MAN2604

PRIMOS FILE SYSTEM
User Guide

Revision A
January 1977

PRIME
Computer, Inc.

145 Pennsylvania Ave.
Framingham, Mass. 01701

Copyright 1976 by
Prime Computer, Incorporated
145 Pennsylvania Avenue

Framingham, Massachusetts 81761

Per formance characteristics are
subject to change without notice.

REV.A i - 2

CONTENTS

PAGE
SECTION 1 FILE SYSTEM OVERVIEW
CONCEPTS 1-1
USING THE FILE SYSTEM 1-2
SECTION 2 FILE STRUCTURES
FILE SYSTEM 2-1
TYPES OF FILES 2-1
DIRECTORIES 2-5
FILES AND DISK STRUCTURE : 2-6
FILE HANDLING SUBROUTINES 2-8
FILE ACCESS 2-10
OPERATING SYSTEM USER INTERACTION ' 2-12
SECTION 3 FILE SYSTEM SUBROUTINES
INTRODUCT ION 3-1
CALLING LOADING LIBRARY SUBROUTINES 3-1
CALLING SEQUENCE NOTATION - 3-1
FILE SYSTEM TERMINAL I/0 SUBROUTINES 3-2
ATTACH 3-4
BREAKS 3-7
CMREAD 3-8
CNAMES 3-9
COMINP 3-10
COMANL 3-11
COMINP 3-12
COMANL 3-13
COMEQV 3-13
DSINIT 3-14
ERRSET 3-15
EXIT 3-16
FORCEW 3-16
GETERR 3-16
GETWRD 3-17
GINFO 3-17
NAMEQV 3-18
PRERR 3-18
PRWFIL 3-19
PUTC 3-24
RDCOM 3-24
RECYCL 3-24
RESTOR 3-25

RESUME 3-25

i - 3 January 1977

CONTENTS (Cont)

RREC 3-26
SAVE 3-29
SEARCH 3-30
T1IN 3-36
TIOU . 3-36
TNOU 3-36
TNOUA 3-37
TOOCT 3-37
TIMDAT 3-38
T$CMBC 3-39
TSLMPC 3-41
TSMT | 3-43
T$SIC | 3-44
TSVG 3-48
NUMBER INPUT OUTPUT 3-55
UPDATE 3-57
WREC 3-58

SECTION 4 FILE UTILITY COMMAND (FUTIL)

FILE STRUCTURE (TREENAMES) 4-1
DESCRIPTION OF FUTIL COMMANDS 4-3
QUIT 4-4
FROM 4-5
FROM* 4-6
TO 4-7
ATTACH 4-7
COPY 4-8
COPYSAM 4-9
COPYDAM 4-9
TRECPY 4-19
UFDCPY 4-11
DELETE 4-12
TREDEL 4-13
UFDDEL 4-13
LISTF 4-14
FUTIL RESTRICTIONS 4-17
APPENDIX A FILE AND HEADER FORMATS
FILE FORMAT ' A-1
UFD FORMAT A-2
DSKRAT FORMAT A-4
APPENDIX B APPLICATION EXAMPLES
GENERAL INFORMATION B-1
FILE SYSTEM PERFORMANCE B-4
DISK ACCESS TIME B-5
FILE SECURITY B-5

REV. A i - 4

CONTENTS (Cont)

APPENDIX C USE OF PRIMOS FILE SYSTEM

i - 5 January 1977

Figure No.

A-1

D-1

D-2

REV. A

ILLUSTRATIONS

Title

Hypothetical PRIMOS File
Hierarchy with SAM and DAM
File Structures

Memory Allocation in 16K System

Sample File Structure

Typical Traverse of Directory
Tree by FUTIL

UFD File Format and Use

Control Characters

Notes on Internal ASCll

Page

2-4

2-18

4-16

A-3

D-3

TABLES

Table No. Title Page
2-1 Memory Areas and PRIMOS II File Units 2-17
3-1 Structure of SMIC Hardware 3-47

Confiquring Block

3-2 Maximum Buffer Length ’ 3-52
for Printer/Plotters

A-1 File and Header Formats A-1
A-2 UFD Formats A-2
A-3 Format of DSKRAT A-4
D-1 ASC11 Communications Codes D-2
D-2 Internal ASC1l1 Codes D-3

i - 7 January 1977

FOREWORD

DOCUMENT DESCRIPTION

This document describes the fundamental features of the file system
associated with the PRIMOS II, III, and IV operating systems.

Section 1

Section 2

Section 3

Section 4

Appendix A

Appendix B

Appendix C

Appendix D

REV. A

Is an overview of PRIMOS file system concepts
and usage.

Describes PRIMOS file and directory file structures,
file system usage, disk and file system relationships,
and memory usage.

Contains detailed descriptions of subroutine calls
related to file system operations and terminal I/0.
This section emphasizes the calls that are executed
intrinsically by the operating system (internal).

Is a discussion of the File Utility (FUTIL) and its
file manipulation commands and messages. This
section also contains a definition and examples

of file treenames.

Describes the format of PRIMOS file record headers
and the physical organization of PRIMOS files; it also
describes UFD and DSKRAT formats.

Discusses application examples that apply features
of the PRIMCS file systems to herdle
complex data structures.

Provides examples that show how to create segment
directories and DaM files.

Is a definitive example of using the subroutines
SEARCH, PRWFIL, and ATTACH.

FOREWORD

REIATED PUBLICATIONS
The following Prime documents should be available for reference:

Title Manual No.

—————— o € e s s e Y b

Prime CPU System Reference Manual MAN1671
(instruction set, addressing modes,
input/output programming)

Macro Assembler Language Reference MAN1673
User Guide

FORTRAN IV Reference Guide MAN1674
Program Development Software MAN1879

User Guide (Editor, Ioader,
Debugger, etc.)

Library Subroutine User Guide MAN1889
PRIMOS Interactive MAN2602
User Guide
PRIMOS Computer Room MAN260@3
User Guide
PRIMOS 1V Systems Reference Manual MAN2798

i - 9 January 1977

FOREWORD

Filename Conventions:
BeXXXX Binary (Object) file
LeXXXX LISTING file
CeXXXX Command file
XXXXXX Source file
*XXXXX SAVED (Executable) file (PRIMOS LOAD)

FXXAXX SAVED (Executable) file (PRIMOS IV SEG)

NOTE:

On same printing devices, the back-arrow
character (&) is printed as an underline ().

REV. A i - 190

MAN2604 FILE SYSTEM OVERVIEW

SECTION 1

FILE SYSTEM OVERVIEW

CONCEPTS

The following paragraphs define terms used in describing a disk-based
operating system (PRIMOS 1II, PRIMOS III, or PRIMOS IV). The generic
term PRIMOS refers to all three systems.

File
A file is a named set of information organized and stored on a magnetic
disk in such a way that a computer program can use the information.

For PRIMOS, a file consists of a list of 16-bit binary words; a binary
word is the smallest item of information that can be moved to or from a
file at one time.

File Access

The process of moving information from a file stored on disk to a loca-
tion in high-speed memory is called reading from a file. Moving infor-
mation from a location in high-speed memory to a file stored on disk is
called writing to a file.

File Creation

Files may be made through the use of a system editor at a terminal
(Teletype or CRT keyboard type); they may be made by copying infor-
mation stored on paper tape, punched cards, etc., or they may be gen-
erated by computer programs.

Some Typical File Content

1. Lists of employee names, addresses, salaries, etc. stored as
files for payroll and bookkeeping programs to use.

2. Computer programs coded in languages that may be read by
humans and stored as files so that other programs may be
used to translate the human-readable program into a program that
is both meaningful to a computer and can be run on a computer.

Purpose of File System

The purpose of having a file system is to simplify the manipulation of
large quantities of data using the computer. The major goals of the
file system are listed below: -

1 - 1 January 1977

SECTION 1 MAN2604

1. File creation without manual pre-allocation of the storage
medium.

2. Ability to reference a file by name.
3. Clustering like files together.

The first goal is implemented by keeping a file on each disk that lists
the available space for the disk. Since the whole process is
automatic, the average user need not concern himself with this process,
other than to know that it works.

Referencing files by name means the desired file may be selected for
operation by giving the system an array of alphanumeric characters.
The file system does this by having a file that is used as a directory;
it contains the names of other files and their locations on the disk.
The system can find this Master File Directory (MFD) readily because
both its name and its location are always the same.

The third goal is achieved in two ways. The first is to have many file
directories; this allows like files to have their names and locations
saved in the file directory. The second way is by nesting file
directories; i.e., some of the filenames saved in a file directory can
be the names of other file directories. Thus, files may be classified
to an arbitrary extent.

A side effect of clustering files in a file directory (files that have
their names stored in a file directory are often said to be ’in” the
directory) is that some degree of access protection can be built in by
associating a password with each file directory. To examine the files
in a directory, the user must first supply the password for that
directory.

Summarz

A file diréctory is a file that contains the names of other files on
the disk and the location on the disk of these files. A file directory
may contain the names of other file directories. To access files
stored in a directory, the user must give the password for that
directory.

USING THE FILE SYSTEM

To access files, the user must be attached to some file directory. A
user is properly attached when the file system has been supplied with
the proper file directory name and password, and it has found and saved
the name and location of the file directory. It can therefore find and
operate on all files contained in that file directory.

The major operations on files are: initialization for access (open);
access; shutdown and resource deallocations (close); and deletion.

REV. A 1 - 2

MAN2604 FILE SYSTEM OVERVIEW

Opening a File

A file may be opened for readlng only, for writing only, or for both
reading and writing. If a file is opened for reading only, it may be
read, but it cannot be changed.

The operation of opening a file does the following :

1. Searches the file directory to see if the filename requested
is there;

2. Sets up tables and initializes buffers in the operatlng
system; and

3. Defines a pseudonym for the file. This pseudonym is called
the file unit number, and is the only name used for transfer
of data to and from the file.

If a file is opened for writing only, or for reading and writing, it
may be changed; if the filename is not found in the directory, the
filename is added to the file directory, and a new file is created.
When a new file is created at the time of opening, no information is
contained in the file.

Using an Open File

Once a file has been opened, a file pointer is associated with the
file. The file pointer indicates the next binary word to be accessed.
To understand how the file pointer works, imagine that the words in a
file are serially numbered from @. The file pointer is then the number
of the next word to be accessed in a file.

Access

On an open file, information may be read from the file starting at the
file pointer into high-speed memory, or information may be written to
the file starting at the file pointer.

Access and File Pointer

When a file is accessed, the file pointer is incremented once for each
binary word accessed.

Position
The file pointer may also be moved backward and forward within a file
without moving any data. This is called positioning a file. The value

of a file pointer is called the position of the file. Positioning a
file to its beginning is often called rewinding a file.

1 - 3 January 1977

SECTION 1 MAN2604

Truncation

It is possible to shorten a file by truncating it. When a file is
truncated, the part of the file that is at or beyond the file pointer
is eliminated from the file. If the file pointer is positioned at the
beginning of the file, all of the information in the file is removed
but the filename remains in the file directory.

Closing a File

A file that has been opened may be closed. The file unit number
(pseudonym) and the corresponding table areas in the operating system
are “cleaned up’ and released for reuse.

Deleting a File

A deleted file has its filename removed from the file directory, and
all of the disk memory that the file occupied is released for use by
other files.

Physical Disk Consideration

A disk storage medium is composed of many separate blocks of data re-
cording space (disk records or sectors). How these blocks are put
together to make a file can affect the efficiency of positioning by
several orders of magnitude. Because of this, the file system has two
different ways of linking physical disk records together to form a
file. One way, SAM (Sequential Access Method), results in more compact
storage on the disk and requires less high-speed memory for efficient
operation, but is much slower for repeated random positioning over a
file. The other way, DAM (Direct Access Method), results in quicker
positioning over a file, but requires more disk space and more
high-speed memory. SAM and DAM files are functionally equivalent in
all other respects.

More on File Directories

File directories were previously described as files containing the
names and locations of other files on the disk. This kind of file
directory 1is referred to elsewhere in the documentation as a User File
Directory (UFD). The file system supports a second kind of file
directory called a segment directory. Segment directories differ from
UFD’s in one fundamental respect: they contain file locations but not
file names. As far as the file system is concerned, the files in a
segment directory have no names. This means that the file system user
is charged with all of the bookkeeping involved in the use of a segment
directory.

Segment Directory Use

Each binary word in a segment directory is assumed to hold a legitimate
file 1location on the disk. The segment directory file is opened for
reading/writing on a unit of the user’s choice. The segment directory

REV. A 1 - 4

MAN2604 FILE SYSTEM OVERVIEW

file is then positioned to the word containing the desired file loca-
tion.

A desired file may be opened, closed, deleted, or truncated by giving

the file unit number of the segment directory file rather than the
filename.

1 - 5 January 1977

MAN2604 FILE STRUCTURES

SECTION 2

FILE STRUCTURES

FILE SYSTEM

The PRIMOS II, III, and IV file systems consist of a hierarchy of files
and file directories. There are two types of files and two types of
directories. These are described in this section.

TYPES OF FILES

The two types of files are: Sequential Access Method files (SAM files)
and Direct Access Method files (DAM files). The structural differences
between these two file types are transparent to the user.

SAM Files

A SAM file is the basic way of structuring disk records into an ordered
set; 1i.e., a threaded list of physical disk records. The following
example shows this structure:

BEGINNING
RECORD

SAM File Structure

In PRIMOS II, a SAM file consists of a collection of disk records
chained together by forward and backward pointers to and from each re-
cord (See Appendix A). Further, each record in a SAM file (or any
file) contains a pointer to the beginning record address (BRA) of the
file. The file system maintains the record headers and is responsible
for the structure of the records on the disk.

2 - 1 January 1977

SECTION 2 MAN2604

Figure 2-1 shows an example of how SAM files may be related within a
PRIMOS II file hierarchy.

DAM Files

A DAM file is a direct access file. DAM file organization uses the SAM
file method of making an ordered set; for purposes of rapidly ac-
cessing the i’th data record, a special technique is used:

1. Physical disk record @ of a DAM file is reserved for use by
the system. No user data is ever written in this record.

2. The first disk record (logical record @) to contain
user-written data is the second record of the threaded
list of disk records. The first disk record (D) contains
pointers to the second, third, ... 44@th disk record
of the file, as shown in the following example:

RECORD DAM File Structure
HEADER D
413
425
450
451
1230 } 439 vy 2 y 1 y 0
1230 451 450 425

o e - —] b] b = =] N e

Figure 2-1 shows a typical relationship of DAM files within a PRIMOS II
file hierarchy.

A DAM file can continue to grow beyond 440 records. For PRIMOS, the
records beyond the 440th will be threaded and referenced as if they
were records in a SAM file. For example, to access the 445th record of
a DAM file, the file system would go to the 440th record directly and
seek through the remaining five records sequentially. For an example
of how to create a DAM file, refer to Section 4.

File Records

All files on PRIMOS disks are stored in fixed-length 448-word records,
(1024-word records for storage module disks), chained together by
forward and backward pointers.

In PRIMOS, the first eight words of a record is the record header
(first 16 words for storage module record). Specific content of record

REV. A 2 - 2

MAN2604 FILE STRUCTURES

headers is discussed in Appendix A. After the record header, all
remaining words within the record may be used to store ASCII character
pairs or 16-bit words. For further information about disks and storage
modules, refer to the Computer Roam User Guide (MAN26@3) .

File Contents

A file is a series of records of the type described above, with the
distinction that the first record in such a chain is reached from a
pointer within a User File Directory or an entry in a segment
directory.

Every file contains a series of 16-bit words. The format depends on
the type of data in the file and how they were originally entered into
the file system. The following types of files are in general use in
PRIMOS II Systems:

Line Image ASCII character text, packed two characters
per word, as entered from a terminal or from
the Prime card reader, paper-tape readers, etc.

Line Image Same as above, but successive spaces are

Compressed replaced by a relative horizontal tab
character followed by a space count, and lines
are terminated by a LINE FEED character.

Object Format Block-format object code as generated by
(Relocatable the Macro Assembler and FORTRAN Compiler
Binary) for processing by linking loader.

Saved Memory Header block followed by a direct

Image transcription of high-speed memory between

limits Starting Address (SA) and
Ending Address (EA).

Directories See Appendix A for format details.

(UFD and
Segment)

2 - 3 January 1977

SECTION 2 MAN2604

DSKRAT A1
UFD
MFD ALPHA A2
DSKRAT O—f
ALPHA
BETA O—
UFD
BETA B .
B1
B SEG
gseg (0)
0 O]
1 o
2 O-'j 8SEG (1)
3 O
8 SEG (3) Y B SEG {2)
0
B SEG (4) 1 o
1S ANOTHER I
SEGMENT 2 o
DIREC
TORY 3 pres

Figure 2-1. Hypothetical PRIMOS File Hierarchy with SAM and DAM
File Structures

REV. A 2 - 4

MAN2604 FILE STRUCTURES

DIRECTORIES

Directories are specialized files that contain entries that point to
files or, in some cases, other directories. Directories are the nodes
in the file system tree structure hierarchy, whereas files are the
branches. Figure 2-1 illustrates this concept. The types of directory
are UFD’s and segment directories.

Segment directories may be organized as SAM files or DAM files, depend-
ing on the kind of file structure the user wishes to build.

MFD and UFD

Each disk pack (or device, in the case of non-removable media) has one
User File Directory called a Master File Directory (MFD) that contains
an entry for each User File Directory (UFD) in the MFD. 1In turn, each
UFD contains an entry for every file or directory file in that
directory. UFD’s and MFD’s are accessed in the same way as other
files.

Master File Directory (MFD)

Each disk unit contains one MFD file as an index to the first physical
record of each UFD in the MFD. The MFD has the same format as any UFD.
The first record of the MFD begins at physical record one of the disk.
Figure 2-1 shows a chain of pointers extending from the MFD to UFD and
segment directories, and to a DAM or SAM file.

User File Directory (UFD)

A User File Directory (UFD) is a file that links PRIMOS filenames to
the physical record of a file.

A UFD, in the format shown in Appendix A, is associated with each sys-
tem user. The UFD header coneicts of a word count followed by the
password. After the header, the UFD contains an entry for every file
or directory named by the user. Each entry consists of a filename and
a word that contains the address of the first physical record of the
file (called the beginning record address or BRA). Currently, each UFD
can contain up to 72 entries (179 entries in a storage module). The
first physical record of each UFD is accesssed from a pointer (entry)
in a UFD. Details of the contents of the UFD header and entries are
given in Appendix A.

Segment Directory

A segment directory is formatted just like a UFD except that instead of
several words per entry, there 1is only one: the pointer to the
beginning record of a file. For information on how to create a segment
directory, refer to Appendix C.

2 - 5 January 1977

SECTION 2 MAN2604

FILES AND DISK STRUCTURE

Disk Record Availability Table (DSKRAT)

PRIMOS maintains a file, formerly named DSKRAT, that stores the status
of every physical record on the disk. The name of this file may also
be the name of the disk (which is referred to as the Packname). For
example, the name of the documentation disk is DOCUME, and the name of
the DSKRAT file for this disk is DOCUME. Each record is represented by
a single binary bit; a ‘1” means the record is available, and a ‘g’
means it is in use. On a typical PRIMOS disk, the DSKRAT file is
allocated several records. The DSKRAT file is maintained as a file on
the disk, starting at physical record 2. The format of DSKRAT is shown
in Appendix A.

Disk Organization

PRIMOS supports the use of all the Prime disk options. Prime software
provides facilities for keyed indexed direct access files (KIDA)
(refer to the Subroutine Library Manual (MAN 1880) for details) .

Multiple disks are organized so that every fixed disk and every
removable disk is a self-consistent wvolume with its own bootstrap,
DSKRAT, and MFD.

Logical record zero is cylinder zero, head zero, sector zero on all
options except the dual (fixed and removable) device, which has two
logical zeros —- one on a fixed disk (head 2) and one on the removable
disk (head 9).

File Units

when a disk file is made active for reading or writing, to hold one or
two disk records at a time, it must be assigned one buffer in
high-speed memory if the file is a SAM file, or two buffers if the file
is a DAM file. The buffer, plus associated pointers and status indica-
tors, serves as an access port for the exchange of data between the
disk file and the active program. A user generally is concerned with
file units; he is not aware of a buffer, except when PRIMOS II runs
out of memory or overwrites a user program. One file at a time can be
assigned to each unit; therefore, a maximum of 16 files can be active
(open) at any one time. The files may be open on several different
logical disk units at once. Under PRIMOS III and IV, no space is used
in the user’s address space for file buffers.

Opening, Closing File Units

Refer to the discussion on file units, buffers, and opening files in
Section 1.

Various ways are provided to associate a specific filename (Filename)

to one of the memory buffers (Funit numbers). One method is the OPEN
command .

REV. A 2 - 6

MAN2604 FILE STRUCTURES

Example:
OPEN Filename Funit Status

Filename is the name of a file listed in the UFD to which the user is
currently attached; Funit is a PRIMOS II file unit number (°1-°17),
and Status is 1 for reading, 2 for writing, etc.

NOTE:

The character * is used to denote an octal number. (For full
information, see the Interactive User Guide "OPEN", or Section 3,
"SEARCH") .) '

In response to this command, PRIMOS II selects an unassigned buffer
area, assigns one or two buffers the specified Funit number, and uses
it as the data buffer when reading from or writing to the named file.
Whether one buffer or two buffers are assigned depends on whether
Filename specifies a SAM file or a DAM file. The file is then said to
be open. The 448-word or 1040@-word memory buffers are allocated
downward, starting from the beginning of PRIMOS II itself. PRIMOS 1II
associates a Funit number to the highest unassigned block when a file
is opened. From the terminal, the user can open files with the OPEN,
BINARY, INPUT, and LISTING commands, and can close them with the CLOSE
command. The command INPUT opens Unit 1 for reading (for example, to
provide a source input file to the Assembler or Compiler). The BINARY
command opens Unit 3 for writing (of the object output) and LISTING
opens Unit 2 for writing (of the listing file). The OPEN command
allows a user to assign a file to a unit of his choice and specify the
activity - reading, writing, or both. For complete descriptions of
commands, refer to the Terminal User’s Guide. File Units 1 to 15 may
be specified by the user.

Unit 16 can be opened by the user only under PRIMOS III and IV; it is
used by PRIMOS II for reading and writing of system files such as
DSKRAT and User File Directories.

When the user is communicating with the file structure through one of
the standard Prime translator or utility programs, files are referred
to by name only. PRIMOS, or the program itself, handles the details of
opening or closing files and assigning file units. For example, the
user can enter an external command such as ED FILEl, which 1loads and
starts the text editor and takes care of the details of assigning the
file FILEl to an available unit for reading or writing.

Because open files are subject to alteration (deliberate or
accidental) , the user must keep files closed except when they are being
accessed. 'The CLOSE ALL command returns all open file units to a
closed and initialized state.

2 - 7 January 1977

SECTION 2 MAN2604

FILE-HANDLING SUBROUTINES

All file handling is done by a collection of special subroutines, some
internal to PRIMOS, and others available as library routines. These
routines are used in common by PRIMOS and all Prime system software for
simplified and uniform file handling. In addition, they can be called
from FORTRAN or assembly-language user programs. Some principal rou-
tines for PRIMOS are:

ATTACH Attaches user to a specified UFD or device.

GETERR Moves n words from the system error vector
ERRVEC into a specified array.

GINFO Moves n words of information about PRIMOS
into a special array.

PRWFIL Reads 16-bit words from a specified file unit
to high-speed memory and writes 16-bit words
from memory to a specified file unit. (For details,
see Section 3.)

RESTOR Restores to memory an executable program
previously filed by a SAVE operation.

RESUME Restores to memory and starts an executable
program previously filed by a SAVE command.

SAVE Saves a section of high-speed memory as a named
file. High and low address limits, the start-
execution address, and other key parameters
are saved with the program.

SEARCH Assigns a named file to a file unit and opens the
file for reading and writing.

PRIMOS file handling subroutines are described in Section 3.

The ATTACH, RESTORE, RESUME, and SAVE routines have exactly the same
functions as the commands of the same name. These and other file and
character handling subroutines are described in detail in the
Interactive Terminal User Guide.

All of the file handling subroutines called by the user are loaded with
the user’s program when the FORTRAN library is loaded. Most of these
subroutines are interlude subroutines which issue supervisor calls to
PRIMOS. 'The appropriate subroutine in PRIMOS then executes the
appropriate file operation.

REV. A 2 - 8

MAN2604 FILE STRUCTURES

File Handling in User Programs

The subroutines (refer to Section 3) simplify communication between
the PRIMOS file structure and user programs. In FORTRAN programs, for
example, the symbolic device unit numbers in formatted READ and WRITE
statements can be associated with PRIMOS file units. The following de-
fault assignments are set up by the compiler:

FORTRAN Unit (u) File Unit (Funit)

5 1
6 2
7 3
8 4
9 5
10 6
11 7
12 8
13 9
14 10
15 11
16 12
17 13
18 14
19 15
20 16

Example: to write a record to file Unit 1 (FORTRAN Unit 5), the user
could enter the command OPEN filename 1 2. The OPEN command associates
the file Filename with the file unit 1 and opens the file for writing
(code 2). During subsequent execution of a program containing a for-
matted WRITE statement such as:

WRITE (5, 10) LINE

the contents of array LINE are written as one record to the FORTRAN
Unit 5 (File Unit 1), according to FORMAT statement 10.

At the program level, a Filename and Funit number can be associated by
the PRIMOS subroutine SEARCH (see below):

CALL SEARCH (2, 6HTEXTbb, 1, $50)

to open the file named TEXT on Funit 1 for writing. Besides
maintaining the file directories, SEARCH also initializes the PRIMOS
data base when a file is opened and updates it when the file is closed.

Users normally call the IOCS subroutine CONTRL to open or close a file
read or written by FORTRAN READ or WRITE statements (refer to the
Subroutine Library Manual (MAN 1880)). The appropriate call that
replaces the call to SEARCH is:

2 -9 January 1977

SECTION 2 MAN2604

CALL CONTRL (2, 6HTEXTbb, 5, $50)
FILE ACCESS

Attaching to a UFD

To access files or use PRIMOS utility functions, the user must be
attached to a UFD. Typically, during program development, each user
attaches to a UFD reserved for program files with the ATTACH command.
For further information, refer to The Interactive Users’ Guide. Within
executable programs, the user can attach to other UFD’s; for example,
to access data or to call subroutines. At the program level, this is a
accomplished by the subroutine ATTACH, described previously. For
further information on the ATTACH subroutine, refer to Section 3. :

File Access Control

PRIMOS III or IV gives a user (owner) the ability to open file
directories to other users with restricted rights to the owner’s files.
Specifically, the "owner" of a file directory can declare, on a
per-file-basis, the access rights a "nonowner" has over each of the
owner’s files. These rights are separated into three categories:

. Read Access (includes Execute Access)
. Write Access (includes over-write and Append)
. Delete/Truncate rights

The owner of a UFD can establish two passwords for access to any file
in the UFD; the owner password and the nonowner password. The owner
password is required to obtain owner privileges. The nonowner password
(if any) is required to obtain nonowner privileges.

The command:

PASSWD Owner-Password Nonowner-Password
replaces the existing passwords in the UFD with a new owner-—password
and a nonowner-password. This command must be given by the owner while
attached to the UFD. A nonowner cannot give this command. The com-
mand :

PROTECT Filename Okey Nkey
replaces the existing protection keys on Filename in the current UFD

with the owner (Okey) and nonowner (Nkey) protection keys. Valid
nunbers for these keys are:

REV. A 2 - 10

MAN2604 FILE STRUCTURES

No Access allowed

Read Access only

Write Access only

Read and Write Access

Delete/Truncate only

Delete/Truncate and Read

Delete/Truncate and Write

All Access allowed (Read/Write/Delete/Truncate)

N whhHSD

The owner can restrict his own access to a file by the PROTECtion mech-
anism, which can be useful in preventing accidental deletion or
overwriting by an owner of an important file. A nonowner cannot give
the PROTECT command and achieve desired results. The command will re-
turn the message: NO RIGHT and terminate.

A user obtains owner status to a UFD by attaching to the UFD, giving
its name and owner password in the ATTACH command (refer to The
Interactive Users’ Guide.) A user obtains nonowner status to a UFD by
giving its name and nonowner password in the ATTACH command.

A user can find out his owner status through the LISTF command. LISTF
types the name of the current UFD, its logical device, O, if the user
is an owner, or N if the user is a nonowner. LISTF then types the
names of all files in the current UFD. An owner can determine the
protection keys on all files in the current UFD through use of the file
utility, FUTIL, (refer to Section 4).

Other Features of File Access

The owner/nonowner status is updated on every ATTACH and separately
maintained for the current UFD and home UFD.

A user ‘s privileges to files under a segment directory are the same as
his privileges with the segment directory.

The protection keys of a newly created file are:
owner has all rights
nonowner has none
The passwords of a newly created UFD are:
owner password is blank
nonowner password is zero (any password will match)

A nonowner cannot create a new file in a UFD, or successfully give the
CNAME, PASSWD, or PROTECT commands.

Furthermore, a nonowner cannot open his current UFD for reading or
writing (refer to Section 3).

2 - 11 January 1977

SECTION 2 MAN2604

In the context of file access control, the MFD has all the features of
a UFD. Therefore, an MFD can be assigned owner/nonowner passwords, and
the UFD’s subordinate to the MFD may have their access controlled by
protection keys, via the PROTECT cammand.
If file access is violated, the error message is:

NO RIGHT

PRIMOS II File Access Control

The PRIMOS 1II operating system does not have file access control over
individual files, but it is compatible to a degree with PRIMOS III and
IV. Under PRIMOS II, a user cannot obtain access to a UFD by ATTACHing
with the nonowner password. If the owner password has been given, the
ATTACH is successful, but subsequent. access to files in the directory
is not checked. Files created under PRIMOS II are generated with the
same protection keys as under PRIMOS III and IV. The passwords of a
newly created UFD are the same as under PRIMOS III and IV.

File Data Access Methods

Under PRIMOS, the means of file access is the Sequential Access Method
(SAM) or the Direct Access Method (DAM). With both methods, the file
appears as a linear array of words indexed by a current position point-
er. The user may read or write a number of words beginning at the
pointer, which is advanced as the data is transferred. A file 1I/0
module service call (PRWFIL) provides the ability to position the
pointer anywhere within an open file. File data can be transferred
anywhere in the addressing range. When a file is closed and re-opened,
the pointer is automatically returned to the beginning of the file.
The pointer can be controlled by both the FORTRAN REWIND statement and
PRWFIL positioning.

With the DAM method of access, the file also appears to be a linear
array of words, but this method has faster access times in positioning
commands. PRIMOS keep an index that allows for positioning of the

first 440 disk records of a file (1824 records of a storage module
disk) .

.OPERATING SYSTEM USER INTERACTION

Loading and Initializing PRIMOS II

The PRIMOS 1II monitor is a saved-memory-image file under the UFD DOS.
It must be loaded into the high-speed memory with the aid of a
bootstrap loading program. The bootstrap is loaded on the devices
available under control of PROM, which is located on the control panel.
A system with full disk bootstrap microcode can load PRIMOS II directly
from the master disk through the panel LOAD function; Other configura-
tions may require a key-in loader and paper-tape bootstrap. For infor-
mation on this and other operating procedures, see the Computer Room

REV. A 2 - 12

MAN2604 '~ FILE STRUCTURES

User Guide.

PRIMOS internal and externhal commands are described in The Interactive
Users’ Guide (MAN 2602). Prime system programs (compiler, assembler,
editor, etc.) requiring detailed operating instructions are described
in the pertinent user guides.

Startup

When PRIMOS II is loaded and started, it prints the message OK: on the
terminal as a cue that is ready to receive commands. The first command
a PRIMOS II user enters must be a STARTUP. This command assigns logi-
cal disk numbers to the physical disk drives in the particular system.
The STARTUP command determines which disk surface is accessed for MFD
and other command functions, and determines the order in which PRIMOS
II searches disk surfaces for UFD’s. Use of the STARTUP command is
discussed in greater detail in the Computer Room User Guide (MAN 2603) .

Commands

PRIMOS commands fall into two major categories: the internal commands
(implemented by subroutines that are memory-resident as part of PRIMOS)
and external commands (executed by programs saved as disk files in the
command UFD, CMDNC@) .

On receiving a command at the system terminal, PRIMOS chécks whether it
is an internal command, and if so, executes it immediately. Otherwise,
PRIMOS looks in the command directory of Logical Disk Unit @ for a file
of that name. If the file is found, PRIMOS RESUMEs the file (loads it
into memory and starts execution). All files in the command directory
are SAVEd memory image files, ready for execution. Most are set up to
return automatically to PRIMOS when their function is complete or er-
rors occur. The command line that caused the execution of the saved
program is retained and may be referenced by the program to obtain pa-
rameters, options, and filenames. To add new external commands, the
user simply files a memory image program (SAVEd file) under the com-
mand directory UFD (CMDNC@). Memory image files may also be kept in
other directories and executed by the RESUME command.

File Input/Output

With the aid of the PRIMOS subroutine PRWFIL, the user can bypass for-
matted FORTRAN I/0 and write directly from memory arrays to disk files,
as in:

CALL PRWFIL. (1,1 PTEXT, 36, @, 9)
This statement reads 36 words from the file associated with Funit 1 to
memory array TEXT, where PTEXT is a pointer to the beginning of array

TEXT. PTEXT may be set up by a call to the FORTRAN function LOC. The
statement to set up PTEXT would be:

2 - 13 January 1977

SECTION 2 MAN2604

PTEXT = LOC (TEXT)

Command Files

As an alternative to entering commands one at a time at the terminal,
the user can transfer control to a comand file by the command:
COMINPUT. This command switches command input control from the termi-
nal to the specified file. All subsequent commands are read from the
file. One can assign any unit for the COMINPUT file; 1i.e., command
files may call other command files. For detailed information on the
COMINPUT command, refer to the Interactive Users’ Guide (MAN 2602).

Command files are primarily useful for performing a complicated series
of commands repeatedly, such as loading an extensive system in the
debugging stages (when it is necessary to recompile and reload often).
Command files are also useful in system building when many files must
be assembled, concatenated, loaded, etc., (for example, configuring an
RTOS system or generating library files).

Saving Programs

After compiling or assembling a program and loading the object version
along with library routines, the user can save the program development
efforts by the SAVE command:

SAVE Filename SA EA PC A B X Keys
This command string assigns a file, Filename, in the current UFD, saves

the memory image between limits SA (starting address)@ and EA (ending
address) , and enters other parameters into the header block:

PC Program Counter setting (address at which to start
program execution)

A A Register value

B B Register value

X X (Index) Register value

Keys Status keys (as processed by INK, OTK instructions)

The preferred way to save newly loaded programs is to use the loader’s
SAVE command. Refer to the Program Development Software User Guide
(MAN 1879) for details.

When a program is restored to operation by a RESTORE or RESUME command,
these RVEC parameters are retrieved with the file and replaced in the
registers from which they were obtained. For more detailed
information, see the Interactive Users’ Guide.

A program saved in the command UFD (CMDNC@, for example) can be in-

REV. A 2 - 14

MAN2604 FILE STRUCTURES

voked by name like any other external PRIMOS command. All standard
Prime translator and utility programs are supplied in this form.

File Maintenance (FIXRAT)

To give the user an efficient and thorough way to check the integrity
of data on a PRIMOS disk, PRIMOS provides a file maintenance program,
FIXRAT, filed under the command directory, CMDNC@. When FIXRAT is in-
voked as an external command, it checks for self-consistency in the
structure of pointers in every record, file, and directory on the disk.
If there are breaks in the continuity of double-strung pointers,
discrepancies between the DSKRAT file and the reconstructed record
availability map, or other error conditions, FIXRAT prints appropriate
error messages. FIXRAT asks the user to specify whether or not to take
certain steps to repair a damaged file structure on a particular logi-
cal disk unit. For details and examples, refer to FIXRAT description
in the Computer Room Users’ Guide.

2 - 15 January 1977

MAN2604 FILE SYSTEM SUBROUTINES

SECTION 3

FILE SYSTEM SUBROUTINES

INTRODUCTION

PRIMOS provides the user with a powerful and general file system. The
key definitions of file system library subroutines SEARCH, PRWFIL, and
ATTACH are complicated. To keep things straight, the definitions of
these file system subroutines have been written with mnemonic keys
(refer to Appendix C). This section describes subroutines that may be
used under PRIMOS.

CALLING AND LOADING LIBRARY SUBROUTINES

When a FORTRAN user calls a subroutine, a call to the required subrou-
tine is automatically inserted in the FORTRAN object program by the
compiler.

After a FORTRAN or Macro Assembler main program is loaded, library
subroutines are loaded by using the loader’s LIB (or LI) command.

CALLING SEQUENCE NOTATION

The following conventions apply to the FORTRAN calling sequence formats
described in the rest of this section. For assembly language calling,
refer to the PMA manual.

Items in capital letters are to be reproduced literally. Items in
initial caps are variables to be assigned names or values by the user.
For example, the calling sequence:

CALL CMREAD (Array)

means that the user must enter CALL CMREAD, as specified, but may coin
his own array name. Common abbreviations such as Funit, Idisk, etc.
are defined in the Interactive User Guide (MAN 2602) .

File names and UFD names used in routines such as ATTACH, RESTOR, etc.,
may be specified either by a Hollerith string or an array name. The
Hollerith form allows the file or UFD name to be expressed literally in
a 6-character Hollerith string such as 6HFILNAM. If an array name is
used instead, it must designate a 3-word integer array that contains
the file or UFD name. For example, the user could specify an array NAM
that contains filename FIINAM in the following form:

3 - 1 January 1977

SECTION 3 MAN2604

NAM(1) FI
NAM(2) LN
NAM(3) AM

In either the Hollerith or Array form, the name must be specified as
exactly six characters; if the name has fewer than six characters, it
must be left-justified and the Hollerith string (or array) filled with
space characters (represented by "b" in the example below) . For exam-
ple, the filename FIL1 must be treated as follows:

6HFIL1bb or NAM(1) or FIL1l = FI
NAM(2) = L1
NAM (3) = bb

Numerical values such as Funit, Idisk, etc. must be specified by deci-
mal integer expressions. The error return Altrtn must be set by an
ASSIGN statement to the value of a statement number within the user’s
program. (The form $n, where n 1is the statement number, is also
acceptable.)

Example:
The ATTACH subroutine has the general form:
CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)
The user might code a call to this subroutine as follows:
CALL ATTACH (6HUSERl , @, PWD, 1, $50)
where:
1. 6HUSER1, literally identifies the user’s UFD, "USERL ",
2. The USER] UFD is on logical disk unit @ (Ldisk is an integer),

3. The user stores his current password in 3-word integer array
PWD,

4. The variable KEY (declared as integer mode in the user’s
program) controls the way that the file is referenced and
the home UFD set up,

5. In case of uncorrectable error, control passes to statement
label 5@ in the user’s program.
FILE SYSTEM AND TERMINAL I/O SUBROUTINES
PRIMOS provides subroutines that simplify disk input/output, permit

user programs to communicate with the PRIMOS supervisor and file
structure, and provide various input/output and control functions. The

REV. A 3 - 2

MAN2604 FILE SYSTEM SUBROUTINES

subroutines SAVE, RESTOR, RESUME, and ATTACH have the same effect as
the commands of the same name, but they are called from, and return
control to, a user program. The calling sequence provides the parame-
ters that are normally entered from the terminal. Most routines, like
SEARCH, SAVE, and RESTOR are implemented by code within PRIMOS II
itself. A small interlude program executes a supervisor call to PRIMCS
to do the work in each case.

Subroutines from this group are loaded by users from the main library
file FINLIB if they are called in a user’s FORTRAN program. The
subroutines described in this section in alphabetical order are:

ATTACH ERRSET RECYCL TSAMIC

BREAKS EXIT RESTOR TSSLC
CMREAD FORCEW RESUME UPDATE
COMANL GETERR RREC WREC

COMINP GINFO SAVE
DSINIT PRERR SEARCH
DUPLXS$ PRWFIL TIMDAT

Other subroutines such as file, device, and terminal input-output

subroutines are described in detail in the Subroutine Library Manual
(MAN 1880) .

3 - 3 January 1977

SECTION 3 ' MAN2604

kkkkkkkkkk

* ATTACH *
Jook ok deok ok ook ek

The ATTACH subroutine has the same effect as the ATTACH internal com-
mand. The calling sequence is:

CALL ATTACH (Ufd, Idisk, Password, Key, Altrtn)

To access files, the file system must be attached to some User File
Directory (UFD). This implies that the file system has been supplied
with the proper file directory name and either the owner or nonowner
password, and the file system has found and saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFL is referred to as the current UFD.
As an option, this information may be copied to another place in the
system, referred to as the home UFD. The ATTACH subroutine does not
change the home UFD unless the user specifies to change it in the
subroutine call. The user gets owner status if he gives the owner
password, or gets nonowner status if he gives the nonowner password.
The owner of a file directory can declare on a per-file basis what
rights a nonowner has over the owner s files. The nonowner password
may be given only under PRIMOS III and IV. (Refer to the description
of the commands PASSWD and PROTECT of the Interactive Users’ Guide (MAN
2602) for more information.)

In attaching to a directory, the subroutine ATTACH specifies where to
look for the directory. ATTACH specifies a User File Directory (UFD)
in the Master File Directory (MFD) on a particular logical disk, a
sub-directory in the current UFD, or the home UFD as the
target-directory of the ATTACH operation. The format is:

CALL ATTACH (NAME, LDISK, PASSWORD, KEY, ALTRTN)
KEY is composed of two subkeys that are combined additively: REFERENCE

and SETHOME. All calls require a REFERENCE subkey. The REFERENCE
subkeys are shown in the following table:

REV. A 3 - 4

REFERENCE
MFDUFD

CURUFD

“AN%4g4 FILE SYSTEM SUBROUTINES

Octal Value Meaning
@ Attach to NAME in MFD on LDISK
2 Attach to NAME in current UFD

The SETHOME subkeys are required on call; these subkeys are shown
in the following table:

SETHOME

SETHOM

Octal Value Meaning
@ Do not set home UFD to current

UFD after attaching.

1l Set home UFD to current UFD
after attaching.

The meaning of the remaining parameters on a call to ATTACH is as

follows:

NAME

LDISK

PASSWORD

If the key is @ and NAME is @, the home UFD is
attached.

If the reference subkey is MFDUFD or CURUFD,

NAME is either a six-character Hollerith expression
or the name of a three-word array that specifies

a Ufdname to be attached.

If the reference subkey is MFDUFD, LDISK is the logical
disk on which the MFD is to be searched for UFD NAME.
ILDISK must be a logical disk that has been started up
by the STARTUP command. The special LDISK octal code
100008 signifies: search all started-up logical
devices in order @, 1, 2 ... n and attach to the UFD
in which NAME appears in the MFD of the lowest
numbered logical device. The special LDISK octal code
177777 signifies: search the MFD of the Ldisk
currently attached to NAME.

If the reference subkey is CURUFD, or
NAME is @, LDISK is ignored and is usually
specified as @.

If the reference subkey is MFDUFD, CURUFD, or SEGUFD,
PASSWORD is either a six-character Hollerith
expression or the name of a three-word array that
specifies one of the passwords of UFD NAME. If the
password is blank, it is specified as three

words of two blank characters.

3 - 5 January 1977

SECTION 3 MAN2604

ALTRTN An integer variable assigned the value of a label
in the user ‘s FORTRAN program, to be used as an
alternate return in case of error. If this argument
is @ or omitted, an error message is printed and
control returns to PRIMOS II or III.

A UFD attached through a segment directory reference does not have a
name. On LISTF, such a UFD is listed with a name of six asterisks.

If an error is encountered and control goes to Altrtn, ERRVEC(1l), a
PRIMOS II vector, is set to the error type as follows:

Code Message

AH Name NOT FOUND
AL No UFD ATTACHED
AR Not a UFD (detected by PRIMOS III only)

A user obtains ERRVEC through a call to GETERR. The error ‘Name NOT
FOUND’ is printed if one of the following errors occur:

1. KEY bad.
2. NAME is not found in the specified directory.
3. LDISK is out of range or not started up.

4. 1In a segment directory reference, NAME (1) is a closed unit or
the unit is at end of file.

If the error BAD PASSWORD is obtained, the alternate return is never
taken, and both the home UFD and current UFD are set to @ to indicate
that no UFD is attached. This feature is a system security measure to
prevent a user from writing a program to try all possible passwords on
a UFD.

Examples of ATTACH:
CALL ATTACH (JHNDOE’, -1, ‘JJJ°, 0, ERR)

Searches for the UFD, JHNDOE, in the MFD (as specified in the Key) on
the current logical device. If JHNDOE is found and the password, JJJ,
matches the recorded password, then UFD JHNDOE is attached. The cur-
rent UFD (now JHNDOE) is not set as the home UFD (as specified in the
Key) . The PRIMOS vector that points to the current UFD is set to this
new directory.

REV. A 3 - 6

MAN2604 FILE SYSTEM SUBROUTINES

ek ok ok ek ko
* BREAKS *

&k ke ek ko kokokk

The calling sequence is:
CALL BREAKS (.TRUE.)
CALL BREAKS (.FALSE.)

Under PRIMOS III or IV, the BREAKS routine, called with argument .TRUE:
CALL BREAKS (.TRUE.)

inhibits the CTL-P or BREAK key from interrupting a running program.
CALL BREAKS (.FALSE.)

enables the CTL-P or BREAK characters to interrupt a running program.

The LOGIN command initializes the user terminal so that the CTI~P or

BREAK keys cause interrupt.

Under PRIMOS II, BREAKS has no effect.

3 - 7 January 1977

SECTION 3 MAN2604

khkkkkkkkkk
* CMREAD *

dkkkkkkkkk
The calling sequence is:
CALL CMREAD (Array)

CMREAD reads 18 words (which represent the last command line input by
the user) into the system vector ARRAY, as follows:

Array(l) Command (or spaces)
Array(2)
Array(3)
(4) Namel (or spaces)
(5)
(6)
(7) Name2 (or spaces)
(8)
(9)
(18) Parl (or 2zero)
(11) Par2(or 2zero)
Array(18) Par9 (or zero)

The command line may be accessed directly from ARRAY. The ‘Name’s are
normally only UFD’s or filenames and the “Par’s are octal numbers.

The last command line that has been input by the user is replaced by a
new line of input by a call to the subroutines: COMANL, CNINS or
TSAMIC. If none of these subroutines have been called before the
CMREAD call, then CMREAD reads the last command line typed by the user
or the last command line obtained through a command file.

REV. A 3 - 8

MAN2604 FILE SYSTEM SUBROUTINES

kkkkkkkkkkk

* CNAMES *
dkkkkkkkkkk

The CNAME routine allows the same action at user program level as the
CNAME command allows at command level.

The calling sequence is:
CALL CNAME (Oldnam, Newnam, Altrtn)

CNAME changes the name of Oldnam in the current UFD to Newnam. The
user must have owner status to the UFD. The arguments are:

Oldnam A filename to be changed

Newnam The new filename for Oldnam

Altrtn If not @, control goes to Altrtn if any error
occurs. If @, an error message is printed and
control returns to PRIMOS III.

If an error is encountered and control goes to Altrtn, ERRVEC(l) is
set to the error type as follows:

Code Message

CA Newnam BAD NAME

C2Z Newnam DUPLICATE NAME
SH Oldnam NOT FOUND

SI Oldnam IN USE

SL NO UFD ATTACHED

SX Oldnam NO RIGHT

CNAME does not run on PRIMOS II, only PRIMOS III.

3 - 9 January 1977

SECTION 3 MAN2604

*kkkkkkxkkx

* COMANL *
*kkkkkkkkk

COMANL causes a line of text to be read from the terminal or from a
command file, depending upon the source of the command stream. The
line is read into a supervisor text buffer. This buffer may be
accessed by a call to CMREAD. The line must be in the format of a
PRIMOS command line (i.e., one to three names followed by zero to nine
octal parameters).
The calling sequence is:

CALL COMANL
Example:

CALL COMANL

CALL CMREAD (ARRAY1)

REV. A 3 - 10

MAN2604 FILE SYSTEM SUBROUTINES

kkkkkkikkkk

* COMINP *
Kk kkkkkkkk

The COMINP routine allows the user to perform the same action at pro-
gram level as the user command COMINPUT allows at command level. Refer
to the Interactive User Guide (MAN 2602) for details of the COMINPUT
command. Briefly. COMINP causes PRIMOS to read input from a file
rather than a terminal.

The calling sequence is:
CALL COMINP (Name, Funit, Altrtn)
The arguments are:

Name Either a three-word array containing the filename
of a coomand file, or the words TTY, CONTIN, or PAUSE.

Funit A File Unit (range 1 to 16; 1 to 15 under PRIMOS
II)that is to be used for reading the command file.

Altrtn If not @, control goes to Altrtn in the event of
an error while opening Name. If @, an error message
is printed and control returns to the operating
system in the event of an error while opening Name.

If an error is encountered and control goes to Altrtn, ERRVEC(1) is
set to the error type as follows:

Qggg Message

SD UNIT NOT OPEN
SH Name NOT FOUND
SI Name IN USE

SI UNIT IN USE

SL NO UFD ATTACHED
SX Name NO RIGHT

A user obtains ERRVEC through a call to GETERR.

3 - 11 January 1977

SECTION 3 MAN2604

*kkkkkkkkk
* DSINIT *

dhkkkkkkkkk
The DSINIT routine is called to initialize disk devices.
The calling sequence is:

CALL DSINIT (Pdisk)

when Pdisk is the physical disk number to be initialized. DS$INIT ini-
tializes the disk controller and performs a seek to cylinder @ on
Pdisk. DSINIT must be called prior to any RREC or WREC calls. Pdisk
must be assigned by the PRIMOS III and IV ASSIGN command before calling
this routine. DSINIT is normally used only by system utilities such as
FIXRAT, COPY, and MAKE.

kkkkkkkkkk

* DUPLXS *
ook ok ok ek ok ok ok

The DUPLXS subroutine is called to control the manner in which the
operating system treats the user terminal.

The calling sequence is:
CALL DUPLXS (Mode)

where Mode has the following meanings:

Value (Octal) Meaning
po0B0o Treat terminal as full duplex
100000 ' Treat terminal as half duplex,

perform auto-line-feed after
carriage return

140000 Treat terminal as half duplex
DUPLEXS has no effect under PRIMOS II.

The mode of a user terminal is not affected by the LOGIN or LOGOUT
commands.

The mode of the user terminal may also be set at the supervisor
terminal by using the AMIC command.

REV. A 3 - 12

MAN2604 FILE SYSTEM SUBROUTINES

kkkkkkkkkk

* ERRSET *
ok ke ok dek ok ok

ERRSET sets ERRVEC, a system vector, then takes an alternate return or
prints the message stored in ERRVEC and returns control to the system.
ERRSET has three forms:

CALL ERRSET (Altval, Altrtn) (Form 1)
CALL ERRSET (Altval, Altrtn, Mesag, Num) (Form 2)
CALL ERRSET (Altval, Altrtn, Name, Messag, Num) (Form 3)

In Form 1, Altval must have value 100000 octal and Altrtn specifies
where control is to pass. If Altrtn is @, the message stored in ERRVEC
is printed and control returns to the system. Forms 2 and 3 are
similar; therefore, the arguments are described collectively as
follows:

Altval A two-word array that contains an error code that
replaces ERRVEC(1l) and ERRVEC(2). Altval(l) must
not be equal to 100600 octal.

Altrtn If Altrtn is nonzero, control goes to Altrtn.
If Altrtn is zero, the message stored in ERRVEC
is printed and control returns to PRIMOS.

Name The name of a three-word array containing a six-
letter word. This name replaces ERRVEC(3),
ERRVEC(4) , and ERRVEC(5) . If Name is not an
argument in the call, ERRVEC(3) is set to 0.

Message An array of characters stored two per word. A
pointer to this message is placed in ERRVEC(7).

Num The number of characters in Message. Num replaces
ERRVEC (8) .

If a message is to be printed; first, six characters starting at
ERRVEC (3) are printed at the terminal. Then the operating system
checks to determine the number of characters to be printed. This
information is contained in ERRVEC(8). The message to be printed is
pointed to by ERRVEC(7). The operating system only prints the number
of characters from the message (pointed to by ERRVEC(7)) that are
indicated in ERRVEC(8). If ERRVEC(3) is @, only the message pointed
to by ERRVEC(7) is printed. The message stored in ERRVEC may also be
printed by the PRERR command or the PRERR subroutine. The contents of
ERRVEC may be obtained by calling subroutine GETERR.

3 - 13 January 1977

SECTION 3 MAN2604

*kkkkkkkkk

* EXIT *
ook kkk Kk kK ok

The EXIT subroutine provides a way to return from a user program to
PRIMOS; it prints OK; (or OK,) at the terminal and resumes control.

The calling sequence is:
CALL EXIT
The user may open or close files or switch directories, and restart a

FORTRAN program at the next statement by typing S (i.e., START).

kkkkkkkkkk

* FORCEW *
Kk kkkkkkk

The calling sequence is:
CALL FORCEW (@, Funit)

The FORCEW subroutine, under PRIMOS III and IV, immediately updates to
the disk the file that is currently open on Funit. Normally this
action is not needed, since the system automatically updates all
changed file system information to the disk at least once per minute.
Under PRIMCS II, the FORCEW routine acts as a no-operation (i.e., it
does nothing) .

REV. A 3 - 14

MAN2604 FILE SYSTEM SUBROUTINES

kkkkkkkkkk

* GETERR ¥
dekkokkdddkkk

A user obtains ERRVEC contents through a call to GETERR.
The calling sequence is:
CALL GETERR (Xervec, n)

GETERR.moves n words from ERRVEC into Xervec.

On an alternate return: On a normal return:
Error code PRWFIL:
ERRVEC(1) ERRVEC(3) Record number
ERRVEC(4) Word number
Alternate value
ERRVEC (2) Key of read/write
convenient:
ERRVEC (2) No. of words
transferred
SEARCH:
ERRVEC(2) File type

3 - 15 January 1977

SECTION 3 MAN2604

Kdkkkkkkkkk

* GINFO *
Kkkkkkkkkk

The calling sequence is:

CALL GINFO (Xervec, n)
GINFO moves n words in Xervec.
The information acquired is:

Information for PRIMOS II:

Xervec Word Content

1 Low bound of PRIMOS II and buffers (77777
octal of 64K PRIMOS II).

2 High bound of PRIMOS II (77777 octal
of 64K PRIMCS II).

3 (not valid)

4 (not valid)

5 Low bound of PRIMOS II and buffer

(64K PRIMOS II only).
6 High bound of 64K PRIMOS II.

Information for PRIMOS III and IV.

Xervec Word Content

1 2

2

3-6 (not valid)

REV. A 3 - 16

MAN2604 FILE SYSTEM SUBROUTINES

kkkkkkhkkk

* PRERR *
ek ok ke ek ok ok

PRERR prints an error message on the user’s terminal.
The calling sequence is:
CALL PRERR

Example of Use

A user wants to retain control on a request to open a unit for reading
if the name was not found by SEARCH. To accomplish this, the user
calls SEARCH and gets an alternate return. He then calls to GETERR and
determines if another type of error occurred than NAME NOT FOUND. To
print the error message while maintaining program control, the user
calls PRERR.

3 - 17 January 1977

SECTTON 3 MAN2604

kkkkkikkkk

* PRWFIL *
ek ok ke ok

Definition of PRWFIL

PRWFIL is used to read, write, and position a file open on a file unit.
A typical call to PRWFIL will read into a user buffer N words from a
file open on Funit, starting at the file pointer in the file. A wuser
may instead move the file pointer to an absolute position in the file.
The two operations of reading-and-positioning or writing-and-posi-
tioning may be combined into a single call, with position occurring
either before or after the read or write operation.

The calling sequence is:

CALI, PRWFIL (KEY, FUNIT, LOC (BUFFER), NWORDS, POSITION, ALTRIN)
KEY is composed of three subkeys that are combined additively: RWKEY,
POSKEY, and MODE. The POSKEY is required only on those calls in which
positioning is requested. Subkeys with values of 0 may be omitted from
the call. The PRWFIL call may be represented as:

CALL PRWFIL (RWKEY+POSKEYHMODE,FUNIT,PBUFFER,NWORDS,POSITION,ALTRTN)

The RWKEY subkeys are shown in the following table:

RWKEY Octal Value Meaning
PREAD 1 Reads NWORDS from FUNIT into BUFFER
PWRITE 2 Write NWORDS from BUFFER

The POSKEY subkeys are shown in the following table:

POSKEY Octal Value Meaning

PREREL ') Moves the file pointer of FUNIT
POSITION words relative to the current
position before reading or writing

POSREL 20 Moves the file pointer of FUNIT
POSITION words relative to the current
position after reading or writing

PREABS 10 Moves the file pointer of FUNIT to an
absolute position specified by POSITION
(1) and POSITION(2) before reading or
writing

POSABS 30 Moves the file pointer of FUNIT to an
absolute position specified by POSITION

REV. A 3 -=18

MAN2604 FILE SYSTEM SUBROUTINES

(1) and POSITION(2) after reading and
writing

The MODE subkeys are shown in the following table:

MODE Octal Value Meaning
—_— 9 Reads or writes NWORDS
PCONV 400 Reads or writes a convenient number of

words; less than or equal to NWORDS

The meaning of the remaining parameters in a call to PRWFIL are as
follows:

FUNIT A file unit number 1 to 16 for PRIMOS III and IV
(1 to 15 for PRIMOS II) upon which a file has been
opened by a call to SEARCH or a command.

PRWFIL actions are performed on this file unit.

BUFFER Reading or writing is initiated at BUFFER.
Note that BUFFER is obtained through the
integer function LOC.

NWORDS If the mode subkey is @, NWORDS is the number
of words to be transferred to or from a file unit
and a user buffer. If NWORDS is @, no words
are transferred.

If the MODE subkey is PCONV, NWORDS is the
maximum number of words to be transferred.

The number actually transferred is

a number between 1 and NWORDS that is convenient
and fast for PRWFIL to transfer. If NWORDS is @,
no words are transferred. The user can establish
how many words were transferred from ERRVEC(2) .

For either mode, NWORDS may be between @ and
65535.

POSITION If the POSKEY is PREREL or POSREL, POSITION
is a single signed integer word for relative posi-
tioning. Positioning is forward and backward
from the file pointer, depending on the POSITION
sign. If POSITION is @, no positioning is done.

If the key is PREABS or POSABS, POSITION is a two-word
integer array (V-record-number, word-number) for
absolute positioning. If POSITION is (@,0)

(both values 0), the file pointer is moved to

the beginning of the file.

3 - 19 January 1977

SECTION 3 MAN2604

ALTRTN An integer variable assigned the value of a label
in the user s FORTRAN program to be used as an
alternate return in case of uncorrectable errors.
If the argument is @ or omitted, an error message
is printed and control returns to PRIMOS.

If an error 1is encountered and control goes to ALTRTN, ERRVEC(l) is
set to the error type. This is a two-character code as follows:

Code Message Meaning

PD PRWFIL UNIT NOT OPEN Bad key, or file unit not open
for read/write

PE PRWFIL EOF End-of-file reached on read or
position
PG PRWFIL BOF Beginning of file reached on

read or position

DJ DISK FULL No room left on disk

A user obtains ERRVEC through a call to GETERR, which is described in
this section. A user may wish to handle one type of error and have the
system type all other error messages and return to PRIMOS II or III.
The user can tell PRERR to print the error message that would have been
printed without ALTRTN.

On a PRWFIL EOF or PRWFIL BOF error, ERRVEC(2), is set to the number of
words left to be transferred in the read or write requests. On all
normal returns from PRWFIL, ERRVEC(3) and ERRVEC(4) are set to the
file pointer of the file as a two-word array (record-number, word-num-
ber). On a call with the PCONV subkey, ERRVEC(2) is set to the number
of words read.

On a DISK FULL error, the file pointer is set to the value it had at
the beginning of the call. The user may, therefore, delete another
file and restart the program by typing START. This feature works only
with PRIMOS III and 1IV.

During the positioning operation PRWFIL, PRIMOS maintains a file point-
er for every open file. Because a file may contain more than 64,535
words, the largest unsigned integer that can be represented in a 1l6-bit
word, the file pointer occupies two words. The method of representa-—
tion chosen is two words, the first of which is the V-record number and
the second of which is a word number. Each V-record contains 440 words
of data so the word number has a range of @ to 439. The V-record num—
ber has a range of @ to 32767. When a file is opened by a call to
SEARCH, the file pointer is set so that the next word read is the first
word of the file. The position pointer contains V-record @, word 6, or
briefly (8,0). If the user calls PRWFIL to read 490 words and does no
positioning, at the end of the read operation the file pointer is

REV. A : 3 - 20

MAN2604 FILE SYSTEM SUBROUTINES

(V-record 1, word 50) or briefly (1,50). The V-record size (440) is
constant for all disks and does not correspond to the physical record
size.

A call to read or write N words causes N words to be transferred to or
from the file, starting at the file pointer in the file. Following a
call to transfer information, the file pointer is moved to the end of
the data transferred in the file. Using POSKEY of PREABS or POSABS,
the user may explicitly move the file pointer to (record number, word
number) before or after the data transfer operation. Using a POSKEY
of PREREL or POSREL, the user may explicitly move the file pointer
forward POSITION words from the current position, if POSITION is
positive. Using a POSKEY of PREREL or POSREL, the user may move the
file point backward POSITION words from the current position, if
POSITION is negative. The maximum position that can be moved in the
call is therefore plus or minus 32767 words. Positioning takes place
before or after the data transfer, depending on the key. If NWORDS is
@ in any of the calls to PRWFIL, no data transfer takes place, so
PRWFIL does only a pointer position operation. On normal returns from
PRWFIL, ERRVEC (3) and ERRVEC (4) contain the file pointer as (record
number, word number) .

The MODE subkey of PRWFIL is most frequently used to transfer a speci-
fic number of words on a call to PRWFIL. In these cases, the MODE is @
and is normally omitted in PRWFIL calls. In some cases, such as in a
program to copy a file from one file directory to another, a buffer of
a certain size is set aside in memory to hold information, and the file
is transferred a buffer full at a time. 1In the latter case, the user
doesn’t care how many words are transferred at each call to PRWFIL, so
long as the number of words is less than the size of the buffer set
aside in memory.

As the user would generally prefer to run his program as fast as
possible, the PCONV subkey is used to transfer NWORDS, or less in the
call to PRWFIL. The number of words transferred is a number convenient
to the system, and therefore speeds up program run time. The number of
words actually transferred is put in ERRVEC (2). For an example of
PRWFIL use in a program, refer to Appendix C. -

*kkkkkkkkk

* RECYCL *
Kok kdkkkhkKk

The RECYCL subroutine is called under PRIMOS III to tell the system to
cycle to the next user. It is a "I have nothing to do for now" call.
Under PRIMOS II, RECYCL does nothing.

The calling sequence is:

CALL RECYCL

3 - 21 Januar& 1977

SECTION 3 MAN2604

kkkkkkkkkk

* RESTOR *
Kk kxxhhdkk

RESTOR has the same effect under program control as the RESTORE com—
mand.

The calling sequence is:

CALL RESTOR (Vect, Filename, Altrtn)
RESTOR performs the inverse of the SAVE operation. The SAVEd parame—
ters for a Filename previously written to disk by SAVE are loaded into
the nine-word array VECT. The program itself is then loaded into
high-speed memory, using the starting and ending address provided by
VECT (1) and VECT (2).

If an error is encountered and control goes to Alrtrn, ERRVEC(1l) is
set to the error type as follows:

Code Message

SH Name NOT FOUND
ST UNIT IN USE
SI Name IN USE
SL NO UFD ATTACHED
SX NO RIGHT
PE PRWFIL EOF
*kdkkkkkkk
* RESUME *
dhkkkhkkkkhkk

RESUME has the same effect under program control as the RESUME command
The calling sequence is:

CALL RESUME (Filename)

REV. A 3 - 22

MAN2604 FILE SYSTEM SUBROUTINES

kkkkkkkkkk

* RREC *
Kk kk ko kok

Subroutine RREC reads one disk record from a disk into a buffer in mem-
ory. Before RREC is called, the disk must be assigned by the PRIMOS
IIT or IV ASSIGN command and DSINIT must be called to initialize the
disk.

The RREC routine is normally used only by system utilities such as
FIXRAT, MAKE, and COPY.

The calling sequence is:
CALL RREC (LOC (Buffer), Length, N, Ra, Pdisk, Altrtn)
where:

Buffer is an array into which the N words from record Ra
will be transferred.

Blen is an array of dimension N giving a list of buffer
lengths (number of words) .

N bits 9-16 must be 1.
bit 1 set means do current record address check,
bit 2 set means ignore checksum error,

bit 3 set means read an entire track beginning Ra into

a buffer 3520 words long, beginning at the buffer pointed
to by Bptrs (1). (This feature may be used only if

RREC is running under PRIMOS II and is reading a driver
connected to the 4001/4002 controller and is a

32-sector pack.)

bit 4 set means format the track. This bit
is only significant for storage module
disks.

Ra is the disk record address. Legal addresses depend on
the size of the disk.

3 - 23 January 1977

SECTION 3

Pdisk

MAN2604

Size Ra Range
Floppy disk 0-303
1.5M disk pack 0-3247
3.0M disk pack 0-6495
30M disk pack ?-64959

128K fixed-head disk 0-255
256K fixed-head disk p-511
512K fixed-head disk P-1023
1024K fixed-head disk 0-2047

is the physical disk number of the disk to be read.
Pdisk numbers are the same numbers available for use in
the ASSIGN and STARTUP commands.

Altrtn is an integer variable in the user’s program to be used

as an alternate return in case of uncorrectable disk
errors. If this argument is @ or omitted, an error
message 1is printed.

If an error is encountered and control goes to Altrtn, ERRVEC is set
as follows:

Code

ERRVEC (1)
ERRVEC (2)

ERRVEC(1)
ERRVEC(2)

See The

Message Meaning
= WB On supervisor terminal: 1@ times Disk hardware
=0 DISK RD ERROR Pdisk Ra Status WRITE PROTECT

error

On user terminal:

UNRECOVERED ERROR
= WB On user terminal: 10 times Current record
= CR DISK RD ERROR Pdisk Ra Status address error

followed by
UNRECOVERED ERROR

Computer Room User Guide (MAN 2603) for a description of

status error codes.

REV. A

NOTES:

Length must be between @ and 448 unless Pdisk is a storage
module, in which case Length must be between # and 1840. If
this number is not 448 and Pdisk is 20-27 (diskette), a
checksum error is always generated; bypassing can be
accomplished by setting N bit 2 = 1. No check is made for
legality of Ra.

On a DISK NOT READY, RREC waits for the disk to become ready

under PRIMOS III or IV without printing a message. Under
PRIMOS 1II, RREC prints a single error message and waits for

3 - 24

MAN2604 FILE SYSTEM SUBROUTINES

the disk to become ready.

On any other read error, an error message is printed at the
system terminal, followed by a seek to cylinder zero and a
reread of the record. If 10 errors occur, the message
UNRECOVERED ERRCR is typed to the user or Altrtn is taken.

The routine is not available through the FORTRAN library.

3 - 25 January 1977

SECTION 3

kkkkkkkkkk

* SAVE *
Fkkkkkkdkk

MAN2604

SAVE has the same effect under program control as the SAVE command.

The calling sequence is:

CALL SAVE (Vect, Filename)

The user sets up a nine-word vector VECT before calling SAVE. VECT(1)
must be set to an integer which is the first location in memory to be
must be set to the last location to be saved. The
rest of the vector may be set up at the programmer ‘s option.

saved, and VECT(2)

VECT (3)
VECT (4)
VECT(5)
VECT(6)
VECT(7)
VECT (8)

VECT (9)

P Register
A Register
B Register
X Register
Keys
Spare

Spare

Iocation
7
1

SAVE writes, to the named disk file, the nine-word vector VECT, follow-
ed by the memory image starting at VECT(1) and ending at VECT(2).

REV. A

26

MAN2604 FILE SYSTEM SUBROUTINES

Fededede ke ke ke ke ok

* SEARCH *
Kk ke kK kKKK

For some program examples that show the use of SEARCH, refer to
Appendix C.

Definition of SEARCH

SEARCH is used to connect a file to a file unit (open a file) or
disconnect a file from a file unit (close a file). After a file is
connected to a unit, PRWFIL and other routines may be called, either to
position the current-position pointer of a file unit (file pointer) or
to transfer information to or from the file (using the file unit to
reference the file).

Opening a File

On opening a file, SEARCH specifies 1) allowable operations that may
be performed by PRWFIL and other routines (these operations are read
only, write only, or both read and write); 2) where to look for a
file or where to add the file, if the file does not already exist; and
3) whether the file is to be opened for writing only or both reading
and writing. SEARCH either specifies a filename in the currently
attached user file directory or a file unit number on which a segment
directory is open. 1In the segment directory reference, the file to be
opened or closed has its beginning disk address given by the word at
the current position pointer of the file unit.

SEARCH Actions

On creating a new file, the user specifies to SEARCH the file type of
the new file.

The subroutine SEARCH may be used to pétﬁorm actions other than opening
and closing a file. SEARCH may delete'a file, rewind a file unit, or
truncate a file. -

Upon opening a file, SEARCH sets the file pointer to the beginning of
the file. Subroutines PRWFIL and others cause information to be trans-
fered to or from the file unit, starting at the file pointer. After
the transfer, the pointer is moved past the data transferred. A call
to SEARCH to rewind a file causes the file pointer to be set to the
beginning of the file. Subsequent calls to PRWFIL and other routines
cause information transfer to occur as if the file had just been
opened. A call to SEARCH to truncate a file causes all information
beyond the file pointer to be removed from the file. This call is
useful if one is overwriting a file with less information than was
originally contained in the file.

3 - 27 January 1977

SECTION 3 MAN2604

Subroutine Call

SEARCH is used as in the following call:
Format:

CALL SEARCH (KEY, NAME, FUNIT, ALTRTN)
KEY is composed of three subkeys that are combined additively: ACTION,
REFERENCE, and NEWFILE. Not all subkeys are required on every call,
and subkeys with values of zero can be omitted. The SEARCH call may
therefore be represented as:

CALL SEARCH (ACTION+REFERENCE-‘I-NEWFILE, NAME, FUNIT, ALTRTN)

All calls require an ACTION subkey. The ACTION subkeys are shown in
the following table:

ACTION Octal Value Meaning

OPNRED 1 Open NAME for reading on FUNIT

OPNWRT 2 Open NAME for writing on FUNIT

OPNBTH 3 Open NAME for both reading and writing
on FUNIT

CLOSE 4 Close file by NAME or by FUNIT

DELETE 5 Delete file NAME

EXIST 6 Check to see if file exists.

REWIND 7 Rewind file on FUNIT

TRNCAT 10 Truncate file on FUNIT

CNGACC 1060 Change access of file to FUNIT

The REFERENCE subkeys are shown in the following table:

REFERENCE Octal Value Meaning

UFDREF [} Searches for file NAME in the current
user file directory (UFD) (as defined by a
previous ATTACH) and perform the action
in the ACTION subkey on the specified file.

SEGREF 10 Performs the action specified in the ACTION
subkey on the file with the location
indicated by the file pointer designated
within the array NAME(1).

This file unit must be an open
segment directory.

Only those calls to SEARCH that reference a file in a UFD or segment

directory need the reference key. Calls that reference file units
do not need this key.

REV. A 3 - 28

MAN2604 FILE SYSTEM SUBROUTINES

The following table lists the NEWFIL subkeys:

NEWFIL Octal Value Meaning
NTFILE] New threaded (SAM) file
NDFILE 2000 New directed (DAM) file
NTSEG 4000 New threaded (SAM) segment directory
NDSEG 6000 New directed (DAM) segment directory
NEWUFD 10000 New User File Directory (SAM)

Only those calls to SEARCH that generate a new file require a NEWFIL
subkey. On other calls, this subkey is ignored.

The name of the remaining parameters in a call to SEARCH are as
follows:

NAME If the reference subkey is UFDREF, NAME is either a
six-character Hollerith expression or the name of a three-word
array that specifies a filename (existing or not).

If the reference subkey is UFDREF and NAME(1l) is -1, the
current UFD is opened. NAME = -1 must be used only in
configuration with ACTION subkeys 1, 2, or 3. Owner status
of the current UFD is required.

If the reference subkey is SEGREF, NAME is a file unit(1-16;
1-15 under PRIMOS II) on which a segment directory is open.

On calls in which the ACTION key requires only a file unit to
specify the file to be acted on, NAME is ignored and, usually,
specified as 0.

FUNIT On calls that require a file unit number, FUNIT is a number
1 to 16 (1-15 under PRIMOS II). On calls that require no unit
number, FUNIT is ignored and usually specified as 1.

ALTRTN ALTRIN is an integer variable assigned the value of a label
return in the user s FORTRAN program to be used as an alter-
nate in case of uncorrectable errors (e.g., attempting to
open a file that is already open). If this argument is @ or
omitted, an error message is printed; control returns to
PRIMOS if any error should occur while using SEARCH.

Error Messages

If an error is encountered and control goes to ALTRIN, ERRVEC(1) is
set to a two-character code as follows:

3 - 29 January 1977

SECTION 3

Code Message

SA BAD CALL TO SEARCH
SD UNIT NOT OPEN

SD Name OPEN ON DELETE
SH Name NOT FOUND

SI Name IN USE

SI UNIT IN USE

SK UFD FULL

SL NO UFD ATTACHED

SQ SEG-DIR ERROR

SX NO RIGHT

DJ DISK FULL

*SEG-DIR ERROR:

Meanin

MAN2604

YMeaning

Some parameter in call is invalid
Attempt to truncate or rewind
a file on a closed unit

Self-explanatory

File Name not in UFD
File Name is already open
File unit is already open
Self-explanatory
Self-explanatory
*SEG-DIR ERROR

Access rights violation
No room left on disk

1. If attempting to open an existing file in the

segment directory, *SEG-DIR ERROR means:

a. The segment directory unit specified in NAME
is not open for reading.

b. The file pointer of the segment directory unit

is at end of file, and therefore points to no disk

address.

points to a @ entry.

c. The file pointer of the segment directory unit

2. If attempting to open a new file in the current

When a user obtains ERRVEC through a call to GETERR (described in this
section), control is to go to ALTRTN. A user may wish to handle one
type of error and have the system print all other error messages and

return to PRIMOS. The user can call PRERR to print the error message

segment directory, *SEG-DIR ERROR means:

The segment directory unit specified in NAME is

not open for both reading and writing.

that would have been printed without ALTRTN.

ERRVEC (2)

is set to a file type on a nommal return of a call to SEARCH

to open a file, using action keys of OPNRED, OPNWRT, or OPNBTH.
codes are:

REV. A

MAN2604 FILE SYSTEM SUBROUTINES

ERRVEC (2) File Type

Threaded file (SAM)

Directed file (DAM)

Threaded segment directory (SAM)
Directed segment directory (DAM)
User File Directory (SAM)

B WS

Access Rights and Call to SEARCH

Under PRIMOS III and IV, the access rights of files are checked when a
user attempts to open a file through a call to SEARCH. Under PRIMOS
II, access rights are not checked.

A SEARCH call that creates a new file gives that file default access
rights. Defaults access rights are: owner has all rlghts- nonowner
has no rights (refer to Section 3 of the Interactive Users’ Guide (MAN
2602) for a detailed description of access).

Adding and Deleting Files

For references to user file directories, a call to SEARCH to open a
file for writing or both reading and writing causes SEARCH to 1look in
the current User File Directory for the file. If the file is not found
in the UFD, the file name and beginning disk address of a new file is
appended to the UFD, and the new file is opened for the appropriate
activity. Currently, UFD’s are restricted to 72 files. An attempt to
open a new file to a full UFD generates the message: UFD FULL. A call
to delete a file from a UFD removes the name and beginning disk address
from the UFD and shortens the UFD.

For references to segment directories, a call to SEARCH to open a file
for writing or reading and writing causes SEARCH to examine the word at
the file pointer of the referenced segment directory file unit. If the
word is not =zero, SEARCH considers the word to be a beginning record
address of an already created file. . SEARCH opens the file for writing
or reading and writing. If the word is 2zero, SEARCH writes the
beginning disk address of a new file in that word and opens the file.
If the file pointer is positioned at the end of file, the file is
lengthened one word and SEARCH writes the beginning disk address of a
new file in that word, and opens the file. A call to delete a file
from a segment directory causes the beginning disk address of a file at
the file pointer of the segment directory to be replaced by zero. The
segment directory is not shortened. An attempt to open a file for
readlng in a segment directory when its file pointer points to zero or
is at end-of-file generates a SEG-DIR error. In no case is the file
pointer of a segment directory moved. Generating a segment directory
and filling it with files is an involved process; examples are
presented in Appendices C and D.

3 - 31 January 1977

SECTION 3 MAN2604

Closing and Opening Files

On a call to close a file, SEARCH attempts to close file NAME and
generates an error message or goes to the alternate return if NAME is
not found. FUNIT is ignored unless NAME is @#. If NAME is @, SEARCH
ensures that FUNIT is closed. That is, it closes FUNIT if FUNIT is
open but does not generate an error message if the file unit is closed.

Example:
CALL SEARCH (1, ‘OBJECT ", 1, $50)

Searches for a file, OBJECT, in the current UFD and opens it for
reading; if file is not found, return via statement 58 is made.

The user 1is allowed to open the current UFD for reading via a call to
SEARCH. The calling sequence for this feature is:

CALL SEARCH (1, -1, Funit, Altrtn)

This call opens the current UFD for reading on Funit. The user must
have owner access rights to the UFD; i.e., the owner password must
have been given in the most recent call to ATTACH (or ATTACH command) .
Control goes to Altrtn if there is no UFD attached, if Funit is already
in use, or if the user does not have owner rights to the UFD.

Changing the Access of a File

A user may change the access of a file that is open on FUNIT to
OPNREAD, OPNWRT, or OPNBTH.

Example:
CALL SEARCH (CNGACC + OPNWRT, @, FUNIT, Q)

Access rights are checked to determine if the user has a right to
accomplish the requested operations.

Checking the Existence of a File

If the user desires to find out if a certain file exists in the current
UFD, the user can call SEARCH with the EXIST key. The file unit should
be specified as 1. The file is not affected in any way and access
rights are not checked.

Sharing Files

Two or more users may be attached to the same UFD at the same time.
Furthermore, two or more users may have the same file open for reading,
and they may be reading from the same file at the same time. File
interlocks are provided to prevent one user from opening the file for
reading or writing while another user has the file open for writing.
File interlocks also prevent one user from opening the file for writing

REV. A 3 - 32

MAN2604 FILE SYSTEM SUBROUTINES

while another user has the file open for reading. If these interlock
situations are detected by SEARCH, the user gets the error message:
FILE IN USE. ‘The file interlocks also apply to the case of the same
user attempting to open thefile on different file units (FUNITS).

3 - 33 January 1977

SECTION 3 MAN2604

kkkkkkkkik

* TIMDAT *
e de ok ke dede ok ok

The calling sequence is:
CALL TIMDAT (Array, Num)

TIMDAT returns the date, time, CPU time, and paging time used since
LOGIN, the users unique number on the system, and his login UFD name in
an array as follows:

Array (1) Two ASCII characters representing month. Example: 11
(2) Two ASCII characters representing day. Example: 30
(3) One ASCII character representing year followed by

a space. Example: 4
(4) Integer time in minutes since midnight.
(5) Integer time in seconds.
(6) Integer time in ticks.
(7) Integer CPU time used in seconds.
(8) Integer CPU time used in ticks.
(9) Integer disk I/O time used in seconds.
(19) 1Integer disk I/O time used in ticks.
(11) 1Integer number of ticks per second.
(12) User number.
(13) Six-character login name, left-justified.
(14)
(15) Example: MSMITH

Num words of Array are set. This routine runs only under PRIMOS III
and IV.

REV. A 3 - 34

MAN2604 FILE SYSTEM SUBROUTINES

*hkkkkkkkkk

* TSAMIC *
Fedek e deok e ek ok

The format is:
CALL AMIC (Protocol,Line,Config,Iword,Altrtn)

The arguments to the TS$AMIC subroutine have the following signifi-
cancee.

Protocol

After the system is running, users may assign the AMIC lines through
the following commands:

ASSIGN AMIC [Protocol] Line [Config]
UNASSIGN AMIC Line

Line number (@ to 17 octal for PRIMOS II, @ to 37 octal for the 31-user
PRIMOS III and IV) is assigned to the user, and I/0 protocol and. the
line configuration word is established for Line. The following proto-
cols are available:

TTY -~ terminal protocol

TTYHS - high-speed terminal protocol
TRAN - transparent protocol

TRANHS - high-speed transparent protocol
TTYNOP - disconnects terminal

Terminal protocol 1is used by lines controling interactive terminals.
With terminal protocol, all input from the terminal is echoed if the
line is set for full duplex and, in addition, a carriage return is
echoed following carriage return. Bit 8 of each character is forced
on. Note that .CTRL. P or BREAK does not cause the AMIC input/output
program to QUIT. These characters are significant only at a PRIMOS III
or IV user terminal. Both characters are ignored. A carriage return
input by the terminal is transmittéd as a new line to the program re-
questing input. Input is no longer echoed if the 1line input buffer
becomes full. Terminal protocol is identical to that protocol used to
control PRIMCS IIT and IV user terminals, except for the action of
.CTRL. P and BREAK.

Transparent protocol is used by lines connected to peripheral devices
or other computers. With transparent protocol, no input is echoed, no
response is made to the input of a line feed or carriage return, and
there is no transformation of carriage return to line feed.

The high-speed protocols are used by lines connected to peripheral de-
vices that can run at greater than standard terminal speeds. These
protocols are the same as those describedabove with one exceptiong:
for output only, the line’s character time interrupt flag is set when

3 - 35 January 1977

SECTION 3 MAN2604

the output buffer contains more than 4@ characters, and it remains set
until the output buffer contains less than 40 characters. The proto-
cols have a burst mode effect on the output device.

With a line using the high-speed protocols, a drastic increase in sys-
tem overhead can result - depending upon the baud rate and the number
of lines in the group. The user must be careful not to assign proto-
cols to 1lines that normally have their character-time-interrupt flag
always set; as, for example, the last line in each group of lines. If
the protocol is not given, the transparent protocol is assigned by the
operating system. The line number is specified in octal and must be
equal to or less than the parameter Nuser.

Line

Line, the AMIC line number, is an octal number from 1 to 17.

Config

For other details about the Config argument refer to the Computer Roam
User Guide description of the AMIC command.

Lword

The optional parameter Lword is an octal parameter divided into a num-
ber of significant parts. If Bit 1 of Iword is set, the line is half
duplex; if Bit 1 of Iword is reset, the line is full duplex. Bit 2
set indicates that LINE FEED is not to be echoed for C2RRIAGE RETURN.
Bit 2 reset indicates that LINE FEED is to be echoed for CARRIAGE
RETURN. Bits 8 through 15 of Lword contain the number of the user to
which the AMIC is connected. This user number is the number printed at
the terminal upon LOGIN or LOGOUT, or printed by the STATUS command
indicating user number. Although STATUS prints the User Number in dec-
imal, the user must specify the User Number in octal when specifying
this value in the AMIC subroutine. If the rightmost eight bits of
Iword are zero, the AMIC line is not associated with any user space and
is available to be assigned. Altrtn Specifies an alternate return to
be taken in case of error.

The TSAMIC subroutine may be used to configure ASSIGNed AMIC 1lines as
well as terminal AMIC lines.

REV. A 3 - 36

MAN2604 FILE SYSTEM SUBROUTINES

kkkkkkkkkk

* T$SIC *
Fedkok ek ke kok

The driver TSSIC is available on the master disk and provides user
control of a synchronous multi-line communications device.

Control

The driver is loaded in supervisor space. A user program communicates

with the driver via FORTRAN-format calls to T$SIC@. The driver commu-
nicates with the user address space via buffers in the user address
space specified by the user program. The data structure that is used
by the driver is referred to as the control block. The control block
is created by the user program in the user address space. It contains
pointers to the user status buffer, to buffers that contain a message
to be transmitted, or to buffers set to receive a message. The details
of the data structure are summarized in the subsequent paragraphs. A
special control block is required for each line.

The communications lines must be assigned to a user space before they
can be used. The proper command is:

!
|
ASSIGN SMIC |
l

whoHS

The ASSIGN command is given at the user terminal. One or more lines
may be assigned to a user space.

Timing

The user space program runs asynchronously with message transfers. A
call to T$SICO returns immediately after executing the control function
required. The progress of the communication must be monitored by the
user program through examination of the user space status buffer con-
tents. For interpretation of the status codes, see the Prime Computer
User Guide for Synchronous Multiline Controller (UG-0001, Rev. 2).

Hardware Requirements

The SMIC driver assumes the presence of a 520X Synchronous Multi-line
Controller with a 5246 SMIC option. The address of the controller is
568.

Software Requirements

PRIMOS 1III: File TS$SIC1 in UFD DVMSR3>DVMCMD>DVMBIN on Master Disk
Vol. II is a PRIMOS III executable memory image file with the
synchronous 1line controller option. It can be created by file C LS16

3 - 37 January 1977

SECTION 3 MAN2604

(see UFD DVSRC on Master Disk Vol. II). In particular, file TMAIN
(UFD DVSRQC) must be assembled with the B-register set to 200048 and
the modules that comprise T$SLC@ (refer to the SMIC User Guide) must
be locked in memory.

There is a memory conflict among special drivers: the same memory and
table entries are used by T$SIC@, the Gould Printer/Plotter code, and
the digital input/output controller code.

User Level Software Responsibilities: a user address space program is
given direct control of most of the functionality of the SMIC control-
ler; therefore, the prospective user is assumed to know the User
Guide. A specific limitation is that no more than four message blocks
may be chained at a time in a given direction (transmit or receive)
for a given line.

Controller status is collected as it is produced. This status is moved
from interrupt response code buffers in the supervisor address space to
spaces in user buffers at the next possible PRIMOS III cycle. However,
the user bus/program does not get a chance to execute and act on the
reported status until its turn in the round-robin cycle. If system
usage is heavy enough, there will be excessive delay in line response
by the user-level program.

All details of implementation of a communications protocol are left to
the user program with one exception: the driver program automatically
disables an active transmitter when the LAST CHARACTER OUT status is

detected for that line.

Information in the user program’s status buffer consists of all status
words received from the controller plus two special codes. One is a
code indicating the time at which the ILAST CHARACTER OUT (LCT) status
was detected by the driver interrupt code. This time is taken from
VCLOKo and always inserted following a IAST CHARACTER OUT status word
in the status data stream. The value can be related to the (seconds,
ticks) time value obtained from a call to TIMDAT as follows:

ICT time (sec) = floor [(status time - wqutmo) /clock
ICT time (tics) = remainder [LCT time (sec)

where: vqutmo = -68 clock
clock = buf (11) of call to TIMDAT

The status time is given modulo ("one minute")

The other status code indicates that the stream of controller status
data has overflowed either an internal supervisor buffer or the user
program status buffer. If this is detected, status information has
been lost. The status buffer overflow code is the integer -1 (supervi-
sor buffer) or -2 (user buffer).

REV. A 3 - 38

MAN2604 FILE SYSTEM SUBROUTINES

User Calls to the SMLC

The form of the user call to the supervisor is (in FORTRAN) :
CALL TSSIC@® (Key, Line, Loc (Block), Nwds)
where:
1 < Key < 5;
@ < Line < 3;

Loc (Block) is the memory address of a buffer
used in the call;

Nwds is the word count of Block.

The values and meaning for Key are as follows:

Key Meaning
1 User control block is undefined. Status information is

no longer moved to user program space, and controller state
is unaltered. Requires two arguments
(key, line).

2 Control block, which is defined and structured
as in Table 3-1, defines an area to store
status information and, optionally, a message chain for
reception or transmission.

3 Buffer block contains four or five data words to be sent
to the controller. These control words configure the
line, set line control, define the programmable sync
character and (optionally) set the internal programmable
character-time clock. Refer to Table 3-1 for the block
structure.

4 Buffer block contains one word to be used as the next
data set control word. See "OTA @1XX" in the SMIC
User Guide.

5 Buffer block contains one word which is used as the next
receive/transmit enable word. See "OTA 14XX" in the
SMIC User Guide. Half-duplex looping for odd-even line
pairs is not allowed.

3 - 39 January 1977

SECTION 3 MAN2604

Table 3-1 Structure of SMIC Hardware Configuring Block

Word Meaning

0 Receiver line configuration word. See "OTA @@XX" in the
SMIC User Guide.

1 Transmitter line configuration word. See "OTA @0XX" in the
SMIC User Guide.

2 Line control word. See "OTA @2XX" in the SMIC User Guide.

3 Synchronizing characters. See "OTA @3XX" in the SMIC
User Guide.

4 Clock control constant. This word is optional. Note that
this word controls the clock rate for all lines on the
controller. See "OTA 17XX" in the SMIC User Guide.

REV. A 3 - 49

MAN2604

kkkkkkhkkkikk

* UPDATE *
Kekdekdkdhkk

The calling sequence is:
CALL UPDATE (Key 9)
The possible value for Key is:

Value Meaning

1 Update CUFD (current UFD); DSKRAT
buffers to disk, if necessary; and
undefine RAT in memory.

This call is normally used by users.

FILE SYSTEM SUBROUTINES

January 1977

SECTION 3 MAN2604

kkkkkkkkkk

* WREC *
kkkkkkkkkk

Subroutine WREC writes the disk record to a disk from a buffer in mem-
ory. The arguments and rules of the WREC call are identical to those
of RREC except for bits 1 and 2 of N, which have no meaning on write.
For a call to write a record on the diskette, the buffer length Length
must be 448 words.

The calling sequence is:

CALL WREC (LOC (Buffer), Length, N, Ra, Altrtn)
The meaning of the parameters is the same as described under RREC in
this section, except that the function of the command is to write
rather than read the specified records. The user of WREC is
responsible for being careful to write only on areas of the disk that
do not contain significant user or operating system information.
An attempt to write on a write-protected disk generates the message:

DISK WT ERROR Pdisk Ra Status
WRITE PROTECT

on the supervisor terminal and the message:

UNRECOVERED ERROR
at the user terminal. ERRVEC(1l) will contain error code WB, unless
Altrtn is taken. Other write errors are retried ten times in a manner

similar to read errors (refer to RREC). This routine is not available
through the FORTRAN library.

REV. A 3 - 42

MAN2604 FILE UTILITY COMMAND (FUTIL)

SECTION 4

FILE UTILITY COMMAND (FUTIL)

INTRODUCTION

FUTIL is a file utility command that provides commands for the user to
copy, delete, and list files and directories. FUTIL has an attach com-
mand that allows attaching to subdirectories by giving a directory
treename from either the MFD or the home UFD to the subdirectory.
FUTIL allows operations not only with files within User File
Directories (UFD’s), but also files within segment directories. For
complex operations, FUTIL may be run from a command file.

FILE STRUCTURE
A user should be familiar with the Prime file structure (refer to

Section 2, entitled "File Structures"). Figure 4-1 is a sample file
structure.

4 - 1 January 1977

SECTION 4

DSKRAT

REV. A

MAN2604
ROOT
MED BRANCH 1EVEL 1
BOOT UFDL UFD2 LEVEL 2
SUFD11 SUFD12 SUFD22 | LEVEL 3
FILEA FILEB FILEC | LEVEL 4
DIRECTORY TKEE
Figure 4-1. Sample File Structure

MAN2604 FILE UTILITY COMMAND (FUTIL)

The PRIMOS file structure on any disk pack is a tree structure where
the MFD is the root or trunk of the tree, the links between directories
and files or subdirectories are branches, and the directories and files
are nodes. A directory tree consists of all files and subdirectories
that have their root in that directory. 1In Figure 4-1, the directory
tree for UFDl is circled. An MFD directory treename consists of a list
of directories and passwords necessary to move down the tree from the
MFD to any directory. For example, the MFD treename for SUFD1 is:

MFD PASSWORD > UFD1 PASSWORD > SUFD1 PASSWORD

The character ">" separates directories in the treename and suggests
that one is proceeding down a tree structure.

An MFD directory treename may optionally omit the MFD and include the
logical disk number of the pack or the packname.

Examples:

UFD1 UFD1PASSWORD > SUFD11 SUFD11PASSWORD
< 1> UFDl UFDIPASSWORD > SUFD1l SUFD11PASSWORD
< TDISK > UFD1 UFD1PASSWORD > SUFD1l SUFDI11PASSWORD

The logical disk number may optionally foliow the first UFD as follows:
UFD1 UFD1PASSWORD 1 > SUFD11 SUFD11PASSWORD

If no pack name or disk number is given, the logical disk referred to
is the lowest numbered logical disk in the MFD in which UFDl appears.
A user, by means of the ATTACH or PRIMOS III or IV LOGIN command, may
specify a particular User File Directory in the file structure as the
home UFD. Additional FUTIL ATTACH commands may refer to either the MFD
or the home UFD as the starting point. If the logical disk name is
specified as *, the MFD of the current logical disk is scanned for
UFD1. .

Example:
If the home UFD is UFD1, the-home UFD pathname to SUFD1l would be:
* > SUFD1l SUFD11PASSWORD

"£" represents the home UFD. The home UFD treename to UFD1 is simply
*, This form of tree name is also referred to as a relative pathname.

A User File Directory is a file that consists of a header and a number
of entries (#-72). Each entry consists of 1- to 6-character filenames,
protection attributes of the file, and a disk record address pointer to
the file. A segment directory is a file consisting of an unlimited
number of entries, each entry being a disk record address pointer to
the file. A null pointer indicates no file at that entry. To refer to
a particular file in a segment directory, a user must specify the file

4 - 3 January 1977

SECTION 4 MAN2604

position of the entry in the segment directory (see Section 3 (PRWFIL)
for details of file positioning). A user may specify the position as
an absolute position (record number, word number) where V-record num-
ber is between # and 32767, and word number is between @ and 439. As
there are 440 data words in each V-record (virtual record), there are
440 files in each segment directory. The first file can be referred to
as (9,0)., the second as (#,1), the 44@th file as (0,439), and the 441st
file as (1,0). The construction (record number, word number) is
referred to as a segment directory filename. In FUTIL, arguments to
the commands are either User File Directory (UFD) filenames or segment
directory filenames, depending on the directory type the file is under,
as are names specified as parameters to the LISTF command of FUTIL.

DESCRIPTION OF FUTIL COMMANDS

To invoke FUTIL, type FUTIL. When loaded, FUTIL prints the prompt
character, >, and awaits a command string from the user terminal. To
terminate long operations such as LISTF, type CIRL P and restart FUTIL
at 1000. A user must type a command followed by a carriage return and
wait for the prompt character before using the next command. The erase
character " and the kill character ? may be used to modify the command
string, as in other operating system commands. In the following de-
scription of commands, underlined letters represent the abbreviation of
the command or argument. [] surround optional arguments. ... means
the previous element may be repeated.

kkkkkkkkkk

* QUIT *
Kkkkkhhkkk

The format is:

QUIT

returns to PRIMOS III or IV.

REV. A 4 - 4

MAN2604 FILE UTILITY COMMAND (FUTIL)

khkkkhkkkkk

* FROM *
kkkhkkhkkk

The format is:
FROM Directory-Treename
where Directory-Treename is of the format:
<Idisk> Directory [Password] [Ldisk]> Directory [Password]...<Packname>

FROM defines the FROM directory in which files are to be searched for
the commands COPY, COPYSAM, COPYDAM, DELETE, LISTF, LISTSAVE, SCAN,
TRECPY, TREDEL, UFDCPY, and UFDDEL. The directory is defined from the
directory treename (see format above). The treename may contain up to
10 directories that can be segment directories as well as User File
Directories. If segment directories are specified, the user must have
read access rights to them. If any error is encountered, the FROM dir-
ectory is set to home UFD. The first directory in the treename may be
*, which refers to the home UFD. The default FROM directory is the
home UFD. Note that use of FROM never changes the home UFD.

The abbreviation for FROM is F.
Examples:
FROM <@> CARLSO

Set FROM directory to CARLSO on logical disk @. CARISO must be in the
MFD on logical disk @ and have a blank password.

FROM CARLSO ABC

Search the MFD on all started disks for CARLSO in logical disk order @
- 17. Set the FROM directory to the first directory encountered named
CARLSO. One of the passwords of CARLSO must be ABC.

FROM <TSDISK> CARLISO > SUBl > SUB2

Set the FROM directory to SUB2. SUB2 must be a directory in SUBI1;
SUBl1 must be a directory in CARLSO; and CARLSO must be a directory in
the MFD on a disk with pack name TSDISK. The directories CARISO, SUB1,
and SUB2 must have a blank password.

FROM *

Set the FROM directory to the home UFD. The home UFD is normally the
last UFD the user has logged into, or attached to with either the
ATTACH or FUTIL ATTACH conmand. If one were logged into CARLSO, the
above command sets the FROM directory effectively to CARLSO. This com~
mand does not have to be given again if the user changes the home UFD.

4 - 5 January 1977

SECTION 4 MAN2604

Furthermore, this command does not have to be given at all unless the
FROM directory has been made something other than the home UFD, since
the home UFD is the default.
Example:

FROM * > SUBl

Sets the FROM directory to SUBl. SUBl must be a directory in the home
UFD and have a blank password.

REV. A 4 - 6

MAN2604 FILE UTILITY COMMAND (FUTIL)

khkkkhkhkkhk

*x TO %
*kdkkkdkkk

The format is:
TO Directory-Treename

TO defines the TO directory in which files are searched for the com-
mands COPY, COPYSAM, COPYDAM, TRECPY, and UFDCPY. The treename may
contain at most ten directories that may be segment directories as well
as UFD’s. 1If segment directories are specified, the user must have
read, write, and delete/truncate access to them. The first directory
in the treename may be the home UFD (*). The default TO directory is
the home UFD. If any error is encountered, the TO directory is set to
the home UFD (*).

The abbreviation for TO is T.

*hdkkkkkkk
* ATTACH *

khkkkkkkkk
The format is:

ATTACH Directory-Treename
ATTACH moves the home UFD to directory defined by Directory-Treename.
The treename may contain at most ten directories. The first directory
in the treename may be *. All directories in the treename must be

UFDs.

The abbreviation for ATTACH is A.

4 - 7 Cannarv 1977

SECTION 4 MAN2604

kkkkkkkkkk

* COPY *
*ekkkdkkkkk

The format is:
CopY FILEA [FILEB] [, FILEC [FILED]] . . .

FUTIL copies FILEA in the FROM directory to FILEB in the TO directory
and optionally FILEC in the FROM directory to FILED in the TO direc-
tory. If FILEB is omitted, the new file is given the same name as the
old file. FILEA and FILEC must be SAM or DAM files and cannot be dir-
ectories. Read access rights are required for FILEA and FILEC. If
FILEB exists prior to the copy, it must be a SAM or DAM file and the
user must have read, write, and delete/truncate access rights to the
target file (FILEB in this case). If FILEB exists, it is deleted;
then FILEA is copied to FILEB. The file type of FILEB will be the same
as FILEA.

The abbreviation for COPY is C.

Examples:
COPY FILEA

copies FILEA in the FROM directory to FILEA in the TO directory.
Copy FILEA , FILEB , FILEC

copies FILEA, FILEB, and FILEC in the FROM directory to FILEA, FILEB,
and FILEC in the TO directory.

COPY FILEA FILEB
copies FILEA in FROM directory to FILEB in TO directory.
COPY FILEAl FILEA2,FILEB1 FILEB2,FILEC1 FILEC2

copies FILEAl, FILEBl and FILEC1 in the FROM directory to FILEAZ,
FILEB2, and FILEC2 in the TO directory.

COopPY (9,0)

In this case, the FROM directory and TO directory must each be segment
directories. FUTIL copies the file at position (#,0) of the FROM dir-
ectory to position (@,0) of the TO directory. There are no access
rights attached to these files, so PRIMOS III and IV check instead the
access rights of the directory. A user cannot set the FROM and TO dir-
ectories if they are segment directories without access rights to them.
No spaces are allowed in the name (0,0).

coey (0,0) (9,1)

REV. A 4 - 8

MAN2604 FILE UTILITY COMMAND (FUTIL)

copies the file at position (@,0) of the FROM directory to position
(6,1) of the TO directory, both of which are segment directories.

dekkk kddkkok kK
* COPYSAM *

kkkkkkkhkhkkk
The format is:
COPYSAM FILEA [FILEB] [, FILEC [FILED]] . . .

The function is the same as COPY but COPYSAM also sets file type of
FILEB and FILED to SAM, instead of copying the type of FILEA and FILEC.

The abbreviation for COPYSAM is COPYS.

Fekokok ke ok kok ok
* COPYDAM *

kkkkkkkhkkikx
The format is:
COPYDAM FILEA [FILEB] [, FILEC FILED] . . .

The function is the same as COPYSAM, but COPYDAM sets file type of
FILEB and FILED to DAM.

The abbreviation for COPYDAM is COPYD.

4 =9 January 1977

SECTION 4 MAN2604

kkkkkkkkkk

* TRECPY *
dkkkkdkkkk

TRECPY is used to copy directory trees. A directory tree consists of
all files and subdirectories that have their root in that directory.

The format is:
TRECPY DIRA [DIRB] [, DIRC [DIRD]]

This command TRECPY copies the directory tree specified by directory
DIRA to directory DIRB, and optionally DIRC to DIRD. DIRB and DIRD
must not exist prior to the TRECPY command. If DIRB is omitted, DIRA
is taken as the name of the directory to be copied to. DIRA and DIRC
must be in the FROM directory; DIRB and DIRD are created in the TO
directory. Read access rights are required for DIRA and DIRC, but no
access rights are required of files or subdirectories within them.

DIRB and DIRD are created with the same directory type and passwords as
DIRA and DIRC, and with default access rights. The names, access
rights, and passwords of all files and subdirectories are also copied.
The abbreviation for TRECPY is TR.
Example:

FROM MFD

TO MFD

TRECPY CARLSO CARNEW

copies the directory tree specified by CARLSO in the MFD to a new dir-
ectory, CARNEW, in the MFD.

REV. A 4 - 10

MAN2604 FILE UTILITY COMMAND (FUTIL)

khkkkkkkkk

* UFDCPY *
kkkkkkkkkk

The format is:
UFDCPY

This command copies all files and directory trees from the FROM direc-
tory to the TO directory. The user must have owner rights in the FROM
directory. Furthermore, all files and directories in the FROM direc-
tory must have read access rights. Files already existing in the TO
directory with names identical to those in the FROM directory are
replaced. The user must have read, write, and delete access rights to
files that are to be replaced.

Directories already existing in the TO directory with names identical
to those in the FROM directory will cause the copy operation to stop.
Files and directories created in the TO directory will have the same
file type as the old files, with the addition of default access rights.
The names, access rights, and passwords of all files and subdirectories
within directory trees being copied are also copied. Other existing
files and directories in the TO directory are not affected unless those
existing files have the same names as files in the FROM directory. 1In
the case of duplicate names, the files in the TO directory are over-
written with the files of the same name in the FROM directory. UFDCPY
is effectively a merge of two directories. Both the FROM and the TO
directory must be UFD’s.

Example:

FROM CARLSO
TO CARNEW
UFDCPY

copies all files and directories from CARLSO in the MFD to CARNEW in
the MFD. Note that, unlike the example for TRECPY, the user has not
specified the MFD as the FROM directory; therefore, he does not need
to know the MFD password. In the example, CARNEW exists prior to the
UFDCPY. With the TRECPY example, CARNEW does not previously exist.

The abbreviation for UFDCPY is U.

4 - .11 ' January 1977

SECTION 4 MAN2604

ok ke kok ke kk ok
* DELETE *

*kkkkkkkkk
The format is:

DELETE FILEA |[FILEB] . . .
Deletes FILEA and optionally FILEB from the FROM directory. FILEA and
FILEB cannot be directories. The user must have read, write, and
delete access rights to each file specified. If FILEA and FILEB are in
a segment directory, read, write, and delete rights are required for
the FROM directory.
There is no abbreviation for DELETE.
Examples:

DELETE FILEA

DELETE FILEA FILEB FILEC FILED

REV. A 4 - 12

MAN2604 FILE UTILITY COMMAND (FUTIL)

kkkkkkkkkk

* TREDEL *
Kkkkkkkkkk

The format is:
TREDEL Dira {[Dirb]

This command deletes the directory tree specified by directory Dira and
optionally deletes Dirb from the FROM directory. Dira and Dirb must be
directories. The user must have read, write, and delete rights to the
Dira and Dirb; however, read, write, and delete rights are not re-
quired for files and subdirectories nested with the Dira and Dirb. For
example, if files named FILEA and FILED are in a segment directory,
read, write, and delete access rights are required for the FROM direc-
tory. Note that the operating system DELETE command must not be used
to delete directories because it does not free the disk space used by
files within the directory for system usage. TREDEL correctly frees
disk space to the system.

There is no abbreviation for TREDEL.

kkkhkkkhkk

* UFDDEL *
dkkkkkkkkok

The format is:
UFDDEL

This command deletes all files and directory trees (specified by direc-
tories) within the FROM directory. User must give the owner password
in the FROM command and have read, write, and delete access to all
files and directories within the FROM directory. These rights are not
required for files and subdirectories nested within the directories in
the FROM directory. '

There is no abbreviation for UFDDEL.

4 - 13 : January 1977

SECTION 4 MAN2604

kkkkhkkkkkk

* LISTF *
Kkkkhkkkkk

The format is:

LISTF [Level] [FIRST] [LSTFIL] [PROTEC] [SIZE] [TYPE]

This command lists the FROM directory treename, the TO directory tree-
name, and all files and directory trees in the FROM directory at the
terminal. LISTF optionally follows each filename by its protection
attributes, size in disk records, and file type.
is given, the list of files is sent to a file named LSTFIL in the home
UFD instead of to the terminal. At a later time, a user may print that
file on a line printer. Ievel is a number specifying the lowest level
in the FROM directory tree structure to be listed.

The following list describes the output.

If the LSTFIL option

(See Figure 4-1).

Level Output
] The FROM directory name
1 The FROM directory and all files

and directories within it (level
1 directories)

All output at level 1 and all files
and directories within level 1
directories

If the level is omitted, the default is 1.

The protection attribute of each file is printed as

Owner-Key Nonowner-Key

These keys are numbers with a range @-7 that have
the following meanings:

NouobhwNhHS

No access allowed

Read access only

Write access only

Read and write access
Delete/truncate only
Delete/truncate and read
Delete/truncate and write
All access allowed

The possible file types are:

SAM for SAM file
DAM for DAM file

REV. A 4 - 14

MAN2604 FILE UTILITY COMMAND (FUTIL)

SEGSAM for SAM segment directory
SEGDAM for DAM segment directory
UFD for User File Directory

If the word FIRST is specified following LISTF, the first line of each
file is printed following the name of the file. The first line is not
printed for files with filenames beginning with B<- or *, since these
files are considered to be object and memory image run files
respectively. The first line of a file might contain useful
information such as creation date, last update, author, or short
description of the file contents.

LISTF traverses the file structure (as shown by the snaked line in
Figure 4-2) generating printed messages in sequence (as shown in the
circles adjoining the snaked line).

The abbreviation for LISTF is L.

When LISTF is used to produce a list of the sample file configufation
shown in Figure 4-2, the output level is set to 3; with the SIZE
option, the printed list appears as follows:

FROM-DIR = * MFD

FROM-DIR = * MFD

TO-DIR

BRGIN MFD 1
DSKRAT 1 BOOT 1

BEGIN UFD 1
BEGIN SUFD11 1

FILEA 1

END SUFD11 2
BEGIN SUFD12 1

FILEB 1
END SUFD12 2
END UFD1 5
BEGIN UFD2 1
BEGIN SUFD2l
FILEC - 1
END SUFD21 2
END UFD2 3
END MFD 11

LISTF, upon encountering a directory, prints the word BEGIN followed by

4 - 15 January 1977

SECTION 4

MAN2604

MFD

DSKRAT

BOOT UFD 1

BOOT

SUFD 11

P

FILEA

REV. A

Figure 4-2.

I____J

SUFD 12

FILEB

UFD 2

BEGIN
UFD 2
y,

SUFD 21

Typical Traverse of Directory Tree

by FUTIL during LISTF.

FILEC

MAN2604 FILE UTILITY COMMAND (FUTIL)

the name of the directory and its size in blocks of 44 data words. On
leaving a directory, LISTF prints END followed by the number of records
used by all files and directories within the directory tree headed by
the directory file. On encountering a file, LISTF simply prints its
name and size, squeezing as many file names as will fit on each line.
LISTF skips a line whenever a directory follows a file or a file
follows a directory. LISTF does not count records in files lower than
the specified level in the FROM directory tree.

In the above example output, the number following MFD, 11, is the total
nunber of V-records used by the MFD directory tree and consists of all
files "and directories on the disk pack. LISTF indents the printed
output one space for each level down in the tree in which the directory
is located. This format makes it easy to understand the relationship
of each directory to other directories in the tree.

A file with @ to 440 words is considered to have one V-record; to 880
words is 2 V-records; etc.

dekedek ko ddkk kK

* LISTSAVE *
Kkkkkdkhkkkk

The format is:
LISTSAVE Fname [Level] [PROTECT] [SIZE] (DATE] [PASSWORDS] [FIRST]

The LISTSAVE command and most of its arguments may be abbreviated as
follows:

LIST Fname [Level] [P] [S] [T] [D] [PA] [F]

The LISTSAVE command is identical in function to the LSTFIL option
specified, except the output 1listing file is named with the name
specified by Fname rather than LSTFIL.

kkkkkkkk

* SCAN *
kkkkkkkk

The format is:

SCAN Fname [Level] [PROTECT] [SIZE] [TYPE]
[DATE] [PASSWORDS] [LSTFIL]} [FIST]

The SCAN command and most of its arguments may be abbreviated as
follows:

S Fname [Level] [P] [S] [T] [D] [PA] [L] [F]

4 - 17 January 1977

SECTION 4 MAN2604

The SCAN command is used to search the FROM directory tree for the
occurence of all files, subUFD’s, and segment directories that are
named with the name specified by Fname.

If the level specified by the argument level is 1 (the default), only
the file name followed by the information specified by the optional
arguments is printed. If the level specified by Level is greater than
1, the pathname (treename) to the file or directory, starting from the
FROM directory, is printed. 1In addition, the information specified by
any optional arguments may be printed after the pathname. For example,
with the sample tree structure shown in Figure 4-2, the command:

SCAN FILEB S F 10

will print the following information:

FROM = MFD
TO = *

DIRECTORY PATH = MFD> UFD> SUFD12
FILE B 1 = NO FIRST LINE

FILB lacks a first line because it was empty. Note that the name FILEB
was indented three spaces because it is a sub-UFD that is a third level
in a tree subordinate to the MFD.

FUTIL RESTRICTIONS

In using FUTIL under PRIMOS III or IV, certain operations may interfere
with the work of other users. For example, a UFDCPY command to copy
all files from a UFD currently used by another logged-in user may fail.
If any file in that directory is open for writing by that user, UFDCPY
encounters the error FILE ALREADY OPEN, and aborts. If the user
attempts to open one of his files for writing while UFDCPY is running,
the user may encounter that error. Under FUTIL, the LISTF and TRECPY
commands cause the same interaction problems. (Other FUTIL commands
such as COPY and DELETE can also interfere with the other user, but the
problem is not so serious, since only one file is potentially involved
in a conflict.) To prevent conflicts, users working together and
involved in operations using each other’s directories must coordinate
their activities. If two users consistently use the same UFD at the
same time, they must avoid the LISTF command of FUTIL, and use the sys-
tem LISTF command instead.

FUTIL operations when using the MFD must be done carefully. Never give
the command TREDEL MFD, because that command deletes every file on the
disk except the MFD, DSKRAT, BOOT, and BADSPT. A LISTF or UFDCPY of
the MFD must be done only when no other user is accessing files or dir-
ectories on that disk. A UFDCPY of the MFD to the MFD of another disk
has the effect of merging the contents of two disks onto one disk.

REV. A 4 - 18

MAN2604 FILE UTILITY COMMAND (FUTIL)

A user must be sure there is enough available space on the TO disk
before attempting the LSTFIL or UFDCPY operation if FUTIL aborts.
Also, the names of files and directories on the two disks may conflict.
To avoid any name conflict, it may be desirable to UFDCPY the MFD of
one disk into a UFD on another disk. Each directory originally on the
FROM disk becomes a subdirectory in that UFD on the TO disk. For exam-
ple, the contents of ten diskettes could be copied into ten User File
Directories on a 1.5M word disk pack.

NOTE :

A UFDCPY of an MFD, does not copy the DSKRAT, MFD, BOOT, or
BADSPT files to the TO directory.

The effect of a UFDCPY from the MFD of a disk in use to the MFD of a
disk that was newly produced by the MAKE command is to reorganize the
disk files so that all files are compacted; that is, files have their
records close to each other on the new disk. After such a compaction,
the access time to existing files on the new disk is effectively
reduced from the access time on the old disk. Furthermore, new files
tend to be compact, since all free disk records are also compacted.
The use of a compacted disk may improve the performance of PRIMOS.

Users must not abort COPY or DELETE operations under PRIMOS 1II, but
allow them to run to completion. Aborting a COPY or DELETE operation
may cause a directory to contain incorrect entries, as for example, a
file with a pointer mismatch or bad file structure, or a directory with
a partial entry. Since PRIMOS does not run correctly on a directory
with a partial entry, FIXRAT must be run immediately if any of the
above conditions apply. Under PRIMOS III and IV, critical areas of
code are surrounded by calls to BREAKS, a subroutine that inhibits the
CNTRL-P key. As a result, interruption of FUTIL does not generate a
bad file structure. '

Error Messages

The following error messages are generated by FUTIL. In many cases,
FUTIL prints error messages generated by PRIMOS and retains control, so
users must be familiar with operating system error messages. The list
given here includes messages that may be encountered by FUTIL. Most
messages are preceded by a filename identifying the file causing the
error. Some of the error messages have the format:

reason for error
FILE = filename

" DIRECTORY PATH = directory treename

? = unrecognizable command

4 - 19 January 1977

SECTION 4 MAN2604

Message Meaning
ALREADY EXISTS An attempt has been made to TRECPY

to a file that already exists or
UFDCPY has attempted to copy to a
directory that already exists. If
you intend to do the operation, the
file in the TO directory must first
be deleted.

BAD NAME A segment directory filename was given
to a command that expected a UFD
filename or vice versa. The type
of filename must match the type
of directory in which the file
is contained.

BAD PASSWORD An incorrect password has been given
in a FROM, TO, or ATTACH command.
As PRIMOS III and IV does not allow
FUTIL to maintain control in
case of a bad password, the FUTIL
comand must be given to restart
FUTIL. The FROM directory and TO
directory are reset to home UFD
in this case.

BAD SYNTAX The command line processed by FUTIL
is incorrect.

CANNOT ATTACH TO SEGDIR The last directory in the directory
treename to an ATTACH command is a
segment directory. It must be a UFD,
because ATTACH sets the home UFD
to the last directory in the path.

CANNOT DELETE MFD User has given the UFDDEL command
while attached to the MFD. This is
not allowed.

DIRECTORIES NESTED TOO DEEP Directories may be nested to a depth
of 109 levels. User has attempted to
exceed this limit.

DISK ERROR May indicate a disk error or a
FUTIL attempt to process a badly
constructed segment directory.
Running FIXRAT (refer to the
Computer Room User Guide MAN 2603)
is recommended.

REV. A 4 - 20

DISK FULL

IN USE

IS A DIRECTORY, CANNOT COPY
TO IT

NO RIGHT

NO ROOM USE DOS32

NO UFD ATTACHED

NOT A DIRECTORY

NOT FOUND

POINTER MISMATCH

PRWFIL EOF

SEG-DIR ER

4 - 2

MAN2604 FILE UTILITY COMMAND (FUTIL)

The disk has become full before FUTIL
finishes a copy operation. For
operations involving many files, some
files are not copied, creating only
partially copied directories that

may be of limited use. It is

suggested that the user delete

such a structure immediately to prevent
confusion as to what has been copied.

Indicates a FUTIL attempt to process
a file in use by some other user. It
may also indicate an attempt to copy
a directory to a subdirectory within
itself.

Same as ALREADY EXISTS.

User has attempted an operation on

a file that violates the file access
rights assigned to that file. These
rights may be changed by the PRIMOS
III or IV PROTEC command, if the
user has given the owner password

on ATTACH.

User is using FUTIL under DOS16
and has attempted an operation
that causes FUTIL to run out of
room. This message is not likely
to occur when processsing SAM
segment directories.

Self-explanatory.

User has given a directory treename
that includes a file that is not a
directory.

Self-explanatory.

Indicates a bad file structure.
Running FIXRAT is recommended.

User has attempted to reference a
nonexistent file beyond the end of
a segment directory.

User has attempted to reference a file
in a segment directory with an entry
of @, which indicates file does not

~exist or the user has attempted to

January 1977

SECTION 4

UFD FULL

UNRECOVERED ERROR

REV. A

MAN2604

reference a file beyond the end of the
segment directory.

Self-explanatory.

Indicates either the user has attempted
to write to a write-protected disk,
disk error, or an attempt to process a
bad file structure. Running FIXRAT

is recommended if the disk was not

wr ite—protected.

MAN2604 FILE AND HEADER FORMATS

APPENDIX A

FILE AND HEADER FORMATS

Table A-1. File and Header Formats

448-Word File Record Header Format

Word Content Remarks
@ "This" record address Consists of the PRIMOS
record address.
1 Parent Record Address or If record is a beginning
Beginning Record Address record, this word
(BRA) contains a pointer to
the parent (immediately
superior) segment
directory, or UFD.
2 Forward Records forward pointer

to the next record.
(May be a null pointer
if last record).

Records backward
pointer to the immed-
iately preceding
record (may be a

null pointer if

first record).

3 - Backward

Records number of words
of data in this record
(excludes header) .

4 Data Count (0-440)

5 File Type Only in the beginning
record.
@ = SAM File
1 = DAM File
2 = SAM Segment Directory
3 = DAM Segment Directory
4 = SAM User File Directory
6 Spare 1 Reserved
7 Spare 2 Reserved

All remaining words in the record may be used to store 16-bit words.
Data 1is assumed to continue from the ninth word in the record to the

A - 1 January 1977

APPENDIX A MAN2604

last word of the physical record. The forward and backward pointers

make

it easy for PRIMOS to traverse a file in either direction, and at

the same time provide a large measure of protection against snowballing
disk errors. The pointer to the beginning record address makes it
possible to identify a "lost" record.

1040-Word File Record Header Format

Word Content
@ Record Address-high
1 Record Address~low
2 Beginning Record Address-high
3 Beginning Record Address-low
4 No. Data Words (0-1024)
5 File Type
6 Forward Record Address-high
7 Forward Record Address—low
8 Backward Record Address-high
9 Backward Record Address-low
19 Spare
11 Spare
12 Spare
i3 Spare
14 Spare
15 Spare

NOTES:

All disks, except the storage module, have 448-word records;
storage modules have 104@-word records.

The Beginning Record Address of the first record in a file
points to the directory (UFD or segment directory) entry of
the file. 1In all other records, the BRA points to the first
record of the file.

The forward pointer contains the address of the next record
in sequence, or contains @ if the record is the 1last record
in the file.

The backward pointer contains the address of the previous

record, or contains @ if the record is the first record in
the file.

The File Type is valid only in the first record of the file. Possible
values are:

_whhHS

REV. A

SAM File

DAM File

SAM Segment Directory
DAM Segment Directory
UFD

MAN2604 FILE AND HEADER FORMATS

If the file is the record @ bootstrap (BOOT), or the DSKRAT, and the
disk has 104@-word record size; bit 1 (100000 octal) of the File Type

will be set.

Word

8-13

14-19

Word

Table A-2. UFD FORMATS

Content

UFD Header, where:

Word Count = 8 (Size of header)

Owner Password
Nonowner Password
Spare

UFD Entries

UFD ENTRY FORMAT

Content

BRA

Filename

Spaces

Protection Keys

Remarks

Six ASCII characters

See table below

Remarks

Word numbers are
relative to beginning
of entry.

Beginning Record
Address of file.

Currently six ASCII
characters.

Reserved for future
use.

Bits 1-8 owner
protection. (Inverted -
@ means all rights
allowed.)

Bits 9-16 non-owner
protection.

Figure A-1 shows UFD file format and use schematically.

A

January 1977

APPENDIX A

POINTER FROM UEFD OR

SEGMENT DIRECTORY

N\

SIX
WORD

ENTRY

RECORD
HEADER
(See Appendix A)

MAN2604

Key: 1= ASCIT SPACE

REV. A

~ WORD COUNT
_________ UFD
_________ HEADER
PASSWORD
e \‘
—L—:::E::: | RECORD_HEADER _ |
K M -
L s
| PROTECTION KEYS
UFD
ENTRIES
| RECORD_HEADER _ _
| RECORD HEADER _ _
Nth
RECORD

Figure A-1l.

UFD File Format and Use

FWD §
BACK PTRS
TO OTHER
RECORDS

SECOND
RECORD

MAN2604 FILE AND HEADER FORMATS

Table A-3. Format of DSKRAT

The DSKRAT file has a special header block as follows:

Word Contents Meaning

@ WRDCNT Words in header block (5)

1 RECSIZ Disk record size

2 NRECS Number of records for
file system

3* CYLS Cylinder count

4 HEADS Head count for disk or
partition

*not currently used by PRIMOS file system.

WRDCNT allows an expansion of the block size while still maintaining a
compatible disk. The header is followed by DSKRAT data, a 1 bit for
each record in the file system (NRECS).

During all file transactions, PRIMOS updates the DSKRAT file to reflect
the state of records occupied or released, as files or portions of
files are added or deleted. The DSKRAT file also contains data on the
total disk record count (NRECS).

In PRIMOS III and IV, the name of DSKRAT file(s) may be obtained by
using the STATUS command.

Example:

OK, STATUS
UFD=ROWDY /]

FUNITS
4

DISK LDEV PDEV
TSDISK @ 51

DUD 1 50
PCBRD 2 52
COMAND 3 54

OK,

A - 5 January 1977

MAN2604 APPLICATION EXAMPLES

APPENDIX B

APPLICATION EXAMPLES

GENERAL INFORMATION
This appendix shows a few features of PRIMOS file system software that
may help the user in handling data files. The data base structures are
defined and then used in several examples that show the speed and
flexibility of Prime supporting software.
Features of PRIMOS that facilitate these examples are:

Sequential File Access (SAM)

Directed File Access (DAM)

Segmented structures with multiple growth points

Relétive and absolute positioning

Pre- and post-access positioning

Expandable file dimensions

Security at the UFD, subUFD, and segment directory levels

Multiple user access to any file (PRIMOS III and IV)

FORTRAN callable file manager

Associative buffering (PRIMOS III and IV)

2400 RPM moving-head disks

30 Megaword storage per device

GENERAL INFORMATION FOR EXAMPLES

Data Base Terminology

To make the discussions and examples that follow meaningful, it is
necessary to establish a data base structure. The data base structure
consists of three basic structures: data items, data entries, and data
sets.

Data Item: The data item is the smallest accessible data element.
Each data item is a value and is referenced by a data item name.
Usually, many data item values are referenced by the same data item
name. -

B - 1 January 1977

APPENDIX B MAN2604

Example:
DATA ITEM NAMES DATA ITEM VALUES
CITY DENVER, BOSTON, MIAMI
STATE COLORADO, MASS, FLORIDA
ZIP @1767, ©1752, 07353

The data item is defined as N words (or bytes) of a physical disk re-
cord.

Data Entry: The data entry is an ordered collection of related data
items and is defined by an ordered listing of the data item names.
Data entries are all the same length and are stored in physical disk
records.

Example:
DATA ENTRY DATA ITEM NAMES
NAME CITY STATE
DISK RECORD N SMITH DENVER COLORADO
N+1 JONES BOSTON MASS
N+2 GREEN MIAMI FLORIDA

Data Set: The data set is a collection of data entries sharing a com-
mon definition. A data set name references any or all of the data
entries of a data set. The number of data entries in a data set is
limited by available disk space.

There are two types of data sets: master data sets and detail data
sets.

Detail Data Set: Detail data sets contain "line item" information,
e.g., in the detail data set PERSONNEL, each person’s location,
education, etc., is stored.

Master Data Set: Master data sets serve as indices to detail data
sets. The data entries of a master data set contain pointers to corre-
sponding detail data sets.

In general, access to data within a data base is carried out at the
data entry level. Each CALL to an example procedure accesses some Or
all of the data items within a data entry. The functions provided by
the example procedures include adding a new data set, deleting a data
entry from a data set, reading some or all of the data items of a data
entry, and changing the values of items in a data entry.

REV. A B - 2

MAN2604 APPLICATION EXAMPLES

Accessing the Data Base

Although access time to specific data in a data base is dependent on
the structure of the master and detail data sets, the speed and
flexibility of the underlying disk file manager is also significant.

SAM files are a linear array of records threaded with forward and
backward pointers. Therefore, to access the last record of a lengthy
SAM file (data set) of 47 records, all previous records must be read
47 access times to locate and read the last record. However, the same
data set using a DAM file structure would require only three access
times to read the same record. The DAM file consists of a record
directory maintained by the file system. To access any record in a DAM
file takes one disk access to read the directory, and one additional
access to read the desired record if it is not the first record in the
target file. For 3@M-word disk, with an average total disk access time
of 47.2 ms, the difference is roughly 2-1/2 seconds vs. 1/10 of a
second.

However, for applications where files are only one or two records in
length, the SAM file structure is as fast or faster. DAM files require
one disk access just to retrieve the record directory.

Another feature of the SAM file is the way in which the file system
computes the best method for locating a record within the file. 1If the
pointer to a SAM file with ten records is positioned at record #8, and
the next access addresses record #3, the file system determines whether
traversing the file backwards or positioning at the beginning record
and traversing forward is faster. 1In this example, the 1latter method
is selected; thus three accesses instead of five will be made.

Positioning in a SAM or DAM file can be done relatively with a + or -
32767 words (+ or — 74 records) parameter or absolutely with record
nunber, word number parameters. The moving of the file pointer can be
pre- or post— the disk access.

For example, let a data set be defined as a SAM or DAM file in a
segment directory. A segment directory is a named SAM or DAM file that
contains pointers (physical record addresses) to SAM or DAM files
(data sets). Thus, each data set has its own growth point. Any number
of data sets can be grouped together in a single segment directory
providing disk space is available. The segment directory is then de-
fined as the data base.

A tree structure for a file may be developed consisting of a single
segment directory and 440 DAM files (see Figure B-1). " To access a
single word out of 85 million (three times the capacity of a 20-surface
device) requires only four disk transfers. If repeated accesses are
performed over the entire tree, each additional access requires at most
three additional disk transfers. If repeated accesses are done within
a local part of the file (193,600 words), each additional access
requires, at most, one additional disk transfer. ‘

B - 3 L January 1977

APPENDIX B MAN2604

SEGMENT DAM FILE —————(RECORD)

DIRECTORY]
440 / 4490 / 440 /
Pointers Records Words
(Data Sets) (Data Entries) (Data Items)

Figure B-1. Sample Tree Structure

REV. A B - 4

MAN2604 APPLICATION EXAMPLES

In Figure B-1, the segment directory is shown with only 440 pointers,
this is not a limit. The segment directory can be expanded just 1like
any ordinary file. However, a segment directory with 440 pointers can
directly address 7,744,000 words of data. Segment directories can have
"holes". For example, directory entries 1, 3, and 5 can contain valid
data set pointers while entries 2 and 4 are not used. This is useful
when data sets are arranged logically in a segment directory and addi-
tional data sets need to be incorporated later.

A further extension to Prime file structure that may facilitate data
base management is the fact that a Keyed Indexed Data access file
manager is available to be superimposed upon the PRIMOS III or IV file
system. For details of KIDA, refer to the Subroutine Library User
Guide (MAN 1880) .

FILE SYSTEM PERFORMANCE

No file in the system has a fixed length, providing disk space is
available. However, as files become larger, an eventual decrease in
performance occurs. For the SAM file, more and more disk accesses are
necessary to traverse the file. The DAM file, however, has a boundary
where performance falls off. The DAM file directory can handle only
449 record addresses (1024 for a storage module disk); as the file
becomes larger, the 441st, 442nd, etc. records are not directly
addressable and must be read sequentially. This occurs, however, only
when DAM files exceed 193,600 words.

DISK ACCESS TIME

30 million word disk:

SEEK ROTATION ACCESS TIME
Average = 35 ms 12.5 ms 47.5 ms
Maximum = 70 ms 25 ms 95 ms

FILE SECURITY

The PRIMOS III or IV file system has passwords and access attributes
associated with the user file directories (UFD’s) and sub-UFD’s. Both
the owner and nonowner passwords are defined with the command PASSWD.
The PROTECT command allows the association of access attribute with
files in a UFD to limit their use if desired. The UFD is always a SAM
file and contains up to 72 named files, segment directories, and
sub-JFD’s. Once a user is attached to a UFD or sub~UFD, he has access
privileges to files in that UFD within limits that may be defined by
the PASSWD and PROTECT commands (refer to Man 2602). UFD’s can be

B - 5 jl L January 1977

APPENDIX B MAN2604

created that contain executable example programs for different levels
of security. The user, although attached to the UFD, has no way to
dump, modify, or delete the executable programs if the command
directory (CMDNC@) was empty or protected by an owner password unknown
to him, or by a combination of passwords and protection attributes.

Under multi-user (PRIMOS III or IV), more than one user has access to a
file simultaneously, provided it is opened for reading only. If on the
other hand, the file is opened for writing by one user, other users are
prevented through a locking algorithm from reading or writing it.

Under PRIMOS III and IV, associative buffering is implemented with 32
buffers. Each buffer contains one disk record (440 words). A Least
Recently Used (LRU) algorithm is used when a record not in the buffer
is accessed. This greatly decreases access time because the data set
directories (the indexes to all data) tend to remain in buffers
because they are frequently referenced.

To further illustrate the capability of the file system, several exam-

ples are given that show different data base structures, and the access
times and resources required when traversing them.

REV. A B - 6

MAN2604 APPLICATION EXAMPLES

Example #}

This example uses a file structure consisting of a segment directory
with 440 SAM files and then with 440 DAM files to show the difference
in average access time. All the files are five records 1long, (2200
words) .

440 x 2200 (968,000 words)
SAM FILES DAM FILES
Seg. Dir 440 (SAM) Seg. Dir. 440 (SAM)
[1] DAM Dir. [1]
[2] SAM FILE [2] DAM FILE
[3] (2200 Words) [3] (2200 Words)
[4] [4]
[5] [5]
DISK ACCESSES DISK ACCESSES
OPEN Seg. Dir. 1 OPEN Seg. Dir. 1
OPEN SAM file 1 OPEN DAM file 1
AVG file access 2 AVG file access 1
TOTAL 4 TOTAL 3

‘B - 7 : January 1977

APPENDIX B MAN2604

Example #2

This example is similar to Example #1 but with much larger files. All
files are 50 records long (22,000 words) .

440 x 22,000 (9,680,000 words)
DISK ACCESSES DISK ACCESSES
OPEN Seg. Dir. 1 OPEN Seg. Dir. 1
OPEN SAM file 1 OPEN DAM file 1
AVG file access 24.5 AVG file access 1
TOTAL 26.5 TOTAL 3

REV. A B - 8

MAN2604 APPLICATION EXAMPLES

Example #3

This example uses two levels of segment directories and the SAM/DAM
comparison. The first directory contains pointers to ten other segment
directories which each contain pointers to 440 files. The files are
five records long (2200 words) .

10 x 440 x 2200 (9,680,000 words)
SAM FILES DAM FILES

‘1st Seg. Dir. 10 (SAM) 1st Seg. Dir.10(SAM)

2nd Seg. Dir. 440 (SAM) 2nd Seg. Dir.440 (SAM)
[1] DAM Dir. [1]
[2] [2] DAM FILE
[3] SAM FILE [3] (2200 words)
[4] (2208 words) [4]
[5] [5]
DISK ACCESSES DISK ACCESS

OPEN Seg. Dir. #1 1 OPEN Seg. Dir. #1 1

OPEN Seg. Dir. #2 1 OPEN Seg. Dir. #2 1

OPEN SAM file 1 OPEN DAM file 1

AVG file access 2 AVG file access 1
TOTAL 5 TOTAL 4

Example #4

Example #4 shows a more complicated file structure: a segment
directory that contains one pointer to a master index file (DAM), 50
pointers to master data sets (DAM files), and 50 pointers to data
segment directories. The data segment directories contain the pointers
to the detail data sets (SAM files of 880 words). :

B - 9 January 1977

APPENDIX B MAN2604

1

50 >

0

Figure B -2 Sample File Structure

The time and resources to read randomly into the file structure are
shown in Figure B-2 are as follows:

Initialize DISK ACCESSES BUFFERS UNITS

OPEN SD 1 1 1

OPEN sd 1 1 1

OPEN M 2 2 1
2

Read master directory to select index

ACCESS M . 1]]

Read index

OPEN m 2 2 1

REV. A " B - 10

MAN2604 APPLICATION EXAMPLES

ACCESS m 1° 0 0

Read data
OPEN SAM 1 1 1
ACCESS SAM 5 /] 0
5.5 7 5

The maximum number of buffers available under PRIMOS II is 16, under
PRIMOS III there are 32. Example #4 shows seven buffers open which
occupies 3.1K words of memory. There are 16 units available under
PRIMOS.

B -1 January 1977

MAN2604 USE OF PRIMOS FILE SYSTEM

APPENDIX C

USE OF PRIMOS FILE SYSTEM

INTRODUCTION

This appendix gives guidance in and examples of how to wuse the file
system. The expanded key definitions of SEARCH, PRWFIL, and ATTACH
have been rewritten in this appendix with mnemonic keys. The following
examples use variables defined and initialized by the insert file
KEYCOM.

A user wishing to use these keys must have the statement INSERT KEYCOM
in his FORTRAN program after the storage specification statements and
before any data segments. The user will have to copy KEYCOM to the
appropriate UFD before compiling the program(s). This appendix
provides examples of use of the file system (refer to "Examples".)

The following example programs are:

Program Name Function

KEYCOM Provides mnemonic keys for PRWFIL
SEARCH, and ATTACH.

SAMWRT Writes a SAM data file.

DAMWRT Writes a DAM data file.

REDFIL . Reads a SAM or DAM file of unlimited

length and prints the largest integer
in the file. This program also shows
how to use alternate return.

RDLREC Reads logical record number n from a
file of fixed-length recorded.
CRTSEG Creates a segment directory.

'REDSEG Reads file on a segment directory
. and prints a specified word (record)
in that file.

- RDVREC Reads logical record number n from a
file on variable-length records.

GPTRFL Generates a pointer file that consists

of. two-word pointers to each logical
record in another file.

e -1 January 1977

APPENDIX C MAN2604

C KEYCOM JPC 30 MAY 1974
C PROVIDES MNEMONIC KEYS FOR PRWFIL, SEARCH, AND ATTACH
INTEGER PREAD,PWRITE,PREREL,PREABS,POSREL, POSABS,PCONV,
X OPNRED,OPNWRT,OPNBTH,CLOSE,DELETE , REWIND,
X TRNCAT,UFDREF,SEGREF ,NTFILE,NDFILE,NTSEG,NDSEG,NEWUFD,
X MFDUFD,CURUFD,SEGUFD, HOMUFD, SETHOM

DATA PREAD,PWRITE, PREREL, PREABS,POSREL, POSABS , PCONV
X [/ :1, 12, :d, :10, :20 , :30, 2400/
DATA OPNRED, OPNWRT ,OPNBTH ,CLOSE ,DELETE , REWIND , TRNCAT
X /1, 2, 3, 4, 5, 7, 8 /
DATA UFDREF,SEGREF ,NTFILE,NDFILE,NTSEG,NDSEG,NEWUFD
X /0, :100, :0, :2000, :4000,:6000,:10000/
DATA MFDUFD, CURUFD, SETHOM

X /@, 2, 1 /

REV. A c - 2

O o000 OOO0OO00000000n PO EO N =y

MAN2604

SAMWRT, CARLSON JULY 10, 1974

PROGRAM SAM-WRITE TO WRITE A SAM DATA FILE

USE OF PRIMOS FILE SYSTEM

THE FILE IS 1000 WORDS WRITTEN FROM ARRAY BUFF.

RESTRICTIONS: SAMFIL SHOULD NOT EXIST BEFORE RUNNING THE PROGRAM.

INTEGER BUFF(1000) ,PBUFF,FUNIT1
VARIABLE DEFINITIONS:
BUFF- ARRAY TO BE WRITTEN TO A FILE
PBUFF- POINTER TO BUFF
FUNIT1- CONTAINS 1, REFERS TO FILE UNIT 1
ROUTINES CALLED
1OC,SEARCH, PRWFIL,EXIT
KEYCOM CONTAINS FILE KEY DEFINITIONS

INSERT KEYCOM

DATA FUNIT1/1/

INITTALIZE BUFFER CONTENTS
DO 10 I1=1,1000
BUFF (I)=I
] CONTINUE

LOC RETURNS A POINTER TO ITS ARGUMENT

PBUFF=LOC (BUFF)

OPEN A NEW SAM DATA FILE CALLED SAMFIL IN THE CURRENT UFD

FOR WRITING ON FILE UNIT 1.

ON MOST CALLS THE UFDREF KEY IS OMITTED SINCE ITS VAI.UE IS @.

THE FOLLOWING STATEMENT WILL BE COMPILED AS IF IT WERE WRITTEN

TEMP=OPNWRI'+NTFILE+UFDREF
CALL SEARCH(TEMP, "SAMFIL”,FUNIT1,0)

THE USE OF MULTIPLE MNEMONIC KEYS WILL GENERATE MORE CODE THAN

THE USE OF NUMERIC KEYS.

CALL SEARCH (OPNWRT-+NTFILE+UFDREF, “SAMFIL,FUNIT1,0)

WRITE 10@9@ WORDS FROM BUFF INTO FILE UNIT 1.

CALL PRWFIL(PWRITE,FUNIT1,PBUFF,1000,0,0)

Jahuary 1977

APPENDIX C MAN2604

CLOSE FILE. THIS RELEASES FILE UNIT 1 FOR REUSE AND INSURES
AIl, FILE BUFFERS HAVE BEEN WRITTEN TO THE DISK.

C
C
C
CALL SEARCH (CLOSE,#,FUNIT1,0)
C
C RETURN TO PRIMOS

C

CALL EXIT
C
END

REV. A c - 4

C

o000 000n

OnOoOoOOn0OOO00n000n

C
C
C
C

C
C
C

19

MAN2604 USE OF PRIMOS FILE SYSTEM

REDFIL, CARLSON, JULY 10,1974

PROGRAM READ-FILE TO READ A SAM OR DAM FILE OF UNLIMITED LENGTH
AND PRINT THE LARGEST INTEGER IN THE FILE.

THIS PROGRAM SHOWS HOW TO USE THE ALTERNATE RETURN FEATURE
OF SEARCH AND PRWFIL AND HOW TO USE GETERR AND PRERR IN
CONJUNCTION WITH THE ALTERNATE RETURN. NOTE THAT THE PROGRAM
DOESN’T CHECK IF THE FILE IS SAM OR DAM. TO THE USER, SAM AND
DAM FILES ARE FUNCTIONALLY EQUIVALENT.

RESTRICTIONS: NONE

INTEGER BUFF (100) ,PBUFF,UERVEC (4) ,FUNIT1,LARGST, FNAME(3) ,N

VARIABLE DEFINITIONS

BUFF- BUFFER TO HOLD INFORMATION READ FROM FILE

PBUFF- POINTER TO BUFF

UERVEC- USER ERROR VECTOR. HOLDS ERROR VECTOR OBTAINED FROM PRIMOS
FUNIT1- CONTAINS 1, USED TO REFER TO FILE UNIT 1

LARGST- VARIABLE TO HOLD LARGEST INTEGER IN FILE

FNAME- HOLDS A FILE NAME

ROUTINES CALLED
LOC , SEARCH, PRWFIL,GETERR, PRERR, EXIT

INSERT KEYCOM

DATA FUNIT1/1/

INITTIALIZATION

PBUFF=LOC (BUFF)
LARGST=-32767

ASK USER FOR FILE NAME. FORTRAN UNIT 1 IS THE USER TERMINAL.

WRITE (1,1000)

1009 FORMAT(TYPE FILE NAME’)

C
C

READ FILE NAME
READ(1,1010) (FNAME(I) ,I=1,3)

1019 FORMAT (3A2)

C
C
C

O

C
C
C

OPEN FNAME IN THE CURRENT UFD FOR READING ON FILE UNIT 1.
IF ANY ERROR, GO TO LABEL 100.

CALL SEARCH (OPNRED, FNAME , FUNIT1 , $100)
READ FILE 100 WORDS AT A TIME. SET LARGST TO THE LARGEST INTEGER
RFAD. WHEN END OF FILE IS REACHED, THE ALTERNATE RETURN OF

c - 5 January 1977

APPENDIX C MAN2604

C PRWFIL SENDS CONTROL TO LABEL 50.

C

30 CALL PRWFIL(PREAD,FUNITI1,PBUFF,100,0,550)
C

C 100 WORDS READ INTO BUFF, SET LARGST

C

DO 49 1=1,100
IF (LARGST.LE.Q.AND.BUFF(I).GE.@) LARGST=BUFF (I)

C
C THE ABOVE TEST IS DONE BECAUSE IF BUFF(I)-LARGST IS GREATER
C THAN 32767, THE FOLLOWING COMPARISON FAILS DUE TO ARITHMETIC OVERFLOW
C
IF (LARGST.LT.BUFF(I)) LARGST=BUFF(I)
40 CONTINUE

C
C LOOP BACK TO READ MORE DATA FROM FILE
C
G0 TO 39
C

C ALTERNATE RETURN TAKEN ON PRWFIL. SET ERROR TYPE FROM ERRVEC
C THROUGH A CALL TO GETERR.

C .
50 CALL GETERR(UERVEC, 4)
C
C IF ERROR TYPE NOT END OF FILE (CODE ‘PE’), PRINT THE
C ERROR MESSAGE WITH PRERR AND RETURN TO PRIMOS.
C
IF (UERVEC(1l) .EQ. PE’) GO TO 60
CALL PRERR
CALL EXIT

C
C END OF FILE. NUMBER OF WORDS IN PRWFIL CALL LEFT TO BE
C TRANSFERRED IS IN UERVEC(2)

C N IS SET TO NUMBER OF WORDS TRANSFERRED ON IAST CALL.
C

6

] N=19@-UERVEC(2)
IF (N.EQ.0) GO TO 8¢

SET LARGST

oNeXe!

Do 79 1=1,N
IF (LARGST.LE.@.AND.BUFF(I).GE.@) LARGST=BUFF(I)
IF (LARGST.LT.BUFF(I)) LARGST=BUFF(I)
79 CONTINUE
C
C THE FOLLOWING PRWFIL CALL ACTS AS A NO-OPERATION ON THE FILE
C BUT PUTS THE FILE POINTER IN ERRVEC.
C IREN
80 CALL PRWFIL(PREAD,FUNIT1,0,0,0,0)
CALL GETERR(UERVEC, 4)
C v
C FILE POINTER IS (V-RECORD-NO.,WORD-NO.) IN UERVEC(3) AND UERVEC(4) .
C IF FILE POINTER IS (@,0) AT THIS POINT, IT INDICATES THE FILE

REV. A . c - 6

MAN2604 USE OF PRIMOS FILE SYSTEM

C CONTAINS NO DATA.

C
IF (UERVEC(3) .EQ.0.AND.UERVEC (4) .EQ.0) GO TO 110
C
C FILE NOT EMPTY, PRINT LARGST.
C
WRITE (1,1020) LARGST
1020 FORMAT(LARGEST INTEGER IN FILE IS “I6)
C
C CLOSE FILE AND RETURN TO PRIMOS
C
90 CALL SEARCH (CLOSE,@,FUNITL,)
CALL EXIT
C

C ERROR IN ATTEMPT TO OPEN FILE
C PRINT MESSAGE AND GET ERROR CODE.
C
109 CALL PRERR
CALL GETERR (UERVEC,1)
C _
C IF ERROR IS NAME NOT FOUND (CODE ‘SH’), GO TO LABEL 1@ TO ASK
C FOR A NEW NAME OTHERWISE GIVE UP AND RETURN TO PRIMOS.
C
IF (UERVEC(1).EQ. SH’) GO TO 10

CALL EXIT
C
C FILE EMPTY
C

119 WRITE(1,1039)

10390 FORMAT('FILE EMPTY")
GO TO 99

C
END

- 7 January 1977

A

OO0 0000000

OO0 0000n0n a

Onooonann

C
C
C

PPENDIX C MAN2604

RDLREC, CARLSON, JULY 10,1974

RDLREC~ READ LOGICAL RECORD
PROGRAM TO READ LOGICAL RECORD NUMBER N FROM A FILE CONSISTING
OF FIXED LENGTH RECORDS

IN THIS PROGRAM THE FILE ACCESSED IS CONSIDERED TO CONTAIN

AN UNLIMITED NUMBER OF LOGICAL RECORDS, EACH RECORD CONSISTING

OF M WORDS. THE PROGRAM READS AND TYPES THE CONTENTS OF RECORD
NUMBER N AS M INTEGERS.THE FIRST RECORD OF A FILE IS RECORD NUMBER @.
NOTE THAT A LOGICAL RECORD IS MEARLY A GROUPING OR WORDS IN

A FILE. IT HAS NO REIATION TO THE PHYSICAL DISK RECORD.

RESTRICTIONS: RECORD SIZE MUST BE BETWEEN 1 AND 1009
RECORD NUMBER MUST BE BETWEEN @ AND 32767
(RECORD-SIZE) * (RECORD-NUMBER) MUST BE LESS THAN
8,388,608 (2**23) FLOATING POINT NUMBERS-ONLY REPRESENT
6.8 DIGITS.
THE RECORD MUST BE IN THE FILE

INTEGER PBUFF,BUFF(1000) ,FUNIT1,FNAME (3) ,RECSIZ,RECNUM,POSITN,
X ABSPOS(2)

REAL FRECSZ,FRCNUM,FPOSTN,PRECSZ

VARIABLE DEFINTIONS

BUFF- BUFFER USED TO HOLD A LOGICAL RECORD

PBUFF- POINTER TO BUFFER

FUNIT1- CONTAINS 1, USED TO REFER TO FILE UNIT 1

FNAME- HOLDS A FILE NAME

RECSIZ- LOGICAL RECORD SIZE

RECNUM- LOGICAL RECORD NUMBER

POSITN- RELATIVE POSITION TO POSITION TO REQUESTED RECORD
ABSPOS- ABSOLUTE POSITION TO POSITON TO REQUESTED RECORD
FRCNUM- FLOATING POINT LOGICAL RECORD NUMBER

FRECSZ- FLOATING POINT LOGICAL RECORD SIZE

FPOSTN- FLOATING POINT POSITION NEEDED TO POSITION TO REQUESTED RECOR

VRECSZ- V-RECORD DATA SIZE. USED TO FORM
TWO WORD ABSOLUTE POSITION.

ROUTINES CALLED
LOC, SEARCH, FLOAT, INT, AMOD, GINFO, PRWFIL, EXIT,GETERR, PRERR -

INSERT KEYCOM

DATA FUNIT1/1/
DATA VRECSZ/448/

INITIALIZATION

PBUFF=LOC (BUFF)

REV. A c - 8

MAN2604 USE OF PRIMOS FILE SYSTEM

C
C ASK FOR FILE NAME
C
WRITE (1,1000)
1000 FORMAT(TYPE FILE NAME’)
C
C READ FILE NAME
C

READ'1,1010) (FNAME(I) ,I=1,3)
1919 FORMAT (3A2)
C
C OPEN FNAME IN THE CURRENT UFD FOR READING ON FILE UNIT 1
C
CALL SEARCH (OPNRED, FNAME , FUNIT1, @)
C
C ASK FOR RECORD SIZE
C
20 WRITE (1,1020)
1020 FORMAT(‘TYPE RECORD SIZE’)
READ(1,1030)RECSIZ
193¢ FORMAT(I6)
IF (RECSIZ.GE.1.AND.RECSIZ.LE.1000) GO TO 30
WRITE(1,1040)
1040 FORMAT(BAD RECORD SIZE’)
GO TO 20
C
C ASK FOR RECORD NUMBER. FIRST RECORD IS NUMBERED @.
C
30 WRITE(1,1050)
105¢ FORMAT(TYPE RECORD NUMBER®)
READ(1,1030) RECNUM
IF (RECNUM.GE.@) GO TO 35
WRITE (1,1051)
1951 FORMAT (“BAD RECORD NUMBER)
GO TO 30
C
C CHECK IF RECORD IS MORE THAN 32767 WORDS FROM: BEGINNING OF
C FILE. IF SO, USE ABSOLUTE POSITIONING ELSE USE- RELATIVE
C POSITIONING. '
C
35 FRECSZ=FLOAT (RECSIZ) .
FRCNUM=FLOAT (RECNUM)
FPOSTN=FRECSZ*FRCNUM
IF (FPOSTN.LT.8388608.) GO TO 40
WRITE (1,1055)
1055 FORMAT (RECORD—NUMBER*RECORD—SIZE 1S TOOrLARGE 9]
GO TO 20
40 IF (FPOSTN.GT.32767.) GO TO 18¢
c i ol
C RECORD IS LESS THAN 32767 WORDS FROM BEGINNING, USE RELATIVE
C POSITIONING. _ _
C NOTE THAT ABSOLUTE POSITIONING COULD HAVE BEEN USED FOR A RECORD
C ANYWHERE IN THE FILE, NOT JUST FOR THOSE RECORDS BEYOND WORD

c - 9 wJe.lnuary 1977

APPENDIX C MAN2604

32767. RELATIVE IS SHOWN IN HERE ONLY FOR AN EXAMPLE.
POSITN=RECSIZ*RECNUM

POSITION TO THE RECORD AND READ RECSIZ WORDS INTO THE BUFFER

QOO0 an

CALL PRWFIL (PREAD+PREREL,FUNIT1,PBUFF,RECSIZ,POSITN,S$300)
GO TO 208 TO TYPE RECORD CONTENTS
GO TO 200

RECORD MORE THAN 32767 WORDS FROM BEGINNING OF FILE, USE
ABSOLUTE POSITIONING

CALCUIATE ABSOLUTE POSTION (V-RECORD-NUMBER,WORD-NUMBER)
THAT RECORD STARTS AT AND PUT IN ABSPOS (1) AND ABSPOS(2)

oNoNoNoIoEeKe! oNeXe!

ABSPOS (1) =INT (FPOSTN/VRECSZ)
ABSPOS (2) =INT (AMOD (FPOSTN,VRECSZ))

POSITION TO THE RECORD AND READ RECSIZ WORDS INTO THE BUFFER

C

C

C
CALL PRWFIL(PREAD+PREABS,FUNIT],PBUFF,RECSIZ,ABSPOS,$300)

C

C RECORD READ, NOW TYPE IT.

c

200 WRITE(1,1060) RECNUM,RECSIZ

1060 FORMAT('RECORD ‘I6, CONTAINS ‘16, ENTRIES AS FOLLOWS')
WRITE(1,1070) (BUFF(I),I=1,RECSIZ)

1070 FORMAT(1017)

C
C RETURN TO PRIMOS AFTER CLOSING THE FILE
C _
CALL SEARCH(CLOSE,@,FUNIT1)
CALL EXIT
C
C ERROR WHILE ATTEMPTING TO READ THE RECORD
C v .
300 CALL GETERR(BUFF,1)
CALL PRERR
IF (BUFF(1).EQ. PE’) GO TO 305
CALL EXIT
C .

C END OF FILE REACHED, REWIND FILE AND TRY AGAIN.
C
305 CALL SEARCH(REWIND,Q,FUNIT1,0)
GO TO 20
C
END

REV. A c - 10

[eNoXoKe] OnaOOOOO00nn OO0 0O000n

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

MAN2604 USE OF PRIMOS FILE SYSTEM

CRTSEG, CARLSON, JULY 12, 1974

CRTSEG- CREATE~-SEGMENT-DIRECTORY

THIS PROGRAM SHOWS HOW TO CREATE A SEGMENT DIRECTORY AND WRITE

FILES INTO IT.

RESTRICTIONS: SEGDIR SHOULD NOT EXIST BEFORE RUNNING THE PROGRAM.
INTEGER PBUFF ,BUFF (10) ,SGUNIT,FUNIT

VARIABLE DEFINITIONS

BUFF- BUFFER TO WRITE TO SEGMENT DIRECTORY FILES

PBUFF- POINTER TO BUFF

SGUNIT- CONTAINS 1, FILE UNIT USED FOR SEGMENT DIRECTORY

FUNIT- CONTAINS 2, FILE UNIT USED FOR DATA FILES

INSERT KEYCOM

DATA SGUNIT,FUNIT/1,2/

INITIALIZATION
PBUFF=LOC (BUFF)
DO 10 1I=1,10
BUFF (I)=I
] CONTINUE

OPEN A NEW SAM SEGMENT DIRECTORY CALLED SAMDIR IN THE
CURRENT UFD FOR READING AND WRITING ON FILE UNIT SGUNIT.

CALL SEARCH (OPNBTH+NTSEG+UFDREF, “SEGDIR *, SGUNIT ,9)
OPEN A NEW SAM DATA FILE FOR WRITING ON FILE,ﬁNIT FUNIT. WRITE
THE DISK LOCATION OF THIS NEW FILE AT THE FILE POINTER OF
THE SEGMENT DIRECTORY OPEN ON FILE UNIT SGUNIT.
THE FILE POINTER POINTS TO WORD NUMBER § OF THE SEGMENT DIRECTORY.
CALL SEARCH(OPNWPT+NTFILE+SEGREF,SGUNIT,FUNIT,@Y‘.
WRITE 1¢ WORDS FROM BUFF INTO THE DATA FILE
CALL PRWFIL(PWRITE,FUNIT,PBUFF,lﬂ,ﬂ,ﬂ)
CLOSE THE DATA FILE
CALL SEARCH(CLOSE,@,FUNIT,0) =
REPLACE BUFF WITH.NEW DATA .
DO 20 I=1,10
BUFF (I)=I*10

c -1 R Jariuary 1977

APPENDIX C MAN2604

0 CONTINUE

OPEN A DIFFERENT NEW SAM DATA FILE ON FUNIT. PUT THE

DISK LOCATION IN WORD NUMBER 1 OF THE SEGMENT DIRECTORY.
THIS IS DONE IN TWO STEPS: FIRST, BY POSITIONING THE FILE
POINTER OF THE SEGMENT DIRECTORY FORWORD ONE WORD, AND THEN
BY CALLING SEARCH AS SHOWN ABOVE.

OOOQO0O00O000ON

CALL PRWFIL(PREAD+PREREL,SGUNIT,@,1,0)
CALL SEARCH (OPNWRT+NTFILE+SEGREF ,SGUNIT, FUNIT, Q)

WRITE 10 WORDS IN THE FILE
CALL PRWFIL(PWRITE,FUNIT,PBUFF,10,0,0)

CLOSE THE DATA FILE

OO0 OO0

CALL SEARCH (CLOSE,®,FUNIT,0)
CLOSE THE SEGMENT DIRECTORY

CALLV SEARCH (CLOSE , @, SGUNIT, @)
RETURN TO PRIMOS

CALL EXIT

QO OO0 OO0

END

REV. A c - 12

OO0 0O00O000000n

oXoNeKe! QOO0 nNn

HOOOON
=

1

1
C
C
C

oXeXoKe!

MAN2604 USE OF PRIMOS FILE SYSTEM

REDSEG, CARLSON, JULY 12, 1974

REDSEG- READ-FILE-IN-SEGMENT-DIRECTORY

THIS PROGRAM READS FILE NUMBER N IN A SEGMENT DIRECTORY AND
TYPES WORD NUMBER M IN THAT FILE. THE FIRST FILE IN THE DIRECTORY
IS FILE NUMBER @. THE FIRST WORD IN THE FILE IS WORD NUMBER 4.

RESTRICTIONS: THE FILE NUMBER MUST BE BETWEEN @ AND 32767.

THE FILE MUST BE IN THE SEGMENT DIRECTORY.

THE WORD NUMBER MUST BE BETWEEN @ AND 32767.

THE WORD MUST BE IN THE FILE.

INTEGER PBUFF,BUFF,SGUNIT,FUNIT,SEGDIR(3) ,UERVEC(2) ,FILNUM,

X WRDNUM

VARIABLE DEFINITIONS

BUFF- HOLDS WRDNUM WORD OF FILNUM FILE OF SEGDIR

PBUFF- POINTER TO BUFF

SGUNIT- CONTAINS 1, FILE UNIT USED FOR SEGMENT DIRECTORY
FUNIT- CONTAINS 2, FILE UNIT USED FOR DATA FILE

UERVEC- HOLDS ERROR VECTOR OBTAINED FROM DOS

FILNUM- HOLDS FILE NUMBER OF SEGDIR TO READ

WRDNUM- HOLDS WORD NUMBER OF NTH FILE TO READ

SEGDIR- HOLDS SEGMENT DIRECTORY NAME

INSERT KEYCOM

DATA SGUNIT,FUNIT/1,2/

INITIALIZATION
PBUFF=LOC (BUFF)

ENSURE UNITS ARE- CLOSED AND
ASK FOR AND READ SEGMENT DIRECTORY NAME

CALL SEARCH(CLOSE,®,SGUNIT, 0)

CALL SEARCH(CLOSE,#,FUNIT, @)

WRITE (1,1000)

00@ FORMAT(TYPE SEGMENT DIRECTORY NAME’)
READ(1,1010) (SEGDIR(I) I=1,3)

0190 FORMAT (3A2)

OPEN THE SEGMENT DIRECTORY FOR READING ON SGUNIT

CALL SEARCH (OPNRED+UFDREF SEGDIR SGUNIT ')

GET FILE TYPE FRCIVI ERRVEC ANDMAKE SURE FILE IS A SEGMENT DIRECTORY.
ALLONABLE TYPE CODES ARE SAMSEG ANDDAMSEG. , VALUES 2 AND 3.

CALL GETERR(UERVEC,2)
IF (UERVEC(2) .EQ.Z.QR.UERVEC(Z) .EQ.3) GO TO 20

c - 13

Jan’u‘éry 1973

APPENDIX C MANZ2604

C

C NOT A SEGMENT DIRECTORY, TRY AGAIN.

C
WRITE (1,1020)

1020 FORMAT('FILE IS NOT A SEGMENT DIRECTORY)
GO TO 10

C

C ASK FOR FILE IN SEGMENT DIRECTORY

C

20 WRITE (1,1030)

1030 FORMAT(TYPE FILE NUMBER’)
READ(1,1040) FILNUM

1040 FORMAT(I6)

C

C ASK FOR WORD IN FILE

C
WRITE(1,1035)

1035 FORMAT('TYPE WORD NUMBER)
READ(1,1040) WRDNUM

TRY TO POSITION TO FILNUM FILE IN THE SEGMENT DIRECTORY.
IF ERROR GO TO 100

oXoNeoXe!

CALL PRWFIL (PREAD+PREREL,SGUNIT,®d,0,FILNUM, $100)

OPEN FILE IN SEGMENT DIRECTORY FOR READING ON FUNIT
GO TO 120 IF ANY ERROR.

CALI. SEARCH (OPNRED+SEGREF,SGUNIT, FUNIT, $120)

POSITION TO FILWRD WORD IN DATA FILE AND READ IT INTO BUFF
GO TO 200 IF ANY ERROR.

aOOnNn aOO0O0n

CALL PRWFIL(PREAD+PREREL,FUNIT,PBUFF,l,WRDNUM,$20)

PRINT THE WORD, CLOSE FILES AND RETURN TO PRIMOS

oNoXe!

WRITE (1,1050) WRDNUM, FILNUM, (SEGDIR(I) ,I=1,3) ,BUFF
1050 FORMAT (‘WORD‘I6, OF FILE'I6, IN “3A2, CONTAINS 'I6)
50 CALL SEARCH (CLOSE,@,FUNIT,) e .
CALL, SEARCH (CLOSE, @,SGUNIT, @)
CALL EXIT
C
C FILE NOT IN SEGMENT DIRECTORY
C ‘PE’ IS THE CODE FOR PRWFIL EOF
C ‘PG’ IS THE CODE FOR PRWFIL BOF
C
109 CALL GETERR(UERVEC,1)
IF (UERVEC(1) .EQ. ‘PE’.OR.UERVEC(1) .EQ. 'PG") GO TO 110
CALL PRERR .
GO TO 50
C
110 WRITE(1,1060) (SEGDIR(I),I=1,3)

REV. A c - 14

MAN2604 USE OF PRIMOS FILE SYSTEM

1069 FORMAT(FILE NOT IN “3A2)

GO TO 19
C
C ERROR IN ATTEMPTING TO OPEN FILE IN SEGMENT DIRECTORY
C
120 CALL GETERR(UERVEC,1)
C
C SEE IF SEGMENT DIRECTORY ERROR TYPE
C

IF (UERVEC(1) .EQ.SQ”) GO TO 130

CALL PRERR
CALL EXIT

C
C YES, FILE POINTER IF SGUNIT IS AT END OF FILE OR DISK ADDRESS
C OF FILE IS @ INDICATING NO FILE AT THIS FILE POINTER.
C IN EITHER CASE, THE ERROR INDICATES THE REQUESTED FILE IS NOT
C IN THE SEGMENT DIRECTORY.
C THIS ERROR CODE IS ALSO GIVEN IF NO FILE IS OPEN FOR READING
C ON SGUNIT IF SEARCH IS OPENING AN EXISTING FILE IN A SEGMENT
C DIRECTORY OR IF NO FILE IS OPEN FOR BOTH READING AND WRITING
C ON SGUNIT IF SEARCH IS OPENING A NEW FILE IN A SEGMENT DIRECTORY.
C) .
C THESE ERROR CONDITIONS CAN NEVER OCCUR IN THIS PROGRAM.
C ;
13¢ GO TO 110
C
C WORD NOT IN FILE

C

200 CALL GETERR(UERVEC,1)

IF (UERVEC(1) .EQ. ‘PE’.OR.UERVEC(1) .EQ.‘PG’) GO TO 219
CALL PRERR ‘
CALL EXIT

210 WRITE(1,1070) WRDNUM, FILNUM, (SEGDIR(I) ,I=1,3)
1¢7¢ FORMAT(WORD'I6, NOT IN FILE'I6, IN "3A2) .

GO TO 10

END

c - 15 : January 1977

APPENDIX C MAN2604

OO0 00n

oNeoNoNe]

oo cOonNnOoOOaO00O000O00O0000000

RDVREC, CARLSON, JULY 16,1974

RDVREC- READ-VARIABLE-LENGTH-RECORD

PROGRAM TO READ LOGICAL RECORD NUMBER N FROM A FILE CONSISTING
OF A GROUP OF VARIABLE LENGTH RECORDS AND TYPE THE RECORD

ON THE TERMINAL.

THE FILE VARREC CONSISTS OF LOGICAL RECORDS. EACH LOGICAL
RECORD CONSISTS OF A HEADER WORD WHICH CONTAINS THE SIZE
OF THE RECORD FOLLCWED BY THE DATA IN THE RECORD.

THE FIRST RECORD OF THE FILE IS RECORD NUMBER 4@.

THE METHOD USED IS: FIRST TO GENERATE PTRFIL, AN

ANCILIARY FILE OF 2 WORD POSITION POINTERS TO EACH RECORD

IN THE FILE VARREC. THIS IS DONE BY THE PROGRAM GPTRFL
(GENERATE POINTER FILE) FOLLOWING THIS PROGRAM. RDVREC

USES THE NTH FILE ‘POINTER IN PTRFIL TO ACCESS THE NTH LOGICAL
RECORD IN VARREC.. NOTE THAT PTRFIL NEEDS TO BE GENERATED

ONLY ONCE. AFTER THAT THE USER CAN MAKE ANY NUMBER OF
REFERENCES TO VARREC. FOR FAST ACCESS, BOTH PTRFIL

AND VARREC SHOULD BE GENERATED AS DAM FILES. HANDLING -OF PRWFIL
ERRORS IS OMITTED TO SIMPLIFY THIS EXAMPLE.

RESTRICTIONS: FILE VARREC MUST EXIST IN THE CURRENT UFD.
FILE PTRFIL MUST EXIST IN THE CURRENT UFD.
RECORD SIZE MUST BE BETWEEN 1 AND 1000. e
THE RECORD REQUESTED MUST BE BETWEEN @ AND '16383.
THE RECORD MUST BE IN THE FILE VARREC.
INTEGER FUNIT,SIZE,RECNUM,ABSPOS (2) ,PABSPS,BUFF (1000) , -
X PBUFF,PBUFF2 ‘

VARIABLE DEFINITIONS

FUNIT- CONTAINS 1, USED TO REFER TO FILE UNIT 1
SIZE- HOLDS SIZE OF LOGICAL RECORD v
RECNUM- HOLDS LOGICAL RECORD NUMBER REQUESTED
ABSPOS—- HOLDS FILE POINTER

PABSPS— POINTER TO ABSPOS

BUFF- HOLDS RECNUM LOGICAL RECORD

PBUFF- POINTER TO BUFF

PBUFF2- POINTER TO BUFF(2)

ROUTINES CALLED
SEARCH, PRWFIL,EXIT, LOC

INSERT KEYCOM

DATA FUNIT/1/

INITIALIZATION

PABSPS=L0C (ABSPOS)

REV. ‘A cC - 16 .

MAN2604 USE OF PRIMOS FILE SYSTEM

PBUFF=LOC (BUFF)
PBUFF2=LOC (BUFF (2))
C
C ASK FOR RECORD NUMBER. FIRST RECORD IS NUMBERED @.
C
WRITE (1,1000)
100@ FORMAT(TYPE RECORD NUMBER)
READ(1,1010) RECNUM
1919 FORMAT(I6)
C
OPEN FILE OF 2-WORD FILE POINTERS CALLED PTRFIL ON FUNIT

CALL SEARCH (OPNRED, “PTRFIL ,FUNIT, @)
POSITION TO REQUESTED FILE POINTER AND READ IT INTO ABSPOS
CALL PRWFIL(PREAD+PREREL,FUNIT,PABSPS,2,RECNUM*2,Q)
CLOSE FUNIT
CALL SEARCH(CLOSE,@,FUNIT,@’
OPEN VARREC FILE “i,'V‘ | N
CALL SEARCH (OPNRED, VARREC *,FUNIT,0)

POSITION 'I’O THE RECORD USING THE FILE -POINTER IN ABSPOS AND

C
C
C
C
C
C
C
C
C
C
C
C
C
C READ THE RECORD SIZE IN'IO BUFF(l)
C

CALL PRWFIL(PREADH?REABS FUNIT,PBUFF,1, ABSPOS @)

@]

SIZE—BUFF (l)
IF (SIZE.LT.1.OR. SIZE.GT. lﬂﬂﬂ) GO TO 100

READ THE REST OF THE BLOCK INTO BUFF(2) . .BUFF(N)
CALL PRWFIL(PREAD FUNIT PBUFF2 SI1ZE-1,0,0)

WRITE THE RECORD TO THE TERMINAL

ONOK® oNeXe®!

B WRITE(l 1@2@) RECNUM SIZE _ -
1020 EORMAT(RECORD 16, IS'I6, WORDS AS FOLLOWS:”) -
WRITE (1,1030) (BUFF(I) I=1,SIZE)
1830 FORMAT(lﬂI?) -

C

C C]'.OSE FILE AND RETURN 'IO PRIMOS
C -

'9@ CALL SEARCH (CLOSE, 0 FUNIT @)

CALL EXIT

C

C RECORD SIZE ERROR

C =

- 100 WRITE(1,1048)

sCl =17 January 1977

APPENDIX C

1040 FORMAT(‘BAD RECORD SIZE°)
GO TO 90

C
END

REV. A ' C

MAN2604

oNoXoXe] OV}OOOOO()OOOOOOO OO0 00000n

AaAa AcOc0a aaca ooao

MAN2604 USE OF PRIMOS FILE SYSTEM

GPTRFL, CARLSON, JULY 16, 1974

GPTRFL~ GENERATE-POINTER-FILE

PROGRAM TO GENERATE A FILE PTRFIL OF 2-WORD FILE POINTERS

TO EACH LOGICAL RECORD IN FILE VARREC. VARREC CONSISTS

OF LOGICAL RECORDS EACH OF WHICH CONSISTS OF A HEADER WORD
THAT CONTAINS THE SIZE OF THE RECORD FOLLOWED BY THE DATA

IN THE RECORD.

RESTRICTIONS: RECORD SIZE MUST BE BETWEEN 1 AND 1000.
PIRFIL SHOULD NOT EXIST BEFORE RUNNING THE PROGRAM.
VARREC MUST EXIST IN THE CURRENT UFD.

INTEGER FUNIT,PTRUNT,UERVEC (4) ,PUERVC,PUERV3,PSIZE,SIZE

VARIABLE DEFINITONS

FUNIT- CONTAINS 1, REFERS TO FILE UNIT 1 ON WHICH VARREC IS OPEN
PTRUNT- CONTAINS 2, REFERS TO FILE UNIT 2 ON WHICH PTRFIL IS OPEN
UERVEC- USER ERROR VECTOR, HOLDS ERRVEC OBTAINED FROM DOS

SIZE- HOLDS SIZE OF LOGICAL RECORD

PSIZE- POINTER TO SIZE

PUERVC- POINTER TO UERVEC

PUERV3- POINTER TO UERVEC(3)

ROUTINES CALLED
LOC, SEARCH PRWFIL, GETERR,PRERR EXIT

INSERT KEYCOM

"DATA FUNIT,PTRUNT/1;2/

INITIALIZE

PUERVC=LOC (UERVEC (1))

PUERV3=LOC (UERVEC (3))

PSIZE=LOC (SIZE) -

OPEN VARREC FOR READING ON FUNIT

CALIL SEARCH(OPNRED, "VARREC *,FUNIT, 0)

OPEN A NEW DAM FILE PTRFIL, FOR WRITING ON PTRUNT

CALL SEARCH(OPNWRT+NDFILE, ‘PTRFIL”,PTRUNT, 0)

SET SIZE FOR FIRST TIME THROUGH LOOP. SIZE IS SET SO
NO POSITIONING TAKES PLACE ON 1ST CALL TO PRWFIL. ERRVEC(3)
AND ERRVEC(4) ARE SET TO FILE POINTER OF 1ST RECORD.
SIZE=1

POSITION TO NEXT LOGICAL RECORD OF VARREC. WE HAVE

c - 19 January 1977

APPENDIX C MAN2604

C ALREADY READ ONE WORD OF RECORD, SO TO GET TO BEGINNING OF
C NEXT RECORD WE MUST POSITON FORWORD SIZE-1 WORDS.

C

10 CALL PRWFIL(PREAD+PREREL,FUNIT,®,0,SIZE-1,$90)

C

C GET FILE POINTER FROM ERRVEC

C

CALL GETERR(UERVEC, 4)
C
C FILE POINTER IS IN UERVEC(3) AND UERVEC(4). WRITE 2 WORD
C FILE POINTER INTO PTRFIL.
C
CALL PRWFIL(PWRITE PTRUNT, PUERV3, 2,0,0)
C
C READ 1ST WORD OF NEXT LOGICAL RECORD INTO SIZE. 1ST WORD
C IS SIZE OF NEXT LOGICAL RECORD.
C
CALL PRWFIL(PREAD FUNIT PSIZE,1,9,$100)
C
C IF SIZE OK, LOOP '.10 READ NEXT RECOR,,D
C
IF (SIZE.GE.l.OR.SIZE-.I.E'.1%@\ "GO TO 10
C ERROR
C

WRITE(1,1000)
1000 FORMAT(A RECORD HAS A BAD HEADER WORD)

GO TO 1194
C
C FILE ENDS IN MIDDLE OF A RECORD
c ,

99 CALL GETERR(UERVEC,1)
- IF (UERVEC(l).NE. PE") GO TO 120
. WRITE(1,1010)
1010 - FORMAT(‘FILE ENDS IN A PARTIAL RECORD)
..~ GO TO 110
C:.
~ C PRWFIL ERROR RETURN, CHECK TYPE.
C : :
160 CALL GETERR(UERVEC,1) _
‘ IF (UERVEC(1l).NE. PE") GO TO 120
C
C
C FILE ENDS NORMALLY, CLOSE FILE AND RETURN TO PRIMOS
C ’ A
11¢ CALL SEARCH(CLOSE,@,FUNIT,)
CALIL, SEARCH (CLOSE,@d,PTRUNT, @)

CALL EXIT
1260 CALL PRERR
CALL EXIT
C
END

REV. A c - 20

MAN2604 SECTORED MODE PRIMOS II

APPENDIX D

OPERATING SYSTEM AND FILE SYSTEM MEMORY USAGE
(SECTORED MODE PRIMOS II)

PRIMOS II occupies approximately nine sectors at the top of the availa-
ble memory, plus a variable number of 448-word file unit buffers.
Figure D-1 shows a typical memory map for a system w1th 16K of
high-speed memory. PRIMOS III and IV take no part of the user ‘s virtu-
al address space.

Floating PRIMOS II N

Three versions of PRIMOS II are supplied in the "UFD - DOS. These
versions load PRIMOS II starting at locations, 27%@, ‘47009, and
‘67000. The bootstrap program selects the version of PRIMOS II that is
nearest to the top of high-speed memorg “IThe vaI"ues ‘in Figure D-1 may
be increased mcordmgly to: 20000°. and 40,000 locations to give an
approx imation. of “memory allécation. for 32K and 64K systems. If
desired, a particular PRIMOS II may be selected by manually setting the
sense sw1tches (refer to "BOOT“ “in the Computer Room User Guide (MAN
2603)) .

Other Locations

Sector 0 is reserved. on the Prlme 1(/)0/2%/3% computer systems, loca-
tions @ throug - 17‘7 -are dedlcated to the Prime CPU’s reglster file and
the vector locations for 1nterrupt and DMX. Locations ‘208 and above -
are used to store the cros -sector indirect address links generated by
the loader but the user may, w1th caution, use locatlons in thlS area. -

For 16K conflguratlons, locations ‘1000 through ‘17777 may ‘be_ used
without restrictions, unless a symbol table is present. - The high end
limit is usually determined by the start of the loader, which may be
memory-resident during loading. However, FORTRAN common may set the
upper limit if it extends below ‘020000.

FORTRAN COMMON overlaps part of the area that can be- ‘occupied by PRIMOS
II file unit buffers. Up to three SAM file units can be open at a time
without the risk of writing over part of COMMON.

Default 1ocat10r1 of FORTRAN COMMON is the top of the loader extending
down in memory. 'I'here are two J.mpllcatlons.,,__ :

~1. COMMON cannot be loaded with "BLOCK DATA" statements.

2 Only three ‘disk units méy be open at any one time.
(PRIMOS II restriction :gnly) o

This problem can be avoided th}otigh use of the loader’s COMMON command’, -

DI = 1 . January 1977

=

APPENDIX D MAN2604

which permits the moving of COMMON to a user specified location.

If a program is to be debugged with the aid of Trace and Patch (TAP),
only two files can be open at a time. However, TAP can relocate itself
elsewhere in memory if this is a problem. For information on TAP,
refer to the Program Development Software User Guide.

Memory areas occupied by the PRIMOS II file unit buffers are listed in
the following table:

Table D-1

Memory Areas and PRIMOS II File Units

Number Gf f a Top of

Open File o Available
Units e Memory
- 16K ‘24K 32K

System System System

] ‘26777 ‘46777 ‘66777
1l 726077 ‘46077 ‘66077
2 ‘25177 ‘45177 ‘65177
3 ’24277 ‘44277 ‘64277
4 ‘23377 ‘43377 ‘63377
‘5 722477 ‘42477 ‘62477
6 ‘21577 ‘41577 = ‘61577
7 ‘20677 ‘40677 ‘60677
8 ‘17777 ‘37777 ‘57777
9 '17@77 ‘37077 ‘57077
10 ‘16177 ‘36177 ‘56177
11 ‘15277 “35277 ‘55277
12 ‘14377 ‘34377 ‘54377
13 ‘13477 ‘33477 ‘53477
14 ‘12577 ‘32577 52577
15 ‘11677 ‘31677 '51677
16 ‘10777 ‘30777 ‘50777
Notes:

1. 448 words for each SAM file open.
2. 896 words for each DAM file open.
3. There is a difference of octal 7800 as the number of

open file units increases. Users can estimate the
correct figures_if they know how much memory is

REV. A D - 2

MAN2604 SECTORED MODE PRIMOS II

available and the number of open file units.
The above figures assume only SAM files. Up-to-date

information may be gathered by the use of the STATUS
and GINFQO commands.

D' - 3 January 1977

APPENDIX D MAN2604
SECTOR

0 RESERVED

USER PROGRAMS

gjloalvlalw]lno] =

10
11
12 4.
13 |
14

15 p————— == = = — i - T = — i —
16 SYMBOL.
17 .

“17777

20000
LOADER

[20 1Lh S

21 | rorTRAN -
2 DOS " COMMON (IF USED)
— FILE UNIT *

. 23777
BUFFERS 1 —
24 TAP(IF USED) 24777

25

26 kv 26777

27 ' 27000

30
31
32
33 DOS
34
35
36
37 37777

Figure 2-2. Memory Allocation in 16K System.

REV. A D - 4

ACCESS TIME, DISK B-5
APPLICATION EXAMPLES

ATTACH 3-4
ATTACH 4-7
BREAKS 3-7

CALLING LOADING LIBRARY SUBROUTINES
3-1

CALLING SEQUENCE NOTATION 3-1
CMREAD 3-8

CNAMES 3-9

COMANL 3-11

COMANL 3-13

COMEQV ~ 3-13

COMINP 3-10

COMINP 3-12

COMMANDS, FUTIL 4-3

CONCEPTS, FILE SYSTEM 1-1
COPY 4-8

COPYDAM 4-9

COPYSAM 4-9

DSINIT 3-14

DELETE - 4-12

DESCRIPTION OF FUTIL COMMANDS
DIRECTORIES 2-5
DISK ACCESS TIME
DSKRAT FORMAT A-4
ERRSET 3-15
EXIT 3-16 :
FILE ACCESS 2-10 -
FILE AND HEADER FORMATS
FILE FORMAT A-1 ‘
FILE HANDLING SUBROUTINES
FILE SECURITY .B-5
FILE STRUCTURE. (TREENAMES)
FILE STRUCTURES 2-1
FILE SYSTEM - 2-1
FILE SYSTEM CONCEPTS
FILE SYSTEM PERFORMANCE
FILE SYSTEM SUBROUTINES
FILE SYSTEM TERMINAL I/@ SUBROUTINES

3-2 .
FILE SYSTEM, USING 1-2
FILE UTILITY COMMAND (FUTIL)
FILES AND DISK STRUCTURES
FILES, TYPES OF 2-1
FORCEW 3-16
FORMAT, FILE A-1
FORMAT, UFD A-2
FORMATS, FILE & HEADER A-1
FROM 4-5
FROM* 4-6
- FUTIL 4-1

"FUTIL RESTRICTIONS
" GENERAL INFORMATION

4-3

B-5

A-1
\Tzfsf
4-1

1-1
B-4

4-1

2-6

4-17
B-1

INDEX

GETERR
GETWRD 3-17
GINFO 3-17
INTRODUCTION
LISTF 4-14
NAMEQV 3-18°
NUMBER INPUT OUTPUT 3-55
OPERATING SYSTEM USER INTERACTION

3-16

3-1

12

PRERR 3-18

PRWFIL 3-19

PUTC 3-24

QUIT 4-4

RDCOM 3-24 o
RECYCL 3-24 ., - .
RESTOR 3-25 & udy
RESTRICTIONS, FUTIL 4-17
RESUME .. 3-25 s
RREC ~ 3-26

SAVE: ~3-29 .

' EARCH -3-30°

SECURITY, FILE B-5
STRUCTURES, FILES & DISKS
_SUBROUTINES, FILE HANDLING
SUBROUTINES, LIBRARY 3-1
SUBROUTINES, TERMINAL I-O
TSCMPC ~ 3-39
TSIMPC ~ 3-41
TSMT ~ 3-43
TSSIC 3-44
L T$VG 3-48
TIIN 3-36
TIMDAT 3-38
TIOU 3-36
T™OU 3-36
TNOUA 3-37
™ 4-7
TOOCT
TRECPY
TREDEL ~ 4-13
TREENAMES 4-1
TYPES OF FILES
UFD FORMAT A-2
UFDCPY 4-11
UFDDEL ~ 4-13
UPDATE ~ 3-57
USE OF PRIMOS FILE SYSTEM
WREC 3-58

2-6
2-8

3-2

3-37
4-10

2-1

Cc-1

	001
	002
	003
	004
	005
	006
	007
	008
	009
	00a
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-1
	D-2
	D-3
	D-4
	X-1

