7-2
LOCICAL O 6-12

4-31,4-56

LOGICAL DEVICE NuvIEw 4-32.,
=16

LOGICAL DEVICFS L=15,4-3i),
L=5 ,5-b

LOCICAL DISK 3-2,4-3,4-15,
46=1645-5,5-6

LUGICAL DISK MUNIT NU#3ERS 4-57

LGGICAL DISK UNIT ¢ 2=17+3-b,
F-3
LOGICAL RECIRD O 2-7»2¢-11

LOCICAL TLPES L-34
LUGICAL T0 PHYSTCOAL ASSIGNMENT

INDEX

3-12,4-57
LOGICAL UNIT 3-8,3-17
LOGICAL UNIT 1 I-8,3-17

LOGICAL UWIT 4-57

LOGICAL UNIT NUMRERS 4-3

LOGICAL/PHYSICAL DISK
ASSIGNMENTS 4-57

LJUCIN 4-32,4+-33,4-56,4-60,6~2

LUGIN LOGUUT MESSAGES 6-11

LOGIN COMMAND 64-6H(

LOGIN MESSAGF 4-32

LOGIN NAME 5-23

LGGIN UFD Namg S-2 X

LaGouUT 4-3%

LOGOUT COMMAND 4-14

LOGOUT MESSAGE 4-33%

LOOK FOR A FILE 5-27

LOWA BNOUND OF 00S 5-13

tiW SPEED READFFK 3«6

LCWER PLATTERS 1-3,3-9

LOWER SURFACE 3-9 - -1

LOWEST NUMBERED LOGICAL DFVICE

4-15,5-6
L_XXXX 4=28,4=31,4-46
.".1

MACHINE CHECK ™MODE 4~34

MACHK 4-34

MACRO ASSEMBLER 2=9,4-50,5-1

MAGNETIC TAPFE 1-1,3-20,4~-4,
4=34,5-31,7-5,3-1

MAGNETIC TAPF FILF UTILITIES
4=34

MAGRST 3~2Ls4=34 - 4~3%

MAGSAV 3-20,4-34 - 4=3n

MAKE 5‘1213”1315‘16;3“171L'5Q
- 4’4113’1ﬂ15'1q16‘12

MAKE AHORT 4-61

MAKE DFFAULTS 4-40

MASK 3-4

MASS STORAKGF BNOTSTRAP R-1

MASS-STORAGE RFSIDENT 50071 3-1

MASTER CLEAR 3=3,3=4,3-46,R-1

MASTER DISK e} ,3=2,3=8,3-1¢,
L=17,4-31,4~-41

MASTFR DISK VoL 1 5-33

WASTER FILE DIRECTCRY
2=10,4-15,5-5

AT STATEMENTS L-30

AATKIX FUNCTIONS 4-17

AAXIMUM 4=25

MAXIMJYM MNUMAER GF AURDS
"TRANSFERRED £-15

AAXIMUM NUMBER OF CISK DRIVFES
4-15

MAXTIWUM OF 15 FILFS CA* ~E

2=2+,2-3%

- 12

ACTIVE 2-11
BCO 4=61
MDL 4-41
MOL FORMAT ©-1

MDL SELEF-LUADING TAPT 3=-14

MDL TAPES 4-41

ME 4-51

MFD] A 3-1

MEMAKY 2=5s2"11,2"2V42~22+,3"3,

b=26,4-41+4-47

MEMORY ADORESSING 1-1

MEMORY ALLCCATION 2-23%

MFMORY APLAS 2-22

MEMORY CONFLICT 5-24%

MEMORY IMAGE 5-~21

MEMORY LOCATIONM 5-1%

MEMORY LOCATLIONS '0 TO 'S0 B=1

MEMORY RESIDENT CPERATING
SYSTEM 1-1.

MERGE 4-51

MESSAGE 3-8,4-15,5-11

MESSAGE BLCOCKS 5-33

MESSAGF CuMMayD 6-14

MESSAGE FACILITY 6-14

MESSAGE NOT SENT h-18

MESSASE T4 BE TRANSMLITTED 5-32

MFD 2*?12’1”;2‘11:3“2:3'8!
3-1%,3-14,3-16,4-15%,4-16,4~19,
4=27,=25+4-39,4~41,5%-5,5-6

MFED FILE 2=-1u

MFDUFD 5-5,5-4%

MHD 3-3

Mi'D DISK ADDRESSES 6-8,6-9
MICRGCODE 3=2,3-5,9-1

MICROCODE ASSEMZLY k=41

MICROCODE FOR FANEL LOAD 3-6

MINIMUM 4=25

MINIMUM CONFIGURATION 1-1

MINIMUM PARTITION 5-13

MINUS SIGH 9=14,6-15

MODE 5-14,5-15,5-17

MODIFYING DOS/VM PAGE MAPS 6£-5

MOTION CHECK 5-29

MOUNTING MEW DISK PACK 6=-17

MOVING HEAD D ISK 1=1,3=-1,3-7
=~ 3-14,3-21,1-1

MOVING HEAD DISK DRIVE 3-1

MOVING HEAD DRIVFS K=1

MFC CARD RFADFLPR 5-29,7-5

MPC CONTRCLLER 4=24

MPC PARALLEL INTFERFACE LINE

PRINTER 4~13,7-5
MYO 4-13
M7 4-13
MTZ2 4-13

MAN 1675

INDEX

MT3 4-13

MULTIPLFE DISKS 2-11

MULTIPLE LOGICAL TAFFS3 L=354

MULTIPLE PHYSICAL TAPES b-%4

MIUST RE ZERC L=4Q
N

N 5-19

YAME 5-6,5-9,5=-11,5-24

NAME NOT ASSIGNED J=-1

NAME 1IN USE S-14i

NAME NO RIGHT S-10

NAME NDOT FOUND S5«+t,5%=-7,5-10,

5-24

NAME (D) 5«7,5-23%3,5~24

NAMED FILES 4=% %

NAMES 4-3,4-56

NDFILE 5-23

WDSFG 5-23

NESTING 2~2

NESTYING FILE DIRECTORIES =2

NTY COMMANDS 3-1¢

NI DIRECTED (DAM)Y FILE 5-23

NEA DIRECTED (DAM) SFGMENT
DIRECTORY 5-23%

NEWw FTLE 2-3,4-42,5-22

NFik PARAMETER 4 -5

NEW THREADED (SAM) SEGMENT

BIRECTORY 5-23

NEWw THREADED (SA®) FILF 5-24%

NEW UFD'S 3-16

NEw IJSER FILFE DIRECTORY (SAM)
5-23

NEMFILE 5-22

NEWLY €ERFATED DISK L=41

NFwWLY CREATED UFD 2-17

NEYNAM BAD NAME S5-9

YEWNAM DUPLICATE NAME 5-0

NEWISFD 5«23

NEXT WORD READ 5-16

NIKNE 4=16

NINE-TRACK MAGNETIC TAPE t-34,
5-31

NIMNE-WNRD VECTCK 5-21

ND ACCESS 2-16,4-43

N3 FILENAAF ARGUMFENT 4-54

NO RIGHT 4-66,5-24,F-15

NO ROOM ON DISK 5-14

NO POOM UISF nos3? F-15

NO UFD ATTACHED 5-6,5~9,5-24,
F-15,4-1

NG UFD DOS IN THF MFD I-¥

NO MELTOR J4=-1

N). OF WORDS TRANSFERRFD 5-12

NCDES 2-10 '

NCNDOS 4-50

- 13

NONEXISTENT DISKS H4=14

NONNUMERTIC CHARACTER -3

NONOWNER 2-15,2-17,4~30,4-32,
L-42,5-26.5~2

NONOWNER FASSYWORD
Lh=24,4-42,6-2,A-2

NUNUWNER STATUS 4-15

NONOWNERS ACCESS RIGHTS 4=-4 3%,
h=2

NOMZERD ALTEPNATE RETURN b=4b

NORMAL DISK 6-5

NORMAL LISTING DETAIL L=46

NORMAL MODE (SVC 1) 4-60

NORMAL RETURNS S5=10

NOT 6-13

NOT A DIRECTORY F-19

NOT A UFD S5=-6,J"-1

NCT BUSY 5~31

NOT BUSY STATUS 5-21

NOT FOUND F-15

NOTATION 4-1

NOW 6-14

NKECS A-t4

NTFILE 5-23

NTSEG 5-23

NULL POINTER A-1

NUM 5-11

NUMBER L=42

NUMBER COMMAND b~b?

NUMBER OF CONTIGUQUS HEADS
3‘1315’14

NUMBFR OF HEADS DEFINITION
3-14

NUMBER OF LOGICAL UNITS 3-12

NUMBER OF PARAMFTERS IN STARTUP
COMMAND 3-12

NUMBER OF RECORDS ALLCWED 2-7

NUMBER OF USERS 6=-3,6-12

NUMBER OF WORDS 5-31

NUMBER OF WORDS LEFT 5-16

NUMBER OF WORDS READ 5-16

NUMBER CF WORDS T0 BE
TRANSFERRED 5-15

NUMERICAL VALUES 5-2

NUSER 6-12

NWORDS 5-14,5-15

0

8‘17(4*15)

OrALCSH 5-31
ORJECT CODE 2=9
ODRJECT FORMAT 2-9
OKSELETE COMMANDS =13
OCTAL 427 ,4=47,5=2R
JQCTAL CODE 100000 5=4
OCTAL CODF 177777 5-6

INDEX

OCTAL PARAMETER bH=2

IDD UNITS 3-3

OFF LINE PRINTING 4-53

OFF LINE UTILITY COMMAND 4~-50

OK. 3-1%,4-1,4~2

nK 2=15,3-8,4-1,4-2

QK? 4-40

OLDNAM IN USE 5-9

OLDNAM NO RIGHT 5-~9

OLDNAM NOT FOUND 5-9

OMITTED PARAMETERS 4L-1

ON LINE §5«29,5-31

OPEN 2~322<1142-15,4~3,4~4,
5-16

OPFN A FILE 5-21,5-22.,5-2%

OPFN AN EXISTING FILE 5-2%

OPFN COMMAND 2-1244-42

OPFN COMMAND FILE 4-20

OPEN CURRENT UFD FOR READING
5=-27

DPEN DAM FILE 2-22

OPEN DISK UNITS =21

OPEN FIJILF 2-3,5-11

OPFN FILE UNITS 4-58

OPEN FILENAME 1 1 4&=-30

OPFMN FILENAME 2 2 4-31

OPEN FILENAME 3 L-17

OPEN FOR READING L=42

OPEM FOR READING AND WRITING
L-42

DPEN FOR WRITING 4=47

OPEN NAME FOR BOTH READ WRITE
ON FUNIT 5-23

OPEN NAMF FOR READING OUN FUNIT
5-23

OPFN NAME FOR WJRTITING ON FUNIT
5=23

OPEN OM DELETE 5-24

OPFN SAM FILE 2-22

OPEN SEGMENT DIRECTCRY 5=-23

OPENING A FILE 2-3,5~-21.,5-22»
5-27

DPENING FILES 2-12

OPENING,CLOSING FILE UNITS
2-12

JPENS 4-46

OPERATING ERRORS 3-2

OPERATING SYSTFM 1-2,3-15,4-2

OPERATING SYSTEM TARLE AKFAS
24

OPFRATION 3-1 - 3=-27

OPERATIONS ON FILES 2-3

OPFRATOR COMMANDS 6-11

OPFRATLR'S PARTITION L-14

DPERATORS b=4,6-10,6-14

- 14

GEANBT 9=-23.5-¢5

OPNRED H=23,5-25

OPNWRT 5~23,5-25

CPTINIZATIUK 46-351

QPTION 4=1

OPTIQN &9C0 3~

UlrTION 4U6G1/74:30¢ 3-3

GPTION 4yu? 3-3

OFTTIONAL ARGUYENT WALT 4=-14

CPTIONAL FARAMETERS 4-1

OPTIONS 1-1

JFTTIONS (ARACETER) 4~-27

JWDERED SET 2=6

ORDINAL JALUE 4&-2

OTHER VIRTUALIZATION 77

CuTPUY L=12,7+3

OUTPUT FILES O™ DISK 4-46

GUTPUT-WAIT STATE 5=-31.7-3

OVERWRITE ACCESS 6-2

GVERWRITING A FILF 5-22

OWNER

CWNER PASSHORD
4‘32;4'43!6‘21A'2

OwNER PASS#CORD L4=372,6-2

OwNER STATUS 4-15+46-19,5-9,
5-24

OWMERS ACCESS RIGHTS

i

P REGISTER 4=31,4=47,4-43

PACKED 2-9

PACKNAME 4=14,4=57

PACKNAME OF THE DISKS 4=5%

PAGDEY 6-12,6-13

PAGDEVT 6-12

PAGE M™MAPS A=-5

PAGING DEVICF
6-1.

4“51)&’53:6'3:

PAGING DISK L4=Tursb-41
PAGING SPACE E-%.,6-06
FPAGING TIME 4-33,5-2°7

PANEL LOAD -6

PANEL LOAD FOUNCTTON

PAPFR TAPE
4‘26}4‘4114‘4?:7“4

PAPER TA®E ©0JTSTRAP

PAPER TAPL DEVICF 3=6

PAFER TAPF LOADEK 4-31

PAPER TAPE PUNCH 4-13,7-4

PAPER TAVLE READER =9,4-13,
b=1,7-4

PAPER TAPE RLADER-PUNCH 1-1

PARALLFL INTFRFACE €ARD RFADER
L=24

PARAMETERS 4-1

PARENT RECCRD A-1

MAN 1675

?2=18,3-¢

2=15,4=30,4=42,5-26,6-2
2=17,4=-15,4-24,

L-4L3,6=2

5‘1(3‘1613’2004‘1?t

2-18,18-1

INDEX

PARENT RECCRD IDDKFSS £
PERITY 3=-2,r0-¢

PAPITY CHECK (-2

PARTITION 3-120b=-22sb~41
PARTITION DEFINITION 3-13
PARTITION: MINIMU™M 7-13
PaRTITIONLNG DI1SKS 218 - =14

PASSUD =17 rb~bsb=-1%4L-30,
L=42,6=-2
PASSW(ORD 2=l se~34¢~1042-17,

5-6,5-7,6-1
PASSwWORD ARGUIENT 4£-32
PACSSQURDS OF wFW UFD L~74
PAUSE 5-9
PoUFFER S=-14,5-15
PL 2=1%,3~b4 , 447 ,4-5",4-5%
PCONY 5-15 - 5-17
PD S=-16,1-1
PDISK 5-10(,5-19
B 5-18,1-1
PFR FILE BASIS L= 3
PERIPHFRAL 4-41
PERIPHERAL DFEVICFS
H-1
PF S-164
PQ 5=14,1-1
PHYSICAL DEVICE = 2-2,3=7,3-4
PHYSTIChRL DFVICF ASSIGNYENT
3-9 - 5-11
PHYS1CAL DEVICE CUDE 2-Ps4-2,
3-12
PHYSICAL DEVICE NJUFRERS 3-9 -
R=13,4=21,4=-57,4-5%
PHYSICAL OEVICE NUMBEPR USAGE
3-13
PHYSICAL DISK

1-1,%-21.,

2’513‘§15‘?13=R

- 3*11:3-14;4-3’6-1344*39;4*57,§

5-10
PHYSICAL DISK DRIVE = F-e
PHYSICAL DISK NUMPER 3-H,3%3-5%

- 3e11,3-13,3=-14,4~22+4-27,5-17

PHYSICAL DISK PARTITION 4-17%
PHYSICAL DISK RECORDS 2-6
PHYSICAL DISK RECORD 2=t
PHYSTICAL DRIVF NUMBER 3-3,3-13
PHYSICAL FfRUOM TC SIZE: 4-21
PHYSICAL RECORD 2=10,2-11,3-4
PHYSICAL RECCRD O -4
PHYSICAL RFLORD ONE c=10
PHYSICAL RECORD 140 /=11
PHYSTCTAL RECORD ZERT 34
PHYSICAL TAPT 4-34
PAYSTICAL TO LOGICAL OFVICSF
CORRESPOMDENLE 4-5%
PHYSICAL UNIT &=57

- 15

£h

M 4"14’4614’#714‘“8

PHMA 4=31,4-46,4~50)

POINTER 2-6+5-15

POINTER MISHMATCH F=15,4-1

POINTFR MISMATCH RUN FIXRAT
J=1

FORT ASSIGNMENT 4=-12

PORT HNIIM3ER 4=-12

PORT SELECT FIELDS 7-2

PQSABS 5-14,5-15,5-17
PISITION 2=4+5-13,5-14,5-15,
S=14

POSITION A FILE OPEN 5-13
POSITION IN COMMAND STRINS 4=
POSITION POINTFR 5-16
PGCSITIONCT) 5~14
PISITIONC(Z) 5=14
POSITIONING S5-13,5-14.5-17
POSITIONING A FILE 2-4
POSITIONING OF THE FIRST 440
DISK RECURDS 2-1:
POSITIONING: DISK 2=5
POSKEY 514 :,5%-15,5-17
POSREL 5=14,5-15
POST “MORTEM (=46
POWER DNWN ORDFERING 3-21
PONER OFF i-21

POWER ON 3-1,3-22

PR 46-13

PREF-B0ODT R=-1

PREAAS 5-14,5-15,5-17

PREAD 5-14

PREFQDGT p=1

FREREL 5-14.5-15

PRERR L=boh=66,5~13,5-16

PRFRR COMMAND 5-11

PREVIOUS VALUE IN RVEC 4=4L8

PRIME 1040 1-1

PRIME 20 1-1

PRIME 3yL 1-1

PRIME MACRf ASSEMILEW L=4h

PRINT & FJILF 5~31

PRINT USING 4-30

PRINT USI&NG FUNCTLIONS 4=-17

PRINTING CHARACTER 4~3

PFINTS 2-15

PRMPC 4=208

PROCEDURE STACK LUMDERFLOW 7-7

PROCESSOR CONTROL PANEL L=-¢3

PRUCESSOP REGISTERS 4=57,4-54

PROCESSNOR STAJUS KEYS 4-46

PKuUGR LA 1’1,2'1,2’11!2'13

PRLGRP™ CUERTRR 2=19,3-4

PROGR M DEVELOPAENT 3-15,3-1¢,
3=fé = S=Crsb-4

INDEX

PROGRAM HALT AT .LOC. J-1

PROGRAMMERS b=4

PROGRAMS LARGER THAN 32K 4-31

PROM B-1

PKONMPT 4-2

PROTECT 2=16+,2=-17,4-15,4~-30,
L4=h3,6-2

PROTECTION KEYS

PRSER 4-28

PRWFIL 2=-13,2-18,5-1,5-12,
5«13,5-15,5~16,5~17,5-21,5-22

PRWFIL ACTIOMS 5-15

PRWFIL BOF S+-16,J~-1

PRYFIL EOF 5«16,F=15,J-1

PRWFIL ERROR CODES 1-1

PRAFIL HORMAL RETURN 1-2

PRVFIL POINTER MISMAT(CH J-1

PRWFIL READ-CONVENIENT 1-2

PRWFIL UNIT MOT OPEN 4$-19,4-1

PSH I-4,.4-47

PSD20 Lh=47

PSFUDONYM -4

PsSu 7=

PYCPY =47

PITFALLS AND RESTRICTIONS [-%

PTR 4=13,4-26

PTRED L=47

PUNCH 4-13

PURTTE 5-14

62,2

W
GUIT Lb=2,4-14,4-26G
QUIT: FUTIL COMMAND 429
R
L-52
32000 4-47
50000 4=47
70000 L-47
RA 5-1%9
RANDOM ACCESS 2-11
RANGE NF DEVICE MUMBENKS 3-12
RAW DATA MOVER 5-29
READ $-15 - 5-17
ReAD A FILE 5-13%
READ ACCESS 2=15,2-16,6-2
READ AND WRITE L4-43,5-16,5-21,
5-¢¢
READ AND WRITE ACCESS e-156,¢6-2
READ CARD IN ASCII FOR¥AT 5-29
RFAD CARD JIN nINARY FORMATY
5=-20
RFAD CHECK 5=29
RFAD FRR”R 5-21
READ ONLY 4'4315‘21;5'22_
READ OFPERATION 4-23,5-113
RFAD STATUS 5-29.5-3%1

O DT

X

- 16

MAN 1675

READER PUNCH 4-47

READING 2=1,2-3,2-11.,5-13,
5«14,5-15

RFADING AND WRITING 2-3

READING ONLY 2-3

RFADY LIGHT 3-2

REAL TIMF OPERATING SYSTEN 1-2

RECEIVE A MESSAGE 5-32

RECORC 5-146

RECORD (O 3-6,3-16,4-39,5-16

RECORD ADDRESS A-1

RECORD AVAILABILITY 3-12

RECORD HEADER 2=bs2=723-4

RECORD HEADER CONTENT 2=7,A-1
- A-3

RECCRD NUMKER 4~461,5-12,5-15,
5-16.,5-17

RECORD NUMRER RANGE S5-1¢
RECORD NUMBER-WCRD NUMBER
5-17
RECORD OF INFORMATION 5-31
RECORD-COUNT L=~41)
RECORDS 2=5,2-6,4-39
RFCORDS (OCTAL) 4-39
RECORDS In FILF 4-51
RECORDS PARAMETER 4=39,4-4(
RECOVERING FRC™M ERRORS 3-12
RECS1Z A-4&
RECYCL S~1%
REFEKENCE 5-5
RFFERFNCE SUSKEY S~6+5=22,5-24
REFERENCINWNC A FILE 2-2
RFGISTER FILE E-1
RELATIVE 5-13.5-14
ELATIVE COPY CHARACTER L-1%
RELATIVE HCGRTZONTAL TaB 2~9
RELOCATABLF BINARY -9
REMOVABLE FACKUP PACK 3-20
REMOVARLE DISK 2-11,3-2
REMOVARLE SURFACF 3-8 - 3-11
REPRESENTETION OF FILE POINTER
b-16
REQUIRED PAGING DEVICE 6-3
RESOURCE DEALLOCATION 2-3
RESTAKRT A PROGKAM 4-56
RFSTARTINS DOS 1-22
RFSTCR c=13%3,2-20,3-4,4~-4,4L~47,
L~-48,5-15,6-11

RESTURE L=474.4-56,0-11

RESTRICTED ACCFSS RIGHIS 4=-43,
6-2

RESHYME 2-13.,2-20,4-46,4-47,

L=b4 i ph=4%,6-%0,5=17,6-3,6-11
RESUME READING CARDS L=-24
RESUME SPLCFN 4-50

INDEX

RESUME SPLMPC 4-56
RFTRY READ 4-23
RFTRY WRIT 4=23

RFTURN TO DOS L~47
RFTYPE 3-4
REVERSE SORTING 4-52

REWIND A FILE UNIT 5-2¢2
REWIND FILE ON FUNIT 5-23
REWIND KEY 5-23

REWINDING -4

REWINDING A FILL -4
RIGHTS A NONCWHER HAS (£-15
RMARGIN 4-25

ROM SIMULATUR 4-41

RCTARY SWITCH 3-6,3

RREC 5-10.,5-1& - 5~
RT128&F 4-50

RTO0S 1-2,4-26,4-50

RTOS MAPPED RANDOM ACCESS FILE

-7
el

4~50
RTOS RANDOM ACCESS FILE 4=2¢6
RTOSRA 4-26,4-50
RUN/STOP 3-2
RUM: (SWITCH POGSITION) 3~£,3-7

RUNNING FIXRAT £E~2

RVEC 4-3¢

RVEC PARAMETFRS
L=4LT7 -~ 4=-50,5-21

RVFC VECTOR L=4 &

RAKEY 5~-14

2<2043-19.4~1,

S
S L-24,5-11
SA ?'952“19l3‘4r4'4714”48r
4=-50,1-2
SAM ERRNF MESSAGE 524
SAM 2=5+2=6,2-10,2-18,4~-34
SAM FI1LE 2-5,2-11,2-22.,A-1
SAM FILE UNITS 2-21
SAM FILES 2-6b,2-7
SAM SECMENT DIRECTORY =42, A-1
SAM USFR FILE DIRECTORY A-1
SAVE 2-13,2-19, 34,44, L-4LT7 ~
4-50.,6-2
SAVE COUMMAND
SAVE FILE 3-4
SAVF OPERATIOWM 5-1F
SAVE PARAMETERS 2-4 8

4-=4E ~ 4L=-50

SAVE SUBROUTINE 5-21
SAVED NMEMORY IMAGE 2-9,2-1¢8
SAVING PROGRAMS 2-1%

SCATTER - GATHER OPFRATION
5-20

SCCrF ODF DOS pos/ym

SD 5-10,%-24,1-2

SEARCH 2-13,5-1,5-5,5-12,5-13,

1‘1;1‘?

17

5‘15f5”15’5’21 - 5‘37

SEARCH ERKOR CODES [~2

SFARCH NNRMAL RETIJRN 1-2

SECOND LEVFL RHIOT 3=-7,5-1

SECOND LEVEL 8OCTSTRAP TAPE
3-7

SFCTOR 0O CPTIMIZATION 4-31

SECTOR ZERO 2-11,2-21

SFCTCRS 2=5,3-6

SECTORS/TRACK 1-9 - 3-11

SLEX 2=7+,5-10.5-20

SEG-CIR ERKOR 5=26,5-25+5-26,
F=15%,J-1

SEGMENT DIRECTORY 2~5+2-9,
2=10+,2=11,6=2E,5=5,5=6,5~22 =
5=-24.,E-1 - -7

SEGMENT DIRECTORY USE 2=5,2~7

SITGME™T DIRECTORY REFERENCE
5”7#5’?215‘?315'?6

SFGREF 5=23,5-24

SEGUFD 5-5

SFLECTING WRITE PROTECT K=&

SELECTIVE SHUTDOWN 6-16

SELF-CONSISTENT VOLUME =11

SELF~-LCADING PAPER TAPE 3-2,
3=7,3=16,4-41

SENSE SWITCH SETTINGS L=47

SENSE SWITCHES 3-3,e=-1,8-2

SENSE SWITCHES 1 TO 10 8~2

SENSE SWITCHFES 1.2, 3 3-3,
3«4,3~5,3=4

SFENSE SWITCHES 14,15,16 E-1

STQUENTIAL ACCESS METHOD 2-5,
2~6,2-18

SFQUENTIAL DIRECTED FILE 4-42

SEQUENTIAL THREADED FILE b-=42

SERYAL INTERFACE 6-4

SERIAL INTERFACE CARD READER
4b-24

SETHOME 5-5

SETIME 6-10,%5-11,6-15

SEVEN-TRACK MAGNETIC TAPE
4-34,5-31

SH S=-9,5-10,5-1%,5-24.,1-2

SHARING 1-2,6-1

ShIFT COUNT L=-49

SHUTDN 3-12,3-13,3-20,4-4,
4-1444-50,6-11,6-16

SHUTDN ALL 5=-16

SHUTDOWN 1-2,2-5,3-20 - 3-22.
4=-14

SHhUTDOWN OF PISK 6-16

S1I 5‘915’1Cf5'18’5'24

SIGNED INTEGER 5-15

SIGNIFICANT LOCATIONS 2-21

INDEX

SINGLE LINE 4-1

SINGLE PRECISIOCN L=-4¢

SINGLE USFR BUFFER b-14

SIX MILLION WORD DISK 3-12

SI1ZE 4-21,4-51

S1ZE COMMAND 4-51

SIZE PARAMETFR 4-21

SK 1-2

SKIPF A LINE 5-31

SKI1P ON CONTROL TAPE CHANNEL
5-31

SKIP ON SENSE SWITCH 4-62

SKIP TO TOP OF PAGF 5-31
SKIPS 7-3
S$KS 7-3

SL 5-9+5-10,5-18,1-2

SLASH 4-2

SLISTY 4-51

SMLC CONTROLLER b=

SOC 3-4

SOFTWARF 1=-1.1-2

SOFTWARE DEVELOPMENTY 1-1

SOFTWARF RFQUIREMENTS 5-33

SGRT 4-51

SORT BRIEF 4-51

SORY COMMAND 4-51

SORT MERGE 4-51

SORT SPAC(CE 4-51

SORTED FILE 4-51

SOURCE 4=17,4-31

SOURCE FILE FILENAME L-46

SOURCE FILENAME 4-31

Sp 4-51

SPACE 2=9,4-21,4-82

SPACE (PARAMETER) 4-51

SPACES A2

SPLCEN 4-56

SPLIT DISK

SPLMPC 4-54

SPLOUT 4-56

SPGOL L4=28,4-53,4~54,4-56

SPOOL OQUTPUT FORMAY 4-54

sq 5-24,1-2

STAND=-ALONE FXECUTION 1-2

START 3*3r4°414'24:4'47:4'481
6-56,5-11,5-16,6-11

STARTY 1000 4-26

START COMMAND 3-3

START OF EXECUTION 34

START OF LCADER 2-21

STARYT SWITCH B-1

START: (SWITCH POSITION) 3-6.,
3-7

STARTED DFVICES 5-13

STARTING ADDRESS (SA) -9,

6=5,6-12

- 18

INDE X

2=19,3~4.,4-4F4-50 SURQQUTINF: RECYCL 5-1R7
STARTING AT *1000 3-3 SUBROUTINE: RESTOR 5-1R
STARTING AT LOCATION '35020C SURROQUTINE: RESUME 5-18
3-1» SUGBROUTINE: RREC 5-18
STARTING AT LOCATLON '700GL0D SUBROUTINE: SAVE 5-21
3-1% SURROUTINE: SFARCH 5~-21
STARTING AT LOCATION *S592000 SUHERQUTINE: TICMPC 5-29
-1 SUERQUTINE: THLAPC 5-30
STARTING HEAD ADDRESS 2-13 SURPROQUTINE: TIMT 5-21
STARTING OF EAYIPMENT 3-1 SURROQUTINE: T3$SLC 5-32
STARTING THF C#U I-13 SUBROQUTINE: TIMDAT 5-29
STaRTUP 1-2,2-15,3~-3,3-8,3-13, SUKROUTIME : THOUA S-2%
3m17,3-22+6-b,4-39,5=-6,5-13,6=-10) SUBROUTINE: TOOCT S =28
b-11,6~11,6-15 SUBROUTINE: UPDATEF 5-34
STARTUP 6-7 SUFROUTINE: “WRrECL 5-36
STARTUP © 1 3= SUBROUTINES A=-1
STARTUP 1 O 1-17 SUCCESSFUL ATTACH 4-1 5
STARTUP COMMAND 3-12,4-14,4-72, SUMMARY OF COMMANDS m-1

Sebrb=-13 - M-12
STARTUP OF DuS/AVM 3-15 SUPERVISCR L4=2,6=-12,7-1
STARTUP: INITIAL 3-% SUPFRVISOR TERMINAL 4=14 ,L-32,
STARTUP: FPARAWMETERS 3-12 L4=61,5=20+5-3b+6-11 = 6=1",6=14,
STATE OF CARRY BIT L=49 6=-17
STATEMENTS 1N BASIC L=42 SVC INSTRUCTIONS 4-56
STATUS V177776 L4=23,4-41 SYC VIRTUALIZATION 7-6
STATUS COMMAND 2=2223-13,4-10, SVISH b=32+4~ 59,7-5

6=17 SVESW COMMAND 4~ 59
STATUS FRKOR 3-3 Sy 5-9,5=1M,5~-12,5-24
STATUS INDICATORS 2=-11 SYMAOL TABLE 2-21
STATUS KFEYS 2=19,4-48 SYMBOLIC 4=27
STATUS MFSSAGES o-11 SYNTAX OF COMMAAND 4 =1
STATUS REQUEST 5-31 SYSTEM COMMANDS 4=2+6-11
STATUS VFCTOR 5-29 - 5-31 SYSTEM CONFIGURATION 1-1,%-13,
STATUS WORD 5=-29.,4-1 L=32,4-47
STuP/STEFE 3-6 SYSTEM CONFIGURATOR =5 = A=T,
STOPPING DISK DRIVE K=¢ 6-10
SURDINECTORY 4=28,4-34 SYSTEM CONTROLLER BOARD CONTROL
SUBDI SKS 2-13 wORD 7-1
SURKEYS 5=15,5=-17,5=22 SYSTFM CONTROLLER CONTROL WOPD
SURROUTINE 4=46,5-1 7-2 .
SUPROGUTINE:; ATTACH S5=4 SYSTEM CRASH 6E-¢
SURROUTINF : BKREAKS 5-7 SYSTEM EDITOR 2-1
SUBRNDUTIMNI ; CT1IN 5-8 SYSTEM GFNERATION 1-1
SUBROUTINF: CAREAD 5-n SYSTEM INTEGKITY 4-14

SYSTEM GPERAT Ik 6-10

SUBROUTINE : CNAME 5-9 SYSTEM OFTION CONTROLLEPR 1-1,
SUBRRONTINE ; CTMINP 5-0 4-13
SUBROUTINE : COMMANL 5-10 SYSIF™ PARAME [EKS hA=12
SURRTUTIWwE: DHINIT 5=-10 SYSTFM SECURITY 5-7
SURRDJTINF: FURRSET 5=-11 SYSTEM SESSIOn 6=-12
SUEROSTINF: EXIT 5-11 SYSTEM TERMINAL 1=-1,3~4,3-5,
SUBRGUTINT: FORCE S T 5-12 L-16,5=2"
SUBRROUTINE: HETFRR 5-12 SYSTEM JERMINAL COMMARD 34
SURROUTINF : GINFC 5-12 SYSTE™ USFER 2-10
SURROUTINF : FRERR 5-13% SYSTEM UTILITIES 5-10,5-19
SURRGUTINE: FEWFIL 5-13 T

19

MAN 1615 X

INDEX

TECMP C $=23,5-30 TRUNCATION =4
TSLAPC 5-33,5-451 TS3C0 64
T1IN S5=c7 Ts33C 6E-4
TAB CHARACTEK 2-9 TSAMLC 6-4
TArP 2=21,3~4 TTY 4-19,5~-9
TALFPE DATE 4-34 TURNINS POWER OFF 3-21
TAFF NAME 4L=34 THO FILES FOINT TD SAME RECOARD
TAPE KRECOFRD: ™AXIMUM SIZF L=-34 E-11
TAPE RFVISION NUMBER H-34 - TWO PASSWORDS 6-2
4=-36 TWO-WORD INTEGFR ARRAY 5-15
TELETYPE 1-1 TYPES OF FILFS °2=h,2-7
TFRMINAL 1=-1,3~4,3-8,4=2,4-53, : u
4=54%+5-11,6-1,6-4 U-CoDF 8-1
TERMINAL 3-4 UFD 2"’,5'2"9’2"1(712"15'3"1:
TERMINAL DEDICATED T7 SPOOL &4-54 2-17,3-18s4-1,4~24,5-5,5-6,5-22,46~1
TFRMI WAL 1/0 LIBRARY 5-1 6=-1 ‘
TEXT 2-9 UFD = CMDNCO I-16,4-41
TEXT 3UFFEX 4=-245 JFD = pOS 3-2+,3-8,3-16,4~41
TEXT EDITCR b=1,4=-19,4=-26,4~-2% UFD = DVEBIN 6-4
THREADED FILE (SAM) 5=25 UFD = FILAILID 3-5
THREADED L IST =7 UFh = LIB 3-16
THREADED SEGMENT DIRECTORY UFD = SPOOL 4=-53,4-54
(SaM) 529 UFD ENTRIES A-2
THRFE MILLION WORD DISK 3-12 UFD ENTRY FORMAT A-2
THREL MILLION wORDS 3-13 UFD FORMATS A=-2,A-3
TIMDAT 5-28.,6=2 UFP FULL 5=2L,5-262F~15,0-1
TIME 4-6,5-2°% UFR HEADFR 2=-10,A-2
TIME ACCOUMTIHNG REGISTERS UFD LONGER THAN RECCRD F-11
L4=32,4-60 UFD NAMED DOS 2-1R
TIME FUNCTION 4=25 UFD NAMFS 3-18,4-1,4-3,5-2
TIMING 5-3%3 UFD OVFRFLOW Jd=1
TIiou See? UED USE A-3
TNCU 5=27 UFDCPY: FUTIL CGCMMAND L=29
TNOHA 5-28 UFDDEL: FUTIL CCMMAND 4=-29
TC DPISK b=21,4-23 UFDNAME 5-6
TN DISK NUMmMREQR 4=-27? UFNDKEF 5~2¢3,5-24
TO: FUTIL COMMAND L-29 U1l 7-7
TGECT S-2¢& UNASSIGN 3-13,4-14,4-61,6-13
TOP OF 32K 4=-27 UNASSIGN DEVICES 6-11
TOP OF MEMORY 2-2¢ UNASSIGNED 4-14
TRACE AND PAT(CH 2-21 UNCORRECTABLE ERRORS S=-15,5-24
TRANSFER OF DATA -3 UNIMPLEMENTED INSTRUCTIONS 7-7
TRANSLATORS -4 UNIT 5-29,5-31,5-32
TRAPS 7-1 UNIT N, CLOSED J=1
TRAVERSING FILE A-1 : UNIT € 3-8
TRECPY: FUTIL COMMANTD 4-29 UNIT 1 4-30
TREDEL SUPCOMMAND 4 =25 UNIT 16 2-17
TREDEL: FUTIL COMMAND 4-29 UMNIT 2 4-31,4-46
TREE ~NAMES 4=34 uNilT 3 4-28,4-46
TREE STRUCTURE =10 ,E-4,F-1 UNIT IN USE 5-24
TRNCAT 5~-23 UNIT NOT OPEN 5-24,4-1
TRUNCATE FILE ON FUNIT 5-23 UNIT OPEN ON DELETE J=1
TRUNCATING A FILE =4 UNLOADING DISK CARTRIDGF K=-5
TRUNCATION AND DELETION BY UNRECOGNIZABLE COMMAND F=13
FIXRAT 4-27 UNRECOVERED DISK FRROR 3-8,

y - 20

oo
»

UNRECIVERED DISK ERKUR 3-
L-23,4-41,5-20

UNRECIVERED ERROR F=-15

UPDATEF 5-34

UFDATING LARGE PROGRAM™ L-20

UFPER PLATTERS 3-3,3-9

UPPER SURFACE 3-9 - 3-11

USAGE OF DOS/vm =17

USE OF FILF SYSTEM H-1

USE OF MAGSAV 3-20

USF OF PHYSICAL DEVICE NUMBER
3-13

USER 4-2,4-4%

USER ADDRESS SPACE 5-31

USER BUFFER 5-13,5-15%

USER FILF DIRECTORY 2=5,2~7+«
2=-10.,4-15

USER FILF DIRECTORY (SAM) 5=-25

USER PRIVACY £+-1

USER PROGRAM 2-14,5-32,7-1

USER SPACE b=l 5«29 ,5-33

USER STATLS 5-32

USFR TERMINAL 1-1,3-6,4-3,
4=12+4~22+,6-32,4-54,6~58,4~-61,
O=V14.7-C

USER TER™INAL COMYAND 3-4

USFR'S ADDRESS SPACE 2=-11

USER-STORED MESSAGE 4-4 6

USERS 1-1,4-51,6-1,6-10:,6-12

USERS LOCATION 65 4-410)

USFRS TERMINAL 5-13

USING AN OPFN FILE =3

USING FIXRAT 321

USRASA =11

UTILITIES 4 -4

UTILITY PRCECRAM =47

v
VALID CARND RFADER INSTRUCTIONS
5-79

VALID HARDWARE CHECKSUM L=by

VALID INSTRUCTIONS 5-31

VALID UFD NAME L-37

VDOS3Z 4-60

VECT S5-21

VECT (1) 5-21

VELT (2) 5-21

VECTOR 5-31

VFRIFICATION Lb=27sb-47

VERTFY DISK 4-21,4-41

VFRSIGHNS OF buS 2=20

VIRGIN DISK 3-15

VIRGIN DJISK? 4-41{

VIRTUAL ADNDDRFSS SPACE 2=20.,6-1

VIRTUAL CONTROL WOKD 4-13

VIRTUAL "ACHIYVE 4-3

MAN 1675

IADEX

~

e 1=2,4-5%,

b

VIRTUAL MEMURY i-
6’1:?’1
VIRTUAL MEMORY OPERATING SYSTEM
1-2.A-4
VIRTUAL TRAP 4-610
VRTSSW &‘52'4'6217'4
VRTSSW COMMAND -5

]

WAITY 4-13,4-14

WH 5-20,5-36

WITHOUT A VALJUF FOR PC 4-56

AUORD 2-9

JORD COUNT

HORD NUMBER
5-17

WORD NUMBER RAMNGE 5-1¢

AORDS PER ENTRY 2-11

YJRDCNT A-4

WRFC 5-36

ARITE 5-15,5~-17

WRITE A FILE 5-13%

WRITE ACCESS e-15,2-16,6~2

WRITE ERRORS 5-36

SRITE NOT SUCCESSFUL 4-41

WRITF ONLY 4-63,5-21,5-22

WRITE OPERATION 5-13

WRITE PROTECT 3-2:,3-20,4=22,
4-39,5-2C,5-36,K~6

MRITING 2‘112’3:2‘11!5'131
5-14,.5-15

WRITING INTO DIRECTORIES E-R

JRITING ONLY 2-5

X

X 2-19,4-468,4~5(,4~56

X REGISTFER S5<4

XERVEC 5-12

5-13,5-29,5-31,A-2
5‘12:5‘15:5‘16:

Y
YGCUR FILES CLOSED 4-57
YUUR SFOOL FILFKRAME IS FRAMTHN
454
2
ERC 4-16,4-24

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	I-01
	I-02
	J-01
	J-02
	J-03
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	L-01
	L-02
	L-03
	L-04
	L-05
	L-06
	L-07
	L-08
	M-01
	M-02
	M-03
	M-04
	M-05
	M-06
	M-07
	M-08
	M-09
	M-10
	M-11
	M-12
	N-01
	N-02
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21

