Prime Computer
User Guide

For
Real Time Operating System

PRIME COMPUTER, INC.. 145 PENNSYLVANIA AVENUE. FRAMINGHAM. MA. 01701

MAN 1856
RTOS USER GUIDE

ORIGINAL EDITION OF MARCH 1974

Repfintédiﬁgbruary31975

INSTRUCTIONS

This is a partial reprint of the original document.
To form a complete RTOS manual, Addendum A (supplied.
separately) must be combined w1th this document in -
the following sequence: .-

Original Addendum :
(This Document) A Contents
X Title Page, Content§ aitd
Foreword
| X Section”1
X Sectiom Z
X Section 3
X Section 4
X Section 5
X Section 6
X | Section 7
X Section 8
X Section 9
X Appendix A

X Other Appendices

- table of SIM. A program's readiness for execution is determihedbegﬁ"

'SECTION'Z |
ACTION OF EXECUTIVE

This section describes the standard RTOS Executive, with emphgsis on the
functions of the Scheduler, Function Handler, and Interrupt Handler.

The Communication, Coordination and Mass Storage options, the Error
Print routine, the Clock Program, and The System Loader are also
discussed. Detailed flow chartstare included at the end of the section.

SUMMARY OF EXECUTIVE CONTROL FLOW

Figure 2-1 provides an overview of program-control through the main
components of the Executive. Main entry and exit points are identified
by the same labels (INP1, SC, FE, etc.) that appear on the -detailed
flow charts and the Executive assembly language listing.

After a manual start, the executive initialization routine (INP1).
initializes the Real time Clock and ASR interrupts, sets the addressing
mode, etc., and jumps to the user's initialization routines, if present.
Control then passes to the Scheduler. : a

The scheduler determines whether there is a program réady for executibh:
by examining entries in the SPLT table of SIM. If several programs, are.
ready, they are started in the order of priority determined by the:SPET-

- The, mai

" Settings in the status word of the program's SPLT table entry.
categories are: Lot | . kbR

Requested ~ Ready for execution beginning at;the .
e ’ program's starting Tocation: » Requested
status' is set by a Request Program .-
.dr ‘Connect Clock executive function.
_Scheduled Réady .to resume execution at a label
(usually other than the starting
‘location). A scheduled program must
be in memory and waiting. Scheduled
status is set by _a Schedule Label or
Connect, Clock executive function, or if
there is a label present in the A
register during the return from interrupt
response code.

Running . ‘In memory and executing.

2-1

F--—=--9

(1¥NOIL40) 138V
_Dw-u.og v Uz:.ﬂlhm—
[ONISS3006d 4M01104)

9IBM1JOS SATINDAXT. :mﬂ.oan_.w zoWamo.ﬁEou ;

ke

“+1-z aandtg

. LdNHH3LNI
NV 1i

N

lu.ll...qlu..,l.l;ll.ll.l.lllull.l

BLSNI 1¥] 3NSSH M
138V
INAIHS 04V | o ooy
LansE3LNLaasnv |
" 1VHL 321A30 HO4
T 1QIS NI AULNG
. ©#aAV A30 +
X oot, :z:» isr
R ~
.
Y0H3 —w———ms{ §31(103X3 WYYOOUd
H31GNVH wouw3a T "7
LaNYHILNI

— . v——

N&N13d

- HOHHE3 HO TYWHON
=2SDJ ‘1Hd IH 1ULS

HO0Hd ONITIVD

—r———————

—'lll'[lljll'l!

934 4 = 2522

— NI NNOD AV13Q-473S HO "ILYNINESL 'LIVM

-

(03X3LH 40 Ldvd LON}

¥30V3IH WYHD0Hd
NI HILIWNVHVY
NOILYJINAWNOD
AINIHHND 30V 14

{1534} X3078 LAIS WOHd

SA3IN B O3W.3HOLSIH

. 750D A8 Q31310348
HLHI €133 2133 1133 mm——mm| zo_:.oo._ AV 1HVLS
03LdNBEILNI L 1148 *
S¥M 'O0ud 430v3H| Wosd voaw
N3HM 3NTVA Wo¥3 138V

: Jonuswis|).
=559 ses»l - F

——— —— — —

. ALIHOIHd HOIH
SILINIHM QALBVLS |
g St 1t "AHOW3IW
OLNI Q3av01 1NN
N . Q3718vSiA S1 AVEO0ud

N : ¥3SN "03153N038

Q341530 31) 938 ¥ _
9
u_oﬂ.d.u OLNt 138V L0d
WYLOOU4 [— = 1
LOBYILN
01 39Q3IMONNIY _
mﬁ:ccww»,n (LdNYHILNI LDINNOD _ (WAYS) 2018 ¥1vq
w SNOIATHA A 3D1A30 LAIS NI SA3X ONV N
HLIM Q3LVID0SSV! SHILSIDIY IAVS
ONISSIIOHd LdNHHILNI - .
ONINIVLNOD RVEO0Ud -
_ ’ SV
— 050 1
_ SNLVIS _
.Q3LdNEYILNL NI
WYHOOHd ONITTIVD
33914 ANV 31ViS
INIHOVA IAVS
— 1Hd IH SI _
"3 WYHOOHd Y3HLONY
* _ NOLLONN3 _
GNNOAWOD
1
11¥NOIL4O) NOLLONNA
(93x3LH 40
14V4 LON) INILNOYBNS IHL 31NDIXI _
- ANIdd WOULI OGNV A3ILN3ICH |
. [LITE] _

You3

_
l
|
L

_ NOILYOINAWWOD

HITONVH
NOHLON

_
|
|
|
|

4343N8 NOILVD
INDWWOD 0L 11w
NOILONNS WO 3
HILINVHEYE NOILYD
INNANOD 434SNV HL

Hils _

34 WVUDOHJ 153N03H

i

(NOISHIA QILYHINID
H3SN YO 0313}
3NILNOK DNIININD
NOILYDINNAWOD

=
_
m
_
|
|
_
_

YNOLVZIIVILING

_ — S| WVYE90Kd HIOVOD
-7 a31n03nS|. 13V ON W3W NI LON * _
03L4NHBILNG . 138Y1| -03153003u| - % S3u ¥sia |
_ . " WY¥S0ud IAILIY 40SNLVLS _
i . e * QNNO4 §I
mu_ 135 S3INDIY 1VHL WYHDOHd
] Q341N034 ¥ ALNA SO018 vLva WYHOOUd
_ NNAWOD T Zuw TV 40 SQUOM SNLVLS SNIIHD
[— : o HOu3
s wous3
. "
T
FI. H3INQIHIS
—_— e ——— — o

2-2

e LML el

In memory but not executing because of a

hardware interrupt or scheduling of a

higher ‘priority program during an

executive function. The CPU registers

. and keys that were in effect at the time
of the interrupt are saved in a data

block of the SIVT table of SIM.

Interrupted

Active® Any of the above.

“

Inactive - None of the above.

In memory but not executing as a résult

Waiting
of a Wait executive function.
Terminated Having run to completjon at least once
' and ended with a Terminate executive-
functlon or Connect Clock (self-delay).
Disabled Incapable of belng made active (a mass

store resident program that is requested
is disabled.until the system loader
transfers it to memory)

Program status is discussed in more detail in thé description of the
Scheduler to follow.)

If the current high-priority program is disk resident and not in memory,
the scheduler requests the system loader program. When the loader has

high priority, it executes and brings the active program into memory .
When the active program itself is again high priority, it is started , ’?Q;

The current active program may be started at the startlng locat1on (1f
requested), at a label (if scheduled) or at:the location where it wasfw
. interrupted. Once a usér program is executing, it is jin full contrel of
~.of the CPU until a hardware Ainterrupt occurs, an execut1ve function is -
‘- encountered, or the RTOS error print routlne is called.. .This applies to

- RTOS device drlvers, the’ clock program, and all ut111ty programs as well

:}sas user- generated appllcatlon programs. "

I3

a_Vectoréd 1nterrupt mode is used for all RTOS device drivers. Interrupts
can occur only when a device has been associated with interrupt response
code by a Connect Interrupt executive function. The Connect Interrupt
function inserts a pointer to the 1nterrupt response code in the interrupt
data block for the interrupting device ip thé SID1 table of SIM. When the
interrupt occurs, control passes 1mmed1ate1y to the dev1ce'§ SID1 table
entry, which controls the events immediately following the interrupt. The
Connect Interrupt function inserts a pointer to the interrupt response code

in the interrupt data block for the interrupting device in the SID1 table of
SIM. When the interrupt occurs, control passes immediately to the device's
SID1 table entry, which. controls the events immediately following the
interrupt. The first event is a JST to SAVM, an executive subroutine which
saves the registers and keys of the 1nterrupted program and then enables
higher-priority interrupts. Next is a jump to the response code in the
program which connected the interrupt. The response code should be limited to

2-3

essential operations such as reading the current data word or enabling

the next device cycle, to make interrupt response time as brief as
possible. The response code may also place a label (an entry point within
the same program) in the A register before returning to the executive. The
label can specify a portion of the program that does follow-up processing
‘'of the data when time permits. Return is then made to the interrupt
handler, which does the equivalent of a Schedule Label executive function
(if a label was present), clears the active interrupt, and returns to the
scheduler. The scheduler starts processing at the label when the interrupt

processing program has high priority.

Immediately after the system is initialized, the Real Time Clock begins to
issue interrupts at a rate configured into the CLK3 entry of SIM, (typically
every 50 ms). Each RTC interrupt causes execution of the clock program, ‘an
independent interrupt-driven program supplied. as a part of’the Executive,
starting at entry point CL. The clock program.maintains a time of day
count and checks for programs scheduled for -execution by Connect Clock
executive functions. Such programs are set to Requested status and become
candidates for startup by the scheduler according to their priority.
Execupive functions start with a SVC instruction (an interrupt through
location '65, which points to function handler entry point FE). The
function handlgqlidentifies the function and performs the appropriate
actions. All executive functions cause one or more changes in program
status (to be described in more detail elsewhere) to the calling'program S
or another program specified in the function call. Certain functions . *:°
return to the scheduler singe they do not require a return to the calling:
program. - The scheduler then starts whatever program is high in priority. at
the time. Most functions can return directly.to the calling program,
"§;§§Z§ ;g.t?goggzma%hretgin er?p error return point. If a prog;am.that“is
handler‘plgces thz cai?in e ca vlng.pr?gram is requested, theufunct;pn AR
>] g program in 'interrupted' status, saves the
P register as if the calling program itself had been interrupted, ‘and
returns to the Scheduler. . -, < .. . - 5 T

.

*When communication is: requited by a program that is béing made active bfVi”{

‘e#ggut@veffunction,@the'funcﬁipnzhandler calls a part of the system's
-communication queueing subroutine.! (FIFO is thé standard version supplied
‘with RTOS.} -The queueing routine transfers a communication parameter from
‘the function calling sequence to a communication buffer area defined by the
SPCT table of SIM. Later, when the scheduler is ready to start the program
requiring communication, the parameter:is moved from the buffer area to the
header of the program. ' : - :

The scheduler and function handler make use of the stdndard error print
program to print messages to the operator when certain types of errors occur.
User programs may make use of the error printout as well. =

2-4

STARTUP AND INITIALIZATION

See Section 9

2-5

SCHEDULER -

The scheduler is the main control element of the Executive. Its purpose
is to identify and start execution of the highest priority program
that has been requested or otherwise placed in an active status.

‘The scheduler is executing and in control of the CPU under the following
condition:

a. No user programs are requested or active.

..

b. Immediately after a program has executed a Terminate function.

c. Immediately after all interrupt code has been executed (for example,'
after the Real-Time Clock routine has done.all processing following. .,
an RIC interrupt). [T - .

d. Immediately after a program has execﬁfed'a;Wait fuﬁcﬁidn;*' '

Because of item c., the schedulef is entered at least once for every real-
time clock interrupt period (50 ms for a 60 Hz clock and a CLK3 entry of -
-3; 40 ms for a 50 Hz clock and 'a CLK3 entry of -2). , ,

During execution, the scheduler uses the pointers from the SPET table of .
SIM (Section 3) to access program data blocks from the associated SPLT = .
table. By examining the program's status word in the SPLT table data.
block, the scheduler can tell whether the program is to be started.

If not, the next SPLT entry is examined with priority being established:.: :“
,_by the order of pointers in the SPET table. If no active or requested :
-program is found, the scheduler loops through SPLT continuously until an °
interrupt, a keyboard function, or a clock-controlled event causes a: .. '
program to be requested or active. The scheduler starts. such a program’. -
‘at its starting location or at a label (if scheduled). ~ = 7 .o

14

3

Program Status .

~§?igﬁréi252féh0w§_theffélbtiohship between SPET éﬁaASPLT and identifies
the entries in g typical program data block.

“Each..executable user program and device driver in the system is assigned
a status, determined by bit settings in the status word, part of the
program's entry in the SPLT table. Bit assignments are shown in Figure
2-3. Initially, the status of all programs is predetermined by the status
words configured in SIM by the user. Thereafter, the executive alters
program status in response to executive functions and utility keyboard
functions. Primary program status is determined by bit 9 (Started), bit 1
(Requested), bit 11 (Interrupted) and bit 12 (Waiting). ,

2-6

SPET

"EXECUTIVE PROGRAM
ENTRY TABLE (SPET)

‘DETERMINES PRIORITY

[CONTAINS LIST

~ OF POINTERS
| TO PROGRAM
ENTRIES'IN

SPLT IN PRIORITY
ORDER

— e

L

TERMINATOR

Figure 2-2.

EXECUTIVE PROGRAM
LIST TABLE (SPLT)

PROGRAM NAME

e — n—

STARTING ADDRESS

STATUS

OPTIONS USED

Oree—

|1

T

COORD. OPTION
PARAMETERS

|

COMMUN. OPTION
PARAMETERS

MASS STORE OPTION

PARAMETERS
o =
— —— :——-———i
I— —
O

SIM Tables Used by Scheduler

SPLT

FINI

8 9 10 11 12 13 14 15 16

7
7
I) %é 1 P B I T
) kKA e
s T I e
- . COUNTER
COMMUNICATION " o WAITING
REQUEST ACTIVE s
| INTERRUPTED
DISK RESIDENT BUT __|
NOW IN MEM.
: ‘ | REQUESTED
DISABLED __ . |_ STARTED
RAN ONCE —

Figure 2_3.- Status Word Bit Assignments

2-8

Requested: A program is 'Requested' if bit 10 of its status word is set.
- Tt remains requested until: the scheduler identifies it as the highest
- priority program requesting service. The program is then started (placed
~in 'Rupning’ status) if there are no coordination conflicts. A program
may be placed 1n requested status by one of the following:

a. A Request Program or Schedule Label executive function (Section 4)
or an RP utility keyboard function (Section 5).

b. A Connect Clock executive function or CC utility keyboard function.

c. Setting the 'Requested' bit and a pending count of 1 in the status
word during configuration of SIM. _

Running: A program is 'Running' when 1t is in memory and executlng
it 9 of the status word for a running program is set, and bit 10

(Requested) is reset. The scheduler places-a program' in running status.
when it is the highest priority active program, assuming there are no
coordination conflicts or other problems that will prevent execution.

The location at which the scheduler starts a running program depends on j
its previous status: S G

Previous Program Status Starting Location. .

Requested Starting address spe01fied
' in program's data. bloCR in’
SPLT table of SIM :

‘Interrupted P register value saved; when
- interrupt occurred, in.am -
interrupt data block in’ the
SIVT table of SIM. " :

Waiting =~ . At a-label spec1f1ed by a Schedule
‘ ‘ Label, Connect Clock, or Cohnect
Interrupt executive functlon
or at a label placed in the A
Register during interrupt
response code.

Running and returning Executive Function's normal
from an Executive Function or error return.

.

Waiting: A 'Waiting' program is in memory but not executing. Bit 12 of
1ts status word is set. A program can place itself in the waiting state
by a Wait executive function or when it delays itself by a Comnect Clock
executive function. A program with a label scheduled for periodic
execution by a Connect Clock function is in the waiting state between
periods of active execution.

2-9

‘A waiting program can be restarted (placed in 'Running' status) by'a
Schedule Label executive function 'in apother running program, a connected
interrupt, or when a comnected clock period comes due. A program that has
‘initiated a self-delay by a Comnect Clock function is restarted when the

_delay- has elapsed. : The 'Wait' bit is cleared when the program 1s started
at a scheduled label. .) :

Interrupted: A program that was running when an interrupt occurred is
set to iInterrupted‘ status; bit 11 of its status word is set. The
interrupt handler saves the registers and keys (including the P register
value at the time of the interrupt) in an interrupt data block in the
SIVT table of SIM. 3 .

When the scheduler finds that an interrupted program is the highest.
priority active program and there are no coordination conflicts, it
restores the machine state from the proper SIVT data block and- starts
execution at the saved P register value. = The interrupted program resumes
where it left off and is in 'Running' status (the 'Wait' bit is cledared .
and the 'Started' bit is set). R ‘ R

“Active: A program is considered active when it is in memory and in
interrupted, running, or waiting status.

Inaltive: A program is inactive when it is not interrupted, running,
‘or waiting. ,

Terminated: A terminated program is one that has run at least once and
" has conctuded itself by a Terminate executive function. Bit 6 of the -
program's status word (the 'Ran once' bit) is set and all other primary -
status bits are cleared. A terminated program can be returned to active,
status by a Request Program or Connect Clock function.

Other Status Word Functions

- In"addition to maintaining primary program status, the Status word contains .
-LseVEraléotbeT]optional*features that can influence scheduler action. .

-Run- Again Bit: Bit 2 of the status word is set whenever a program is

- Tequested-while it is in any way active. If this bit is set during a
'Terminate' system function the program is placed in 'Requested' status
so that it can run at least once more. (Bit 2 ig cleared.)

Communication Request Active Bit: Bit 3 of the status word is set during
any Request Program executive function that uses the communication optign
(described later). Such a function uses part of the system communications
routine to queue a communication parameter in a buffer. Before the program
is started by the scheduler, another part of the communications routine is
used to transfer the parameter from the buffer to the program header, as
shown in Figure 2-1. If this bit is set during a 'Terminate' executive
function, the program is placed in 'Requested' status to satisfy outstanding
program requests that use communication. When all queued requests have been
processed, the bit is cleared and the program is terminated.

.10

.- Memory Resident Bit: Bit 4 of the stdtus word is set when an RTOS-B

- program that is normally disk-rgsident is present in memory. If the bit is-
- zero, - the scheduler knows that the program must be brought in from the

- disk befbre it can be made active. The disk transfer is controlled by the
- System Loader program which is requested by the scheduler.

" Disabled B1t When status¢b1t 5 1is set, a program is not allowed to

start even 1f it is the high priority act1ve program. For example, when
there is is a request for a disk resident program that is not’ in memory
(status bit 4 is zero), the scheduler disables the requested program

until the system loader program brings it in from disk. The loader

clears the disabled bit when loadlng is complete, thus enabling the program
to execute when it has high priority. .

Ran Once Bit: Bit 6 is set when the program has successfully run. through
one complete execution and has ended with a Terminate functlon User ‘
programs can check this bit before subsequént requests im order to av01d
repetition of initializing routines, for example. ' , . -

Started Bit: Bit 9 is set by the scheduler every time a requested program
Is started. The bit is tested by several system functions; it means that'
the program is currently running, waiting, or interrupted. The bit-is =
reset by a Terminate functlon. o

Pendlmg Counter: The pendlng counter (status bits 13-16) records ‘the
number of oufstanding pfrogram’ ‘execution passes (scheduled labels) and the
‘ potentlal for further requests. . Coet

.The counter ‘is- 1ncremented every time the program is requested a label’
is scheduled, or .an 1nterrupt is connected. The counter is decremented
each time a program is started from the scheduler (either from d -

Astart or a- scheduled label) or an 1nterrupt 1s dlsconnected L

_:The counter is tested by the ’Termlnate system functlon in order 6 -
-atermlnate a program COrrectly4

'tlon Word '

ﬂ»Wbrd 'Label + 3' of a program's SPLT entry is the Option Word, which
determines’ the number of words to follow. For bit 3551gnments, see
Figure 2-4,

If bits 14 15 and 16 are all zero, no opt1ons are used and the eption
word itself is the last word in the program's SPLT entry. An. additional
word is present in the entry for each optlon that is used.

If bit 14 is set, the rest of the option word is used to deflne the size
and starting segment for a disk-resident program (RTOS-B).

2-11

See Figure 8-5 ~

Figure 2-4. Optioh Word Bit Assignments

2-12

_1C60rdination Option

_If the program is to use the coordination option, the coordination word

" follows the option word in the SPLT block. Bits of the coordination word
may be assigned meanings arbitrarily by the user. While the program is
running, its coordination word is loaded into the Executive's master
coordination word, XCCW. ‘Other programs that use one or more of the same
coordination bits are not allowed to run until the first program is

complete.

In general, the coordination word is used by the Executive to prevent
concurrently running programs from having conflicts in memory occupancy,
use of peripherals, or use of non-reentrant subroutines. Typical bit
assigments are shown in Figure 2-5. In this ex#mple, programs AS,EP,

- and user program BB all use the ASR, so are mutually exclusive. User
programs AA, BB, and CC are shown as disk resident programs that use
adjacent memory areas. Only programs AA and CC can be memory resident at
the same time. (See Section 6 for more information on this type of N
coordination.) : S - a :

. Communication Option

The optional communication word is present if bit 15 of the optiomn. i$

“set. It provides a place to select a queueing routine and identify a

" buffer to be used in passing communication parameters. Numbers .for sub+
routines and buffers are determined when the SPCT table of SIM is -)

configyred. (See Section 3.) Bit assignments are shown in detail im .

Figure 2-6. The Relocated.Basé Sector function is discussed in Chapter 8,

 The interaction between the Stheduler and Function Handler during S
communication is discussed later in this section. '

' Mass Store Option:

" When bit 14 of the Option Word is set, the last word-in the SPLT table is - .
“interpreted as the mass-storée option word. It!defines the starting 128- .
-wOrd;segment~on§¢he"m@SsAStprage;device-where the program will be resident
“while it is not in main memory. The contents of the word are treated as
_-an’'unsigned binary integer. ~(See Figure 2-7.) Bits 1 through 13 of the
Option Word (Figure 2-4) define other characteristics of mass-store
~ resident programs. -

2-13

XCCW
USES SEGMENTS 1-3

USES SEGMENTS
4 OR HIGHER

PROGRAM AS
{ASR DRIVER)

PROGRAM EP
(ERROR PRINT)

_ USER PROGRAM AA
~ USERPROGRAMBB .

- “USER PROGRAM CC

Figure 2-5.

‘MASTER COORDINATION WORD

1 2 3 o . 13 14 15 16
Lo AV XA VAU LA ° 000
J \ PAPER TAPE 1
PUNCH IN USE
PAPER TAPE

READER IN USE

ASR IN USE

- EXAMPLES OF COORDINATION
" WORDS IN SPLT TABLE

0 1///

7 A e e

0 ///127/7 ///(l,j;ol'r

T

LT

IV

777

PSP

0

7

A

e

/A

TYpical Coordination Word Bit Assignments

2-14

e

1.2 7 8 10 11
] 1 1 | I 11 1
RELOCATED QUEUEING COMMUNICATION
BASE SECTOR SUBROUTINE BUFFER NO.
NO.

(RTOS-C, D}

Figurer2-6. Communication Word Bit'_l(éhsigxments

Nﬁ;nber of __first 128 -word ségment on
mass-storage device that is occupied
by program S -

: Figixre 2-7. Mass ‘Storage @tlonWord

INTERRUPT HANDLER

7“A typ1ca1 series of events during proce551ng of an interrupt is shown in
.Figure 2-8. In order for an interrupt to occur, a program must use a
Connect Interrupt executive function to assoc1ate a label in itself with
the interrupt for a particular device.. The Connect Interrupt function
loads the response code label and the SPET entry of the connecting program
in the device's SID1 entry in SIM. The connecting program may then return
to the Waiting state, or be interrupted by a program of higher priority.
Assume that program BB in Figure 2-8. has already connected itself to the

" device and entered a wait, and ‘that another program, AA, is running when

the 1nterrupt occurs.

The code in the device's SIDl table entry determines the events. that

follow the interrupt immediately. The first action is taken by-the SAVM.

(Save Machine State) component-of, the Executive, which saves. the machine’

state (registers X, A, B, S, P, 4,5, 6 and keys) in a vacant interrupt

data block in SIVT. (IHPl is the p01nter ‘tothe appropriate block:) SAWM,

- also forces single precision arithmetic mode, enables higher pr10r1ty RS

interrupts (issues an ENB instruction), and 1ncrements ICNT .(the number ..

of interrupted interrupts location). SAVM returns to SID] ‘and an 1nd1rect

. JST through the pointer 'Intresp', loaded prev1ously by the Comnect .~ .0
Interrupt function. This starts the user's intérrupt response code, whlch -

must at least acknowledge the interrupt, and may also start a new device "l

cycle or other control function. If a label is to be scheduléd for further

non-interrupt processing of the data associated with the interrupt, the

label must be present in the A register before the 1nterrupt Tresponse:

code-returns to:SID1. ‘(Otherwise A=0.) The IH20 subroutine scheduTes -

the label (if present) and clears the active interrupt. Control thén

~ passes to the scheduler, which resumes its function of determlnlng the |
‘;hlghest priority active program and starting it. - A label scheduled by

the 1nterrupt response code may be started at- thlS tlme."

f’When program AA flnally has the h;ghest prlorlty, 1t is restarted by the

.- scheduler. - The REST (Restore Machine State) subroutine returns the =
“registers and keys 'to“the .state that was in effect when.the interrupt ,
~occurred The saved value of the P register is placed in Executive location

. XPSP.. - An indirect jump thrOUgh that location then resumes program AA at
.'the p01nt where 1t was 1nterrupted

2-17

fo——sim—n] F_‘:’E'Scﬂsrc;UTuy'E‘——-“{ —“,'F_L':BEGRRRAUJTED | l*_:’gg;s-rﬂﬁ%:z ;

INTERRUPT
. PROGRAM RESPONSE)
— AA
SID1 POINTER .
- | | (MUST CONNECT ITSELF
/100 + DEVICE ADDRESS _| L INTERRUPT !TOU':';HEDEVICEB'YS
: | OCCURS ' ‘CONNECT INTERRUPT’
, FUNCTION)
INDIRECT JST SAVM_ | i
vw:;;xscp;onso SAVE MACHINE I [
N oness STATE (REGISTERS, | l
| KEYS) IN PROGRAM i
. AA’S BLOCK IN |
. . IHP1 TABLE OF SIM I |
DEVICE'S ENTRY — DAC «» ’ I |
IN SID1 TABLE !
OF SIM JST SAVM |) INTRESP
(INTRESP) ; ' DAC =+
INSERTED BY JST « «—1 1 | ACKNOWLEDGE - |..”
CONNECT . — _ INTERRUPT. :
INTERRUPT ¢ JST H20) 1 R I R vl
EXEC. (SPET ENTRY) I P sramtnexe
FUNCTION - ‘ i .DEVICE CYCLE, °
(DEVICE NO.) 1 L e
{VECTOR ADDR) b [I
> iH720 . 4|,' PROGRAMAA | | |.» LABEL—A .
“IF A #0, | IS IN | o {IF DESIRED) -}
- ‘ L - :
. /SCHEDULE - |1 ‘INTERRUPTED' | ¥ e
LABEL .| STATE : . JST + INTRESP
x CAl | : . (OPTIONAL)
— . JMP SC50 I B
C50 | WHEN SCHEDULED R - LABEL
LABELHASHIGH | .°
.| SCHEDULER | .PrIORITY. 1 s
. T I T w-Up
PROCESS P l ! Lr fF’mli;L:gss-r‘:\la .
-~ HIGHER . S T e
. ' PRIORITY I R SV RE R]
— ACTIVE . SR T o RN
- PROGRAMS AT OR TERM:).
; , A 1
g PROGRAMAA |) |
g HAS HICH ' .
srioriTY | .l i
REST 1 , .
- RESTORE ! 1
.] MACHINE |
o) sTaTE | {
S 'FROM AA'S | |
“BLOCK IN I i
. THP1 l l
SAVED 1
AN —— XPSP | '
|
! }
l |
JST« XPSP : I
| | |
] l
' |

RESUME
PROGRAM AA

Figure 2-8. Interrupt Response Sequence

2-18

~FUNCTION HANDLER

‘iihe.function handler is the portion of the executive that does prelimi-
nary processing of all executive function calls, routes control to the
proper function subroutine, and arranges return conditions. The function

handler begins at location FE.

Figure 2-9 summarizes the function handler entry process. Every assembly-

- language function call begins with a SVC instruction. (See Section 4.)
The SVC forces an interrupt (an.indirect JST) through location '65, which

contains a pointer to the location preceding FE. The pointer is loaded

into location '65 during executive initialization. Once control has

been passed to the function handler, the word preceding FE points to

the second word of the active function call. This address base is used

to obtain the function number, program name, and other parameters of .

the function call. SRR AN ST ST B

Following execution of the required system function, the Function Handler
checks flag FE50. This is set by the Request'Program and Schedulé Label
Executive functions when a program of ‘higher priority than the one’ i -~
currently running is requested or has a label scheduled. FE50 is set also
‘by ‘the Interrupt Handler when it schedules a label in a program of higher -
- priority than the one interrupted. If the flag is set during execution of;
"a function, .the Function Handler simulates an interrupt, saving the '
necessary registers, and exits to the Scheduler so that the newly
requested high priority program may be started. Coue
The- effect .of éach executive function is defined in Section 4. Cuét@m.uﬂg
executive functions can be added by the user; for instructions, refer'to:
Section 7. e : ' LT L R

2-19

PROGRAM
CONTAINING
“FUNCTION

CALL

I FUNCTION
INTERRUPT THROUGH ~ HANDLER

,/10C. 65

S \/\ - /,; T RS THSC

FUNCTION NO, 65

PROG. NAME Pointgr Set

. During S
ETC. Initialization
Routine

A L p
Ve atd - :]

NORVAL RETURN

\\

i

[PROCESSING «/ |
RESOMES. -

Figure.249. Entering Function Handler

2-20

“COMMUNICATION OPTION

" Included in the Request Program executive function is the optional

ability to transfer a communication parameter from a requesting program

to the requested program. The parameter may be a single data word, a
pointer to avdata buffer, or a control word to influence the program's
~:processing functions. This feature is put into effect when the communi-

- cation parameter in word L+4 of a Request Program calling sequence is
‘non-zero. The Request Program function in that case includes a call

to one of the system's queuéing routines (FIFO, for example) as shown in ,
Figure '2-10. Part of the queueing routine transfers the communication para-
meter frem the calling sequence to a communication buffer area configured
into the SPCT table of SIM. The communication word in the requested program's
SPLT table entry specifies.the queueing subroutine and current buffer R
number. (See Figure 2-6.) 'Thé queueing routine automatically Keeps

track of, and updates; pointers to the available communication buffer
area, so that several programs can request @ given program and specify .
~different communication parameters. The parameters are ''queuéd' in the . -
order in which they are recejved. EE T L T

s) o .‘ .‘ Y ‘ . St i ‘ :
If the communication parameter,in'a'Request,Program function is zero, the
communication-related functions are not used. S T '

When the program that requires communication is: finally. the highest. -
priority program, the scheduler transfers control to. another part of .

.the queueing routine, which obtains the current parameter from the .huffer
area and places it in the 'communication word' location in the‘requested’

_program's header. - (The word preceding the starting address$ is reserved

- for ‘a communication parameter.) The FIFO queueing routine previded as ..
the standard RTOS communication method passes communication parameters

on a first-in, first-out basis. The user may write queueing routines -

.-that employ- other Strategies such as last-in, first-out or one:based-on

~the priority of the ¢alling programs. RN R

By the time, the schediler is ready to start execution of the requested

‘program, the communication parameter is present in its header location and
~:available for use during ‘execution of the program.

2-21

COMMUNICATION

BUFFER
T 7 —=1
| EXECUTIVE b
= | :
| - ‘ | |
L1 runcrion I
| ENTRY . |
| .} i REQUEST ||
’ 11 " PROGRAM ' | |
PROGRAMAA |, T |
. DA : | : PROGRAM BB
r i | | B
p ! I}
- | b
'sve | R -
: S ;
FonG < PARAM - TRANSFER - L - COMMWD
FUNCTION ARA <~ - = = PARAM‘ET‘ER | PV
o TO BUFFER |
.y P I
- 1 '|) '
" K B ey AR : : | i B |
“ 1 S v
- o
. e
v I I
| | TS |
'l] . FUNETION s
: BB ~ RETURN -
. J . ‘»‘_ ' . \
A R TRANSFER |
_SCHEDULER PARAMETER 1

: ‘ 1 FROM BUFFER
% S TO HEADER

Figure 2-10. Processing an Optional Communication Request

. CLOCK PROGRAM

The Clock Program is the section of the Executive beginning at entry
point CL. In response to hardware interrupts from the PRIME Real Time
Clock, it maintains time and date counts and handles startup of programs
controlled by Connect Clock and Disconnect Clock executive functions. -

Real Time Clock -

The PRIME real time clock (RIC) operates by automatically incrementing
memory:.locatien '61 at the power line frequency (60 or 50 Hz). When «
location '61 overflows to zero, the RTC issues a vectored interrupt ;rough
location #63, whi#h jontains a pointer to.program CL. : P

The actual RTC interrupt rate is detérmined both by the. line:freguency
-and the count present in location '61.' Initially, and after each RTC inter-
“rupt, locgtion '61 is set to the value ‘specified by the user;in location
'CLK3 of SIM. The value in CLK3 is the 2's complément of the desired
number of clock pulses between RIC interrupts.: For example;,. the user’ ‘
might enter the value -3 in CLK3 when the system is configured. - When. the
system is started, the RTC overflows to 0 and issues an interrupt after
¢ third.line-frequency clock pulse (50 ms for a 60 Hz frequency).
The interrupt, response code in program CL resets locatjon '6l: to the CLK3

" value, after each RTC interrupt.

~ Time and'Dateiv:“ fi.n

The interrupt response. code in program CL maintaihsftiméjbf day- and date -

~ countsin the following memory locations:

LQééfién‘ .. Contents _ T ,; _ - ngft%ﬁg Véiuei
'jXMiLH . -Zmiliisécond counter ‘1 5“;Eﬁ"3 (CLK25illf
”HXSECA - Time of Day - seconds‘(O?td?595" .SQi L
aiXMIN- t:T'imejofDay - minutes (0 to 59) ‘SQ,”

-QXﬁR.- f%iﬁeﬁpf Déy - hours (0 to 23) 23
1 XDAY~ Elapsed days counter 0

During every RTC interrupt, the response code in program CL increments
location XMIL and compares it to location CLK2 of SIM, which is preset by
the user to show the number of interrupts per second. For example, when the
interrupt period is 50 ms, location CLKZ is set to- 20 interrupts per second.
When XMIL equals CLK2, one second has elapsed, so XMIL is reset to 0 and

the seconds counter (XSEC) is incremented.

When XSEC overflows from 59 to 60, it is returned to 0 and the minutes
counter is incremented. Similarly, when the minutes count overflows from
59 to 0, the hours count is incremented, and when hours overflow from 23
to 0, the days count is incremented.

2-23

_Scheduling Programs Due

When the time and date words are updated, the interrupt response code also
schedules a label (entry point CL14 in the CL program) as the non-interrupt
code for follow-up processing. When this label has high priority, it is
started by the scheduler to update theientries in the SCUT table of SIM.

This tablg consists of a four-word header followed by a series of S-word
blocks reServéd'for data associated with Connect Clock executive functions.

Initially, the'first word of the header and each data block are strung .
together by pointers, as shown in Figure 2-11A. After a period of operation,
Connect Clock executive functions modify the table to a condition such-as .
that shown in Figure 2-11B. ‘' Separate pointer threads are maintained for
programs that beconf: due. at intervals of ‘minutes, seconds, Or milliseconds..
Three reserved words in the héader point to.the first block of each. thread.
Within a given thread, .each block contains a pointer: to the next block (the. .
_pointer is 0 if it is the last in the thread). T :

Each SCUT table entry is created by a_Céﬁhééﬁféiock‘fﬁnctién'in3the‘f611°W’
ing format: T T I

Word . Definition -
1 Pointer to nextgblock"in sameiiﬁferval-unit
thread (0 if last block;ip‘thregd)‘
{2}. - SPET pointer for;progréﬁfcﬁnhééféd tofélg?K/
:3 '2{5 complement of time to firsf ex§cﬁiiénéfl
v4: 2's éomplemént,oéiiﬁtéfvéi, if féﬁétiﬁi&g;ff

exécution 1is Spédﬁfied;(o for one-time.
- execution after a delay) -7 L

5 fLabel to be scheduled [0 if.hO 1abéi)>ﬂ

: beas,ﬁ'ghd 4fére*inﬁunits fhatncorrespohd to the timebase thread for the
- entry. (minutes, seconds, *or RIC interrupts). ‘

During the non-interrupt code that follows every RIC interrupt, each entry
of SCUT is processed in the following manner. (In general, all entries in
- the RTC interrupt thread are checked first, The seconds and minutes
entries are processed only when their intemval iséppdated.

1. The offset entry (time to first execuition) is incremented. If
it overflows to 0, it is replaced by the interval value and the
program proceeds to request the program or schedule a label, as
required. The calling sequence is built up using the program
name and label from the program's SCUT entry.

2. If the entry was for a time delay (execution once after a delay),
the SCUT entry is deleted and thread pointers altered accordingly.

2-24

SCUT DAC «+4

BSZ3 (

DAC, ++5. -

BSZ 4 <

.

" emu e Smmm e
- x

A. INITIALIZED STATE.

_POINTER

_INT RATE THREAD

i SEC THREAD.

MIN THREAD

POINTER

OFFSET (TIME.TO o
_+ FIRST'EXECUTION)

.. LABEL TOBE
. SCHEDULED

POINTER

" ETC.

B. DURING EXECUTION

SCUT

INT RATE

THREAD
POINTERS

SEC

MIN

THREAD LINK ——»

O (END OF THREAD)

SPET POINTER ————

PROG. AA

—250

" INTERVAL ——

-3

0

3 t",n

PROG.DD "}

: ~10-

+

0 (END OF THREAD) [

T s

-5

3

* NEXT.IN THREAD

PROG.YY s |

| 0 (END OF THREAD):

BBB "

PROG. QQ

NEXT IN THREAD: P .. .

Figure 2-11. Use of SCUT Table by Clock Program

2-25

¢

&

3. The current program's thread pointer is used to locate the
next program requiring service. It is also processed as in steps

"1 and 2.

4. When a program's entry contains a pointer of 0, the end of the
current thread has been reached. If any other intervals have been
updated (Séconds or minutes) during. the interrupt, the first entry

~in the next thread is accessed and steps 1 and 2 repeat.

©5.” When all threads have béen processed for a given interrupt ,
*._interval, the program'exeggtes,aJWATT‘function and awaits the -, -

“next RTC interrupt. . :.. =

est Program. Schedule Label . .

. PTOET: iy execute .a connect

; “torequire service.

When control returns tO'thefCloqk‘prpgfam;lthQ,Q"éin§l~thread'is
identified and processiiig resumes where t was interrupted.

6. :During the returh”frémltﬁe}RéQﬁ
. executive function,. an interrupting, prograin
‘¢lock function that,Causesfawdiﬁferentfth#eadqt‘

is set up for a first execution time in 250 minutes, and thereafter in
3 minute intervals. There is no Jabel to be scheduled, so when this
program comes due, a Request Program function will be scheduled.

* In Figure 2-11B, program AA is the onlyvehﬁfygih thé‘ﬁi%ﬁtQQifﬁread{' It

. When a Comnect Clock function specifies a first execution time as a time
- of day, the-difference between that value and the current time’of day is
converted into a value in minutes, and entered as the offset.value. :For:
 such an entry, the CL.program increments the offset locationévery. time -
the minutes thread is processed. When the offset overflows to 0, the -
~.program is requésted and the offset is'replacedfby‘the interval value..

‘Program:YY, in the Sééonds'fhreaq,'is'set'uplfo‘séhédulefthé*lébeliBB;f' _
in 30 ‘seconds.. Since the.interval is 0, it will not. be. repeated. - ‘This is

" characteristic of 4 program that has connected itself for one execution

;afterﬁa‘time delay.:” = :

2-26

. ERROR PRINT PROGRAM

See ERROR PRINT FUNETION, :Section 9

2-27

‘Table 2-1. Executive Error Messages

Error Message

””’('PN*—Program Name) e ~f K Mé&ﬁing

;ELPN fév Named program has requested an executlve functlon
’ that ‘is not. present. in the system, or has used
an 1ncorrect functlon ‘number . :

EZPN f Named program has trled t6 schedule a label
in an inactive program or one with the
max1mum number of]abels already scheduled

E3PN Named program has trled to comnect the clock
when clock user s table: (SCUT) is full

@

E4PN.,ﬂ “| Named program has tried to termlnate w1th an
o | interrupt connected. The program is-disabled;.

Ell$$;: ‘| Unidentified interrupt has occurred
L 1 (Interrupt is 1gnored) ’

E12PN Named program has attempted to schedule a:
' | label from interrupt to-non-interrupt code :
but header is already full .of labels '

E13PN ' Executive has attempted to schedule a label
in named program which is inactive or which
already has maximum number of labels
scheduled.

2-28

"Messqge Format

lEach error message is preceded by a carriage return, line feed and bell
character and is printed in the following format:

Edddnn

. v L
where -each d is an octal digit and nn is’ the name of the program that
1n1t1ated the message. . Leadlng 0'5 ‘in the error code are suppressed

:If console ‘'sense sw1tch 4is’: set error message printout is suppressed
(Thls feature should be used durlng debugglng only.) e

[3

: In the follow1ng example, a program named AA calls EPMOD to print a L
~Amessage numbered '123: :

‘LDA ERCOD. ERROR CODE

IDX PNAME - PROGRAM NAME
JST* EROR ~ ENTRY TO ERRORJPRI'I;I‘T.PROGRAM';
) JMP L : REIN CONTINUE AT REIN. AFTERERRORPRINTED N

ROD oer 23
'”s.PﬁAME :‘DAiAzbflngAi}
CERR ¢ XAC . HROR
"Resuitiﬂéaerror printout: .

E123A

2-29

'SYSTEM LOADER PROGRAM (SYSLDR)

The ‘system loader is used in RTOS-B systems to load disk-resident

programs into main memory for execution. SYSLDR runs as a program under

the executive. Its main function is to request the mass-store driver to
read the program into memory from disk asif it were a block of data.

When a disk-resident program that is not currently in memory is requested,
-and "is capable of runningv(from'the:standpoiﬁt of coordination, etc.), the
scheduler places’ it in disableéd status and requests the loader program.

When SYSLDR is the high-priority program, it.is started; it in turn requests
_the disk driver, supplying the disk-resident; program's locatjom on the '
-disk and size as parameters. “SYSLDR obtains the parameters from the i
. requested programs SPLT ‘table -efitries. “Also supplied as 4 parameter is.
“Tabel OK within the SYSLDR program. " When the disk.driver: completes &
successful transfer, it .schedules label OK in’SYSLDR and terminates. == .
"When SYSLDR is restarted by:the scheduler at'label , the.'status: word of
- the original requested progfam,iS'updated'tofshqﬂfthatjitjis now memory -

resident. The Disabled' bit is. also cleared;;sf‘tha§ th¢(rgqgeSted.'“'

program can become active when it'haS~high ptipfity;

In ‘the SPLT table, two different entries at different priority levels may
- be used for the disk driver. For example, SYSLDR may .refer to the driver.- -
‘as program ML, while user programs may request the disk driver as-“‘program:-,
.SM. This enables program loadjing to take place at a different priority
- than data "transfers initiated by an application~program3*even't’ough¢the -
-same driver-is.called. - (For details, see Section 3.) = T g

3

2-30

" - FLOWCHARTS

The actions of the scheduler, function handler, and other major
components of the Executive are sumnmarized in a series of simplified
flowcharts. Thése charts are intended as roadmaps through the multitude
of conditional paths that can be takén during RTOS system execution.

- Théy summariZe the actions taken by the executive to determine program

. priority, update:program status, and start: execution of the current
program. Actual entry.points are identifiéd so that the user can refer

easily to the sections of the Executive listing for complete detail.

In order -to use these flowcharts effectively, the user should be

-thoroughly familiar with*eéchﬁtable*andughtryJofgthg?System-lnformatioﬂ1'

Module (SIM) described ih Section 3.
" Figure 2-12 defines thé:symbqié1ahd graphi¢fcdnﬁ¢ﬁti6n§-usea:iﬁ‘thésé
charts. ' o S : St
NOTE
“The .flowcharts were current for Rev. 3 but do not include
changes through Rev. 6. For more current f10wcharts,;see,>
- the following: G e T
Figure:9-1 RIOSVM Starting § Initialization
'.Q%Z-fiSche&uler Dispatch Téb1e,Operatibn'

9-3” ;Réduesfing Disk ResidentﬂEfdgréms

2-31

. EEF

|
RN
[2 CoL -
L] ' u'
l!uunué‘.u) X
. "
ETRY. *EEE’. XS SY‘HBOLJC NAME OF ENTRY POINT
IN PR GRM L1STING QR CIF PRECEDED BY 9)

ELSE\JHERE 1IN THE FLD‘.JCHART.

ACTION BLOC!(. COMHENT ‘DEFINES ACTION TAKEN
- DR, ,[UN T!ON P,‘.‘.RFORMED-

'PROGRAM BRANCH Y Paru 1S FOLLOWED

SRURRAR S
IF. ANSVER TU COMMENT AUESTION -,

15 YES- *N” PATH ‘1S TAKEN- IF- ANSWER IS NO: -
“NNN° .15 SYMBOLlC NAHE OF DESTINATION. e

GE. SUB. LS. ENTRYAPDINT oF suaﬂourst.‘

,'SUB_BQUTINE LINKA
- "AAA” 15 ALTERNATE RETUBN. DEST%NATION-; 1F, AN'\'.\

NORMAL RETURN 1S FROM R)TTOH'DF smam.. .

' Maagxne ENTRY- MMM®. IS AS

EXIT. 'xxx',xs.nzsr:nerion.

.

i N & oa e
NN!‘(:-“’(T :

- is';w *a
"
l}A(-——u £UB

- .. L EEEAN
. *

HPH-=3n>n

xxx

Figure 2-12. Flowchart Symbols

2-32

LIEEREEEES

» ® MANUAL RTART AT 11000

L] »" .

TR

. »

INPLl-==>#n
*

XTI TETYT] " .

[] * SET, ADCRESSING MCDEs ENTER
Lo L} VECTORED "IMTERRPUPT MODE
B L R

wo .
b

ANRWUNNNN : .
» L :5'.~1NITIAL!ZE.INfERRUPToPCMER :
o G g . PAILURE “INT. POINTEFs SYSTEM
e . * h y -

UK kw0 ;795.59°R=5°f 3=AL‘TIHE cLOCK

'S .
' >.‘ 1. . - . ‘-
CORERNMENAR R
2 W ENARLE REAL TINE ‘CLCCK
L W ST

PR L LT IR PR

: L}
BCK~==>%
PR) T
RN NN R
“ - SET 'UP NECTPRED "INIE
» » . ANn Sve hANCLEp R 3
ITTLLLLE POI”TER° '
. A
.
RN NN NN . = :
" * SET RTCs ASR INTERRUPT MASKS
» *) o
KA ERANHNN : R
»
*
'TLLL]

% INIT GG TO USER'S INITIALIZATION® .

Erit

INIT . . T T
. o D E . .
TR L s
LTI TS e
* T w oygER lererxz»ron RCUTINE°
oo » COPTICHAL)
REZIETE YT
B
L]

. sC

Figure 2-13 Startup and Inititalization Flowchart

2-33

4

¥C
N

FORM POINTER TP FIRST PORD

L]
wndannane)
. " INHIBIT INTERRNPTS
" []
nE KN .'I.."
. ;
-
[EXTTETR L]
" L]
" . OF ©PET TARLL

[EETRTIRLE]

]
§C50=~=>»
"

I8 TT.THE LAST SNTRY?

FETRW STATUS WOFD OF
CUPRENT SPLT ENTRY

dpEE THIS TNTRY NEFL ¢FRVICE?

" erQUESTEN OR INTERRUPTED?

IS THIS PROGILE DIfASLTDT

FETCH PPTIPN WLCRD OF -

CURRENT SPLT ENTRY

INHI2]T SCUEOULER

1€ THE PROFRAN NISK RESIDENT?

Figure 2-14.

Y. se1---3

[T TY L

L ..® INAPLE ECHEQULSR AND
d . % - ENMRLE INTERRUPTS
[ETTE LT Y I S

0l

» -

]

FAOH SPET

R N
Iy r)

2-34

“hér'pu;ﬁtsevlwo.héastr‘téﬁ

FETFH CURRENT ®ROGRAM PCINTER

W PR / A h . .
" v .t OBTALN PROGR AM - WAMF, OF CURRENT .
T L CSPLT ENTRY: - ’ N ’
. R
- o .
. Y oo
<. >N
* - S
. T
. s W e T L, o
LN . IS &t SYSTEM €TnP RECUESTEDL
M b A - ST
" L] u N
* < >=-~=>SC
» " .
”" R ¢
L] - -
[[
2R R L] LN ETRE R Y R . .
- . w e AT AT LeEATICH f2A0
L] " " . L R
N PETETRTR]
®
]
L] . N
< SHNKNNNN NN NNN
» [} *
LI §]
. "
[L N -
. % INTERRUPTEL %
L " [
< >--=>8C34 » .
» . L
% RECUESTED »
" [
[“
Tw “
[" Y [
< DRERNR AN KN NRN
. * L]
» N [
» “
- *
RNgANNEAN IS XA R]
[] [[} L INCREMENT PCINTER TC
[» L] * SPFT TABLE
IEXEERLET) IR RL S L]
[] *
- L]
» ~ sct
[}
[EE TR LR L)
L »
» I
(XY RETELS]
"
[
[
» L} .
< >-==->8C13
[.
n N
[]
L]
SC51

Scheduler Flowchart (Sheet 1 of 5)

STARTING A DISK RECIDENT PROGRAM

. -

oC13
»
. "
IR EXTY] .)
-5 . FETCH PROGPOM'S ETATLS WORD
T MK KRN
T

. .S THE PROGR AN ALRFADY IN MEMORY?
B » . . v . e . 5 x > A -
< >r<=>5C53 .

1€ 'THE SYSTEM LCADER, PROGRAM

. PRESENT-IN THE SYSTEM?
< >--->gcos
» *- v
.y S

»*
EE R 2 X}
% SC21 » SET COORDINATINN BITE .
L] * . . .
EE X2 X}
»
]
" ERR RET %wuxu
oLt » "
SCAY<~~~n . RPRD % REQUEST LCENER PROGRAM
E C N R ’
s sxuxu NORM RET
o . . | A
. SCDS-==>u"
L . *
NN . o
e * PLACE REQUFSTED PROCRAM.
* © % . INTYDISABLED!. €TATUS
I Z ST Y T . .
. :
[]

sc7

5C14
Lo
»
SELTY YT T T R . :
o % RETURN COCRDINATION WORD TO
Bl - ORJEINAL CONDITION
LEETER T T .
*
*

sC7

Figure 2-14. Scheduler Flowchart (Sheet 2 of 5)

2-35

RESTARTING INTEPRUPTED PROGRAN

- -~ - -~

3c31
L]
|]
(EEZ TR T Y o
. 7 INYIBIT INTERRUPTS
BIZEFEITN]]
. »
. L3N .
LEETE DY)
" #. RESFT-VINTERRUPTED! BIT OF
Rz 3 PROGRAMY§ STATUS WORD
REITEETLE] et
. . .
»
K1Y) .))
] % | DECREMENT XPIC (NUMBER ‘DF’
. ® . INTERRUPTED PRNGRAHE) -
(ZEZETET Y BN : -
"
L]
riry
» » . , L
* REST ® " RESTORE NAGHINE STATE
» ») ;
LR LY
»
JHTR==~>#%
»*
[E X EX TR
- " RESUME EFXECUTION
K " (JUPK XPSP)
LTIt

. UREST.
. ~§J
.

PRELLETTTY " oTaIN POINTER TO CURRENT SAVED

. %' DATA BLCCK TN SIVT TABLE

LT LILI L IR
*
* .

[T2 TR IS T . .
“® .. "% REQTORF REGISTFRs AND KCYS 0 :
LE -~ .% " FRCM CUPRENT BLOCK IN SIVT TaBLE
BLES IR TR S BN : . . - R

e)

» .

EEFETE S T . .
L3 ™ *® PLA;EvSAVED‘P REGISTER CONTENIS
* LA IN XPSP "
I EZEEXTET]

]
»
RETURN

I

Figure 2-14. Scheduler Flowchart (Sheet 3 of 5)
2-36

5051
[]
-
L ER LX)
»* *
SET COLRDINATICN PITE * £C21 »
. » L]
[XER]]
L]
SC53-==>#
"

PtkrFAPﬁdGPAﬂ'TN"RUNhINGLJ BB il &0
STATUS) , Lo et

DECRENENT: PENDING. bounrck
»

ANY LARELS T9, °F SCHEDILEL? ¢

.LDEST LAREL FROM HEADER e
REGISTEP AND CREATE -

VA bN'w w HFﬁCER

LDOY UP STADTINC ADERLSQ 0F .,

. COMMUNTCATION “UBROUT]INE AND GET.

NUMBER QF t'HHU” ICATION BUFFER

60 TO FIFO.(HR USER'S OUEUEING

ROUTINE) AND FETCH CURPENT
PARAMETER FROM SUFFER ™

PLAPE ACTIVE Phnén:r1< =TARTING

EXIT THROUCH TIIL OF rUNCTlON
HANDLER (EXFCUTION WILL START AT
LOCATION IN A PEG)

. f
" L
o LY XEEE2T Y
" w -
C .- » ;
n _innluiun
oW ' "
" T
* FE11 -
» o
»
. . [[¢
1S COMMUNICATICN REOUIRED? < D0 N N MR
. " " » »
* N »
» "
» SCE7 ==K
" *
» W NN NN NN
* » o *
* * »
» PN Kep M NN
[} I
B "
» HH RN N
" »* . P
" ")
» LT EE Y
~.' . . .
uwunn:uuuuuuxnuuﬁ
SCGZ---)N
'n«nnun,nu N
») *
» . % . ADDRESS IN A RECICTFR
L EETRI RS T o0
.
R
FE1dl

Figure 2-14. Scheduler Flowchart (Sheet 4 of 5)

2-37

I€ COORNINATION REOUIRED?

FETC PROGRAM'S COCRDIVATION. NORD
AND CCOMPARE, WITH MASTER . -
COORDINATION KORD (XCCKY = 7

ANY tOCROINATION COMFLICTS?

FETCH PROGRAM'< STATUS WORD

.18 THE PROGRAM ACTIVE?

1S KUHIGHEP PRICRITY
7 - PROPRAM SCHFDULFD?

PLASE TMIS PROCRAMIE €PET

POINTER IN EPEP

[NCPERENT €PET FOINTER IN
A REGISTER ~

e

éOORDINATION SUPROUTINE

< >-=->RETURN

LW NN
P MNRHA NN

.
LWL
YTy

«

-

T
“', : - R C .
<, . TR R
B BCR R
WY ST
PP
CNR AN NN EHWHAN R
" Cowe oW
" e * o w

Il TRl L
Y S
RETUR

x X X x

» * Y
< >--->RETURN
* »*
* N

L]
SC7-=-=->#%

[]
L]
* * Y -
< b IR ET L)

*® »
" L]
W NN
»*
EITIEEEIZINTRIRTIIN
LI o
WK NN NN
»]
[’ ",
[EERYRTRY]
' »
»

sc50

"
»
»
. L
KRN NNNN #
']
*
*
»
»

‘MEPRE PROGRAMIE COOSDINATION
'WORD INTO- MASTES COORDe WORD.

Figure 2-14. Scheduler Flowchart (Sheet 5 of 5)

2-38

FE

L]
Lo T TTTY]
INWIBIT SCHEDULCRs ENAGLE INTERRUPTE, .
AND ENTER STNCLT PRICISION N .
ARITHMET1C, ¥ 0DE NN ANN
L]
. " b
. .) ‘ S TRETETT
EXIMINE FUMCTICGM NUMBER . "
_FROM .CALLING SFOQUINCEd ™ | '
. e N,
Iy THE NUNPER LEGALY >--->FE30

o . S STTECLIL o
" FETEM STARTING ADLRESS CF FURCTION .. * * -

SUPROUTINE AND FPLATE [N XSP2: * bl
. R IEEETILET N

~~=>FE30

IS THE FUNFTICW PROSENT. "< .
In THE SYSTFM? “w

x X X%

S0ES THE FUNCTIPN SEFEP TO * = N S
ANCTHEP PROGRAF (RF» SLs CCy 0CO2 < Gk
Y *

» »
w »
. . TEIIILILLE *
PLACE: SPET POIMTER- GF GTHER PROGRAM * ‘ » »
IN-YaFL T .. * *
KR NN NN "
B IR]
LEEIR L] (IR TR T ET]

FUNCTIDN 1S EXECUTED . % XSP2

FUMPTION CMPLETE "

Figure 2-15. Function Handler Flowchart (Sheet 1 of 3)

2-39

PLACE NAHE OF CALLING PFOGRAM
IN X REGISTER

‘SET A RFG=1 (ERRGR CODE)

PRINT ERROR FESEACGE

'PROCRAK IN A RER R

FEL10=-~># .
10=mm

16 118 COMPGUND FUNCTIGN?

PLACE FETURN FNORESS OF cALLINE
ﬁporan Wocerz -

.{S A HFCGRAF kITH HIGﬂEQ PRIOR!TY
THIN THF CALLIN(PRFGR}H hCHEDULED'

CINHTBIT INTERRUPTE 4ND
ENARLE SCHEPULER . ~

PLACE RETURN-ADDRECS OF CALLING
"PROGRAMIN XPSP

PLACE FRRGR CLDF C(IF ANY)

IN A RECG

. RETURM TO6 CALLING FRCGRAH

Figure 2-15.

coe

fE30 .

b w

[XER YR)]

o "

[] oo,
TSI LIYL]
[

]
(IR ZL R}
[[
» »
ERTEIETIY]
»

b .

nnu,tlﬁ'

T)
] A?gRR
" BRI,

uu{uin&nij4

PLACE FPROR RETURN 0F FlLLlNB LR St

w o me

ELCTLE LTI

o

'

% LY

AT T T L
sEEREN AN "
S
i
. T
W HHNK RN B
.v‘.
'
TLE It Y]) .

%

*

TEXEX XX

* EXECUTE “ECONDARY FUNCTION
* (TERHINATE Ok VAIT) .

IZSSSEEETEEE R R]

L]
T RZRTET S]
* *
* ®
X EREESE 4

»*

]

»

x oW Y

<. »--->FE12

T

L 3

.

]
RN NN NN
* O
[[

REFEI Rl

-
»
FEETRETE] |
% *

TR IYL
! »

»
I L]
" "
" [
hlkl!ﬂll[

»

»

IHTR

2-40

Function Handler Flowchart (Sheet-2 of 3)

e
FeEll -
L]
"
[N XEREZTT N
» " SAVE A REG In CCS2
» []
I EIEZEIRT]
»
. IS 4 PROGRAM WITH HIGHER PRIORITY THAN
* TYE CALLING. PROGRAM SCHEDULED?
] [. §
<. . »-=-->FE12
2 ") U R .
I
e
FE43-<-3m,
NI IYTY ST e L
. eom INHIBIT INTERRUPTS AND '
'w ENPBLE, FCHEDULER
I TREEE 2] e Lt § -
B " .
.
NXAXMXUNN. . RETRIEVE CCS2 CONTENTS (STARTING
. S . ADDRESSs LABEL IO £CHEDULE» OR..
wuwnnxuwn ;. ERROR SETURN). Aun PLACE . XPEP
o
*
LEEZRZE S X
" * ‘PLACE ERROR CODE (IF A\Y)
o " IN A wrrxsrca
XT3 32X}
[] o
]) .
IMTR RESUME EXECUTION OF
. INTERRUPTEDR PKDFRAN
FE12
LA
. IS AN INTERRUPT DATA
o . STGRAGE BLOCK AVAILABLE?
PR * N
<, >-=->FE13
[IR .
Y
"
.

»
AL INuIEIT INTERRUPT S+ RETRIEVE.CCS2

. % _CONTENTS _(RETURN OR STAFTING ADDRESS)
‘ ; AND PLACE IN A PEGISTER

WM N N

e '

T
RAETE 221 L I .
" # ' . SAVE RFGISTFRS ANDC KEYS IN A

C o » DATA PLOCK OF SIVT TABLF

[TETR T YT I

M

[
IZX R ZEL N] .
» » PLACE CALLING PROGRAM IN
* . INTFRRUPTED 3TATUS
LEEEE XY ’

*

"
Moae ot M NN
» » PLACE €PET POINMTER CF HIGHEST
» » PRIORITY PROGRAM IN A REGISTER
[(LDA FES0)

. RETURN TO SCHEDULER

s5C50

Figure 2-15. Function Handler Flowchart (Sheet 3 of 3)

2-41

cL .
L3
. .
sk s o ke
" w
" w
[T
™
W
. L
N w
CL1(~~-~< >
W
LI
e
»*

2.
[Pr—

" "
L .o
P e

*

R 4
P

L W
. N % .
cLi6<-—-<

R

N W
o

L
Yo

bbb
" m
- s
ekt e

PRI I 8 2

N
cL18l———<

.
>
w

w

»:
.
£
W

etk dibd.

" #

* "

e e

#

"

W

Noow

' CcL1eL~~=< >
* *
* Y

»”

R
sisisbiok: s ko
-
L "
ook

. -
CL1B———=D%
-

sk ok o

“* #*

" *

s dskibosb bk
"

*
RETURM

(ot I B
»
&+
s shiohiobicd bk
" "
* *
S bk
*

.ok
RETURN

Figure 2-16.

INTERRUPT CODE

PLACE VALUE OF CLKI INM
LOCATION €1

WAS PREVIOUS INTERRUPT HANULED?

GET CLEZ=CLCL, INCREMENT
Elcy AND XL

L SEV. XMIL4B. TNCREMENT

CLCL AND KSEC -

" DOES HZEC=6@7? -

SE1 XSEC=B, IHCREMENT
CLC1 AND XHMIN

DOES XHIN=587
(SET F=@ AND INCREMENT CLCT
DOES ¥HR=247

B 4.
SET #HR=@, INCREMENT DAY

FLACE LABEL CL14 (FOR NON-INTERRUFT
PROCESSING> IN A REGISTER

SET A REG=0 (HO LABELD>
INCREMENT CLCT

Clock Handler Flowchart (Sheet 1 of 3)

2-42

CLi4
, o+

b o kb oo

" L THRIEIT INTERRUFTS
» "
s b ok b
»
CLAS-~—=D%
»
okt b i
"« * GE7 CURRENT ENTRY FROM
*- " ACTIVE STRING OF SCUT

Wisgohnobk kol

"
CL1E~——=D%
E -

Ty

clLaos——-< UASY. 1TER QN THE STRING?

TNCREMENT CLCZ AND OFFSET
; COUNT FOR THIS ENTRY
-*mwi@*g*x"- E . .

' o

: N‘ W, T : SR - -
R A ANY “HCTION DUE7(DFFSET=0>

w*&*mm*wf‘ . : e -
~ ' : : REFL HCE OFFSET BY THTERVAL
Wbk Ak L » PR

*

LRI
P e
- B GET SPET POINTER FOR
* < THIS FROGRAM
ke dobi bk

. EL3gC-——< > LREEL TO BE SCHEDULED?,

st kbbb B . . .
* * CREATE REGUEST FROSRAM
R # CALLING SERUENCE B
B L o S XU ' v v

L L »
. CLAS———~Dw
N .

o» i _ .
SN o 1& THIS A STARTUF, AFTER
c — . s S A S Ny ;
gae;} < . > A TIME DELAW? @ . .
- oy) . - .
* . n . W
- .
T bbbk . L
- Bt DELETE THE THEERD ENTRY FOR

THIS FPROGRAM (DISCONHMECTS

* bR THE CLOCK)
s bbbk b ok s
"
CL4@-——=D%
»:
s Aok
- * ENAELE INTERRUFTS
- "
s bbb
"
*:
Aobd didodbikok
: #* [EXECUTE THE CALLING SEQUENCE
3 "
ERER S TR 2
W
*
cLiz

Figure 2-16. Clock Handler Flowchart (Sheet 2 of 3)

2-43

cL2

»

»:

Y "
#AL-——=-< >
- "

w N

™

w
sk stk ol
" »
- ik
bbbk ook

CRA
e Ll '
W
e
™ "
W . "
Hokahibidibobidiok
S

. .
cL1S -
cL1i?

™

i
sk bbbk
" W
" *
bbb s ok

»:

CLA3—~==D%
. "
s o
ok #
- "
shdiidsbid bbb
Co W,
—
. "
N- # s
_’V¢L46§-—-< e >
- SIS

w Y
. > ,
e L . 1'.
s ook sbios |
#*: *
* w
sk koo

sk '

Lk

cLie .
T

CL39

¢

»:
sokiddiohsh
" F
#* #
shsbidibishiohishiofeods

*

£ 3
kbbb
w *
" W
P ey

"

[

cL4

Figure 2-16.

Clock Handler Flowchart (Sheet 3 of 3)

NON-INTERRUPT CODE

ANY. OTHER THRERDZ ACTIVE?

EXFCUTE WAIT FUNCTION

¢RETURMNS TO SCHEDULER>

* MOVE POINTER: 70 BEGINNING
HOF NEXT STRING.OF SCUT

SAVE. POINTER TO MEXT ENTRY

AN ALLON INTERRUFT, IF WAITING

IHHIBIT INTERRUFTS

DID THE THREAD CHANGE

AM THTERRUFT?

RETRFCE . THREAD

DURING.

CREATE R SCHEDULE LAEEL

CALLING SEGUENCE

GET {.HEEL FROM CURRENT SCUT ENTRY
AND FLACE TH CRLLING SEGUENCE

2-44

1HZ0 &
L2 -

»
ok i oo i

" .
4

iobishe bbbl

:
»
- .
N & = %
IH16<-—< >
Lok L]
L 4
L3
W

L e bbb

MNo% N
INTRS-~=< >
" »

¥ .

*

w
serkeoki b
w »
* »
ok
sk
»

Y
Foshdbopbb:
*

W

L%
* "
5
w o
.Y

W

*
st s bk
* PR
w 3

bk

*

IH?
INTX
»
»:
vy
* *+
w REPP %
» W
dokiatitiok:

»

»
PR 2
L *
W »
seokkobidi . dob

*

*

IH16

Figure 2-17. Interrupt

2-45

, AREG (LABE

;KIS'T& 5
~LABEL -IN ACTIVE sTAtUS? .,

INTERRUPT RETURN
¢3F (1 LABEL 1S TO BE SCHEDULED 17
15 1IN THE A REG - OTHERWISE F=@>

PICK UP SFET FOINTER OF PROUGRAM
THAT CONTAINEC INTERRUFPT RESFONSE
CODE. HOLD IN X REG

«&

1S THERE A LABEL 7O BE

. SCHEDULED?

FOINTER)> AND

SAVE. ¥ REG (5
: CALLY

. PROGRAM CONTRINING THE

L GET 1'ROGRAM’S STARTING HODRESS |
: ;n;oaggﬁ_ro;nccess HERDER .

16 HERE RODM FOR AUOTHER

_LRBEL [N THE HERCER?

FLACK THE LABEL IN THE FROGRAMS
HERDER o v

IMHIBIT INTERRUFTS

{8 THE FROGRAM IN WAITING STATUS?

PLAGE IH REGUESTEC STATUS

G0 TO ERFOR PRINT FROGRAM WITH
ERROR CODE “13 1M A REG

EMAELE INTERRUFTS

Handler Flowchart (Sheet 1 of

TH?

»:
INTERRUFT RETURN <CONT)

w* o e e e e ——— e o e

Wopd ok b ok

" w INCRERENT FENGING COUNTER AND FPLACE
*: » FROGRAM’S SFET FOINTER IN A REG
sheob: bk b e
» .
w®
L 2
* * CHECI, FROGRAM FRIORITIES FAND PLACE
*CKF'R ** SPET PTR OF HI PRI FROGRAM IN FESG
Wk
W
»
o kb ok e
W, w INHIBIT INTERRUFTS
w T ST
bbbk
IHLIE~———=D#% _ .-
* .
B S e
#* Sy "EWABLE INTERRUPTS
» w o

W
D
W oW e RO .
IH1BL—~C > 1S iHE SCHEDUWER DISABLED?
. ook ’ s e e
L]
W :
w
shibriots Ao kb . B -
" " - DECRFHENT ICHT (NUMBER® OF INTERRUPTED'
* W, © INTERRUFTS) S o
ER A 2 =g :
£ 3
L d
M *
TH11<———< by DOES ICHT=87
. * #
P w oy
#
* *
g™ 1$ A HIGHER PRIORITY.
e o PROGRAM - SCHEDULED?
e
L3
: Mg
’ How o® : ‘
HERC-=~C . - > . 15 AMY PROGRAM ACTIVE?
. B A Rt . . FEE
PN
Y. (A PROGRAM WAS EXECUTING WHEN
- THE INTERRUPT OCCURRED)
Lo : TOO MANY FROGREAMS INTERRUFTED ?
THL1<-~=< > ¢ND INTERRUPT DATA BLOCK AVAILABLE.
Y *N IN SIVT ARER OF SIHD
"
IHZL~—— =Dk
*
ek gokddbok
* * INCREMENT HWFIC
E S X *
Acddid b dibi
*
»
Adid- i Aod
-+ . SET “INTERRUPTED WHILE ERECUTING’
* * BIT OF FROGRAM’S STATUS WORD
bk bk ’
*
'y
1450

Figure 2-17. Interrupt Handler Flowchart (Sheet 2 of 3)

2-46

IHEO

»
L3
she b opi b o o . R .
* » BACK WP IHP1 TO POINT TO PRECEDING
o b . SAYELMACHINE BLOCK
« Hobsobobokokodol " Lt foaE
e
" IHSBAS—0R
R .
s bbbk . R
* * - PLAGE SPETPDINTER OF HIGHEST FPRIORITY
w * " PROGRAM (FES@> 'IN A REG
M : AR
W
£
sk ok] ' ;
B * . GLEAR. ACTIVE. INTERRUFT
. M - CLERR. HC : ! a
bbb e
-

.
| sCs0 GO TO SCHEDULER

I1H1B
*
L d
sk A shiobe r .
W W U SET ICHT=@
*: * .
sprafoshs ook ks ok
»
TH1L-——==D%*
" W
PR R
. -

.*v

RESTORE REGISTERS AND KEYS

. CLERR ACTINE INTERRUP+ 5

START “HIGH FRIORITY qugaﬂn'

Figure 2-17. Interrupthandler Flowchart (Sheet 3 of 3)

2-47

SECTION 4
'EXECUTIVE FUNCTION CALLS

GENERAL INFORMATION

Programs comminicate w1th the Executlve and éach other by means of
executive function ‘calls. .Each functlon call is a brief assembly-
“language or FORTRAN calllng sequence that supplies the Executive with
a function code.and.other- pardmeters..

Assembly Language Calllng Sequences,,

All executive function calls begin with a SVC 1nstruct10n that ferces an
1nterrupt to location '65. The Executive initialization routlne stores:

‘a pointer to the Executive's. function handler entry p01nt in’ that’
’1ocat10n.‘ The second word spec1f1es ‘the function number.. The number-
and meaning of other words varies from furiction to functlon

‘-Regleters are not saved and ‘restored durlng execution of these functlons
This is the user's respon51b111ty :

'FolloW1ng 1s an example of - a line from a PMA calllng sequence

~ Label Operation Variable Comments .
(1#2) 'DEC Prunber, (Offset in SPET)
'Llne numbers (L+2 etc.) in the label fleld are for reference only. The
Items

user can leave the label field blank or assign labels as requ1red
in capitals (DEC, etc.) are to be copied verbatim. Initial-cap items
(Pnumber, etc.) are variables to be assigned symbolic names or values by
the user. Comments in the examples are for purposes of explanation.

FORTRAN Calllng Format

FORTRAN calls are in the form of a Subroutine Subprogram reference, as in:

Pname

CALL REQST (,Status [,Commun])

Items between vertical bars (Pname, Pnumber) are alternatives, of which
one is to be chosen. Items enclosed in brackets (i.e., [,Commun]) are
optional and can be omitted. All parameters are integer constants,
variables or array names, as required.

Pnumber

4-1

}Uéiﬁg Program Numbers

Word 3 of function calls 1 through 4 may contain either a two letter ASCII
program name or a program number. A gymbolic name is con¥znient during
system building and checkout, but for real-time executign a number saves
time by €liminating a name search. ‘The 'numbers are"det&rmined by the
position of the program in the SPET .table-of SIM; the highest-priority
program is program number 1, and so:one. . When the Executive finds a
.number instead{pf~a}name;“itju5351theﬁnumber directly to index down to
the correct positien in SPET. . . = - il.h.

‘ The.Usef‘méy‘wani'té éﬁter»ASCiI:p%défémfﬁéhgs during system configuration
for“ease of making changes;‘thénifaftérjthe,RIOS'package,is firm, program
- numbers can be.substituted ﬁorhﬁhﬁﬂﬁam¢$“tQ‘$P€§§,eX@?Qtion{ ' '

In EéRTRAN;,the program caﬁ:aiéb Be i&éhtifiéd3b&[gﬁ;ASCII{hémérpr,SPET{j'
»”offset number: ST ,i'ﬁf{,%ffﬁ;{5 fgf,f gj'i_ Of 2 _
DA (Refers to progran KN)

INM=3 . (if program AA is 3rd item in SPET)

| CALL REQST (INAM, - - - - -)

“RetUrﬁ Conditions -

“After executing a function, the function handler in:thezexeCUtive;usually
_returns to the. program that issued the function-call, .. (Terminate and
Wait functions do mot return, and a program that delays itself with a
Comnect Clock function enters:the waiting state -and .does not return.)

Most . functions provide an’ error return location that is taken if the
function cannot be performed (for example, if a nonexistent program is
requested, a communication buffer is full, etc.). Normally the Executive
prints an error message on the ASR .and returns to the error return
location of the originating program with an error code in the A register.
The Disconnect Interrupt function does not provide an error return (return
is always to the normal return location).

During execution of the function, if a program request or an interrupt
causes another program to be higher in priority than the calling program,
the latter is placed in 'interrupted' status. When it again has highest
priority, the calling program resumes at its normal or error return
location. ‘

“FORTRAN versions of these functions do not provide an error return as
‘such. Return is always made to the first executable statement following

" the function call. Most FORTRAN calls include a 'Status' variable that is
set by the Executive to indicate an &rror cond¥tion, if Sny. The user can
check this variable after each function call to detecg%an error condition.

After a normal or error return, thefprCegéqg_is in single-precision
arithmetic mode-and the same addres§ing mode ‘as when the function was
called. S e

. Address. References -

In' PMA, -address references such as 'Errtn' and 'Label' must be valid -
address expression.in which all 'symbols are previcusly defined. In' . .
FORTRAN, an.address reference can be made by a variable that is -ASSIGNed. -
a statement.number’ value, or by anﬁaddress;gthtanfﬁin'thé“formj$n, o
where n is a statement number. ' o e

4-3

'REQUEST PROGRAM (FUNCTION 1) .

This function call places a specified program in the 'requgsted"state,
and passes an optional communication parameter.

The-PMA?callipg sequencelis:

(L’“) S sVC ~,_,'(:I‘?"um::tfVi'A‘Qﬁ..,handler entry)
(L#1)+ . *DEC" ~ 1 . ~(Function, number)
(L+2). . DATA - 'Pname' (Program to be requested)

. DEC Pnumber’
(L+3) - DAC Errtn ¢

(L+4) - OCT ;Param-;fc;(OCTfOFifgddhmun. not rquire¢)7“f

. or
... DA - o . e
- (L+5) e o e e e e ..;¥‘(N9rmaliréturn)hl

and the FORTRAN format isi:

| Pnéme |
. CALL REQST (|Pnumber|, Status [, Param])
'fwhere:'.
'Pname is a 2-letter ASCII program name

~“Priumber . is an integer value that,ébeéifiesﬂthe

T _position’of the.program's éntry in the _

- SPET table of SIM (for faster execution - - -
than search for .'Pname') - I

' Errtﬁ'f ’iéfén error return addréss'(PMA iny)'i‘:

- Status is set to indicate the status of the

request (FORTRAN only)

Param is a single communication parameter or

a pointer to a communicaticn buffer

The communication parameter or pointer, if present, is handled by the
queuing routine for eventual transfer to the header of the requested

program.

In PMA, if the error return is taken, an error code is present in the
A register. In FORTRAN, the usual return is taken but a status code is
present in the 'Status' variable. The codes are:

4-4

Code Condition

0 Function accepted
4
t
1 Function rejected - no such program

name,.6T number

2 Functlon reJected - communication buffer
_full of parameters.

Thé effect of .a ‘suecessful Request Program functlon depends on the
relative priority of -the- requestlng and requested programs. Assume

for example that program AA:is” requestlng program BB. Program BB is
always set to‘'requested' status...If AA has ‘higher prlorlty, proce551ng
résumes .at the 'normal return' location: of’ program AA. ~.Program BB:is = -
started at :the starting’ location spec1f1ed in its- SPLT entry when it has’

high prlorlty RS R S [EaN . L

1f- program BB is hlgher in pr10r1ty than AA. the Executlve attempts to .
start program BB and place program AA:in- '1nterrupted' status. If eltheru

of ‘these operations is not possible, program AA resumes at the normal -
return location. (A program cannot be placed in 1nterrupted' status
‘exceeded.

1f the maximum number of interrupting devices (SIDl in SIM) is
,A program cannot be started 1f there is a coordlnatlon conflict, etc.) -

x

;If the requested program 1s‘dlsk resident and not in memory, the
Executive requests the SYSLDR routine in order to read the program from

dlSk - The _program -is then started Cif p0551b1e.

"t."‘" kS

,The pendlng ‘ounter of the requested program is 1ncremented the flrst
time the program is requested and ‘once more on the first request after
the '"ran once' flag is set. Thereafter, it is ‘incremented only during
requests that use the ‘communication optlon The counter is decremented

when the program 1s started

The follow1ng PMA example requests program QR, spec1f1es error return
XYZ and does not use communication:

svVC |

DEC 1 (request program)

DATA '"QR! (program name is QR)
DAC XYZ (error return)

OCT 0 (communication not used)

4-5

"IxjA"F._ORTRAN, the same function is:
| INAM= QR

. CALL REQST{INAM, ISTAT)

4-6

SCHEDULE LABEL (FUNCTION 2)

This’ function allows one program to restart another waiting program
(or itself) at a specified location (label). The program in which the
Mabel is scheduled must be memory-resident and active (i.e., either
'waiting' or 'interrupted'). It,is startéd at the specified label
when it is the highest priority active program. After the function

es executed, ;heﬁnormaif(Orﬁérror},returntiSQtaken. The pending
counter is incremented, o R

‘Thé PMA calling sequerice is:

(L) sc (Function handler entry)
(L+1) DEC 2 (Function number) .. .
(L+2) DATA. 'Pname" (Program in which: label |
’ or 'is to be scheduled) -

: DEC Pnumber
(L+3) DAC Errtn
(L+4) DAC Label _ '
(L+5) e e e e e (Normal return)

and the FORTRAN format is:

{Pnane
CALL SCHED. - (|Pnumber]|, Status, Labelv_j _

whefe;
Pngmer VA,;issa*ziletfér'ASCII‘prOgram-name f
Pﬁﬁﬁber s an'inféger'vélué £hat specifiéé the .

‘position of the program's entry in the

SPET table of SIM (for faster execution

‘than sgarch for '"Pname') - -
“Errtn is aﬁ_error'return address (PMA only)

Status. is set to indicate the status of the
request (FORTRAN only)

Label is the label to be scheduled

4-7

In PMA, if the error return is taken, an error code is present in the
A reglster. In FORTRAN, the usual return is taken but a status code is
prbsent in the 'Status variable. The codes are:

Code ‘ Condition
0 " Function accepted’
1 Function rejected - no.such

jprogram name_or number

2 <Funct10n rejected - program-header - 13
' full of labels to be scheduled

A primary.use of SCHEDULE LABBL is to allow a program ‘which serv1ces ,
‘another to call the first one back after service. is’ complete For example,
‘a program that requests a driver can'pass its own program name and a S
return label to the driver by means of the communication option. When
the-driver has finished an operation; it returns to the orlglnal program
by schedullng the label passed to it. , :

4-8

CCNNECT CLOCK (FUNCTION 3)

This function sets up a program for automatic initiation by the clock
program at recurrent intervals or once after a time delay. A flag bit
determines whether the clock vproeram will use a RBOUEST PROGRAM or SCHEDULE -
LABEL function to initiate a program; ‘thus the program can be entered

either at the starting address-.(in the program's entry in the SPLT table

of $IM) or at a label provided in.theé A Register.

The PMA calling sequence is:

L). s | g (Fﬁﬁ¢t19n handler entry)
(L+1) . DEC 3 (Function number) =
(L+2).- DATA -Pname’ ST
L. or.

.7 - 7 DEC Pnumber

(1+3) DAC . Errtn

(L+4) DEC Delay , T .

(L+5) DEC - Interval (OCT O‘for;execution»once_afterl‘;
T a time delay . e :

(L+6) - OCT Flag/Base '

'(L+7)ie o o (Normal return]

aﬁdffhéiFQRTRAN format is:

CALL’CONCLKIC('iPnumbér':,‘jstgtUS,"Delay,‘ Interval, Base?Freq}[,Label])
‘where: '
Pname : - is 4 2—1etfef ASCII program,name
~'Pnumbér - is an integer valﬁe that specifies
the position of the program's entry
in the SPET table of SIM (for faster
execution than search for 'Pname')

Errtn is an error return address (PMA only)

Status is set to indicate the status of the
request (FORTRAN only)

Delay is the number of base frequency units to
elapse before first execution

Interval ~ is the number of base frequency units
‘between periodic executions

4-9

Flag/Base PMA: contains the schedule label flag
Freq. (bit 01) and a base frequency code
(bits 14-16)

_Base Freq. is the basg;frgquency code (FORTRAN)

Labéi ' -is-anfoﬁtioﬁélfiébei for periodic or
. delayed: execution (FORTRAN). (Should be 0
_forfREQUEST;PRQGR%M;function.) ‘

IﬁﬁPMA, the label tofbe.Scheaﬁled“mﬁiﬁibéjinPthe.A.register,before this-

function is entered. - '

‘Error Codes *

IhAPMA, if the error returnvi5 takéngﬁan"efrOffcode'is.pfesegtwin the,Al;} .
register. In FORTRAN, the usual return is taken but status code 1s present
in the 'Status' variable. The codes are: :)

- Code ‘pqndition
i'O‘ E;;;tion accepted
1’ ‘fgfétion rejected - no such
x Program name or number
Z Function rejected - maximum number

‘of clock users in-SCUT ‘table of SIM
is exceededA'* S s

Periodic Execution

When the specified 'Base Freq' is 0 to 3, this function requests or
schedules a label in the specified program when 1t comes due. A program
can comnect itself or another program in this manner.

The 'Delay' parameter specifies the elapsed time before the program 1S
first executed, and 'Interval' specifies the interval between successive
executions. (During these intervals, the program is terminated.) See
Table 4-1 for time units. Once a program has been set up for this mode
of operation, it continues execution at intervals until reset by a

DISCONNECT CLOCK function.

4-10

-

Table 4-1. Base Frequencies for Clock Calls

Base Frequency i . i Detlnltlon
‘IFor perlg§9c 1 (Program requests ltself or another program)
| executionl = - 1
0 B T1me unt11 flrst executlon is absolute time of

day in mlnutes “Interval between executions
is in mlnutes thereafter.-.h«-

f;l L :“',p . Time until fir '{executlon and 1nterval between ‘
g : ' | executlons 1s at RTC 1nterrupt rate.* :

62 _‘T1me until flrst executlon is. 1n ‘seconds:
Interval between executlons is in- seconds.

3 Time Untilefirs; executlon is in mlnutes.-
N Interval between executions is in minutes.

'For t1me(N (Pregram:delays itself)

’ f4f¥ﬁfl; o b 'Tlme deiiy until resumptlon of executlon is

in seconds

6- - .. | Time delay until resumptlon of executlon 1s
‘ : 1n mﬂnutes

*RTC interrupt rate is determined by the CLKZ and CLK3 entries in SIM.
See Clock Program description in Sectlon 2.

4-11

:Imithé‘followimg example, program 'KL' is set up to be requested after
an initial delay of 300 ms and thereafter at 1l-second intervals (assuming
a 50.ms RTC interrupt period):

PMA: .
sve . o
DEC " - 3. = ‘(connect clock)
DATA : " 'KL' ‘(program- name)
DAC . PQR (error. return)
DEC - -6 (6:x:50.= 300 ms delay)
DEC - ;20 - (20 x 50 =.1000 ms 1ntervals)
ocT .. l,.-'f »‘(RTC 1nt rate) S

© To schedule a label 1nstead of requestlng the program, word L+6 could be
OCT 100001

rs%@ﬁIRANzg“

DATA INAM,IDEL, INT, IBASE/'KL',6,20,1

GALL CONCLK (INAM,ISTAT,IDEL,INT,IBASE)

One- Tlme Executlon

If 'Interval' is zero and the base frequency code is 1 to 3, the clock
program requests or schedules a label in the specified program, ‘and
disconnects -the program from the clock the first time it falls due.

A program initiated in this way executes once only, and need not
dlsconnect 1tself to prevent periodic execution.

Delayed Executlon

If the base frequency code is 4 to 6, a program can delay itself for the
duration of the 'delayfvalue. See Table 4-1 for delay intervals.
('Interval' should be set to 0.) The program is placed in a waiting
state during the delay. Upon completion of the time delay, the program
is disconnected from the clock and scheduled to resume at the normal
return. In this example, program 'KL' delays itself for 2 minutes:

4-12

DEC . 3
- DATA 'KL'
DAC . PQR
DEC - 2 - (2 X 1 min. delay)
DEC- = 0. (no 1nterva1)
OCT .. -6 . (1. min.- delay units)
C e e e e (Return locatlon)

FORTRAN:.

DATA - TNAM, IDEL ,INT, TBASE/ "KL', 20,6

' CALL CONCLK (INAM,I-.STAT,AAIDEL;“INT;IBA'SE)"'

Schedule Label vs. Request. Program

In PMA 1f bit 01 of word i+6 is a 1, the Request Clock function schedules
o 1abe1 in ‘the spec1f1ed ‘program. The label must be - in the A reglster
before" the function ‘is entered. If bit 01 of L+6.1is 0, the effect is

the same as a Request Program functlon

In FORTRAN if! the 'Label‘“parameter is present and non-zero, . the Executive
schedules that 1abe1 If 'Label' 15 0 or omltted the spec1f1ed program

is. requested

4-13

DISCONNECT CLOCK (FUNCTION 4)

jTﬁisffunction is used to‘remove a specifiad program from the periodic
execution mode (as set up by CONNECT CLOCK), or to cancel the automatic
restmption of a self-delayed program in the waiting state.

The: PMA calling sequence is:

(L) - s (Function handler entry)

(L+1)" ~.DEC 4 . ‘(Function number)

(L+2) ' - DATA 'Pndme': (Program to be disconnected)
- : " DEC' Pnumber - |

(L+3) ~ DAC Errtn. oon o

(L+4) - .OCT Base Freq. (Table 4-1) = .

(L*5)- . v 2 e a e (Normal: return).

and the FORTRANﬁfOfmét is:

Pname .
" CALL DISCLK (|Pnumber| , Status, Base Freq.)
 Pname, is a 2-letter ASCII program name
5Pﬁumbef isf%n integer vaer'that=specifies

_theposition of the program's entry-.
in the SPET table of SIM (for faster. -~
‘execution than search‘for'?Rnamef) ok

Errtn'_ is an”errorjretufh addpesS.CEMA{QnIY) f

Status - is set to'ihdicate the status of the’
o request (FORTRAN only)

Base Freq. is the same base frequency code specified
a in the original connect clock function

In PMA, if the error return is taken, an error code is present in the A
register. In FORTRAN, the usual return is taken but a status code 1is
present in the 'Status' variable. The codes are:

Code , Condition
0 Function accepted
1 ~ 'Function rejected - no such program

name or number

2 Function rejected - specified program
is not connected to the clock

4-14

'CONNECT INTERRUPT (FUNCTION 5)

This. function defines the starting address of interrupt response code for
"a particular device hardware interrupt and increments the pending
counter of the calling program. The address ('Intresp’, below) is :
entered’ as the. third word of the device's entry in the SID1 table of SIM.
Theépeafter, when the interrupt occurs, the Executive transfers control
‘to-the sgecified entry point and decrements. the counter. The response
"codg mus®be in the calling progran itself,

. The:PMA calling sequence is:

(L) SVC . (Function:handler éntry)
- (L+1) DEC 5 (Function number) -
(L+2) OCT _.Devadd

(L+3) DAC Errtn

(L+4) DAC Intresp o

(L+5) &« i o o evs (Normal return)

and the FORTRAN format is: -

CALL CONINT (Devadd, Status,

where:
Devadd is the device address (Appendix A)
Errtn is an error return addressi(PMA»ohly)ﬂ
Status is set to indicatévthe étatgé df‘the ¥

request (FORTRAN only)

Intresp is the stafting address ofzﬂhé interrupﬁ

response code.’ o ‘ '
In FORTRAN, the label identified by 'Intresp' should be a CALL INTSET
statement, and the interrupt reponse code should terminate with a CALL

ISKED statement (both described later in this section).

In PMA, if the error return is taken, an error code is present in the
A register. In FORTRAN, the usual return is taken but a status code
is present in the 'Status' variable. The codes are:

Code Condition
0 Function accepted
1 Function rejected - interrupt- already

connected or device does not exist

4-15

The f0110w1ng example connects device no. 3 (line printer) to interrupt
response code starting at symbolic locationi LPINT, with an error return
kocation LPER specified:

DEC 5 (connect, interrupt)

DEC 3 (devace no., 3)

DAC LPER (error return).

DAC: LPINT, (int.; response code)
FORTRAN:

IDEV = 3

CALL CONINT (IDEV,ISTAT;$100)

100 CALL INTSET

etc.

4-16

DISCONNECT INTERRUPT (FUNCTION 6)

This function dissociates a block of interrupt response code from a device
‘by turning off the mask bit, resetting the §ID1 entry to return to the
Executive, and decrementing the pending counter.

T}{e PMA calvliin'g sequence is:

(L.) SvC . ' (Function handler entry)
(L+1) - DEC. 6 | , (Function number)
([#2) © OCT .Devadd™ - . - .
L(L#5).uevw (Normal return)

and the’ 'FORTRAN'; fémét“ig;:.
;'CIALL:IDi'SINP' (Devadd) |
\v}fic;re:,
Devadd is thedev1ceaddress (Appendle)

Tbis’"l‘fuhction always takes the normal return. These are no error codes.

4-17

‘TERMINATE (FUNCTION 7)

A program can use this function to inform the Executive that it has
-finished executjon. If the pending counter is 0, fthe program is termi-
nated. (The status word is cleared. exceot for the 'Ran Once’ bit,
‘which.is set, and the coordination blts used by the program are cleared

from the Master coordination word:)

If the pending countér is non zero the executlve determines whether the
pragram has been requested or-<if- there arenany labels to be scheduled.
If so, the executive does.what is requiréd. If not, the program has
apparently. tried to. terminate w1thga nterrupt connected In that case,

the Executive sets the. 'Dlsabledf_‘lt.ln the’ program's’ status word SO

that the- program ‘cannot run agaln; (Unrecoverable ‘error.)

The PMA calllng sequence 1s

(L) / SVC (Functlon hander entry)
(L+1) DEC '7 i (Funrtlon number)

aﬁd:theiFORTRANvformat is:
CALL TERM

4-18

WAIT (FUNCTION 8)

A program uses this function to voluntarily suspend execution when the
. program is to be restarted at label by another program OT by its own
~interrupt respdnse code. This function sets bit 12 (Waiting) of the
calling program's status word and returns to the scheduler. To restart
a: program after a Wait, a Schedule Labél function must be used.

ThePMA calling sequence is:.
(L) N »:SVC.."' o (Functlon handler entry)
(L+1). DEC = 8° ‘(Func;ion number)”
and t’hé}FQRTRAN f.ométi is:. - o
CCALL WAIT =
(Note: ' In Revision 3 of RiOSQ:fhi§‘£u3c£ibnnhaméjis changed
. to YWAIT to distinguish it from the ISA function WAIT.)

4-19

bFéﬁTRAN 'INTERRUPT EXTENSIONS

Three speczal functions are included to aid the user in settlng up
1nterrupt response code in a FORTRAN program. They are:

CALL INTSET
,?whlch must be the f1rst 1nstruct10n 1n user -interrupt response code:

L INTACK (Iack)

" where Tack is. executed as an’ 1nstruc suchfésvan OCP interrupt
acknowledge; and e e e

CALL ISKED (Label_‘Entry)

where 'Label® is the, 1abe1 to be scheduled on exit from the interrupt -
response code and 'Entry is the ‘label associated with the CALL INTSET

statement.- If no ‘label is'to be scheduled, 'Label' must be. O The'
f0110w1ng example shows how these functlons can be used: - '

C SETUP OPERATIONS:
C OCP '0160 .
| IACK = '30160
'C . CONNECT INTERRUPT TO DEVICE 'IDEV'
S CALL CONINT (IDEV, ISTAT, $100)
~'C - INTERRUPT RESPONSE CODE
100 - - CALL INTSET

- CALL INTACK (IACK) e
. (1nterrupt response process1ng -
.. minimm execution time)
o Co SCHEDULE OPTIONAL LABEL IN NON- INTERRUPT CODE
o CALL ‘ISKED ($200, $100) ')
(control returns to scheduler)

(o} NON-INTERRUPT FOLLOW-UP CODE
200 - (Follow-up proce551ng)

CALL DISINT (IDEV)
CALL TERM

4-20

'EXECUTIVE AND USER EXTENSIONS
The.folqujng functions are provided as a convenience to the user:
CALL FETPAR (Ibuff, Iwords)

This function enables a program tQ. 4ccess. parameters passed to its header
from another program by the Executive's queueing routine. 'Iwords' is
the number of words transferred. .If:"ITwords' is greater than 1, 'Ibuff’
is..the name of’ an integer array that will receive the parameters. If

'I@ords{hisﬂ1;”'Ibufff'i$ the parameter itself.

| CALL' ERPRNT(Icode, Iname) .
This function enébies éfF0RTRAN‘pfbgram~fo;§élifﬁheﬁexecutiVé'$7erfor7:
print.routine. " 'Icode' is an error code of up to 3 octal-digits, ‘and

'"Iname" is the ‘two-letter ASCII name of the ‘calling program, The ASR
error printout format is described . in Section 2. - e

4-21

ISA EXTENSIONS

The’fofloﬁing calls are alternate versions of the Connect Clock executive
function.- These forms are supplied for compatibility with ISA Standard

S61.1, 1972.

CALL; START (K, J, 'K, M

Thls functlon has. the same. effect of a Connect Clock function with a Base
Freq. value of 0-3 and.an interval of 0. When the specified delay has
elapsed, the program- is placed in: the 'Requested' state and disconnected
from the clock The parameters are o A

T »_"flTwo letter ASCI Lfogram name (or number)

':J 'fx,Number of tlme unlts to delay before startlngflye
K- Spec1f1es the tlme unlts | ' |
0 - vReal time clock 1nterrupt rate ,
- (depends on CLK2 and CLK3 entrles
77 in SIM)

2 Seconds

3 Minutes

M .-; Returns the status of the request to the B
5 calllng program: L g :
0 - -'Undefined"
or less IR
1. Request Accepted
2 or Request Rejected
greater

CALL TRNON (I, J, K)

This function has the effect of a Connect Clock function with an interval
of 0 and a starting time expressed as a time of day. When the specified
time matches the Executive's time-of-day count, the program is placed

in the 'Requested' state and disconnected from the clock The parameters

are:

I Two-letter ASCII program name (or number)
J Array name. First three words of array must

contain hours, minutes, and seconds value,
in that order, for time of day.

4-22

K Return the status of the request to the
calling program: .

0 or Undefined

less :

1 Request Accepted
2~6fj Régﬁesﬁlﬁejected
more. N

'CALL DELAY, (I, J, K)

_ThiéffuhctiOn enabies a.prbgramifbfdeiay iﬁséifvaTka:sﬁecified,périod.
The.-program is pldced in the 'Waiting' state and connected to the clock.

When the delay has elapsed, the programvi$¢3chedu1ed'to resume at the:
next executable statement and disconnected.. o '

. NOTE:

In Revision 3'6f RTOS, this function

is CALL WAIT and the normal WAIT function

" is CALL XWAIT.
The parameters are:
o I»‘."_'Numbef'of delay units to:e1apse’,:
J "v'iTime (nits o |

0 RIC cidck‘fate*é
2 Seconds : |

3 Minutes

*Determined by CLK2 and CLK3 entries in SIM

K Returns the status of the request to the
calling program:
0 or Undefined
less v '
1 Request Accepted
2 or Request Rejected
more

4-23

SECTION 7

USING RTOS

' This, section describes user program:féquirbments, startup and
- operating procedures,, and various options-available to the experienced
RTOS user. - S UL SR

' USER PROGRAM REQUIREMENTS

Prpg%ams:t67%dh.under RTOS must'hé§éﬁfﬁe’hbadergdésctibed'below and conform
to all-other. requitrements of RTOS." The general format is shown in. :
Figure 7-1. S TR U AT T

Header. - . ,, |

Every RTOS program must begin withffhé‘following header:

SUBR Namel,‘NameZ.. .. (Program identifi¢ation
‘ for program linkage)

. REL_VH

'DEC 4?1 (Uppef,tefminator.of'

_ BSZ 7 h‘ﬂ ' o .‘"‘(ReserVEs n:WOfdsijr
- ~scheduled labels;

, ~n=1 to 10) CoL

- BSZ -1 ~ » (Reserved for a comunication
’ parameter)

(Starting address specified
by program's entry in
SPLT table of SIM)

Start - --- ---

This arrangement permits the executive to access parameters by a negative
offset from the program's starting address, available in SPLT. Any
nunber of words can be reserved for labels. A typical value is 4.

A communication word must be reserved even if the communication option is
not used. Figure 7-2 shows the condition of a typical header during

program execution.

For programs that use the communication option, the system's queueing
routine (FIFO, etc.) places a commmication parameter in the word
preceding the starting address before the program is started. Communi -
cation is discussed in Section 2.

7-1

&T.v ¥TERMINATOR éff1 :{;§:_z - ——— DEC -1

HEADER ¢ { * SCHEDULE LABEL STACK. .
B Lossz g

ENTR | [COVMUNICATION PARAMETER)

USER'S ~ CODING

SYSTEM FUNCTION CALL

USER'S COD:I_NC

SYSTEM FUNCTION CALL

Figﬁre~7-1. User Program Format

7-2

~ ORDER

~ IN WHICH
TABELS ARF
SCHEDULED: 1

g THIRD LABEL 3
0] SECOND. LABEL 2
b FIRST | . LABEL 1

USER'S'
"CODE

A. Starting - B. Three Labels queued and a .
. Condition communication parameter
- ‘ present. e

Figure 7-2. Use of Program Header
During System Execution

7-3

When "labels are scheduled, they are placed on the stack starting with
the word; preceding’ the communication word. If the system attempts to
enter labels when all reserved words are used, the executive prints an
error messiage. Labels are started in the order in which they were
scheduled. As each label is started, the Executive pushes the stack
{ogﬁid the communication word and leaves a zero word as space for another
abed.

* Program Name .

. User programs.that are written to. be link~loaded as programs external to

. the executive should begin with:a SUBR statement that-defines the names

- to be cited in the executive and other programs. . = = . = .
In executive functions, programs are identified by two-letter ASCII
program names or an octal number ‘equal- to. the program's offset position
in the SPET table of SIM.. These references are related to the program's.
actual starting location by the.starting ‘address location of the program's

". SPLT entry. For example, assume the user has prepared a gemeral-purpose

signal conditioning routine ‘hame GS, with a starting location identified

by the label SIGCON. If the program begins with a statement such as:

| - SUBR GS, SIGCON
the program'S'SPLf enfr&ushould begin with:
IR GSP - DATA 'GS'
o XAC GS f"(Starting,addressJﬂ.

If the program’is_disk-résident or loaded ééparately, the actual starting
address can be entered, as in: '

GSP DATA 'GS!
OCT '10400

Interrupt Response Code

In order to respond to device hardware interrupts, RTOS programs must
1ssue a Connect Interrupt executive function that associates the device
interrupt with an interrupt response subroutine entry point elsewhere
in the program. When the interrupt occurs, the immediate actions are
controlled by the device's entry in the SID1 table of SIM. After saving
the machine state, the SID1 entry calls the user's interrupt response
code as a subroutine. The process is described in detail in Section 2.

7-4

§¥héfﬁsér.s jinterrupt response subroutine must be in the following
format; : | '

Intresp DAC k%
,.‘(ﬁ$¢f€§'response code)

o

“LDA.

‘The félleiﬁénféquifements appiyitofﬁhg;ré$ﬁ§nséf¢§d¢:"vv.

1. . Foor gbéd‘Sysfem.response,'fhé}godé:ghou1d3not reQuitelmore than

~,50: microseconds of .execution timé.
2. Executive functioh"gélls'are:ﬁ¢f'pérmitted.

3. The interrupt must be ackndWlédged by the INA, OTA, or OCP
instructions required to clear the interrupt request at the
device ipterface. ' o -

4. It shoﬁld;run in SGL arithmetic mode and use trﬁe Sector 0.

Figure 7-3 shows the organization of all interrupt processing code for a
typical driver'program. When the program is first requested, it connects
itself to the appropriate device interrupt, does any assoc1ated~setgp
operations, and goes into a wait. The interrupt response code provides
the immediate response to each interript and optionally schedules a
label such as RESTART for subsequent proceéssing. .It may be necessary
for the response code to set a flag (or increment a counter) tba? is
reset (decremented) by the noninterrupt code. If sSystem priorities cause
the noninterrupt code to fall behind the interrupts, the interrupt co@e
will find the flag to be set (count non-zero) and can schedule a special
return to identify this condition. A flag can also be set when the last
operation is complete so that the FINISH label can be scheduled.

The calling program normally passes instructions to a driver through the
communication word, which is passed to the driver program's header by
the system queueing routine. The word is usually a pointer to a buffer
that contains the name of the calling program, normal and error return
pointers, the function or mode of operation (for multipurpose drivers)
and other necessary information. If a data buffer is used, it normally

follows the control words.

¥hen the block transfer or other driver function is complete, the FINISH
label is scheduled. This performs actions appropriate to the last
interrupt period, disconnects the device interrupt from the driver, and
may schedule a label in the calling program. (The label would be one of
the items in the communication buffer.) The driver then terminates.

7-5

HEADER

START | CONNECT INTERRUPT

SET UP FOR °*
FIRST INTERRUPT

WATT-

AL
\(

TN\

)

CINTRESP: -

© MINIMUM CODE .
JESSENTIAL T0 -}
HANDLE INTERRUPT

.. PLACE RESTART OR
'FINISH TABEL IN A

" “REG. (OPTIONAL)
““W INTRESP

Y
3
\\

./
o
RESTART | DO FOLLOW-UP
PROCESSING OF PREVIOUS
INTERRUPT

SET UP FOR NEXT
INTERRUPT .

WAIT

AR

A\

FINISH FOLLOW UP LAST
INTERRUPT

DISCONNECT INT.

SCHEDULE LABEL IN
CALLING PROGRAM
(OPTIONAL)

TERMINATE

Figure 7-3. Typical Interrupt Response Code in a Driver Program

7-6

;ﬂserﬁdesigned drivers should use the standard error print program
(ERFRNT) to notify the operator if there are device failures or over-

: 11ing sequence and code formats for ERPRNT are described

‘loads,“The ca
An Section: 2.

. - i

* “WRITING SPECIAL QUEUEING SUBROUTINE - #

! Befdte writing a custom queueing'Subrbﬁfiﬁé;fthe user should thoroughly

study the-1listing of FIFQ,

the: standard " queueing subroutine provided
ubroutine’ is called, the following information

- with RTOS. When the.user's sul

;wiil_belavailable to it:
e 1;_ A ﬁbintér'tb‘the'fuﬂctioh.cal

- XLNK. The flag is bit 1; a 1 means a store op
, and a 0 means a fetch operation is reguired.

5.

XPCP is the inﬁtef-to:the

_) fun c nd a;fIa§jihdicating whether this =~
is to be a .fetch or store operation.is available indirectly through
eration is required,

(bqgiﬁﬁiﬁgfofAfhe Executive Program'k
Communication Table. .- " v - . L :
XPLP is the pointéfffo‘theﬁiEQuesting program's entry in the -
Executive Program List Table. , _ :

The A ngister-contains an index to the proper communication
buffer in XPCT. ' - .

The X;registef contains a pointer to the first word of the
program header of the. program being called. - o

Besides fetching and storing commumnication parameters, any queueing
subroutine must be able to make normal and: error returns and to reset the
'communications active' bit in the program's SPLT entry when the buffer
is emptied. Much of this may be copied directly from FIFO. T

WRITING NEW SYSTEM FUNCTIONS

New system functions may be added to the system by the user.

The standard

calling sequence is as follows:

Function Handler entry

L) svc
(L+1) DEC Function No.

(L+2) Parameter (Optional)
(L+3) DAC . Error Return (Optibnal)

7-7

»:ﬁﬁjthg)name or number of another program is required, it must be
ispecified in location (L+2) of the calling sequence, using a DATA

“'Program Name' or a DEC 'Program Number' pseudo-operation. The address

" of the user's error code, if any, must be specified in location (L+3)
.of-the calling sequence. Other parameters may be specified in
- locations. (L+4), (L+5), etc. of the calling sequence, and one additional

t.

’ Inté}écfidn-of7Fﬁhctidﬁ;}?ﬁhcﬁion;HahdléfgiahdﬂScheduler

. parameter may be passed in the A register..

&

X

k3

The:FunCtion Haﬁd1¢r”éntefé“fheﬁreddiféaffﬁﬂtfibn at its starting location

via ‘an inditrect JMP instruction ‘through an SFET pointer. The Scheduler

is disabled and the A register. is restored to the value it contained oh

entry to the Function Handler from the user program. .If the required function
requires 4 program name search, the Function Handler locates the required
program and sets system variable XSPl to' the address of the first word of

the associated SPLT entry. "Location YLNK contains a pointer to the second
word of the function call (the function number). 3 R

Following execution, the new system function must return to the Function
Handler at label FE10 via a. JMP FEI0 instruction (if no error occurred)
and to label FE20 (if an error occurred). If the return is to label
FE10, the B register may contain a parameter to be passed to the user.
(This parameter is returned to the user in the A register by the Function
Handler.) The A register must contain the return address offset. If

the error return to label FE20 is taken, the A register must contain the

appropriate error code.

Following execution of the system function, 'the Function Handler enables
the Scheduler and returns control to the appropriate location in the user's
calling sequence via an indirect JMP instruction.: The A register may
contain a parameter. The contents of the other registers are unspecified,
and the calling sequence locations are unaltered. : If the Function Handler
returns to the user's error code, the A register should contain the
relevant error code. ~ e :

When the Function Handler returns to the Scheduler, the saved return
address, the keys, and the contents of the A register are available to

the Scheduler in the SIVT table.

General Rules

The following general rules should be observed when writing system
functions:

1. If the function inhibits interrupts, it should not do so for
more tban 50 microseconds, and it must enable interrupts before
returning to the Function Handler.

7-8

2. If a functlon is to schedule a label, it may use a subroutine
~within the Executive called SLBL. The calling sequence is:

ALﬁX,. Pointer to XPET entry of program in Wthh
_label is to be scheduled
LDA* Label tovbelsqhedqled

JST SLBL

Normal return .ff:fwlnhlblted)

Error return) ~7(1nterruptsrenabled)
If the error return is. made, the A reglster w1ll be set as
follows : e .
l,A;? Oe' lProgramtnot aotlye
’vA,% 1 No room in header for label

The p01nter to the relevant SPET entry will be set in XSP1 by -
the Function Handler, if blt 1 of the relevant p01nter 1n SFET

15 set.

3. Functlons should not normally call other system functions.
Exceptions may be made in the case of Walt and Termlnate under
'certaln c1rcumstances : : "

4, 'User coded functions should be loaded w1th the Executlve and
System Information Module to ensure: that all the necessary
,address 11nks are resolved.

5. If a function is to request a program, use may be made of the
Executive subroutlne RPRO. The calling sequence is:

LDA (Address of commm, param.)=-3
LDB Pointer to program‘'s SPET entry
JST RPRO

Error return

Normal return

7-9

lUSER JINITIALIZATION ROUTINESk

The RTOS Initialization routine, INP1 in the Executive, permits the running
- of ser initialization routines after preliminary system initialization
hasbeen performed. This enables systems running under RTOS -to perform
once-only. system initialization wlthout uslng an 'Initialization Program'
wh1ch'wou1d Tun. only once. S .

A user 1n1t1a112at10n routlne is wrltten as a. normal closed subroutine
located: anyuhere in memory. ‘It ‘could be: Jocated in a buffer area that
is ‘overwritten after .thé routine hasfexecuted once. There may be any
number of these closed subroutlnes T AP .

After performlng its normal functions"and before enterlng the Scheduler,
“INP1 does an indiréct subroutine jump to a location SINI. in the - -
Configuration Mbdule SINT is ‘a p01nter to the 1n1tlallzatlon control
subroutine: : : - S PR

% .
- * EXECUTIVE INITIALIZATION TABLE

SINT =~ XAC ,INIT, , (Pointer to initialization control
T subroutine :

If no user 1n1t1a112at10n is required, SINT should p01nt to entry SC of
the Scheduler

SINN XAC SC

The user'S'initiéliZation control’subroutine ébnsistsjof a list of JST's
to the individual initialization subroutines. It has the form:

*
* INITIALIZATION CONTROL SUBROUTINE
INIT DAC %% (Link)

| JST INT1 (Call initialization routine 1)

JST INT2 (Call initialization routine 2)

JST INT3 (Call initialization routine 3)
JST . ININ (Call initizliation routine N)
JMP* INIT

7-10

K

- ADJUSTING CLOCK RESOLUTION

* Twoiparameters required by the clock program have been made configurable
. tg allow.users to adjust the clock resolution. These parameters, labelled
CEK2 and:CLK3, are located in SIM. ‘CLK2 is the number of clock interrupts
. per second and CLK 3 is the 2's complement of the number of hardware
. intervals between interrupts. For a.standard system with a 60 Hz line
gréquéncy, CLKZ -is set to 20 and- CLK3 is 'set.to -3, for a clock resolution
of 3 x 16.7 ms = 50 ms (20 interrupts per. second). In a 50 Hz system, if
CEK3 is =2 for 40 ms’ resolution, CLK2 should be. 25.

- ELIMINATION OF SYSTEM ROUTINES :

“ RTOS syStems'may rpn:Withoutfthéjﬁffér:Ptiﬁﬁ7ﬁfogram,lénd'theiKéyboafd,
,,Prcgram{j B - i ' ') ‘

Error Print Program

The following subréﬁtiné-mustibeflihked into the system in place of the
Error Print Program: e -

SUBR ED
R
B DAC

In SIM, the entries for program EP in SPLT and SPET; as well as the SUBR
ER, EPP statement in the header, must be omitted. '

Keyboard Program

In SIM, the entries for program KB should be omitted from SPLT and SPET
and in the executive, location (AI+5) should be changed to a NOP.

7-11

" USING RTOS DRIVERS

. The standard RTOS drivers (for ASR, paper tape unit, and mass storage

devices) are:accessible to the user as well as the Executive. All RTOS

~ drivers are entered by a standard Request Program calling sequence. For

" program names and the format of entries in commnication buffer and error
: printouts, refer to the driver listings, = '

"DEBUGGING USER' PROGRAMS

vPrdéraﬁs7to.rhh:under RTOS Shohfa?fiﬁét'bEnyitien asla’sténd-aloné
~.program and debugged as iuch as possible.’ Then the RTOS header and
‘address. 1inks can be added, the necéssary entries can-be made.in SIM, and
the program can be loaded to run.under RTOS for. final debugging. -

USING EXECUTIVE POINTERS AND SIM DATA);f' e

The pointers inPthe“ExecutiVé,andﬂdéfa7tables in SIM are in-memory at all
times, so the user can take advantage of them: ' o

Exec. Location Points to
. XPET First word of SPET table in SIM
XPLP First word of current program's
data block in the SPLT table of
| SIM
- FES0. - ".SPET- table entry of highest-prior-

ity program
IHP1 Next available interrupt data
block in SIVT table of SIM

For example, the ran-once bit in a program's status word can be checked
as follows, to determine whether the program needs to be initialized.

LDX* ~ XPLP (Pointer to SPLT entry)
LDA 2,1 - (Pick up status word)
SAS 6

“JMP Init (Needs initializing)

(Ran onCe-continue)

To resolve address links in a program that is loaded separately from RTEXEC,
load RTOS component XLNKS.

7-12

'STARTUP AND OPERATION

‘The result of system building for RTOS A and B is usually a self-loading
‘paper tape. of the memory-resident portion of the system. The tape is
"lodded according to the procedures in the PRIME CPU Operator's Guide.
_The; system -i$ -started manually from the control panel at location EXEC

- (the first location in the executive), . Subsequent events depend on the
program status. configured into SIM.- .If no programs are requested, thg
scheduler 1oops. while waiting for intertrupts.. If the system has on-line
-utilities,. the user can enter a. $ character at ‘the ASR keyboard

‘to place the utility keéyboard handler. in control. It types ''SF="' and
awaits one of the commands déscribed in Section 5... S

'ON-LINE PERIPHERAL TEST PROGRAMS -

If peripheral @evibeztest»prdgramé.ife;inqlﬁééd_in:tﬁégSysteh;‘they-can
be started by RP-utility keyboard commands,. e Do

ASR Test: SF=RP AT. |

The user types up to 40 characters at the keyboard and enters a carriage
return. The test program types out the same characters and awaits a new
input line. This cycle repeats until the user types END.

High Speed Punch Test: SF=RP PC, 1000ddd

Punches 10 rechds of 'ddd characters each. .(If no parameter is given,
each record contains '120 characters.) The resulting tape can be used in
the reader test. S L

High Speed Reader Test: ' SF=RP RT, 100dddd

The punch test tape should be placed in the reader before this function is
entered. This function reads one record of 'dddd characters each. (If
no parameter is given, the default value is '1000 characters.) If sense
switch 2 is set (up), the record is duplicated on the punch.

Disk Test: SF=RP HP Seg
Writes test data to disk segment 'Seg' (0 to 'ddddd'). If sense switch 5

is set, the next segment is selected. If switch 6 is set, the segment is
read and compared to the original data. ‘

7-13

' SECTION 8
RTOS-C

- INTRODUCTION

‘RTOSQC;;Suppiigd.on revision C of thé?PRIMEﬁﬁasfér software disk,
jprovidesLthe;following'éxtension§’tq?the;capabilitigs of versions
1A'and:BE*1* 1j“'A' B R S ,;5;:;~;,V¢‘.‘ o
© oS disk access an& fiie.Héhdiing~(séquéﬁfialgandﬁmapped.1-'
random access) - I T S P
Dyhamic.run-time allocation 9f{ﬁemotyfﬁiotks-
Genéralepurpose?pask‘and*daté quéﬁeing structures

Dedicated, coordinated éector 0 areas for disk-resident
programs . - . :

Relocatable base sector (virtual-memory systems only)

To implement’these'features, the following basic changes are made in
the RTOS software: : : -

An abbreviated version of PRIME DOS .is' provided, to be
installed as a memory-resident program that runs under
RTOS. ‘ ‘ R . T

The Executive includes new executive functions for run-time
control of memory allocation and queueing by user programs.

SIM requires a SPLT table entry for resident DOS. The SPLT
entry for each user program has format changes to

describe characteristics of disk resident programs, and the
option word contains fields for dedicated base sector
coordination. Memory allocation and queueing features,

if present, are configured into SIM.

Off-line utilities are not required to build disk-resident
systems, since on-line DOS may be used to load and save -
RTOS programs or data as named DOS files.

A new system loader program, DOSLDR, is provided. It
communicates with the Executive to handle DOS-format
disk-resident programs with optional dedicated sector 0
or relocatable base sector.

8-1

« The RTOS-C software is fully compatible with previous revisions.
Meriory-only systems and disk-resident systems that use the RTOS-B

- dsk’ format may be generated by proper configuration of SIM. (When

© the RTOS:B disk format is used, SYSLDR rather than DOSLDR must be
“present in: thesystem.) .

Ihteﬁhétioﬁ,bfﬂRiOSjC with DOS.

in' connection with RTOS-C.
"Off Line DOS: Regular DOS Rev. 3 is used off:-line for system building,

HéBUgging,“storage.qf%disk*resident‘cbmponents,wand loading and starting
“of the on-line RTOS system. Aftértdiskéresident.programs;are_loaded,

they ‘may bé saved as named. DOS SAME@inlesuunder"afSpecifiC*UFD'deVOted,'

to RTOS disk-resident programs. Two external commands-have been added

to generate. DOS files that are to- be accessed by random-access

It is important.to di§tingui$hatbéntWo-aifféféntgyersions of DOS used

methods. RTOSRA creates and. names a file gf'the~propergléngth‘withih
a specified UFD and disk unit. FILBLK is used to exchange data -
.between memory and a disk file created by RTOSRA; it is equivalent

to the RTOS-B off-line utility fumCtions TRDM and TRMD.

On-Line DOS File Ménagerf' RTOS-C requires the on-line use of a
modified version of DOS that acts primarily as a DOS file manager.
This program is identified by the SDOS entry of SIM:.

SpOS © DAC - DOO ~ DAC to SPET for DOS .
OCT 2 S “Logical disk device
Co containing RTOS UFD
DATA C'xx00x’ ~ RICS UFD name for
: programs
DEC n No. of random access
files

The UED 'soooox! is the dedicated UFD for RTOS disk-resident programs
which are filed in the DOS 'SAVE' format under 2 character RTOS names.
If DOS-compatible random access files are used, the number 'n' must be

specified; otherwise n=0.

The DOS file manager gives the user access to the DOS FORTRAN subroutines
(CALL READ, CALL SEARCH, etc.) described in Section 11 of the DOS

manual. When such a CALL is encountered, program DO 1s requested.

It processes the call and schedules a return label in the calling

progran.

Using the CALL READ and CALL WRITE subroutines, the user can create
and read named sequential data files from FORTRAN or assembly-language
‘programs without having to deal directly with the disk driver.
(However, -the user has the option of assembly language calls to the
disk driver to communicate wjth DOS random access files as well as
RTOS-B type non-DOS compatible random access files.) All other
convenience -features of DOS (CALL TNOU, -CALL CMREAD, etc.) are also
accessible to user programs. IR

DiékarganiZétién,_
ﬁTOS4quiSk‘fecprds‘éTe{maiﬁtéine&éiﬁ@fhgtéténdard.DOS format of

- chained random records scattered-over the disk. These are compared

~ with the RTOS-B.structure of 128-word segments, in Figure 8-1. The .

. RTOS-C.exécutive allows the user to access disk records by either "~
method. A R PR B

Disk Regident:PTOgrams

Disk resident programs in RTOS-B are written to disk in .128-word
segments by off-line-utility commands. When such a program is
requested by the scheduler, the“system loader program (SYSLDR)
conmunicates with the disk driver and identifies the program by the
starting segment number. In RTOS-C, disk-resident programs are
stored on the DOS-disk as SAVEd files identified by two-letter file-
names. A different system loader (DOSLDR) identifies the program

by a two-letter RTOS program name, which is the same as the filename
of the program in the dedicated RTOS UFD. To support this operation,
each disk-resident program's SPLT entry specifiesthe number of memory
words occupied by the program. LT :

Action of RTOS-C System Loader (DOSLDR).

Under RTOS-C, disk segment addresses are not required since each
program is located by its two-letter RTOS filename. Therefore,

the first time the system loader runs, it locates the RTOS UFD
specified in the SDOS entry of SIM, and keeps it memory resident
for the current and subsequent load requests. The loader searches
that UFD for the file having the specified 2-letter program name and
the first record is located. The disk driver is then requested to
transfer the program data for this record into memory. The next
record address is located and the disk driver is called again. In
this manner, the file's forward pointer is followed until the entire

program is loaded.

Sequential Access Data Files

Data in named, sequential DOS files may be stored or accessed by
FORTRAN formatted I/0 or by the DOS subroutines CALL READ and CALL
WRITE (or their assembly language equivalents). (See 'User Program
Requirements''.)

8-3

wese (27772272

SEGMENT (p)

 PHYSICAL . 4 SN A
2 (p+2)

PHYSICAL .
RECORD N + 17}

G SEGMENT (p + 3)

RTOS C.
4 FORWARD POINTER "‘\-\._:
—— | - BACKWARD POINTER e
COUNT___.
"SEGMENT {p)
. PHYSICAL p+1) PHYSICAL <
RECORD X RECORD Y

(p+2)

,,‘,‘_-1’."28'WORQS '

8 7 //////// 4

} 8 WORDS

DATA AND PROGRAMS
) 128WORDS ARE STORED IN
CONSECUTIVE
SEGMENTS WHICH

"I\ 128 WoRDS OCCUPY CONSECUTIVE

PHYSICAL RECORDS
ON DISC

}‘ _ sjwoRDs

128 WORDS

([FORWARD POINTER .~ | \T———
BACKWARD POINTER [3WORDS
COUNT : \

SEGMENT (p + 3)
(p+4) f428 WORDS
(p + 5)) :

v

DATA IS STORED IN CHAINED RANDOM RECORDS
SCATTERED OVER THE DISC

Figure 8-1. RTOS-B and RTOS-C Disk Formats Compared

8-4

Random Access Data Files

When' the linked file structure of DOS is used by a real time program

- for 'data transfers, each disk record must be read in turn in order to
follow the forward pointer until the desired record is reached. As an
aJternative, ‘the disk driver used with RTOS-C permits a form of random
atcess to 128-word segments in named DOS data files. To support this
type- of access, two external commands ‘(described under ''SYSTEM BUILDING'")
are added to off-line DOS.‘ The RTOSRA.command creates a random- access

. file of the required size in a specified UFD and logical disk unit.

' The FILBLK command transfers data ‘between such files and memory; it is

-~ equivalent to the TRMD and TRDM off-1line utility commands of RTOS-B.

“For each random-access: file in:the'system, ‘space-for a mapping buffer
mist be reserved in SIM, . T e R : S
Such files areé accessed at rTun-time by direct ‘calls to, the disk driver.
(Calling.formats-and'parameters;arejdgfinedfunder ""RTOS-C 'USER PROGRAM
REQUIREMENTS".) .The random access.files are defined to the RTOS:
system by the following entries -in-the SSPT table: o R

_fOCT- : S f;df; - (Logical.disk device)
"DATA~ C'Filnam' (File name)
DATA C'Ufdnam’ (UFD name)
DAC Mapbuf _(POintérvto mapping buffer)
Mapbuf " BSZ - Size (Buffer Size)

The first time the disk driver is called, it reads every segment in the
chained file to create a mapping buffer. The mapping buffer maps
logical sequential record numbers against actual physical non- sequential
record numbers. Thereafter, the driver reads and writes 128-word
segments as in the usual RTOS-B operation.

N Rl’-“os~c VEXECUI‘IVE EXTENSIONS

.The RTOS C executive performs all the functlons described in Sectlon
and - implements the following new features in conjunction with the
modified System Information Module (SIM) and system loader program
(DOSLDR) ' . .

'There are 1o 51gn1f1cant changes - to the, 1nterrupt handler, FIFO
communication’ ~option, clock program,, or--error. print program. The main
.differences. appear in. the 1n1t1allzat10n logic scheduler and function
handler . S : L ROUI -

" The" 1n1t1a1121ng rout1ne automatlcally 1oads the memory 1mage of the
DOS file manager (disk-resident program DO) by requesting -the DOSLDR.
durlng startup. Also," if SIM is configured for: block allocatlon of

free memory, the blocks are llnked and 1n1t1a11zed at thlS tlme

The scheduler checks dedlcated sector 0 coordlnatlon and the need for
base sector relocation before” startlng a requested program ‘ Phy51ca1
to virtual mapplng of base sectors 15 done, if required. .

The function handler is expanded to support the new executive functlons
for queue handling and memory .block allocation. It also checks
unidentified SVC calls to see whether they are calls to DOS subroutines.
If so, program DO is requested and the calllng program is placed in
WAIT status .

: Qisk Based Programs and the Base Sector

.It-is convenient to allow disk resident programs that are not desectorized
(i.e. that generate cross-sector references). This can be achieved (in
both RTOS-B -and RTOS-C) by leaving all base sector references for disk
based programs in memory permanently. For .systems containing a large
number of disk resident programs, this is impractical since sector

zero will soon become full. ‘To solve' this: problem, RTOS-C provides the
following enhancements: e R

Sl BdSé;Sectdf_coordination -“when’ hardware paging is not available.
2. Baséféectdr.reigcatioh“—fwhEn hér&warefpaging:is'éVéilabie{

Base Sector. Coordination: Disk resident RTOS programs can reserve. .
parts of true sSector 0 into which the disk-resident base sector - .
references are loaded at program load time. 'The option word in each
program's 'SPLT" entry specifies thiose parts of the base sector used by
the program and coordinates their use between programs. The base
sector is divided. into the following parts: o L

1200 - '377 (Option word bit 2)
v400 - 1577 (" 1" " 3) ;
'600 - '777 (" . " 1] 4) ‘

A program can coordinate one or more of these parts.

This feature is implemented when a program is link-loaded during system
building. .The user selects the B Register option of ithe linking loader
to generate cross-sector linkages in the specified parts of the sector
immediately ‘bélow the sector containing the program:

SECTOR n | CROSS SECTOR LINKAGES
n+l
PROGRAM
n+2

The above sectors n through n+2 are stored on disk consecutively. Those
parts of the base sector containing cross-sector linkages are specified
in the program’s SPLT entry. For more information, see "RTOS-C SYSTEM
Building''.

8-7

-When a dlSk resident program is loaded, the spec1f1ed parts of
“segtor 0 must be available (no coordlnatlon conflicts). The system
,;loader uses the 'scatter read' mechanism of the disk to load the
‘Cross-sector llnkages into the specified parts of sector 0 and the
'program proper into its specified area. Disk-resident programs using
"the same parts of sector 0 are thus mutually -exclusive.

Base Sector ReloCatlon 2o In Vlrtual memory PRIME system, both memory
and. disk-resident RTOS programs may- 1nd1V1dually relocate their base
-'sector to any other sector in memory . ‘Base:sector relocation is
-achieved by the paging hardware optlon ‘The physical sector actually
used as the base. sector for the -program is spec1f1ed by the communlcatlon
word of each program s ‘SPLT' entry (Flgure 2~ 6) SR

This feature 1is 1mp1emented when a program is llnk loaded durlng
system’ building. The user selects the B Register option of the
‘linking - 1oader to generate 11nkages ‘in the sector precedlng the program

SECTOR ‘n o, CROSS%SECTOR LINKAGES
ST _) SINCE THE CROSS
1. . SECTOR LINKAGES ARE
N NOT IN THE SAME
n+2 PROGRAM - |. SECTOR AS THE PROGRAM,
: B . CROSS SECTOR REFER-
o | ENCES ARE MADE AS IF
n+3 " TO/'SECTOR 0.

The above sectors n through n+3 are stored on disk consecutlvely by a
DOS SAVE (RTOS-C) or the: off-line utility (RTOS-B) if the program is
disk-resident. The commtmication word of the program's 'SPLT' entry
specifies the sector containing the cross-sector linkages (the
relocated base sector for the program). Virtual memory is used to
'map' virtual sector 0 to the relocated sector whenever this program
is running. Each memory reference instruction is elongated by 80 ns.

To support Base Sector Relocation SIM must contain the entry:

. SSPT DAC PAGINGBUFFER
'PAGINGBUEEER BSZ 128

8-8

“Durlng initialization, the executlve sets 'PMAR' (Page Map Address
Reglster) locatlon '10 as follows:

"PMAR'
L1 89 .16
|- SECTOR ADDRESS | WORD ADDRESS .- -

* DAC PAGING BUFFER

and maps virtual memory -to phy51cal memory - in the page map SO0 that]_'
virtual: sectors are equated to. phy51cal sectors Page maps must
,begln on a 1/2— sector boundary SRl : B

Whenever a program is started or. restarted from the scheduler or
interrupt response, the relocated ‘base sector is mapped as the
physical sector,:addressed as virtual sector 0, and paging mode'’
('EMPJ') is entered. Whenever: the program returns control to the
executive, normal mode is restored by the 'SVC' interrupt generated

by each system functlon call.

8-9

'Memofy Block Allocation

‘The,RIOSrC Executive includes a capability to organize memory reserves
irite; non-contiguous blocks of various sizes and allocate them on

defnand from-user programs. :

Seyeral additional executive functions.(Fetch. Block, etc.) enable user
programs, to- fetch blocks for use and: return them to the pool of
reserve blocks when they are‘no longer required. The executive, in
‘conjunction -with the SBLK tables configured-into SIM, handles the
‘'stringing and allocation.of the blocks. Executive functions for block
handling are: e ST

FBLCK ~ Fetch-Block
CEBLCK Conditional Fetch Block -
RTNBLK Réturn Biock"
RTNSTG " Retum String of Blocks
CHECKB ;?Check Block ngﬁf7)
Calling sequencésiéha functions are defined later in this section.

Figure 8-2 shows how a group of blocks of particular size are configured
and allocated. Initially, a block definition entry in the SBLK area of
SIM defines a number of blocks of a particular size.. (Figure 8-2A.)

A pointer designates the first block of the group, and the first

word of each block points to the next block. (The last block contains

a pointer of 0.) This 1S done automatically by the executive during
initialization. All block pointers are 16-bit absolute addresses.

Figure 8-2B shows a situation that could occur after a period of active
operation. At different times, program X has fetched two different
blocks, A and C. By altering the pointers, program X has taken the option
of forming them into a two-block string. Independently, program Y has
fetched block E. Blocks B and D remain to be allocated by the executive.

To return a block for allocation, the user supplies the original block
address. The Executive automatically updates the pointers in the block
allocation table to include the returned element.

SBLK entries required to define the groups of reserved blocks are explained
in the description of SIM, later in this section.

8-10

- SBLK | 1| SBLK | |
A | | |
do I I |
1 i | |
I J i I
| START- . ' START "-. | STRING OF BLOCKS
S IEE /—LEFT FOR ALLOCATION
AN . PROGRAM X STRINGS BLOCKS |
- BLOCKS OF - A AND CTOGETHER -~ . |
© SIZE*“B1” SR e
(B) . - — 10 e o
A | F s TREE “PROGRAM
A 1 A |
| R |
| L
- () } (D) -
|
; e
|
© = i B v
. |] ,
c e
: | |
(E) = (0
D D
{O) - " (0) -t
— |
| 1 PROGRAM
Y
E | E 1
| |
L J

A. INITIAL CONDITION . B. DURING OPERATION

Figure 8-2. Memory Block Allocation

8-11

., Task- Queueing

- The RTOS-C executive includes a task queueing capability which provides
' for automatic run-time inter-program communication and task scheduling.
. This capability is implemented by a new group of executive functions
- (Put at: Top-.of Queue, etc.) and the SQUE tables configured into SIM.

"AgguéuefiéfaISeries of memory blocks’ or strings threaded together by

- N e

péinters. ' The ‘blocks and strings may bé the same ones handled by the

Mémory allocation functions of the executive, or they may be generated

- independently- by the user.. They may contain data, control information,
_pointers, .or any.other information meaningful to. the program which

- uses them. ' - ' oo
Initially, ‘each of 'the queues.defined by the user in the SQUE-area of SIM
is empty. During execution, user- programs may put blocks (or strings) at
the ‘top or, the end of a given quede, and miy remove blocks from the top of
the queue. The executive automatically handles the threading of pointers
from one bloeck or string to the next in the queue. Exécutive -functions

for queue operations are: -
| PBLEND Put Bloékﬁét End of Queue
PBLToP . Put Block at Top of Queue
PSTEND | - Put Sﬁring at End of Queue :
PSTIOP Put String at Top of Queue b
’TAKBLK - Take Block from Top of Queuei
Calling sequépces.andiéﬁnctions are defined later in this section.

Figure 8-3 shows how the blocks obtained in Figure 8-2 by programs X
and Y could be placed on queue Ql. Program X places the string
consisting of blocks A and C on Ql and the Executive enters a pointer
to block A in the "Top of Queue" entry in the Q1 definition block.

It also follows the string pointer, identifies block C as the end of
the string, and ppints to it as the "end of queue' entry.

When program Y adds block E to the end of the queue, the executive links
block C to block E and uses a block E pointer as the "end of queue' entry.

A further capability of the executive's queue handler is automatic task
scheduling. When each queue is defined at configuration time, the user
may specify an action to be initiated automatically when the first block
is placed on an initialized queue, or a queue that has already provided
one 'empty' return to a 'Take Block' function. The action is specified
in the definition block for each queue in the SQUE area of SIM (described
later). The choices are: :

8-12

- & [Toror avevE.
" | END OF QUEUE

L / : PROG.
PROGRAM X PUTS STRING

DRIVER Z IS REQUESTED "~
OR LABEL SCHEDULED .

(D) _,—ﬂﬁeJ»,

-
I
" (BLOCKsA&cionaQt; . C Kl b
1
|
|
|
|
I

(E) v PROGRAMY
: PUTS

-t—— BLOCKE
ON Q1
(PBLEND)

DRIVER
Z

R

(0)

DRIVER Z TAKES BLOCKS | P
OFF Q1 AS REQUIRED

PROG.

Figure 8-3, Task Queueing

8-13

Request a Program
Schedule a label in a waiting program

' Execute a subroutine (usuiglly a brief subroutine
within SIM itself) - '

‘Do-nothing -

This ‘automatic startup. feature enables a queue to be the controlling
agent for a program such as a ‘device driver that is used in common

by many other programs. . Each.program that wants.to use the function:
simply places.a block or string on.the queue for processing. No
‘program request is necessary. -The program is requested or scheduled
automatically by the function handler. . 'Figure 8-4 shows the control
flow of a typical device driver that tdkes advantage of the queueing
facility. SIM is configured to request the driver during system '
initialization. Once started at label STARTUP by the scueduler, the
driver connects the device to-interrupt response code associated with
the label INTRPT, and checks thé queue to see if there are any blocks
waiting to be processed. If not, the driver goes into a wait state.
When the first block or string is placed on the queue, the queue handler
schedules the label SCHED. When the driver is started at that location,
it takes a block from the queue, starts the device action, and waits for
the first interrupt.’ At each interrupt, the interrupt response code does
any time-depenident processing, acknowledges the interrupt, and schedules
the label NONINT for mon-interrupt follow-up processing..

Several differemt external programs may add blocks to the driver's queue
for processing while the first block is being handled. When the opera-
tions appropriate to one block are complete, the non-interrupt code
fetches the next block from the queue and processes it; no explicit
program requests are required. When the driver has processed the last
block on the queue, an attempt to take another block receivesa 'queue
empty' return. At this point, the driver can disconnect the interrupt
and either terminate or wait with the interrupt connected.

8-14

' START
-
-
ket e . .
- - INTITALIZE CONTROLLER, ETC
- -
s b e e
L]
WAIT—=~==D%
™
oot o b e ek :
- - EXECUTE WAIT FUNCTION
- -
sk b ek ok

INTRPT CINIERRUFT RESFPONSE CODED
- .
"

[—)

"> " . RUKMOWLEDGE INTERRUPT

- - . .

bbb st e R K

C . T

. - K . A

Wbk ok ook 7 T . -

L P 'SCHEDULE LREEL 7 PROCESS”
e "> - X et P

T T N

¥ M :
-
RETURN

|- &UUE SCHEDULES LRBEL /SCHED?) .

e tae
erbob okl L A o v :
- &, @ TRIE FIRST,BLOCK FROM QUEUE s
. e RAt O .
okl ' :

M . :

-
sokokkokokoloke
" * . COWRECT INTERRUPT TO LABEL “INTRPT”
. . e
okt kookesk ek .

" .

"

WAIT

' PROCESS
W

L
m#%****** - .
- T NO~THTERRUPT FOLLOW-UFP PROCESSING
* - (GET MEXT LIMNE OF TEXT, ETC:)>
sherbeobob: bbb
oo
w
Tk
N, % w PROUESSING OF THIS BLOCK COMFLETE?
WRITC-~~< > .
* | " B
Y
L
* Cw
s e e ek sl ke
" " RETURN THE BLOCK
* L
seoosbsbobokokokenke
L
o>
s ok e oo b afeoke
" - ATTEMPT TO FETCH ANOTHER BLOCK
" W
sheobokssokof s oo
e
e
- o>
w o 1S THE QUEUE EMFTY?
WRITC——-< >

]
»
L 3
Mo b ek
L] " DISCORNECT THE INTERRUPT
- - -
T r——
L

-
WRIT

Figure 8-4. TIxample of Queue-driven Driver Operation

8-15

 'SYSTEM, INFORMATION MODULE

. The RTOS-C-System Information Module (SIM) conforms generally to the
“'version described in Section 3. Differences are described in following
paragraphs and an example of the SIM for a disk-resident system is
 Drovided: . .

Header .. .
—_— i

"Theﬁf51fdwiﬁéhSUﬁR*Sﬁ&pemQhﬁsfmﬁéf(béAaQééd‘to'fhe.header:

"GUBR SQUE
SUBR . SBLK-

SPLT Table.

Each progréﬁ'SfSPLT table éntry'ié'éxpéndéd{-b“include a Program - .
Size word, and the option word is modified. Each entry now has. the
format: o IR TR

Label DATA- Yyt (Program name)

(Label +1) XAC . ~ Starting Address

(-+2) BSZ 1 (Reserved for status word)
(+3) OCT Option Word

(+4) OCT . Coordination Word :

(+5) ‘OGT - - Communication Word (Optional)

(+6) OCT - Program Size !

(+7) OCT .~ Mass Storage Location '

The program size word is required only for RTOS-C disk resident
programs, and the mass stotage location word is required only if
programs are saved in the RFOS-B disk format. ‘

Bits 2 through 4 of the option word now control coordinate three
zones of dedicated sector 0, as shown in Figure 8-5. The starting
segment field now refers to a 128-word segment boundary in memory.
The SPLT entry for program DO must have the following form:

DOS DATA C'Do’

OCT 0014 (XX is first sector occupied by DOS)
BSZ 1 (Status Word)

OCT 3403 (Coordination, Communication)

oCT 0

oCT 113 (FIFO)

OCT 7777 (Program Size)

8-16

DEDICATED
. 'SECTORO .
- COORDINATION

1%3 3.6 5 S ... 13 14 15 16
il BTSN ST ERT IRt BTV UEN B s B

1, 800777 ... STARTING SEGMENT - "} © -
: “INMEMORY. . 0

- LCO_ORDINATlON
IS USED

— COMMUNICATION
{OR RELOCATED

. BASE SECTOR)

200-377———— -+ 1S USED

ZONE: <) -400-577 ——

, L MASS STORE
LEGAL ZONE RESIDENT
COMBINATIONS:
001 .
o0 :
100 . . *NOT USED
011
110
11

Figure 8-5. RTOS-C Option Word

8-17

. SPET Table

QfSéme,éE?Section 3. There must be a poiﬁter for any new entries in SPLT.

" 'SIDL Table .
q?SQmevés‘SGCtiqn 3;,'Mﬁke%sure_thgre*aréféntries for disk and magtape
. drivers, if used. - " . KR

" CLK2, CLK3, SAVM,.TH20
AliggmélgSfSeCtion 3.
SPCT Table

Same as Section 3

SCUT Table

Same as Section 3.

SFET Table

If the system is to use the block and queue handling extensions to the
executive functions, the following entries must appear:

XAC FBL (Fetch block) .

XAC CFBL . (Conditional fetch block)
XAC RBL (Return block)

XAC RSTR (Return string)

XAC PBEQ (Put block at end of queue)
XAC PBTQ (Put block at top of queue)
XAC PSEQ (Put string at end of queue)
XAC PSTQ (Put string at top of queue)
XAC TKOQ (Take block off queue)

XAC CHCK (Check block count)

SINT Entries

Same as Section 3.

8-18

- SDCT Table

éfsﬁme as Section 3.

" SSPT,.SPFP, SEXA _
g&1¥iba$éﬂééttor relocation is used, SSPT should be a DAC to the
" PAGINGBUFFER at the end of SIM. Otherwise, these entries are the
.. same as’ Section 3. . ’ -

. SDOS_Entries

5'EntriéS”Starting,atlihb label SDOS -are usede@en;the,DQs,file
manager program is memory-resident: Iffallafxlesvare_to be handlgd
by .DOS sequential access, the random access: entry Should'bE'DEC 0'and
no %andbm access file déSCriPtion:bIOCk$,O?;mapplng‘bgffergﬂare

required, "'
sp0S DAC D00 - (DOS SPET pointer) . -
QCT Ldev (Logical diskldéﬁiéé,cdntaining
RTOS UFD)
DATA' .”C."Uf‘d_nam' (UFD for RTOS programs)
DEC fvﬁi;ﬂv (No. of random access files)

* DEFINITION OF'FIRST;RANDOM ACCESS FILE

OCT Ldev - (Logical disk device containing

‘ . first record of file)

DATA C'Ufdnam’ , (UFD of first random access
file)

DATA C'Filnam' (Filename of first random

access file)

DAC Buffer 1 (Pointer to mapping buffer for
first random access file)

'Ldev' is a logical disk unit number defined in the SDCT area of SIM.

8-19

* " DEFINITION OF SECOND RANDOM ACCESS FILE

;{game form as above)

«DEFINITION OF Nth RANDOM ACCESS FILE :
‘H?;T¥ %tSéﬁéffO¥ﬁ éslﬁbdééi‘? |
» MAPPING BUFFERS L
Buffer 1 BSZ . Size (uapping buffer for randon
e R . access file 1)

Buffer 2.BSZ: Size

Buffer n BSZ - Size (Mapping buffer for last
’ random access file)

Each 'Ufdnam' and 'Filnam' must be a 6-character ASCII DOS name (short
names must be padded to -6 characters with space characters). Each
'Idev' is a logical DOS disk device or surface. The 'Size' of each
buffer is 1/3 the number of 128-word segments in the file. (Round up

remainder.)

Queue Definition Tables

Entries starting at the label SQUE define the number of queue definition
blocks used in the system. If queues are not used, SQUE should be a
DEC 0 and none of the subsequent entries are required.

(Number of queue definition

SQUE DEC n
blocks)

DAC Queue 1 (Pointer to first queue
definition block)

DAC Queue 2 (Pointer to second queue
definition block)

DAC Queue n (Pointer to the n'th block)

8-20

* FIRST QUEUE DEFINITION BLOCK

aQueﬁe 1 DEC -1 ~ (Reserved for start queue pointer)

OCT 0 (Reserved for end queue pointer)
ez 1 (Not used)
ZVCCT Function ;(Seg text)
“'DATA - Ident o
. or .
. DAC

* SECOND QUEUE DEFINITION BLOCK
Queue 2 (Same form as ébq?e)l
% N'TH QUEUE DEFINITION BLOCK'
Queue n (Sémé form as above)-.

The 'Function' entry is a function code, Its value determines the
way the 'Ident' entry is interpreted:

'"Function' ! i
Code Meaning Use of 'Ident'
-2 Exeécute a subroutine DAC pointer to subroutine
’ entry point
-1 Request Program DATA C Prognam'
0 No action OCT 0 (Not used)
Other Schedule a Label DATA C'Prognam'’

('Function' is the
label itself)

'Prognam' must be a 2-character RTOS program name.

8-21

Any subroutines to be executed may be included in SIM fol%owing
‘the queue definition blocks. An example, SUBR, is shown in the SIM
listing to follows. Subroutines should be brief, must operate in
INH mode, and must not use executive functions or SVC calls.

;ﬁigék;péfiﬁition Tables

Entries Eiaiting at the label SBLK-are used to define memory blocks to
:be reserved for allocation, and-queueing. If no blocks are required,
'SBLK' should ‘be a DEC 0 and none of the subsequent entries are required.

SBLK DEC ‘n (Mumber of block size
i . ’ ~groups to be.defined)

DAC . Block 1 " (Pointer to description
I of size 1 blocks) .-

DAC ;Bioéka“ (Pointer taﬁdgscription
} ' of size 2 blocks)

DAC Block n (Pointer to description of
: : size n blocks)

*DESCRIPTION OF SIZE 1 BLOCKS

Block 1. OCT Number (Number of blocks of this
. size to be reserved)

DAC Start (Pointer to first memory
location used by this group
of blocks)

DEC Size (Block size in words,

including linkword at
beginning of block)

*DESCRIPTON OF SIZE 2 BLOCKS

(Same form as above)

*DESCRIPTION OF SIZE n BLOCKS

(Same form as above)

8-22

.;Pag;ng Buffer Entry

'ﬁIf base sector relocation is used, the SIM table must include the
,xfollowlng entry:

PAGINGBUFFER BSZ 128

yiThe entry must start on a sector boundary Qr a sector + '400.

S Exg:_ngi' E

For a current SIM example, see the rev1sed Sectlon 6 supplled with
Addendum A

8-23

:EXECUTIVE FUNCTIONS FOR BLOCK AND QUEUE HANDLING

;Tﬁé;fbllowing functions enable the user to remove and replace
'blocks and queue elements defined in the SBLK and SQUE tables of
'SIM. - Block and queue operations can be invoked in either PMA or
JFORTRAN. = "+ :

lPaféﬁétefS?ﬁ'Synbolic names usedsin mény of the calling sequences

;Symbbiic Name “Meaning
Blksiz ' Blocksize group number
“Efrtn.. . Error.return location if

function-cannot be executed

‘Baddr . Address of first location
" used by block or string that
is fetched or returned -

Qnum Queue number

Other names are defimed where tﬁey appear. Unless otherwise specified,
all parameters aré integer variables.

Blocks: Blocks are the reserved memory blocks defined in the SBLK
area of SIM. '

Strings: A string is a group of blocks of the same size that have been
strung together by the user. The first word of each block must point to
the first word of the next block in the string. The last block in the
string must contain 0 in its first word. ‘ '

Error Codes: If a function cannot be executed, the error return is
taken with an error code in the A Register. In FORTRAN, the error
code can be tested by the CALL GETA function. ‘

8-34

Fetch Block (Function 9)

fThls function fetches the address (first location) of a memery
~block of a ‘specified size.

'fThegPMA;fcrmat is:

SVC o+
DEC 9 - - :

. OCT - B1k51z . o
DAC .- Errtn

‘When the functlon takes the normal return, the address of the
.block: is present in the A reglster : S

,“.

The FORTRAN format is: T ”ﬂ\ 'fit”f ?ff«,‘f‘*“
' CALL FBLCK (B1k51z ‘Baddr, Erttn)

When the normal return is. taken. the address of the block 1s present
in 'Baddr’. _

Error COdee Condition
0 Invalid blocksize code specified

- No blocks available

Conditional Fetch Blockﬂ(Function 10)

This function fetches the address of a block, provided a specified
number of blocks is available.

The PMA format is:

LDA Aval
SVC
DEC 10

OCT Blksiz
DAC Errtn

If there are more than 'Aval' blocks available, the normal return
is taken and the address of the block is present in the A register.

The FORTRAN format is:
CALL CFBLCK (Blksiz, Baddr, Aval, Errtn)

8-35

If there are more than 'Aval' blocks available, the normal return
“is taken and the address of the block is present in 'Baddrs’'.

Frror Code Condition
0 - Invalid blocksize code specified

- # - Not enough blocks remain

8-36

Return .Block (Function 11)

.Thi; fuﬁctidn returns a biock to the executive for reallocation.
f%ﬁ;??MA,fprmat is: |
LDA Baddr

svC -
_.DEC ~11
“OCT: . ‘Blksiz
- DAC -+ Errtn

" Note that the user must load:ihe address of the block in the A register
~ before entering thé‘fungtiony"’ R ‘

The FORTRAN format is:’ | |
| ‘cAﬁL'RTNBLK“tBiksiz, Baddr, Frrtn)

Error Code Condition
0 Invalid blocksize code specified

Return String of Blocks (Function 12)

This function returns a ‘'string of blocks to the executive for realloca-
tion. :

The PMA format is:

LDA * Baddr
SvVC

DEC 12

OCT Blksiz
DAC Errtn

Note that the user must load the address of the first block of the
string into the A register before the function is entered.

The FORTRAN format is:
CALL RTNSTG (Blksiz, Baddr, Errtn)

Errof Code » Condition
0 Invalid block code specified

8-37

Put Block at End of Queue (Function 13)

1fThis function enters one block as the last element on a specific
“queve. ,

f;TﬁéiPMAzfprﬁatlis:

LDA Baddr

DEC 13 ..
OCT. ~ -"Quum

" DAC' Errtn *

"Beforéténtering'the funétiOQQ'the block address Tust be present in
the A register. S o R e T T

The FORTRAN format “is’ ® -
CALﬁS?%LEND'anum, Baddr, Errtn)

Error Code -7ih. R Condition
0 " Invalid queue number specified
1 Name of search error occurs if

request or label startup is attempted

2 Function cannot be accomplished

Put Block at Top of Queue (Function 14)

This function enters one block as the first element on a specific
queue. : '

The PMA format is:

LDA Baddr
SVC

DEC 14
OoCT Qnum
DAC Errtn

Before entering the function, the block address must be present in
the A register.

8-38

';'Ihe FORTRAN format is:
CALL PBLTOP (Qnum, Baddr, Errtm)

Error Code Condition
0 Invalid queue number specified
1o ' Name search,error occurs if request

‘or label-startup is attempted

..“ZV , ?75Fuqct10n cannot be accomplished

Put Strlng at End of Qpeue (Functlon 15) "

This function enters “one” strlng of blocks as the last

element on a
specific queue. i

The PMA format is: B
LDA . Baddr
svC
DEC 15
OCT - Qnum
DAC Frrtn

Before entering the function, the address of the first block in the
string must be present in the A register.

The FORTRAN format is:
CALL PSTEND (Qnum, Baddr, Errtn)

Error Code Condition
0 Invalid queue number specified
1 Name search error occurs if request

or label startup is attempted

2 Function cannot be accomplished

8-39

" This function enters one string of blocks as the first elem

put String at Top of Queue (Function 16)

ent on a

* . specific queue.

‘?fyTheifﬁA{fpimat is:

LDA Baddr =~ -

LLDLSVC
~* "DEC - 16
QCT. Qnum

‘ "DAC * Errtn
Before'enpering theﬁfhn@ﬁion,ﬁfhe addréSsuofﬂﬁhé'fixét“ﬁloék in
the string must be present in the A register; .. .

The FORTRAN_fbrmat is: .
‘ CALL PSTTOP (Qum, Baddr, Errtn) .

Error Codé’:ﬁl ‘ Condition
0 Invalid queue number specified
1 Name search error occurs if request

or label startup is attempted

2 Function cannot be accomplished

Take Block from Top of Queue (Function 17)

This function removes the block at the top of a specific queue.

The PMA format is:

SVC

DEC 17
oCT Qnum
DAC Errtn

If the normal return is taken, the block address is present in the

A register.

8-40

The FORTRAN format is:
| CALL TAKBLK (Qnum, Baddr, Errtn)

Error Code Condition
0 Invalid queue number specified

- - Queue empty - -

,Chéék*Blockcount'Fﬁnction;IS?

This fuhction[determinéS'tbefhgmber of blocks aﬁéilable.inﬂa part-
icular size categorys:. S T '
The PMA format' is: g

S.V;C. .. “'v-b

DEC . 18
OCT : “Blksiz
DAC: Errtn

If the normal return is taken,-the number of blocks available in
the specified 'Blksiz' group is present in the A register.

The FORTRAN format is:
CALL CHECKB (Blksiz, Blkcnt, Errtn)

On a normal return, 'Blkcnt' contains the number of available
blocks. . :

Error Code : Condition
0 Invalid block size specified

8-41

" _UTILITY PROGRAMS

" RT0S-C uses the same complement of on-line utilities as RTOS-A and

. B. JOff-line utilities are not required since the same functions

. can.be performed by DOS internal or external commands (SAVE, TAP,
et

" Two additional off-line DOS commands (RTOSRA and FILBLK) are

. provided for creating random-access .files off-line. (See System
Building.) -

8-42

RTOS-C SYSTEM BUILDING

See the.reviséd’éection 6 supplied with Addendum A

Pages 8-44 through
8-55 deleted

8-43

*

RTOS-C USER PROGRAM REQUIREMENTS

73User programs to run under RTOS-C should conform to the requirements
" of Section 7. In addition, programs that call DOS subroutines
‘must reserve space for a secondary header following the normal

~ RTOS:header.

'*ﬁgiﬁg'DOétSpbroutines

“All the facilities of DOS: (and DOSVM, in a virtual-memory PRIME
‘processor) are available under RTOS-C. These include the FORTRAN
DOS functions ATTACH, READ, WRITE, SEARCH, etc., described in the
DOS manual., R - L

The real-time FORTRAN library contains amn.'interludé' call for

each of the FORTRAN DOS-calls. Each call enters the RTOS system
function logic in the executive, which'is expanded to handle the
extended system functions. . DOS system functions cause the DOS’
program to be requested.’ (Communication is used to pass a pointer to
a secondary header.) The calling program is placed in waiting status.
DOS interprets and executes the request using the real time drivers
and a special call on the disk driver, if required. When the function
is complete, DOS schedules the return address to the calling program
as a label and returns to the scheduler. If there is an error during
processing of the request, the executive schedules the alternate

return (or ABRTSET return) in the calling program.

The following subroutines are implemented in a different way than
the standard DOS versions:

EXIT Has same effect as a TERMINATE
executive function

RESUME 'Brings SAVEd program from disk to
memory, retrieves starting address
from header, and schedules it as

a label.

8-53

-§econdary’Header: DOS and the executive enter and use parameters
.. 1n the secondary header to control disk access, select UFD's, and
~control return conditions. The format is: '

REL .
DEC -1 (Normal RTOS header)
R BSZ __ n _ _ e
T T T TIOMPT T TLabel T ~(Start of secondary header)
(Hdr.-), BSZ = .1 (Program hame)
~ (Hdr+1) BSZ 1 (SVC 1 address during exec. functions)
(o +2) BSZ 1 - (A Register after alternate return)
(- #3) .. BSZ 1 (User's abort return)
(+4 - BSZ 3 ». " (Current UFD) . ‘:7*¢'
(+5). .- BSZ 1 -° (Beginning record -address)
(+6) . BSZ 1 (Logical -disk'ne.) -
(+7) - BSZ 3 (Home UFD) .. =~ =
(_+8) BSZ ' 1 .- _(Logicalidisk mo.) _ _ _ _ _ ___'_
Label e -.T T 7 (Start of processing)

All words except 'Hdr+3' are filled in by DOS or the executive during
execution of DOS subroutines called by a user program. Word

'Hdr+3' may be set to an address value by the CALL ABRTST extension
to FORTRAN. Word 'Hdr+2' is made accessible to user programs by

the CALL RTGETA extension. ’

Return Conditions (ABRTST and RTGETA Functions): The user should
always specify an alternate return in DOS subroutines (such as CALL
ATTACH) that provide for one. Otherwise, if the function aborts,
DOS is terminated and the calling program is hung in a waiting state
with no return label scheduled. The same thing can happen with
subroutines (CALL SAVE, etc.) that do not provide for an alternate
return. Before issuing calls to these subroutines, the user should
set up an abort return using the following FORTRAN extension:

CALL ABRTST (Return)

This places the value of integer variable 'Return' in the 'Abort
return' location of the calling program's secondary header. 'Return’
must be ASSIGNed the value of a statement number in the calling program
(or be an address constant in the form $n).

Certain DOS subroutines (CALL READ, CALL WRITE) provide return
information in the A register. When an abort return is taken, the
A register value is placed in the secondary header of the calling
program. The FORTRAN user can access the information by using the
following FORTRAN extension:

CALL RTGETA (Areg)

8-54

~ This transfers the A register value from the secondary header to the
© integer variable 'Areg’. :

f[?MA'Calls to DOS Subroutines: The DOS subroutines can be called
from PMA assembly language programs as well as FORTRAN. If the
- subroutine requires more than one parameter the calling sequence

~ format-is:

1 FORTRAN - PMA
CALL SUBR (A,'B, C) CALL SUBR
DAC A
DAC. B
“DAC .- C .
OCT:” 0

- Normal return

If there i$ only one pargmétér,ithe format is:

FORTRAN PMA
CALL SUBR (A) CALL SUBR
[DAC A

Normal return

Using DOS RESUME Function: A regular RTOS program can use a call
to the DOS RESUME subroutine to bring into memory files of SAVEd
executable code that have no SPLT entries and are otherwise unknown
to the executive. The RESUME function schedules the starting
location SAVEd with the code as a label. The requirements are:

1. The RESUMEd program must be in the UFD specified in location
SDOS+2 of SIM, or else the calling program must ATTACH to .
another UFD. Names of RESUMEd programs are not restricted to
2 letters.

2., RESUMEd files may'be overlaid into any available memory locations,

but the user should take care not to overlay other active
programs, portions of the Executive, or SIM.

3. The header of the original program (the one with an SPLT entry)
must remain intact in memory.

4. RESUMEd files may use RTOS drivers, connect interrupts, connect
the clock, and do any other executive functions. However,
the name of the original program (the one with the header
remaining in memory) must be specified in such calls, rather
than the name of the RESUMEd file. (RESUMEd files should be
considered as extensions to the code of the calling program.)
Labels associated with interrupts or clock function may be in
the RESUMEd or the calling program itself.

8-55

Calls to Disk Driver

See j}f)pendix H

8-56

o om om g 0w

APPENDICES

. Device Address Assigpments

RTOS'Sdftwayg Data

RTOS Files on Master Disk Rev. 2 (RTOS-A, -B)

" RTOS Rev. ZLPapé;‘Tape Contents;;

L .

RTOS Files on Rev. 3 Master Disk (RTOS-C)

RTOS Rev. 3 Paper Tape Contents

| Segment Reference Table

APPENDIX A

PRIME DEVICE ADDRESS ASSIGNMENTS

?3ggi§g£,(0cta1) Device
$:@6:ff;: - | Unéssiéned (Polling)
'i:;bij"iﬁf;: Paper Tape Reader
"bé ?__ *. }.‘ ? paper Tape Pgnch
‘bs?l:_' N R '””Line Printer
 \‘04 . f““i'f “ Téletype
05 - | . # Card Reader
06 | -Card Punch
14 Mégﬁetic Tape
20 - 'S-16 Set Mask Instruction, Control Panel,
Real Time Clock
22 Fixed Head Disk
24 | Writeable Control Store
25 Moving Head Disk
30 BPIOC 1
31 BPIOC 2
32 | BPIOC 3
40 A/D Converter Type 6000
41 Digital Input Subsystem Type 6020
43 | Digital Output Subsystem Type 6040
45 - D/A Converter Type 6060 |
54 Asynch. Multiline Cont AMLC
56 . Sync. Multiline Cont SMLC
60-67* , User Devices (BPI)

Note: Device Addresses not shown above are unassigned

*Device Addresses 60-67 are reserved for user assignment.

A-1

	001
	002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-53
	08-54
	08-55
	08-56
	A-0
	A-1

