Prime Computer, Inc.

MRU4304-010P

Software Release
Document

Revision 19.2

Software Release
Document

MRU4304-010

Revision 19.2

by
Sarah L.amb and John Seybold

This guide documents the software operation of the Prime Computer and

its supportlng systems and utilities as 1mp1emented at Master Disk
Revision Level 19.2 (Rev. 19.2).

Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1983 by
Prime Computer, Incorporated
500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
PRIMENET, RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic

Design Management System, EDMS, PRIMEWAY, and THE PROGRAMMER' S
(OMPANION are trademarks of Prime Computer, Inc.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers Prime Employees
Software Distribution Communications Services
Prime Computer, Inc. MS 15-13, Prime Park
1 New York Ave. Natick, MA 01760
Framingham, MA 01701 (617) 655-8000 X4837

(617) 879-2960 X2053

Custamers Outside U.S.

Contact your local Prime
subsidiary or distributor.

P

(8

PRINTING HISTORY — Software Release Document

Edition Date Number Documents Rev.

First June 1983 MRU4304-010 19.2

SUGGESTION BOX

All correspondence on suggested changes to this document should be
directed to:

Sarah Lamb

Technical Publications Department
Prime Computer, Inc.

500 0ld Connecticut Path
Framingham, Massachusetts 01701

iii

Contents

ABOUT THIS BOOK vii

1 INTRODUCTION

In This Chapter 1-1
Overview of Rev., 19.2 1-1
Installing Rev. 19.2 1-3
New Book Titles 1-3

2 PRIMOS AND UTILITIES

PRIMOS 2-1
BOOT_CREATE 2-9
69) -11
COPY_DISK 2-13
CPL 2-15
Editor 2-17
EDIT_PROFILE’ 2-19
EMACS 2-21
FIX DISK 2-23
LABEL 2-25
LD 2=-27
LOGPRT 2-31
MAGLIB 2-33
MAGNET 2-35
MAGSAV/MAGRST 2-37
MAKE 2-39
PHYSAV/PHYRST 2-43
PRINT_SYSLOG/PRINT NETLOG 2-45
RUNOFF 2-47
SEG 2-49
SLIST 2-51
SORT 2-53
SPOOL 2-55
Subroutines 2-57
3 LANGUAGES
BASIC/VM 3-1
COBOL 3-3
DBG (Source Level Debugger) 3-5
FORTRAN (FTN) 3-7
FORTRAN 77 (F77) 3-9
Pascal 3-15
PL/I, Subset G 3-31

PMA 3-33

RFINLIB
VFTNLIB
VREG

4 DATA MANAGEMENT SYSTEMS

DBMS
DBMS/QUERY
MIDAS
MIDASPLUS
POWERPLUS

5 HARDWARE SUPPORT
The Prime 9950

ICS2 Communications Controller
PST 100 Terminal

vi

3-37
3-39
3-41

4-1
4-5
4-7
4-9
4-13

5-1
5-3
5=7

About
This Book

This book summarizes the changes and new features in Prime's user
software at Rev. 19.2 of PRIMOS. One chapter is devoted to each of the
following:

PRIMOS and Utilities (Chapter 2)
Languages (Chapter 3)
Data Management Systems (Chapter 4)

Hardware Support (Chapter 5)

Within each chapter, the information on each product (e.g., QOBCL,
MIDAS, RJE) begins on a new right-hand page. Pages can thus be
extracted from this book and placed in other manuals as necessary.

Note

This book is designed to supplement other manuals. Its pages

are

not replacement pages, and its pagination does not

correspond to the pagination of other books.

vii

For each individual product, this book provides the following
information (where applicable):

® New features in the software at Rev. 19.2
e Documentation corrections and additions
® Software problems fixed at Rev. 19.2

e Software problems outstanding as of Rev. 19.2

Upgrade Paths to Rev. 19.2

The most common upgrade path to Rev. 19.2 is from Rev, 19.1.

Rev. 19.2 introduces a number of new features and corrections to
software problems. In addition, Rev. 19.2 incorporates all of the
features, corrections, and changes that were introduced at Rev. 19.1.

New Features

This book describes features that are new at Rev. 19.2., For a summary
of Rev, 19.1, refer to the Rev. 19.1 Software Release Document
(MRU4304-009) .

Documentation Corrections

This book contains a number of corrections and additions for other
Prime software manuals. It is assumed that you have access to our most
recent documentation. Lists of new books and updates can be found in
the following places:

® The section called NEW BOOK TITLES, in Chapter 1, for new titles
at Rev. 19.2

® The Rev, 19.1 Software Release Document (MRU4304-009), £for new
titles at Rev. 19.1

This book does not repeat documentation corrections that were printed
in previous Software Release Documents.,

Software Problems Fixed

The corrected software problems listed in this book are those first
fixed at Rev. 19.2.

viii

Software Problems Outstanding

This book lists some of the software problems outstanding as of
Rev. 19.2. For further information, contact your Prime field engineer.

ix

MRU10 INTRODUCTION

CHAPTER 1

INTRODUCTION

IN THIS CHAPTER

This chapter provides:
® An overview of Rev, 19.2.
e Information on installation of Rev. 19.2.

@ Alist of new titles from Prime's Technical Publications
Department.

OVERVIEW OF REV, 19.2

New Features and Products

Rev. 19.2 introduces the following new software products:
e Software support for a new Central Processor, the 9950
e Software support for the ICS2 Communications Controller

In addition, at Rev. 19.2, new features or enhancements have been added
to the following products:

BOOT_CREATE MAKE

QOPY_DISK MIDASFLUS

CPL Pascal

EDIT_PROFILE PHYSAV/PHYRST

EMACS PMA

FIX _DISK PRIMDS

FORTRAN 77 PRINT._SYSLOG/PRINT NETLOG
LABEL RFTNLIB

LD SEG

LOGPRT SLIST

MAGLIB Source Level Debugger
MAGNET VFTNLIB
MAGSAV/MAGRST VREG

1 - 1 June 1983

CHAPTER 1 MRU10

Documentation Changes

This book contains documentation corrections or additions for manuals
on the following products:

BASIC/VM MIDASPLUS
QOPY_DISK Pascal

DBMS PMA
DBMS/QUERY POWERPLUS
EMACS PRIMOS
FORTRAN 77 RUNOFF
MAGNET SEG

MIDAS Subroutines

Software Problems Fixed

Problems in the following products have been corrected:

BASIC/VM MIDAS
QOBOL MIDASPLUS
QOPY_DISK Pascal
CPL PHYSAV/PHYRST
DBMS PL/1, Subset G
DBMS/QUERY PMA
Editor PRIMOS
EDIT_PROFILESEG
FORTRAN SORT
FORTRAN 77 SPOOL
LD : VFTNLIB
MAGLIB VREG
MAGSAV/MAGRST

Software Problems Outstanding

This book describes software problems outstanding in the following
products:

COBOL MIDASPLUS
QOPY PL/1, Subset G
DBMS PMA
DBMS/QUERY SEG

MIDAS

REV. 0 1 - 2

MRU10 INTRODUCTION

INSTALLING REV., 19.2

The Rev. 19.2 Master Disk is in complete Master Disk format, rather
than in the update format that is normally used at minor (dot)
revisions. The Rev. 19.2 Master - Disk contains all Master Disk
software, including the software that has not changed since Rev. 19.0.
Rev, 19.2 can therefore be installed without prior installation of
Rev. 19.0.

For information on installing a Rev. 19 system, refer to the Rev, 19.0
Planning and Installation Guide (DOC6426-190).

NEW BOOK TITLES

The following new technical publicaticons are available at Rev. 19.2.

Primos and Utilities

DOC3060-192P System Architecture Guide [perfect bound]
DOC3060-192L System Architecture Guide [loose-leaf]

This book replaces the System Architecture Reference Guide
{PDR3060-182) . Intended for technical evaluators, system
administrators, system programmers and planners, the new System
Architecture Guide describes the intermal functioning of Prime 50
Series and 9950 computers. It discusses process exchange, memory
management, procedure calling, protection rings, hardware integrity
mechanisms, interrupts, traps, checks, faults, and input/output. The
new book also provides a complete listing of the instruction set for
the 9950 and all Prime 50 Series systems.

DOC5029-192P Site Preparation Guide [perfect bound]
DOC5029-192L Site Preparation Guide [loose-leaf]

This quide is written for custamers who are planning to install Prime
equipment in their facilities, It describes activities typically
associated with site preparation, from initial consideration through
final checkout. It is addressed both to custamers using Prime Customer
Service and to customers using their own personnel for installation of
Prime equipment in a new or existing facility.

UPD5037-192 System Administrator's Guide Update, Rev. 19.2
This update package describes new features affecting system

administrators at Rev. 19.2, including changes for the ICS2
controller, changes to EDIT_PROFILE, and changes to shared libraries.

1 - 3 June 1983

CHAPTER 1 MRU10

DOC7323-192P System Operator's Guide, Volume I [perfect bound]
DOC7323-192L System Operator's Guide, Volume I [loose-leaf]

This two-volume book provides guidelines for the successful daily
operation of a Prime computer. Volume I is primarily concerned with
hardware operations, such as system startup and shutdown. It also
provides an overview of system organization and operation and explains
operation of the Prime 9950, the Prime 2250, the 50 Series systems,
including the 250-1I, 550-1I, 750, 250, 450, 550, 650, 850, and the 400
family, including the 350, 400, and 500.

DOC7324-192P System Operator's Guide, Volume II [perfect bound]
DOC7324-192L System Operator's Guide, Volume II [loose-leaf]

This volume covers system maintenance tasks, such as monitoring system
resources and performing backups and restorations. It provides
guidelines for performing these tasks and describes the utilities used
to accomplish them. After an overview of PRIMOS and the operator's
tasks, it details the general procedures an operator uses to keep the
system running smoothly. Volume II also contains reference material on
system operator commands and additional reference material on such
topics as physical device numbers and error messages.

Languages

DOC3524-192P SEG and LOAD Reference Guide [perfect bound]
DOC3524-1921, SEG and LOAD Reference Guide [loose-leaf]

This book is a complete revision of the LOAD and SEG Reference Guide
(PDR3524-172). It should be used by anyone with Rev. 18.0 or later
PRIMOS. The book includes an illustrated discussion of what happens on
a default load, detailed steps for several types of advanced loads, and
numerous new examples and sample programs.

DOC4029-192L, FORTRAN 77 Reference Guide [loose-leaf]
DOC4029-192P FORTRAN 77 Reference Guide [perfect bound]

This book has been revised to include the REAL*16 quadruple-precision
floating-point data type and the new functions that use it at Rev. 19.2
and later. The reader is expected to be familiar with some version of
FORTRAN and with programming in general, but not necessarily with Prime
computers. The book describes FORTRAN as a language, Prime extensions
to F77, and F77 as it is implemented on Prime computers. It also
explains how to compile, load, and run F77 programs and includes
suggestions for the optimization of F77 programs.

REV. 0 1 - 4

MRU10 INTRODUCT ION

UPD4303-192 Pascal Reference Guide Update, Rev. 19.2

This document updates the Second Edition of the Pascal Reference Guide
(DOC4303-191) and covers the new STRING data type and other Pascal
features new at Rev. 19.2. The STRING data type makes it easy to
manipulate strings in Prime Pascal, as does PL/1G's CHARACTER VARYING
type. A concatenation operator and nine built-in functions were also
added at 19.2 to support STRING operations. This update makes several
documentation corrections as well.

PIU2600-104 Rev. 19.2 Assembly Language Programmer's Guide

This Prime Technical Update describes the changes made to Prime's
assembly language for Rev. 19.2. It covers the new
quadruple-precision floating-point data type and the instructions that
manipulate it. The update also contains new instructions for the Prime
850 and numerous corrections to previous documentation.

Data Management

DOC6291-192P IBMS User's Guide [perfect bound]
DOC6291-192L DBMS User's Guide [loose-leaf]

This book is a user's guide for DBMS, Prime's CODASYL-based Data Base
Management System. It presents an overview of basic data base
concepts, as well as general information about data base design,
installation, programming, and recovery. The book focuses on concepts
rather than software; other Prime documentation discusses DBMS
software in detail. This book presumes that the reader has little or
no familiarity with DBMS, but is familiar with Prime's operating
system, editing facilities, and either CQOBOL. or FORTRAN on Prime
systems,

EMACS

DOC7446-192P EMACS Standard User Interface Guide [perfect bound]
DOC7446-192L. EMACS Standard User Interface Guide [loose-leaf]

This book explains how to use the Standard User Interface (SUI). The
SUI is an EMACS-based screen editor that runs on Prime's PST 100 and
PT45 terminals., With the SUI, users can edit files using the
terminal's function keys, which greatly simplifies all editing tasks.

Prime also supplies templates that fit over the function keys of the
PST 100 and PT45 terminals, labelling the keys by function. These
reduce the amount of memorization needed to use the Standard User
Interface.

1 - 5 June 1983

CHAPTER 1 MRU10

PTU2600-105 EMACS Rev. 19.2

This document describes the changes made to EMACS for Rev. 19.2.

Prime INFORMATION

DOC3909-053P Prime INFORMATION Primer [perfect bound]
DOC3909-053L Prime INFORMATION Primer [loose-leaf]

This primer is an introduction to Prime INFORMATION, an all-purpose
data management system that enables both programmers and
non-programmers to turn data into useful information. Topics covered
include introductory concepts, file creation, file management, report
generation, and an introduction to menus. The book is mainly tutorial
and assumes little or no familiarity with data management systems.
Several chapters contain advanced reference information to help users
who have become more familiar with the system. An automobile
dealership application is used as an example throughout the primer.

Office Automation

DOC6756-030P OAS Word Processing Guide (PT65) [perfect bound]
DOC6756—-030L OAS Word Processing Guide (PT65) [loose-leaf]
DOC6757-030P OAS Word Processing Guide (PT45) [perfect bound]
DOC6757-030L OAS Word Processing Guide (PT45) [loose-leaf]
DOC6877-030P OAS Word Processing Guide (PST 100) [perfect bound]
DOC6877-030L OAS Word Processing Guide (PST 100) [loose~-leaf]

Intended for the beginning OAS user. No background in programming,
computer operations, or word processing is required. Rnowledge of the
Management Communications and Support module of Prime's Office
Automation System is also not necessary.

There are separate books for each type of terminal——PT65, Pr45, and PST
100. Each book gives complete instructions for using the Word
Processing module of Prime's OAS., Word processing functions include
creating, editing, and printing documents, as well as list processing
to create personalized form letters and special reports. In addition
to tutorial material, this guide includes an alphabetical reference
section summarizing all editing functions.

A useful follow-up to this book is the OAS Management Communications
and Support Guide.

REV. 0 1 - 6

MRU10 INTRODUCTION

DOC6755-030P OAS Management Communications and Support Guide
[perfect bound]

DOC6755-030L OAS Management Communications and Support Guide
[loose-leaf]

Intended for the beginning OAS user. No background in programming or
computer operations is required.

This guide provides complete instructions for using all functions of
the Management Communications and Support module of Prime's OAS on all
terminals—PT65, PT45, and PST 100, These functions include sending,
receiving, and filing electronic mail, electronically arranging
appointments, and maintaining an automated calender.

Familiarity with the appropriate OAS Word Processing Guide may be
helpful in using some of the MCS functions.

DOC6754-030P OAS Advanced Text Management Guide [perfect bound]
DOC6754-030L OAS Advanced Text Management Guide [loose-leaf]

Intended for the experienced Word Processing user whose system includes
the Advanced Text Management module of Prime's OAS. Familiarity with
the appropriate OAS Word Processing Guide is required.

This quide provides instructions for using all functions of Advanced
Text Management. These include proofreading English documents,
maintaining English and foreign lanquage dictionaries, translating
words from and into selected foreign languages, and searching documents
for selected phrases. The book is written for users of all
terminal s—PT65, PT45, and PST 100,

DOC6781-030P OAS System Administrator's Guide [perfect bound]
DOC6781-030L OAS System Administrator's Guide [loose-leaf]

Intended for the OAS system administrator who is familiar with all OAS
functions. No background in computer programming or operations is
required. Familiarity with the appropriate OAS Word Processing Guide,
the OAS Management Communications and Support Guide, and the 0AS
Advanced Text Management Guide is required.

This quide provides information on all System Administrator functions
for OAS. These include creating and maintaining the system calender,
network directory, user records, and document data base. Instruction
is also provided for monitoring system usage, troubleshooting printer
problems, and performing other tasks related to the administration of
an OAS,

1 - 7 June 1983

CHAPTER 1 MRU10

PrU2600-100 Using OAS on the PT'25 Workstation

This update discusses the PI25 keyboard and the use of its function
keys in OAS. Users can combine this document with the OAS Management
Communications and Support Guide and with the OAS Word Processing Guide

(PT45 or PST 100) to obtain a full set of instructions for using the
PT25 with OAS.

PTU2600-102 Using OAS on Hard-copy and Non—OAS Standard Terminals
OAS can be used in teletypewriter (TTY) mode on hard-copy terminals and

on video display terminals that do not meet minimum standards for OAS
support. This update provides instructions for using TTY mode.

REV. 0 1 - 8

MRU10 FRIMOS AND UTILITIES

CHAPTER 2

PRIMOS AND UTILITIES

PRIMOS

NEW FEATURES AND CHANGES

WARNING

User software that uses any of the three reserved words in a
directory entry must be changed. At Rev. 19.2, these words are
used by PRIMOS.

Before converting to Rev. 19.2, run FIX DISK to be sure these words are
Cleared. If you do not do so, some file utilities may fail with the
message:

Improper access of restricted file

or LD may display a file attribute as "invalid".

Conversion Procedure for EDIT PROFILE

System Administration Directories (SADs) created with Rev. 19.0
EDIT_PROFILE must be rebuilt before they can be read by 19.2 or later
versions of EDIT PROFILE.

Note

The SAD must be rebuilt before users log in under Rev. 19.2.

The SAD has to be rebuilt for the following reasons:

1., The 19.0 version of EDIT PROFILE did not set the version number
in the project files correctly. Although the 19.0 version runs
under Revs 19.0 and 19.1, it fails at Rev. 19.2 with the
message:

Can't read project project id: bad version number.

2 - 1 June 1983

CHAPTER 2 MRU10

2. If you have never used the Rev. 19.0 version of EDIT PROFILE,
you will not run into problem 1. However, you must rebuild your
SAD in order to take advantage of the new features of
EDIT PROFILE at Rev. 19.2.

The System Administrator should rebuild the SAD project by project with
the EDIT PROFILE subcommand:

REBUILD -PROJECT project id

To do this, use EDIT PROFILE Rev, 19.l1. Execute the program
EDIT_PROFILE.19.1.SAVE.

If you do not rebuild the SAD project by project, your other choice is
to delete your old SAD and create a completely new one with the Rev.
19.2 version of EDIT_PROFILE,

For further details, see the EDIT PROFILE section later in this
chapter.

Number of Segments Available in PRIMOS

The limit on the total number of segments available for all users has
been increased from 1022 to 8192.

Maximum Size of a Paging Surface

The maximun size of a paging surface is now 469278 records. For
details, see the System Operator's Guide for Rev. 19.2.

Changes for New Processor

Some changes have been made to PRIMOS to support the 9950, a new
processor introduced at Rev. 19.2. These include changes for the
battery clock and enviromental sensors included with the processor.
For details on these changes, see Chapter 5.

SETIME and MAXUSR Commands

The SETIME command nhow sets only system time and date, while its
function of controlling user login after system startup is assumed by
the MAXUSR command. The first MAXUSR command, issued after the system
time is set, allows users to log in. A MAXUSR command issued before
system time is set has no effect.

REV. 0 2 - 2

MRU10 PRIMOS AND UTILITIES

Larger Physical Memory

PRIMOS now supports physical memory of up to 16 megabytes for those
processors that support it in the hardware. The previous limit was 8

megabytes,

Command Processor

The following selection criteria have been added to the wildcard
portion of the command line processor:

-MODIFIED AFTER date Same as —-AFTER option (added for

-MDA date umniformity of user interface)
-MODIFIED BEFORE date Same as -BEFORE option (added for
-MDB date wniformity of user interface)
-SAVED_AFTER date Reserved for future use.
-SVA date
-SAVED BEFORE date Reserved for future use.
-SVB date
-RBF Reserved for future use.

MAGLIB

MAGLIB, the library containing tape routines, which was part of MAGNET,
is now a shared library. The following lines, therefore, must be added
to the C_PRMD file in CMDNCO:

ORR 1
SHARE SYSTEM>ML2222 2222
RESUME SYSTEM>MLA4000 1/16
O 0

The new C_PRMO.TEMPLATE is shown in the update to the System
Administrator's Guide for Rev. 19.2, UPD5037-192.

LD

The output returned by the LD command has been heavily modified, and
six new options have been added. For details, see the section on LD
later in this chapter.

The file type field has been expanded to include some new file types,

which are reserved for future use., Another field has been reserved for
future use, and will be marked as "not set".

2 - 3 June 1983

CHAPTER 2 MRU10

LOGIN

At Rev. 19.2, a process can take an abort while logging in. A new
inactivity timeout has also been added, limiting the time a process can
take to log in. For more details, see the section on LOGIN later in
this chapter.

New LOTLIM Configuration Directive

LOTLIM specifies how long processes can take to log in. The format of
this directive is:

LOTLIM n

where n is the number of minutes that PRIMOS will allow for a process
to log in. The minimum value of n is 2, and the default is 3. It is
recommended that most systems retain the default, which should provide
enough time for users to type in a password and project id, and for
PRIMDS to validate them.

LOGOUT: The command processor now prohibits a return to command level
during a logout grace period.

USAGE: The parameters $ASYNC and $ICS now indicate CPU percentage
required to support both ICS1 and ICS2 controlliers.

STATUS: The STATUS (QOMM command now recognizes ICS2 controllers and
displays the device address and number of asynchronous lines attached
to each ICS2 on the system. For example:

OK, STATUS QOMM

Device Lines
Controller Type Address Async Sync

ICs2 11 32 0
AMLC 1, 0] 54 16 0

N
|
L3

REV. 0

MRU10 PRIMOS AND UTILITIES

New ICS INRQSZ Configuration Directive

ICS INRDSZ, a new cold start directive, has been introduced at Rev 19.2
to provide functionality similar to the AMLIBL directive for AMLCs.
For details on the ICS INRQSZ directive, see Chapter 5 of this book.

New Configuration Error Message

A new error message now appears if NSLUSR is found to be too large at
cold start.

e NSLUSR IS TOO BIG (BINIT)
NSLUSR DEFAULTS TO ITS MAXIMUM VALUE: 63

The number of slave users specified by an NSLUSR directive exceeds the

maximum number of configurable slave users ('77, decimal 63). Cold
start continues, with the system configured for 63 slave users.

DOCUMENTATION CORRECTIONS

NLBUF Configquration Directive: Page 2-1 of the Revision 19.1 Software
Release Document (MRU4304-009) misspells the directive as "NLBUFS".
The correct version can be found on pages 1-31 and 3-13 of the §zst
Administrator's Guide Update, Rev. 19.1 (UPD5037-191).

PAGDEV: If specified, the minimum value for records is '10 (8
decimal). See page 3-15 of the System Administrator's Guide Update,
Rev., 19.1 (UPD5037-191).

Physical Device Numbers: Corrected versions of the table of "Physical
Device Numbers for Storage Modules and Fixed Media Devices" can be
found on pages A-4 and A-5 of the System Administrator's Guide Update,
Rev.19.1 (UPD5037-191) and on pages D6 and D-7 of the Syst
Operator's Guide Update, Rev. 19.0 (UPD5038-190).

The following corrections apply to the System Administrator's Guide
(DOC5037-190) .

Iword: On page 8-12, the description of the lword option of the AMLC
command should include the following additional note (POLER #47364) :

Note

Bit 2 of lword is meaningful only if bit 1 is set.

2 - 5 June 1983

CHAPTER 2 MRU10

Disks—Backup Considerations: 1In the first full sentence on page 6-6,
change "...partitions of two, three, or five surfaces..." to
", ..partitions of one to five surfaces..."

The following corrections apply to the PRIMOS Commands Reference Guide
(FDR3108-190) .

DELAY Command: On page 2-42, under the entry for DELAY, insert at the
end of the first paragraph (POLER #51311):

All parameters of the DELAY command must be specified in octal.

~-BEFORE/-AFTER Date Formats: In response to a question about why the
—BEFORE/-AFTER date formats are not more fully documented in the guide:
Page 4-7 points the user to Chapter 18 of the Prime User's Guide
(DOCA130-190) . Explanation of date formats requires over two full
pages; it is provided in one book and too long to be duplicated
elsewhere (POLER #51252).

SOFTWARE PROBLEMS FIXED

USAGE: USAGE now handles 32-character user ids. User ids of up to
eignt characters are printed on the same 1line as the statistics;
longer ones cause the statistics to be printed on the following 1line.
Output with the -BRIEF option has not changed; only the first six
characters of the user id are printed.

STATUS USERS: The user type of batch jobs now appears as "batch"
instead of "phant".

Semaphores: Quit and restart while waiting on a numbered or named
sema%ore rewaits on the semaphore.

File Truncation: A problem occurred when a file was truncated on a
modulo 1024 word boundary, leaving an empty record on the end of the
file. In DAM files, this rendered the DAM index inaccurate. If the
file was then extended again, further difficulties occurred. This
problem has been corrected (POLER #53066) .

DBG: The message "DBG.SAVE NOT FOUND IN COMDNCO" is now displayed if
DBG.SAVE is not in CMDNCO (POLER #51022).

REV. 0 2 - 6

MRU10 PRIMOS AND UTILITIES

Directory Passwords: A problem with the PASSWD command allowed the
creation of a password containing blanks. The ATTACH command then
prevented the use of the password to attach to the UFD. This problem
has been corrected (POLER #43014).

CPL: A syntax error in an &ARGS statement raised an ACCESS VIOLATIONS
signal at 32(3)/7765 (referencing 0(3)/0). 'This problem has been
corrected (POLER #40149).

2 - 7 June 1983

CHAPTER 2

REV, 0

MRU10

MRU10 PRIMOS AND UTILITIES

BOOT_CREATE

NEW FEATURES AND CHANGES

BOOL_CREATE is a new CPL utility that calls MAGSAV to create magnetic
tapes suitable for booting PRIMDS.

BOOT_CREATE opens and reads a list file containing the names of the
files to be saved on the boot tape. The format required for the list
file is described below.

BOOT_CREATE makes two passes of the list file, The first pass checks
that the files exist and can be accessed. If there is a problem with
either check, the option accompanying the pathname is evaluated and the

appropriate message given. On the second pass, MAGSAV is called, and
the files are written to tape.

The format of the command is:
P> BOOT_CREATE [pathname] [options]

where pathname specifies the name of the file that lists the files and
directories to be saved on the boot tape. This file can be stored
anywhere on the system., If a filename is not given on the command
line, the user is prompted for it 1later. A sample list file is
included on the master disk for the gquidance of users.

Options are as follows:

-HELP -H This prints a help text giving the calling sequence and
available options.

—-NOPASS -NP This suppresses any prompts for passwords. If any files
or directories are protected by a password, this is
logged as an error, and the program aborts at the end of
the first pass.

-MT [drive] This suppresses the drive number prompt. If -MI' is
specified without a number, drive 0 is assumed.

For further details on BOOT_CREATE, see Volume II of the System
Operator's Guide (DOC7324-192).

2 -9 June 1983

CHAPTER 2

REV. 0

MRU10

10

MRU10 PRIMOS AND UTILITIES

SOFTWARE PROBLEMS OUTSTANDING

A user may get several questions on the same object, and see multiple
and extra error messages, such as "ALREADY EXISTS", after answering no
to a prompt from QOPY. For example:

OK, QOPY DAIMLER.KXM602 DAIMLER -DELETE

"DAIMLER" already exists, do you wish to overwrite it? n
Already exists. "DAIMLER" (copy)

ER!

To merge directories and to move files into and out of a segment
directory, use FUTIL rather than QOPY.

2 - 11 June 1983

CHAPTER 2

REV. 0

MRU10

12

MRU10 PRIMOS AND UTILITIES

QOPY_DISK

NEN FEATURES AND CHANGES

(OPY_DISK now sets the reserved words in the MFD and the ACL pointer to
zero.

DOCUMENTATION CORRECTION

The following correction applies to the System Operator's Guide
(DOC5038-190) .

Handling Badspots- Page 7-11 states, "If the BADSPT file does not

Acra crmam~e Frz MADT e o o Aeoaads e Akl EHla TIAM oA Rl N A alea W
CTAL DL ¢y SpOLLLY D LU Wlic LJO.LDW LD Vil MWL Wi DINLY 1 QiU LIIT 1V ULDRDe
This information is incorrect, For the correct procedure, see page

7-11 of the System Operator's Guide Update, Rev., 19.0 (UPD5038-190).

SOFTWARE PROBLEMS FIXED

Copying to Virgin Disk: COPY_DISK now copies to a virgin disk whether
-NO_BADS is specified or not.

Copying from Virgin Source Partition: COPY_DISK does not copy from a
virgin source partition; 1if 1t encounters one, it aborts with the
message:

MFD HEADER IS CORRUPT OR NOT MADE ON PARTITION nn
bad format YOU CANNOT COPY FROM A VIRGIN DISK (BADADD)

2 - 13 June 1983

CHAPTER 2

REV. 0

MRU10

14

MRU10 FRIMOS AND UTILITIES

NEW FEATURES AND CHANGES

Changes to the WILD Function

These arguments have been added to the WILD function:

-MODIFIED AFTER date Same as —AFTER option (added for

-MDA date wmiformity of user interface)
-MODIFIED BEFORE date Same as —BEFORE option (added for
-MDB date wmniformity of user interface)
—-SAVED AFTER date Reserved for future use.

-SVA date

—~SAVED _BEFORE date Reserved for future use.

-SVB date

-RBF Reserved for future use.

Change to the ATTRIB Function

This argqument has been added to the ATIRIB function:

-DTS Reserved for future use.

SOFIWARE PROBLEM FIXED

&ARGS Statement: A syntax error in an &ARGS statement raises an
ACCESS_VIOLATIONS signal at 32(3)/7765 (referencing 0(3)/0)
(POLER #40149).

2 - 15 June 1983

CHAPTER 2

Rﬂ’o 0

MRU10

16

MRU10 PRIMOS AND UTILITIES

Editor

SOFTWARE PROBLEM FIXED

MODE GOUNT: The MODE QOUNT command has been fixed, Previously, an
abbreviated form of this command (such as MODE (QOU) would be treated as
if it were a MODE NOOUNT command (POLER $#43550) .

2 - 17 June 1983

CHAPTER 2

REV. 0

MRU10

18

MRU10 PRIMDS AND UTILITIES

EDIT_PROFILE

NEW FEATURES AND CHANGES

Initialization

System-wide and project-based groups are now always enabled on ACL
systems. EDIT_PROFILE no longer asks you to specify what kinds of
groups will use your system. :

Limits

The efficiently manageable limit on the number of users who may belong
to a project has changed from 2,000 to 20,000.

Prior to Rev. 19.2, the number of Project Administrators per system was
limited to 24, At Rev. 19.2 there is no limit on the number of Project
Administrators per system.

The efficiently manageable limit on the number of users per System
Administration Directory (SAD) has changed from 5,000 to 21,000,

Conversion Procedure for EDIT PROFILE

The data structures used by EDIT PROFILE prior to Rev. 19.2 differ from
those used at Rev. 19.2. 1In general, these data structures are upward
(not downward) compatible.
Some early versions of EDIT PROFILE did not set the version numbers
correctly. SADs built with these early EDIT PROFILES must be rebuilt
before they can be read by 19.2 or later versions of EDIT PROFILE.
Note

Rebuild any SAD created with a version of EDIT PROFILE earlier

than the 19.2.
The SADs should be rebuilt project by project using the EDIT PROFILE
subcommand

REBUILD -PROJECT project-id

This should be doné with EDIT PROFILE Rev. 19.1. It must be done
before users log in under Rev. 19.2.

2 - 19 ’ June 1983

CHAPTER 2 MRU10

For further details on EDIT PROFILE, see the System Administrator's
Guide Update, Rev., 19.2 (UPD5037-192).

SOFIWARE PROBLEM FIXED

LIST PRQJECT: The -OUTPUT option to the LIST _PROJECT subcommand now
works correctly. ‘

REV. 0 2 - 2

MRU10 PRIMOS AND UTILITIES

EMACS

NEW FEATURES AND CHANGES

The speed and performance of EMACS at Rev. 19.2 has been substantially
improved. EMACS now comes up much faster. Also, because its working
set is smaller, performance is improved in a multi-user envirorment.

Note

Previous EMACS documentation suggested that you store commands
that you write in EMACS*>LIB. If you are doing so, you should
remove them and place them in one of your own directories. In
the future, Prime may be overwriting and/or removing this
subdirectory.

Enhancements to EMACS

At Rev, 19.2, the command libraries contained in EMACS* have been
incorporated within EMACS. Consequently, you no longer need to use the
load command. Similarly, there is no need go through a load-like
procedure in library files when you are creating your own enviromments,
(These procedures were discussed in Appendix A of the EMACS Reference
Guide (IDR5026).

For compatibility, the load command remains within EMACS. However, it
now has no effect,

The following library commands replace previously used fundamental
commands :

01d Command New Command

tab type_tab

one_window mod_one_window
split_window mod _split_window
split_window_stay mod_split_window_stay
write file mod write file

All these commands are discussed in the EMACS Reference Guide,

The older commands are still available if you wish to continue using
them. All you need do is rebind them to a keypath in a 1library file,

2 - 21 June 1983

CHAPTER 2 MRU10

For example:
(set_permanent_key ""X1" "one_window")
This example rebinds the one _window function to CONTROL~X1.
In addition, the elimination of the load command has made obsolete some
of the information presented in Appendix A of the EMACS Reference

Guide., For more details on the new changes, see EMACS, Rev. 19.2.
(PTU2600-105) .

REG Mode

EMACS REG mode now supports Prime's VREG compiler as well as the REG
compiler. REG and VREG modes are identical for editing purposes. The
difference is in the "compile" command.

To enable REG mode for the VRPG compiler, use the "vrpg on" command.
To disable REG mode, use the "rpg off" command. When "vrpg on" is in
effect, the "compile" command invokes the VREG compiler.

When "rpg on" or ™rpg on" is in effect, the current buffer is in
overlay mode as well as in RPFG mode.

Standard User Interface (SUI)

The HELP command within SUI is now called "sui_help" instead of "help".
This does not affect users of the HELP function key.

The more advanced standard library tab facility has replaced the SUI
tab facility. This menas that users of the original SUI tab facility
using the "set _tabs" command are now prompted for a default tab
interval. Five is no longer assumed.,

DOCUMENTATION CORRECTION

The following correction applies to TEACH-EMACS, Prime's three-part
on-line EMACS tutorial, available in the directory EMACS*.

TEACH-EMACS 1: Line 174 was inadvertently truncated., Change "{ESC}3"
to "{ESCI3{ESC}B". 'This is the correct command to move backward three
words (POLER #40225).

REV. 0 2 - 22

MRU10 PRIMDS AND UTILITIES

FIX DISK

NEW FEATURES AND CHANGES

New Command Option

The command line option -LIST BADSPOTS (-IB) causes FIX DISK to list
badspots and remapped records on the terminal. At Rev. 19.2, FIX DISK
no longer lists these items by default.

2 - 23 June 1983

CHAPTER 2

REV, 0

MRU10

24

MRU10O PRIMOS AND UTILITIES

LABEL

NEN FEATURES AND CHANGES

LABEL has been modified to support both ANSI standard labels and PRIME
non—standard labels,

2 - 25 June 1983

CHAPTER 2

REV. 0

MRU10

26

MRU10 PRIMDS AND UTILITIES

NEW FEATURES AND CHANGES

Changes in Output Format

The default output format lists selected entry names four or fewer to a
line. If no entries are selected for output, the line "™No entries
selected" is output. Before printing entry names, LD will print a top
header line, which contains:

e The pathname of the directory listed.
e The current user's access rights (in parentheses).
e The number of records used by this directory, if available.

e The number of records used by this directory and its
subdirectories.

e The maximum quota set, if this is a quota directory.

Entries are grouped according to type, such as files, directories, or
segment directories. An entry type header appears before each group of
entries, Each of these headers shows how many entries of the
particular type will be listed. If any attributes besides names are
being displayed, the type header will also contain a label showing the
output display format.

LD pauses output after every 23 lines, displays a —More— prompt line,
and awaits user response. By entering a Q, Quit, N, or No in upper or
lower case characters, the user can suppress further output and leave
LD. Any other user response directs LD to re—output the type header if
output contains any attributes and to continue listing entries.

New Command Options

The —-SORT_SIZE Option

The —SORT_SIZE option, abbreviated —-SORTSZ, specifies that the entries
be sorted by size in descending order within their types. If
—SORT_SIZE is specified, —SORT NAME, -SORT DIM, or =-SORT DIS cannot
also be specified. The sizes of entries other than access categories,
and quotas of directory entries, are also displayed.

2 - 27 June 1983

CHAPTER 2 MRU10

The —SORT_DIS Option

The -SORT_DTI'S option, abbreviated —-SORTS, is reserved for future use.

The -BRIEF Option

The -BRIEF option, abbreviated -BR, specifies that the top header be
output in a short, one-line format and that the column labels not be
output, There will be no padding of the screen with blank lines before
the paging prompt.

The -WIDE Option

The -WIDE option specifies that the output be displayed with a line
width of more than 79 spaces. This option is particularly useful for
line printer output.

For output of names only, LD will assume a line width of 100 spaces;
for output with attributes, it will assume that all attributes besides
the name will fit on one output line.

The —NO_WAIT Option

The -NO_WAIT option, abbreviated -NW, specifies that the display not
pause after every 23 lines of output.

The -DTS Option

The -DTS option is reserved for future use.

Changes to Existing Command Options

Change to —NO_HEADER Option

The -NO_HEADER option, abbreviated -NHE, now suppresses the printing of
both the top header and the entry type headers.

Change to —NO_SORT Option

The ~NO_SORT option, abbreviated -NSORT, which specifies that the
entries listed not be sorted, either by name or by type, now suppresses
the printing of entry type headers.

REV. 0 2 - 28

MRU10 PRIMOS AND UTILITIES

Change to -SORT _DIM Option

The -SORT._DIM option, abbreviated -SORTD or -SORTM, which specifies
that the entries be sorted by descending date/time modified within
their types, is incompatible with the new -SORT DI'S or the —SORT SIZE
options.

Change to the —SORT NAME Option

The SORT_NAME option, abbreviated -SORTN, which specifies that the
entry names be sorted alphabetically, disregarding their types, is also
incompatible with the new SORT DIS or the -SORT _SIZE options. Type
headers are not output.

Change to the -DETAIL Option

The -DETAIL. option, abbreviated -DET, which specifies that all
available attribute values be displayed for each entry selected, now
displays the attributes of each entry on two lines following the entry
name, unless the -WIDE option is also used. Attributes are displayed
as follows:

On the first line:

1. Access rights available to this user (for password directories,
the protection keys are displayed);

2. Size of entry in physical disk records (applies to files,
directories, and segment directories only);

3. Delete-protection switch ("pr" if protected, "no" otherwise;
applies to files, directories, and segment directories only);

4, Date/time modified;

5. Type of protection (name of access category protecting entry,
either "(Specific)" for specific protected, or "(Default)" for
protected by default; applies to files, directories, and
segment directories only).

On the second line:

6. Type of entry (with logical type RBF indicated by a "-RBF"
appended to entry's physical type);

7. Quota of entry in physical disk records (for directories only);
8. Setting of concurrency lock on entry ("sys" for system, "excl"
for N readers or 1 writer, "updt" for N readers and 1 writer,

and "none" for N readers and N writers; applies to files and
segment directories only);

2 - 29 June 1983

CHAPTER 2 MRU10

9. Incremental dump switch ("dmp" if the entry has been dumped,
"no" otherwise; applies to files, directories, and segment
directories only);

10. Date/time last saved (currently unused and displays "** not set
LA

SOFIWARE PROBLEMS FIXED

Wrap Around: If LD output contained information about file system
objects with long names, it was wrapped around. This no longer happens
because of the new output format.

-DETATL and -CATHGORY PROTECTED: When these two options were both
specified, random characters were displayed in the output. This
problem has been corrected,

REV. 0 2 - 30

MRU10 PRIMOS AND UTILITIES

LOGERT

NEW FEATURES AND CHANGES

New Event Types

NPXRLS: The NPXRLS event type was added at Rev. 19.1 to record bad
virtual circuit clearing in NPX,

SENSOR: A new event type, SENSOR, has been added at Rev. 19.2. A
SENSOR entry is written to the log file when a check from the
environmental sensors on newer processors shuts down the system,

Change for New Central Processor

Machine check event handling has been modified to print a detailed
interpretation of the DSW registers for newer processors.

New Commands

At Rev. 19.2, PRINT SYSLOG and PRINT NETLOG are new commands, which
print system or network event logs, respectively . These commands are
improved versions of LOGPRT and display clearer messages.

For further details on PRINT SYSLOG and PRINT NETL.OG, see Volume II of
the System Operator's Guide (DOC7324-192).

2 - 31 June 1983

CHAPTER 2

Rm. 0

MRU10

32

MRU10 FRIMOS AND UTILITIES

MAGL.IB

NEW FEATURES AND CHANGES

MAGLIB as a Shared Library

MAGLIB, the library containing tape routines, which was part of MAGNET,
is now shared, The following lines must be added to the file C_PRM in
QMDNCO:

OR 1
SHARE SYSTEM>ML2222 2222
RESUME SYSTEM>MLAGOO0 1/16
OFR 0

Error Recovery

MAGLIB has been modified to perform error detection and correction on
all read or write operations.

SOFTWARE PROBLEMS FIXED

MISWRIT and MT$READ: MT$WRIT was modified to append the length of the
record to each record being written to tape. MISREAD was modified to
return the length of the record when variable length records are being
processed (POLER #46379).

2 - 33 June 1983

CHAPTER 2

REV. 0

MRU10

34

MRU10 PRIMOS AND UTILITIES

MAGNET

NEW FEATURES AND CHANGES

The * extent variables have been redeclared with actual values. This
was done to make MAGNET compatible with the new MAGLIB, described
earlier in this chapter.

DOCUMENTATION CORRECTIONS

The following corrections apply to the Magnetic Tape User's Guide
(DOC5027-183) . -

SUPDT: On page 8-4, the initial "$" symbol of the SUPDT command was
inadvertently omitted,

Parity: 1In response to a question about the statement "Prime tape
drives always write odd parity for nine-track tapes": The information
on pages 1-10 and 1-11 is correct. DPerhaps extra enphasis should be
added to the distinction between nine-track mag tape parity and the
so—called parity bit of ASCII.

The nine-track tape frame stores one eight-bit byte, plus one parity
bit. The byte may be any data value from 0 to 255, possibly
representing an ASCIT character, The parity bit is odd, but is
normally hidden from software, which sees only eight-bit bytes of data.

ASCII is a seven-bit character code stored in eight-bit bytes. The
eighth bit is called the parity bit, from its former use in paper tape
systems, Most computer manufacturers set this "parity™ bit to space
(always 0) or mark (always 1). Prime chooses mark. The value of this
"parity" bit is unchanged by the medium upon which it is represented,
whether mag tape, disk, or anything else. Some Prime software,
however, forces this bit to mark. When an ASCII character is written
to magnetic tape, the ASCII "parity" bit is part of the eight bits of
data (POLER #58966) .

2 - 35 June 1983

CHAPTER 2

REV. 0

MRU10

36

MRU10 PRIMOS AND UTILITIES

MAGSAV/MAGRST

NEW FEATURES AND CHANGES

MAGSAV and MAGRST now set severity when run under PRIMOS. The severity
is recorded and, if it is greater than zero, the ER! prompt is given.
If, for example, MAGSAV or MAGRST is called from within a CPL file, the
severity will be set after an error is encountered, and the program
will then exit via the CPL severity handler.

MAGSAV and MAGRST do not set severity under PRIMDS IT.

Pathnames

MAGSAV now recognises pathnames on commands $A and $I, which include
disk names and passwords. The user can therefore attach away and use
index files with either a full or qualified pathname reference.

The following formats can be used for both attaching and indexing:

<diskname>directory-name>subdirectory-name>etc
<diskname>directory-name password>subdirectory-name passwor d>etc
directory-name>subdirectory-name>etc
directory-name password>subdirectory-name passwordsetc

BOOT_(REATE is a utility, implemented in CPL, that enables tapes
suitable for booting from to be made up via a call or calls to MAGSAV.
For further details, refer to the section on BOOT_CREATE earlier in
this chapter,

SOFIWARE PROBLEMS FIXED

BADSPOTS: If a BADSPT file already exists, MAGRST will not attempt to
restore it (POLER #40864).

Severity Handling: Severity handling is provided at Rev. 19.2, as
described above (POLERS #45811, #45813).

Messages: All messages and warnings now appear in lowercase.

2 - 37 ~ June 1983

CHAPTER 2 MRU10

ACL and Password Directories: MAGRST now issues a warning message if a
user tries to restore an ACL—protected directory while attached to a
password-protected directory.

PRIMDS II: Under PRIMOS II, MAGSAV and MAGRST now assume the magnetic
tape controller number to be zero.

REV, 0 2 - 38

MRU10 PRIMOS AND UTILITIES

NEW FEATURES AND CHANGES

Badspot Handling

MAKE's ability to detect disk badspots has been greatly improved.

Command Interface

The command interface has changed substantially; it is now in the form
of options instead of a dialogue.

Command Line Options

The -DISK Option

This option takes the form:
-DISK physical_device number
This argument must be specified on the command line. The physical

device number is that of the partition to be made. This argument
replaces the question "PHYSICAL DEVICE:" at earlier revs,

The —PARTITION Option

This option takes the form:

-PARTITION partition name
This arqument is required; if it is not on the command line, MAKE
prompts the user for it. A file with the same name as the partition is

created on the MFD. This file is the record availability table. This
arqument replaces the question "PACK NAME?" in Rev. 19.1 and earlier.

The -DISK_TYPE Option

This option takes the form:
-DISK_TYPE disk_type
Use this option to specify a disk type other than the default. The

default is disk type SMD. Other types are OMD, 68MB, 158MB, 160MB,
600MB, and FLOPFY,

2 - 39 June 1983

CHAPTER 2 MRU10

The —MAP UNCORR Option

This option takes the form:
=MAP _UNCORR
This option maps out only those records containing uncorrectable

errors. Records containing correctable errors are treated as usable.
Use of this option is not recommended.

The —-SPLIT Option

This option takes the form:
—SPLIT number_of_paging records

This option should be used to make a split partition. If the number of
paging records is not typed on the command line, the total number of
records available will be printed, and the user will be prompted for
the number of paging records. This option replaces the question "SPLIT
DISK?" in Rev. 19.1 and earlier.

The —FORMAT Option

This option takes the form:
-FORMAT

This option is used to write "hard" formats on a disk that has never
been used on a Prime system.

The —QUERY BADSPOTS Option

This option takes the form:
~QUERY_BADSFPOTS
gilf option causes MAKE to query the user for known badspots on the
sk.
The —PRE_REV19 Option
This option takes the form:
~PRE_REV19

This option should be used to make a partition for a system earlier
than Rev. 19.

REV. 0 2 - 40

MRU10 PRIMOS AND UTILITIES

The —BADSPOT LEVEL Option

This option takes the form:
-BADSFOT _LEVEL bad spot_checking level

This option specifies the amount of checking for badspots. Checking
levels can be from 0 to 4 inclusive. If level 0 is specified, no
checking is done. Ievel 4 gives the best checking, but takes the
longest. The default is level 1 for SMD or QMD disk types and level 4
for fixed media disks (all others).

The —BAUD _RATE Option

This option takes the form:
—-BAUD RATE valid baud rate
This option is used to set the initial baud rate of the supervisor

terminal, The default is 300, Other valid baud rates are 110, 1200,
and 9600,

The —NO_INIT Option

This option takes the form:

—-NO_INIT
When this option is used, the file system portion of the disk is not
initialized. This option should be used only rarely.

For further details on MAKE, see Volume II of the System Operator's
Guide (DOC7324-192).

2 -~ 4] June 1983

CHAPTER 2

REV. 0

MRU10

MRU10 PRIMOS AND UTILITIES

PHYSAV/PHYRST

NEN_FEATURES AND CHANGES

PHYSAV/RST has been modified to copy to a virgin disk without the
specification "-NO BADS"., PHYSAV will not copy from a virgin disk and
will abort with the message:

THE MFD HEADER IS CORRUPT OR NOT MADE ON <partition>
bad format YOU CANNOT COPY FROM A VIRGIN DISK badadd

PHYSAV will then abort.

SUFIWARE PROBLENMS FLARD

PHYRST--Restoring to a Different Partition: At Rev., 19.1, when PHYRST
tried to restore a partition to another place, it tried to restore it
to a partition that the user had not specified. This problem has been
corrected,

PHYSAV-—Saving Several Partitions: When saving several partitions that
had not been input in head offset order, the cylinder limit was not set
for any disks rearranged. As a result, PHYSAV saved only the first
cylinder for those disks, All other disks were saved correctly.

2 - 43 June 1983

CHAPTER 2

REV. 0

MRU10

MRU10 PRIMOS AND UTILITIES

PRINT_SYSLOG/PRINT _NETLOG

NEN FEATURES AND CHANGES

PRINT _SYSL.OG and PRINT NETLOG are new commands, which print system or
network event logs, respectively. These commands are improved versions
of LOGPRT and display clearer messages.

Neither PRINT SYSLOG nor PRINT NETLOG works under PRIMOS II. To print
event logs when running under PRIMOS II, use LOGPRT.

Both commands require Rev. 19.2 or later PRIMOS.,

For details on how to use these commands and the options available to

them, see Volume IT of the System Operator's Guide (D0C7324-192),

2 - 45 June 1983

CHAPTER 2

REV. 0

MRU10

46

MRU10 PRIMOS AND UTILITIES

RUNOFF

DOCUMENTATION CORRECTIONS

The following corrections apply to the New User's Guide to EDITOR and
RUNOFF (FDR3104-101).

.UNDENT/.RUNDENT: On page 6-4, add to the conclusion of the section on
indentation (POLER #58984):

The commands .U [m] and .RU [m] may not have a value for m that
exceeds the margin limit,

Table of Contents: Page 7-11 states that a heading in the table of
contents too long to fit on one line "will be split at a space and
continued, indented, on the following line."™ The second line, however,
is not indented. The example on the same page is also incorrect (POLER
#44671) .

Tabbing: Insert at the bottom of page 10-13 (POLER #53414) :
Whenever the TAB command appears at the beginning of a line of

text, the rest of that 1line is neither filled nor adjusted.
Filling or adjusting resumes with the next line.

2 - 47 June 1983

CHAPTER 2

REV. 0

MRU10

48

MRU10 PRIMDS AND UTILITIES

NEW FEATURES AND CHANGES

SHARE Command Enhanced

The SHARE command now not only allows indentation of the file
identification for CPL files, but this file prefix can now be from one
to twenty-eight characters in length, making share file names less

cryptic.

Performance Improvements

The speeds of the LOAD sequence and some maps have been improved.

New Warning and Commands

A new warning is given for a subsequent use of a common block that is
smaller than a previous one. This is to warn the user of a possible
mismatch in data between these data structures. When a smaller
definition of a common block occurs, the message:

ILLBEGAL REDEFINITION OF COMMON
is given with the common block name.
If you want to suppress this warning, the command NSGW (No Smaller

Common Warning) suppresses further checking and SOV (Smaller Common
Warning) reenables the test,

DOCUMENTATION CORRECTION

The following correction applies to the LOAD and SEG Reference Guide
(PDR3524-172) .

MIX and SPLIT: Page 4-7 states, "In general, loading under the MI
option will reduce the number of segments required for a program, but
debugging such programs may be more difficult.” Program size will not
be reduced, however, when MIX is used along with SPLIT (POLER #33176).

2 - 49 June 1983

CHAPTER 2 MRU10

SOFTWARE PROBLEMS FIXED

Base Areas: The problem of overwriting base areas generated by the
AJTOMATIC command by successive small procedures has been fixed.

NEW: The NEW command in the MODIFY subprocessor did not work if the
file being read in was read-only protected, and at some other times.
Both these problems were corrected (POLERS #48535,48536).

SHARE: The problem that the response to SHARE command could not be
indented has been corrected by the enhancement to SHARE described above
(POLER #34326).

SOFTWARE PROBLEM OUTSTANDING

Naming Problem: There is no warning of common and procedure having the
same name (POLER #43595).

REV. 0 2 - 50

MRU10O FRIMOS AND UTILITIES

NEW FEATURES AND CHANGES

Performance Improvement

The execution of SLIST has been speeded up.

2 - 51 June 1983

CHAPTER 2

REV. 0

MRU10

52

MRU10 PRIMOS AND UTILITIES

SOFTWARE PROBLEM FIXED

Pathnames: SORT now handles full pathnames correctly.

2 - 53 June 1983

CHAPTER 2

REV. 0

MRU10

54

MRU10 PRIMOS AND UTILITIES

SEOCL

SOFIWARE PROBLEM FIXED

Phantom Request Time-out Handling: All PROP requests made to the
spooler phantom now wait 40 rather than 30 seconds before being
timed-out if the phantom fails to respond.

2 - 55 June 1983

CHAPTER 2

REV. 0

MRU10

56

MRU10 PRIMOS AND UTILITIES

Subroutines

NEW SUBROUTINES

Add the following new subroutines to Chapter 10:

p TTYSIN
Purpose

This function checks whether there are any characters in the user's
TTY input buffer. The state of the buffer is undisturbed by the
call: no character is actually read or removed from the buffer.

Usage
DCL TTYSIN ENTRY () RETURNS (BIT(1)ALIGNED)

more~to-read = TTYSIN

more—-to-read Will be true ('l'b) if there is at least one
character of input available at the terminal of the
calling process, and '0'b otherwise.

Discussion

TTYSIN is used to check whether there is at least one character of
input currently available on the calling process' terminal. Use
TTYSIN when you do not want to wait for input via a call to CLSGET,
Cl1INS, or T1IN. TTYSIN allows the program to poll for input and
perform other processing while waiting for input to arrive.

If TTYSIN is called in a nom-interactive process, '0'b is always
returned, whether or not a command input file is active.

It is possible for TTYSIN to return 'l'b, and for a subsequent call
to C1IN$ to wait for input. This can happen if the user types
Control-P after TTYSIN is called, which causes a quit to PRIMOS and
the flushing of the input buffer. When the user types START, the
next call to Cl1INS will then wait for a character.

TTYSIN is necessary at Rev. 19 to cut down on CPU usage. Before
Rev. 19, checks of the input buffer could be done only with an
R-mode routine that, at Rev. 19, has a high overhead of CPU usage.
Use of TTYSIN can cut CPU usage by half. :

2 - 57 June 1983

CHAPTER 2 MRU10

Because FIN cannot call subroutines with no argument, this routine
may not be called directly from FIN., To get the benefits of the
routine, use an F77 or PMA interlude.

REV. 0 2 - 58

MRU10 PRIMOS AND UTILITIES

Command Error Reporting

This discussion applies to the two subroutines which follow, SETRCS and
SSSERR.

When a command or subsystem detects an error situation, two parties
must in general be notified: the user, who is usually interactive, and
the invoker, which is simply the procedure that invoked the command or
subsystem, Typically, the user is notified by means of a diagnostic

message, whereas the invoker must be notified by a method more suitable
for programmed decisions—a status code.

The requirement that subsystems be able to keep control on errors if
interactive but give up control if noninteractive is met by requiring
subsystems to call the routine SSSERR. Use of SSSERR is necessary to
support the Command Procedure Language product. Without it, CPL is not
able to support its documented error handling features fully because it
does not receive proper indication of compilation, loading, and file
handling failures.

Severity Codes

A severity code is a single FIXED BINARY(15,0) value in which two
distinct pieces of information may be encoded. First, the severity
level has the value 0, -1, or +1; this is the arithmetic sign of the
severity code. Second, the absolute value of the severity code may (or
may not) be a standard error code, as defined below. The meaning, if
any, of the absolute value of a severity code must be interpreted
relative to the specific command that returned it: the same absolute
value returned by two different commands may not mean the same thing.

The meanings of the severity level of the severity code, however, are
the same no matter which command returned the code. They are as
follows:

0 No errors—execution successful.

-1 Warning(s)—minor exceptions encountered, but the results of
the command's execution are usable to the best of the command's
ability to determine,

1 Error(s)—serious errors encountered. Some of the results of
the command are not usable, or some of the actions requested
could not be performed.

When a command or command function has decided to return control to its
caller, it must also return a severity code value if it encountered an
error. Command callers initialize the severity code to 0 before

calling a command so that the command need take no action if no errors
are encountered.

If the procedure is part of a user—created program, it should use the
primitive SETRCS to return the severity code.

2 - 59 June 1983

CHAPTER 2 MRU10

Standard Error Codes

A standard error code is always to be interpreted according to some
error table, Error tables are identified by 32-character names. At
present, only the PRIMOS error table exists, accessible via ERRPRS. It
is assigned the null name. See Appendix E, "Error Handling for I/0
Subroutines."

A standard error code is a compact representation of a diagnostic
message and is usually returned by a command or subroutine to its
caller, This code identifies the precise cause of an error encountered
by the callee. A standard error code is converted to a severity code
by changing its arithmetic sign to the proper severity level value.

Subsystem Error Handling

Whenever a conversational subsystem encounters an error in the syntax
of a subcommand or during its execution and that subsystem wishes to
returns to its own command level, it must:

1. Print any applicable diagnostics;
2. Call the PRIMOS subroutine SSSERR (subsystem error);
3. Return to its command level;

4, Not return a positive severity code when it £finally returns
control to PRIMDS, since then the user would see an ER! prampt
when he is not expecting one.

When a subsystem encounters an error and immediately returns to PRIMDS
without going back to its own command level, it does not make any
difference whether the subsystem is being used interatively or not,
Hence the subsystem should:

1. Print any applicable diagnostics;

2. (Call SETRCS to set a positive (or negative) severity code as
appropriate;

3. Return to PRIMOS. The user will see an ER! prompt, if
interactive, or a CPL procedure will receive the proper error
code, if not.

4. SSSERR should not be called in this case.

SSSERR works approximately as follows. When called, SSSERR checks
whether the user is "interactive", that is, whether the process is a
non-phantom whose command input stream is connected to the terminal.
If so, SSSERR simply returns. Otherwise, SSSERR raises the condition
SUBSYS_ERRS$. The default handling of this condition is for the command
processor to abort the subsystem via a nonlocal goto back into the
command processor, where a positive severity code is forced.

REV. 0 2 - 60

MRU10 PRIMOS AND UTILITIES

Users and subsystem implementors should keep the following points in

mind:

The user's program may make an on-unit for SUBSYS _ERRS which
simply returns. This causes SSS$ERR to return to the subsystem
as if the user were interactive, thus defeating the
noninteractive abort mechanism. (This option would rarely be
useful,)

The subsystem may use the condition mechanism's CLEANUPS
condition to regain control in one last gasp before the
nonlocal goto is completed. (For details on the condition
mechanism, see Chapter 22,) This will allow the subsystem to
perform any required cleanup activities before it actually
loses control.

Subsystems should call SSSERR after printing diagnostics and before
returning to their command level if they intend to retain control.

Subsystems should not call SSSERR if they will return to PRIMDS

immedi

7 n Fha Arra

atesly on tne errdr.

Calling Sequences

P SETRCS

dcl SETRCS entry(fixed bin, bit(l)aligned);

call SETRCS(severity_code, abort flag);

severity_code is the severity code to return to the invoker of

this program. (Input)

abort_flag is '"1'b if the command file (if any) is to be

aborted, and '0'b if it is not to be aborted. (This
flag will make no difference if this command was
invoked by a CPL procedure.) (Input)

If the severity_code is less than or equal to 0, then abort flag is
ignored, and the command file is never aborted. If abort _flag is
omitted from the calling sequence, it is assumed to be '0'b.

SETRCS was described in the Revision 19.1 Software Release Document
(MRU4304-009) . The description is repeated here for the convenience of
the reader.

2 - 61 June 1983

CHAPTER 2 MRU10

P> SSSERR

dcl SSSERR entry ();

call SSSERR;
There are no arguments.
If the caller is being used interactively, SSSERR simply returns.
Otherwise, the condition SUBSYS ERR$ is raised, which usually
results in the termination of the caller by means of a nonlocal
goto back to the command processor.
P> ERTXTS
This routine accepts a standard PRIMIS error code and returns the
character string representation of its error message as it would be
printed by the routine ERRPR$. 1Its declaration and calling
sequence follow:

dcl ERTXTS entry(fixed bin, char(1024)var);

call ERTXTS(code, errmsg);
code Standard error code. (Input)
errmsg Text of error message. (Output)

Add the following to page A-28:

P> DIRSSE
Purpose

This new routine replaces and extends the functionality of DIRSLS.

DIRSSE is a general purpose directory searcher that returns entries
meeting caller-specified selection criteria.

Usage

dcl dir$se entry (fixed bin, fixed bin, bit(l), ptr, ptr,
fixed bin, fixed bin, fixed bin,
(4) fixed bin, fixed bin, fixed bin);

call dirS$se (dir_unit, dir_type, initialize, sel ptr,

return ptr, max entries, entry_size,
ent_returned, type_counts, max type, code);

REV. 0 2 - 62

dir_unit

dir

initialize

sel ptr

return _ptr

max_entries

entry_size

ent_returned

type_counts

max_type

code

MRU10 PRIMOS AND UTILITIES

unit on which directory to be searched is open
(Input)

type of object open on dir_unit (Input)

If set, directory is to be reset to the beginning.
If unset, it is to be searched from the current
position. (Input)

pointer to structure containing selection criteria
(see below) (Input)

pointer to caller's return structure for selected
entry data (see below) (Input)

maximum number of entries to be returned (should
be greater than zero unless this routine is being
used only to initialize the directory) (Input)

number of words to be returned per entry (Input)
number of entries returned (Output)

number of entries of each type returned in the
order: dirs, seg dirs, files, access categories
(This argument should be a 4-word array.) The
type_counts are incremented each time DIRSSE is
called, i.e., the number of types returned in this
call of DIRSSE is added to the current type-counts
totals, When the "initialize" bit is set, these
counts are reset to the total number of types
returned in this call, (Input/output)

number of types in type counts (currently must be
4) (Input)

standard error code (Output)

Possible values are:

eSbver bad version number for selection
criteria structure (currently can only
be zero (0))

eSbpar bad max _type (currently must be 4)

eSeof There are no more entries in the
directory to be selected.

eSstl9 Seléction criteria involving date/time

last saved or RBF file type have been
specified, and the PRIMDS rev that
accesses the directory does not support
these features,

2 - 63 June 1983

CHAPTER 2

MRU10

The selection criteria should be supplied in the following
structure. The "sel ptr" parameter should point to this structure.

dcl 1 selection criteria based,

where

version_no

wild ptr

wild count

desired_types

REV. 0

DD

NN

version_no fixed bin,

wild ptr ptr,

wild_comt fixed bin (15),
desired_types,

3 dirs bit(l),

3 seg dirs bit(l),

3 files bit(l),

3 access_cats bit(1l),

3 RBF bit(l),

3 spare bit(11),
modified before date _time fixed bin (31),
modified after_date time fixed bin (31),
saved_before_date_time fixed bin (31),
saved_after_date time fixed bin (31),

Must be zero for this version of the
selection criteria structure.

If wildcard entryname selection is to be
applied to the directory entries, this field
should point to a list of wildcard names for
which to search. The list should be an array
of char(32) varying strings, and the names
must be in upper case. Wildcards are
explained in the Prime User's Guide
(DOCA130-190) .

Is the number of names in the list pointed to
by wild ptr. If wildocount 1is zero,
entryname is not used as a selection
criterion,

A bit-encoded field defining which types of
directory entries the caller wishes to have
returned. The first four bits of this field
specify the physical types of the entries
that are to be returned. The fifth bit can
be used in combination with the other four
bits to select entries that are also RBF
entries, and thus have a logical type of 'l'.
To select only RBF segment directories, the
seqg dirs and RBF bits should both be set, and
the other bits not set. If the first four
bits are set, all entries will be returned.
If all five bits are set, all entries that
are also RBF entries will be returned.

2 - 64

MRU10 PRIMOS AND UTILITIES

modified before date Selects entries with date/time modified

modified after_date

saved before_date

saved_after_date

earlier than this date., The date should be
in standard FS format (described with routine
CVSDQS) . Should be zero if this field is not
to be used as a selection criterion.

Selects entries with date/time modified later
than this date. The date should be in
standard FS format (described with routine
CVSDQS) . Should be zero if this field is not
to be used as a selection criterion.

Reserved for future use. Must be zero
currently.

Reserved for future use. Must be zero
currently.

DIRSSE will return the information for all the entries selected by
this call in the following structure:

dcl 1 dir_entries (*) based,

2 ecw,

3 type bit (8),

3 length bit (8),
2 entryname char(32) var,
2 protection,

3 owner rights,

4 spare bit (5),
4 delete bit (1),
4 write bit (1)
4 read bit (1),

3 delete protect bit (1),
3 non_owner._rights,

4 spare bit (4),
4 delete bit (1),
4 write bit (1),
4 read bit (1),

2 file info,
3 long_rat hdr bit(l),
3 dumped bit(l),
3 dos_mod bit (1),
3 special bit (1),
3 rwlock bit (1),
3 spare bit (2),
3 type bit (8),

NN

date_time_mod fixed bin (31),
non_default_acl bit (1) aligned,
logical type fixed binary,
trunc bit (1) aligned,

2 date_time last saved fixed bin (31):

2 - 65 June 1983

CHAPTER 2

where

ecw

entryname

protection

file info

REV, O

MRU10

Entry control word for the entry:

type: 2

length:

normal directory entry (file,
directory or segment directory)

access category
24 words for PRIMOS revs up to and

including 19.2; 27 words for
PRIMOS revs from 19.2 onwards.

name of the entry

owner_rights

delete_protect

non_owner_rights

long rat hdr

dumped

dos_mod

special

Are the rights granted to a user
when attached to the containing
directory with owner rights.

If this bit is set, the file may
not be deleted. The bit may be
reset by a call to the SATRSS
routine,

Are the rights granted to a user
when attached to the containing
directory with non—owner rights.

If set, indicates that the file is
a Disk Record Availability (DSKRAT)
file spanning more than one disk
record.

If set, this file has been saved by
MAGSAV and has not been modified
since then.

If set, this file was modified
while PRIMOS 1II (DOS) was running.
It indicates that the date/time
last modified field may be
incorrect. '

If set, this is a special file
(e.g., DSKRAT, BOOT, MFD) and may
not be deleted.

2 - 66

rwlock

type

date time mod

non_default_acl

logical type

trunc

date time last saved

MRU10 PRIMOS AND UTILITIES

Indicates the setting of the file's
read/write concurrency lock.

Possible values are:

system default setting
unlimited readers or one writer
(exclusive)

unlimited readers and one writer
(update)

3 unlimited readers and writers
(none)

N HO

Indicates the type of object described
by this entry.
Possible values are:

SAM file

DAM file

SAM segment directory
DAM segment directory
Ufd

Access category

AW O

The date/time the file was last modified, in
standard FS format. FS format dates are
described with routine CVSDQS.

This bit is set if the object is not
protected by the default ACL—that is, if it
is protected by a specific ACL or by an
access category.

This is an additional file type to the
physical file type described in
file info.type.

Possible values are:

0 for normal files
1 for RBF files

This bit is set if the file has been
truncated by the FIX DISK utility;
otherwise, reset to zero.

Reserved for future use. This field will
currently be returned as zero (unset),

2 - 67 June 1983

CHAPTER 2 MRU10

Example

The following program will list all entries in a UFD whose names end in
the suffix ".PLP" and which were modified after December 1, 1982 and
before January 1, 1983,

main:
proc;

SINSERT syscom>keys.ins,pll
dcl 1 bvs based,

2 len fixed bin,

2 chars char(32)

/* Arguments to/from srchs */

dcl dir_unit fixed bin, /* Unit on which UFD is open */
dir_type fixed bin, /* Type of entry open on unit
dir_unit */
code fixed bin; /* Error return code */

/* Data structures for dirSse */

dcl initialize bit (1), /* Initialize/no initialize UFD

switch */

selec ptr ptr, /* Pointer to selection criteria
structure */

return _ptr ptr, /* Pointer to output structure
containing selected entries */

max_entries fixed bin, /* Max number of entries that can
be selected per call to DIRSSE */

entry_size fixed bin, /* Maximum directory entry length */

ent_returned fixed bin, /* Number of entries returned for

this call to DIRSSE */
type_counts (4) fixed bin, /* Total of types returned so far by

DIRSSE */

max_type fixed bin, /* Size of type_oounts array */
wild cards (1) char(32)var, /* Entryname sel. criteria */
1 dir_entries (10), /* Array of 10 directory entries */

2 etype bit(8), /* Dir entry type */

2 elength bit(8), /* Entry length in words */

2 entryname char (32)varying,

2 prot, /* Access control info */

3 owner bit(8),
3 non_owner bit(8),
2 file info,
3 (long rat _hdr, dumped, dos mod, special) bit(l),
3 rwlock bit(2),
3 padl bit(2),
3 type bit(8),
2 dtm fixed bin(3l),
2 non default_acl bit (1) aligned,

REV. 0 2 - 68

MRU10 FRIMOS AND UTILITIES

2 log_type fixed bin,

2 trunc bit (1) aligned,

2 dts fixed bin(31),
dir_entries ptr ptr,

1 selec_crit, /* Structure containing selection
criteria */
2 version _no fixed bin, /* Version number for input and
output data structure */
2 wild ptr ptr, /* Pointer to wildcard names
structure */
2 wild count fixed bin (15), /* Number of wild names */
2 types, /* File types to be selected */
3 dirs bit (1), /* Physical file types */
3 seq dirs bit (1),
3 files bit (1),
3 acl bit (1),

3 rbf bit (1), /* Logical file type */
3 spare bit (11),
2 dtmb fixed bin (31), /* Date/time modified selection -
before date */
2 dtma fixed bin (31), /* — after date */
2 dtsb fixed bin (31), /* Must be zero */
2 dtsa fixed bin (31); /* Must be zero */

/* Other local variables */

dcl first bit (1), /* True if first call to DIRSSE
in loop */
i fixed bin,
date char(128) wvar;

/* External entry points */

dcl DIRSSE entry (fixed bin, fixed bin, bit(l), ptr, ptr, fixed bin,
fixed bin, fixed bin, (4) fixed bin, fixed bin, fixed bin),
IOAS entry options(variable),
CVSDIB entry (char(128) var, fixed bin(3l), fixed bin),
ERRPRS entry (fixed bin, fixed bin, char(*), fixed bin, char(*),
fixed bin),
SRCHS$S entry options(variable);
/* Open current directory on wunit 10 */
dir_unit = 10;
call SRCHSS (k$read, kscurr, 0, dir_unit, dir_type, code);
if code "= 0
then call ERRPRS$(kS$irtn, code, '', 0, '', 0);:

/* Directory open OK, set up selection criteria for entries
to be selected */

else do;

2 - 69 June 1983

CHAPTER 2 MRU10

/* Select entries modified between 1lst December 1982
and 1lst January 1983 */

date = "01/01/83.00:00:00";
call CVSDTB(date, selec crit.dtmb, code);
if code "= 0
then call ™OU("Modified before date error.", 26);

date = "12/01/82.00:00:00";
call CVSDTB(date, selec crit.dtma, code);
if code "= 0
then call TNOU("Modified after date error.", 25);

/* Select entries whose names end in the .PLP suffix %/

selec crit.wild ptr = addr (wild _cards);
selec _crit.wild count = 1;
wild cards(l) = " .PLP";

/* Select only file entries */

selec crit.types.dirs = '0'b;
selec crit.types.seq dirs = '0'b;
selec _crit.types.acl = '0'b;
selec crit.types.files = '1'b;
selec crit.types.rbf = '0'b;

/* Set up other constants required for selection criteria structure */
selec_crit.version no = 0;
selec_crit.dtsb = 0; /* Must be zero */
selec crit.dtsa = 0; /* Must be zero */
selec ptr = addr (selec_crit);

/* Set up parameters to DIRSSE for return data */

dir_entries ptr = addr (dir_entries);

max_entries = 10; /* Handle 10 entries at a time */
entry_size = 27;
max _type = 4;

/* Call DIRSSE to return 10 entries at a time which satisfy the
selection criteria */

first = '1'b; /* Initialize/no initialize switch */
call TNOUA('Entries selected: .', 21); /* Output hdr */
do while (code = 0);
if first
then initialize = '1'b; /* Initialize UFD

if first call to DIRSSE */
else initialize = '0'b;

REV. 0 2 - 170

MRU10 PRIMOS AND UTILITIES

call DIRSSE (dir_unit, dir_type, initialize, selec ptr,
dir_entries ptr, max entries, entry_size,
ent_returned, type counts, max_type, code);

first = '0'b; /* Do not initialize UFD on next
call to DIRSSE */

do i = 1 to ent_returned; /* Output names of
entries selected */

call T™NOU(addr(dir_entries (i).entryname)->bvs.chars
length(dir_entries (i) .entryname))
end;
end;
end;
end;

DOCUMENTATION CORRECTIONS AND ADDITIONS

The following corrections apply to the Subroutines Reference Guide
(DOC3621-190) .

Quad Precision

In the table of data types on page 5-2, add a new row for 128-bit quad
precision. This type is implemented in FORTRAN 77 as REAL*16 and in
PMA in the format nnDnn.

On page 5-7, add the following paragraph:
REAL*16
This is a quad precision floating-point number, implemented as
a 128-bit value. It corresponds to the PMA format nnOnn. It

is described in-detail in the Rev, 19.2 edition of the FORTRAN
77 Reference Guide (DOC4029-192).

In the table of data types on page 8-2, add a new row for 128-bit quad
precision. This type is implemented in FORTRAN 77 as REAL*16 and in
PMA in the format nnQnn.

2 - 71 June 1983

CHAPTER 2 MRU10

On page 8-5, add the following paragraph:

QUAD PRECISION

This is a quad precision floating-point number, implemented as
a 128-bit wvalue. It corresponds to the PMA format nnQnn, but
can be passed to and from FORTRAN 77 only as a REAL*16 number.,
For details, see the Rev, 19.2 Assembly Language Programmer's
Guide (PTU2600-104).

SIRING Data Type

In the table of data types on page 6-3, add the Pascal data type STRING
to the "Varying character string"™ horizontal row.

On page 6-6, add the following paragraph to the discussion of the
CHARACTER (*) VARYING type:

The STRING data type in Prime Pascal is equivalent to the PL1G
CHARACTER (*) VARYING type. A Prime extension to Pascal, the
STRING type 1is new at Rev, 19.2. For information on passing
Pascal strings to PL1IG CHARACTER(*)VARYING strings and vice
versa, see Appendix D, "Interfacing Pascal to Other Languages”,
in the Pascal Reference Guide Update, Rev. 19,2 (UPD4303-192).

KSPOSR: On page 9-20, change the definition of KSPOSR to:

Moves the file pointer of funit by the number of words
specified by pos relative to the position achieved after rwkey
is performed.

RDENSS$: In the description of buffer on page 9-28, delete the second
sentence, concerning a key of 3.

File Entry Format: In Figure 9-1 on page 9-30, change "18 RESERVED" to
"18 NON-DEFAULT ACL."

In the description of the Entry Control Word on the same page, delete
the values :000001 and :000424, and add the following discussion:

:001430 Type=3, length=24, A type of 3 indicates an access
category UFD entry. All the above information is returned.

NON_DEFAULT _ACL: On page 9-31, after the PROTEC 1listing, add the
following:

NON_DEFAULT_ACL: The high-order bit is 1 if this UFD entry is
protected by a specific ACL or access category, 0 if it is
protected by the default ACL. Bits 2-16 are reserved,

REV. 0 2 = 72

MRU1O PRIMOS AND UTILITIES

In the values under FILTYP on the same page, add:

6 Access category.

Read/Write Lock: 1In the example on page 9-33, delete the line:

IF (TYPE.NE.l.AND,TYPE.NE.2) GOTO 100 /* UNKNCOWN
On page 9-34, delete line 10: "rden buffer(23)..."
On page 9-35, delete line 15: "rden buffer(23)..."

SATRSS: Add the following new keys to the SATRSS routine on page 9-39:

KSLTYP Set the logical type field in the file entry to the value in
data_array(l). This £field should not be set by user
software, It is for Prime internal use only.

KSDTLS Reserved for future use,

KSTRUN Set the "truncated by FIX DISK" bit from the value in bit 1
of data_array(l). ‘This field should not be set by user
software., It is for Prime internal use only.

SRSFXS: In the description of SRSFX$ on page 9-56, the argument
suffix-list should be described as (*)CHAR(32)VAR, as it can be a
structure of variable strings,

A pathname of '' (null string) will open the current UFD.
Here is an example of a simple program that uses SRSFX$ to check on the
existence of a file., It also uses the CLSPIX routine,
mains
proc;
$Insert syscom>keys.ins.pll
SInsert syscom>errd.ins.pll
/* External entry points */
dcl srsfx$ entry (fixed bin, char(*)var, fixed bin, fixed bin,
fixed bin, (1) char(32)var, char(32)var, fixed bin,
fixed bin), .
clSget entry (char(*)var, fixed bin, fixed bin),
clSpix entry (bit(16) aligned, char(*)var, ptr, fixed bin,

char (*)var, ptr, fixed bin, fixed bin, fixed bin, ptr),
errpr$ entry (fixed bin, fixed bin, char(*), fixed bin, char(¥*),

2 - 73 June 1983

CHAPTER 2 MRU10

fixed bin),
tnoua entry (char(*), fixed bin),
todec entry (fixed bin),
tnou entry (char(*), fixed bin);

/* Local declarations */

dcl 1 bvs based, /* Based Varying String */
2 len fixed bin,
2 chars char (128);

Dcl pathname char (80)var,
dir_name char(80)var,
fil name char(80)var,
unit fixed bin,
type fixed bin,
num_suff fixed bin,
suff_list (10) char(32)var,
suff_used fixed bin,
status fixed bin,
code fixed bin,
non_st_code fixed bin,
pix_index fixed bin,
bad index fixed bin,
picture char (30)var,
pic_ptr ptr,
out_ptr ptr,
arg line char(150) var;

dcl 1 args,
2 dir char(128) var,
2 file char(32) var;
/* PROMPT USER FOR ARGUMENTS */
call tnoua('Enter directory pathname and filename arguments:', 49);
/* READ IN 2RGS TO CALL */
call clSget (arg_line, 150, code);
if code "= 0
then call errpr$(k$nrtn, code, 'CANNOT READ ARGS', 16, 'test', 9);
else do;

/* SET UP DATA FOR CLSPIX */

picture = 'tree; entry; end';
pic_ptr = addr (picture);
out_ptr = addr (args);

/* CALL CL$PIX TO PARSE ARGUMENTS */

call clspix(0, 'test', pic_ptr, 30, arg _line, out ptr,

REV. 0 2 - 74

MRU10 PRIMOS AND UTILITIES

pix_index, bad _index, non st _code, null()):
if non st_code "= 0
then do;
call tnoua ('CANNOT PARSE ARGS, error code = ', 32);
call todec (non_st_code);
call tnou(' ', 1);
end;

else do;

/* CHECK FOR EXISTENCE OF FILE IN SON, FATHER, GRANDFATHER ORDER */

unit = 2;

num_suff = 3;

suff list(l) = '.SON';

suff list(2) = ', FATHER';
suff list(3) = '.GRANDFATHER';

pathname = dir || *>' || file;
call srsfx$(k$exst, pathname, wnit, type, num_suff,
suff_list, file, suff used, status);

if status > 0
then call errpr$(k$irtn, status, addr (pathname) ->
bvs.chars, length (pathname), '', 0);

else do;
if suff used = 0
then do;
call tnoua('base file name only found: ', 27):
call tnou(addr (pathname) -> bvs.chars,
addr (pathname) -> bvs.len);
end;
else do;
pathname = pathname || suff_ list (suff_used);
call tnoua (addr (pathname) -> bvs.chars,
addr (pathname) -> bvs.len);
call tnou (' form of file name found', 24);
end;

end;
end;
end;
end;

This program will give the following output if the '.SON' form of the
file exists.

R TEST
Enter directory pathname and filename arguments: TEST UFD TEST FILE
TEST_UFD>TEST_FILE.SON form of file name found

2 - 75 June 1983

CHAPTER 2 MRU10

CLSPIX: On pages 10-6 and 10-8, change the argument "code" to
"mon-std-code".

On page 10-19, add the following example for CLSPIX. It is a simple
program that uses CLS$PIX to parse a command line,

test:
proc;

/* EXTERNAL ENTRY POINTS */

dcl clsget entry (char(*)var, fixed bin, fixed bin),

cl$pix entry (bit(16) aligned, char(*)var, ptr, fixed bin,
char (*)var, ptr, fixed bin, fixed bin, fixed bin, ptr),

errpr$ entry (fixed bin, fixed bin, char(*), fixed bin, char(*),
fixed bin),

tnoua entry (char(*), fixed bin),

todec entry (fixed bin),

tnou entry (char(*), fixed bin);

/* INSERT FILES */
$Insert syscom>keys.ins.pll
/* LOCAL DECLARATIONS */

dcl code fixed bin, /* standard error code */
non_st_code fixed bin, /* cl$pix error code */
pix_index fixed bin,
bad _index fixed bin,
picture char(30) var,
pic_ptr ptr,
out_ptr ptr,
arg line char(150) var;

dcl 1 args,
2 dir char(128) var,
2 file char(32) var;
dcl 1 bvs based,

2 len fixed bin,
2 chars char(l);

/* PROMPT USER FOR ARGUMENTS */

call tnoua ('Enter directory pathname and filename: ', 38);
/* READ IN ARGS TO CALL */

call cl$get (arg_line, 150, code);

if code

then call errpr$(ksnrtn, code, 'CANNOT READ ARGS', 16,
Ttest', 9);

REV. 0 2 =176

MRU10 PRIMOS AND UTILITIES

else do;
/* SET UP DATA FOR CLSPIX */

picture = 'tree; entry; end';
pic_ptr = addr (picture);
out_ptr = addr(args);

/* CALL CLSPIX TO PARSE ARGUMENTS */

call clspix('3'b3, 'test', pic ptr, 30, arg line, out_ptr,
pix_index, bad index, non_st code, null());
if non_st code "= 0
then do;
call tnoua('CANNOT PARSE ARGS, error code = ', 32);
call todec(non_st_code);
call tnou(' ', 1);
end;

/* OUTPUT ARGUMENTS READ IN */

else do;
call tnoua('Directory pathname = ', 21);
call tnou(addr(dir) -> bvs.chars, addr(dir) => bvs.len);

call tnoua('File name = ', 12);
call tnou(addr(file) -> bvs.chars, addr(file) ~> bvs.len);
end;
end;
end;

The above program gives the following output.

Enter directory pathname and filename:
<testpk>my_ufd my_file

Directory pathname = <TESTPK>MY_UFD
File name = MY_FILE

PHNTMS: On page 10-35, add to the description of the argument
fillename:

The filename must end in ".CPL" if the program is a CPL
program. Non—CPL programs must not have a .CPL suffix,

QMDL$A: In the sample program on page 12-16, the line number 2 should

FEDI'SA: In the description of FEDISA on page 12-27, the date field
should have the format 'DAY, DD MON YEAR'. The function returned is
'm‘ m' YY‘ L]

2 - 77 June 1983

CHAPTER 2 MRU10

NLENSA: In the description of NLENSA on page 12-37, the argument
namlen should be defined as "length of the variable name."

RNAMSA: On page 12-46, the data type of the argument name is ASCII.
This argument must begin with a nonnumeric character that is also not a
plus or minus sign.

RTRNSS: Lines 2 and 3 of the definition of length on page 13-23 should
read:
When all records have been returned, calls to RIN$$ return a
record length of 0.
CLNUSS: After "s TYP" on page 13-24, insert a new variable:
& NIL /*Dummy variable for ignored return values
In line 1 on page 13-25, replace the argument (0,0) with (NIL,NIL).

BNSRCH: On page 13-31, when the key opflag is 2 and the new item is
not found, INDEX is set to 0 before the return.

Logical Devices, Physical Devices, and File Units: On page 14-8, the
last two lines of Table 14-3 should be:

140 MPC printer 0
141 MPC printer 1

ISAP02: For a discussion of the arguments for ISAP02, which are not
mentioned on page 18-6, see Chapter 14.

TIDEC, TIHEX, TIOCT, TNOU, TNOUA, TODEC, TOHEX, TOOCT, TONL: The
arquments variable and count on pages 18-10 through 18-13 are all
INTEGER*2,

SPOOL$: In words 4-6 of the information array on page 19-9, if no
forms option is specified, the space should be filled with blanks.,

T$AMLC: The data type of the argument stat-vec on page 20-21 should be
defined as FIXED BIN(3l).

SLEEPS: The argument interval on page 21-24 must be expressed as a
multiple of 100 milliseconds.

REV. 0 2 - 78

MRU10 FRIMDS AND UTILITIES

ARTTHS Condition: Add to the explanatory paragraph on page 22-26:

This condition is raised by fixed overflow or zero divide.

FINISH Condition: Change the last sentence of the explanatory
paragraph on page 22-30 to:

In PL1G, a STOP statement causes FINISH to be raised after
files are closed. In this case, FINISH also raises the STOPS
condition,

STORAGE Condition: Change the 1last sentence of the explanatory
paragraph on page 22-40 to:

In PL1G, the STORAGE condition can raise

ALLOCATE statement or by the compiler makin

LA LN NAViiiped.

88

.
PR

d either through the
~ -1 1
| L]

Vil Caia

STRING-3 Condition: On page 22-40, add the STRING-3 condition, raised
if that compile option is used in PLIG.

SUBSYS_ERRS Condition: On the same page, add the following error

condition:

LS AN wde\ShA S

SUBSYS_ERRS

The subroutine SS$ERR raises this condition when it is called
by a subsystem that is not interactive (i.e., one run by a CPL
or command file). The default on-unit for SUBSYS_ERRS aborts
execution of the subsystem and forces the severity code to have
a positive sign. Any command input file is aborted.

DIRSLS: Add to the definition of the argument type counts on page
A-24:
The type-counts fields are incremental, showing the number of

entries for each type so far. At Rev, 19.2, they are reset to
zero when the initialize bit is set.

2 - 79 June 1983

CHAPTER 2 MRU10

Add the following to the discussion of DIRSLS on page A-25:

The directory entry structure returned to the user has been extended at
PRIMOS Rev. 19.2. The complete structure is as follows:

dcl 1 dir_entry,
2 e,
3 type bit (8),
3 length bit (8),
2 entryname char(32) var,
2 protection,
3 owner rights,
4 spare bit (5),
4 delete bit (1),
4 write bit (1)
4 read bit (1),
3 delete_protect bit (1),
3 non_owner_rights,
4 spare bit (4),
4 delete bit (1),
4 write bit (1),
4 read bit (1),
2 file info,
3 long _rat hdr bit(l),
3 dumped bit(l),
3 dos mod bit (1),
3 special bit (1),
3 rwlock bit (1),
3 spare bit (2),
3 type bit (8),
date_time_mod fixed bin (31),
non_default_acl bit (1) aligned,
logical_type fixed binary,
trunc bit (1) aligned,
date_time last saved fixed bin (31);

DN

The length field is 24 words up to and including Rev. 19.1 and 27
words from Rev. 19.2 onwards. The new fields added are:

logical type This is an additional file type to the physical
file type described in file_info., type.
Possible values are:

0 for normal files
1 for RBF files

trunc This bit is set if the file has been truncated by
the FIX DISK utility; otherwise, it is zero.

date time last_saved Reserved for future use. This field is now
returned as zero (unset).

REV. 0 2 - 80

MRU10 PRIMOS AND UTILITIES

DIRSRD: Add the following to the discussion of DIRSRD on page A-27:

The directory entry structure returned to the user has been extended.
The complete structure is as follows:

dcl 1 dir_entry based,
2 ecw,

3 type bit(8),
3 length bit(8),
name char (32),
pi_protection bit(16) aligned,
non _default, protection bit(l) aligned,
file info,
long _rat _hdr bit(1),
dumped bit bit(1),
dos_mod bit(1),
special bit(1l),
rwlock bit(2),
spare bit(2),
3 type bit(8),
2 date_time modified,
3 date,

4 year bit(7),

4 month bit(4),

4 day bit(5),
3 time fixed bin,
logical type fixed bin,

: :
reserved fixed bin,

trunc bit(l) aligned,
date_time last_saved fixed bin (31);

DO

WWwWwwwww

NN NN

The new fields added are:

logical_ type This is an additional file type to the physical
file type described in file info.type.
Possible values are:

0 for normal files
1 for RBF files

trunc This bit is set if the file has been truncated by
the FIX DISK utility; otherwise, it is zero.

date time last saved Reserved for future use. This field is now
returned as zero (unset).

ENT$RD: Add the following to the discussion of ENTSRD on page A-29:

The directory entry structure returned by ENTSRD has been
extended. It is the same as for the routine DIRSRD.

2 - 81 June 1983

MRU10 LANGUAGES

CHAPTER 3
LANGUAGES

BASIC/WM

DOQUMENTATION QORRECTIONS

The following correction applies to The BASIC/VM Programmer's Guide
(FDR3058-101) .

Maximum Array Size: On page 9-1, insert at the end of the first

7 CoONDON .
garagrapn (JOLER #50299) ¢

An array in BASIC/VM can have a maximum of 32766 elements.

The following correction applies to the BASIC/VM Programmer's Guide
Update, Rev. 19 (QOR3058-002)., This update package should also have
included page 14-1A, which was part of the Rev. 18,0 update package.
Its contents, which should be inserted into the Rev. 19.0 update
package, are:

P> CHANGE str-expr TO num-array

Transforms ASCII character string, str-expr, into a one-dimensional
numeric array (num-array) containing the decimal values of the ASCII
codes of the string numeric array of ASCII codes to its string
equivalent, str-var. ASCITI characters and their decimal equivalents
are listed 1in Appendix B. For example, if the string "WORD", (A$), is
changed to array A,

This is page 14-1A in its entirety. The description of CHANGE
continues on page 14-2,

SOFTWARE PROBLEMS FIXED

Rounding: A problem with rounding errors has been corrected (POLER
#44455) ,

MIDAS: A MIDAS locking problem has been corrected (POLER #59082).

3 - 1 June 1983

CHAPTER 3 MRU10

A problem with the MIDAS ON ERROR and ON SIZE conditions has been
corrected (POLER #58987) .

Procedure Calls: Invoking calls to odd length operating system
procedures sometimes resulted in linkage faults. This problem has been
corrected (POLER #57839).

REV. 0 3 - 2

MRU10 LANGUAGES

QOBOL

SOFTWARE PROBLEMS FIXED

LOA-VALUES: The compiler failed to flag as an error the move of the
figurative constant "LOW-VALUES" to a binmary (usage COMP) data name.
Furthermore, the code generated would move an incorrect value (octal
177520) to the target item. The compiler has been changed so that when
"LOW-VALUES" is moved to a binary (usage COMP) item, the value 0 (in
binary) is moved to the target field. The compiler does not flag this
move as an error.

The documentation of permissible moves should be changed to allow
LOR-VALUES to be moved to a binary item (FOLER #27319).

READ Statement: A READ statement of a RELATIVE file in a program
containing large data records (usually where the link frame size was
greater than 32767) raised an ACCESS VIOLATIONS signal. This problem
has been corrected (POLER #58982).

SOFIWARE PROBLEMS OUTSTANDING

Link Frame: The compiler shows incorrect link frame sizes in program
statistics for some very large programs (POLER #20775).

UNSTRING Statement: If the receiving item of an UNSTRING statement has
a picture clause greater than 1023, such as PIC X(1024), the compiler
terminates with an INTERNAL ERROR 106 or 112 (POLER #32692).

LEVEL 88 Conditions: When subscripted LEVEL 88 conditions that have
been defined in a (OMP table are used, the compiler generates incorrect
code, and a reference to the LEVEL 88 name does not evaluate correctly.
For example:

01 GROUP.,
05 NAME PIC 9 QOMP OCCURS 5 TIMES.
88 (OND-NAME VALUE 1.

IF COND-NAME (I) ...

3 - 3 June 1983

CHAPTER 3 MRU10

The problem can be avoided by taking the COMP out of the description at
the 05 level (POLER #32693).

IF Statements: Certain combinations of AND/OR in IF statements do not
work correctly (POLER #35031).

REV. 0 3 - 4

MRU10 LANGUAGES

SOURCE LEVEL DEBUGGER

NEW FEATURES AND CHANGES

Support for Pascal STRING Type

The Source Level Debugger offers full support to Prime Pascal's new
STRING data type at Rev. 19.2., The STRING data type is similar to the
CHARACTER VARYING type in PL/1G. For more information on STRING, see
the Pascal section of this document or the Pascal Reference Guide
Update, Rev. 19,2 (UPD4303-192).

Support for FORTRAN 77 REAL*16 (Quad Precision)

1190 s T Avra’l Wl =Py v oo de =

The Source Level ucuugg tfers full support to FORTRAN 77's new
REAL*16 (quad precision) da ta type at Rev. 19.2., For more information
on REAL*16, see the FORTRAN 77 section of this document or the Third
Edition of the FORTRAN 77 Reference Guide (DOC4029-192).

The AGAIN Command

A new debugger command, AGAIN, is available at Rev. . 15.2. The AGAIN
command, abbreviated A, causes the debugger command immediately
preceding it to be repeated. The format of the AGAIN command is:

AGAIN

Here is an example using the AGAIN command with the LANGUAGE and :
(evaluation) commands:

> LANGUAGE
Language 1s PASCAL.
> AGAIN

Language is PASCAL.

|||
3

XV XYV
]
~J

3 - 5 June 1983

CHAPTER 3 MRU10

REV. 0 3 -

MRU10 LANGUAGES

SOFTWARE PROBLEMS FIXED

Floating-point Constants: At Rev. 18.4, the compiler was modified to
convert floating-point constants (e.g., "-3.2766") more accurately. At
Rev. 19.2, the I/0 runtime library support module, FSIOFTN, has been
modified to use a more accurate conversion algorithm that is consistent
with the way FIN now converts constants (POLER #56395).

DBG: Setting breakpoints on statements following certain IF statements
resulted in unexpected behavior within DBG when FIN programs were
debugged., This problem has been corrected.

3 - 7 June 1983

CHAPTER 3

REV. 0

MRU10

MRU10 LANGUAGES

FORTIRAN 77 (F77)

NEW FEATURES AND CHANGES

Quadruple Floating-point Arithmetic

F77 has been enhanced to allow quadruple floating-point arithmetic in
FORTRAN programs on all 50 Series and up Prime computers. This
enhancement is not supported on the Prime 400 at Rev. 19.2.

The compiler supports a full set of Quad intrinsic functions and the
REAL*16 data type. However, quadruple complex variables (COMPLEX*32)
and intrinsic functions are not supported at Rev. 19.2.

For further information, see the new edition of the FORTRAN 77
Reference Guide (DOC4029-192).

—PBECB Compile—-time Option

F77 now supports the —PBECB option, which duplicates the functionality
of the same option in the FIN compiler.

-PBECB causes F77 to place the Entry Control Block of every subprogram
it compiles into the procedure frame, except for BLOCKDATA subprograms,
which do not have an E(. The oompiler ignores this option when
compiling a main program since it always puts a main program's ECB into
the link frame.

This option is especially useful for large FORTRAN programs that are
comprised of many subprograms and that will be shared on the system.
Users running programs compiled with the -PBECB option generally have
smaller working sets and demand less of the system paging resources.

Program Constants and Short (One Word) Instructions

The compiler has been enhanced to make determinations about the
placement of program constants (such as PARAMETER constants) in the
procedure code and their accessibility by short, rather than long,
instructions.

Prior to Rev. 19.2, F77 placed all program constants at the beginning
of the procedure frame. They had to be accessed by a long instruction
if, for example, they were referenced at the end of a moderately sized
FORTRAN program. F77 now places such constants within reach of their

3 - 9 June 1983

CHAPTER 3 MRU10

point of reference by a short instruction if it finds that it can do
so. This change should improve execution speed of certain FORTRAN
programs and should also somewhat reduce their size.

DOCUMENTATION OORRECTIONS

The following corrections apply to the FORTRAN 77 Reference Guide
(DOC4029-183) .

Opening a File on a File Unit: On page 4-7, the second sentence under
this heading should read:

Every file except the user terminal, which is always open on
FORTRAN unit number 1, must be connected to a file unit prior
to data transfer.

OPEN Statement Options: On page 4-11, the first paragraph in Table
4-2, "OPEN Statement Options", should read:

The file is opened on the FORTRAN unit number specified.

ENDFILE Statement: On page 4-17, in the first paragraph under ENDFILE,
change "file unit unit#" to "FORTRAN unit unit#".

READ Statement: On page 4-19, in the first paragraph under READ,
change "file unit 1, the terminal"™ to "FORTRAN unit 1, the terminal"”.

These corrections derive from PFOLER #40958.

SOFIWARE PROBLEMS FIXED

Floating-point Constants: These oconstants are now evaluated more
precisely within F77. 'This improvement, made at Rev. 19.1, was
erroneously reported on page 3-17 of the Revision 19.1 Software Release
Document (MRU4304-009) as an "Outstanding Problem" (POLER #36539).

Double-precision Constants: The compiler can now handle double-
precision constants in which the exponent has more than 2 digits, such
as "1.0D200". This improvement, made at Rev. 19.1, was erroneously
reported on page 3-17 of the Revision 19.1 Software Release Document as
an "Outstanding Problem" (POLERs #29335, 32927).

TYPE: TYPE statements of the form <TYPE>*<LENGTH>, where LINGTH is not
legal for the particular TYPE (for example, INTEGER*3 or REAL*1l) now

REV. 0 3 - 10

MRU10 LANGUAGES

generate a severity 3 error message for illegal length specifications
(POLER #36579).

LOGICAL*4: The results of certain LOGICAL*4 expressions were not
passed correctly to procedures. This occurred when the actual
expression was passed instead of a variable that had been assigned the
result of the expression, such as "CALL SUBR(I.EQ.J)". The compiler
now generates proper code for this construct (POLERs #40617, 34287).

CHARACTER: Certain substrings of C(HARACTER variables failed to be
passed correctly to procedures, when passed as expressions rather than
as variables, as in "CALL SUBR(CHAR(2:5))". The compiler has been
fixed to generate proper code for this construct (POLERs #45973, 44294,
36012, 57176).

I/0 Statements: The statements "READ(1.75) ..." or "WRITE(1.75) ..."
were not flagged as errors by the compiler, but resulted in program
failure when executed., F77 now issues a severity 3 error message for
non-INTEGER unit specifications in I/O statements (POLERs #36707,

48000, 47598).

Listings: The compiler options listed at the top of the listing file
produced by F77 failed to reflect whether the -FRN option was in effect
or not. The options section has been re-organized and enhanced to

reflect all pertinent options, whether on or off (POLER #48028). ‘

Error Message 335: The token spelling of the offending token
referenced in error message 335 is now printed out in that message
(POLER #000100) .

Long CHARACTER Variables: F77 produced an inappropriate error message,
"BEGINNING OF FILE (ERROR MESSAGE)...", when ocompiling certain
programs, F77 did not deal effectively with a compiler limitation that
disallows initialization of CHARACTER variables whose length is greater
than 255 in a DATA statement. The compiler now produces an appropriate
severity 2 error message when it encounters this situation (POLERs
#40703, 40400, 44587).

WARNING 408: The £first character of WARNING 408 was being overwritten
by a single quote, ', in certain situations. This problem has been
corrected (POLER #33000).

Range Checking: Range checking on array subscripts in I/0 implied
DO-loops did not work unless the compiler's optimization was also
turned off, by use of the -NOOPT option, for example. Range checking
now works for I/0 implied DO-loops under all conditions (POLER #49403).

3 - 11 June 1983

CHAPTER 3 MRU10

END: Program units containing only an END statement caused the F77
compiler to abort with an ACCESS_VIOLATION$ signal. This problem has
been corrected (POLER #40000).

Subprogram Arguments: The actual length of certain subprogram
arguments of type CHARACTER was not being properly determined at
program runtime when the associated dummy arguments were declared as
CHARACTER* (*) . This was due to improper code emission by the compiler
for this particular case. The problem has been corrected (POLER
#35440) .

PARAMETER Statements: F77 disallowed the definition of symbolic names
in a PARAMETER statement that had previously been declared as
CHARACTER* (*) . Also affected was the usage of CHARACTER*(*) statement
functions. This problem has been corrected (POLER #35199).

Two—Character Strings: The FORTRAN statement "STOP 99" printed only
the second character of "99" when executed. The same held true for any
two-character string, such as "AB". NAMELIST block names of two
characters also exhibited the same problem, in that "AB" would actually
have been known as "B" when compiled. Both of these problems have been
corrected (POLERs #41473, 43214, 57405, 57406, 58924).

DBG: DBG incorrectly reported the types of certain REAL*4 arrays that
had been passed to a subprogram, This problem has been corrected
(POLER #56372).

Arrays: A LOGICAL*1l array was being initialized incorrectly by the
compiler when initialization was specified by a DATA statement. This
problem has been corrected (POLER #57407).

Implied DO-Loops: The compiler no longer aborts when parsing I/0
implied DO-loops associated with variables of type CHARACTER.
Statements like the following were involved:

WRITE(1,*) (CHAR(I:I),I=1,5)

SHET Intrinsic: SHFT intrinsic now functions correctly when used with
a negative second argument.

Error messages: Some error messages have been rewritten for greater
clarity.

REV, O 3 - 12

MRU10 LANGUAGES

Single Precision Floating-point Constants: The compiler has been
modified to convert single precision floating—point constants (e.g.,
"-3.2766") more accurately. To preserve consistency, the I/O runtime
library support module, FS$IO77, has also been modified to use a more
accurate conversion algorithm,

SOFTWARE PROBLEMS OUTSTANDING

DATA Statements: Initialization of certain variables and arrays in
DATA statements is performed incorrectly by the compiler. Affected are
CHARACTER*1 arrays and odd length (HARACTER variables (POLERs #35864,
45126, 43025, 43203, 54458),

Function Subprograms: Error 444, "STATEMENT ORDERING QONFLICT", is
issued at inappropriate times in certain function subprograms that have
a length specification in their FUNCTION statements, e.g., "INTHEGER*4
FUNCTION..." (POLER #41811),

—XREF Option: The use of —XREF when compiling certain programs in
-DEBUG mode produces an ACCESS VIOLATIONS signal in DBG, when
attempting to evaluate variables in COMMON blocks (POLERs #43211,
46662) .

List-directed I/0: List-directed I/O produces an incorrect number of
blank lines (POLERs #37812, 54751).

Large (OOMMON Blocks: Various problems occur with certain large COMMON
blocks, sometimes containing segment-spanning arrays (POLERs #44313,
48395, 59191).

Array Subscripts: Problems exist with certain mixed-mode array
subscripts. One problem involves a CHARACTER array subscript (POLERs
#40695, 47139, 32841, 34423).

An array subscript of zero is reportedly not allowed in a DATA
statement (POLER #34423).

Octal Constants: Problems with octal constants occurred—one in DATA
statement initialization, the other in a mixed-mode expression (FOLERs
#42727, 45632).

ENTRY Statements: Various problems occur with ENTRY statements. Two
of these report IBG problems with setting breakpoints (POLERs #37173,
40892, 44321, 46975).

3 - 13 June 1983

CHAPTER 3 MRU10

Bquivalence: Error 218 is produced when a variable is equivalenced to
itself (POLER #32259).

ENVIRONMENT

The F77 compiler for Rev. 19.2 must be run on a Rev., 19.2 PRIMOS
operating system installed on a 50-Series and up computer, as it
requires support for the new quadruple floating-point arithmetic
feature. This support is provided by the UII package that is installed
as part of 19.2 PRIMOS, and by Rev. 19.2 of the shared VFINLIB and
library files.

Rev. 19.2 of the compiler will operate on the Prime 400 only if FORTRAN
users take great care not to use the new quadruple floating-point
arithmetic feature. The Rev. 19.2 UII package, and quadruple
floating-point arithmetic, will not operate on the Prime 400.

REV. 0 3 - 14

MRU10 LANGUAGES

PASCAL

NEW FEATURES AND CHANGES

Several new features were added to the Pascal compiler at Rev. 19.2.
The most significant enhancement is the new STRING data type. Pascal's
STRING type allows easy manipulation of varying-length character
strings, similar to PL/1-G's CHARACIER VARYING type. The STRING type
is a Prime extension.

Two compiler options, —-NOOPT1 and -NOOPT3, are new at Rev. 19.2.
New features of Pascal at Rev. 19.2 are also documented in the Pascal

Reference Guide Update, Rev.19.2 (UPD4303-192). This update contains
changes for the new features and some additional corrections.

The STRING Type

The STRING data type is A Prime extension, Similar to the PLIG
(HARACTER VARYING type, the STRING type makes it easy to manipulate
character strings in Prime Pascal. Unlike an array of characters,
which must contain a precise number of character elements, STRING
allows you to assign, compare, concatenate, read, write, and pass
character strings that have a varying number of elements.

Declaring Strings

A variable of type STRING is declared in this form:

VAR
string-identifier : STRING[n];

The string-identifier is the variable of STRING type, and n is the
maximum number of character elements allowed in the string. This
number is called the maximum length of the string., If n is not given
in a STRING declaration, the maximum length is 80 by default.

Consider the following example:

VAR
A : STRING; {80 characters}
B : STRING[5]; {5 characters}
C : STRING[10]; {10 characters}
BEGIN
B := 'HI';
C := "HELID';
WRITELN(C)
END.

3 - 15 June 1983

CHAPTER 3 MRU10

The maximum length of string A is 80 characters., Strings B and C have
maximum lengths of 5 and 10, respectively. During execution, at the
WRITELN statement, B contains two characters and C contains five
characters. Therefore, variables declared as type STRING can hold
character—-string values of any length less than or equal to the maximum
length of the string. The length of a character string assigned to a
STRING variable is called the operational length of the string. Thus,
in the example above at the WRITELN statement, string B has a maximum
length of 5 and an operational length of 2. String C has a maximum
length of 10 and an operational length of 5. The operational lengths
may change when new values are assigned to the character strings.

You can use QONST and TYPE declarations with STRING. For example:

CONST

STRING _LENGTH = 20;
TYPE

STRING_2 = STRING[2];

STRING_5 = STRING[5];

STRING_20 = STRING [STRING_LENGTH] ;
VAR

ST2 : STRING_2;
ST5 : STRING_5;
ST20 : STRING_20;
Note
A string can be declared to have a maximum length of 32767
characters and a minimum length of 1 character.

The Null String

A null string, which is specified by '', is allowed. Null strings can
be used to initialize strings. You may assign a null string, but an
attempt to write a null string will generate a runtime error. The null
string is also a Prime extension. Here is an example of a null string
assignment:

VAR

S : STRING[10];
BEGIN

S :="'";

Assigning Strings

Strings can be assigned to one another. When the value of one string
is assigned to another string, the operational length is also assigned.

REV. 0 3 =16

MRU10 LANGUAGES

Note

A character literal string consists of one or more characters
enclosed in single quotes., It should not be confused with a
string, which is a variable that represents a STRING type
value., Character literal strings, such as 'HELIO' or
'greetings', may be assigned to strings.

Here is an example that assigns character literals to strings and
assigns one string to another string:

VAR
ST2 : STRING[2];
STS : STRING[5]:

BEGIN
ST2 := 'HI';
ST5 := 'HELIO';
ST5 := ST2 {operational length of ST5 is 2}
{and its value is 'HI'}
END,

If the operational length being assigned is larger than the maximum
length of the string receiving the assignment, the excess characters
are truncated., For example:

VAR
ST2 : STRING[2]:;
ST5 : STRING([5];

BEGIN
STS := 'HELLO';
ST2 := ST5 {value of ST2 is now 'HE'}
END. {and its operational length is 2}

3 - 17 June 1983

CHAPTER 3 MRU10

Here is another example of string assignments:

QONST
STR_LENGTH = 10;
VAR
A : STRING;
B : STRING[4]:
C : STRING[8];
D : STRING[STR_LENGTH];

BEGIN
B := 'four'; {operational length is 4}
B := 'fo'; {operational length is 2}
D := '1234567890'; {operational length is 10}
D := '12345"'; {operational length is 5}
D := B; {value of D is '"fo'}
D := '123456"';
B :=D; {value of B is '1234'}
A :="'"; {this is a legal assignment}

WRITELN(A) {but this will cause a runtime error}
END.

Two rules govern string assignments:

e If the operational length of the string being assigned (the
sending string) is less than or equal to the maximum length of
the receiving string, then the entire string value is assigned,
and the receiving string assumes the operational length of the
sending string.

e If the operational length of the sending string is greater than
the maximum length of the receiving string, then only the number
of characters in the sending string equal to the maximum length
of the receiving string are assigned. The remaining characters
are not assigned,

Assigning Arrays and Strings to Each Other

Strings and arrays of characters can be assigned to one another through
the use of two functions, STR and UNSTR. The STR function converts an
array of characters or a single character to a string, and the UNSTR
function converts a string to an array of characters or to a single
character. The STR and UNSTR functions are Prime extensions.

The result of the STR function is a string with a length of the same

number of characters as the array of characters argument, The result
of an STR function may be used anywhere a string may be used.

REV. 0 3 - 18

MRU10 LANGUAGES

The result of the UNSTR function is an array of characters or a single
Character. The number of characters in the newly formed array is
determined by context., That is, the context of whatever array length
is expected determines the length. The result of an UNSTR function may
be used anywhere an array of characters is expected. Here are some
specific rules governing the use of the UNSTR function:

e If the result of the UNSTR function is being assigned to an

array of characters, then that result will have the same number
of characters as the receiving array of characters.

If the result of the UNSTR function is being passed to a
procedure or function, then that result will have the same
number of characters as the formal parameter.

If the result of the UNSTR function is being compared to an
array of characters, then that result will have the same number
of characters as the array of characters to which it is being
compared.

If the UNSIR function is used in any other context, the length
of the resultant array will be the same as the operational
length of the string argument.

Here is an example that converts strings and arrays of characters to
one another using STR and UNSTR:

VAR

ST4 : STRING[4];
ST8 : STRING[8]:

AR4 : ARRAY[1l..4] OF CHAR;
ARS8 : ARRAY[1l..8] OF CHAR;

BEGIN
AR4 := 'JUNK';
ST4 := STR(AR4); {value of ST4 is 'JUNK'}
AR4 := 'BLUE':
ST8 := STR(AR4); {value of ST8 is 'BLUE'}
AR8 := 'LAVENDER';
ST4 := STR(AR8); {value of ST4 is 'LAVE'}
ST4 := 'JUNK';
AR4 := UNSTR(ST4); {value of AR4 is 'JUNK'}
AR8 := UNSTR(ST4); {value of AR8 is 'JUNK'}

ST8 := 'LAVENDER';
AR4 := UNSTR(ST8) {value of AR4 is 'LAVE'}

END.

3 - 19 June 1983

CHAPTER 3 MRU10

Comparing Strings

String comparisons are allowed according to the following rules:

e If the strings have the same operational 1length, a normal
comparison operation will be done.

e If the operational lengths of the strings are different, blanks
will be assumed to follow the shorter string.

Here is an example that compares strings:

VAR
ST4 : STRING[4];
ST8 : STRING[8]:
BEGIN
ST4 := 'BLUE';
ST8 := 'LAVENDER';
IF ST8 > ST4 THEN
WRITELN('Pass') {this will pass}

ELSE
WRITELN('Fail');
ST8 := ST4; {ST8 is now 'BLUE'}

IF ST8 = ST4 THEN
WRITELN('Pass') {this will pass}
ELSE
WRITELN('Fail')
END.,

Concatenating Strings

Prime Pascal's concatenation operator (+) concatenates two strings into
one string., The concatenation operator is a Prime extension., There is
no concatenation operator in standard Pascal.

The resultant length of the newly formed string equals the sum of the

operational lengths of the two concatenated strings. Either or both of
the strings may be a character literal string.

REV. 0 3 - 20

MRU10 LANGUAGES

Here is an example that uses concatenation:

VAR

ST2 : STRING[2];

ST4 : STRING[4];

ST6 : STRING[6];

ST11 : STRING[11l];

AR2 : ARRAY[1l..2] OF CHAR;
AR4 : ARRAY[1..4] OF CHAR;
AR6 : ARRAY[1,.6] OF CHAR;

BEGIN
ST2 := 'HI';
ST4 := 'BALL';
AR2 := 'GO';
AR4 := 'BLUE';
ST6 := ST2 + ST4; {ST6 equals 'HIBALL'}
ST6 := ST4 + ST2; {ST6 equals 'BALLHI'}
ST4 := ST2 + ST4; {ST4 equals 'HIBA'}
ST11 := ST2 + ST4 + 'HELIO'; {ST1l equals 'HIHIBAHELIO'}
ST4 := ST2; {ST4 equals 'HI'}
ST4 := ST2 + ST4; {ST4 equals 'HIHI'}
ST6 := STR(AR2) + STR(AR4); {ST6 equals ‘GOBLUE'}
AR6 := UNSI'R(SIR(AR4) + STR(AR2)); {AR6 equals 'BLUEGO'}
ST2 := 'PA';
ST4 := 'SCAL';
ST6 := ST2 + ST4;

IF ST6 = '"PASCAL' THEN
WRITELN('Pass') {this passes}
ELSE
WRITELN('Fail');
IF ST6 = ST2 + ST4 THEN
WRITELN ('Pass again') {this passes}
ELSE
WRITELN ('Fail');
IF ST6 = 'PA' + 'SCAL' THEN
WRITELN ('This works too') {this passes}
ELSE
WRITELN ('Fail');
AR6 := UNSTR(ST6) ;
IF AR6 = 'PASCAL' THEN
WRITELN ('Passes to array') {this passes}
ELSE
WRITELN ('Array fails');
IF AR6 = UNSTR(ST2 + ST4) THEN
WRITELN ('Passes to array again') {this passes}
ELSE
WRITELN ('Array fails')
END.

The concatenation operator is also discussed in Chapter 7.

3 - 2] June 1983

CHAPTER 3 MRU10

Reading and Writing Strings

When reading a string, you can enter any number of characters up to the
maximum length, Consider the following program, which contains a READ
statement:

VAR
ST10 : STRING[10];
BEGIN

READ(ST10)
END.

If the input were:
ABC(carriage return)

the program would assign 'ABC' to ST10 when the carriage return is
entered.

If the input were:
ABCDEFGHIJK

the program would complete execution the moment the 'K' character was
typed, because the 'J' character is the tenth character.

When you use a READLN statement, the number of characters before the
carriage return becomes the operational length of the string up to the
maximum length of that string.
Consider the following example:
VAR
ST5 : STRING[5]:
BEGIN
READLN (ST5)
END,
If the input were:
ABC(carriage return)

the value of ST5 would be 'ABC' and ST5 would have an operational
length of 3 characters.

REV. 0 3 - 22

MRU10 LANGUAGES

If the input were:

ABCDE (carriage return)
or

ABCDEFGHLJKLM (carriage return)
the value of ST5 would be 'ABCDE' and the operatiomal 1length of ST5
would be 5 characters. In either case, the program would not terminate
until the carriage return was typed.
When reading two strings with one READ or READIN statement, you must
enter all of the characters of the first string, up to its maximum

length, before you can begin entering characters for the second string.
Consider the following example:

VAR

ST1, STZ : STRING[10];
BEGIN

READ(ST1, ST2)
END.

If the input were:
ABCDEFGHIJKIM

the characters 'ABCDEFGHIJ' would be assigned to ST1, and 'KIM' would
be assigned to ST2. In order to assign characters to ST2, 10
characters must be assigned to ST1.

If you enter less than 10 characters, or if you enter only 10
characters, then the null string is assigned to ST2. (Null strings
cannot be written out,)

When a string is written, the default field width is the operational
length of the string, If a field width is specified, and the width of
the field to be printed is greater than the operational length of the
string, then the string is right justified in the f£field and blank
padded on the left, If the specified field width is too small, then
only the specified number of characters will be printed.

Here is an example of writing strings with different field widths:

VAR
ST10 : STRING[10];
BEGIN
ST10 := 'ABCDEFGH'; {eight characters}
WRITELN(ST10) ;
WRITELN(ST10:12) ;
WRITELN(ST10:2)
END.

3 - 23 June 1983

CHAPTER 3 MRU10

The output will look like this:

ABCDEFGH
ABCDEFGH
AB

Here is another example that reads and writes strings to and from the
terminal and PRIMOS data files:

VAR
ST5 : STRING[5]:;
ST10 : STRING[10];
STRINGINPUT : FILE OF CHAR;
STRINGOUTPUT : FILE OF CHAR;
BEGIN
WRITE ('Enter an ST5 value: ');
READLN (ST5) ;
WRITELN (ST5) ;
WRITE('Enter an ST10 value: ');
READLN(ST10) ;
WRITELN(ST10) ;
WRITELN(ST5 + ST10);
RESET (STRINGINPUT, 'STINPUT');
READLN (STRINGINPUT, ST5);
REWRITE (STRINGOUTPUT, 'STOUTPUT');
WRITELN (STRINGOUTPUT, ST5):
READLN (STRINGINPUT, ST10);
WRITELN (STRINGOUTPUT, ST10):
WRITELN (STRINGOUTPUT, STS5 + ST10);
CLOSE (STRINGINPUT) ;
CLOSE (STRINGOUTPUT)
END.

Passing Strings to Procedures and Functions

Strings can be passed as parameters to procedures and functions. They
may be passed by value or by reference and may return as arguments from
functions,

The STRING assignment rules, given earlier in this chapter, apply to
passing strings to procedures and functions,

REV. 0 3 - 24

MRU10 LANGUAGES

Here is an example that passes strings to procedures and functions:

TYPE
STRING_6 = STRING[6];
STRING_3 = STRING[3];
STRING_10 = STRING[10];
VAR
GLOBAL_10 : STRING 10;
GLOBAL 6 : STRING_6;
PROCEDURE PROC1(S : STRING 6); {GLOBAL 10 is passed to S}

BEGIN {and is truncated to 'TESTIN'}
WRITELN(S) {'"TESTIN' will be written}
END;
PROCEDURE PROC2(VAR S : STRING 6); {GLOBAL 10 is assigned to}
BEGIN {the parameter GLOBAL 6}
S := GLOBAL_10
END;
FUNCTION FUNC(S : STRING_6) : STRING_3; {GLOBAL 10 becomes}
BEGIN {substring 'TIN'}
FUNC := SUBSTR(S, 4, 3) {inside function}
END;
BEGIN {main}
GLOBAL_10 := 'TESTING';
PROC1 (GLOBAL,_10) ;
PROC2 (GLOBAL,_6) ;

WRITELN (GLOBAL_6); {'TESTIN' will be written}

GLOBAI,_10 := FUNC(GLOBAL_10);

WRITELN(GLOBAL_10) {'TIN' will be written}
END,

For complete information on procedures and functions, see Chapter 9 of
the Pascal Reference Guide.

String Functions

There are seven other built-in functions that manipulate strings in
addition to the STR and UNSTR functions. All of these functions are
Prime extensions. They are:

e LENGTH

e INDEX

® SUBSTR

¢ DELETE

e INSERT

e LTRIM

3 - 25 June 1983

CHAPTER 3 MRU10

The LENGTH Function: This function takes a string as an argument and
returns an 1integer that is the operational length of the string., A
string literal may not be used with this function.

The INDEX Function: This function takes two strings as arguments. It
searches the first string to determine if it contains the second
string. The first argument, therefore, is the string to be searched.
The second argument is the string to be searched for. The function
returns an integer that gives the position in the first string that
indicates the beginning of the second string. If the second string is
not found in the first string, a zero is returned. The first argument
must be a string and not a string literal. The second argument may be
a string, a string literal, or a character.

The SUBSIR Function: This function takes three arguments—a string and
two integers, It yields a substring of the first argument, which is a
string. The second argument is the starting position of the substring
in that string. The third argument is the desired length of the
substring., The function returns a string. The first argument must be
a string and not a string literal.

The DELETE Function: This function takes three parameters——a string
and two integers. It deletes a specified substring within the given
string, and returns a string. The function takes the first argqument,
the string, starting at the position specified by the first integer,
and deletes the number of characters specified by the second integer.
The first argument must be a string, not a string literal.

The INSERT Function: This function takes three arguments—two strings
and an integer. It inserts the second string into the first string,
and returns a string. The integer specifies the position in the first
string where the second string is to be inserted. The first argument
must be a string and not a string literal. The second argument may be
a string, a string literal, or a character.

The TRIM Function: This function takes a string as an argument and
returns a string. It removes all trailing blanks. The argument must
be a string, not a string literal,

The LTRIM Function: This function takes a string as an argument and
returns a string., It removes all leading blanks. The argument must be
a string, not a string literal.

REV, O 3 - 26

MRU10 LANGUAGES

Here is an example that uses all these functions:

VAR

ST8 : STRING[8]:

ST10 : STRING[10];

I, J, K : INTEGER;
BEGIN

ST10 := 'ABCDEF';

I := LENGTH(ST10); {I equals 6}

ST8 := 'CDE';

I := INDEX(ST10, ST8); {I equals 3}

J := INDEX(ST8, ST10); {J equals 0}

ST8 := SUBSTR(ST10, 3, 2); {ST8 equals 'CD'}
ST8 := DELETE(ST10, 3, 2); {ST8 equals 'ABEF'}

ST8 INSERT(ST8, 'HI', 2); {ST8 equals 'AHIBEF'}
ST10 :="'"A B C '; {10 characters}
ST10 := TRIM(ST10); {ST10 equals ' A B C' - 8 characters}
ST10 := LTRIM(ST10) {ST10 = 'A B C' - 7 characters}
END.

Declaring External Procedures and Functions

At Rev., 19.2, a subprogram can call a procedure or function that is
contained in the main program. To do this, use the {$E+} and {SE-}
compiler switches around the procedure or function declaration in the
main program.

Here is an example of & main program that contains an externally
declared procedure:

VAR
A, B, C, D : INTEGER;
{SE+}
PROCEIURE ADD (X : INTBHGER Y : INTEGER);
VAR
Z : INTEGER;
BEGIN {add}
Z :=X+Y;
WRITEIN('Sum is ',Z)
END;
{SE-}
PROCEDURE MULT (P : INTEGER; Q : INTBGER); EXTERN;
BEGIN {main}

W >
0

- O 0
~e ~eo

=pily°
G958
Gog?
g £

g

Here is the external subprogram, that calls the procedure:

3 - 27 June 1983

CHAPTER 3 MRU10

{SE+} '
PROCEDURE ADD(X : INTEGER; Y : INTEGER); EXTERN;
PROCEDURE MULT (I : INTEGER; J : INTEGER);

VAR
M : INTEGER;
K, L : INTEGER;
BEGIN {mult}
K := 50;
L := 60;
M:=1*%J;

WRITELN('Mult is ',M);
ADD (K, L) {external procedure called here}
END;

Notice that the procedure is declared again under the {$E+} switch, and
that this procedure heading ends with EXTERN.

—NOOPT1 AND -NOOPT3 Compiler Options

Two new compiler options were added at Rev. 19.2, -NOOPT1 and -NOOPT3.
These options are defaults to the -0OPT1 and -OPT3 options,
respectively. -OPT1 optimizes less code and generates less efficient
code than -OPTIMIZE, but compilation time is faster than with
—OPTIMIZE. -NOOPT1 is the default and does not generate less code.
~OPT3 optimizes more code and generates more efficient code than
-OPTIMIZE, but compilation time is slower than with -OPTIMIZE. -NOOPT3
is the default and does not generate more code.

Severity 3 Error: Use of PACK and UNPACK

At Rev. 19.2, any attempt to use the PACK or UNPACK procedures
generates a severity 3 error and causes your program to fail.

DOCUMENTATION QORRECTIONS

The following corrections apply to the second edition of the Pascal
Reference Guide (DOC4303-191).

—RANGE/-NORANGE: The -NORANGE option is the default, not -RANGE. See
page 2-11 in the new second edition (POLER #52930).

REV, 0 3 - 28

MRU10 LANGUAGES

Identifier Length: As of Rev. 19.1 r identifiers are no longer
truncated to 8 characters. No error message will appear if an
identifier has more than 8 characters, but fewer than 32. An
identifier with more than 32 characters will generate a severity 1
error. See pages 4-8 and A-5,

SOFTWARE PROBLEMS FIXED

Sets: The set [x..y] is now built correctly when x is greater than Y
in which case, the set is empty.

Set Elements: An error message is now given when an integer that is
out of range (less than 0 or greater than 255) 1is assigned ag an
element of a set,

A runtime error message is now given when an element i added to a set
that is out of valid range—less than 0 or greater than 255 (POLER
#47371) .

An error message is now given when a character string of length greater
than 1 is assigned as an element of a set.

"IN" Operator: The "IN" operator now works correctly when the operand
1s out of range (less than 0 or greater than 255). False is always
returned for an out of range value (POLER #44357) .

TYPE Declaration: When a colon is used instead of an equal sign in a
TYPE declaration, the compiler now gives a severity 2 error message and
recovers from the error,

Variable Parameters: When a procedure or function has as a parameter a
procedure or function that is a variable parameter, the "VAR" is
ignored and a severity 2 error message given,

Syntax Error: A syntactically incorrect program now gives error
messages, instead of failing at compile time with an access violation
(POLER #43585) .

Undeclared Files: A rewrite of an undeclared file now causes a runtime
error message instead of an access violation (POLER $#43685) .

Large Data Structure: An error message is now given at compile time
when a data structure to be allocated is larger than one segment (POLER
#46630) .

3 - 29 June 1983

CHAPTER 3 MRU10

Terminal Output: When a negative real was output to the terminal, the
minus Sign was sometimes missing. The sign has now been restored
(POLER #48205) .

TYPE Declarations: When a scalar type was declared incorrectly, an
access violation was given. An error message is now given (POLER
#51346) .

External Declaration: The external declaration of a procedure did not
make the procedure an entry point. It was unresolved at load time,
This problem has been corrected (FOLER #52234) .

Subranges: Parentheses around a subrange type now generate an error
message instead of an access violation.

-LIST: In the 1listing generated by the -LIST option, the list of
options no longer says "OPTIMIZE-2" when it should say "OPTIMIZE", or
"UCASE"™ when it should say "UPCASE".

Internal or unsupported options no longer appear in the listing file,
RESET: A reset of an undeclared file now generates a runtime error
message instead of an access violation. A reset of a non—existent file

now detects that the file does not exist and generates a runtime error
message instead of an access violation.

REV. 0 3 - 30

MRU10 LANGUAGES

PL/I, Subset G (PLIG)

SOFTWARE PROBLEMS FIXED

Picture-type Arrays: The problem with printing out picture-type arrays
has been corrected by changing library routine PSWALK (FOLERs #37392,
48758) .

Big Data Size: The problem with data size bigger than one segment has
been corrected by updating the allocator (POLER #43320) .

I/0 Column Format: The problem with I/0 column format has been

corrected by updating PSEIN (POLER #43857) .

Multiple MIDAS Files: During a close, the second file closed with
locked records., This problem has been corrected by updating PS$CLOS
(POLERs #47365, 40077).

I/0 Blank After Quote: The problem with I/0 blank after quote has been
corrected by updating PSLIN (POLER #47917).

Forms "All Clear": The problem with forms "Clear All" has been
corrected by changing library routine PSTER (POLER #48002).

I/O Read BOF: The problem with I/0 read EOF has been corrected by
updating PSGLIN (POLER #51042).

Aggregate Assignment: The problem with aggregate assignment for fixed
bin and float has been corrected by modifying PASS2 (POLER #58304) .

Float bin and Float_dec Precision: The problem with float bin and
float_dec precision has been corrected by modifing DECLARE and PASS2
(POLER #60594) .

SOFTWARE PROBLEMS QUTSTANDING

IRIM: The second trim is lost in the following PLIG statement:

T LIST('xx'!!trim(i,'ll'b)!!'xx’!!trim(i,'lO'b)!!'xx');

3 - 31 June 1983

CHAPTER 3 MRU10

Label Prefix: A label prefix on a procedure statement causes an error
32 (compiler error) in DECLARE.

For example:

a(l): proc;
end;

REV. 0 3 - 32

MRU10 LANGUAGES

NEW FEATURES AND CHANGES

Quadruple Floating-point Arithmetic

New instructions have been added in V-mode and I-mode to support the
new quadruple-precision floating-point data type.

New Options

The SEG Pseudo_op now takes either PURE or IMPURE as an argument, If
the argument is omitted, PURE is assumed. Furthermore, if existing
programs do not have at least 18 spaces between the Pseudo_op SEG and a
comment, PMA now treats the comment as an operand and generates an

rror
de de \SL @

Normalization of Floating—point Numbers

Floating-point numbers are now handled more efficiently.

Opcode Tables

These have been made into Insert files.

Other Changes

The Revision 19.2 Assembly Language Programmer's Guide (PTU2600-104)
provides further details on the quadruple-precision floating-point data
type and the instructions that manipulate it. ‘This update also
contains new instructions for the Prime 850 and numerous corrections to
previous documentation.

DOQUMENTATION CORRECTIONS

The following corrections apply to the Assembly Language Programmer's
Guide (FDR3059-101).

FLR 0: On page 11-7, under the entries for both ZMVD and ZTRN, FLR 0
and not FLR 1 should be set to the number of characters to move (POLER
#35275) .

3 - 33 June 1983

CHAPTER 3 MRU10

Right Brace Negative Sign: Table 11-1 on page 11-1 gives a left brace
symbol ({) as a valid negative sign. The correct negative sign is a
right brace symbol (}) (POLER #29999).

C Field and XMV Instruction: Page 11-14 incorrectly shows the C field
of the decimal control word used with the XMV instruction. This field
is used only with the XAD, XMP, XDV, and XM instructions (POLER #
29999) .

FLD addr: On page 11-19, under the entry for FLD addr, change "Load
the double precision number..." to "Load the single precision
number..." (POLER #40031).

STPM: On page 11-38, the values of the processor model numbers are
Tncorrect. The correct values can be found in the file
PRIMDS>KS>SEG14.PMA (POLER #47391).

LF R/LT R: On page 12-17, under the entry for LF R, change "Set R
equal to zero..." to "Set RH equal to zero..." Under the entry for LT
R, change "Set R equal to one..." to "Set RH equal to one,.." These
two instructions set only the high-order 16 bits of the specified
register to zero and one, respectively (POLERs #48431, 61802).

Previous corrections are listed in the Revision 19.2 Assembly Language
Programmer's Guide.

SOFTWARE PROBLEMS' FIXED

Pseudo—op Processor: With SWYML on, the CALL pseudo—op now recognizes
32—-character names,

External Symbols: Using symbolic names for I-Mode registers no longer
destroys external symbols.

Single Quote: A "'" in column 1 now works as documented.

Common Blocks: Common blocks with a size of up to 1 segment may now be
declared., Previously, any block declared larger than 32767 words was
given a size of 0.

Negative exponents: These are now represented correctly.

REV. 0 3 - 34

MRU10 LANGUAGES

ROT: The ROT instruction has been corrected.

Symbol Table: The size of this table has been adjusted.

SOFIWARE PROBLEMS QUTSTANDING

Floating Point: In I-mode, a floating-point number used as a literal
without a leading "=" sign is not flagged as an error.

LDX const: When the target of a LDX instruction is the X register, no
error is flagged.

Final Comment Lines: Comment lines following the END statement of a
PMA program generate an error and cause SEG to reset the top of the
procedure segment to 177777 (POLER #46341).

3 - 35 June 1983

CHAPTER 3

Rw. 0

MRU10

36

MRU10 LANGUAGES

RFINL.IB

NEW FEATURES AND CHANGES

Interludes

The use of interludes between R-mode and V-mode gates and libraries has
been changed. When using the insert VIUDE.INS.PMA, load the routine
with the V-mode interlude only after loading the R-mode FORTRAN library
(FINLIB or SVCLIB).

A warning message is issued by LOAD if routines containing V-mode
interludes are loaded before the R-mode library. Also, programs
designed for use under PRIMOS II must use SVCLIB.

3 - 37 June 1983

CHAPTER 3

REV. 0

MRU10

38

MRU10 LANGUAGES

VFINLIB

NEW FEATURES AND CHANGES

New Data Type

Runtime support has been added to the FORTRAN library for a new data
type, REAL*16, which will be supported only by the F77 compiler. For a
detailed explanation, refer to the section of this chapter describing
F77 and to the new edition of the FORTRAN 77 Reference Guide
(DOC4029-192) .

Because of this new data type, PLIG no longer returns an error
condition for decimal numbers containing between 14 and 28 digits,
However, only decimal numbers of between 7 and 28 digits permit

doiihl o=mracicion aconracs
NANS RIS e Nt r:.‘_va.wa.va; “\'vub“vj o

FORTRAN formatted input now rounds on input to provide support for
constant rounding in the compiler,

SOFIWARE PROBLEMS FIXED

Format Fields: FS$IO77 now produces the correct number of stars when
the format field specified is too small for the number (POLER #30123).

Direct I/O: Problems with accessing records using direct I/O have been
corrected (POLERs #30212, 46165, 47429).

Missing Library Routines: The missing library routines F$SCCBWR and
FSSCIPWR have been included in the library (POLERs #32056, 34326).

Values Out of Range: DEXP$X now returns consistent errors on values
out of range (POLER #34034).

Floating Minus Signs: F$IO77/FSIOFIN now recognize as legal specifiers
all cases of floating minus signs in B-format specifiers (POLER
#34743) .

Performance: Library runtime performance degradations after Rev. 18.2
have been resolved (POLER #40423).

3 - 39 June 1983

CHAPTER 3 MRU10

Line Printer Control: The form feed printer control character, "-"
now works correctly on a line printer (POLER #41658).

r

Random Number Generator: The repeat interval from the random number
generator has been doubled (POLER #47579).

TODECﬁ TODEC can now convert "-32768" (POLER #48530).

REV. 0 3 - 40

MRU10 LANGUAGES

NEW FEATURES AND CHANGES

Default Compiler Options

The VRPG driver program, RPGDF.SAVE, which sets the default options of
the VREG compiler, now resides in VRPG>TOOLS. The System Administrator
can change the default options by the command:

RESUME RPGDF SYSOVL>RPGDATA [options]

See Chapter 14 of the System Administrator's Guide (DOC5037-190) for
more information.

SOFTWARE PROBLEMS FIXED

Primary and Seoondarz Files: 1In some circumstances, the compiler
aborted when no primary file was specified. This has been corrected.
Now, if a secondary file is specified, the first one is defaulted to
the ©primary file; otherwise, a severity 3 error is issued

(POLERs #58983, 52784).

Support of Lowercase: Lowercase literal strings are now supported in
VRPG. Previously, all lowercase characters in a VREG program were
converted to uppercase before processing. This prevented the use of
lowercase characters in literals and the use of lowercase characters in
editwords (POLER #57137).

OQutput: An overflow output problem could cause missing header lines or
extra header lines., ‘This happened if the overflow line was reached
when the other conditioning indicator was on. The extra 1lines were
occurring when an output line was conditioned as in the following
example, and the control break occurred while the overflow indicator
was on.

OOUTP D 06 OANL1

0 OR L1
o 10 "HEADING'

3 - 41 June 1983

CHAPTER 3 MRU10

The missing lines occurred when an output line was conditioned as in
the following example, and the control break occurs before the overflow
line is reached.

OOUTP D 06 LINOA
0 OR OA
0 10 "HEADING'

(POLERs #57195, 55435, 55436) .

REV. 0 3 - 4

MRU10 DATA MANAGEMENT SYSTEMS

CHAPTER 4

DATA MANAGEMENT SYSTEMS

DOCUMENTATION QORRECTIONS

The following correction applies to the DBMS Data Manipulation Language
Reference Guide (DOC5308-190) .

ON ERROR: In the first example on page 3-45, the "#" gymbol was
1nadvertently omitted in column 7 of the ON ERROR clause.

The example should read:

FIND NEXT REQORD EMPLOYEE OF SET DEPT-SET

ON ERROR 0307 GO TO LABEL-1,
3 F"T“

s i

#H=
()

LABEL-1,

DISPLAY 'END OF SET ENCOUNTERED'.
CLEAR ERROR.

The following corrections apply to the DBMS Data Description Language
Reference Guide (DOC5717-181).

Data Item/Data Check Clause: The last paragraph on page 2-22 should
read:

When LIST USING is specified, the data item must be of the type
CHARACTER n, where n is the exact number of characters
allocated to the data item., The value assigned to the data
item must be one of the literals in literal-list. The literals
in literal-list must be character strings and must include the
exact number of characters specified in the CHARACTER clause.

4 - 1 June 1983

CHAPTER 4 MRU10

For example:

1 REGISTER-CODE;
TYPE IS CHARACTER 2;
CHECK IS LIST USING 'Ol1', '03', '05',

Reserved Words: In appendix D, add "ACIUAL" to the 1list of reserved
words for schema DDL (POLER #53196).

SOFTWARE PROBLEMS FIXED

FSUBS: FSUB SYSQOM MAP now shows the correct size of ERITEM (POLER
#41450) ,

DBACP: DBACP now allocates before-image files up to the defined
maximum size of INTEGER*4 (POLER #43052).

DBACP RESTORE now produces the proper error message when an invalid
treename for an after-image file is entered (POLERs #32638, 32211).

DBACP SAVE TO TAPE function has been modified to:
1. Prompt the user to mount new tape when a tape error occurs;

2. Ask for the proper mag tape unit number if one is not assigned
or online;

3. Properly unlock the data base for other users when a SAVE
procedure is aborted before it reaches completion (POLERs
#34481, 35201, 40760, 36464, 43922, 58278).

DBACP PACK AREA now detects a corrupted data base and damages it no
further. This modification also increases performance by a minimum of
60 per cent (POLERs #32867, 32869).

DBACP now closes files consistently, even files allocated on a second
volume (POLERs #34772, 36602, 37900, 37752, 81962, 34052).

DBACP recognizes a maximum of 16 volumes during file allocation. Any
volume with LDN>16 is not recognized as valid.

IMILCP: After a REMOVE or DELETE, set privacy locks are properly
maintained (POLER #44232).

The STORE, FIND, and DELETE commands now treat data type conversions in
a consistent manner (POLERs #47676, 4768l).

DBMS users no longer occasionally hang on an EXIT DBMS call (FOLER
#56262) .

REV. 0 4 - 2

MRU10 DATA MANAGEMENT SYSTEMS

DBUTL: The DBUTL commands RDIR and ADIR now show in parentheses the
correct octal equivalents of the decimal addresses (POLER #29404).

DBUTL now reads correct nodes while verifying sets (POLERs #47967,
47968, 55683) .

SCHDEC: SCHDEC now properly handles output source file names up to 80
characters long (POLER #36005) .

SCHDEC now produces the correct output line for a picture clause of the
form "V99" (POLER #33847).

SQGIDEC now accepts single quotes around a treename with a password as
the output file name (POLER #33119).

when a schema is decompiled with SCHDEC, a signed item (e.g., PIC
S99V99) appears as unsigned (PIC 99V99). SCHEMA treats signed and
unsigned fields alike (POLER #42934).

SCHED: SCHED produces the error message "ONLY CHECK AND TYPE QODE
CLAUSE MAY BE CHANGED" when a user tries to change an item in any other
way (POLER #29403).

SCQHED checks the length of the SEARCH/SORT/CALC key. If its length
exceeds the defined maximum of 30 words, SCHED produces the message
"SEARCH/SORT/CALC KEY LENGTH GREATER THAN 30 WORDS" (POLER #43242),

After a successful session of SCHED, after-imaging is turned off, if it
was on. The user is informed of the fact by the message "AFTER-
IMAGING IS SHUT OFF" (POLER #48540).

SCHED now gives statistics of up to 20 buckets of fragmented records,
SCHEMA: SCHEMA checks the length of the SEARCH/SORT/CALC key. If its
Tength exceeds the defined maximum of 30 words, SCHEMA produces the

message "SEARCH/SORT/CALC KEY LENGTH GREATER THAN 30 WORDS" (POLER
#43242),

SOFTWARE PROBLEMS QUTSTANDING

DBACP: The DELETE SCHEMA command sometimes causes DBMS errors because
the SD# entry was not deleted (POLERs #37900, 46653, 81975).

Gives uninformative error messages when it fails to open DB# file
(POLER #33542),

EXPAND of areas may cause high I/O usage (FOLER #32867).

4 - 3 June 1983

CHAPTER 4 MRU10

Does not always correctly restore schemas saved without the after-
image file (POLERs #34679, 25408, 48007).

ALIOCATE of an empty area gives 33 EOF error (POLER #46238).

Bad linkage of available nodes causes fatal internal DBMS error (POLER
#37505) .

When allocating a very large database, DBACP returns negative numbers
for file sizes (POLER #58656) .

DBACP EXPAND gives unpredictable results (POLERs #41637, 44226).

DBACP EXPAND gets error code 31 on trying to open a SEGDIR file (POLER
#43624) .

DBUTL: DBUTL documentation and the HELP option state incorrectly that
both major and minor codes are given for the MON command (POLER
#47969) .

IMLCP: DMLCP fails to detect an area opened twice at runtime. "Close
all areas" closes only one file unit. CLUP closes the second file
wit, but issues the message "NO OPENED AREAS FOUND" (POLER #47675) .

It is possible to initialize and store non-numeric values for calc key
fields of type PIC 9 (POLER #47677).

IMICP does not return an error on an illegal store using a variable
length record (POLER #41892).

Conversion between REAL*4 and packed decimal as data moves between
schema and subschema is not correct. The data changes without updates
(POLER #40392).

An internal fatal error results when you attempt to store a record,
with no duplicates allowed, for the second time (FOLER #52834).

RLIB: The transaction bit map may overflow if there is a hung or very
slow user (POLER #29298).

ENVIRONMENT

Rev. 19.2 DBMS requires PRIMOS Rev. 19.1 and SEG Rev. 19.0 or
greater, DBMS runtime (IMLCP) requires the use of shared segments
2001, 2002, 2003 and 2012, as well as private segments 4030, 4031,
4032, 4033 and 4034.

REV. 0 4 - 4

MRU10 DATA MANAGEMENT SYSTEMS

DBMS/QUERY

DOCUMENTATION CORRECTIONS

The following corrections apply to the DBMS/QUERY Reference Guide
(IDR4607-182) .

CREATE FORMAT: On page 10-3, in the last paragraph under the CREATE
FORMAT command, delete the phrase "If there are no errors..." The
sentence should read simply: "QUERY catalogs the format."

EDIT FORMAT: On page 10-4, under the EDIT FORMAT command, the next to
last paragraph erroneously implies that only a format that is
syntactically correct will be cataloged. In fact, whenever you issue
the FILE command, the format is cataloged., If any errors are present,
QUERY returns you to the editor to correct them. You can also choose
to delay the editing because the format remains cataloged.

If you use the QUIT command rather than FILE, any changes made during

the current editing session will not be saved. If you QUIT from the
initial creation of the format, no cataloging occurs.

SOFIWARE. PROBLEMS FIXED

Line Truncation: When argument expansion in a procedure causes a line
to exceed 160 characters, DBMS/QUERY no longer truncates the line to
160 characters.

Command Display: If procedure echoing is enabled and a command is
split over more than one line (either by the user with the tilde
character or by the argument expander), the entire command is
displayed, instead of just the first line.

PICTURE Information: When displaying a PICTURE string from a QOBOL
subschema, picture information following a 9(x) is no longer deleted
when x is greater than 4. This problem occurred in the DESCRIBE
REQORDS and SAVE TABLE commands, In the SAVE TABLE command, the
incorrect description was written out to the table description file,
which resulted in the failure of application programs that used the
file as an INSERT or INCLUDE file (POLER #47680).

4 - 5 June 1983

CHAPTER 4 MRU10

SELECT: When selecting records from a database with a SELECT command
and a compound WHERE clause——that is,

SELECT <item-list> FROM REMRD <record-name> WHERE <item-namel> =
'<stringl>"' AND <item-name2> = '<string2>'

DBMS/QUERY sometimes crashed with a UIIS error condition after

retrieving at least one virtual record. This problem has been
corrected (POLERs #41337, 44925, 51498, 59313).

SOFTWARE PROBLEMS OUTSTANDING

No more than 15 areas may be open at a time (POLER #60201).

ENVIRONMENT

Rev. 19.2 DBMS/QUERY requires Rev. 19.2 DBMS and Rev. 19.2 PRIMOS.

REV. 0 4 - 6

MRU10 DATA MANAGEMENT SYSTEMS

MIDAS

DOQUMENTATION QORRECTIONS

The following correction applies to the Midas User's Guide
(IDR4558-176) .

GDATAS Calling Sequence: At the bottom of page 6-47, under the
argument status, add the value of +1 for EOF (POLER #29998).

SOFTWARE PROBLEMS FIXED

File Allocation: MIDAS no longer erroneously extends a direct access
file allocation (FOLER #41451).

Closing Subfiles: BILDSR now closes subfiles when the end of
processing is indicated and no records have been added (FOLER $#47488) .

KBUILD: KBUILD now accepts output file pathnames longer than 40
characters (POLER #51154),

At segment boundaries, KBUILD adds direct access records correctly
(POLER #60202) .

MPACK: The MPACK "UNLOCK" option now releases access controls after
use (POLER #58926).

MOUMP: MDUMP now dumps direct access records (POLER #60319).

SOFIWARE PROBLEMS OUTSTANDING

DISK FULL" Error: MIDAS leaves a file in an inconsistent state when a
"DISK FULL" error arises on a call to the file system., MIDAS aborts
the process.

"ALL FILE UNTTS IN USE" Error: Receiving the "ALL FILE UNITS IN USE"
error on a call to the file system, MIDAS is wunable to multiplex its
file unit usage and aborts the process.

4 - 7 June 1983

CHAPTER 4 MRU10

ENVIRONMENT

MIDAS Rev. 19.2 is compatible with other Rev. 19.2 products., This
version of MIDAS is intended for Revs 18.5, 19.1, and 19.2 QOBOL,
BASICV, and POWERPLUS. It should not be installed on the same system
as MIDASPLUS. While MIDAS Rev. 19.2 should be able to run against
PRIMOS Revs 18.3 and later, it is not supported for those releases.
OAS prior to Rev., 3.0 should not be used with this release of MIDAS.

REV. 0 4 - 8

MRU10 DATA MANAGEMENT SYSTEMS

MIDASPLUS

NEW FEATURES AND CHANGES

Open and Close

Since PRIMOS Revs 18.5 and 19.1, file opening and closing requirements
for MIDAS have been identical to those for MIDASPLUS.

MIDASPLUS requires a call to OPENMS or NTFYMS before a file can be
accessed via the online MIDASPLUS routines. Without the call,
MIDASPLUS error code 23 is returned from the online routines.

Previously, MIDAS did not require a call to OPENMS or NTFYMS before a
file could be accessed via the MIDAS online routines. You oould
therefore open a file with SRCHS$S and then access it directly with an
online routine like FIND$, Although this action caused MIDAS to
operate inefficiently, it would still run.

Opening a file for use by BILD$R, PRIBLD or SECBLD has not changed. In
these cases, the file must be opened through a PRIMOS call and must not
use OPENMS$ or NTFYMS.

MIDAS closes the file specified in a call to CLOSMS even if the file is
not a MIDAS file (known to MIDAS via a call to OPENMS or NTFYMS). This
is not the case with MIDASPLUS. Via calls to CLOSMS$, MIDASPLUS closes
only those files which have been opened as MIDASPLUS files by calls to
OPENM$ or NTFYMS.

When MIDASPLUS files are opened by SRCHSS or TSRC$S, the call to NTFYM$

must be made after the open. When MIDASPLUS files are closed by SRCHSS
or TSRCSS, the call to NTFYMS must be made before the close.

Counts of Entries Added and Deleted

In order to increase performance, MIDASPLUS does not write to the MIDAS
file the updated values of "entries added" and "entries deleted" every
time an entry is added or deleted. Instead, these counters are updated
in memory and written to the disk when the last user closes the file
(by a CLOSM$ or a NTFYM$ call or MPLUSCLUP or autamatic cleanup by the
static on-unit).

Should the last user fail to close the file, the counters in the file
will not be correctly updated. In such a situation, the counters will
always overestimate the number of entries in the file by between 1 and
100 entries. The counters can be corrected by running MPACK on the
file. Bear this in mind when using CREATK to display the counter
values while the file is in use by MIDASPLUS users.

4 - 9 June 1983

CHAPTER 4 MRU10

New Error Codes

Some new error codes have been added to MIDASPLUS. The meaning of
these codes is described below.

Error Code Meaning
28 Attempt to write to read-only file,
40 Fatal internal error within MIDASPLUS,
41 Timeout occurred while attempting to get a buffer.
90-92 Network errors.,
'10001 Error in close.

'10002 File unit table or shared file table is full,
110004 Fatal internal error (from OPENMS only).
'10005 Rev. level regression,

110006 File in use by unshared MIDAS.

'10007 File in use by MIDASPLUS.

'10008 File is being used by a MIDAS utility or user
calls to PRIBLD, SECBLD or BILDSR.

-4 Fatal internal error (from GDATAS only).

19 Full disk condition occurred during add operation,
Fatal internal errors indicate that an internal error within MIDASPLUS
has been detected, These errors are returned only when there is no

other error code to identify the problem; the user should contact
Prime Customer Service,

MIDASPLUS and OAS

Revisions of Prime's Office Automation System (OAS) prior to Rev. 3.0
will not run with MIDASPLUS.

REV. 0 4 - 10

MRU10 DATA MANAGEMENT SYSTEMS

DOQUMENTATION CORRECTIONS

The following correction applies to MIDASPLUS (PTU2600-098).

MDUMP: On page 98-17, under the entry MDUMP's Uses, change the
sentence "You can dump a MIDAS file, edit the resulting sequential
file, and feed the edited file to the KBUILD utility" to "...edit the
resulting sequential file if the data is in ASCII format, and feed,.."
The editor will corrupt data in Comp or Comp-3 format (POLER #60630).

SOFTWARE PROBLEMS FIXED

Closing Subfiles: BILDSR now closes subfiles when the end. of
processing is indicated and no records have been added (POLER #47488).

KBUILD: KBUILD now accepts output file pathnames longer than 40
characters (POLER #51154).

At segment boundaries, KBUILD adds direct access records correctly
(POLER #60202) .

Opening Remote and Local Files: Previously, if a remote file were
opened after a local file, attempts to access the remote file oould
fail with a MIDASPLUS 23 error. This no longer happens (POLER #58712).

MSGCTL: MSGCIL no longer turns the debug option off regardless of the
flag values passed to it,

Direct Access Deletes: Direct access calls to DELETS no longer fail in
internal calls to LOCK.

MPACK: The MPACK "UNLOCK" option now releases access ocontrols after
use (POLER #58296) .

MDUMP: MDUMP now dumps direct access records (POLER #60319).

MPLUSLB.BUILD,CPL: The force 1load flag in the build MPLUSLB.BUILD.CPL
has been reset so that the whole library is not loaded with each user's
program (POLER #60694) .

4 - 11 June 1983

CHAPTER 4 MRU10

SOFIWARE PROBLEMS OQUTSTANDING

Read-only Files: Read-only access is not available at present; thus,
MIDASPLUS does not support read-only MIDAS files. This problem derives
from the protection against concurrent usage by MIDASPLUS and unshared
MIDAS, MIDASPLUS attempts to write to subfile 0 (POLER #60318).

CREATK: CREATK index entry counts are not always correct (POLER
#47163) .

Timing OQut: If two applications are simultaneously opening the same
file, they may both time out trying to get an intermal lock (POLER
#56382) .

MDUMP: MDUMP puts the key in the middle of very long records (POLER
#57851) .

ENVIRONMENT

MIDASPLUS Rev. 19.2 depends on:
BASICV 18.5, 19.1 or 19.2
QOBOL 18.5, 19.1 or 19.2

POWERPLUS 18.5, 19.1 or 19.2
PRIMOS 19.1 or 19.2 (will not run prior to 19.1)

REV. 0 4 - 12

MRU10 DATA MANAGEMENT SYSTEMS

POWERPLUS

NEW FEATURES AND CHANGES

Converting to the New PROC Format

This enhancement requires a change in the structure of the procedure
dictionary file. Installation of Rev. 19.2 POWER necessitates running
a utility to convert POWR##. Existing procedure files will not have
associated login ids and will all be marked as public files. The
utility to convert to the new PROC format is in POWERPLUS>TOOLS and can
be run by the POWERPLUS install command file.

DOCUMENTATION CORRECTIONS

The following correction applies to the PRIME/POWER Guide
(PDR3709-173) .

POWER EDITOR: The POWER EDITOR can edit PROCEDURE files of up to 950
lines, It cannot edit PROCEDURE files of up to 1200 lines, as stated
on page 15-3 (POLER #51447).

SOFTWARE PROBLEMS FIXED

FIND: FIND <search-expression> AND <search-expression> now works
properly with tables (POLER #29703).

FIND with OR on the MIDAS primary key now works correctly (POLER
$#44928) .

Descriptors from Linked Fields: Descriptors from 1linked fields now
appear on reports with more than two rows (POLER #41468).

DUMP: DUMP of a set no longer gives bad data in the date field from a
Tinked file that is 2 links away from the current file (POLER #41994).

Error Messages: If the field 1ength is defaulted in a CREATE QHANGE, a
WDESCRIPIOR OUT OF RANGE" message is displayed (POLER #43565).

4 - 13 June 1983

CHAPTER 4 MRU10

MIDASPLUS no longer gives the error message "UNIT NOT OPEN" when
POWERPLUS is used with linked files. This also allows the OAS user to
run correctly after a POWERPLUS session with linked files (POLER
#60775) .

OOMBINE: COMBINE on two disjoint large sets no longer produces a
non-empty set (POLER #45887). ‘

LWORD: The temporary change to a user's lword to suppress password
echoing could cause a forced logout over dial-in lines. This problem
has been corrected (POLER #45926).

Character Position>5000 in a TABLE: POWER now allows a TABLE to start
at character position>5000 when the record is sufficiently large (FOLER
#47925) .

PRINT —-AT DS.ONE: PRINT -AT DS.ONE no longer results in printer DS and
FORM ONE (POLER #52199).

Detection of Illegal Numeric Qutput Format: An illegal numeric output
format is now detected during the creation of a new form (POLER
#27496) .

More than One Function per Expression: The user is now able to use
more than one POWER function in an expression. Previously, for
example,

N1 = SUM(descl) *AVG(desc2)
would result in N1 equaling only SUM(descl) (POLER #40135),
Dlsplay. The DISPLAY USING REPORT command no longer causes the user's
terminal to hang when the report contains fields from linked files
(POLER #51051). ;

Page number and column headings are no longer scrolled off the screen
during a display (POLER #58301),

Reports are now able to display lines containing no descriptors (POLER
#60776) .

After an error in ADD USING SCREEN on a terminal other than a PI45,
POWER no longer scrolls up two rows (POLER #61870).

In a report, correct subtotals are now displayed for the 9th descriptor
with subtotals (POLER #45141).

REV. 0 4 - 14

MRU10 DATA MANAGEMENT SYSTEMS

Improved Validation: Table descriptors are now validated correctly
during a non-screen ADD (POLER #60623).

Validation of descriptors no longer causes MIDASPLUS errors.

POWER*: Code now attaches to the partition with POWER* when a terminal
type 1s added or the validity of a terminal type is checked for a
screen function.

CLOSMS$: The CLOSMS call has been changed to CLOSE for non-MIDAS files.

ENVIRONMENT

Rev. 19.2 PRIME/FOWER must be installed with Revs 19.1 or 19,2 PRIMOS,
FORTRAN, and MIDAS/MIDASPLUS.

4 - 15 June 1983

MRU10 HARDWARE SUPFORT

CHAPTER 5

HARTWARE SUPEORT

THE PRIME 9950

INTRODUCTION

Rev. 19.2 provides support of a new processor, the Prime 9950,
Specific changes for the 9950 include software support of the following
features,

TIME-OF-DAY CLOCK

The 9950 has a diagnostic processor with a battery-backed time-of-day
clock. PRIMOS has been changed to read the clock during system cold
start and warm start and to set the date and time of the system to the
nearest 4-second interval.

On the Prime 9950, the system clock can be set or reset automatically
without operator intervention during system cold start and warm start.

To use the automatic time-setting feature of the 9950, delete the
SETIME command from existing C_PRMO (or PRIMDS.(OMI) files,

LARGER PHYSICAL MEMORY

Support has been added to PRIMOS for physical memory of up to 16
megabytes for the Prime 9950. The previous limit was 8 megabytes.

ENVIRONMENTAL SENSORS

(hanges have been made to PRIMDS to support machine checks due to
environmental sensors. The Prime 9950 has sensors in the hardware to
detect inadequate air flow in the cabinet, overheating of the cabinet,
and low battery conditions.

When such problems occur, the diagnostic processor indicates the
condition by causing a machine check. PRIMDS responds to this machine
check by disallowing supervisor console input, signaling the logout
condition for all users, waiting for all users to be logged out, and
then shutting down the system.

5 - 1 June 1983

CHAPTER 5 MRU10

REV.O 5 -

MRU10 HARDWARE SUPFORT

ICS2 COMMUNICATIONS CONTROLLER

INTRODUCTION

The ICS2 is a new commmnications controller, which controls up to 64
asynchronous lines, in increments of 4 lines. At cold and warm starts ’
software is downline-loaded into the ICS2 in order for it to operate,

In general, the ICS2 controller is used similarly to the ICS1
controller, New commands and directives introduced at Rev. 19.1 for
the ICS1 also apply to the ICS2.

For details on ICS1 and ICS2 controllers, see

o The Revision 19,1 Software Release Document (MRU4304-009), which
summarizes changes made at Rev. 19.1 for the ICSl.

¢ The System Administrator's Guide Update, Rev. 19.1 (UPD5037-191)

® The System Administrator's Guide Update, Rev. 19.2 (UPD5037-192)

In particular, the updates to the System Administrator's Guide contain
information on configuring ICS controllers, and some additional
quidelines for their use.

STATUS
The STATUS COMM command now recognizes ICS2 controllers and displays
appropriate information for each one present in the system. For
example:

OK, STATUS (QOMM

Device Lines
Controller Type Address Async Sync

ICs2 11 32 0
AMI.C MO 54 16 0
OK,
USAGE

The parameters $ASYNC and %ICS now indicate CPU percentage required to
support ICS1 and ICS2 controllers.

5 - 3 June 1983

CHAPTER 5 MRU10

PRIMOS (QOLD START

Downline Load File

Each ICS2 has to be downline loaded at cold start. The code and data
is contained in the file ICS2.DL, which must be located in UFD
DOWN_LINE_LOAD*,

The New ICS INPQSZ Configuration Directive

A new cold start directive has been introduced at Rev., 19.2, to
provide functionality similar to the AMLIBL directive for AMICs. The
ICS INPQSZ directive changes the size of the ICS-to-Prime input dqueues
from the default value of 63 (octal 77). The sizes of all ICS input
queues (including ICS1 input queues) are changed by this directive,

The format of the directive is:
p ICS INPQSZ n

where n is the length of the queue, specified in octal. The first
octal digit of n must be 1, 3, or 7. The remaining digits (up to 4)
must all be 7. These guidelines ensure that n is one less than a power
of 2, which is required. Examples of possible values for n in octal
are 177, 377, and 777.

This directive may be necessary to avoid losing ICS2-to-PRIMOS data
when the amount and rate of input data is high, e.g., when several
terminals are doing page transmissions. For further details, see the
System Administrator's Guide Update, Rev. 19.2 (UPD5307-192).

PRIMOS WARM START

At Rev. 19.1, warm start of a system using ICS1 controllers took
longer than did warm starts at earlier revs. At Rev. 19.2, ICS2
controllers also cause a longer warm start.

WARNING MESSAGES

The following messages, which can be printed out during cold start and
warm start, are warnings only. They indicate hardware failure that
affects only some of the lines on a particular controller. The system
will continue to cold start, but the indicated lines will not be
available,

ICS2 async line #nn on device dd is inoperable.

ICS2 device dd has an inoperable line card in slot #nn.

REV. 0 5 - 4

MRU10 HARDWARE SUPFORT

ASYNCHRONOUS LOGICAL LINE NUMBER ASSIGNMENT

In a system that includes AMLC, ICS1l, and ICS2 controllers, logical
line numbers are assigned much as they were at Rev. 19.1.

When all AMLCs have been allocated line numbers, ICS1 and ICS2 line
numbers are then assigned starting at the next 16 ('20) line boundary.
Line numbers for each ICS controller always begin at a modulo-8 value.
ICS controllers are assigned line numbers in the order at which the
controllers appear in the table displayed by the STATUS (OMM command.

For further discussion of the ICS2 and configuration of terminals
attached to it, see the System Administrator's Guide Update, Rev, 19,2
(UPD5037-192) .

5 - 5 June 1983

CHAPTER 5 MRU10

REV. 0 5 =

MRU10 HARDWVARE SUPFORT

PST 100 TERMINAL

FUSES

This information updates the PST 100 Installation and Fault Isolation
Guide, (DOC6987-001).

Note
The kit supplied with each PST 100 contains two fuses.

e One is for domestic (60 Hz) units., It is .250" x 1.250"
(6,35 mm x 31.75 mm) .

® One is for internmational (50 Hz) units. It is
196" x 787" (5 mm x 20mm) .

These fuses are not interchangeable. A defective fuse must be replaced
with one that is the same size physically as well as electrically. If
the incorrect fuse is used, the terminal may not function,

USE AS A SUPERVISOR TERMINAL

If the PST 100 terminal is used as a supervisor termimal (console) for
a Prime 50 Series computer, then the connecting cable (BI3692-90X must
be REV J or greater. If the cable is an earlier REV, then pins 4 and 5
of connector J-3 must be jumpered together,

The wupdates the PST 100 Installation and Fault 1Isolation Guide
(DOC6987-001) .

PST 100 AUXILIARY PORT OPERATION

The PST 100 terminal includes an auxiliary port for the connection of
serial devices. This port allows transfer of data from the terminal to
another device for the purpose of copying either data on the PST 100
screen or data received from the host computer connected at the PST 100
main serial port. The auxiliary port is not a printer port as no
special printer protocol is used by the PST 100 when transferring data.

5 - 17 June 1983

CHAPTER 5 MRU10

AUX SEND key

The PST 100 operator would normally initiate data transfer to the
auxiliary port by using the AUX SEND key. This key can cause two types
of aux send actions depending on what other key is augmented with (it
also is used to control the System/Status line when augmented with the
QONTROL key). The action of the key may be affected by whether the
terminal is in Character Mode or not. When in Local or Block Mode, the
action of the AUX SEND key is generated internally with no interaction
with the host computer. When in Character Mode however, the ADX SEND
key will only perform its specified function if the host computer echos
back the character that the AUX SEND key causes to be transmitted.

The two types of transmission caused by the AUX SEND key are:

e PRINT SCREEN: Pressing AUX SEND either unaugmented,. or
augmented only with LOCK, causes the characters on the screen to
be transmitted exactly as shown with no visual attributes and no
separation between 1lines. In other words, exactly 1920
characters (3840 if in Two Page Mode) will be transmitted with
no separation by control codes such as carriage return, line
feed, etc.

e AUXILIARY SEND: Pressing AUX SEND augmented with SHIFT also
causes 1920 characters (3840 if in Two Page Mode) to be
transmitted with no separation by control codes. If Logical
Attribute Mode is reset (that is, no logical attributes are in
force), the result is exactly the same as a PRINT SCREEN
described above. If Logical Attributes Mode is set, the data
transmitted is determined by the settings of Selected Area
Transfer Mode and Unprotected/Modified Mode:

With Logical Attributes Mode set, and Selected Area Transfer
Mode reset, only <characters within selected areas are
transmitted as displayed on the screen; all other characters
are transmitted as spaces. When Selected Area Transfer Mode is
reset, the setting of Unprotected/Modified Mode is ignored.

With Logical Attributes Mode set, Selected Area Transfer Mode
set, and Unprotected/Modified Mode reset, only characters within
unprotected areas are transmitted as dislayed on the screen;
all other characters are transmitted as spaces.

With Logical Attributes Mode set, Selected Area Transfer Mode
set, and Unprotected/Modified Mode set, only characters within
modified areas are transmitted as displayed on the screen; all
other characters are transmitted as spaces.

Media Copy Command

The Media Copy command allows the host computer to initiate auxiliary
port operations. ‘There are four different parameters for the Media

REV, 0 5 - 8

MRU10 HARDNARE SUPFORT

Copy command, two of which are identical to the character strings
generated by the AUX SEND key when in Character Mode. The different
Media Copy operations are as follows:

e "ESC [0 i": This escape sequence initiates a PRINT SCREEN
operation as described above. Pressing the AUX SEND key when in
Character Mode causes this sequence to be sent to the host.

@ "ESC [5 i": This escape sequence causes data received at the
main serial port to be copied to the auxiliary port exactly as
received at the terminal., The data received is not displayed on
the terminal screen,

e "ESC [4 i": This escape sequence turns off copying of data
received at the main serial port to the auxiliary port and
causes this data to again be displayed on the terminal screen.

e "ESC [>0 i": This escape sequence initiates an AUXILIARY SEND
operation as described above. Pressing the AUX SEND key
augumented with SHIFT when in Character Mode causes this
sequence to be sent to the host,

FRENCH VERSION OF PST 100

The following is a description of the difference between the standard
PST 100 terminal and the French version of the PST 100.

Reyboard

The French keyboard is an AZERTY layout instead of the U.S. standard
(QWERTY. In addition, many non-alphabetic keys have been moved from
their postions on the U.S. keyboard. (See the keyboard layout in
Figure 5-1.)

Character Set

Characters that are common to both the French and U.S. character set
will appear the same with the exception of the * accent. In the French
character set, this symbol is smaller and higher up in the character
cell so as to fit above vowels when it is used as an accent in dead key
action.

In the French character set the [character (left bracket) which is
heavily used in PST 100 escape sequence does not exist., Its position
in the ASCII table has been replaced with an underlined o symbol,
Thus, when generating escape sequences from a French keyboard, this
symbol (which is a shifted right parenthesis) should be substituted for
the left bracket.

5 - 9 June 1983

CHAPTER 5 MRU10

when using a French keyboard with the standard U.S. character set,
some unexpected results may occur because the French character set uses
a modified ASCII table in which some French characters replace standard
ASCII characters. (See Table 5-1.)

Functionality Changes

The French version of the PST 100 has the ability to handle "dead
keys". These are accent marks that when received by the terminmal
either from the keyboard or from the host result in the cursor not
moving to the next position as would normally happen. When a dead key
is followed by a lower case vowel key, the accent and the letter are
combined in one screen position and the cursor is moved to the next
position.

The two accent marks that cause dead key action are umlaut and the °
symbol. These are both on the same key, located to the right of the
letter P. When either of these accents is followed by 'a lower case
a,e,i,o,u the dead key action as described in the previous paragraph
will occur, resulting in an accented letter, Thus, the following are
all the possible legal combinations of the dead keys and characters:

AAAAA

aeiou aeiou

When one of these accents is followed by any character other than lower
case a,e,i,o,u, the result will be the accent mark in its original
position, followed by the next character received in the first
available position to the right of the accent mark. The cursor will
end up on the next available position after the most recent character.
For example, if the terminal receives ~ followed by t, the result would
be:

1 cursor ends up here
The action of the characters umlaut and ~ are true whether in character

mode or block mode and whether the characters come directly from the
keyboard or from the host.

PST 100 Transmission of Dead Keys

valid dead key combinations that appear on the PST 100 screen are
transmitted to the host in the same manner in which they were
originally received., That is, the dead key combination is sent as two
separate characters, the ASCII code for th eaccent mark followed by the
ASCII code for the vowel under the accent. There are no special ASCII
codes defined for the character resulting from the combination of the
accent marks umlaut or "~ and the vowels,

REV. 0 5 =10

Tt

v VU]

T-G 2Inb1d

OT(RIN

pIeogAsy youoid 00T ISd

€86T sunl

STOP | HELP [DELETE|INSERT s‘:zl:q):) F1 F2 F3 F4 F5 Fé F7 F8 [CONFIG| MENU |SCROLL| HOME | ¢— T
£ 1 2 3 4 5 6 7 8 9 0 ° _ BACK
PAU! EL
SE $ & é " ' (§ @ ! ¢ a) - |space| P 7 8
BACK - * €
TAB TAB A z E R T Y U | (o] P N . , |RESET 4 5
% y
CHAR H E
ESC | LOCK Q S D F G H J K L M o RETURN | “CHY 1 2 H
£
CTAL SHIFT w X C \" B N 7 : / h SHIFT ERASE 00 0 R
KEY LEGEND PLACEMENT

(FRENCH) Lo 1) (ee 2 oe) [oe
ERVEATEATER

A

IOIdNS TIWMINH

CHAPTER 5

PST 100 French Character Set

MRU10

Table 5-1
PST 100 ASCII Character Set (French)

000

001

010

011

g

101

110

-d
-t
—

1010

1011

1110

111

NUL

DLE

SP

0001

SOH

DC1

o>

0010

STX

DC2

0011

ETX

DC3

0100

EOT

DC4

0101

ENQ

NAK

(-3

[=t

0110

ACK

SYN

0111

BEL

ETB

1000

BS

CAN

1001

HT

EM

B [|-~

OloIN|jO|OalWIN|=|O

-3

1010

LF

SuB

1011

ESC

+

o[N[<[x|g|<|c|a]|n|D|O|®

1100

FF

FS

P P

1101

CR

GS

I

> o | O

Jelelo|n|<|x|s|<c|el~|n|[=]|al|o

1110

SO

RS

1111

Sl

Us

2|V

OlZ|F|r|R|«|=|T(O|MM|O|O|D]|>|®

ols|3|=|x|=—|=|Tk|=|0oiajo|o|n

DEL

[« }]

1. Columns 000 to 111 contain the character set used both
internally and externally (on the communication line).

2. Columns 1010 to 1111 are codes which are internal to the

REV. 0

PST 100 only.

Notes

READER RESFONSE FORM

Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.
1. How do you rate the document for overall usefulness?

__excellent __very good _ good __ fair poor

2. Please rate the document in the following areas:
Readability: __ hard to understand ___average ___very clear
Technical level: ____too simple ___ about right __ too technical
Technical accuracy: ___poor ___average __ very good
Exampies: ____too many ___about right ___ too few

Illustrations: __too many __ about right ___ too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you 1like to be on a mailing list for Prime's current
documentation catalog and ordering information? yes ___no

Name: Position:

Company :
Address:

Zip:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL

Postage will be paid by:

PRIME

Attention: Technical Publications
Bidg 10B
Prime Park, Natick, Ma. 01760

	000
	001
	002
	003
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	replyA
	replyB

