
/

PREFACE

This manual describes the operation and
machine-level programming for the PRIME
200 computer. Chapter 1 provides an intro­
duction to the computer system, including
information about the organization of the
system, the formats of the various instruc­
tion types, the conventions used in
machine-level programming, and the soft­
ware available with the system. Chapter 2
describes the operation and programming
of the central processor and gives the basic
information needed for handling the
input/output system. The remaining
chapters describe the individual peripheral
devices. Several appendices at the back of
the manual provide summary information
on such topics as a review of twos com­
plement conventions, instruction mne­
monics, instruction execution times, I/O
device codes and the like.

Copyright 1973 by
PRIME Computer, Incorporated

23 Strathmore Road
Natick, Massachusetts

Performance characteristics are
subject to change without notice

CONTENTS Control panel
1. INTRODUCTION 1- 1 communication 2-20
1.1 Processor Organization 1- 2 Processor serial interface 2-20
1.2 Memory 1- 3 2.11 External interrupt 2-21
1.3 Number and Instruction Standard interrupt mode 2-22

Formats 1- 3 Vectored interrupt mode 2-23
1.4 Programming Conventions 1- 4 Interrupt programming 2-24
1.5 Software 1- 5 2.12 Internal Interrupt 2-25
2. CENTRAL PROCESSOR 2- 1 2.13 Direct Memory Access 2-26
2.1 Memory Reference 2- 2 2.14 Control Options 2-27

Load and store instructions 2- 3 Memory save and
Jump instructions 2- 4 autorestart 2-27

2.2 Register Operate 2- 5 Automatic program load 2-28
2.3 Byte Manipulation 2- 6 Real time clock 2-28
2.4 Shift Group 2- 7 2.15 Operation 2-29
2.5 Logic 2- 8 Run state 2-31
2.6 Arithmetic 2- 9 Stop state 2-32

Double precision arithmetic 2-10 3 HARDCOPY EQUIPMENT 3- 1
Multiply-divide 2-11 3.1 Paper Tape Reader 3- 2
Floating point arithmetic 2- 1 3.2 Paper Tape Punch 3- 3

2.7 Skip Instructions 2- 2 3.3 T eletypewri ter 3- 4
Increment and decrement 2- 2 APPENDICES
Compare 2- 2 A Twos Complement Conventions Al
Skip group 2-12 B Addressing Bl

2.8 Control 2-14 C Instruction Mnemonics and Timing
Parity errors 2-14 Numeric listing Cl
Status keys 2-15 D Input/Output Codes Dl

2.9 Address Extensions 2-16 ASCII code
2.10 Input-Output 2-17 I/O devices

CHAPTER 1
INTRODUCTION

The PRIME 200 is a general purpose, stored
program computing system with a 16-bit
word length and fully parallel operation.
Its MOS memory has a cycle time of 750
nanoseconds and is expandable in 8K word
increments to a maximum of 32K words.
Standard processor features include
double-precision arithmetic, multiply­
divide, byt~ parity in all memory locations
and on all data paths, eight programmable
direct memory access channels, vectored
priority interrupt system, automatic
program load from paper tape, and a
programmer's control panel.

Comprehensive Instruction Set

The instruction set includes 118 instruc­
tions, fifteen of which are single-word,
memory reference instructions. This
latter group of instructions reduce the
register housekeeping overhead associated
with arithmetic and logical operations
involving a word in memory and the con­
tents of the arithmetic register.

Input/Output
Up to 64 input/output devices can be
attached to and addressed by the I/O bus.
Available peripheral equipment includes
high-speed paper tape reader and punch,
teletypewriter (whose interface may be
used for any EIA RS-232C compatible
device), fixed and moving-head disks,
and an A-D subsystem. Program control
over these and other devices is provided
by a common set of I/O instructions which
initiate, control and monitor all data
transfers between the arithmetic register,
device controllers, and the devices
themselves.

Interrupt Processing
Facilities for handling program interrupts
and direct memory access data transfers
are standard PRIME 200 features. The
interrupt system, which may use either a

1-1

party line or vectored technique, facilitates
processor control of the peripheral equip­
ment by allowing any device to interrupt
the normal program flow on a priority
basis. The processor responds to an inter­
rupt request by executing the instruction
addressed by the contents of a particular
memory location. In the party-line mode
of operation there is only one such loca­
tion and an interrupt service routine must
determine which device to service; in the
vectored mode a unique location is
assigned to each device. In either mode
interrupts can be armed and disarmed
singularly or in groups, under program
control.

Direct Memory Transfers

A high-speed device, such as a disk, can
gain direct access to memory through a
DMA channel without requiring the
execution of additional instructions after
the data transfer has been initiated. In
general, DMA transfers are overlapped
with processing; the processor pausing
only when a transfer occurs between the
memory and an I/O device. Any number
of devices can be connected to the DMA
system, and any ~ight can operate in this
fashion at a given time.

Programmer's Control Panel

The computer is available for either rack­
mount or table-top installation. Both ver­
sions provide a control panel containing a
set of LED indicators through which the
program can display information to the
operator, and a set of data switches through
which the operator can supply data words
and addresses to the program. The data
switches are also used as sense switches
which can be interrogated by the program.
Additional switches on the control panel
allow the operator to start and stop the
program, single-step through a program
one instruction at a time, store the con­
tents of the data switches in any memory
location, display the contents of any
location in the LEDs, and allow the

operator to load information automatically
when there is no program in memory.

Microprogrammed Logic

Operation of the PRIME 200 is imple­
mented entirely through microprogram­
ming. Hence the whole system of stored
program, program counting, and the like
is duplicated at a "micro level" by a stored
microprogram in read -only memory , with its
own microinstruction counter and all the
necessary facilities for executing micro­
routines - most of which correspond to
user-level machine instructions. The
microprogram system is completely invi­
sible to the programmer, who sees only his
own instructions and their results.

1.1 PROCESSOR ORGANIZATION

The central processor is the control unit
for the entire system; it governs all periph­
eralI/O equipment, performs all arithmetic,
logical, and data handling operations, and
sequences the program. It is connected to
the memory by a memory bus and to the
peripheral equipment by an 1/0 bus. The
processor handles words of sixteen bits.
For error detection purposes two parity
bits are appended to each word and all
words are treated as byte pairs. The parity
of each byte is checked not only when a
word is read from memory, but on every
transfer in the processor and over the I/O
and memory busses.

Information Formats
The bits of a word are numbered 1 to 16,
left to right, as are the bits in the registers
that handle the words. An instruction
operand is interpreted as a logical word, an
address, a pair of 8-bit bytes, or a 16-digit
signed or unsigned binary number. The
arithmetic instructions operate on fixed­
point binary numbers"either unsigned or
the equivalent signed numbers using twos
complement conventions. Addition, sub­
traction and shifting can be performed
with double precision numbers.

1-2

Sequential Instruction Execution
The processor performs a program by
executing instructions retrieved from con­
secutive memory locations as counted
by the program counter P. As one instruc­
tion is being fetched, P is incremented by
1 so that the next instruction is normally
taken from the next consecutive location.
Sequential program flow is altered by
changing the contents of P, either by incre­
menting it an extra time in a test skip
instruction or by replacing its contents
with the value specified by a jump instruc­
tion. The address for a memory access is
held in registerY, and data read from
memory or about to be stored in memory
is held in register M.

Arithmetic Register
All computations are performed using the
Arithmetic or A register. Data can be moved
in either direction between A and any
memory location, the contents of a memory
location can be combined arithmetically
or logically with the contents of A, and this
register also serves as the data connection
with the I/O bus. A secondary arithmetic
register B serves as a right extension of
A for double length operations. The proc­
essor also has a single-bit register C,
which detects overflow in arithmetic
operations and saves the last bit dropped
out of A or B in shift operations.

Referencing Memory
Each memory reference instruction cal­
culates an effective address. This calcula­
tion may include indirection, where an
address calculated at an intermediate step
is used to retrieve another address, and
may include indexing, where a fixed
quantity is added to a given address. An
index register "X" as well as the A, B, and
S (stack) registers may be used for storing
the indexing quantity. The S register is
used for push-pop stack operations as well
as fully recursive reentry procedures. The
recursive procedure is essentially an index­
ing technique which is performed inde-

pendently of and in addition to the indexing processor logic continues in operation
in the effective address calculation involv- while the refreshing is in progress.
ingX,AorB.

1.2 MEMORY

The main memory is addressed as a set of
contiguous word locations whose addresses
range from 0 to '077777 or 32,767. (NOTE:
throughout the remainder of this text, an
apostrophe preceding a number indicates
octal notation; no apostrophe indicates
decimal notation. Memory locations are
always specified by their octal addresses.)
The number of words that can be addressed
by an instruction, and the location of those
words relative to the instruction depend
on which of two addressing modes - sec­
tored or relative - the machine is operating
in. In either mode, contiguous word loca­
tions are organized into fixed-length groups
called sectors.

Sectored and Relative Addressing Modes
In sectored mode addressing, all sectors
are 512 words long and an instruction may
directly address either the locations in
sector 0 (locations 0-'777) or the locations
in the sector in which the instruction is
stored. Relative mode addressing permits
direct references to locations in sector
zero, as in sectored mode, or references to
locations in a range relative to the contents
of the program counter P (P-239 to P+256).
Sixteen unused addresses from P-240 to
P-256 are interpreted as special addressing
codes which provide several additional
methods of address formation such as
stack register operation, base-pIus-dis­
placement and direct addressing of any
location from 0 to '077777.

Automatic Memory Refresh
The computer's semiconductor memory is
continually refreshed by a sequence of
staggered refresh cycles, each of which
refreshes 1/32 of the entire memory.
Although refreshing does take some time
from the program, the effect is usually
negligible as the microprogrammed

1-3

High Speed Register File
The various processor registers discussed
in the previous section and a number of
other special processor registers can be
addressed as memory locations although
they are physically located in a high-speed
register file within the CPU. Memory
addresses 0-'37 are reserved for this pur­
pose, and correspond to the registers in
the register file as follows:
o x

A
2 B
3 S
4-5 Reserved
6 Normalize shift count
7 P
10-13 Reserved
14-17 Reserved for microprogram
20-37 Word pairs for DMA channels 1-8 (address and

word counts)

Reserved Memory Locations

Certain locations in sector zero are reserved
for specific purposes. Location '61 is used
as a counter by the real-time clock. Loca­
tions '60 and '62-'73 are used for interrupts;
both internal (such as memory parity errors
and illegal instructions) or external (periph­
eral device interrupts). Locations '100-'177
are set aside for vectored interrupts. (The
location used for a particular interrupt is
'100 plus the code of the device causing the
interrupt.) All of the simpler device con­
trollers work in this way while some of the
more complex controllers are set up to
interrupt to any desired location in the
first 4K words of memory.

1.3 NUMBER AND INSTRUCTION
FORMATS

To perform logical operations the hardware
interprets operands as logical words. For
arithmetic, the hardware operates on 16-bit
unsigned numbers or signed numbers
in twos complement notation. A 16-bit
unsigned number is usually regarded as
an integer and hence has a range of 0 to

216-1. In a signed number, bit 1 represents
the sign (0 for plus, 1 for minus) and bits
2-15 represent the magnitude in twos com­
plement notation. Signed numbers are
generally regarded as having an arbitrary
binary point, which the computer does not
keep track of; the programmer must adopt
a point convention and shift the magnitude
of the result to conform to the convention
used.
Two common conventions are to regard
a number as an integer (binary point at
the right) or as a proper fraction (binary
point at the left); in these two cases the
range of signed numbers represented by
a single word is _215 to 215-1, or -1 to 1-2'"'15.
For instructions that operate on double
precision numbers, the high order word
has the usual format, and the low order
word has a 0 in bit 1 and a IS-bit low-order
extension of the number in bits 2-16.

Instruction Groups

The instruction set can be conveniently
divided into four major groups: generic,
shift, I/O and memory-reference. In the
generic group, the entire instruction word
is treated as an op code. Instructions in
the shift group consist of an op code plus a
field which indicates the number of places
to be shifted.

All memory reference instructions appear
in the format shown below and consist of
an op code plus additional fields of infor­
mation which are used to develop an ad­
dress for referencing memory. Bits 1 and 2
indicate how indirection and indexing will
be used for address modification. The
sector bit specifies how the displacement
will be interpreted. If zero, the sector bit
specifies that the displacement is the
address of a location in sector zero. A one
in the sector bit specifies that the displace­
ment references a location in the sector in
which the instruction is stored if the
machine is in sectored mode, or a location
in the range of P-239 to P+256 if in relative
mode.

II I x I OP CODE I S I DISPLACEMENT

1 2 7 18

The format for I/O instructions is shown
below. Bits 1 and 2 of the op code select
among four subclasses of instructions for
sending out control information, sensing

I x XOP1 C01DE 0 0 I FUNCTION I DEVICE CODE

1 7 11 16

conditions in a device, or moving data in
or out. Bits 7-10 specify the particular func­
tion within the subclass, and that function
takes place using the device specified by
bits 11-16. For example, a high-speed
device that transfers data through a DMA
channel would have one function in the
output class for sending an interrupt
address to the device, another for sending
a word count, and so on.

1.4 PROGRAMMING CONVENTIONS

The assembly program recognizes a num­
ber of mnemonics and other initial symbols
that facilitate constructing complete in­
struction words and organizing them into
a program. In particular there are mnemon­
ics for the op codes (Appendix C).
For example, the mnemonic

LDA

assembles as '004000, and
LDA3

assembles as '004003. The latter word,
when executed as an instruction, loads the
contents of memory location '3 (the stack
register S) into the Aregister.

Free-Form Source Statements
The program in symbolic language for
assembly is made up of source statements,
each containing up to four variable length
fields separated by spaces or tabs. The
sequence of fields from left to right in a
source statement line is label, operation,
address, and comment. The operation
field contains the op code or its
mnemonic, and the address field con­
tains the address used by a memory

1-4

reference instruction. The example above
contains only operation and address fields.
For other types of instructions the address
field is used to specify whatever bits are
not included in the op code; e.g., the func­
tion and device code in an I/O instruction
and the number of shifts in a shift instruction.
In the example given above the number in
the address field assembles directly into
the displacement part of the instruction
word because the location addressed is in
sector 0 and the number has only one digit.
If the instruction was written as

LOA13

the assembler would generate '004015,
because it interprets all unqualified num­
bers as decimal. On the other hand,

LOA'13

would assemble as '004013 and would
actually access location '13.

An asterisk appended to an op code
mnemonic indicates indirect addressing.
For example,

LOA" '13

assembles '104013, and produces indirect
addressing. Placing ",1" following the
memory address causes modification of
the address by the contents of the currently
specified index register. Hence

LOA" '13,1

which assembles as '144013 and, depend­
ing on the addressing mode, the processor
either indexes the initial address and then
continues the effective address calculation,
or post indexes the result.

In the above examples, addressing is in
sector 0 so the displacement is equivalent
to the address given. But the programmer
can give any address in the available mem­
ory space; e.g., to load A from location '4000
the programmer would give

LOA '4000

whose assembled form would depend
upon the current addressing mode and
where location' 4000 is in relation to the
position of the instruction. In other words
the programmer can give any address, and

the assembler and loader together set up
whatever effective address calculation is
necessary to access the desired location.

Symbolic Addressing
Ordinarily the programmer dispenses with
keeping track of numbers and uses sym­
bolic addressing. One way to define a
symbolic address is through use of the
label field.

QAOO'20

indicates that the location containing ADD
'20 may be addressed symbolically as Q.
Additional conventions for symbolic ad­
dressing are described in the PRIME 200
Macro Assembler manual.

1.5 SOFTWARE

To support its computers, Prime supplies a
very extensive software package. This pack­
age includes assembler, link-loader, com­
piler, editor, input-output control system,
and several operating systems, as well as
numerous utility programs for various
devices, debugging programs, data con­
version, mathematical and interpretive
routines, and a complete set of hardware
verification and maintenance routines.
Some of the major software items are the
following.

The Prime Macro Assembler (PMA) includes
not only all of the features ~ne would
expect in a well-designed symbolic assem­
bler- pseudo-ops for assembly" listing and
loader control; symbol and data defini­
tions; storage allocation; program linking;
conditional assembly- but also a means of
generating application-oriented macro
statements that can significantly simplify
application programming.

With the Desectorizing Link-Loader (LDR),
relocatable or absolute program modules
from any Prime translator can be loaded,
linked and bound, and cross-sector refer­
ences are automatically desectorized.
Loader tables are preserved to provide for
symbolic debugging; furthermore the Disk

1-5

Operating System can be used to save and
restore partial loads.

The Text Editor (ED) is a full context editor
with such features as line-by-line and
character-by-character editing, and auto­
matic execution of string buffers for mul­
tiple changes of the same text throughout a
program. A bulk media converter, FILED,
provides editing and transcription for
large volumes of data.

The Debugging Package (TAPhncludes an
interactive trace routine for examining,
patching, tracing, and so forth. Symbolic
references to memory are permitted
through the loader symbol table.

Extended FORTRAN IV (FRTN4), which is
the basic Prime system programming
language, is an implementation of ANSI
FORTRAN IV with other extensions deriv­
ed from the proposed Instrument Society
of America FORTRAN for control applica­
tions. Significant extensions include
embedded logical functions such as AND,
OR, NOT and exclusive OR; run-time trace;
octal constants; and an extended
FORTRAN library.

The Input-Output Control System (IOCS)
provides stream control routines and
device drivers that make user programs
device independent and centralize I/O con­
trol for all system software. A unique IOCS
feature is the provision for source file edit­
ing and merging.

The Disk Operating System (DOS) is an
interactive controller and file-handling
system. It provides an extensive array of

features to simplify program development
and maintenance, including multiple-level
file directories and multiple volume­
control and file-access methods to simplify
the creation, deletion and updating of
source, object and data files; automatic
job and data stream routing for batch
processing; name addressing for files;
and support of compressed ASCII files
giving 5:1 character reduction for assembly
language files and 4:1 reduction for
FORTRAN files.

The Real Time Operating System (RTOS) is
a compact multiprogramming system that
schedules the three basic computer re­
sources - processing power, main memory,
mass memory-to control the execution
of application programs in a real time envi­
ronment. It provides interrupt handling,
multiprogram scheduling, simultaneous
input-output, and general supervisory
functions. RTOS is available in two ver­
sions: a memory-only system for fast
response applications, and a memory-disk
system for multitask applications involv­
ing resource sharing; memory mapping,
and large data bases.

RTOS and DOS use the same file manage­
ment system, allowing maintenance of
files off line. The Disk Operating System
can run under control of the RTOS, and
conversely, real time systems can be devel­
oped under DOS control.

The Stand Alone Operating System has
exactly the same translators, loaders and
10 controllers as the larger operating sys­
tem configurations.

1-6

CHAPTER 2
CENTRAL PROCESSOR

This chapter describes all computer instruc­
tions in detail and discusses the general
effects of I/O instructions on processor
elements including the control panel, pri­
ority interrupt system, real-time clock, and
power monitor. Effects of I/O instructions
on particular peripheral devices are de­
scribed in the chapters pertaining to those
devices.

For easy reference, all instruction descrip­
tions are presented in the following for­
mat: mnemonic and instruction name at
top left, and octal op code at top right over
a box showing the binary word into which
the mnemonic is assembled by the PRIME
200 Macro Assembler. The following let­
ters are used in various instruction words
to indicate variable information:

I Indirect Addressing Bit
X Indexed Addressing Bit
S Sector Bit
D Address Displacement

2.1 MEMORY REFERENCE

This section explains the procedure and
instructions used to calculate the effective
address of all memory reference instruc­
tions. The program controls the effective
address calculation not only by the infor­
mation given in instruction and address
words, but also by selecting the register to
be used for indexing (X, A, B, or 5) and by
specifying the addressing mode. The mode
determines both the type of addressing
and the size of the address space. Bits 1,2,
and 7-16· have the same format in every
memory reference instruction whether the
effective address is used for storage or
retrieval of an operand or to alter program
flow. (NOTE: in an instruction that loads or
stores the index register, what would other­
wise be the X bit is used instead as part of
the op code). Bit 1 is the indirect or I bit,
bit 2 is the index or X bit, bit 7 is the sector

II I x I OP CODE Is I D

1 2 7 16

2-1

bit, and bits 8-16 are the displacement. The
effective address of the instruction depends
on the values of I,X,S, and D.

In general, an effective address, EA, is
formed by adding a base address to a
displacement field D and then conditionally
adding the contents of an index register.
If the 5 bit is zero, the base address is
also zero. If 5 is one, the base address is
specified by bits in the program counter:
bits 2-7 if the machine is in sectored
mode, bits 2-16 if in relative mode.

The base plus displacement plus condi­
tional indexing calculation produces an
effective memory address if I is zero, or an
intermediate address if I is one (specifying
indirect addressing). The intermediate
address word may, depending on the
addressing mode, also contain X and I bits
and is processed in a manner similar to the
original instruction word. Any number of
levels of indirect addressing are permitted;
the process continues until a location is
found with a zero in the I bit. Note that
while address computations are done in 16
bits, any address actually used to access
memory is truncated to the number of bits
appropriate to the specified addressing
space (bits 3-16 for 16K, bits 2-16 for 32K).

Additional address formation flexibility is
provided by dividing sectored and relative
modes into three operating catagories: 16K
sectored, 32K sectored and 32K relative.
The 16K sectored mode (abbreviated as
"165" mode) is considered to be the normal
mode of operation. When the machine is
turned on or the computer is cleared from
the control panel, the processor is automat­
ically set up for 165 mode and all indexing
is done using the index register X. In this
mode, indexing may occur both before and
after indirect references since an absolute
address requires only 14 bits-leaving
room in address words for both I and X bits.
Note that when operating in this mode,
effective addresses reference the first 16K
of memory.

The sectored and relative modes for 32K
(325 and 32R) extend the addressing range
to 32K by using 15 bits in an address word
to represent an address. Such address
words have no X bit. Therefore, except for a
special case, indexing must be done after
one or more levels of indirect addressing
has been performed. The special case per­
mits indexing to occur prior to any mem­
ory access if the sector bit is zero and the
displacement is less than '100.

The following instructions are used to
change addressing modes or alter the
source of indexing information.

E16S Enter 16K Sectored Mode '000011

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1\
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In subsequent effective address calcula­
tions use absolute sectors with OLDL '777
and interpret address words this way:

14·BIT ADDRESS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Indexing may be performed before or after
indirect references.

E32S Enter 32K Sectored Mode '000013

I 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In subsequent effective address calcula­
tions use absolute sectors with OL DL'777,
use postindexing when 5 = 1 or D ~ '100
and 5 = 0, and interpret address word this
way:

15·BIT ADDRESS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E32R Enter 32K Relative Mode '001013

10 0 0 0 0 0 1 0 0 0 0 0 1 0 1 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In subsequent effective address calcula­
tions use relative sectors with -240L D~255
when 5 = 1, use postindexing when 5 = 1
or D~ '100 and 5 = 0, and interpret address
words this way:

15·BIT ADDRESS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The following table lists the address word
configurations and the calculation proce­
dures for all cases in each mode. P is the
contents of the program counter prior to
the instruction fetch, the symbol PD
represen ts the sectored address formed by
concatenation, X is the contents of the cur­
rently selected index register, A is an abso­
lute address, and I (n is the result of the
indirect chain beginning with access to the
location addressed by ~ .

16K Sectored. o ~ D ~ '777
I X S D Address Word EA
0 0 0 D
0 1 0 D+X
1 0 0 I,X,A I(D)
1 1 0 I,X,A I(D + X)
0 0 1 PID
0 1 1 PD+X
1 0 1 I,X,A I(PID)
1 1 1 I,X,A I(P D + X)

32K Sectored. o ~D ~'777
0 0 0 D
0 1 0 D+X
1 0 0 I,A I(D)
1 1 0 < '100 I,A I(D + X)
1 1 0 ;?': '100 I,A I(D) + X

0 0 1 PID
0 1 1 PD+X
1 0 1 !,A I(PID)
1 1 1 I,A I(PD)+X

32K Relative. S =0: o ~ D ~ '777
S = 1: -256 ~ D ~ 255

(for D < -240 see § 2.9)
0 0 0 D
0 1 0 D+X
1 0 0 I,A I(D)
1 1 0 < '100 I,A I(D + X)
1 1 0 ;?': '100 I,A I(D) + X

0 0 1 ;?': -240 P+1+D
0 1 1 ;?': -240 P+1+D+X
1 0 1 ;?': -240 I,A I(P + 1 + D)
1 1 1 ;?': -240 I,A I(P + 1 + D) + X

In the description of any memory reference
instruction, EA refers to the result of the
effective address calculation, truncated to
the appropriate number of bits. There is
also an instruction that allows the program
to calculate an effective address from an
address word (not from an instruction
word). This is used by the software in
conjunction with the FORTRAN attach­
arguments subroutine, whose calling
sequence supplies address words for the
arguments instead of the arguments them­
selves; thus the software can determine the
positions of the arguments.

2-2

CEA Compute Effective Address '000111

I 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Calculate the effective address indicated by
the contents of A interpreted as an address
word in the current addressing mode, and
place the result in A.

Load and Store Instructions

There are five instructions for moving data
between memory and the A and index
registers.

LDA Load A '02
Irl~l-x~lo==0~1-0~ls~I-------D------~!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load the contents of location EA into A.
The contents of EA are unaffected, the orig­
inal contents of A are lost.

STA Store A '04

Illxlo 10 oisl D I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Store the contents of A in location EA. The
contents of A are unaffected, the original
contents of EA are lost.
IMA Interchange Memory and A '13

II I x l1 0 1 11s1 D I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Store the contents of A in location EA and
load the original contents of location EA
into A.

LDX Load Index Register '35

11\111011sl D I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load the contents of location EA into the
register currently selected for indexing.
The contents of EA are unaffected, the orig­
inal contents of the index register are lost.
Note that this instruction cannot itself
specify indexing, although an address word
retrieved in the effective address calcula­
tion may do so.

STX Store Index Register '15

\1 I 0 1 1 0 1 Is I D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2-3

Store the contents of the register currently
selected for indexing into location EA. The
contents of the index register are unaf­
fected, the original contents ofEA are lost.
Note that this instruction cannot itself
specify indexing, although an address
word retrieved in the effective address cal­
culation may do so.

Jump Instructions

These two instructions allow the program­
mer to alter the normal program sequence
by jumping to an arbitrary location.

Jump Instructions

JMP Jump '01

II I X 10 0 0 1 Is I D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load EA into P. Take the next instruction
from location EA and continue sequential
operation from there.

JST Jump and Store '10

IIIxI1 00 oisl D I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Store an address one greater than that in P
into location EA (hence location EA receives
the address of the location following the
JST instruction). Load EA + 1 into P. Take
the next instruction from location EA + 1
and continue sequential operation from
there.
The address stored is truncated according
to the mode (16K: bits 3-16, 32K: bits 2-16)
and storage does not affect the other mem­
ory bits. Hence a location previously set up
with I or I and X bits for use as an address
word is ready as soon as the address is
stored in it.

The usual procedure for calling a sub­
routine is to give a JST whose effective
address is the starting location of the
routine. Since P+ 1 is saved at the entry
point, a subsequent return can be made to
the location following the JST simply by
giving a JMP that addresses the entry point
indirectly.

2.2 REGISTER OPERATE

These instructions are simply for clearing
the A and B registers and moving data
between them.

CRA Clear A '140040

11 1 0 0 0 0 0 0 0 0 1 0 0 0 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Change the contents of A to all Os.

CRB Clear B '140014

11 1 0 0 0 0 0 0 0 0 0 0 1 1 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Change the contents of B to all Os.

CRL Clear Long '140010
\1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clear A and B.

lAB Interchange A and B '000201

\0 0 0 0 0 0 0 0 1 0 0 0 0 0 D
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of A to B and the con­
tents of B to A.

XCA Transfer and Clear A '140104

11 1 0 0 0 0 0 0 0 1 0 0 0 1 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of A to B and clear A.
The original contents of B are lost.

XCB Transfer and Clear B '140204

11 1 0 0 0 0 0 0 1 0 0 0 0 1 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of B to A and clear B.
The original contents of A are lost.

2.3 BYTE MANIPULATION

These instructions are for manipulating
half words in A. They are useful for hal)­
dling ASCII characters, 8-bit data bytes
packed two to a word in memory, tables
where half of each table location is used
for the entry and the other half for a
label, etc.

CAL Clear A Left '141050
" 11 1 0 0 0 0 1 0 0 0 1 0 1 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2-4

Clear A bits 1-8 without affecting bits 9-16.

CAR Clear A Right '141044
11 1 0 0 0 0 1 0 0 0 1 0 0 1 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Clear A bits 9-16 without affecting bits 1-8.

ICA Interchange A '141340

11 1 0 0 0 0 1 0 1 1 1 0 0 0 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Interchange the two halves of A (move the
contents of bits 1-8 to bits 9-16 and the
contents of bits 9-16 to bits 1-8).

ICL Interchange and Clear Left '141140
rl1--1--0--0--0-=0---1--0--0--1--1--0--0---0~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of A bits 1-8 to bits 9-16
and clear bits 1-8. The original contents of
bits 9-16 are lost.

ICR Interchange and Clear Right '141240

11 1 0 0 0 0 1 0 1 0 1 0 0 0 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of A bits 9-16 to bits
1-8 and clear bits 9-16. The original con­
tents of bits 1-8 are lost.

2.4 SHIFT GROUP

Shifting is the movement of the contents of
a register bit-to-bit. The instructions in
this group shift or rotate right or left the
contents of A or the contents of A and B
treated as a single register with A on the
left. Although these instructions are
similar in format and operation, function­
ally some are logical and others arithmetic,
so they also belong to one or the other of
the categories discussed in the next two
sections.
A shift is logical or arithmetic simply
in terms of the way the data word is
interpreted: a logical shift treats it as a

logical word, whereas an arithmetic shift
treats it as a signed number. In a logical
shift the contents of the register or registers
are moved bit-to-bit with Os brought in
at the end being vacated and information
shifted out at the other end is lost. Rotation
is a cyclic shift such that information
rotated out at one end is put back in at the
other.

A right arithmetic shift fills the vacated
left positions with the contents of the sign
bit and does not change the sign. A left
arithmetic shift includes the sign (A bit 1
only- B bit 1 is left out), but interprets a
sign change as overflow and fills the
vacated right positions with O's. Hence
arithmetic shifting is equivalent to multi­
plying the number by a powerof2 provided
no information is lost. These operations
also use the C bit to detect the loss of any
bit of significance in a left arithmetic shift,
and in all other cases to save the last bit
shifted out.

In a shift instruction word bits 3-6 are
all O's and the group is indicated by 01 in
bits 1 and 2. Bits 7-10 indicate the particu­
lar type of shift, and bits 11-16 specify the
twos complement of the number of places
to be shifted. Mnemonics are available for
the individual types, so the op code may be
regarded as the left four digits of the
instruction word, with the word completed
by adding the right two digits for the
number of places. Note that the mnemonics
are constructed using "logical" to mean a
logical shift and" shift" to mean specif­
ically an arithmetic shift.

ALL A Left Logical '0414

10 1 0 0 0 0 1 1 0 0 \ -N 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A left N places, bring­
ing Os into bit 16; data shifted out of bit 1
is lost, except that the last bit shifted out
is saved in C.

~-o

2-5

Note: The assembler recognizes ALL and
LGL as equivalent.

ARL A. Right Logical '0404

10 1 0 0 0 0 0 1 0 01 -N I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A right N places, bring
Os into bit 1; data shifted out of bit 16
is lost, except that the last bit shifted out
is saved in C.

o -\A1-A16t-0
Note: The assembler recognizes ARL and
LGR as equivalent.

LLL Long Left Logical '0410

10 1 o 0 0 0 1 0 0 01 -N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B left N places,
bringing Os into B bit 16; B bit 1 is shifted
into A bit 16; data shifted out of A bit 1 is
lost, except that the last bit shifted out is
saved in C.

~A1-A16HB1-B16!4 0

LRL Long Right Logical '0400

10 1 0 0 0 0 0 0 0 0 I -N I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and Bright N places,
bringing Os into A bit 1; A bit 16 is shifted
into B bit 1; data shifted out of B bit 16
is lost, except that the last bit shifted out
is saved in C.

0 -!A1-A16 H B1-B161 -0
ALR A Left Rotate '0416

10 1 0 0 0 0 1 1 1 01 -N !
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A left N places, rotat­
ing bit 1 into bit 16. The last bit rotated
back in at the right is also saved in C.

ARR A Right Rotate '0406

1 0 1 0 0 0 0 0 1 1 0 1 -N 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A right N places, rotat­
ing bit 16 into bit 1. The last bit rotated
back in at the left is also saved in C.

LLR Long Left Rotate '0412

10 1 0 0 0 0 1 0 1 0 -N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B left N places,
rotating A bit 1 into B bit 16; B bit 1 is
shifted into A bit 16. The last bit rotated
from A back to B is also saved in C.

LRR Long Right Rotate '0402

10 1 o 0 0 0 0 0 1 01 -N
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and Bright N places,
rotating B bit 16 into A bit 1; A bit 16 is
shifted into B bit 1. The last bit rotated
from B back to A is also saved in C.

@]--L!Al -A16! ~IB1- B16 P
ALS A Left Shift '0415

10 1 0 0 0 0 1 1 0 1 -N I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A left arithmetically N
places, bringing as into bit 16; data shifted
out of bit 1 is lost. If the sign (bit 1) changes
state, set C; otherwise reset it. A sign
change indicates that a bit of significance
(a 1 in a positive number, a a in a negative)
has been shifted out of the magnitude part.

ARS A Right Shift '0405

10 1 0 0 0 0 0 1 0 11 -N I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A right arithmetically
N places, leaving the sign (bit 1) unaffected,
but shifting it into the magnitude part (as
in a positive number, Is in a negative);

data shifted out of bit 16 is lost, except that
the last bit shifted out is saved in C.

l[i}J.-J A2 - A16 t----0
LLS Long Left Shift '0411

10 1 0 0 0 0 1 0 0 11 -N 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B left arithmeti­
cally N places, bringing as into B bit 16
and bypassing B bit 1; B bit 2 is shifted
into A bit 16; data shifted out of A bit 1
is lost. If the sign (A bit 1) changes state,
set C; otherwise reset it. A sign change
indicates that a bit of significance (a 1 in a
positive number, a a in a negative) has
been shifted out of the magnitude part.

~-----1 A2-A16~B2-B16 to
LRS Long Right Shift '0401

10 1 0 0 0 0 0 0 0 11 -N I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B right arith­
metically N places, leaving A bit 1 un­
affected and bypassing B bit I, but shifting
the sign (A bit 1) into the magnitude part
(as in a positive number, Is in a negative);
A bit 16 is shifted into B bit 2; data shifted
out of B bit 16 is lost, except that the last
bit shifted out is saved in C.

LttJl.I A2 - A161

2.5 LOGIC

Besides the logical shift and rotate instruc­
tions described in the preceding section,
the PRIME 200 repertoire includes instruc­
tions for performing the complement,
AND, and exclusive OR functions (the
latter two being memory reference), and
a group of instructions that "logicize"
numbers. A number is logicized by replac­
ing it with a truth value that indicates the
result of a comparison between the number
and zero.

CMA Complement A '140401

11 1 0 0 0 0 0 1 0 0 0 0 0 0 0 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2-6

Form the (logical) complement of the con­
tents of A in A (replace allIs in A with
as, all Os with Is).

ANA And with A '03

IIIXlo 0 11151 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Form the AND function of the contents
of location EA with the contents of A and
place the result in A. A given bit of the
result is 1 if the corresponding bits of both
operands are 1; otherwise the resulting
bit is O.

A Bit
o
o
1
1

Memory Bit
o
1
o
1

Resulting Bit
o
o
o
1

ERA Exclusive Or with A '05

II I X I 0 1 0 1 15 I 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Form the exclusive OR function of the
contents of location EA with the contents
of A and place the result in A. A given bit of
the result is 1 if the corresponding bits of
the operands differ; otherwise the resulting
bit is O.

A Bit
o
o
1
1

Logicize

Memory Bit
o
1
o
1

Resulting Bit
o
1
1
o

'14041-

11 1 0 0 0 0 0 1 0 0 0 0 1 C I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the number in A satisfies the conditione,
replace it with 1; i.e., with a 1 in bit 16 and
Os elsewhere; otherwise clear A. The condi­
tions selected by bits 14-16 and the
mnemonics and op codes for them are
as follows.

Mnemonic
LLT
LLE
LNE
LEQ
LGE
LGT
LF
LT

Bits 14-16
o
1
2
3
4
5
6
7

Condition
<0
";;0
#0
=0
;;::0
>0

False*
True*

Op Code
'140410
'140411
'140412
'140413
'140414
'140415
'140416
'140417

'These two instructions do not specify any condition: LF and LT
simply set A to the truth values 0 and 1 respectively.

2-7

2.6 ARITHMETIC

The computer has memory reference
instructions for performing addition, .
subtraction, multiplication and division of
numbers in fixed point format [Appendix
e]. The add and subtract instructions can
operate on either single length or double
length numbers; multiply supplies a double
length product, and divide uses a double
length dividend. The high and low order
words respectively of a double length
number are in registers A and B or memory
locations EA and EA + 1, where the magni­
tude part is the 30-bit string in bits 2-16 of
the two words; the sign is in bit 1 of the
high order word, and bit 1 of the low order
word should be O.

Besides the instructions for the basic
operations and the arithmetic shift instruc­
tions described in §2.4, there are also
instructions for manipulating signs, incre­
menting and decrementing numbers,
negating, manipulating operands to allow
multiplication and division using single
length integers exclusively, and even
instructions for facilitating floating point
arithmetic. With many of the instructions
the e bit detects overflow; i.e., the condi-
tion where the magnitude of a number is
larger than can be accommodated. In division,
C indicates when the division process
cannot generate a meaningful result.

AOO Add '06

lllxlo 1 1 olsl 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add the contents of memory location EA
to the contents of A and place the result in
A. If the sum is -"'-215 or L _2 15, set e; other­
wise reset it. In the first overflow case the
result has a minus sign but a magnitude in
positive form equal to the sum less 215; in
in the second the result has a plus sign but
a magnitude in negative form equal to
the sum plus 2'5.

SUB Subtract '07

\1\XIO 11 1\SI 0 \
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subtract the contents of location EA from
the contents of A and place the result in A.
If the difference is ~215 or L_215 , set C;
otherwise reset it. In the first overflow case
the result has a minus sign but a magnitude
in positive form equal to the difference
less 215; in the second the result has a plus
sign but a magnitude in negative form
equal to the difference plus 215.

TCA Twos Complement A '140407

\1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Form the twos complement negative of
the contents of A in A. If the number nega­
ted is _215, set C and give a result of _215;
otherwise reset C.

AOA Add One to A '141206

\1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add 1 to the contents of A and place the
result in A. If the number incremented is
215-1, set C and give a result of _215; other­
wise reset C.

Note: The assembler recognizes the
mnemonic AlA as equivalent to AOA.
A2A Add 2 to A '140304

\1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add 2 to the contents of A in A. If the
nugtber incremented is 215_2 or 215-1, set
C and give a result of _2 15 or -(215-1); other­
wise reset C.

SOA Subtract One from A '140110

\1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subtract 1 from the contents of A in A.)f
the number decremented is _215, set C and
give a result of 215-1; otherwise reset C.

Note: The assembler recognizes the
mnemonic SlA as equivalent to SOA.

S2A Subtract 2 from A '140310

\1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subtract 2 from the contents of A in A. If
the number decremented is -(215-1) or-215,
set C and give a result of 215-1 or 215_2;
otherwise reset C.

ACA Add C to A '141216

11 1 0 0 0 0 1 0 1 0 0 0 1 1 1 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add the contents of C to the contents of A
in A (C is taken as being of the same order
of magnitude as A bit 16). If the number
originally in A is 215-1, set C and give a
result of _215; otherwise clear C.

SSP Set Sign Plus '140100

\1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reset A bit 1 without affecting the rest of
the register.

SSM Set Sign Minus '140500

11 1 0 0 0 0 0 1 0 1 0 0 0 0 o~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Set A bit 1 without affecting the rest of the
register.

CHS Change Sign '140024

\1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Complement A bit 1 without affecting the
rest of the register.

CSA

[1 1
Copy Sign of A '140320

o 0 0 0 001 1 0 1 0 0 0 ~

2-8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Make C equal to A bit I, and reset A bit 1
(plus) without affecting the rest of the
register.

Double Precision Arithmetic

The computer does not actually have
separate instructions for handling double
length operands - it has single and double

precision modes of operation. When power
is turned on or the computer is cleared
from the control panel, the processor is
automatically in single precision mode,
but the program can change the mode.
When the processor is in double precision
mode, the instructions that ordinarily
load, store, add and subtract single length
numbers instead operate on double length
numbers. The op codes for these memory
reference instructions are therefore the
same as for their single precision counter­
parts, but the assembler recognizes unique
mnemonics for them to facilitate clarity of
documentation.

DBL Double Precision '000007

10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Enter double precision mode so that sub­
sequently every LDA, STA, ADD or SUB
instruction handles double length oper­
ands (i.e., is executed respectively as a DLD,
DST, DAD orDSB as described below).

SGL Single Precision '000005

10 0 0 0 0 0 0 0 0 0 0 0 0 1 o~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Return to single precision mode so that
subsequently any LDA, STA, ADD or
SUB instruction handles single precision
operands.

DLD Double Load '02

Illxlo 0 10151 D
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load the contents of location EA into A
and location EA + 1 into B. The contents
of memory are unaffected, the original
contents of A and B are lost.

DST Double Store '04

lllxlo 100 15 1 D I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Store the contents of A in location EA and
the contents of B in location EA + 1. The
contents of A and B are unaffected, the

2-9

original contents of the specified memory
locations are lost.

DAD Double Add '06

III x l0 110 lsi D I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add the double length contents of locations
EA and EA + 1 to the double length con­
tents of A and B, and place the result in
A and B. If the sum is ~ 2"° or L -2"° set C;
otherwise reset it. In the first overflow
case the result has a minus sign but a mag­
nitude in positive form equal to the sum
less 2:!0; in the second the result has a plus
sign but a magnitude in negative form
equal to the sum plus 2:!0.

By definition, bit 1 of the low order part of
a double precision number must be o.
However, this instruction produces a
correct result as long as the sign bits (Bl
and bit 1 of EA + 1) are the same.

DSB Double Subtract '07

1'lx101111sl D
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subtract the double length contents of
locations EA and EA + 1 from the double
length contents of A and B, and place the
result in A and B.Jf the difference is ~ 2'10
orL -2:!O, set C; otherwise reset it. In the
first overflow case the result has a minus
sign but a magnitude in positive form
equal to the difference less 2'1°; in the second
the result has a plus sign but a magnitude
in negative form equal to the difference
plus 2'1°.

Although bit 1 of the low order part of a
double precision number should be 0,
this instruction does produce a correct
result if the sign bits of the low order parts
are both 1. However the result is invalid
if the low order sign bits are not the same.

To negate a double length number simply
subtract it from zero. In a computer that
lacks hardware for double precision, the
single length instructions previously
defined can be used to implement it. To

negate, take the twos complement of the
low order part, but take the ones comple­
ment of the high order part unless the low
order part is null, in which case twos com­
plementing must be used for the high
order part as well.

Suppose the high and low order parts of
one double length operand are in locations
AH and AL and another operand is similarly
in BH and BL. The following sequence
places the double length sum in CH and
CL with appropriate compensation for
any overflow from the low order addition.

LDA AL Get one low order part
ADD BL Add the other
CSA Put carry in C, clear sign
STA CL Store low sum
LDA AH Get one high part
ACA Add carry from low addition
ADD BH Add other high part
STA CH Store high sum

Of course SSP could just as well be sub­
stituted for the CSA, as C already contains
the low overflow.

Multiply-Divide

The PRIME 200 has two basic instructions
for performing multiplication and division
of fixed point numbers. As previously
mentioned, multiplication produces a
double length product and division uses a
double length dividend.

MPY Multiply '16

II I X 11 1 1 0 I sID I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Multiply the contents of A by the contents
of location EA, and place the double length
result in A and B.

DIV Divide '17

II I X 11 1 1 1 Is I D I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the absolute value of the number inloca­
tion EA is less than the absolute value of
the number in A (taking both numbers as
representing the same order of magnitude),
set C; otherwise clear it. Then divide the

2-10

double length contents of A and B by the
contents of location EA, calculating a quo­
tient of fifteen magnitude bits including
leading zeros. Place the quotient in A and
the remainder with the sign of the original
dividend in B. The results in A and Bare
the correct quotient and remainder pro­
vided C is not set; otherwise they are
meaningless.

The overflow condition for division re­
quires that the quotient be a proper fraction
or a single length integer. With fractions,
the bits of the high order parts of
dividend and divisor are of the same order
of magnitude; hence the condition is that
the divisor be larger in magnitude and the
answer less than unity. With integers, the
overflow test effectively treats the dividend
as though the binary point were between
the high and low parts, so that the actual
dividend (with the binary point at the
right end of B) is guaranteed to be greater
than the divisor by no more than fifteen
binary orders of magnitude, and hence the
integral quotient will fit in one register. If
the initial test is not satisfied, there is
simply no way to determine the true posi­
tion of the binary point in the result. Of
course the program would compensate for
this by shifting the operands and keeping
track of the number of shifts (i.e., the
change in order of magnitude) required to
produce a meaningful division.

As given above, the instructions are some­
what cumbersome for working entirely
with single-length integers. In a multiplica­
tion of small integers, the significant bits
of the result are all in B, whereas the sign
is in A. Similarly it would be convenient
to be able say to divide 15 by 3 and get an
answer of 5 without having to use pairs
of locations to hold the numbers. The
following two instructions facilitate such
operations.

PIM Position fOllowing Integer Multiply '000205

10 0 0 0 0 0 0 0 1 0 0 0 0 1 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of A bits 2-16 to B bits
2-16 and reset B bit 1. Fill A bits 2-16 with
the sign of A.
PIC Position for Integer Divide '000211

10 0 0 0 0 0 0 0 1 0 0 0 1 0 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move the contents of B bits 2-16 into A bits
2-16. Clear B. The original contents of A
bits 2-16 are lost, but A bit 1 is unaffected.

The first of these instructions is used follow­
ing MPY to reduce the product to single
length. However if there are more than
fifteen significant bits in the product, the
high order bits are lost. If there is any
chance that the integers multiplied will
produce a product larger than one word,
the program should include a test to make
sure A bits 2-16 are all null before giving
thePIM.

The PID allows the programmer to use a
single length dividend and guarantees
the division to be meaningful (producing
the integral part of the quotient) except in
the obvious case of a zero divisor. Effec­
tively the P!D multiplies the given divi­
dend by Z-15 so that the divisor is bound
(unless it is zero) to satisfy the condition
that it be greater in magnitude than the
high order part in A. The result of a sub­
sequent DIV is thus actually a proper
fraction, which is multiplied by 215 simply
by interpreting it as an integer.

Floating Point Arithmetic

Operations in floating point format must
be done using software. The standard
format for floating point numbers is that
in the high order word, bit 1 is the sign,
but the rest of the word contains an 8-bit
exponent and the seven high order bits
of a fixed point fraction. For a positive
number the sign is 0, as in fixed point
format. But the contents of bits 2-9 are an
integral exponent in excess 128 ('200) code.
Exponents from -128 to +127 are therefore
represented by the binary equivalents of

2-11

o to 255 (0-'377). The contents of bits 10-16
are interpreted only as the high order part
of a proper fraction, and additional words

ISign Exponent I Fraction
1 2 9 10 16

10 Low Order Extension of Fraction

1 2 16

may be used to extend the precision of the
fraction as desired. Floating point zero and
negatives are represented in the same way
as in fixed point: zero by a word containing
all Os (hence having the smallest possible
exponent), and a negative by the twos
complement. A negative number has a 1
for its sign and the twos complement of
the fraction. In order to prevent excessive
information loss, it is necessary to adopt a
consistent procedure for keeping floating
point numbers in a normal form. The usual
procedure is to make the fractions as large
as possible, thus keeping the exponents as
small as possible. The processor has these
two instructions to facilitate the manipula­
tion of floating point numbers in normal
form.

NRM Normalize '000101

10 I 0 0 0 0 0 0 0 0 1 0 0 0 0 0 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift the contents of A and B left arith­
metically, bringing Os into B bit 16,
bypassing B bit 1, leaving A bit 1 un­
affected, and dropping bits out of A bit
2, until A bit 2 is in the state opposite that
of A bit 1. Since the only data shifted out
of A bit 2 is equal to the sign, no informa­
tion is lost. Place the number of shifts per­
formed in location 6 (the previous contents
of location 6 are lost).

SCA Load Shift Count into A '000041

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load the contents of bits 9-16 of location 6
into A bits 9-16 and clear A bits 1-8.

By shifting until bit 2 differs from the sign,

normalization produces a fraction in the
range 1f2 to (1- LSB) or -(1f2 + LSB) to -1.
Saving the number of shifts allows the
program to determine any change in the
order of magnitude of a result due to a
fixed point operation on the fractions of
floating point operands. The program can
then use the information stored in loca­
tion 6 to adjust the exponent. Finally the
result is put in proper format by shifting
the fraction to the correct position and
inserting the exponent in the high
order word.

2.7 SKIP INSTRUCTIONS

This group of instructions includes the
entire skip group plus three instructions
that increment or decrement a number
and test the result, and two that compare
one number with another. All instructions
in the skip group have op codes beginning
with 100000 in bits 1-6, whereas each of
the other sets includes a memory reference
instruction and instructions having op
codes beginning with 110000.

Increment and Decrement

These instructions allow the program to
keep a count in a memory location and to
count the contents of the index register up
or down. The skip test is always for a zero
result. The instructions are used to count
loop iterations or successively to modify
a word for a series of operations.

IRS Increment Memory, Replace, and Skip '12

IIIxI1 01 oisl D]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add 1 to the contents of location EA and
place the result back in EA. Skip the next
instruction in sequence if the result is zero.

IRX Icrement and Replace Index '140114

11 1 0 0 0 o. 0 0 0 1 0 0 1 1 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add 1 to the contents of the presently
selected index register and place the result
back in that register. Skip the next instruc­
tion in sequence if the result is zero.

DRX Decrement and Replace Index '140210

11 1 0 0 0 0 0 0 1 0 0 0 1 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Subtract 1 from the contents of the presently
selected index register and place the result
back in that register. Skip the next instruc­
tion in sequence if the result is zero.

Compare

These two instructions do an algebraic
comparison of the number in A with zero
or a number in memory. They use a three­
way test to allow skipping one or two loca­
tions as well as not skipping at all.
CAS Compare A and Skip '11

II 1 X 11 0 0 1 1 SiD --.J
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Compare the contents of A algebrai-
cally with the contents of location EA and
act on the result as follows: if A is greater,
go on to the next instruction in normal
sequence; if the two are equal, skip the
next instruction in sequence; if A is less,
skjp the next two instructions in sequence.

CAZ Compare A with Zero '140214

11 1 0 0 0 0 0 0 1 0 0 0 1 1 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Compare the contents of A (fixed or float­
ing) algebraically with zero and act on
the result as follows: if A ~ 0, execute the
next instruction in sequence; if A = 0, skip
the next instruction in sequence; if A L 0,
skip the next two instructions in sequence.

Skip Group

This group includes a number of miscel­
laneous skip instructions and also a com­
bining set wherein skip conditions are
selected by individual bits that may be
combined to select several conditions at
once. Bits 1-6 of all instructions are 100000.
A a in bit 9 indicates the combining set,
with individual conditions selected by Is
in bits 8 and 10-16. Bit 7 determines whether
the condition is as given or is inverted;
i.e., a 1 in bit 7 indicates the condition is
that specified by the remaining bits (any

2-12

of those specified in the combining set),
whereas a 0 indicates the condition is
opposite that specified (equivalent in the
combining set to none of the specified
conditions being satisfied). Any instruc­
tion can be given using the mnemonic
SKP (which assembles as 100000) and
giving the bit 7-16 configuration in the
address field.

Combination Skip

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Skip the next instruction in sequence if
bit 7 is 1 and any of the conditions speci­
fied by Is in bits 8 and 10-16 is satisfied,
or if bit 7 is 0 and none of the conditions
specified by Is in bits 8 and 10-16 is satis­
fied. (The conditions listed in the format
box are those selected by Is.) The various
conditions, the bits that select them, and
the mnemonics and op codes for them are
as follows.

Selector
Mnemonic Bits Bit 7 Skip on Condition Op Code

NOP 1 None (no-op) '101000
SKP 0 Skip unconditionally '100000
SMI 8 1 A Minus (Al = 1) '101400
SPL 8 0 A Plus (Al = 0) '100400
SLN 10 1 LSB Nonzero (Al6 = 1) '101100
SLZ 10 0 LSB Zero (Al6 = 0) '100100
SNZ 11 1 A Nonzero '101040
SZE 11 0 A Zero '100040
SS1 12 1 Sense Switch 1 Set '101020
SR1 12 0 Sense Switch 1 Reset '100020
SS2 13 1 Sense Switch 2 Set '101010
SR2 13 0 Sense Switch 2 Reset '100010
SS3 14 1 Sense Switch 3 Set '101004
SR3 14 0 Sense Switch 3 Reset '100004
SS4 15 1 Sense Switch 4 Set '101002
SR4 15 0 Sense Switch 4 Reset '100002
SSS 12-15 1 Any of Sense Switches

1-4 Set '101036
SSR 12-15 0 Any of Sense Switches

1-4 Reset '100036
SSC 16 1 Set C '101001
SRC 16 0 Reset C '100001

Skip conditions can be combined using
SKP and giving the bit 7-16 configuration
for the combination in the address field.

SGT Skip if A Greater Than Zero '100220

11 0 0 0 0 0 0 0 1 0 0 1 0 0 o 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the number contained in A (fixed or
floating) is greater than zero, skip the next
instruction in sequence.

SLE Skip if A Less Than or Equal to Zero '101220

\1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the number contained in A (fixed or
floating) is less than or equal to zero,
skip the next instruction in sequence.

SMCS Skip on Machine Check Set '101200

11 0 0 0 0 0 1 0 1 0 0 0 0 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If Machine Check is set (indicating a
machine detected error), skip the next
instruction in sequence. (When the proc­
essor is in machine check mode, this
instruction has no meaning and executes
as a NOP)

Note: The assembler recognizes the
mnemonic SPS as equivalent to SMCS.

SMCR Skip on Machine Check Reset '100200

\1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If Machine Check is reset (indicating no
machine detected error), skip the next
instruction in sequence. (When the proc­
cessor is in machine check mode, this
instruction has no meaning and executes
as an absolute skip.)

Note: The assembler recognizes the
mnemonic SPN as equivalent to SMCR.

SAS Skip on A Bit Set

11 0 0 0 0 0 1 0 1 0 1 1 I
'10026-
'10027-

N-1 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If A bit N is 1, skip the next instruction in
sequence.

Note: The assembler will convert N to
the octal equivalent of the bit number
minus one.

2-13

SAR Skip on A Bit Reset '10026-
'10027-

11 0 0 0 0 0 0 0 1 0 1 1 I N-1 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If A bit N is 0, skip the next instruction
in sequence.

Note: The assembler will convert N to
the octal equivalent of the bit number
minus one.

SS Skip on Sense Switch Set '10124-
'10125-

11 0 0 0 0 0 1 0 1 0 1 0]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If sense switch N is on (up), skip the next
instruction in sequence.

SR Skip on Sense Switch Reset '10024
'10025

11 0 0 0 0 0 0 0 1 0 1 0 1 N-1 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If sense switch N is off (not up), skip the
next instruction in sequence.>

SS 1-101240
ss 2-101241
SS 3 -101242
SS 4 -101243
SS 5 -101244
SS 6 -101245
SS 7 -101246
SS 8 -101247
SS 9-101250
SS10 -101251
SS11-101252
SS12 -101253
SS13 -101254
SS14 -101255
SS15 -101256
SS16 -101257

SAS 1 -101260
SAS 2 -101261
SAS 3 -101262
SAS 4 -101263
SAS 5 -101264
SAS 6 -101265
SAS 7 -101266
SAS 8 -101267
SAS 9 -101270
SAS10 -101271
SAS11 -101272
SAS12 -101273
SAS13 -101274
SAS14 -101275
SAS15 -101276
SAS16 -101277

SR 1-100240
SR 2-100241
SR 3-100242
SR 4 -100243
SR 5 -100244
SR 6 -100245
SR 7-100246
SR 8-100247
SR 9 -100250
SR10 -100251
SR11 -100252
SR12 -100253
SR13 -100254
SR14 -100255
SR15 -100256
SR16 -100257

SAR 1 - 100260
SAR 2 - 100261
SAR 3 - 100262
SAR 4 - 100263
SAR 5 - 100264
SAR 6 - 100265
SAR 7 - 100266
SAR 8 - 100267
SAR 9 - 100270
SAR10 - 100271
SAR11 - 100272
SAR12 -100273
SAR13 -100274
SAR14 -100275
SAR15 -100276
SAR16 - 100277

Summary of sense switch and bit test
instruction op codes

2.8 CONTROL

Many of the control instructions have
already been described: those that select
the index register and addressing mode

are discussed with memory reference in
§2.1, and those that choose between single
and double precision arithmetic opera­
tions are treated in §2.6. Here we describe
several miscellaneous control instructions
and those associated with parity errors
and the status keys.

HL T Halt '000000

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Halt the processor with the STOP indicator
lit on the control panel and P pointing to
the next instruction in sequence (the in­
struction that would have been executed
had the HLT been replaced by a no-op).
The data lights display the next instruction,
and the address lights display the instruc­
tion OTA '1720 [§2.10]. (This latter instruc­
tion is part of the control panel micro­
routine; turning the function switch to
any of the right five positions displays P
instead.)

NOP No Operation '000001

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Do nothing but go on to the next
instruction.

SCB Set C Bit '140600

11 1 0 0 0 0 0 1 1 0 0 0 0 00 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Set C.

RCB Reset C Bit '140200

\1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 01
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reset C.

SVC Supervisor Call '000505

10 0 0 0 0 0 0 1 0 1 0 0 0 1 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Place the CPU in 16s mode and generate
an interrupt through location '65.

To understand the actual implications of
this instruction the reader must be familiar
with the interrupt, which is presented
in§2.11.

2-14

Parity Errors

Parity errors are classified as of two types:
a parity error in a wotd read from memory
is a memory parity error; a parity error in
any other situation (in a register, over the
I/O bus, etc.) is a machine check error.
When the processor is in machine check
mode, both types of errors are handled
differently than when the processor is not
in that mode, and for a machine check
error the processor may actually execute
a microprogram check of the machine to
detennine the source of error.
Occurrence of an error of either type sets
the Machine Check flag, but this flag has
meaning for the program only when the
processor is not in machine check mode.
When power is turned on or the computer
is cleared from the control panel, the proc­
essor is automatically not in machine check
mode; in this case the program can check
for parity errors by sensing the flag (using
the skip instructions defined in the pre­
ceding section) and can also reset the flag.

If the program places the processor in
machine check mode, a parity error still
sets the flag but the microprogram response
always resets it, so it is irrelevant to the
programmer and the skip instructions
that sense it are meaningless. With the
processor in machine check mode, a
memory parity error produces an interrupt
through location '67, and the response
beyond that is entirely up to the service
routine. For a machine check error, action
by the microprogram depends upon the
type of processor.

All processors except type 221 simply halt;
and a halt for this reason is indicated by the
series or the 218 series simply halts; and
a halt for this reason is indicated by the
fact that the data lights are all off, and if
the operator turns the function selector
to STOP/STEP, all the address lights go
on. A type 221 processor responds by
executing the microprogram verification
routine to determine the source of error.

2-15

So long as the failure recurs, the processor
continues to perform the verification
routine indefinitely with the number of
the failing test in the address lights. How­
ever should the failure disappear, the
mircoroutine clears the keys (see below)
and register file, and interrupts through
location '70 to return control to the pro­
gram. The program can also execute the
verification routine at any time as an in­
struction to detennine whether all is well.

EMCM Enter Machine Check Mode '000503

10 0 0 0 0 0 0 1 0 1 0 0 0 0 1 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Enter machine check mode so that the
micro program will respond to a parity
error as described above.

LMCM Leave Machine Check Mode '000501

10 0 0 0 0 0 0 1 0 1 0 0 0 0 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Leave machine check mode so that a parity
error will simply set Machine Check.

RMC Reset Machine Check '000021

10 0 0 0 0 0 0 0 00 0 1 0 0 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Reset the Machine Check flag.

Note: The assembler recognizes the mne­
monic RMP as equivalent to RMC.

VIRY Verify '000311

10 0 0 0 0 0 0 0 1 1 0 0 1 0 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Execute the verification routine, and if
there is a failure of any kind go on to the
next instruction with the number of the
test that failed in A. If there are no errors,
skip the next instruction in sequence.

If the processor does not have the verifica­
tion routine, this instruction executes
as a no-op.

Status Keys

In order that the program be able to deter­
mine which register is being used for
indexing, what the currently specified size

of the address space is, what the present
type of addressing is, and so forth, a num­
ber of internal machine conditions, refer­
red to as "keys," are available in a status
word that can be read by the program. The
format of this key word is as follows.

Bits 9·16 of Location 6

9 10 11 12 13 14 15 16

1 The state of C.
2 0 - Single precision, 1 - Double precision.
3-4 The currently selected index register as follows:

00 X
10 A
01 B
11 S

5-6 The current addressing mode as follows:
00 16K Sectored
01 32K Sectored
11 32K Relative
10 64K Relative

Note that a 1 in bit 5 indicates relative mode, a 1
in bit 6 indicates a 32K addressing space.

9-16 Bits 9-16 of location 6, which may contain a normalize
shift count.

Not only can the program read the above
information, but it can also set up the
machine state according to a similar key
word supplied by the program. Eg giving
a key word with a 1 in bit 1 actually places
the arithmetic logic in double precision
mode, whereas giving the word with a 0 in
bit 1 limits the basic arithmetic operations
to single precision.

The processor has two instructions for
reading and setting up the keys. The prin­
ciple use of these instructions is for saving
and restoring the keys in conjunction with
program interrupts. Before doing its own
operations, an interrupt service routine
should save any parts of the register file it
will use and should save the keys if it is
going to make any change in the modes of
operation. After completing its own task,
the routine should restore the original
machine state before returning to the inter­
rupted program.

INK Input Keys '000043

10 0 o 0 0 000 001 000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Read the key word defined above into A.

OTK Output Keys '000405

10 0 0 0 0 0 0 1 0 0 0 0 0 1 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Set up C and the various machine modes
according to A bits 1-6 as defined by the
key word given above, and load A bits 9-16
into bits 9-16 of location 6 (shift counter). .
Clear bits 1-8 of location 6.

2.9 ADDRESS EXTENSIONS

In 32K relative mode with a 1 in the sector
bit, the displacement must lie in the range
-240 to +255. The other numbers represent­
able by the displacement bits extend the
addressing techniques. Special addressing
is specified by the configuration of bits
15-16 in a memory reference instruction
that is given in 32 K relative mode and in
which bits 7-12 have the configuration
110000.

1 1 0 0 0 0 0

12345678

Bits 15 and 16 in conjunction with the flag
and tag bits, define the special types of
addressing listed in the table below. The
various types are based on three tech­
niques: use of two-word instructions where
the second word is an absolute address
(making all of memory directly accessible to
the instruction), use of S for an indexing
procedure that is independent of and may
be used in conjunction with standard
indexing, and use of S to implement a
push-pop stack.

The easiest way to keep track of the differ­
ent procedures is to view them as divided
into four sets determined by I and X, where
each set has four cases determined by
bits 15 and 16. The first set (where initial
address equals effective address) contains
the basic operations of which the other
sets are mostly straightforward extensions.
In case 0 of the first set, the effective
address is simply the absolute address con-

2-16

32K Relative: Extended Effective Address Calculation
Bits 7-12 = 1 10000 (8 = 1, -256 ~ 0 ~ -241)

P Address of instruction location (contents of program
counter before instruction fetch)

A Contents of location P + 1 (bit 1 is ignored)
S Contents of stack register
X Contents of currently selected index register
IW Result of indirect chain beginning with access to loca­

tion addressed by ~
Ancillary Type of

I X Bits 15-16 EA Action Addressing
0 0 0 A Address
0 0 1 A+8 Base plus

displacement
0 0 2 S 8 + 1 ~ S Push/pop
0 0 3 8 -1 8-1~ S Pop/push
0 1 0 A+X Address,

indexed
0 1 A+8+X Base plus

displacement,
indexed

0 1 2 1(8) + X 8+1~ 8 Push/pop
indirect,
postindexed

0 1 3 1(8 - 1) + X 8-1 ~ 8 Pop/push
indirect,
postindexed

1 0 0 I(A) Address
indirect

1 0 I(A + 8) Base plus
displacement,
indirect

1 0 2 1(8) 8+1 8 Push/pop
indirect

1 0 3 1(8 - 1) 8-1 8 Pop/push
indirect

1 1 0 I(A + X) Address
indexed,
indirect

1 1 1 I(A +8 + X) Base plus
displacement
indexed,
indirect

1 1 2 I(A) + X Address
indirect,
postindexed

1 1 3 I(A + 8) + X Base plus
displacement
indirect,
postindexed

tained in the location following the instruc­
tion - in other words the instruction is two
words, of which the second is the address.
Case 1 also involves a two-word instruction,
where the second is a base that is changed
by a displacement contained in the stack
register (this is effectively an index pro­
cedure). Cases 2 and 3 provide the basic
implementation of the push-pop stack. If
the stack is regarded as made up of loca­
tions N, N + I, N + 2, ... and it is assumed
that 5 always points to the next open loca­
tion, then case 2 is push and case 3 is pop.
On the other hand if the stack is viewed as

locations N, N -I, N -2, ... and 5 always
points to the last filled location, then case
3 is push and case 2 is pop.

If I is 1 but X is 0 (the third set), the initial
addresses from the four cases just discussed
are taken as indirect; i.e., as the beginning
of an indirect chain. If I is 0 but X is 1 (the
second set), indexing is used but not quite
in the fashion implied by I and X. In cases
o and 1 the initial addresses are simply
indexed; but in cases 2 and 3 the stack
address is taken as indirect, and indexing
occurs at the completion of the address
chain. In the fourth set, with I and X both
I, indexing and indirection are both used
but in ways related only to cases 0 and 1 of
the first set (the analogous push-pop pro­
cedure implied by I and X both 1 is actu­
ally implemented as cases 2 and 3 of the
second set). In cases 0 and 1 the initial
address is indexed and then used indi­
rectly. In cases 2 and 3 the initial addresses
are those otherwise associated only with
cases 0 and 1; the initial address is used
indirectly and indexing is put off until the
end (in other words postindexing is sub­
stituted for the preindexing of cases
o and 1).

2.10 INPUT-OUTPUT

Instructions in the I/O class govern the
transfer of data to and from the peripheral
equipment, and also perform some func-
tions in the processor. The class comprises
four types of instructions for sending con­
trol pulsesoutto a device, testing conditions
in a device for a skip, and moving data or
other information out to a device or in
from it. An instruction in the I/O class is
designated by 1100 in bits 3-6, and the
type is indicated by bits 1 and 2; hence the
four types of I/O instructions have op
codes '14, '34, '54 and '74. Bits 7-10 specify
the particular function the instruction is
to perform, and bits 11-16 select the device
that is to respond to the instruction. The
format thus allows sixty-four codes for
addressing devices ('00-'77) and sixteen

2-17

for specifying functions ('00-'77) that a
given type of I/O instruction can perform
using the addressed device.

Device code '20 is used for communication
with the control panel and for controlling
interrupts and the real time clock. The other
sixty-three codes are available for external
devices, but many are assigned to standard
equipment. The meanings of the function
codes differ with the type of instruction
and the type of device, although some are
common to all devices. With the control
type of instruction, the function code 00
usually "turns on" or "starts" the device
(with whatever meaning that term may
have vis-a-vis the particular device), and
code '17 initializes the device, making it
ready for use. An I/O skip instruction
invariably uses function code 00 to deter­
mine whether a device is ready and code
'04 to determine whether it is requesting
an interrupt. The data instructions, in and
out, generally use code 00 specifically for
real data - as against moving control infor­
mation, word counts, addresses, or status.
A table in Appendix lists all devices for
which device codes have been assigned,
and lists the function codes used with them.

Typically a device interface has a 6-bit
device selection network, Ready and Inter­
rupt Enable flags, and logic nets that supply
the device code, the device identification,
and the number of the slot in which the
interface is mounted. The selection net­
work decodes bits 11-16 of the instruction
so that only the addressed device responds
to signals sent by the processor over the
I/O bus. The Ready flag indicates just that:
the device is ready - meaning it has just
completed a task requiring some response
by the processor, or it is idle and may be
used. Considering devices at the simplest
level, the program places an output device
in operation by giving a data-out instruc­
tion that resets Ready and sends the first

When the device has processed the unit
of data, it sets Ready to indicate that it is
ready to receive new data for output. With
an input device, the program gives a con­
trol instruction to place the device in opera­
tion and reset Ready. When the device has
read a unit of data, it sets Ready to indicate
that it has data ready for the processor. The
program responds by giving a data-in
instruction that not only brings in the data
but also resets Ready and tells the device to
read more data; to end the process the
program must actually issue a control com­
mand to stop the device. With either type
of device, the setting of Ready requests an
interrupt if the Interrupt Enable flag is
set. If the program does not wish to use
the device, it can reset Interrupt Enable to
prevent the idle state of the device from
continually requesting an interrupt.

Every device can supply its device code for
use by the interrupt system (although a
more complex device may be set up to
supply an interrupt address specified by
the program rather than using its own
device code). The program can read the
slot number in order to determine the
position of any device on the I/O bus (this
determines priority with respect to the
vectored interrupt) and can read the identi­
fication number of each device. The latter
number not only identifies the type of
device, but also indicates any modification
from the standard, and indicates which one
it is if several of the same type are connected
to the bus.

In the discussions of the various I/O de­
vices in Chapter 3 and beyond, all instruc­
tions described are special cases of these
four I/O instruction types.

OCP Output Control Pulse '14

10 0 1 1 0 0 I F D I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

unit of data-a word or character depend- Send a control pulse for the function
ing on how the device handles information. specified by F to device D.

2-18

SKS Skip if Satisfied '34

10 1 1 1 0 ole 0 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Skip the next instruction in sequence if
the condition specified by C is satisfied
in device D.

INA Input of A '54

11 0 1 1 0 0 1 F 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the function F specifies a transfer for
which Ready must be set, then if the Ready
flag in device D is reset, do nothing but go
on to the next instruction, whereas if Ready
is set, perform the function F and skip the
next instruction in sequence. To perform
the function the processor reads the in­
formation specified by F from device D
into A and performs whatever control
operations are appropriate to the function
and the device. Depending on F, the
information read may be data, status, an
address, a word count, or anything else.

The number of bits brought into A depends
on the type of information, the size of
the device register, the mode of operation,
etc. Bits in A that do not receive infor­
mation are cleared.

INA instructions for any device except
device '20 use a ready test and skip the
next instruction if the device was ready.
When the INA is used to input a status
register, the controllers are always ready.

OTA Output from A '74

11 1 1 1 0 01 F 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the function F specifies a transfer for
which Ready must be set, then if the Ready
flag in device D is reset, do nothing but
go on to the next instruction, whereas if
Ready is set, perform the function F and
skip the next instruction in sequence. On
the other hand if the state of Ready is
irrelevant to the specified transfer, then
perform the function F and go on to the
next instruction in normal sequence with-

out making any ready test at all. To perform
the function the processor sends the con­
tents of A to device D for the purpose
specified by F and performs whatever
control operations are appropriate to the
function and the device. Depending on F,
the information sent may go to a data
buffer, a control or address register, a word
counter, or any other destination.

The number of bits actually accepted by
the device depends on the type of informa­
tion, the size of the device register, the
mode of operation, etc. The contents of
A are unaffected.

An aT A instruction for any device dis­
cussed in the remainder of this manual
uses a ready test and the skipping pro­
cedure as stated in the description of the
instruction. An aT A to device '20 makes
no test and cannot skip.

In the symbolic program an instruction is
given using the defined mnemonic and
placing the 4-digit octal code for function
and device (with the function on the left)
in the address field. E.g., the device
code for the paper tape reader is aI, and
the function code for sensing whether a
device is requesting an interrupt is
'04; hence

SKS '0401

is an instruction that skips if the reader is
not presently requesting an interrupt.

The fact that the input and output instruc­
tions for data or other information include
a ready test allows the program to give
such an instruction without knowing
whether the device is ready. If the program
is ready to move data, it can just give an
INA or OTA; if the device is not ready, the
program can then go off to do something
else and come back later to try again. Or
the program can wait for say the reader to
get a character from tape like this:

INA '0001 If ready, read; otherwise
JMP "-1 go back until ready,

then continue

The INA causes the device to read another
frame, so if the program prefers not to

2-19

have the tape continue it must give
OCP '0101

to stop the reader.
A device may require no transfers of real
data at all, as is the case with the real time
clock, but any device still uses at least three
of the four instruction types. An output-only
device or a device with no data require­
ments responds nonetheless to an INA for
identification and generally recognizes
another for supplying status information.
Even a simple input-only device may
recognize an OT A instruction for sending
out control information. A high speed device,
such as magnetic disk or tape, generally
uses INA and OTA instructions only for
status and control information with data
moving directly between the device and
memory via a direct memory channeL An
instruction addressing a nonexistent device
or specifying a function that is inapplicable
to the addressed device is just a no-op.

Control Panel Communication

The program can communicate with the
operator via the control panel by virtue of
the fact that it can address the panel as
an I/O device. With the following instruc­
tions the program reads the contents of
the switch register as data or as sense
switches and loads a data register whose
contents can be displayed in the lights
(in no case is a ready test necessary).

INA'1620 Read Sense Switches '131620

11 0 1 1· 0 0 1 1 1 0 0 1 0 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Read the contents of the control panel
switch register as sense switch into A,
where a switch that is on is read as a 1.
A switch is on as a sense switch if it is up.
This instruction does not skip.

INA '1720 Read Data Switches '131720

11 0 1 1 0 0 1 1 1 1 0 1 0 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Read the contents of the control panel
switch register as data switches into A,

where a switch that is on is read as a 1.
A switch is on as a data switch if it is in
the momentary down position; in any other
position it is regarded as off. This instruc­
tion does not skip.
OTA'1720 Load Lights '171720

11 1 1 1 0 0 1 1 1 1 0 1 0 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Load the contents of A into the control
panel data register. If the address/data
switch is set to DATA, the data register is
displayed in the lights (a 1 turns on the
corresponding light). This instruction does
not skip.

Processor Serial Interface

Besides the many peripheral devices con­
nected to the I/O bus and controlled by
I/O instructions, there is a basic serial
interface that is built right into the proc­
essor and is controlled by special
instructions. By means of this device the
program can control the transmission
of serial data on four output lines and
can receive serial data simultaneously
over four input lines. The program handles
output by periodically changing the con­
tents of a 4-bit output register in which
each bit is connected to a separate output
line; thus successive changes in the register
contents produce bit-by-bit serial trans­
mission over the lines. Data is received by
sampling the input lines to pick up bit-by­
bit serial input. The device operates entirely
on EIA standard levels and the lines are
available at the back edge connector of
the processor board. Output lines 1-4 are
respectively at pins CF-41, CF-35, CF-39
and CF-37; signals can be supplied to input
lines 1-4 at pins CF-36, CF-38, CF-40 and
CF-42. The program supplies data to and
receives data from the lines via A bits 13-16,
where line 1 corresponds to bit 13. Input
and output are handled by these two
instructions.

OSI Output Serial Interface '000515

10 0 0 0 0 0 0 1 0 1 0 0 1 1 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2-20

Load the contents of A bits 13-16 into the
4-bit buffer whose contents are held
on the serial interface output lines. Bit 13
supplies the data for line 1.

lSI Input Serial Interface '000511

10 0 0 0 0 0 0 1 0 1 0 0 1 0 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Read the contents of the serial interface
input lines into A bits 13-16, with line 1
corresponding to bit 13.

The lines may be used for anything that
involves transmission or reception of binary
EIA signals. An output line could be used
to control a light to signal the operator; an
input line might be connected to a switch,
allowing a person or a device to supply a
binary signal that can be sampled at appro­
priate times by the program. The lines can
also be used for standard data communica­
tion where the program is entirely respon­
sible for all timing, for constructing char­
acters with appropriate start and stop bits,
and for stripping the data out of received
characters. For output the usual procedure
is simply to change the signal on the out­
put line for each bit in a serial transmission.
The program determines character length
and transmission frequency, and can
actually run the output lines at different
rates - as would be the case were one line
being used for serial transmission and
another to control a signal light. Whenever
any bit of the output register is changed,
information previously given for the other
lines must be repeated to keep the appro­
priate signals on them.

For input both the frequency and character
length must be known. In conventional
data communications, an idle line is con­
stantly marking (continuous Is) and the
beginning of an asynchronous character
is indicated by a starting space (a a bit).
The usual procedure is to sample the line
at five times the bit rate. Upon reading a
a on a line that has been idle, the program
should assume it has discovered only a
possible space; if a a is still read at the next

two sample times, it can be assumed that
the line has a true space rather than a
transient, and transmission has started.
The program should then read the line at
every fifth sample time so that reading is
centered within each bit time. If a number
of lines are operating, the program must
keep track of them separately, i.e., the
program must keep the read times centered
on each line independently of the others.
With sophisticated software the serial
interface could actually be used for a
complete data communication channel
with even the automatic answering of
incoming calls in a private network or the
public dial telephone system. For such an
arrangement one input line would be used
for data and the others for modem control
signals such as Ring Indicator, Clear To
Send, Carrier Detected, and Data Set Ready.
Output would require three lines: one for
data, and two for the centrol signals Re­
quest To Send and Data TerminalReady.

2.11 EXTERNAL INTERRUPT

Many I/O devices must be serviced infre­
quently relative to the processor speed and
only a small amount of processor time is
required to service them, but they must be
serviced within a short time after they
request it. Failure to do so within the speci­
fied time (which varies among devices)
can result in loss of information and cer­
tainly results in operating the device below
its maximum speed. The external priority
interrupt is designed with these considera­
tions in mind, i.e., the use of interruptions
in the current program sequence facilitates
concurrent operation of the main program
and a number of peripheral devices. The
interrupt system also allows conditions
internal to the processor to interrupt the
program [§2.12], but here we are concerned
only with external interrupts.
Interrupt requests by a device are governed
by its In.terrupt Ready and Interrupt Enable
flags. When a device completes an opera­
tion it sets the Ready flag, and this action

2-21

requests an interrupt if Interrupt Enable
is set- if Interrupt Enable has been reset
by the program, the device cannot request
an interrupt. The program controls the
enabling flags by means of OCP instruc­
tions; moreover the flags in some devices
are also connected to the I/O bus data lines,
so the program can set up the enabling
flags in all such devices at once by means of
a mask sent over the bus.

At appropriate times the processor syn­
chronizes any requests that are then being
made. Once a request has been synchronized
the device that made it must wait for an
interrupt to start. Although the interrupt
signal on the bus is disabled once an
interrupt starts, the request made by the
device remains until the program resets
Ready or Interrupt Enable. If the program
does reset Interrupt Enable in a device,
that device not only cannot request an
interrupt when its Ready flag sets, but
any request it has already made is voided,
so it is no longer waiting for an interrupt
(and no I/O skip instruction can determine
that it had requested one). However, if
Ready is left set, setting Interrupt Enable
restores the request.

Before beginning each instruction the
processor takes care of all direct memory
requests, including any additional requests
that are made while direct memory trans­
fers are being handled [see § §2.12, 2.13].
When no more devices are requesting
access, the processor starts an interrupt
if the external interrupt system is enabled
and a device that has priority is requesting
an interrupt. The way in which the hard­
ware handles an interrupt and the way in
which the program should respond depends
upon the interrupt mode.

Standard Interrupt Mode

In standard mode any device that can make
an interrupt request has priority to interrupt
any program, even an interrupt service
routine, unless the interrupt system is

inhibited. The processor starts to service
an interrupt by inhibiting the interrupt
system so no further interrupts can be
started, saving P (which points to the next
instruction) in the location addressed by
the contents of location '63, and begins
the interrupt service routine by resuming
normal instruction execution at the location
following that in which P was stored.

Caution

The contents of any interrupt location
('63 for the standard interrupt) are always
interpreted as a 16-bit absolute address.
Therefore, when setting up interrupt
locations, the program must make sure
not to use addresses larger than available
memory.

The service routine should determine
which device requires service, save the
keys and any parts of the register file that
it will use, and service the device. The
device can be identified by means of SKS
instructions that test for interrupt requests.
The program may leav'e the interrupt
inhibited while servicing the device (or
devices), or it can enable interrupts and
establish a priority structure to allow
higher priority devices to interrupt the
current routine.

There are two ways in which the program
can structure device priority. The service
routine establishes a basic priority by the
order in which it tests the devices. It can
also define higher and lower priorities
by setting up the Interrupt Enable flags in
the devices and then reenabling the in­
terrupt. In this way any device whose
Interrupt Enable flag is reset cannot inter­
rupt the current routine and is therefore
defined as being of lower priority, whereas
a device that is allowed to interrupt is
defined as being of higher priority.

After servicing a device (or all devices
found to be interrupting by an SKS chain),
the routine should restore the preinterrupt
states of the keys and the register file,

2-22

enable the interrupt, and return to the
interrupted program by jumping indirect
through the location in which P was stored.
If the routine allows interrupts by higher
priority devices, then before returning to
the interrupted program it should reenable
lower priority devices that were not allowed
to interrupt the current routine but will
be allowed to interrupt the program to
which the processor is returning.

Vectored Interrupt Mode

In vectored mode the processor responds
to an interrupt request from a specific
device and has a built-in priority structure
such that lower priority devices cannot
interrupt while the processor is holding an
interrupt for a device of higher priority.
The conditions for starting an interrupt
are therefore the same as those given for
the standard case with one exception: if
the processor is already in an interrupt
routine, it will go on to the next instruction
even if interrupts are enabled, unless the
requesting device is of higher priority than
that for which the current interrupt is being
held. When an interrupt is started and
several devices are making requests simul­
taneously, the processor responds to that
requesting device that has the highest
priority (mounted in the lowest-numbered
slot).

As in standard mode the processor inhibits
further interrupts, saves P as specified by
the contents of an interrupt location, and
proceeds with the service routine at the
position following that in which P was
stored. However, unlike a standard inter­
rupt, here there is no fixed interrupt loca­
tion - instead the location is specified by
the device to which the processor is
responding. In most cases the device
specifies an address '100 greater than its
device code, but a complex device may have
an address register for this purpose so that
the program can specify the location
through which the device will interrupt.

Since the system uses a location unique to
each device, there is no need for testing,
and the service routine acts only for the
interrupting device (it should of course
save keys and registers as usual). There is
also a built-in priority determined by bus
position, so even if the routine allows
interrupts, no device higher on the bus
can do so (in other words all devices in
higher-n um bered slots are of lesser priority).
Moreover the program can still pick and
choose among the nearer devices by
adjusting the individual Interrupt Enable
flags. Hence in vectored mode devices
of higher interrupt priority can interrupt
a given routine once interrupts
are re-enabled.

When returning to the interrupted program,
the routine must restore the preinterrupt
state and either reenable interrupts or
reestablish the appropriate priority struc­
ture. Furthermore a routine for a vectored
interrupt must also give a specific instruc­
tion (CAl, defined below) to clear the
presently active interrupt so the processor
can then respond to requests from
devices of lower interrupt priority.

Interrupt Programming

The instructions that control the interrupt
system are all of the type with a full
word op code, but associated with the sys­
tem are two I/O instructions that deal with
the mask used for setting up the Interrupt
Enable flags in certain devices. When power
is turned on or the computer is cleared
from the control panel, the processor is
automatically in standard interrupt mode
with interrupts inhibited.

ENe Enable Interrupt '000401

~~ 0 0 0 0 1 0 0 0 0 0 0 0 1]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Enable the external interrupt system so
the processor will respond to interrupt
request~ over the I/O bus. This instruction
becomes effective following execution of
the next sequential instruction.

2-23

INH Inhibit Interrupts '001001

JO" 0 0 0 0 0 1 0 0 0 0 0 0 0 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Inhibit the external interrupt system so
the processor will not respond to interrupt
requests over the I/O bus. This instruction
takes effect immediately.

ESIM Enter Standard Interrupt Mode '000415

~ 0 0 0 0 0 1 0 0 0 0 1 1 0 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Enter standard interrupt mode so that
all interrupts are made through location '63.

EVIM Enter Vectored Interrupt Mode '000417

10 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Enter vectored interrupt mode so that for
interrupt purposes the priority of a device
is determined by its position on the I/O
bus (with lower devices having higher
priority) and each interrupt is made through
the location specified by the sole
interrupting device.

CAl Clear Active Interrupt '000411

10 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Terminate the presently active interrupt
so that the processor can recognize inter­
rupt requests from devices in higher slots
than the device for which the current
interrupt is being held. This instruction
is of use only in vectored interrupt mode.

SMK Send Mask '170020

11 1 1 1 0 0 0 0 0 0 0 1 0 0 0 Oil
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Set up the Interrupt Enable flags in the
devices according to the mask in A (a 1
in a mask bit sets the flag in the device
corresponding to that bit; a 0 resets it).
Note that this instruction is equivalent to
OTA '0020; and it never skips.

The bits in the mask and the devices assigned
to them are as follows (note that the mask
does not necessarily control the Interrupt
Enable flags in all devices).

1
2
3
4 Moving head disk
5
6
7
8 Fixed head disk
9 Paper tape reader

10 Paper tape punch
11 Teletypewriter
12
13
14
15
16 Real time clock

IMK Input Mask '130020

11 0 1 1 0 0 0 0 0 0 0 1 0 0 0 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

For those devices associated with the
mask that can be supplied by an SMK,
read the states of their Interrupt Enable
flags into A (the correspondence of devices
to mask bits is the same as given above).
Note that this instruction is equivalent
to INA '0020; and it never skips.

Timing. The time a device must wait for
an interrupt to start depends on how many
devices are using interrupts, how long the
service routines are for devices of higher
priority, and whether the direct memory
channels are in use. In vectored mode a
single device will shut out all others of
lower priority until a CAl instruction
is executed; and the direct memory channels
shut out all interrupts when they operate
at the maximum rate. If the DMA channels
are not in use and only one device is using
interrupts, it need never wait longer than
the time required for the processor to finish
the instruction that is being performed when
the request is made. Without delays caused
by indirect addressing, the maximum
interrupt waiting time is the latency given
in the table at the end of Appendix.

Programming Suggestions. If the program
has little computing to do and is using only
one or two fast I/O devices or several slow
ones, it may not be necessary to use the
interrupt at all. On the other hand, if there
are many calculations to perform and the
program is using a fast device or data is

2-24

being processed using several slower
devices, then the interrupt is necessary.
The critical factors in determining whether
to use the interrupt, and in what ways the
program should determine priority, are
what the program 1s doing besides input­
output and the time required by the
service routines.

A convenient method for handling a large
number of priority levels is to use a push­
pop stack for saving the machine state.
This obviates setting aside so many
specific locations for saving registers, and
makes it very easy for a routine at any level
in a sequence of nested routines to restore
the state for the interrupted program.

For those who do program interrupt
routines, there are several rules to remember.

• An interrupt cannot be started until the
current instruction is finished. Therefore
do not use lengthy indirect address chains
if a device that requires very fast service
can request an interrupt.

• The service routine should save the keys
and any parts of the register file that
it will use.

• The principle function of an interrupt
routine is to respond to the situation that
caused the interrupt. E.g., computations
that can be performed outside the routine
should not be included within it.

• Before returning to the interrupted
program, the routine should restore the
keys and the register file, and in vectored
mode it must give a CAL

2.12 INTERNAL INTERRUPTS

Besides the use of interrupts to handle the
peripheral equipment, there are a number
of internal processor situations that can
interrupt the program. The action taken in
response to an internal interrupt is essen­
tially the same as for an external interrupt,
but many of the conditions associated with
the latter are not applicable to the former.
All internal interrupts are vectored regard­
less of the mode of the external interrupt.

Although a particular type of internal
interrupt may be inhibited at its source, it
is never affected by the enabling or inhibi­
ting of external interrupts as a class; e.g., a
memory parity error can cause an interrupt
only if the processor is in machine check
mode, but with that mode in effect, an
error always causes an interrupt even if
external interrupts are inhibited. All
internal interrupts have priority over
external interrupts by virtue simply of the
circumstances they represent; and among
internal interrupts, priority is a straight­
forward function of logical necessity.

In response to a particular internal inter­
rupt, the processor vectors through a
specific location. If the 16-bit absolute
address in this location is zero, the proc­
essor halts. If the address is nonzero, the
processor inhibits external interrupts,
saves P in the location addressed by the
contents of the interrupt location, and
resumes normal program execution at the
location following that in which P was
stored. Since an internal interrupt has
nothing to do with the bus priority struc­
ture, the service routine need not give a
CIA upon completion.

Internal interrupts are used to monitor
the hardware and aid in software execu­
tion. Interrupt locations and the conditions
that generate interrupts through them are
as follows.

'60 Power Failure-incoming power is not
up to specification. This vector should
be left unimplemented (zero) unless
the processor has the memory save
option [§2.14].

'61 Real Time Clock Counter-this is not
an internal interrupt at all, but is used
as a counter by the real time clock
[§2.14].

'62 Reserved

'63 External interrupts use this location.
, 64 Rt!served

'65 Supervisor Call- an interrupt to this

2-25

'66

'67

'70

'71

'72

'73

location is produced by the SVC
instruction [§2.8).

Unimplemented Instruction-the
program has given an op code that is
reserved for instruction use, but whose
execution is not implemented in the
microcode. This interrupt may be
used to call a routine that implements
such instructions through software;
to further this objective, the stored
program address points to the instruc­
tion that caused the interrupt.

Memory Parity Error-the processor
is in machine check mode and has
detected an error in data just read
from memory. This interrupt auto­
matically resets Machine Check.

Machine Check Recovery - the proc­
essor is in machine check mode and
has been executing the verification
routine in response to detection of a
machine check error, but in the last
iteration of the routine no errors
were discovered.

Missing Memory Module - either the
memory board containing the ad­
dressed location is not installed or a
software bug has generated an address
outside of the available memory
space. This interrupt automatically
resets Machine Check. It may be used
to determine memory size.

Illegal Instruction - the program has
given an op code that is not now and
never will be implemented as an
instruction in the microcode. This
feature allows the user to design
software to implement such codes
with assurance that they will never
come to be used for PRIME-imple­
mented instructions. To further
this objective, the stored program
address points to the instruction that
caused the interrupt.

Reserved

2.13 DIRECT MEMORY ACCESS

Handling data transfers between external
devices and memory under programmed
I/O control requires the execution of several
instructions for each word transferred. To
allow greater transfer rates the processor
contains eight direct memory channels
through which devices, at their own re­
quest, can gain direct access to memory
using a minimum of processor time. At
rates lower than the maximum, the channels
free the processor to allow execution of a
program concurrently with data transfers
for high speed devices such as disk and
magnetic tape.

To control a direct memory transfer, the
program sets up a device to use a particular
channel and sets up a pair of memory
locations to define the channel. The channels
use locations '20-'37 in the register file,
with locations '20 and '21 governing channel
one, '22 and '23 governing channel two, and
so on to '36 and '37*. To set up the device,
the program gives an OTA that supplies
the controller the address of the first
channel location to be used. The program
places a 12-bit word count in the first loca­
tion, and the address of the first word to

FIRST LOCATION I - WORD COUNT RESERVED I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SECOND LOCATION
I ADDRESS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

be transferred in the second. The word
count is in bits 1-12 and is the twos com­
plement of the number of words to be
transferred; the maximum number of words
in a single block on one channel is there­
fore 4096, produced by a negative count of
zero (a single device can handle larger
blocks by stepping through successive
channels). The contents of the second

*The processor permits any contiguous pair of locations in the register
file to be used, although some locations, such as the program counter
or those reserved for microprogram functions, are obviously not appro·
priate for this purpose. The programmer can use X, A, B, S, and certain
other locations when necessary.

2-26

address are interpreted as a 16-bit absolute
address regardless of memory size.
When the device requires data service, it
requests access to memory via its channeL
Between instructions and at various points
within an instruction, the processor can
pause to handle a transfer. If several devices
are waiting for service simultaneously, the
first to receive it is the one that is mounted
in the lowest-numbered slot. Whenever the
processor pauses to handle a DMA request,
it handles all pending requests before
resuming the instruction, starting an
interrupt, or going on to the next instruction.

To service a channel request the processor
accesses the location specified by the
channel address, sends its contents out over
the bus or stores in it a word taken from
the bus as specified by the device, and
increments both the address and the word
count by one. When the word count over­
flows (goes to zero), the processor signals
the device that the block is complete.
Typically, complex device controllers such
as those for fixed and moving head disks
can automatically chain DMA channels
thereby facilitating scatter/gather data
transfers.

Timing. The time a device must wait for
channel access depends on when its request
is made within an instruction and how
many devices of higher priority are also
requesting access; a given device must
wait until all devices of higher priority
have been serviced, so the highest
priority device can preempt all processor
time if it requests access at the maximum
rate. The microprogram must save certain
registers to service the channel, and
although it can pause within an instruction
it cannot take direct memory requests
while starting an interrupt, so the worst
case waiting time for the highest priority
device is 3-4 p. s for an isolated transfer.
But once an initial transfer has taken place,
continuous transfers can be handled at
the rate of one every 1.2 I}' s; this allows a

maximum of 833,333 words per second,
but at this rate all other processing activity
is suspended.

2.14 CONTROL OPTIONS
Equipment in this category is mostly pro­
cessor options, such as the memory save
with automatic restart after power failure
and the automatic program load. Also in­
cluded is the real time clock, which is a
device connected to the I/O bus but which
is used by the processor for control pur­
poses rather than for the movement of data
in and out of the system.

Memory Save and Automatic Restart
If ac power should fail for any reason (in­
cluding being turned off), the processor
automatically interrupts through location
'60; this is an internal interrupt, which is
not affected by the inhibit for external in­
terrupts. Without the memory save option
the program should put a zero vector in
location '60 so that the processor just halts;
But with the option, the interrupt routine
should save the keys and the entire regis­
ter file in MOS memory, shut down the I/O
equipment, and then give an HLT. The
program has about a millisecond in which
to do this before the power monitor issues
a master clear and turns control over to the
battery-operated memory save unit. This
unit continues to refresh memory until
power is again within specifications, at
which time it restarts normal program ex­
ecution at location '1000 provided the func­
tion switch is in the RUN position. Nat­
urally the program must set up location
'1000 ahead of time in whatever way is
appropriate for restarting.

The memory save unit, which automat­
ically recharges its battery while power is
on, is equipped with one 20 ampere hour
battery and has space for installing an­
other. The unit can be mounted at the front
or back of the rack; it takes 7 inches of pan­
el space and is 8 inches in depth. On its
panel are a full charge indicator,the battery

2-27

terminals, a switch to disconnect the bat­
tery, and terminals for a meter.

Automatic Program Load

The automatic program load option en­
ables the operator to reload programs from
devices such as fixed-and moving-head
disks, and paper tape simply by initiating
a hardware bootstrap from the control pan­
el. This feature saves considerable time
and effort by eliminating the tedious and
error-prone procedure of manually keying
in a bootstrap loader one word at a time.

On a machine with the program load op­
tion, the LOAD position of the function
switch calls a microcode loader. There are
two versions of this loader, one for the
fixed-and moving-head disks, and one for
the ASR and high speed paper tape readers.
The operator uses the sense switches to
select which version is to run and to spec­
ify whatever other information is needed
by the microprogram. The disk version
reads 460 words from sector 0 of the selec­
ted disk, storing the words beginning at
lpcation '770; after reading the data, the
processor begins normal program execu­
tion at location '1000 (the program execu­
ted-i.e., the data read in from the disk-is
entirely at the discretion of the program­
mer). The reader microprogram reads any
Prime self-loading tape. Tapes of the as-

. sembler, linking loader, text editor and
other basic programs are available from
Prime in self-loading format. Also, any
tape punched by the memory dump and
load program (MDL) is in the self-loading
format and its data is stored in the same
part of memory from which itwas punched.

Real Time Clock

This option can be used to signal the end
of a specified real time interval or to m~a­
sure te real time taken by an event; with
appropriate software the clock can easily
be used to·keep the time of day. Although
it is for internal control purposes, the clock
is handled like an I/O device and is mounted

on the same board as the reader, punch
and teletypewriter controllers. The device
is based on a clock source, which is usually
the ac line (60 or 50 Hz), but an alternate
source can be mounted on the board or
supplied externally. While the clock is on,
it responds to each pulse from the source
by incrementing the contents of location
'61- in other words the clock uses memory
location '61 as a counter. Whenever the
counter overflows to all Os the clock re­
quests an interrupt if the Interrupt Mask
bit is set.

The clock has device code '20 and uses
seven OCP instructions, two INAs and one
SKS. The Interrupt Mask bit is controlled
both by OCPs and by interrupt priority
mask bit 16.

OCP 'F20 Output Control Pulse to Clock 030-20
031-20

10011001 F 10100001

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Perform the function specified by F in the
clock as follows.
OCP 0020 Start - start the clock if it is not

already running, also acknowl­
edge an interrupt request
(equivalent to resetting a ready
flag). This instruction does not
disturb the clock count if it is
already counting.

2-28

'0020 Start- start the clock if it is not
already running, also ac­
knowledge an interrupt re­
quest (equivalent to resetting
a ready flag). This instruction
does not disturb the clock
count if it is already counting.

'0220 Stop - tum off the clock in­
terrupt request and stop the
clock.

'0420 Select Line - select the ac line
frequency as the cock source.

'0520 Select Alternate Source.
'1520 Set Interrupt Mask bit
'1620 Reset Interrupt Mask bit

'1720 Initialize - stop the clock,
turn off the clock interrupt
request, and select the ac line
as the clock source.

INA 'F20 Input to A from Clock 131-20

11011001 F 10100001

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Read the information specified by F from
the clock into A as follows.
INA'1120 Input Identification - read

zeros into A bits 1-3, the slot
in which te clock is mounted
into A bits 4-8, and the device
address code '20 into A bits
9-16.

'1320 Input Status - read the status
of the clock into A bits 13-15
as follows.
13 Clock On-a 1 indicates

the clock is running.
14 Source-o, ac line; 1,

alternate
15 Interrupt Enable.

SKS '0020 Skip if Not Interrupting 070020

1 0 1 1 1 0 0 10 0 0 01 0 1 0 0 0 0 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If the clock is not now requesting an inter­
rupt, skip the next instruction in sequence.

When the clock is turned on, the first count
can come at any time up to the clock per­
iod. Counting location '61 is done by a
memory increment function whose pri­
ority lies between that of direct memory
access and the external interrupt; at each
pulse from the clock source, the clock in­
crements memory after the current instruc­
tion and all pending direct memory access
are finished, but before the processor han­
dles any interrupt. When the counter over­
flows, the clock requests an interrupt if the
Interrupt Mask bit is set. Once one count
has occurred, further counting is steady
and is not disturbed by external interrupts
or by the action of enable-and inhibit­
interrupt instructions.

2-29

The ac line clock is used primarily for low­
resolution timing (compared to processor
speed) but it has high long-term accuracy.
Turning on power or clearing the computer
from the control panel automatically selects
the ac line as the source. A full count of 216

at 60 Hz takes 18.4 minutes.

To use the clock to time some operation,
turn it on with the counter at zero. For a
counter reading of C, the elapsed time is

T(C + nI)
where T is the period of the source, n, is
the number of clock interrupts since the
clock was started, and I is the interval
count selected by the program at each in­
terrupt. To cause the clock to request an
interrupt after T x n ms, where n L 216 and
T is the period of the source in millisec­
onds, load location '61 with -n expreessed
in binary. There is an average indeterm­
inacy of half a count every time the clock
starts and stops.

For keeping the time of day, the program
can use a memory location to keep a count
of the clock interrupts. The location should
be cleared at midnight, and the time can
be determined by combining its contents
with the current contents of location '61. If
the other location is to be used by itself as
a low resolution clock kept in hours, min­
utes, and perhaps seconds, the program­
mer should pick an appropriate interval
setting the counter each time to '177704
produces an interrupt every second.

2.15 OPERATION
At the left on the control panel is a three­
position key-operated rotary switch that
controls power and locks the console.
Turning it to ON turns on power and gen­
erates master clear (see below). Turning it to
LOCK keeps power on and disables the
operating switches so no one can interfere
with the operation of the processor (the
operator can still use the data and sense
switches in conjunction with a program).
When power is on and within specifica­
tions, the microprogram is running even

though the program may not be; and the
processor is in the stop or run state as
incicated by whether or not the STOP light
at the upper right is on (the light blinks
when memory refresh is running on the
optional backup battery). With the proces­
sor in the run state, the microprogram
executes the program, i.e., it performs in­
structions, handles interrupts, etc.; in the
stop state the microprogram executes a
control panel routine, which monitors the
panel in order to respond to action by the
operator.

The operator determines the state of the
processor principally by the two switches
at the lower right: a six-position rotary
function selector and a momentary-contact
START switch. The selector does not itself
initiate any operations, but rather selects a
function to be performed, and the micro­
program performs that function in response
to the operator pressing START. Turning
the selector to either of the left two positions
(LOAD, RUN) and pressing START places
the processor in the run state, turning off
the STOP light; if the processor halts for any
reason, it is then in the stop state even if
the selector is still in RUN or LOAD (which
we shall refer to as the run positions).
Turning the selector to any of the right five
positions (the stop positions) normally halts
the processor, returning it to the stop state.

Power turnon always generates the master
clear, and this function can be produced
by the operator pressing the switch at the
upper left, provided the panel is not locked
and the function selector is in a stop posi-

tion. The master clear initializes the con trol
panel, the processor and the I/O interfaces
(resetting various critical control circuits);
clears C and the register file except for P
(location '7), which it sets to '1000 and dis­
plays in the address lights; and places the
processor in the stop state, out of machine
check mode, in 16K sectored addressing
mode with indexing from X, in single pre­
cision arithmetic mode, and in standard
interrupt mode with external interrupts
inhibited. If the processor has the optional

verification routine, master clear executes
that routine and reiterates it as long as
any failure continues (the number of the
failing test is displayed in the address
lights instead of P if the function selector
is in or is turned to a run position).

In the middle of the panel are a row of
lights and a register of switches. The former
is address or data lights depending upon
the position of the toggle switch at the
lower left. The register switches have three
positions: a locking up position, a neutral
center position, and a momentary down
position. The up positions are used only
as sense switches with a program or the
automatic program load; the down posi­
tions may be used as either data or address
switches again depending upon the posi­
tion of the same toggle that defines the
lights. However the exact meaning of the
switches and the lights depends on which
state the processor is in, so we shall dis­
cuss the operation of the control panel for
these two states separately.

2-30

Run State

With the processor in the run state, a pro­
gram actually running, and the function
selector in a run position, the address lights
display the contents of the memory address
register and the data lights display the
contents of the control panel data register.
In ordinary circumstances the data register
holds information loaded into it by an OTA
'1720, but it may also be loaded by the
microprogram as discussed below. The
memory address register is used for supply­
ing addresses to memory, but it is also
used to hold all I/O instructions and some
of the generic op codes (if the program is
very heavy in I/O, the operator will actually
be able to see such instructions in the
lights). In any event the information dis­
played in the address lights is super­
imposed on a dim glow in the right five
lights caused by the refresh logic.

The up positions of the switch register are
used for sense switches: any switch that
is locked up can be read as a 1 into the
corresponding bit of the A register by
an INA '1620 or tested as set by instruc-
tions in the skip group. The down positions
of the switches have the same meaning
regardless of the setting of ADDRESS/DATA:
a switch held down can be read as a 1 into
the A register by an INA '1720 (the pro­
grammer must realize that there is contact
bounce associated with pressing a switch
down and should compensate accordingly).

The two run-state functions that can be
performed by setting the function selector
and pressing START are as follows.

RUN Turn off STOP and begin normal
program execution in the run
state beginning at the location
presently addressed by P.

While the processor is running, it
can be returned to the stop state
by the program giving an HLT,
by the operator turning the
selector to a stop position, by the
microprogram encountering a

2-31

zero vector in an internal interrupt
location, or by a machine check
error in a computer that lacks
verification capability. When the
program halts, turning the selector
to a stop position displays P in
the address lights with the next
instruction in the data lig ts.
Turning the selector to a stop
position displays P in the address
lights with the next instruction in
the data lights. A halt by a zero
vector is the same as a program
halt, but the "next instruction" is
the contents of X (location 0). A
machine check halt sets the mem­
ory address register to allIs.

If the verification routine is
executed and finds a consistent
error, there is no further program
execution, and the number of the
failing test is displayed in the
address lights.

If turning the selector to a stop
position does not tum on STOP,
then the processor is hung up in
the run state, and the address and
data lights continue to display the
same information they do when
the program is running. The hang­
up may be an infinite indirect ad­
dress chain, continuous direct
memory access, a missing memory
vector which points to missing
memory, or the verification rou­
tine encountering a solid machine
check error. When the processor
is hung up it does not monitor the
selector; however the machine
can always be stopped by turning
the selector to a stop position and
pressing MASTER CLEAR (unless
of course the panel is locked).

LOAD In a processor without the
optional program load, this func­
tion is a no-op. Otherwise it turns
off STOP and performs the opera-

tion selected by the contents of
sense switches 14-16 as follows.

o Begin normal program execu­
tion at location 1000.

1 Execute the program load
microroutine for the ASR reader.

2 Execute the program load
microroutine for the high
speed paper tape reader.

3 Execute the program load
microroutine for the fixed-
head disk.

4 Execute the program load
microroutine for the moving­
head disk.

Once this function has begun it
is indistinguishable from RUN.

Stop State
The processor enters the stop state when it
halts even if the function selector remains in
a run position; and unless there is a hangup,
it goes to the stop state when the selector
is turned to a stop position. Moreover the
functions other than RUN and LOAD are
executed in their entirety with the processor
remaining in the stop state. While the
operator is using the stop-state functions,
the address lights always display the con­
tents of the memory address register and
the data lights display the contents of
the memory data register (in both cases the
display is actually done by the micro­
program through the control panel data
register). The up positions of the switches
can still be used as sense switches but have
meaning only as read by instructions in a
program - in the stop state a program can
be executed only in single step. Pressing a
switch down sets the corresponding bit of
the memory address register or memory
data register depending on the setting of
ADDRESS/DATA; the DATA CLEAR switch

resets the register selected by the AD­
DRESS/DATA switch.
The five stop-state functions that can be
performed by setting the function selector
and pressing START are as follows.
STOP/STEP Begin program execution

at the location specified by
P, but with STOP on so the
processor halts at the com­
pletion of the first instruc­
tion. With the selector in
this position, the operator
can single step through a
program to debug it; but
the processor handles no
interrupts and the pro­
gram cannot display infor­
mation in the data lights
(information loaded by an
OTA '1720 is lost as soon
as the instruction is
finished).

FETCH THIS Load the data register with
the contents of the location
specified by the address
register.

FETCH NEXT Add 1 to the contents of the
address register, and load
the data register with the
contents of the location
specified by the incremen­
ted address.

STORE THIS Store the contents of the
data register in the location
specified by the address
register.

STORE NEXT Add 1 to the contents of the
address register, and store
the contents of the data
register in the location
specified by the incre­
mented address.

2-32

CHAPTER 3
BASIC PERIPHERAL DEVICES

This chapter discusses the basic peripheral
devices: teletypewriter, paper tape reader
and paper tape punch.

The program can type out characters on the
teletypewriter and can read characters
that have been typed at the keyboard. This
device has a relatively slow transfer rate,
but it provides a convenient means of
man-machine interaction. KSR teletype­
writers are equipped with a keyboard and
printer; ASR models also have a low-speed
reader and punch. Th~ controllers for the
teletypewriters, high-speed reader and
punch, and real-time clock are all mounted
on a single etched circuit board. Although
this controller board is usually refered to
as the teletypewriter controller, it is actually
a flexible asynchronous serial line con­
troller having four multiplexed input/out­
put ports, eight program-selectable baud
rates, and facilities for handling control
signals associated with a data communica­
tion lines following EIA RS 232C
conventions.

3.1 PAPER TAPE READER

The high-speed paper tape reader operates
at speeds up to 200 characters per second
and is available either separately or com­
bined with a high-speed punch in a single
uI)it. The controller has an eight-bit buffer
to hold a-complete eight-bit character read
from tape. The INA instruction is used to
transfer the character from the buffer to
the computer. The reader device code is '01,
and the controller interrupts through loca­
tion '101 in vectored mode (in relation to
the other controllers on the same board,
the reader is of second-highest priority).
Interrupt Mask enable is controlled by OCP
instructions and by bit 9 in an SMK
'20 instruction.

OCP 'F01 Output Control Pulse to Reader 14F01

I 0 0 1 1 00 I Flo 0 0 0 0 1 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Perform the function F in the reader
as follows:
OCP'0001

'0101
'0201

'0301

'1201

'1301

'1501
'1601
'1701

Start - reset Ready and move
tape in the selected direction
to read one character from
tape into the reader buffer.
Stop - stop tape motion.
Forward - select the forward
tape direction. Note: give
this function only when the
tape is stopped.
Reverse - select the reverse
tape direction. Note: give
this function only when the
tape is stopped.
Normal Mode - return the
reader and punch to normal
operating mode (see
function 13).
Diagnostic Mode - place the
reader and punch controllers
in diagnostic mode, which is
discussed below.
Set Interrupt Mask.
Reset Interrupt Mask.
Initialize - stop tape motion,
select the forward direction,
reset Interrupt Mask, and
place the controller in
normal mode.

INA 'F01 Input .to A from Reader 54F01

1 1 0 1 1 0 01 FlooD 0 0 1 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If Ready is reset, do nothing but go on to
the next instruction. If Ready is set, per­
form the function _specified by F as given
below, and skip the next instruction in
sequence. An asterisk indicates a function
for which the controller simulates Ready
being set so the function and skip
always occur.

INA '0001 Input Data - OR the contents
of the reader buffer into A
bits 9-16, reset Ready and
start the reader to read the
next character.

3-1

'1001 Input Data-clear A and then
perform function 00.

'1101 * Input Identification - read
the slot number in which the
reader controller is mounted
into A bits 4-8 and the octal
identification code X01 into
A bits 9-16. Zeros are read
into bits 1-3.

'1301 * Input Status - read the status
of the reader into A bits 9-16
as follows.

9 10 11

A 1 in any bit position indi­
cates the condition is "true"
or "set". A 1 in bit 13 indi­
cates reader power is on and
all voltages are at operating
levels. Bits 1-8 of A are
always zeros.

SKS 'C01 Skip if Reader Condition Satisfied 34C01

1011100\ C 1000001 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Skip the next instruction in sequence if
the reader condition specified by C is
satisfied as follows.
SKS '0001 Ready

'0401 Not Interrupting

The reader comes on in the ready state, so
if it is not to be used the program should
give an Initialize (OCP '1701) to prevent its
requesting an interrupt. To read an initial
character from tape, give an OCP '0001.
Starting the reader causes it to read all
eight channels from the next frame on
tape into the buffer (the presence of a hole
produces a 1 in the buffer). When the
operation is complete, the controller sets
Ready, requesting an interrupt if the Inter­
rupt Mask bit is set. When the character is
brought into A, tape channell corresponds
to A bit 16. Giving an INA '0001 or INA
'IDOl not only reads the buffer, but also

resets Ready and starts the reader for
reading the next frame.
To allow the computer to stop the reader
on the character read, the interface allows
up to one millisecond to issue an OCP '101
stop command. If this command is issued
within one millisecond from the time the
Ready flag is set, the reader will stop on
the character just read. If the one milli­
second interval is exceeded, the reader
advances to the next frame and waits for
an INA instruction. This feature prevents
loss of data regardless of the time the proc­
essor takes to service the reader, and allows
the program one millisecond to input data
while maintaining the maximum 200
character per second transfer rate.

Diagnostic Mode. An OCP '1301 places
the controllers for both the reader and
punch in a diagnostic mode, in which
both devices are disconnected from their
controllers, the punch buffer output is
connected to the reader buffer input, and
internal timing replaces the signals
normally supplied by the devices. With
this arrangement an OTA '0002, which
loads a character into the punch buffer
and resets Punch Ready, also causes the
controller to "punch" the character into the
reader buffer, setting Reader Ready to
request an interrupt if Reader Interrupt
Mask bit is set. Giving an INA '1001 not
only retrieves the character, resetting
Reader Ready, but also sets Punch Ready.
Status registers may be tested as in
normal operation.

Operation. On the combination unit, the
controls for the reader are the left four of
the five buttons at the upper left of the
front panel. The leftmost button controls
power to the reader/punch combination.
The second and third buttons slew tape
through the reader at high speed in the
direction indicated by the arrows on
the buttons. The fourth button is labeled
LOAD and is used to prevent the controller
from operating the reader (button will be

3-2

illuminated) when a tape is being loaded.
Detailed operating procedures for this
unit will be found in the PRIME 200
OPERATOR'S GUIDE.

3.2 PAPER TAPE PUNCH

The punch perforates 8-channel tape at
speeds up to 75 characters per second;
each character is supplied to the punch
from an 8-bit buffer in the controller. The
punch device code is 02 and the controller
interrupts through location '102 in vectored
mode (in relation to the other controllers
on the same board, the punch is of third
highest priority). Interrupt Mask is con­
trolled by OCPs and interrupt mask bit 10.

OCP 'F02 Output Control Pulse to Punch 14F02

10011001 F 1000010
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Perform the function specified by F in the
punch as follows.
OCP '0002 Enable Punch - enable Ready

to request an interrupt if
Interrupt Mask bit is set.
Note: this function is inde­
pendent of Interrupt Mask
and must be given to allow
Ready to interrupt even when
the Interrupt Mask bit is set.

'0102 Disable Punch - Reset punch
Ready. The punch will no
longer accept data from
the computer.

'1502 Set Interrupt Mask. This
allows an interrupt request
to be generated when the
punch is ready.

'1602 Reset Interrupt Mask. Inhibit
an interrupt request if the
punch is ready.

'1702 Initialize - stop the punch
(making it ready) and reset
Interrupt Mask.

INA 'F02 Input to A from Punch 54F02

11011001 F 10000101
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Perform the function specified by F as
given below, and skip the next instruction
in sequence (the controller simulates Ready
being set for these functions).

INA'1102 Input Identification-read
zeros into A bits 1-3, read
the slot number in which
the punch controller is
mounted into A bits 4-8 and
the octal identification code
X02 into A bits 9-16.

'1302 Input Status-read O's into
A1-A12, and the status of the
punch into A bits 13-15 as
follows.

I I I nlerrupl I I
Ready Mask Punching

9 10 11 12 13 14 15 16

A 1 in bit 15 indicates the
punch is busy punching the
contents of the buffer
into tape.

OlA '0002 Output from A to Punch 740002

1 1 1 1 1 0 010 0 0 01 0 0 0 0 1 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If Ready is reset, execute the next instruc­
tion in sequence. If Ready is set, reset it,
load the contents of A bits 9-16 into the
punch buffer, start the punch to punch
the contents of the buffer into the next
frame position in the tape, and skip the
next instruction in sequence.

SKS 'C02 Skip if Punch Condition Satisfied 34C02

10111001 C 10000101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Skip the next instruction in sequence if
the punch condition specified by C is
satisfied as follows.
SKS '0002 Ready

'0102 Power On
'0402 Not Interrupting

The punch comes on in the Ready state,
but it cannot request an interrupt unless it
is enabled by an OCP '0002, so the pro­
grammer can leave the Interrupt Mask bit

3-3

set without worrying about interrupts
while the punch is not in use. Giving an
OTA '0002 both supplies a character from
A to the buffer (A bit 16 corresponds to
tape.channel1) and starts the device to
punch the contents of the buffer (a 1 pro­
duces a hole in the tape). After punching
is complete, the device sets Ready, request­
ing an interrupt if the Interrupt Mask bit
is set and the punch has been enabled.

Timing. At 75 frames per second the punch
takes 13.3 ms per character. After Ready
sets, the program has about .3 ms to give
a new OTA to keep punching at the
maximum rate.

NOTE

The punch controller has a diagnostic
mode that is controlled in conjunction
with the diagnostic mode for the reader
controller, i.e., both controllers are put
into or taken out of diagnostic mode
together by the same readerOCP instruc­
tions as described in the preceding
section. It is important to remember that
the punch device will not punch characters
into tape if it has been left in diagnostic
mode by a reader OCP. (OCP'1301).

3.3 TELETYPEWRITER

Communication with the console teletype­
writer is handled by an asynchronous
serial line interface, whieh can handle
any EIA device or communication line at
various bit frequencies. The interface is
capable of full-duplex operation, i.e., data
can be transferred in both directions at
the same time; it actually acts like two
interfaces that share a common device
code, Ready flag and Interrupt Mask bit
(there are also separate Ready flags for
transmitter and receiver). The program
can select from among eight operating
frequencies, (110 baud to 9600 baud), but
at any given time reception and trans­
mission must be at the same rate. Characters
can be received from anyone of four
devices at a time; ports 2, 3 and 4 handle

only EIA RS 232-C signals, but port 1
handles either EIA signals or a device
using a 20 rnA current loop. All four out­
put ports handle signals of either type, and
the single output data stream can be trans­
mitted over any set of ports simultaneously.
The character format in all cases is a single
start bit, eight data bits, and one or two
stop bits (as specified by the program).
There are also four input control lines that
can be sensed by the program and four
output control lines that can be set by
the program to provide control signals at
the four device connectors. These control
lines may be used for any purpose, such
as handling a full-dress communication
channel with automatic answering of
incoming calls. The program can also
select half-duplex operation in which
characters transmitted are automatically
sent back in through the receiver, and all
characters received are simultaneously
retransmitted.
The four teletypewriter models regularly
available for use with the computer are
the ASR33, ASR35, KSR33 and KSR35, all
of which are capable of speeds up to ten
characters per second and use a de current
loop (port 1). The program can output
characters to the page printer and can read
in the c~aracters from the keyboard. With
an ASR the program can also punch
characters in a tape and read characters
from a tape.

The entire ASCII character set is listed in
Appendix D. Character codes received
from the keyboard have eight bits wherein
the most significant is always 1. Lower
case characters are not available on the
Model 33 or 35, but transmitting a lower
case code to the teletypewriter causes it to
print the corresponding upper case charac­
ter. There are, of course, no restrictions on
the codes that can be punched in or read
from tape.

The input and the output parts of the inter­
face each have a character buffer separate
from the shift register used to receive or

3-4

transmit a character, so the program has
an entire character time to respond to
Ready at any given bit frequency. The
device code is 04 and the controller inter­
rupts through location 104 in vectored
mode (in relation to the other controllers
on the same board, the serial interface is
of highest priority). Interrupt Enable is
controlled by interrupt mask bit 11.

OCP 'F04 Output Control Pulse to Serial
Interface 14F04

\001100\ F \000100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Perform the function specified by Fin
the serial interface as follows.

OCP '0004 Select Half-Duplex Input­
set up the interface for half­
duplex reception at 110 baud
with two stop bits, using
receiver port 1 and transmitter
port 1. Note: give this func­
tion only when the interface
is not busy. Do not attempt to
transmit while the interface
is in this mode as trans­
mission may be garbled by
input being retransmitted.
Completion of transmission
does not request an interrupt.

'0104 Select Half-Duplex Output­
set up the interface for half­
duplex transmission at 110
baud with two stop bits,
using transmitter port 1 and
receiver port 1. Note: give
this function only when the
interface is not busy. Com­
pletion of reception does not
request an interrupt.

'1004 Select Full-Duplex-restore
the interface to full-duplex
operation. Note: give this
function only when the inter­
face is not busy.

'1204 Normal Mode-return the
interface to normal operating
mode (see function 13).

'1304 Diagnostic Mode - place the
interface in full-duplex opera­
tion where all devices are
disconnected and the trans­
mitter output is fed into the
receiver.

'1504 Set Interrupt Mask bit.
'1604 Reset Interrupt Mask bit.
'1704 Initialize-reset Interrupt

Mask bit, reset all error and
ready flags, reset all output
control flags, and set up the
interface in normal mode for
half-duplex input (as per
function 00).

OT A 'F04 Output from A to Serial Interface 74F04

\1111001 F 1000100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If Transmitter Ready is reset, do nothing
but go on to the next instruction. If Trans­
mitter Ready is set, perform the function
specified by F as given below, and skip
the next instruction in sequence. An
asterisk indicates a function for which the
controller simulates Transmitter Ready
being set so the function and skip
always occur.

OTA '0004 Output Data-load the con­
tents of A bits 9-16 into the
output buffer; reset Ready
and Transmitter Ready.

3-5

'0104* Output Control Word-set
up the output control signals
and select the operating
characteristics of the inter­
face according to the contents
of A as follows.

RECEIVER
PORT

11 12

1-4 Is tum on the indicated
control signals; Os turn
them off.

5 1 selects full-duplex, 0
selects half-duplex.

6-8 These bits select the clock
frequency as follows.

Bits 6-8
000
001
010
011
100
101
110
111

Frequency (Hz)
110
150
300
600

1200
2400
4800
9600

10 1 selects character for-
mat with two stop bits;
o selects one stop bit.

11-12 These bits select the
single receiver port
as follows.

Bits 11-12
00
01
10
11

Receiver Port
1
2
3
4

13-16 Is select transmitter
ports as indicated.

INA 'F04 Input to A from Serial Interface 54F04

11011001 F 1000100 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

If Receiver Ready is reset, do nothing but
go on to the next instruction. If Receiver
Ready is set, perform the function specified
by F as given below, and skip the next
instruction in sequence. An asterisk
indicates a function for which the controller
simulates Receiver Ready being set so the
function and skip always occur.

INA '0004 Input Data-OR the contents
of the input buffer into A
bits 9-16; reset Ready and
Receiver Ready.

'0104 Input Data - clear A and then
perform function 00.

'1104* InputIdentification-read
the slot number in which the
serial interface is mounted
into A bits 4-8 and the octal
identification code X04 into
A bits 9-16.

'1204* Input Setup Status-read the
status of the output control
signals and operating char­
acteristics of the interface
into A. The status bits read
have the same meaning as the
control bits sent out by an
OTA '0104; hence this status
reflects the way the interface
has been set up by an OTA
'0104 and the OCP functions
00,01, 10, 13 and 17.

'1304* Input Flag Status-clear A
bits 1-8 and read the status
of the mode, error and ready
flags into A bits9-16 as follows.

11 Reception of a character
was completed before the
program retrieved one or
more previously received
characters from the
input buffer.

12 The interface has received
a character with the wrong
number of data or stop bits.

16 This bit is for diagnostic
purposes only.

SKS 'C04 Skip if Serial Interface Condition
Satisfied 34C04

011100\ C 10001~J
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Skip the next instruction in sequence if
the interface condition specified by C is
satisfied as follows.

SKS '0004 Ready.

3-6

'0104 Busy-the interface is busy
while a character is being
transmitted or received.

'0404 Not Interrupting
'0604 Receiver Ready
'0704 Transmitter Ready
'1104 Input Control Signal 1

'1204 Input Control Signal 2
'1304 Input Control Signal 3
'1404 Input Control Signal 4

When the transmitter is inactive, loading a
character into the output buffer causes the
transmitter to take the character and begin
sending it through the selected output
ports. When the transmitter is already
sending a character, a new character loaded
into the output buffer must wait until the
previous transmission is complete, at
which time the transmitter automatically
takes the waiting character. In any event
movement of a character from buffer to
transmitter sets Transmitter Ready and
Ready, the latter requesting an interrupt
if the Interrupt Mask bit is set; the program
may then send a new character while the
transmitter is busy with the previous one.
To each data character the transmitter adds
a start bit and one or two stop bits as
selected by the program, and sends out the
full character serially at the selected bit
frequency. Transmitting a code to the
teletypewriter causes it to print the charac­
ter or perform the indicated control func­
tion. If the punch is on, the character is
also punched in the tape with A bit 16
corresponding to channell (a 1 in A pro­
duces a hole in the tape).

Reception from the keyboard requires no
initiating action by the program; striking
a key transmits the code for the character
serially to the receiver. As soon as the
receiver assembles a character, it sends the
data part to the input buffer and sets
Receiver Ready and Ready, the latter
requesting an interrupt if the Interrupt
Mask bit is set. The receiver is then free
for more reception while waiting for the
program to take the character from the
buffer. Should a new character be re(:eived
before the program has taken the previous
one, the new is loaded into the buffer
destroying the old and setting the Overrun
flag. An ASR tape reader is usually set up

so that the operator must make it read and
send the first character; but with the reader
on, each subsequent INA that takes a
character from the input buffer also causes
the reader to read another. The presence
of a hole in the tape produces a 1 in the
buffer, and when the character is brought
into A, tape channell corresponds to
A bit 16.

The program has no inherent control over
incoming information, so when respond­
ing to Ready the program should check
Receiver Ready first, giving priority to
the receiver in case the interface is ready
for transfers in both directions simul­
taneously. When the program is making a
transfer and the ready flag for the other
direction is on or comes on, the INA or OTA
resets the ready flag for the direction being
handled but not the main Ready, which is
held set to request a subsequent interrupt
for the other direction.

Timing. Although characters contain eight
data bits, the character rate is actually one­
tenth or one-eleventh the bit rate depend­
ing upon whether there is one or two stop
bits. Because of the double buffering on
both sides, the program has a full character
time at the selected bit rate (ten or eleven
times the bit period) to respond to a ready
indication without fear of losing received
data or running the transmitter below
maximum rate.

The Model 33 and 35 teletypewriters
operate at ten characters per second, 100
ms per character. The sequence carriage
return-line feed, when given in that order,
allows sufficient time for the type block
to get to the beginning of a new line. After
tabbing, the program must wait for com­
pletion of the mechanical function by
sending one or two rubouts. If the time is
critical, the programmer should measure
the time required for his tabs. Tabs are
normally set every eight spaces (columns
9,17, ...) and require one rubout.

3-7

APPENDIX A
TWOS COMPLEMENT CONVENTIONS

The signed numbers used as relative dis­
placements in referencing memory and as
operands for the arithmetic instructions
utilize the twos complement representation
for negatives. In a word or byte used as a
signed number, the leftmost bit represents
the sign, 0 for positive, 1 for negative. In
a positive number the remaining bits are
the magnitude in ordinary binary notation.
The negative of a number is obtained by
taking its twos complement, with the sign
bit included in the operation as though it
were a more significant magnitude bit.
If x is an n-digit binary number, its twos
complement is 2n-x, and its ones comple­
ment is (2n -I)-x, or equivalently (2n-x)-1.
Subtracting a number from 2n-1 (i.e., from
allIs) is equivalent to performing the
logical complement, i.e., changing all Os
to Is and allIs to Os. Therefore, to form
the twos complement one takes the logical
complement - usually referred to simply
as the complement-of the entire word
including the sign, and adds 1 to the result.
A displacement of 173 and its negative
would look like this in bits 8-16 of an
instruction word where bit 8 is the sign.

+ 17310 + 2558 =1 010 101 101 I
8 16

+ 17310 = - 2558 =1 101 010 011 I
8

The same numbers used as operands in
memory or the A register would look
like this.

16

- 17310 + 2558

-17310 - 2558

000 000 010 101

111 111 101 010

101 I
011 I

16

Bit 1 is now the sign and bits 2-7 are not
significant. It is thus evident that expand­
ing an integer into a full word is accom­
plished simply by filling out the word to
the left with the sign.

Al

The arithmetic instructions manipulate
operands as 16-bit unsigned numbers, but
the program can interpret them as signed
numbers in twos complement notation. It
is a property of twos complement arith-
metic that operations on signed numbers
using twos complement conventions are
identical to operations on unsigned num­
bers; in other words the hardware simply
treats the sign as a more significant mag­
nitude bit (although overflow is detected
as though the numbers were signed).
Regarding the above 16-bit examples as
unsigned numbers, the positive form would
still represent 173, but the negative form
now represents 65,363 ('177523). Insofar
as processor operations are concerned,
it makes no difference which way the pro­
grammer interprets the contents of regis­
ters provided only that he is consistent.

Zero is represented by a word containing
all Os. Complementing this number pro­
duces allIs, and adding 1 to that produces
all Os again. Hence there is only one zero
representation and its sign is positive.
Since the numbers are 'symmetrical in mag­
nitude about a single zero representation,
all even numbers both positive and nega­
tive end in 0, all odd numbers in 1 (a num-
ber allIs represents -1). But since there are
the same number of positive and negative
numbers and zero is positive, there is one
more negative number than there are non­
zero positive numbers. This is the most
negative number and it cannot be pro-
duced by negating any positive number (its
octal representation as a 16-bit number is
100000 and its magnitude is one greater
them the largest positive number).

If ones complements were used for nega­
tives, one could read a negative number by
attaching significance to the Os instead of
the Is. In twos complement notation each
negative number is one greater than the
complement of the positive number of the
same magnitude, so one can read a nega­
tive number by attaching significance to
the rightmost 1 and attaching significance

to the AS at the left of it (the negative num­
ber of largest magnitude has a 1 in only the
sign position). Assuming the binary point
to be stationary, Is may be discarded at the
left in a negative integer, j~st as leading as
may be dropped in a positive integer;
equivalently an integer can be extended to
the left by prefixing Is or as respectively
(i.e., by prefixing the sign). In a negative
(proper) fraction, as may be discarded at
the right; as long as only as are discarded,
the number remains in twos complement
form because it still has a 1 that possesses
significance; but if a portion including the
rightmost 1 is discarded, the remaining
part of the fraction is now a ones comple­
ment. Truncation of a negative number
thus increases its absolute value. Multl­
plication produces a double length product,

and the programmer must remember that
discarding the low order part of a double
length negative leaves the high order part
in correct twos complement form only if
the low order part is null.

Since each bit position represents a binary
order of magnitude, shifting a number is
equivalent to multiplication by a power of
2, provided of course that the binary point
is assumed stationary. Shifting one place
to the left multiplies the number by 2. A a
should be entered at the right, and no
information is lost if the sign bit remains
the same - a change in the sign indicates
that a bit of significance has been shifted
out. Shifting one place to the right divides
by 2. Truncation occurs at the right, and a
bit equal to the sign must be entered at
the left.

A2

APPENDIXB 32K Relative: Extended Effective Address Calculation
Bits 7-12 = 1 100 00 (S = 1, -256 ::::; D ::::; -241)

ADDRESSING Bits Ancillary Type of

Address of instruction location (contents of Program
I X 15-16 EA Action Addressing

P 0 0 0 A Address counter before instruction fetch)
P[D Sectored address formed by concatenation of the left 0 0 A+S Base plus

seven bits of P with the right nine bits of D displacement
A For standard addressing: an absolute address of 14 or 0 0 2 S S+l ~ S Push/pop

15 bits; for extended addressing: specifically the 15-bit 0 0 3 S-l S-l~S Pop/push
absolute address in location P + 1 (bit 1 is ignored) 0 1 0 A+X Address, S Contents of stack register

X Contents of currently selected index register indexed

1(;) Result of indirect chain beginning with access to loca- 0 1 1 A+S+X Base plus
lions addressed by ~ displacement,

indexed

16K Sectored 0::::; D::::; '777 0 1 2 I(S) + X S+l~S Push/pop
indirect,

I X S D Address Word EA postindexed
0 0 0 D 0 3 I(S -1) + X S -1~ S Pop/push
0 1 0 D+X indirect,
1 0 0 I,X,A I(D) postindexed
1 1 0 I,X,A I(D +X) 0 0 I(A) Address
0 0 1 PID indirect
0 1 1 PD+X 1 0 I(A + S) Base plus.
1 0 1 I,X,A I(PID) displacement,
1 1 1 I,X,A I(P D + X) indirect

1 0 2 I(S) S+l S Push/pop
32K Sectored 0::::; D::::; '777 indirect

0 0 0 D
1 0 3 I(S - I) S-l S Pop/push

0 1 0 D+X
indirect

1 0 0 I,A I(D) 1 1 0 I(A + X) Address
1 1 0 < '100 I,A I(D + X) indexed,
1 1 0 ;;::, '100 I,A I(D) + X indirect

0 0 1 PID
1 1 1 I(A + S + X) Base plus

0 1 1 PD+X
displacement
indexed,

1 0 1 I,A I(PID) indirect 1 1 1 I,A I(P D) + X 1 1 2 I(A) + X Address
32K Relative S = 0: 0 ::::; D ::::; '777 indirect,

S = 1: - 240::::; D ::::; 255 post indexed

[for D < -240 see § 2.9] 1 1 3 I(A + S) + X Base plus
displacement
indirect,

0 0 0 D postindexed
0 1 0 D+X
1 0 0 I,A I(D)
1 1 0 < '100 I,A I(D + X)
1 1 0 ;;::, '100 I,A I(D) + X
0 0 1 ;;::, -240 P+l+D
0 1 1 ;;::, -240 P+1+D+X
1 0 1 ;;::, -240 I,A I(P + 1 + D)
1 1 1 ;;::, -240 I,A I(P + 1 + D) + X

Bl

APPENDIXC Time Page

INSTRUCTION MNEMONICS
E32R 001013 Enter 32K relative

addressing mode 1.28 2-2

AND TIMING E32S 000013 Enter 32K sectored
addressing mode 1.28 2-2

The table beginning on this page lists the EMCM 000503 Enter machine check mode 1.28 2-15
ENB 000401 Enable external

instruction mnemonics in alphabetical interrupts 1.28 2-23

order, and for each gives the octal op code,
ERA 05 Exclusive OR C(E) to A 1.96 2-7
ESIM 000415 Enter standard interrupt

the effect of the instruction, the execution mode 1.28 2-24
EVIM 000417 Enter vectored interrupt

time in microseconds, and the number of mode 1.28 2-24

the page on which the full description
EXA 000013 = E32S 1.28 2-2
HLT 000000 Halt 1.68 2-14

appears in Chapter 2. For skip instructions lAB 000201 Interchange A and B 1.88 2-4

two or three times are given, where the
ICA 141340 Interchange bytes of A

and clear left 1.36 2-4

first is the time for no skip, the second for ICL 141140 Interchange bytes of A
and clear left 1.36 2-4

a single skip, and the third (where appli- ICR 141240 Interchange bytes of A

cable) for a double skip. The time for a shift
and clear right 1.36 2-4

IMA 13 Interchange memory and A 2.88 2-3

instruction is a function of the number of IMK 54-20 Input interrupt mask to A 2.94 2-14
INA 54 Input to A 2-19

shifts N. Following the alphabetic listing is Not ready 2.04

a table of the mnemonics in numerical order.
Ready, OR to A 3.10
Ready, clear A 3.38

Time Page INH 001001 Inhibit external

A1A 141206 =AOA 1.36 2-8 interrupts 1.28 2-24

A2A 140304 Add two to A 1.36 2-8 INK 000043 Input keys to A 2.44 2-16

ACA 141216 Add C to A 1.36 2-8 IRS 12 Increment and replace

ADD 06 Add C(E) to A 1.96 2-7 C(E), skip 1.5611.84 2-12

ALL 041400 A left logical 1.08 + .24N 2-5 IRX 140114 Increment and replace

ALR 041600 A left rotate 1.08 + .24N 2-5 index, skip 1.5611.84 2-12

ALS 041500 A left shift 1.28 + .24N 2-6 lSI 000511 Input serial interface

ANA 03 AND C(E) to A 1.96 2-7 to A 1.56 2-21

AOA 141206 Add one to A 1.36 2-8 JMP 01 Jump to E 1.28 2-3

ARL 040400 A right logical 1.08 + .24N 2-5 JST 10 Jump and store P in E 2.64 2-3

ARR 040600 A right rotate 1.08 + .24N 2-6 LOA 02 Load A from E 1.88 2-3

ARS 040500 A right shift 1.08 + .24N 2-6 LOX 35 Load index from E 1.88 2-3

CAl 000411 Clear active interrupt 1.28 2-24 LEQ 140413 Logicize A equal to zero 1.54 2-7

CAL 141050 Clear A left 1.36 2-4 LF 140416 Logicize false 1.54 2-7

CAR 141044 Clear A right 1.36 2-4 LGE 140414 Logicize A greater than

CAS 11 Compare A with C(E) or equal to zero 1.54 2-7

and skip 2.64-2.92-3.20 2-12 LGT 140415 Logicize A greater

CAZ 140214 Compare A with zero than zero 1.54 2-7

and skip 1.52/1.80/2.08 2-12 LLE 140411 Logicize A less than

CEA 000111 Compute effective address 2.04 2-3 or equal to zero 1.54 2-7

Plus for each indirect LLL 041000 Long left logical 1.08 + .48N 2-5

level .88 LLR 041200 Long left rotate 1.08 + .68N 2-6

CHS 140024 Change sign of A 1.36 2-8 LLS 041100 Long left shift 1.28 + .48N 2-6

CMA 140401 Complement A 1.36 2-6 LLT 140410 Logicize A less than zero 1.54 2-7

CRA 140040 Clear A 1.28 2-4 LMCM 000501 Leave machine check

CRB 140014 Clear B 1.28 2-4 mode 1.28 2-15

CRL 140010 Clear long (A,B) 1.48 2-4 LNE 140412 Logicize A not equal

CSA 140320 Copy sign of A to C, set to zero 1.54 2-7

sign plus 1.36 2-8 LRL 040000 Long right logical 1.08+ .48N 2-5

DAD 06 Double add C(E,E+1) LRR 040200 Long right rotate 1.08 + .68N 2-6

to A,B 3.56 2-9 LRS 040100 Long right shift 1.08 + .48N 2-6

DBL 000007 Enter double precision LT 140417 Logicize true 1.54 2-7

mode 1.28 2-9 MPY 16 Multiply A by C(E) 10.48 2 .. 10

DIV 17 Divide A,B by C(E) 13.68-14.721 2-10 NOP 000001 No-op 1.68 2~14

DLD 02 Double load A,B from NRM 000101 Normalize 3.24 + .76N 2-11

E;E+1 2.96 2-9 OCP 14 Output control pulse 2.16 2-18

DRX 140210 Decrement and replace OTA 74 Output from A 2-19

index, skip 2.64 2-12 Not ready 2.04

DSB 07 Double subtract C(E,E+1) Ready 3.00

from A,B 3.32 or 3.6 2-9 OTK 000405 Output keys from A 2.12 2-16

(Either time may result OSI 000515 Output serial interface
from algorithm) from A 1.28 2-20

DST 04 Double store A,B into PID 000211 Position fOf integer

E,E+1 3.04 2-9 divide 2.08 2-11

DXA 000011 = E16S 1.28 2-2 PIM 000205 Position from integer
E16S 000011 Enter 16K sectored multiply 1.84 2-10

addressing mode 1.28 2-2 RCB 140200 Reset C bit 1.36 2-14
RMC 000021 Reset machine check 1.48 2-15

12.62 for divide overflow (normal case) RPM 000021 = RMC 1.48 2-14

C-l

Time Page NUMERIC LISTING
S1A 140110 =SOA 1.36 2-8
S2A 140310 Subtract two from A 1.36 2-8 When the programmer is inspecting the
SAR 10026n Skip on A bit n reset 2.04/2.32 2-13

lights to determine what instruction is in SAS 10126n Skip on A bit n set 2.04/2.32 2-13
SCA 000041 Load shift count to A 2.16 2-11 a particular memory location, he should
SCB 140600 Set C bit 1.36 2-14

first interpret bits 1-6 as a pair of octal SGL 000005 Enter single
2-9 precision mode 1.28 digits for identification of memory refer-SGT 100220 Skip on A greater

than zero 2.04/2.32 2-13 ence and 10 instructions. If lights 3-6 are
SKP 100000 Skip 2.32 2-13

all off, the instruction is in the generic SKS 34 Skip on 1/0 condition 2.16/2.44 2-19
SLE 101220 Skip on A less than

2-13 class and the whole word should then be or equal to zero 2.04/2.32
SLN 101100 Skip on A LSB nonzero 2.04/2.32 2-13 interpreted as six octal digits.
SLZ 100100 Skip on A LSB zero 2.04/2.32 2-13
SMCR 100200 Skip on machine

2-13
Memory Reference and Input-Output

check reset 2.04/2.32
00/20/40/60 Generic 10/30/50170 JST/,1/*1* ,1 SMCS 101200 Skip on machine

2-13 01/21141/61 JMP/,1/*1* ,1 11131151171 CAS/,11*1* ,1 check set 2.04/2.32
02/22/42/62 LDA/,1/*1* ,1 12132152172 IRS/,1/*1* ,1 SMI 101400 Skip on A minus 2.04/2.32 2-13
02/22/42/62 DLD/,11*1* ,1 13133153173 IMA/,11*1* ,1

SMK 74XX20 Set interrupt mask 03/23/43/63 ANA/,1/*1* ,1 14134154174 Input-output from A 2.59 2-24
04/24/44/64 STA/,11*1* ,1 14 OCP SNZ 101040 Skip on A nonzero 2.04/2.32 2-13
04/24/44/64 DST/,1/*1* ,1 34 SKS SOA 140110 Subtract one from A 1.36 2-8
05/25145/65 ERA/,11*1* ,1 54 INA SPL 100400 Skip on A plus 2.04/2.32 2-13 74 OTA SPN 100200 = SMCR 2.04/2.32 2-13
06/26/46/66 ADD/,1/*1* ,1 15155 STX/*

SPS 101200 = SMCS 2.04/2.32 2-13
06/26/46/66 DAD/,1/*1* ,1 35175 LDX/*

SNR 10024n Skip on sense switch n 07127147167 SUB/,1I*1* ,1 16136/56176 MPY/,lI*l* ,1 reset 2.04/2.32 2-14
07127147167 DSB/,11*1* ,1 17137157177 DIV/,1/*1* ,1

SR1 100020 Skip on reset sense
switch 1 2.04/2.32 2-13 Generic

SR2 100010 Skip on reset sense
2-13 000000 HLT 040500 ARS 101400 SMI

switch 2 2.04/2.32 000001 NOP 040600 ARR 140010 CRL
SR3 100004 Skip on reset sense

2-13 000005 SGL 041000 LLL 140014 CRB
switch 3 2.04/2.32 000007 DBL 041100 LLS 140024 CHS

SR4 100002 Skip on reset sense 000011 E16S 041200 LLR 140040 CRA
switch 4 2.04/2.32 2-13 000011 DXA 041400 ALL 140100 SSP

SRC 100001 Skip on reset C bit 2.04/2.32 2-13 000013 E32S 041500 ALS 140104 XCA
SNS 10124n Skip on sense switch

2-14 000013 EXA 041600 ALR 140110 SOA
n set 2.04/2.32 100000 SKP 140110 S1A

SS1 101020 Skip on set sense
2-13

100001 SRC 140114 IRX
switch 1 2.04/2.32 000021 RMC 100002 SR4 140200 RCB

SS2 101010 Skip on set sense 000021 RMP 100004 SR3 140204 XCB
switch 2 2.04/2.32 2-13 000041 SCA 100010 SR2 140206 AOA

SS3 101004 Skip on set sense 000043 INK 100020 SR1 140206 A1A
switch 3 2.04/2.32 2-13 000101 NRM 100036 SSR 140210 DRX

SS4 101002 Skip on set sense 000111 CEA 100040 SZE 140214 CAZ
switch 4 2.04/2.32 2-13 000201 lAB 100100 SLZ 140216 ACA

SSC 101001 Skip on set C bit 2.04/2.32 2-13 000205 PIM 100200 SMCR 140304 A2A
SSM 140500 Set sign of A minus 1.36 2-8 000211 PID 100200 SPN 140310 S2A
SSP 140100 Set sign of A plus 1.36 2-8 000311 VIRY 100220 SGT 140320 CSA
SSR 100036 Skip on aU of sense 000401 ENB 100240 SR 140401 CMA

switches 1-4 reset 2.04/2.32 2-13 000405 OTK 100260 SAR 140407 TCA
SSS 101036 Skip on any of sense 000411 CAl 100400 SPL 140410 LLT

switches 1-4 set 2.04/2.32 2-13 000415 ESIM 101001 SSC 140411 LLE
STA 04 Store A in E 1.96 2-3 000417 EVIM 101002 SS4 140412 LNE
STX 15 Store index in E 1.96 2-3 000501 EMCM 101004 SS3 140413 LEQ
SUB 07 Subtract C(E) from A 1.96 2-8 000503 LMCM 101010 SS2 140414 LGE
SVC 000505 Supervisor call 3.24 2-14 000505 lSI 101020 SS1 140415 LGT
SZE 100040 Skip on A zero 2.04/2.32 2-13 000515 OSI 101036 SSS 140416 LF
TCA 140407 Twos complement A 1.64 2-8 001001 INH 101040 SNZ 140417 LT
VIRY 000311 Verify 2-15 001013 E32R 101100 SLN 140500 SSM
XCA 140104 Transfer A to Band 101200 SMCS 140600 SCB

clear A 1.68 2-4 101200 SPS 141044 CAR
XCB 140204 Transfer B 10 A and 040000 LRL 101220 SLE 141050 CAL

clear B 1.68 2-4 040100 LRS 101240 SS 141140 ICL
* 100000 Indirect .88 040200 LRR 101260 SAS 141240 ICR
,1 040000 Index 040400 ARL 141340 ICA

C-2

APPENDIXD 227 ETB End of transmission block; also LEM,

INPUT -OUTPUT CODES
logical end of medium. Control W.

230 CAN Cancel (CANCL). Control X.
231 EM End of medium. Control Y.

The following table lists the complete ASCII 232 SUB Substitute. Control Z.

code, with information pertaining to its 233 ESC Escape, prefix. Control shift K.
234 FS File separator. Control shift L.

use with Teletype Models 33 and 35. 235 GS Group separator. Control shift M.
236 RS Record separator. Control shift N.

The lower case character set (codes 140-176) 237 US Unit separator. Control shift O.

is not available on these models, but giving 240 SP Space.
241

one of these codes causes the teletype- 242

writer to print the corresponding upper a·Bit
case character. The definitions of the con- Octal

trol codes are those given by ASCII. Most
Code Character Remarks
243 #

control codes however have no effect on 244 $
245 %

the computer teletypewriter, and the defini- 246 &

tions bear no necessary relation to the 247 Accent acute or apostrophe.
250 (

use of the codes in conjunction with the 251)
252 * software. Following the ASCII table is a 253' +

complete listing of the Prime I/O devices 254
255

with their device and identification codes 256

and mask bit assignments. 257 I
260 0

a·Bit 261 1
Octal 262 2
Code Character Remarks 263 3
200 NUL Null, tape feed. Control shift P. 264 4
201 SOH Start of heading; also SOM, start of 265 5

message. Control A. 266 6
202 STX Start of text; also EOA, end of address. 267 7

Control B. 270 a
203 ETA End of text; also EOM, end of message. 271 9

Control C. 272
204 EOT End of transmission (END); shuts off 273 ,

TWX machines. Control D. 274 <
205 ENQ Enquiry (ENQRY); also WRU, "Who are 275

you?" Triggers identification (Here 276 >
is ... ") at remote station if so 277 ?

equipped. Control E. 300 @

206 ACK Acknowledge; also RU, "Are you ... ?" 301 A
Control F. 302 B

207 BEL Rings the bell. Control G. 303 C

210 BS Backspace; also FEO, format effector. 304 D

Backspaces some machines. Repeats 305 E

on Model 37. Control H. 306 F

211 HT Horizontal tab. Control I. 307 G

212 LF Line feed or line space (NEW LINE); 310 H
advances paper to next line. Control J. 311 I

213 VT Vertical tab (VTAB). Control K. 312 J

214 FF Form feed to top of next page 313 K

(PAGE). Control L. 314 L

215 CR Carriage return to beginning of line. 315 M
Control M.

216 SO Shift out; changes ribbon color to red. a·Bit
Control N. Octal

217 SI Shift in; changes ribbon color to black. Code Character
ControlO. 316 N

220 DLE Data link escape. Control P (DCO). 317 0
221 DC1 Device control 1, turns transmitter 320 P

(reader) on. Control Q (X ON). 321 Q
222 DC2 Device control 2, turns punch or 322 R

auxiliary on. Control R (TAPE, AUX ON). 323 S
223 DC3 Device control 3, turns transmitter 324 T

(reader) off. Control S (X OFF). 325 U
224 DC4 Device control 4, turns punch or 326 V

auxiliary off. Control T (TAPE, AUX 327 W
OFF). 330 X

225 NAK Negative acknowledge; also ERR, 331 Y
error. Control U. 332 Z

226 SYN Synchronous idle (SYNC). Control V. 333 [

D-1

334 I Device Identifi- Mask
335] Code cation Bits Device
336 f::, 05
337 06
340 Accent grave. 07
341 a 10
342 b 11
343 c 12
344 d 13
345 e 14
346 f 15
347 g 16
350 h 17
351 i 20 X20 16 RTC interrupt mask
352 j 20 Control panel
353 k 21
354 I 22 X22- 4,8 Fixed head disk
355 m 23
356 n 24
357 0 25 X25 4,8 Moving head disk
360 p 26
361 q 27
362 r 30
363 s 31
364 t 32
365 u 33
366 v 34
367 w 35
370 x 36
371 Y 37
372 z
373
374 40
375 41
376 42
377 DEL 43

44

On early versions of the Model 33
45
46

and 35, either of these codes may 47
be generated by either the AL T 50
MODE or ESC key. 51
Delete, rub out. 52

Keys That Generate No Codes 53
54

REPT Causes any other key that is struck to 55
repeat continuously until REPT is 56
released. 57

LOC LF Local line feed. 60
LOCCR Local carriage return. 61

Opens the line (machine sends a con- 62
tinuous string of null characters). 63

BRK RLS Break release (not applicable). 64
HERE IS Transmits predetermined 20·character 65

message. 66
10 DEVICES 67

70
Device Identifi- Mask 71
Code cation Bits Device 72

00 73
01 X01 9 High speed reader 74
02 X02 10 High speed punch 75
03 76
04 X04 11 Teletypewriter 77

D-2

JPIRJIMIE
PRIME COMPUTER, INC., 17 STRATHMORE ROAD, NATICK, MASSACHUSETTS 01760

Printed In U.SA. 01 2

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	A-01
	A-02
	B-01
	C-01
	C-02
	D-01
	D-02
	xBack

