A ‘ ' 4 ‘lechnical Update

Subject: PRIMOS FITE SYSTEM, REV. 13 Nllmbel‘ . 39

Revision:)

Date: May 1976

Applicable Hardware: All CPU's

Applicable Software: PRIMOS IIT and IV, Rev. 13
Documentation Impact: Supplements MAN2604
Abstract:

A number of new feztures have been introduced into the file system for
REV. 13 of PRIMOS III and PRIMOS IV. Among these changes are
32-character filenames, fully indexed CAM files, multi-record UFDs, and
a new set of file system subroutines thet support the new capabilities.

The new file system facilities ere introduced on a partition besis,
that 1is, a disk partition is either "o0ld" or "new", but not a mixture
of 013 end new files. All existing programs that use the file system

will continue to run on old partitions end, with certain restrictions
noted herein, on new partitions.

part 1 of this document details the new file system features, describes
the new file system CALLs, and gives program examples of how the new
file system is used.

Fart 2 describes the new functions of the FUTIL file utility.

This bulletin is one in a series of documentation supplements that supply current information on Prime hardware, software and docu-

mentation products. Prime Technical Updates introduce product improvements and revisions, and update existing Prime Computer
user documentation.

HHME Computer, InC. 145 Pennsylvania Avenue, Framingham, Mass. 01701/(617) 879-2960

P/N PTU-3065

lgl

1.2

ot
L]
(Ve

1.4

1.5

1.7

1.8

REV.

CONTENTS

Part 1 Rev. 13 File System Changes

INTRCDUCTION. s s svvssoascensssesassnanssasssasssansassase P |
1.1.1 MOTIVATION..... Ceceecscscceccsacenstnnnscanann cescose R |
1.1.2 COMPATIBILITY OF OLD AND NEW PAR‘IITIONS PR |
1.1.2 PRIMCS SUPPORT FOR NEW FILE SYSTEM...evevececccecnnn ceveeel
1.1.4 PRIMOS II AND IXI CONSIDERATICONS...veeees ceeencses cesveneel
OVERVIEW OF NEW FILE SYSTEM FEATURES...ecceeees |
1.2.1 NEW FILE CHARACTERISTICS .t teeceveocssscscascscsccascancasees
1.2.2 NEW UFD CHARACTERISTICS.ceeeeeceoes P
1.2.3 NEW SEGMENT DIRECTORIES.. cteevesaccccccossaccan cevececvened
NEW FILE SYSTEM SUBROULTINES..ccccccceeses cecssesccssssacnssene .
1.3.1 NOTES ON SUBRCUTINE DESCRIPIIONS.:¢ceeeeccccaccasccaccnnens 5
1.3.2 KEY DEFINITIONS FOR NEW FILE SYSTEM CALLIS...... teccecnseans 5
1.2.3 NEW ERROR HANDLING CONVENTIONS.:eeceoooaccccaces ceseccecasd
1.3.4 SUBROUTINE DESCRIPTIONS...evecees cecees cecscesccssensanes .7
1.3.5 ERROR CCDE SUMMARY..eo.. tesscsevcsanncnnnans cecesesennons 40
NEW FILE SYSTEM KEY AND ERRCR DEFINITIONS...... cescacan cecesene 4z
1.4.1 KEYS.F -— FILE SYSTEM KEY DEFINITIONS..ccceeccccavoaoaesad?
1.4.2 ERRD.F ~— ERROR RETURN CODE DEFINITIONS..ceeccecccesseesedb
NEW FILE SYSTEM ERRCR HANDLING CONVENTIONS...ecceeeee cessseeneed’
1.5.]1 MOTIVATION: ¢ esesessescsascsscscacssosscssoscsancnnnans cesdd?
1.5.2 THE RETURN CCDE PARAMETER...... ceeccssnasans R
1.5.3 STANDARD SYSTEM ERROR CODE DEFINITIONS.eeccecececss eeeeeasdl
1.5.4 NEW ERROR HANDLING ROUTINE...eeececacacscssscascannnssaasdl
THE BOUNCE PACKAGE cceveecsccccccsccsncasne ecescscsccssccce--..5.1
1.6.1 F UNC'I‘IONALI’IY............... cessesene ces.51
1.6.2 BOUNCE PACKAGE IMPLEMENTATION RES‘IRIC'IIONS.......‘.......51
1.6.2 LOADING THE BOUNCE PACKAGE.:cetteceesoccscsacassscnsoaneed?
SAMPIE PROGRAMS. . eesenncsnsascsnsccnscncacaccasnscanans sessscnen 53
1.7.1 WRITE SAM FILES..eceeeeoccecaccscns cesces cessesccans eceeedd
1.7.2 WRITE DAME FIIE... ... ececssacccsnssasscssssssssesnnne .55
1.7.2 READ A SAM OR DAM FILE....cceceeccconcacans eeacese cessseead’
1.7.4 CREATE A SEGMENT DIRECIORY...... ceescsscsesns sssssescsces 59
1.7.5 READ A IOGICAL RECCORD FROM A FILE. .. .ieieieenccccannas cessab2
1.7.6 Read File in Segment Directory........ ceceascas ceccsas «..65
INTERNAL FILE SYSTEM FORMATS....veeececccccscass cesace cesssscessb
1.8.1 DSKRAT FORMATS..eeeeereaccvcscacccccennons ceeccsesecsons ..68
1.8.2 RECORD HEADER FORMATS . eaveeessveosoccncasnas cessccasesss0B
1.8.% UFD HEADER AND ENTRY FORMATS . cceveseeosocsossccsscccosnes 76
1.8.4 SEGMENT DIRECTORY FORMATS.veeeeee ccscens Y 2
1.8.5 DAM FILE ORGANIZATION..ceees. cecsne ceecscsccsssssesssanas 73

@ May 1976

CONTENTS

Part 2 FUTIL, Rev. 12 and 13

2.1 INTRODUCTION..eeoeeccocsovssnannnsne ceeeescssecenas ceveveserse e 17
2.2 NAMING CONVENTIONS..ceovaeenes PP
2.3 DESCRIPTION OF FUTIL COMMANDS ..eeeecvseevessocasccassascsansasssl
2.4 RESTRICTICNS..eeveecocncs U ¥4
2.5 ERRORK MESSAGES...... P & |

REV. @ May 1876

PTUZD PART 1 PRIMCS FILE SYSTEM, REV. 12

PART 1

REV. 13 FILE SYSTEM CHANGES

1.1 INTRODUCTION

1.1.1 MOTIVATION

The REV. 12 file system represents the first step in an evolutionary
process in which the capabilities of the current file system are to be
greatly upgraded and expanded. The new capabilities et REV. 13
include 32-character filenames, longer files and UFDs, dete/time
starping, new error handling, and more secure handling of segment
Girectories and UFDs. The design of the new file system has been
guided by three principles:

1) whenever possible, existing user programs should continue to work
on the new file system without modifications.

2) The internal formets and functionelity of the new file system
cshould allow future expansion without affecting programs using
the new file system. Program efficiency should not be penalized
by the introduction of rarely used features.

3) Requirements for accessing and modifying existing file structures
are more stringent. Access rights ere carefully observed, and
UFD and segment directory modification is more controlled.

1.1.2 COMPATIBILITY CF 71T AND NEW PARTITIONS

It should be stressed that the distinction between 0ld and new file
system features is on a partition basis. A partition is either in the
old format or in the new format, never a mixture of the two. The
following comments apply to the interaction of old/new CALLs on o0ld/new
partitions.

OLD CALLS ON OLD PARTITIONS: Existing progrems and new progrems
that use the old file system calls will continue to work without
modification on old partitions.

OLD CALLS ON NEW PARTITIONS: Existing programs will continue to
work on new partitions with the following exceptions: PRWFIL can
no longer be used in any way on directories (UFDs or segment
directories). SEARCH can not be used to delete a non-empty
directory. Segment directories can no longer have UFD
subentries. There are certain new restrictions on filenames in
new partitions (see Section 1.2.1.1).

REV. ¢

()
=
!
-

May 1976

PTUZB PAKT 1 PRIMCS FILE SYSTEM, REV. 12

NEW CALLS ON OLD PARTITICNS: Progrems using the new file system
cells will work correctly on old partitions. Certzin error cases
will, of course, arise when trying to perform a2 function only
Supported by a new partition Any filename specified as longer
than six characters is truncated to six charecters when running
on an old partition.

NEW CALLS ON NEW PARTITIONS: All functions described in this
document will work on new partitions.

Note also that using the new file system, it is still possible to run
with write-protected disks.

1.1.3 PRIMOS SUPPORT FOR NEW FILE SYSTEM

At REV. 13, 21l utilities support the new file system. Certain
commends cannot take & filename longer than six characters. These are
AVAIL, BASINP, CNVIMA, CRPMC, CRSER, CX, EDB, FILVER, MCG, NUMBER,
PRMPC, PRSER, PRVER, PUSS + TRAMLC, UPCASE.

1.1.4 PRIMOS II AND III CONSIDERATIONS

New file system calls new partitions are not supported by PRIMCS II.
In addition, new file system calls are not supportec by PRINET on calls
to access remote disks. To support calls in these situations, a
package -- the BOUNCE package -- is availeble that will "bounce" the
new cells back to user space where they will be transformed into a
series of o0ld calls that are understood by PRIMOS II. In some ceases
(noted below), file unit 16 is used by the bounce package. In others,
such as GPAS$S and SATRSS, the current UFD is opened by the bounce
package. The bounce package is described in Section 1.6.

REV. @

[38)
S
|
[\

May 1976

PTUZE PART 1 PRIMOS FILE SYSTEM, REV. 13

1.2 OVERVIEW OF NEW FILE SYSTEM FEATURES

1.2.1 NEW FILE CHARACTERISTICS

1.2.1.1 New File Names

New filenames can be up to 22 characters long, the first cheracter of
which must not be numeric (6-9). Filenames can be composed only of the
following chaeracters:

A~Z -9 _#S&*-./

If any lower case characters ere specified, the are forced to upper
case. No control characters (8 - :237) are allowed in new file nemes.
In the new file system calls, file names are, as before, ASCII packed
two characters per word. If the name length specified in a call is
longer than the actual length of the name, the name must be followed by
a number of treiling blanks sufficient to match the given lencth.

1.2.1.2 Date/Time Stamping

There is a new field in & file’s UFC entry that records the date and
time when the file wes last modified. This field is updated when &
file is closed and:

1) An old file has been opened for KSWRIT or KSRDWK and a write
operation has been performed.

2) A new file has been created.
(Note: the decision to use "last modified" rather then "lest used" was

to allow the use of write-protected disks.)

1.2.1.3 Unlimited Partition and File Size

On old partitions, the number of records in a file and the number of
records 1in a partition are limited to 65536. The number of records in
a new file or partition is now effectively unlimited end can fill é&ny
physical storege device supported by PRIMOS. A storage module disk
partition containing more than 8 heads must be a new partition.

REV. 0 20 - 3 May 1976

PTUZ0 PART 1 PRIMCS FILE SYSTEM, KEV. 1=

1.2.1.4 Fully Indexed DAM Files

Formerly, when the index of a LAM file overflowed one record (1024
entries for a storzge module, 446 entries for all other diske), access
became secuenticl. In new [AM files, a multi-level index is meintained
so that any record in the file can be directly accessed. With the
exception of improved access time, this difference is invisible to user

pregrars. (More deteils on the new DAM organization are given in
Section 1.8.5.)

1.2.2 NEW UFD CHARACTERISTICS

1.2.2.1 Multi-Record UFDs

UFDS, formerly restricted to a single record, can now span multiple
records. The limit of no more then 72 files (169 on 2 storage module)
in a single UFD no longer holds. (The UFD FULL message will never be
generated.)

1.2.2.2 Hidden Internal Formet

It is no longer possible to read and write a UFD using PRWFIL (or the
new PRWF$S). Indeed, there is no need for & progrem to know the
internal format of & UFD. Progrems ere therefore protected from future
chenges to. the file system. The new way in which UFLCs are read is
deteiled under the description of the RDENSS subroutine in Section 1.3.

1.2.2.3 Speciel File Identification

UFD entries now include an identificetion of "special" files -- files
having unicue use in the file system and not normally accessed by the
user. These files are BCOT, DSKRAT, BADSET, and MFD.

REV. £ 30 - 4 Mey 1876

PTUZe PAKT 1 PRIMCS FILE SYSTEM, REV. 12

1.2.2 NEW SEGMENT DIRECTORIES

1.2.3.1 New Entry Identification

Entries in a seoment directory are no longer identified by a
<recoréd-nurber, word-nurber> pair, but by a single entry number fror 8
to 65535. This meane that segment directories are now limited in size
to 65536 entries (@ - :177777).

1.2.3.2 Segment Directory Handling

It is nc longer possible to read end write segment directories using
PRWFIL {or the new PRWFSS). A new subroutine —- SGDRSS -- is provided
for the examination and modification of segment directory entries.

1.2.3.2 Segment Directory Restriction

A UFD entry in a segment directory is now illegal. The only filetypes
cllowed in & segment directory are SAM, DAM, and other segment
directories. ‘This restriction applies to both new and olc¢ partitions.

1.3 NEw FILE SYSTEM SUERCUTINES

1.2.1 NCTES ON SUBRCUTINE DESCKIPTICNS

For each subroutine & complete description of the parameters is given,
followed by notes on usage, brief examples of calls, and notes on
compatibility with old file system functions. Error return codes are
summerized in a table following the subroutine descriptions.

Section 1.7 illustrates use of the subroutines with more complete
sample programs. Throughout, it is assumed that the reader is femiliar
with the 0ld file system capabilities as described, for example, in the
PRIMOS III or IV User ‘s Guide (MANZ2604).

1.%.2 KEY DEFINITICNS FCR NEW FILE SYSTEM CALLS

All keys and error codes are specified in symbolic, rather then
numeric, form. These symbolic names ere defined as PARAMETERS (for
FORTRAN programs) and EQUs (for PMA programs) in SINSERT files present
in a new UFD on the master disk called SYSCQM. The key definition
files are named KEYS.F for FORTRAN and KEYS.P for PMA. The error
definition files are ERRD.F and ERRD.P. For convenience in recognizing
old file system keys, & listing of these files are included in Section
1.4. The user is urged to use these symbolic names.

REV. @ 30 - 5 May 1976

PTUZE PART 1 PRIMOS FILE SYSTEM, REV. 13

1.3.2 NEW ERRCR HANDLING CONVENTIONS
All czlternste return parameters (ALTRIN) have been replaced with CODE

-— an integer return code veriatle. This is part of the new error
handling protocol, which is completely described in Section 1.5.

REV. € 30 - 6 May 1976

P1UZE PART 1 PRIMOS FILE SYSTEM, REV. 13

1.%.4 SUBROUTINE DESCRIPTICNS

1.3.4.1 ATCHSS —-- Attach to UFD

Function

Attach to a UFD and optionally meke it the home UFD.

Calling Seguence

CALL ATCHSS (UFDNAM,NAMLEN,LDISK,PASSWD, KEY,CCDE)

Parameters

UFDNAM The name cf the UFD to be attached to. 1f KEY=0 &nd UFCNAM
is the key KSHOME the home UFD is attached.

NAMLEN The length in characters of UFDNAM. NAMIEN mey be greeter
than the actual length of UFDNAM if UFDNAM is padded with the
aperopriste number of blanks. If UFDNAM=KSHOME, NAMLEN is
disregarded.

LCISK The number of the logical disk to be searched for UFDNAM when
KEY=KSIMFD. Cther values are:

KSALID--Search all sterted-up logical devices.
KSCURR--Search the MFD of the disk currently attached.

PASSWD A three-word array containing one of the passwords of UFDNAM.
Can be specified as ¢ if attaching to the home UFD.

KEY A reference value es follows:
KSIMFD--Attach to UFDNAM in MFD on LDISK.

KSICUR--Attech to UFDNAM in current UFD (UFDNAM is @
subdirectory) .

To these two keys mey be added K$SETH, €.9.., KSIMFC+KSSETH,

which will <set the current UFD to the home UFD &fter
atteching.

REV. 0 20 - 7 May 1976

PTUZ0 PART 1 PRIMOS FILE SYSTEM, KEV. 12

CCDE An integer veriable set to the return code.

Notes on Usage

A EAD PASSWC errocr is not returned to the user ‘s program. Command
level is entered, and the user is left attached to no UFD. Other
errors leave the attach point unchanged.

Examples

1) Attech to home UFD:
CALL ATCHSS (K$HOME, ¢,6,€,6,CCDE)
2) Attach to UFD named ‘G.S.PATTON, password ‘CHARGE ® in current UFL:

CALL ATCHSS ('G.S.PATTON',]@,KSCURR,'CHARGE',KSICUR,CODE)

Compatibility

ATCHS$S is ecuivalent to ATTACH with the addition of support for longer
names.

REV. € 30 - 8 May 1976

PTU2E PART 1 PRIMCS FILE SYSTEM, KEV. 13

1.3.4.2 COMISS -— Switch Commaend Input Stream

Function

COMISS is used to switch the commend input stream from the terminal to
e commend file, or from a command file to the terminal.

Calling Secuence

CALL COMISS (NAME,NAMLEN,FUNIT,CCDE)
Parameters

NAME The name of the file to switch the commend input streem. If
NAME is “TTY’, the command stream is switched back to the
terminal ané FUNIT is closed. if NAME 1is °PAUSE’, the
commend stream is switched tc the terminel but FUNIT is not
closed. If NAME is ‘CONINUE °, the command streem is switched
to the file already open on FUNIT.

NAMLEK The length in cheracters of NAME.

FUNIT The file unit on which to open the command file specified by
NAME. Normally, file unit six is used.

CCDE An integer varieble set to the return code.

Compatibility

COMISS has the same function as COMINP extended for long names. COMISS
works on both new and old partitions. Note that neither COMINP nor
CCMISS currently works across the PRIMENET.

REV. €

(T8
=
i
0

May 1976

PIUZ0 PART 1 PRIMCS FILE SYSTEM, REV. 12

1.3.4.3 CREAS$S -- Creeste a New UFD in the Current UFD

Function

CREASS crestes @ new UFD (a2 SUBUFD) in the current UFD and initializes

the new UFD entry. It replaces the former SEARCH NEWUFD subkey, used
to create new UFDs on an old partition.

Calling Sequence

CALL CREASS (NAME,NAMLEN,OPASS,NFASS,CCDE)
Parameters

NAME The name to be given the new UFD.
NAMLEN The length in characters of NAME.

OPASS A three-word array containing the owner password for the new
UFC. If CPASS(1)=8, the owner password is set to blenks.

NPASS A three-word aerray containing the non-owner password for the
new UFD. If NPASS(1)=@ the non-owner password is set to §°s.
Any password given to ATTACH or ATCHSS will match a non-owner
password of @ °s.

CCDE An integer variable to be set to the return code from CREASS.

Notes on Usage

Passwords can be at most 6 characters 1long. Passwords less than 6
characters must be padded with blanks for the remaining characters.
Passwords are not restricted by filename conventions and may contain
any cheracters or bit patterns. It is strongly recommended that
passwords not contain blesnks, commas, or the characters
=1,%,0,{,},1,1,(,) or lowercase characters. Passwords should not
start with & digit. If passwords contain any of the above chsracters
or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command. line to the ATTACE command.

Since the new SEARCH, SRCHSS, will not allow creation of a new UrD,
CREAS$S must be used for this purpose.

REV. © 30 - 1@ May 1976

PTU30 FART 1 PRIMOS FILE SYSTEM, REV. 13

CREASS requires owner-rights on the current UFD.

If the bounce package is invokec (see Section 6), file unit 16 is wused
during the create. Unit 16 shoulc not be open when CREASS is celled.

Examples
1) Create new UFD with default passwords of ° * for owner and 3*@
for non-owner:

CALL CREASS {(NEWUFD',6,@,6,CODE)

Compatibility

CREASS has no corresponding old file system subroutine. CREATS works
on both 0ld and new partitions.

REV. 0 30 - 1 May 1976

PTUZH PART 1 PRIMGS FILE SYSTEM, KEV. 12

1.3.4.4 CNAMSS -- Chenge a Filename

Function

CNAMSS is used to chenge the name of a file in the current ufd.

Calling Seaquence

CALL CNAMSS (OLDNAM,CLDLEN, NEWNAM +NEWLEN, CODE)

Parameters

CLDNAM The name of the file to be changed.
OLDLEN The length in characters of OLDNAM.
NEWNAM The name to be changed to.

NEWLEN The length in characters of NEWLEN.

COLE An integer varizble set to the return code.

Notes on Usage

The user must be the owner to change the name. CNAMSS coes not change
the last modified date-time of the file or any of the other attributes
of the file.However, the last modified date-time of the UFD in which
the file resides is changed. On a new partition, CNAMSS mey ceause the
position of the file in the UFD to chenge with respect to the other
files. It is illegal to change the name of the MFD, BOOT, BADSPT, or

the packname. A NO RIGHT error messege 1is generated if this is
attempted.

Compatibility

CNAMSS provides the functionality of CNAMES extended for leng names.
CNAMSS is not aveilsble under PRIMCS II or across the FRIMENET.

REV. ¢ 30 - 12 May 1976

PTU3¢ PART 1 PRIMOS FILE SYSTEM, REV. 12

1.3.4.5 GPASSS —— Obtain UFD Passwerds

Function

GPASSS returns the passwords of e SUBUFD in the current UFD.

Celling Seguence

CALL GPASSS (UFDNAM,NAMLEN,CPASS,NFASS,CODE)
Perameters
UFDNAM The name cf the UFC whose passwords are to be returned.

UFDNAM is searched for in the current UFD.

NAMI iN The length in cheracters of UFDNAM.

CPASS A three-word erray that is set to the owner passworéd of
UFDNAM .

NPASS A three-word arrey that is set to the non-owner passworG of
UFDNAM.

CCCE An integer verieble set to the return code.

Notes cn Usage

On the o0ld file system it was possible to obtain the passworcs of & UFD
by reading the UFD’s header with PRWFIL. On new pertitions it is not
possible to read a UFD with PRWFIL or PRWFS$$ -- GPASSS must be used.

GEASSS recuires owner-rights to the current UFD.
If the bounce package is invoked (see Section 1.6) file unit 16 is
used, and the current UFD is opened for reading, then closed.

Therefore, when GPASSS is called unit 16 should be closed, and the
current UFD should not be open for writing on eny unit.

REV. ¢ 30 - 13 May 1976

PTUZ@ FART 1 PRIMOS FILE SYSTEM, REV. 13

ExamEles

1) Read passwords of SURUFLC into PASS(6) erray:

CALL GPASSS ('SUBUFD',G,PASS(I),PASS(4),CODE)

Compatikility

GPASSS corresponds to no olé file system subroutine. GPASSS works on
both old and new partitions.

REV. @ 20 - 14 May 1976

PIU30 PART 1 PRIMCS FILE SYSTEM, REV. 12

1.3.4.6 NAMEQS -- Compere Filenames

Function

NAMEQS is & LOGICAL function that compares two filenames for
equivalence.

Calling Seocuence

<logical> = NAMEQS (NAME1,LEN1,NAMEZ,LENZ)

Parameters

NAME1 The first filename for comperison.
LEN] The length in characters of NAMEL.
NAMEZ The second filename for comparison.
LENZ The length in characters of NAMEZ.

Notes on Usage

NAMEQS does & character-by—character compare of NAME]l and NAME2 up to
LEN]l or LENZ, whichever is shorter. The trailing characters of the
longer name (if the names ere not the same length) must all be blank
for equality.

NAMEQS will work correctly on numeric fields only if LENI=LENZ.
Examples

1) The following sets EQUAL to .TRUE. no matter what is in ARRAY:
EQUAL=NAMEQS (ARRAY (1) ,127,AKRAY (1) ,127)
2) FNAME(3) must be ~ ° for the following to set EQUAL .TRUE.:

EQUAL = NAMEQS (FNAME(1),6, NAME,4)

REV. @ 30 - 15 May 1976

PTU36 PART 1 PRIMOS FILE SYSTEM, REV. 13

Compatibility

NAMEQS provides the functionality of NAMEQV extended for verying length
cheracter strings.

REV. ¢ 30 - 16 May 1976

PTU30

PART 1 PRIMOS FILE SYSTEM, REV. 12

1.3.4.7 PRWFSS -- Read-Write-Position SAM or DAM File

Function

PRWFSS is used to read, write, position, and truncate SAM or rAM files.

Celling Seguence

CALL PRWFSS (RWKEY+POSKEY+MOCDE,FUNIT,LOC (BUFFER) ,Nw,

ECS, KW, CCDE)

bParareters

RWKEY

POSKEY

REV.

¢

This subkey, which cannot be omitted, indicates the action to
be taken. FPossible values are:

KSREAD--Read NW words from FUNIT into BUFFER.
KSWRIT--Write NW words from BUFFER to FUNIT.

KSPOSN——Set the current position to the 32-bit integer in
FOS.

KSTRNC--Truncate the file open on FUNIT at the current
position.

KSREOS—Return the current position as a 32-bit integer word
nurber in POS.

A subkey indicating the positioning to be performed.
Possible values are:

KSPRER—Move the file pointer of FUNIT FOS words relative to
the current position befcre performing RWKEY.

KSPOSK—-Move the file pointer of FUNIT PFOS words relative to
the current position after performing RWKEY.

KSPREA--Move the file pointer of FUNIT to the cbsolute
position specified by FOS before performing RWKEY.

KSPOSA—Move the file pointer of FUNIT to the cbsolute
position specified by POS after performing RWKEY.

30 - 17 May 1976

PTU3@ PART 1 PRIMCS FILE SYSTEM, REV. 13

Note: if this subkey is omitted, the default action is that
of KSPRER.

MOLE A subkey that is either omitted or has the value KSCONV. 1If
omitted, NW words eare read or written. If not omitted, a
convenient number of words (up to NW) is read or written.

(The meaning of "convenient" 1is described in the PRIMCS
User ‘s Guide.)

FUNIT A file unit number from 1 to 16 (1 to 15 for PRIMOS II or
under PRINET) on which a file has been opened by a call to
SRCHS$ or by a commend. PRWFSS actions are performed on this
file unit.

BUFFER The data buffer to be used for reading or writing. If BUFFER
is not needed, it can be specified as 10C(0) .

Nw The number of words to be read or written (MODE=@) or the

maximum pumber of words to be transferred (MODE=KSCONV) . NW
may be between 9 and 65535.

ECS A 32-bit integer (INTEGER*4) specifying the relative or
absolute positioning value depending on the velue of POSKEY.

RNW A 16-bit unsigned integer set to the number of words actually
transferred when RWKEY=KSREAD or KSWRIT. Other keys leave
RNW unmodified. For the keys KSREAD and KSWRIT, KNW must be
specified.

CCDE An integer variable to be set to the return code.

Notes on Usage

POS is always a 32-bit integer, not @ <record-number, word-numker>
peir. All cells to PRWFSS must specify FOS even if no positioning is
recuested. An INTEGER*4 @ can be generated by specifying "0g0008" or
"INTL(F)" in FIN, "@L" in PMA.

POSKEY 1is observed for all values of RWKEY except REDECS, for which it
is ignored (the file position is never changed).

If RWKEY = KSPOSN, NW end ENW are ignored, and no data is transferred.

Note thet it is nc longer necessary to call GETERR to obtain the number
of words transferred.

REV. @ 30 - 18 May 1876

PTU3@ PART 1 PRIMCS FILE SYSTEM, REV. 13

Examples

1) Read the next 79 worcs from the file open on unit 1:
CALL PBRWFSS (KSREAD,1,LOC(BUFFER),79,000006,NMREAC,CCDE)

2) Add 1024 words to the end of the file open on UNIT (1000@000 is just
a very large number to get to the end of the file):

CALL PRWFSS (KSPOSN+KSPREA,UNIT,LOC(8),0,100008¢0,NMw,CCCE)
CALL PRWFS$$ (KSWRIT,UNIT,LOCC(BFR),1024,0000600,NMw,CCCE)

3) See what positicn is on file unit 15 (INT4 is INTEGER*4):
CALL PRWFSS (REDPECS,15,I1CC(9),¢,INT4,6,CCODE)

4) Truncate file 16 words beyond the position returned by the &above
call:

CALL PRWFSS (KSTRNC+KSPREA,15,10C(8),£,INT4+16,6,CODE)

Compatibility

PRWFSS cannot be used on UFDs or seagment directories as could PRWFIL.
Note thet PRWF$SS now performs the TRUNCATE function, formerly
associoted with SEARCH. The REWIND function of SEARCH is also
per formed by PRWFSS: to rewind & file perform the following call:

CALL PRWFSS (KSPOSN+KSPREA,FUNIT,@,8,0080000,RNW,COCE)

This will position to the staert of the file without performing any date
trensfer.

REV. © 3¢ - 19 May 1976

PTUZ0

PART 1 PRIMOS FILE SYSTEM, REV. 13

1.3.4.8 RDENSS -- Reed UFD Entry

Function

RCENSS positions-in or reads-from & UFD.

Celling Segquence

FUNIT

BUFFER

BUFLEN

NAME

NAMLEN

CODE

REV. 0

CALL RLCENSS (KEY,FUNIT,BUFFER,BUFLEN, RNW,NAME,NAMLEN, CODE)
Paremeters
KEY An integer variable specifying the action to be taken.

Possible values are:

KSREAD—Advance to the start of the first or next UFD entry
and read as much of the entry as will fit into BUFFER.
Set RNW to the number of words read.

K$SGPOS——Return the current position in the UFD as & 22-bit
integer in NAME.

KSUPOS—Set the current position in the UFD from the 32-bit
integer in NAME.

A unit on which a UFD is currently opened for reading. (A
UFD may be cpened with a call to SRCHSS.)

A one dimensional array into which entries of the UFD eare
read.

The length in words of BUFFER.

An integer varieble thet will be set to the number of words
read.

A Z2-kit integer verieble used for keys of GETPOS and SETPOS.
A 16-bit integer variable reserved for future use. (It is
envisioned thet NAME and NAMLEN will in the future be used to
allow searching for the entry corresponding to a particuler
filename.)

An integer variable to be set to the return code.

P - 20 May 1976

PTU30 PAKT 1 PRIMCS FILE SYSTEM, REV. 13

Notes on Usage

RDENSS is used to read entries from & UFD. RMW words are returned in
BUFFER, and the file unit position is advanced to the stert of the next
entry. Return code ESECF means no more entries, ESBFTS means BUFFER is
toc small for the entry.

Note thet in the new file system, UFDs are not compressed when files
are deleted, and vacant entries may be reused. Thus, a newly-created
file will not necesserily be found at the end of & UFD.

The complete format of currently defined entries is given here. (A1l
nurbers are decimal unless preceded by & “: ".)

¢ |__ECW | ENTRY CONTROL WORD (TYPE/LENGTH)
1IF I

| I |

[PR

I E |

| ... | FILENAME (ELANK PADDEL)

IN l

I A !

I

I E |

17 | PROTEC | PROTECTION (OWNER/NON-OWNER)

18 |RESERVED| RESERVED FOR FUTURE USE

19 | FILTYP | FILETYPE <--- (END CF ENTRY FOR TYPEl)
20 | DATMOD | DATE LAST MCDIFIED

21 | TIMMOD | TIME IAST MODIFIED

22 |RESERVEL| RESERVED FOR FUTURE USE

23 |RESERVED| RESERVED FOR FUTURE USE

ECW Entry Control Word. BAn ECW is the first word in eény entry
and consists of two 8-bit subfields. The high-order 8 bits
indicete the type of the entry, the low-order 8 bits give the
length of the entry in words including the ECW itself.
Fossible values of the ECw et REV. 13 are as follows:

:00PeE1 - Type=0, length=1. This entry indicetes either a

UFD header or a vecant entry. No informetion other then
the ECW is returned.

REV. © 30 - 21 May 1976

PTUZE

FILENAME

PROTEC

FILTYP

DATMOD

TIMMOD

REV. ¢

PART 1 PRIMCS FILE SYSTEM, REV. 13

1000424 - Type=1, length=20. Type=1 indicates an olé UFD
entry. Wwords 8-19 in the diagram above cre returred.

1001630 - Type=2, length=24. Type=2 indicetes a new UFD
entry. All the above informetion is returned. Reserved
fields shoul@ be ignored.

User programs should ignore any entry-types that are not

recognized. This will &llow rfuture expansion of the file

_System without unduly affecting old programs.

Up to 32 characters of filename, blenk padded.

Owner and non-owner protection attributes. The owner rights
are in the high-order 8 bits, the non-owner in the low-order
8 bits. The meanings of the bit positions are as follows (e
1-bit grents the indiceted access right) :

1-5,9-13 Reserved for future use.

6,14 Delete/truncate rights.
7,15 Write-access rights.
8,16 Read-access rights.

On @ new partition, the low-order 8 bits indicete the type of
the file as follows:

SAM file.,

DAaM file.

SAM Segment directory.

DAM Segment Directory.

UFD

On an olg partition, the filetype is zero -- the file must be
opened with SRCHS$ to determine its type. Of the high-order
8 bits, only bit 4 (:10068) is currently defined. If one, it
indicetes & special file -- BOOT, MFD, DSKRAT, or BADSPT.
The other kits are reserved for future use. (Bit 4 is wvelid
on both new and old partitions.)

WD N D

The date on which the file was last modified. The date,
which is valid only on new partitions, is held in the binary
form YYYYYYYMMMMLCDDD, where YYYYYYY is the year moculo 1¢4,
MMMM is the month, DDDDD is the day.

The time at which the file was last modified. The time,

which 1is velid only on new partitions, is held in binary
seconds-since-midnight divided by four.

30 - 22 May 1976

PIUZD PART 1 PRIMCS FILE SYSTEM, REV. 13

Examples

1) Read next entry from new or o0lé UFD:

100 CAILL RLCENSS (KSREAL,FUNIT,ENTRY,Z24,RNw,%,¢,CODE)
IF (CODE .NE. ©) GOTO <error hendler>
TYPE=RS (ENTRY (1) ,8) /* GET TYPE OF ENTRY JUST REAC
IF (TYPE.NE.1.AND.TYPE.NE.Z2) GOTO 1£0 /* UNKNCWN
2) Position to beginning of UFD:

CALL RLENSS (KS$UFOS,FUNIT,®,8,8,€00000,¢,CCDE)

Compatibility

RDENSS provides the facility lacking in the new PRWFSS -- the ability
to read UFDs. In addition, knowledge of the internal leayout of & UFD

is not necessary in user programs. RDEN$S can be used on both 0ld e&nd
new partition UFDs.

REV. @

W)
=
|
[\
tad

May 1976

PTUZE PART 1 PRIMCS FILE SYSTEM, REV. 13

1.3.4.9 RESTSS -- Restor & P3@0 Memory Image from a File

Function

RESTSS reads 2 P20 memory image from e file in the current UFD into
merory.The SAVE ‘G parameters for a file previosly written to the disk
by the SAVE or SAVESS subroutine or the SAVE command are loaded into
the nine word erray VECIOR. The memory imege itself is then loaded
into memory using the starting and ending addressed provided by
VECTOR (1) and VECTOR(2).

Calling Secuence

CALL RESTSS$ (VECTOR,NAME , NAMLEN, CCCE)
Parameters

VECTOR A nine word array set by RESTSS. VECICR(1) 1is set to the
first location in memory to be restored. VECTOR(2) is set to
the last location to be restored. The rest of the array is
set &s follows:

VECTCR(3) saved P register
VECIOR(4) saved A register
VECTOR(5) saved E register
VECTOR (6) saved X register
VECIOR(7) saved Keys
VECTOR (8) not used

VECTOR (9) not used

NAME The name of the file conteining the memory image.
NAMLEN The length in characters of NAME.

CODE An integer varicble set to the return code.

Compatibility

REST$$ has the same function as RESTOR and hendles long names. RESTSS
works on both old end new partitions.

REV. € 30 - 24 Mzy 1976

PLUZG PAKT 1 PRIMCS FILE SYSTEM, REV. 1Z

1.3.4.18 RESUSS -- Resuming & P26 Mermory Image File

Function

RESUSS restores & P36¢ memory imege from e file in the current UFD,

initielizes registers from the saved parameters, and sterts executing
the program.

Celling Secuence

CALL RESUSS (NAME, NAMLEN)

Perameters

NAME The name of the file containing the memory imege.

NAMLEN The length in characters of NAME.

Notes on Usage

RESUSS does not heve 2 CODE argument. On & error, an errcr message is
typed end control returns to command level.

Compatibility

RESUSS provides the functionality of RESUME extended for long nemes.
RESUSS works both on 0ld and new partitions.

REV. € 20 - 25 May 1976

PTUZ¢ PART 1 PRIMCS FILE SYSTEM, REV. 13

1.3.4.11 SATRSS -- Set Attributes in UFD Entry

Function

SATRSS allows the setting or modification of a file’s attributes in its
UFD entry.

Calling Seguence

CALL SATRSS (KEY,NAME , NAMLEN,, ARRAY , CODE)

Parameters

KEY An integer variable specifying the action to take. Possible
values are:

KSPROT--Set protection attributes from ARRAY(1). ARRAY(2) is
ignored for old partitions and must be @ for new
partitions (it is reserved for expansion). The meaning of
the protection bits in ARRAY(1) is givern under RDENSS
above.

KSDTIM--Set date/time modified from ARRAY (1) and ARRAY(2).
The formet of the date/time is given under RDENSS above.

NAME The name of the file whose attributes are to be modified,
The current UFD is searched for NAME.

NAMLEN The length in cheracters of NAME.

ARRAY A two-word erray conteining the s&ttributes. For KSPROT,
ARRAY (2) must be zero.

CCDE An integer veriable set to the return code.

Notes on Usege

Owner rights are recuired on the UFD containing the entry to be
modified.

The formets of the attributes in ARRAY are the same as those in & UFD
entry obtained from RDENSS.

REV. ¢ 20 - 26 May 1976

PTUZ0 PART 1 PRIMCS FILE SYSTEM, REV. 12

An attempt to set the date/time nodified on an old partition will
result in en ESOLDP error (error message ‘OLD PARTITICN’).

Since a call to SATR$S modifies the UFD, the date/time modified of the
UFD itself is updated.

If the bounce package is being used (see Section 1.6), file unit 16
should be closed, and the current UFD should not be open on any unit
prior to the cell.

Exanples

1) Set default protection ettributes on MYFILE:
ARRAY (1)=:340@ /* OWNER=7, NON-OWNER=£
ARRAY (2)=0 /* SECOND WORD MUST BE 0
CALL SATRSS (KSPROT,'MYFILE',G,ARRAY(I),CODE)

2) Set both owner ancd non-cwner attributes to read-only (ncte cerefully
bit positioning in two-word octel constent) :

CALL SATRSS (KSPROT, NO-YOU-DON ‘T *,12, :100280606¢,CODE)
3) Set date/time modified from UFD entry read into ENTRY by RDENSS:

CALL SATRSS (KSDTIM,FI1LNAM,6,ENTIRY(Z1) ,CCDE)

Corpatibility

SATRSS has no corresponding old file system routine. It provides &
facility (setting the protection bits of a file) formerly aveileble vie
PRWFIL. SATRSS can be used on 0ld and new partitions.

REV. @ 30 - 27 May 1976

PTUZE PART 1 PRIMOS FILE SYSTEM, REV. 13

1.3.4.12 SAVESS -- Save & P30@ Memory Imece as a File

Function
= rren

SAVES$ is used to save a Prime 360 memory imege &s e file in the
current UFD.

Calling Seaquence

CALL SAVESS (VECTOR, NAME , NAMLEN)

Parameters

VECTOR A nine word array the user sets up before cealling SAVESS
VECTOR(1) is set to an integer which is the first location in
memory to be saved and VECTOR(2) is set to the lest location
to be saved. The rest of the array is set &t the user’s
option and has the following meaning:

VECTOR(3) saved F register
VECICR(4) Saved A register
VECTOR(5) Saved B register
VECTOR(6) Saved X register
VECTOR(7) Saved Keys
VECTOR (8) not used

VECTOR (9) not used

NAME The name of the file to contain the merory image.

NAMLEN The length in characters of NAME.

Notes on usage

SAVESS does not have a CODE argument. On an error, an error message is
typed end control returns to command level.

Compatibility

SAVESS provides the functionality of SAVE extended for 1long names.
SAVESS can ke used on new and old partitions.

REV. ¢ 30 - 28 May 1976

PIUZE PART 1 PRIMCS FILE SYSTEM, REV. 12

1.3.4.13 SPASSS -- Set UFD pessworcs

Function

SPASSS sets the passwords of the current UFD.

Czlling Seguence

CALL SPASSS (OPASS,NPASS,CCLE)

Parameters

OFASS A three word array that contains the password to set eés the
owner passworc.

NPASS A three word array thet contains the password to set as the
nonwoner password.

CCDE An integer variecble set to the return code.

Notec on usace

SPASSS recuires owner rights to the current UFD. Passwords should not
ctart with & number nor should they contein klanks, commas,
=1,e,{,},1,1,(,0r).Passwords should not contain lower-case characters
but may contain any other cheracters including control characters.

1f the bounce package is invoked (see section 1.6), file unit 16 1s

i
used and the current ufd is opened for writing, then closed. The
current ufd should not be open on any unit before making this call.

Compatibility

SEASSS has no corresponding old file system subroutine. SPASS$S works
on both new and old partitions.

KEV. ¢ 20 - 29 May 1976

PIU5@ PAKT 1 FRIMOS FILE SYSTEM, REV. 13

1.3.4.14 SRCH$S -- Open or Close a File

Function

SKRCHSS 1is used to connect 2 file to a file unit (open a file),

disconnect a file from & file unit (close & file), delete a file, or
check on the existence of a file.

Calling Sequence

CALL SKCHSS (ACTION+REF+NEWFIL,NAME,NAMLEN,FUNIT,TYPE,CODE)

Parameters
ACTION A subkey indicating the action to be performed. Possible
velues are:
KSREAD—Cpen NAME for 1 :ading on FUNIT.
KSWRIT--Open NAME for writing on FUNIT.
KSRDWR—Open NAME for reading end writing‘on FUNIT.
KSCLOS-—Close file by NAME or by FUNIT.
KSDELE--Delete file NAME.
KSEXST--Check on existence of NAME.
KEF A subkey modifying the ACTION subkey as follows:

KSIUFD--Search for file NAME in the current UFD (this is the
default) .

KSISEG--Per form the ection specified by ACTION on the file

that is a segment directory entry in the directory open on
file unit NAME.

KSCACC--Change the access rights of the file alreedy open on
FUNIT to ACTICN.

NEWFIL A subkey indicating the type of file to create if NAME does
not exist. Fossible values are:

REV. 0 30 - 38 May 1976

a

PIUZG PART 1 PRIMOS FILE SYSTEM, REV. 13

KSNSAM—-New threaded (SAM) file (this is the defeult).

KSNSGS——New threaded (SAM) segment directory.
KSNSGD—New directed (DAM) segment directory.

Note that it is not possible to generete & new UFD with
SRCHSS. Use CREASS instead.

NAME The name of the file to be opened. The key OPNCUR can be
used to open the current UFD (ACTION keys KSREAD, KS$WKIT, or
KSRDWR only) . If REF is KSISEG, NAME is a file wnit from 1
to 16 (1 to 15 under PRIMOS II or PRINET) cn which & segment
Girectory is already open.

NAMLEN The length in characters of name.

FUNIT The nurber (1-16, 1-15 under PRIMCS II or PRINET) of the file
unit to be opened or closed.

TYPE An integer varicble that is set to the type cf the file
opened. TYPE is set only on calls thet open & file —— it is
unmodified for other cells. Possible vslues of TYPE are:

¢ saM file
1 DAM File
2 SAM Segment Directory
3 DAM Segment Directory
4 UFL
CCLE An integer variable set to the return code.

Notes on Usage

The keys REWIND and TRUNCATE of the old SEARCH are now PRWFSS$
functions.

Note thet it is no longer necessery to call GETERR to obtain the type
of the file opened. (Indeed, ERRVEC is no longer set up with the
filetype.)

A UFD may ke opened only for reading. An attempt tc open & UFD for
writing will result in an ESNRIT error (error message ‘NO RIGHT).

A UFD cannot be deleted unless it is empty. A segment directory cennot

be deleted unless it is of length 8. (It can be made to be 8 length by
a SGDRSS call with the MAKSIZ key -- see description of SGLRS$S.)

REV. 0 30 - 31 May 1276

PTUZG PART 1 PRIMCS FILE SYSTEM, REV. 1%

Exemgles

1) Open new SAM file named RESULTS for output on file unit 2:
CALL SRCHSS (KSWRIT,'RESUDTS',?,Z,TYPE,CCIE)

2) Create new [AM file in the segment directory open on SGUNIT and open
for reading end writing on DMUNIT:

CALL SRCHSS (K$RDWR+K$ISEG+K$NDAM,SGUNIT,l,DMUNIT,TYPE,CODE)
3) Close and delete the file created in the above call:

CALL SRCHSS (K$CLOS,@,@,DMUNIT,d,CODE)
CALL SRCHSS (KSDELE+K$ISEG, SGUNIT, £, @, ¢ ,CODE)

4) See if filename 'MY.BLACK.HEN® is in current UFD:

CALL SRCHSS (KSEXST+KSIUFD, ‘MY.RLACK.HEN °,12,0, TYPE,CCDE)
IF (COLE.EC.ESFNTF) CALL TNCU(NOT FOUND °,9)

5) Create a new segment directory and 2 new SAM file es its first
entry:

CALL SRCHSS (KSRDWR+K$NSGS, "SEGDIR °, 6, UNIT, TYPE , CODE)
CALL SKCHSS (KSWRIT+KSNSAM+KSISEG, UNIT, ¢, 7, TYPE , CODE)

Compatibility

SRCHS$S provides all the functionality of SEARCH except the REWIND and
TRUNCATE functions, which are now provided by PRWFSS. Also, since UFDs
cannot be read with PRWFSS, filned or closed.

TYPE An integer variable that is set to the type of the file
opened. TYPE is set only on calls that open a file —- it is unmocified
for other calls. Possible values of TYPE are:

SAaM file

DAM File

SAM Segment Directory
DAM Segment Directory
UFD

B N S

CODE An integer veriable set to the return code.

REV. ¢ 30 - 32 May 1976

PTUZ@ PART 1 PRIMCS FILE SYSTEM, REV. 12

Notes on Usege

The keys REWIND ené TRUNCATE of the old SEARCH are now PRWFSS
functions.

Note thet it is no longer necessary to cell GETERR to obtein the type
of the file opened. (Indeec¢, ERRVEC is no longer set up with the
filetype.)

A UFC mey be opened only for reading. An attempt to cpen & UFD for
writing will result in an ESNRIT error (error messege NO RIGHT).

A UFD cannot be deleted unless it is empty. A segment directory cannot

be deleted unless it is of length 9. (It can be mede to be & length by
a SGDRSS call with the MAKSIZ key —— see description of SGDRS$S.)

Exarples

1) Open new SAM file named RESULTS for output on file unit 2:
CALL SRCHSS (KSWRIT, ‘RESULTS,7,2,TYPE,CCLE)

2) Create new DAM file in the segment directory open on SGUNIT and open
for reading and writing on DMUNIT:

CALL SRCHSS (K$RDWR+K$ISEG+K$NDAM,SGUNIT,l,DMUNIT,TYPE,CODE)
3) Close and delete the file creeted in the above call:

CALL SRCHSS (K$CLOS,@,9,DMUNIT,E,CCLE)
CALL SRCHSS (KSDELE+KSISEG,SGUNIT,é,@,#,CODE)

4) See if filename MY.ELACK.HEN' is in current UFD:

CALL SRCHSS (KSEXST+KSIUFD, ‘MY.BLACK.HEN ,12,6,TYPE,CCCE)
IF (CODE.EQ.ESFNTF) CALL TNOU(NOT FOUND *,9)

5) Create a rew segment directory and @ new SAM file as its first
entry:

CALL SRCHSS (KSRDWR+KSNSGS, ‘SEGDIR °,6,UNIT,TYPE,CCLE)
CALL SRCHSS (KSWRIT+KSNSAM+KSISEG,UNIT,@,7,TYPE,CCDE)

REV. § 36 - 33 May 1976

PTUZ0 PART 1 PRIMCS FILE SYSTEM, REV. 13

Compatibility

SRCHS$ provides &ll the functionality of SEARCH except the REWIND and
TKUNCATE functione, which are now provided by PRWFSS. Also, since UFDs
cennct be read with PRWFSS, files can no longer be copened via a KSISEG
through UFD entries. SRCHSS can be used on o0ld end new partitions.

REV. ¢ 30 - 34 May 1976

PTUZB PART 1 PRIMOS FILE SYSTEM, REV. 13

1.3.4.15 SGDRSS -- Position and Read Segment Directory Entries

Function

SGDR$$S positions in & segment directory, reads entries, and allows
modification of & directory’s size.

Calling Seguence

CALL SGDRSS (KEY,FUNIT,ENIRYA,ENTRYB,CCDE)
parameters

KEY An integer specifying the action to be performed. FPossible
values ere:

K$SSPOS—-Move the file pointer of FUNIT to the position given
by the wvalue of ENTRYA. Return 1 in ENTKYR if ENTRYA
contains a file, return 9 if ENTRYA exists but does nct
contain & file, return -1 if ENTRYA does not exist (is
beyond EOF). If ECF 1is reached on KSSEOS, the file
pointer is left at EOF. The directory must be cpen for
reading or beth reading end writing.

KSGOND--Move the file pointer of FUNIT to the end-of-file
position and return in ENTRYB the file entry number of the
end of the file.

KSGPOS——Return in ENTRYB the file entry number pointed to by
the file pointer of FUNIT.

KSMSI1Z--Make the segment directory open on FUNIT ENTRYA
entries long. The file pointer is moved to the end of
file. The directory must be open for both reading eénd
writing

KSMUNT—The entry pointed to by ENTRYA is moved to the entry
pointed to by ENTRYR. The ENTRYA entry is repleced with &
null pointer. Errors ere generated by KSMVNT if there is
no file at ENTRYA, if there is already a file &t ENIRYB,
if either ENTRYA or ENTRYB are at or beyond EOF. The file
pointer is left at an undefined position. The directory
must be open for both reading end writirg.

REV. © 30 - 35 May 1976

PTUZ0 PART 1 PRIMCS FILE SYSTEM, REV. 13

FUNIT The file unit on which the segment directory is open.

ENTRYA An unsigned 16-bit entry number in the directory, to be
interpreted eccording to KEY.

ENTRYB An unsigned 16-bit integer set or used according to KEY.

COCE An integer veriable set to the return code.

Notes on Usage

When using SGDRSS, the segment directory should not be opened for
write-only access.

A KSMSIZ call with ENTRYA=§ will cause the directory to have no
entries. If the value of ENTRYA is such s to truncate the directory,
2ll entries including and beyond the one pointed to by ENTRYA must be
null,

N.B.: When seqguentislly reading a directory (KSSPCS, ENTRYA =
ENTRYA+l, K$SPOS, ...), ENTRYB=-1 indicetes the end of the directory,
NOT the return code ESEOF. ESEOF will be returned when ENTRYA
indicates a position beyond EOF, i.e., the entry following the first
KSPOS to return ENTRYB=-1.

Examgles

1) Read sequentially through the segment directory open cn 6:

CURPOS=-1
106 CURPOS=CURPOS+1
CALL SGDRS$ (KS$SPOS,6,CURPOS,RETVAL,CODE)
IF (RETVAL) 200,200,406 /* BOTTOM, NO FILE, IS FILE

2) Make directory open on 2 as big es directory open on 1:
CALL SGDRS$S (K$GOND,1,@,SIZE,CODE)

IF (CODE.NE.@) GCTO <error handler>
CALL SGDRSS (K$MS1Z,2,SIZE,@,CCDE)

REV. © 30 - 36 May 1976

PTUzE PART 1 PRIMCS FILE SYSTEM, REV. 13

Competibility

SGDRSS provicdes functionslity formerly aveilable via PRWFIL. DNote,
however, that reletive positioning is no longer allowec.

SGORSS will work on oldé ené new segment directories (i.e., will work on
both one-woré and two-woré entry segrent directories).

REV. 0 20 - 37 May 1976

P1Us0 PART 1 PRIMGS FILE SYS1EM, REV. 13

1.3.4.16 TEXIO$ -~ Check velidity of Filename

Function

TEXTCS checks to see if a filename hes vzlid formet.

Celling Secuence

CALL TEXTOS (NAME,NAMLEN,TRULEN, TEXTOK)

Paremeters

NAME An arrey containing the filename to be checked.
NAMLEN The length of NAME in cherecters.

TRULEN An integer set to the true number of characters in NAME .
TRULEN is valid only if TEXTOK is .TRUE.

TEXICK A logicel veriable set to .TRUE. if NAME is & velid
filername, else set to .FAISE.

Notes on Usege

TKULEN is the number of cheracters in NAME preceeding the first blenk.
1f there are nc blenks, TRULEN is egual to NAMIEN. The characters
valid in filenames are given in Section 1.2.1.1.

Exemples

1) Read name from terminal, check for validity, set TRULEN to actual
name length:

CALL I$AAl2 (Q,BUFFER,82,$999)

CALL TEXTOS (EUFFER, 22,TRULEN,CK) /* SET TRULEN
IF (.NOT.OK) GCTC <bed-name>

REV. @ 3@ - 38 May 1976

PTUZY PART 1 PRIMCS FILE SYSTEM, REV. 1:

Cerpatibility

TEXTOS extends the functionality of TEXTCK.

REV. ¢ 30 - 3¢ May 1976

PTUZ0 PART 1 PRIMCS FILE SYSTEM, EREV. 1%

1.2.5 EKRCR CCDE SUMMARY

The following table summerizes all new file system error coces.
Numeric definitions ere given in the next secticn on SYSCOM.

X=>Possible Error ©=>01¢ Partition Only B=>Bounce Package Only

CODE ATCHSS CREASS GPASSS PRWFSS RDENSS SATRSS SRCHSS SGDRSS
ESECF X X X
ESBOF X X X
ESUNOP X X X(1) X
ESUIUS B B B X(2)
ESFIUS B B B X(2)
ESEPAR (3)

ESNATT X X X X X (4)
ESFDFL 0 0(5)

. ESDKFL X X(5) X(5) X(5)
ESNRIT X X X X X
ESFDEL X
ESNTUD X X X (4)
ESNTSD X(8)
ESDIRE (2)

ESFNTF X X i X X (4)
ESFNTS X(8) X
ESENAM X X(4,5)
ESEXST X X
ESDNTE X

ESSHUT (3)

ESDISK (6) X X X X X X X X
ESBCAM X X
ESPTRM X X X X X X X X
ESBPAS X(7)

ESBCOD (3)

ESBTRN X
ESOLDP §)

ESBKEY X X X X X
ESBUNT X X X X
ESBSUN X(€)
ESSUNO X(8)
ESNMLG

ESSDER (3)

ESBUFC(9) X X X X X X

ESBFTS X

ESFITE X
Notes

1) Possible for KSCACC key only.

REV. ¢ 30 - 40 May 1576

PIUzE PART 1 PRIMCS FILE SYS1EM, KEV. 13

2) Possible for all keys but KSEXST.

3) Interrnal errcr —- never seen by user progrem.

4) possible only on UFD reference keys.

5) Possible only on write operations.

6) An ESDISK (¢isk I/0) error will always immediately return the
program to PRIMOS commend level.

7) An ESREAS (bad password) error will elweys imrediately return the
progrem to PRIMCS commené with no UFD attached.

g) possible only on segment directory reference keys.

9) An ESBUFC (btaé UFD) error will be returned only on a RDENSS call end
a bounced GPASSS call. Other subroutines will place the user at
PRIMCS commend level.

REV. ¢ 30 - 41 May 1976

PTUZG

PART 1

1.4 NEw FILE SYSTEM KEY AND ERROR DEFINITIONS

1.4.1 KEYS.F -~ FILE SYSTEM KEY DEFINITIONS

Keys

PRIMCS FILE SYSTEM, REV. 13

for the new file system cells are defined in two SINSERT files —-

KEYS.F for FORIRAN and KEYS.P for PMA -- in the UFD SYSCOM on Volume 1

of the Master Disk.

using EQUs instead of PARAMETERS.

C SYSCOM>KEYS.F MNEMONIC KEYS FOR FILE SYSTEM (FTN)
NOLIST
C
C TABSET 6 11 28 69
C
INTEGER*2 KSREAD, KSWRIT,K$SPOSN, KSTRNC, KSRPOS , KSPRER, KSPREA,
X KSPOSR,KSFOSA,KSCONV,KSRDWR, KSCLOS, KSDELE , KSEXST,
X KSIUFD,KSISEG,KSCACC,KSNSAM,K$NDAM ,KSNSGS , KSNSGD,
X KSCURR,KSIMFD,KSICUR,KSSETC, KSSETH, KSALLD, KSSEOS,
X KSGOND,K$MSIZ,KSMENT, KSENTR, KSSENT , KSGEOS , KSUPOS,
X KSPROT,KSDTLIM,KSDMPB,KSNRIN, KSSRTN , KSIRIN
C
PARAMETER
X
X /***k*****/
X /*
X /*
X /* KEY DEFINITIONS
X /*
X /*
X /********************* PRWEss khkkkkkkkhkhkkkhkkhhhkhkhkik
X /* Kk kkk RWKEY (**%%%%x%
X KSREAD = :1, /* READ
X KSWRIT = :2, /* WRITE
X K$POSN = :3, /* POSITION ONLY
X KSIRNC = :4, /* TRUNCATE
X KSRFOS = :5, * READC CURRENT PFOSITION
X /* khkkkkk mSKEY *kkkkk
X KSERER = :0, /* PRE-POSITION RELATIVE
X KSPREA = :1y, /* PRE-POSITION ARSOLUTE
X KSPOSK = :28, /* POST-POSITION RELATIVE
X K$POSA = :30, /* POST-POSITION ABSOLUTE
X /* *kdkkkk MCLE *kkkkk
X KSCONV = :40@, /* CONVENIENT NUMBER OF WORDS
X /*
X /********************* SRCHss KRR AKRKRAKRKARAAKK A KK
REV. © M| - 42

May 1

e}

KEYS.F is reproduced here to aid in correlation of

the key names with the o0lé file system keys. KEYS.P is equivelent,

76

PIUZ6

REV.

/*
/*********************

X /* *kkk kK
X /* KSREAD = :1, /*
X /% KSWRIT = :2, /*
X KSRDWR = :3, /*
X KSCICS = :4, /*
X KSDELIE = :5, /*
X KSEXST = :6, /*
X /* *kkkkk
X KSIUFL = :€, /*
X KSISEG = :160, /*
X KSCACC = :169¢, /*
X /* *kkkkk
X KSNSAM = :0, /*
X KSNDAM = :2680, /*
X KSNSGS = :4866, /*
X KSNSGD = :6660, /*
X KSCURR = :177777,/*
X /*

X /*********************
X /* kkkkkk
X KSIMFL = :0, /*
X KSICUR = :2, /*
X /* Kk kkkk
X KSSE1IC = :5, /*
X KSSETH = :1, /*
X /* kkkkkk
X KSHOME = :0, /*
X /* *kkkkk
X KSALLD = :16006@,/*
X /* KSCURR = :177777,/%
X /*

K JREEIRRKERERAK IR R KKK
X /% *kkkkk
X KSSEOS = :1, /*
X KSGOND = :2, /*
X KSGPCS = :3, /*
X KSMSIZ = :4, /*
X KSMVNT = :5, /*
X /*

X /*********************
X /* *kkkkk
X /* KSREALD = :1, /*
X KSRSUE = :2, /*
X /* KSGECS = :3, /*
X KSUPOS = :4, /*
X /*

X /*********************
X /* e
X KSPRCT = :1, /*
X KSDTIM = :2, /*
X KSDMPR = :3, /*
X

X

PART 1

DCTION **kkkx

OPEN FCR EEAD

CPEN FOR WKITE

CPEN FCR KEADING AND WRITING
CLOSE FILE UNIT

DELETE FILE

CHECK FILE 'S EXISTENCE
REF *kkkkk

FILE ENTRY IS IN UFDC

FILE ENTRY IS IN SEGMENT CIRECTORY
CHANGE ACCESS

NEWFIL ***%x%

NEW SAM FILE

NEW DAM FILE

NEW SAM SEGMENT CIRECTORY

NEwW DAM SEGMENT CIRECTCRY
CURRENTLY ATTACHED UFD

ATCHSS **xkkkkskkkkkkhkkkkkkk

KEY *kkkkk

UFC IS IN MFT

UFD IS IN CURRENT UFD

KEYMOD **%*%%

SET CURRENT UFD (DC NOT SET HOME)
SET HOME UFD (AS WELL AS CURRENT)
NAME =~ **%x%%

RETURN TC HOME UFD (KEY=KSIMFD)
LDISK *kkkkk

SEARCH ALL DISKS

SEARCH MFD CF CURRENT DISK

SGDRSS ***kkkkkskkkkkkkkkkkkk
KEY Kk kkkk

POSITION 1C ENTRY NUMBER IN SEGDIR
POSITION 1O END OF SEGLIR

RETURN CURRENT ENTRY NUMBER

MAKE SEGDIR GIVEN NR CF ENIRIES
MOVE FILE ENTRY TO NEW FOSITION

RDENSS ***xkkkkkkkkdkhkkkkkkk
KEY *kkk Kok

READC NEXT ENTRY

READ NEXT SUB-ENTRY

RETURN CURRENT FOSITICN IN UFD
POSITION IN UFD

SATRSS *kkkkskkkkkkkkkkkkkkkk
KEY Kk kkk*k

SET PROTECTION

SET DATE/TIME MODIFIELC

SET DUMPED BIT

ERPR$$ kkkkkkkkkkhkkkhkhkkkkkkx

PRIMCS FILE SYSTEM, KREV. 13

May 1976

PTUSE PART 1 PKIMCS FILE SYSTEM, REV. 13

X /* *xkkA%X KRV *kkkkok

X K$NRIN = :¢, /* NEVER RETURN TC USER

X K$SRIN = :1, /* RETURN AFTER START CCMMAND

X KSIRIN = :2 /* IMMEDIATE RETURN TO USER

X /*

X /*

X JRFhhkhkkhhkh kX khk kAR AR h kA kA k kKR * KAk Ak kR hkhkkkkk ok & k& k

LIST

REV. ¢ 36 - 44 May 1976

PTUZE PART 1 PRIMCS FILE SYSTEM, REV. 12

1.4.2 ERRC.F —— ERRCR RETURN CCDE DEFINITICNS

The definition of ERRD.F is provided here verbatim to ease correlation
of the new error names with old file system error codes. ERRD.P (for
PMA) provides exactly the same definitions in the form of ECUs. (The
two-character codes ot the right are the 0ld file system equivelent
codes that were found in ERRVEC(1).)

C
C SYSCOMM>ERKD.F DEFINE SYSTEM ERRCR CODES AS PARAMETERS
C JEC 15 NOV 76

NOLIST
C
C LCEFINES ALL ERRCR CODES
C
INTEGER*2 ESEOF, ESBOF , ESUNCP,ESUIUS,ESFIUS,ESEPAR, ESNATT,
X ESFDFL,ESDKFL, ESNRIT, ESFCEL, ESNTUD, ESNTSD, ESDIRE,
X ESFNIF , ESFN1S, ESENAM, ESEXST, ESDNTE , ESSHUT, ESDISK,
X ESBDAM, ESPTRM, ESEPAS , ESBCCD, ESBTRN, ESOLDP, ESBKEY,
X ESBUNT , ESBRSUN, ESSUNC, ESNMLG, ESSCER, ESBUFL, ESEFTS,
X ESFITR, ESNULL
C
PARAMETER
X ESECF= 1, /* END OF FILE BE */
X ESBCF = 2, /* BEGINNING OF FILE BG */
X ESUNCP= 3, /* UNIT NOT CPEN PD,SD */
X ESUIUS= 4, /* UNIT IN USE SI */
X ESFIUS= 5, /* FILE IN USE SI */
X ESBPAR= 6, /* BAD PARAMETER SA */
X ESNATI= 7, /* NO UFI" AITACHED SL,AL */
X ESFLCFL= 8, /* UFD FULL SK */
X ESDKFL= 9, /* DISK FULL DJ */
X ESNRIT=1¢, /* NO RIGHT SX */
X ESFDEL=11, /* FILE CPEN ON DELETE Sp */
X ESNIUD=12, /* NOT A UFD AR */
X ESNTSD=13, /* NOT A SEGDIR -— %/
X ESDIRE=14, /* IS A DIRECTORY - %/
X ESFNIF=15, /* (FILE) NOT FOUND SH,AH */
X ESFNTS=16, /* (FILE) NCT FCUND IN SEGDIR SQ */
X ESBNAM=17, /* ILLEGAL NAME CA */
X ESEXST=1€, /* ALREADY EXISTS Cz */
X ESDN1E=19, /* DIRECIORY NOT EMPTY -— %/
X ESSBUT=20, /* BAD SHUTDN (FAM ONLY) BS */
X ESDISK=21, /* DISK I/O ERRCR WB */
X ESRDAM=22, /* BAC DAM FILE (FAM ONLY) Ss */
X ESPTRM=23, /* PTR MISMATICH (FAM ONLY) PC,DC,AC */
X ESBPAS=24, /* BAD PASSWCRD (FAM CNLY) AN */
X ESBCOD=25, /* EAD CODE IN ERRVEC - %/
X ESBTRN=26, /* EAD TRUNCATE CF SEGLIR -— */
X ESOLDP=27, /* CLD PARTITICN — */
X ESEKEY=28, /* BAD KEY — ¥/
REV. 0 30 - 45 May 1976

PTU30 PART 1 PRIMCS FILE SYSTEM, REV. 13

X ESBUNT=29, /* BAD UNIT NUMBER — %/
X ES$BSUN=30¢, /* BAD SEGDIR UNIT SA */
X ESSUNO=31, /* SEGDIR UNIT NOT OFEN — %/
X ESNMLG=32, /* NAME TOC LONG -— %/
X ESSDER=33, /* SEGDIR ERRCR SQ */
X ESBUFD=34, /* BAD UFD -— %/
X ESBFTIS=35, /* BUFFER TOO SMALL — x/
X ESFITB=36, /* FILE TOO BIG - */
X ESNULL=37 /* (NULL MESSAGE) -— %/
LIST

C
C END SYSCOM>ERRD.F

REV. § 36 - 46 May 1976

PTU3@ PART 1 PRIMOS FILE SYSTEM, REV. 13

1.5 NEW FILE SYSTEM ERROR HANDLING CONVENTIONS

1.5.1 MOTIVATION

All the new file system routines described in the previous section
employ new error handling procedures that will slowly be incorporated
into other PRIMOS subsystems. The new error handling facilities will
not affect existing programs, and only programs using the new file
system czlls need to be aware of the new error handling.

The new error handling protocol was motivated by the following
congiderations.

1) Except for a few restricted cases, FORTRAN non-local GCTOs do not
work in 64V mode (aveilable since REV. 16).

2) Non-locel GOICs are a violation of good programming prectice.
3). Error information in a recursive/reentrant environment must be

associated with & particular cell, not left in a single static
place (e.g., ERRVEC).

1.5.Z THE RETURN CODE FARAMETER
All error codes, formerly placed in ERRVEC, are now returne¢ to the
user in 2 16-bit user-supplied integer varisble. For example, in the
call:

CALL PRWFSS$ (KEY,UNIT,LOC(BFR) ,NW,FOS, RNW,CODE)
C PRWFSS (KEY,UNIT,LOC(BFR) ,NW,FOS,RNW,CODE)
CODE is an integer PRWFS$S sets to the appropriete return code.

CCCE can be thought of as & replacement for the (cptional)
alternate-return argument.

The effect of the olé@ error handling scheme can be achieved through
code such as:

CALL CREASS (NAME,NAMLEN,OPASS,NPASS,CCDE)
IF (CCDE.NE.g) GOTO 99

which would be equivalent to supplying en ALTRIN of $99 in the old

scheme (except, of course, that GETERR need not be called to obtain the
error code) .

REV. # 36 - 47 May 1976

PIUZE PAKT 1 PRIMCS FILE SYS1EM, REV. 13

N

.B.: CODE shoulc always be checked for zero or non-zero to ensure
tha

t errors do not go unnoticed.

1.5.2 STANDARD SYSTEM ERROR CODE DEFINITIONS

Standard system error codes are FORTRAN PARAMETER or PMA EQU variables
with standerdized names. 1In all Cceses, zero means no error. Any other
velue identifies a particuler error or exceptional (not necessarily
error) condition. All reference to specific code velues (other thean
zero) shoulé be by the standardized names. For convenience, all names
are defined in two SINSERT files -- ERRD.F for FORTRAN and ERRD.P for
PMA. These files are included in the UFD SYSCOM on Volume 1 of KEV.
12 master disk.

1.5.4 NEW ERRCR HANDLING ROUTINE
The following routine -- ERRERS -- provides all the new error handling

facilities.

ERRPRS -- Print Standard System Errcr Message

Function

ERRPR$ interprets a return code and, if non-zero, prints & standard
message followed by optional user text.

Celling Sequence

CALL ERRPRS (KEY, CODE , TEXT , TXTLEN, NAME , NAMLEN)

Parameters
KEY An integer specifying the action to take subseguent to
printing the message. Fossible values are:

KSNRIN—Exit to the system, never return to the calling
program.

KSSRTN—-Exit to the system, return to the celling program
follewing an S ° command.

REV. €

W
=
!

48 May 1976

PTU38 PART 1 PRIMOS FILE SYSTEM, REV. 12

KSIRIN—Return immediately to the calling program.

CODE An integer verisble contezining the return code from the
routine that generated the error.

TEXT A message to be printed following the standerd error message.
TEXT is omitted by specifying both TEXT end TXTLEN as 0.

TXTLEN The length in characters of TEXT.

NAME The name of the program or subsystem detecting or reporting
the error. NAME is omitted by specifying both NAME end
NAMIEN as €.

NAMIEN The length in characters of NAME.

Notes on Usage

If CODE is £, no printing occurs, and ERRPR$ immediately returns to the
calling progrem. The formet of the message for non-zero values of CODE
is:
<standerd text>. <user ‘s 1EXT if any> (KNAME if any>)

The system standaré text associeted with CODE is not preceded by any
newlines or blanks and ends with & period. If TXTLEN is greater then
zero, this is followed by a blenk followed by no more than 64
characters of TEXT. If NAMLEN is greater than zero, this is followed
by a blank and no more then 64 characters of NAME enclosed in
parentheses. The line is terminated with a newline.

If ERRPRS is called with the special error code ESNULL, no system
message is printed. Other parameters behave normally.

If ERRPRS is called with an unrecognized value of CCDE, the standard
system message 1is ERROR=6dddd’, where dGddd is the decimal value of

CODE. This can be used to display user-defined errors. User defined
errors should use codes ebove 16666.

Exemples

1) Following a cell to PRWFSS, if CODE=ESUNOP, the call
CALL ERRFRS (KSSRIN,CCDE, ‘DO A STATUS *,11, 'PRWFSS$ °,6)

would result in the messege:

REV. 0 30 - 49 May 1976

PTU36 PART 1 PRIMCS FILE SYSTEM, REV. 13

UNIT NOT OPEN. DC A STATUS (PRWFSS)
2) To print a user-defined error message:
CALL ERRPRS (KSIRIN,10328, MY MESSAGE °,10,0,0)
will print:

ERROR=103228. MY MESSAGE

Corpetibility

EKRRPRS provides end extends the functionality of PRERR.

REV. ﬁ

(€]
b
!

56 May 1976

PTUZ0

PART 1 PRIMOS FILE SYSTEM, REV. 13

1.6 THE BOUNCE PACKAGE

1.6.1 FUNCTIONALITY

The "bounce" package is a set of subroutines that handle new file
system calls in circumstances in which the new file system subroutines
are not available. The package converts the new file system cells into
one or more calls to old file system routines, the effect of which will
be equivelent to the new file system calls. Circumstences under which
the bounce package is invoked are the following:

1)

New file system cells made by & program running under FRIMOS II
(DOS) , SDOS, or RIOCS.

2) A program running under any version of PRIMOS meking & new file

1.6.2

system call that results in a remote access across the PRINET
network.

BOUNCE PACKAGE IMPLEMENTATION RESTRICTIONS

The following restrictions apply to programs using the bounce package:

1)

2)

4)

REV.

The bounce package, even though it simulates the new file system
czlls, will not work on new partitions.

The bounce package cannot enforce the owner-rights requirement
when accessing the current UFD —- only read or write priveledge
is reguired.

For calls thet may potentially generate more than one error
condition, the bounce package is not guarranteed to find the
errors in the same crder as PRIMOS. For example, a ca&ll to
SRCHSS has both a ba¢ filename end a illegel unit number. PRIMCS
will return the ESBNAM — illegal name -- error, while the bounce
package will return ESBUNT -- bad unit number.

On calls to CREASS,SPASSS GPASSS, and SATRSS, the bounce package
uses file unit 16. Calls to these routines with unit 16 open
will cause unpredictable results.

(§S)
=
|

51 May 1976

PTUZ0 PART 1 PRIMOS FILE SYSTEM, REV. 13

1.6.3 LCADING THE BOUNCE PACKAGE

The bounce package resides in FINLIB (in UFD LIB) and will be correctly
loaded by specifying the LOADER ‘LIB° command. (The package will not,
howevet, actually be invoked except as noted in 1.6.1 above.)

(SN

REV. § g - 52 May 1976

PTU3Q PART 1 PRIMOS FILE SYSTEM, REV. 13

1.7 SAMPLE PROGRAMS

1.7.1 WRITE SAM FILES

C SAMWRT BIN 29NOV76 PROGRAM TO WRITE A SAM DATA FILE
C)
C THE FILE IS 1600 WORDS LONG WRITTEN FROM ARRAY BUFF

C

C RESTRICTIONS: SAMFIL SHOULD NCT EXIST BEFORE RUNNING PROGRAM
C .

C
INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED
INTEGER*2 SAMFIL /* FILE TYPE FOR SAM FILE
INTEGER*Z BUFLNG /* BUFFER LENGIH
C
PARAMETER FUNIT1=1, SAMFIL=d, BUFING=10600
C
INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* CONTAINS FILE TYPE RETURNED BY SKRCHSS$
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 I
INTEGER*2 CODE /* HCLDS EKRRCR RETURN COCE
C
SINSERT SYSCCM>KEYS.F
C
C

C INITIALIZE BUFFER CONTENTS
DO 16 I= 1, BUFING
BUFF (I) = I

16 CCNTINUE
C
C GPEN A NEW SAM DATA FILE CALLED 'SAMFIL "~ IN CURRENTLY ATTACHED
C UFD FCR WRITTING ON FILE UNIT FUNIT1
C :
C SINCE KEYS.F (KEY CEFINITICNS) DEFINES THE KEYS AS PARAMETERS
C THE USE OF MULTIPLE MNEMCNIC KEYS WILL NOT GENERATE MORE CODE
C TAN THE USE OF NUMERIC KEYS. THE USE OF MNEMONIC KEYS IS
C RECOMMENDEC AT ALL TIMES.
c .
CALL SRCHSS (KSWRIT+KSNSAM+KSIUFLC, "SAMFIL °,6,FUNIT1,TYEE,
X COCE)
IF (CODE.NE.£) GC TO 9€1G
IF (TYPE .NE. SAMFIL) GO 1IC 9%6@¢ /* ERRCR
C
C WRITE 1666 WOKDS FROM BUFF INTC THE NEW DATA FILE
c

CALL PRWFSS (KSWRIT,FUNIT1,LOC (BUFF) ,BUFLNG,INTL(@) ,NMREAD,
X CGODE)
IF (CODE.NE.@) GO TO Sil@

OO0

KSCLOS FILE. THIS RELEASES UNIT FUNIT1 FCR RE-USE AND INSURES

REV. 6

(Ve
=
|
w
(¥S)
=
[V]
<
Pt
\O
~J
[e)]

PIUZE PART 1 PRIMCS FILE SYSTEM, REV. 13

C ALL FILE BUFFERS HAVE BEEN WRITTEN TC DISK.
C NOTE FRIMCS WILL NC1 AUTOMATICALLY KSCLOS FILES ON ‘CALL EXIT .
C
960¢ CALL SRCHSS (KSCLOS, €, @, FUNIT1, ¢, CODE)
IF (CODE.NE.@) GO TO %61@

C
C RETURN TC ERIMCS
C
CALL EXIT
EKND
REV. @ 3G - 54 May 1876

PIUZE PART 1 PRIMCS FILE SYSTEM, FEV. 12

1.7.2 WKITE DAME FILE

C DAMWRT EIN 29NOV76 PROGRAM 1O WRITE A CAM DATA FILE
C

C NOTE THAT THE ONLY DIFFERENCE FROM PROGRAM SAMFIL IS THE
C 'NEW FILE KEY SUPPLIEL TC SKRCHSS IN CREATING THE FILE
C

C RESTRICTICN: DAMFIL SHOULD NOT EXIST BEFCRE RUNNING FROGRAM
C

C
INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED
INTEGER*2 DAMFIL /* FILE TYPE OF DAM [ATA FILE
INTEGER*2 BUFING /* DATA EUFFER LENGIE IN WCRLS

PARAMETER FUNIT1=1, DAMFIL=1, BUFING=1uv(0

INTEGER*2 BUFF (EUFLNG) /* DATA EUFFEK
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHS$
INTEGER*2 NMREAD /* NUMBER WORDS READ CR WRITTEN BY PRWFSS
INTEGER*2 CCLE /* ERRCK CODE RETURNEL FRCH FILE SYSTEM
INTEGER*2 I

C

SINSERT SYSCOMMKEYS.F

SINSERT SYSCOM>ERRL.F

C
C
C INITIALIZE BUUFFER
C
DC 16 I = 1, BUFING
BUFF(I) =1
16 CONTINUE
C

C INSURE THAT THE FILE 'DAMFIL DCES NOT ALREADY EXIST

C
CALL SRCHSS (KSREALC+KSIUFD, DAMFIL *,6,FUNIT], TYPE,COCE)
IF (CODE .NE. ESFNTF) GO TO 9666 /* FILE ALREADY EXISTS

C
C CPEN A MEW CAM TCATA FILE CALLEL TAMFIL® IN THE CURREN1
C UFD FOR WKITING ON FILE UNIT FUNIT]1 (I.E. CREATE NEw CAM FILE)
C
CALL SKCHSS (KSWRIT+KSNDAM+KSIUFD, ‘DAMFIL *,6,FUNIT1,TYEE,
X CONnE)
IF (CCDE.NE.®) GO TO 9010
IF (TYPE .NE. DAMFIL) STCF /* WILL NEVER SICFE
C
C WRITE THE BUFFER INIC THE FILE
C
CALL PRWFSS (KSWRIT,FUNIT],LOC (RUFF) ,BUFLNG, INTL(¢) ,NMREAL,
X CODE) :
IF (COCE.NE.@) GC TO 9616
C
C KSCLOS THE FILE AND EXIT
C

REV. © 3e - 55 May 1976

PIUZE FART 1 PRIMCS FILE SYSTEM, REV, 13

900¢ CALL SRCHSS (KSCLOS, €, &, FUNIT1, TYPE, CODE)
IF (CCCE.NE.Q) GO TO 9Sel@

CALL EXIT

C

%010 CALL ERRERS (KSNRIN,CCDE,8,0,6,0)
END

REV. § 3¢ - 56 May 1976

PIUZE PAKRT 1 PRIMCS FILE SYSTEM, REV. 12

1.7.2 READ A SAM CR L[AM FILE
RECFIL RIN 29NCV76 READ SAM/CAM FILE, PRINT LARGEST INTEGER

'THIS PROGRAM SHOWS HOW TO USE THE 'CODE * ERRCR RETURN
MECHANISM AND SUBROUTINE ERRPRS TO PRINT ERRCR MESSAGES.

NOTE THAT PRCGRAM DOESN ‘T CHECK IF THE DATA FILE IS SAM CR DAM.
TO USER'S PROGRAM, SAM OR DAM FILES ARE FUNCTIONALLY EQUIVALENT
EXCEPT FCR ACCESS TIME TC RAMDOM POINTS IN THE FILE

RETRICTIONS: NONE

OO0OOO0OCO0NO0ONnn0n

INTEGER*2 FUNIT /* FILE UNIT TC BE USED
INTEGER*2 DAMFIL /* TYPE OF CAM DATA FILE
INTEGER*2 BUFLNG /* LENGTH CF DATA EUFFER IN WORLS

PARAMETER FUNIT=1, DAMFIL=2, BUFING=1(9

INTEGER*2 BUFF (BUFING) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ CR WRITTEN BY PRWESS
INTEGER*2 CCDE /* ERKOR CODE RETURNED BY FILE SYSTEM
INTEGER*2 LARGST /* LARGEST UNSIGNED INTEGER IN FILE
INTEGER*2 FNAME(16) /* FILE NAME BUFFER
INTEGER*Z I,N

C
INTEGER*4 POSITN /* 32BIT INTEGER POSITICN FCR PRWFSS

C

SINSERT SYSCOM>KEYS.F

SINSERT SYSCOM>ERRD.F

C

C

C INITIALIZE AND GET FILE NAME FROM TERMINAL

C
LARGST = -32767 /* LARGEST UNSIGNED INTEGER

10 WRITE (1,1000) /* FCRIRAN UNIT 1 IS TERMINAL

106¢ FORMAT (“TYPE FILE NAME ‘)

C
READ(1,1010) (FNAME(I), I=1,16)

101¢ FCRMAT (16AZz)

OPEN FNAME IN CURRENTLY ATTACHED UFD FOR READING ON FILE UNIT 1
(NOT THE SAME AS FORTRAN UNIT 1). CHECK FOR ERRORS.

NOTE THAT THE NAME NEED NOT ACTUALLY BE 32 CHARACTERS LONG AS
TRAILING BLANKS ARE IGNORED.

OO0 0O0

CALL SRCHSS (KSREAD+KSIUFD,FNAME, 32,FUNIT, TYPE,CODE)
IF (CODE .EQ. @) GO TO 180 /* NO ERRCRS

PRINT THE SYSTEM ERROR MSG AND IMMEDIATELY RTRN TO THIS PROGRAM
IF THE ERROR IS ‘FILE NOT FCUND’, GET ANOTHER NAME.

oo NP

REV. ¢ 20 - 57 May 1976

PIUZE PART 1 PRIMOS FILE SYSTEM, REV.

C GIVE UP ON ALL OTHER ERKORS

C
CALL ERRPRS (KSIRIN, CCDE, FNAME, 32, 'RECFIL’, 6)
IF (CODE.EQ.ESFNTF) GO TO 10 /*NOT FOUND-GET ANOTHER NAME
& TO 9¢1¢ /* ANOTHER TYPE OF ERROR - GIVE UP

C .

C THE FILE HAS BEEN OPENED.
C MAKE SURE THE FILE IS NOT A DIRECTORY
C
166 IF (TYPE .GI. DAMFIL) GO TC 9¥6¢ /* IS A DIRECTORY
C
C READ AN ‘OFTIMAL " NUMBER OF WORLS UP TC BUFLNG WORDS FROM FILE.
C SET LAKGST TO THE LARGEST UNSIGNED INTEGEE IN THE FILE.
C CHECK FOR END-OF-FILE.
C :
30 CALL PRWFSS (KSREADHKSCONV, FUNIT, LOC(BUFF) ,BUFLNG,
X INTL (@) ,NMREAD,CCDE)
IF (CODE .EQ. ESECF) GO TO 31 /* END-OF-FILE
IF (CODE .NE. @) GC TO 9910 /* SOME OTHER ERRCR
21 DO 46 I= 1, NMREAD /* FCR EACH WORD ACTUALLY READ
IF ((LARGST.LE.p) .AND. (BUFF(I).GE.€)) LARGST = BUFF(I)
IF (LARGST .LT. BUFF(I)) LARGST = BUFF(I)
49 CONTINUE
IF (CCDE .NE. ESEOF) GO TO 3@ /* MORE DATA IN FILE

C
C FIND OUT IF THE DATA FILE IS EMPTY

C GET CURRENT FILE POINTER POSITION WHICH IS NOW AT END-OF-FILE.
C IF THE POSITION IS ©, THE FILE IS EMPTY

C

CALL PRWFSS (KSREOS, FUNIT, G, €, POSITN, NMREAD, CCDE)
IF (CCDE .NE. €) GO 10 9¢1¢ /* ERROR
IF (POSITIN .GT. £) GO TC 5¢ /* NOT A NULL FILE
WKITE(1,1030)

1630 FORMAT ('FILE EMPTY ")
GO TO %WUPe /* EXIT

C

C FILE NOT EMPTY. PRINT LAKGEST INTEGER

C

56 WRITE (1,1020) LARGST

102¢ FORMAT (‘LARGEST INTECER IN FILE IS °,I6)
GO TO 99g¢ /* EXIT

C

C KSCLOS FILES EXI1

C PRINT ERRCR MESSAGE IF NECESSARY

C

9010 CALL ERRPRS (KSIRTN, CODE, ¢, ©, 'REDFIL’, 6)

C

9000 CALL SRCHSS (KSCLOS, 9, @, FUNIT, TYPE, CODE)
IF (CODE.NE.@) GO TC 9¢1P
CALL EXIT
END

REV. ¢

W

-~

12

~
I

w
o
=
[»)]

e
bt
(L)
~J
(e}

PTUzE PART 1 PRIMCS FILE SYSTEM, REV. 12

1.7.4 CREATE A SEGMENT LIRECTICRY

C CRTSEG BIN 29NCV76 CEEATE A SEGMENT DIRECTCRY
AND WKITE DATA FILE IN IT

RESTRICTIONS: SEGDIR SHCULL NOT EXIST BEFCRE RUNNING PROGRAM

OO0

INTEGER*2 BUFING /* DATA BUFFER LENGIH

INTEGER*Z SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECICRY
INTEGER*2 SGUNIT /* FILE UNIT FOR SEGMENT CIRECTCRY
INTEGEK*2 FUNIT /* FILE UNIT FOR LCATA FILE

PARAMETER BUFING=1(, SAMSEG=2, SGUNIT=1, FUNIT=2

INTEGER*2 BUFF (BUFLNG) /* DATA BUFFEK
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WCRDS READ OR WRITTEN EY PRWFSS
INTEGER*2 I
INTEGEK*2 CODE /* RETURN CCDE STCREL HEKE
INTEGER*2 COCEA /* SCKRATCH CCLE

C

SINSERT SYSCOM>KEYS.F

SINSERT SYSCOM>EKRD.F

C

C

C INITIALIZE DATA EUFFER CONTENTS

C
DO 1¢ I= 1, BUFING

BUFF(I) =1
5 CCNTINUE

1

C

C OPEN A NEW SAM SEGMENT DIRECTICRY CALLED 'SAMLCIR® IN CURKENTLY

C ATTACHED UFD FCR KEADING AND WKITING ON FILE UNIT SGUNIT.

C NOTE: SEGDIRS COPFEN FCR WRITE ONLY WILL NCT EE HANDLED CCRRECTLY
C

CALL SRCHSS (KSRDWR+KS$NSGS+KS$IUFD, 'SEGDIR *,6,SGUNIT,TYPE,
X CCDE)

IF (QODE.NE.@) GO TC 9560

IF (TYPE.NE.SAMSEG) GO TO 9508 /* ERROR--MUST BAVE EXISTED

ENTER A NEW SAM CATA FILE (I.E. OPEN SAM DATA FILE FCR WRITING)
IN THE JUST CREATED SEGMENT DIRECICRY. THE NEw DATA FILE
WILL BE ENTKY @ IN THE SEGMENT DIRECTCRY.

OO0 n00n

CALL SRCHSS (KSWRIT+KSNSAM+KSISEG,SGUNIT, ¥, FUNIT,TYPE,CODE)
IF (CCCE.NE.@) GO TO 9560

WRITE THE DATA BUFFER INTC THE JUST CREATED SAM FILE.
KkSCLOS THE DATA FILE.

oXeReXe!

CALL PRWFS$S (KSWRIT,FUNIT,LOC (BUFF) ,BUFLNG, INTL(B) ,NMREAL,
X CODE)

REV. €

L)
=
|

59 Mey 1976

PIUZE PART 1 PRIMCS FILE SYSTEM, REV. 1%

IF (CCCE.NE.8) GC TO 950¢
CALL SKCHSS (KSCLCS, €, ¢, FUNIT, ¢, CODE)
IF (CCDE.NE.£) GC 1C S56@
C
C REFLACE BUFF WITH NEW DATA
C
DO z& I= 1, EUFING
BUOFF(I) =1 * 16
g CONTINUE

CEEN A DIFFERENT NEW SAM DATA FILE ON FUNIT FOR WRITING
(I.E. ENTER ANOTHER FILE IN SEGMENT DIRECTORY). THIS IS DONE
IN TWC STEPS. FIRST THE FILE BOINTER OF THE SEGMENT DIR UNIT IS

FCSITIONED TC THE ENTRY NUMBER DESIRED. THE SRCHSS IS
CALLED AS ABOVE.

OO00O0O000N

CALL SGDRSS (KSSFOS,SGUNIT, 1, I, CODE)

IF (CODE.NE.P) GO TO 9500

IF (I .NE. -1) GO TO 9508 /* ERROR EXIT
C
C NOTE THAT THE SEGMENT DIRECTORY OPEN ON SGUNIT HAS ONLY 1 ENTRY
C (ENTRY) AT THIS TIME. THUS, POSITICNING TC ENTRY 1
C WILL POSITICN TO END-OF-FILE (NOT EEYOND) AND THE FOLLOWING
C CALL TC SRCHSS WILL CAUSE THE SEGMENT DIRECTORY TG BE EXTENCEL
C IN LENGTH BY ONE ENTRY.

C
CALL SRCHSS$ (KSWRIT+K$SNSAM+KSISEG, SGUNIT, 6, FUNIT, TYPE ,CODE)
IF (COCE.NE.g) GO TO 9566
c v
C WRITE LCATA INTC THE SAM FILE THE K$CLOS THE FILE
C
CALL PRWF$S (KSWRIT,FUNIT,LOC (BUFF) ,RUFLNG, INTL(9) ,N\MREAD,
X CCDE)
IF (CODE.NE.@) GO TO 9560
CALL SRCHSS (KSCLOS, ¢, 6, FUNIT, @, CODE)
IF (CODE.NE.@) GO TO 9560
C
C REPLACE THE BUFFER WITH NEW DATA
C

DO 36 I= 1, BUFLNG
BUFF(I) = I * 160
] CONTINUE

MAKE THE SEGMENT DIRECTORY ITSELF LARGE ENOUGH TO CONTAIN
16 ENTRIES. PLACE A SAM FILE IN THE 10TH ENTRY.

OO0 w

CALL SGDRSS (K$MSI1Z, SGUNIT, 16, @, CODE)
IF (CODE.NE.@) GO TO 9500

THE FILE FOINTER ASSOCIATEL WITH SGUNIT IS NOW AT END-OF-FILE.
A CALL TO SRCHS$ WITHOUT FURTHER FOSITICNING THE SEGMENT
DIRECTORY S FILE POINTER WOULD EXTEND THE SEGMENT DIRECTORY
AND ENTER THE NEW FILE AS TH 11TH ENTRY. THEREFORE, SGDRSS

oNoNeoXeXe!

REV. &

(S)
[

- &3 May 1976

P10k PART 1 PRIMOS FILE SYSTEM, REV. 13

C MUST BE CALLED TC PCSITICON TO THE 16Th ENTRY.
C
CALL SGLCRSS (KSSFCS, SGUNIT, 16, I, CCDE)
IF (CCLE.NE.@) GO TC 95¢¢
IF (I .NE. ©) SIOF /* FILE CANNOT BE PRESENT

CALL SRCHSS (KSWRIT+KSNSAM+KSISEG,SGUNIT, ¢,FUNIT,TYPE,CCDE)

IF (CODE.NE.E) GO TO 950¢

CALL PRWFSS (KSWRIT,FUNIT,LOC (BUFF) ,BUFLNG, INTL (@) ,NMREAD,

X CCDE)

IF (CCLE.NE.£) GO TC 95068

CALL SRCHSS (KSCLOS, ¢, @, FUNIT, TYPE, CODE)

IF (CCDE.NE.@) GC TC 958
C
C KSCLOS SEGMENT DIRECTCRY EXIT
C

CALL SKCHSS (KSCLCS, 6, 6, SGUNIT, 1YPE, CCDE)

IF (CODE.NE.E) GO TC $56¢¢€

CALL EXIT
C
C ERRCR EXIT. KSCIOS ALL UNITS. PRINT ERROR MESSAGE AND DO NOT
C ALLCW RESTAKT. ESNULL IS THE NULL SYSTEM ERROR, I.E.,
C NO SYSTEM EKRCR MESSAGE IS PRINTEL.
C
o5¢¢ CALL SRCHSS (KSCLCS, €, @, FUNIT, TYPE, CCDEA)

CALL SKCHSS (KSCLOS, @, ¢, SGUNIT, TYPE, CCDEA) .

CALL ERRERS (KSNKTN,CODE, ‘'UNEXPECTED ERROR *,16, ‘CRTSEG ,6)

END

REV. b 3¢ - 61 May 1976

P1U36 PAKT 1 PRIMOS FILE SYSTEM, REV,]

[

7.5 READ A LOGICAL RECCRLC 'ROM A FILE
KRCLREC EIN 29NOV76 REAC A LOGICAL RECCRD FROM A FILE

PROGRAM READS LOGICAL RECCRC ‘N FRCM A FILE CONSISTING
OF FIXED LENGIH RECCRLS

IN THIS PROGRAM, THE FILE ACCESSED IS CONSIDERED TC CONTAIN AN
UNLIMITED NUMBER CF LOGICAL RECORDS. EACH RECCRD CONTAINS ‘M°
WORDS. THE PROGRAM READS AND FRINTS 'TC THE TERMINAL THE
CCNTENTS OF RECORD NUMBER N AS M INTEGERS. THE FIRST RECCRD
OF A FILE IS RECCKD NUMEER ¢ (ZERO).

NOTE THAT A LOGICAL RECORD IS MERELY A GROUPING OF WCRDS IN A
FILE. THE LOGICAL RECCRD SIZE HAS NC RELATION 10 THE PHYSICAL
RECCRD SIZE OF THE DISK.

RESTRICTIONS:
1. RECORD SIZE MUST BE BETWEEN 1 ANC BUFFER LENGIH
. KECOKD NUMEER MUST BE BETWEEN @ AND 22767
. THE RECORC MUST BE IN THE FILE
. THE FILE MUST PREVICUSLY EXIST
. THE FILE MUST BE A DATA FILE (SAMFIL CR DAMFIL)

N0 NON0NO000N0A0NOAN
WU BN

INTEGER*2 FUNIT1 /* PRIMOS FILE UNIT USED FCR DATA FILE
INTEGER*2 BUFING /* LENGTH OF DATA BUFFER

C
PARAMETER FUNIT1=1, BUFLNG=106{
C
INTEGER*2 BUFF (BUFLNG) /* DATA RUFFER
INTEGER*2 FNAME(16) /* FILE NAME BUFFER
INTEGER*2 RECSIZ /* NUMBER WORDS IN A LOGICAL RECORD
INTEGER*2 RECNUM /* LOGICAL RECORD NUMBER
INTEGER*Z 'TYPE /* FILE TYPE RETURNED BY SRCH$S
INTEGER*2 NMREAD /* NUMBER WCRDS READ, RETURNED BY ERWFSS
INTEGER*2 CCDE /* ERROR STATUS RETURNED BY FILE SYSTEM
INTEGER*2 1
C :
INTEGER*4 POSITN /* 32BIT WORC NR USED AS POS TO PRWFSS
C
C

SINSERT SYSCOM>KEYS.F
SINSERT SYSCOMM>ERRD.F
C
C
C ASK FCR FILE NAME
C
16 WRITE(1,1600) /* FORTRAN UNIT 1 IS TTY
1069 FORMAT ('TYPE FILE NAME)
C
C READ FILE NAME
C
READ(1,1€1@) (FNAME(I),I=1,16)

-
3

REV. ¢ KY) - 62 May 1976

PTUZE PART 1 PKIMCS FILE SYSTEM, KEV. 1Z

1€1¢ FORMAT (16AZ)
C

C OBEN FNAME IN CURRENI UFD FOR REALCING CN FILE UNIT FUNITI

=

CALL SKCHSS (K$SREAD+KSIUFD, FNAME, :Z, FUNIT1, TYEE, COCE)
IF (CCDE.NE.£) GC TC 1Le€

C ASK FCR LOGICAL RECCRD SIZE

20 WRITE (1,1620)
1926 FCRMAT ("TYPE RECCRD SIZE')
REAC(1,1603¢) RECSIZ
1830 FORMAT (16)
IF (RECSIZ .GE. 1 .AND. RECSIZ .LE. BUFING) GO 10 ¢
WRITE (1,1040)
104¢ FCRMAT (BAD RECCRL SIZE')
GC TO 28

C
C ASK FOR RECCRC NUMEER. FIRST RECCKD IS NUMBEREL € (ZERC)
C

Kl WRITE (1,1056)

165¢ FORMAT ("TYPE RECORD NUMBER)
READ (1,1636) RECNUM
IF (RECNUM .GE. @) GC 1C Z5
WRITE (1,1651)

1951 FORMAT (‘BAD RECCRD NUMBER)
GO TO 20

CALCULATE THE 22-RIT WCRC NUMEER OF THE FIKRS1 WCRD IN TEE
CESIRED RECORD. NOTE THAT IF ECTH RECSIZ ARD RECNUM ARE BOUIH
FOSITIVE 16BIT NUMBEKRS, THE X2B11 WOKRD NUMEER MUST ALSC EE
FGSITIVE.

C

C

C

C

C

C

C POSITICNING MAY BE DONE TC AN AESOLUTE WORD NUMEER CR RELATIVE

C TO THE CURRENT POSITION. SINCE A JUST CPENED FILE IS ALWAYS

C POSITICNED TC TOP-CF-FILE AND THE CALCULATEC WORC NUMBER WILL

C NEVER BE NEGATIVE, THE ARGUMENT FCR FOSITION ‘IO PRWESS WILL

C BE THE SAME FCR BCTH CALLS IN THIS PRCGRAM.

C

35 POSITN=INTL (RECSIZ) *INTL (RECNUM) /* POSITN IS INTEGER*4
IF (POSITIN .GI. %2767) GC TO 1¢¢ /* AESOLUTE PFOSITICNING

C
C RECORD LESS THAN 22767 WORDS FROM THE PEGINNING, USE RELATIVE
C POSITIONING. :
C NOTE THAT ABSOLUTE POSITICNING COULD HAVE REEN USED FOR A

C RECORD ANYWHERE IN THE FILE, NOT JUST FOR THOSE RECORCS

C BEYOND WORD 32767. RELATIVE IS SHOWN HERE CNLY FOR EXAMPLE.

C

C NOTE ALSO THAT RELATIVE POSITICNING CCULD BE USEL TC POSITICN
C TO ANY WORD IN THE FILE, GIVEN THE KESTICTICNS CN RECSIZ AND

C RECNUM. ‘

C

C WHEN REL POSITIONING IS USED, THE POS ARGUMENT (PCSITN HERE)

REV. € 20 - 62 May 1976

PIUz¢ PART 1 PRIMOS FILE SYSTEM, REV. 13

C IS CONSIDERED TO BE A SIGNED 22-BIT IN1EGER.

C
CALL PRWESS$ (KSREAD+KSFRER,FUNIT1,LOC (RUFF) ,RECSIZ +PFOSTTIN,
X NMREALD, CCDE)
GO TO 266 /* SKIP OVER ARSOLUTE POSITION EXAMPLE

KECORD IS MORE THAN 32767 WORDS FROM THE BEGINNING OF FILE, USE
ABSOLUTE POSITICNING.

WHEN AESOLUTE POSITIONING IS USED, ‘POSITION ARGUMENT (PCSITN)
IS CONSIDERED TO BE AN SIGNED 32-RIT INTEGER. -
NOTE THAT THE ESBCF ERRCR (BEGINNING OF FILE) CAN OCCUR.

—OOO0OO0OO0OO0O0O0O0Nn

00 CALL PRWFSS$ (KSREAD+KSPREA,FUNITI1,LOC (RUFF) ,RECSIZ +FOSITN,
X NMREAD, CODE)

6 IF (CODE .NE. £) GO TO 386 /* EKRCR DETECTED

aoONn O

C HAVE READ RECORD, NOW TYPE IT.

C
WKRITE(1,1066) RECNUM,RECSIZ

1666 FORMAT('RECCRD °,16, ~ CONTAINS °,I6, ENTRIES AS FOLLOWS ‘)
WRITE(1,167¢) (BUFF(I), I=1,RECSIZ)

107¢ FORMAT (1617)

C

C RETURN TO DOS AFTER CLOSING THE FILE

C

250 CALL SKCHSS(K$CLOS, @, ©, FUNIT1, TYPE, CCDE)

IF (CODE.NE.g) GO TO 1666

CALL EXIT

GO T0 16 /* START COMMAND RESTARTS PROGRAM

c :

C ERROR WHILE ATTEMPTING TO REAC THE RECCRD .

C

300 CALL ERRPRS (KSIRIN, CCDE, €, ©, 'RDLREC, 6)

IF (CODE .NE. ESECF) GC TC 25¢ /* EXIT IF NOT END-OF-FILE
C

C END-CF-FILE REACHED.
C REWIND FILE AND TRY AGAIN

C
CALL PRWFSS (KSPOSN+KS$SPREA,FUNITI,@,0, INTL (0) ,NMREAD,
X CCDE)
IF (CCCE.NE.€) GO 1C 16600
GO 10 26
C
1600 CALL ERRPRS (KS$NRIN,CODE,®,8,0,0)
END

REV. 3¢ - 64 Mey 1976

P10k FART 1 PRIMCS FILE SYSTEM, REV. 12

1.7.6 keeé File in Segment Directory

C RECSEG BIN 29NCV76 REAC FILE IN A SEGMENT DIRECTICRY

[HIS PRCGRAM KEADS FILE NUMBER N IN SEGMENT DIRECTIORY AND
TYPES WCRD NUMBER M IN THAT FILE. THE FIRST FILE IN THE
DIRECTOKY 1S FILE NUMBER ¢. THE FIRST WORD IN THE FILE IS
WCORD NUMEEK E.

RESTRICTICNS:

. THE SEQMENT DIRECTICRY FILE MUST EXIST

. THE FILE NUMEER MUST BE BETWEEN @ AND 327€7
. THE FILE MUST BE IN THE SEGMENT DIRECTORY

. THE WOKC NUMBER MUST BE BETWEEN & AND 22767
. THE WCRD MUST BE IN THE FILE.

AOOCOO0ONO0O0OO0O0N0N
U (0 N =

INTEGEK*2 FUNIT /* PRIMCS FILE UNIT FCR DATA FILE
INTEGEK*2 SGUNIT /* PRIMCS FILE UNIT FCR SEQMENT DIRECTORY
INTECER*Z SAMSEG /* FILE TYPE OF SAM SEGMENT CIRECTICRY
INTEGER*2 DAMSEG /* FILE TYPE CF DAM SEQMENT DIRECTORY

C
PARAMETER FUNIT=2, SGUNIT=1, SAMSEG=2, LCAMSEG=3

C
INTEGER*2 BUFF /* DATA BUFFER
INTEGER*2 SEGDIR(16) /* NAME OF SEGMENT DIRECTORY BUFFER
INTEGER*2 FILNUM /* FILE NR (ENIRY NR) OF FILE IN SEGDIR
INTEGER*2 WRDNUM /* WORD NUMEER IN DATA FILE 10 BE READ
INTEGER*2 COLE /* ERROR CCDE RETURNED BY FILE SYSTEM
INTEGER*Z TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGEK*Z NMREAD /* NR WORDS READ/WRITTEN/RTRNED BY PRWFSS$
INTEGER*2 1

C

SINSERT SYSCOM>KEYS.F
SINSERT SYSCOM>ERRD.F
C
C
C INSURE FILE UNITS TC BE USED ARE KSCLOSD
C ASK FOK AND REAC SEQMENT DIRECTORY NAME FROM TERMINAL
C
10 CALL SKCHSS (KSCIOS, @, @, SGUNIT, @, CODE)
IF (CODE.NE.@) GO TO 1¢¢
CALL SKCHSS (KSCIOS, ¢, @, FUNIT, @, CCDE)
IF (CODE.NE.Q) GO TC 1€¢
WRITE (1,1000)
1660 FORMAT ("TYPE SEGQMENT DIRECTORY NAME)
READ (1,10816) (SEGDIR(I), 1=1,16)
161¢ FORMAT (16A2)
C ,
C OPEN THE SEGMENT DIRECTORY FOR REACING ON SGUNIT
C
CALL SRCHSS (KSREAC+KSIUFD, 'SEGDIR®, 6, SGUNIT, TYPE, CODE)
IF (CODE.NE.§) GO 10 160

REV. @ 30 - 65 May 1976

PTUZ0 PAKT 1 PRIMOS FILE SYSTEM, REV. 12

TYPE CONTAINS THE FILE TYPE OF THE FILE JUST OPENED.
MAKE SURE THE FILE IS EITHER A SAM OR DAM SEGMENT DIRECTCRY
ALLOWABLE TYPE VALUES ARE 2 AND 2.

OO0 00n

IF (TYPE .EQ. SAMSEG) GO TC 20
IF (TYPE .EQ. DAMSEG) GO TO 20

C NOT A SEGMENT DIRECTORY - TRY AGAIN

WRITE (1,1628)
1620 FORMAT('FILE IS NOT A SEQMENT DIRECTORY °)

GO TO 16
C
C ASK FOR FILE (ENTRY) NUMBER IN SEGMENT CIRECTORY
C

20 WRITE (1,1030)
1630 FORMAT ("TYPE FILE NUMBEK °)
READ (1,1040) FILNUM
1048 FORMAT (I6)
IF (FILNUM .LT. 6) GO TO 28
C
C ASK FOR WORD NUMBER IN DATA FILE TO READ
C
39 WRITE (1,1035)
1035 FORMAT (“I'YPE WORD NUMBER °)
READ (1,1040) WRDNUM
IF (WRDNUM .LT. @) GO TO =0

TRY TO POSITIONIC WORD NUMBER IN THE SEGMENT DIRECTORY.

IF END-OF-FILE REACHED, FILE IS NOT IN SEGMENT DIRECTCRY.
SGDRS$ RETURNS THE VALUE 1 IN THE 4TH ARGUMENT (TYPE) IF A
FILE IS ENTERED IN THE ENTRY POSITION. THIS PROGRAM DOES NOT
CHECK THE VALUE, SINCE SRCHSS WILL RETURN THE PROPER ERRCR CODE
(ESFNTS ~ FILE NOT FOUND IN SEGMENT DIRECTORY) ANYHOW.

OOO0O0O0ONO0O0

CALL SGDRSS (KSSPOS, SGUNIT, FILNUM, TYPE, CODE)
IF (CODE .EC. ESEOF) CODE = ESFNTS /* FILE NCT FOUND
IF (CODE .NE. @) GO TO 100

C

C OPEN FILE IN SEQMENT DIRECTORY FOR READING

C
CALL SRCHSS (KSREAD+KSISEG,SGUNIT, 0, FUNIT,TYPE,CODE)
IF (CODE .NE. ¢) GO TO 100

PRINT THE WORD, K$CLOCS THE FILES, AND RETURN TC PRIMCS

oNeXe]

WRITE(1,1650) WRDNUM,FILNUM, (SEGDIR(I), I= 1,16),BUFF
1050 FORMAT ('WCRD',16, " OF FILE (°,I6,°) IN °,16A2,

X ‘CONTAINS °,16)
50 CALL SRCHSS (KSCLOS, 6, @, FUNIT, @, CODE)

CALL SRCHSS$ (K$CLOS, €, 0, SGUNIT, 9, CCDE)

CALL EXIT

REV. 0 30 - 66 May 1976

PTU36 PART 1 PRIMOS FILE SYSTEM, REV. 13

GC 1C 16 /* START COMMAND RE-STARTS PROGRAM

OO0

C COMMON ERRCR HANDLER
C NOTE THAT THE NEW FILE SYS PROPERLY DIFFERENTIATES THE VARIOUS
C ERRORS WHICH FORMERLY WERE GROUPED UNDER CLD ERRCR CODE “SQ°
C
166 IF (CCDE.EQ.ESFNTS) GO TC 116 /* FILE NOT FOUND IN SEGDIR
IF (CODE .EQ. ESECF) GO 1O 12¢ /* END-OF-FILE
CALL ERRERS (KSIRIN,CCDE,®,6, REDSEG *,6) /* PRINT ERROR MSG
@0 TO 5¢ /* KSCILCS FILES EXIT
C
C FILE NOT FOUND IN SEGMENT DIRECTORY
C LET THE USER TRY AGAIN
C
11¢ WRITE(1,1¢6@) FILNUM, (SEGDIR(I), I=1, 16)
106¢ FCRMAT (‘FILE (°,16,) NOT FOUND IN °,16A2)
GO TO 1¢ /* RE-TRY
C
C END-OF-FILE
C CODE WILL CONTAIN ESECF ONLY WHILE TRYING TO READ
C THE DATA FILE. ALLOW RE-TRY.
C
126 WRITE(1,127¢) WRDNUM,FILNUM, (SEGDIR(I),I=1,16)
1¢7¢ FORMAT (‘WORD,I16, NOT IN FILE (°,16,7) IN ",16A2)
GO TO 16 /* RE-TRY
C
END

REV. © 30 - 67 May 1976

PTUZ6 PART 1 PRIMOS FILE SYSTEM, KREV. 13

1.8 INTERNAL FILE SYSTEM FORMATS

The following describes the internal formats of all disk records for
both the old end new file system. These have been collected together
for ease in noting the changes that heve been made. User programs will
normelly have no need to refer to the internzl file system formets.
All numbers ere decimel unless preceded by & :°. Where possible,
field names are the same as those used by the internel file system
routines,

1.8.1 DSKRAT FORMATS

1.8.1.1 DSKRAT Format -- 0ld Partitions

| 5 | NUMBER OF WORDS IN DSKRAT HEALDER = 5
| RECSIZ | DISK RECORD SIZE (448 or 1040)
|"NMRECS | NUMBER RECORDS IN PARTITION

| UNUSED | UNUSED

| NHEADS | NUMBER HEADS IN PARTITION

| DATA | START OF DKSRAT DATA (ONE EIT/RECOKD)
[|

DS DN =D

1.8.1.2 DSKRAT Format -~ New Partitions

9 | 8 | NUMBER WCRDS IN HEADEK = 8

1 | RECSIZ | RECCORD SIZE

2 |"NMRECS | NUMBER RECORDS IN FARTITON (TWO WCRDS)
| |

4 | NHEADS | NUMBER HEADS IN FARTITION

5 |RESERVED| RESERVED

6 |RESERVED| RESERVED

7

8

IRESERVED| RESERVED
| DATA | START OF DSKRAT LATA (ONE BIT/RECORD)
l *ee e I

1.8.2 RECCRC HEADER FCRMATS

Note: recorcd header formets ere the same for new and old partitions.

The formet of a record header is a function of the physicel record
size.

REV. @ 29 - 68 May 1976

PTUZE PART 1 PRIMOS FILE SYSTEM, REV. 13

1.8.2.1 Recoré Heeder Formet -— 448-word Recorcs

¢ | REKCRA | RECORD ADCRESS (CF THIS RECCRL)

1 |"REKEKA | RA CF DIRECTORY ENTRY OR FIRST RECCRD

2 |"REKFPT | RA CF NEXT SEQUENTIAL RECORD

3 | REKBPT | KA OF PREVICUS RECORD

4 |"REKCNT | NUMBER LCATA WORDS IN FILE

5 |"REKLYP | TYPE CF THIS FILE

6 | REKLVL | INDEX LEVEL FCR NEW PARTITION DAM FILES
7 |RESERVED| RESERVED

1.8.2.2 Reccrdé Header Formet -- 1040-Worc keccrds

9 | REKCEA | RECCRD ADDRESS OF THIS RECCRC (TWO WCRDS)
I I
2 |"REKBRA | BEGINNING RECCRD ADDRESS (TWO WCRLS)
| |
4 |"RERCNT | NUMBER DATA WCRDS IN THIS RECORD
5 | REKTYP | TYPE OF THIS FILE
6 | REKFPT | RA OF NEXT SEQUENTIAL RECORD (TWO WORDS)
| |
8 |"REKEPT | RA OF PREVIOUS RECCRD (TWC WORLS)
| |
10 |"REKIVL | INDEX LEVEL FOR NEW PARTITION DAM FILES
11 | |
| |
{RESERVED| RESERVED (FIVE WORDS)
| I
15 | |
Notes

1) All disks except Storage Module have 448-wordé records. Storage
Modules have 1@4f-word records.

2) The BKA of the first record in a file points to the beginning record
: address of the directory in which the file entry appears. In all
other records, the BRA points to the first record of the file.

3) FORPIR contains the address of the next sequential record in the
file or @ if it is the last record in the file.

4) BACPTR contains the address of the previous record in sequence or @
if it is the first record in the file.

REV. 0 30 - 69 May 1976

PTUZ6 PART 1 PRIMCS FILE SYSTEM, REV. 12

5) FILTYP is velid only in the first record of & file. Legal wvealues
are:

SAM File

DAM File

SAM Segment Directory
DAM Segment Cirectory
User File Directory (UFD)

I3 (0 N = T

6) If the file is the record zero bootstrep (BUOT) or the disk record
aveilability teble (DSKRAT or volume name) and the disk has & 1940
record size (Storage Module), bit 1 (:1600€0) of FILTYP will be set.

7) DAM files on new partitions are organized somewhet differently from
the above -- see Section 1.8.5.

1.8.5 UFD HEADER AND ENTRY FORMATS

1.8.3.1 Old UFD Header Format

e | 8 | SIZE OF HEADER -- & WORLS
1 | OPASSW | OWNER PASSWORLC (THREE WORDS)
I I
I |
4 | NPASSW | NON-OWNER FASSWORD (THREE WCRDS)
I |
! |
7 |KESERVED| RESERVED

1.8.3.2 New UFD Header Format

@ |__ECw | ECW (SEE NOTE 1 BELOW)
1 | OPASSW | OWNER PASSWORD (THREE WORDS)
| l
I I
4 | NPASSW | NON-OWNER PASSWORD (THREE WORDS)
l I
l I
7 | l
I l
|IRESERVED| RESERVED (SIXTEEN WORDS)
I l
23 | !

REV. 0 30 - 7€ May 1976

PTUZ0

PART 1 PRIMCS FILE SYSTEM, REV. I:

1.8.3.3 Cld UFD Entry Formet

_BRA___
FILE

jos}

SPACES |

0 |
1 '
|
| NAME
4 | _SPACES
5 |” PROTEC |

Notes

BEGINNING RECCRD ADDRESS
FILENAME (THREE WCRDS)

TWO BLANKS FOR NAME EXPANSION (RESERVED)
PROTECTICN (OWNER/NON-OWNEK)

In an olé UFD, the high-order eight bits of PRCIEC ere the owner rights

stored in complemented form (G=>owrer has right).

bits are non-cwner protection, stored in true form (E=>ncC

creation, FROTEC=@. After a 'PROT 7 §°, PROTEC=:174006.

1.8.3.4 New UFD Entry Formeat

ECW |
BPRA |
|

- =

RESERVELD |
I
|

| PROTEC |

| RESERVED |
| "DATMOD |
|_TIMMOD |

10 |_FILTYP |

11 |__SCw __

2 |F

(V8]

|
I
I
I
I
I

O oo~ O

l |
I I
| I |
[L |
I E |
boeee
IN I
| A |
l Mo
| I

N E

Notes

ENTRY CCNTRCL WCRD (TYPE/LENGTH)
REGINNING RECCRD ACLRESS (TWC WORDS)

RESERVED (THREE WORLS)

PROTECTICN (OWNER/NCN-OWNEK)

RESERVED FCR FUTURE USE

DATE LAST MODIFIEC (YYYYYYYMMMMODDDD)

TIME LAST MODIFIED (SECCNDS-SINCE-MIDNIGHT/4)
FILETYPE

SUBENTRY CONTRCL WCRL FCR FILENAME

FILENAME (1-16 WORDS, BLANK FPADDEL)

The low-crcder eight
right). = Cn

1) The Entry Control woré (ECW) consists of two eight-bit subfields.

The top
follows:

W N

REV. €

eight bits

Cld UFD Header

New UFD Header
vVacant Entry

New UFD File Entry

30 - 7

indicate the type of the following entry as

May 1976

PIUz0 PART 1 PRIMCS FILE SYSTEM, REV. 1%

2)

La
~

4)

5)

1.8.4

The low-orcer eight bits give the size of the entry including the
ECW itself.

The bits in PROTEC are stored in true form (¢=> no right) for both
owner and non-owner fields.

The file type field is ac befcre (see Cld PRecord Header Formet) with
following additionel bits:

BIT MEANING WHEN RIT IS ON
1 File hes 16-word header (DSKRAT and BOOT only) .
4 Special file (BOOT, DSKRAT, MFD, BALDSPT).

The Subentry Control word (SCw) consists of two eight-bit subfielés.
The top 8 bits are 0, indiceting subentry type @. The low-orcer 8
bits give the size of the subentry including the SCw itself.

N.E.: UFD entries are reused by the new file system. This means
thet & new entry will not necesserily appeer at the end of the UFD.

SEQMENT DIRECTORY FORMATS

1.8.4.1 016 Seament Directory Format

N =D

z

|__BRAO | BRA OF FIRST ENTRY IN DIRECIORY
| BRAl | BRA OF SECCND FILE

| 6980 | NULL ENTRY

| eeee |

I__BRAn | BKA OF LAST FILE IN DIRECTORY

1.8.4.2 Néw Segment Directory Formet

=

N

N
z

[" ERAG | BRA OF FIRST FILE IN DIRECTORY (TWO WORDS)
| I

|" ERAl | BRA OF SECOND FILE IN DIRECTIORY (TWC WORDS)
I |

| 0666 | NULL ENTRY (TWO WORDS)

| ov00 |

| s

I I

| BRAN | BRA COF LAST FILE IN DIRECTORY (TWO WORDS)

[I

REV. ¢ 3¢ - 72 May 1976

PIUZH PART 1 PRIMOS FILE SYSTEM, KEV. 13

Nctes

The only difference between old end new Cirectories is that each entry
hee been expended to two words. A null entry in & new directory is a
32-bit @.

1.8.5 DAM FILE CRGANIZATION

In old-style [AM files, the first physicel record of the file was
reserved to ke ar index to the first 448 or 10z4 (Gepending on physical
record size) records in the file. when this index was filled, however,
access to subseaquently added records became secuentiel. For exemple,
in the file shown below, records §-439 cen be accessed directly.
Fecords 446 &nd above must be searched for seauentially sterting with
record 439,

INDEX DATA RECCRDS

| BRAG |---> RECORD ©
| BRA1 |---> RECCRD 1
| i

I ee.

| |

| B438 |---> RECCRLC 439---> RECORLC 44@---> RECORD 441-—-> ...

The major difference between new and old DAM files is that the index is
not limited to @ single record, but can grow into a multi-level tree.
(Also, since pointers are now two words each, each index recoré hclcs
hzlf the number of pointers in ol¢ index recorés.) An index can grow
to any size, and any date record cen be cirectly accessed. The
following paregraphs explain how this multi-level index is built.

The handling of a DAM file on a new partition is identicel to that on
an 0ld partition up to the point et which the index record is full and
another record is to be added to the file. At this point the following
actions take place.

1) Three new records are obtzined from the file system. One of
these records is to be the new date record, the other two are
used to construct the seconé index level.

2) The index entries from the full index record are copied into one

of the other new records. This record is to become the first
index record of the new index level.

REV. € 30 - 73 May 1976

PTUZY PART 1 PRIMCS FILE SYSTEM, REV. 13

)
~—

The ol¢ index record is reinitislized to contain two pointers to
the two index reccrds on the new level.

4) The other new index record is initislized with & single entry
pointing to the new data reccrd.

5) Forward, backward, and father pointers are set up as shown in the
diagram below.

At this point, the creation of the new index level is complete. Note
that the BRA in the directory entry for the DAM file still points to
the original index record, which is now the top of & two-level index.

| DIR | DIR = UFD or Segment Directory

-f = NULL POINTER

|
|
1l
INDEX LEVEL 2: I|J |-G I
K | | = FATHER POINTER
2-1 |
—
I 1
L
INDEX LEVEL 1: JIL |--KIN |-g
M| | |
O=1oool=——=] I
Y
| I I
S l___
DATA LEVEL: Ll | ~-M]| |[-——...——N| |-0
| | | | I |
0-| [=== .. |

The DIR entry points to the original index record (recoré ‘I ‘), which

now contsins just pointers to records ‘J° &nd ‘K’ -- the two records on
the index level just crested. Record ‘J° contains the date reccrd
pointers originally in I° -- L°, ‘M°, etc. Recoré 'K’ contains a

single pointer to the newly crected data record N°.
Once an index level is crested, it is never deleted until -he file

itself is deleted =-- there will elg peregraphs explain how this
multi-level index is built.

REV. @ 30 - 74 May 1876

PIUZ0 PART 1 PRIMOS FILE SYSTEM, REV. 13

The handling of a DAM file on a new partition is identical to thet on
ean old partition up to the point &t which the incex record is full anc
another record is to be added to the file. At this point the followirg
actions teke plece.

1) Three new records are obtzined from the file system. OCne of
these records is to be the new data record, the other twe are
used to construct the second index level.

Z) The index entries from the full index record are copiec into one
of the other new records. This record is to become the first
index record of the new index level.

3) The old index record is reinitielized to contein two pointers to
the two index records on the new level.

4) The other new index record is initielized with & single entry
pointing to the new deta record.

5) Forwerd, backward, and fether pointers are set up as shown in the
diagram below.

At this point, the creation of the new index level is complete. Mote
that the BKA in the directory entry for the CAM file still points to
the original index record, which is now the top of a two-level incdex.

| DIK | DIR = UFD or Segment Directory
I |
—
| - = NULL POINTER
I
INDEX LEVEL 2: I|J |-€ I
K | | = FATHER EOINTER
-1 |
—
| 1
L
INDEX LEVEL 1: JIL |--KIN |-
M
O=loool—=1___1I
I I 1
I N l___
DATA LEVEL: Ll |—-M| |——~...—-N]| -0
Foorb [
I et T PR R [
REV. @ 30 - 75 May 1976

PTUz0 PART 1 PRIMCS FILE SYSTEM, REV. 13

The DIk entry points to the original index record (record ‘I°), which
now contains just pointers to records ‘J° end ‘K° -- the two reccrds on
the index level just created. Record °J° contsins the data record
peinters originelly in I° -- L°, ‘M’, etc. Record ‘K’ conteins a

single pointer to the newly created data record N°.

Once en index level is crected, it is never deleted until the file
itself is deleted —- there will always be at least one record on each
level. 1If the file is empty, there will be exactly one record on each
index level. This is to avcid undue thrashing when records are being
added and deleted neer the threshold of an index’s capacity. (Note
theat the overhead of the "unnecesssry" levels is only one record per
level.)

REV. ¢ 36 - 76 May 1976

PTU30 PART 2 PRIMCS FILE SYSTEM, REV. 12

PART 2

FUTIL, REV. 12 & 13

2.1 INTRODUCTION

FUTIL hes been completely revamped for rev 12 to use new file system
calls exclusively, thus allowing it to work on both old and new
partitions. Because of the new file system, the operation of FUTIL has
changed in some minor ways. In addition, several new features heve
been &added in accordance with the philosophy that FUTIL is a general
file system utility and not just & copy and delete program.

The minor functional differences are:

1. To enable listing and copying from write protected disks and to
avcid updeting dete/time modified (DIM) stamps, FUTIL will not
attempt to change access rights to files on these operations.
Therefore, if any files or directories have even owner access
rights (i.e. no read rights), FUTIL will report a "NO RIGHT"
error. ‘The user does, however, have the ability to force FUTIL to
read files on LISTF and COPY operations, but so doing will update
21l DIM’s on listed or copied directories and further will fail on
write protected disks.

Z. Since the new file system allows up to 32 cheracter names, all file
names must be typed exactly as they are. For example, "DELETE
B_ABCDE" would have deleted the file "E ABCC" at rev 11, but will
report "NCT FOUND" &t rev 12. Of course, on a new partition, the
file "B ARCDE" will be deleted and, if present, "B ABCD" will not
be deleted. -

3, At rev 11, some problems existed in the interaction of ATTACH, TO,
and FROM. These problems have been either fixed or clarified for
rev 12. In short, both TC and FROM will not affect the other and
neither will affect the ATTACH point (i.e. HOME UFD). ATTACH,
however, will reset any FROM or TC name beginning with "*" to be
simply "*", thus avoiding transferring improper tree names to a new
home UFD. Aabsolute TO and FROM names (i.e. those beginning with a
name rether than *) will not be affected by ATTACH.

4. At rev 11, FUTIL would always abort processing upon encountering an
error. Because of this, it was possible to end up with partially
copied trees, for example, which could o only be completed by
redoing the entire operation. At rev 12, FUTIL will report any
error conditions, and, with the exception of DISK FULL on copies,
continue the operation. As an example of the utility of continuing
on errors, it is now possible to UFDDEL all unprotected files and
directories while leaving the protected ones intact.

REV. @ 30 - 71 May 1976

PTU3@ PART 2 PRIMOS FILE SYSTEM, REV. 13

5. Segment directories in the new file system are addressed in terms
of entry number rather than record number, word number. Therefore,
the syntex of names within segment directories has been changed
from (rec, word) to (entry). Thus, the fifth entry in a segment
directory is (5) and last entry is (65534). Note that (65535) is
not a legal entry as the maximum size of a directory is 65535
Including the entry (8).

The new features added, in summary, are:

1. specification of LISTF output file name (LISTSAVE)
2. Scanning for files of a given name (SCAN)
3. Conditional file delete on prefix match (CLEAN)

4. Mode for forcing access rights on LISTF and copies on "from"
directories (FORCE)

5. Ability to create new, empty UFD’s on "to" directory (CREATE)

6. Ability to protect a file or directory (PROTECT), files and
directories, to any depth (UFDPRO), and an entire sub-tree s

any depth (UFDPRO), and an entire sub-tree structure (TREPRO)
7. Up to 32 character names on new partitions

8. Ability to specify current logical disk in absolute tree
names (<*> disk name)

9. LISTF option to print passwords of sub-directories

10. LISTF option to print the time/date modified stamp (DIM)

2.2 NAMING CONVENTIONS

The PRIMOS file structure on any disk pack is a tree structure where
the MFD is the root or trunk of the tree, the links between directories
and files or subdirectories are branches, and the directories and files
are nodes. A directory tree consists of all files and subdirectories
that have their root in that directory. 1In Figure 2-1, the directory
tree for UFD] is circled. An MFD directory path name consists of a
list of directories and passwords necessary to move down the tree from
the MFD to any directory. For example, the MFD path name for SUFD1l
is:

REV. 0 30 - 78 May 1976

PTU30 PART 2 PRIMOS FILE SYSTEM, REV. 13

MFD MFDPASSWORD > UFD1 UFDIPASSWORD > SUFD11 UFD11PASSWORD

The ">" separates directories in the path-name and suggests that one is
proceeding down a tree structure. Note that file and directory names
can be as long as 32 characters (6 on old partitions), but passwords
can be at most 6 characters long.

An MFD directory path-name may optionally omit the MFD and mey
optionally include the logical disk number of the pack or the pack name
as shown below:

UFD1 UFDIPASSWORD > SUFD1l SUFD11PASSWORD
< 1> UFDl UFDIPASSWORD > SUFD1l SUFD11PASSWORD
< TSDISK > UFDIPASSWORD > SUFD1l SUFD11PASSWORD

The logical disk number may optionally follow the first ufd as follows:
UFD1 UFDIPASSWORD 1 > SUFD11 SUFD11PASSWORD

If no pack name or disk number is given, the logical disk referred to
is the lowest numbered logical disk in whose MFD UFD1 appears. A user,
using the ATTACH or PRIMOS LOGIN command or the FUTIL ATTACH command
may specify a particular user-file-directory in the file structure as
the home-ufd. 2Additional FUTIL ATTACH commands may refer to either the
MFD or the home-ufd as the starting point. If the logical disk name is
specified as "*", the MFD of the current logical disk is scanned for
UFDl. Names of this form are referred to as absolute path names since
the location of the home UFD is not part of the name. A home-ufd
directory path name consists of a list of directories and passwords
necessary to move down the tree from the home-ufd to any directory
which has the home-ufd as the root. For example, if the home-ufd is
UFD1, the home-ufd path name to SUFD11 would be:

* > SUFD11 SUFD11PASSWORD

"x* represents the home-ufd. The home-ufd path-name to UFDl is simply
"x% This form of tree name is also referred to as a relative path
name.

Whereas many users are familiar with user-file-directories, few are
familiar with a second type of directory called a segment directory. A
user-file-directory is & file which consists of a header and a number
of entries. Each entry consists of a 1 to 32 character filename (on
old partitions, names can be at most 6 characters long), protection
attributes of the file, and a disk record address pointer to the file.
A segment directory is a file consisting of as many as 65535 entries,
each entry being a disk record address pointer to the file. A @
pointer indicates no file at that entry. To refer to a particular file
in a segment directory, a user must specify the entry number of the
entry in the segment directory. A user specifies the position as an
unsigned entry number, enclosed in parentheses.

REV. © 30 -7 May 1976

PTU30

REV. g

PART 2

Figure 2-1. Sample File Structure

DSKRAT

SUFD11

FILEA

DIRECTORY TREE

30

ROOT
“ED BRANCH
UFDL UFD2
T
SUFD12 SUFD22
FILEB FILEC

80

LEVEL

LEVEL

by
¢l

May 1976

PRIMOS FILE SYSTEM, REV. 13

[]

PTU30 PART 2 PRIMOS FILE SYSTEM, REV. 13

The first file is referred to as (@), the second as (1), the 446th file
as (439), and the 441st file as (448). The construction (entry number)
will be referred to as a segment directory filename. In FUTIL,
arguments to the commands are either user-file-directory filenames or
segment directory filenames depending on the directory type the file is
under. Furthermore, names typed on the LISTF command of FUTIL are of
either type depending on the directory type the file is under.

2.3 DESCRIPTION COF FUTIL COMMANDS

To invoke FUTIL, type FUTIL. When loaded, FUTIL types the ">" prompt
character and awaits a command string from the user terminal. To
terminate long operations such as LISTF, type CIRL P and restart FUTIL
at 1008. A user should type a command followed by a carriage return
and wait for the prompt character before typing the next command. The
erase character " and the kill character ? may be used to modify the
comand string. In the following description of commands, underlined
letters represent the abbreviation of the command or argument. []
surround optional arguments. ...means the previous element may be
repeated.

* Indicates following information is a comment
QUIT return to PRIMOS Commar.! Mode
FROM directory-path-name

where directory-path-name is of format

<LDISK> DIRECTORY [PASSWORD] [LDISK] > DIRECTORY [PASSWORD]...
or <DSKNAM>
or < * >

FROM defines the from-directory in which files are to be
searched for the commands COPY, COPYSAM, COPYDAM, DELETE,
LISTF, LISTSA, SCAN, CLEAN, PROTECT, TREPRO, UFDPRO,
TRECPY, TREDEL, UFDCPY, and UFDDEL. The from-directory is
defined from the directory-path-name whose format is given
above and described in detail in Section 2.2. The
path-name may contain at most 1@ directories which may be
segment directories as well as user-file-directories. If
segment directories are specified, the user must have read
access rights to them. If any error is encountered, the
from-directory is set to home-ufd (*). The first
directory in the path name may be "*" which refers to the
home-ufd. The default from-directory is the home-ufd.
Note that the FROM command never changes the home-ufd. If
the FROM name is a relative path name (i.e. beginning
with *>), any future ATTACH's, which do chance the
home-ufd, will reset the FROM name to *.

REV. 0 30 - 81 May 1976

PTU20

'8

REV.

]

PART 2 PRIMCS FILE SYSTEM, REV. 13

Examples:
FROM <@> CARISON

Set from-directory to CARLSON on logical disk @#. CARLSON
must be in the MFD on logical disk @ and have a blank
password.

FROM CARLSON ABC

Search the MFD on all started disks for CARLSON in logical
disk order 8 - 8. Set the from—directory to the first
CARLSON directory found. One of the passwords of CARLSON
must be ABC.

FROM <TSDISK> CARLSON > SUB1 > SUB2

Set the from-directory to SUB2. SUB2 must be a directory
in SUBl; SUB1 must be a directory in CARISON; and
CARLSON must be a dirctory in the MFD on a disk with pack
name TSDISK. CARLSON, SUBl1, and SUB2 must have a blank
password.

FROM *

Set the from-directory to the home-ufd. The home-ufd is
normally the last ufd the user has 1logged into, or
attached to with either the ATTACH or FUTIL ATTACH
command. If logged into CARLSON, the above command sets
the from-directory effectively to CARISON. This command
does not have to be given again if the user changes the
home-ufd. Furthermore, this command does not have to be

given at all unless the from-directory has been made
something other than home, as home-ufd is the default.

FROM * > SUB1

Set the from-directory to SUBl. SUBl must be a directory
in the home-ufd and have a blank password.

directory-path-name

TO defines the to-directory in which files are searched
for the commands CREATE, COPY, COPYSAM, COPYDAM, TRECPY,
and UFDCPY. The to-directory is defined from the
directory-path-name. The path-name may contain at most 10
directories which may be segment directories as well as
user-file directories. If segment directories are
specified, the user must have read and write access to
them. The first directory in the path-name may be *. The
default to-directory is the home-ufd. If any error is
encountered, the to-directory is set to home-ufd (*).

30 - 82 May 1976

ATTACH

COPY

REV.

8

PART 2 PRIMCS FILE SYSTEM, REV. 13

Note that the TO command never changes the home-ufd. If
the TO name is a relative path name (i.e. beginning with
*>), any future ATTACH’s, which do change the home-ufd,
will reset the to-name to *.

directory-path-name

ATTACH moves the home-ufd to the directory defined by the
directory-path-name. The path name may contain at most 10
directories. The first directory in the path-name may be
*, All directories in the path-name must be
user-file-directories. If segment directories are
specified within the path-name, a "BAD STRUCTURE" error
will be reported and the home-ufd will be set to the last
UFD specified in the path name before the error. An
attach command will reset relative "to" and "from" path
names to * but leaves absolute names alone.

FILEA [FILEB] [, FILEC [FILED]]...

Copy FILEA in the from-directory to FILEB in the
to-directory and optionally FILEC in the from-directory to
FILED in the to-directory. If FILEB is omitted, the new
file is given the same name as the old file. FILEA and

—— T~

R M or DAM files and cannot be directories. Read access
rights are required for FILEA and FILEC. If FILEB exists
prior to the copy, it must be a SAM or DAM file and have
read, write, and delete/truncate access rights. The file
type of FILEB will be made the same as FILEA.

Examples:

copy FILEA in the from-directory to FILEA in the
to-directory

COPY FILEA , FILEB , FILEC

Copy FILEA, FILEB, and FILEC in the from-directory to
FILEA, FILEB, and FILEC in the to-directory.

COFY FILEA FILEB
copy FILEA in from-directory to FILEB in to-directory

COPY FILEAl FILEA2,FILEBl FILEBZ2,FILEC1 FILEC2

30 - 83 May 1976

PTU3D

COPYSAM

COPYDAM

TRECPY

REV. 0

PART 2 PRIMOS FILE SYSTEM, REV. 13

copy FILEAl, FILEBl, and FILEC1 in the from-directory to
FILEA2, FILEB2, and FILEC2 in the to-directory

COpY (@)

The from-directory and to-directory must each be segment
directories. Copy the file at position (@) of the
from-directory to position (@) of the to-directory. There
are no access rights attached to these files, so PRIMOS
checks instead the access rights of the directory. No
spaces are allowed in the name (0@).

CopY (@) (1)

Copy the file at position (8) of the from-directory to
position (1) of the to-directory.

FILEA [FILEB] [, FILEC [FILED]]...

same as COPY but also set file type of FILEB and FILED to
SAM instead of copying the type of FILEA and FILEC.

FILEA ([FILEB] [, FILEC FILED]]...

same as COPYSAM but set file type of FILEB and FILED to
DAM

DIRA [DIRB] [, DIRC [DIRD]]...

Copy the directory tree specified by directory DIRA to
directory DIRB and optionally DIRC to DIRD. DIRB and DIRD
must not previously exist. If DIRB is omitted, use name
DIRA as the directory to copy to. A directory tree
consist of all files and sub-directories that have their
root in that directory. DIRA and DIRC must be in the
from-directory. DIRB and DIRD are created in the
to-directory. Read access rights are required for DIRA
and DIRC and all files or sub-directories within them.
The restriction on sub~-directories can be overridden with
the FORCE command.

DIRB and DIRD are created with the same directory type and
passwords as DIRA and DIRC and with default access rights.
The names, access rights and passwords of all files and
sub-directories copied are also copied.

Example:
FROM MFD

TO MFD
TRECPY CARLSON CARNEW

30 - 84 May 1976

UFDCPY

CREATE

REV. ©

PART 2 PRIMCS FILE SYSTEM, REV. 13

copy the directory tree specified by CARLSON in the MFD to
a new directory CARNEW in the MFD

Copy all files and directory trees from the from-directory
to the to-directory. The user must have owner rights in
the FROM directory. Furthermore, all files and
directories in the from-directory, as well as all
sub-directories and the files within them, must have read
access rights. This restriction on sub-directories can be
overridden with the FORCE command. Files already existing
in the to-directory with names identical to those in the
from-directory are replaced. Files that are replaced must
have read, write, and delete accesss rights.

Segment directories already existing in the to-directory
with names identical to those in the from-directory are
not allowed and will not be copied. Files and directories
created in the to-directory will have the same file type
and access rights as the old files. If a file or UFD in
the to-directory has the same name as a file or UFD in the
from-directory, the access rights must permit read, write,
and truncate/delete. When the copy is finished, the new
file will have the same protection attributes as the
corresponding file in the from-directory. The names,
access rights and passwords of all files and
sub-directories within directory trees being copied are
also copied. Other existing files and directories in the
to-directory are not affected. UFDCPY is effectively a
merge of two directories including merging sub-UFD’s.
Both the from and the to-directory must be user-file
directories.

Example:

FROM CARLSON
TO CARNEW
UFDCPY

copies all files and directories from CARLSON in the MFD
to CARNEW in the MFD. Note that unlike the example for
TRECPY, the user has not specified the MFD as the
from-directory, therefore, does not need to know the MFD
password. In the example CARNEW exists prior to the
UFDCPY. With TRECPY, CARNEW does not previously exist.

UFDNAME [OWNERPASSWORD [NONOWNERPASSWORD]]

30 - 85 May 1976

PTU3P PART 2 PRIMOS FILE SYSTEM, REV. 13

Creates a UFD in the "TO" directory with the owner and
non-owner passwords specified. A UFD of the same name
cannot already exist in the "to" directory. If a password
is not specified, it will be set to 6 blanks. If a
password is specified - longer than 6 characters, only the
first 6 will be used. The access rights of the new UFD
will be the default rights assigned by PRIMOS.

DELETE FILEA [FILEB] ...
delete FILEA and optionally FILEB from the from-directory.
FILEA and FILEB cannot be directories. The user must have
read, write and delete access rights to each file. If
FILEA and FILEB are in a segment directory, read, write
and delete access rights are required for the
from~directory.
Examples:
DELETE FILEA
DELETE FILEA FILEB FILEC FILED

TREDEL DIRA [DIRB] ...

delete the directory tree specified by directory DIRA and
optionally delete DIRB from the from-directory. DIRA and
DIRB must be directories. The user must have read, write,
and delete rights to DIRA and DIRB. Read, write and
delete rights are not required for files and
sub-directories nested within DIRA or DIRB. If FILEA and
FILEB are in a segment directory, read, write, and delete
access rights are required for the from-directory. Note
that the operating system DELETE command will not delete a
directory on a new partition if it is not empty.

UFDDEL

delete all files and directory trees within the
from-directory. User must give the owner password in the
FROM command and have read, write, and delete access to
all files and directories within the from~directory.
These rights are not required for files and
sub-directories nested within the directories in the
from-directory. Note that read and write access rights to
a sub-UFD are sufficient to delete the contents of that
directory, but not the directory itself.

LISTF [level] [LSTFIL] [PROTECT] [SIZE] [TYPE] [DATE] [PASSWORDS]
[FIRST]

REV. 9 30 - 86 May 1976

PTU30

REV.

g

PART 2 PRIMOS FILE SYSTEM, REV. 13

List the from directory-path-name, the to
directory-path name, and all files and directory trees in
the from-directory on the terminal. Optionally, follow
each file by its protection attributes, size in disk
records (mod 448 words), file type, date/time modified
(DM), and, on directories, the owner and non-owner
passwords. ‘The user must give the owner password in
specifying the from-directory. If the LSTFIL option is
given, the 1list of files is sent to file "LSTFIL" in the
home-ufd instead of to the terminal. At a later time, a
user may wish to print that file on a line printer. Level
is a number specifying the lowest level in the
from-directory tree structure to be listed. The following
table describes the output:

level output
] the "from" and "to" directory names
1 the from-directory and all files and

directories within it (level 1 directories)

2 all output at level 1 and all files
and directories within level 1 directories

etc. etc.
If the level is omitted, the default is 1.
The protection attribute of each file is typed as:
< owner-key non-owner-key >
The keys are number -7 with the following meaning:

no access allowed

read access only

write access only

read and write access
delete/truncate only
delete/truncate and read
delete/truncate and write
all access allowed

~SNoundwhoHE =

The possible file types are:

SAM for sam file

DAM for dam file

SEGSAM for sam segment directory
SEGDAM for dam segment directory
UFD for user file directory

30 - 87 May 1976

PTU20

REV.

PART 2 PRIMOS FILE SYSTEM, REV. 13

On new partitions, the DIM of a file or directory is
printed as:

15:31:22 MON 68 NOV 1976

where 15:31:22 is 15 hours past local midnight (3PM), 21
minutes, 22 seconds. The day of the week printed will be
correct for all dates between 1 January 1972 through 21
December 2071. If the date is unreasonable (e.g. when SE
-0000 -0000 is typed at the system console), the DIM is
not printed. All dates are considered reasonable as long
as the month is between 1 and 12. Note that the day of
the week will be correct for dates such as 32 December and
@ April since they will be considered as 1 January and 31
March, respectively.

The passwords on sub-directories are printed as: (OWNER,

NOWNER) . Note that non-printing characters are suppressed
rather than replaced by blanks or printed on the user
terminal although they will be sent to an output file
(LSTFIL). Thus, the default passwords on a UFD are

printed as (,) since the non-owner password is @,
not blanks. Similarly, a password of CNTRL (UFD) would be
printed as (') and written to a file as
(722572067204 ,).

The FIRST line option specifies that all files not beginning

with * (the usual conversion for run files) and B (the
usual conversion for PMA and FIN object files) are to have
their first lines printed. If the file is not an ASCII
file and the name does not begin with * or B , the comment
"NO FIRST LINE" will be printed. First lines are preceded
by ":" and will be placed on the same line as the file
and its options, if it will fit. LISTF traverses the file
structure as shown by the snaked line generating typeout
at the various points below.

30 - 88 May 1976

PTU30 PART 2 PRIMOS FILE SYSTEM, REV. 13

The output with level set to 3 and with the SIZE option
will appear as follows for the above file structure:

FROM-DIR = MFD
TO-DIR =*

BEGIN MFD 1
DSKRAT 1 BOOT 1

BEGIN UFD1 1
BEGIN SUFD11 1

FILEA 1

END SUFD11
BEGIN SUFD12

=N

FILEB 1

END SUFD12 2
END UFD1
BEGIN UFD2

BEGIN SUFD21 2

b N

FILEC 1

END SUFD21 2

END UFD2 3
END MFD 11

Note that the user must have read access rights to all
files, sub-directories, and files within sub-directories.
This restriction can be overridden with the FORCE command.

LISTF, upon encountering a directory, prints the word BEGIN
followed by the name of the directory and its size in
records. On leaving a directory, LISTF prints "END
Directoryname"” followed by the number of records used by
all files and directories within the directory tree headed
by the directory file. On encountering a file, LISTF
simply prints its name and size, squeezing as many files
as will fit on each line. LISTF skips a line whenever a
directory follows a file or a file follows a directory.
LISTF will not count records in files lower than "level®
in the from-directory tree. In addition, DAM file indices
will not be included in the size.

REV. 0 30 - 89 May 1976

PTU30

LISTSAVE

CLEAN

REV.

]

PART 2 PRIMOS FILE SYSTEM, REV. 13

In the above example, the number following MFD, 11, is the

total number of records used by the MFD directory tree and
consists of all files and directories on the disk pack.
LISTF indents the printed output one space for each level
down the tree in which the directory is located. This
format makes it easy to understand the relationship of
each directory to other directories in the tree.

fname [level] [PROTECT] [SIZE] [IYPE] [DATE] [PASSWORDS]
[FIRST]

This command is identical to LISTF with the LSTFIL option
specified except the output file will be named "fname"
rather than "LSTFIL" and the ISTFIL option is redundant.

fname [level] [PROTECT] [SIZE] [TYPE] [DATE] [PASSWORDS]
(LSTFIL] [FIRSTT - —

This command is used to search the from-directory tree for
the occurance of all files, sub-UFD’s, and segment
directories named "fname". If level is specified as 1
(the default), only the file name will be printed,
followed by its options. If the level is greater than 1,
the path name to the file or directory, starting from the
from-directory, is printed, followed by the file name and
its options. For example, with the tree-structure shown
for the LISTF example, the command SCAN FILEB S F 18 will
print:

FROM=MFD
TO =+

DIRECTORY PATH = MFD> UFD1> SUFDI12
FILEB 1 : NO FIRST LINE

FILEB lacks a first line since it was empty. Note that
the name FILEB is indented 3 spaces since it is in a third
level UFD.

prefix [level]

This command 1is a conditional delete based upon a prefix
match. If a file name begins with the characters
specified as "prefix", the file will be deleted. If level
is specified greater than 1, that many levels of sub-UFD s
will be scanned for prefix matches. 1In no case, will
CLEAN delete a UFD or a segment directory. In the example
tree structure used for LISTF and SCAN, the command:
CLEAN F will not delete anything since no files beginning
with F exist in MFD. However, the command: CIEAN F 10
will delete ,n-300 FILEA, FILEB, and FILEC since they all
begin with F. Note that: CLEAN U will not delete either

30 - 90 May 1976

PTU30

REV.

@

UFD1,

PART 2 PRIMOS FILE SYSTEM, REV. 13

UFD2, or any of the files within them. A typical
usage of CLEAN would be:
CLEAN L_
CLEAN B_

PROTECT

TREPRO

UFDPRO

FORCE

To delete binary and listing files from a UFD.
fname [owner [non-owner]]

Will protect "fname" in the from-directory with the
owner and non-owner protection attributes [defined
under LISTF] specified. If the non-owner rights are
omitted, they will be set to @. If the owner rights
are omitted, they will be set to 1 (read only).
"Fname" can be a file, a UFD, or a segment directory.
If it is a UFD, the file and sub-directories within
it will not be protected.

tree-name [owner [non-owner]]

This command 1is essentially the same as protect
except “"treename" is a UFD or segment directory in
the from-directory and it and all files under it
(UFD’s only) will be protected with the specified
rights. Again, the default rights are <1 8>.

[owner [non-owner [levels]]]

This command is used to protect all files and
directories within the from-directory with the
specified rights, going down sub-UFD trees the
specified number of levels. The default rights are
<1 9> and the default level is 1. Thus, in the
example structure of LISTF, SCAN, and CLEAN, the
command: UFDPRO will protect the files DSKRAT and
BOOT and the UFD’s UFDl and UFD2 with access rights
<1 @> and will not change the rights of any of the
sub-directory UFD’s or files. The command: UFDFRO 1
@ 10 will protect all files and directories within
MFD. Note that both the owner and non-owner rights
must be specified in order to specify the number of

levels.

ON
or EET

As noted previously, LISTF, LISTSAVE, SCAN, UFDCPY,
and TRECPY will not force read access rights on any
files or sub-directories within the from-directory.
This is to prevent the updating of DIM's of copied
files as well as permitting these commaends to
operated on write protected disks. The price of this

30 - 9 May 1976

PTU30 PART 2 PRIMOS FILE SYSTEM, REV. 13

capability is that all files to be listed or copied
must have read access. To override this restriction,
the command FORCE ON must be specified. This will
cause read access rights to be forced, but will also
cause LSTF, LISTSAVE, SCAN, UFDCPY, and TRECPY to
fail on write-protected disks. The option remains in
force until the command: FORCE OFF is specified.
Note that UFDCPY will never force rights on the
primary level of either the from or to-directory.

2.4 RESTRICTIONS

FUTIL cannot process user-file-directory filenames that contain the
characters [[] (n , n) " , n<n , u>u , L] [n , n] " , Or " 'll . AVOid USing
filenames containing these characters.

In using FUTIL under PRIMOS, certain operations may interfere with the
work of other users. For example, a UFDCPY command to copy all files
from a ufd currently used by another logged-in user may fail. If any
file in that directory is open for writing by that user, UFDCPY will
encounter the error FILE ALREADY OPEN, and will skip the file. If the
user attempts to open one of his files for writing while UFDCPY is
running, the user may encounter that errror. ‘The FUTIL LISTF and
TRECPY commends cause the same interaction problems. Other FUTIL
commands such as COPY and DELETE can also interfere with the other
user, but the problem is not as serious as only one file is potentially
involved in a conflict. To prevent the conflicts, users working
together and involved in operations using each other s directory should
coordinate their activities. If two users consistently use the same
ufd at the same time, they should avoid the FUTIL LISTF command, and
use the system LISTF command instead.

FUTIL operations when using the MFD should be done carefully. Never
give the command TREDEL MFD as the command will delete every file on
the disk except the MFD, DSKRAT, BOOT, and BADSPT. A LISTF or UFDCPY
of the MFD should be done only if one is sure no other user is using
any files or directories on that disk. A UFDCPY of the MFD to the MFD
of another disk has the effect of merging the contents of two disks
onto one disk. A user should be sure there is enough room on the
to-disk before attempting this operation or it will abort. Recall also
that the names of segment directories on the two disks may not
conflict. Files of the same name will be overwritten and UFD’s of the
same name will be merged. To avoid the name conflict, it may be
desirable to UFDCPY the MFD of one disk into a user-file-directory on
another disk. Each directory originally on the from-disk becomes a
subdirectory in that ufd on the to-disk. For example, the contents of
10 diskettes could be copied into 1@ user-file-directories on a 1.5 M
disk pack. Note that a UFDCPY of an MFD does not copy the DSKRAT, MFD,
BOOT or BADSPT to the to-directory. If a user wishes to copy BOOT to
the to-directory, use the COPY command. Never copy the DSKRAT or the

REV. @ 30 - 92 May 1976

PTU20 PART 2 PRIMOS FILE SYSTEM, REV. 13

BADSPT file from one MFD to another.

The effect of a UFDCPY from the MFD of a disk in use to the MFD of a
newly MAKE ‘d disk is to reorganize the disk files so that all files are
compacted, that is, have their records close to each other on the new
disk. After such a compaction, the access time to existing files on
the new disk is effectively reduced from the access time on the old
disk. Furthermore, new files tend to be compact since all free disk
records are also compacted. The use of such compacted disks should
improve the performance of all PRIMOS systems.

Users should not abort copy or delete operations under DOS, but should
allow them to run to completion. Aborting a copy or delete operation
may cause a pointer mismatch or bad file structure or a directory with
a partial entry. DOS or PRIMOS will not run correctly with a directory
with a partial entry. FIXRAT should be run immediately if these
conditions are encountered. Under PRIMOS III and PRIMOS 1V,
interruption of FUTIL with Control-P will never result in a bad file
structure.

2.5 ERROR MESSAGES

The following are error messages generated by FUTlu. In many cases,
FUTIL types error messages generated by DOS or PRIMOS and retains
control, so users should be generally familiar with operating system
error messages. ‘The list given here includes those messages that may
be encountered by FUTIL. Most messages are preceded by a file name
identifying the file causing the error. Some of the error messages
have the format:

reason for error
FILE = filename
DIRECTORY PATH = directory-path-name
In all cases except "DISK FULL" on copies, FUTIL will continue with the

operation, reporting all errors as it goes until the operation is
complete.

?
Unrecognizable command

ALREADY EXISTS or SEG DIR ALREADY EXISTS

An attempt has been made to TRECPY to or CREATE a UFD or segment
directory that already exists. Or UFDCPY has attempted to copy a
segment directory which already exists. If you intend to do the
operation, the UFD or segment directory in the to-directory must first
be deleted.

REV. @ 30 - 93 May 1976

PTU30 PART 2 PRIMOS FILE SYSTEM, REV. 13

ALREADY OPEN

Indicates an attempt to UFDCPY a directory to itself or an attempt to
copy a file to itself, or an attempt to copy a directory to a
subdirectory within itself.

BAD NAME

A segment directory filename was given to a command which expected a
ufd filename or vice versa. The type of filename must match the type
of directory the file is contained in.

BAD PASSWORD

An incorrect password has been given in a FROM, TO, or ATTACH command.
PRIMOS will not allow FUTIL to maintain control in case of a bad
password so the FUTIL command must be given to restart FUTIL after the
user has attached to his directory. The from-directory and
to-directory are reset to home-ufd in this case.

BAD SYNTAX

The command line processed by FUTIL is incorrect.

CANNOT ATTACH TO SEGDIR

The last directory in the directory path name to an ATTACH command is a
segment directory. It must be a ufd, as ATTACH sets the home-ufd to
the last directory in the path.

CANNOT DELETE MFD

User has given the UFDDEL command while attached to the MFD. This is
not allowed.

STRUCTURE TOO DEEP

Directories may be nested to a depth of 100 levels. User has attempted
to exceed this limit. Under 32K PRIMOS II, this limit is dynamically
reduced to 13 levels.

DISK ERROR

Same as unrecovered error.

DISK FULL

The disk has become full before FUTIL has finished a copy operation.
For operations involving many files, some files are not copied,
creating only partially copied directories which may be of limited use.

It is suggested that the user delete such a structure immediately to
prevent confusion as to what has been copied.

REV. @ 3 - 94 May 1976

PTU20 PART 2 PRIMOS FILE SYSTEM, REV. 13

IN USE

Indicates a FUTIL attempt to process a file in use by some other user.
It may also indicate an attempt to copy a directory to a subdirectory
within itself.

BAD STRUCTURE

Indicates any of various conditions in which the implied or explicitly
specified structure is illegal. For example, an attempt to specify a
UFD under a segment directory will cause this error.

CANNOT COPY FILE TO DIRECTORY

On UFDCPY, indicates a file on the "from" side has the same name as a
directory on the "to" side.

NO RIGHT

User hes attempted an operation on a file which violates the file
access rights assigned to that file. These rights may be changed by
the PROTECT command, if the user has given the owner password on
ATTACH.

NO UFD ATTACHED

Self-explanatory.

NOT A DIRECTORY

User has given a directory-path-name which includes a regular file.

NOT FOUND

Self-explanatory

POINTER MISMATCH

Indicates a bad file structure. Running FIXRAT is in order.
END OF FILE

User has attempted to reference a nonexistent file beyond the end of a
segment directory.

NOT FOUND IN SEG-DIR

User has attempted to reference a file in a segment directory with an
entry of 8, which indicates file does not exist or the user has
attempted to reference a file past the end of the segment directory.

REV. @ 30 - 95 May 1976

PTU30 ' PART 2 PRIMOS FILE SYSTEM, REV. 13

UFD FULL

On a UFDCPY merge or a UFDCPY or TRECPY from a new partition to an old
partition, the to-directory or a sub-directory has become full. FUTIL
will report the error and then pop-up a level and continue as if the
UFD had not become full.

UNRECOVERED ERROR

Indicates either the user has attempted to write to a write-protected
disk or an actual disk error or a FUTIL attempt to process a bad file
structure. Running FIXRAT is in order if the disk was not
write~protected.

TOO MANY NAMES

A "from", "to" or "attach" tree name was specified with more than 1¢
names.

WRONG FILE TYPE

An attempt was made to DELETE or copy a directory or TREDEL, TRECPY or
TREPRO a file.

CANNOT ATTACH

An attempt is made to UFDCPY a directory in which a sub-ufd has the

same name as a file or segment directory on the "to" side. The "from"
side UFD is skipped.

REV. @ 30 - 96 May 1976

PRIMI

PRIME Computer, Inc.. 145 Pennsylvania Avenue, Framingham, Massachusetts 01701

	001
	002
	003
	PTU30-01
	PTU30-02
	PTU30-03
	PTU30-04
	PTU30-05
	PTU30-06
	PTU30-07
	PTU30-08
	PTU30-09
	PTU30-10
	PTU30-11
	PTU30-12
	PTU30-13
	PTU30-14
	PTU30-15
	PTU30-16
	PTU30-17
	PTU30-18
	PTU30-19
	PTU30-20
	PTU30-21
	PTU30-22
	PTU30-23
	PTU30-24
	PTU30-25
	PTU30-26
	PTU30-27
	PTU30-28
	PTU30-29
	PTU30-30
	PTU30-31
	PTU30-32
	PTU30-33
	PTU30-34
	PTU30-35
	PTU30-36
	PTU30-37
	PTU30-38
	PTU30-39
	PTU30-40
	PTU30-41
	PTU30-42
	PTU30-43
	PTU30-44
	PTU30-45
	PTU30-46
	PTU30-47
	PTU30-48
	PTU30-49
	PTU30-50
	PTU30-51
	PTU30-52
	PTU30-53
	PTU30-54
	PTU30-55
	PTU30-56
	PTU30-57
	PTU30-58
	PTU30-59
	PTU30-60
	PTU30-61
	PTU30-62
	PTU30-63
	PTU30-64
	PTU30-65
	PTU30-66
	PTU30-67
	PTU30-68
	PTU30-69
	PTU30-70
	PTU30-71
	PTU30-72
	PTU30-73
	PTU30-74
	PTU30-75
	PTU30-76
	PTU30-77
	PTU30-78
	PTU30-79
	PTU30-80
	PTU30-81
	PTU30-82
	PTU30-83
	PTU30-84
	PTU30-85
	PTU30-86
	PTU30-87
	PTU30-88
	PTU30-89
	PTU30-90
	PTU30-91
	PTU30-92
	PTU30-93
	PTU30-94
	PTU30-95
	PTU30-96
	xBack

