r—

~)
'

PRIME

PRIMOS IMTERMALS
Revision 191

WAL s

TH#mMT .
Un fs AR~ ot

PRIMOS REV. 19.1 PRIMOS IMTERMALS
MARCL(S

PRIMOS IMTERNALS
Revisign 19 1

WA S

Date: May 13, 1983

Revision: |

Copyright (c) 1983, Prime Computer, Inc., Natick, MA 01760

PRELIMINARY TITLE PAGE

PRIMOS REV. 19.1 | FRIMOS INTERNALS

Hardware Architecture Overview......, 1 -1
Peripherals and Controllers......................... 1 - 4
Registers. . 1~ 3

PB, LB, SB, and XB......... 1 - 8

heys and Modals................. P 1- 9
Instruction Pre-fetch. 1 -11
PB30 Functional Diagram........................ oL, 1 - 12

DMy Operafion. ... 1 - 13

Lab Exercise 1, installing a Ring O Gate................ 2- 1
Building PRIMOS. ... 2~ 2
Booting PRIMOS. 2~ B

L 3- 1
Cache. e 3- 2
Interleaving.............. i, d- 3
Segmentation.... ... d- 4
1 d- 6
Memory Management..........., d- 7

Pa0Ing. ... 3-8
Virtual Address Translafion (memory mapping)... 3 - 9
Full Mapping............ooie s, J-10
STLB. ... 3-14

PRELIMINARY - 1 - CONTENTS

PRIMOS REV. 19.1 PRIMOS INTERNALS

Process Exchange. ..., 4 - 1
State Diagram, 4 - 2
Wait List. 4- 4
Process Control Block (PCBY....... 4- 35
Ready List...... ... i, 4 - 4

Examples. ... 4 - 7
Locked Semaphores..................ol 4 - 24
Ordered Lacks. 4 - 27

Trapss Interrupts, Faulfs and Checks.................... 2~ 1
External Interrupts...............co d= 3
Real Time Clock.... e 3= 3
Faults. . J- b
Checks. 3-10

System Initialization................................... 6- 1
Cold Start., 6- 4
Warm Start. . b= 7

Condition Mechamism. 7 -1
Definitions. 7= 3
‘GUITS) DF_UNIT_: Example......................... /-4
Program Example. ... 1-11

Stack Illustrations...] - 14
‘REENTERS 7 - 18
Crawlout. 7 -19

PRELIMINARY - 2 - CONTENTS

PRIMOS REV. 19.1 PRIMOS INTERNALS

Fault Handling...........oov i, g- 1
Ring O Faults...........oo i, g- ¢
Process Faults. g~ 3
Software Interrupt Handling.................... B- 3
Pointer Fault. 8- 8

Page Fault........... ..o i, g- 9
PAGTUR. g8-10

HMAR. . 8- 10

LMAP. ... 8 - 11

MMAP. ... g8 - 12

PAGTUR Flowchart. 8- 13

Ring 3 Faults. ... 8- 14
Restricted Instruction Fault............... ... B - 14
Automatic Ring 3 Stack Extension.......... S g - 13
Pointer Fault., 8- 16
Direct Entrance Calls. g8 -17
Interrupt Handling............. .o 9- 1
Clock Process. - 2
AMLQ/ICS Driver. 9- 4
AMLC Command. 9- 4
AMLDIM (AMLG) Block Diagram.................... 9 -7
CONFIG Directives. -9
AMLDIM Flowchart. 9 - 11

PRELIMINARY - 3 - CONTENTS

|
PRIMDS REV. 19.1 PRIMOS INTERNALS

Scheduling of Users.......oo i 10-1
Backstop Process. ... 10 - 3
SCHED Flowchart. 10- 3
User Priaorities and Time Slice...................... 10 - 8
MAKSCH. . 10- 9

User Profiles. 11 -1
Definitions. 11 - 3
System Administrator Directory (SAD)................ 11- 4

Project Files...........o o, 11- 8

Login/Logout Mechanisms...............c.oiiiiiin.., 12-1

T R 12 - 2
“Routine Flow. 12~ 4
Routines. e 12- 6
Secutity Validation................. ..ol 12 - 11 -
NLOGIN Validation Flowchart. 12 - 12
LOgoUt. e 12 - 16
Routine Flow. 12 - 17
Routines. 12 - 18
'LOGOUTS’ Comdition. 12 - 22
Logout Netification............................ 12 - 23
Database. e 12 - 27
Getting into the Command Loop....................... 12 - 28

PRELIMINARY - 4 - CONTENTS

PRIMOS REV. 19.1 PRIMOS INTERNALS

Command Processor Eytended Features. 13-~ 1
Routines., 13- 3
BUFSEM Flowchart. L. 13- 6
STD%CP Flowchart. 13- 7
Detailed Flowchart. 13- 8

Static On=Units. L. 14 - 1

Filing System ... 19- 1
Disk Structures. 15 - 2
Directory Structures. 19~ 3
Directory Entry Types..... e 15 - 11
Directory Enfry Structures.............., 13 = 17

ACL Entry. o 13 - 18

Access Category Entry. ..o 13 - 21

CoUnif Tables. .. 16 - 1
Definitions. 16~ 3

Data Structures. L. 16~ 35

LOCATE Data Structures. 17 -1
Buffer Contral Block (BCB). 17 = 2
LOCATE Flowchart. 17 - 3
Configurable Associative Buffers.................... 17- 4

Disk Quotas. 18 - 1
Data Structures. 1B- 35
Eamples. ... e 18 - 10

PRELIMINARY - 3 - CONTENTS

PRIMOS REV. 19.1 PRIMOS INTERNALS

Attach Functionalify. ... o i 19- 1
Attach Scan. 19 - 3
Common cleanup routine (AT CLEAN)................... 19 - 4
Access Control Lists (ACLs). 19- 6
Priorify ACLs. ..., 19~ 17
Calculating Access.............. oo, 19~ 9

Miscellameous. 20 - 1
File System Locks............oo oo, 20 - 2
PRIMOS Segment Usage.................... I 20 - 5

Locked Memory Requirements..................... 20 - 10
19.1 I/0 Enhancements. 20 - 12
System Limits. ... o 20 - 14
Area Management............. 20 - 13

ABENGIN A A- 1
Programmed Input/Output (PID)....................... A- 2
Device Drivers..... D A- 35

General Purpose Parallel Interface............. A- 8B

Appendix B B-1
Process Exchange.................oo i, B- 1

APBENGLE G -1
Procedure Call (PCL) Mechanism. C-1

Appendix Do o D-1
Revision 19.0 Routine List...... D- 1

PRELIMINARY - b6 - CONTENTS

FRIMOS REY. 19.1 PRIMOS INTERMALS

Section 1 = Hardware Features

PRELIMINARY 1= 1 HARDWARE FEATURES

eSS
PRIMOS REV. 19.1 PRIMOS INTERMALS

PRIMOS OPERATIMG SYSTEM

The chier features of the Primos operating system are;

1. INTERACTIVE - up to 128 user professes
{14+ interrupt processes)

2. 32 MB mayimum virtual address space per user (ﬁh'ﬁt“W”&ﬁ~H%%§5
Users share the resources of the system "

High speed memory

Peripherals and controllers —
aystem Console ’f
Real Time Clock v 250

Disk Drive(s) v B (oo

AMLC (51 /1C81(s) ¥ Poyac IniettyT memwnﬂﬁ

Mol mcts) ¢ Sye e Ot Consitbery

Ring Node Cnntroller P Lowd A4

Magnetic Tape Drive(s)

Ling Printer(s) v

PRELIMINARY 1 - 2 HARDWARE FEATURES

PRINOS REV. 19.1

PRIMOS INTERNALS

i Wv"
Moty
At W,
‘A%)"f% ConTkoC ot %Vti liim
Uﬂ,]) Ho> (](., 6({3) %M%
A
]
= (\/W\“\’\“v{ U/Vu{» =
] Mo (e —btads
1
Pri cvcx‘fﬂm (s
—> /Z,M‘\‘;M ale = C‘p U .
!
A L.V
l.
AN N 2\
J Mo eonbrd Onha
(& Adr ' / jb Al

%

A Reasteys
IDM %5565 ng @rﬁ
PRELIMINARY 1 -

]

. HARDWARE FEATURES

PRIMOS REV. 19.1

CPU
CONTROL UMIT
=C M
MEFU CACHE
R. F ALU STLB

PRELIMINARY

PRIMOS INTERMWALS

His

ibm&£'

[hpa (nd

g ot

HARDWARE FEATURES

]

(

—
L R S W o R L TV LW s

{
— Pt
g

!
[ROT N e 4
- 0J

—
i

T 16

[[
N id R e
e O~

(A=
I

”4

LN L
J“L.ﬂ

T

|
LI G)
g —

| w33

’L..J(.-.J
e o

[S
~d

PRIMOS REV.

19.1

MICROCODE SCRATCH

H1GH

LOW

1RO

Rl

R

TH3

R4

TR3

TR6

1R7

ADMAL

AOMAd

RATMPL

RaGTL

RaGTe

RECCL

RECLZ

REQLY

LERD

ONE

PREAVE

ROMAS

RDMA4

*ﬁ

(377

S e R,

LREGSET

CHKREG

DSWPARITY

PSWPE

PSWKEYS

FPA: PLA

PLEA

PPB:PLB

PCEB

SWRMA

DSWSTAT

[54WPE

RSAVPTR |

PRELIMINARY

—
— D~ BN O

1

[T SR W 9
[R~

[—y
o~

17
20
21
22
23
24
29
26
27
30
)l
32
33
34
33
36
37

REGISTER FILE

HIGH

OMA

LOW

—r—r——

-

PRIMOS IRTERR
% - 32 4t Raystas
CURRENT REGISTER

HIGH LUM

0 JeRO:0LT2

I JeR1:PTS

LL)

2 !PRE 1, As LH) | (s By
GR3

{EL)

R4

GRY (3,51

GRA

GR7 10,4

— i
O~ O~ wn & LA

FARD 13)

-

11 § FLRO

1d |FARL/FAC(A)

13 JFLRI/FAC(S)

14 | FB

15 | 5B (14) l £
16 | LB (14)

17 | 18

20 | DTARG (101

21 | DTARZ

22 | DTARL

D (rmeg

23 | DTARS

24 | KEYS

| TODALS

29 | OWHER

25 T FCO0E (117]

2/ | _FADDR |

30 | CPU TIMER

31

MICROCODE SCRATCH

32 !

i

3'-,; ’ i
I

H

37 "

HARDWARE FEATURE

PRIMIS REV. 19.1 PRIMOS INTERNALS

) HIGH LOM
0 THE USER REGISTER SET
!
d A 2 Na v _
3! EH %”;C)Q]Hrlf (S W“Q
4 C(”xku% e ’D (EXMM rualf-) L /(lﬁl/bﬁt? _
5 5/Y
b AU via Okuf #
7 X | — /”a -
10 FARD
1 FLRO | L] -
12 FARL/FAC (ficd b }F‘%ﬂﬂm« ‘
13 FLr1sFac (A4 b
4 a Mt 52 _
15 | 5B it fgites
14 LB -
17 B _
70 DTARD
21 DTARZ)
7 DTARI
23 DTARO -
24 KEYS/MODALS Epeet Bk)
25 DUNER - Poocks ko Prevts™
% Feole |]
27 FADDR :

N

0 e B -
1 MICROCODE SCRATCH
37 b 1

PRELIMINARY I - 5 HARDWARE FEATURES -

PRIMOS REV. 19.1 PRIMOS IMTERMWALS

THE USER RE-ISTER SET

A
GRO-GR/
FARD
FLRO
FARL
FLRI
FAC

FB
3
LB

*B
DWNER
FCODE
FADDR
CPY TIMER

[ww]

Accumulator Register

Accumulator Eytension (A + B = L)

Accumulator Ettension for long inteqers (64 bit)
Stack Register (R 5 Modes)

Alternate Index Register (¥ Mode only)

Indey Register (R, 5 ¥ Modes)

General Regqisters 0-7 (1 Mode only)

Field Address Regqister O

Field Length Register O

Field Address Register | (for block moves
rield Length Register 1 char. /dec. datal
Finating Foint Accumulator

Frocedure Base Reglster

atack Base Register

Link Base Register

Auyyiliary Base Reglster

Address of User Register 5et Ouner’s PCB

Fault Code

Fault Address

overflow of two’s complement value ends fimeslice

User programs may access the Reqister-file using LDLR and STLR (64Y).
Only locations ‘0 - "17 are accessible.

Any attempt to access location ‘14 (PB) will give undefined resulfs.
The first eight locations are interpreted for V-mode (default).

PRELIMINARY

1= 7 HARDWARE FEATURES

FRIMOS REV. 17.1 PRIMOS IMTERHALS

PROCEDURE/LIMNK/STACK ARCHITECTURE

PROCEDURE AREA
- 1 per system if shared
- confains pure code and literals
- pointed %o by Procedure Base Reglster (FB)

LIMKAGE AREA
- 1 per yser
- contains local variables and pointers
- pointed to by Linkage Base Register (LB

STACK FRAME
- 1 per invocation
- contains caller’s saved state, argument pointers,
and dynamic work space
- pointed ©o by Stack Base Register (SH)

< - . Té Sﬁwi (,(L/L/‘QC; : .
O 0 - A~ é”f)i A "‘}‘4 © Lt
0
l

FRELIMINARY 1 - 8 HARDWARE FEATURES

PRIMOS REV. 19.1

X
ok
|

3 3

4-4

0 00 ~d

11
2-13
14

c
W

16

PRELIMINARY

KEY3

purpose
S R Modes
Arithmetic Errar Cond.
Double Precision Bit
reseTyved

Mode bits
000 165 mode
001 395
011 3R
010 44R
110 64V
100 321
reseTved |
reserved

Bits 9-14 are bits 9-14
of address &

PRIMOS INTERMALS

Y 1 Modes

CBiE (G Bi1)

TesETvad

Link Bit

Mode Bits (Com Swoifte
%¥dh~tu-ké7\>

Floating Point Exception
Inteqer Exception
LT (less than) bit
ed (equal) bitf

DEX (decimal exception)
resarved

Conddeal
Aik

t/rbv5 JL(’[
In CHECK 51t (B30 anlg) | PR
[bit - In Dispatcher barrsg:

S bit - Save Done

HARDWARE FEATURES

PRIMOS REY.

PRELIMINARY

PRIMOS INTERMALS

MODALS

PURPOSE (Y I modes only)
Interrupts Enables |
Vectored Interrupt Mode

Disable Prefetch Overlap (P70
Disable Indirect Overlap (P730)
reserved - Must be z8To
Current Register Set

Mapped 1/0 Mode | O gh Celd St
Process-eichange Mode
Segmentation Mode

Machine Check Mode

00 = Repaort no errors
01 = Report ECCU errors only
(Error Checking and Correction Uncorrectable)
10 = Report all unrecoverable errors
(only ECCC errors are unrecorded)
11 = Report and record all errors

1 - 10 HARDWARE FEATURES

PRIMOS REV. 19.1

PRIMOS INTERNALS

INSTRUCT 1 QM E. REFETCH UMIT 75¢ / < SV
MAIN MEMORY
CACHE MEMORY I<
\
INSTRUCT1ON INSTRUCT I ON
PREFETCH EXECUTION
UNIT UNIT
. flend 1/0 (o’ ‘3’»’74%:
. N o0ddier, ?
(1t fetdn Pac L) Cardee

(mamss Procrnsy)

PRELIMINARY.

1 -

11

HARDWARE FEATURES

PRIMOS REV. 19.1 ~ PRIMOS INTERNALS

) == 3

Moy Bus

WWMMT} | _

S/\rm C A)u/‘ﬁ ‘//'M{ ("fﬂ/\f‘? 20N C?p (@)
/j/\/‘ LV\A/’[/}«Q(&{/}2@1 O/?(j\f 4/0 —
Frtuévf“ &utvwg%poﬁ CﬁtL{lhﬂvy/

PRELIMINARY 1 - 12 HARDWARE FEATURES

PRIMOS REV. 19.1 PRIMOS INTERNALS

DMy Operation

DMy 15 a method whereby an I/0 data/memory transfer may occur without
program intervention. To perform such operations a temporary
diversion in the sequence of microcode from CPU instruction to DMy
transfer routines occurs. This is called cycle stealing or a TRAP.
At the end of the DMt/memory transfer, the CPU instruction microcode
continues as though nothing had happened. The actual trap diversion
occurs ab the end of the micro step in which it was sensed. A% the
same time, information about the next CPU micro step is saved to
gffect a return o the original sequence.

There are four types of DMy transfer: DMA, DMC, DMT, and DMG
Each method has advantages and disadvanfages in terms of speed,

yolume and confrol feafures and so form & comprehensive range of
methods.

I

|

|

1%
NTEnvM g
foC Yoy,
Dyprses Cpu

PRELIMINARY 1 - 14 HARDWARE FEATURES

PRIMOS REV. 19.1 | : PRIMOS INTERNALS
1). " DIRECT MEMORY ACCESS (DMA)

DMA fransfers are controlled by pairs of registers
(channels) in the CPU regisier file. There are 32
such register channels, locations ‘40 - ‘77 in the
register file (32 bit locations). The high 12 bits
of each location govern the number of words fo be

transfered and the low 16 bits specify the start
address of the buffer to be used.

DIRECT MEMORY ACCESS (DMA)*

A3)

EVORY FOR DMA TRANSFERS THE CONTROLLER
—_— SUPPLIES THE CPU WITH AN ADDRESS oes
ONE OF THE REGISTER £1L ES SET ASID
6000 DaTA] FOR DMA. THIS RF CONTAINS THE
T PARAMETERS FOR THE TRANSFER.
- MAXIMUM AMOUNT OF WORDS THAT 31 ~
10020 DATA CAN BE TRANSFERRED 1S 4096.

CONLROL

- MAXIMUM NUMBER OF DMA CHANNELS WM
(Pa00; 1S 32.

PRELIHINARY 1- 14 HARDWARE FEATURES

1/Q CONTROLLER
{OMA CHANNELS) DMA/C ADDRESS REG. 1238 5 6 18
e e oot ovatns oui| _ Soone
1 , 77 - .
1 -———3 12 13 14 15 1§ 17 32
TRANSFER ADDRESS
, x| 990021 16
ON 85’0 S gt sliew s praswnmtetors toor w 110100 wosrdd 1ranader troems 1o0 lowugiens 00 [O01
@&ggg,_ﬂw___ Before transfers begin, the program must set up the
, 3nd,u£$}cwawf channel registers in the CPU. Up to 4096 words per
anm%k%S 4x channel may be transfered. Successive channels may
/B mmveh

be chained by setfing channel reqisters in the CPU
énd the chaining register in the confroller
(not all controllers have this canshilitu)

PRIMOS REV. 19.1 | - PRIMOS INTERNALS
2). DIRECT MEMORY CHANNEL (DMC)

DMC transfers are controlled by pairs of words (Channels)
in main memory. The first (even) word controls the first
and current sddress of the buffer, and the second word
controls the last address of the buffer. There is potenfial
for fransferring 65536 words, but in practice fransfers are
usually very much smaller than this,

DIRECT MEMORY CHANNEL (DMC)*

‘ - FOR OMC TRANSFERS THE CONTROLLER ,
MEMORY - SUPPLIES THE CPU WITH AN ADDRESS L B
| 3000-6000 THAT IS ACCESSED IN MEMORY. THIS “+rpms ~ed
| 300110020 L ADDRESS SPECIFIES AT WHICH LOCATION (
6000/ DATA T THE TRANSFER IS TO TAKE PLACE.
POSSIBLE ADDRESSES THAT THE
CONTROLLER CAN SUPPLY ARE ANY
. EVEN NUMBER UP TO 3776. THIS MEANS
10020/ DATA THERE CAN BE UP TO A :
m ~ MAXIMUM OF 1024 DMC CHANNELS fa 29)
4 (THEORETICAL) !
5 ~ MAXIMUM AMOUNT OF WORDS THAT : sy el
e CAN BE TRANSFERRED IS
< ALMOST 64K (THEORETICAL) '
cPu 1/0 CONTROLLER
N
N PaAscCE yomC DMA/C ADDRESS REG. 1234 5 g 16
ADDORESS PORTION _ CHAIN |1 =DMC CHANNEL
OF DMC ADORESS ADDRESS 007000 “"INUMBER| 0 = OMA ADDRESS
REG. TO MEMORY. .
< oara >

{d FIRST LOCATION/TRANSFER ADDRESS
l SECOND LOCATION/FINAL ADDRESS

* Lxample shows puarameters tor a 1030 word transfer from/ite locations 6000-. 1000,

1024 DMC channels are available in the system but the use
of memory for control words makes it slower than DMA.

PRELIMINARY 1= 13 HARDWARE FEATURES

PRIMOS REV. 19.1 : PRIMOS INTERNWALS

J). DIRECT MEMORY TRANSFERS (DMT)

DMT transfers are controlled by the device controllers
themselves. The memory of the start and current location

of the buffer, and the memory address of the last location
of the buffer are held in the controller.

DIRECT MEMORY TRANSFER (DMT)*

MEMORY

FOR DMT TRANSFERS THE CONTROLLER

p SUPPLIES AN ADDRESS WHICH IS THE

: ACTUAL ADDRESS OF THE DATA TRANSFER.
| THE NUMBER OF WORDS TO BE

! TRANSFERRED VARIES ACCORDING

? TO THE SPECIFIC DESIGN AND

FUNCTION OF THE CONTROLLERS

USING DMT.

6000/ DATA

))
\\
)
AR)

ADDRESS

CPU 1/0 CONTROLLER

' CONTROL
CPU DETECTS DMT -

AND PASSES THE
ADDRESS DIRECTLY
TO MEMORY.

DMT ADDRESS REG.

ADDRESS 006000

DATA

1

* Example shows parameters for a transfer to/from location 6000,

PRELIMINARY 1- 16 HARDWARE FEATURES

4).

w/{)) 101/1050 }Segment'o W”‘L\}:ﬁ, 5 C?lbfﬁcﬂ

pb’v : 103/ 200

PRIMOS REV. 19.1 - PRIMOS INTERNALS
DIRECT MEMORY QGUEUE (DMQ)

DM@ mode provides a ring-structured memory buffer for the
reception and fransmission of stream I/0. Stream I/0 is &

data transfer in which data is transfered in continuous streams
of bits, characters or words rather than in discrete records

This mode allows the AMLG driver to queus messages using

- queing insfructions, without the need for eifensive soffuware

management of character time interrupts on ¢{ransmit. Therefore o
DMQ mode substantially reduces the system overhead in desling l//+
with terminal output.

MEMORY G e Ol

Qcs
10071000

o 102/ 21

For DHQ transfers, the controllef’ JC
suplies the CPU with an address 1

W”&W Qo8 of a queue control block (QCB) for waj'gﬂ

the line. The QCB is 4 words long.

I . x
P 1000 : The first word is a "reag" pointer,
. the second a "write" pointer, the
1050 i‘-ﬁ%’ﬁ_‘.:hi:d the segment address ax'xdbthe

L fourth, a mask which specifies the

size of the Queue Data Block (QbB) .

; " The QDB is the area of nemory the
\-.) data is taken from.,)
e b Se # o pftes
Wg}“’ﬁ' AV /’I/ﬂm &
cry | |

AMLQ

CPU DETECTS ODMQ
AND PASSES THE
ADDRESS OF THE
QC8 TO MEMORY ADDRESS

DMQ ADORESS REG.

000100

DATA

W

PRELIMINARY 1= 17 HARDWARE FEATURES

PRINMOS REV. 19.1 PRIMOS INTERNALS -

DMa Operation

The control information is held in seqment O of memory Iin an area
known as the Queue Control Block (GCR).

Each queue 1s implemented by an array of 2%#N words where N 15 greater
than or equal to 4, and less than or equal to lé&

Each GCB 15 a four word structure:

TO0P POIMTER (read) word number of the head of the queus
BOTTOM POINTER (write) word number of the tail of the queue
SEGMENT WUMBER or PHYSICAL ADDRESS

segment number or PPN of above pointers
MASK 24¥N - 1 defines the size of the buffer

The instructions provided for DM@ and GUEUE manipulation are:
1@ . add to the top of the queue
ABQ or DM@ input . add to the botfom of the queue

)

>

RTQ or DMQ output : remove from fop of the queue
REQ . remgve from the bottom of the queus
7578 . fest the queus (8 of 1tems—sA 1femptykl-/L0)

PRELIMINARY 1 - 18 HARDWARE FEATURES

PRIMOZ REV. 191 PRIMOS INTERMALS

Section & - Lab Etercise |

FRELIMINARY 2 = 1 Lab Eyercise §

PRIMOS REV. 19.1 PRIMOS INTERMALS

ot Xp\\é'

RINGD. MAP
RING3. MAP

FILES Aing O 5EG map
Aing J SEG map

Ring O SkG load control file

wovtmji RINGO. LOAD
(~l¢
Lo Madady T

RINGS. LOAD

Ring 3 5EG load control file

SUBDIRECTORIES
CPLS CPL interpreter
L3 Communications: synchronous
ES Emulators: dpts ~1n v tmwrM*N’ 675h”“
FS File system
INSERT Insert files
kS Kernel
NP XS NPX (slave)
HS Networks: FAaM I, FAM II
0B.J Binaries
Pal Wired debugqer
RJS Ring 3 and command processor
AJES Remote Job entry
FIND OB Utility fo use 3 load control file and merge
binaries from two separate ufds ké%tiéhgt;6§;>
FRMLD Frimos preloader
MAPGEN Program to gqenerate inifial page maps
UahGE

PRELIMIMNARY

Usage monitoring utility— ~ul? s ~i~tJT
«$) lﬂl,g

L]
i
nJ

Lab Eyercise |

PRIMOS REY. 19.1 PRIMOS IMTERMALS

PRIMOS BUILD - COMPILE. CPL

R COMFILE [<objectr]
[-FTH]1 [-PLP] [-PMA]
[-Bin “treenamer] [-List <treename’]
[-AFter {date] [-BeFore “date’] (date = MM/DD/YY)
[-No COmaol [-COMD <treenamer]

The caller may specify a <soupce free’ of an item sub-dir or file
to be compiled. The default is to compile all lanquages in all dirs,

The user 15 also allowed to specify the -BEFORE and -AFTER arquments
to compile only modules changed during 8 specified time interval,

If any of -FTW, -PMA or -PLP is given, then only modules written in
those lanquages are compiled. If all are omitted, all languages are
compiled,

If -AFTER and/or -BEFORE 1s given, only those modules which also
have a date-time-modified within the bounds specifisd by ~AFTER and
-BEFORE, are compiled. If neither is glven, 4fm 15 not checked.
I# -0 COMD 15 given, & separate comoutput file 15 not produced,

Otherwisa, Adirh. como 15 produced

PRELIMINARY 2 - 3 Lab Eyercise 1

——i
PRIMCS REV. 19.1 PPIMBC INTEANALS

PRIMOS BUILD - COMPILE. CPL examples

& file may be specified in a number of ways:
vsrainit. ftn . ksrainit , ainif. ftn o, ainit
[+ a sub-dir 15 omitted, each one one 15 searched for the fils.
I the lanquaqe suffiyx 1s omitted 2 search 15 done using FMA, FTN

and PLP until the fils 15 found

MOTE: oo Any unclaimed arquments will be used as compiler opfions!!! -

Eyamples:
R COMPILE compilés everything, creates compile. comg :
R COMPILE -PLP -AF O -NCO compiles only PLP modules modified after

midnight this morning: no como file
COMPILE ks -BF 1-1 compiles all modules in RS modified befors -
midnight on Jan. 1 of the current year,

]

ROCOMPILE ksxainit. fEn compiles #xkss8inif. £in

R COMPILE ksrainit saarches ks for ainit. (FMA FTN PLF)

R COMPILE ainif fin searches all sub-dirs, #2BRainit. £in

RCOMPILE ainif compile #BR/ainif. (PMA FTN PLF) -

Lo xyee YBE €

3
i
-

PRELIMINARY Lab Exercise 1

PRIMOS REV. 19.1 PRIMOS INTERMALS

| Pocs Rl S L
PRIMOS BUILD - LOAD. CPL I

R LOAD [+load data files]
(-LIBRARY <1ib paths 1 -LIB <1ib_path’]
[=0BJECT <obj path> 1 ~0BJ <obj_pathr] -
[-RING <rings i+ -R <ring~]
[-VERSION <versiony { =V <versionr]
(N0 COMO + -NCOI

_ pnstneled Gt] Fruess

w1oad data filer file with seq commands and name of files to load
110 pathr dir tontaining binary files of installed (base) Primos
~ob pathry dir containing binary files that are new

orings ring to load {currently O or 3)

cversions char string of this version of Primos (e.q. 18.0.10)

defaults: load data file= 116 path= obj path= ring= version=
RINGring. LOAD PRI19. Ch:0BJ #50BJ 0 19.0

This CPL procedure accepts a load data file in the following format:
/% comment line - ignored
SEG “command’ - direct command to seg, passed as is
file name {optional seq numbers for segqr

When the line 15 a file name,
file name.bin 15 searched for in the object directory
1f found the object pathname i1s prepended to file name
else the library pathname 1s prepended fo file name
(in both cases . BIN 15 appended to the filename)

PREL IMINARY 2 = 3 Lab Eyercise |

PRIMOS REV. 171 PRIMOS IMTERMALS -~

PRIMOS BUILD - more CPL ytilities

_ dfbnmfhﬁg s Loads é@ﬂwyfu;7 _

PRIMOS. BUILD, CPL

R PRIMOS. BUILD {version number} {-LOAD}
Compiles and/or load all of PRIMOS.

- ‘qﬂl" .V"
MOVSYS. CPL (in PRIRUN) - Crpies E}mik fre -
R MOVSYS “source treer <target trees [-OPSYS 1 (default)
[-ALL 1

[-HELP | -USAGE 1]
Copy primos and/or prirun modules befween ufds, -

VERSION STAMP. CPL - M UeeSem T J&

Type out version number and creation dafe of this PRIMOS.

. / b ',,,;ﬁ 7 '
Bl d) X Coly I tai “H Al
COLD. CPL { Wj /”

Build #colds and Tun mapgen.

PRELIMINARY - Lab Erercise |

PRIMOS REV. 19.1 PRIMOS INTERNALS

MOTIVATION
- Allows Primos to be booted In fwo s%eps:

Mew BOOT command to the YCP
SETIME command to Primos

- 0r in three steps
0ld or Mew BODT command to VCP

PRIMOS command to DOS (Primos I1)
SETIME command to Primos

[MPLEMENTATION
- Software required for new BOOT command:
Mew BOOT file from rev 19 Master Disk or rev 19 MAKE
Rev 19.0 #D0564 1n DOS

PRIMOS command in CMDNCO
COMDEY must be first partition on device

PRELIMINARY 2 = Lab Exercise |

PRIMOS REV. 19.1 PRIMOS INTEAMALS

MEW BOOTSTRAP

MEW BOOT COMMAND:

- Uses switches 4 and 5.

4 down - prompt for ‘Physical Device=’
up = use first partition on device specified in BOOT
command

3. down - prompt for user inpuf in Primos I via 'Ok’ -~
up = eyecute PRINMOS command for user

- PRIMOS command defaulfs fo booting out of PRIRUN,
- Must re~issue PRIMOS command to change default directory. -

- Note, PRIMOS command will work without new BOOT/DOS.
(However, 1f the rommand device 15 vev 19 format, ONLY fhe

new D05 will recognize the disk.)

- B Lab Eyercise |

L]

PR

mi

LIMINARY

PRINOS REY. 191 PRIMOS INTERMNALS

Installing a RING O GATE

This lab exercise consists of fwo distinct parts: modifying PRIMOS
to add the gate and writing an application routine to take advantage

of the neu gate. Tv /“”1L43y P

Gdding 3 Gate o PRINMOS
PRIMOS RING 0 Gatas ars defined in PPI%BS KSCERS. PMA
Fach Gate talkes the form: e Seed B

GATE 4ring 3 namer <ring O names

7

where
oring 3 namer is the roufine name the application will use
oring O namer is the actual routine name in ring 0

if only one argument is present, then <ring 3 names = <ring O names

Add your new qate, being careful fo place it at the end of the list,
after all the other gates. Also be syre that the name you use is
unique,

The next step 1s fo invoke COMPILE. CPL in order fo re-compile the
appropriate modulels), (Hint--Look at source comments)

The newly c0mpiled modules need to be re-lpaded.
Usa PRIMOS BUILD CPL or LOAD CRL, remember to set the version number.

W ‘;)’I'}L’l" 6’7\%7&5’%
FRELIMINARY d Lab Eysrrise |1

PRIMOS REV. 19.1 PRIMOS INTERMALS -

Calling a RING O GATE

The application program should be kept a5 simple as possibile, and must -
contain a "CALL 4<ring J name’" with arguments as required.

In order to get a LOAD COMPLETE message from SEG, you will need to

write a short PMA program as follows:

SEG
DYNT LTing 3 names
END
SEG
g. 9. DYNT SHCHES
END -

TNO U "(U_S/f/\/d‘/h/ xf\'fm;- CW?)
STWou f(_i’hzwvy , Lo T)

‘?TA/O(J t s7A/ov
Cate /M7x9éié, TA 0V
Testing the program

First Try executing your application program under standard PRIMOS.
REBOOT the system with your modified PRINMDS. |
Try executing your application progqram again.

FRELIMINARY 2 = 10 Lab Eyercige |

FRIMGS REV. 19.1 PRIMOS INTERMALS

Section 3 - MEMORY

PRELIMINARY 3 - 1 HeHORY

PRIMOS REV. 19.1 ' PRIMOS INTERNALS

e
| Kwad — gh K .
CACHE FUNCTICNA OlacRan)92 e hobe |
MAIN
MEMORY
DATA . _
- 3‘“ B * AND
» ’ " INSTRUCTIONS | -
. 3{*&? ,
CACHE medmmisi). | | (oo A n J""‘”% -
MENMORY Vmw | Dotu
K I —J" { ' ‘ -
cpY 1 S |
- S | \ BN <opie 0 -
| PROCESSOR [Loy A T
~ EXECUTION L Cuhe gL W
N UNIT / . |
Y .)

Cpihe Mt rele SO

PRELIMINARY J - MEMORY

-

FRIM

L

~ 0O o = g

~ 0 ~Jd Wt BN e

Interleaving is implemented using fwo identical boards.

5 REY.

19.1

M0s
Memary

EVEN
Addresses

Mos
Memory

0hD
Addresses

INTERLEAYING

16 (34 bits on P730/P830)

PRIMOS IMTERMALS

5/1412»1,1/1,'\(7’ @c’()‘/u e

" G

e | B A

m|-u—=2] L CPY
i H

T E

4

16 (32 bits on P750/PB30)

e
MMVJ Vs [_l

One board contains the syven addrssses, the other board
cantains the odd addresses.

This has the effect of speeding up sequential access and

increasing the cache hit rafe.

PRELIMINARY

i,\;TERC

————

No) 1

eved
JES

B3|

2
¢y |

* c” B ts

MEAORY

SEGHENTATION - Dexidg

PRIMOS INMTERMALS

CL/f f/“j

M ety

Virfual Memory 15 divided into variable length SEGMENTS (64K words may)

40?@ aEPvd{TS define 312 MB of Virtual Memory,

Thp VLvtu:l address space is divided into 4 areas (DTARS),

gach area consisting of 10

"TTT7

0000

Ve mm,ﬂ

24 ('2000) seqments.

FRIVATE PER USER (SYSTEM)

PRIVATE PER USER (USER)

o Seonedy

SHARED BY ALL USERS

EMBEDDED DPERATING SYSTEM
Fov RIS

PRELIMINARY

\)L&wvaf) WM“I 5 W"'f“‘“’d /&’I
Wt /] Bifs /¥VARI/¥Q{“

3

CURRENTLY EMABLED

MEHMORY

PRIMOS REV. 19.1 PRIMOS INTERMALS

EFFECTIVE ADDRESS FORMAT

PROGRAM INSTRUCTIONS GENERATE AN EFFECTIVE ADDRESS (EA).

- 2 Bits RING NUMBER {(defines privileges)
- 12 Bits SEGMENT NUMBER
- 16 Bits WORD MUMBER (within SEGMENT)

]

L Jring
«66/ /x\e P)' s
The EFFEE?IVE ADDRESS (28 BITS) is mapped fo PHYSICAL MEMORY.

e
J

4 3
4

16 17 321
SEGMENT NO. WORD MNUMBER |
/2 t7 52

- 22 Bits PHYSICAL ADDRESS
- Up to BM Bytes of PHYSICAL MEMORY.

[3]

FRELIMINARY 3 - MEMORY

|
FRINOS REY. 19.1 PRIMOS IMTEANALS

RING NUMBER
There are J RINGS which define the privileges of access
to the SEGMENT.
RING O 15 the most privileged and allows unrestricted
access to all seqments. Hing O is the only ring
that can eyecute restricted instructions.
PRIMOS runs in RING O.
RING 1 Mot currently used by soffuware
RING 3 The least privileged. | ,
USERS run in RING 3 Seq 5 - %o;ﬁ WM)

Hardware defines access rights of:
Inner ring accessing memory in an outer ring. B

Quter ring accessing memory in an inner ring.

 GATE acress LA |
éomMmP A !
Yy /mﬁ/m’ﬁéa%

S5 hive I M ‘J
, Detre T ey

PRELIMINARY 3 -

PRIMOS REV. 19.1 PRIMOS IMTERMALS

MEMORY MANAGEMEMT TECHNIGQUES

giar o Rew 112
The tefal numper of segments avai}able.is curfentlg 1042 e
All 1022 seqments cannot be contained in physical memory, I ﬂréﬁﬁ%fw;z
Yirtual Memory 15 divided info two parts Sequand oot
1) the part in physical memory AR Gy
2) the part on the paging disk 1
Certaln information is too critical to be on the paging disk
1t 15 "WIRED" ("LOCKED") into physical memory.
At COLD START, PRIMOS "wires" critical information, this area will
qrow as PRIMOS requires certain per-user data to be wired.
When user segments are allocated, paging space 15 allocated,
‘Unﬁvw@ MNecwrmny Vi
Pragrans generate VIRTUAL ADDRESSES, v e s
The VIRTUAL ADDRESS is translated (mapped) to a main memory address.
If the required physical address 1s resident within physical memory,
the access may proceed without interruption.
If not in physical memory, 3 PAGE FAULT will occur.

When 2 PAGE FAULT does accur, the proqram 1s suspended while the
required page 1s moved from the PAZING DISK into main memory.

This 15 callad PAGING IN.

[¥ there 15 no physical memory page avallable, PRINMDS will use &
rpproximately-Least-Recently-Used alqorithm to determine which
nage in physical memory will be PAGED OUT %o allow space for fhe
IN-Coming page.

PRELIMINARY 3 - 7 MEMORY

PRIMOS REV. 19.1 - PRIMOS INTERNALS |

MEMORY MANAGEMENT

MAPP ING WA PAGE-DUT
LOGIC VLY JELEEARY
— —)
111111111 | page-In
111111111 [11111]]] | _
— —
11111111 B
v o REAL
MEMORY |
(At pageo)
| Un Mok PAGING |
~ USER Loken s 3’/7”_1:’ DISK
VIRTUAL w ol gdet pry s -
MACHINE cdwrned ko g D¢

PAGE FAULT (Access then proceeds)

gz 074 et (1K) ﬁ

PRELIMINARY oy 3@ - 8 s M MEMORY
) 2 4 - _ (¥ Y '
P wp pl Cooreg

PRIMOS REY. 19.1 PRIMOS INTERNALS

ADDRESS TRAMSLATION

Every YIRTUAL ADDRESS 1s franslated (mapped) to a physical address by
accessing the STLE (Seqmentation Translation Lookaside Buffer). The
STLE holds the 64 most recent virtual o physical address translations.
When the STLB does not have a valid entry for the virtual address to
be translated, hardware calculates the address translation using
Descriptor Table Address Reglisters, Seqment Descripfor Tables and
Hardware Page Maps. The STLB 1s accessed again, this fime being sure
to get 3 STLB hit. During the translation, a page fault will occur

if the desired page 15 not in physical memory,

Simultaneous to the STLR access, hardware starts a CACHE access.
If the word from cache is from the correct physical page, then the
access is complete. If the word sought is not a valid cache entry
then the information is brought into cache from physical memory.

In summary fastest fo slowest:
STLB 'hit’ <+ CA&CHE 'hit’
STLB "hit’ + MEMORY ‘hit’, CACHE ‘hit’
) (caspe miss
fyll translation, STLR ‘hit’ + CACHE 'hit’
full translation, STLE ‘hit’ <+ MEMORY ‘hit’, CACHE 'hit’

£yll franslation (PAGE FAULT), 5TLB ‘hit’ + MEMORY ‘hit’, CACHE “hit’

PRELIMINARY 3 - 9 MEMURY

PRIMOS REV. 19.1 PRIMOS IMTERNWALS -

FULL ADDRESS TRAMSLATION

SEGMENT NUMBER WORD MUMBER -

234 36 7 161 5/ » 16
R} { DTAR | SEGMENT OFFSET I PAGE NO. PAGE OFFSET

HMAP

HET

DTAR - Descriptor Table Address Register % a _
SDT - Segment Descriptor Table | o |

SDW - Segment Descriptor Word 1 12 13 2
HMAP - Hardware page MAP
PPN = Physical Page Mumber

PRELIMINARY 3 - 10 MEMORY

PRIMDS REV. 191 PRIMOS IMTERMALS

OTAR - DESCRIPTOR TABLE ADDRESS REGISTER

10111 15

e
~ Fa—
—

0

CJ

nJ

Bits 1-10 1024 minus number of entries in 50T
11-16 High order 21 bifs of physical address
18-32 of SDT origin
17 = must be 1870

Dhuoiind ~ Pranlis P Heo ity

PRELIMINARY 3 - 11 HEMORY

FRIMOZ REV. 19.1 FRIMOS IMTERMALS

50W - SEGMENT DESCRIPTOR WORD

| 1011) 16
rlAAABBBICEL
17 1B20 2123 24 26 27 32
Bits 27-32 = Physical address of Page Map Table (HMAF)
1-16 = ({(Bits 11-15 must be 1870)
17 = Fault Bit
18-20 = (AAA) Access rights from RING 1
000 no access
I | 001 Gate access only
i gcﬁy¢¢1' 010 Read access only
th AwaX e T 011 Read and write access
100 reserved
101 reserved
110 Read and eiecute access
111 Read, uwrite, and eyecute access
21-23 = (BBB) raserved for future use
24-26 = (CCC) Access rights from RING 3
same a5 RING 1 access bifs

PRELIMINARY 3 - 12 - MOH Y

PRIMOS REV. 19.1 PRIMOS INTERNMALS

HMAP - HARDWARE PAGE MAP EMTRY ‘
22 Bt 7 sddiesy '
b st § b hie vy

] 2 3 4§ 3 16
VIRLIULS PFH
Bis 1 (Y} = VALID Bit, set when page is in physical
memory.
2 (R} = REFERENCED Bif, set by PAGTUR when the

page 1s brought i,
3 Wy = UNMODIFIED Bit, resef by hardware whenever
the page 15 modified.

4 (5) = GHARED Bit, set at cold starf for memory
pages, 50 that each location in the
page is not put in cache,

=16 = Physical Page Mumber (PFN)

(91ts 3,9 indicate paqe status if Valid bit is resel)

PRELININARY S /hmdad 3 . o3 HEMORY
g T3

PRIMOS REV. 19.1 | : PRIMOS INTERNALS

 VIRTUAL ADDRESS

1 2345 16 1 5 7 15 -
X ® SEGMENT # | PAGE PAGE OFFSET
L ; —
Qe ThLE (odcaside B%ﬁ£/
10TLB STLB CACHE
USER E 0 i ~
Used for NUMBER E ‘ :
. Segment O ” '
addresses 1 t
Only : :
: ' -
12— €33 —— 12 :
10!:3E ‘:f
- 2 13
COMPARE [
: ‘ (12 = INDEX)
) { 1 = VALID) DATA
PHYSICAL PPN | PAGE DFFSET i -

1 12 13 2

PRELIMINARY 3 - 14 .l"lEHDRYM

PRIMOS INTERNALS

19.1

PRIMOS REV.

5118 lE

A

mw>>ww\ 4
wow 2
258 NO

<

5118 ALIYYd 2
t

5118 vLva gl

+ 39vd TWIISAHd

5118 2l

M+x&
ke DA

viva

X3AN]

alIvA-A

SNOILYI07
rcol

MEMORY

13

FRELIMINARY

PRIMOS INTERNALS

19.1

PRIMOS REV.

silg Sy

\\\\\|n|l|llllll|l!|lllll|\\\\//1|||||nlnaillnltlllilllllti///

| m:&-mL —,v-u..t.:mi.a_

al

T 1000

g7 2V
wiy HBud
m\iwm \;\i\
é \Y;

TR 4!

m———

g1LS

WM

silg ¢t sig ¢t sjlg ¢t s|g € sjig ¢ [na ng g |
‘oN abed ‘SAYJEON .:a:.aﬂ...wr gl $s9901d ¢ bhury i bBuy S N A
; ~—= sybyy .
$S000Y g
12
\f. ,J,Ac.“/ﬁoé_

%&ga«

paljpowun-n
PHEA-A

MEMORY

~0
suojjeso] ¥9
1

o7

* PRELIMINARY

PRIMOS REV. 19.1 : PRIMOS INTERMALS

m
-
i__
Q ¢
&l o«
=] —
o as]
= o
2 -
>
L
o
>
R NG I N ————
c
S
©
(&}
(@)
-l
<
o
PRELIMINARY 3 - 17 MEMORY

PRIMOS REV. 19.1 FRIMOS IMTERMALS

Section 4 - Process Exchange

PRELIMINARY 4 - 1 PROCESS EXCHANGE

PRIMOS INTERNALS

PRIMOS REV. 19.1

PROCESS EXCHANGE

PRELIMINARY

PRIMOS REV. 19.1 | PRIMOS IMTEHMALS

PROCESS EXCHANGE

Process Exchange 1s the harduare/firmware mechanism used to switch
the CP from being used by one user to being used by & different user,

A context switch occurs whenever a higher priorify user or system
requires the use of the CP. The context switch involves saving the
registers and state of the currently running process and placing the
needed information in the current register sef for the new user ot
system. This 1s accomplished by the firmware/hardware and the fwo
user register sets in the High Speed Regqister File.

A process 1s a sequenfial flow of execution (a user, an [/0 driver).
The process 1s described to PRIMOS by a PCB (Process Contral Black).
Each process has ifs oun PCB. A proces must be in one of two states:
1). waiting for an event or non-CP resource
2). ready to execute.
When the process has all the resources required £o run and 15 only
waiting for the CP, the process’ PCB is placed on the READY LIST.
If the process is waiting, its PCB is threaded onto a semaphore or

waif list.

PRELIMINARY 4 - 3 PROCESS EACHANGE

PRIMOS REV. 19.1 | | PRIMOS INTERNALS

WAIT LIST (Semaphore)

PCB PCR
r—>| COUNTER —3| LEVEL t—] LEVEL -
BOL LINK 0
| WS _F | WLEN p—
WLWN WLWN -

Note: Queuing is priority order with FIFD for equal priority.
However, there are different flavors of NOTIFY, Notify _
end or Notify beginning.

WAIT <semaphare name, NOTIFY <semaphore name.

- arcess semaphore access semaphore
count = count + 1 count = count - 1 ,
if count > 0 first PCB --7 Ready List -

then PCB --> Wait List
s else process continues

PRELIMINARY 4 - &4 PROCESS EXCHANGE

PRIMOS REV.

19.

NOCUHEWUN~ O

1

PROCESS CONTROL BLOCK

PRIMOS INTERNALS

LEVEL (PRIGRITY)

L ThA

= N2 Var I/ICY%W‘L&,H

POINTER TO WAIT LIST

n

ABORT FLAGS

MULTISTREAM CONTROL

RESERVED

n

PROCESS ELAPSED TIMER

H

XMote g1 ¢l

DTAR =

yIe S« .ﬁ v
éﬂﬂ““7él%

DTAR 3

PROCESS INTERVAL TIMER

PROCESS INTERVAL TIMER

REGISTER SAVE MASK

KEYS

e -~ 2

REGISTER SAVE AREA

RING O FAULT VECTOR

1

RING 1 FAULT VECTOR

"

NOT USED

RING 3 FAULT VECTOR

PAGE FAULT VECTOR

—

CONCEALED STACK FIRST FRAME PTR

CONCEALED STACK NEXT FRAME PTR

CONCEALED STACK LAST FRAME PTR

RESERVED

PRIMOS REV. 19.1

LEVEL

READY LIST

[

CLOCK PROCESS/FNTSTOP(cesei2)

AMLC PROCESS (Chwrrndir wn/ctet

SMLC PROCESS

MPC PROCESS, MP2 ({mmll Prwder

VERSATEC PROCESS, MPC-4

RING NET CONTROLLER PROCESS -

SPARE

DISK PROCESS

SUPERVISOR PROCESS

S0 00 ©™ ~ O I Y v

USER LEVEL 3

[—y
L)

USER LEVEL 2

—
f—y

USER LEVEL 1 (DEFAULT LEVEL) Y

[y
nJ

USER LEVEL 0

i
CJ

BKIPCB (BACKSTOP 1) CPU #1

BK2PCB (BACKSTOP 2) CPY #2

—
-

PRELIMINARY

END OF READY LIST = |

|
PRIMOS INTERNALS

Netle Cidwothr

PROCESS EXCHANGE

D\SL P'“%lb

PRIMOS REV.

PPA/PLA

%W\ -'600

601
'602
604
604
603
'606
607

‘617

624
623
626
627
630
631
63
633
‘634

PRELIMINARY

19.1 PRIMOS INTERMALS
READY LIST EXAMPLE #1
LEVEL A PCE A PPB/PLB LEVELB | PCEB |
LBOLO |
E0L 0
LBoLt |
EQL |
| RV |
0
| BOL 3 |
el 3
_PCB
L BOL7 Level
eOL 7 Link &
| BOL 10}
EOL 10 PCB PCH PCB
o BOL 11} Level Level Level
EOL 11 Link Link 0
[so1e]| -~ ~ N N ’
eOL 12 PCH FCB
| BRIPCE | Level Lavel
BK2PCE Link
{ N ’ n n
4] PROCESS EACHANGE

|
PRIMDS REV. 19.1 PRIMOS IMTERMALS

To move a PCB from the Ready List to a Wait List, the WAIT
instruction 1s used. The NOTIFY instruction will move & process
from a walt list to the Ready List. Both instructions must aluways
reference a semaphore or wait list. The NOTIFY removes the first
PCB from the semaphore and places it onto the Ready List at the
proper level. When the process has completed execution or requires
another resource, a WAIT is executed and the process moves from

the Ready List to the specified Wait List or semaphore. PCHs are
placed in the Wait List queve in priority level order,

READY LIST

The firmware dispatcher uses two locations in the High Speed Register
File Group 0. The first location is called PPA/PLA. PPA holds the
pointer to the PCB of the currently running process. PLA confains
the Ready List level of the currently running process, The currently
running process will be the highest priority process on the Ready
List. PPB contains the PCB address of the next process to run. PLE
has the level of the next process. This allows the User Register 5etf
for the next process to be set up while still running anotfher process
at a higher level.

PRELIMINARY 4 - 8 PROCESS EXCHAMNGE

PRIMOS REV. 19.1 ‘ PRIMOS INTERMALS |
READY LIST EXAMPLE 42

PA/PLA } LEVEL A PCE A PFB/PLE LEVEL B J PCB B

—
‘600 | BOL O _
%01 | EOL O
‘w02 | BOL1 |
%03 | EOL 1
wp |0
403 0
s | BOL3 |
w07 | EOL 3
‘b1 v v

&
)l BOL 7 || Level | 2 Level
‘417 EOL /7 1= | Link [|== 0

‘624 | BOL 10_{ Ireee——

‘623 EOL 10 0l 1
‘626 | BOL 11__@'#) Level _J-) Level | [Level 1

627 EOL 11 Link Link)
‘630 | BOL IQ_L - - - "

631 EOL 12 | e ..J
‘632 | BKIPCB_|&B] Level | = Level
'633 | BK2PCB Link 0

1 N n v n

PRELIMINARY 4§ - 9 PROCESS BECHANGE

PRIMOS REV. 19.1 PRIMOS INTERMALS

The Ready List and the PCBs are all in Seqment 4. This is one of fhe
‘wired’ segements of PRIMOS. This means if never gefs paged out to
the paging disc. The Ready List beqins a% Segment 4, address ‘400 and
extends through address ‘634

The PCB address and User Number bear a direct relationship to one
another. For example; the address for User 175 PCB 1s 100100, The
atdress for User 7'¢ PCB 15 100700. The PCB at address 101200
belongs to User 10. Addresses are in ocfal, user numbers are
decimal. ALl PCBs are 64 ('100) words long so the least significant
two octal digits of any PCB address is '00.

Pcyg [00100

/60 2°0
YR

L«/&i
Nt 9 s g

ol

PRELIMINARY 4 - 1 FROCESS EXCHANGE

PRINDS REV. 19.1 PRINOS [NTERNALS
Luﬂqegﬁuifbw“wvuq READY LIST EXAPLE #3
. /ﬁ
praeee [et [noo | eempis [s2s | 100200
\' B
CLOck ‘800 | BoLo | Pbﬁﬁz;i:
w01 | 176800 P
WL 602 | BOL 1 o B
w03 | 77100 Y
g s | oo | Has 2 <] s
s |0 A
e 06 | BOL3 | ;;;if;,/gfésyzﬁf
07 | 77200
. ~ 770
Dish ete |70 | | vete -
w17 | 77700 0
LEVEL 2 ‘624 | BOL 10|
w25 | EOL 10 100200 102000 102300
LEVEL 1 ‘636 | 100200] [ed ‘b2t ‘b2t
w27 | 102300 '102000 '102300 0
LEVEL O ‘630 | BoL12] ” v v -
w31 | EOL 12 74400 76500
sackSTOP (632 | 7eso0 | | edm 532
4 {2533 76500 76500 0
)
ey "534 1 n e o ny

This esxample shows actual addresses found using VPSD on Rev 18.2
The contents pf PPA/PPE are calculated.
(o Moo Gds)

FRELIMINARY oon 1S W%‘lm 11 .

PROCESS EACHANGE

PRIMOS REV. 19.1 PRIMOS INTERMALS

In Example #3, PLA poinfts fo fhe currently active level (Disk) and PPA
points to the PCB of the currently running process. The Disk Driver
15 now the highest priority process on the Ready List. PLE and PPB
contain the level and PCB address of the next process $o run. In our
example, the next process happens to be User 2

4 CLOCK interrupt occurs. The interrupfing controller places its
address on the CPU bus. The currently running process 1s suspended
gt the completion of the current insfruction. The firmuare uses the
controller address as an index or vector into the inferrupt segment
which 15 also seqment 4. At fhis address is a pointer to the
Interrupt Response Code (IRC) which handles the interrupts from this
particular controller. This code is not associated with any specific
process and cannot have a PCB of ifs own. The IRC can do no more
than acknowledge the inferrupt and schedule the device driver fo
actually handle the event. This code 15 called the PHANTOM INTERRUPT
CODE or PIC. The PIC will acknowledge the interrupt and execufe an
INEC (Interrupt Notify to End of list and Clear active interrupt).
For a clock interrupt, the INEC will reference the semaphore CLKEEM,
The INEC causes the clock to be scheduled on the READY LIST by moving
the PCB from the Wait List to the appropriate level on the Ready
List. PRIMOS has assigned the Clock the highest priority and all
clock interrupts are placed on the Ready List at address '600 or
level 0. If location ‘600 contains 3 1ero, the address of the PCH 15
placed into location ‘600. If ‘A00 is not zero, the firmuare will
access ‘401 and thread the new PCB onto the end of the chain

PRELIMINARY 4 - 12 PROCESS EXCHANGE

PRIMOS REV. 19.1 PRIMOS INTERNALS

READY LIST EXAMPLE #4

FPA/PLA 600 176600 PPB/PLB ‘616, | 77700
SEGMENT #4 76600
CLOCK ‘600 | 76600 _} 500
'601 176600 0
AMLC 60 poBOL Y | N
603 77100
e g0 | 0 |
'602 g
mPC ‘606 | BOL 3 |
607 77200
> ! 77790
DISK ‘616 | 77700 | [‘ ‘616
617 77700 0

N y v N

LEVEL 2 ‘624 | BOL 10|

625 EOL 10 100200 ‘102000 102300
LEVEL 1 ‘626 | '100200 | b2k b2k 'bak
‘627 | 1102300 102000 102300 0
LEVEL 0 ‘630 | BOL 12] ™ oo oo v
| 631 EOL 12 76400 ‘76500
BACKSTOP 'b32 | ‘74400 | 632 432
633 76500 76500 0
634 | " v ow)

PRELIMINARY 4 - 13 PROCESS EXCHANGE

FRIMOS REV. 19.1 PRIMOS INTERMALS

The NOTIFY instruction causes the firmware dispatcher to update the
confents of PPA and FPB. As the clock interrupt is a higher priority
than that of the currently running process, the contents of PPA/PLA
is moved to PPB/PLB and the Clock’s PCB address and level are placed
into PPA/PLA.

The clock driver will now run to completion. Af the completion of
the driver routing a WAIT CLKSEM will be eyecuted. This removes the
clock’s PCB from the Ready List, places it on the CLKSEM Wait List
and allows the dispatcher to move PPB/PLB to PPA/PLA and updafe
PPB/PLB for the next ready process. PPB/PLB is updated by the
dispatcher performing a scan of the Ready List. This is dong by
comparing the BOL (Beginning Uf List) and EOL (End Df List) for

this level. If they are not equal, the nett process is on the same
level and PPB/PLE are updated. [f they are equal, the next word (BOL
for the next level) 15 checked. If this value is not rera, then the
nest process is on this leyel and PPB/PLB are updated. If BOL is
1870, there 15 no ready processes on this level and the next level’s
BOL will be checked. This procedure will continue until PPB/PLE are
updated with a PCH address and a process’ level,

PRELIMINARY 4 - 14 PROCESS EXCHANGE

PRIMOS REV. 19.1 PRIMNOS INTERNALS

READY LIST EXAMPLE #5

PPA/PLA ‘616 77700 PFB/PLB '626 100200
oEGMENT #4
CLOCK 600 | 0 |
601 76600
AMLE 60 L BOL L |
603 77100
ML 608 00)
603 0
MPC 606 | BOL 3 |
607 77200
i ; 77700
DISk "6l | 77700 | ‘616
617 77700 0

v N v N

LEVEL 2 "624 | BOL 10}

'623 EOL 10 100200 102000 104300
LEVEL 1 ‘626 | "100200_| '6d6 ‘626 626
627 102300 102000 1102300 0
LEVEL 0 '630 | BOL 12] ™)) o
631 EOL 1e 76400 76200
BACKSTOR 63 | '76400_] ‘63 632
633 76300 76300 0
430 { n n y w

FRELIMINARY 4 - 13 PROCESS EXCHANGE

PRIMOS REV. 191

PRIMOS INTERMALS -

READY LIST EXAMPLE %4
PPA/PLA ‘626 | ‘100200 PPB/PLE k26 | ‘102000
SEGMENT #4
cLock ‘400 L0 |
‘601 | ‘76400
AMLC ‘602 | BOL 1
‘603 | ‘77100
e e04 | 0 |
405 0
e e0s | BOL 3 |
607 | 77200
DIsk ‘ele | 0]
‘17 | 77700
LEVEL 2 ‘624 | BOL 10]
625 EOL 10 100200 /102000 102300
LEVEL 1 ‘426 | ‘100200 | ‘b2 't2b
‘627 | ‘102300 102000 102300 0
LEVEL 0 ‘630 | BOL 12| ™ v v g
531 EOL 12 76400 76300
BACKSTOP ‘632 | ‘74400 | 432
433 75500 76500 |
438 | N v n N
PREL IMINARY b - 16 PROCESS EXCHAMEE

PRIMOS REV. 19.1 PRIMOS INTERMALS

The process at the head of User Level 1 will now run until it
completes execution, requires another resource, does an [/0
gperation, a fault occurs, or the process’ time slice 15 used up. All
of these conditions cause the PCE o be removed from the Ready List
and placed on the appropriate Wait List. The firmware then
dispatches the next PCE fo PPB/PLE.

When a process terminates "normally” (runs fo complefion), PRIMOS
places the process’ PCB on that User’s BUFSEM Wait List. BUFSEM is

the semaphore the User waits on while enfering commands and typing a%
the terminal. |

If a process 15 terminated because of a time-slice end, the process’

PCB is placed on a lower priorify queus dependent upon which how much
CP time the process has used and the User priorify level.

PRELIMINARY § - 17 PROCESS EACHANGE

PRINOCS REV. 19.1 PRIMOS INTERNMALS

READY LIST EXAMPLE 47

FPA/PLA '6d6 102000 FPPB/PLB ‘626 102300

SEGMENT #4

cLock 600 |0 |
w01 | 176600

e 'e02 | BOL 1|
‘03 | 77100

e w04 |0 |
405 0

PC 'e0s | BOL3 |
07 | 77200

pisk ele [0 |
017 | 77700

N]

LEVEL 2 ‘624 | BOL 10]

623 EOL 10 10000 102300
LEVEL 1 ‘626 | "102000 | '42b '6d6

‘627 102300 102300 0
Level 0 630 | BOL 12| ™ N ")

531 ECL 12 74400 76300
BACKSTOP 632 | '76400_) 632 63

633 76300 76300 J

e y n n n n

PRELIMINARY 4 - 18 PROCESS EXCHANGE

FRIMOS REV.

PPA/PLA

SEGHENT #4

PRELIMINARY

~ CLOCK '&00
501

AL 02
_ '603
SHLC ‘604

~ '505
MPC 404

B 607
DISK ‘614

= ‘617
T LEVEL 2 ‘624
_ 625
LEVEL 1 ‘626

~ '627
LEVEL 0 630

- 631
_ BACKSTOP ‘632
533

- "534

PRIMOS IMTERMALS

102000

19.1
READY LIST EXAWPLE 8
600 | 74800 PPB/PLE b2k
76600
| 76800 | 400
/76600 0
| .
77100
| IV |
0
B3|
77200
| I |
77700
| BoL 10|
EOL 10 102000 102300
| ‘102000 | 428 'b2b
102300 102300 0
| soLt2| v .
EOL 12 /76400 78500
| 78400 | 532 432
76500 76500 0
1 y Lt} y
§ - 19

PROCESS EACHANGE

PRIMOS REV. 19.1 PRIMOS IMTERNALS -

READY LIST EXAMPLE #9

PPA/PLA 600 76600 PPE/PLD ‘616 77700
SEGMENT #4 76600
CLOCK "600] 76600] '600 -
601 76600 0 B
AMLC 602 p BOL L | "
603 77100
sl e) 00
603 0
mPC ‘806 | BOL 3 |
607 77200
¥ ! 77700 _
DIk “6l6 | '77700 ‘616
‘617 77700 0 -

v N N n

LEVEL 2 ‘624 | BOL 10]

623 EOL 10 102000 104300
LEVEL 1 "&26 | "102000_] ‘626 626

627 | 102300 104300 0
LEVEL O ‘630 | BOL 1] ™ K) N

631 EOL 12 75400 76300
BACKSTOR ‘632 | 754004 "6 632

633 76300 76200 0

430 y N w n w

PRELIMINARY 4 - 20 PROCESS EXCHAMGE

PRIMOS REV. 19.1 PRIMOS IMTERMALS

READY LIST EXAMPLE #10

PPA/PLA ‘wio | 77700 | eee/pLe | e2s | ‘102000
SEGHENT #4
cLock ‘e00 | 0 |
601 | ‘78800
AMLC ‘602 | BOL L _
‘603 | 77100
C ‘s04 | 0 |
‘605 0
PC ‘e0s | BOL3 |
507 77200
; 7700
DISk ‘sle | 77700 | | ‘alé
‘617 |_77700 0
LEVEL 2 ‘624 | BOL 10]
‘625 | EOL 10 /102000 /102300
LEVEL 1 ‘e26 | ‘102000 | reas ‘626
‘627 | '102300 /102000 0
EVEL O ‘630 | oL o~ v g
631 | EOL 12 176400 74500
BACSTOP ‘632 | 74400 ‘532 632
633 |__'74500 /74500 0
a1 1 . v .

FRELIMINARY 4 - 4 PROCESS EXCHAHGE

PRIMOS REV. 19.1 PRIMOS INTERNALS .

READY LIST EXAMPLE #11

PPA/PLA 626 102000 PFE/PLB 626 102300

SEGHENT #4

cock g00 |0 |
‘601 | 76400
e ‘02 | BoL 1 |
‘03 | /77100
sic g06 |0 |
405 0
w406 | BOL 3 |
‘w07 | ‘77200
sk ‘16 | 0 |
017 | 77700

ny n

LEVEL & ‘624 | BOL 10]

622 EOL 10 102000 102300
LEVEL 1 ‘626 | 102000] '626 '626

627 102300 104300 d
LEVeL O ‘630 | BOL 12] ™)))

631 EOL 12 176400 76200
BACKSTOR '632 | ‘75400) ‘63 ‘63

633 76200 76300 0

e y " n " n

PRELIMINARY 4 - 2 PROCESS EACHANGE

PRIMOS REV. 191

READY LIST EXAMPLE %12

PRIMOS INTERNALS

76400]

PPA/PLA ‘w26 | '102300 | PPB/PLE 432

SEGMENT 44

cock 600 |0 |
01| ‘78600

mie 'e02 | BOL 1 |
03 | ‘77100

e e0s |0 |
403 0

wPC ‘a0 | BOL 3 |
‘w07 | 177200

sk ‘ele |0 |
017 | 77700

y i

LEVEL & "624 | BOL 10}

623 ECQL 10 10300

LEVEL 1 "626] "102300 | '6d6
‘627 102300 d

LEVEL 0 7630 | BOL 12 *)
631 EOL 1é 76400 76200

~ BACKSTOP 632 | '76400_] g-K7 '63¢
633 76300 76200 | 0
'634 ! " " N N
PRELIMINARY 4 - 23

PROCESS EXCHAMGE

PRIMOS REV. 19.1 PRINOS INTERNALS -

READY LIST EXAMPLE #13

PPA/PLA ‘b33 | 76400 PPB/PLE v32 | e >
SEGHMENT 44
cLock 400 |0]
601 | 178600
AMLC ‘802 | BOL 1 |
‘%03 | ‘77100
TR VI |
'B05 0
mPC 06 | BOL 3
607 | 77200
pisk ‘16 |0]
617 | 77700

v N

LeVEL 2 ‘424 | BOL 10]

623 EOL 10
LEVEL 1 7626 | 0O |}
627 102300
LeVEL O ‘630 | BOL 1|
631 EOL 12 76400 76300
BACKSTOP ‘632 | 75400 | ‘632 '63d
633 76300 76200 0
e { n n N w

PRELIMINARY 4 - 24 PROCESS EXCHANGE

PRIMOS REV. 19.1 FRIMOS INTERMALS

The BACKSTOP processes PCBs are ALWAYS on the Ready List. The
purpose of BACKSTOP is fto call the SCHEDULER. The SCHEDULER is used
to move any process which has faken a fime-slice end or 15 on fhe
'HI-PRI' queue to Ready List with another time-slice. There are tuo
BACKSTOPs as the PB30 requires one BACKSTOP for each CP. g

PRELIMINARY 4 - 25 PROCESS EXCHANGE

PRIMOS REV. 19.1 PRIMOS INTERMALS

USE OF LOCK SEMAPHORES - Simple Lock

DATA

Two processes are sharing the same data area. Process A could be
changing data at the same fime as Process B 1s reading the data,
B may read incorrect dafa.

To prevent this, use a Simple Lock Semaphore (initial count = -1),

In order to access the data
Process A must wait on fthe semaphore (count = 0)
Process A proceeds

If Process B attempts to access the data if must first wait on
the semaphore. (count = 1)
Process B goes onto the Wait List for that semaphore
Process A must NOTIFY the semaphore. (count = 0)
Process B returns to the Ready Lis%t and proceeds

411 processes that access the data must first WAIT on the semaphors

and NOTIFY the semaphore when access 1s completed.

PRELIMINARY 4 - 2b PRUCESS EALHANGE

PRIMOS REV. 19.1 4 PRIMOS INTEHHALS

USE OF LOCK SEMAPHORES - Ordered Locks

| SEMAPHORE

—L_a g e~

P

__SEMAPHORE
_para 2 el

Two processes are sharing two dafta areas.

= piprvres§
If using simple locksi f%f;,,,,:zg——
Process A WAIT on semaphare 1 L4 npudr
64 plpwsd

Process B WAIT on semaphore 2
Pracess B WAIT on semaphore |
Process A WAIT on semaphore 2
A "Deadly Embrace” situation will be the resuls.

To avoid the "Deadly Embrace”, it 15 vital that all processes that
share data areas order their locks. The WAITs on the various
semaphores must occur in the same order for each process.
Process A WAIT on semaphore | Process B WALT on semaphors |
Process A WAIT on semaphore & Process B WALT on semaphore 2
Process A NOTIFY semaphore | Frocess B NOTIFY semaphore |
Process A NOTIFY semaphore 2 Process B NOTIFY semaphore &

PRELIMINARY 4 - 27 PROCESS EXCHANGE

PRIMOS REV. 19.1 ARIM0S TNTERMALY

Section 3 - Traps, Inferrupts, Faults and Checks

PRELIMINARY 3 = 1 TRAPS, INTERRUPTS, FAULTS, CHECKS

s
PRIMOS REV. 19.1 PRIMOS IWTEHMELS

There are J cateqories of soffware breaks in program execution:
1). INTERRUPTS

2. FAULTS Preofs e exccufron
3). CHECKS

_TRAP refers to & break in erecution on the microcode level. TRAPS
ex-” can occur for many reasons, some of which may directly or indirectly
DMK cayse breaks in software etecution. Not all software breaks are a

result of a TRAP, |

1), INTERRUPT (External Interrupf)

A signal has been received from a device in fthe external world
(including clocks) indicating that the device either requires service
or has completed an operation.

2), FAULT
& FAULT is a condition which has been defected as a resulf of the -

cyrrently running software and which requires soffware intervention.
A FAULT may be handled by the current soffware though most frequently
common supervisor code will handle the FAULT (e, g, Page Fault).

3). CHECK

A CHECK is an internal CP consistency problem that requires softuare
intervention. The problem may be an integrity viclation, reference fg
g non-existent memory module or a pouwer fgilure.

PRELIMINARY 5 = 2 TRAPS, INTERRUPTS, FAULTS, CHECHS

PRIMOS REV. 19.1 pPT1C -~ [7h¢m4ﬁmﬁ /”A”“qﬂpf Czii35 FRIMOS [HTERMALS
(Sej Y4 I8 W*[“‘”'”“}J '&Fﬁwﬁ

EATERMAL INTERRUPTS

When an EXTERNAL INTERRUPT is generated by a contro.ler, the
controller places a 16 bit interrupt vector address onto the bus.
This address 15 used as an indey info the inferrupt segement (Seq 4)
Seqment 4 is "wired memory" and will, therefore, always be present
in physical memory. The PB and Keys are saved in the microcode
scratch registers PSWPB and PSWAEYS.

Further interrupts are then inhibited and the Interrupt Hesponse Code
(IRC) beqins execution in 64Y mode. If 1s fhe responsibilifty of the
IRC to 1ssue a CAI (Clear Active Infterrupt) to the inferrupfing
cantroller.

The IRC is Segment 4 does not belong to any specific process and has
no PCB assigned to it. As it has no PCBs the IRC cannot save ifs
reqisters and context. Clearly, there is little the IRC can do. I%
returns t0 PROCESS EXCHANGE as quickly as possible. The IRC is
generally referred to as the PIC (Phantom Interrupt Codel.

The PIC must perform one of fwo operafions:
1), If the interrupt is very simple, the PIC will handle the
interrupt
2). In the case of a more compley handling routine, PIC will
reset the interrupt and NOTIFY the remainder of the PIL.

PRELIMINARY 3 - 3 TRAPS, INTERRUPTS, FAUL TS, CHECKS

PRIMOS REV. 19.1 PRIMOS INTERMALS

1), Simple Case
The IRTN (Interrupt Return) will be eyscuted. This will restore fhe
PE and KEYS and enter the dispatcher,

2). NOTIFY IRC Case —
In order to NOTIFY a process, PIC must ensure that the PE and KEYS
are restored before issuing the NOTIFY. The INOTIFY insfruction will
do both the restore and the Notify

There are fwo ways by which the PIC can issue a CAL

1). CAI 1nstruction

2). Set bit 15 of the IRTM/INOTIFY instruction.
In practice, the PIC combines all of the above steps with a singls
instruction INEC

PRELIMINARY 5 = 4 TRAPS, INTERRUPTS, FAULTS, CHECKS

PRIMOS REV. 19.1 PRIMO

R

INTERMALS

CLOCK INTERRUPTS (on UCP)
Most current Prime systems use a device called the Programable
Interval Clock (PIC). The PIC is a counter that 15 initialized or
loaded by system software and once it 15 loaded it counts up af 3
rate of 3.2 us. until it overflows. The overflow is used fo generate
an interrupt via location ‘63 to wake up the clock interrupt handler
(and hence the clock process). The counter is located on the
controlller itself and can be counted independently of CPU operation.

The PIC counter is initialized at cold start to a ~947

947 # 3.2 us. = 3.0303 ms.
After the PIC counts up 947 times at a 4.2 us. rafe 1t overflows and
generates an interrrupt via location ‘63 at a 3.0303 ms. rate. The
PIC need only be preset once, thereafter i1t will reinifialize 1fsely
tn a =947 after each time 1t overflows.

Earlier systems used a hardware controller called an Option A
instead of a Diagnostic Processor (DP), System Option Controller
(S0C), or Virtual Control Panel (VCP). The Option A board contains 3
Real Time Clock (RTC) which depends on the CPU to increment a memory
location, which results in greater CPU overhead.

PRELIMINARY 5 = 3 TRAPS, INTERRUPTS, FAULTS, CHECKS

PRIMOS REV. 19.1 PRIMOS INTERMALS

FAULTS

FAULTs are CPU events which are synchronous with and caused by

softuare. phﬁ?TﬂQMA Coauged bzbng %&g§ﬁ7o

Two data areas are used:

1). PCB FAULT VECTORs and concealed stack pointers

2). the FAULT TABLEs pointed to by the PCB vectors.} 25
Therefore each process can define its own faulf handlers and the
concealed stack allow FAULTS to be stacked. The PAGE FAULT has its

own vector and only one system-wide handler is used so all PAGE FAULT

vectors point to the same place.

Each FAULT TABLE entry consists of 4 words, of which the first 3 must
he a CALF instruction. The CALF (CAL1 Fault) instruction is
essentially a PCL (Procedure Call) instruction for the various Fault
handling routines. The PB and KEYS from the concealed stack are
placed in the Fault Handler’s stack frame along with other base
registers. The Fault Code and Fault Address are placed in words
12,13, 14 of the Fault Handler's stack. The first word of the
new stack frame is sef fo a valve of 1. This 15 o distinguish the
CALF stack frame from the normal PCL stack frame. The ECE (Entry
Control Block) addressed by the CALF must not specify any arguments.
Return from the fault handler is by normal PRIN instruction.

FRELIMINARY 5 = & TRAPS, INTERRUPTS, FAULTS, CHECKS

PRIMOS REV. 19.

1

PRIMOS THTERMALS

1/\1 tgu,m«»iq %Vﬂ:f
el FAULT PROCESSING ,gttt* éhmwj/ar
o~ P?ywhw ¢ bused T —

TYPE OFFSET RING SAVED PR FCODE FADIR
RESTRICTED | O | CURRENT | BACKED -- -
INSTRUCTION
PROCESS 4 0 CURRENT ABORT -=

FLAGS

PAGE__ 10 0 BACKED -= ADDRESS
159C el b 14 | CURRENT | CURRENT -- -
UNIMPLEMENTED] 20 | CURRENT | BACKED | CURRENT P | EFF ADDRESS
INSTRUCTION COUNTER

ILLEGAL 40 | CURRENT | BACKED | CURRENT P | EFF ADDRESS
INSTRUCTION COUNTER

ACCESE Tgs)| 44 0 BACKED -~ ADDRESS
YIOLATION

ARITHMETIC | 50 | CURRENT | CURRENT | EXCEPTION OPERAND
EXCEPTION CODE ADDRESS
STACK 54 0 BACKED - LAST STACK
OVERFLOW SEGMENT
SEGMENT- 60 0 BACKED | # too large | ADDRESS

Cusd B — T [orFault Bit
POINTER | 64 | CURRENT | BACKED PTR 15t ADDRESS OF

wor PIR___
PRELIMINARY 5 - 7 TRAPS, INTERRUPTS, FAULTS, CHECKS

PRIMOS INTERNALS

PRIMOS REV. 19.1

] VT,
yaavdg €1,
30024 rA N
SAIN

fid

104

2109
YA TUNVHE—-

LInvd

I = SOVTd Jé——qs

d'TVI

o) Lt WNM\A 9%
wing ooy £ILs<d

414vVL L1nvd
£ ONIY

@L@@ S weﬁsww\ 7<4pe~\ Mm.zc_e<=m;c invd
Y i@ @ |

02

uaavi

10021

SAIN

tld

LSY'|

JLXHN

LSU L]

JOLIAA _L'INVd_a9Vd

8 TRAPS, INTERRUPTS, FAULTS, CHECKS

£ UOLIOIA_LTNvd

dgaAuas:Hy

L { :c_.o .> ._4:<_

J

st sy w
nav) t il
sy)]
wf. f SLJ

e
éﬁ My

43d

(¢ 8ury uy 11n 39)

PRELIMINARY

PRIMOS REV. 19.1 PRINOS INTERMALS

ACTION ON FAULT
1), Create an entry in the Concealed Stack (Firmuare).

2). Transfer control to the Fault Table at the correct offset, in &4Y
Mode, with interrupts enabled.

J). Etecute the Fault Handling routine 35 a part of fhe current
process. The entry in the Fault Table will a CALF instruction.
This creates a Stack Frame and transfers the Fault Code and Fault

Address into this Stack Frame. The Fault Handling routine
(software) is now called.

4), The Fault Handling routines eiecutes a Procedure Heturn to eyit
the Fault processing and resume "normal” program execution,

Moo tisheiy page g =7 /55, 94 éfﬁjzj:;fy
1), Mechanism for deferring faults until the refurn from PGFSTK,

2). REFALT modifies the return (PB) in 3 stack frame and pushes a

frame in the concealed stack so that a simulated fault may be
taken when leaving PGFSTK.

PRELIMINARY 9 = 7 TRAPS, INTERRUPTS, FAULTS, CHECKS

PRIMOS REV. 19.1 FRIMOS TMTERMALS

CHECKS
A CHECK 15 a CPU event uwhich 1s asynchronous with and not caused by

normal instruction execution. CHECKs can most easily be classified
as some sort of hardware physical failure,

There are four types of CHECKS:

CHECK HEADER LOC FIRST IMSTRUCTION DS

OF HAMDLER SET

Power Failure 4/ 7200 4/ '204 flo
Memory Parity 4/'270 47274 - S=ge Ao,
Machine Check 4/'300 4/ 1304 - eRer A By
Missing Memory 4/'310 4/"'314 Yps

Each CHECK class has a single save area consisting of § words in the
interrupt segmenti in which the PB and KEYS are saved in the first 4
locations and the remaining 4 locations contain soffware codes.

Three 32 bit registers are used as a Diagnostic Status Word (D5W) o
help a software Check Handler determine the cause of the CHECK,
Check Handling software has the responsibility of clearing the

D5W after every CHECK,

Eﬂfﬁvﬂ' (/0‘751—/ - ﬁﬁvs /CVJ | rt’yiys’zk’&‘ A ’C&W“L;;’

s~ quékag Flor,

PRELIMINARY 9 = 10 TRAPS, INTERRUPTS, FAULTS, CHECKS

PRIMOS REV. 19.1 PRIMOS INTERMALS

Section & - System Initialization

PRELIMINARY 6 - 1 SYSTEM INITIALIZATION

PRIMOS REV. 19.1 PRIMOS [MTEMMALS

SYSTEM INITIALIZATION

PRIMOS is initiated from PRIMOS II by atfeching to the UFD PRIRUM
{Mormally found on the command disk) and resuming PRIMOS. The roufine
PRMLD. FTN 15 then entered and the following actions are performed.
1). Attach fo CMDNCO and open the Plle _PRMO for command input,
2). 1 the file is not found, output the Tazesgs (029
‘PLEASE ENTER CONFIG' and return fo console inpuf. (OLD STYLE)
3). Read in the first command from fhe file or read the
command from the console.
4]. If the first command is not a LONFIG, output the message
‘FIRST COMMAND MUST BE CONFIG’ and refurn fo the
message in 2J.
5). Close the C PRMO file and proceed with confiquration,
configuration.

MEW STYLE CONFIGURATION
1). Open CONFIG data area
2). Read in commands and check legality
3). When ‘GO’ command is inputted, close data file and proceed
g5 "OLD STYLE COMFIGURATION" from step 1)
4), If no 'GD" is inputted and the end of file is reached,
output the message 'MISSING GU'.

PRELIMINARY 6 - & SYSTEM INITIALTZATION

PRIMOS REV. 19.1 PRIMOS IMTERMALS

OLD STYLE CONFIGURATION

1), Check, configure, and start-up the main and alfernative
paging devices (if applicable).

2). If the device is illegal, output the messaqe 'ILLEGAL PAGDEY'.

3). If the device contains normal file formats rather than paging
formats, output the message ‘USE DISK FOR PAGING'. & 'YES'
or ‘MO answer must be given. THINK TWICE OR THRICE BEFORE
ANSWERING ‘YES'. BY ANSWERING 'YES’ THE SURFACE IS MADE IMTO
A PAGING SURFACE ANMD ALL FILE DATA IS DESTROYED AMD LOST.

4), Check, confiqure and start-up the command device.

2). If the device 15 illegal, output the messaqe 'ILLEGAL COMDEY'

6). Check the paging devices for split disk. If the name is
'PAGING', 1t tan contain a ‘BADSPT’ file.

7). Read in the page maps from #COLDS.

8). If there 15 a BADSPT file, adjust the page maps accordingly.

9. Pre-page all PRXXXX files as necessary.

10). Resume #COLDS.

There are two possible entry points to the system:
1). COLD START - enter at SEG ‘14 ‘3000
2). WARM START - enter at SEG ‘14 "1000.

PRELIMINARY 6 - 3 SYSTEM INITIALIZATION

PRIMOS REV. 19.1 PRIMOS INTERMALS

COLD START

1). Enter 64V mode.
2). Set up CPU model number, u-code revision number, and write
PRIMOS version into LOGBUF.
3). Set up controls for OPTION A or 50C is ABRDIM. -
4), perform memory scan to size memory, check parity, and
find bad pages.
Invalidate the STLB.
. Clear the D5W.
. Set up the interrupt processes FLBs.
Set up and start the clock,
Entar PROCESS EXCHANGE mode.
). Set up Stack Base Register for USER 1.
). Call AINIT.

o~ on

0 0O ~4
r—l(:]wwwvw

l
1

PRELIMINARY 6 - 4 SYSTEM INITIALIZATION

PRIMOS REV. 19.1 PRIMOS IMTERMALS

AINIT
1), Turn off input from system console until I/0 buffers
are configured.
). Set up system console baud rate if necessary.
3). Print the system ID and memory size
8). Set up 'MAXSCH' based on available memory.
3). Checx that 'CONFIG’ information is available.
J. Check NUSR, PAGDEY, COMDEY, MAXPAG, ALTDEV, N&MLC,
NPUSR, MRUSR, and SMLC.
). Set up PAGREL for PAGDEV and ALTDEV (split disks only).
J. Unlock pages not needed for MMAP and adjust page maps.
). Allow PAGE FAULTs.
). Initialize USRCOMs.
). Set login name for USER 1.
). Attach to CMDNCO.
). Establish terminal buffers for configured lines.
). Call CINIT to process CONFIG commands.
). Allow input from sysfem console.
). Initialize and wire PCBs for confiqured UsERs & and up.
J. Calculate MEEG as follows:
A). Segments that will fit into specified paging space,
B). Specified NSEG command.
C). Default NSEG setting (Pre-Hev. 18).

PRELIMINARY 6 - 3 SYSTEM INITIALIZATION

1
%

A
—
R
A
==
i

X3

PRIMOS REV. 19.1 PRIMOS 1

gy

AINIT - continued

18). Initialize DTARZ and DTAR3 for users.

19). Set page maps for RINGD Sfacks.

20). Invalidate all escept first fuwo pages.

21). Set up templates for USER's PUDCOM and RING O Stacks.
2d). Set up PUDCOM and USRCOM for configured users.

23). Lock network code if nefworks configured

24). Lock SMLC driver 1f confiqured.

23). Initialize ECBs in Gate (Seqment 3).

26). Initialize USER priority level

27). Open C PRMO if found, and skip the first

egacutable statement.
28). Turn on AMLC and networks (if configured).
9). Calculate and print wired memory 1f WIRMEM
directive is found.
30). Print message 'PLEASE ENTER DATE'.
31). Call FATALS to exit command for USER 1.

Once the date and time have been enfered by the SE command, USERs
may LOGIN. The form of the SE command 15 SE -MMDDYY ~HHMM,

32). Process other commands in C_PRAD

PRELIMINARY 6 - & SYSTEM INITIALIZATION

FRIMOS REV. 19.1 PRIMOS IMTERMALS

WARM START

1), Enter 64Y mode.

2). Set up DTARs, Link Base, and enter Seqemented Mode.

3). Initialize IOTLB.

4). Save reqisters on inferrupted USER.

MOTE: WARM START cannof be done if no registers have
heen saved. If this is the rase, HALT.

3. LOG 1f power fail.

61, Move reqisters from save area to PCHs.

7). Correct PB/KEYS for process that was running. This
15 necessary if the HALT was In Phantom Interrupt Code
or after a Machine Check.

8). Resef PCBs for device driver processes

9). Initialize varigus flags and confrol reqisters for
device controllers and device drivers.

10). Reset USER 1 Stack; reset Clocks and enter PROCESS
EXCHANGE mode.

1), Handle UPS (Uniterruptable Power Supply) 1f present.

2). Log WARM START in LOGBUF.

13). Reset critical state variables and semaphores.

4}, MOTIFY DSKSEM 1f user walfing.

5). Set WARMALM for USER 1. (Other USERs should continus
normally.

16). Exit into clock process.

PRELIMINARY 6 - 1 SYSTEM INITIALIZATION

FRIMOS REV. 191 FRIMCS INTERNALS

Saction 7 - Condition Mechanism

FRELIMINARY i -1 CONDITION MECHANISM

FRIMOS REV. 191 FRIMOS INTERNALS |

Faalts Siggaal - Conddint - copn o1 oN HECHANISN
C/ﬂ/\m;nf l/\.r‘ﬁ“"((ﬂa, *F[we wac/(

MOTIVATION

system soffware error handling

manage resntrant/recursive command environment

user program error (and event) handling

suppart ANGI PL/Y condition mechanism _

IMPLEMENTATION

eytended stack header

gn-unit descriptor bleck (on stack!

conditian frame header {on stack)

fault frame header {on stack!

- 2 CONDITION MECHANISM

PRELIMINARY

wad

PRIMOS REV. 191 PRIMOS INTERMALS

CONDITION MECHAMISVM-definitions

CONDITION - an unscheduled svent (ASyacemiacs)

ON-UNIT - a grocedure to handle an event
SIGMAL = felling the world the event happened
RAISE - procedure which searches the stack for the ON-UNIT

CRAWL - procedure uhlch swztche: fram znner ring to ring J sfack

MAKE ON-UNIT = turn on event handler for this activation
REVERT -ON=UMIT = furn off event handler for this activation

NON-LOCAL-GOTO - a qoto to a predefined label not 1n this activation
(-6oTo Framsfers 0d Fv Reuous

DEFAULT ON-UNIT ~ one eyample of system use of condition mech.

PRELIMINARY /7 - 3 CONDITION MECHAMISH

FRIMOS REV. 191 PRIMOS INTERNALS

ok. e, s@g sleep
This is SLEEF. FTN. going fo sleep for one minute /% nornal
This 1s SLEEP FTIN. finished sleeping: exifing /% gyacution

k.8 seg sleep

This is SLEEF FIN. going to sleep for one minute /% cantrol P
/¥ fyped

QUIT.

k. & dmstk -all -on_units

Backward trace of stack from frame 1 af A002{3)/7642.

STACK SEGMENT IS 8002 .

(1) 007642: Ouner= (LB= 13(0)/13082).
Called from 13(3)/10132%; re;urns to 13(3) /101531

{(2) 006584: Duner= ({LB= 13(0)/103240).
Called from 13{(3}/100723; returns to 13{3)/100747

(3) 00433C: Ouwner= (LB= 13(0)/103240).
Called from 13(3)/10434; returns to 13{3)/10234.

PREL IMINARY 7 - 4 CONDITION MECHANISM

FRIMOS REV. 191

(4) 003575: Ouwner= ({LB= 13(0)/13082).
Called from 13(3)/2717; returns fo 13(3}1/3731
Onunit for "CLEANUPS" 15 13(3)/14083.
Onunit for “STOPE" 15 [3(3)/13663.
Onunit for “SUBSYS ERRS" 1s 13(3)/13703.

} 003260 Ouwner= (LB= 13(0)/3700).

Called from 13(3)/755556; returns fo 13(3
Onunit for “CLEANUPS®" 15 13(3)/4432.
Onunit for “ANYS" is 13(3)/70446.

Onunit for “LISTENER ORDER®" 1s 13(3)/4472,
Onunit for “SETRC®" 1s 13(3)/4432

Onunit for “REENTERS" 1s 13(3)/4512.

x"}

/7356

003234: Ouner= (LB= 13(0)/75174).
Called from 13(3)/33364; returns to 13(3)/33

002344: Quner= (LB= 13(0)/57774).
Called from 13(3)/45217; returns to 13{(3)/452

} 002444 Ouwner= (LB= 13(0)/44734)

Called from 13(3)/44287; returns to 13(3)/44301.

FRELIMINARY

.

3b6.

23

FRIMOS INTERNALS

/% STDSCR

/% LISTEN_

/% COMLVS

f+ DF_UNIT_

/% RAIGE

CONDITION MECHANISM

. I
FRIMOS REV. 1%.1 FRIMOS INTERNALS

(§) Q02314: CONDITION FRAME for "QUITS"; returns to 13(3)/51247,
Condition ralsed at &(0)/343% LB= 6(0)/3314, Keys= Q14000
(Crawlout to 4001(3)/1043; LB= 4002(0)/177400.)
Inner rirg faulf: fype “PROCESS" (4); code= QOQE0Q: addr= QOO0
Registers at time of fault In inner ring:
Save Mask= 000000; XB= &4(0)/1372

GRO 0 0 0 GRI 0 0 0
L. GRZ 0 0 0 E, GR3 0 0 0
GRE 0 0 0 Y, GRS 0 0 0 -
GR& 0 0 0 X,GR7 0 0 0
FARQ Q{010 FLRO 0 FRO O 0Q000C000E Q0
FARY Q{0 /0 FLR! 0 FRI 0. 00000000k 00
(10) 002114: Quner= (LB= 13{0)/30840). {% CRFIM.
Called from 80C1{(3)/1043; returns to 4001(3)/1043
STACK SEGMENT IS 4001, /% control P typed here
{11) 001174: Quner= ({LB= 4002{0)/177400). /% SLEER FTN

Called from 4000(3)/58547; returns to 4000(3)/35351.

PRELIMINARY o= b CONDITION MECHANISM

FRINOS REV. 19.1 FRIMOS INTERNALS

STACK SEGMENT IS 4000.

{12) 150062: Duner= (LB= 4000(0)/56234). f% SEG (VRUNIT)
Called from 4000(3)/1723; returns fo 4000(3)/1723
Procead to this activation is prohibited.

(13) 13001<: Ouwner= (LB= 4000(0)/5130). /% BEG (MAIN)
Called from 4000(3)/1100; returns to 4000(3)/1102
Onunit for "CLEANUPS" 1s 4000(3)/57340.

{14) 150000: Ouwner= ({LB= 4002(0)/177400). f% 1nvalid frame
Called from QUQV/177776; refurns to QUOI/D /% set up by SEB

FREL IMINARY -7 CONBITION MECHANISM

PRIMOS REV. 19.1
STACK SEGMENT IS 6002,

(12} 001832: Quner= (LB= 13(3)/312a0).

Called from 13{3)/12610; returns to 13{3)/12432

Onunit for “CLEANUPS" is 13(3)/31743
Onunit for “ANYS" is 13(3)/3173%

(16) 001472 Ouner= (LB= 13(0)/13062).

Called from 13(3)/118632; returns to 13{(3)/11435.

(17} 000730 Ouner= (LB= 13(0)/13062).
Called from 13(3)/2717; returns to 13{3}/ 2731
Onunit for “CLEANUPE" 1s 13(3)/14043.
Onunit for "STOPS" 1s 13{(3)/13843
Onunit for “SUBSYS ERR$" is [3(3)/13704.

(18) 000432: Quner= (LB= 13(0)/3700).

FRIMOS INTERNALS

/% INVRSM_

ﬁlm S
pripon

33

/% STD&CP
C ﬁuW h

e

/% LISTEN

Called from 13(3)/142374; returns to 13(3)/142400. (wils 4~

Onunit for “CLEANUPS" 1s 13(3)/4432

Onunit for “ANYS® 1s 13(3)/70444.

Onunit for “LISTENER _ORDERS® 1s 13(3)/4472,
Onunit for "SETRCS" is 13(3)/4432

Onunit for “REENTERS" 1s 13(3)/4512

(19) 000424: Quner= (LB= 13(0Q)/182014).
Called from O(0)/142376 returns fo 0{0)}/0.

FRELIMINARY 7 - B

v +
Laeds”

/% INF

ot

M _

CONDITION MECHANISM

FRIMOS REV. 19.1 FRIMOS INTERNALS

The condition mechanism is activated whenever a3 condition is ralsed
by the PL/L CBIGNAL STATEMENTY or by a call o SIGNLS® or SGNLSF. It

scans the stack backwards in sequence until an activation 1s found
with an on-unit the condition or for ANYS i1s found.

POSSIBLE ACTIONS OF AN ON-UNIT

1}, Pertorm application specific tasks (e.g. closing
tiles, updating files).

Repair cause of condition and resume execufion.
Decide that the normal flow can be inferrupted
and the program re-enfered at a inoun point by
performing a non-local GOTOU to some previously
defined label.

4}, Signal another condifion.

9}, Transfer user to command level.

). Continue the search for more on-units.

7}, Run diagnostic routines.

A At
. -

Ll Ppa

PRELIMINARY ;f- 9 CONDITION MECHANISM

FRIMOS REV. 191 FRIMOS INTERNALS |

CONDITIONS

1y, A name (Up fo 32 characters).

2}, Machine state at the time the condition occured

3}, Auxiliary information (e.q. file control olock of PL/L 1/D
condition).

4}, Confinue swifch (confinue fo signal!

3}, Return switch (on-unit may return) _

&), Inaction switch ({on-unit may return without faking any action)

ON-UNIT
1}, Name of condifion to be handled.
Y. A pointer o fthe procedure o handle the condition,
3}, Reverted switch (the on-unit is no longer active if seb!
Y, Specifier (set 1f more than the condifion name is required

to completely describe the condition)
2}, Specifier poinfer (to file descripter if required)

PRELIMINARY - 10 CONDITION MECHANISM

FRINOS REV. 191 FRIMOS INTERNALS -

CLEANUP. FTN

EXTERNAL BRADLR
INTEGER DUMMY

REAL#B BRKRTN

COMMON /BRKLBL/ BRKRTN
LOGICAL® MAINBK
COMMON /BRACOM/ MAINBK

MAINBK = FALSE. /% BRHDLR NOT YET ENTERED
CALL MKON$F (7QUITSY 5, BKHDLR) f% MAKE ON-UNIT FOR MAIN
CALL MKLBSF ($1000, BRKRTN) {% LABEL FOR NON-LOCAL 6OTO
PRINT 10

10 FORMAT (“Entering MAIN affer invocation from SEG
PRINT 20

20 FORMAT (Type <RETURN: to call SUBA:, <BREAK: to test on-unit’)
READ (1,d3) DUMmY

23 FORMAT {Ad)
IF (MAINBK) GOTO 100
CALL SUBA
PRINT 30

30 FORMAT ('Refurned to MAIN normally from SURA®)
CALL EXIT

100 PRINT 110

110 FORMAT (‘Returned to MAIN from BKHDLR*)
CALL EXIT

1000 PRINT {010

1010 FORMAT ('Refurned to MAIN via NON-LOCAL go to”)
CALL EXIT
END

FRELIMINARY 7= 1 CONDITION MECHANIGM

FRiflUs KRBV, 1Tl FrINUS INTERNALD |
SUBROUTINE SUBA
PRINT 10
10 FORMAT (“Entering SUBA called by MAIN, call SUBB)
CALL SUBB
PRINT 20
20 FORMAT {(‘Returned to SUBA normally from SUBBY
RETURN
END
SUBRBUTINE SUBB
EXTERNAL HDLRB
CALL MKDONSF (“QUIT$‘, 35, HDLRB)
PRINT 10
10 FORMAT (‘Enfering SUBB called by SUBA, call SUBCY)
CALL SUBC
PRINT 20
20 FORMAT (‘Returned to SUBE normally from SUBCY)
RETURN
END _
SUBROUTINE SUBC
INTEGER DUMMY
EXTERNAL CLHDLR
CALL MKONSF {‘CLEANUP$‘, 8, CLHDLR)
PRINT 10
10 FORMAT (‘Entering SUBC called by SUBB)
PRINT 20
20 FORMAT (“Type <RETURNY to EXIT, <BREAA: fo fest on-unit’)
READ (1,23} DuMMY
25 FORMAT (A2)
PRINT 30
30 FORMAT (°SUBC exiting normally’)
RETURN
FREL IMINARY TR ¥ CONDITION MECHANISM

FRIMOS REV. 191 - FRIMOS INTERNALS

CONDITION MECHANISM--CLEANUF. FTN.

SUBROUTINE BRHDLR (PNTR)
INTEGER®4 PNTR
LOGICAL®2 MAINBK

COMMON /BRACOM/ MAINBK

CALL TNOU{BKHDLR called by condition QUIT® refurn’, 40}

PAUSE 1 /% needed since [/0 an return
MAINBK = . TRUE. /% BRHDLR now antered

RETURN

END

SUBROUTINE HDLRB (PNTR)
INTEGER#4 PNTR
REAL¥B BRKRIN
COMMON /BRKLBL/ BRKRTN
PRINT 10
10 FORMAT (‘Entering HDLRB called by condition QUITS, call PLISNLY)
CALL PLISNL (BRKRTN)
RETURN
END
SUBROUTINE CLHDLR (PNTR)
INTEGER#4 PNTR
PRINT 10
10 FORMAT (‘Entering CLHDLR called by condition CLEANURS: refurn’)
RETURN
END

FREL IMINARY 7 - 13 CONDITION MECHANIGM

FRINUS ROV, 17,1 . PRGOS TINTERINRLG

On-unit Information Blocks

~ = MAIN = QUITS |—c ARITHS -
{
1 B | ?
l \
r—-= SUB_A | @ @ ~—m——-—-- }
l .
I : -
:— -= SUB_B |—=1 @uITs : -
' ' _ |

| |

:— - SUB_C l -
| i

‘ ‘ -
| |

{ ;.

|

l

N i
-~ — Stack Frames -

MAKING ON-UNITS

PRELIMINARY 7 - 14 CONDITION MECHANISM

FRINOS REV.

N — =Condition Frame

PRELIMINARY

19. 1

MAIN

QUITS

PRIMOS INTERNALS

SUB_A

SUB_H

ECB
BRKHDLR

QUITS

SUB_C

-

SIGNLS®

HDLR_B

ECB
HOLR_B

"SIGNALING A CONDITION

15

CONDTTINN MECHANTGM

FRIFAUS REV. 171

FRAUS INTERNRLD

MAIN QUITS
SUB_A
Target ‘
Activation— — — — — —= SUB_B QUITS
PB = Tcr‘get'- -— - DV SUB_C
| 4
PB = ADDR (PRTN)— — = SIGNLS%
PE = ADDR (PRTN)~ — = HDLR_B
V
PE = ADDR (PRTND— — = PL 18NL
UNWIND_
NONLQOCAL GOTO
PRELIMINARY 7 - 15

———— = HDLR_B

ECB

CONDITION MECHANISM

PRIMOS REV. 15.1

PRELIMINARY

~MAIN

QUITS

SUB_A

SUB_B

QUITS

SUB_C

o CLEANUPS

FRIMUS INTERNALS

4

SIGNLS%

v
HDLR_B

4

PLTSNL

UNWIND_

CLNHDLR

CLEANUP

ECB

CLNHDLR

< — —~UNWIND_ Signals CLEANUPS.

CONDTTION MECHANTSM

PRINUS REV. 1%.1 : : FRINUS INTERNALS

/IS IS IS SIS

LISTEN.

/IS IS IS IS I/,

ANYS

NN

AN\

MAIN o REENTERS

ECB
L c{renvoLR

SUB_A

SIGNALS

7 I L /]
7 LISTEN_ ?“- — REN Command Signals
Z

AN

REENTERS Condition. B

/)
V77777 7777272

RENHDLR ,

SUBSYSTEM REENTRY

PREL IMINARY 7 - 1R CONDTTINN MFCHANTGM

FRIMOS REV. 191 FRIMOS INTERNALS

CRAWLOUT
Crawlout occurs when the end of an inner ring stack has been reached
by the condition mechanism without handling the condifion.

Control always orginates in an oguter ring. the end of an inner ring
stack is threaded fo an outer ring stack. The condition mechanism
continues the stack search across the connection and back down the
outer ring stack. Crawlout 1s the mechanism which copies the
information describing the condition to the outer ring and resignals.

When RAISE reaches the end of the inner ring stack. 1f refurns fo
SIGNLS with the CRAWLOUT NEEDED flag sef. a pointer fo the last stack
frame on the inner ring (CRAWL FRAME) and a poinfer fo the most
recent inner ring sfack frame in which the registers are saved

SIGNLS calls CRAWL_ defining the crawlout fault interceptor module
(CRFIM_). The stack frame on the outer ring is the target frame.

CRAWL checks the space needed in the outer ring sfack for the farget
ring stack and copies the neccessary information into the farget
stack. The return information in CRAWL FRAME 1s adjusted fo appear as
though it was called from the targef frame

UNWIND 15 called to unwind the stacks and RC locks are released
A procedure return 1s then Invoked to CRFIM.

CRFIM_ calls SIGNL® to signal the condifion in the outer ring and the
an-ynit will invoke fhe first LIGTEN level

PRELIMINARY 7 - 19 CONDITION MECHANISM

PRIMOS REY. 19.1 PRIMOS INTERMALS _

SEGMENT 6003 SEEMENT 6002

; L Ring O i CLDATA | Ring 3

i B i Stacks j i Stacks _
; i 2‘ | Signal

i : i A i Londition

Procedure B signals a condition. The stacks are searched but
a syitahle on-unit cannot be found.

B is the last inner ring stack. -
(CRAWL FRAME)

SEGMENT 6003 SEBMENT 4002
| : | CLDATA |
I I 71 CRFIM
: | CRAWLOUT | LISTEN |
| o | STDSCP !

PRELIMINARY 7 - 20 CONDITION MECHANISH -

PRIMOS REV. 191 PRIMOS IMTERMALY

Section B - Faylf Handling

PRELIMINARY g - 1 FAULT HANDL [HG

PRIMOS REV. 19.1 PRIMOS INTERMALS

FAULTS are handled in two ways:
1) Those handled in RING O and
2). Those handled in the current RIMG (RING 37

1), RING O FAULTS
The Fault Vector in the user’s PCE for RING O points §0
g fault fable called FAULT in Seqment &6 The fault
table 15 defined in PRIMOS:KS:PABORT. FTM The Fault
Handlers are found in PRIMOSCRSZROFALT. PMA

The following Fault Handlers eyist in Zeqmment &
PROCESS FAULT
PAGE FAULT
UIT (Unlmplemented Instruction)
ACCESS VIOLATION
STACK OVERFLOW
SEGMEMT FAULT
POINTER FAULT

Any other Fault occurring In RING O {e.g. SVC, restrictad
instruction) will cause the system £o HALT.

PROCESS FAULT
1. Check Abort Flags
2. If any Abort Flag 15 sef and aborts are enabled, call PABORT.

FAULT HARDL ING

a3

PRELIMINARY g -

PRIMOS REV. 19.1 - PRIMOS INTERNALS
JP{' L 65 (it _ﬂ’q

s v s o
SYSTEM ABORT FLAGS”(W‘”’M o >
00 AS UV

PABORT bit number
1 MINALM One minute update

2 SMLALM SMLC alarm — j
3 NETALM Network Alarm o Syshie. UR
4 LGIALM LOGIN Alarm V
9 WRMALM Warm Start
& MSGALM SUSR Message Alarm
7,8 --- Not Used

USER 1
1 ONE MINUTE (MINABT)

Dump any entries in LOGBUF o LOGREC

Update all disk buffers

Decrement auto-logout clocks and logout any USERs out of fime.
2 SMLC (SMLCEX) Process SMLC requests
J NETWORK Process network requests {done by NETUSR at Revision 19)
4 LOGIN ALARM (WIRSTK) Lock USER stack, notify user (LOGLCK)

9 WARM START (WRMABT)

Initialize MPC, VERSATEC, and Magnetic Tape
Initialize network and AMLCs, Output message 'WARM START'

6 ©SUPERVISOR MESSAGE ALARM (T10U) Process USER 1 message buffer.

PRELIMINARY g8 - 3 FAULT HANDLING

FRIMOS REV. 1

9.1

FABCRT bit number

16
14
13
10
9
13,12, 11

rOR _EACH USER

TEEALM
TMOALM
DISALM
10ALM

SWIALM

USER ABORT FLAGS

PRIMOS INTERMALS

Time Slice End {sef by microcode)

Time-gut LOGOUT

AMLC disconnect LOGOUT or Operator LOGOUT

[/0 done (Magtapes, MEGATER)

SoftWare Interrupt Alarm (formerly GUTALM)

Not Used

16 TIME SLICE EMD (SCHED)
Place process on low priority or eligibility queus

14,13 FORCED LOGOUT (LDGABT)
Qutput message ‘TIMEDUT', or ‘FORCE LOGOUT', Signal 'LOGOUTS’

10 1/0 ALARM Call MTDONE

7 SoftWare Interrupt (SWHABT)

PRELIMINARY

FAULT HANDLING

PRIMOS REV. 151 PRIMOS INTEHNALS

SUFTWARE INTERRUPT HANDLING

MOTIVATION

- Due to increased frequency of asynch events at rev 19 more
pressure on quit mechanism.

- Ring O code had to eyplicitly inhibif process aborts,
Unetpected exit from many ring O routines before completion

produces non-reliable results,

- Inhibiting quits would disable mulfiple process abort events.

IMPLEMENTATION |
- BREAKS code reduced to only handle QUITS.
- Softhare Interrupt modules for rest of process aborfs,
- SWITYP Flag word defines which svent.

- Mew mechanism defaults fo inhibiting process aborts in ring 0.
Enabling quits in ring O must now be egplicitly performed

FRELIMINARY g8 - 2 FAULT HAMDL TMG

PRIMOS REV. 19.1 FRIMOS IMTERNALE —

SOFTWARE INTERRUPT HANDLING ~ Houtines and Variables

BREAKS - enable/disable GQUITS aborfs in ring 0 -
SWEINT = process abort interrupt enable/disable control

SETSWI - store event bit in PUDCOM SWITYP) L] ot e
(PBovt B

-

SETABT - set user’s aborf flags

SWEABT - fault handler for process aborts

(ﬁwmuvtmu@wu WAqmvwwﬁ>
SWFIM - handles deferred ring O aborts on return fo outer ring _

SWSRST - called by SWFIM_ to reset ROSWIN, ROGUIT -

Variables SWITYP 1 = quit
2 = logout notification (LOM)
4 = real time watchdog
10 = cpu time watchdog
'20 = Cross Process Signalling (CPS)
‘40 = forced logout

ROSWIN = ring O soffware interrupt enable counter
ROGUIT = ring O quit enable counter

PRELIMINARY B - 6 FAULT HAMDLING

PRIMOS REV. 19.1 PRIMOS INTERMALS

SOFTWARE INTERRUPT HAWDLING

When process abort happens while inhibited in ring O
SWBABT detects need to defer process and does following:

1. Turn current frame into pseudo condition frame as indicated
by SWITYP.

2. Check concealed stack to see if outstanding faults

3. Call CRAWL to build SWFIM. Framé on outer ring stack;
but do not execute crawlout, '

4 Set ROSWIN (or ROGUIT) to -1 (process abort deferred),

2. Mark SWFIM_ frame 1f concealed sfack ?rameebautstanding,
When eiecution returns from ring O, SWrIM 15 entered.

1. Cleanup concealed stack if needed

2. Invore SWERST to recet ROSWIN and ROGUIT;
1f SWITYP non-zero call SETABT fmultiple events)

3. oignal condition.

PRELIMINARY g - 7 FAULT HAMDL 1hG

PRIMOS REV. 19.1 PRIMOS INTERNALS

fﬁ»? B Frulk
UIT FAULT
XVRY, IMV, IMVD, IFIL, and ICM are simulated in a routine

called ROUIL in segment 6. (only if operating on a P400/330)
All other UII favits in ring O HALT the machine.

ACCESS VIOLATION
SIGNALS called to output the message "ACCESS VIOLATION RAISED AT"

STACK OVERFLOW
Call STROVF, SIGNALS® 'STACK_OVF$', message 'STACK-OYF$ RAISED AT"

SEGMENT FAULT
GETSEG called to either allocate a seqment or SIGNALS called
to output the message "ILLEGAL SEGNO$ RAISED AT"

POINTER FAULT - Ring 0
1}, Save user state
2). Pick up faulting pointer
J). Return if pointer is greater or equal 0
4). Erase fault bit
2). Error message if pointer is equal 0, or invalid
4). Call SNAP$3 to get new pointer
7). Snap link
8). If not found error message
POINTER FAULT outputs the message "POINTER-FAULTS RAISED AT .

PRELIMINARY . g8 - 8 FAULT HANDLING

PRIMOS REV. 19.1 PRIMOS INTERMALE

FAGE FAULT

Whenever a user program issues a virfual address the hardware
translates this address into physical memory using the STLB. An STLE
‘miss’ may be caused by failure fo find the desired entry, or by a
reset valid bit for the desired entry. During full translation, the
HMAP entry will indicate if the desired page is not in memory.

The page map enfry contains a marker b1t {(bit 1) indicating whether
or not the required page is held in memory. If the page is in
physical memory, translation proceeds but if the page 1s not in

- memory, 3 PAGE FAULT occurs

This fault causes a branch in egecution Through the user’'s page
fault vector to the fault table code. A CALF is then eyecuted in the

page fault catcher. (All page faults are handled by this routine).

The page fault catcher will:
1), Save the user state ;’_W5 42 ,K‘?J’)
2. Check recursive page fault., IFf so HALT
Allow warm start but process takes fatal error.
Call PAGTUR

Increment page fault counter

(W

e

PRELIMINARY g - 9 FAULT HAMDLING

_ PRIMOS REV. 19.1 PRIMOS INTERMALS —

Sep Hupdndt -

PAGTUR

The routine PAGTUR ha\ﬁges the page management in PRIMOS. Page-in 15 _
on demand, page-out 1s bagﬁd on an appraz:mate least-recently-used
algorithm with pre-paging.-

‘\ /
PAGTUR uses the page-maps as ?Qiluws:

\1\ o

1), HMAP seqment 22 \\ ,

{ 2 3 4 3 \ 15

yirluls PRl] i
V) Valid Bit. ;759 in memeky (1 = yes)
R t | _

Unmodified/bit
Inhibit GACHE for this pag
1cal page number

)
) Referenced
)
)

1f the page is not in memory bits 3,3 define -

00 not in, copy on disk

10 not in no copy on disk
01 in transition, coming in
11 in transition, going out

PRELIMINARY g8 - 10 FAULT HANBLIN@

PRIMOS REV. 19.1 PRIMDS INTERMALS

2). LMAP segment 33

1 2 3 457 14
Liock [Fla RECORD INDEY
BITS

1,2 lock number (0 = unlocked)

J First fime b1t (fo keep page in memory longer)

4 Use alternative paging disk

9-16 Record index (Address of 3 track containing 8 pages)

FRELIMINARY g - 11 FAULT HAMDLING

PRIMOS REV. 19.1 PRIMOS INTERMALS

3). MMAP (seqment 14)

l , 16
17 32

If entry LT O page does not exist (missing memorq)
If entry EQ O page 15 available
If entry GT O page is in use (indicates the ouner of the pags)

MMAP ENTRIES

PAGTUR

Uses (PTR e

four N ~
pointers (PTR e———

to N "

MHAP FPTR]

(PTE =———

CPTR 15 stepped during page-out
FPTR 15 stepped during page-in

CPTB pointer to first pageable page
CPTE pointer o last pageable page

PRELIMINARY 8 - 12 FAULT HANDLING

PRIMOS REV. 19.1

PRIMOS INTERNALS

warnt ter
Trameiien

PRIMOS

el KS —
Paging “’\“ufwfpvécﬁ-

f)fr“b /91'

a Steo CPTR

. Joip
Algorlthm Look st Next Page A

| casLocour

ke STAUS il kS ’
< vK gf: Vir h@d M«M/m? Eole victers

Can TPIO8 Cak PAGSFS

Mark Page: Y
n Memcry, Reterenced,

mmhwrmw%»&@ﬁw&d

e
-
. Motity Precasses
Waiting ter
Transition

i

AETURN

PRELIMINARY 8

Lﬁl‘ ™OS$ Can ’A'cw; N .
~— ! > (O

| Meg iy = 528 .
2 /746 /4%4‘7 = /‘9‘271/’/@44
- 13 FAULT HANDLING

FRIMOS REV. 19.1 PRIMOS INTERMALS -

RING 3 FAULTS
The fault vector in fthe user’s PCE for ring 3
points to a fault table called RIFALT in segment 13.

The following faulit handlers exist in segment 13
RESTRICTED INSTRUCTION FAULT
SVC FAULT
UIT FAULT
ILLEGAL INSTRUCTION FAULT
ARITHMETIC FAULT ~ -
STACK OVERFLOW FAULT
POINTER FAULT
Any ofher fault occuring in ring J is handled by the
ring O fault handlers.

RESTRICTED INSTRUCTION FAULT
Call PTRAP 1n ring 0
1), Read violating instructfion and analyze. _
2). If illegal or HALT instruction call SIGNALS
to gutput the message ‘PROGHAM HALT AT : -
J). Simulate trapped I/0 instructions for
System console, CRTs
Paper tape readsr/punch _
Card reader
Contral panel -

FRELIMINARY g - 14 FAULT HAMDLING

PRIMOS REV. 19.1 PRIMOS INTERMALS

SYe
Enter SVC fault handler fo initiate SVC and pass arquments.

VLFALT (Sppoe 5 2B
Enter ULl routfine in segment 13 fo soffuware emulate the insfruction

ILLEGAL INSTRUCTION FAULT
Enter 1llegal instruction fault handler which signals ‘ILLEGAL-INST%'.

RITHETIC FALT (qly vt sy ovetd o)
Enter arithmefic fault handler which signals ARITH% condifion,

STACK OVERFLOW FAULT
Call STROVF. (Automatic Ring 3 Stack Extension)
Examine stack frame prior to fault frame and determine stack root
segment.
If root is ‘6002 then STK EX is called.
Otherwise condition ‘STACK OVF$' 15 signalled as before,

STH EX

Attempts to get a DIAR 3 dynamic segment.

If not possible calls FATALS.

Otherwise fixes up stack extension pir to point to new segment,
and returns.

PRELIMINARY B - 15 FAULT HANDLING

PRIMCS REV. 19.1 FRIMOS INTERWALS -

“EAOCT Addye 74
[t | [SEes [comow |

POINTER FAULT <z g 55

17. Save ussr state

2. Clear fault bit

7). 1# bad pointer - signal PDIMTEH-FAULTN”QET Be 1o B -)

4). Loop through library table {(LIBTBL). Call fhe hdﬂdl“? if 1t
exists, 1f not signal 'LINKAGE-FAULTS'. The first entry in
the table is a pointer to the ECB for HCS% in seq 3. This
routine scans seq 9 for the Direct Entry Call. -

The second entry in the table 15 a pointer to the ECB for
SNAP$3. This routine scans a list of ring 3 direct callable
ECB'S.

Further entries in the table are pointers to the ECBs for
the shared library fault handlers.

5). The fault handlers return the address of the ECE for the

original call. The link 15 then snapped. If the handlers -
fail to find the ECE then signal 'LINKAGE-FAULTS'.

6. In the case of shared libraries the fault handler cherks
location 4 of the stack seqment fo make sure the local data
of the library package has been loaded info the users _
seqment ‘4001,

~;'“A%é%o ,_

FRELIMINARY B - 14 FAULT HANDLING

PRIMOS REV. 19.1 | PRIMOS INTERNALS
Ve

DIRECT ENTRANCE CALLS

The direct entrance call mechanism provides a form of dynamic linking
usiny the standard Procedure Call (PCL) instruction (V - Mode only) and the
indirect memory address pointer. The purpose of the direct entrance call is
to srovide an efficient mechanism that allows application programs (also
system programs) to make calls to procedures that are part of the operating
system or shared libraries without the overhead normally associated with
other methods such as the Supervisor Call (SVC) instruction. The advantages
of the direct entrance call are; first the same procedure can be shared by
ali vusers on the system without the need to have a unique copy for each,
thue wasting valuable memory space, second, since the address linkage to
the procedure is not made until execute time a program that makes use of
these procedures does not have to be relinked for & different revision of
PRIMOS where the locaticn of the procedure may change.

Part of the implementation of this mechanism requires a special form
of opject module be loaded into the library that is searched when doing the
program load. This object module is created by assembling a PMA program
that has the form SEG

DYNT procedure name

END
Thie obyect module triggers special action by the SEG loader when it is
resolving the address linksges for called routines. When SEG encounters
this structure it puts an indirect pointer in the link frame of the calling
procedure that has the fault bit set and points to a location in the
procedure area where SEG has put the name of the direct entrance call and
the number of characters. That is all that happens at load time.

At execute time when the call is made to the procedure the fault bit
causes the hardware to detect a pointer fault and the pointer fault handler
is entered. The pointer fault handler attempts to resolve the address
linkage to the called procedure by searching through various lists of ECBs
or entry points to the direct entrance callable routines. If it finds the
one 1t wants it puts the address pointer to the procedure back in the
address pointer that originally caused the pointer fault., erases the fault
bit and reexecutes the call which now proceeds as usual. If it doesn‘t find
it or finds that the pointer is bad it raises a condition and returns

PRELIMINARY g - 17 FAULT HANDLING

\/ PRIMOS REV. 19.1 PRIMOS INTERNALS -

Direct Entrance Calls
I. Ring ©

Entry point definitions - PRIMOSI>INSERT>GATES. INS. PMA

Entry points reside in ~ PRIMOSIHKSZSEGS. PMA —

List Name - SEGS

Memory Location - Segment 5

Search routine - HCS$ (PRIMOS>KS:HCS$. PMA) (first entry in SEGS)

I. Ring 3

Entry point definitions - PRIMOSZINSERTI>R3ENTS. INS. PMA —

Entrg points reside in — PRIMOS:R35>SNAP$3. PMA

List name - LIST

Memory location — Segment 13

Search routine - SNAP$3 (PRIMOSI>R3S>SNAP$3. PMA)

.-.I. Shared Library

Entry point definitions - HTAB (Esch library that is to be shared
has @ table called HTAB in it’s source
file UFD)

Entry points reside in - DIRECVIR3POFH. PMA (thefe will be a copy of
this procedure, each with it’s own HTAB,
for each shared library installed.)

List name - HTAB ' —

Memory Location - Segment 2xxx (same segment library resides in)

Search Routine - R3POFH (DIRECV:R3POFH. PMA)

PRELIMINARY g8 - 18 FAULT HANDLING

PRIMOS REV. 19.1 | PRIMOS INTERNALS

LIBTBL

LIBTBL is a table that contains address pointers to the search
rouvcines for the various direct entrance callable "packages”. It is used
by the Ring 3 fault handler in attempting to resolve the direct entry link.
The fault handler does @ PCL indirect through each of the entries in LIBTBL
whicn invokes each of the various search routines in order until the link
is made. The order of search is Ring O DECs first, then Ring 3, then shared
lioraries. A typical LIBTBL is shown below {(this is a Rev. 18.3 version).

In Segment 13/1434

1434/ 5 Pointer to SEGS (first ECB is HCS%)
14357 O

1434/ 13 Pointer to SNAP$3

1437/ 400

1440/ 62050 Pointer to R3POFH

1441/ 1170

1442/ 62014 "
1443/ 41170

1444/ 62014 "
14457 1170

1444/ 62021 "
1447/ 1165

1450/ 62001 "
14517 1170

1452/ 62057 "
14537 1170

1454/ 62071 "
1455/ 1170

1456/ 62121 "
1457/ 1170

1460/ 62026 »
1461/ O

1462/ O End of LIBTBL

PRELIMINARY g - 1% FAULT HAMDLING

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 9 - Interrupt Handling

PRELIMINARY 9 - 1 INTERRUPT HANDLING

PRIMOS REV. 19.1

CLOCK PROCESS

The clock interrupt is treated like any other device inferrupt. An
address ('63) is presented by the controller. The hardware
interprefs this location as the address of the Phantom Interrupt Code
(PIC) in Segement 4 for this device.

The PIC executes an INEC which acknowledges the inferrupt, clears the
Active Interrupt £lag, and does a NOTIFY to CLKSEM.

The clock process will then be entersd.

1).
2).

3l
4).

Handle PBHIST.
Reset location ‘61
Display memory locafion selected by switches.
Increment ONE-MINUTE timer.
If timer equals O; then

A). reset timer

B). set USER 1 MINALM Aborf Flag and NOTIFY ASRSEM
Increment timer 2 (Paper Tape Punch) (1/73 second).

If 1er0, reset clock and call BRPDIM (if chars in buffar).
Increment Timer 3 (Digital input)

If 18r0, reset timer and enter DIGDIM
Increment timer 4 (ASR) (1/30 or 1/10 second).

If 1er0, reset clock and call ASRDIM.

PRELIMINARY 9 - 2 INTERRUPT HANDLING

I
PRIMOS INTERNALS

[

PRIMOS REV. 19.1

FRIMOS INTERNALS

CLOCK PROCESS

8). Increment timer 3 (1/10 second).
If 1er0 , doing the following:

Al.
B.
C),

D).
E).

F.

Reset clock

Display Seqment number in lights

Update clock ring

Handle USER timer semaphores

Increment Timer 9 (DISK)

If 1ero, reset clock and NOTIFY DSKSEM

Increment Timer 10 (SMLC) 1/2 seconds if 1ero

1. Reset clock

2. Set USER 1 SMLALM Abort Flag

. Increment Timer 11 (Gross Network) 10 second, if 1870

1. Reset clock
2. Set USER 1 NETALM Abort Flag

. Increment Timer 12 (PNC) 1 second. If 1ero,

1. Reset clock
2. Set USER 1 NETALM Abort Flag.

. Increment Timer 13 (Remote USER 1/0} 1/2 second

If 1ero,
1. Reset clock
2. Set USER 1 NETALM Abort Flag

. Increment Timer 14 (4 second). If 1e7a,

1. Reset clock
2. Update Date and Time for TIMMOD

9). Wake up PNCDIM if PNC confiqured
10). Call CENDIM, CENDIMZ2, PTRDIM if thers are chars in huffer(s).
11). WAIT CLKSEM.

PRFI TMTNARY

8 - 13 TNTFRRURT HANDI TNQ

FRIMOS REYV. 19.1 PRIMOS INTERMALS

THE GAMLC/ICS Driver (AMLDIM/ASYDIM)

The AMLO will configure 1tself to drive up fo eight controllers using
device addresses ‘34, ‘33, ‘54, ‘35, ‘13 16 ‘17 and ‘32, The

default confiquration can be changed using the AMLC command at the
system console or in PRIMOS. COMI

AMLC [PROTOCOLY LINE [CONFIG] [LWORD]

PROTOCOL
TTY terminal profocol (default protocol)
THAN transparent protocol
TTYUPC upper case output protocol
TTYNOP ignore this line {used for assigned lines)

LIME The AMLC line number (octall

CONFIG See line configuration fable

LWORD Ses LWORD table.

PRELIMINARY y - 4 INTERRUPT HAMDLING

|
PRIMOS REV. 19.1 PRIMOS INTERNALS

LINE CONFIGURATION TABLE

1 23 49367 89 1011 12 13 14 15 16
Line nao. Character
(bit 4 is lsh) length
set to 0 00-3 bits
10-26bits
01-7hits
Data Set 11-8bits
controlé€
1 for modems -y Type of parity, 0 = odd
loop lineé= ~—) Parity disable, O = enable
(for testing)
Set to 0 4 —35tap bits
Line Speed 0=15hit
000~- 110 baud 1 =2 bits

001 - 1345 baud

010- 300 baud

011~- 1200 baud

100~ program clock - defaulft 9600 baud
101 - 75 haud

110~ 150 baud

111~ 1800 baud

PRELIMINARY 9 - 3 INTERRUPT HANDLING

PRIMOS REV. 19.1 ' PRIMOS INTERNALS

LWORD TABLE

o Linneed
o)
T8
-

2 6 7 B 7 10 11 12 13 14 15 16 -
USER NUMBER

CHECK, Enable error'detectiun
1 = Parity or IRB overflow
(send a NAK if parity or irb overflow sensed)

—> DSS hi/low, toggle for bit

&3 DSS enable, Check carrier, simulate XON/XOFF
~ ("puffered” or "reverse channel” protocol)

|
1 = When XDFF or DSS enabled, flag to show XOFF

0 = no ton/voff |
= yon/yoff -

0 = LF echoed for CR (only if half duplex)
1 = LF not echoed for CR

0 = Full duplex -
1 = Half duplet

PRELIMINARY 9y - & INTERRUPT HANDLING

(OTWY) WIQTWY 40 WWHOYIQ X074

e MFQE ST

dAVYH Y

®INDT

_
= . . _
= Q\&W\ m: H‘.RU S . (43sn ¥3d T)
T o [y ro 1) . ¥344n€ 3N3NO ~
3 !
3 qurt ' |, dorud
smu._og SQUOM Z¢ N
awxx , _]
a. %2079 T04LINOD 3n3ND
SN
TON 935 |
INIT owa~{] "dLd 3LIEN
dld avay [T
Y
¢
T,
— 0,
= _
= 99 HwdY (801701)
Wn._ v : V
o ~ NIALL
= 8h o
m v . _

P ey e

(¥3sn ¥3d 1)
¥344n8
ONIY LNdLNO ¥3sSN

SQYOM Z6T

! G 1Y

(¥3sn ¥3d 1)
¥344nd
ONIY¥ LNdN1 ¥3sn

Sayom 9p

PRIMOS REV. 19.1 PRIMOS INTERNALS |

THE AMLG - Notes on fthe diagram

1), There can be up to 8 boards. -
2). All lines are configured into group 0.
3). The speeds of the lines are set by default as follows:
All lines except the last line on the last board
- 1200 baud, Normal TTY profocol
Last line - 110 baud, TTYNOP

4). The last line defines the rate at which all lines are scanned
for both input and output. The default is 10 times per second.

1). There 1s no special line fo determine the line scan rate.
The rate is fixed at 10 times per second.

2). The ICS boards use DMQ for input instead of fumble tables.

PRELIMINARY 9 - 8 INTERRUPT HANDLING

* PRIMOS REV. 19.1 ‘ PRIMDS INTERNALS

oy gl BufF CONFIG DIRECTIVES v Loves
/7 7 al users

NAMLC, NTUSR “

y T

AMLTIM [ticks] [disctimel C[gracetimel™”

| , (default = 2, 3410, 0)
ot (Data fvwand Rudl,)
7

2
DTRDRP Wieen evieeiita (07 cul dop O

/4"“%'/ ‘/1':/* l"(/f‘\/ (enle 0»77>

2 {Mf fhids Luve &7 ond
DISLOG {NO ! YES} Y wll 2 ~ (default = ND)

—- C/L’v’w/b y v;’buvw/b{ﬂ
AMLIBL é}%ﬂm 4

i

(default = ‘640)

ICS INPGSI [size] (default = '77) o ks
s v [t (oo PMengs 70 e s

ICS JUMPER [speedal [speedb] [speedc)
' -5"7}7«"1’%1‘—9 i 1P oA duwf

PRELIMINARY 9 - 9 INTERRUPT HANDLING

PRIMOS REV. 19.1 ’ PRIMOS INTERNALS

YFWW
CONFIG DIRECTIVES 4 User Buffers

NAMLC number-of-buffers (default = 0) -
) ‘ ;m¢/< gé"ﬂf] ,WT B

fiﬁnfi” 'Aﬁuj qutpT zéﬁ/ﬂ¢44/>¢1¢w4m

_ ' 7) %/ % /f’Liq , A0 2

) amlc-line 0 0 qu-sue” %‘

@ﬁ&%iéééZ%gam%/Ahh?

user~buff-no in-buff-size out-buff-size * ¢ Hifs g,
A3 eve 0@0/4&:& i

») | | | | Lt Gy
AMLBUF assigned-buff-no in-buff-size out-buff-size Gz

bre.

AMLBUF amlc-line 200 (128) 300 (192) 40 (32)
default: user-no = amlc-line + 2

SINCE: (user-buff-no = user-no - 2) /9{“”*73 frue
THEN: amlc-line = user-buff-no (if user-no is default)
assigned-buff-no-1 = NTUSR + NRUSR - ! (rotating pool)

REMBUF in-buff-size out-buff-size (default = 200, 300)

Fuast vaer % 2 To wevatse Beffer
fovst P Gotfin 7 0 O lcmeas Cmf/) b Bppd 50 -

@ W&vf/t/i‘&(DOk rjﬁ

PRELIMINARY 9 - 10 INTERRUPT HANDLING

PRIMOS REV. 19.1

W

Find
| n*errup*fﬂﬁ

conteollecr

a§ Gutq Tl | PRIMOS INTERNALS
o hadn) e

WoT TEVRWM S) o SHM
e BAS i3S

—) (L_'y\)b‘ /)%{ncz

Process \n pu“"

]
O& NOTIEY user
-BUFSEMS
&y
6?»3’*
4 I A WAIT ﬁm:s%
'Pt‘ace.s.s ‘ﬂpu"'
Nomiey v ser
2 BUFSEMmg
Process Output
x
Set cavrip
‘o do
check
CARRIE: Ruse curcer
Inpd caer on all
detect status lines
loain
<qtacetimey
. check |
+1me
Set+ LoOGALM Drop . carcrer for
foc all users o\l “m-lo&e& "
who have — |users wWho had |
lost cacmer cacnes last hime
PRELIMINARY 9 - 11 INTERRUPT HANDLING

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 10 - Scheduling of Users

PRELIMINARY 10 - 1 SCHEDULING of USERS

RIMOS INTERNALS

", Sy Q\m \Ydﬂ.t‘“i.\fs\i\ AQV /«

PRIMOS REV. 19.1

. by &) _ "2, L\

b

eyt

ﬁmﬁs__fswu

15V ?E\é Y ﬁr
\CLL \\&S\J E@ _.. W

s pman dagy

o S

P %*X\ﬂ(\nﬂd@»

bv

i P o“"qﬁ o
3 = PRI G

L6 BILITY
¥ o PR

2 L PRI L
LA qwa
R L et Gy

SCHEDULING of USERS

PRELIMINARY

PRIMOS REV. 19.1 PRIMOS INTERNALS

SCHEDULING OF USERS 07}— Gueq -
L _ LSt — Jp
PRIMOS scheduling is based on two criteria. ° m Afj§§¢w¢t7 ok
1). PROCESS EXCHANGE - Sc¥r Auedx B8
2). BACKSTOP PROCESS (SCHED) (gjgfu;/vuwifa&uf

(i 144\/ End,y (/;:;Z)/
The process exchange mechanism is implemented in firmuare and uses
the ready list/wait list philosophy described earlier.

SCHED: also known as the backstop process:
1), Responding to requests for users to be placed on one of
three queues and allocating a fime-slice.
2). Deciding fthe sequence of processes placed on the READY LIST.

SCHED maintains three basic queues using semaphores.
A). High priority (interactive users)
B), Eligibility
C). Low priority (compute bound users)

When a user process returns to command level, the listener is called
to a invoke a new command level and CL$GET is called to read in the
command line. C1IN% is then called to read in the characters. C1IN%
will wait on BUFSEM (there is one BUFSEM semaphore per user) and when
a character is inpuf into the user ring buffer the AMLC driver will
notify BUFSEM. The user will continue to use CLINS fo input
characters until a <CR> character is detected.

PRELIMINARY 10 - 3 SCHEDULING of USERS

I
PRIMOS REV. 19.1 PRIMOS INTERNALS

On defecting <CR> CL$GET calls SCHED to place the user process on the
HIGH priority queue and to allocate a full fime-slice. SCHED scans
for high priorify users before any others and a user in the high
priorify queue will be placed on the ready list and scheduled to run
with a timeslice of 3/10 sec. Af the end of this period the process
will fault and be placed on the elgibility queus. The backstop
pracess scans the elgibilify queve after the high priority queve and
eventually the user will be notified and moved on fo the ready list
with another timeslice of 3/10 sec.

This sequence of events confinues until the full 2 second time-slice
has elapsed. The process is then placed on the low priority queve
appropriate to its priority level. The backstop process maintains
five semaphores in the low priority queue for this purpose:

Supervisor level (level 4)

User level 3

User level 2

User level 1 (default user level)

User level O

The backstop process will schedule ysers on the low priority queus
affer both the high priority and the elgibility queues have been
grhausted according to the following flowchart.

Supbore - 4. P25 chamed anto L]
Brs coit 4ield

PRELIMINARY 10 - 4 SCHEDULING of USERS

PRIMOS REV. 19.1 ‘ PRIMOS INTERNALS

get LOPNFY m
'For (evei L‘ <
o level LOPN Y
C'YN:‘?F}A}W%"%&"% :'g
[:
L] -2
. (0} -1
%e'!' LOPNFY
Store NFYONT for next le
lower LO PRIQ
NOTIFY ‘ ‘
H1PR1Q T s Fedd Mg Tk
ﬁds -}VI’)L WW/ — $ %& mzu; feg S
%SrfW\ rm s T
d T
SUM - Hb ‘l"(/ (ﬁ‘ﬁ

PAGSEM +Locsen| - THE T T Sl
+ Do qer+ bexew| o <) prgeprelts

+ VFDLOK + UTLOK, A LG EPUTT® # oF [e
+ ‘RAT\.oK‘ ﬂ /)49"—]:’? A LCS‘T grteoh 15 ﬁ,&%
puss the restion thld.

Sumy maxscr

. NOTFY N
ELIGQR

Nori®y
current LOPRIA

Increment NFYCNT
Drey s to NEXT L&
(,31‘(' bﬂ: o C (¢ Z‘ZZ%&J Shards A9 fle ﬁ]’)
o [ow s oyt peity (it 5 clacles Hi Doty Gt

Corenays © T P s L g d e b e

PRIMOS REV. 19.1 PRIMOS INTERNALS

INTERACTIVE USER

READY LIST
. onde -
. ,, | Bt SO G
Y USER ™ PCB
LEVEL L"""'), PCB & NFYE (BACKSTOP) _
(Full timeslice)
v " (e e NFYE (AMLDIM)
gy gty BUFSEH -
COUNT
WAIT BUFSEM =—> | POINTER —3 PCB
(C1IN)
wait for a
| Character B
wait after a HIGH PRIORITY il
Carriage Return SEMAPHORE
[COUNT -
> | POINTER p—> P(B —>
| . : . > Ads CR,
| A‘pfwgé;/, 2 (‘%‘L{,s’"/q y50) e L/{ivf’f,tdxﬁg“‘iw @t
(s)Oflm‘% 67 bm{;zigg %Sf?;g }N b iy |V B
2345¢]
T 2 Qo e - gas :
Gacpt 5;1:;%; 22222E ’
, AR ~
PREL IMINARY gg“’“ 10 - & SCHEDULING of USERS
~ 22

PRIMOS REV. 19.1 | ' PRIMOS INTERNALS

COMPUTE BOUND USER

2L 6"((6/'617@(7 P %w
READY LIST | oo e pow G ks

Qits gehedolel frster o

J " IHTERACTUA USER
Y USER ™
| LEVEL P——> P(B £ NFYE (BACKSTOP)
(Full timeslice)
e | ELIGq
I COUNT
ELIGTS —> | POINTER > P(B
EXHAUSTED t
(3/10 SEC.)
Time remaining
No time remaining Ny
| LOW PRICRITY
_ QUEUES
| ot
> L rovier F— ro—

YNy Yy Y

PRELIMINARY 10 - 7 SCHEDULING of USERS

PRIMOS REV. 19.1 PRIMOS INTERNALS

USER PRIORITIES AND TIME-SLICE

The following operator command is available for changing user
priorities and fime-slice.

A AT
%{:ﬁﬁ”ﬁfﬁg FuAy
CHAP [-USERNO/ALLI [PRIORITY1 [TIME-SLICE] fushe
USERND Is in the form -nn or ALL -
PRIORITY Integer 0 to 3 (default = 1)
| TIME-SLICE Length of time-slice in tenths of seconds.
\ f@g%fjt:li (fgﬁzu?ﬁtjzﬁﬁﬁ; 0 means reset to the system default (2 sec.)
i P 7Y 3%3§?°%91f omitted the time-slice is unchanged.
If both priority and timeslice are omitted, then priority and
time-slice are set to the system default values.

STAT US Displays the priorify of users not af user level 1.

LOBOUT Resets priority and timeslice to defaults.

ELIGTS Is used to modify the elgibility time-slice from the
system console. This will affect all users equally.

ELIGTS [<eligibility timeslice>] ({default = 3/10 sec.)

PRELIMINARY 10 - 8 SCHEDULING of USERS

PRIMOS REV. 19.1 PRIMOS INTERNALS

K mxscn —

Previously, MAXSCH was determined by indexing into an array of

~ valuesi 000, 1,2, 3,4, 4. The value of the index was the memory size
in 32K units. If there was more than 236K then MAXSCH would be 4.

MAXSCH 15 now calculated as follows:
i ng
- MAXSCH = (megabytes of memory + 3) # x + y NAYSEH = 7
S o ox |
where, t 15 1.2 if there eyists an alternate device on a3

\¢ pmaxseH “ . different controller than the primary device
h ugh 4¢V”¢5. "1 otheruise it is 1.

, Flogr, 12
B T i greals fee
pp%&iﬁkw y i is o éh4ubﬁ v

otherwise it is O. dyenrirded
%Ww Vi

The optimal value of MAXSCH is application dependent, hence there is
ng hard and fast formula to determine its value. Therfore, it isa

- _tonfigurable parameter.

- rule of thumb:

MAXSCH = Physical-Memory-Size - PRIMOS-lockad-memory
average-job-size

PRELIMINARY 100 - 9 SCHEDULING of USERS

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 11 = User Profiles

PRELIMINARY 1 - 1 USER PROFILES

PRIMDS REV. 19.1 PRIMOS INTERNALS |

USER PROFILES
Seewr ity Prfucha

MOTIVATION

- To provide secure user registration.
- Provide central database to store per user atfribufes.
- Provide mechanism to define a qroup of users with
similar attributes.
[MPLEMENTATION

- Rey. 19 PRIMOS validates users at logini all users
must be reqistered BEFORE they can login.

- ALl profile informatiog\stored in the System Administrator
Database (SAD ufd). i /R4
L] - (et

- SAD is manipulated by EDIT_PROFILE utility.

- Access to SAD controlled by ACLs.

PRELIMINARY 1 - 2 USER PROFILES

PRIMOS REV. 19.1 PRIMOS INTERNALS

| USER PROFILES - DEFINITIONS

User-id == A 32 character name uniquely identifying user.

Login Password == A 16 character string known only to the
owning user, Supplied at login fo validate user-id
Stored on fthe disk encrypted.

Project —— A collection of users with similar system atiributfes.

administering the profile database.

Project Administrator (PA) -- A user delegated administrative
powers gver a particular project.

Initial Attach Point (ORIGIN) -- UFD where a user is attached
after successful login. Need not be a fop-level ufd.

ACL group -- A symbolic name which may be used in an ACL. The
user’s profile defines group membership.

Project ‘Limits’ =- The set of parameters which the PA is allowed
to administer. Currently a list of ACL groups only.

Profile —- The set of parameters defining per user or per project
attributes. Currently a list of ACL groups and ORIGIN.

PRELIMINARY 11 - 3 USER PROFILES

PRIMOS REV. 1911 ‘ PRIMOS INTERNALS

USER PROFILES - SAD FILES

SAD (ufd)

P Cé""g ¥ ‘
Mcs erw) Ma tg:m‘f) Uger i) Project

Project Group Validation
Fl Le (MPF), File (MGF) |File UVF) Directory
94S 1 H TS
SA:RW PA:R SREST: NONE 'SA:ALL S$REST: LU
it Lo% Vin
Mmust B¢
’3’ PWW Ow. -
(o™ W 57s hrogiv
Master Project Project - Project Backug
Project Profile Validation Data - Dir-
Profile Pointer File File ectory
File
(MPP) (PPPF) (PVF) (PDF)
SA:RW PA:R SASALL PA:LURW SREST NONE SA:ALL
PA: DALURW

PRELIMINARY 1 - 4 USER PROFILES

PRIMOS REV. 19.1 PRIMOS INTERNALS

USER PROFILES - SAD FILES

MPF - MASTER PROJECT FILE

Contains one 16<?qrd_entr?>for each project on system
(not ordered) (5% “or

ACCESS: SA:RW PA:R $REST: NONE
dcl project_id char (32) based;

MGF - MASTER GROUP FILE

Contains a 16 word entry for each ACL qroup on system
{not ordered)

ACCESS: SA:RW PA:R $REST: NONE
dcl group name char (32) based;

UVF - USER VALIDATION FILE
Contains a_lé word header.
Contains a 48 word entry for each user on system.
User entries are hashed by User I.D.
ACCESS: SA:ALL $REST:LU
RWLOCK: NONE

PRELIMINARY 11 - 3 USER PROFILES

PRIMOS REV. 19.1 PRIMOS INTERNALS

USER PROFILES - SAD FILES

dcl 1 vf _header based, /# Header for validation files(UVF,PVF) #/
2 free ptr fixed bin (31), [# Cyrrent length of file #/
2 oflo ptr fited bin (31), /% Location of overflow area #/
2 admin ptr fived bin (31), /% Poinfer to enfry of SA/PA #/
2 enfry size fiyed bin
2 table size fixed bin, /% Size of prime hash table #/
2 bucket size fived bin, /% Size of a bucket in table #/
2 enfries used fixed bin
2 overflows fited bin, /% Current number of averflouws #/
2 bits,
3 gqrps bit (1), /% System supports global gqroups #/
3 pgrps bit (1), /% Project supports qroups #/
J projects bit (1), /% Projects exist #/
J ng_acls bif (1}, /% SAD is not ACL-protected #/
J no_null pw bit (1), /% Null passwords not allowed #/
3 force pw bit (1), /% Don't allow password on login line #/
J mbz bit (10},
2 version fised bin /% EDIT PROFILE version number #/
2 reserved (3) fived bini

PRELIMINARY 11 - & USER PROFILES

PRIMOS REV. 19.1 PRIMOS INTERNALS

USER PROFILES - SAD FILES

dcl 1 uvf entry based,
2 user_id char (32),
2 password char (16),
2 4ft _project ptr bit (16) aligned, /% Pointer into MPF #/
2 site rsvd (4) figed bin, /# Reserved for site use #/
2 1ast_login date, /# Date of last login #/
J year bit (7) unal, /% Year (mod 100) #/
J month bit (4) unal, /% Month #/

J day bit (3) unal, /% Day #/
d last_login time fixed bin, /# Quadseconds since midnight #/
2 rsvd figed bin, /% Reserved for future use #/

2 group_ptr (up_maxgrp) bit (16) alignedi/# Pointers to MGF #/

PRELIMINARY 1 - 7 USER PROFILES

PRIMOS REV. 19.1 PRIMOS INTERNALS

USER PROFILES - PROJECT FILES

MPP - MASTER PROJECT PROFILE
This file defines the project 'limits’.
Currently valid groups for this project.
One 48 word entry.
ACCESS: SA:RW PA:R $REST: NONE -

/% Master Project Profile (MPP) #/

dcl 1 mpp_entry based /% Only one of these per project #/
2 limit _revd 1 (16) fixed bin, /% Reserved for accounting #/ -
2 limif rovd 2 (16) fized bimy /% " y " #/

2 group_ptr (mpp_maxqrp) bit (16} alignedi/# Pointers to MGF #/

PRELIMINARY 11 - 8 USER PROFILES

PRIMOS REV. 191 PRIMOS INTERNALS

USER PROFILES - PROJECT FILES

PYF - PROJECT YALIDATION FILE (aka. User Profile Pointer File - UPPF)
Contains a 16 word header (like UVF header).
Contains a 48 word entry for each user in fhe project.
All pointers point fo the Project Dafa File (PDF).
Entries hashed by User I.D.
ACCESS: SA:ALL PA:LURW $REST: NOWE

FPPF - PROJECT PROFILE POINTER FILE
This file defines the Project Administrator
and the ‘Defaylt Project Profile’.
There 15 one 48 word enfry like the PVF entry.
ACCESS: SA:ALL PA:LURW $REST: MONE

/% Project and User Profile Poinfer Files (PPPF and UPPF'[PVF}) #/

dcl 1 ppf_entry based, /4 One in PPPF, one per user in PVF #/
2 user 14 char (32),

2 origin ptr bif (16) aliqned, [# Pointer into PDF #/
2 process dir ptr bit (16) aligned /% Pointer into FDF #/
2 site rsvd (B) flied binm /% Reseryed for sife use #/
2 rsvd (&) figed bin, /% Reserved for future use %/

2 qroup ptr (up maxqrp) bift (14) aligned; /# Pointer info PDF #/

PRELIMINARY 1 -9 USER PROFILES

PRINMOS REV. 191 PRIMOS INTERNALS

USER PROFILES - PROJECT FILES

PROJECT DATA FILE (PDF)
Used for Initial attach point and project based qroup names.
Contains the actual data pointed to by the FPPF and PYF,
Consists of one 16 word header followed by data blocks
There are two fypes of data blocks;
Name block - 16 word (group _name or name of one pathname level).
Pathname pointer block - A 16 word array of 1 word pointers
to name blocks elsewhere in file. Each array describes one -
pathname. Each pointer points to name of 1 level of pathname.
Mat. of 16 levels. Used for origin. Mull ptr af end-of-list. -
ACCESS: SA:ALL PA:LURW $REST: NONE

dcl 1 pdf header based, -
2 free ptr bit (16) aligned, /# Current length of file #/
pathname count fized bin, /% Humber of pathname blocks #/ -

L I L

2 qroup _count fixed bin /% Number of qroup name blocks #/
2 limit_count fixed bim /% Number of limit blocks #/

Z reserved {12) fiyed bin;

BACKUP SUB-UFD -
This sub-ufd 1s used to store copies of all project
files while project is being 'rebuilt’

ACCESS: SA:ALL PA:DALURW %REST: MONE

PRELIMINARY 1 - 10 USER PROFILES

-
i

(»15 Su L/) L 7ie) SuBip SeB2 J Oy

e e e S

Patl e ALoCl

e

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 12 - Login/Logout

PRELIMINARY 12 - 1 LOGIN/LOGOUT

) |
PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

MOTIVATION - Support user registration

- 014 login poorly structured

- 0ld login code difficult to mainfain

ADVANTAGES - User regqistration
- Login/Logout code separated
- DOSSUB no longer involved

- Re-coded 1in PLP

PREL IMINARY 12 - 4 | LOGIN/LOGOUT

PRIMOS REV. 19.1 ‘ PRIMOS INTERNALS

OLD LOGIN MECHANISM

TERMINAL USERS

LISTEN {ring 0)

l
DOS5UB

/ \
LOGIN RLOGIN

|
INIT%3

PHANTOM USERS

UNLOAD (in TMAIN or PHMSEM)

I
LOGIN

|
INIT$3

PRELIMINARY 12 - 3 LOGIN/LOGOUT

PRIMOS REV. 19.1

TERMINAL USERS

—

STDSCP
login \
over LISTEN

login ({692 \

(Kt L)/
RLOGIN

PHANTON USERS

PRELIMINARY

NEW LOGIN MECHANISM

LISTEN (ring 0)

/

LOGO%CP (ring 3)

/
LOGINS
\
NLOGIN
l
INITS$U

I
INIT$3

UNLDAD (in TMAIN)

PHLOGIN
l
INIT$U

!
INIT®3

12 - 4

I
PRIMOS INTERNALS

normal
login

LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

NPX SLAVES

- Started up from BINIT,

- NLOGIN vused to perform validation for different naming spheres.

NETMAN gty Ligged o %Mﬂ¢m/%%’mw%ﬁ%wl

- Started from NETON during initialization.

PRELIMINARY 12 - 3 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

LISTEN - ring 1ero listener
- collects characters to form line

LOGOSCP - logged-out command processor
- parses command line
- calls LOGOCM to lookup commands in
LOGOCMT - the logged-out command table
- gyecutes commands or types ‘Login please.’

LOGOCMT - logged-out command table
valid commands: login, delay, usrasr -
date, dropdtr

LOGING - validates login

| login over login allowed, not sysust

calls CL$PIX to parse login command -
calls RLOGIN if going remofe

calls NLOGIN 1f local

PREL IMINARY 12 - 4 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

NLOGIN - main login routine F%V(J4d.dwvhzwoﬁ

- makes ‘any$’ handler

calls logout if login gver login

- allocates unit tahle (UTALOC)

% checks maxusr

% prompts for user_id, password, project, if required
reads ‘SAD’ files

validates user_id, password, project
setup upcom data

setup utype

- setup ACL groups

% setup inifial attach point

initialize cpu, 1/0 counters, efc.

¥ build dummy login line for external login
call LOG_INIT

% call INITSU

- special checks for FAM I

% These steps are NOT performed for NPX slaves

LOG INIT - initialize PUDCOM variables:

limits, watchdogs, erase; kill, time-slice, priorify
terminal characteristics

PRELIMINARY 12 - 7 LOGIN/LOGOUT

I
PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

INITSU - initialize PUDCOM variables:

date, vrtssw, asrcwd, famsem, in grace period
initialize NPX databases

setup unique 1.d. for logout notification (UID$BT) -
open logout notification queue

send login message o user/console

return all seqments

allocate segments 4000, &£002

restore external login (EXTLOG) . -
call INIT%3

INIT43 Ring 0 :

- initialize ring 3 stack root
setup CLDATA variables -
initialize static on-units (INSOU%)
turn my frame info condifion frame -
crawlout

PRELIMINARY 12 - 8 LOGIN/LDGOUT

PRIMOS REV.

INITS3

INITSP

PRELIMINARY

19.1

NEW LOGIN MECHANISM

Ring 3

- NPX slaves call SLAVER

make special ‘any$’ handler

run external login

revert ‘any$’ handler

1f logging out, call FATAL%(e$logo)
if CPL phantom start CPL program
call INIT$P for £ty users

attach to 1.AP.

find LOGIN. (. run, .cpl, .comi, . save)
eyecute LOGIN.

12 - 9

PRIMOS INTERNALS

LOGIN/LOGOUT

I
PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGIN MECHANISM

PHLOGIN main phanfom login routine

if slave, netman and date is set
or if login over login call boot
if top level ufd of cominput treename = FAM -
switch lognam to FAM

reset cpus 1/0, efc.

apply suffix rules fo freename (SRPHAN

setup CPL arguments

attach home N
release phantom lock

setup utype -
call INIT$U

PRELIMINARY 12 - 10 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

S, Howdod

("LOGIN SECURITY VALIDATION) 2

The system will prompt for a password even if the user i1d provided is
invalid. [f either the user id or the password is invalid, the user
will be told that one of them is incorrect, but not which one.

If the SAD is set to force passwords, users who provide the password
gn the login command line will not be permitted to login, even if the
password supplied is the correct one.

The password supplied in response to the prompt is not echoed on the
terminal. It 15 stored in the PVF in encrypted form

The SAD must be an ACL directory in order to enable active ACL groups.
The user will be prompted for a project if either s/he is not
specified as having a default project, or s/he is not a registered

member in the default project that is listed for that user.

A user's project based ACL groups will only become active if they are
in the MPP ‘limit list. '

PRELTMINARY 12 - 1 LOGIN/LOGOUT

PRIMOS INTERNALS = |

PRIMOS REV. 19.1

49W N3do

(1 urboju)

ON

ag3¥nI 1 4ANOJ
QHOMSSYd 30404

qyoMssvd

1n8 g3i1iddns

y3Av3H JANn av3y
ddW N3dO0
4An N3do

avs ol HoviLY

al d5vadn
‘av3y
*1dHoYd

a317ddns
ai

LONVWHOO NI907
NI @314193ds

38 1ON AVH

50Y0OM55Yd

JAWIL SIHL
vV S¥3Sn ONILLIWaVY
1ON W31SAS,

A
NI9OTIN

LOGIN/LOGOUT

12

12

PRELIMINARY

PRIMOS INTERNALS

PRIMOS REV. 19.1

JAN OL NI907T LSV
40 3WILl/3Lva
M3N 3L1YM

S3A

3NO AN
FHILYW QYOMSSVd
d31dAY¥ONI

QY¥OMSSYd JSYodN
avay
‘1dHO¥d

3ANO JAN

SIHOLVH QHOMSSYd 2N

031dAYON:]
TINN

SQYONSSYd ONTJ¥0

“%Dz

a3l ddns
QYOMSSYd
TINN

LON GNY @3amoiy
QHOMSSYd TINN

. QYONSSYd
¥0 dl ¥3sn
Ql7IVANL.,

QYOMSSYd 35Vadn
‘avay
‘LdHOo¥d

a3 ddns
QYOMSSYd

LOGIN/LOGOUT

13

14

PRELIMINARY

PRIMOS INTERNALS

PRIMOS REV. 19.1

NIVIV
Adl ISV3d
al 193royd
QITIVANI.

SALNNIK M3d

vV NI NIVIY
AYl 3svaid

SY¥3sn ANYH 001

193ro¥d ¥va1o
dAd 350719
JNOH HOVLLY

SdA

(€ uiboju)

ON

1o4roydd

1Inv43d
ONISN

03a339x3
LIHIT
53A YSNXVH ON
3JdALN L3S
AYINI 3114 dddd avay

S3A ddW ‘dddd ‘40d N3do
airoyd - Hoadn

133royd IWVNIOT"HOOdN L3S

NI S151X3
ON ar yasn

d3avaH J4Ad av3d
AAd N3IJO a<n8ns

133royd 3I5vadn
‘avay
*1dHONd

q 103royd o1

HOVLLY OL LdRILLY
")

ddW HOoYd
3WYN 13droydd
1nv43a avay

=i

AYLN3
dAN NI
S151X3 123royd
1mnv43d

a311ddns
1o3royd

LOGIN/LOGOUT

14

12

PRELIMINARY

PRIMOS INTERNALS

PRIMOS REV. 19.1

JISIT LIWIT,
0L -I9W WO
JWVYN dno¥9 avaIY

H3INIOd
dnoY9 ddW
LX3N

AHINI ddiW 5dNoy9
<
avad 4Ad 3sn
@ 0
TINN
YILNIOd
SdNoY9 dNOY9 AYINI
SJA
dddd 2Sh dAd

$4dI135 17vI
JOW HOY¥d INYN
dnoya av3d

TINN
HILINIOL dNOY9
(dddd) dHAd
LX3N

71517 LIMIT
NI JWYN dNo¥9

NO
Sdnoy9e
193r04d

"TINN L

dnoYy9 AYIN3I
JAN LX3N

S3),

(v uiboju)

NO
SdnNoY9
W3L5A5

SIHL S1

NO SdNO¥<
123ro¥d ¥0
W3L5AS

$4aI1L3S
TV

,0sn WILIN]
MNOA OL HOV.LLY

0l 3JTHVYNN,

SYILNIOL
dnoy9 S,483SN
3HLI VY310

LOGIN/LOGOUT

13

12

PRELIMINARY

|
PRIMOS REV. 19.1 PRIMOS INTERNALS

OLD LOGOUT MECHANISM

Normal and Forced Phantom TTY Request -

LOGO%% C1IN%

\ / “

LOGIN

|]

INIT$3 (for external login) -

NOTE: Login over login handled internally within LOGIN (tricky?)

PRELIMINARY 12 - 16 LOGIN/LOGOUT

PRIMOS REV. 19.1

)\ oY VWJ
(,u”} L‘Vﬁ)

PRELIMINARY

PRIMOS INTERNALS

\ng LOGOUT MECHANISH

LOGOUT_ cum PTRAP —
\l/ ee T
LOGD%S PHTTYREQ
LOGOUT
|
LO FATAL

|
- [ﬂt
s34 T (o5 o7
CFATALS -
I
L0_FATAL

L0 CLEAN -~ /Gleoges 5 |
Uil TBLET

12 - 17 LOGIN/LOGOUT

' |
PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGOUT MECHANISM

LOGOUT = ring 3 command moved from DOSSUB
- handles normal and forced logout commands

- parses command ling
- talls LOGD%% -

LOGO%S - for forced logout i
- validates and calls SETABRT

- for normal legout calls LOGOUT

LOGOUT - if logged ouf refurn
- don‘t allow phantom login over login
- force £ty output on, comi off
- resef tfy characteristics
- pass any outstanding messages to user
- build logout message
- if phantom put message in 1.o.n. queue
otherwise close 1.0.n. queue
type message at user/console
call LO FATAL -

PHTTYREQ
(PHTTYR)

send message to console -
call LOGOUT

PRELIMINARY 12 - 18 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW LOGOUT MECHANISM

LO FATAL make any% handler

close file units

unattach home, current, origin (LO NATCH)
- free semaphores

- free dpty devices (ODUNDO)

- free rje devices (RJUNDD)

- free assigned devices

- if netman call NETDWN

- 1f FAM 1 do special cleanup

/ \

Normal, Forced, Phanfom Abort Login over Login
- 'wait. .. ' for remote users - tlose como
- return all segs - 1f ysing FAM I tell FAM I
- allocate seqs 6002, 4000 - gisconnect from network
- restore external login {(EXTLOG)
- inhibit r3 quits
- call INIT$3 (never returns)

FATALS LD Key
= call LO CLEAN
- disconnect from network

(XCLRA)

Action defermined by key passed in as argument.

PRELIMINARY 12 - 19 LOGIN/LOGOUT

|
PRIMOS REV. 19.1 | PRIMOS INTERNALS

NEW LOGOUT MECHANISH

FATALS - unwind 0 stack
- rebuild our frame
- ynlock all v0 locks (UNLKF%)
- tJ quits off
- if e$logo key call LO FATAL - doesn’t return
- 1f logged out call 0 LISTEN
- if phant _err key call PHTTYREG
otherwise call INIT$J with error key

LO CLEAN - refurn segs (not dynamic ones for slave)
- free attach points (LD NATCH)
- switch comi and como off
- if using FAM I tell FAM I
- send logout notification if message is built (LON%S)
- close 1.0.n queue (LONSC)
- tlose CPS down {(CPS$RG, CPS%CA)
- clear user_id, project
- sef utype = -utype
- ¢lear groups
- resef per user parameters (LOG_INIT)
- if remote user clear v.c. (X$LOGO)
deallocate unit table (not slave)
clear pending quits
- drop dfr if configured (DRPDTR)

PRELIMINARY 12 - &0 LOGIN/LOGOUT m

PRIMOS REV. 19.1 | PRIMOS INTERNALS

'LOGOUTS ' CONDITION - grace pericd

PABORT - Takes a process abort SWIALM.
If SWITYP = ‘40 (forced logout) then call LOGABT

LOGABT

1) force logout, and process 1s remote
(cases) 2
3

force logout (either by operator or amlc disconnect)
cpu time limit exceeded

4) inactivity time limit exceeded

J) login time limit exceeded

6) in grace period, abort not login time limit exceeded
7) in grace period, abort is login time limit exceeded

)
)
)
)

When (1) tell network fo send logout message to remote end
When (&) iqnore abort
When (7) log the process out immediately
Otherwise
inhibit process aborts
set login time limit o (grace period)
clear pch. abort flags, pudcom. absave login fime limit aborf flag
call SETSWI(LOGINT) Seb Sypn-t vt
enable process aborts
call SWSABT directly to process LOGINT

SW3ABT - signal the condition ‘LOGOUTS’

PRELIMINARY 12 - 21 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS l

'LOGOUTS " CONDITION - grace period /)
[rcbuid CodTon; Pt Cogs 97 07

The user could ‘make’ an on-unit for ‘LOGOUTE’ to
ensure a clean eyit before the actual logout.

Otherwise DF UNIT will simply print the error message call LOGOUS. -

when (login limit)
call ioa% {'login time limit exceeded.
when (cpu_limit)
call i0a% ('cpu fime limif exceeded. -
when (timeout)
call ioca% (‘maximum inactive time limit eyceeded.
atherwise -
call ioa% ('forced logout.
and;
call logou%i

LOGOUS (LOGOUT)
call internal routine LOGMSG to
print message to system console and user terminal.
If a phantom queuve Logout Notification (LON) message fo spawner. -

PRELIMINARY 12 - 22 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

LOGOUT NOTIFICATION

- Mechanism to pass message to spauner when phantom lags out.
- Simple IPC mechanism.
- At login LON gqueue opened for user.

- When phantom logs out - message added fo spawner’s queue.
Spawner takes SoftWare Interrupt abort (fype LONINT).

- If LON not inhibited, then ‘PH_LOGO%$' is signalled.
- Default on-unit prints LON message.
- At logout LON queue is closed.

- Lon database in seqment 35 manipulated by area management
package.

COMMAND -- enable/disable immediate notification

LOgout Notification ~ON | -OFF

PRELIMINARY 12 - 23 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

LOGOUT NOTIFICATION

DATABASE
- 8192 words reserved in seqment 39.
- LON$SEM - semaphore used to single thread all access to database. -
- Database consists of receiver blocks and message blocks.

- LON$STA points to start of receiver block chain. (Null if
nobody has queue open.)

- Receiver block chain is doubly linked list. -

- Message blocks are doubly linked lists starfing at a receiver
block.

PRELIMINARY 12 - 24 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

LOGOUT NOTIFICATION - Data Structures

dcl lon$adr pointer ext /* address first word of long
area#/
dgcl 1 lon%_rcvr based, /[# receiver node structure#/
2 length fixed bin(13), [# length of header#/
2 1l [# unique id#%/
J uno char{b), /% unique number#/
3 usrng fived bin(13), /% user no#/
2 nextrcyr pointer, /% negt receiver#/
2 lastrcyr pointer, /# last receivert/
2 cnt fixed bin(13), /% number of messages associated
with this rovrd/
2 size fised binl{l13), /# total size of messages for
this rcvrd/
2 notify bit{l), /* notify flag
| 1-notify
O-don’t notify#/
2 headmsq pointer; /# head of message list#/

PRELIMINARY 12 - 43 LOGIN/LOGOUT

PRIMOS REV. 19.1 ~PRIHDS INTERNALS

LOGOUT NOTIFICATION - Data Structures

dcl 1 lon% msg based, /* message node#/
2 length fixed bin{13), /# length of this message
including header info. #/
2 next pointer, | /* pointer to next message#/
2 last pointer /#* pointer to last message#/
2 infoll) fixed bin{13)i /# message information#/

pudcom. CusT

time in mins since midnight
connect time mins

Cpu 5ecs

i/0 secs

= normal/abnormal logout flag

[0) B ~ T Tk B LS B
St —— —t —r et e
1]

6

PRELIMINARY 12 - 26 LOGIN/LOGOUT

- L
PRIMOS REV. 19.1 : ~ PRIMDS INTERNAL:

LOGOUT NOTIFICATION

DATABASE
| o
&5(5}; | Sys ngﬂ:) Né\)
LONSSTA 0@ Receiver Blocks
I v/
——r .~ s

< | - <

Messoge
Blocks

PRELIMINARY 12 - 27 LOGIN/LOGOUT

PRIMOS REV. 19.1 ~ PRIMOS INTERNALS

GETTING INTO THE COMMAND LOOP : B

It is not apparent how one gets into the command loop initially, thi:
writeup is an attempt to trace the path of the user process from cold stae
to login and then into the basic command loop,

All PCBs for the system processes including user 1 are initially
defined in KS>SEG4.PMA. In additicn a PCB is defined for user 2, this PCE
is called UO2PCB, it will be used as a template for building all other us<
PCBs needed at cold start time. Initially the stored PB valus for UZ2FCB
(and hence all others) is set to a value calied CLDPB wnich is a pointer
to location CLDPB in the module KS>FATALS$.PMA. In addition, the pointer t~
the WAIT list that the PCB is waiting on is initially set to point to a
semaphore called CLDSEM (KS>SEG4>PMA). At cold start time KS>AINIT.FTN —
makes as many copies of UB2PCB as needed according tc the number of users
that are configured by the CONFIG file directives, each one of these PCBs
for terminal users having it's initial stored PB pointing to CLDPB and i€
WAIT list pointer pointing to CLDSEM.

o« MAXUSR V42

When the SETIME command is issued at the system console the CLDSEM
semaphore is NOTIFYed for the number of terminal users and eich user is
sent the 'LOGIN PLEASE' message, When each terminal user process is
notified it moves to the READY list to await execution, when it gets it's
turn it starts to run from location CLDPB. The instruction at CLDPB is a —
procedure call to FATAL$ with an argument value of zero.

FATALS initializes stack pointers via a call to UNWIND (KS>TMAIN.PHA,
quits are disabled for Ring 3 and enabled for Rings # and 1, and finally a
call to LISTEN (KS>LISTEN.PLP) is made passing it the current user number
and an argument specifying whether that user is a phantom (bit 1 set) or i
terminal user (all zeros). '

LISTEN checks to see if the user is a phanteom or a terminal user, if
it's a phantom LISTEN calls UNLOAD (KS>TMAIN,PMA) .

If the user is a terminal user the 'OK' prompt is printed at the user
terminal and CLSGET (KS>CLSGET.PLP) is called to read a command from the —
terminal. CLSGET calls ClINS (KS>ClINS.PLP) to read the characters in.

ClINS uses a function called TFS$ANY in KS>TFLIOS.PMA to see if there _
are any characters in the input buffer, if not it does a WAIT on the BUFSH
{) appropriate to that user. ClINS also checks for and handle"
special characters such as ERASE and KILL and the carriage return
character. It just keeps reading in characters (moving back and forth -
between the READY list and BUFSEM until a carriage return character is

PRELIMINARY 12 - 28 LOGIN/LOGOUT

PRIMOS REV. 19.1 ' PRIMOS INTERNALS

detected at which point it calls SCHED (KS>SCHED.PMA) to get that user puf
on the HIPRIQ.

When the user runs, ClINS urns to CLSGET which returns to LISTEN,
LISTEN calls DOSSUB (KS>DOSSUB.) and passes it the command line which

contains the LOGIN command. DOSSQ? processes the LOGIN command and calls
LOGIN (Ks>L0G1N.%gg). Locog CP .
" o

LOGIN; attaches to the login UFD, prints the login messages on the
system console and at the user terminal, calls RTNSEG to return all
segmants except the Ring 3 stack, calls GETSEG to allocate the Ring 3 stack
('6682) and Static Mode ('4968) segments, disables Ring 3 Quits, attaches
to CMDNCB and executes the external LOGIN program if there is one and
returns to the login UFD in either case. Finally LOGIN calls INITS3 to get
the user from the Ring 8 to the Ring 3 environment.

' ANITS3 has two phases, a Ring 8 phase and a’Riggri_ggggg; The Ring ¢
phase initializes the users Ring 3 stack and command ne data (CLDATA)

structures, makes itself into a condition frame and dummies the return PB
ring bits to be Ring 3, then calls CRAWL _ (R3S>CRAWL _ +PLP), passing as
arguments INFIM _ , pointers to the condition frame just built and a zero
to indicate the depth of the concealed stack???

CRAWL _ ; forces Quits to be inhibited, calls MRONUS to make an
on-unit for ANY$, selects a stack segment for the target ring (Ring3),
copies the condition frame from Ring @ (which would be for INITS$3), to the
target ring stack, and eventually returns which passes control to the
routine that we passed as an argument to CRAWL _ , which is INFIM _ .

INFIM _ (R3S>INFIM _ .PMA) is the fault interceptor module for gettilj
to INITS$3 again, this time in Ring 3. It adjusts a few pointers, enables
Quits, and calls INITS3.

INITS3 is now entered to perform it's Ring 3 phase operation, it will

do nothing more than return to INFIM _ for the simple case of a terminal
user logging in. '

INFIM _ finally calls the Ring 3 listener LISTN _ (R3S>LISTEN _ .PLP)
and sit in a loop calling it forever, so that when the listener returns it
is just called again (and again and again).

PRELIMINARY | 12 - 29 LOGIN/LOGOUT

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 13 - Command Processor

PRELIMINARY 13 - 1 COMMAND PROCESSCR

) |
PRIMOS REV. 19.1 PRIMOS INTERNALS

EXTENDED FEATURES

- Command processor enhanced to support following extended features:

\¥) : ,
I LY s bageds poprectlesis:
simple iteration - pel<te (file Glez) TRLINT Lgei tating

wildcard expansion -

treewalking

name generation

special reserved arguments - TreeTwAt!

cwéf Cnererir d§
- All above are processed by c.p. ifself.
- Enabling of individual features may be selected in various ways:
CPL - defined to have ¢.p. do simple iteration only
Static Programs - all features enabled unless special names:
NW$ - no wildcard or equalname
NX$ - only simple iteration

EPF - enabled features specified at BIND time and stored in file

- Internal Commands - enabled features specified in internal command
table

PRELIMINARY 13 - COMMAND PROCESSOR

PRIMOS REV. 19.1 PRIMOS IMTERNALS

EATENDED FEATURES

CP ITER - main routine which processes extended features
- makes three passes aver command line fo verify
syntax, expand iteration, process options

| Pass | - parses command line into 2 leyel tree
- each node represenfs 3 foken
- 2nd level for simple iferation tokens

Pass I - repeated while iteration in progress

- convert tree into simple threaded list

- expand dot products
call DCOD_ITR to find fype of foken (e.g.
wildcard, wildfree, contral, equalname)

Pass 111 - repeated while iteration in progress
- yerify only one wildcard/free per line
- find location of wild tokens
- if wildtree call ITR_WLDT
- if wildcard call ITR WLDC
- if no wilds call LIGASE
- free all temporary storage

PRELIMINARY 13 - 3 COMMAND PROCESSOR

PRIMOS REV. 19.1 PRIMOS INTERNALS

EXTENDED FEATURES

ITR_WLDT expands wild trees

uses control args 1f supplied
calls ITR WLDC if wilcards, or
‘eyscuter’ to execute each match

recurses when required

ITR _WLDC gypands wild cards
- yses control args if supplied
asks user for verification if reqd

calls ‘eyecuter’ to execute each match

EGUALSFP special routine for C.p.
| splits pathnames into dir and entry

calls EGUAL% to match names

EQGUAL$ parse generation pattern components
- process ‘commands’ in components

- build generated name by concatenation

PRELIMINARY 13 - 4 COMMAND PROCESSOR

PRIMOS REV. 19.1 PRIMOS INTERNALS

EATENDED FEATURES

LIGASE (internal to CP_ITER)

- follows assembled node list concatenating
tokens to form command line

- calls EQUAL$P to process name generation
- tall ‘eyscuter’ routine to execute line

SM EXECUTER (internal to STD$CP)
- pyecutes static mode command
- calls INVKSM_

CPL _EXECUTER (internal to STD%CP)
- pyecutes CPL command

- talls ICPL_

INTERNAL EXECUTER
| - eyecutes an internal command
- ctalls appropriate routine directly

RUN _EXECUTER (internal to STD$CP)
- pyecutes an EPF
- talls R$ALLC to allocate linkage
R$INIT to initialize linkage
REINVK to execute EPF

PRELIMINARY 13 - 3 COMMAND PROCESSOR

PRIMOS REV. 19.1 ‘ PRIMOS INTERNALS

foig &
v

INFIM_

Call CLYcer—| Call CLIN —-—

no

|
I
I NOT\'FY Lrom AMLDIM

yes o
24 Y/l
N fok
Abbreviation ¢ / /‘/ MM/V
cCPL
Preprocess3ns
< — — — 73| DruwNIL
Call
STo$CP

PRELIMINARY 13 - & COMMAND PROCESSOR

PRIMOS REV. 19.1 ~ PRIMOS INTERNALS

Meke ON-yNTY P, 4% @ ,
wh

hondle Symiax Su

handie Mu“"»P\e commands
Rveluate vum\a\es Lorctions I
femoe aoll .&nru,s

perse Tuen off WILDCARD| |CaMl REMAP Check Ger NW$,
If needed , cP-meR :;"GGA&D ,CP-1 ¥ needed ,CPITER
AC, REWT,
Call TpCPL-~ R&I1WVK, REDEL G INYRSMo

sSewEcT

FH (sorFiX UsED)

k l" 1S a.n
ox tecncd
commav\co =
'Pre(-\oce wrth

‘cmdNedD’

PRELIMINARY 13 - 7 COMMAND PROCESSOR

PRIMOS REV. 19.1 ' PRIMOS INTERNALS
((COMMAND 1)

MAKE ON-UNITS

HANDLE SYNTAX SUPPRESSOR

HANDLE MULTIPLE COMMANDS

EVALUATE VARIABLES, FUNCTIONS

REMOVE NULL STRINGS

PARSE INTO COMMAND AND
ARGUMENTS

ASSUME IT 1S
“RESUME”
COM_STATUS
=DOSSUB_RESUME

- RING 3
INTERNAL

EXPAND
VARIABLES
AND FUNCTIONS

“ABBREV”
COMMAND

DossuB

l

RESULT COMMAND

FUNCTION

= 6 NO
INITIALIZE
STATIC ON-UNITS

PRELIMINARY 13 - 8 COMMAND PROCESSOR

PRIMOS REV. 19.1 - PRIMOS INTERNALS
| (COMMAND 2)

STATUS = 2
(COM_STATUS
=DOSSUB_START)

COMMAND
IN coMLST

EXECUTE
COMMAND

STATUS =3 |
= (COM_STATUS |—&
=DOSSUB_CO_START?

IT IS YES
“CO -START”
NO

STATUS = 1 =

<+ STATUS = 0O

PRELIMINARY 13 - 9 COMMAND PROCESSOR

PRIMOS INTERNALS

PRIMOS REV. 19.1

a4
NNy
345079

|

(a3sn~x14-nS)
193373S

FHYNTANYWWOD
< OINGKWI

FHVYNTANYHWOD

ONI

3

ONVRHOG
JHONW
IHM 0a

GN3

(E_ONVWWOJ)

JLN3IXITHSIAN]

AINTWSNAN]

14V1578n5500=
SNLYLS™WOJ

L (INNS3Y)
ONISSIW LNIWNOYY
a3y Ino3y,

ONISSIH 3HVN
ONVHHOJ

JHYN ONVWHOI
139

1

FWNSIY HWSINAN]

AINTHWSNANI

WNS3Y~8N5500=
SNLV15 WOJ

COMMAND PROCESSOR

10

13

PRELIMINARY

PRIMOS INTERNALS

PRIMOS REV. 19.1

&

ANYWWOD)

! I

I

6L INVJ30 NOISN=LXS

dn 135

1

NOISSIWYEd 13534

SXN “SMN
d0d4 NO3HO

ONYdX3™HWS

JT1IvV8Y
TV

adsn
ANV JdIMOTTY
53NLY3d
J3aN31X3

S1dNYYILNI NO N¥nl
1WS "V1V310 JLvadn
dVWSY TIVD
S1dNMYIINI 440 N¥NL

assn
aNY g3aMoTIv

haow 211v1s ¥0s ¥aLI"dd
H0d4 0
1INIBIT SLARLEINI d3IN3do IONIS ON1QYYI 1IN
Y30 g -vivamo 3714 35070 NYNL
S3A . SN S53A
208y TIVO
SLdNYNIINI 140
ISIHYIHLO 440 Nanl
, NHM
. ,_N ; I v

1

(@3sn XI144Ns)
12371345

—®

COMMAND PROCESSOR

11

13

PRELIMINARY

PRIMOS REV. 19.1

V

PASS |
PARSE COMMAND
LINE INTO TWO

LEVEL TREE

i

PASS 11

CONVERT TREE INTO
SIMPLE THREADED LIST
EXPAND CALL DCOD_ITR

PRELIMINARY

13

12

PRIMOS INTERNALS

(COMMAND 5)

COMMAND PROCESSOR

PRIMOS INTERNALS

PRIMOS REV. 19,1

207N LT
TV

asvaim
431NJ3X3
1Y

NaNldd
/\

ON

ayvaain
SNIVLNOD

378v1n23x3
JHL LN3¥¥NI ONY ooy
dn 01108

ON

JA154NJ23Y

a-n8ns
oL
NMOQ HOVLLV

T3A3T
0L N7VM
a3HIvIY

378v1LnJ3X3

341 LN3YHNJ ONY
NMOG d01

SsyId
12

<(10M YL1)

(3 _ANVWWOD)

COMMAND PROCESSOR

13

13

PRELIMINARY

PRIMOS INTERNALS

PRIMOS REV. 19.1

20789
LX3IN

133

JHYN AMIN3
<YIA™aliIM

= Hivd

d1a-anim
3AVH

A

Ad0OLO3H1a
40 aNd

(a5V9I D)
= ¥31N03X3
TV

ON

30718
aay

a3yIno3y
AJTHIA

VIY3LIND

(4 _ONYWAOD)

W1Q ONY 3dAl

ayviaiiM dni3ds
()

COMMAND PROCESSCR

14

13

PRELIMINARY

PRIMOS INTERNALS

PRIMOS REV. 19.1

(3dAL "3IAON)
103735

JAON
IX3IN 139 =

[on

/7Q¥YIa1IN
ONY ¥3L13Wvdvd

anvATaIm
aN3ddY

|

ATAWIS™L
: NIHM

dvIN93y~|
N3HM

<3

anva
J00N
aav

v

Y3LIWIT30
JAON

aavy

(B_ANVWWOD)

COMMAND PROCESSOR

13

13

PRELIMINARY

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 14 - Static On-Units

PRELIMINARY 14 - 1 STATIC ON-UNITS

PRIMOS REV. 19.1 PRIMOS INTERNALS

STATIC ON-UNITS) :

- Static On-Units (50U) are similar fo dynamic on-units.
Handle asynchronous condiftions regardless of the stack stafe.

- S0Us are not condition name specific. -

All 50Us are invoked for all conditions.
SOU must determine it’s action by examining the condition name.

- Ring liniting feature, (Steps wrmsd Lo s pro@aes) ‘
- 50Us must return cannot use non-local qoto.

- SQUs exist for duration of command.

- 50Us may signal condifions, .

- If an SOV sets the ‘crash’ flag, condition ‘CRASH$' is signalled. -

- S0U has count associated. May be ‘made’ multiple fimes.
Only removed when count = 0.

PRELIMINARY 14 - 2 STATIC ON-UNITS

\ I
PRIMOS REV. 19.1 FRIMOS INTERNALS

STATIC ON-UNITS - Routines

USER ROUTINES

MASON$ (sou ech, code) - make a SOU

RYSONS (sou ech, code) revert a 50U

INTERNAL ROUTINES

WAL (1ist ptr, nent) return pointer to 50U list

SOUR3_ (list_ptr) - refurn pointer to ring 3 SOUs
SDRO$/ - invoke ting 0 50Us

SOR3% - invoke ring 3 S0Us

INSOUS (key) - mark both S0U lists empty or

clear down SOU list

PRELIMINARY 14 - 3 STATIC ON-UNITS

PRIMOS REV. 19.1

o
PRIMOS INTERNALS

STATIC ON-UNITS - Data Structures

2 flags
3 crawlout bit(l),

/% Condition Frame CFLAGS ertended #/

J continue_sw bit (1),

J return ok bit (1),

J inaction ok bit (1),

J specific bit (1)

3 ring_limit bit (2),

3 sou_crash bit (1)

/% Stop handling condition at this ring

l=ring 1, 2=ring 0, 3 = ring 3,
0=nolinit W
/% set if sub-system unrecoverable %/

J sou comp _hndld bit (1), /% set if completely handled by SQU #/

3 mb1 bit (7),

PUDCOM now includes:

CLDATA now includes:

PRELIMINARY

2 static on units (4),
J sou_ech pir
J sou_status fixed bin(13},

2 static on units (10},

J sou_ech ptr,
J sou _status fixed bin(13),

14 - 4

/% ring 0 S0Us #/

/# ring 3 50Us %/

STATIC ON-UNITS

PRIMOS REV. 19.1 PRIMOS INTERNALS

STATIC ON-UNITS - Modified Routines

DOSSUB, STD$CP - Mark SOU lists empty
) Rt Reeg 2

SIGNLS - If crawlout _needed ring limit =2

Invoke all ring O S0Us /# ring O limit #/

If 50U CRASH = 1 signal 'CRASH$'
Else call CRAWL_

verE -

invoke all §OUs - AU R e R
If 50U CRASH = 1 signal ‘CRASHS’
If 50U COMP HNDLD = 1 return
If ring_limit = 3 return /% 7ing 3 limit %/
gtherwise handle condifion

‘)h‘, f’l:t AV m Ltf

DF_UNIT_

PRELIMINARY 14 - 3 STATIC ON-UNITS

PRIMOS REV. 19.1 PRIMOS INTERNALS

: ¢ Disc | ﬂ/ [(}li/zm,{ &)
Ml Cammard = Forvuatt Disc <Mo,fhvnz 4

Ll ‘ bt 5:/Lm~4w'<0
es (e 10 ’/’Lw&d - Al
e i) o

MHE Cred MFP

(’“FO s 1y arin C“:’LWD

Section 19 - File Systenm

PRELIMINARY 139 - 1 FILE SYSTEM

PRIMOS REV. 19.1 PRIMOS IMTERNALS
Rout_ CREWTE (Creedes 4 ‘8“#'ﬁ7g> «)

Udren A o"%? Jn,vrm %) W ool sz§ (Sd A st |)

(THISK STRUCTURES

A disk drive is divided into one or more partifions where a partition
is one or more pairs of heads. Each partition must contain:

1. MFD . (Master file directory)
2). DSKRAT (Disk record availability table)
3). BOOT. (For initial loading) -
4). UFD DOS (Initially empty - not actually required)
2) %?é??ﬁl, (If badspots on the disk)
Do&}’f Dps' 64 (o6 12 C)
Each partition is divided into 1040 word records. @»75 A;21

(le At WHDS)

i$-16
The record headerVwords for storage modules devices.

The remainder of the record holds data (1024 words).

Plgsin] mise recovd Koy

HEADER
1040
total -
words ~
DATA Total --

PRELIMINARY 19 - 2 FILE SYSTEM

PRIMOS REV. 19.1 ' PRIMOS INTERNALS

RECORD HEADER FORMAT - 1040 WORD

~0 00 ~N O~ At B WY e O

_REKCRA | RECORD ADDRESS OF THIS RECORD
-ﬁEKPDP . RA OF DIRECTORY ENTRY OF THIS RECORD
RERDCT NUMBER OF IN RECORD
REKTYP TYPE OF FILE (Only on firsf record)
—— (Sam Ale Do Fe)

RERFPT RA OF NEXT SEGUENTIAL RECORD
—REKBPT . RA OF PREVIOUS RECORD

10 | REKLVL | INDEX LEVEL FOR DAM FILES

11 |

12

13

14 | Reserved

19

PRELIMINARY 13 - 3 FILE SYSTEM

I
PRIMOS REV. 19.1 PRIMOS INTERNALS

RECORD HEADER - Notes

1). REWPOP, The beginning record address {(also known as REKBRA) of
the first record in the file points to the beginning record
address of the directory in which the file entry appears. In all
ather records, REWPOP points to the first record in the file. -

2). REWFPT contains the address of the next sequential record in the
file or, if this is the last record in the file REWFPT is 1ers.

J). REKBPT contains the address of the previous record in sequence -
or, if this is the first record in the file REKBPT is set to zevo.

4). RERTYP is valid only in the first record of a file.
Possible values are:
0 SAM file _
1 DAM file

/Cju/g Fleg volfl # st /V/ﬁ(xej)

3 DAM seqment directory)

& UFD user file directory {(Password)
2 ACL directory _
& Access category

I# the file is BOOT (Record 0) or DSKRAT hit 1 of REKTYP will he set.

PRELIMINARY 15 - 4 FILE 5YSTEM

PRIMOS REV. 19.1 'PRIMOS INTERNALS

[NEW DSKRAT FORMAT)

oS
CHANGES TO THE DSKRAT: oo Lo

- CYLS: number of cylinders (fracks) on this device
- REV_NUM. revision stamp

dcl 1 disk rat based, /% Usyally found in LOCATE buffer #/
2 len figed bin, /% no. of words in DSURAT header #/
2 rec size fixed bin, /% phys. record size (348 or 1040)%/
2 disk_size fixed bin(31), /% number of records in partition #/
2 heads fixed bin, /% number of heads in partition #/
2 spec bits,

indoita b ats S b dawn

J dummy bit(14), 0t Lon priperty

d crash bit(l), /% improperly shut doun last fime #/

3 dos bit(1), /% DOS modified or perm. broken #/
2 cyls fixed bin /*fﬁbmber of cylinders (tracks) #/
2 rev num fixed bin, /% Rey. number #/ T

2 rat(0:1015) bit (16) aligned; /# The RAT itself #/
O 1015 g ends

PRELIMINARY 15 - 3 FILE SYSTEM

PRIMOS REV. 19.1 PRIMOS INTERNALS

0LD BADSFOT FILE FORMAT o resde o, ptke ov fixed Drsc

- Save memory image. Can be RESTored, then modified with YPED.
- N entries in the file. One for each badspot.
- Each enfry consists of. track number and head number.

NEW BADSPOT FILE FORMAT - MOTIVATION -

- Single record badspots, instead of mapping out a whole track.
- Allows remapping of bad records (COPY DISK, PHYRST).

IMPLEMENTATION
- (reated by MAKE, or FIX_DISK with -CONVERT _19.

- COPY DISK and PHYRST do not understand file system structures. _
Create an ‘equivalence’ block to a goodspof.

- FIX DISK and MAKE understand file system structures.
Adjust the DSWRAT to include remapped badspof entries.

- E@}@gg_ggggvggt create badspot enfries, nor remap badspots.

- Primos preloader will use new BADSPT file to avoid badspots on
the paging surface.

PRELIMINARY 139 - & FILE SYSTEM

PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW BADSPOT FILE FORMAT - Data Structures

- BADSPT file header:

gcl 1 badspt file header,

2 bad blk off figed bin, /% uffsef of the 1st badspt blk #/
2 MBL fiyed bin, /% must be 1870 %/

2 file size fixed bin, [# si1e of the badspf file #/
2 reserve(d) fited bin

dcl 1 badspt blk header,

2 bt /% block control word %/
J type bit(4), /% block type (badspt blk type = Q) #/
-3 length bit(12), /% length of this block #/

2 badspt blk{(badspt blk header. bcuw. length-1)/2)

- 3 track fixed bin, /% track number- 4/
3 sector bit(B), /% sector number+l, O for whole tracks#/
3 head bit(B); /4 head number #/

e —

PRELIMINARY 15 - 7 FILE SYSTEM

|
PRIMOS REV. 19.1 PRIMOS INTERNALS

NEW BADSPOT FILE FORMAT

{f:wﬁéﬁépped badspot enf?ﬁﬂ

dcl 1 eqv blk header,

e

2 beuws /% Block control word #/ -
J type bit{4), /% type of this block
(eqy Blk type = 1) #/
J length bit(12), /% length of this block %/
2 eqv _blk({eqv_blk header. bcw. length-1)/2)
J bad track fixed bin, /% bad track number #/ -
J bad sector bit(B), /# bad sector numbertl */
J bad head bit(8), /% bad head number #/

J eqv_track fited bin, /% equivlant track number #/
J eqv _sector bit(B), /% equivlant sector numbertl #/
J eqv_head bit(B8)i /% equivlant head number #/

PRELIMINARY 15 - 8 FILE SYSTEM

———

(--.T‘f"

= |

\

=

PRIMOS REV. 19.1 | : PRIMOS INTERNALS

DIRECTORY STRUCTURE

-A directory is a header followed by a bunch of entries.

D Directory Header
° So F
File Entry > /A i
ACL
hole

Direotory Entry

-Note: ACLs are embedded in the directory itself.

PRELIMINARY 13 - 9 FILE SYSTEM

PRIMOS REV. 19.1

dcl 1 dir_hdr based,
2 ecw like ecu,

|
PRIMOS INTERNALS

DIRECTORY STRUCTURE

2 ouner_password char(a),

2 non_owner password char(6),

2 sparel fired bin,
2 max_quota fixed bin (31),
2 dir_used fized bin (31),
2 tree used fixed bin (31),

2 rec_time prod fixed bin (31),

2 prod_dtm like fsdate,
2 spare2(3) fised bini

dcl 1 ecw based,
2 type bit(g),
2 len bit(B);

replace dir_hdr_ecwt
vacant ecut
file ecwt
acc cat ecuwt
acl ecuwt

PRELIMINARY

by
by

by
by

by

‘01'b4,
‘024,
‘03'h4,
‘044,
'03"b4

13

/% dir header enfry structure #/

/# Duner passuword #/
/# Nonowner password */
/% Max Quota %/

/% Quota used in this dir #/
/# Quota used in uwhale subtree/
/% Record/time product #/
/% DTM of record/time product #/

(vobunt type 1] ENV'Z‘/J

/# Entry control word #/
/# Type of enfry #/
/# Length of enfry #/

/# ECW types: directory header#/

/# vacant entry #/
/% file enfry #/
[# access cateqory #/
/% ACL itself ¥/
10 FILE SYSTEM

PRIMOS REV. 19.1 PRIMOS INTERNALS

DIRECTORY STRUCTURE - Entry Types

- Directory Header
- Vacant Entry: Unused enfry (hole) in the directory.

- file ent. file info. type

- Normal Entry. Describes a file: GSAM 0

N DAM 1
SEGSAM 2

SEGDAM 3

or a directory: Password 4

- ACL J

- ACL Enfry. GSet of access pairs.

- Access Category: Named ACL. Always points to an ACL entry.

PRELIMINARY 15 - 11 FILE SYSTEM

PRIMOS REV. 19.1 - PRIMOS INTERNALS !

SEGMENT DIRECTORY FORMAT (Fow.. &w W”ﬁ‘“ﬁ MJ

0 BRA 0 Beginning record address

11 of the first file in the directory

2 BRA 1 Beginning record address

3 of second file in directory B
4 0 Null entry _
5

2n BRA n Beqinning record address

2nT1 of the last file in the directory

PRELIMINARY 15 - 12 FILE SYSTEM

PRIMOS REV. 19.1 ' PRINOS INTERNALS

e B
SAM FILE — %J wy 10 repd (gg’wz; . .
éiwkf 2%ﬁﬂ4}dﬁﬁ « Asdecvid /0a14

) ._
ENTRY T
‘_——-—.

Cspw/m w(}u@
First recor
UFD

Last record

PRELIMINARY 15 - 13 FILE SYSTEM

PRIMOS REV. 19.1

DAM FILE (single level)
[iferven V*%>f”d[>
fH(b st rﬁﬂcwﬂdp
ESMUFE’ , rescheg
12 n8 puo 15 S

UFD

Enfry

PRELIMINARY

PRIMOS INTERNALS

LLJW,M + STz | 2020

‘fQ%V’ N o <§fettlév4kw?9 (VZ%%QU%T .

RECORD 0 DATA
RECORD 1

Address of

Address of

Record 2

Address of

Record 3 DATA
RECORD 2

DATA

RECORD 3

15 - 14

FILE SYSTEM

PRIMOS REV. 19.1

DAM FiLE (MULTILEVEL)

LEVEL 2

PRIMOS INTERNALS

> ADDRESS_OF
RECORD 1
ADDRESS OF
UFD RECORD 2

ENTRY

ot el yer et
Ale, rends A
A wj’/f "z %10

PRELIMINARY 15 -

LEVEL 1 DATA LEVEL
RECORD 1 RECORD 1
ADDRESS _OF g
72 RECORD 1 —
ADDRESS OF
RECORD
ETC et
DATA LEVEL
‘ : RECORD 2
L_/\/M
|
|
]
v
.) AANSN
~
:
LEVEL 12 2
RECORD DATA LEVEL
ADDRESS OF RECORD

RECORD N T

| ADDRESS OF

RECORD N +l‘\\\
’ |~
A~ DATA LEVEL
: RECORD N +1
. 3
y
L/\NM
|
i
[}
v

FILE SYSTEM

PRIMOS REV. 19.1 : PRIMOS INTERNALS

DIRECTORY STRUCTURE

Normal Entry

-ACL_POS -
Position in the directory of the ACL protecting this object
if specific protection then pointer is to an ACL.

i f category protection then pointer is to agccess category.
if default protection then pointer is zero.

s A
lﬂ@“fv? 3&% Directory ,Header -
notes.ufd .
gt
prﬁVcte.ocot B
i ACL
ACL o

b.file — 0 &/%{M

~Note: the ACL protecting this directory Lives in the
directory along with the entry describing this directory. -~

PRELIMINARY 15 - 14 FILE SYSTEM

PRIMOS REV. 19.1 . PRIMDS INTERNALS

DIRECTORY STRUCTURE - Normal Entry ppaedcet

St oo]2

- Normal entry for a file or directory:
dcl 1 file ent based, /# Sfructure of file entry #*/

2 ecuw like ecu,

2 bra fired bin (31), /% bra of file %/

2 sparel(3) fixed bin,

2 protec bit (16), /# Profection keys 7

2 acl_pos fixed bin, /% Position of ACL, assumes

dir {= b4k %/

2 dtm like fsdate,
2 file info,
3 long_rat:-hdr bit (1), /% ‘B000'b4: file is a long RAT #/

N 3 dumped bif (1), /% ‘4000°b4: has been backed up #/
J dos_mod bit (1), /# '2000'b4: modified under DOS #/

3 special bit (1), /% '1000°b4: Special file */

-3 rwlock bit (2), /# Bits 5-6. Concurrency lock %/

J spare bit (2), /% Bits 7-8: Unused #/

J type bit (B), /# Bits 9-16: File fype #/

2 stw fiyed bin, /# Length of name subentry #/

2 name char (32); /# Name of object */

PRELIMINARY 139 - 17 FILE SYSTEM

PRIMOS REV. 19.1 PRIMOS INTERMALS -

DIRECTORY STRUCTURE = ACL Entry -

FORMAT OF AN ACL: _
- An ACL consists of three parts:
A user_1d section

::hn ACL groups section
A %rast section

- Each section 15 a seft of access pgirs.

- An ACL may be up o 299 words 1n length.
- Each access pair specifies ACL rights for; _ -

~ _Ring'1 (not implemented)
Ring d

PRELIMINARY 15 - 18 FILE S5YSTEM

PRIMOS REV. 19.1 PRIMOS INTERNALS

DIRECTORY STRUCTURE - ACL Entry

- Directory entry for an ACL:

gcl 1 acl ent based, # Dir enfry for an ACL #/
2 aew like eey, (v @t Wk g gog ahove %/
2 user_count fixed bin, ! /# Number of user enfries #/
2 group_count fixed bin, | /% Number of gqroup entries ¥/
2 version fiyed bin, /% Version number of structure #/
2 sparel fixed bin
2 qroup _offset fixed bin /% Relative position of first
' group entry #/
2 rest _accesses like accesses, /# Rights for $REST #/
2 owner_pos fixed bin, /# Position of ouner in dir %/
2 dtm like fsdate, : /% Date/time last modified %/

2 spared fired bin,
2 entry like coded accessi /% See below %/

PRELIMINARY 15 - 19 FILE SYSTEM

PRIMOS REV. 19.1

DIRECTORY STRUCTURE - ACL Entry

- Format of 3 single access pair:

dcl 1 coded access hased,
2 scw fixed bin,
d access like accesses;
2 spareld) fired bim
2 1d char(32) vari

dcl 1 accesses hased,
2 ringl like acc bits,
2 ringd like acc bitsi

dcl 1 acc bits based,
2 protect bit{l),
2 delete Bit{1),
2 add bit(1),
2 list bit(1),
2 use hit{l}),
2 eyecute bit(1),
2 write bit{1}),
2 read bit{l);

PRELIMINARY

/% Entry in an ACL
/% Length only
/% {accesss

/% {id> #/

|
PRIMOS INTERNALS

¥/
¥/
/

/% A 16-bit access word #/

/% Access bif definition

e

A

/* Directory accesses -- Protect #/ 4

/% File accesses ==

15 - 20

/% Dalete #/

/% Add #/
/% List %/
/% Use #/

Eiecute #/
/% Write %/
/% Read %/

FILE SYSTEM

|0
t
(7
1A
M

B o— -

PRIMOS REV. 19.1 PRIMOS INTERNALS

DIRECTORY STRUCTURE - Access Cateqory Entry

- An access ¢ 15 3 named ACL

- If 15 a pointer fo an ACL enfry.

- Each file system object profected by the category points to the
access category entry, not the ACL ifself.

- The name field of an access cateqory 15 always padded to 32
characters in order to reduce directory fragmentation.

dcl 1 acc cat ent based, /# access category directory entry #/
2 ecw like ecus
2 sparel(s) fixed bin
2 acl_pos fixed bin, /# Position of ACL itself %/
2 dtm like fsdate, /¥ Date/time last modified £/

2 file type fixed bin, /# For compatibility with normal entry #/

2 sty fised bin, /% Length of name subentry #/
2 name char (32); /% Name of object, (padded to 32 chars)#/

PRELIMINARY 15 - 21 FILE SYSTEM

PRIMOS REV. 19.1 PRIMOS INTERNALS M

Section 16 - Unit Tables

PRELIMINARY 16 - 1 UNIT TABLES

PRIMOS REV. 19.1 - PRIMOS INTERNALS

UNIT TABLES (Gife unifs)

OLD METHCD

- Unit tables statically allocated at cold start (AINIT).

- 2048 file unifs per system.

NEW METHOD

- Per-User unit tables allocated/deallocated dynamically.

- Constrains working set of unit table databases fo what is
actually being used.

- Vital statistics:
3247 file units available per system
16 guaranteed per user (default)
1 system unit per user (unit #0)

J attach points (home, current, initial) per user
127 maximum ‘usable’ file units per user

PREL IMINARY 5 - 2 UNIT TABLES

PRINOS REV. 19.1 PRIMOS INTERNALS

UNIT TABLES - Definitions

- A unit fable (ut) 15 a list of pointers to unif fable enfries.

- A hash table is a set of pointers to linked lists of unit
table entries.

- A unit table entry (ute) desribes a file system object that is
currently in use via the file system.

- A file system object is a data file, directory or access cateqory.
These objects may reside on a local or a remote system.

- UTBTMP is the unit table bit map, 128 bits (B words).
- UTBITS 15 the unit table entries bit map, 3247 bits {203 words)
Each ut or ute has one bit corresponding to it:
=0 in use

=1 available

The first available ut or ute is always allocated.

PRELIMINARY 16 - 3 UNIT TABLES

PRIMOS REV. 19.1 PRIMOS INTERNALS

UNIT TABLES

The following steps are performed in order fo use a file system object:

- Allocate a unit table:
for system user at cold start (BINIT) -
for terminal users during login (NLOGIM)
for phantom users by spauner (PHNTMS))
for slaves when they are awoken (NPXPRC)

- Allocate a unit table enfry when a file system obyect is ‘opened’.

- Access the ute:

by the file system via the hash table.
by a user program via the unit table.

- Deallocate the ute when the object 1s ‘closed’.

- Deallocate the unit table:

for terminal/phantom users during logout (LO CLEAN)
for slaves when they go to sleep (NPXPRC)

PRELIMINARY 16 - 4 UNIT TABLES

PRIMOS REV. 19.1 ‘ PRIMDS INTERNALS

UNIT TABLES (g vk 52

f/L{ UM (TS
Doto Structures

pudcom.Lusr indexed_by unit

USRCM$% UTCOMS

— 1

Unit Table (ut) Ute

Jt

—

(eH system unit
1:

e—

usable file units ut
127+
1287 current attach point
129: home gttach point Jt

130: jnitigl attach point

UTBTMP Ut

0 |100171111711111111

1T [1111111111111111 3247

2-6 \ ! \

NARERRRARRRERERREE!

PRELIMINARY 16 = 3 UNIT TABLES

PRIMOS REV. 19.1 ‘ PRIMOS INTERNALS

UNIT TABLES :

Data Structures

Idev/bra -==UTHASH UTCOM®
1 FS>UTESEG -
ute| Segment 40
-——-’ -
]
NN 20 WORDS B
N

—-—, b
257 -
:‘- _

|

l
1A\ -

|
N | B

JTBITS | 3247
O | 10101011711111111
v 1 1111111111111 11)
\ | \ _
2—202\ : \
202 | 1111111111111111

PRELIMINARY 16 - & UNIT TABLES -

PRIMOS REV. 19.1 PRIMOS INTERNALS

M{awéwuw7

Files: SAM, DAM, SEGSAM, SEGDAM
Directories: Password profected

ACL protected
Attach Points: Password protected

ACL profected
Access Categories
Remote Units (of any type)
New Elements of a File/Directory UTE
ACCESS ACL access allowed for this user on this file/dir.

(Owner/Non-owner access 15 mapped o ACL access)

QUOTA BLK PTR Pointer o the quota block chain for this file/
dgirectory to maintain quota information.

DIR BLK PTR Pointer to the directory block for the parent of this
file/directory to maintain record usage information.

PRELIMINARY 16 - 7 UNIT TABLES

|

PRINGS REV. 191) ok cwus pthiveh +v Arectrres PRINDS INTERNALS

UNIT TABLES - Data Structures

- Files and directories (not opened as atfach points):

Del 1 utcme based,
2 vstat like status bits,
d bra fived bin (31),
2 ldevno fixed bin
2 cur_ra fixed bin (31),
2 rel wordno fixed bin,

2 rel recno fixed bin (31}

2 rwlock biti8),

2 access like access bifs,

2 parent bra fixed bin {(31)

2 pos_in _parent fixed bin,

2 hash _thread fixed bin

2 quota blk ptr fixed bin

2 dir blk ptr fixed bin

/% File/Directory Unit Table Entry #/

/% See below ¥/
/% BRA of file #/
/% logical device number %/
/% current r.a. in file ¥/

/% position within current record#/
/% ordinal record no. in file #/
/% Read/urite concurrency lock #/
/% Accesses allowed on file */
/% BRA of parent directory ‘oF ¥/

/% position in parent e %/
/% hash thread #/
/% Buota block pointer #/
/% Directory block pointer #/

2 dam_idy ra fixed bin (31), /% current r. 3. in DAM index */

2 spare{d) fited bini

PRELIMINARY

16

- 8 UNIT TABLES

PRIMOS REV. 19.1 PRIMOS INTERNALS

UNIT TABLES - Data Structures

dcl 1 dir_utcme based, /% attach point Unit Table Entry #/
2 vetat like status bits, /% See definition below #/
2 bra fiyed bin(31), /% BRA | %/
2 ldevno fised bin, /% Logical device number */
2 cur_ra fixed bin(31), /% current 1.3, in file */
2 rel wordno fixed bin, /% posifion within current record#/
2 rel recno fixed bin(31), /% ordinal record no. in file %/
2 access, /% Access trights #/
3 ringl like access bits, /# inring ! #/

J ringd like access bifs, /# and ring 3 #/

2 parent bra fixed bin (31), /% BRA of parent directory #/
2 pos_in_parent fixed bin, /¥ position in parent #/
2 hash_thread fixed bin /% hash thread 4 #*/
2 quota blk ptr fixed bin, /% Quota block poinfer #/

2 dir blk ptr fixed bin, /% Quota directory block pointer #/
2 acl bra fired bin (31), /% BRA of directory containing ACL #/
2 acl pos fixed bin /% Position of ACL in dir ¥/
2 spare fixed bini

PRELIMINARY 16 - 9 UNIT TABLES

PRIMDS REV. 19.1 PRIMOS INTERNALS

New Elements of an Attach Point UTE

ACCESS. RING1 ACL access available under ring 1. (nof implemented)
ACCESS. RING3 ACL access available under ring 3. N
(Access from ring O is ALL).

QUOTA BLK PTR Pointer fo the quota block chain for this directory. ~

DIR BLK PTR Pointer to the directory block for this directory
(not the parent).

ACL BRA BRA and word offset poinfing to the ACL profecting -
and ACL POS this directory.

Remote Units

- Remote units are a ‘pointer’ to a remofe ute.

Del 1 rem ute based, /% UTCOM$ enfry for remote units #/
2 vstat like status bits,
2 master to slave fired bin, /# NPX Master-Slave Mapping ¥ _

2 real ldevno fixed bin, /# Ldev {normally in ldevno) #/
2 neqative node figed bin, /% -(ngde no. of remote system) #/ -
2 packname char (3d); /% NPX Packname #/

PRELIMINARY 16 - 10 UNIT TABLES

PRIMOS REV. 19.1

PRIMOS INTERNALS

UNIT TABLES - Data Structures

dcl 1 status bits based,
2 modified bit (1),
2 sysuse bit (1),
2 shtbit bit (1),
2 no close bit (1),
2 spare bit (1),
2 file _type bit (3},
2 open_mode bit (B);

file type:
sam_ftype by 0/
dam_ffype by 1,
samseq ftype by
damseg ffype by 3

dir_fiype by 4,
acl dir ffype by 3
acc_cat ftype by &

PRELIMINARY

/# VSTAT definition ¥/
/% modified #/
/% open for system use #/
/% device shut doun %/

/# special file, not closed by C -ALL #/

/[# Defined below #/
/% Accesses which file is opened with #/

/% File types: SAM file #/
/% DAM file ¥/
/% SAM seqment directory #/
/% DAM seqment directory #/

/# Directory %/
/% ACL directory */
/% Access cateqory */

16 - 11 UNIT TABLES

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 17 - Locate Mechanism

PRELIMINARY 17 - 1 LOCATE MECHANISM

PRIMOS REV. 19.1

BUFFER CONTROL BLOCK (BCB)

PRIMOS INTERNALS

0 HASH THREAD

1 | Logical dev | Record

2 ADDRESS

3 | BRA of file record is in
4 .

5 Process no. | Hash index
b User count l Flagq bifs
7 L

8

9 |

10

11

12

13 B

14

19 o

16

17

18 ADDRESS OF PTW FOR BUFFER
19 LRU THREAD FOR
20 UNUSED BUFFERS
21 length of BCB

FLAG BITS 16 = BUFFER MODIFIED

PRELIMINARY

BUFLWG 4 Jo /8
BFRy A Theu
Lol égﬁijeff
BUFERA |
BUFUSR N HAst 7§Z§fr
BUFLAG uvvsen ,,Mﬂﬂfﬂ_"wﬁﬂ
AT p(o | X

REKCRA e ”EﬁZZ’fC’
REKPOP
REKDCT
REKTYP disk
REKFPT record

header
REKBPT
REALVL
BUFPMP
BUFTHD
BFCLEN

15 = BUFFER IN TRANSITION

14 = UPDATE MISSED

LOCATE MECHANISM

PRIMOS REV. 19.1

0 #= BUFNEW
DECREMENT
USAGE_COUNT

UNWIRE THE
BUFFER PAGE

FORM RADEV
BUFNEW
=0
?
N
[70 M(SS
BCS (BUFRA)
8 FIND 1st BCB
=RADEV ON UNUSED LIST
? € UNTHREAD IT
Y
PRTN UNHASH FROM
. HASH TABLE
7 Syme
WIRE PAGE
SET WINDOW
CLEAR STBLn
UPDATE USAGE

CNT SET BUFNEW

THREAD
BCB ONTO
UNUSED L1IST

IN HASH
TABLE AT HASH
ADDRESS

UNUSED LI1ST

WRITE OUT
OLD RECORD
1F NECESSARY

WIRE PAGE

READ IN
NEW RECORD

SET WINDOW
CLEAR STBLn
UPDATE USACE
CNT SET BUFNEW

'HASH IN BCB

PRELIMINARY

17 -

T

PRIMOS INTERNALS

To Frrnd

om USERGE

LOCATE MECHANISM

PRIMOS REV. 19.1 PRIMOS INTERNALS -

ASSOCIATIVE BUFFERS - CONFIG DIRECTIVE

Previously- there were always &4 associative buffers which resided
in segment 1.

Now there can be any where from 8 to 296 associative buffers.

Mew COMFIG directive: HNLBUF n
ghere n = the octal number of LOCATE buffers to use.

The buffers will reside in segments 20 - 33,

The 21 word Buffer Control Block (BCB) 15 wired at cold start.
The LOCATE buffer is only wired when it 1s in use.

The optimal number of associative buffers depends on the system.
[f the LOCATE miss rate is qreater than 10 percent,
NLBUF should be increased until

However, 1f PF/S is qreater than 10, do not increase MLBUF,

PRELIMINARY 17 - & LOCATE MeCHANISM

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 18 - Disk Guotas

PRELIMINARY 18 - 1 DISK GUOTAS

PRIMOS REV. 19.1 PRIMOS INTERNALS

DISK GUOTAS

MOTIVATION
- Provides administrative control over disk usage.

- Quota limifs the number of records a single directory or
directory sub-free can use.

IMPLEMENTATION
- Specifed on a per-ufd basis. B
- Units are physical disk records {(2kb).
- Quota of zero means unlimited record usage is allowed.
- Quota may not be set on an MFD.
- Requires rev 19 disk format.

Note: No femporary file allowance, nor login/out quota. -

PRELIMINARY 18 - ¢ DISK GUOTAS

PRIMOS REV. 19.1 ' PRIMOS INTERNALS

DISK QUOTAS

EXOmp Le
to NeT MAx GveTA
MFD SET_QUOTA ufd_a -MAX 1000
UFD_A
f?}_:]OO};
5Q ufd_a>ufd_c -MAX 500
UFD_B UFD_C
- \\K /\\
(g=700) 42500
FILE_A

The quota set on UFD_B is 700 records.
The quota set on UFD_C is 500 records.
The parent directory UFD_A has a quota of 1000 records.

The total records that can be used by

the entire sub-tree C(UFD_A, UFD_B, UFD_C)
is 1000.

PRELIMINARY 18 - 3 DISK QUOTAS

PRIMOS REV. 19.1 | PRIMOS INTERNALS

DISK QUOTAS

- Quota and non-quota directories may be intermixed in the same
subtree.

- A quota directory can be subordinate to a non-quota directory, -
and vice versa.

- Two counters are maintained:
DIR USED: number of records used by this directory.
QUOTA LEFT: number of records still available to this subfree.

- Each time the DIR USED count changes for any directory,)
the quota for that directory must be updated (if there is one). -

- Each time the GUOTA LEFT count changes for a quota directory,
any superior quota directories must have their quotas updated.

PRELIMINARY 18 - 4 DISK QUOTAS

PRIMOS REV. 19.1 PRIMOS INTERNALS

DISK GUOTAS - Data Structures

DIRECTORY BLOCKS (DB)

- One directory block is maintained for each open attach point on
the system. ‘ |

- The dir _block contains:
USE_COUNT: number of open attach points using this block.
DIR_USED: number of records used by this directory.

NOT MODIFIED: flag indicating if DIR USED has changed
(and info must be written back to disk).

PRELIMINARY 18 - 3 DISK GUOTAS

PRIMOS REV. 19.1 PRIMOS INTERNALS

DISK QUOTAS - Data Structures

Lendd be tead ut T+ w(«ﬂ,{ _
S;/V\Uu& ‘tﬁ. ‘Lj W@zrﬁ: . MY éé/ufj /

QUOTA BLOCKS (GB) N

- A quota block 15 maintained for each open attach point which
has a quota. -

- A quota block is mainfained for each superior directory of an
attach point which has a quota.

= These quofa blocks are chained together. _

- If two open attach points are constrained by the same quota -
directory(s), then they will share the quofa block chain.

- The quota block contains:

USE COUNT: number of open attach points using this block. -
QUOTA_LEFT: the number of records still available under the
quota at this directory level.
PARENT PTR: pointer to any superior quota directory
(zero if none).

PRELIMINARY 18 - & DISK QUOTAS

PRIMOS REV. 19.1 PRIMOS INTERNALS

DISK QUOTAS - Data Structures

dcl 1 quota block based,

2 use_count fixed bin /# Use count */
2 ldeyno fited bin /# Ldey of directory */
2 bra fited bin (31), /% BRA of directory #/
2 hash _thread fixed bin, /% Hash thread link to next block#/
2 parent pfr fited bin, /# Pointer to superior block #/
d quota_left fixed bin (31); /% Amount left in tree #/

dcl 1 dir block based,

2 use_count fixed bin /% Use count #/
2 ldevno fixed bin, /% Ldev #/
2 first_ra fired bin (31), /% BRA | #/
2 hash_thread fixed bin /# Link to next block #/
2 dtype,

3 type bit (13), /% Type of block ¥/

J not_modified bit (1), /% Quota not modified if on 74
2 dir_used fixed bin (31); /% Amount used in this dir #/

The type of the block is maintained in the DTYPE (PARENT PTR) field.
The value 1s =1 for dir blocks (-2 if modified).
All other values indicate quota blocks.

PRELIMINARY 18 - 7 DISK GUOTAS

|
PRIMOS REV. 19.1 PRIMOS INTERNALS

DISK QUOTAS

MAINTAINING DIRECTORY/QUDTA BLOCKS:)

- Since directory and quota blocks are the same size, they are
stored in a common area (QBCOMS). -

- Directory/quota blocks are allocated/deallocated in a manner
similar to unit table entries.

The hash table is GBHASH. -
The bif map 15 GBBITS.

- Quota blocks are chained (threaded) together according to
directory level (PARENT PTR).

- QBCOM$ (QBHASH, GBMENT and GBBITS) are protected by the UTLOK.
- Up to 2048 quota/directory blocks may be in use at any one fime.
- The hash table (GBHASH) has 257 entries which point (up) to 2048 _

quota/dir blocks. Therefore both quota and directory blocks ars
independently threaded together in hash chains (HASH THREAD). -

PRELIMINARY 18 - 8 DISK GUDTAS

PRIMOS REV. 19.1 * PRIMOS INTERNALS |

DISK QUOTAS

QBCOMS% - fes>segl10.pma -Segment 10

Idev/bra

v
QBHASH

Quota_block
(parent_ptr)
(hash_thread)

QBKENT

£
Dir_block

N (hcsh_thheod)

———TTT

Quota_block [
(parent_ptr)
(hesh_thread)

237 Dir_block

QBBITS Dir_block

] |0o000011111111111
2 | 1111111111111111 T
i
3“727‘\ ; \\ N I \
N\

|
| N

Dir_block
128/ 11111111111111 11

(hash_thread)

2048

PRELIMINARY 18 - 9 DISK QUOTAS

PRIMDS REV. 19.1 ~ PRIMOS INTERNALS |

DISK WQUOTAS

Exampte

ATTACH to top-Level UFD_A -AT$ABS calls AT_CLEAN:
if UFD_A = gquota_dir -
~ then allocate QB

allocate DB

MFD

DB [—— UFD_A —= QB

g=1000

PRELIMINARY 18 - 10 DISK GUOTAS

PRIMOS REV. 19.1 T PRIMOS INTERNALS |

DISK QUOTAS

Exompte

ATTACH to subufd UFD_C —-AT$REL calls AT_CLEAN:

if UFD_C=quota_dir
then allocate QB
if UFD_C=new attach point
then deallocate old DB
allocate DB
(@B for UFD_A is still in use by our new attach point)

MFD

|

UFD_A —=t QB

q=1000 5

DB Urb_C als

g=5>00

PRELIMINARY 18 - 11 DISK QUOTAS

PRIMES REV. 19.1 ' PRIMOS INTERNALS |

DISK QUOTAS

Example

Here is what QBCOM$ Looks Like after the two cttaches: _

QBHASH QBKENT 1 -
~ 1
Idev/bra QB - UFD_A -
(UFD_A) | (parent_ptr)
(hash_thread) B
ey
DB - UFD_C
T
l (hash_thread)
NN |
\j | N QB - UFD_C
(parent_ptr) -
Idev/bra | (hash_thread)
(UFD_C . -
l 257 ;
N \ _
N | N
2048

PRELIMINARY 18 - 12 ~ DISK QUOTAS

PRIMDS REV. 19.1 ' PRIMOS INTERNALS

DISK QUOTAS

ExqmpLe

OPEN FILE_A -SRCH$$
gllocate unit table entry
set UTE.DIR_BLK_PTR teo
parent C(UFD_C)
set UTE.QUOTA_BLK_PTR to
first quota parent (UFD_C)
increment USE_COUNT
for DB (UFD_C
increment USE_COUNT
for QB chain (UFD_C, UFD_A)
(USE_COUNT is now 2;
1 for attach + 1 for open)

MFD
¢
UFD_A
g=1000 "l o8
DB [UFD_C 1 QB
g=500 :
; T
FILE_A| UTE
]

PRELIMINARY 18 - 13 DISK GUOTAS

PRIMOS REV. 19.1 : PRIMOS INTERNALS |

DISK GUOTAS - Example B

WRITE TO FILE_A - PRWF$$ calls GETREC: -
DIR_USED = DIR_USED + 1
reset NOT MODIFIED bit -
if UFD C = quota dir then GUOTA LEFT = GUOTA LEFT - 1

TRUNCATE FILE A - PRWF$% calls TRUNC$ calls RTNREC:
DIR USED = DIR USED - 1)
reset NOT_MODIFIED bit
if UFD C = quota dir then QUOTA LEFT = QUOTA LEFT + 1

CLOSE FILE A - SRCH$$ calls CLOSE: | B
if dir_block NOT_MODIFIED = false
then update DIR_USED on disk (UFD O
update QUOTA LEFT on disk (UFD) -
do while parent ptr O 0
update QUOTA LEFT on disk (UFD_A))
decrement USE COUNT for DB (UFD C)
decrement USE COUNT for GB (UFD ()
if USE COUNT = 0 then deallocate dir/quota block _
{The USE COUNT =1 because we are still attached to UFD C)

PRELIMINARY 18 - 14 DISK GUOTAS

PRIMOS REV. 19.1 ‘ PRIMOS INTERNALS

DISK QUOTAS

Exompte

ATTACH TO UFD_A -AT$ calls AT_CLEAN:

if UFD_A = gquota_dir then

increment USE_COUNT for QB (UFD_AJ
if UFD_B = new attach point then

decrement USE_COUNT for old DB (UFD_C)
if USE_COUNT = O then

deallocate old DB (UFD_C)

decrement USE_COUNT for QB (UFD_A)

(this USE_COUNT is still 1

because we are attached to UFD_A)
allocate DB CUFD_A)

MED

¢

UFD_A

DB P —e QB

g=1000

UFD_C

q=500

FILE_A

PRELIMINARY 18 - 13 DISK GUOTAS

PRIMOS REV. 19.1 PRIMOS INTERNALS

Section 19 - Attach

PRELIMINARY 19 - 1 ATTACH

PRIMDS REV. 19.1 PRIMOS INTERNALS
ATTACH
- Functionality has changed due fo abilify to completely exclude a
yser from an MFD with ACLs.
- Duplicate packnames no longer allowed. -
- Passwords no longer converted to upper case by attach routines.

- Attach routines allow ring O callers to override access priviledges.

- New routines:

TAS =) ATCHSS |)
| ATSABS |
AT !

ATEANY
AT_CLEAN
ATSHOM

ATEREL

ATS0R

PRELIMINARY 19 - 2 ATTACH

PRIMOS REV. 19.1 PRIMOS INTERNALS

ATTACH - AT$ANY attach scan

Do (for each local partition) While {(nat found)
{("open” MFD of this partition)
[f (have rights to this MFD)
Then (search for entry with given name)
If {directory found)
Then If (have access fo directory)
Then (set new current)
If (requested to set home)
Then (set new home)
Else (insufficient access rights)

| Else (go on to next partition)
End /% Do While

If (not found locally)
Then Do (for each disk in the disk list) While (not found)
[f (disk is remote)
Then (start remote search list)

Do While (next disk is on same node)
(next disk in list)
{add next disk to list)

(search remote system with ATLIST through R$CALL)

If (found)

Then (set up remoteness by At adrem)
End /% Do While

PRELIMINARY 19 - 3 ATTACH

I
PRIMOS REV. 19.1 PRIMOS INTERNALS
ATTACH

AT CLEAN - Common clean up for ATS routines.
- Yalidates new attach point.
- Releases current attach point.
- Sets up new current {and possibly home) attach point(s)
- Allocates new unit table enfry.
- Allocates dir block to mainfain records used infa.
- If & quota dir, allocates quota block to maintain queta info.

- Sefs up pointers to the ACL profecting this directory.

PRELIMINARY 19 - 4 ATTACH

PRIMOS REV. 19.1 PRIMOS INTERNALS

CALCULATING ACCESS

WHO 1S THIS USER?

- & user 15 identified via:
a unique user id
a set of ACL gqroups the user_id 15 a member of

User Id:

- Stored in the process’ UPCOM.

ACL Groups:

- Stored in the Active Group Table (AGT).

- A user may be a member of up to 32 ACL groups.

- ALl active ACL group names are stored in the AGT.
- For each user, there is a 32 word index table.

- The index table points to the names of the ACL gqroups that
process is a member of.

PRELIMINARY 19 - 3 ATTACH

PRIMODS REV. 19.1 ' PRIMOS INTERNALS |

ACCESS CONTROL LISTS

Daota Structures -

-ACL Database, Segment 37. -

AGTIDX-Active Group Table Index AGT-Active Group Table —
name/lLength -
user_1 32 words
o _
] _
Jser_Z2
‘ T T _
i l
Lo\ N
| | _
l |
| i
| [-
[l
\ P\ | \
] I -
Iren——— N
user_128
1000 -

PREL IMINARY 19 - & ATTACH

PRIMOS REV. 19.1 PRIMOS INTERNALS

PRIORITY ACLS - Data Structures

- One priority ACL per ldev.
- Table of pointers to the ACL, PA_PIR.
- ACL 15 stored in PA_AREA.

- Space 1s dynamically allocated/deallocated by area manager.

dcl 1 pacl based, /# Prigrity ACL (PACL) #/
2 ecw like ecu,
2 user_count fixed bim /% Number of user enfries */
2 qroup _count fited bin /% Number of qroup enfries #/
2 version fixed bin, | /% Version no. of structure #/
2 use_count fixed bin, /# Number of LDEYs using fhis
| PACL (not implemented) #/
2 qroup _offset fixed bim /% Relative position of first

group enfry #/

2 rest _accesses like accesses, /# Rights for $REST #/
2 rest acc valid bit (1) aligned,/# SET if $REST rights valid #/
2 dtm like fsdate, /% Date/time created %/
2 spared fised bin,
2 entry like coded accessi /# like ACLs (ringl/ringd) #/

PRELIMINARY 19 - 7 ATTACH

PRIMOS REV. 19.1 : PRIMOS INTERNALS

PRIORITY ACLS

Data Structures -

—ACL Daotabase, Segment 37, -

PA_PTR PA_AREA -
Idev O _
grea_ptrs

Idev 1 B
——"priority_acl -
I] -

l |

A T \ | \

| | —

l 1

l
| \ C -

| [
\ L)

=priority_aqcl

Idev B1 -
150000 -

PRELIMINARY 19 - 8 ATTACH

' |
PRIMOS REV. 19.1 PRIMOS INTERNALS

CALCULATING ACCESS

WHEN?

- During an atfach operation (ATABS, ATANY, AT CLEAN).
- During 3 file open operation (SRCH%S).

HOW?
- Password owner/non-owner access Tights are mapped to ACL rights
yrDmner: PDALY .
Non-ouner: W
Read: R s pded BUIS
. v yv =
Write: g b AP
Delate: D

Prigrify Access: if priority acl then
if user_in pacl then
get access from pacl

User Id: else if user_id_in acl then
get access from acl
ACL Groups:. else if user member of groupis) then

get access for each member group
logical-or these accesses together
$Rest: glse 1f $rest then
get access from $rest pair
glse no access

PRELIMINARY 19 - 9 ATTACH

PRIMDS REV. 19.1 PRIMOS INTERNALS

Section 20 - Miscellaneous
File System Locks
PRIMOS Segment Usage

PRIMOS Locked Memory Requirements
19.1 1/0 Enhancements

System Limits
Area Management

PRELIMINARY 20 - 1 MISCELLANEDUS

PRIMDS REV. 19.1 PRIMOS INTERNALS

(FILE SYSTEN LOGKS))

The following locks are used by the FILING system and allow a certain
amount of concurrent access fo the FILE system (in priority order):

_FSLOK Global file system locks
_QEQLQE/ \gﬁp lock -
UTLOK ~ Unit tables lock

TRNLOK Transaction lock " -
RATLOK Record availability lock

Each lock consists of the fallowing data structure: _

I COUNTER l B
POINTER | READER'S Semaphore
l COUNTER l

POINTER NRITER’S Semaphore -

l USAGE Counter l

PRICRITY |

PRELIMINARY 20 - 4 MISCELLANEDUS

PRIMOS REV. 19.1 - PRIMOS INTERNALS

FILE SYSTEM LOCKS

Locks will allow N readers or 1 writer.

A writer will wait on the writers semaphore if there are any active
readers or an active uriter.

A reader will wait on the readers semaphore if there is an active
writer or if g wrifer is waiting.

When the USAGE counter is equal to
0 the lock 15 free (available)

+N there are N active readers

-1 there is one active writer

Priority is used to force an order to avoid deadly embrace situations.
In general locks are not recursively lockable and an attempt to
re-lock one already locked by the calling process is disallowed.

FELOK 15, however, an exception and may be recursively locked for
reading only. The system maintains for each process 3 bitmap of the
locks owned by that process. The depth of recursion for FELOK is
maintained. This information is held in PUDCOM (LOKOWN and OWNFS).

PRELIMINARY 20 - 3 MISCELLANEDUS

PRIMOS REV. 19.1 PRIMOS INTERNALS

OTHER LOCKS

LOCKS (following on from file system locks in priorty order). -

DEVLCK DEVICE table in PBDIOS

SP1LCK _
SP2LCK Spare locks

SP3LCK

NETLCK Network data

SLCLCK Smlc driver data

MOVLCK MOVUTU usage _
SEGLCK Seqment fables

PAGLCK Page tables and data bases

DSKLCK Disk driver

PRELIMINARY 20 - 4 MISCELLANEDUS

PRIMOS REV. 19.1 : PRIMOS INTERNALS

~N O B WM - O

Pt P e Pl pend

19
21
22
23
24
29
26

FRINDS SEGHENTS - AR 0) n'd <
— / v

ﬂ'&'\/ '

(1w R % v B oirp |

tlock, i/0 wingows, DMy control blocks [KSXSEGO. PMA]
(GEN$BUF)

movutu

movutu

PIC, PCBs, fault handlers, checks, SEMCOM, vpsd [KSSEG4. PMA]
ring 0 gate segment (GATSG%) [KS5EGD. PMA]
kernel code and linkage

TFLIOB buffers (TFLSNI)

per-user unit fables, directory/quota blocks, usrcom [SEGI0. PMA]
file system code and linkage (LCSEGS)

nefwork system code and linkage (NETSG%)

command loop and CPL code and linkage [R3S5]

PAGCOM, HDRBUF, config, RSAV, FIGCOM, MMAP, tape-dump,
warm/cold start code

additional kernel code and linkage

DM@ buffers (DMRBUF)

HMAPs

SMLC map segment

SMLC map segment

SMLC map segment

SMLC map segment

PRELIMINARY 20 - 3 MISCELLANEDUS

PRIMOS REV. 19.1 ~ PRIMOS INTERNALS |

PRIMOS SEGMENTS - DTAR 0 continued B

27 network buffers (NETBF%) —~
30 network queues (NETBH%)
31 network (not used)

32 additional command loop and CPL code and linkage [R35]
33 LMAPs

J4 named semaphores data area
J2 logout notification queves: CPS

36 additional TFLIOB buffers ~ (TFLSN2) -
37 active group table, per-user group list, priority acl table ~
40 unit table entries (UTBSEG)

90 associative buffers (BUFSEG) -

91 associative buffers
32 associative buffers
33 associative buffers

67 RJE code and linkage
70 RJE code and linkage
71
. RJE buffers
100 -

PRELIMINARY 0 - & MISCELLANEOUS

PRIMOS REV. 19.1 S PRIMOS INTERNALS

101
140
141

142
143

200
201

400
401

477

PRIMOS SEGMENTS - DTAR 0 continued

32 network mapped segments

DPTX code and linkage
additional DPTX code and linkage

| (DPTCOM)
DPTX buffers

(PUDCM$)
mapped per-process ring 0 stacks

dynamically allocated by GETENS

PRELIMINARY 20 - 7 MISCELLANEOUS

PRIMOS REV. 19.1 PRIMOS INTERNALS |

PRIMOS SEGMENTS - DTAR 1

2000 -
shared code
2030 |)
8 user segments
2040
shared code -
2170
8 user segments -
2200 B
shared code
2300 _
dynamically allocated by GETSN®
2377

PRELIMINARY 20 - 8 MISCELLANEDOUS

PRIMDS REV. 19.1 | ' PRIMOS INTERNALS

PRIMOS SEGMENTS

DTAR @
4360

dynamically allocated by GETSNS

4377

DTARJ
6000 user profile stuff, UPCOM, page fault (wired ring 0) stack,
SDTs for DTARS 2 and 3, mapped LOCATE buffer (’/17600)
6001 abbrevs, shared library linkage
6002 CLDATA; ring 3 stack (PUSTAR)
6003 unwired ring O stack
6004 CPL work area
6005 global variables
6006 additional shared library linkage
6007 (DYSNBG)
. dynamically allocated by GETSNS
6010 | (DYSNED)

PRELIMINARY 20 - 9 MISCELLANEDUS

PRIMOS REV. 19.1

PLUS: SEG 4

SEG 12

SEG 14

PRELIMINARY

PRIMOS INTERNALS

PRIMOS LOCKED MEMORY REGUIREMENTS

LOCKED
KW
4
16

- g P e

(2 IF NETWORKS)

100 WORDS FOR EACH CONFIGURED USER

(PCB'S AND CONCEALED STACKS)

TERMINAL 1/0 BUFFERS FOR EACH CONFIGURED USER
(DEFAULT 96 AND 192 WORDS RESPECTIVELY).

PAPER TAPE, CENTRONICS BUFFERS AS REGUESTED (1KW)
&k WORDS FOR MDLC

18k WORDS FOR PNC

23k WORDS FOR MDLC PNC

SEGMENT DESCRIPTOR TABLES (DTAR'S 0 and 1 only)
MMAP 2K WORDS FOR EACH 2MB OF PHYSICAL MEMORY

20 - 10 MISCELLANEOUS

PRIMOS REV. 19.1 PRIMOS INTERNALS

PRIMOS LOCKED MEMORY REQUIREMENTS

SEG €1 @ DATA BLOCKS FOR EACH CONFIGURED LINE
(DEFAULT 32 WORDS/LINE)

SEG 22 HARDWARE PAGE MAPS, &4 WORDS FOR EACH
USER SEGMENT IN USE ABOVE ‘1777

SEG 33 LOGICAL PAGE MAPS, &4 WORDS FOR EACH
USER SEGMENT IN USE ABOVE '1777

SEG 6000 PAGE FAULT STACK, 1K WORDS FOR EACH LOGGED IN USER.

PREL IMINARY 20 - 11 | MISCELLANEDUS

PRIMOS REV. 19.1 PRIMOS INTERMALS —

19.1 1/0 ENHANCENMENTS

- New LOCATE Mechanism, NLBUF
- Balancing Primary and Alternate Faging Devices, PRATIO
- Default Value of MAXSCH, MAXSCH = (m+3) # ¥ + 4 _

- Reduce Active Users Working Setf -
(CPLIM, LOGLIM from URCOM to PUDCOM)

- Using [-move Instructions
- Gate Access MOV32P, (MOVEWS) -
- More Disk Queus Control Blocks (17 instead of 7)

- Hashed Transaction Locks (1 TRNLDW -to &7 LOCKRH, LOCKWH)
- No Page-in on page-aligned page-sized reads

- 5EG thancements

- FORCEW Changes -

PRELIMINARY 20 - 12 MISCELLANEDUS

PRIMDS REV. 19.1 ' PRIMOS INTERNALS I

19.1 1/0 ENHANCEMENTS - Using [-move Instructions

MOV3ZP moves N words of data from source fo destination

Previously, if the length specified is greater than B words fhen
MOV32P would loop on: double floating loads stores, double loads
stores, and single loads stores, depending on the length.

Now, for those CPUs on which the I-move instructions are more
efficient (a P750 or a PBS0) the IMVD instruction is used.

MOV3ZF has been made available to the user from Ring 3 by addingha
Gate to Seg 3. The name has been changed to MOVEW$, move words.

The calling sequence:

CALL MOVEW$(ADDR(SOURCE), ADDR(DESTINATION), LENGTH)
where LENGTH 15 the number of words to be moved.

PRELIMINARY 20 - 13 MISCELLANEDOUS

PRIMOS REV. 19.1 PRIMOS INTERMALS —

SYSTEM LIMIT EATENSIONS

NEW
- Mew INITIAL ATTACH POINT per user, -
- 16 Remote 1ds per user,
- 14 character login passwords.

- Matimum number of user _ids in a system or project is 73lé _
- Number of DYNAMIC SEGMENTS is 148.

SEGMENTS
- Matimum value for MUSEG is now 240, due to 16 MVMFS seqments.
- Number of shared segments (DTAR1) 1is now 192 (/2000 - '2277)
- Number of shared user seqments is now 16
{12030 - 2037, ‘2170 - '2177) | -
- Effective increase in maximum number of segments,
paging space now allocated in 16KB blocks (1/B%th seqment)
instead of 1J8KE (entire seqment).

FILE SYSTEM N
- Number of file units is now 3147

- Ut1lities do not convert lowercase passwords £o uppercase,
- Matimum number of LOCATE buffers 15 236, minimum 15 8.

PRELIMINARY 20 - 14 - MISCELLANEDUS

PRIMOS REV. 19.1 PRIMOS INTERNALS

AREA MANAGEMENT

MOTIVATION

- Provide a single mechanism for allocating/freeing data blocks
of varying sizes.

- Area manager automatically relocates blocks (if needed).
- Used for:

CPL Variables

CPL String Management

Phantom Logout Notificafion Gueues
Priority ACLS

PRELIMINARY 20 - 13 MISCELLANEDUS

PRIMOS REV. 19.1 PRIMOS INTERNALS

AREA MANAGEMENT

IMPLEMENTATION -
- Uses Knuth's Boundary Tag Algorithm.

- Define an area of virtual memory o contain the data blocks.

- ARSIN to initialze the area.
AR$ALC to allocate a block of a given size.
ARSFRE fo free a given block in an area. _

- Condition 'AREA’ 15 raised if: -
the area being initialized is too small/large
the block being allocated is too small/large
the area does not begin on an even word boundary _
an allocate or free request 15 made in an unitialized area
the area 15 defective -

PRELIMINARY 20 - 16 MISCELLANEDUS

PRIMOS REV. 19.1 PRIMOS INTERNALS

Appendiy A
Programmed Input/Output (FIO0)
Device Drivers
MPC-4

PRELIMINARY A - 1 APPENDIX A

PRIMOS REV. 19.1 PRIMOS INTERNALS |

PROGRAMMED INPUT/QUTPUT (PI0)

1243 6 7 10 11 16 -
l 11 [1100 function];_>device addr B
PIO What is to
be done _
| Il B
oce 0 0
s |0 1 .
INA 1 0 -
0TA 1 1

The purpose of the PID instruction is fo provide one-word
Input/Output o or from a device.

1), OUTPUT CONTROL PULSE (OCP)
The OCP instruction normally performs a control function within -
the selectad device control unit. These control functions are
mandatory for such purposes as.
A), Starfing a clock
B). Forcing an Input-only mode
C). Initializing a device (Device Master Clear) -

PRELIMINARY A - 2 APPENDIX A

PRIMOS REV. 19.1 PRIMOS INTERNALS

PROGRAMMED INPUT/QUTPUT (PIO)

2). SKIP ON CONDITION SATISFIED (SKS)
The SKS instruction tests a condition on the selected device and
if the condition 1s TRUE:, skips the nest instruction.
e.g. Skip if ready to input/output a character

J). INPUT TO REGISTER A (INA)
The INA instruction will input one word into Register A from the
specified device (if the device is ready). If the operation is
successful, the next instruction is skipped. The word may
contain only one byte of valid data. In these cases the INA will
input the byte into the least significant eight bits of Register
A and leave the more significant byte of Register A unaltered.

4), QUTPUT FROM REGISTER A (OTA)
The OTA instruction will output the contenfs of registr A to the
selected device if that device is ready to accept the data. If
the output operafin is successful, the next instruction is skipped.
The A register may contain only one byte of valid data.

PRELIMINARY A - 3 APPENDIX A

PRIMOS REV. 19.1 PRIMOS INTERNALS |

PROGRAMMED INPUT/OUTPUT (PID)

The FUNCTION CODE further defines the purpose of a PID instruction.
OCP Function Code indicates control operation.
SKS Function Code indicates that a condition is to be tested.
OTA Function Code selects destination for word from Register A
INA Function Code selects source of data word info Regisfer A. -

DEVICE B
The 6 bit device number selects one of the 64 possible devices.
The PID instruction is recognized by the device with the selected
address. MNormally each control unit has a unique address but -
some respond to as many as four device addresses.

NOTE: The OCP, SKS, OTA, and INA instructions are restricted and
are available only in R and 5 modes.

The EID instruction (used in V mode) replaces the PID instructions.

The effective address of the EID is eyxecuted as one of the PID
instructions. EID is a restricted instruction and sets the

condition codes to indicate the success or failure of the

specified operation. The EID should be followed by a BCNE #-2
instruction. The EID instruction 1s always two words long and -
never skips. |

PRELIMINARY A - & APPENDIX A

PRIMOS REV. 19.1

DEVICE DRIVERS

PRINCIPLES INVOLVED IN WRITING DRIVERS

1), ASSIGN/UNASSIGN Logic
A). Add device name to DEVCOM
B). Fiy table sizes and indices

2. INITIALIZATION ROUTINE (Cold Start?)
A). Lock driver and buffers
B). Turn on the device

3). USER INTERFACE
A). Add SVC front end
B). Fix SVC class tables
C). Add direct entrance call (seq 3)

4). VALIDITY CHECKS

A). Assigned
B). Authorized user
C}. Initialization of device

PRELIMINARY A - 5

PRIMOS INTERNALS

APPENDIX A

PRIMOS REV. 19.1 PRIMOS INTERNALS

DEVICE DRIVERS

3). 1/0 CONSIDERATIONS -
A). DMA, DMC, DM@, DMT

B). DMX channel assignment
€). Buffer allocation - Mapped or not -
D). Inferrupt Phantom in seq 4 - Communication with driver

6). STRUCTURE

A). Separate process - synchronous or asynchronous with user
eyecution. _

B). Need for buffering.

7). WARM START REQUIREMENTS.
A). Initialization
B). PABORT legic

8). 1/0 COMPLETION -

A). Unmap I/0
B). Release locks
). Release user

PRELIMINARY A - 6 APPENDIX A

PRIMOS REV. 19.1 PRIMOS INTERNALS |

EXAMPLE DRIVER (MTDIM)
(called by user and runs as part of the user’s process)

1}, Validate unit number
2). Validated user, 1f not same as present wait on semaphore
3). Lock controller if serial reusable
4), Set up information for phantom interrupt code.

. Initialize controller if not already done.
). Validate arguments.

). Set up DMA/DMC channels
B). Call MAPIO

). Start up operation

0). Return to user.

INTERRUPT PHANTOM

1). Reset mask

2). Set MTDONE abort flag
3). Notify other users if waiting on confroller lock semaphore.

MTDONE
). Called from PABORT
). Get contraller status
). Return information to user
4). Call UMAPIO
). MNotify same user if waiting on MAG TAPE semaphore
}. Return to PABORT

PRELIMINARY A - 7 APPENDIX A

PRIMOS REV. 19.1 | PRIMOS INTERNALS

MPC4 SUPPORT

MOTIVATION
- Provides a standard PIO/DMx interfacing mechanism.
- Device independent driver in Primos (ring 0), T$GPPI/GPIDIM.

- Device dependent code in ring 3 Primos rev independent.

IMPLEMENTATION

- MPC4 is a harduware implementation of the GPPI concept.
- User microcodable controller:

Microcode maintained in ROM, or

Downloaded to RAM from disk at system coldstart.

- Primos support for two MPC4 controllers, addresses ‘75 and ‘76

- Each controller can support up to four devices.

PRELIMINARY A - 8 APPENDIX A

PRIMOS REV. 19.1

FUNCTIONS

PRELIMINARY

PRIMOS INTERNALS

MPC4 - General Purpose Parallel Interface

1 - Read block
2 = Write block
3 - Read word

4 ~ Write word

5 - Wait/poll for interrupt

6 - Load interrupt mask register
7 - Load communication region address reqisfer
8 - Execute device-dependent OTA

9 - Reset device

10 - Load device fimeout register
11 - Release communication region

: 100001 - Execute OCP.
100002 - Execute SKS.
: 100003 - Evecute INA.
100004 - Execute OTA.

(Restricted)
(Restricted)
(Restricted)
(Restricted)

APPENDIX A

PRIMOS REV. 19.1

MPC4 - General Purpose Parallel Interface

USER CODE
- Assign/Unassign logic. {(GPIONF)
Assign device 6Py n=40..7
Wires GPIDIM.
Initializes controller status.

- Subroutine interface to DIM, T$GPPI.

Builds a unit data block (UDB).
Notifies GPIDIM to process it.

PRELIMINARY A - 10

PRIMOS INTERNALS

APPENDIX A

PRIMDS REV. 19.1

PRIMOS INTERNALS

MPC4 - General Purpose Parallel Interface

PRIMOS CODE
- Initialization code. (GPIINI)

Check for controller and verify it
Loads microcade.

Sets up controller data block (CDB).
Allocate seqment O i/0 windows.

- Device Interrupt Manager. (GFIDIM)

Notified by T$GPPI and PIC.
Performs tasks specified by UDBs.

- Warm Start Code. (GP1PBW)

Re-initializes controller status.

Cleans up any DMA transfers in progress.

Fixes up UDB servicing.

PRELIMINARY A - 11

AFPENDIX A

PRIMOS REV. 19.1 PRIMOS INTERNALS

Appendix B - Process Exchange

PRELIMINARY g - 1 APPENDIX B

DATE:
TQ:

FROM:

March 29, 1976
Progrjmming and Engineering Staff

M. L. Grubin

SUBJECT: P=-400 PROCESS EXCHANGE AND NEW PROTOCOLS

II.

III.

Iv.

Process Exchange

A, Data Bases
1. Ready List
2. WAIT Lists
3. Process Contral Block (PCH)

B. Instruction Primitives
1. WAIT
2. NOQTIFY

C. Dispatcher and Register File Management
1. Ready List Maintenance
2. Register Set Assignment
3. Fetch Cycle Trap

Traps:, Interrupts, Faults, Checks
A. External Interrupts

1. Operation
2. Special Instructions (IRTN, INGTIFY}

B. Faults
1. Data Bases
2. CALF

3. Fault Handler
C. Checks
Register Files
Control Panel

CP Timer

PE-T-232

Page 2 | PE-T-232

I. PROCESS EXCHANGE

The Process Exchange mechanism is composed of three data
bases and two basic instruction primitives, The data bases
are the ready list, wait lists, and Process Control Blacks
(PCB). The basic instruction primitives are WAIT and NOTIFY.
In addition, there is an independent mechanism for
controlling the usage of two register sets which is related
to, but not part of, the ready list data base.

A. Data Bases

1. Ready List

The ready list is a two—dimensional list structure usad far
priority scheduling and dispatching of processes. The entire
ready list data base (excluding live registers) and all PCB’s
are contained in a single segment. The segment number of
this segment is contained in a 16-bit register called OWNERH.
Within the segment, all pointers and addresses (except +fault
vectors and wait 1list pointers) are 14-bit word number
gquantities.

The two-dimensionality of the ready list is achieved with a
linear array of list headers for each priority level composed
of a Beginning of List (BOL) pointer and an End of List (EOL)
pointer.

Each pointer is the 1é6-bit word number address of a PCB (in
the same segment as the ready list). The PCB’s oan each
priority level list are forward—threaded .through a 16-bit
link word, and as many PCB’s as desired can be threaded
together on each priority level to form the ready list. A
process’ priority level is both determined by and encoded as
the address of a BOL pointer in the ready list. Priority
order is determined by arithmetic comparison, i.e.., smaller
numbers (addresses) are higher priorities. As a result,
priority level 1list headers must be allocated in contiguous
memary at system startup time.

The end of the ready list is determined by a BOL containing a
1 (PCB addresses must be even). An empty level is indicated
by a BOL containing O. Figure 1 is a picture of the ready
list structure. The 32-bit registers PPA (Pointer to Process
A) and PPB (Pointer to Process B) are a speed-up mechanism
for locating ¢the next process to dispatch. PPA always
contains both the 1level (BOL pointer) and PCB address
(designated 1level A and PCBA) of the currently active
process. PPB points to the NEXT process to be run when
process A ‘goes away’. PPA not only points to the currently
active process, but, by definition, level A is the highest
level in the system. It is possible for PPB and PPA to be
invalid‘. This condition is indicated by a PCB address af

F=A T ravar 3 =N } £E=g L lavai Q [=Tak-]

2 1
' .
M
L =UL 9
= A
. cul J
(==l B
— 0
— 7.
) » __ =0L ¢
ent A
L)
. - 3
e u
— 2
— 2
. [
] y . —) l_‘u
— &5k 13 2 2=
— 0 .
5 FC3 FC3
; J- J
. — -9. -— -
p— 9 ——
b - ﬁ e - - .
— 2 -) .. ’
: C 1g e M YT - Tevel |
- g0l 18 ° Liink i
. g - FCS gc3
o g ¢ /
T p— E —r d - ’
e~ D o
p— ﬁ ————
T

Ready List: All ociaters are 16-0i% word numter pointfers within the 7C3
segmantT. The sacment numter is confained in the nigh perticn
ot The CWNER pointT2r within each ragister set.

All FC3 sTar™ addrasses mus+™ be aven (bi+ 16 = 3). The end
of The rzady lisT is marked with a E0L antry = 1.

.

FIGURE I.

Page 3 PE-T-232

0. It is important NOT ¢to disturb the level portions,
especially level A since, even if invalid, level A indicates
the highest level that WAS in the system and therefore
determines where in the ready 1list ¢to begin a scan, if
necessary (PPB invalid), for the next process to run. In a
completely idle system, both PPA and PPB will be invalid and,
upon completion of the ready list scan, the u-code will go
into @ ‘wait for interrupt’ loop.

It is important to notice that there is no word number
pointer to the first priority level in the ready list. The
ready list allocator, which starts ¢the process exchange
mechanism, knows where the list begins and, during executian,
level A (in PPA) will always point to either the highest
level currently in the system or the last known highest level
and, hence, acts as an effective ready 1list begin pointer.
In addition, level B will always be higher than the second
level to run. That is, a PCB can never be on a level higher
than level B wunless it is the only PCB higher than level B
(i.e., lavel A).

Two ‘queving’ algorithms will be implemented for the ready
list, either FIFO or LIFO queuing.

2. WAIT Lists

Every PCB in the system will always be somewhere. I# it is
not on the ready list, then, by definition, it will be on a
wait list. A wait list is defined by a 32-bit semaphore
consisting of a 16=bit counter (C) and a 16-bit word number
BOL pointer. Since the ready list and all PCB’s reside in
one segment (OWNERH), and only PCB’s go onto wait lists, a
sagment number is not needed in the semaphore. However,
semaphores themselves can be anywhere and, in general, are
NQT in the PCB segment. The structure of a wait list is
shown in Figure 2. Notice that the last block on the wait
list contains a QO link word. Notice also that the semaphore
contains only a BOL paointer.

The ‘queuing’ algorithm for wait lists 1is process priority
queuving. That is, the priority level of a PCHB will determine
where on the wait list the PCB will be queusd. For PCB’s af
equal priority, the algorithm becomes FIFQ.

3. Process Control Block (PCB}

The contents of the PCB are shown in Figure 3. The PCB can
be broken inta the following logical sections which are
ordered as shown:

WAIT LIST STRUCTURE

Semachcre
C:un?ar(=27‘ _
8CL level - 2 lave]
oo [ink 2
< (| WLSN WLSN
L[wuaw T WLN
PC2 . PC3

[}y

N BINN IR s e e e e
20 UG RN B 05 o i oM —0r0 00 OB LI —

!

LI

2 2BE5H 58 585 ek U

s oo (NOVOVAONIMAUWA U\ URA
LiIN— O ~Ih UL LIND

Precess Cantroi Sleck (F3)

| SV
- | | ~ie
X SN (2=cn ~2aqy | L57)
WLYN

@
Q

————

AR ey :gé

Resarved

-—

Elaosad Timer

 ————

OTARS

inTerval imer (iivel
el lt— L anld- Lad

Save mask

_<=vs
GR@
GR! -
GRZ
GR3
GR4
GRS
GRS
GRT

L1111

"~

BN O\ ULN— O O RLIN —

S

(SNTe SV YIS g

[¥

order fixed, lccations
flexible depending ugen
save mask

WIoWA & LN —

e

ot
m
»
e O RUIN —8 ~I0V UL A LEN =B UB L NS IO UL R UIN) —
/

FPl.

R

FYi
Rasarved
FV3

- c—m .. o * @ ane

]
' .
. l l .l

- . . s PF‘[‘-—.- -

CSNC2381 20 3TICK <31

ARACERD B STAMe N\

AnNC23 A STAAYL L mNg
A T

Conceaied Fayl+ Stack L,
(8§ words/antry) e

AN

N

n
-
w
>4
3
o
A
]

Page 4 PE~-T-232

Contral
C - level (pointer to BOL in ready list)
1 = link (pointer to next PCB or Q)
2,3 - SN/WN of Wait List this block is currently on
(SN=0 indicates on ready list)
4 - abort flags wused to generate Process Fault
when PCB is dispatched.
Current bit assignments 1-135: MBZ
i6: pracess i
nterval .
timer ove
rflow
3,7 - reserved

Process State

8,9 = Process elapsed timers (must be maintained

by software that resets the interval timer)

10,13 - DTARZ and DTAR3 (never saved, always
restored)

14 - Process Interval Timer with 1.024 msec

resolution
13 - Reserved
16 - Save mask - wused to avoid saving and
restoring registers = O
Bits 1- 8: GRO-GR7 (2 words each)
?=12: FPO-FP1 (4 registars, 2
words each)
13~14: Base
Registers(PB, SB, LB, XB)
17 - Keys
18,33 - GRO-GR7
34, 41 - FPO-FP1
42, 49 - Base Registers (PB.,SB,LB, XB)

Note that although all the registers are assigned
locations within the PCB, oanly non-zerao reaegisters
will actually be saved which results in a compacted
list which can only be determined by the bits in the
save mask. In general, the saved registers (those
not equal ¢ta 0) will be between words 18 and 49.
The order of the registers, however, is fixed as
abavae.

Fault (See section on Faults for a description of
the usae aof this portian of the PCB)

50, 59 - Fault Vectors: SN/WN pointers to fault
tables for Ring O, Ring 1,
Page Fault and Ring 3 fault

handlers
&0, 62 = Concealed Fault Stack Header
&3,.. = Concealed Stack -~ & word entries. (This

stack need not start at word &3).

B. Instruction Primitives

There are two basic instruction primitives for the process
exchange mechanism: NOTIFY and WAIT. In addition, NOTIFY
has two variants. These instructions, similar to Djikstra‘s
P and V operators, are essentially ‘interlock’ mechanisms.
These instructions are three—word (48-bit) ‘instructions’ as
follows:

Instruction (146-bit universal generic!

32-bit pointer to semaphore address

As suggested by the names, WAIT is used to wait for an event
(CP, time, unit record device available, whatever) and NOTIFY
is usad to signal that an event has occurred. In particular,
a WAIT 1is wused to wait for a NOTIFY and a NOTIFY is used to
alert a process which is waiting.

Coordination is achieved by means of a semaphore containing a
counter and a BOL painter. The semaphare and the PCB’s
waiting for the event of that semaphore constitute a wait
list. The counter, if greater than O,. indicates the number
of PCB’s on the wait 1list. If negative, it indicates the
number of processes that can obtain the resource. Semaphores
fall into two categories: public and private. A public
semaphaore is used to coordinate several processes together ar
control a system resource. Private semaphores are used by a

single process to coordinate its own activities. Far
example, if a disk request is made, a process will wait on a
private semaphore for the disk operatian to complete. The

disk process will then notify the semaphore upon completion.
The distinguishing characteristics of a private semaphore is
that only 1 PCB can ever be on that wait list. A public
semaphore can have many different PCB‘s on its wait list.

1. WaIT

The operation of wait is as follows: the semaphore counter
is incremented and., if greater than O, (resource not
available/event has not occurred), the PCB is removed from
the ready 1list and added to the specified wait list. If the
counter is less than or equal to O, the pracess continues.
If the PCB is put on the wait list, the general registers are
NOT saved and the register set is made available. Therefore,
4 process can NEVER depend on the general registers being
intact after a WAIT. In fact, #rom the peint of view of an
executing process, a WAIT appears as a NOP which destroys the
registers. In addition, WAIT will turn off the pracess
timer. Figure 4 is a detailed +flow chart of the WAIT
instruction.

"Ca EInToy, ~we s

saved’ in register

File

(+)=€0L Semaphors)
Addrass
S
(F2)=2((+)))
. locata pesiticn fc
new PC3S in Wai+ L]
yes (+2)=97 using Pricrity
nd of |ispz > Queuing Algori+thm
whare, for equal
priorities, queuin
ne is FIFO
(=) & <
leve|? o2 (F=¢2)
ne T Ve
((+1))=FC3 PC3 *o WL predecassor R frem Read
(1)=(FCS+1) RL suczesscr ' Y (o neady
LisT (RL) and add
(FCS+{)3(1"2) ' WL succasscer +9 FC3 +o Wait Lis+ (WL)
(BOL)=(+)). RL successor to RL
WLSN and WLWN
to FC3
furn off C2 +imer
N\

lavai A=levelv§

¢ >+ PCP FFS iato FPA

FCSEFD)

Figure 4.

Page & PE-T-232

2. NQTIFY

The NOTIFY instruction has two flavors:

NFYE: wuse FIFO queuing op caode Bit 16 = O
NFYB: wuse LIFO queuing op code Bit 1& = 1

The instructions differ ONLY in the ready list queuing
algorithm used. The aperation of NOTIFY is as follaows: the
semaphore counter is daecremented and the notifying process
continues. If the «counter is less than O, no action is
taken, but if greater than or equal to O, a PCB is removed
from the top of the wait list and added to the ready list.
No explicit action is ever taken on the notifying process,
only the notified semaphore. I# a notified process is of
higher priority than the notifying process, the latter will
be effectively ‘interrupted’, but will remain on the ready
list. Figure 5 is a detailed flow chart of the NOTIFY
instruction.

C. Dispatcher and Register File Management

The dispatcher is the root of the process exchange mechanism
and is responsible for determining the next process to run
(be dispatched), and assigning that process a register set.
There 1is considerable overlap with NOTIFY and WAIT in
functionality related to maintaining the ready list. For
example, both NOTIFY and WAIT update PPA and PPB as
appropriate, but the dispatcher scans the ready list if PPA
is invalid. Register +file management, including any
necessary saves and restares, are the sole province of ¢the
dispatcher. Figures 6 and 7 are detailed flow charts of the
dispatcher.

1. Ready List Maintanance

Upon entry, the dispatcher first asks if PPA is valid. If it
is, the process is assigned a register set and dispatched.
I+ PPA is not valid, a scan of the ready list is initiated.
If a PCB is found, PPA is adjusted and the process
dispatched. I# the ready 1list is wempty, the dispatcher
idles. Whenever a process is dispatched the process timer is
turned on.

2. Register Set Assignment

In each register set, a register, designated OWNER, contains
a painter ¢to the PCB of the process which owns the set.
OWNER is a full 32-bit pointer and OWNERH is used throughout
the system to determine the segment number of the ready list
and PCB’s. (Obviously, OWNERH must be the same in both

Cn Envry, RP is saved

_ in register file

TIFY CP code BitT 16 = § end
, | begianin-

count=caount-|

1

(30L)=((E0L)) Remove from Wai+ Lis+

®*For NOTIFY to Seginning, +he

Pusn

PF3=F=A
FBAznaw

"<" in the level check beccmss

nan

lavelllevelA

| avel B=new

N
\
e //,/I’T;$ZT\\\\\» yes | —-

empty? = (EOC)=FC3
20L)=9 ' : -

3 Ade o
2=z : Yy Ready
o
\
J (SEONIEE , .| (Pc3+1)=(s0L)
(PC3+1)=9 (0Ls=~Ce)

{
\

‘regisTers ar2

‘Né?a:

Ca ZaTry: r3 oanc «<2vS
valid and

RP and.live keys ars

Tavaiic

All interrup=~

‘aks resuylT in a reTurn
the tsp of the dis-
patsher

A
.

(*)=(level A)

gi1sP ’

ENS
interrupts

FCA Valig?
(PTSAFAD)

allow intarrupt brea
(insure RP and |ive

Kk
keys Tare valid)

(set |D(CRS)-in dispatchér flag-=|)

Torn ot

CP +imer

INER(CRS)=
((+))=3? (+)=(+)+2 PC3A?
emoty !
yes
N
| (level A)=(T) N
(PC3A)=PC3:
]
u-code 8(CR3)=1? SO(CIS)=|7
wait ior ogTher avail- available >~
interrupt able //,/’;7
idle loop yes
$0(Chs)= SAVE
SUAns)® L, under mask
- N
At Cfull)
/
SeTup keys and‘ 3 2
Fregram Counfei !
Turn on CP +imer
SHWNER (CRS) =PC3A .
7 hd . \
Restore DTARZ,
OTAR3, TIMER,
and XEY S
L Res+
fetch save mas} > Stat
Restore GR's,
) FP's and ER's
Figure §. under mask /

*The regisTers o Se
saved are a paramster

- passad as a startios RF
address in (TRO,L)

SAVE
under mask

Save timer
and Keys

Fs.ave mask=4d

4.

S(CRS)=

shif* save

rack |odbe

7/

" set Bit in
save mask

!

g‘t‘cre ragister

ints FCZ

-t

Figure 7.

RTN

Page 7 PE-T-232

register sets. In addition, the low order bit of the keys
register (KEYSH) is used to indicate whether the register set
is available. The bit is called the Save Done bit and, if
set, indicates that the register set and its copy in the

owner’s PCB are identical (a save has been daone). This bit
is set by the save routine (called from WAIT or the
dispatcher) and reset when a process is dispatched. Whether

4 register set is available (SD=1) or not: it is always
owned. Therefore, if a process goes away (either as a result
af @ WAIT or the notification of a higher level praocess) and
comes back again immediately and, if that process still owns
the register set, a restore operation is nat necessary. I+ a
register set switch is necessary, the process timer is turned
off. The details of selecting which register set to assign
to a process being dispatched is shown on the right of Figure
6. The dispatcher is the only code which switches register
sets.

3. Fetch Cycle Trap

At various points in the dispatcher (indicated by I on the
flow chart) a check for interrupt pending (fetch cycle trap)
is made. As a result, interrupts can oaccur either in the
fetch cycle or in the dispatcher. The possible Fetch Cycle
traps are:

External Interrupt (See Part II-A)

CP=timer increment and possible overflow (See Part
W)

Power Failure (See Part II-C)

Halt switch on control panel (See Part IV)
End-of=Instruction Trap

YT

The end-of—-instruction ¢trap occurs either from an ECC
caoarrected error or from a missing memory module, memory
parity, or machine check during I/0. In all cases, i$ the
check handling software returns (via LPSW instruction), the
possible destinations are either the fetch cycle or the
dispatcher (PB in PSW not a real program counter). In order
to guarantee the proper destination, bit 15 of the keys
(KEYSH) is wused to indicate if the trap was detscted by the
dispatcher (bit 15=1). .This bit is set by the dispatcher
upon detecting a trap and is reset when a process is actually
dispatched (return to fetch cycle).

II. TRAPS, INTERRUPTS, FAULTS, CHECKS

Four words used frequently are ‘trap’, ‘interrupt’ (ar
‘external interrupt’), ‘fault’, and ‘check’. The meanings of
these terms are carefully distinguished for the P-40Q0/500.
Software breaks in execution are divided into +three main
categories referred ¢to as ‘interrupts’, ‘faults’, and
‘checks’. The word ‘trap’, on the other hand, refers to a

Pa ge =] PE-T-232

break in execution flow on the u-caode lavel.

Traps can occur for many reasons, not all of which cause
software visible action, and are always processed an the
u=code level. Some traps may directly or indirectly cause
breaks in software execution, but not all software breaks are
the result of a trap.

On the PRIME 300, interrupts, faults, and checks used the
same protocol ¢to get to their respective software handlers,
namely they caused a vector through a dedicated sector O
location (JST#* wvector). On the P-400/500, when process
exchange mode is enabled, the three categories use different
protocols both #from the P-300 and each other. Roughly, the
three terms are usaed to describe:

1. Interrupt - @ signal has been received from a device
in the external world (including clocks)
indicating that the device either needs
to be serviced or has completed an
operation. In general, an interrupt is
nat the result of an aperation initiated
by the currently executing software and
will not be processed by that software
(though, of course, it may).

2. Fault - a condition has been detected that
requires software intervention as a
direct result of the currently executing
software. In general, faults can be
handled by the current software, though
in many cases common supervisor code
within the current pracess handles the
fault. Also, in general, an external
device in the real world is not directly
invelved in either the cause or cure of
a fault conditioen. Often, however,
external devices are involved indirectly
as, for example, in performing a page
turn operation as a result of a page
fault.

3. Check = an internal CP consistency problem has
been detected which requires software
intervention. The <condition <could be
either an integrity violation, reference
to a memory module which does not exist,
or a power failure. By contrast, a
reference to a page which is not
resident or an arithmetic operation
which causes an exception is a FAULT
condition. :

A, External Interrupts

Page 9 PE-T-232

1. Operation

External Interrupts operate in either of two modes depending
vpon whether process exchange is turned on. I# process
exchange is off, all interrupts are treated as P=300
interrupts. In all cases:, except memory increment, the
address presented by the controller (or ‘63 if in standard
interrupt mode) is wused as the address in segment O of a
16-bit vector. This vector. in turn, points ¢o interrupt
response code (IRC), also in segment O, which is entered via
a simulated JUST* through the vector. Thus, the current
P-counter (RPL) is stored in (vector) and execution begins at
location (vector) +1 with interrupts inhibited, but with no
other keys or modals changed. If in vectored interrupt mode,
it is the responsibility of the software ta do a CAI. In
either mode, the full RP is saved in the register PSWPB.

If process exchange mode is on, an entirely different
mechanism operates. In all cases, except memory increment,
the address presented by the controller is used as a 1&-bhit
word number offset into the interrupt segment (#4). This
segment is guaranteed to be in memory, but STLB misses may
occur. The current PB (actually RP) and KEYS (keys and
modals) are saved in the u-code scratch registers PSWPB and
PSWKEYS. The machine is then inhibited and the IRC begins
execution in &4V mode. It is the responsibility of the IRC
to issue a CAI. It is important to note that the IRC in the
interrupt segment does not belong to any process. PPA points
to the PCB of the interrupted process and. in fact, no PCB
exists for +the IRC. Also, except for PB and KEYS. no
Tregisters are saved. In fact, even PSWPB and PSWKEYS are in
the register file and not in memory. As a result, the IRC
cannot do an enable and must return to the process exchange
mechanism (i. e. ., the dispatcher) as soon as possible.
Because of all these restrictions on what the immediate IRC
can do, as well as the fact that it does not belong to any
process, it is referred to as phantom interrupt code. Unless
the job of servicing an interrupt is very simple, phantom
interrupt code can do little more tham turn off the
controller‘s interrupt mask, issue a CAI, and NOTIFY the real
IRC.

A memorTy increment interrupt is handled the same regardless
of the state of process exchange. The address presented by
the controller is used as the 14-bit word number in segment O
(I/0 segment) of @ 146-bit memory cell to be incremented. If
the counter does not oaverflow (-1-20), the u—code simply
returns. With process exchange off, the return is always tao
the fetch cycle. With process exchange on, the return is
either to the fetch cycle or the dispatcher, depending wupon
where the interrupt was detacted. When detecting an
interrupt, the dispatcher always insures that RP=PB and that

Page 10 PE~-T-232

all live keys=KEYS. If memory increment returns, it does so
to the top of the dispatcher without having touchead PB or
KEYS. In this way, memory increment is guaranteed not to
destroy any vital information needed by the dispatcher. If
the memory cell counter does overflow an End-of-Range
interrupt is generated and then memory increment returns.
The subsequent EOR interrupt will then be treated like any
gther external interrupt. Figure 8 is a detailed flow chart
of the external interrupt handler.

2. Special Instructions (IRTN, INOTIFY)

Phantom interrupt code has two options for the actions it can
take. If the servicing required by the interrupt is very
simple, phantom code can completely process the interrupt and
return to the dispatcher. If the servicing required is more
complex, the phantom code must turn off the controller’s
interrupt mask and NOTIFY the remainder of the IRC. In the
first case, PB and KEYS must be restored from PSWPB and
PSWKEYS and then the dispatcher must be entered directly.
Since PB cannot be restored in phantom code (the P-counter
will point ¢o ¢the instruction in phantom code) and the
dispatcher cannot be entered directly (no such instruction
exists), the special instruction, IRTN, a 1&6~bit generic, is
exacuted to perform these functions. After entering the
dispatcher via an IRTN, the dispatcher does not know that an
interrupt occurred.

In order to NOTIFY a process:, phantom code must insure that
PB and KEYS are restored before issuing the NOTIFY. The
special instruction, INOTIFY, performs the restore and then
does the NOTIFY. As NOTIFY, INOTIFY is a three-word generic
with two flavors, INOTIFYB and INOTIFYE where the beginning
of list option has bit 16=1 and the end of list option has
bit 16=0 in the opcade.

Phantom Interrupt code can issue a CAI in one of two ways.
Either an explicit CAI instruction may be issued or the
IRTN/INOTIFY instructions can issue it. Bit 1S5 of the
IRTN/INOTIFY instructions is interpreted as faollows:

Bit 1S = O do not issue CAl
1 issue CAI

~rogess
Exchange
Jdode

en

2

Exrernal

Interrupt

/

lnput
Keys

"

| ENB
(498 ns)

Presan®?

ves

(Interrupt Enable)

Generate
Additional
Qelav

P——

laput Addrass

(Fe0Q)

g4y

{§P=4f addrass

Rine 3

N

1C2N

(Clear
Pri-net)

~

" address='63
Cal

(Clear Pri-net)

({2ddress))=RFY

N/

RPH=9

RPL=(address)+!

INH

Figure 8.

| (addrass)+|

(address= _

generate ECS

1CaN (Clear -
Pri-net)

u-ccde
RTN

Page 11 PE-T-232

In all, there are four INOTIFY instructions as follows:

Name Bit 15 16 Function

INEC i o) End + CAI

INEN 0 (o] End + no CAl

INBC 1 1 Beginning + CAI
INBN o 1 Beginning + no CAI

Figure 9 is a detailed +flow chart of the IRTN and INOTIFY
instructions.

B. Faults

Faults are CPU events which are synchronous with and, in a
loose sense, caused by software. Eleven fault classes have
been defined for the P-400. Several of these classes are
further subdivided into distinct types. OFf the eleven, three
are completely new for the P-400 and, of the other eight,
three have expanded meaning when in P-400 made. The eleven
fault classes and their meanings are:

Fault - P—-400 P-300

RXM Restrict mode violation same
Pracess Abort flags word .NE. O N. A.

in PCB an dispatch
Page Page Fault (Page not in - same

memory)
SVvC N.A, Supervisor Call
UII - Unimplemented instruction same
ILL Illegal instruction same
Access Violation of segment Page write viola
tion

access rights
Arithmetic All FLEX + IEX (Integer FLEX

Exception)
Stack Stack overflow/underflow Procedure Stack(
S-Reg)

Underflow
Segment 1: Segment # too big N. A,
2: Missing segment (SDW N. A,

fault bit set)

Painter Fault bit in pointer set N. A,

The fault handling mechanism consists of two data bases and
the CALF instruction. The u-code is in turn divided into a
sat of ‘front-ends’ for each fault class and a common fault
handler.

~ ' C2:Code 3i+ 1629 end
C IRTN) (lNQT!FY) | beginn' ¢

lateca=d - latch=|

Cp. uode Ex? 1S=3 ne CAl
| issue C !

< ®S 0[D /03 N
FE=rSaFS . / (7" K<E€75
KEYS=RSUKEYS %/ 7

(N 7

lateh lN;?Tr-)czun?=;nunf—l . -

Figure 3.

Page 12 . PE-T-232

1. Data Bases

The fault data bases consist of the fault vectors and
concealed stack in the PCB and the fault tables pointed to by
the PCB vectors. Figure 10 shows these data bases as well as
the mapping of P-300 faults to P-400 faults. Also shown in
this figure is the differential action taken according to
fault class (e.g., what ring to process the fault in) and the
set up the wu—~code ‘front end’ must do before going to the
common fault handler.

The underlying philosophy of the four fault vectors is that
while some faults may need to be processed by ring O code,
others may be adequately handled in the current ring of the
faulting process. The vectors are in the PCB to allow
different processes to have different fault handlers. Far
example, process A may wish to use a system fault routine to
handle pointer faults (dynamic linker) while process B may
wish to define its own algorithms for resolving pointer
faults. Notice that it is always possible for a ‘current
ring’ fault handler ¢to call a Tring O procedure if the need
arises. Note also that page fault has its own vector despite
the fact that ring O is entered. For the special case of
page fault, only a single, system—wide processor will be used
and all PCB page fault vectors will point to the same place.

The concealed stack, alsc in the PCB, is used to allow fault
on fault conditions. For example, it is quite possible to
get a segment fault while processing a segment fault. The
only fault which cannot cause another fault of any type is
page fault. Each frame of the concealed stack contains the
PB and keys (KEYSH) af the faulting procedure as well as a
fault code (to distinguish different types within each class)
and a fault address, if appropriate. The stack itself is
circular and must have allocated sufficient frames to handle
the longest possible sequence of fault on fault that can
gccur in ring O. Such a sequence might be: Pointer (link)
fault => Segment fault => Stack fault -> Segment fault -2
Page fault. Note that this particular sequence occurs before
any software fault handler is entered. Also, the first
segment fault enters ring O, so at least a five—level stack
is necessary if the original link fault is to be processed
carrectly.

The second data base consists of four distinct fault tables,
each pointed to by a PCB fault vector. Each entry in the
table consists of four words of which the first three must be
a CALF instruction. Only the page fault table must be locked
to memory and only the ring O table must be in a pre-defined
(SDW exists) segment (otherwise, segment fault might recurse
infinitely). Naturally, the ring O table, as well as the
PCB, is carefully audited by ring O procedures.

A

Eavry to common handler (FAULT)

P = prcﬁer RP fo save (backed
faultT cade (it needed)
address (i ¥ needead)

FCCO&H(1 1)
FACOR(12)
FCCDEL
LATCHS

LATCHT =

fault #*4=P490 fayl+ “able Qffset

=g fault
| page fault (LATCHT mus+=g)
3 go o ring @

| use current ring

up if necessary)

) Faul+ Table
») _Ring 3 Fault+ Vecrer J GALF —
— FVg - 32-0i+ AP
St J 32-0iT AP
52) Ring | Faul+ Vectar . Faul+ 32
e AN | 7 faul+ _ _
3 F 3} CGALF
53 [eserved — : 32-0i+ AP
S8 3 1_Ring 3 Vault Vectaor Faul+ #! _
57— S e >
s Page Fay|+ Vector (Ring 8) e
g — BEY ‘-'!rj — ra
= FlRST P~ A R -
&1 NEXT ey
52 L.J\ST . /
- Netes: Fault Yectors ccatain 2gpropriata ring aumbers
! F3an P30@ Vectior address = Fayl+ # +182
FSL
KEYSH Faul+s
FCI0SH(I]) . ~
FACCRH Fault £ offsa> vector FCOCEH(I11) FACCR(I2) Rinag Saved
. FACCRL(12) M 7 ? 782 - - current Bac &
m Precczss | 4 '63 abort tlags -] cu: 'z
FsL Page - 2 'iQ '6¢4 = address 2 backs
KEYSH SvC 3 'ia 63 - - : - current cur-:
FCSOSHCI) utt 4 '29 '66 currsat RPL addrass curran’ Sac :
FAOCEH Ll "1g rag '72 currant AFL address curreq~ Backe
S ACCRL(!2) . Acsess '] 'a4 '75 code address: g ' bacisz
R ¥ Acrith. ']12 'sg '74 code address currant cur =
avai!éb!e“l Stack |3 154 175 code address 2 bacx:
§*\ : \T\ Segment 'l4 'sg '76 code addrass) backs
treng Poiater '15 's4 177 cede address current bac :
o oF pointar -
las® frame

Page 13 PE-T-232

2. CALF

The CALF instruction has ¢two major functions. First, ¢ta
avoid holding off interrupts for too long, the CALF
instruction defines a restart point in fault handling since
it has a PB (i.e., it is a macro-machine instruction). As a
result, it is quite possible to suspend a process in the
middle of getting to a software fault handler. Second, it
allows a straightforward mechanism to simulate a procedure
call from the faulting procedure (at the instruction causing
the fault) to the fault handler.

The instruction itself is a three-word generic in which the
second and third words are a 32-bit pointer to the fault
handler. To simulate the procedure call, the PB and KEYS
from the concealed stack are placed in the fault handler’s
stack frame along with the other base registers (only the PB
and KEYS have been changed to point to the CALF and to enter
&4V addressing mode) to be used by the standard procedure
return (PRTN) instruction. In addition, the fault code and
address are placed in the fault handler’s stack as if they
were arguments passed by a standard procedure call (PCL)
instruction. After the information is moved from the
concealed stack it is popped. In all other Tespects, CALF is
identical to PCL.

3. Fault Handler

The fault handler is a u—-code routine that is entered +from
the various fault class ‘front ends’ and, based on process
exchange mode, either simulates a P-300 type fault (JUST#
through segment O fault vectors) or performs the P-400 Pault
protocol which includes setting up a concealed stack frame,
switching to &4V mode, and determining, on the basis of
information provided by the ‘front end’, which fault vector
to use and setting PB to point to the proper CALF in the
fault table. Figure 11 is a detailed flow chart of the fault
handler and Figure 10 contains a table of the necessary setup
performed by each fault class ‘front end’. Note that for
P=-300 faults, the full RP is also saved in the u-code scratch
register PEWPB and the machine 1is inhibited for cne
instruction if in Ring 0.

C. Checks

Checks, unlike faults, are CPU events which are asynchronaus
with, and are not caused by, normal instruction execution.
Rather, they are events which are either invisible (e.g., an
ECC corrected error) or fatal (e.g., missing memory module)
to the currently exacuting procedure and perhaps the CPU
entirely (e.g., machine check). Checks essentially represent

-
ATV

srsger =7 TO save

FAULT

at¢

(#3CQ)

——a
SCEH(H) = fault® czce
FCCCEL = faultsi%s
. "SACCH = adcerass(SN)
L (12) = acddrass(WN)}
qCES = 3 fault
' | page faul+
LATCHT = B usa ring 3
L usa current ring
I NH
vecrTar- 3
'82+Fay|+F

 (vecTor))==BL

~

PSHFS =R

\1p

RFH=9

PL=(vechar) =i

INFUT
KZYS

Process
Exchange
Yade

(3,3)
(Ring 9)

(PeQq)

|

")=
(12)=(NEXT)

o

X

SAVE PeH, FSL
KEYS, FCCCE and
FADCR in con-
csaled stack
FSTNEXTY+S

(NEXT)=(+3)

l

ATCHS, LHTCHT)
, ! Joct pecssibl

F=((T3))yl TiI*

(Fage Faul

[

Figure 1.

(Ring 2)
(g,1)
J J (current ring)
(+3)=F%0 (+3)=FY(ring#) (r3)
| Keys=s4y J
~ [N

Page 14 PE-T-232

processor faults as opposed to process or procedure faults.
Faur check classes have been defined as follows:

Check P—-4Q0 P
-300 .
Power Fail Power Failure sam
e
Memory Parity ECC corrected ,

. ECC uncorrected Mem

ory Parity
Machine Check Fatal CPU error sam
e
Missing Memory Module Memory module does not exist sam
e

Unlike faults which can be stacked and interrupts which cause
a process to be suspended, each check class has a single save
area (check block) consisting of eight words in thae interrupt
segment (#4) in which PB and KEYS (high and low) are saved in
the first four locations (check header) and the remaining
four locations contain software code (probably a JMP).
Figure 12 is a picture of the check data base as well as a
description of the necessary u-code setup required before
going to the common check handler. In addition to the memory
data base, three 32-bit registers are used as a diagnostic
status word (DSW) ¢to help a software check handler sart out
what happened. Figure 13 shows the format of the DSW.

Check reporting (traps) is controlled by the ¢two low order
bits in the modals (KEYSL). The possible modes are:

MCM = O no reporting
i Teport memory parity (uncorrected) only
2 repaort unrecovered errars only
3 report all errors

The check trap can result in two possible actions depending
upon the type of check that occurred and the type of u-code
which was trapped. If the trapped code was either DMX, PIQ,
or external interrupt processing (unless ¢the error was a
machine check for RCM parity), or if the check was for an ECC
corrected (ECCC) error, the end—-of—-instruction flag is set,
RECIV is set to the proper offset/vector, MCM is set to O
(except ECCC which sets it to 2), and @ u—-code RTN %o the
trapped step 1is executed. In this way, the IO bus is always
left in a clean state. In all other <cases, the check ¢to
software occurs immediately. Figure 14 is a detailed flow
chart showing the operation of the check trap handlers.

The common check handler is entered from various check ‘front

Check =angling (Dara Zasa) . I

Sc¥Tear2 check cartshers reside in +he inTarrupt sagment (4) and are 3 werds each.
The firsT & «cres are usad as 3 PSW save araa as:

__/ The check cffsats and corrasper i

lavermipgt Secment (4) P300 vecrers are: -
208 | _FSHT) Power Fail Check Offsatr Ve o
- FSL Power Faj| 200 T T
2 =i | Memcry Par, 1272 167
5 | _MOCALs Macaine Chk. '390 ik
4 = Missing Mem. 319 "3
5 csde : -
§
7
= =
1279 | =t | Memory Parity -
I FsL In ali-cases, *he saved 73 s + 2
2 | RIS | currant F3 when the check cesur ic
3 MCOALS
3
- 5 - B
€. csde Entry o commen handler (CHETK)
7
300 PSH __| Machine Check REDIVY = P4CO offsat
| T PSL | P300 vector=(offsat-'200)
2 | Kerys _|
3 | _MCDALS | LATCHS = J RP is preper RP +0 sz e
4 = | proper RP is in PESAY<
] (NeT2: FSSAVE=d implies in
8 czde . _ dispatchar)
7 _
1513 FEH | Missing Memory Module
BSL)
| KEYS _| _
MOCDALS
ccde -

Figurs 12,

QiagnesTic S

TaTus Word (QOSW

89 biTs, RegisTars '3 *335' § (nameqd OSWRMA, OSWSTAT, and OSWFS)

I oy

¢8: 10 Sus, sar if check occzurred during CMX, P10 ar In*arrus®™ u—code
4S: AMA Inv=CSWRMA invaiid (Possibdle frem SCCU and MM caly)
SQ: Reserved
51,53: ZCCT Syndreme=S syndreme Sitson a corrected arrsr
58: Mcd: f=low order addrass bi+ of memary mcdul2 causing the arro-
57.33: Resarved
55,85: u=Verify *ast § sat on failure during Master Clear or YIRY iastrucTicn
Validiry:
Al wavs :{=33, 43,*:‘48 36-39
I# 3iv 34 ser :37-43
35 141-42,58 |f bit+ 42 ser:51-55
38 158
[Si+ 43 resar:di-ds
is The resscasidility of the cheek handling softwars To clizar the OSW a+t
has teen sracessac. -

3i*~s] 32: CSwRMA
35,48: DOSWSTATH Valid on all checks excep® Pzwer Fail
49,54: CSWSTATL as folliows:
§5,80: 0OSwF3
112 3 ¢15 6 70819 10|11 1z;13/1¢ 15 s
;35| 34135 38| 3571383940 41) 42| a3 42| 45 48| 47| 48 OSWSTATH
EC| M| M| M| Machine R| e]| glgup|Re sackup | 0 | IC
1| C| P| M |Cheek Cade| €| €| C liav]| Count M [Sus
. Mliclc X
u'¢C
| 2 3 45 6 7|8 9 6]l 12 1311e is 15)
17118 19 20|21 22 2535|2425 25|27 28 30 31 32
4515051)152155)54|55|56|57158]59]60 62)63 64 OSWSTATL
EMAL&S?%ECCT Syndr=me Mcd kesarved u=Verify +ast §
7 3
Inv?d l
S5: Cl=Check lmmediats
34: ¥MCsMachine Check
35: MFP=Memory Farity (SCC)
38: MM=Missing Memcrvy

$: Machine Check Cags

: NeT RCH Farity !
: ECCTU=SC3 Unc:r‘ec.-bl¢ Error

: Sup lavaRR backup csunt

42: 2CCC=£CC
43
4s,25;
T 47: CMX, set if ches=k ccz

g=Feripheral Cata (EF0) Qutpu
|=Feripheral Address (2PA) lnput
2=Memory Cat2 (3MC) Cutput
33Cache Cata (RCD)

4=Perigheral Addiass (SPa) Qutput
$=RCX-270 [nput

§=Memory Address (34A)

7=Register File

Resat for RCM Farity errcr - XC3 enly)

Corractad &rror

(44-48) invalig

RS Backup Counv-amount RPL (DSWPS) was incramentad in curren® ins*ruc*ion
urred during CMX

e Emcmem. s ma aar e -

Ficurs 13.

+ver a check

«*Missing Méggéﬁe e
‘Mmr‘{

| | |

(

" save RD save RO save RD
REO;z:é?IQ REQIV='300 REQIV='279

]

CHKDIN

o

CHKDIN ARUIN
CMX ’ czde,RCM,
- CMX

T

read memary read memory
meduie # v medule #
e 4 p .L
sat OSW
set OSW . : : set OSW

rese>
- set no (ECCT)
N alz h 4
s
\

read ECCC
syndrcms

no

yes

(CMX or PI0 or Interrupt).

<KD IN '
(¢) MCM=0

/A
_ & MC3=2
reac RP backup
¢zunT and savel .
orcoer RS/PISAYE sat' €0l flag RTN

;t restors RD g

r224 apporsori-
ave data difs

R

‘Figure 4.

Page 1S PE-T-232

ends’ and, based on praocess exchange made, either simulates a
P=300 type check (JST# through segment O check vectors) or
performs the P—-400 check protocol which includes satting up
the check header, inhibiting the machine, and switching to
44V addressing made. In either mode, MCM is set to O before
going to software. Figure 13 is a detailed flow chart of the
check handler and Figure 12 contains a table of the necessary
setup performed by each check class ‘front end’.

III. REGISTER FILES

The PRIME 400/5Q00 contains four distinct register files.
Each file is further divided into halves, each 32 locations
(registers) long, and each 16 bits wide. One hal+ is
Teferred to as the high half and the other as the laow hal#f.
Since both halves are addressed together, each register #file
contains 32, 32-bit register or 64, 1é6-bit registers. The
register files, numbered from O, are used as follows:

RFO = u—code scratch and system registers
RF1 - 32 DMA channels

RF2 = User register set

RF3 = User register set

This layout of register files allows easy expansion to eight
register files, thus adding four new user register sets. All
user register sets have the same internal format and the DMA
register file simply consists of 32 channel registers.
Channel register ‘20 within RF1 is equivalent to the P-300
DMA registers ‘20 and ‘21. Channel register ‘22 is mapped to
‘22 and ‘23. In this way, the mapping proceeds for each even
register in RF1 to channel register ‘36, mapped to ‘3& and
*37. All other RF1 registers represent additional DMaA
channels over the P-300. Figure 16 shows the internal
structure (usage) of RFO and the user register sets (RF2,
RF3). Note that all user register sets contain the segment
number of the Ready List/PCB segment (OWNERH) and a cell for
the modals (KEYSL). It is necessary, before entering process
exchange mode, to set CWNERH in ALL register sets to the
proper value and to NEVER alter it thereafter. Although all
register sets contain a cell for the modals, only the current

register set (CRS) contains the wvalid modals. It is
therefore necessary, whenever rTegister sets are switched, to
copy the modals into the new register set. = Currently, anly

the Dispatcher switches rmegister sets. CRS is defined and
specified by the three bit field labeled ‘CRS’ in the moadals.
Since this field can span up to eight register files, but two
are used for u—coede scratch and DMA, user register sets are
numbered from 2 - 7. 0OFf course, only 2 and 3 are currently
implemented. Thus, foar the P-400/300, ¢the CRS #field must
always have bit 9 off, bit 10 on., and bit 11 selects the
register set (as if O and | were the numbers). In fact, the
u-code will only laook at bit 11.

save

REJIY 28438 oi<sat
Machine Check Mcde set

n RE=FSSAVE
of? Proccess on
\=2Yd) Sxchange -~ (F430)
_ dode

». =
FCCCEL= ' SAVE PSH, FEL,
REAV/2=113 KEYS, and MCDALS
3({CFFr3ZT=1220)/2 . (bafora INH) In

. CHECX header

|

Kays=64Y, INH

W

RP=4} (CFFSET=4)|.

*The actual cz2iculation of P329
check vecTar is as follcws:

In CHECK: FCCDEL = CFF3Ei/2-'11g
(CFFSET=-'223)/2
(FCCCEL*!312)/4
FCCDEL/ 4+ 62

»
In FAULT: FCCCZL =
o=
= ((CFF3ST=12221/2)/4+182
2.
=2

(CFFsSET=-'223)/3+'62
(CFFSET-1200-"22)/8+162
(CFFSET-1299)/8~2+'82
(CFFSET-"'2290)/8+'63
This cirsuitsus calcularticn is usad +o
‘cid dividing a negaTive number on a
~er fail| check.

NeTa: '200 (Power fail offserT)='223 = 123,

FVSwﬂ;-KS

y=<¢age sSm2Ten

CMA

CurrenT RegisTar Set (CRS)

CRS RFZ RF3
Call | Hieh Low | Ader | Ader
0 | Gre - 100 | 149
I | GR! - 101 | 144
2 {GR2II,A, L4 =-(2,8,LL) 102 | 142
3 | GR3(EH) =(ZL) 103 | 143
4 |GR4 T - 104 | 144
5 {GRS(3,5,Y)Y | =~ 165 | 145
& |GRS : - 106 {148
7 |GR7(3,X) Foa- 107 | 147
10 [FRAUI3) - 110 | 150
I - - 1it | 151
12 {F1(2) -(5) 112 1352
13 | =¢6) - 112 | 153
14 |FS - 114 |154
15 |ssc14) -(135) 115 | 155
1€ jL3(18) -7 118 138
17 {x8 - 117 | 157
20 |OTARS(19) - 126 | 160
2! |OTARZ - 121 | 181
22 |OTAR! - 122 182
25 |OTARS - 123|163
24 | KEYS (mdals) 124 184
25 |CWNER - 128 li1s3
26 |FCoosC) - 128 {166
27 |FACCR -(12) 127 |187
30 |TIMER - tz0 |179
31 - 13t [i7¢
-32 132 {172
v 33 133 {173
34 13¢ {174
35 135 {173
38 ‘ 138 {175
37 137 Li77

KEYSL (Mcdals)

‘; l I3 ‘4!515.17'8 i@&o’r izf:s"ti Sh g

=2 RF1
:amHigh] lew | Callf High | Llew | Adcr
. TR - o 4Q
a TRI - 1 41
z | =2 - 2 42
"3 | TRS - 3 43
4 TR& - 4 44
s |TRS -] 45
-5 |TR6 I = 8 48
7 =7 - - 7 47
o |ROMXI 3| = 10 b {o)
i ROMXZ ° - 11 S
12 RATHBY {12 52
‘3 | R’sSGT! - 13 5
& JRSGT2 - 14 54
1§ | RECTH - 15 55
t& |RECT - 186 5
7 REQIY 17 S7
-3 |ZzFC CNE 20 | (2! (21 60
2! FISAYE - 21! &1
2 2| (22) (23) 62
'3 23 &3
2z 28 | (24) (2s) 84
s 25 63
'8 25 | (2%5) (273 &8
o7 7 87
3C [FseEs - 3 (z2) (31) 70
b PSHKEZYS - 31 -}. 71
_ PEABLARCEA 32 | (32) (33 72
32 B S R T eict] 33 . 73
T2 {CSWRMA - 34 | (34) (35) 74
iz CSWSTAT - 33 75
32 |oSwFs - 38 (38) (37) 78
bye 37 77
KEYSH
- Hz! 3::!515:7';5{9!:::11.2{5!':.!5!5’ 2
Clcl LA~ |FIIICC 11s gV
g2l Al 1| Mcce sigic eio N
- (|~ g x| L‘ g atM
Tk Xt iTie
— ACr. Mcga FLEX=7 allcws FLEX FaulTs ENS:
2 163 ViMd:
! 3‘5 CRS:
2 64R MIQ:
T3 2R TP
s 32! SES
S MO
- say
10: In Ciszarzsner
~ ST: Save Cone Figure 16.

5

Mpg_{:@-a
ol M{ G

11Xl g

Sat=anable interruptvs
Set=Vectorad intarrupT med2
Current Ragistar Set
Set=mappec 1/0
Sat=Prccess Exchange Moce
Set=Secmentaticn Mods
Machine Check Mode:

.
-

Page 16& PE-T-232

Direct register file addressing (not using CRS) is
accomplished either with the LDLR/STLR instructions or via
the contraol panel. The Register Files are ordered

sequentially with an absolute address of O addressing
RFO-register O (u—-code scratch/system file), ‘40 addressing
RFl1-register O (DMA file), ‘100 addressing RF2-register O
(user set 2), and ‘140 addressing RF3-register C (user set
3).

Beside each register name, where approapriate, is the
PRIME-300 mode mapping from address traps to registers (e.g..
the X register is the high half of GR7).

IV. CONTROL PANEL

The control panael for the P-400/500 is the same physical
panel used for the P-100/200/300. It’s functionality was
enhanced by improving the u—code in the CP. All switches and
selectors operate exactly as for the P-300 with the exception
of the sense switches in the up position. Figure 17 is a
diagram of the functionality of the switches. Notice that
with all switches down, any FETCH/STORE operations are
to/from memory-—-mapped. As long as segmentation mode is not
turned on, mapped and absolute are the same, thus preserving
compatibility. I# SS4 down were absolute, address traps
could not occur and wauld thus be incompatible. Notice alseo
that S85-16 in the up position changes meaning depending upon
SS84. When mapped, all 12 switches are read as a 12-bit
segment number. When absolute, SS11-16 are wused as the &
high order bits of the 22-bit physical address. To address
any P-300 registers, all sense switches should be placed in
the down position and addresses between O and ‘37 specified.

P=400/300 registers are accessed by raising SS1. Then, if
§62 is down, the low order S bits of the address are used to
access 32-bit registers 0-‘37 within CRS. I# 882 is raised,
the full 7 bit address is used to access any register in any
register file. The addresses, as shown in Figure 14, are
0-'37=u~-cade scratch/system, ‘40-'77=DMA, ‘100-'137=User sat
2, and ‘140-/177=User set 3. SS54 is used to access either
the high half (up) or the low half (down) of the selected
register. For all register accesses, the Y+1 functions will
advance the register address before the access, exactly as
for memory accesses. Wrap around will accur an the
appropriate number of bits, since any bits of higher order
are ignored for the access.

The control panel data register is TR2H and the address
register is TR3. Upon entering the cantrol panel routine, RP
is saved in TR3 and (RP) is saved in TR2H. In addition, the
keys (KEYSH) are updated to reflect accurately the live keys.
Thereafter, TR3H is not altered by the control panel itself
sg RPH 1is always remembered. However, on exit, PBH is used
to update RPH and KEYS is used to update all the keys. As a

- -
SSi .Ss2 SS3 Ss4 : ‘
<: S35-16 7:,.
up | absolure high half 4
register é— SSt1-16 -
dewry CRS low half - /
.. up Ebsolu're thsical Address 35-27
memory 3
¥ dewn napped Segment #
Notes: With all switches down, control panel works exactiy as for the P-330

follcwing either a Master Clear or a HALT if not running in segmented
mode. [T is necessary to make mappad memory accesses if address +traps
are to be generated. |f running segmented, memory accessas will be
mapoed to segment J unless an explicit segmenT number is enterad in
SS3-1€.

Registers: RegisTer address is in address register (switches down)
For CRS, conly low order 5 bits are usad; for absolute,
oniy lcw order 8 bits are usad Y+l (STCRE/FETCH) operatas
exactly as for memcry with the address being pra-incremented.

Null Vecter: In F-323 mcde, if an external interrupt, faul®, or check aitempts

o vectcr through 2 memory location containing a g, the follcwing
acticn is +zken: . .'(l

- <+ HALT .
dai2 and address lights clearsd .
RP = address +rapped . . ¢
PSH = RPY
TR2L = addrsss of vector

L B

Y

Page 17 PE~-T-232

result, single stepping can change segments as well as keys
and modals. Figure 18 is a detailed flow chart of ¢the
control panel routine.

The only exception to the control panel entry protocol is

that if a

Fault,
vector through a vector

Check, or external Interrupt attempts to

containing O in P-300 mode, the

following registers will contain:

RP: .address of ‘trapped’ instruction
PBH: SN of ‘trapped’ instruction
KEYSH: praoper keys
TR2H: (data) O
TR3: (address) 00
TR2L: address, in segment O, of the ‘vector’ co

ntaining O
V. CP TIMER
Resolution = 1024 u-sec
Turned on by DISPATCHER before dispatch.
Turned aoff by:
WAIT after/during save
DISP before changing CRS
On tick, u—code increments the interval timer (TIMER) in
RF(CRS). When that overflows, bit 16 in the PCB abort

flags (memory) is set to cause a process fault.

It is the responsibility of software that
interval timer to maintain the elapsed timer.

resets the

‘ ZveECTCR !

(CPANEL)

Zero~
rd o
o — VES +;§L=u4 r
3, od ”
_ TR2H=2 TR2H= (RF)
- TRZLsvecter addr TR3=RP
' TR3=9 | KEYS=|ive kavys
— CPANEL3 2
) Read rung,»on ~ -
- (INA 71520) :
000 F 001 (010 ot 1100 el |10 I
Step/Stes ¥ s/ |Feten ¥ | Y+ Store Y Load Clear |Address Ca*z
- - (Y ~
live xeys=KEZYS TRIL=TR3L+I 165 "or” add¢ Tor" data |
SU=FSH | NH w switTches |w sui?chg
— ‘ 1 ‘ + dispiay + display
A3 to light to ligh?%
ssTER d '
- 2! AReangl N8 read panel lces .
g- '52 inTo menq
) loes 6= '57 <
\/Bs
' = CPANELS
aiai RPY=g
RPL=(T)

~'Pes

AYZ=)
i LATCHS=|

) OLTCH5=9 ————t
~ TRZH=RFL
~ and
L display *b
lights

memory=TR24

‘ ra2seT

physical
address

map logical
register file
address to
TR3=9 TR24=2
and and
display disptay
o lights To light

4

——

l

set
nign g .
raset =
-~ .
TR2H=RFH FL=TRZH RFH =TR2E
and
display ?E
‘1 Tights

v

Figure 18.

PRIMOS REV. 19.1 PRIMOS INTERNALS

Appendix C - Procedure Call Mechanism

PRELIMINARY - 1 APPENDIX C

SUBRQUTIE Cals () e &2/ "

(1) CALLING PROGRAM

CALL

- CALLS A SUBROUTINE | |
- GENERATES PCL (procedure call) CN7RY Cachrf Aleck
FCL

/////? o
- ADDRESSES AN ECB THROUGH A LINK -

- CALCULATES THE RING NUBER /i, fars? ooF)
- ALLOCATES THE sTACK FRamE (e

- INITIALIZES THE STATE OF THE CALLED PROCEDURE

- TRANSFERS THE ARGUMENT POINTERS -

AP
- GENERATES THE ARGUMENT POINTERS FOR THE PCL
- FOLLOWS THE PCL INSTRUCTION
- FORMAT
AR ARG, TAG
where TAG modifier can he:

- § variable is an argument

- 8L variable is fthe last argqumnef

- #5 the argument 15 an indirect address

- #5L the argument is an indirect and the last

EXAMPLE:

:

CALL - SUBI
AP ARGL, 8
AP ARGE, 5L
LINK

ARG1 DATA 0

ARG2 DATA 0

() THe SUBRCUTINE

ARGT
- DOES THE LAST STeP OF THE PCL INSTRUCTION
- EXECUTED ONLY IF A FAULT OCCURS DURING THE CALL
ARGUMENT TRANSFER
- MUST Be PRESENT IF THE SUBROUTINE REGUIRES
ARGUMENTS

ECB
- GENERATES AN ENTRY CONTROL BLOCK (ECB)
7O DEFINE A PROCEDURE ENTRY
- GOES INTO A LINK FRAME
- FORMAT
LABEL ECB PFIRST, , ARGDISP; NARGS, SFSIZE, KEYS
WHERE: |
PFIRST = pointer to the first eyecufable sfatement
ARGDISP - displaczment in the sfack frame of the
arqument list (default is ‘12)
NARGS - number of arquments to be passed
SFSIZE - stack frame size, the default is given
by the DYMN
KEYS = keys, the default is G4V

(3) ARGUMENT TEMPLATE

1 456789 10 11 14
B |10 |base|L |8 0O 0
req
W
B = BIT NUMBER

[= INDIRECT BIT
L = LAST BIT, LAST TEMPLATE FCR THIS PCL
S = STORE BIT, LAST TEMPLATE FOR THIS ARGUMENT

SO 0~ O an = LI D)

13

(4) ENTRY CONTROL BLOCK

FOINTER TO THE FIRST
EXECUTABLE STATEMENT
OF THE CALLED PROGRAM

SI7E OF STACK FRAME

STACK ROOT SEGMENT NO.

ARGUMENT DISPLACEMENT

NUMBER OF ARGUMENTS

LINKAGE BASE ADDRESS OF
THE CALLED PROGRAM

KEYS FOR THE CALLED PROGRAM

(¢ ¢

RESERVED
MUST Be ZERO

L

PR

LI PRI — D

S0 00 ~N O~ on 4 I) — O

—n
)

(5) STACK FRATE (" thies el Py Sesges)

POINTER TO THE NEXT
FREE FRAME

POINTER TO THE
EXTENSION SEGMENT

®
[J
®

FLAGS

STACK ROOT SEGMENT NO.

RETURN POINTER

CALLER 'S STACH BASE

CALLER’S.LINK BASE

CALLER'S KEYS

WORD MNUMBER AFTER PCL

POINTERS TO THE ARGUMENTS
(3 WORD INDIRECT ADDRESSES)
AND
DYNAMIC
VARIABLES

Peocedinre C;Q(ﬁ Mehahn | sy
CALLING CALLING CALLED CALLED
PROCEDURE LINK LTNK PROCEDURE
FRAVE FRAME FRAME FRAVE
LB L?QZKB ECB
Irl SNl LPB+ ARGT
WN
PTR STACK SIZE
PCL f ROOT SEG "
AP ARG. DISP
AP NO. ARGS.
LINK BASE
‘~\\ RKEYS
STACK FRAME
FREE
POINTER
EXTENSICN SEG
; - :
' -5
FLAGS <~ SB
| STACK ROOT SEG. NOJ
RETURN POINTER HEADER
STACK
CALLER'S SB SEGMENT
: STACK
CALLER‘S LB FRAME
CALLER‘S KEYS
WORD AFTER PCL v
3 WORD INDIRECT
ADDRESS ‘S %
DYNAMIC
VARIABLES
[V g -to
1T .

1§

-
p

NEXT STACK FRAME

PRIMOS REV. 19.1 | PRIMOS INTERNALS |

Appendiy D - Revision 19.0 Routine List

PRELIMINARY D - 1 AFPENDIX D

Iindex oF

files

in PRIMOS:IKS - Primos kernel code.

" Index of files in PRIMOS>KS - Primos kernel code.

l~* e

-
-

L/

*

EOE S O

LR I

AB3SWs. PLP
ACCOMs. PLP
A~DDISK. FTN
AINIT. FTN
AMINIT. PMA
AMLCS, FTN
AMLDIM. PMA
ASNDES. FTN
ASNLNS. PLP
ASNMTS. PLP
AERDIM. PMA
ASSURE. PLP
BADDSK. FTN
BADIXs. FTN
ECKUPB. PLP
CFGETR. PMA
SINIT. FTN
ZREAKS. PMA
ZRPDIM. FTN
C1INs. PLP
CL1IN. PLP
CHGSPW. PLP
CHGESA. PLP
CINIT. FTN
CMREAS. FTN
CNEQV. PMA
CNFLCT. FTN
CPSs. PLP
CP3=CA. PLP
CPSSCN. PLP
CPSsCU. PLP
CPSsDF. PLP
CPSSIN. PLP
CPSENA. PLP
CPS3RC. PLP
CPS2RG. PLP
CRS$SN. PLP
CF3eST. FLP
ZRDDIM. PMA
PLP

-y

C3STAKRS

. TATES. PLP

- DYNEGE

ZELAY. FMA
CEVCEK. FTI
ZISKIC. PMA
CMGEET. FTN
DOS3UB. FTN
CROPD_. PLP
TRFDTR. PLP
CSKCHN. FMA
DSKEGSV. FTN
SUPLYS. FTN
. PMA
NCRYPTE

RALTE.FTN
RRATN. FTN
XTLCG. FLP

-
=3
-
=
=
-
=
=

. PLP

in column 1 indicates file did net exist at Rev. 18

Routine to read ABBRSW in FIGCOM for ring 3.

Access cominput information in pudcom for ring 3 procedures

ADDS DISKS TO THE SYSTEM DISK TABLE
COLD START INITIALIZATION (PART 1)
INITIALIZES AMLC CONTROLLER(S)
PROCESS INTERNAL COMMAND AMLC
PROCESSES AMLC INPUT AND QUTPUT
ASSIGN DISK AND OTHER PERIPHERAL DEVICES EXCEPT MAGTAPE.
ASSIGN AND UNASSIGN AMLC LINES
Assign magnetic tape drive units.
CLOCK DRIVEN ASR DRIVER (OPTION-A)
Ensures a user has specified amount of cpu time left
CHECK FOR LEGAL PRIMOS DISK NUMBER '
MAP OUT BAD PAGING DEVICE RECORDS.
Back Up Return PB For Ring 3 QUIT FIM.

BUFFERING PACKAGE USED BY MPCDIM.

VERDIM

COLD START INITIALIZATION (PART 2).

Manage Guit Inhibit Counters for all rings.
PAPER TAPE PUNCH DIM
Single Character Command Input
User Version QOf C1lINS
Change the user’s login password.
Change System Administrator.

COLD START CONFIGURATION

OLD STYLE COMMAND LINE PARSER
NAMEQV-COMEQVCOMPARE ASCII NAMES
FOR CONFLICTING PRIMOS PARTITIONS

CHECK
Cross
Cross
Cross
Cross
Cross
Cross
Cross
Crass
Cross
Cross
Cross

Process
Process
Pracess
Process
Process
Process
Process
Process
Process
Process
Process

Signalling
Signalling
Signalling
Signalling
Signalling
Signalling
Signalling
Signalling
Signalling
Signalling
Signalling

CaARD READER DRIVER
Manipulate/examine the calling process’ concealed stack.

Retur™n the standard

(FS)

Send Signal Routine
Clear A User From All ACLs
Control Routine

Clear A User’s USL.
Defer Signal Routine
Initialization Routine
Name Routine

Signal Received Raoutine
Registration Routine
Who Signalled Routine
Status Routine

format date and time.

SET SLOPE OF DELAY CURVE FCR TERMINAL
CHECK EXTERNAL DEVICE ASSIGNMENT.
DISK I/Q FCR Primos.
SET-UP DMG CONTROL BLOCKS AND BUFFERS.

COMMAND LINE PROCESSOR FOR PRMOSA4.

Invoke the DROPDTR command from rving3

Drop the amlc line dtr for & desired user

DISK CONTROLLER CHANNEL PFPROGRAMS.

CHECK FOR SAME PARTITICN OR OVERLAPPING PARTITIONS
SET/RETURN TERMINAL CONFIGURATION WORD

DYNAMIC SEGMENT ALLOCATION DATA BASE

Encrypt 3 user‘s login password.

SET ERASE AND KILL CHARACTERS FOR USER

ERROR RETURN HANDLER FOR PRMOSS4.

Restore the external login/logout praogram.

Page

1

Imz2x of files in PRIMOSIHKS - Primos kernel code. Page

£

k3

PR

b TR S Y

K3

¥ A

F TR S T (N

¥

DO R TR

TAaTALS. PMA
FILFAG. PMA
FIND_SEG. PLP
GATINI.FTN
GCHAR. PMA
ZETSEG. FTN
GETSNS. PLP
GET_SANAME. PLP
GMETRS. PLP
GPGREC. FTN
GPIDIM. PMA
GTWNDG. PMA
HCSs. PMA
=MARS. PMA
INITSU. PLP
INSONS. PLP
I0ASSY. PMA
IOWIRE. PMa
ICWNDW. PMA
JOBSO0. PLP
LGINIS. PLP
LIMITS.FTN
LISTEN. PLP
LMAPS. PMA
LOCKPG. FTN
LCGABT. PLP
LOGEV1L. PMA
LOGEV2. FTN
LOGINS. PLP
LOGOSsS. FTN
LOGCSCP. PLP
LOGGCMT_. PMA
LOGOCM_. PLP
LCGOUT. PLP
LOG_INIT. PLP
LONSC. PLP
LONSCN. PLP
LDNsc.PLP
LCNgR, PLP
_ONSS. PLP
L OVSSW. PLP
LC_CLEAN. PLP

- LO_FATAL. PLP
+ LO_NATCH. PLP

MCVES. PMA
MCVUTU. FTN
MPEDIM. BPMA
MPCDIM. FM&
MEGE. FTN
MmSESST. FTN
MEECOM. FMA
MERTUT. PLP
“TDI&.FNH
NILOIALFRA

FATAL PROCESS ERROR

FILL PAGE WITH ZEROES

Return a vector of free segment numbers

RING O GATE SEGMENT INITIALIZATION.

GET CHAR FRGOM ARRAY, STEP CHAR PTR

ADD A SEGMENT TO A USER

Return a vector of allocated segment numbers

Read SA name from SAD into SUPCOM.

Get metering data of various. sorts =nd flavours.
Allocate a paging device index.

INTERRURPT PROCESS FOR T$GPPI INTERFACE

ROUTINE TO ALLOCATE SEG-0 WINDOWS FOR MAPPED I/0.
FIND GATE ENTRY POQINT FOR POINTER FAULT HANDLER.
SEGMENT 22 MODULE

Initializz? s new user.

INSONS initializes static on unit lists

Iocas call for system consale.

Wire/unwire pages for performing I/0.

Open mapped 1/0 windows.

Accesses on Batch queue control file.

Turn on and off 0SS and network logging.

SET/READ CPU AND LOGIN TIME LIMITS.

Ring Zero (logged out) Listener.

SEGMENT 33 MODULE

WIRE AN AREA OF THE VIRTUAL MEMORY.

Handle Logout Process Aborts (forced and timeouts).
FIRST-LEVEL EVENT LOGGING.

SECOND-LEVEL EVENT LOGGER

Ring zetro LOGIN command processorT.

SUBROUTINE TO LOG OUT A USER OR USERS

Logged out command processor

Logged out command table.

Decide whether command is a valid logged out command.
Logout interface (r3 to rQ) and message sender.
Reset parameters after logout or before login.
Closes a3 user’s logout notification message queue.
Logout Notification Instant Notify Control Routine.
Logout Notification Receiver Message Gueue QOpener
Logout Notification Message Receive Module

Logout Notification Phantom Message Send Module
Routine to read LOGOVR in FIGCOM for ting 3

Clean up after external logout or login error.

Mzin logout processor, called by LOGQUT and FATALS.
Unhaeh and close all attach points during logout.
LOCK AND MAP (AND UNLOCK) USER BUFFERS INTO SEGMENT O
RCUTINES TO FIND SCW AND FPAGE MAP.

=

MAPS A SEGMENT ALREADY DEFINED IN DTAR O TO ANOTHER SEGMENT '

HANDLE MESSAGE COMMAND.

SETS MSG RCVY STATE FOR USER

HENMDLE 1 MINUTE PROCESS ABORT.

DATA MOVEMENT SUBRCUTINES.

MCOVE WORDS FROM ONE USER’S VIR. ADDR SPACE TO ANOQTHER USER”
DRIVES LINE-PRINTER, CARD-READER, CARD-PUNCH VIA MPC®.
DRIVES LINE-PRINTER, CARD-READER, CARD-PUNCH VIA MPC.
Send a message to a user on an arbitrary node

RETURN MSG STATUS TO CALLER

MESSAGE COMMCN

Mcesage facility —-— output message to user.

CEIVES MAG-TAPE VIA MPC.

LOCHING RCOUTINES FOR PRIMGS

+

NLKCCOM. FMA
MLOGIN, PLP
ZERRTN. FTN
CRGO. PMA

FAECRT. FTN
FAGEFS. PLP
PAGINI. FTN
FAGTUR. FTN
PEDIOS. PMA
PBHSON. PLP
PBTABL. PMaA
SCBINI. FTN

PCIPTR_. PLP

FGFETK. PMA

FHLOGIN. PLP

PHNTM$. FTN

FHTTYREQ. PLP

PMSGs. FTN
PRERR. FTN
ERANSST. FTN
FTRAP. FTN
PTRDIM. FTN
QUTABT. PLP
QAUTRET. PLP
FQEASE. PMA
RCFALT. PMA
ROUII. PMA
RSCALL. PMA
REMLIS. FTN
REPLYS. FTN
EMEGDS. FTN
RTIMES. PMA
RTMSEG. PMA
RTNEGL. N
SANAMS. PLP
ECHAR. PFMA
SCHED. PMA
EZG0. FMA

SEGL4. PMA

SEGS. PMA

SEGS. PMA
S=EACSE. FTN
TEMECA. PLP
Z=sll. PLP
eTR, FLP
. FLP
£CP. PLP
=04, PLP
ST. FLF
TN. PLP
TE.FLF
SEreTW. FLR
TEMsWT. PLS
SEMUTL. FLF
SETMVRA. PLP
TEMVGER. FLR

SZMVGES. PLP

-y -

in PRIMOS:

KE - Primos kernel code.

NON-WIRED COMMON
Mz2in login routine for Normal users.
QLD-STYLE ERROR HANDLING

SETS LOADER WDNO TO ZEROQ

HAMDLE PROCESS ABORT CONDITIONS (NEE SCHED)

Page

(to)/from the file system (104Qwd-record devices).

PRIMOS PAGING MECHANISM COLD START INITIALIZATION.

TURN PAGE(S)
PAPER TAPE READER,

IN RESPONSE TO A PAGE FAULT.

PUNCH, PRINTER I/0 RELATED ROUTINES

PB Histogram Facility Startup/Access entries.
Data area for PB Histogram.

PCB INITIALIZATION FOR COLD START.

Return ptr to a specified user’s PCB. "’
PUDCOM AND PAGE FAULT STACK FOR USER 1.

Log in a phantom user.

START UP PHANTOM USER

(SVC AND DOSSUBR COMMAND)

Force a phantoem to log out after an illegal TTY request.
PRINT INTER USER MESSAGE.

PRINT NAME AND/OR MESSAGE FROM USER’S ERRVEC

PRINT SYSTEM STATUS ON USER TERMINAL.

RESTRICTED MODE TRAP HANDLER

PAFMER TAPE READER DIM

Handle QUIT Process aborts for the current process.
Reset Ring O QUIT Enable Mechanism.

GET A POINTER TO THE FIRST FRAME ON THE RING O STACK

RING O FAULT HANDLERS,
SPECIAL (QUICK,

RING O UTILITY SUBRS.

SMALL STACK FRAME) UII F.I.M. FOR RING O.

CALLS FROM RING O TO RING 3 ENVIRONMENT.

Process the REMLIN caommand.

Operator/user communication facility.

RETURNS CONTENTS OF PER USER MSG BUFFER TO CALLER.

Return real=time as 48 bit value in PIC counts

INTERLUDE TO RTNSG1. :

Returns one segment or all segments in a unser’s process.
Return the name of the System Administrater

STCRE CHAR INTO ARRAY,

STEP CHAR PTR

PRIMDS 4 SCHEDULING ROUTINES
SECGMENT O MODULE
Seament 14 module
SEGMENT 4 MODULE
SEGMENT 5 —- SUPERVISOR DYNAMIC LINK TABLE (GATE SEGMENT)
SUBRCUTINE TQ SET

Nzmed
Named
Nazmed
Memed
Mamed

iamed

1
by

i

\
23
ki)

P

i
h}
5
CRE B 7 IO v B P 11

£
)
2
[W & WY N WY = WY (W o T % N &

.7
[
3

[T o)
3335
[t

X I

T OO W
2] 3

PO I A

BARUEN
n' n

:'*

(1

ssmaphore -
semaphore -
semaghore -
maphore -
gmaphore -
gmaphore -
semaphere -
semaphore -
semaphore -
semaphore -
semaphore -
semaphore -
semaphorTe =
semaphore -
semaphore -

1

)
I(l

Mmomown

SEGMENT ACCESS

close all semaphaores at LCGQUT time.
close an apen semaphore.

drain a semaphore.

nctify a semaphore.

cpen a semaphore associated with filename.
czen and initialize a semaphore.

report status of semaphores.

set & timer for a semaphore.

test value of a semaphore.

wait on a semaphore and timer.

to wait on a semaphorea.

utility routines

add a process to a virtual sem queue.
remove a random process from a sem VGQ.
remove top process from virtual sem que.

A SIUNLQCK PPOC'SS TO MASTER CPU.
T“N DISK LOCALLY AND REMOTELY.
.:v!L SHARED LIBRARY

(RESTRICTED TO USER <{SUSR2)

:“l

X8

dar of fil

SHUTCN. FTN
SIDEGT. PLP
SMSGs. FTN

SOROs. PLF

SPAWNS. PLP
SRPHAN. PLP
SRWREC. FTN

* STKINI.FTN

STNQU. PMA
SUPSTK. PMA
SVCALS. PMA
TsAMLC. PLP
TECMPC. FTN
TSGPPI. PLP
T£GS. PMA
TsLMPC. FTN
T3MG. PMA

TSPMPC. FTN

TETM. PMA

TSVG. FTN

TAS. FTN

TDUMPC. PMA
TFLADJ. PLP
TFLIOS. FMA
TIsMSG. PLP
TIMDAT. PMA
TMAIN. PMA
TPSCON. PLP

" TP$DIS. PLP

TRIOS. FTN
TTYSIN. PLP
TTYSRS. FTN
TTYPER. PMA
TUTILS. PMA
UIDSBT. PLP
UIDsCH. PLP

ULGOKRG. FTN -

UNGSGT. PLP
USERS. FTN
USNMTS. PLP
JSRASS. FTN
UTILS, PMA
UTYFES. PLP
NVERDIM. PMA

WAITIM. PMa

- WaRMST. PMaA

WIRSTA. FTN
“RLS. PLF

Ciempga T e
NEMABT.FTHN

PRIMOS:KS -~ Primos kernel code. Page

SHUTDOWN COMMAND PROCESSING FOR PRIMOS IV.

Get Spawner’‘s Id

Send 2 message to a user on an arbitrary node.
INVOKES LIST OF RING ZERO STATIC ON-UNITS

Spawn a new process{(some attributes specified by spawner).
Apply suffix search conventions for phantom logins
SYC HANDLER FOR RREC, WREC SVC.

INITIALIZATICON OF RING O STACK SEGMENTS.

SVC-PCL INTERLUDES TO TNOU, TNQUA

UNWIRED RING O STACK FOR USER 1.

MISCELLANEDUS SUPERVISOR ENTRIES.

Raw dats mover for amlc lines.

I/0 TO CARD READER/PUNCH VIA MPC

General purpose parallel interface routine.

DRIVER FOR VECTOR GENERAL GRAPHICS TERMINALS

LINE PRINTER QUTPUT VIA MPC

CRIVER FOR SOC-MEGRAPHIC 7000 INTERFACE

CARD PUNCH 1I/0 VIA MPC |

PRIMOS DIRECT-CALL HANDLER FOR TAG MONITOR
VERSATEC-GQULD PLOTTER I/0

SUBROUTINE TO ATTACH TO A DIRECTORY CHAIN

Define the symbol TDUMPC and cause seg to allocate space.
Adjust size of tfliob buffers

LOGICAL I/0 BUFFERING ROUTINES.

Print connect, cpu, and i/o time utilization.

DATE AND TIME CONVERSION ROUTINES.

CLOCK PROCESS, RING O UTILITY SUBRS.
Terminal-Process connect amlc line

Terminal-Process disconnect for amlc lines

PAGE TURNING INTERLUDE TO DISK 1/0.

Check if there are any characters in input buffer for user.
RESET TTY BUFFERS OF USER PROCESS

TYPERS FOR PRMOS4 ‘

RANDOM SUBRQUTINES

Generate unique id as a bit string.

Generate a unique identifier as a character string.
UMWIRE AN AREA OF THE VIRTUAL MEMORY.

Get the id’s associated with this user.

Retreive ™ing0 data.

Unzssign magnetic tape drive units.

Process the USRASR command.

UTILITY SUBROUTINES FOR FORTRAN PRCGRAMS.

Finctign €5 return type of user (nermal, remcte, phantaom)
PRTIMOT 4 DRIVER FOR SQC INTERFACE

WaiIT WITH PROCESS EXCHANGE INHIBITTED.

IS A WaRM STARTABLE HALT ROUTINE.

Frocedure to wire the page fault stack for = process
Gat st™ %o S0U lists.

HolIDLE WARM START PROCEES ABORT.

ingex of files

in PRIMQOS.IFS - Primos +file system.

Page .

Index of #iles in PRIMOSLHFS - Primos file system.

l*‘

R *k:# %

4"\.&A"(fi(Af*‘(2}*;{&:“,"'{2‘(.".(1':(:‘('.((*#‘:(*2{(

%

%*

b

B

vt

ACSCAT. PLP
ACSDFT. PLP
ACSLST. PLP
ACSRVT. PLP
ACSSET. PLP
ACC_CHK. PLP
ACDECODE. PLP
ACENCODE. PLP

ACLSEG. PMA

AC_CLEAN. PLP
AC_DELPA. PLP
AC_NEWPA. PLP
ADD_ENT. PLP
ADD_REC. PLP
ALC_REC. PLP
ATS. PLP
ATSABS. FLP
ATSANY. PLP
ATSHOM. PLP
ATSOR. PLP
ATSREL. PLP
ATCHSS. PLP
ATLIST. PLP
AT_ADREM. PLP
AT_CLEAN. PLP
AT_UNREM. PLP

AT_VALPAR. PLP

EENSHT. PLP
CALACS. PLP
CALACS. PLP
CATSDL. PLP
CLOSE. FTN
CNAMSS. PLP
COSGET. FTN
COMISS. FTN
coMOgs. FTN
COPY_AP. PLP
CCPY_UTE. PLP
CREASS. PLP
DEL_ENT. PLP
DIRERD. PLP
EMPTY_CK. PLP

- INTINDIR. PLP

+ FIND_E
~ TIND_HCLE. PLP

ZRRLOM. FMA
ZRRFRS. FTN
=ILsDL. PLP
NT. PLP

SORCEW. FTN

- FREE_REC. PLP
. FSAHSH. PLP

TTHASH. PMA
FEUHSH. FLP
SETDVS. PLF
SET *"“'.PLD

R Y- P 8

in column 1 indicates file did not exist at Rev. 18

Place an object into an accecss category.

Protect an object with default access rights.
Return the contents of an ACL in leogical format.
Revert an ACL directory teo passuord protection.
Create an ACL.

Handle access checking for access—setting routines.
Decode a physical ACL entry into a lagical one.

Encode logical <id>:<access> pair into physical ACL entry.

ACL system databases.

Common cleanup for ACL gates.

Delete a priority ACL for a specified logical device.
Add a new priority ACL to the specified LDEV.

Add a new entry to a directory.

Extend a file.)

Allocate record(s) for new directory entry.

Attach to the specified pathname.

Attach to a top—level directory on a specified partition.
Do an attach scan. '
et current attach point to be same as home.

Set home and/or current attach points to be same as initial

Attach relative to the current attach point.
Writearound for new attach modules.

Do a local attach scan on a specified list of disks.
Sat unit table entry for attach point just gone remote.
Common cleanup for attach modules.

Invalidate. remota attach point(s).

Validate key and directory name for ATS routines.
Handle a unit on a device which has been shut down.
Calculate accesses available on a named object.
Calculate accesses. :

Delete an access categoTy.

CLOSE A FILE BY NAME OR UNIT

Change the name of a file system object.

Get ring0 data for invoking CLOSE and COMOUTPUT caommands.
COMINP-UT COMMAND AND SVC HANDLING

SWITCH COMMAND OUTPUT ON/OFF

Copy one attach point to another(handles hashing and quotas)

Caopy one unit table entry to another.

Crecte a directory in the current directory.

Remove a directory entry.

Read physical directory entries. -

Make sure the object whose BRA is passed may be deleted.
Attach to directary, return entry name in it

STD. SYZTEM ERROR MESSAGE TABLE.

FRINT SYSTEM ERROR MESSAGE

Delete a file or directery.

Find entry in directory specified by the unit table entry.
Find first available hole of required size in a directory.

FORCES DISK UPDATE.
Free a file’s records when 1t is deleted.

Add unit table entry to file system and/or ACL hash threads.

Calculate the hash index for the unit table

Remove unit table entry from FS and/or ACL hash threads.
Return logical device number given unit number.

Returns a user’s complete ID (user id plus group ids).
SUMCTION TO RETURN POINTER TO FREE QUOTA BLOCK.

_.ndex of #files in PRIMOSIFS - Primos file system.

%

%

L

k3

I

3¢

!

{
R R R

%

!
@ {0 A

GETREC. FTN
GETUN. PLP

GET_LDEV. PLP

GPAS3s. PLP
GPATHs. PLP
GPDEVS. PLP
GSGsRA. FTN
GTUTRL. FTN
GUFsSRA. PLP
ISACLsS. PLP
KICKGB. PLP
LDISKs. PLP
LDSKUS. PLP
LISTF. FTN

LISTFT. FTN
LOCATE. PMA
LUDSKsS. PLP
MZ2SMAS. FTN
MARKUT. FTN

MKUTERTR. PLP

MOVNAM. FMA
NAMEGS. FTN
NEWDAM. FTN

NEW ACL.PLP
OPEN_CHK. PLP

PASDEL. PLP
PKELDV. FTN
PRWF$S. FTN
GEREAD. PLP
GSSET. PLP

AQsTRWK. PLP
QsUPDT. FTN

R/W_ENT. PLP

RAZPTH. FTN
RDENSES. PLP

RDLINS. FTN .

RDLNSX. PMA
RESTSS. FTN
RTNGB. FTN

RTNREC. FTN
RTNUN. PLP

RTUTBL. FTN
RUKIDS. PLP
FWLKCK. FTN
SATRES. PLP

'‘ESS. FTN

_DTM. PLP
_CR.PLP

RURURONONITETY
-4 -1 -3

mmarimomae

SGDsDL. PLP
SGLORss. FTN
SPASEs. PLP
SRCH33. FTN
SRCHSR. FTN

SYS_OFEN. PLP

TEXTCK. PMA
TRUNCS. FTN

T_GMOD. PLP

Page 2

GET A RECORD FRCM DISK RAT. -
Allocate a unit table entry from the system—-wide pool.

Convert partition name to logical device number.

Read passwords on named directaory. ‘ -~
Return a pathname given a unit or attach point. t
Return a physical device number given logical device number
Return segdir entry number by matching BRA in record LOCATEd b
Allocate a unit table. -
Get dir entry from BRA in dir defined by LOCATE bu#f.
Indicates whether specified unit is an ACL directory.
Increment quota block use count for a subtree. -
Return a list of disk names.

List all users using a given ldev. .

LIST DIRECTCRY DRIVER

LOAD A BUFFER WITH LISTF TEXT

PRIMOS FILE SYSTEM ASSOCIATIVE BUFFERING.

Return a list of all disks in use by a given user.

Return Master-to-Slave mapping for remote file unit. o
MARKS UNIT TABLE ENTRIES ON A DISK ERROR.

Make a pointer to the unit table entry of the given unit.
Move names between two fields .

COMPARE TWO NAMES FOR EQUIV (RET TRUE IF SAME)

ADD RECORD TO NEW PARTITION DAM FILE. -
Process addition of a3 new ACL to a directory.

Check to see whether ot not a file unit is open. ,
Delete a priority ACL. ' »
Convert disk pack name, node number in to an LDEV

READ, WRITE, POSITION SAM OR DAM FILES -
Read quota information for current directory.
Set quota fields on specified directory.
Count records used in a subtree.

UPDATES DIRECTORY HEADERS WITH QUOTA DATA :
Read or write the directory entry at the specified position..
Return PATHNAME : <disk_name>tree_name based on BRA and LDEV.
Writearound for RDEN$$ gate. o
READ A LINE FROM A FILE.

SUBRCOUTINE TO EXPAND LINE READ FROM FILE.

RESTORE SAVED MEMORY IMAGE FILE.

SUBROUTINE TO RETURN QUQATA BLQOCK.

RETURN A RECORD TO DISK RAT.

Return & unit table entry to the global pool.

Return a user unit table to the system free pool.

Revokes indices AGTIDX into AGT for given user. -
CHECK UNIT TABLES FOR CONFLICT WITH SPECIFIED FILZ

Sat attributes for specified file.

Save memory image

USER COMMON AND FILE UNIT TABLES.

NAMED SEMAFHORE DATA AREA

Adds a group into the specified user’s Active Group List.
Set date/time modified of file entry to current date/time. 4
Set initial attach point forigin).

Set modified bit in a quota directory blaock.

Delete a segment directory entry.

MANIPULATE SEGMENT DIRECTORY (OPEN STATUS DEMANDED):

Set passwords con current directory.

Open,close,delete, change sccess.check existence of files.

FAM Il FS CODE FOR OPENM-CLOSE-DELETE FILE SYSTEM PRIMITIVE
Cpen a3 directory on the system unit or some other unit.

TESTS FOR A VALID 6-CHARACTER FILE MNAME

TRUNCATE FILES.

“ifncex of files in PRIMOSLFS - Primas file system. Page.

TRWRAT. FTN STARTUP/SHUTDN FILE DEVICE
+ UKCRKRGB. FLP Decrement quota block use count for a subtree.
= UTALOC. FTN Initial set up af unit table and other units for a user.
+ UTDALC. FTN Initial set up of unit table and other units for a user.
= UTESEG. PMA - Unit table entries and common area.
*+ VINITS. PLP Subroutine to initiate a VMFA segment.

WTLINS. FTN WRITE A LINE TO A FILE.

WTLNSC. PMA SUBROUTINE TO COMPRESS LINE WRITTEN TO FILE.

ndax

[

oA %

e

Ok &

%

[

+« LELZI=S

nday of

$CALLS. FTN
ABBREV. PLP
AB_FILE_. PLP
AB_GET_. PLP
AB_PCS_. PLP
ACSCHG. PLP
ACSLIK. PLP
ACSPAR. PLP
ADD_REMID_. PLP
ALOCES. PMA
APPEND. PMA
APSFX$. PLP
AREA_MAN. PLP
ASTRSKS. PLP
ATCH_. PLP
EINSSR. PLP
BINARY_. PLP
CHSFX1. PMA
CHSOC2. PMA
CHANGE_PW. PLP
LSGET. PLP
CLSPAR. PLP
CLSPIX.PLP
CLOSE_. PLP
CLRLV_. PLP
CNAME_. PLP
CNINS. PLP
CNSIGS. PLP
COMANL. PLP
COMLVS. FLP
coMOs$. PLP

'COND_CALLS. PMA

CRPs. PLP
CP_ITER. PLP
CRAWL _. PLP
CREATE_. PLP
CRFIM_. PMA
DEsMOD. PLP
DBEG_. PLP
OCOD_ITR. PLP
DEF ”V.PLP
DELAY_. PLP
CELETE_WVaAR. PLP
YRSy . PLP
TETIGET. FLP
CF_UNIT_. PLP
SI:LV_.PLP
UMPS_. PLP
EDIT_ACC_.PLF
ZEDIT_CL. PMA
SENDRPAGE_. PLP

=~ ZTGUALS. PLP

ZQUALSP. PLP
ERRSET. PMA
ZXIT. PLP

_. PMA

SATAL

files in PRIMOSR3S - Primos

Ring 3 code. Page

of files in PRIMOS>R3S ~ Primes Ring 3 code.

in column 1 indicates file did not exist at Rev. 18

Interludes to old_style calls

This is the internal command for abbreviations.

This is the routine to handle file i/0 for abbreviations.
Get next whole token from command line, processing abbrevs.
This is the routine to expand abbrevs.

Modifies the contents of an existing ACL

Set ACL. on one file to be like that on another.

Parse an access control list.

Process the add_remocte_id command.

ALLOCATE STORAGE ON THE STACK (FREE ONLY BY PRTN).

APPEND -—= CONCATENTATE TO VARING STRING

Append suffix to a pathname according to standards

This is a general PL/I Area Manager.

* Command 4

Invoke the ATTCH command from ring3.

Do 3 binary search using pointers in a single segment.
BINARY Command.

CHARACTER TO FIXED BIN(1S,0) AND FIXED BIN(31,0) CONVERTERS.

CHARACTER (QCTAL) TO FIXED BIN(31,0) CONVERTER.

Command to allow a user to change his/her login password.
Gets A Command Line Intoc User’s Buffer

Parse string according to basic "command line"” rules.
Parse command line according to a picture specifier.
Check cmdl syntax and call SRCH$% to cloce file units.
Clear the existing level.

Invoke the CNAME command from RING3...via GATE CNAMSS,
Reads A Number Of Characters From Command Input Device
Set continue_sw on in most recent fault frame.
Writearound To CLS$GET.

Call a new command level.

COMOUTPUT Command.

ADDITIONAL ENTRY POINTS FOR THE CONDITION MECHANISM.
Invoke the user’s currently specified command processor.
Command language iteration processor.

Perform crawlout from inner ring. rejoin signls or fim_,
Invoke the CREATE cammand from RING3...via GATE CREASS.
CRAWLOUT FAULT INTERCEPTOR RE-SIGNL$ IN THE OUTER RING.
Set/reset debugger—-mode switch and static on-unit.
Internal command writearound to the DBG external command.
Decode command language extended feature taoken Type.
Cemmand to define global variables file to command env.
Invoke the CELAY command from ring3.

Delete global variables

Process thas DELSEG command.

Get msg from a Disgnostic Error Table.

System Default On=-Unit (includes PL/I runtime supportl).
Display the current contents of a user’s level.

Dump stack in a pretty format.

Process the edit_access command.

EDIT COMMAND LINE TO REMQVE EXPLICIT NULL STRINGS.

PL/I runtime support for ENDPAGE conditicn

Generate name from an obJject (source) name and a pattern.
Append pathname generated from equalname to a g1ven string.
ERRSET INTERLUDE FOR SEGMENTED MODE

Exit from Static Made, and rTeturn to Recursive Made.
GENERATE FATAL PROCESS ERRQR.

_Index of

);t‘

EORE O

E I

o

F

o~

FILLSA.

FNCHKS.
FNDCF$.
FNONUS.
GATEQU.
GET_FR.
GS_FAC.
GTSPAR.
GVSGET.
GVSSET.

ICMTB
IDCHKS.
INFIM
INITS3.
INITSP.
INPUTS.
INTCM

files

FTN
SINDPROC. PMA
FIND_UID. PLP

PLP
PLP
PLP
PMA
PMA
PMA
PLP
PLP

PLP
HASH_UID. PLP
. PMA

PLP

_. PMA

PLP
PLP
PLP

_ PLP
INVKSM_. PLP

I0AS. PMA

I0AFMS.
I10AGAS.
I0AGDS.

ITR_WLDC. PLP
ITR_WLDT. PLP

LIBTBL.

LISTEN_. PLP

_ PLP
LIST_ACL. PLP

LIST_GROUP. PLP
LIST_PA_. PLP

LIST_QUGTA. PLP
LIST_REMID_.
LIST_VAR. PLP
_.PLP
LOGQUT_. PLP

LIST_AC

LOGIN

FTN
PMA
PMA
PMA

c

LCNs. PLP

MISSIN.
MKCNsSF
MKONUS.
MKEONS.
OVWDS.
NEWLVS.
CCALLS.
CNDIZP
SPEN_. P
CRIGIN

S oPL1sSnL.

Pmes, PLP
PRERRS.
PREVES
FRTN_
PWCHKS.
G$ESIZE.
GUTFIM.
~rEmliC.

PMA

. BLP

PMA
RLP
PMA
PLP
FTN

. PLP

LP

_. PLP
PSEPAGE. PLP
PHANTOMS. PL

PLP

PLP

PLP

in PRIMOS:R3S - Primas Ring 3 code. Page.

FILL ARRAY WITH LITERAL

FIND NAME AND ADDR FOR DF_UNIT_ PL/I CCNDITION MESSAGES
Find a <user_id> in a validation file.

Check the string passed for wvalidity as a file system name.
Find most recent condition frame.

Find aonunit in specified stack frame.

EQU’S INTO SEGS (GATE SEGMENT)

Get field address registers and floating point registers
GET/SET FP ACCUMULATOR FROM ‘A FAULT FRAME REGISTER BLOCK.
Parse string according to four types af characters.

Get the value of a global variable

Set the value of a global variable

Hash a <user_id>.

INTERNAL (OLD AND NEW) COMMAND TABLE.

Check a (user or project) id for legality

CRAWLOUT "FIM" FOR INIT$3 (INITIALIZE RING 3 ENVIRONMENT).
Initialize ring 3 environment

Invoke initial routine (cominput, CPL., EPF, etc.) at login
INPUT Command.

Fetch local command table entry if any, else check system’s t=

Invoke (or restore) static mode program image.

INTERLUDE TO CALL THE 10As FORMATTER. (IDAs, IDASRS, IOASER). —

FORMATTING PACKAGE FOR I0AS.

IDAGAS~ GET ARGUMENT ROUTINE FCOR ICQAFMS

This module does an unsigned long divide.

Perform command language Wildcard Iteration.

Perform command language Treewalk Iteration.

LIBRARY TABLES.

Primos command loop standard Listener module.

Process the list_access command.

Print the contents of an ACL on the terminal.

List the user’s active and/or inactive groups.

Process the List_priority_access command

Process the LIST_QUOTA command.

List one or all ID s used by this user on remote nodes.
List global variables and their values.

Handle LOGIN command from Ting 3 (user already logged in).
Logout command processor.

Logout Netification Command

HAMDLE MISSING ARGS IN V-MODE.

FTN interface to make an on-unit in caller s frame.
MAKE AN ON-UNIT IN THE CALLER’S STACK FRAME.

Make a static on-unit for either ring.

DAaTA MOVEMENT SUBROUTINES.

Module to create a new level within the command environment
CLD PRIMOS SUBROUTINE CALLS

Display onunit data in a specific frame.

CRPEN Command.

Command to return to initisl attach point.

Write end of page text to a PL/I file(PL/I runtime suppeTt).

PHANTOM Command.

Nenlccal goto praocecssor.

Post Martem command.

PRERR Command

Find previous stack frame, given ptr te current.

VARIOUS FLAVOURS OF "RETURNY" FOR USE BY THE UNWIND_ ROUTINE.

Check & password for legality.

Return tree uced for a diresctory subtree.

Ring 3 GQUIT FIM=-Invoke QUIT Condition In Ring 3.
EFF linkage allocation routine

f

Index of files in PRIMOSIR3S - Primos Ring 3 code. ’ Page 3

— % R$CPF.PLP Get command processor flags €from an epf. -
%+ R$DEL. PLP Delete an epf program.
RSINFO. PLP return info about a desired epf file. -

_ ¥ RSINIT.PLP EPF linkage initialization routine

+ RSINVK, PLP Routine to start the execution of an EPF

*+ RSMAP. PLP EPF file mapping routine

+ RSRELC. PLP ERP: Epf Relative Pointer relocation routine

RSRUN. PLP Run an EPF : Executable Program Format file -
R3FALT. PMA RING 3 FAULT CATCHER.) ;
RAISE_. PLP Search stack for onunit for condition, and invoke it. B

_ RDTKss. PLP Writearound to rdtk$p for use by static mode programs. R
RDTKSP. FTN READ NEXT TOKEN FROM COMMAND LINE
RDTKNS. FTN USER CALLABLE ENTRY FOR RDTKss (OLD STYLE)

RDY_. FLP Set user’s ready message mode(s).

— READYsS. PLP Print “ready" message on terminal.

REENT_. PLP Signal the condition REENTER$ for subsystem reentry. o
+ REM_PA_. PLP Process the Remove_priority_access command.

- RESTO_.PLP Internal command “"restore”: lcad memory image of SM program. -
RESUSS. PMA WRITEARQUND FOR RESU$$ CALL.

RLSLVsS. PLP - Module to restore a level within the command environment
RLSTK_. PLP Generate the Listener Order "release stack™.

~ RMODE_. PLP Return into Static Mode program, as defined by an "rvec”.
RSTERM. PLP Command interface to reset terminal i/o buffer(s).

RVONUS. PLP Revert an onunit in caller’s or given activation.

— # RVEONS. PLP Remove static on-unit. 1
SAVEsS. PLP Save a portion of memory as a file. ,
SETRCS. PLP Set Static Mode errar code.)
SETREG. PMA SETREG, GETREG —--~ SET, RETRIEVE REGS IN SVEC

+ SET_ACC_.PLP Process the set_access command.
= SET_PA_.PLP Process the Set_priority_access caommand.) =i
+ SET_QUOTA. PLP Command to change quota or create a quota directory.

— SET_VAR. PLP Internal command equivalent of %set_var CPL directive
SIGNLS. PLP Signal a specific condition. J
SNAPS$3. PMA FIND RING 3 ENTRY POINT FOR POINTER FAULT HANDLER.

SOR3s. PLP Invoke ring 3 static on-unit.

SOUR3_. PLP Find static on-unit list for ring 3.
SRSFXs. PLP Perform tree search, with or without suffix standard -
SRVEC_. PLP Set Static Mode "rvec" from a fault frame.

— S3$ERR. PLP Used by subsystems when they have run into an error.

START_. PLP Internal command "stavt": Testart recursive or static made.
STD$CP. PLP Standard Command Processor.

STK_EX. PLP Handle auto stack extension.

« STRsAL. PLP Temporary storage allocation routine)

+ STR3FR. PLP Temporary storage free routine
TALCC. PLP Allocate large storage area

— TEMP2A. FTN OPEN UNIQUE TEMPORARY FILE ON CURRENT UFD

+ TEXTOs. PLP Check a character string for validity as a filename.

= TIME_. PLP Process the TIME command.

= THNCHKS. PLP Checks a character string for besing a legal trsename.
TSRC$3. FTN OPENS FILE WITH SPECIFIED TREENAME)
TYRE. PLP Type text at a user’s terminal.
UNWIND_. PLP Prepare the stack for nonlocal-goto-induced unwinding.

- USERSS. PLP USERS Command
VLIST. PMA VLIST
WILDE. PLP Match wildcard name.

XIS, PMA XIS UNIMPLEMENTED INSTRUCTION EMULATQOR

*ie

Index o#f

.
[1{]
b33
[+]
1J

files

files in PRIMOS>CPLS - Primcs Command Procadure

in PRIMOS3CPLS - Primos Command Pracedure

language. Page 1

language.

‘%’ in column 1 indicates file did not exist at Rev. 18

AFTER_AF. PLP
ALLOC_VAR. PLP
ATTRB_AF. PLP
BEFORE_AF. PLP
CALC. PLP
CHSHX2. PMA
CND_INFO_AF. PLP
COM_ABRVY. PLP
CPL. PLP
CPL_. PLP
CPL_ET_. PLP
CV$DGS. PLP
CVSDTB. PLP
CVEFDA. PLP
DATE_AF. PLP
DIRSLS. PLP
DIR_AF. PLP
ENTRY_AF. PLP
EVAL_AF. PLP
EVAL_AN_EXPR. PLP
EVAL_VBL. PLP
EXISTS_AF. PLP
EXTR$A. PLP
EXT_VBL_MAN. PLP
FROM_DECIMAL. PLP
GET_EXPR. PLP
GET_LINE. PLP
GET_REPLY. PLP
GET_TOKEN. PLP
GET_VAR_-AF. PLP
GVPATH_AF. PLP
GV_PTR_. PLP
HEX _AF. PLP
ICPL_. PLP
ID_CHECK. PLP
INDEX_AF. PLP
LENGTH_AF. PLP
MOD_AF. PLP
NULL_AF. PLP
JCTAL_AF. PLP
CFENEB. PLP
CPEN_FILE_AF. PLP
NAME_AF. PLP
SUERY_AF. BLP
SUGTE_. PLP
QUOTE_AF. PLP
READ_FILE_AF. PLP

-'A'P

SESCAN_AF. PLP
SESPONEE_AF. PLP
SEARCH_AF. PLP
SET_A_VAR. PLP
S12Ss3. PLP
SUESTR_AF. PLP
SUBST_AF. PLP
TSST_EGUALS. PLP
TO_HEX_AF. PLP

‘after’ active function faor CPL. —
Allocate an extension area for variables

Get certain file attributes (command function).

‘before’ active function for CPL.

CALC. PLP, PRIMOS>CPLS, PRIMOS GRQUP, 01/07/82

CHARACTER (HEX) TO FIXED BIN(31,0) CONVERTER.

condition_info a. f.: retrieve selection cond. info.

Interlude to invoke command abbreviation processar. -
Interface CPL interpreter to command level.

Command Procedure Language Interpreter.

Return pointer to CPL Error Table pathname.

Convert FS format date/time to quadseconds since Janl 12901.
Convert Date from ASCII to Binary (file system) format.
Standard fs date~time-mod converted to format mm/dd/yy hhmm. t
Date Command (Function). : -
Retrieve info about selected entries in a given directory.
‘dir’ active functian for CPL.

‘entry’ active functiaon for CPL. . '
Active function evaluator for CPL

Evaluate expression containing variables, functions
Evaluate character string containing local/global variables
EXISTS command function for CPL. -
Extract pathname components.

External Variable Manager for Primocs Command Loop.

Convert a decimal integer to an integer in a given base. —_
Accumulate the next expression #raom the current line.
Get a new logical line from file on cpl_unit

Fetch a yes/no/null/next reply from command 1nput stream.
Get next token from CPL program

get_var command function far CPL. .

Return pathname of current global variable file.

Get pointer %to global variable area. —
Convert hexadecimal integer to decimal integer

Invoke CPL interpreter on given file, processing suffix.

Check a string for valid command var identifier format.

‘index’ active function for CPL

‘length’ active function for CPL.

Implement mod function for CPL.

‘null’ active funcition for CPL. -
Convert octal integer to decimal integer
Open a branch by tree name (nonstandard)
open_+file command function for CPL.

Pathname command function for CPL.

Guery command function - get yes/no answer.
Perform a quote operation on a3 given string.
Perform quote operstion for CPL active function. -
read_file command function for CPL.

Reccan command function for CPL.

Response command function - get textual answer.

‘search’ active function for CPL

Set local and. global user variables

Return the size of a branch in WORDS.

‘substr’ active function faor CPL -
Substitute command (function).

Test expression equality for CPL.

Convert a decimal integer to a hexadecimal integer.

™

dex of files in PRIMOSHCPLS - Primos Command Procedure language. Page 2

TO_OCTAL_AF. PLP Convert a decimal integer to a occtal integer.
TRANSLATE_AF. PLP ‘translate’ active function for CPL.

TRIM_AF. PLP ‘¢rim’ active function for CPL.

UNQUOTE_AF. PLP Perform unquote active function for CPL.

YBL_MAN. PLP Variable manager for dynamically allacated string vars.
VERIFY_AF. PLP ‘verify’ active function for CPL

WILD_AF. PLP "wild" command functiaon, get list of files by wildcard name.

WRITE_FILE_AF.PLP’ ‘write_file function for CPL.

P

)

-

" Index

[N

£

X

PLP
PLP
PLP
PLP
PLP
PMA
FTN
FTN

&L CHCB.
ALCMYL.
ALCNAM.
ALCRNG.
ALCSLC.
COMDEF.
FAMMSG.
FAaMPRC.
FCPYRG. PMA
FNEIDs. PLP
GETVCIX. PLP
INIPNC. FTN
LKFA. PMA
LKTA. PMA
NeL0GO. FTN
NBKLDEF. PM&
NBKINI. FTN
NCMSUB. FTN
NETABT. FTN
NETCMS. FTN
NETODMP. FMA
NETDWN. PLP
NETEV1. PMA
NETEV2. FTN
NETFIG. FTN
NETMAP. PLP
NETGN. PLP
NETPRG. PLP
NETRTN. PLP
NETSGES. RHMA
NETUTU. PLP
NNITL. PMA
NPXPRC. FTN
NTINIT. FTN
NTWMAB. PLP
CLDFAaM. FTN
CLDLSF. FTN
PNCDIM. PMA
PRFTMR. FTN
. PMA
CFTN

. PLP
.PLF

n
p))

0
r4>
arr
0 X

.2
oro

Y N VI 1 e | B Y B 1 B

w A

AT G e i 0

)di%lji?%:ﬂtjflhlﬂA
il
2

SND.'TN

I
=
O m
-

— N0

£iles in PRIMCSH NS - Primos network cade.

in column 1

af files in PRIMOSHNS - Primos network code

indicates file did not exist at Rev. 18

Allocate % initialize (to all zeros) a.hagst control block
Alloczte % initialize my node’s line definition table entry
Allocate % initialize (to all zeros) a name table entry
Allocate % initialize & ring line definition table entry

Allocate % initialize an SMLC line definition table entrmy
NETWORK COMMON DEFIMITIONS

INVOKE FAM IN THIS PROCESS

PRIVILEGED SVC FOR FaAaM

ARGUMENT COPYING AND RETURNING FOR FAMMSG

Search the DIFNS id structure for the id for a given node.
GETS AN INDEX INTO THE VCDATA FOR THIS USER

INITIALIZE RING, COLD START TIMER AND LINE TIMERS

LOCKFA

LOCKTA

TELL NETWORK TO SEND FORCED LOGOUT MESSAGE TO REMOTE USER .
NETWORK NEW BLOCK ARND QUEUE DEFINITIONS

ROUTIME TO INITIALIZE NETWORK BLOCKS AND QUEUES

Initizctes a HDX Primenet link.

Main "work" loop for network process

Handles ‘NET’ cammands for HDX operator interface.

USED TO TRACE ILLQOGICAL SYSTEM FAILURES DURING PRIMOS OPERATION _

Shuts down networks
FIRST-LEVEL EVENT LOGGER
SECOND~LEVEL EVENT LOGGER
NETWCRK COLD START CONFIGURATION MODULE
Subroutine to manage segment mapping for networks
Turn network on

NETWORK PROCESS RUNNING IN RING O

Subroutine to invalidate network cache on RTNSEG -
COMMON DEFINITION FOR NETWORK MAPPED DATA MOVEMENT SUBROUTINES
Subroutine to copy from Networks to user space

ALl THAT'’S LEFT HERE IS A HALT (FOR FORTRAN STOPS)
THE RING O CaALLS TO SUPPORT NPX (ANALOGOUS TO FAMSVC,
Initialize the netuwork

Warm start code executed by the network process
CALLED BY R$CALL TO INVOKE FAM 1.

PROCESS ‘LISTF’ COMMAND FOR DOSSUB

HARDWARE INTERFACE FOR PRIMENET NODE CONTROLLER
TIMER FOR RING RETWORK PROTOCOL

Indicate protocol tequired and notify network server pracess
LEVEL SMLC PROTCCOL FOR NETWORK, X.25

ALLOCATES A VCIX SLOT FOR NODE XRNODE

USER CALLABLE INTERFACE TO NPX TO MAKE REMCOTE PROCEDURE CALLS
CALLED BY LOGABT TO CHECK NPX VIRTUAL CIRCUIT.

CECREMENTS & PERNODE ALLOCATION COUNT FOR NPX.

Return information on laocation of a file.

CENY/PERMIT FOR DISKS, CALLED FROM DOSSUB

CONTROL USER PROCESS ON TERMINAL SIDE OF REMOTE LOGIN

LEVEL II PROTOCOL RECEIVE LOGIC FOR RING NETWORK

LEVEL Il PROTOCOL XMIT FOR HIGH SPEED RING NETWORK

SMLC INTERRUPT STATUS HANDLER FOR X. 25 LEVEL 2
TRANSMIT/RECEIVE MESSAGES TO AND FROM SLAVES IN ONE CPERATION.
Subroutine to update.user status words

Subroutine to update user status words

Subroutine to update user status werds

ROUTIME TO ALDD CECLARATION TO DCL LIST

(PCL-ABLE VERSION)

FaMPRC)

‘mdex of files in PRIMOSHNS - Primos network code. Page 2

{SADR. FTN

XEAGFI.
XSCACP.
XECLOK.
X=CLRA.
XsCOPY.
XsCREGQG.
XSFCTY.
X$SFLDS.
XsSGBCD.
XSGETV.
XsSGIVU.
XsGVVC.
{SHDWN.
X3IDNT.
XSIPKT.
XSLINK.
XsL0OOP.

FTh

FTN
FTN
FTN
FTN
FTN
PLP
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN

XSMAP. PMA

ASNORM.
XSNTFY.
XSPRIM.

FTN
FTN
FTN

XSRLG. FTN
XSRLT. FTN

XSREET.
XS$STAT.
ASUSRG.
XsUTIL.
XSXGFI.
X25DEF.

FTN
FTN
FTN

TN
FTN
PMA

XLGCs. FTN

Modules to decode addresses fraom incaming calls -
ROUTINE TO DECLARE INTEREST IN GFI

ROUTINE TO ACCEPT A CALL -
BACKGROUND CLOCK FOR LEVEL 3 X. 25 - SHQULD RUN EVERY 10 SECONDS _
ROUTINE THAT CAN BE USED TO CLEAR ALL CONNECTIONS A USER OWNS
ROUTINE TO COPY PACKET INTO AN UNWIRED BUFFER

PROCESS AN INCOMING CaLL REQUEST

Facilities parsing for call request/incoming call packets -
XSFLDS - Get all of the fields in a CREQ or ACCEPT packet

X$GBCD - ROUTINE TQO COPY BCD DIGIT STRING TO ASCII STRINGS
ROUTINE TO HANDLE QUTPUT PACKETIZING

X$GIVU - ROUTINE TO TRY TO GIVE DATA PACKETS TO USER LEVEL

PASS CONTROL OF A VIRTUAL CIRCUIT TO ANOTHER USER- .
ROUTINE TO SHUTDOWN X. 23 LEVEL 3 FOR A GIVEN HOST

Routine %o build a restart ID packet (rev 17.3+) (”
TAKE INCOMING PACKETS FROM LEVEL II PROTOCOLS .
Links network table entries for HDX on-the-fly configuration.
ROUTINE TO PROCESS PKTS THAT START AND END IN THE SAME MACHINE —
FOINTRS TO IMPORTANT NETWORK STRUCTURES.

DECODE CMND BYTE AND DO ROUTINE WINDOW UPDATES -
WAIT ON AND KICK USER’S NETWAIT SEMAPHORE
NETWORK PRIMITIVES

HANDLE USER SIDE OF REMQTE LOGIN

LOG-THRU MODULEES - TERMINAL SIDE OF REMOTE LOGIN
ALLGW A USER 7O CAUSE A RESET ON ON OF HIS VIRTUAL CIRCUITS -
ROUTINE TO RETURN STATUS INFORMATION TO USER SPACE .
ROUTINE TO PUT VCB IN A USER’S QUEUE OF VCBS -
ALL OF THE NETWORK SOFTWARE UTILITY ROUTINES

MOVE GF1‘S TO AND FROM PACKETS

X. 253 NETWORK COMMON DEFINITIONS (UNMWIRED) —
XLGC$ = GET ALL OF THE FIELDS IN A CONNECT REQUEST PACKET

i
P

on

dezx of files in PRIMOSHIWPXS - Primos Network Process Extension. Page 1

.~Tndex of filec in PRIMOSINPXS - Primos Network Process Extencsion.

’
*

e
¢

/ in column 1

ALLOC. PMA
CALLIT. PMA
CIRLCG. PLP
EXTRAC. PLP
MOVB. PMA
NP XDNT. PMA
RSCVT. PLP
SLAVE. PLP
SLAVER. PLP
SLAVE_CK. PLP
STOPME. FTN

indicates file did not exist at Rev. 18

ALLOCATES SPACE FOR TEMPS ON THE FLY FOR SLAVES

THIS SUBR MAKES A DYNT AND CALLS IT(GIVEN PCL+ARGS).

STUFFS CIRCULAR BUFFER FOR DEBUG OF NPX

EXTRACTS A SPARE DATA FIELD FROM A REQ OR RESP MESSAGE

MOVES N BYTES FRGOM SRC 32 BIT POINTER TO DST POINTER

NPXDNT - THE DYNT TO GET NPXPRC DEFFINED FOR RsCALL

CONVERTS A NODE NAME TO A NODE NUMBER

GIVEN REQUEST MESSAGE, SLAVE CALLS TARGET SUBR., SENDS RESPONSE
ROOT OF ALL SLAVE INVOKATIONS, ACCEPTS CALL,DEFS. 1ST MESS.
Called by DF_UNIT_ to check usr tupe,U$SNPX goto SLAVE_ON_UNIT
PRINTS ERROR AND STOPS NFPX PHANTOM

.
n
>
o
a1
| M
y
[

izs in PRIMOS:CS - Primos synchraonous communications. Page

_ndex of files in PRIMOS>CS - Primos synchronous communications.

‘%’ in column 1 indicates file did not exist at Rev. 18

-

GSCHMTR. PMA
CRFP. FTN
CR@. FTN
DMCDYN. FTN
FLSHFS. FTN
@sALOC. PLP
GsDALC. PLP
GSUBS. PMA
GUEDEF. PMA
SOMAN. FTN
SLABRT. FTN
SLBSMR. FTN
SLCCMP. PMA
SLCDIM. PMA
SLCLDB. FTN
ELCNFG. FTN
SLCTOP. PMA
SLERF. FTN
SLSCH. FTN
SMLCEX. FTN
T$SLCL. FTN

PROTOCOL-SENSITIVE DIM CODE FOR THE ‘BSCMAN‘ AND ‘XBM’ PROCESS.
INTEGER®*2 FUNCTION TQ CREATE A FREE POOL

INTEGER#4 FUNCTION TO CREATE A QUEUE

RESERVES AND FREES DMC CHANNELS DYNAMICALLY FOR THE SLC USERS
SUBROUTINE TQO FLUSH FREE STORE

Perform heap storage allocation for queueing rautines

Perform heap storage deallocation for queueing routines
QUEUEING ROUTINES FOR NETWORK AND COMMUNICATION PRODUCTS
QUEUEING ROUTINES COMMON DEFINITION

i

——

-

ALLOCATES 1-PAGE WINDOWS IN SEG. O FOR COMMUNICATIONS PROCESSES

ABORTS SMLC ACTIVITY FOR A GIVEN LINE

INITIALIZES "BSCMR" WORKSPACE BEFORE A RECEIVE.

UNPACKS SMLC STATUSES TO LINE PAIR BUFFERS HANDLES INT STATUS
DISTRIBUTES SYNCHRONOUS CONTROLLER STATUS - HAS 1/0 CALLS
LOADS DRIVER TABLES FROM A CONTROL BLOCK

CONFIGURES HSSMLC CONTROLLER AND SINGLE-BOARD SUCCESSORS
LOCATES TOP OF HSSMLC DRIVER MODULES

HANDLES SMLC ERROR MESSAGES

SETS UP DMC CHANNELS FOR A LOGICAL SMLC LINE

TRANSFERS SMLC STATUS DATA FROM BASE TO USER LEVEL FOR 5300
CONTROL BLOCK INTERPRETER FOR HSSMLC AND MDLC CONTROLLERS

indax of files

in PRIMOS:RJES -~ Primos Remote Job Entry code.

Page.

--Imdex of files in PRIMOSZRJES - Primos Remote Job Entry code.

A’,*,

*

]

T \

T E EE R R E EE R A EE N

~

1

-

GETCP. PLP
HASP. PLP
HASPCK. PLP
PHDBG. PLP
READQGT. PLP
RJSATT. PLP
RJ$I. PLP
RJUSMSG. PLP
RJsQ. PLP
]RJCDF. PMa
RJCMTR. PLP
RJCPY. PLP
RJDBG. PLP
RJDLIN. PLP
RJEVNT. PLP
RJGEDG. PLP
RJINI. PLP
RJLINE. PLP
RJPCDF. PMA
RUPHFS. PLP
RJFHLC. PLP
RJPHS: PLP
RJPLQ. PLP
RJPMEG. PLP
RJPRQC. PLP
RJG. PLP
RJRERQ. PLP
RJRECV. PLP
RJRQST. PLP
RJRTRY. PLP
RJSLCFG. PLP
RJTIM. PLP
RJTWKR. PLP
RJUNDQ. PLP
JWLO. PLP
RJWRFS. PLP
RJWRLC. PLP
RJXMIT. PLP
XEQ. PLP
XSCCK. PLP
‘"V BLP
SMCK. PLP
AJHUCM PMé

in column 1 indicates file did not sxicst at Rev. 18

PH/WRK = teturns pointer to area used to pass PH config
HASP protacol specific RJPROC code

HASP Protocol Specific Check module

PH - returns addresses of common area for protocol handler
routine reads entry off primos ‘queue

RJI intarface routine - allows process to attach for line
RJI routines return info to user from the protocol handler
RJPROC message rTeturning routine

RJI routines will output blocks. control messages.
COMMON DECLERATIONS FOR RJE EMULATORS

Configure MTR sub-process for protocol handler
RJI-PH - routine copies xmit blocks into wired xmit buffers
Debug gate returns pointer to RJI common blocks for worker RJI
Deconfigure line :

Event handler for the RJDTDC system

RJI-PH routine - get a data block off a device queue

Cold start code for RJE emulators

Low level routines for Ryproc

protocol handler common declerations for T e emulators

rje emulators - Toutine manages the dim free store area

rJe emulators - Toutine assigns a line control black

Modify protoacol handler state in Worker RJI database

lLogout code for protocol handlers

RJPROC message printing routine

Main driver for RJUE emulator process

RJI queueing Toutines using RQCE

Copy contents of receive block and queue for the worker
Receive routines for RJPROC

Worker request processor for RJPRQC

Routines supporting RJPROC retry mechanism

Configure HMSSMLC and MDLC for RJE use

Timer rToutines for the Ryproc system

Send Messages to Ring3 Workers via RJI

lLogout code for RJE emulators.

Logout code for RJI workers.

rje emulators - Toutine manages RJI system free store

Routines assign and unassign control blocks for line

Transmit routines for RJPROC

X80 protocol handler

X80 Protocol Specific Lheck module
XBM line events and timeouts
Determine type of message from MTR
ALLOCATE SPACE FOR XBM CAT GUEUES

detach line.

(XBM Link lewvel processing)

i.{ o A¢ f.,\

moex Ov

2’ in column 1

£E3IST. PMA
2DSATT. FTN
SDsDET. FTN
EDSINF. FTN
ZOSINP. FTN
SDsSLST. FTN
BDsOQUT. FTN
GDSSET. FTN
EDFLSH. FTN
ZDICHR. FTN
EDIWRD. FTN
3DLDSO. FTN
EDOWRD. FTN
EDQUIT. FTN
BEDUNDQ. FTN
EDVBIF. FTN
2LDMSG. FTN
SNDAID. FTN
BSCCDF. PMA
SECINI. FTN
EECMAN. FTN
BSCMQV. PMaA
BESCSEM. FTN
CECEHR. PMA
ESCSLC. FTN
CFI.FTN

+ CHAP. FTN

w

i

CHKTAT. FTN
CKHOLD. FTN
CLNRB. FTN
COPY. FTN

DH3270. FTN
CHDBSC. PMA
DRPSTAT. PMA
DPTSQGM. PLP
DPTSST. FTN
SPTCDF. PMA
CPTINI. FTN

< CPTNAM. FTN

AU, FTN

ZoMCNL. FTN
IMZ270. FTN
IMCFGR.FTN
CR.FTN
IXELMFTN
MTYSCR. FTN
MMENT. FTN
ZTELM. FTN

wr T i

filss in PRIMUOSES - Primas DFTX code.

miex of files in PRIMOSES - Primos DPTX code. -

indicatees file did not exist at Rev. 18

SUBROUTINES TO MOVE AND CLEAR VIRTUAL BUFFERS FOR DPTX

BLOCK DEVICE ‘ATTACH’ SUBROUTINE

BLOCK DEVICE DETACH SUBROUTINE

BLOCK DEVICE INFORMATION & STATUS SUBROUTINE M
BLOCK DEVICE INPUT SUBROUTINE i
BLOCK DEVICE INTERFACE DESCRIPTION ROUTINE

BLOCK DEVICE QUTPUT SUBROUTINE

BLOCK DEVICE ATTRIBUTE-SETTING SUBROUTINE

FLUSH BLOCK INPUT/OUTPUT QUEUES FCR A DPTX DEVICE

INPUT CHARACTER FROM BLOCK DEVICE QUEUE ELEMENT

INPUT WORDS FROM BLOCK DEVICE GUEUE ELEMENT

LOAD 3270 SUPPORT QUTPUT INTO A QUEUE ELEMENT

QUTPUT WORDS TO BLOCK DEVICE QUEUE ELEMENT

GUIT PROCESSING FOR A DPTX COMMAND DEVICE - .
UNDOES ALL DPTX ATTACHMENTS OF A PROCESS ‘
LOADS VB AND SOME PARAMETERS., AS PART OF BDSINF CALL -
BUILDS CANNED MESSAGES FOR TRAFFFIC MANAGER

AID BYTE ANALYSIS ROUTINE FOR TRAFFIC MANAGER

BSCMAN QUEUEING AND FREE STORAGE ALLOCATION

CREATES FREE STORAGE POCLS AND QUEUES FOR BSCMANM AND DPTX
BSCMAN SENDS AND RECEIVES TEXT IN THE BSC PROTOCOL ... MORE OR 7S
MOVES CHARACTERS IN &4V MODE ;
OBTAIN SEMAPHORE FOR BSCMAN TO USE IN NOTIFYING A MATE '
DEFINES STORAGE FOR BSCMAN VARIABLE INITIALIZED AT COLD-START ONLY
INITIALIZE THE SYNC CONTROLLER FOR BSCMAN i
PROGRAM TO CHECK IF ANY CHARACTER IN TERMIMAL BUFFER -
SETS A USER PROCESS TO A SPECIFIED PRIORITY LEVEL

CHECK TAT FLAGS FOR A DEVICE i
MANAGES TAT HOLDING AREA FOR VBE N
CLEAN THE RB HEADER '

COPY COMMAND PROCESSING

DATA HANDLER INTERFACE TO TFLIOB BUFFERS FOR DPTX/TSF

DH3270 SPECIFIC SHORTCALL SCHAR EQUIVALENT

DEFINE COMMON AREA FOR DPTX STATISTICS MONITORING

QUEUE MONITOR SUBROUTINE FOR DPTX GUEUES

RETRIEVE RINGO INFORMATION FOR DPTX MONITCR

DEFINE CCOMMON AREAS FOR DPTX TABLES/VARIABLES

SUBROUTINES TO INITIALIZE OR SHUT DOWN CPTX

DPTMAM CHANGES THE LOG NAME FOR DPTX PROCESSES

ERASE ALL UNFROTECTED (EAU) COMMAND PROCESSING

ECHO & "MEW LINE" TO & 2277 MOD 2 TERMINAL

MaIN PROGRAM FOR 3270 VIRTUAL BUFFER EMULATION

CONMFIGURE DPTX/DSC SMLC LINE

SAVE INFO AND STOP ACTICN (ESCMAN)

INSERT AFPROPRIATE KEYS IN A QUEUE STRUCTURE

REFCRMAT AND CLEAR (CPTIONAL) 3277 SCREEN : .
QUTPUTS ERRCR AND STATUS MESSAGES FOR TM3270

BUILDCS EMPTY GUEUE ELEMENT CHAIN

S4VE RESULTS FOR USER IM TAT

LOADS A DATA ZUFFER INTC A PREALLCCATED QUEUE ELEMENT
LINK DB’S OF A GUEUE STRUCTURE (RQQOTZ2) TO GUEUE STRUCTURE
LOADS A DATA BUFFER INTO A PREALLOCATED QUEUE ELEMENT
LOAD A DATA BUFFER INTO A QUEUE ELEMENT

SEND MESSAGE FAILED STATUS TO USER FOR TM3270

MESSAGE VALIDATION FUNCTION FOR BSCMAN ROBUSTNESS

READ LBUFFER CCHMMAND PRCCESSING

(RQACTL

fDMODR
RETCDF

files in PRIMOSHES - Primos DPTX code.) Page

.FTN

. PMA

=+ RETRY.FTN

anat e

RQOBCDF.
STNELM.
SENEDI.
SENBSC.
SENDPH.
SETNOW.
§53270.
STTSND.
TABLES.
TBLINI.
3270,

TMCFGB.

TMCLOK
TMINIT
TMRRE.

THMSTMP.
TRCDEF.
UNLDGE.
VALEUF.
VBGEDI.

VEGBHK.

VEBINIT.
VBTMPL.
VBUPDA.
YBVTAC.
WORKRY.

WRITE.
*LATEF

PMA
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN
FTN
. FTN
.FTN
FTN

FTN
PMA
FTN
FTN
FTN
FTN

FTN
FTN
FTN
FTN
PMA
FTN

. PMA

XLCaLL. PMA

READ MODIFIED COMMAND PROCESSING

BSCMAN RETRY COMMON STORAGE ALLOCATION

RETRY SUBROUTINES FOR BSCMAN

BSCMAN ROBUSTNESS COMMON STORAGE ALLOCATION

RETURNS ALL OR PART OF A GUEUE ELEMENT

ENQUEUES A QUEUE ELEMENT FOR BLOCK USER INTERFACE
ENGQUEUES A QUEUE ELEMENT FOR BSCMAN

ENQUEUE MESSAGE FOR PROTOCOL HANDLER

SETS TIMER USING VCLOCK(1l) (BSCMAN)

ANALYZES SENSE AND STATUS BYTES FOR TRAFFIC MANAGER
SEND A STATUS MESSAGE TO A BLOCK DEVICE FOR TM3270
DATA FOR DPTX TABLE TRANSLATIONS

INITIALLIZES BSCMAN'’S MESSAGE VALIDATION TABLE

MEANMGES SYNCHRONCUS LINE TRAFFIC FOR PRINMDS 3278 TERMINALS
CONFIGURE TM3270‘S BSC LINE

RETURNS THE VALUES OF GCLOK, KUSR AND MPXSEM TO TM3270
TM3270 INITIALIZATION ROUTINE

DEVICE RECOVERY ROQUTINE FOR TM3270

PRINTS OUT A TIME STAMP WITHOUT A FOLLOWING CARRAGE RETURN
T™3270 COMMON AREA (DPTX)

UNLOADS A QUEUE ELEMENT INTO A DATA BUFFER

CHECK USER’S OUTPUT BUFFER FOR ILLEGAL CONTROL CHARACTERS,
GET OUTPUT ELEMENT FROM BDI

PERFORM ‘GETBKC’ CALLS FOR VEBE

INITIALIZES VIRTUAL BUFFERS FOR DPTX/DSC

BUILDS A VB UPDATE TEMPLATE FROM USER DATA

UPDATES VB FROM USER-SUBMITTED TEMPLATE

TACKS A VB COPY ONTO INPUT DATA

ALLOCATES WORKR$ AND ERRCTL COMMON AREAS

WRITE COMMAND GROUP PROCESSING

ASCII-EBCDIC BUFFER TRANSLATION ROUTINE FOR DPTX

CALLS XLATBF WITH BIT OFFSETS

P

	Front cover
	Title page
	ii
	Table of contents
	1
	2
	3
	4
	5
	6
	Hardware Features
	Hardware Architecture Overview
	1-1
	1-2
	1-3
	- Peripherals and Controllers
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	- Instruction Pre-fetch
	1-11
	- P850 Functional Diagram
	1-12
	- DMx Operation
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	Lab Exercise 1
	Installing a Ring 0 Gate
	2-1
	- Building PRIMOS
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	- Booting PRIMOS
	2-8
	2-9
	2-10
	Memory
	3-1
	- Cache
	3-2
	- Interleaving
	3-3
	- Segmentation
	3-4
	3-5
	- Rings
	3-6
	- Memory Management
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	Process Exchange
	4-1
	- State Diagram
	4-2
	4-3
	- Wait List
	4-4
	- Process Control Block (PCB)
	4-5
	- Ready List
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	Traps, Interrupts, Faults and Checks
	5-1
	5-2
	- External Interrupts
	5-3
	5-4
	- Real Time Clock
	5-5
	- Faults
	5-6
	5-7
	5-8
	5-9
	- Checks
	5-10
	System Initialization
	6-1
	6-2
	6-3
	- Cold Start
	6-4
	6-5
	6-6
	- Warm Start
	6-7
	6-8
	Condition Mechanism
	7-1
	7-2
	- Definitions
	7-3
	- 'QUIT$', DF_UNIT_: Example
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	- Program Example
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	- 'REENTER$'
	7-18
	- Crawlout
	7-19
	7-20
	Fault Handling
	8-1
	- Ring 0 Faults
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	- Ring 3 Faults
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	Interrupt Handling
	9-1
	- Clock Process
	9-2
	9-3
	- AMLQ/ICS Driver
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	Scheduling of Users
	10-1
	10-2
	- Backstop Process
	10-3
	10-4
	- SCHED Flowchart
	10-5
	10-6
	10-7
	- User Priorities and Time Slice
	10-8
	- MAXSCH
	10-9
	10-10
	User Profiles
	11-1
	11-2
	- Definitions
	11-3
	- System Administrator Directory (SAD)
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	Login/Logout Mechanisms
	12-1
	- Login
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	- Logout
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	- Getting into the Command Loop
	12-28
	12-29
	12-30
	Command Processor Extended Features
	13-1
	13-2
	- Routines
	13-3
	13-4
	13-5
	- BUFSEM Flowchart
	13-6
	- STD$CP Flowchart
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	Static On-Units
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	Filing System
	15-1
	- Disk Structures
	15-2
	15-3
	15-4
	- Directory Structures
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	- Directory Entry Types
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	- Directory Entry Structures
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	Unit Tables
	16-1
	16-2
	- Definitions
	16-3
	16-4
	- Data Structures
	16-5
	16-6
	16-7
	16-8
	16-9
	16-10
	16-11
	16-12
	LOCATE Data Structures
	17-1
	- Buffer Control Block (BCB)
	17-2
	- LOCATE Flowchart
	17-3
	- Configurable Associative Buffers
	17-4
	Disk Quotas
	18-1
	18-2
	18-3
	18-4
	- Data Structures
	18-5
	18-6
	18-7
	18-8
	18-9
	- Examples
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	Attach Functionality
	19-1
	19-2
	- Attach Scan
	19-3
	- Common cleanup routine (AT_CLEAN)
	19-4
	19-5
	- Access Control Lists (ACLs)
	19-6
	- Priority ACLs
	19-7
	19-8
	- Calculating Access
	19-9
	19-10
	Miscellaneous
	20-1
	- File System Locks
	20-2
	20-3
	20-4
	- PRIMOS Segment Usage
	20-5
	20-6
	20-7
	20-8
	20-9
	20-10
	20-11
	- 19.1 I/O Enhancements
	20-12
	20-13
	- System Limits
	20-14
	- Area Management
	20-15
	20-16
	Programmed Input/Output (PIO)
	Device Drviers
	A-1
	- Programmed Input/Output (PIO)
	A-2
	A-3
	A-4
	- Device Drivers
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	Process Exchange
	PE-T-232
	B-1
	B-2
	B-3 [1]
	B-4 [2]
	B-5 [2a]
	B-6 [3]
	B-7 [3a]
	B-8 [3b]
	B-9 [4]
	B-10 [5]
	B-11 [5a]
	B-12 [6]
	B-13 [6a]
	B-14 [6b]
	B-15 [6c]
	B-16 [7]
	B-17 [8]
	B-18 [9]
	B-19 [10]
	B-20 [10a]
	B-21 [11]
	B-22 [11a]
	B-23 [12]
	B-24 [12a]
	B-25 [13]
	B-26 [13a]
	B-27 [14]
	B-28 [14a]
	B-29 [14b]
	B-30 [14c]
	B-31 [15]
	B-32 [15a]
	B-33 [15b]
	B-34 [16]
	B-35 [16b]
	B-36 [17]
	B-37 [17b]
	B-38 [18]
	Procedure Call (PCL) Mechanism
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	Revision 19.0 Routine List
	D-1
	D-2 [KS-1]
	D-3 [KS-2]
	D-4 [KS-3]
	D-5 [KS-4]
	D-6 [FS-1]
	D-7 [FS-2]
	D-8 [FS-3]
	D-9 [R3S-1]
	D-10 [R3S-2]
	D-11 [R3S-3]
	D-12 [CPLS-1]
	D-13 [CPLS-2]
	D-14 [NS-1]
	D-15 [NS-2]
	D-16 [NPXS-1]
	D-17 [CS-1]
	D-18 [RJES-1]
	D-19 [ES-1]
	D-20 [ES-2]

