Prime Computer
User Guide

For
BASIC

Interpretive Language

PRIME COMPUTER. INC.. 145 PENNSYLVANIA AVENUE. FRAMINGHAM. MA. 0|70i



MAN 1813

BASIC
INTERPRETIVE LANGUAGE
USER GUIDE

Revision A

May 1975

PRIMIE
COMPUTER, ING,
[145 Pennsylvania Ave., Framingham, Mass., 01701]




First Printing May 1974 MAN 1813
Revision A May 1975

Copyright 1975 by
Prime Computer, Incorporated
145 Pennsylvania Avenue

Framingham, Massachusetts 01701

Performance characteristics are
subject to change without notice.

ii



CONTENTS

SECTION 1 STRUCTURE OF A BASIC PROGRAM

STATEMENTS

STATEMENT FORMAT
STATEMENT EXECUTION

ENTERING BASIC
MODES OF OPERATION
CONVERSATIONAL MODE

ENTERING PROGRAM STATEMENTS

STORAGE OF STATEMENTS

REPLACING A STATEMENT

DELETING A STATEMENT

SUMMARY OF BASIC PROGRAM EDITING PROCEDURES

EXECUTING A PROGRAM
BATCH MODE

EXAMPLES OF FILE COMMAND
LOADING AND RUNNING PROGRAMS
EXAMPLES OF LOAD COMMAND

IMMEDIATE MODE
COMMANDS

LOAD COMMAND
FILE COMMAND
LIST COMMAND
RUN COMMAND

NEW COMMAND
CLEAR COMMAND
CONTINUE COMMAND
RESTARTING BASIC

RESTARTING FROM DOS/VM
RESTARTING FROM DOS

ERROR MESSAGES

iii

Page

RO
]
e

[y
]
—

[N
]
DN b et

=
O O I N

=
vt

S
1] ] ] ] ] [} } ]

P bt b et bt e e
e e OO 00O O\

[——
]

et

-y

1-12



CONTENTS

Page
SECTION 2 TYPES OF DATA 2-1
NUMERIC VALUES 2-1
RANGE OF NUMERIC VALUES 2-1A
STRING VALUES 2-2
SCALAR VARIABLES 2-2
NUMERIC SCALAR VARIABLES 2-2
STRING SCALAR VARIABLES 2-3
ARRAY VARIABLES 2-3

ARRAY DECLARATION 2-4
ARRAY BOUNDS, DEFAULT BOUNDS, AND STORAGE ALLOCATION 2-5
ARRAY ELEMENT REFERENCES 2-5
RELATIONSHIP OF NAMES 2-6

SECTION 3 EXPRESSIONS AND FUNCTIONS 3-1
EXPRESSIONS 3-1

NUMERIC EXPRESSIONS

ORDER OF EXPRESSION EVALUATION

USE OF PARENTHESES

STRING EXPRESSIONS

RELATIONAL EXPRESSIONS

EXAMPLES OF RELATIONAL EXPRESSION USE
EVALUATION OF RELATIONAL EXPRESSIONS
STRING VALUES IN RELATIONAL EXPRESSIONS

1 [
~ O\ Lo BN NN

MMM({JMMMM

FUNCTIONS

A
|

SYSTEM FUNCTIONS
EXAMPLES OF USE OF SYSTEM FUNCTIONS
USER FUNCTIONS

LNLINUI

SECTION 4 FILES

=N
'
—

DEFINITION 4-1
PROGRAM FILES 4-1
DATA FILES 4-1

iv



CONTENTS

Page
SECTION 4 (Cont)
FILE NAMES 4-2
FILE NUMBERS 4-2
FILE EXPRESSIONS 4-3
SECTION 5 STATEMENTS 5-1
BREAK 5-2
CALL 5-3
DATA 5-4
DEF 5-5
DEFINE FILE/DEFINE READ FILE 5-6
FILE MODES 5-6A
RECORD SIZE 5-7
DIM 5-8
END 5-9
FOR 5-10
GOSUB 5-13
GOTO 5-14
IF 5-15
INPUT 5-17
LET 5-19
NEXT 5-20
ON 5-21
ON END 5-21
POSITION 5-22
PRINT 5-23

PRINTING NUMERIC EXPRESSIONS
PRINTING STRING EXPRESSIONS
COMMA SEPARATOR

COLON SEPARATOR

TAB REQUEST

PRINT LIST TERMINATION 5-26

(VAN T, NV NP,
1
DN
O VT U A

PRINT USING 5-27

FORMAT FIELDS 5
NUMERIC FIELDS 5-
STRING FIELDS 5
PRINTING SPECIAL CHARACTERS 5

READ 5
READ FILE 5-



SECTION 6

CONTENTS

SECTION 5 (Cont)

READ * FILE
REM
RESTORE
RETURN
REWIND
STOP

TRACE
WRITE FILE

READ AFTER WRITE CHECK

WRITE USING

ARRAY REDIMENSIONING
INITIALIZATION STATEMENTS

ARRAY INITTALIZATION WITH REDIMENSIONING

ARRAY ASSTGNMENT
ARRAY ADDITION
ARRAY SUBTRACTION
ARRAY MULTIPLICATION
SCALAR MULTIPLICATION
PRODUCTS OF ARRAY
TRANSPOSE OPERATIONS
MAT READ

MAT READ FILE

MAT READ * FILE

MAT WRITE FILE

MAT INPUT

MAT PRINT STATEMENT

SECTION 7 INTERFACE CONVENTIONS

RELATING CALL TO SUBROUTINE
MODIFYING COMMAND FILE
RUNNING PROGRAM WITH CALL STATEMENTS

APPENDICES

vi

ARRAY MANTPULATIONS AND ARRAY STATEMENTS

viorvTvTnn oo
[ Y N R N T
N NN

OO ~ITOOD

[}
—

] [} 1 I t t

[e Yo Ne NeoNe Ne ) Ne ) Ne)Ne Na He N o N e e Ne ) Ne )l (@)}
[}
b = = OO~V -

N =O O

~
1
[

~N 2
[
~ O\



FOREWORD

BASIC is easy to learn and easy to use. The rules of form and usage
are simple. This manual describes the Prime BASIC language processor
and demonstrates how it is used to solve problems and cope with features
commnon to computers. It is suitable for (1) people who know BASIC and
want to know what Prime's BASIC is like and (2) experienced programmers.
The tyro is advised to supplement this book with a primer on BASIC.

Prime BASIC is an extended subset resembling the BASIC developed at
Dartmouth College. It provides users with the ability to write programs
and get meaningful results from the computer in a relatively short

time. With a few hours of instruction and/or practice, most people

can produce worthwhile BASIC programs and obtain useful data from

them.

Section 1 describes the structure of a BASIC Program, gives
a few general rules about writing BASIC program
statements, and tells how to enter BASIC and how
to input, edit, and RUN programs.

Section 2 describes in detail how numeric and string data are
represented in BASIC, and gives limits of numeric and
string data values.

Section 3 describes both numeric and string expressions,
expression operators, and expression evaluation.

Section 4 describes the organization, and the input and output
of program and data files.

Section 5 describes the statements available in the BASIC
language. The function and syntax of each statement
is described and examples of each statement are
given along with the description.

Section 6 describes the statements available to manipulate
matrices and vectors.

Section 7 describes how to interface called FORTRAN or PMA
language programs.

Appendix A gives some sample programs using the BASIC language.

Appendix B 1ists the error messages returned by the BASIC
language processor and the definitions of those
error messages.



Appendix C is a quick summary of all the features of BASIC.
Appendix D describes a utility program to renumber BASIC programs.

Appendix E describes the memory requirements for various versions
of Prime BASIC.

VERSIONS OF BASIC

On the master disk (i.e., that disk supplied to the Prime customer with
all the current software), there are three versions of the BASIC
language interpreter: BASIC, LBASIC, and DBASIC.

The version named BASIC contains a subset of the BASIC language that does
not include MAT functions or PRINT USING functions. It is intended for
user's who may have memory limitations or who may only want a simple form
of BASIC. LBASIC is a full version of the BASIC interpreter that
includes MAT functions and PRINT USING functions. DBASIC is a full
version of BASIC that takes advantage of Prime's double-precision
floating point arithmetic capabilities.

A11 versions of BASIC on the master disk may be copied to the users
command directory (CMDNCO) or to a user designated UFD and renamed
""'BASIC" by use of the operating system's FUTIL and CNAME commands,
(Refer to the Disk and Virtual Memory Operating Systems User Guide).

DOUBLE PRECISION BASIC
Prime BASIC has been revised to include double precision floating point
representation. BASIC with double precision floating point is imple-
mented using floating point hardware; thus, coding that references
floating point operations is both in line and efficient.
All constants, variables, and array elements are represented in floating
point format with a 48-bit mantissa and a 16-bit exponent. This
representation allows numbers to have an accuracy up to 14.2 decimal
places. With double precision floating point, it is possible to repre-
sent a number up to:

9,999,999,999,999
or a dollar sum up to:

$99,999,999,999.99
without resorting to the use of scientific format.

To use the double precision version of BASIC, type the command:

DBASIC

viii



Use of this version of BASIC, other than for the extensions
outlined, is identical to the use of BASIC described in this manual.

RELATED PUBLICATIONS
The following Prime documents should be available for reference:
Disk and Virtual Memory Operating Systems User Guide

Program Development Software User Guide

ix



SECTION 1
STRUCTURE OF A BASIC PROGRAM

STATEMENTS

A BASIC program consists of a series of sequentially ordered
statements.

Statement Format

Each statement is preceded by an integer called the statement
number. This number serves as both a statement sequence number as
well as a line identifier. An example of a BASIC statement is:

100 PRINT 'AARDVARK'
Each statement must be contained on one line. The length of a line
is dependent on the number of characters that can be typed before a

carriage return is needed to prevent the line from overflowing.
BASIC will accept lines up to 120 characters in length.

Statement Execution

When a program written in the BASIC language is run, the statements
are executed in order of statement number (unless a statement such as
GOTO affects the normal order).
ENTERING BASIC
To enter BASIC from operating system command level, type:

BASIC

The system then replies:

GO
>

The character '>' indicates that the BASIC processor is awaiting a
command, and is printed as a prompt.

MODES OF OPERATION

The Prime BASIC language processor consists of a command processor,
a statement editor and a BASIC language interpreter.

1-1



After entering BASIC from operating system command level, GO is
typed. The user may:

1. Input, edit, and RUN programs written in the BASIC
language (conversational mode);

2. Execute existing programs written in BASIC language and
stored on disk or paper tape (batch mode);

3. Execute BASIC statements as they are typed at the terminal
(immediate mode).
CONVERSATIONAL MODE

Entering Program Statements

To enter a statement, type the statement number followed by the body
of the statement. All statements must be terminated by a carriage
return.

Statement Numbers: Statement numbers are integers that range from
T to 9999. They do not have to be in cardinal sequence (i.e.,

1, 2, 3...n-1,n), but they must be in an ordered sequence (e.g., 10,
12, 15, 20...n). It is recommended that statements be numbered by
increments of 10 (100, 110, 120, 130...). Then, if a statement must
be inserted between 10 and 20, for example; it can be numbered 15,
and it is inserted between 10 and 20.

For example:

110 PRINT 'NAME', N§
120 PRINT 'ADDRESS', A$
130 PRINT 'CITY'. C$

To insert lines between 110 and 120, and 120 and 130, in order to
make the output more readable, the user need only type:

115 PRINT
125 PRINT

at his terminal. The resulting program sequence is as follows:

110 PRINT 'NAME', N§

115 PRINT

120 PRINT 'ADDRESS', A$
125 PRINT

130 PRINT 'CITY', C$

1-2



Body of Statement: In the conversational mode, each statement starts
after its statement number with a full or partial English word. This
word denotes the type of the statement.

Examples of BASIC statements are:

100 REM THIS IS A REMARK
110 LET X =2
120 PRINT X

Blanks: Blanks (spaces) have no significance except in string constants.
Generally, spaces are used to make the program more readable. For
example:

110 LET X =
110 LET X =
110 LETX=3.14

1
1

are equivalent. Thus, BASIC statements are free-formatted and the
user may employ spaces at will to format BASIC program text.

Special Characters: The following characters have special meaning:

" removes the character previously typed.

? removes all previous characters on a line.

CARRIAGE RETURN Terminates a source statement.

This convention is consistent with the operating system and the
system Editor, (refer to the Disk and Virtual Memory Operating
System User Guide and the Program Development Software User Guide).

Storage of Statements

When the CARRIAGE RETURN is received by the BASIC language
processor, the statement is stored into the program storage area.

Statements may be entered in amy order, but their execution occurs
in the order of their statement number.

1-3



Replacing a Statement

If a statement is entered with the same number as a statement
already in the program storage area; the previous statement is
removed, and the new statement is placed in the storage area
instead.

Exggple:

Existing statement is:

110 LET X1 = Y**2

Assume a new statement is typed as follows:
110 LET X1 = Y2

The second statement rumbered 110 replaces the first statement.

Deleting a Statement

To remove an existing statement without replacing it, type the
statement number followed by a CARRIAGE RETURN. Example:

110

deletes statement numbered 110.

Summary of BASIC Program Editing Procedures

To input a statement, type:

unused statement number, followed by statement, followed by
CARRIAGE RETURN.

To 1insert a statement, type:

a statement using a statement number between the two
statements surrounding the insertion.

To replace a statement, type:

a new statement with a statement number that is identical
with the number of the statement to be replaced.

To delete a statement, type:
the statement number, followed by a CARRIAGE RETURN.

1-4



EXECUTING A PROGRAM

To run all BASIC statements in the program storage area, the user
types:

RUN

This causes the BASIC language processor to interpret and execute
the program comprised of the statements in the program storage area.

BATCH MODE

In addition to input from a terminal, statements may be input to the
BASIC processor from source files on disk, or from off-line storage
devices such as paper tape, magnetic tape, or cards.

Data to be processed during RUN time may come either from the program
itself (DATA statements), from the terminal (via use of INPUT
statements), or from files on disk. Output data from a program
written in BASIC may either be printed at the terminal or placed in

a file on the disk.

Batch mode requires the reading and writing of files via the use of
the LOAD and FILE commands.

After a BASIC program is writtem, it may be saved in the User File
Directory (UFD) via a FILE command. (For information on the UFD,
see the Prime Disk and Virtual Memory Operating Systems User Guide.)
The syntax of the FILE command internal to BASIC is:

FILE 'FILENAME'

or

FILE 'FILENAME', S1, S2
where FILENAME is the symbolic name of the file to be created or updated
enclosed in single quotes. The single quotes are delimiters necessary
to BASIC and are not part of the file name. The file FILENAME is
updated; however, the contents of the BASIC program storage area remain
unchanged. FILENAME may also be a parenthesized device name (see the
DEFINE FILE statement discussion in Section 5). The optional argument
S1 specifies the first statement number of the BASIC program to be
filed. If Sl is omitted, its default value is 1. The optional argu-
ment S2 is the last line to be filed. If S2 is omitted, its default
value is 9999. All statements having statement numbers in the inclu-
sive range S1 through S2 are output to the specified file or device.

Examples of FILE Command

FILE 'RANDXX'

creates a file named RANDXX in the UFD.

1-5



FILE ' (PTP)', 100, 200

creates a file for output to the paper tape punch consisting of all
the statements in the program storage area with statement numbers
between 100 and 200 inclusive. The contents of the program storage
area remain unchanged,

Loading and Running Programs

To load and run a BASIC program that has been previously edited and
saved in a file, the user loads the program by using the LOAD

command, and executes the program by issuing a RUN command immediately
after issuing the LOAD command.

The syntax of the LOAD command is:
LOAD 'FILENAME'
or
LOAD 'FILENAME', S1

where FILENAME is the name of a file in the UFD or a symbolic device
specification and the single quotes are delimiters required by BASIC.
The optional argument Sl is a statement number specifying that all
statements in the loaded source files are to be biased by the specified
statement number value, in order to avoid conflict with any program
already loaded. If S1 is omitted,statements in the program storage
area are numbered the same as the corresponding statements in the file.

The RUN command may have been written as the last line of the source
file by use of the system editor. In this case, the initial LOAD
command causes the program to be both loaded and rum.

Examples of LOAD Command

The command line:
LOAD 'RANDXX'

loads the previously saved file RANDXX into the program storage area.

LOAD '(PTR)', 1000

loads a file from the paper tape reader, and starts numbering the
stored statements at statement number 1000.

After the program, or programs are stored using the LOAD command,
the user executes all statements stored by typing:

RUN

1-6



The following is an annotated example of some trivial programs
written in BASIC. In shows simple editing of a series of program
statements in conversational mode and the loading and running of
programs using BATCH mode concepts. The use of the BASIC FILE,
NEW, LIST and LOAD commands is also illustrated. User input is
underlined.

OK» BASIC

GO

>10 REM START BASIC is invoked and a simple
>20 PRINT °“AARDVAARK’ program is typed in by the user
>30 END

>FILE “AARD’ ~€—T0 save this program as a file

SNEW < To clear program storage area

>30 PRINT °“SYZYGY’

540 END < Typing a new program

>FILE °SYZYGY®

>QWIT <———— To exit from BASIC

OKJ es e

OK, BASIC
GO

>LOAD -AARD At a later time BASIC is entered and

S Y SR N XA *
>LUAD ~SYZYGY the filed programs are loaded

>L157T .€————Tp 1ist the contents of the program
10 REM START storage area.

20 PRINT °‘AARDVAARK’
30 PRINT “SYZYGY’
40 END
>RUN —<€——To execute program
AARDVAARK
SYZYGY Output from user program

™n AT 1T n
D AT LINE 40

Ve

1-6A



IMMEDIATE MODE

Immediate mode allows a user to type BASIC statements with no state-
ment number and thereby obtain immediate results. Such statements
are not stored in the program storage area. For example:

PRINT 'XYZ'
causes the string XYZ to be printed at the terminal.
The immediate mode capability gives the user a super-calculator
with a rich choice of functions, automatic decimal point handling,
and up to 286 variables, as well as arrays available for partial
answer storage.

One use of immediate mode is to use the BASIC subsystem as a desk
calculator. For example:

X = 256*12
PRINT X
returns the product of 256 and 12.

The PRINT statement is a particularly useful immediate mode command.
For example:

LET X1 = 1.05
PRINT SIN (X1* 3,14959/180)
causes the appropriate value of the SIN function to be issued.

The immediate mode is useful at times for debugging programs written
in BASIC. For example, if the user has made use of the BREAK statement
(Section 5) to halt a program at some point, typing:

PRINT J2

prints the value of the variable J2 at the point that the execution
of the program was interrupted.

Similarly, it is possible to use the PRINT statement to print the
value of any and all variables at a point of interruption.

1-7



COMMANDS

The BASIC language processor provides a number of commands to be used
with the operating system and to initialize storage areas. Of these,
use of RUN, FILE and LOAD have been previously discussed.

These commands are usually executed in immediate mode, but they may be
part of a program statement.

The syntax and function of system commands are described in the follow-
ing paragraphs:

LOAD COMMAND
Syntax
LOAD 'FILENAME'
or
LOAD 'FILENAME', S1
'"FILENAME' - is a string constant that specifies
the file to be created (or parenthe-
sized device specified). The single
quotes are delimiters required by BASIC.
S1 - is a relocation constant that is added to
every statement number in the program,
written in BASIC, to be loaded.
Function

The specified file (of BASIC Source Statements) is loaded into the
BASIC program storage area.

The loaded program is merged with any program already loaded. For
examples, see the previous section entitled '"Examples of Load Command'.

FILE COMMAND

Syntax
FILE 'FILENAME'
or

FILE 'FILENAME', S1
or
FILE 'FILENAME', S1, S2

'FILENAME' - (is the same as described for
LOAD, above.)

S1 (optional) = first line to be filed (default = 1).
S2 (optional) = last line to be filed (default = 9999).

1-8



Function

All statements whose statement numbers are in the inclusive range
S1 through S2 are output to the specified disk file or output
device. Output is in the order of their statement numbers.
Example.

FILE 'NEWPRO'
LIST COMMAND
Syntax
LIST
or
LIST S1
or
LIST S1, S2
S1 = first line to be listed (default = 1).
S2 = last line to be listed {(default = 9999).
Function

The LIST command prints output at the terminal. The LIST command
provides a means to print all or part of the previously edited state-
ments for the user's inspection.

Examples:

LIST

LIST 100, 250
RUN COMMAND
Syntax

RUN

or

RUN S1

S1 = statement number specifying the first statement
to be executed (default is the first statement
in the program).

1-9



Function
RUN clears all variables, allocates arrays from DATA statements,
and starts program execution.

NEW COMMAND

Szgtax

Function
The NEW command deletes all existing program statements and de-
allocates all arrays and variables.

CLEAR COMMAND
Syntax
CLEAR
Function
The CLEAR command de-allocates all arrays and variables. Any

existing statements are not deleted.

CONTINUE COMMAND

ngtax
CONTINUE

Function

The CONTINUE command restarts program execution at the point that it
was last interrupted by a BREAK, STOP or END statement.

1-10



RESTARTING BASIC
Restarting from DOS/VM

The user may desire to QUIT from running a BASIC program (e.g., to
avoid printing unwanted output), and then return to running under
control of BASIC. Naturally, it is desirable not to lose any inform-
ation in the program storage area or cause any unspecified operations.
For DOS/VM, the correct manner to achieve this result is to type the
following sequence of system command lines:

CONTROL-P (Quit by pressing terminal CTL
and P Keys simultaneously).

START 1002

Restarting from DOS

Under DOS, to QUIT from running a BASIC program, momentarily set
Sense Switch 1. The running program is interrupted and contro;
returns to BASIC command mode.

Return from INPUT

The user may type the sequence:
CONTROL-C To return from BASIC INPUT statement

execution to conversational mode
(Refer to Section 5).

1-11



ERROR MESSAGES

Statements are syntactically checked as they are entered. Errors that
can only be detected within the context of the entire program are
detected at run time. An example of a syntax error is:

100 PRINT 'SUMOF A § B IS: X

The closing ' mark is missing and this would be detected immediately
upon entry. An example of a context error is an undefined statement
number in a GOTO statement.

If an error is detected during statement input, a two-line error is
printed at the terminal. The first line is the source statement in
error. The second line consists of first, a vertical arrow positioned
under the last character that BASIC examined before detecting the
error, and then a two-character error code. These codes are listed as
source (S) errors in the table in Appendix B.

Errors detected during program input cause the line in error to be
removed from the program.

During program exectuion (RUN time), detected errors cause a one-line
message to be printed as follows:

ERROR XX LINE 385

where XX is the error code. These codes are listed as execution (E)
errors in the table in Appendix B.

Errors detected during program execution also cause a pause to
occur. Typing:

CONTINUE

causes processing to continue with the next statement,

1-12



SECTION 2
TYPES OF DATA

Two types of data are supported by Prime BASIC: numeric and string.
BASIC allows constants and variables of both types.

NUMERIC VALUES

A numeric value is a floating point number. Depending on the version
of BASIC being used, it may be single or double precision.

A numeric constant is written as a signed decimal number. It may
contain a decimal point, and it may be followed by an exponent.

The exponent field is optional and is written as the letter E
followed by an optionally signed decimal integer.

If the decimal point is omitted, it is assumed to be located immedi-
ately to the right of the last significant digit (right-most digit).

If the sign of either the numeric constant or the decimal integer
exponent is omitted, it is assumed to be positive.

Examples:
12
1.2
-6.666
-7

2.5B-2  (.025)

2.5E+12 (2.5 * (10)12)
-7.3E-2  (-.073)

SE5 (500000)

2-1



Range of Numeric Values

For single-precision values; all constants, variables and array
elements are represented in floating point format with a 24-bit
mantissa and an 8-bit exponent. This representation allows numbers
to have accuracy up to 6.2 decimal digits, and the exponent of a
single-precision numeric value may range between -38 and +38. (10 to
the -38 power, or 10 to the +38 power).

With single-precision format, it is possible to represent a number up
to: 999,999 or a dollar sum up to: $9,999.99 without resorting to
scientific format.

For double-precision values; all constants, variables, and array
elements are represented in floating point format with a 48-bit
mantissa and a 16-bit exponent. This representation allows a number
to have an accuracy up to 14.2 decimal places.

With double-precision floating point, it is possible to represent a
number up to: 9,999,999,999,999 or a dollar sum up to: $99,999,999,999.99.

2-1A



STRING VALUES

A string value is a string of ASCII characters.

A string constant is written as a set of 0 or more contiguous ASCII
characters enclosed in delimiting single quotation marks

(or apostrophes). A string constant can contain any ASCII character
except: CARRIAGE RETURN, ?, or '". The maximum length

(number of characters) of a string value is a function of the line
size of the terminal or upon the available memory. Generally, this
is large enough to be of no problem to the user. It is suggested
that for convenience no string be greater than 80 characters.

'"THIS IS A CHARACTER STRING CONSTANT'

'DATE/TIME/YEAR'
"' (null string)
112345

SCALAR VARIABLES

A scalar variable is implicitly defined when it is used in a

BASIC program. The type of scalar variable (i.e., numeric or
string) is determined by the form of the variable name.

Numeric Scalar Variables

The name of a numeric scalar variable is a single letter (A-Z), or it
is a single letter (A-Z) followed by a single digit (0-9). Ea}ch
variable represents a single numeric value; there are 286 possible
mumeric scalar variables. A numeric scalar variable is initialized
automatically to 0 at the start of the BASIC program that defines

it.

Examples of Numeric Scalars:

X
Al
G3

2-2



Example of Use of Numeric Scalars:

20 LET C1 3.14157

22 LET ‘X

C1*2

String Scalar Variables

The name of a string scalar variable consists of a single letter
followed by a dollar sign. A string scalar variable represents a
character string of variable length. String variables are initial-
ized to a null (zero length) string at the start of the BASIC
program that defines it. The length of a string variable is auto-
matically set to the length of the string that is assigned to it.

Example of String Scalar Variable:
BS

Example of Use:

100 LET B$ = '"BALANCE IS:'

ARRAY VARIABLES

An array is an ordered set of values. All elements of an array
(array variables) have the same data type (i.e., either mumeric or
string). The elements of an array are stored in contiguous
locations in storage and are referenced by an array subscript.
Arrays are stored in colum major order.

An array name is represented by a single letter followed by the
parenthesized list of one or two bounds.

An array element is designated by an array subscript that is either
one number (bound) in parentheses (one-dimension), or two numbers
(bounds) in parentheses and separated by commas (two-dimensions).

An array with one-dimension may be operated on as a vector; with two
dimensions, it may also be operated on as a matrix (See Section 6).

Exgggles:
A (6)

A (2, 3)

2-3



Conceptually, the array A (2,3) is:
A (0,0) A (1,0) A (2,0)
A (0,1) A (1,01) A (2,1)
A (0,2) A (1,2) A (2,2)
A (0,3) A (1,3) A (2,3)
Table 2-1. Example Array A (2,3)

Logically, the array A (2,3) maps into storage as shown in the
following table:

Relative

Location Element
0001 A (0,0)
0002 A (1,0)
0003 A (2,0)
0004 A (3,0)
0005 A (0,1)
0006 A (1,1)
0007 A (2,1)
0008 A (3,1)
0009 A (0,2)
00010 A (1,2)
00011 A (2,2)
00012 A (3,2)

Table 2-2. Array Mapped into Memory

Array Declaration

An array can be explicitly defined in a DIM statement, or implicitly
defined by its use in the program.

DIM statements, if used, may appear anywhere in the program,
since BASIC locates and interprets all DIM statements before
execution starts.

Examples:
DIM A (5)

defines a one-dimensional array of 6 locations A, A (0) through
A (5).

2-4



DIM A (2, 3)

defines a two-dimensional array of 3 colums and 2 rows, A (0,0
through A (2,3).

NOTE: The entire chart shown in Table 2-1 is the array
specified by the DIM statement, DIM A (2,3). Those
elements of the array that do not have zero subscripts
(e.g., A (1,2); A (1,3); A (2,1); A (2,2); A (2,3) define
the matrix A. This matrix may be manipulated via the MAT
statements described in Section 6.

If the DIM statement is omitted (i.e., an array is undeclared), the
array dimensions are established in any MAT statement encountered;
otherwise the array is either a one-dimensional array of no more than
10 elements (e.g., A(10)), or a two-dimensional array of bounds 10 by
10 (e.g., A(10,10)), depending on how the array is referenced.

Use of an array in a MAT statement can cause the array to be defined
either as a vector or matrix depending on the other arrays used in
the statement (refer to Section 6).

Array Bounds, Default Bounds, and Storage Allocation

The original bounds of an array are established by the DIM statement that
defines the array, by the first MAT statement that references the array,
or the implicit value ((10) or (10,10)). The original bounds of an
array specify the total amount of storage allocated for the array. The
MAT statement can reduce the size of an array, but the MAT statement
cannot increase the size of the array beyond that of the original
definition. Although the dimensions of an array may be changed, the
storage allocation for the array does not change during execution of

the BASIC program.

Array Element References

Numeric Arrays: The name of a numeric array is a single letter
(A-Z). When a single element of an array is initialized to any
value, the remaining elements of numeric arrays are initialized to 0.

String Arrays: The name of a string array is a single letter followed
by a dollar sign, $. The elements of a string array are variable-
length character strings. These character strings may all be of
different lengths. Elements of a string array are initialized to a
null value when the array is established.

A reference to an array element consists of the array name followed
by a parenthesized list of one or two subscripts; i.e., A (S1) or
A (S1, S2), where A is the array and Sl and S2 are positive numeric
expressions (see Section 3 for a discussion of expressions).

2-5



Examples of Numeric Arrays:

A(5)
A(2,4)

A(K, J) where K and J are numeric scalar
variables

A(I+1, J/2)

A (I+J, 3*K-2)
If the value of a subscript expression is fractional, the value of
the subscript is truncated to an integer before it is used to locate

the specified array element.

The value of any array subscript expression must be within the range
of the corresponding array dimension.

Examples of String Arrays:

A$(5)
A§ (I+1, 3*K-2/J)
A$(A (T) /4)

Relationship of Names

A string variable and a string array may have the same name in a
program. Likewise, a numeric variable and a numeric array may have the
same name. However, these names all refer to entirely different
entities. The context in which the name is used is the determining
factor. For example:

10 B§ = 'BBBBB'
20 DIM B$ (7)
25 B =2

30 DIM B (7)
are different variables even though the names are apparently the
same. B§ references a string scalar variable; B$ (7) references

a string array of 8 elements (0-7); B references a numeric scalar
variable and B (7) references a numeric array.

2-6



SECTION 3
EXPRESSIONS AND FUNCTIONS

The first part of this section describes the arithmetic and string
expressions that may be constructed in the Prime BASIC language.
The second part describes functions, both user defined functions,
and system functions provided by BASIC, such as SIN, LOG, etc.

EXPRESSIONS

BASIC expressions are constructed from operators and operands. An
operand may be a constant, a scalar variable, subscripted array
element, or a function reference.

Operators that require two operands are called binary operators.
Operators that require one operand are called unary operators.

BASIC defines two types of expressions: numeric and string.
Numeric operands must not be used with string operators and string
operands must not be used with numeric operators. There is no
conversion between numeric and string values. The user must define
explicit conversion functions to convert from one data type to
another.

Numeric Expressions

BASIC defines two umary operators and five binary operators that
operate on numeric operands to produce a numeric value.

Operator Meaning Example

+ unary plus +1

- unary minus -1

+ addition I1+J
- subtraction I1-J
* multiplication I *J
/ division 1/J
+ exponentiation I 4+ 2

Table 3-1. Numeric Operators

The operators listed in Table 3-1 have their normal arithmetic
meaning. The operations are performed in floating-point arithmetic.

3-1



The user is cautioned that if he uses the system editor to create
a BASIC source program, then escape conventions must be observed
to produce some of the symbols desired. For example, using the
system editor, the exponentiation operator (*) must be escaped by
typing a double vertical arrow (e+).

Order of Expression Evaluation

A numeric expression is evaluated in the order of operator priority.
This is determined by rules of precedence in the BASIC langauge
processor. These rules of precedence are:

Precedence Operator
3 1t
2 unary (+,-), *, /
1 +, -

Operators with higher precedence are evaluated before operators with
lower precedence.

Operators with. equal precedence are evaluated from left to right.

Example:
A+B-C*D* E*tFrG
is interpreted as:

(A+B) -((C*D) * ((E*F)*())

Use of Parentheses

Parentheses can be used to control the order of expression evaluation.
The operation inside of the parentheses is evaluated first.
Example:

(A+B)/ 2
The addition, A + B, is performed, then the division by 2 is
performed, even though / has higher precedence than binary +.

String Expressions

String expressions in BASIC are constructed using the concatenation
operator (+). This operator combines two string values to produce

3-2



a string having a value of the characters of the first string
immediately followed by the characters in the second string.

Examples:
A$ + BS
'"HELLO' + U$ + 'WELCOME TO PRIME DOS WM!'
'ABC' + B$
X$ (I-1) + 'Ql* + S$

Relational Expressions

BASIC defines six relational operators that may be used in either
mmeric or string expressions, as long as data types are not mixed.
The relational operators are shown in the following table:

Operator Meaning Examples

< less than X<Y X$ <Y$

> greater than X1>Y1 A$ >B$

= equal I=J01 C$ = D§

<= less than or equal J2 <= J3 A$ <= B§ + C$
=< less than or equal JZ =< J3 A$ =< Y$

>= greater than or equal Z >= 10 A$ >= C$

z> greater than or equal 10 = Q C$ => BS

<> not equal D<>1 A$ <> !

>< not equal Al >< A2 + A3 A$ >< B§

Table 3-2. Relational Operators

Examples of Relational Expression Use

20 IF SIN (ABS (K - 3.14) - 1) = (I+1) - 1 THEN 200
30 IF S§ <> 'Tt THEN 450

3-3



Evaluation of Relational Expressions

The relational expressions are true if the expressions satisfy
the given expression. Examples:

120 IF X =< Y THEN 900
150 IF B$ = '"END' THEN 9999
160 IF B$ >A$ THEN 120

String Values in Relational Expressions

When string values are compared in relational expressions, character
ordering is determined by ASCII code. If the strings being compared
are of different lengths, the shorter of the two strings is extended
by adding spaces to the right until the strings are of the same
length; then, the strings are compared. Use of string values in
relational expressions are given in statements 150 and 160 in the
previous set of examples.

FUNCTIONS

BASIC provides system functions and allows the user to provide
user-defined functions. A function reference consists of a function
name followed by a parenthesized arguement list containing one or
more arguments. Function arguments are evaluated before the function
is evaluated.

Arguments used in a function reference must match the number and
data type of arguments expected by the function.

Function references are evaluated at the point that their value
is required. They do not affect the order of operator evaluation.

System Functions

The following list gives the numeric and string functions provided

as system functions by the BASIC language processor. In all of the
descriptions in the list, X represents any numeric expression, I

and J represent any integers, and A$ represents any string expression.

3-4



SIN(X)
COS (X)
TAN(X)
ATN(X)
LOG(X)
EXP(X)
SQR(X)
ABS (X)
SGN(X)

INT(X)

RND(X)

LEN(A$)

computes the sine of X, X expressed in radians
computes the cosine of X, X expressed in radians
computes the tangent of X, X expressed in radians
computes the arctangent of X, result is in radians
computes the natural logarithm (base e) of X
computes e raised to the X power

computes the square root of X

computes the absolute value of X

returns a value based on the sign of X as follows:

X<0 SGNX) =-1
X=0 SANX) =0
X>0 SGNX) =1

If X >=0, returns the greatest integer >= X. If
X <0, returns the least integer >- X.

If X< 0, uses X to initialize the random number
generator, and returns X as the function value.

If X>0, uses X to initialize the random number
generator, and returns a value in the range zero to
one. If X = 0, returns a random mumber in the
range zero < result < 1.

returns the length (number of characters) of the

c¥ring A
Sl lilg H$-

SUB(A$,I,J) returns a substring that is composed of characters

oT
SUB(A$,1)

I1-J of string A$. If J is not specified, the result
is a one character substring consisting of character
I of string AS.

3-5



Examples of Use of System Functions

INT: One use of the INT function is to round numbers. Example:
INT (2.9 + .5) = INT (3.4) = 3

The INT function can also be used to round any specific numeric
value to any specific number of decimal places. Examples:

INT (10*X1 + .5) /10

rounds X1 to 1 decimal place.

INT (100 * X1 + .5) /100

rounds X1 to 2 decimal places.

RND: To produce twenty three-digit random integers, edit and run
the following BASIC program:

10 REM PROGRAM TO PRINT RANDOM NUMBERS OF 3-DIGITS OR LESS.
20 FOm Izl TO 20

30 LET L=’ND(J)

35 LT LI=INTC(L*1309)

40 PRINT LI

59 NZXT I

60 END

EXAMPLE OF NUTPUT
RUN
211
852
301
716
673
176
535
507
353
163
373
399
13
266
473
61
645
9U6
212
699

END AT LINE 60



The following example is a program that illustrates a use of each
of the system functions previously described; it is followed by
sample output so the user can get an idea of the results from using
the system functions.

100 REM EXAMPLE TO SHOW USE OF SYSTEM FUNCTIONS
110 REM
120 REM MLG 11-29-74

155 REM

143 LET V = .01745

150 REM 1 DEGREE IN RADIANS
160 W = .52359

170 x = .78540

180 Y = 1.04719

190 2 = 1.57079

20U REM wrX,YsZ EQUIVALANTS 30,45,60,90 DEGREES RESPECTIVELY
210 REM

220 REM TRIGONEMETRIC FUNCTIONS CALCULATIONS
230 s1 = SIN (V)

240 $2 = SIN (W)

250 $3 = SIN (X)

260 S& = SIN (Y)

270 S5 = SIN (2)

280 €1 = €OS (V)

290 €2 = €O0S (W)

300 €3 = €OS (X)

310 €4 = €OS (Y)

320 €5 = €OS (2)

330 11 = TAN(V)

340 T2 = TAN(W)

350 T3 = TAN(X)

360 T4 = TAN(Y)

370 TS = TAN(Z)

360 A1 = ATN(TD)

39G A2 = ATN(T2)

405 A3 = ATN(T3)

410 A4 = ATN(TS)

420 A5 = ATN(TS)

43) PRINT '"DEGREES'",'SIN','COS','TAN','ARCTAN'
440 PRINT

450 PRINT 1,51,C1,T1,A1

4613 PRINT 31sS2,C2,T25A2

470 PRINT 45,53,€3,73,A3

3-6A



48(
494
500
510
5¢0
530
S4U
554
560
570
S&0
590
6uUU
610
620
630
640
650
66U
670
680
690
700
714
724
730
740
750
760
770
78U
799
800
810
s20
830
240
&5
&60
870
280
890
900
¢10
G24
930
940
950
960
970
984

PRINT 60»S6,Co4,Tb4,AG

PRINT 20,55,C5,T5,A5

REY

REM ARITHMETIC FUNCTIONS (LOG ETC)
REM

7.5U0

LOG(X)

EXP(X)

SQR(X)

ABS (X))

INT(X)

SGN(X)

PRINT

PRINT

PRINT °'NUMBER =',X

PRINT 'LOG(X)',L

FRINT 'EXP',E

PRINT ‘'SQUARE ROOT'.,G

PRINT

PRINT 'ABSU{X)',"INT(X)','SIGN(X)'
PRINT

PRINT A,1,P

PRINT

PRINT

REM RANDOM NUMBEFR FUNCTIONS

REM

PRINT 'RANDOM NUMBER FUNCTIONS®
PRINT

PRINT "RND(CO)","RND(N)","RND(-N)"
PRINT

21

oo yonn

Ve rP» oo mrr x

RND ()

12 RND (1)

3 RND(=1)

PRINT 21,222,173

PRINT

REM STRING FUNCTIONS

REM

x$ = 'EVALUATION OF STRING EXPRESSIONS'

PRINT 'VALUE UF A GIVEN STRING:'
PRINT

PRINT X3

PRINT

L1 = LEN(YS)

PRINT 'LENGTH OF STRING:'

PRINT L1

PRINT

PRINT 'SURBSTRING POSITIONS 21-31:"
BS = SUB(X$,21,31)

PKINT B%

ORINT

END



Sample Output:

> DEGREES SIN

0
1

THN ARCTARN

1 1. Ve441E-62

o
)
\D
o
Ja
=)
[
~J
Ju
]
[
[
m
|

[
L
[
=~
N
N
I':'!
o
[u

=0 . SR

£
o
=}
Doy
-
[EN

[y o

o I

~J 0

[y [n§

= h

B

[xn] (Y]
[A)]
58

N

=4

=J

) '

!

(]

=J U

Q0 [

L L)

Al W]

0 0
L]

J

]
0
y
[y
o
(]
=
o]
=
=
]
ix]
=)

1. 7EzBZ 1. 684713

L
)
=
a4}
~J
o
=
[EN
T
m
|
[x]
1Ty

142Z24Z 1. 57873

HUMEBER = P

-~

f145

T ~
LG <.

ExF 1282 a4

e

SRUARE ROOT 2. FTESAL -

RES O IMT D SIGHC =D

FANDOM HUMEBER FUNCT I0OMNZ

FHDCED FEMHDCH S REROC=MH2

1 L 211273

Q]
=
5%
i8]
=)
o)
|

3-6C



Sample Output: (Cont)

WALLE OF A GIWEM STREING:

EVALUATION OF STRING EXFREZZIONS

LENGTH OF STRIMNG:

oy

SLUBSTRIMG FOSITIONS 21-21:

ExFREZZION

ERE AT LIME 228

3-6D



User Functions

In addition to the system functions, BASIC allows the user to
define functions. These functions are local to the BASIC program
that contains them.

The name of a user-defined numeric function consists of the
letters FN followed by a single letter.
Example:

FNA (X)

A reference to a user defined function consists of the name of
the function followed by a parenthesized argument expression.

A user defined function is defined by use of the DEF statement
(see Section 5). For example:

120 DEF FNA (X2) = 3.14 * Xi+Z

H

A user defined function reference may be included as an operand
in an expression. Example:

170 LET Al = 3.14 / FNA (X1)
The argument of a user-defined function may be an arithmetic
expression. The expression in the function reference argument
is evaluated, and the value of the expression substituted for the
argument in the function definition. For example:

180 LET Al = 3.14 * ENA (X1 + COS (B(3,4))

3-7



SECTION 4
FILES

DEFINITION

A BASIC file is a set of data external to the BASIC program. A file
is known to the operating system by its association with an
input/output device. The data in a BASIC file are organized into
sequential records. The contents of a file are made available

to the program by the execution of input/output statements that
transmit data between the file and the program.

The PRIME BASIC allows the user to create and use both program and
data files.

PROGRAM FILES

A program file may be created by using the operating system editor
(ED or FILED), to create a file consisting of sequentially ordered
BASIC statements. For details, refer to the Prime Disk and Virtual
Memory Operating System manual, and the Program Development System
User Guide.

Generally, a BASIC program file is created by first, editing a
program in conversational mode, as described in Section 1; then,
using the FILE command, described in Section 1, to write the
program file in storage. For example:

FILE 'RANDII'

stores the contents of the program storage area in a file on disk
named RANDII.

After a program file has been created, it may be loaded and executed
by entering BASIC and typing the LOAD and RUN commands. For
example:

BASIC

GO

>LOAD 'RANDII'
> RUN

The word GO and the > character before the LOAD and RUN commands are
responses printed by the BASIC language processor.

DATA FILES

Data files for input to a BASIC program are created by using the
operating system editor (ED or FILED) to create files or by using
other BASIC or FORTRAN programs (Refer to Section 5, DEFINE FILE,
for a description of possible file formats).

4-1



An ASCII file, the most used type of file, is a string of ASCII
characters organized into lines followed by a CARRIAGE RETURN.

A line consists of a contiguous string of characters between a
CARRIAGE RETURN character and the next CARRIAGE RETURN character
in the file. The length of a record in a file can be up to 72
characters, including the commas and the CARRIAGE RETURN. Each
data item in the file must be separated from the other items by
a comma.

Data files are read, manipulated, and written, by DEFINE FILE,
DEFINE READ FILE, READ, REWIND and WRITE statements within any
programs written in the BASIC language, that reference data files.

File Names
The name of a file stored on disk is a string of six ASCII

characters enclosed in single quotes. This string is used by the

BASIC interpreter to locate the file. An example of a file name
is:

'RAND1X'

A file name may also be a parenthesized device rame (see Section 5).

File Numbers

A BASIC program refers to files by means of a logical file number.

The range of file numbers is between 1 and 8 inclusive. The corres-
pondence between a file name and a file number is established by

the DEFINE FILE (or DEFINE READ FILE) statement. A file is considered
to be open if it is currently assigned a file number; otherwise,

it is considered to be closed.

A DEFINE FILE statement in a BASIC program causes an attempt to
locate the specified file. No error message is printed if the file
cannot be located, unless the file was referenced in a DEFINE READ
file statement, in this case, an error message is printed. However,
even if the absence of a specified file is not detected, subsequent
statements that reference the file may produce an error message.

A file remains open until it is closed. A file can be closed when:
1. control returns from a BASIC program to an operating
system (either normally or abnormally). All files
opened by that program are then closed.

2. a file is closed if its file number is used in a
subsequent DEFINE FILE statement.

4-2



File Expressions

The user can write an expression in a DEFINE FILE statement that is
evaluated to form a file number. The value of this expression
is truncated to an integer if it is a non-integer.

4-3



SECTION 5

STATEMENTS

This section describes all the BASIC statements implemented by the
Prime BASIC language processor except for the array manipulation
statements. These are described in Section 6.

In all the examples shown in this section and Section 6, the response
character, >, and the INPUT statement prompt character i are not
shown unless deemed necessary for the purposes of the example.

Certain statements are only available on larger memory configurations

( 16K memory), notably the MAT and PRINT USING statements. Table

5-1 is a list of configurations and the extent of the BASIC implementa-
tion on those configurations. Appendix F gives further details with
regard to memory mapping and memory sizes.

Version of BASIC hgmnry
Size

BASIC without MAT or DPRINT USING 16K
BASIC with MAT statements 32K
BASIC with PRINT USING statement 32K
BASIC with both MAT and PRINT USING 32K
statements

BASIC with Double Precision 32K

Table 5-1. List of Configurations and BASIC
System Statement Availability

5-1



BREAK

The BREAK statement selectively enables or disables breakpoints
at specific statements.

Szgtax
BREAK ON N1,...Nn
or

BREAK OFF NI1,...Nn

where N1...Nn is a 1list of statement numbers separated by commas.
If a statement at which a breakpoint is set is accessed during the
execution of a program, control is returned to the BASIC processor
comnand level (immediate mode) before the statement is executed.

If no statement numbers are specified with a BREAK OFF statement, all
breakpoints previously set ON are set OFF.

90 BREAK ON 40, 318, 215, 10, 45, 9999

195 BREAK OFF 10, 40

200 FOR X = 1 to 10

210 A = FNA (X)

215 REM, CHECKING VALUE COF A
220 NEXT X

235 BREAK OFF 215

5-2



CALL

The CALL statement is used to interface to a written subroutine that
is user-written in FORTRAN or assembly language.

Szgtax
CALL C

or

CALL C(L1, LZ....Ln)

where the constant C is an integer that serves as a subroutine
identifier. The value of the constant C is limited only by the
size of available memory; i.e., as many subroutines as will fit
in memory may be called. The subroutine identifier is related to
the address of the subroutine by a user supplied file. The format

and use of this file are described in Section 7, Interface Conventions.

Ll...Ln are items in a list that are argument specifications to
the subroutine calling sequence. The argument list may contain up
to 26 items. An argument specification can be a numeric or string
variable, a numeric expression, an array, a subscripted variable
or a function argument. String expressions or string constants
cannot be included in the argument list. Arrays, variables, or
subscripted variables can be redefined by the called subroutine.
However, the value of numeric constants or expressions camnot be
redefined by the called subroutine; they can only be passed to the
called subroutine. All items in the list L1...Ln must be separated by
commas.

Exggple
CALL 5 (X1, X2, 6, A(10), X+1)



DATA

The DATA statement allows the user to specify a list of numeric or
string constants within the program. The constants must be
accessed by a READ statement.

Syntax:
DATA (1, C2, C3,...,Cn

where Cl...Cn are numeric and/or string constants separated by commas.
A trailing comma causes an error. The list of string or numeric
constants may be any length as long as the length of the line

is not exceeded. To extend the list of constants more than one line,
it is permissible to write subsequent DATA statements.

The DATA statement is a nonexecutable statement that creates a block
of data to be read by the READ statement. BASIC separates numeric
constants in DATA statements from string constants and maintans a
separate data pool for each type. Any number of DATA statements

can appear at any place in the program. Data from all of the DATA
statements in the program, taken in the order of the DATA statements,
are concatenated to create a block of numeric DATA and/or a block of
string data.

When there are no more DATA items to be read, the program prints
the message:

'OUT OF DATA AT N'
where N is a statement number; and the program terminates.
Examples:
100 DATA 2.3, 3.4, 3.7E02, 1, 2, 3
200 DATA 3.1415, 2.783, 0
300 DATA 'ITEMS', 300 'COST' 1.58

5-4



DEF

The DEF statement defines a function of a single variable.

Syntax
DEF FNA(V)

where A is the function name and V is any variable. V may be an
expression that returns a value. For further explanation, refer to
"User Defined Functions' in Section 3.

The DEF statement defines a single-line function whose value is the
value of any expression that can refer to the optional function
parameters. The type of the expression must be the same as the type
of the function as defined. A particular function camnot be defined
by more than one DEF statement in the same program.

A function parameter (function term) is a scalar variable that is

local to the function body, and a function parameter has no relation-
ship to a variable of the same name elsewhere in the program. The
value of the function parameter is set to the value of the corresponding
function argument when the function is invoked.

DEF is a non-executable statement, and a DEF statement can be
written anywhere in the program.

20 DEF FNX (B) = 2./COS(B)*3

100 DEF FNO (P) = 3.14159

5-5



DEFINE FILE/DEFINE READ FILE

The DEFINE FILE statement opens the specified BASIC logical file
unit for reading and writing.

Szgtax:
DEFINE FILE #E1 = 'S', M, E2

where E is an arithmetic expression defining file umit numbers (1-8),
S is a string expression specifying file names or an I/0 device,

M is an optional parameter that specifies the mode of the file, and
E2 is an optional parameter that defines file record size.

DEFINE READ FILE #E1 = 'S', M, E2

The DEFINE READ FILE statement functions the same as DEFINE FILE,
except it opens the specified BASIC Logical Unit for reading only.
The parameters have the same meaning as in the DEFINE FILE statement.
For further examples of usage of DEFINE FILE and DEFINE READ FILE,
refer to Appendix C.

El is an arithmetic expression defining BASIC logical
unit number. BASIC allows eight logical units (1-8).

Device Names
S is a string expression defining file name. If the

name starts with a left parentheses, it is 1nterpreted
as a device name of the format: (dxu)

where: d = device identifier
X = don't care
u = unit specifier

Possible values for device identifier are:

A - ASR = pdev =

P - PTR/P « pdev = 2
C - Cards - pdev = 3
L - Line Printer - pdev = 4
M - Magnetic Tape » pdev = §

The unit specifier, u, ranges from 0 to 9. If the
unit specifier is not a digit, the physical unit is
the BASIC unit plus 3.



Disk File names are one to six characters long and begin with a letter.
1/0 device identifiers are enclosed in parentheses and delimited by
single quotes. Valid I/0 device identifiers are as follows:

Device Identifier Device
"(A)' Teletype (terminal)
'(P)' Paper tape reader/punch
'(LPR)' Line printer
Mk Card reader
'(MI1)! Magnetic Tape #1
'MI2)! Magnetic Tape #2
'(MT3)! Magnetic Tape #3
'(MT4)! Magnetic Tape #4

The standard versions of BASIC do not contain drivers for physical
devices 3 to 5. They can be configured by modifying the BASIC IOCS
configuration module, BASIO, and rerunning the appropriate command

fiie

File Modes

The optional mode parameter M specifies the mode of the file (i.e., the
kind of file that it is). Possible entries are: .

Mode (M) Meaning

ASC ASCII file.

ASC SEP ASCII file. When writing to the file, BASIC
inserts a comma between output fields rather
than the spaces specified by the WRITE state-
ment item separators. The type of file
produced by specifying ASC SEP is suitable for
input to other BASIC programs (i.e., acceptable
to BASIC as a READ file).

BIN Binary file. Data written into this type of

file is in internal memory format instead of
being converted to ASCII strings. An arithmetic
item generates two words of data in the file,

a string item generates (C+2)/2 words of data
(where: C is the number of characters in the
string).

5-6A



Mode (M) Meaning
BIN DA Same as BIN mode, except:
1. Fixed length records are written.
2. The file is opened as a DAM file (Refer
to the Disk and Virtual Memory Systems
User Guide).
3. The POSITION statement operates on the
file.
If the mode parameter, M, is omitted; its value is considered to be ASC.
Record Size
The optional parameter E2 is an arithmetic expression that defines the
record size of a file (number of words/record). The value of E2 may
range from 2 to 512. If the field E2 is omitted, a value of 60 is
assumed. The parameter E2 must be specified if mode M is specified
as BIN DA.

Examples of Use of DEFINE FILE:

10 REM CARD TO PRINT CONVERSION, DECK 1000 CARDS
20 DEFINE FILE #1

t (CRD) ]
30 DEFINE FILE #2

' (LPR) *

35 REM N=CARD NUMBER; N$=BLANK OR END OF DECK;
C$=CARD IMAGE

50 FOR I =1 to 10000
60 READ FILE #1, N, C§, N$
70 IF N$ = 'END OF DECK' THEN 99
75 REM STATEMENT 70 SHOWS ONE WAY TO HANDLE END OF FILE
76 REM SITUATIONS
77 REM SEE 'ON END' ...
80 WRITE FILE #2, C$
90 NEXT I
99 END
5-7



DIM

The DIM statement defines the number and size of the dimensions of
a numeric array or string array.

Syntax:
DIM A(C1)
or

DIM A(Cl, C2)

where A is a numeric or string array name and Cl, C2 are unsigned
nuneric constants that specify the upper bounds of the corresponding
dimension.

The DIM statement specifically defines array names, establishes the
number of dimensions (one or two), and specifies the number of
elements in each dimension. The lower bound of each array dimension
is always 0. The upper bound of each array dimension is that value
specified for the element in the DIM statement. (Cl + 1) locations
are allocated for a single-dimension array (vector); and ((C1 + 1) *
(C2 + 1)) locations are allocated for a two-dimension array.

Any number of DIM statements can appear in a program. However, an
array name can be explicitly defined by a DIM statement only once in
a program. (However, it can be redimensioned any number of times by
subsequent MAT statements). A DIM statement is nonexecutable.

Examples:
100 DIM A(12)

declares a one-dimensional numeric array of thirteen locations

(A(0)...A(1])).
300 DIM A$(2,3)

declares a two-dimensional string array of 3 colums (0, 1, 2) and
4 rows (0, 1, 2, 3).

NOTE: The arrays defined by DIM statements may be used later as
matrices (e.g., the set of array dimensions that are non-
zero). These operations are discussed in Section 6.



END
The END statement terminates execution of the BASIC program.
Syntax

END

The END statement indicates the end of the main program. It is
equivalent to and has the same function as the STOP statement.

Examples:
9999 END

When this statement is executed, the message:
END AT 9999

is printed.

5-9



FOR

The FOR statement defines the beginning of a loop, (sequence of
statements to be executed more than once within the program).
The NEXT statement must be used subsequent to the FOR statement
to define the end of the loop.

Syntax
FOR V = E1 TO E2

or

FOR V = El1, E2

or

FOR V = E1 TO EZ STEP E3
or

FOR V = E1 TO E2, E3

or

FOR V = E1, EZ, E3

where V is a scalar numeric variable; and El, EZ, and E3 are

numeric expressions. The variable V is the control variable of the loop.
The first expression (El) defines the initial value of V. The

second expression (E2) defines the final value of V. The expression

E3 is optional and is the incremental value added to V when the
subsequent NEXT statement is executed. The words TO and STEP may be
omitted and replaced by commas.

When the ''STEP E3" or "E3" term is omitted, the value +1 is used.

The value of the control variable (V) can be modified within the
loop. Its value will be available at the end of the loop. Also, the
loop may contain statements that jump out of the loop.

FOR-NEXT loops can be nested indefinitely as long as available memory
is not exhausted. FOR-NEXT loops cannot be interleaved. A nested
FOR-NEXT loop cannot use the same control variable as the FOR-NEXT
loop that contains it.

5-10



5 REM ANOTHER EXAMPLE

10 PRINT °*PLEASE SPECIFY N; °
12 INPUT N

14 PRINT 'PLEASE SPECIFY M;°
16 INPUT M

20 DIM B(1000)

30 FOR I=N TO M STEP .|

40 LET B(I)=3.1416%I12

50 PRINT I,B(I)

60 NEXT I

66 STOP
RUN
PLEASE SPECIFY N;
2
PLEASE SPECIFY M
3¢5
2 12,5664
2.1 13.8545
2.2 15,2053
2.3 16,6191
2.4 18,0956
2.5 19,635
2.6 21,2372
2.7 22,9022
2.8 24,6301
2.9 26,4208
3 28,2744
Sel 30, 1907
3.2 32417
ded 34,212
Se4 36,3169
3.5 38,4346

STOPPED AT LINE 66

The next example of FOR-NEXT assigns values to the elements of
a single dimension array.

110 DIM X(10)

110 FOR I = 0 TO 10

120 READ X(I)

140 NEXT I

300 DATA 0,1,2,3,4,5,6,7,8,9

One of the common reasons for using FOR-NEXT loops is to deal
with two-dimensional arrays. The idea is to use two subscript

5-11



variables to point to the colum and row of the array controlled
by a loop. This is illustrated in the following example:

100 READ Cl,C2
110 FOR I=1 TO CI

120 FOR J=1 TO c2

130 LET ACI,J)=0

140 NEXT J

145 NEXT I

148 REM ELEMENTS OF ARRAY ASSIGNED TO ZERO

150 READ C3

160 IF c3=0 THEN 300

170 READ c4,X

180 LET A(C3,C4) =X

199 GOTO 150

200 REM STATEMENTS 150 TO 190 ASSIGN VALUES FROM THE DATA LIST TO
202 REM ELEMENTS OF ARRAY A.

300 FOR I=1 TO Cl

305 FOR J=! TO c2

310 PRINT A(I,J)

320 NEXT J

325 PRINT

330 NEXT I

350 REM ABOVE LOOP PRINTS VALUES OF ARRAY ELEMENTS.
400 DATA 3,4

405 DATA 1,1,16,1,2,256,1,3,512,1,4,1046

410 DATA 2,1,34,2,2,300,2,3,13,2,4,9.87654E+08

420 DATA 3,1,99,3,2,88,3,3,7777,3,4,56

440 DATA O

999 END

RUN
16

gfg Values assigned to A(1,1),..., A(1,4)

1046

34
300

13 Val igned to A(2,1),..., A(2,4
9.87654E+08 alues assigned to A(2,1) (2,4)

99
83

;277 Values assigned to A(3,1),...,A(3,4)

END AT LINE 999

5-12



GOSUB

The GOSUB statement allows control to be passed to an internal
subroutine.
§z§tax

GOSUB N
where N is a statement number in the program, N is a statement
number that specifies the line at which the internal subroutine is
to start. The subroutine must contain a RETURN statement.
The GOSUB statement saves the line mumber of the statement that
follows it, and then transfers to the statement specified by the
line number N. When a RETURN statement is subsequently executed,
control returns to the statement whose line nmumber was saved (i.e. the
statement that follows the referencing GOSUB statement).
A subroutine may itself contain a GOSUB statement. Up to eight
GOSUB statements may occur before the execution of a RETURN statement.

RETURN always causes control to be returned to the statement follow-
ing the most recent outstanding GOSUB statement.

Examples:
173 GOSUB 1000

The following is an example of a trivial but valid program; the
statements are executed in the order: 10, 30, 50, 70, 60, 40, 20.

10 GOTO 30
20 STOP

30 GOSUB 50
40 RETURN
50 GOSUB 70
60 RETURN
70 RETURN

5-13



GOTO

The GOTO statement causes program control to be passed to a non-
local, designated statement.

Szr_ltax

GOTO N

where N is a statement number of a valid statement.

The GOTO statement causes program execution to continue at the
statement specified by N.

Exgmles :
10

200

Example use of GOTO:

100
110
120
130
135
138
140
150
160
180
999

GOTO 75

GOTO 400

PRINT 'INITIAL VALUE'
INPUT I

PRINT 'TYPE CHANGE'
INPUT C

REM C IS + OR -

IF C =0 THEN 999
LETI=1+C

PRINT 'NEW VALUE IS', I
PRINT

GO .TO 120

END



IF

The IF statement allows processing to be dependent on the true
or false value of a relational expression.

Syntax
IF E1 rel E2 THEN N
or
IF E1 rel E2 GO TO N

where El1 and E2 are either both mmeric expressions or both string
expressions; rel is one of the following relational operators:

Operator Meaning
< less than
> greater than
<= OT =< less than or equal
>= OT => greater than or equal
= equal
<> O >< not equal

N is either a statement number or a statement, including another
IF statement. (N can only be a statement if the verb is THEN.)

If E1 and E2 satisfy the relation specified by rel, control is

transferred to the statement specified by N; otherwise, execution
continues with the statement that follows the IF statement.

5-15



Exa_:_ngles
100

200
205
305
402

IF A$ = 'YES' THEN 125

IF ABS (X-Y) < El1 THEN 75

IF C1=>C2 GOTO 50

IF X <>0 THEN IF X < 100 GOTO 402

IF (TAN(X9)-1) = (T(J*2-1)+ 3 THEN 350

If any of the above conditions are false, program execution continues
with the statement that follows the IF statement.

5-16



INPUT

The INPUT statement requests data from the user terminal.

Syntax
INPUT L1, L2,...Ln

where L1,...Ln is a list of references separated by commas. Trailing
commas are ignored. If more items are input then are on the
specified 1list L1...Ln, the additional items are discarded.

The INPUT statement causes data to be read from the users terminal
and assigned to the references in the list Ll...In in the order

that they are typed. If there are any array references in the list
L1...Ln, subscript expressions are not evaluated until all references
that precede the subscript expressions in the input list have been
assigned values.

The.INPUT statement prints the prompt-character, !, to
indicate that input is desired. The user must be sure to type
input as his program requires.

Data items provided by the user must match the data type of the
corresponding reference in the list, Ll...In, in the INPUT state-
ment.

A single quote may be combined in a string typed in response to an
INPUT statement. It is transferred literally to the program area.

Example, typing:
ABC'D

in response to an INPUT statement puts the string, ABC'D, in the
area.

program storage
When a numeric value is expected, all characters up to the next comma

or CARRIAGE RETURN are input to the program. Spaces, blanks and tabs
are ignored.

5-17



Exggles

10 INPUT 11
20 FOR 12 =11, 10

30 INPUT A (I2)
40 NEXT I2

Sample Output

16

112345
11.3141579
12.45
19999999999
134

In the above example, the ! characters are typed by the system;
the numbers are input by the user in response to them.

Interrupting INPUT

The user can stop typing in a series of values in response to an INPUT
statement in his program and return to BASIC command level by typing
CONTROL-C (pushing the control and C key simultaneously. Example:

>10 INPUT A, B, C, D, E
>20 PRINT A, B, C, D, E

>RUN

!'1, 311 CTL-C +«User interrupts INPUT
END OF DATA AT LINE 10 +Response from BASIC

> «Return has been made to

command level

5-18



LET

a1

The LET statement allows an arithmetic variable or string variable
to be assigned a value.

Syntax
LET V = E
or
V = E

where V is a numeric variable or a string variable, and E is an
expression of the same data type as V.

The LET statement assigns the value of an expression to one or
moye scalar variables or subscripted array elements. Subscripts
in the expression E are calculated before the expression is
evaluated and before any assignment is done.

Scalar arithmetic variables not explicitly assigned a value are
assigned a default value 0 when first referenced in a program.
Unassigned scalar string variables are assigned a value of a null
string ('').

Array elements not explicitly assigned a value are given a default
assigned value when the array is referenced. (See Section 2.)

5-19



Exgggles
10 T = 20

20 LET I = 2
100 LET X(5) = 24
102 LET V = C

110 LET A$ 'STRING OF CHARACTERS'

&

120 LET B$ + C$
440 LET I3 = S
500 A(J) = SIN(X-4.5) + Q3

500 LET S$(J+5) = M§ + t.00¢

NEXT

NEXT is used in conjunction with the FOR statement to increment
the control variable of the FOR-NEXT loop.

Syntax
NEXT V

where V is the control variable used with the previous FOR
statement.

Refer to the description of the FOR statement for further details.

The NEXT statement marks the end of a FOR-NEXT loop; it is always
used in conjunction with a preceding FOR statement.

Exggple

700 FOR I = 1 TO 100
705 LET A = A+1
713 NEXT 1

5-20



ON

ON allows control to be passed to one of a list of statements
depending on the value of an expression.

Syntax
ON E GOTO N1, N2, N3...Nn

where E is an expression and N1...Nn are numeric expressions
separated by commas that represent statement numbers.

The ON statement uses the value of the numeric expression to select
one of the statement numbers as the target of a GOTO operation.

The value of the expression is truncated to yield an integer that
must be positive and also must be less than or equal to the number
of statement numbers (Nn) specified in the ON statement.

Examples:

20 ON (I-1) GOTO 100, 200, 300, 400

If I = 1, control goes to statement 100; if I = 2, control goes
to 200; if I = 3, control goes to 300; and if I = 4, control goes
to 400.

The ON statement is useful because the IF statement provides only
a two-way branch in a program. The ON statement can provide more
alternatives (i.e., a multi-way branch).

ON END
The ON END statement directs the transfer of control to a given

statement when an End of File is reached during a READ or POSITION
operation on the unit specified in the ON END statement.

Syntax
ON END #E GOTO N

where E is an expression that specifies a BASIC logical unit (1-8)
(Refer to DEFINE FILE); and N is a statement number. The ON END
statement does not test for End of File; it establishes action to
be taken when the last file record is read.

5-21



10 DEFINE FILE #1 = 'INPUT'

40 ON END #1 GO TO 20
50 READ #1, A$, A, B$, B

POSITION

POSITION positions a file on the unit specified to the start of the
record specified.

Syntax
POSITION #E1 TO E2

where El1 is an expression that specifies the BASIC logical unit (1-8)
and E2 is an expression that specifies the record in the file. Record
numbering starts at one. The unit (E1) must have been defined to be
BIN DA mode (refer to DEFINE FILE).

If the record number specified is greater than the number of records

in the file, the file is positioned to the End of File and the ON END
action is taken.

5-22



PRINT

The PRINT statement causes information to be printed at the terminal.

§Etax
PRINT L1, L2,...,In

where L1...Tn are 0 or more items in a list separated by commas or
colons. Individual list items Ll...Ln may be either numeric
expressions or string expressions.

The PRINT statement generates lines of output to be printed at the
terminal. A single PRINT statement can generate either one line,
several lines, or partial lines of information.

The format of the terminal line image is determined by the
elements in the print 1list. Each element in the 1list Ll...In is
evaluated to yield a string of characters to be placed on the
terminal print line.

Printing Numeric Expressions

A PRINT list item that is a numeric expression is evaluated and
converted to the equivalent character string representation. This
string begins with the sign character and ends with a blank.

If the value of the expression is positive, a blank is printed for
the sign character. If the value of the expression is negative,

a minus sign is printed for the sign character.

Integers: MNumbers printed as integers consist of a string from one
To six decimal digits without a decimal point. Examples:

14
-20796
1

Fractions: MNumbers up to six decimal digits may be printed with a
decimal point.

Fractional format is used for nonintegers with an absolute image
in the range .1 to 99999.5. Examples:

5-23



2.5

12.4 3
-0.00796
0.00371
7.74186

Scientific Format: A number printed in scientific format is of
the form:

X E + Y
or
X E - Y

where X is a fractional number greater than one and less than ten,
and Y is an integer power of 10 ranging from -38 to +38. Scientific
format is used whenever integer or fractional format camnot be used
as shown in the following example:

LET X = 999999
LET X = X+1
PRINT X

results are printed:
1.0 E+6
Other examples of nmumbers in scientific format are:
2.54 E+13
5.0 E+5
-1. E-32

Printing String Expressions

A string expression in the PRINT list Ll...Ln is evaluated and

the resulting string of characters is printed in the output at the
teletype. BASIC does not interpret contents of this character
string; therefore, unpredictable results may occur from the inclusion
of characters that do not advance the print line by one position
(such as combinations of 2 backspace with other characters).

5-24



Comma Separator

The output from the PRINT statement is normally divided into zones
of 14 characters each. The first zone starts in colum 0, the
second in colum 14, etc. The number of zones is determined by
characters, five zones are printed.

A comma in a print list causes the Teletype to advance to the first
character position of the next available zone. If character over-
flow occurs, the current line is printed and a new line is started.
If the last element of the print list is a comma, the partial line,
if any, is printed; and the Teletype is positioned at the start

of the next available zone.

Example Use of Comma in PRINT Statement

The statement:
100 PRINT I, J, K, L
might result in the following output:

1.0 2.4 1.416 75

Colon Separator

A colon in a PRINT list is used to separate PRINT elements and
inhibits the printing of items in different zones. A colon
specifies that the preceding items to be printed is to be followed
by a space rather than the number of spaces required to position
to the next print field.

Examples of Use of Colon in PRINT Statement

The previous example written as follows:
100 PRINT 1I: K
causes the following output:
1.024 1.41675
The statement:
200 PRINT 'A': 'B', 'CAT': 'DOG'
prints:

A B CAT DOG

5-25



Tab Request

The tab print element requests that the Teletype be moved to a
specific character position (colum). The tab request is written
as:

TAB (E)

where E is a numeric expression. An example of the tab request
is:

100 PRINT X: TAB(40): Y

PRINT List Termination

If the print list does not end in a comma or colon, a CARRIAGE
RETURN character is appended to the print output and the line is
transmitted to the terminal. A null (empty) PRINT list causes the
previous line to be finished or a blank line to be printed.

PRINT Statement Examples

20 PRINT X, SIN (Z2 - Y 2)

30 PRINT 'VALUE IS': X-Y

40 PRINT ' ', A§ + SUB (B$, I, J)
50 PRINT

Example of Use of Print for Conservational Input/Output

10 PRINT 'ENTER LENGTH IN INCHES':
20 INPUT L$(1,1)

30 LET X4 = L(1,1)/12

40 PRINT X4: 'FEET'

Sample results:
ENTER LENGTH IN INCHES ! 30
2.50 FEET

5-26



PRINT USING

A formatted print-statement (the PRINT USING statement) generates
formatted output.

Syntax

PRINT USING S$, L1, L2...Ln
or

PRINT USING S$, L1: L2...Ln

where S$ is a string expression and Ll...Ln are items in a list
that are string or numeric expressions specifying values to be
printed, separated by commas or colons.

A single PRINT USING statement can generate one line, several lines,
or a partial line of printed output. The characters generated by

a PRINT USING statement are formatted as specified by a control
string.

Format Fields

The string specified by S$ contains a description of the editing
to be applied to the values in the list L1...In. The string S§

is divided into a series of fields each of which controls the
formatting of a single value in the PRINT list Ll...Ln. The fields
describe a numeric or string value.

There are seven special characters for defining numeric fields in the

£ s ey s

4+ MThaca ~L PRy
I0ITat. 10esS€ Cnaraciers are.

,t+'$

Their use in a format field is described in the following tables
and paragraphs.

There are three special characters for defining string fields in
the format. These are:

< > #

;@eig use in a format field is described under the heading "String
ields'.

5-27



Numeric Fields

Pound Sign (#): For each pound sign in the field descriptor, a
digit (0-9) from the output value is substituted. Examples are
shown in the following table.

Field Format Datum Representation Remarks
BiH#H 25 25 Right justify digits
in field with leading
blanks.
Rt .-30 30 Signs and other non-

digits are ignored.

HAH## 1.95 2 Only integers are
represented; the
number is rounded
to an integer.

#H#### 598745 AkkxX If the datum is too
large for the field,
all asterisks are
printed.

Table 5-2. Pound Sign in Descriptor Field

Decimal Point (.): The decimal point places a decimal point within
the string of digits in the fixed character position in which it
appears. Digit positions to the right of the decimal point are not
blank filled. Examples are shown in the following table.

Field Format Datum Representation Remarks
#### HH 20 20.00 Fractional positions
are filled with zeroes.
Hifse #e 29.347 29.35 Rounding occurs on
0.079 0.08 fractions.
LA S AL 789012.34  **kkkk Xk When the datum is too

large, a field of all
asterisks, including
the decimal position,
is printed.

Table 5-3. Decimal Point in Descriptor Field

5-28



Comma (,): A comma in a descriptor places a comma in the output
record at that character position unless all digits prior to the
comna are zero, in that case, a space is printed in that character
position. The following table gives examples of use of the comma.

Field Format Datum Representation Remarks

+§ 44 4 30.6 +§  30.60 Space printed for
comma when leading
digits blank.

+§# HiH HH 2000 +$2,000.00 Comma printed.

++it#  ##H 00033 +00,033 Comma is printed

when leading zeroes
are not suppressed.

Table 5-4. Comma in Descriptor Field

Vertical Arrow (t): A string of four vertical arrows can be_used
to indicate an exponent field which is filled by E+n where n is a
two digit integer. The following table gives examples of use of the

vertical arrow.

Field Format Datum Representation

+## ## rrre 170,35 +17.04E+01
+H# # v 1.2 -20.00E-02
++## ## rert 6002.35 +600.24E+01

Table 5-5, Vertical Arrow in Descriptor Field

Plus or Minus Signs (+ -): A single plus sign as either the first
or last character in the format descriptor causes a + to be output
if the data item is positive, or a - if the data item is negative.

Two or more plus signs starting at the first character of the
descriptor cause the sign to be output (+ if positive, - if negative)
immediately to the left of the most significant nonzero digit of
the output item. If required, the second through the last plus sign
is used as digit positions as required by the magnitude of the
number.

A minus sign (or signs) has the same effect as plus signs , except
a space is output for a positive sign. The following table gives
examples of the use of + or - in formatted print output.

5-29



Blanks precede the

When the datum is

too large for the
specified format a
field of all asterisks

The last leading
zero before the
decimal point is

Second and third
signs are treated
as digit positions

When the datum does
not agree with the
specified field,
asterisks are printed.

Field Format Datum Representation Remarks
+H# 4 20.5 +20.50
+i# ., 44 1.01 +1.01
number.
+H#, ## -1.236 - 1.24
+H# #H -234.0 ARREAR
is printed.
#Hf 44 20.5 20.50
## . #- 000.01 0.01
not suppressed.
## . HE- -1.236 1.24-
### #4- -234.0 234.00-
--- . #- -20 -20.00
(#) on output.
—— B# -200 KRXXAKA
--- . ## 2 2.00
Table 5-6 Plus and Minus in Descriptor Fields

5-30



Dollar Sign (§): A single dollar sign as either the first or second
character in the descriptor causes a dollar sign to be output in
that position of the output record.

Multiple dollar signs starting at either the first or second
character of the descriptor cause a dollar sign to be placed
immediately to the left of the most significant nonzero digit.
The only character that may precede a dollar sign in a format
descriptor is a fixed sign (+ or -). The following table gives
examples of use of the § in formatted print output.

Field Format Datum Representation Remarks

-S4 #H 30.512 $ 30.51

SHit# Hi+ -30.512 $ 30.51-

+§ 8984 ## 13.20 + $13.20 Extra § signs may

be replaced by digits
as with floating
+ and - signs.

$Sh# HH- -1.0 $01.00- Leading zeroes are
not suppressed in the
# part of the field.

Table 5-7. Dollar Sign in Descriptor Field

String Fields

Pound Sign (#): Each pound sign in the descriptor field represents

- s Tos
a character position from the second to the nth character position.

A character from the output (i.e., letter, numeral, or symbol) is
substituted in that position.

Examples are shown in Table 5-8.

Left Angle Bracket (<): This character in a descriptor field is
always positioned first when it is used. It represents the first
character position and the first character from the output is
substituted for it. It also designates that the output string is
to be left justified in the PRINT statement field. An example is
shown in Table 5-8

5-31



Right Angle Bracket (>): This character in a descriptor field is
always the first character of the field. The first character of the
output is substituted for it and it designates that the output string
is to be right justified in the PRINT field. Table 58 shows an
example.

Field Format Datum Representation Remarks
> 4R #HHH TWELVE TWELVE right-justified
<H###HE TWELVE  TWELVE left-justified

Table 5-8. String Descriptor Fields

Print Using Statement Example

158 REM ssceesERAMPLE TO SHOW WARIOUS USES OF PRINT USING
158 REM

176 IMNFUT AL B C

188 LET Ef="E«--1-

128 FPRIETUSIHG “JHEd844440 843448888887, E£F

200 PRINTUSING “>Héd#dd484404488884848 7. EF

218 REFM LAST TMO LIMNES SHOW HOW JUSTIFICATION WORES

228 LET FI="-## ##~

= PRINTUSING FE. AR B, C

S48 PRINTUSTHG 388484 #8487, AL B, C

258 FPRINTUSIHG “>###84#48#84 TO 27, EF

&l REM MOTE COMCARTEHATION, RESULT IS PLACED IN FIELD SPECIFIED
278 INPLUT =

280 PRINTUSING < -##. ##7, SORWD

Sample Output

>UN
123.34,3345.93,45
£X=--1
Ex--1

23,34

okok koK K

45,99

$00023 .94
$93345.93
$0JU45,00

£X-=1 T0 2

1654

25.57

w
[
(&)
o



Printing Special Characters

To print a literal copy of one of the characters used with special
meaning in a format field, a string field must be used with the PRINT
statement and the character must be passed as part of the print list.
For example, the following statement prints a period at the end of the
output line.

10 PRINT USING 'X IS -### ':'.',X
If the statement were written
10 PRINT USING 'X IS -###,',X

the decimal point would be part of the numeric field output.

5-33



READ

The READ statement is used in conjunction with a DATA statement.

DATA defines a series of data values (literals); READ sets a list
of variables equal to literals in the numeric and/or string data

pools.

Syntax
READ L1, ..., Ln

where L1, ..., Ln is a list of references, which may be numeric
variables, string variables or arrays, separated by commas.

The READ statement causes numeric or string values stored in the data
pools by DATA statements to be assigned, starting at the next avail-
able element in the applicable data pool. The assignments are made
in the order specified by the references in the list specified with
the READ statement.

Subscript expressions in an array reference in the list L1, ..., In
are not evaluated until all preceding references have been assigned
values.

If a data list is exhausted, a message is printed and program
execution is halted.

The RESTORE statement may be used to prepare to read the data again.
Examples:

100 READ X, Y, Z

110 READ X§, X, Y$, Y, Z$, Z

120 READ X(3)
For examples of READ, all of the DATA are treated as a single list
of numbers. Each READ operation takes the next available number

from the list and advances one position on the list. The following
example illustrates this principle:

5-34



10 DATA 1.314 1.817

20 DBATA 1, 2, 3, 5, 8, 13, 21, 34
30 DATA 55, 89

40 READ N1

50 READ N2

60 FOR K1+N1, N2

70 READ A(K1)

80 NEXT K1

80 RESTORE

READ FILE

Input may be read from a formatted file prepared by the system
editor, from a file created by another BASIC program or from a
binary file created by a FORTRAN program. The format of the files
and their types and modes is defined by the DEFINE FILE statement.

Syntax
READ #N, L1, ..., In

where N is a file number and L1, ..., Ln are a list of all numeric
variables or all string variables separated by commas.

This variation of the READ statement reads from the file specified
by #N.

Initially, the READ FILE statement forces the reading of a new
record. The READ FILE statement reads values from the file starting
with the first data item in the record currently pointed to and the
file pointer is incremented by 1 after each data value is read.

If a file number specified in a READ FILE statement has not been
defined in a previous DEFINE FILE statement, the message:

ERROR UF AT LINE N

(where N is a statement number) is printed and execution of the BASIC
program halts, and the user's program returns to BASIC command level.

Examples:
100 READ #4, V(I), A

110 READ #4, Al, A2, A3

5-35



READ * FILE

Syntax
READ * #N, L1, ... In

The READ * FILE statement has the same effect as the READ FILE
statement except it does not initially force a new record to be
read from the unit specified. If data remains in the last record
read from the unit, it is used before the new records are read.

REM
This statement identifies a remark. It is not executed.
Syntax

REM S

where S is any string of ASCII characters not including the carriage
return character.

The string of characters following REM is ignored by the BASIC
interpreter. The REM statement has no effect on the program; it
is provided for the convenience of the user.

Exgggle:
10 REM PROGRAM TO PERFORM MEDIA CONVERSION
20 REM MLG MODIFIED BY SDH 10-15-72
30 REM
40 REM
RESTORE

The RESTORE statement resets the DATA list pointer so that the list
may be re-used by subsequent READ statements in the program.

Syntax
RESTORE
RESTORE #
RESTORE $

The RESTORE statement re-initializes either or both of the data pools.
The next read statement executed reads the first data item in the
pool or pools restored.

The RESTORE statement resets each data pool. The RESTORE § statement
resets the string data pool only. The RESTORE # statement resets
the arithmetic data pool only.

5-36



112 READ A, B
115 LET C= A*B
120 PRINT A: '@' B, “PRICE": C

130 RESTORE

135 READ 2

140 PRINT 'NO OF ITEMS IS':Z
900 DATA 100, 3.50

Output is:
100 e 3.50 PRICE 350.
NO OF ITEMS IS 100

RETURN

The RETURN statement causes control to be returned from the sub-
routine that contains it to the statement immediately following
the GOSUB statement that invoked the subroutine (i.e., the last
outstanding GOSUB).

Szgtax
RETURN

5-37



Exg@gles:

100
110
111
120
130

300
301
310
320
325
330
340
350
360
370
380
400
410
420

The RETURN statement in statement number 380 causes a return to the
statement 111; the RETURN statement in 420 causes a return to 350.

REWIND

The REWIND statement causes the specified I/0 unit to ''rewind'.

Syntax

INPUT A
GOSUB 300
INPUT A$
IF A <
END

'END' THEN 100

'SUBROUTINE TO CALCULATE IF A’
'NUMBER N IS PRIME'

X = (A-2) TO 1 STEP -1

LET Q1 = A/X

LET Q2 - INT(X.X)
LETR = Q1 - Q2
GOSUB 400

NEXT X

IFR=0 THEN 380
PRINT 'NUMBER' :A:
RETURN

IF R > THEN 420
PRINT 'NUMBER' :A:
RETURN

REM
REM
FOR

'IS A PRIME'

REWIND #N

where N is an arithmetic expression defining a file unit (1-8).

If the REWIND statement refers to a disk file, it is reset to start
from the first record.

Examples:

100
110
120
130
140
150

DEFINE FILE #4 = 'ALPHA'
INPUT N

FOR I=1TON

READ #4, A

NEXT I

REWIND #4

5-38

'IS NOT A PRIME'



STOp
STOP causes the program to return to its caller.
Syntax

STOP

Any files opened by the program are closed. Executing a STOP
statement in a program is equivalent to an END statement.

Example
9999 STOP
causes a message to be printed such as:

STOPPED AT 9999

TRACE

The TRACE statement is used to turn trace mode ON or OFF.

Syntax
TRACE ON
or
TRACE OFF

When trace mode is ON, the statement number of each statement is
printed prior to its execution.

5-39



TRACE is useful in debugging a program that contains many GOTO
and/or GOSUB statements.

Examples: 110 TRACE ON
115 FOR I = 1TO 10
120 A3 = Al + FNX (I) -3.1
130 IF A3 < 0 THEN 400
150 GOSUB 6000
160 IF A3 =0 THEN 500
170 GOSUB 7500
180 IF A3 > (0 THEN 600
190 GOSUB 9000
195 NEXT I
200 TRACE OFF

Assuming all conditions are true (in the first pass) a partial view
of the trace might look as follows:

[115]
[120]
[400]
[401]
[499]
[150]
[6000]
[6099]
[170]
[7500]
[7502]
[7550]
[180]
[600]
[650]
[190]
[9000]
[9010]
[9020]

[195]
[115]

5-40



WRITE FILE
The WRITE FILE statement directs output to a file.
 syntax

WRITE #N

or

WRITE #N, L1,...Ln
where N is an expression that yields a file number (1-8) and
L1l,...Ln is an optional list of all mumeric variables or all string
variables separated by commas or colons.

A print element in the list can be an expression or a TAB request.

WRITE statement output lines are appended to the specified file in
a stream.

Either full lines (terminated by a CARRIAGE RETURN character) or
partial lines (terminated by a comma or colon) may be output to a
file.

Read After Write Check

If an attempt is made to read on a unit after a WRITE has been
performed, without an intervening REWIND or redefinition of the unit,
a WR error diagnostic is printed. This check does not apply in the
case of writing BIN DA files.

5-41



10 DEFINE FILE #1 = '(LPR)'

20 FOR I = 1 TO 100

30 WRITE FILE #1,'ITEM-':X, 'COST-$ ' Y, 'ONE EACH'
40 NEXT L

120 DEFINE FILE #2 = 'ALPHA'

130 FOR X

1 TO 100

135 LET N X2

140 WRITE #2, X, N
150 NEXT X
Statements 10 to 40 print 100 lines on the line printer (if it is

assigned); statements 120 to 150 consecutively write 100 values
of X and 100 values of N onto a disk file ALPHA.

WRITE USING

Formatted output strings may be passed to a file by means of the
WRITE USING statement.

Syntax
WRITE USING S§, #N, L1,...,In

where N is a file number (1-8); S$ is a string expression, as in
the WRITE USING statement; and L1,...,Ln are a list of expressions
separated by commas or colons.

This variation of the WRITE USING statement directs output to be
appended to a Teletype formatted file. A single WRITE USING state-
ment can generate one line, several lines, or a partial line of
output.

Exgggle:
140 WRITE USING 'X COST IS St ##', #3, A

5-42



SECTION 6
MATRIX MANTPULATIONS
AND
MATRIX STATEMENTS

The BASIC statements discussed in the previous section permit the
elements of a matrix to be defined and used as an element by element
basis. The MAT statement, discussed in this section, allows matrices
to be manipulated as a unit. In addition to the individual examples
given in this section, examples showing the use of the MAT statement
are given in Appendix A.

Although the arrays have a colum number 0 and a row number 0, the
MAT statement ignores all matrix elements that have one dimension

equal to zero (i.e., the MAT statement manipulates vectors and
matrices, 0 elements are indeterminate).

MATRIX REDIMENSIONING

The original bounds and the current bounds are determined by the
DIM statement, or by the default bounds value (10) or (10,10), or
by the first MAT statement that references a matrix. The current
bounds of a matrix can be changed within certain constraints.

The total amount of storage defined by the current bounds must be
less than or equal to the amount of storage set aside for the
original bounds. For example:

100 DIM A (10, 10)

300 MAT A = ZER (5, 5)

400 MAT A = ZER (3, 24)

500 MAT A = ZER (2, 29)
are all legal redimensions of the matrix A; but:

550 MAT A = ZER (5, 25)
is not legal redimensioning of matrix A.
A matrix may be assigned the value of another matrix with different
current bounds, provided this operation conforms to the rules for
redimensioning just discussed. The current bounds of the target

matrix are automatically changed to be the same as the current bounds
of the matrix assigned.

6-1



When the current bounds of a matrix are changed, any elements of
that matrix with one or more subscripts equal to 0 are destroyed.

INITTIALIZATION STATEMENTS

There are three MAT statements to facilitate the assignment of the
individual matrix elements.

Syntax
MAT A = CON
or
MAT A = IDN
or
MAT A = ZER

where A is a numeric matrix.

These matrix initialization statements set the matrix specified to
the left of the = to a constant matrix having the same bounds.
The values to the right of the = are called matrix constants.

The constant CON sets each element of the matrix defined by matrix
A to 1. Conversely, the constant ZER sets each element of the matrix
defined by A to 0.

The constant IDN sets the matrix defined by matrix A to the identity
matrix. This action is defined by the following algorithm:

A(I,J)=1 IF I=1J

A(d,JD)=0 IF I<>J

For the IDN assignment to be valid, the matrix A must be two-dimen-

sional and the number of colums must equal the number of rows
(i.e., A must be a square matrix).

6-2



Exg_mples
200 MAT V = CON

sets elements of matrix V to all ones

ZER

300 MAT Z

sets elements of matrix Z to all zeroes

340 DIM I
IDN

400 MAT I

(4,4)

sets matrix I to the identity matrix .
Elements of the matrix defined by matrix I

are assigned as follows:

Row Colum 1

1 =

MATRIX INITIALIZATION WITH REDIMENSIONING

Matrices may also be redimensioned in the MAT...

or MAT...IDN statments.

1
0
0
0

o o |w

it

o O

CON, MAT...ZER



MAT A = CON (Bl)

or

MAT A = CON (Bl, B2)
or

MAT A = ZER (B1)

or

MAT A = ZER (Bl, B2)
or

MAT A = IDN (Bl, B1)

where A is a numeric matrix and Bl and B2 are expressions which
define a matrix bound.

These matrix initialization statements set the matrix to the left
of the = to a constant matrix having the bounds specified by Bl
and B2; and in addition, assign values to the elements of the
matrix defined by matrix A according to the functions of the
specified MAT...ZER..., MAT...CON, and MAT...IDN statement.

les
20 DIM X(4,5)

30 MAT X = CON (3,3)
Xis 1 1 1
1 1 1
1 1 1
60 DIM Y(3,3)
70 MAT Y = Z ER (4,2)

Yis 0 O
0 0

0

0 0

6-4



MATRIX ASSIGNMENT
A matrix may be assigned the value of another matrix.
Syntax
MAT A=B
where A and B are numeric matrices.

Both A and B must be either both one-dimensional (vectors) or both
two-dimensional (matrices).

The matrix assignment statement sets the matrix appearing to the
left of the = to the value of the matrix appearing to the right of

the =. The current bounds of the target matrix are charged to the
assigned matrix.

Exgxmgles
10 DIM A (6,6)

20 DIM B (5,4)
30 MAT A =B

the assignment at statement 30 is a legal assigmment; but

15 DIMC - (10, 10)
25 DIMD - (2, 10)

35 MATD =C

is not legal since the effect of the assignment is to try and
assign a larger storage area, (matrix C) into the smaller one
(matrix D) which would be charged with 80 more locations than were
originally allocated.

MATRIX ADDITION
Syntax
MAT A = B + C

where A, B, and C must all be either numeric vectors or mumeric
matrices. The elements of A are set to the sum of the corresponding
elements of B and C. The matrices B and C must have the same current
bounds; the bounds of the target matrix A are changed to the bounds
of the input matrices (B and C).

Exanple
100 MAT X =Y + Z
220 MATY =X + Z
6-5



MATRIX SUBTRACTION

Smtax
MAT A=B-C

where A, B, and C must all be either numeric vectors or numeric
matrices. The matrix elements of A is set to the difference of
the corresponding elements B and C. B and C must have the same
current bounds, and the bounds of A are set to the current
bounds of B and C.

Eﬂngle
142 MAT X =Y - Z

MATRIX MULTIPLICATION
Matrix elements may be multiplied by scalar quantities or by elements
of another matrix.

SCALAR MULTIPLICATION
Syntax
MAT A= (E) *B

where A and B are numeric matrices and E is a numeric scalar expres-
sion.

This form of matrix multiplication sets the matrix A to the value
of the product of each element of B times the value specified by E.

Matrices A and B must have the same number of dimensions. The current
bounds of A are changed to the current bounds of B.

Examples
300 MAT X

(5) *Y

320 MAT X (SQR(1-X/Y)) * B



PRODUCTS OF MATRICES

Smtax

MAT X =Y * 2

X, Y, and Z are numeric two-dimensional matrices.

This form of matrix multiplication sets the matrix A to products
of the matrices to the right of the =.

When two matrices are multiplied, the number of rows in the first
matrix must equal the number of columns in the second matrix; the
result is a matrix with the same number of colums as the first
matrix and the same number of rows as the second matrix.

Examples

10 DIM (10, 10)
4, 5)

A
20 DIM B

30 DIM C (3, 3)
A

n

1NN &*
LUV VAL -

= n r
= D ¥

NOTE: While the statements of the form:

MAT A=A+3B
MAT A=A-B

are allowed, the statement:
MAT A=A*B

causes an error when the program is rum.

6-7



TRANSPOSE OPERATIONS
Smtax
MAT A = TRN (B)

where A and B are either both numeric one-dimensional matrices or
both numeric two-dimensional matrices.

To transpose statement sets the matrix A to the transpose of matrix
B; the colums (rows) of A are the rows (colums) of B. The current

bounds of A are changed. For example, if B is dimensioned M, N, the
bounds of A are changed to N, M.

Example:
100 pIM B (5, 4)
110 MAT A = TRN (B)

A would be a matrix, the same as if it were fined by the statement:
MAT A = INV (B)

where A is a two-dimensional numeric matrix and B is a square two-
dimensional numeric matrix.

The matrix A is set to the inverse of B. The bounds of A are set
to the bounds of B.

Note that the statement:
A = 1INV(A)
is allowed by the Prime BASIC.

MAT READ
The MAT READ statement causes an entire matrix to be read (input).
Syntax
MAT READ A1 (D1, D2) ..., An (Dn, Dn)
where Al ..., An are a list of numeric or string matrix names

separated by commas, and D1 ... Dn are dimensions of the associated
specified matrices. Specifying of dimensions D1 ... Dn are optional.

6-8



The MAT READ statement causes values from the data pool starting
at the next available values, to be assigned, in order, to the matrix
elements of the matrices specified.

Enough data values are read from the data pool to fill a matrix
according to the current bounds of the matrix. If a matrix name
in the MAT READ statement is followed by a bound list, the matrix
is redimensioned to those bounds before any data is read.

Example
10 DIM A (3,5)

50 MAT A = ZER

100 MAT READ A

200 DATA 1, 2, 3,4,5,6,7,8,9
210 DATA 10, 11, 12, 13, 14, 15

The statement at line 100 causes fifteen numbefs to be read into
matrix A by colums. For example: A(1,1) =1; A (2,1) = 2, etc.

MAT READ FILE

The MAT READ statement causes a matrix to be read from an external

data file and assigned, in order, to the matrix elements of the
matrix specified.

Syntax
MAT READ #N, Al,..., An

where N is a file number (1-8) previously defined in a DEFINE FILE
statement, and Al,...,An is a list of matrix names.

The file N consists of an ordered list of values that defines the
contents of the elements of the matrix A. It may be created by a
previous MAT WRITE FILE statement in the same or a previosuly

e§CUted program, or it may be created by the operating system
editor.

6-9



Example:
10 DIM V(10)

15 DEFINE FILE #1 = '(PTR)'
20 DIM M(10, 20)
25 DEFINE FILE #2 = 'ARRAY'

30 MAT READ #1, V
40 MAT READ #2, M

The contents of the file #1 are read from the paper tape reader and
assigned to the elements of the vector V. The contents of the file
named ARRAY stored on the disk are read and assigned to the elements

of matrix M.

MAT READ * FILE

Same as MAT READ file except the statement does not force a new

record to be read. Any data remaining in a previous record are read

as elements of the matrix.

MAT WRITE FILE

The MAT WRITE FILE statements causes a matrix to be written to an
external data file.

Syntax
MAT WRITE #N, AL, ..., An

where N is a file number (1-8) previously defined in a DEFINE FILE
statement. If the output file is in ASCII (print) format, the
character following matrix names in MAT WRITE FILE statements is
used to control the spacing of the matrix elements in the output
records. A comma specifies tabbed format and a colon specifies
packed format. The optional character following the last matrix
name controls the spacing of the elements of that last matrix and
does not inhibit the termination of the last output read. Al, ...
is a list of matrix names.

6-10

» An



Example:
10 DEFINE FILE #1 = 'OUTPUT'

15 DIM A (100)

20 FOR K =1 TO 100
25 X = 2*3.1416

30 A(K) = X*K

40 NEXT K

50 MAT WRITE #1, A

MAT INPUT
The MAT INPUT statement causes data values to be read from the

terminal and assigned, in order, to the elements of a specified
matrix.

Szgtax

nrarm

MAT INPUT AlL, ..., An

where Al, ..., An is a list of matrix names separated by commas. The
type of data provided must match the type of matrix being filled.

Exgq_nple
10 DIM B (5)

20 MAT INPUT B

allows information to be assigned to the elements of matrix B from
the terminal. After the [ is printed, typing:

5, 10, 15, 20, 25

assigns those values to B(1) through B(5).

6-11



MAT PRINT STATEMENT

This statement causes an entire matrix to be printed.

Syntax

MAT PRINT Al, ..., An
where Al, ..., An is a list of matrix names separated by commas or
colons.

The MAT PRINT statement causes all the elements of a matrix with
subscripts that are not 0 to be printed colum by colum.

If a matrix name is followed by a colon, elements are printed with
one space; otherwise, elements are printed in zoned format.

Example
100 DIM M(2,6)

110 MAT READ M

120 MAT PRINT M

200 DATA 1, 2, 3, 4, 5, 6,7, 8,9, 10, 11, 12
400 END

The above program yields the following output:

6-12



SECTION 7
INTERFACE CONVENTIONS

BASIC differs from compiler and assembly languages because its inter-
preter does not compile or assemble a reusable object text from the
source program. Therefore, the BASIC interpreter must be present

in high speed memory each time a user program is run. However, Prime
BASIC provides the CALL statement to call FORTRAN or PMA (macro-
assembly language) subroutines. Refer to Section 5 for details of the
CALL statement format.

RELATING CALL TO SUBROUTINE

The user-supplied configuration file that is associated with the BASIC
CALL statement is a table. The entries to this table are the addresses
of PMA assembly language object text subroutines, or FORTRAN

language object text subroutines, or a combination of both PMA and
object text subroutines.

An example of two typical subroutines that may be called by a program
written in BASIC is as follows:

# SUBROUTINE TO STARRT CLOCK
“$:
€4
4
ENT STRTCOK
REL
4
STRTCK DAC o
CRA
=TA ‘&l
ck 2 START CLOCK
JMP#: STRTCK
EHND
/
C SCUBROUTIHE TO GET REAL TIME CLOCK WORD
cC
c
CUBROUTIME GETCLE(HREGS
Copron ALISTS LISTOLD
c
ARG=LIST20 51D
RETURN
END



The configuration file is produced by modifying the CALLP source

file on the MFD then assembling it. The following listing is the
original source of the CALLP subroutine; immediately following that,
is a listing that shows how the CALLP source was modified to call one
PMA subroutine to start the real-time clock and one FORTRAN subroutine
to get the real-time clock word.

CRLLP CBRASTOLATRANSLTE? 24 JAM 74

Hobdehdubdninb ok dub g bbb dod
B 4
# CALl, PROCESZOR #
2 4 #
(IR 08 1B 30 8 28 o o8 S o S8 o o o o o S e i o O

4
B3
+:
B
$
E 3
e
B
g 3
=P L SUEROUTINE HUMBER IN BUF 12, ADDRESS OF ARGS IM BUF{(ZM,
# EdiECZo. 0 0 s BUFCH CHOTHE HUMBER OR ARGS:
4
4
SUBR CARLLF. CALL
REL

4
B4
FINSERT PCOMON
B
*
CrRLL DR ids

LDKX  EUF

] ks

HOF

Jme CAkt. 1

e SHSROIIT THE CALL LOCATIONS.
CALT IMP i

JMFE o2

JneE =E

JMF =

ImMpP =5

JHP o5

JrpP a7

JmP o

IMP o3

#—--DEFAULT SUBROUTINE CALLS



J0E cALZ
JrE CARLE
Bigic CRLZ
JrF caL:z
JME CRLZ
JMF cAaLz
JpteE CARLZ
JME CHLZ

JrE CALZ

AW VNWY

DY~ THNE LR

1

1y

:*}

Ao UIMITMPLEMENTED SUBROUTIMNE CALL.
CALZ CRLL FRERROR

DAC = B
P J .

N

7-3



The '"Modified'" CALLP follows:

f
+

R
B S
4o

¥ EF R EFEEEEEEES

SUER

FEL
R
e

+#

P

CALL DAC
[ i
DR
MOF
JmpP

CFELLP

=L
ELIFEC T,

VEALICLATRANSL TR

CRLL PR

232 34247 SR 2R% 4T TR0 SRT 211 30 RT 84 SR HE SR S S T S SR 2

4

oft

gt

dododibdnbsbdode pobedobaie g oo

SUBRSUTINE HUNMBER

SRR L. R

FINSERT PCOMOH

S
ElF

CALL, 1

ELIF Oy

=% Tl T4

ir BUFCL:, FARDRESS OF FARGS
Cfd THE HUMBER OF

e — = SIROUTINGE TRLLL LIOTRT TS,

CHLL TMP
JHMP
JMP
JrMpP
TP
JrtE
JrpP
JrE
JrpP

E 4

7 A

sl

# e DEFAULT SUBROUT INE CALLS.

7-4

FRGS

It BELIF

i
=

4‘ El



=1 cRll STRTOK
JIMPE CRLL

S LR B+
S1H
v o
Ny cRlLs
CRLL GETCLE
Cfic4 BLIF42
JIMF4 CRLL

Je crRL2
JrE CRLZ
JtE cAaLz
JrE CRLE
Jre CALS
JHE cAaLz
JMF CRLZ

FO VUL VBN *
W= s

START CLOCK
RETURN

IMZURE 1 ARGUMERNT

HOT 1 ARG, ERROK

1 ARG

o ———UIMIMPLEMENTED SUBRCOUTINE CRLL.

CALLZ CRLL FRERROKR
DAc =B
#
ZHD

7-5



MODIFYING COMMAND FILE

The source of the modified CALLP listed above is assembled. Then, the
command file must be modified. Depending on which version of BASIC
the user desires to use, one of the following command files must be
modified:

C ¢« BASC *BASIC with no PRINT USING
OR MAT statements

C+¢—BUSE *BASIC with PRINT USING
statement

C ¢« BMAT *BASIC with MAT statements

C «BALL *BASIC with both PRINT USING

and MAT statements

Any or all of the above command files are modified using the editor,
ED, as follows:

1. Locate the command line:
LOAD B< CALL

2. Insert LOAD commands for the subroutines to be called by
the program(s) written in BASIC. For example, to call
the subroutines listed in the sample modification of the
CALLP subroutine, the following statements are inserted:

LOAD B€— STRT
LOAD B€<—GTCLK
NOTE: The above 'LOAD' is a command to the DOS/DOS-VM loader;

not to be confused with the BASIC command of the same
name,

7-6



RUNNING PROGRAM WITH CALL STATEMENTS

After inserting the proper LOAD commands, execute the command file
and save the results (see the Program Development Software User

Guide). At this time, the desired version of BASIC, the modified

CALLP subroutine, and the called subroutines are loaded as an entity
so that programs written in BASIC may call the designated subroutines.

For example, the following program starts the real-time clock and
prints a clock value every 300 microseconds.

Sample

>RUN
300
1800

CALL 1
I=308
CALL_2¢J>

IF 1I<>J GOTO 38

PRINT 1,
I=1+3080
GOTO 38

Output:

600
2100

988
2498

7-7

1208
27080

1502
3008



'APPENDIX A
SAMPLE .. OGRAMS

R T ebededadank: ot =1 O =] U o sprefesdeafuste

FEM ‘

FERM PROGRA TO CRALCULATE MILES PER GALLOMN AMND PRINT REFPORT.
REM o e
FEM THIS PROGRAM GIVES i PP

FEM DATA AMD DO STRPLE
1 A '-TF{TFME'NT Tﬁ FRELs

J ha =
@@

.~:qﬁEHT5 LWSED ARE
T : CASSIGHMENT >, PRINT. AMD DATH

2 2 CBRTE S CODOMETER . “MILES . “GRLLONS . ~ PR
L wrn PACILS THITIHLI THG SOME VYARIABLES USED LATER

178 LET Mi-=
1Ea-LET Ml
196 LET.Gl
._FT 1
REFAD K
Rl M b If ODOMETER READING

H LET ki= .

S4E FEM KL x: GET TO ORIGIHAL CDOMETER RERADING

PEE READ M

2EM FEM M 15 SET TO LATER ODOMETER READINGS

S7E FREM M OIS ALSD USED AS A FLAG TO TERMINATE LOOF.

@ REM STATEMENT 148 I5 EMTRY INTO LOOF.

i IF M=G THEM 400

B OREM WHEM NS B OO CONTINUES

16 READ D

IZR REM D IS DATE

ITA READ G

T4 OREM G IS GRLLONS LSED SINCE LAST OROMETER READTHG.
ISE LET MeM-k ,

ZEE REM M IS INCREMEMT OF TOTARL MILAGE

T MA=pLM

ETEG OREM ML OIS RUMHING TOTAEL OF MILES

==
&
%
&

li ﬂ li

EAC I SR

hy Dy Dy




The following is the output from Example 1:

LOAD

DATE

21574
222174
30174
30874
31574
32274
32974
TOTAL

3

88 RN CRLCULATION OF MILES

LET M= G

e FRINT oM MG R

<A
FEE
S
456"
S
476
G
S A
SR
CELR
S
LA S
54@

=6

»u
i

"ufﬁ
o

"EXAMPL®

LET Ka=M

ke LWPEDATES K
H£T 0
TRERAG
GOTO

ER I 2

o ] thTIHHE lnnr LIRT I

FreIMT “ToOTr "

IS TOTEL

TO LAST QDOMETER SERGTMNG

GELL RS

H

P Gl

FER MOTE WJEE HF‘ i

DETHE 4':"'" e 41.
DETF 3
DATA 2
DETH 2
DRTHA ZEes
DATH

DETr =
DETE &
SO

ODOMETER
46193
46315
46505
46855
47067
47314
47464

STOPPED AT LINE 350

3. J,ﬁ'. :l; 47514
DETE 4,14 T,
= 5 o

MILES
311
122
150
350
2la
247
150
1582

47454

fw.T”

FER GRLLOH

LiED

2 (R,
e 3 xﬂ
*;rr OHE FRINT FIELD

GALLONS
16.8
.4
12.7
17.6
15.2
14,7
10.6

S7

MPG
18,5119
12,9787
14,9606
19.8864
13.9474
16.8027
14.1509
16.3093



15 R debdgepd E=AMPLE 2 Adibbd

o8 REM

=@ PEM OTHE FOLLOMING STRTEMENTS ARE A MODIFICATIGN OF EXAMPLE 1
4G FEM U0 ALLOMW DRTA TO BE READR FROM M FILE RATHER THRHM DHETA
=6 REM STATEMENTS

FEM

OV INEFILES 1="GRZDATS

PRINT “DATEY. “ODOMETER -, “MILES ., “GRLLONS . "MILESSGARLLON S
LET Mi=B

LET Hi=@

LT Gi=8

LET Ki=06

LET =458z

G RN MUST SET INITIAL VYALUD OF B BY HEND,

8 REM OF FECAD IT IM FROM ANGTHER FILE TO PREVENT RECORD FROM BEING
S REM DISCARDEDR

A LET Ki=E

S0 READE 1ML DL G

REM ALL ITEMS MUST BE REARD OF REST OF RECORD IS DISCARDED
IF N=0 THEN GO

LET M=MH-¥

Mi=M1+M

LET A=M0

FRINT LbHM.M. GO H

LET k=M

I ooule S B QPSR S N ond
[I SRR B W s

GOTO 12
FIlT “TOTAL 7, 7 7L ML Gl CE-K1 361
STOF

nnLOHLO

-]

S R}

Oy Ll Jo L) 00 P M

Rl el

R RN )
RONDRD DD 0D 5!

FOURR NI R I (NI U I (N (U

P Y
W

The following is a sample of the output from Example 2. The results are
similar to Example 1 and are included for comparison.

LOAD 'EXAMP2’

RUN

DATE ODOMETER MILES GALLONS MILES/GALLON
21574 46193 31l 16.8 18,5119
22274 46315 122 S.4 12,9787
30174 46505 150 12.7 14,9606
30874 46855 350 17.6 15.8864
31574 47067 212 15.2 13,9474
3274 47314 241 14.7 16,8027
32974 47464 150 10.6 14,1509
TOTAL 1582 97 16,3083

STOPPED AT LINE 350



REM
REM
ReM
REM
Rz
REM
REM
REM
REM
RE
REM
REM
REM
REM

R T R ESAMPLE T #ukshedheg
THIS PROGRAM CALCULATES THE FACTORS OF A POSITIVE
INTEGER BETWEEM 1 [AND 229233 THCLUZIVE.

IF THE HUMBER HAS MO FACTORS. A MESZASE IS RETURHED
THAT THE MUMBER IS PRIME. CHECKING 15 MADE FOR SOME
SPECIAL CASES

THE PROGRAM SHOWZ THE US OF GOSUE AND RETURMN STARATEMENTS
TO PRODUCE BOTH NESTEDR AND SEGUENTIAL SUBROUTINES

I A PROGRAM. IT ALSO DEMONSTRATES THE USE OF THE PRINT
AKND THE IHNPUT STATEMENTS TO PRODUCE AN INTERACTIVE COMN--
YERSATIONAL FROGRAM

FRINT “PLERSE TYFE YOUR HUMBER: <
IMFUT A

LET
LET

P=1

[y
s=

LET H=1

REmM

H INITIALIZING FLAGS

GOsUe =75

GOSUE 354

FRINT 715 THIS YOUR LAST MHUMBER: 7
INFUT A%

IF AL YES Y THEM 75

END
FEF
REM

HbbdebdeekEND OF MAIH PROGRAM
SUBROUTINE TO CHECK IF A IS HOT AN INTEGER.

IF A=INTRY THEN 156

PRINT “HUMBER MUST BE AM INTEGER. -
GOsUB SRa

RETURN

KEM

SUBROUTINE RETURNS MESSAGE IF A > 233293

IF A{=39332233 THEM 135

FRINT “SORRY., AT FPRESENT., HUMEBER MAY MNOT EXCEED Z2233% 7
GOsUe Saa

RETURH

FErM

SUBROUTINE TO HRMNOLE A = 1



125 IF A< THEHM 245

266 PRINT R:715 1 AND IS DIVISIBLE BY OHLY ITSELF AMHD 1. 7

265 PRINT “HOWEVER, IT IS HOT A PRIME MNUMBER 7

zie Gosue Sao

215 RETURN

2268 KEM SUBROUTINE 7O CHECK IF A 15 8 OR MNEGRTIVE.

225 IF A>=1 THEHM 245

226 PRINT “HUMBER MAY NOT BE EITHER ZERC OR A MNEGARTIVE VALUE. °
235 PRINT “YOUR HUMBER” A I% INVALID. -

246 GOZUB S6g

24% RETURN

2568 REM SUBRCUTINE TO HANKDLE A = 2,3
255 IF A>3 THENM IF A2 GOTO 27o

2E8 GoSUE 256

265 GOSUE S60

278 RETURN

275 RN SUBROUTINE TO PRINT HERDER LINE.
226 IF P=1 THEN 310

225 IF H=6 THEMN Zi18

228 PRTIANT “HUMBER A "I DIVISIBLE BY: 7
225 PRINT

@8 FRINT A, 7AND, 717, 7 7, 7 7,7 7

2685 LET H=8

318 RETURN

315 KEM SUBROUTIMNE THAT PRINTS DIVISORS AHND QUOTIENTS.

Z28 IF P=1 THEN 245

25 PRINT X, 7AND7 . G2, 7 7. 7 7, 7 7

3Z6 IF HIOOEZ THEMH 345

335 PRINT 717, “AND7. A

4G PRINT

345 RETURNM

ISB KEM SUBROUTINE TO FPRINT MESSAGE WHERN NUMBER IS A PEIME
%55 IF P=8 THEN =V

PRINT “HUMBER” :A: 15 A PRIME MNUMBER. -

PRINT

RETURM

KEM PERFORM CARLCULATION AMD GET ROUTINES TO PRINT RESULTS
IF S=8 THEM 4206

noao

i

L b ) L) L)
QMO

o



n

S FiR XH=INTAASZY TO 2 STERP ~1
90 LET Q= "%

225 LET QZ=IHTIA )

488 LET R=Q1 -2

465 GOSUe 425

418 MHERT =

415 GOSLIE &ad

3268 RETURN

425 Ry CcRLL PRINT ROUTINES ETC
478 IF RIXG THEN 426

435 LET P=4

44@ GosUe 279

345 GOSUE 215

458 HRETURN

455 KEM SUBROUTINE 70O EXMTER SFECIAL ROUDTINESD
4c8 REM IF A IS HEGATIVE OR ZERG, OR 1. 2,3, OR IF A IS A FRACTION
55 GOoUE 140

478 GOLUE 1455

475 IF AXZ THEM 435

428 GoUB 178

485 GOSUE =28

4230 GOoUE 258

335 RETURH

568 FRINT

Sas LET ==

S198 RETLRN

-
Y

(]

The following is same sample output from Example 3.

LOAD °‘EXAMP3'
RUN

PLEASE TYPE YOUR NUMBER: O
NUMBER MAY NOT BE EITHER ZERO OR A NEGATIVE VALUE.

YOUR NUMBER O IS INVALID.

IS THIS YOUR LAST NUMBER: NO

PLEASE TYPE YOUR NUMBER: |

1 IS 1| AND IS DIVISIBLE BY ONLY ITSELF AND 1.
HOWEVER, IT IS NOT A PRIME NUMBER.

IS THIS YOUR LAST NUMBER: NO

PLEASE TYPE YOUR NUMBER: 2
NUMBER 2 IS A PRIME NUMBER.

A-6



Sample output from Example 3 (cont)

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 4
NUMBER 4 IS DIVISIBLE BY:

4 AND 1
2 AND 2
1 AND 4

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 17
NUMBER 17 IS A PRIME NUMBER.

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 324567390123456783
SORRY, AT PRESENT, NUMBER MAY NOT EXCEED 999939.

PLEASE TYPE YOUR NUMBER: 56
NUMBER 56 IS DIVISIBLE BY:

56 AND 1
28 AND 2
14 AND 4
8 AND 7
7 AND 3
4 AND 14
2 AND 28
1 AND 56

IS THIS YOUR LAST NUMBER: YES
END AT LINE 230

A-7



10Q
118
120
134
148
154
1668
176
128
128
284
216
228
225
239
248
258
2608
278
2ec8a
z24
364
318
211
32a
230
344
341
242
354
51
352
3c8
379
328

REM  seksesdrk EHMAMPLE 4 bk

REM

KEM THIS PROGRAM USES THE ARRAY PROCESSIHNG CAPABILITIES
REM OF BASIC T3 COMPUTE THE TOTAL DOLLAR VALUE OF THREE
REM PRODUCTS SOLD BY FIVE SALESMEN

REM

ReM YECTOR ELEMENT P(MY IS5 THE PRICE OF THE N-TH PRODUCT.
REM MATRIX ELEMENT SJ{M. N> IS THE TOTAL HUMBER OF THE M-TH
REM FPRODUCT ZOLD BY THE M-TH SALESMAMN.

REM

REM

DIM SC6. 42

DIM P4

T=8

MAT P= CON

MAT == ZER

READ P10, FPC20, PC(ED

REFD S{1. 12,501, 22, 501, 30, 542, 15, 542, 23, S(2. 3>

READ S<Z,10, 503,22, 503, 32, 504, 13, 504, 23, 54, >

READ S5, 13,55, 2>, 5{(5 3>

FOR I=1 TG S

FOR J=1 TOQ =

T=5C1, IX+T

PRINT I:J.5<{1.J>

NEXT J

MEXT 1

PRINT

PRINT

MATPRINT S

PRINT

PRINT “TOTHAL SALES =7:T

DATA 1. 23, 2. 54. 5. 42

DHTA 47. 24,16, 55, 28, 12, 76, 23, 14, 7E, 45, 12, 45, 34, 23

STOP

A-8



The following is sample output from Example 4.

60,63
60,56
(570 68
56,52
65,76
58,42
76,72
93.04
114,53
65.76
53,05
36.36
126,04
12.24 98,04 98,04
60,96 $6.52 58 42
0 87.6% 65.76
65,76 126.04 0 0
0 0 0

G = GO DD e N e G DN b (MDD =

cgwwwbbbwwummmm——
L ]
los
<

TOTAL SALES = 1225.52

STOPPED AT LIz 33J

A-9

58.05
114.3
16. 72



166
11a
12683
134
144
156
168
173
188
128
=84
216G
=28

T

244
258
250
27a
289
2948
280
it %)
328
2326
244
350
368
|
s
378
486
4108
$z28
4z4
440
1454
$&8
47a
424
124
588
514

FOM b —eAMPLE S B AU
REM

FEM MILTIFLE PLOT PROGREAM
REM

REM

DEF FHF(H3=STHMD

DEF FHGORM=LOG LG lEn
READ A B. %

FEARD . 0L H

LET H=:{D--C3 M

IF HI=58 THEHM 226

FRINT © ORLY S8 SUBLIVISIONS ALLOWED Oi Y-RHISS
STOR

DEF FHROE»=THT (H+. S
PRINT “Y-RET5S: FROM -0 7TO 7007 IM STEPS GF
PRINT

LE="7

FoR I=1 TO N-1

LE=L$+ "

HEST I

FRINT L&+~

FOR ¥=f TO B STEF %

LET YW=FHF {2

LET Wi=FHR{W-Ch"H2

LET YW=FHNG{¥>

LET ¥2=FHR Y -Ca"H>

Lg="~

FOR I=G TO M

IF I=%1 THEN 428

IF I=%2 THEM 443

LE=L$+" 7

GOTO 49249

LE=L3+ "4

GOTO 450

L¥=L%+" -~

HEXT 1

PRINT L%+7 R

MEXT X

DRTAR 1.1@.. 3

DARTA ~1. 1,56

LRATA @

STOP

A-10

T H



OF  4E-B2

TO 1IN STEFZ

The following is sample output from Example 5.

HTOMSH GO OO0 0 W
GOm0 O OO0 OG OGO

OO OO OGO GO0O 000

NECRL LS R RS R RO A R B

IR I I TR R S B g PO AT PR @MW M Dt @O

S P R R S G e A R TR L A AT R O o No R - Nyl G N R

4=
4

-

+:4
+

*® + *

Ed

EH

A-11



1688 hEM ke ExAMPLE & bk
118 REM FIBOHACCT HNUMBER GEMERATOR
1268 REM

1Z8 INPUT E

jid4g I=1

158 J=z2

18 FPRINT I..0,

178 FOR K=1 TO E

128 F=I+J

123 I=1

I88 JI=F

218 FRINT F.

228 HEXT K

238 END

Sample output:

120
: 8
s 2 34 55 39
2534 4181 765 e
17711 28657 §765 12546

END AT LINE 230

A-12



166
110
126
136
148
156
168
iv8
188
136
260
s B
224
238
=44
256
268
27

228
220
388
214
3za
3306
344
258
366

-
%
C )

326
3928
488
418
4268
3306
448
459
456
478
438
420
80
518
528
536
548
5506
566
Sve
S&a

REM skdeddh EXAMPLE 7 Aegrgedenh:

RrREM

FeM LURNRR LANDING PROGRAM

rEM

PRINT

PRINT “COMTROL CALL LUNAR MODULE. MANUARL CONTROL IS HECEZSSARY. -

PRINT -“YOU MAY RESET FUEL RATE K EACH 16 SECS TO 8 OR ARY YALUES
FPRINT “BETWEEH & & 2840 LBSSSEC YOUVE 16868 LBS. FUEL ESTIMMATED-
FRINT “FREE-FALL IMPARCT TIME = 4128 SECS. CAPSULE MEIGHT = 225808 LBS”
B=444# ##H4# $#H43 ~———$#. ##H# HEHNE HEH
PRINT “FIRST RADAR CHECK COMING UF. -
PRINT
PRINT
FRINT
PRINT “COMMENCE LARNDING PROCEDURE”
PRINT
PRINT “TIME ARLTITUDE ", “WELOCITY ", “FUEL (LBS> ., "FUEL RATE~"
PRINT “SECS MILEZ FEET .~ MEH -
PRINT
L=8
A=126
=1
M=322586
H=165608
G=1FE-983
Z2=1.8
PRIKTUSING B¥. L, INTC(ARY - TNT(SZS04 (A-THNTCAD 3 3, 2680+, M-,
PRINT “K=":
INPUT K
T=18
O SGHKD+2 GOTG 436, 466, 418
IF K<& GOTO 4Z=a
IF K{=286 GOTO 4&a
PRINT “HOT POSSIBLES
PRINT TRBSE):
GOoTo 37
IF M-N{1E-83 GOTO S76
IF T{1E-83 GOTO 368
=T
1IF M+ =M GOTO 518
S={M-H>"K
GOSUE 1628
IF I<{=8 GOTO 2G4

IF v{=8 GOTO 556
IF J{8 GOTO 256
GOZUB 8449

GOTO 458

FPRINT “FUEL QUT RT”:L:“SECS”
S=(-V+50R OV + 24846 ) ) G
M=+ GoFE

A-13



688 L=L+%
€10 FRINT “OM THE MOON AT :L: "SECS”
G286 W=3c0804Y
38 PRINT “IMPARACT VELOCITY OF 7 :W: “MPH”
48 PRINT “FUEL LEFT IS M-N: LBZ”
&58 IF W>1 GOTO <28
€e8 FPRINT “PERFECT LANDING'”
&78 GOTO 728
&80 IF WX1g GOTO 718
&28 PRINT “GOOD LAMGINGS
88 GOTO vCo
718 IF W22% GOTO 743
728 PRINT “FOOR LANDING-
¥38 GOTOo 728
¥48 IF WN>c@ GOTO 77
7SE PRINT “CRAFT DAMAGED: GOOD LUCK TO YOU AND THE RED S0k 7
re8 GOTO 78
778 FRINT “FATAL CRASH; HNO SURVIVORSS
T8 FRINT
728 PRINT “TRY AGAINT:
88 INFUT A
gi8 IF AF="YES” GOTO 260
828 IF AF="HNO" THEM STOP
228 GOTa v2a
248 L=L+%
258 T=7T-%
258 M=PM-Z@K
874 A=I
82a V=
838 RETURN
206 1F S<SE-83 GOTO 16
310 S=24AS VSR OVHENVF 24 R4 (G- 24K M 3 )
S2ae GOSUB 1829
338 GOSUB 2486
348 GOTO 2a8
358 N=01-M4GATHKI 2 A2
268 S=MEVACZHRKE (WA SR W+ YAZ) ) ) +5E-82
378 GOSUB 18206
280 OM SGHCI>»>+2 GOTO 260, 260, 326
336 GOSUB 3406
1860 OX SGH{TIX+2 GOTO 1618, 486, 450
1818 OMN SGHIVY+2Z GOTO 468, 466, 254
1628 G=54K M
1438 Gi1=0
18480 FOR Q2=2 TO0 1 STEP -1
1658 1= {1.'QZ2+Q1>
188 HEART Q2
1878 J=V+G5-Z4Q1
16286 G1=a
1826 FOR Q2=2 TO0 1 STEP -1
11868 Q1=04{(Q1+1{(Q2+{A2+1>>)
1118 NEXT Q2
1128 [=A-GkSH5/2-V4S+ 245401
1138 RETURN

A-14



Sample output from Example 7.

COMMENCE LANDING PROCEL

10
29
349
43
59
690
70
30
S0
100
119
120
150
140
153
160
1790
130
1990

ON THE #OON AT 193.354 SECS

ALTITUDE
MILES FEET
129 9
199 5015
99 4223
39 29J3
79 1055
63 3959
28 1955
47 29338
37 1929
23 1584
29 17J6
1o 3399
3 1772
4 2795
2 2013
I 1425
J 2943
J 1364
J 5717
0 47

VELOCITY
MPH

3600,000
3636,000
$672.900
3708.000
3T44,000
3739,000
331640J9
3352.000
04764459
3U72,940
2637.460
2164.970
1645.140
1931.920
452,719
347,074
164,626
50,793
26,436
15.310

INPACT VELOCITY OF 313765 niPH

FUEL LEFT IS 245.219 LBS
PERFECT LANDING!

A-15

FuzL (LBS)

16000,000
1609J.000
16000,930
16000,000Q
16000.,00J
16000,000
16000,000
16000,.,000
14000,000
129099,030
13J93,000
8333.,000
600J,000
4099,000
2J0J,.,300
16800.,390
1933.900
690,000
520,099
320.000

FUEL RATE
K= 10
K= 10
K= 10
K= !0
K= 10
K= 10
K= 19
K= 1200
A= 1200
K= 1200
K= 1200
K= 1200
K= 1209
Kz 1200
K= 140
K= 160
K= 140
K= I8
K= 120
K= 119.4



18  REM kekdesdbuk EXAMPLE 2 Herhidedek
28 REM
38 REM THIS PROGRAM SEARCHES AR DATA FILE CONSISTING OF
48 REM STRING ITEMS AND RETURNS THE LINE (RECORD SEQUENCED
S8 REM NUMBER THAT DEFINES THE LOCATION OF THE STRINGIS).
&8 REM
¥8 RINT “EWTER FILEMNAME-.
28 INPUT F#
36 DEFIHEFILE# 1=F%
1688 FPRINT “ENTER STRING'.
1168 INPUT 5%
111 =1
128 IF S%=7"HO MORE” THEN 2c@
138 RERD# 1.E%
148 FOR I=1 TO LENES>
158 IF B#="EO0T7° THEN 208
168 IF B3=5% THEN 226
178 IF S$=SUB<(B%. I. LENCESE))> THEM 236
171 =C+1
186 HMNEXKT I
138 IF B<{>S5% THEN 138
268 PRINT S%: “MOT FOUND.
2468 REWIKD# 1
228 GOTO 188
238 PRINT S$: “FOUND AT CHARACTER POSITION :C: . ~
248 REWINDGH# 1
258 GOTO 186
268 ERD

Output from Example 8.

>RUN

ENTZR FILENAMZ 1S0URCZ
ENTER STRING 1GORGE

GORAGE FOUND AT CHARACTER POSITION 63
ENTZr STRING 1AARDVAARK

AARDVAARK FOUND AT CHARACTER POUSITION |
ZNTER STRING ISYZYGY

SYZYGY FOUND AT CHARACTER POSITIOW& 73
EdTER STRING I XXXX

XXXX NOT FOUND,.

ENTER STRIWG lADZE

ADZe FOUWD AT CHARACTER PUSITION 19
eNTZR STRING !NO MORs

ZND AT LINE 260

>

A-16



16  KEM s EXAMPLE 9 ookl

12 REM
14 REM THIS PROGRAM SIMULATES AX M DIMENSIONAL ARRFAY.
16 REM

28 DIM vi(isBal

3@  INFUT 01.02.03
11@ FOR I=1 7O D1
1114 FOR J=1 TQ DZ
112 FOR K=1 70 D=
115 K= I-12#D2+(J-124DI+K
128 W{(Ri>=14+2+IJ+K™2
138 PRINT V(R
148 MEXKT K
158 PRINT
168 HNERKT J
178 PRINT
188 HERT I
288 STOF

Output from Example 9.

>RUN

225 35#

4 7 12 19
6 9 14 21
8 11 16 23
5 8 13 20
7 18 15 25
9 12 17 o4

A-17



CODE

g JZZIARTEE

S/E

om0 M

mmnmununmumntnm wn

O munmmmnnon

APPENDIX B
ERROR MESSAGES DEFINITIONS .

REASON

OPERAND ERROR

STORAGE SPACE EXCEEDED

(OCCURS DURING ARRAY ALLOCATION)

A( OR A$( EXPECTED (E.G. DIM A$(...,);

MAT STMT ARRAY NAME ERROR

MATRIX DIMENSIONING ERROR

MAT DIM HAS IMPROPER FORMAT

PRINT/WRITE USING EXPR/FORMAT TYPE MISMATCH
(STRING EXPR IN LIST WITH ARITH FORMAT;

OR ARITH EXPR IN LIST WITH STRING FORMAT)

STMT # + LOAD BIAS > 9999;

STMT # NOT FOUND. WHERE EXPECTED

RECORD # IN POSITION <1 OR UNIT NOT BIN DA DISK
FILE I/0 UNIT NUMBER NOT 1-8

TLLEGAL CHARACTER

CONSTANT EXPECTED

READ/WRITE INIT IMPROPER

CHARACTER NOT EXPECTED

V= EXPECTED {(E.G. FOR I=...)

DEFINE FILE ERROR -

- RECORD SIZE SPECIFIED <2 OR >512

- NO STORAGE FOR RECORD BUFFER

- ERROR OPENING UNIT; DRIVER MESSAGE IS PRINTED
(NOTE: A DF ERROR CAN ALSO OCCUR ON A LOAD/FILE
STATEMENT IF OPEN ERROR OCCURS)

DEFINE FILE MODE SPECIFIER ERROR

EXPRESSION NOT OF TYPE EXPECTED

STRING EXPRESSION EXPECTED

ON END INIT # EXPR IMPROPER

PRINT/WRITE USING FORMAT ERROR

FOR-NEXT MATCHING ERROR

UNDEFINED PN FUNCTION

FN FUNCTION NAME NOT A-Z

STORAGE SPACE EXCEEDED

(OCCURS DURING STRING OPERATIONS OR FOR STMT)
FUNCTION NAME NOT FOLLOWED BY (

where E/S means Source (S) or Execution (E).



FRES22R52E

mmEON NRRRYRNLBE

“OOoOxmv

tr1 tr I Ot (0N I T T U 00 b O

munununmmunnunmuntmunnnimnmntm n

mwnmmIm

FOR SEPARATOR ERROR

MORE THAN 10 OUTSTANDING GOSUB'S
GOTO EXPECTED i

ARRAY DIMENSION < 1

UNRECONIZED STATEMENT

TLLEGAL MAT MPY EXPR (E.G. MAT A=B*A)
INTEGER > 32767

I0 EXPECTED IN POSITION STMT
EXPRESSION FORMAT

LOG ARGUMENT <= 0

READ/INPUT LIST ERROR

DEF NOT FOLLOWED BY FNX (

MIXED MODE LET (E.G. I=A$; A$=I)

V) NOT FOUND IN DEF STMT

MIXED ARITH + STG ITEMS IN EXPR

ON EXPRESSION OUT OF RANGE

RIGHT PARENTHESIS REQUIRED
EXPRESSION PARENTHESIS > 10 DEEP
ONLY ONE ARGUMENT IN SUB FUNCTION REFERENCE
MIXED STRING § ARITHMETIC ITEMS IN EXPRESSION
# BASIC USES AS INTEGER > 32767; OCCURS IN -
SUBSCRIPT/DIMENSION

I/0 STATEMENT UNIT #

RECORD SIZE IN DEFINE FILE STMT

ON STATEMENT EXPRESSION

TAB FUNCTION ARGUMENT

- SUB FUNCTION NUMERIC ARGUMENTS

- SUBROUTINE # IN CALL STATEMENT
STRING CONSTANT NOT ALLOWED
ARITHMETIC OVERFLOW

EXPRESSION STACK FULL

STRING ITEM NOT ALLOWED OR ILLEGAL OP IN STRING EXPR
- MATRIX NOT INVERTABLE

UNDEFINED STATEMENT NUMBER

SQR FUNCTION ARGUIMENT < 0

SUBSCRIPT OUT OF RANGE OR WRONG # OF SUBSCRIPTS
UNTERMINATED STRING CONSTANT

\WIbE BY Z2EKO

DIVIDE BY ZERO

STORAGE SPACE FOR PROGRAM EXCEEDED

RETURN EXECUTED WITHOUT OUTSTANDING GOSUB

UNIT REFERENCED BY I/0O STMT NOT DEFINED

WRITE # ERROR; DRIVER MESSAGE IS PRINTED
(ERROR IS NOT RECOVERABLE; BASIC MARKS

THE UNIT INDEFINED)

WRITE # TO UNIT DEFINED BY DEFINE READ FILE STMT
READ AFTER WRITE TO NON DA UNIT

READ/INPUT # EXCEED 10~ (+/-38)

CONSTANT EXCEEDS 10~ (+/-38)

SIN;COS;EXP ARGUMENT > 32767

B-2



APPENDIX C

BASIC SUMMARY

Specification Statements:

REM Comment Line

DIM A (3), B (40,3)

DEF X(I) = 2/C0S(I) *3
TRACE ON

TRACE OFF

BREAK ON 40,318,215,10
BREAK OFF 10,40

BREAK OFF

Definition Statements:

LET I3=SIN(K-4.5)+Q3

13 = SIN (X-4.5)+Q3

B$ *0001"!

LET S$(J+5) = M$+D$+'.00"

Input/Output Statements:

DATA 2,3,4, - 3.7E2
RESTORE

READ Al, A2, A3
READ #3, Al, A2, A3
DEFINE FILE #3 ='TEST 3'
DEFINE FILE #(I+3) ='(LPR)"
REWIND #3

INPUT 13, I1, X(1,3)
PRINT X4, 'FEET'

WRITE #3, X4, 'FEET'
PRINT USING F$, X1, X4
WRITE USING F$, #3, X1, X4
ON END #1 G0 1O 999

Formatted Prant Descriptors:

# Replace with Digit
Insert Dec. Point

; Insert comma if needed
r+1¢ Insert exponent field
+ Insert (+) or (-)

- Insert (SP) or (-)
++ Insert leading (+) or (-)
-- Insert leading (SP) or (-)
Insert dollar sign.
$ Insert leading dollar sign.

Control Statements:

GO TO 50

GO SUB 30

RETURN

IF Cl<1 GO TO 40

If D4 = 'ANY' THEN 50
IF X =5THENZ = 3
FOR Cl = 2 TO STEP 1
FOR Cl = 2, 10, 1

FOR A4 = 50, -4.5, -1.2
NEXT A4

ON (I-1) GO TO 10, 20, 60
STOP

END

CALL 5 (A3, 6, I-2)
CALL 1

Matrix Statements:

MAT X = ZER

MAT X = CON

MAT X = IDN

MAT X = Y + 2
MAT X = Y -2
MAT X = 4%Z

T X = (5)*Y
MAT X = TRN (Y)
MAT X = INV (Y)
MAT READ X, Y, Z
MAT READ #N,X, Y, Z
MAT WRITE #N.X, Y, Z
MAT INPUT X, Y, Z
MAT PRINT X, Y, Z

Functions:

SIN(X)
COS(X)

TAN(X)
ATN(X)
LOG (X)
EXP(X)
SQR(X)
ABS(X)
SGN(X)
INT (X)
RND(X)
LEN(X$)
SUB(X$,Y,Z)

Arithmetic
Operators

ADD
SUB
MUL
DIV
EXPON

ational QOperators

- %1 +

el
()
b

N

nall Vv A

AN

kB85

.GE
<> _NE

>»<

[ String Operator

+ Concatenatinn

RUN 45

LOAD 'BETA', 1000
FILE'PNAME' , 1000, 1999
LIST 1000, 1999




APPENDIX D
'"NUMBER' - UTILITY TO
NUMBER OR RE-NUMBER BASIC
PROGRAMS

PROGRAM DESCRIPTION

NUMBER is a FORTRAN program that reads a BASIC program and either
numbers or re-numbers its statements.

NUMBER is invoked as an external command by typing:
NUMBER

The program, NUMBER, then responds:
PARAMETERS

The parameters that may be specified are:

IFILE - input file name (first 6 characters)

OFILE - output file name (first 6 characters)
START - starting statement number (Decimal 1 < START < 9999)
INCR - statement number increment (Decimal 1 - <INCR < 9999)

The parameters, OFILE, START, and INCR are optional. However, if INCR
is specified, START must be specified also. If OFILE is omitted, the
output is placed in IFILE. If START and INCR are both omitted, their
value is 1. If INCR alone is omitted, its value is 1.

The input file specified by IFILE can be either a completely numbered
file or a partially numbered file. If every statement has a statement
number, the file is re-numbered in the order of statement numbers of the
input file. For example, if the input file contained the following
statements:



1J DIM A(S,9)
12 MAT a= ZER
30 #41:=0
35 wW2=0Q
50 FOR K=1 TO 7
§3 FOR I=1 TO 3
73 FOR J=I-1 TO 3
30 IF J<=1 THEd 955
93 GOsUB 290
95 NEXT J
110 NEXT I
120 HEXT K
130 MATPRINT A
139 STOP

and the following sequence of command lines is initiated

NUMBER

user types

PARAMETERS

system responds

INMAT OUTMAT 10 10 user types
where INMAT is the input file, OUTMAT is the output file, the starting
statement number is 10, and increment is 10. The output becomes:

19 DIM A(9,9)

20 AT Az ZER

30 Wl=Q

40 W2=0

50 FOR K=1 10 7
60 FOR I=1 TO 3
70 FOR J=1-1 TO 3
30 IF J<=1 THEN 1Q0
90 GOSUB 290

100 NEXT J

110 NEXT I

120 HEXT K

130 MATPRINT A

140 STOP



The input file specified by IFILE can be only partially numbered,
NUMBER numbers statements in this type of file in the order of their
occurrence. In the following example, the file is sequential and
only the referenced lines contain numbers.

FEM TEST OF THE HUMBER FROGRAM.

REM OBJECT 15 TO SEE HOW A PARTIALLY HUMBERED PROGRAM IS HAMDLED
RERM

16 IHFUT M

PRINT <15 THIS THE END7

THFUIT HNE

IF h$ ="EHND” THEH 32

GOSUE SO0

oo TO 18

o PRINT STHIS IS THE LIWVING EHD T

REM $eap:BEGIN SUBROUTINEL, ddubdad
sa8 LET K =N & 2

y o= 2N

5 = MAZ

G = SHRCHD

PRINT M, G 50 8
PRINT

s RETURN

The results of the interaction

NUMBER
PARAMETERS
PTESIN 2 2

are as follows:

- WEM TEST OF THE HUMBER FROGRAM
FEM OBJECT IS TO SEE HOW A FARTIALLY HUMBERED PROGRAM IS HARDLED
& REM

2 INPUT M
16 PRINT 15 THIS THE END7:

12 IHPUT NE

14 IF H$="END-" THEH 20

16 GOSUB 26

18 GOTO 8

om  PRINT “THIS 15 THE LIVIMG EHD 7
22 END

24 REM sekbdaaBEGIN SUBRDOUTINES. b
26 LET X=N"2

o Y=y

.!0'

2':) T =

za S=HSE

32 Q=SARHD

:‘,:4 pRI'JT H RELTE 13 T QJ 5) lT'l b

& FPRINT

32 RETURNM D-3



Note that statements are numbered by NUMBER using only as many
digits as required. Thus, '599' in the above example becomes '38'.

When the NUMBER program completes execution, the imput file, IFILE, is
closed; and the output file, OFILE, is also closed if it was opened.

ERROR MESSAGES
Messages

BAD PARAMETERS

XXXXXX NOT FOUND

XXXX DUP LINE NUMBER

INPUT FILE NULL

MEMORY OVERFLOW

LINE NUMBER OVERFLOW

D-4

Remarks

If either START or INCR are
specified with more than 4
digits, NUMBER requests a
new parameter line.

The specified IFILE does
not exist. Control returns
to DOS.

XXXX occurs as a line number
more than once. Control
returns to DOS.

The specified IFILE is empty.
Control returns to DOS.

There is not enough memory
to contain a map of line
numbers. Control returns to
DOS.

A new line number 9999.
Control returns to DOS.



APPENDIX E
MEMORY REQUIREMENTS

Memory
Resident DOS DOS-VM
System CONTROL - CONTROL
Y -u
INTERPRETER INTERPRETER INTERPRETER INTERPRETER
and * and * and ;3 and *
QO
10CS 10CS 10CS é 10CS
-yrTTl PV TS B
VIp 2 VP
—————————————— NSO o
Tables, Tables, Word ~f ~~ "~ 77 =N 7
Work Areas, Areas, Etc. %
Etc Tables, Tables,
DOS Work Areas, | = | Work Areas,
5.4K Etc. E Etc.
;
16K =
MINIMIM 3
“SYSTEM |
DOS 6.6K 1
32K v 132K
MAXTMUM
“BYSTEM

*See Tables on
Page E-2 for
memory
allocation

E-1



Single — Double
Precision Precision
BASIC BASIC
BASIC 7.2K k%
BASIC with
PRINT USING 8.0K *x
BASIC with
MATRIX 8.2K **x
BASIC with
PRINT USING 10.2K *%
& MATRIX
Interpreter and IOCS Memory
Allocation
High Speed and Memory Memory
Floating Point Required Required
Arithmetic Single-Prec. Double-Prec.
Neither 850 wds. k%
High Speed
Arith. only 640 wds. k%
High Speed §
Floating Point 0 wds. L

VIP (Virtual Instruction Package)

Memory Requirements

** to be supplied when double precision is

available.

E-2




Function Memory Required

Fixed Table| 700 words (single prec.)
1300 words (Double prec.)

Program APPROX. 1 Word/2 char.
Storage

STATEMENT 2 Words/Statement Index

Packet String values

Storage and FOR-NEXT loop
parameters

Array Dependent upon size.

Storage

Memory Allocations for
Tables, Work Areas, etc.

E-3




INDEX

ABS(X) 3-5

ABSOLUTE VALUE FUNCTION 3-5
ACCURACY 2-1A

AD B-1

ADDITION 3-1

AO B-1

AR B-1

ARCTANGENT 3-5

ARCTANGENT FUNCTION 3-5
ARGUMENT 3-4

ARGUMENT LIST 3-4

ARGUMENT: USER DEFINED FUNCTION 3-7
ARITHMETIC DATA POOL 5-36
ARITHMETIC OPERATORS 3-1
ARITHMETIC VARIABLE 5-19
ARRAY 1-7,2-1R,2-3 - 2-6,5-8,5-20,6-1
ARRAY ADDITION 6-5

ARRAY ASSIGNMENTS 6-5

ARRAY BOUNDS 2-5

ARRAY CONSTANTS 6-2

ARRAY DATA TYPE 2-3

ARRAY DECLARATION 2-4

ARRAY DIMENSIONS WITH REDIMENSIONING 6-3
ARRAY DIMENSIONS 2-5,2-6
ARRAY ELEMENT REFERENCE 2-5
ARRAY ELEMENTS 2-3,5-19,6-2
ARRAY MANIPULATION STATEMENTS 5-1,6-1
ARRAY MULTIPLICATION 6-6
ARRAY NAME 2-3

ARRAY REDIMENSIONING 2-5,6-1
ARRAY STATEMENTS 6-1

ARRAY STORAGE 2-3

ARRAY STORAGE ALLOCATION 2-5
ARRAY SUBSCRIPT 2-3,2-5,2-6
ARRAY SUBTRACTION 6-5

ARRAY VARIABLES 2-3

ASC 5-6A

ASC SEP 5-6A

ASCII 2-2,3-4,5-6A,5-36
ASCI1 FILE &4-2

ASR 5-6

ASSEMBLY LANGUAGE 5-3,7-1
ASSIGNED 6-1

ATN(X) 3-5

BASE E 3-5

BASIC 1-1

BASIC FILE &4-1

BASIC LANGUAGE INTERPRETER 1-1,2-4

I-1



INDEX

BASIC PROGRAM 1-1
BASIO 5-64A

BATCH MODE 1-2,1-5 = 1-6A
BD B-1

BE B-1

BIN 5-6A

BIN DA 5-7,5-22,5-41
BINARY FILE 5-6A
BINARY OPERATOR 3-1
BL B-1

BLANKS 1-3

BOUNDS 2-3,2-5

BP B-1

BREAK 5-2

BREAK STATEMENT 1-7
BREAKPOINTS 5-2

BU B-1

CALL STATEMENT 5-2,7-1
CALLP SOURCE 7-2

CARD READER 5-6A

CARDS 1-5,5-6

CARRIAGE RETURN 1-2,1-3
CH B-1

CHARACTER ORDERING 3-4
CHARACTER OVERFLOW 5-25
CLEAR COMMAND 1-10

CLOSED FILE 4-2

CN B-1

COLON SEPARATOR 5-25
COLUMN 0 6-1

COLUMN MAJOR 2-3

COMMA 2-3,4-2,5-29

COMMA SEPARATOR 5-25
COMMAND 1-1,1-8

COMMAND FORMAT 1-8 - 1-12
COMMAND PROCESSOR 1-1
COMMAND SYNTAX 1-8 - 1-12
COMPARISON OF STRINGS 3-4
COMPILER 7-1

CON 6-2,»

CONFIGURATION FILE 7-1,7-2
CONSTANTS 2-1. 2-1A
CONTENTS OF FILE 4-1
CONTEXT ERROR 1-12
CONTINUE COMMAND 1-10
CONTROL VARIABLE 5-9,5-20
CONTROL~-C 1-11

CONTROL=-P 1-11
CONVERSATIONAL MODE 1-2 - 1-4,1-6A,6~1

1-2



INDEX

CONVERSION 3-1

CoS(x) 3-5

COSINE FUNCTION 3-5

cCP B-1

CR B-1

CURRENT BOUNDS 6-1,6-2
cv B-1

DAM FILE 5-7

DATA 1-5,4-1,5-4

DATA FILES 4-1

DATA LIST POINTER 5-36

DATA FOOL 5-4,5-34,5-36,6-9

DATA STATEMENT 5-34

DATA TYPE: ARRAY 2-3

DATA TYPES 2-1 = 2-6,3-4,5-17
DEBUGGING 1-7,5-40

DECIMAL POINT 1-7,2-1,5-28

DECIMAL POINT HANDLING 1-7

DEF STATEMENT 3-7,5-5

DEFAULT ARRAY BOUNDS 2-5

DEFAULT ASSIGNED VALUE 5-19
DEFAULT VALUE 5-19

DEFINE FILE STATEFENT &4-2+5-06+,5-35
DEFINE READ FILE STATEMENT 4-2,5-6
DEFINING NUMERIC FIELDS 5-27

DEFINING STRING FIELDS 5-27
DELETING A STATEMENT 1-4
DELIMITERS 1-5

DEVICE 1-5+,1-6,1-9,4-1,5-6
DEVICE IDENTIFIER 5-6,5-64
DEVICE NAME 1-5,4-2,5-6

bF B-1

DIM STATEMENT 2-4,2-5,5-8,6~1
DIMENSIONS 2-3

DISK 1-5

DISK FILE 5-6A,5-38

DIVISION 3-1

pM B-1

DOLLAR SIGN 2-3,5-31

poOsS 1-11

pCS/vM 1-11

DOUBLE PRECISION 2-1,2-1A,5-1

E B-2

EDITOR 1-3,3-1,4-1

EE B-1

ELEMENT 2-3,6-1,6-2
ELEMENT: ARRAY 2-3

END OF FILE 5-21

I-3



INDEX

END OF PROGRAM 5-9

END STATEMENT 5-9,5-39

ENTERING BASIC 1-1,1-2

EQUAL 3-2

EQUAL PRECEDENCE 3-1

ERASE CHARACTER 1-3

ERROR MESSAGES 1-12,B-1,8-2

ERROR: CONTEXT 1-12

ERROR: EXECUTION 1-12,B-1,B-¢
ERROR: SOURCE 1-12,B-1,8-2

ERROR: SYNTAX 1-12

ERRORS 1-12,8B-1,B-2

ES B-1

ESCAPE CONVENTION 3-1

EVALUATION 3-1,3-3

EVALUATION: FUNCTION REFERENCE 3-4
EVALUATION: OF EXPRESSION 3-1
EVALUATION: OF RELATIONAL EXPRESSIONS 3-1
EX B8-1

EXECUTING A PROGRAM 1-5

EXECUTION 1-1,1-3,1-5

EXECUTION ERRORS 1-12,B-1.,B-2
EXP(X) 3-5

EXPONENT 2-1,2-1A,3-2

EXPONENT FIELD 2-1

EXPONENT FUNCTION 3-5

EXPRESSION EVALUATION 3-1
EXPRESSION: IN FUNCTION REFERENCE 3-7
EXPRESSIONS 3-1 - 3-7,5-5
EXPRESSIONS: FILE 4-3

F B-2

FALSE 5-15

FE B-1

FILE 1-5,1-6,1-9,4~-1 - 4-3,5-39
FILE COMMAND 1-5,1-8,1-9,4-1
FILE CONTENTS 4-1

FILE EXPRESSIONS 4-3

FILE MODES S-6A

FILE NUMBERS 4-2,5-41

FILE UNIT 5-22

FILE UNIT NUMBERS 5-6
FILENAMES 1-5,4-2,5-6

FILES CLOSED 5-39

FILES OPENED 5-39

FIXED LENGTH RECORDS 5-7
FLOATING POINT 2-1,2-1A,3-1
FLOATING POINT ARITHMETIC 3-1
FLOATING POINT NUMBER 2-1

FM B-1

I-4



INDEX

FN B-1

FO B-1

FOR 5-20

FOR STATEMENT 5-10

FOR=-NEXT LOOP 5-20

FORMAT 1-1 '

FORMAT FIELDS 5-27

FORMATTED OUTPUT STRINGS 5-42
FORMATTED PRINT-STATEMENT 5-27
FORTRAN 5-3,7-1

FP B-1

FRACTIONAL SUBSCRIPTS 2-6
FRACTIONS 5-23

FT B-2

FUNCTION 1-7,5-5

FUNCTION NAME 3-4

FUNCTION PARAMETER 5-5
FUNCTION REFERENCE EVALUATION 3-4
FUNCTION REFERENCE 3-4,3~7
FUNCTIONS 3-1,3-4 - 3-7

60 (ERROR MESSAGE) B-2

60 1-1
GOSuUB 5-13
GOTO 5-14

GREATER THAN 3-2

GREATER THAN OR EQUAL 3-2
GREATEST INTEGER 3-5

6T B-2

1/0 UNIT 5-38

1€ B-?

ID B-Z

IDN 6-2

1E B-2

IF STATEMENT 5-15,5-16
IMMEDIATE MODE 1-2,1-7,1-8
INITIAL LOAD 1-6
INITIALIZATION OF SCALAR VARIABLES 2-¢
INITIALIZATION STATEMENTS 6-2
INPUT 5-17,5-18

INPUT OF STATEMENT 1-4

INPUT TO BASIC PROGRAMS 5-6A
INPUT/OUTPUT 4-1

INPUT/QUTPUT STATEMENTS 4-1
INSERTING A STATEMENT 1-4
INT(X) 3-5

INTEGER FUNCTION 3-5

INTEGERS 2-1,5-23

INTERNAL SUBROUTINE 5-13

I-5



INDEX

INTERPRETER 1-1,7-1

INVOKING BASIC (SEE ENTERING BASIC)
10 B-2

10CS 5-6A

Is B8-2

17 8-2

KILL CHARACTER 1-3

LANGUAGE 1-1

LANGUAGE INTERPRETER 1-1
LANGUAGE PROCESSOR 1-1,5-1
LEAST INTEGER 3-5

LEFT ANGLE BRACKET 5-31
LENCAS) 3-5

LENGTH FUNCTION 3-5
LENGTH OF FILF RECORD 4-2
LENGTH OF STRING 2-2,2-3,3-5
LESS THAN 3-2

LESS THAN OR EQUAL 3-2
LET 5-10

LG B-~2

LINE 1-1

LINE LENGTH 1-1

LINE NUMBER (SEE STATEMENT NUMBER)
LINE PRINTER 5-6,5-6A
LINE SIZE 2-2

LIST COMMAND 1-9

LITERALS 5-34

LOAD COMMAND 1-5,1-8,.7-7
LOADING 1-6

LOADING A PROGRAM 1-6
LOG(X) 3-5

LOGARITHM FUNCTION 3-5
LOGICAL FILE NUMBER 4-2
LOGICAL FILE UNIT 5-6
LOGICAL UNIT 5-21

LOOP 5-10

LT B-2

MAGNETIC TAPE #1 5-6A

MAGNETIC TAPE #2 S5-6A

MAGNETIC TAPE #3 5-6A

MAGNETIC TAPE H#H4& 5-6A

MAGNETIC TAPE 1-5,5-6

MANTISSA 2-1A

MAT DIMENSION IMPROPER FORMAT B-1
MAT INPUT STATEMENT 6-11

MAT PRINT STATEMENTY 6-12

MAT READ FILE STATEMENT 6-9

I-6



INDEX

MAT READ STATEMENT 6-8,6-9

MAT STATEMENTS 2-5,5-1,5-8,6-1,6-2
MAT WRITE FILE 6-10

MAT...CON 6-3

MAT...IDN 6-3

MAT...2ER 6-3

MATRICES 6-1,6-3,6-7

MATRIX 2-3,2-5

MATRIX ADDITION 6-5

MATRIX ADDITION 6-5

MATRIX ASSIGNMENTS 6-5

MATRIX ASSIGNMENTS 6-5

MATRIX BOUNDS 2-5

MATRIX BOUNDS 2-5

MATRIX CONSTANTS 6-2

MATRIX CONSTANTS 6-2

MATRIX DATA TYPE 2-3

MATRIX DATA TYPE 2-3

MATRIX DECLARATION 2-4

MATRIX DECLARATION 2-4

MATRIX DIMENSIONS 2-5,2-6

MATRIX DIMENSIONS WITH REDIMEBNSIONING 6-3
MATRIX DIMENSIONS 2-5.,2-6

MATRIX DIMENSIONS WITH REDIMENSIONING 6-3
MATRIX ELEMENT REFERENCE 2-5
MATRIX ELEMENT REFERENCE 2-5
MATRIX ELEMENTS 2-3,5-19,6-2
MATRIX ELEMENTS 2~3,5-19,6-2
MATRIX MANIPULATION STATEMENTS 5-1,6-1
MATRIX MANIPULATION STATEMENTS 5-1,6-1
MATRIX MULTIPLICATION 6-6

MATRIX MULTIPLICATION 6-6

MATRIX NAME 2-3

MATRIX NAME 2-3

MATRIX REDIMENSIONING 2=5,6-1
MATRIX REDIMENSIONING 2-5,6-1
MATRIX STATEMENTS 6-1

MATRIX STATEMENTS 6-1

MATRIX STORAGE 2-3

MATRIX STORAGE 2-3

MATRIX STORAGE ALLOCATION 2-5
MATRIX STORAGE ALLOCATION 2-5
MATRIX SUBSCRIPT 2-3,2-5,2-6
MATRIX SUBSCRIPT 2-3,2-5.,2-6
MATRIX SUBTRACTION 6-5

MATRIX SUBTRACTION 6-5

MATRIX VARIABLES 2-3

MATRIX VARIABLES. 2-3

MAXIMUM STRING LENGTH 2-2

MEMORY 2-2,5-1

I1-7



INDEX

MEMORY MAPPING 5-1

MEMORY SIZES 5-1

MIXED DATA 3-2

ML B-2

MM B-?2

MODE CF FILE 5-6

MODES OF OPERATION 1-1,1-2
MR B-2

MS B8-2

MULTI-WAY BRANCH 5-21
MULTIPLE DOLLAR SIGNS 5-31
MULTIPLICATION 3-1

NAME OF USER DEFINED FUNCTION 3-7
NAMES 2-2,2-3,2-6

NATURAL LOGARITHM 3-5

NESTED 5-10

NEW COMMAND 1-10

NEXT 5-20

NEXT STATEMENT 5-10

NON-LOCAL 5-14

NOT EQUAL 3-2

NULL STRING 2-3,5-19

NUMERIC ARRAY 2-5

NUMERIC CONSTANT 2-1,5-4

NUMERIC EXPRESSION 3-1,3-2,+5-15,5-23
NUMERIC FIELDS 5-28

NUMERIC OPERAND 3-1

NUMERIC SCALAR EXPRESSION 6-6
NUMERIC SCALAR VARIABLES 2-2.2-3
NUMERIC TO STRING CONVERSION 3-1
NUMERIC VALUES 2-1,2-1A

NUMERIC VARIABLE 5-19

0 B-2

ON 5-21

ON END 5-21,5-22
ONE-DIMENSION 2-3

OPEN FILE 4-2,5-6
OPERAND 3-1

OPERATING MODES 1-1,1-2
OPERATING SYSTEM 1-1,1-3,1-8
OPERATOR 3-1

ORDER OF ARRAY 2-3
ORIGINAL BOUNDS 6-1
OUTPUT DEVICE 1-9

ov B-2

P B-2
PAPER TAPE 1-5

I-8



INDEX

PAPER TAPE READER PUNCH 5-6A
PARENTHESES 3-1,5-6

PARENTHESES: IN EXPRESSION 3-1
PARTIAL LINE 5-25

PLUS OR MINUS SIGNS 5-29

PMA 7-1

PN B-2

PO B-2

POSITION STATEMENT S5-7,5-22
POUND SIGN 5-28,5-31

POWER 3-5

PR B-2

PRECEDENCE 3-1

PRINT ELEMENT S5-41

PRINT STATEMENT 1-3,5-23

PRINT USING STATEMENT 5-1,5-27
PRINTING NUMERIC STATEMENTS 5-23
PRINTING SPECIAL CHARACTERS 5-33
PRINTING STRING EXPRESSIONS 5-24
PRODUCTS OF ARRAYS 6-7

PROGRAM 1-1

PROGRAM FILES &4-1

PROGRAM STORAGE AREA 1-3,1-6,1-7
PROGRAM STRUCTURE 1-1 - 1-12
PROMPT 1-1

PROMPT CHARACTER,! 5-17

PTR/P 5-6
QUIT 1-11
R B~2

RADIANS 3-5

RANDOM NUMBER 3-5

RANDOM NUMBER GENERATOR 3-~5
RANGE OF DIMENSION 2-5

RANGE OF FILE NUMBER 4-2
RANGE OF NUMERIC VALUES 2-1A
RE B-¢

READ #N,L1,...,LN 5-35

READ * FILE 5-36

READ AFTER WRITE CHECK 5-41
READ FILE 5-35

READ STATEMENT 4-2,5-4,5-34
READING 5-6

RECORD 4-1,5-22

RECORD NUMBER 5-22

RECORD SIZE 5-7
REDIMENSIONED 5-8
REDIMENSIONING 2-5

REFERENCE TO ARRAY ELEMENT 2-5

I-9



INDEX

REFERENCE: FUNCTION 3-4
RELATING CALL TO SUBROUTINE 7-1
RELATIONAL EXPRESSION 3-1,3-2,5-15
RELATIONAL OPERATORS 3-2
RELOCATION CONSTANT 1-8

REM 5-36

REMARK 5-36

REPLACING A STATEMENT 1-4
RESTARTING 1-11

RESTARTING BASIC 1-11
RESTARTING FROM DOS 1-11
RESTARTING FROM DOS/VM 1-11
RESTORE # 5-36

RESTORE §& 5-36

RESTORE 5-34,5-36

RETURN STATEMENT 5-13,5-26
REWIND STATEMENT 4-2,5-38,5-41
RI B-2

RIGHT ANGLE BRACKET 5-32

RNB(X) 3-5

ROUNDING 3-6

RGW O 6-1

ROW 6-7

RULES OF PRECEDENCE 3-1

RUN COMMAND 1-5,1-6+1-9

RUNNING A PROGRAM 1-6

RUNNING PROGRAM WITH CALL STATEMENTS 7-7

SC B-2

SCALAR MULTIPLICATION 6-6
SCALAR VARIABLES 2-2,5-19
SCIENTIFIC FORMAT 5-24

SE B-2

SECOND 6-7

SENSE SWI1TCH 1-11

SF B-2

SGN(X) 3-5

S1 B-¢

SIGN 2-1

SIGN CHARACTER 5-23

SIGN FUNCTION 3-5

SIGNED DECIMAL 2-1
SIGNIFICANT DIGIT 2-1
SIN(X) 3-5

SINE FUNCTION 3-5

SINGLF PRECISION 2-1,2-1A
SINGLE QUOTES 1-5,1-6,2-2,5-17
SM B-2

SN B-2

SOURCE ERRORS 1-12.,B-1,B-2

I-10



INDEX

SQOURCE FILE 1-5,1-6

SPACE 525

SPECIAL CHARACTERS 1-3,5-27

$Q@ B-2

SQR(X) 3-5

SQUARE ROOT FUNCTION 3-5

SS B-2

ST B-?

START 1002 1-11

STATEMERT 1-1 - 1-2,1-8,5-1 - 5-42
STATEMENT BODY 1-3

STATEMENT DELETION 1-4

STATEMENT EXECUTION 1-1

STATEMENT FORMAT 1-1

STATEMENT INPUT 1-4

STATEMENT INSERTION 1-4

STATEMENT NUMBER 1-1 = 1-3,1-6,1-7
STATEMENT REPLACEMENT 1-4
STATEMENT TERMINATOR (SEE CARRIAGE RETURN)
STEP 5-10

STOP 5-30

STORAGE 1-3,6-1

STORAGE ALLOCATION 2-5

STORAGE OF ARRAYS 2-3,2-4

STOCRAGE OF STATEMENTS 1-3

STRING 2-2,2-3

STRING ARRAY 2-5

STRING COMPARISON 3-4

STRING CONSTANT 2-2,5-4

STRING DATA POCL 5-36

STRING EXPRESSION 3-1,3-2+,5-3,5-15,5-23
STRING FIELDS 5-31

STRING LENGTH 2-2.,3-4

STRING OPERANDS 3-1

STRING OPERATOR 3-1

STRING SCALAR VARIABLES 2-3

STRING TO NUMERIC CONVERSION 2 3-1
STRING VALUES 2-2,3-4

STRING VARIABLE NAME 2-3

STRING VARIABLE 5-19

SUB(A$,1,4) 3-5

SUBROUTINE 5-3

SUBROUTINE IDENTIFIER 5-3
SUBSCRIPT 2-3,2-5,2-6,5-19
SUBSCRIPT ARRAY ELEMENTS 5-19
SUBSCRIPT EXPRESSION 2-6,5-17,5-34
SUBSCRIPT RANGE 2-6

SUBSTRING 3-5

SUBSTRING FUNCTION 3-5

SUBTRACTION 3-1

I-11



INDEX

SYNTAX ERROR 1-12

SYSTEM COMMAND 1-2

SYSTEM EDITOR 1-3,3-1,4-1
SYSTEM FUNCTION 3-1,3-4 - 3-7

TAB REQUEST 5-41

TAN(X) 3-S5

TANGENT FUNCTION 3-5

TARGET ARRAY 6-1

TELETYPE 5-6A

TERMINAL 1-5,5-6A

TO 5-10

TRACE 5-39

TRACE OFF 5-39

TRACE ON 5-39

TRAILING COMMA 5-4 :

TRANSFER INTO A COMPLETED LOOP 5-10
TRANSPOSE OPERATIONS 6-8 .
TRUE 3-3,5-15 -

TWO-DIMENSION 2-3

TWO-DIMENSIONAL 6-2,6-7

TYPE: SCALAR VARIABLESZ2-2

TYPES OF DATA 2-1 - 2-6

UF 5-35

UFP 1-5

UNARY MINUS 3-1

UNARY OPERATOR 3-1

UNARY PLUS 3-1

UNASSIGNED SCALAR STRING VARIABLES 5-19
UNDECLARED ARRAY 2-5

UNIT SPECIFIER 5-6

USER DEFINED FUNCTION NAME 3-7
USER DEFINED FUNCTION 3-1,3-7
USER DEFINED NUMERIC FUNCTION 3-7
USER FILE DIRECTORY 1-5

VARIABLE 1-1 1-7,2-1,2-1A,5-3,5-34
VARIABLE NAME 2-2

VARIABLES: ARRAY 2-3,2-4
VARIABLES: SCALAR 2-2,2-3
VARIABLES: SUBSCRIPTED 2-3,2-4%
VECTOR 2-3.2~-5

VERSION OF BASIC 5-1

VERTICAL ARROW 5-29

WR ERROR 5-41

WRITE FILE 5-41
WRITE STATEMENT 4-2
WRITE USING 5-42

I-12



INDEX

WRITING 5-6
X B-2

2 B=?

2ER 6-2

ZERO LENGTH STRING 2-3
ZERO SUBSCRIPTIS 2-5
ZONES 5-25

I-13



	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-06A
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-01A
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-06A
	3-06B
	3-06C
	3-06D
	3-07
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-06A
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	B-01
	B-02
	C-01
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13

