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PREFACE

This report has been prepared under the terms of Contracts
W-36-034-0RD-7481 and DA-36-034-ORD-19 (Project No. TB3-0007 F)
between the Research and Nevelopment Service, U. S. Army Ordnance
Corps and the Institute for Advanced Study. It is a final report on
the latter contract, covering the period up to 1 July 1952.

This report is issued in two parts: Part I (text) and Part
II (drawings). Part II is separate from this volume and comprises
the complete circﬁit érawings for the completed machine.

Certain accessory devices, notably a magnetic drum and an IBM
input-output system, were added in the period subsequent to 1 July

1952. These will be described in a following report.

John von Neumann
Project Director

Institute for Advanced Study
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1.

I. MATHEMATICAL ASFECTS

In the succeeding pages of this chapter we shall describe the
workings of the principal organs of the machine insofar as they con-
cern the preparation of codes. We assume the reader is familiar with
a previous report entitled, "Preliminary Discussion of the Logical De-

sign of an Electronic Computing Instrument” (1946) by Burks, Goldstine,

and von Neumsnn; in future references we indicate this report by FD.
Tn this chapter we discuss those features of the arithmetic part of
the machine which are relevant from a mathematical point of view.

In a consideration of the Arithmetic Organ one is naturally led
first to discuss the number system employed. In spite of & long stand-
ing tradition in favor of the decimal system we Were lad both by logical
and engineering considerations to employ the binary systenm. Since the
control portions of the machine are carrying out purely logical func-
tions and since logics are best expressed as binary operations the
reasons for a binary representation, at least, of the orders for the ma-
chine are evident. On the engineering eide the components out of which
the machine is constructed are again binary in nature: The "flip-flop"
1s fundamentally & binary device; the "gate" is also; and the process of
gtoring charge in the dielectric face or acfeen of the cathode ray tube
used in the Memory is again of this same character. Hence, if one con-
templates employing the decimal system, one is forced to a binary coding
of the decimal system, each decimal digit being represented by a tetrad

of bipary digits. Thus a precision of 10 decimal digits would require



40 binary digits. But in & true binary representation about 33 digits
suffice to achieve a precision of 1010. Thus one is led to use Memory
space -- recall that this is the most "expensive” portion of the instru-
ment -- wastefully. It will also be seen as the discuesion proceeds
that the arithmetic portions of the machine are much eimpler logically
and hence enginsering-wise in the binary system than in the decimal one.

To illustrate thia letter point consider the problem of multipli-
cation. In the binary system the product of a numbér x by a binary digit
is either x or null according as the digit is 1 or 0. In ths decimal
gystem, on the other hand, there are ten possible values for the product
of a digit by x, 0.x, 1.x, ..., 9.x. Thus decimal multiplication is
fundamentally a more complex operation than ig the binary one and this
will be expressed in & decimal instrument either by & circuit complica-
tion or by the multiplicetion being slower. Similar remarke can be made
about the other arithmetic processes.

It is often argued that not withstanding these complications the
decimal system is easier from the human point of view. Our machine,
however, is such that data may be introduced either binarily or decimally
snd can be withdrawn in the same fashion if desired, and this without any
circuitry. The conversions are trivially handled by extremely simple
codes.

It is perhaps well to give at this point some detalls on the method
of introducing dsta into the machine to enable the reader to develop
gradually a feeling for the overall economy of our establishment. Each

plece of information is introduced as an aggregate of 10 quantities in



the hexadecimal system. In this number system there are 15 integers 5,
..., 9, 10, 11, 1z, 13, 1%, 15 which we call O, ..., 9, A, B, C, D, E,

F. Thus the first 10 of these integers are exactly the decimal Iintegers,
so that & decimal quantity introduced into the machine is given its
familiar and usual form. A binary number or order -- these are in binary
form as will bs explained in the chapter on the code -- is expressed as
10 tetrads of binary digita, i.e. as 10 hexadecimal integers.

The decision as to whether a given quantity i{s to bde treated by
the machine ag the decimal representation of a given number or as the
hexadecimal representation of a binary number is left to the coder. I.e.,
he knows which of the data he has introduced is decimal and must be con-
verted by the machine into a binary form and which is already binary.
This decision places no more burden on the coder than does that one
vhich requires him to know which data are orders and vhich are numbers.
Indeed, the two problems are quite intimmtely related. Generally, in
coding a given problem it is the practice to place in a block of consecu-
tive positions the decimal informetion. This makes the conversiom of
these numbers into their binary form a simple inductive procedure deter-

mined only by the number of places desired and the locations of the
initisl and terminal quantities.

We leave this subject for the present and return to it later after
we have described the orders themselves.

The Arithmetic Organ is a 40-fold aggregate of binary unita. We
use the first of these to record the aign digit of a number and the re-

maining 39 for digital information. Thus each "word". i.e. amaregate of
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40 binary digits, vieved as a binary number has a precision of 2 39

~ 10-11'7. We have chosen to fix our binary point immediately to the
left of the first digit of numerical materiel, i.e. the kinary point

is fixed immediately after the sign digit. Thus the digits -- apart
from the sign -- have positional values 2'1, 2'2, coe, 2739, As & mat-
ter of fact, as far as our Adder is concermed the sign is treated as e
binary digit vith positional value 2°.

Before procesding from this point it is well to discuss our
treatment of negptive numbers in the machine since this has bearing on
the character of the Arithmetic Organ. To do this we say first a word
about our Adder. If one regards our numbers x = (xo, Xy e x39) as
Lo-diglit quantities Xy 20 4 x, - ol X39 " 2’39, then our
Adder as far as digit-adding and carrying mechanisms are concerned
functions identically in all places with one exception: If a carry
proceeds from the left-most digit, it 1s "lost" (cf., however, our dis-
cussion below of the division operation). This Qeans clearly that the
augend and addend, both of which lie between O and 2 have produced a
sum greater than 2 will omit the 2. This 1is, of course, nothing other
than a statement that the Adder functions modulo 2.

In this sense all numbers represented in the machine can be viewed
as being modulo 2. We have used this fact to determine our representa-
tion of negative numbers. If x is an arbitrary real number, then there
is exactly one number X between O and 2 with which it agrees modulo 2,
{.e. for each x there 1s & uniqus X such that 0 <X <2 and x = X (mod 2).

This fact fixes our representation of negative numbers.
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We agree alweys to 3:21 with nuders x for whish -1 <x <1
Now the X sssocisted with x is x if x 225 thus, 0 €Y <1 in thig
case we revreszent x by the dlzitaltzed form c* %. It cleuarly has
Xy» 1ts sizn diglt +, 1.e. 0. If x <0, then zx = X + 2 and we have
1<x <2, i.e. the left-most digls of X 1s 1, i.e. -. Thus we always
represent a nuuber z by the digitalized form of x and have the conven-
tion that + is 0 and - 1s 1 with the left-most digit being the sign.

In closing this discussion we mention the relation of our repre-
gentation of negative numbers with that of complemsntation®. Consider
8 negative number x with -1 Sx<0and let y = -x. Then 0 <y <1
As we sald above we digitalize x by representing it as x + 2 =2 - y =
1+ (1l -y). Then the left-most digit of this representation ia, cor-

rectly, 1 and the remaining digits are those of the complement of y =

| X |- This 1s what is frequently called the representation by comple-

mentation of negative numbsers.

The Arithmetic Organ proper contains the folloving principal
units: 3 Reglsters of 40 digits each (cf. however, below for an excep-
tion to this), an Adder, various sets of gates whose functions will be
made clear in what follows, and a Control Unit to supervise the perform-
ance of the various Arithmetic orders. In the accompanying figure
We show schematically the interrelations between some of these and in

later figures we show more details.
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As indicated in the figure the inputs (40-fold in each case) to the Adder
are from Registers I and III -- we shall use the sumbols RI and RIII in
the future -- and the output of this unit is stored back in RI. Again
informstion in RIII can be communicated to RII and hence to RI without
proceeding through the Adder. In an addition the augend is originally
in RI and the addend in RIII, the sum being placed in RI at the comple-
tion of the operation.

To make clear the subtraction we-mnst meke mention of a unit

called the Complement Gate Chassis which intervenes between RIII and

the Adder, as indicated in the figure below.

Acvsor o

o~

| Compiemernt’

e . /
bowe Compieir 0T satoi—e Adder

g IIT

Tig. I. 2.



This chassis permits one of three modee of communication between
RIII and the Adder. If a number x is stored in RIII, then either the
Complement Gates permit x, the complement of x or O to enter the Adder;
or, to be more precise, if x = (xo, ) x39), then either x or
(1= Xos L%y, ooy 1-139) or 0 = (0, 0, ..., O) is permitted to enter
the Adder from RIII. If it is the middle case, then the Arithmetic
Control also "injects" a digit 2-39 into the Adder. This, as we shall
see, correctly handles the operation of subtraction.

To form x - y we proceed as follows: the Arithmetic Organ has
x in RI, y in RIII and has been instructed to form the difference. It
fepms, apart from the "compledent correction” just mentioned,

¥ sy et axs 2oy -2

correction then has the effect of removing this last 2739 ana yielding

The complement

the correct difference.

We leave this discussion of the separate units of the Arithmetic
Organ for the moment but with the intention of returning to 1t shortly.

The multiplication operation is somswhat more delicate in a cer-
tain sense than are the addition and subtraction because ths procedure
based on the modulo 2 fails completely. If one changes one factor, say
x, of a product xy by a two, then the nev product differs from xy by 2y
vhich is not generally an integer multiple of 2 since -1 <y < +1.

To effect a multiplication we store the multiplication in RII
and the multiplicand in RIII. We carry out the process by seriatim
multiplying the entire multiplicand by the digits of the multiplier

starting with the least significent one.



The multiplication proper takes place in 39 steps, corresponding
to the 39 non-sign digits of the multiplier, together with several "clean-
up" operations in addition. We describe all this below. For simplicity
we first consider the case in which both the multipller x = (xo,  SWIREEY
139) and the multiplicand y - (yo, Tys cos 139), l.e. Xy =7y = 0 and
hence 0 < X >1,0L7< 1.

Assume we have already performed the first 1 - 1 steps of the
multiplicetion involving the miltiplication of the multiplicand by the
last 1 - 1 digits of the multiplier, 339, x38, veey Xy oy Ve describe
now the multiplication with the i-th digit, i.e. with X0t Assume
that RI contains the partial product after the last step, Py (for
1=1,p = 0). We form

-

2py = Py_y * ¥y vith y, = élo £ Thyoug 7 O

v for N 1.
I.e. if x), , = 0 ve define p, as /2ot p, ,end if x  , = 1es 1/2
of (pi_1 + y). Consider now the sizes of the quantities 2p, - For 1 = 0,
0g2py <2 (since py Z 0); now if this is true for i - 1, then our dis-
played definition above makes 1t also trues for 1. Thus 2pi lies in the
interval 0 £ 2p < 2 and no carry can arise beyond 20-poaition.

Thus Py ig formed from Qpi by a right shift with the sign digit

made O. Finally we have

-1,.-1,.-1 -1
Pag 2 (g7 (2" (.. (2 X3 ¥ + X3g y). o)+ X, V=
) 39 -1 i}
- Z_ i"l :?- xi y xy,
{.e. we have our correct product. We describe later how we achieve this

in the Arithmetic Organ. At the moment, however, we turn instead to the
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other possible cases, namely: x <O, y >0, x< 0, y<0, x 20, y<o.
We pass now to these cases and describe how they are performed.

If x <0, then it is represented in the machine as x + 2. Thus for x < 0,

y > 0 the procedure we have just described would form not xy but Xy + 2y;

for x <0, 7 <0 1t would form xy + 2x + 2y + 4; for x >0, y <0 it would

form xy + 2x. Hence, correction terms 2x, 2y or both would be needed. As
we shall see later these corrections would be quite awkward for us to per-

form, particularly the correction 2x since we in fact lose the digits of
the multiplier as they are no longer needed. The reason for this will
beccme apparent Iin the next section.

Our procedure is this: First let us assume that the corrections
necegsitated by y < O have been disposed of and permit y to be either <0
or > 0. Ve focus ettention now on x < 0.

We disregard the sign diglt of x and act as if it were 0. Then x is
replaced by xl = x - 1 but gince -1 < x<¢Oxl will act as if it were (x - 1)
+ 2. Hence our procédure for multiplication will produce xly = (x +1) y=
Xy + y. We therefore need a final correction in this cese of -y at the
end of the process. Thus in the cases x < O we procesd through the 39
steps described earlier and thereby form xy + y and then we must perform
another step to subtract out the multiplicand y.

Having disposed of the difficulties that arise when x < 0, we may
now assume X > 0 and consider the one remaining case, vamely y < O.

Suppose this time that we ignore completely the eign digit of y,
or rather that we replace it by 0. Then if yl =y - 1, we have as before

xyl = x(y + 1) = xy + x and a correction -x is needed. Since, howaver,



we do not have x, the multiplier, available at the end of the multiplica-

tion we must find a msans of applying this correction as the first 39
steps proceed.

We procesd in this fashion: when we examine the digit 139-1 of
the multiplier, we normally add into the partial product Py the number
y if ¥:g.4 © 1 and O otherwise. Iet us now modify this procedure as
follows:

2pi =Pyt ?1 with 91 = i 1lf°r Tho-1 °
k_y for Yooy = 1.
As before 0 < 2pi < 2 and no carries can proceed beyond the 20-

position. Let us see now what result we have produced by thi procedure.

2_1(2‘1(2'1(...(2'1x39y1 + 2'1(1-x39) + x3831 + (1-x38))...) +

bl
A)
O
1

+

1 1
29+ (1-x5)) + 3y + (1oxy) =

<

—

[}

= L)

) - - -39
21 2 i xiy1 + 39 2 i(l -x,) = xyl + 1-2 39 . X =

X(y-?—l) +1 - 2-39 - X = XY + (1 - 2"'39)'

i

Thus a {inal correctica of -1 + 2-39 is necessary. But this correction

which 15 done at the end can be effected modulo 2 and we can correct it

by 1 + 2m39,
We summarize now in & general description covering ell four cases.
We return now to our schematic discussion of the Arithmetic Organ.
Since we wish to retain the full 78 digits of a product, we have estab-
lished certain interconnections between RI and RII not yet shown in

Figure I.1. Before describing them we must indicate another feature of

RI and RII. Each of them is capable not only of receiving 40 digit
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pumbers and of transmitiling them, bui also of translating either to the

right or left whatever information is stored in them. We discuss the
logical implications of these shift facilities later. At the moment we
prefer to indicate how this is accomplished, at least in a crude way.
Each of RI and RII is in redity not one but two registers sult-
ably interconnected. Let us consider RI first. It consilgts of two
registers and four sets of 4O-fold gates. Let the two registers be
denoted by RI and RI. One set of gates intervenes between the Adder

,
and B°. Thus the output of the Adder is stored at least initially in

BI. Two sets of gates allow communication from RI to BI and a fourth
get allows commmnication from RI to RI.

The set which controls the comminication between the Adder and

BI the so-called fireen Gatea, {5 so wired that it makes digital posi-
P 22

tion 2’1 of the Adder correspond to 2'i of RI. One of the two sets con-

trolling the route from R* to R_, the so-called Red Gates, makes posi-

i

I)
I -(1-1) .

o? R correspond to 2 of ai, the other set, the so-called

I

tion 27
-1 -{i+1)
Black Gete, makes 2 = of R” correspond to 2 of RI- The fourth

set, the so-called Yellow Gate, from RI to R* makes 2”' of R correspond

I
to 2°% of RY. We indicate this below in Figire T.3.
A similar arrangement obtains with respect to RII. The structure

of RIIT is, however, simpler since it {s not called upon to perform

ghifting functions as are RI and RII.
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Figure I.3.

We can nov describe in somewhat more detail the operations
previously elluded to such a& the right and left shifts, the transfer
into RI, the addition, the subtraction, and at least part of the multi-
plication.

Consider first a number in Ry -- in both BI and RIT the units BY,
RII serve only as transient storage positions; all storage for more
than & few microseconds is in BI’ RII -- vhich ve desire to shift right
(left). The pArithmetig Control routes the imformation first to RI via
the Yellow Gate set, theaback to R, vis the Black (Red) Gate sot. (We
must describe later treatment of the sign digit.)

Next consider a number arriving in RI from the Adder. It 1e

I

trapsferred to R™ via the Greon Gate set, thento B_ via the Red set --

I
note this apparently causes the information in go.-poaition of the Adder
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to be lost. Actually it does not becuase RI has a 2+1 position for

I

precisely this reason; 1t is then sent back to R~ via the Yellow set

and finally beck to R. via the Black set. Note that it is now cor-

I

rectly positioned, i1.e. the content of 2'1-poaition of R, is that of

I
2'1-position of the Adder.
In the next figure we indicate the connections between RI and

the Adder, suppressing the gate sets.

EI
Adder
| T to
Ry | oo
T |
FromRII
Figure I.h.
Thua in an addition it 1s the quantity stored in RI that is added to

that in RIII, the result being placed temporarily in BI.

It should also be clear from whad has been said how the right
and laft shifts are performed. We must return later to desoribe cer-
tain details of these operations, such as the treatment of the sign
digit in the right shift and of the right-most digit in a left shift.

Before doing this, however, we must first describe two more
interconnections between RI and RIT. All interconnections described
previously have been LO-fold but the one we now describe differs in
that {hey are 1l-fold. S8pecifiocally the right-most stage of RI is con-
mected to the left-most one of RII in such a fashion that the route is
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from RI to RII but not back again. This connection is provided so
that whenever a right shift occurs the digits being shifted out of RI
are stored in RII. We make this connection quite specific in Figure

I.5 below.

[

FPigure I.5.
To provide for the comparable situation when a left shift occurs the

20 stage of RI 1s connected to the 2-39 stage of RII, as in Figure I.6

below.

Figure I.6.

We are now able to proceed further with the details of the
multiplication. The multiplier is initially placed in RII. (This
must be done prior to the multiplication order, c.f. 0.9 below.) Then
vwhen the multiplication is initiated the multiplicand is in RIII. An
observation post exists at stage 39 of RII which examines whether the

digit therein is O or 1 and acts accordingly, i.e. it does not or does
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edd the multiplicand into RI in case both mltiplier and multiplicand
are positive. We discuss below the exact details in all cases. Then
a right shift of one is performed. Thus three things occur of relevance:
first, the partial product in RI 1s properly positioned for the next step;
gecond, the digit of the multiplier last examined has been lost and the
next relevant, i.e. the now currently relevant, is available at the
inspection station; third, the least significant digit of the partial
product has now been shifted into RII, into the leading stage. This pro-
cedure 1s carried on for the 39 steps required at which time the 39 most
significant digits of the product appear in RI and the 39 least signifi-
cant ones in RII.

The addition operation is performed in this fashion: We amssume
the augend is now in RI, specifically in RI, and the addend is in RIII.
The Complement Gates are set to passe the addend out and the sum is then

gtored temporarily in RI. This sum is then put into RI displaced one to

the left with the sign digit in 2+1. Next, the number is transferred

back to RI and thence down to BI in the correct position. In terms of

the various gating operations this means the following: The Green Gates

were opened to admit the sum to RI; the Red Gates sent it to RI; the

Yellow Gates sent it back to RI; and finally it arrived correctly posi-

tioned in RI via the Black Gates.

The situation for the subtraction differs in one point only; the
Complement Gates are opened to pass the complement of the addend and

the complement correction is carried out.

1

In both cases the sign of the sum is now both in 2" and 20.
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The possible addition and subtraction operations performable by

the machine are these:

III

1. The addition (subtraction) of the contents of R and of R..

I

IIT 4na of R,

2. The addition (subtraction) of the contents of R
pre-cleared to 0. I.e. the transfer of a number (or its complement)

into RI.

3. The addition (subtraction) of the absolute value of the con-

tents of RIII and of RI.

4. The addition (subtraction) of the ebsolute value of the con-

III

tents of R and of R, pre~cleared to 0. I.e. the transfer of the modu-

I
lus of a number (or its complemsnt) into RI.
To perform the -operations involving absclute values the Arithmetic
Control is provided with a monitor vwhich decides whether the Complement

Cates are to pass the number in RIII

or its complement according as the
instruction requires.

The left shift is performed analogously to that for the right shift
but the right-most stage of RI is made O.

This is the correct convention to ensure that the left shift is
exactly a multiplication by 2 (provided that the result is still in
"scale", i.c. is not outside the intsrval -1 < x < 1).

The left shift operation can be performed n times (1 < n < 47) vy
means of a single order.

The right shift operation is performed in this fashlon: The num-
ber in RI is transferred into RI and is then sent back into RI displaced
one position to the right. Exactly the same procedure 1is followed in RII.
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Thus both RI and RII shift together. (There iz one exception to this
principle in one of the terminal steps of a multiplication but this
need not concern us here.)

The information stored in 2+1 of RI i3 therefore shifted into

20. It 13 also retained in 2+1. If this diglt is a 0, the sign of the
resulting quantity is O and if it is & 1, the aign is 1. But this is
exactly the corrgct convention to ensure that the right shift is exactly
e division by 2.

The right shift operation can be performed n times (1 <n<g L7)
by means of a single order.

This amocunts only to an iteration n times of what 1s deacribed
above.

Since RT and RII are interconnected as shown in Figure I.5 shove,
the information shifted out of RI is transferred into RII; but the material
shifted out of RII is lost.

We next discuss the division operstion. To make precise what fol-
lows we agree that the dividend is x, the division 1ls y with -1 ¥x <1,
-l<y<l, x < ¥y

To describe the process we assume that the first 1-1 steps of the
division have been completed and that the firest 1-1 digits Qs Qs +o 0y
of the quotient Q are in positions k0-1, Ll-1i, ..., 39, respectively.

9.2

We also assume that y, the divisor, is in R3 and that the remainder T 1

ig in Rl‘ Ve proceed inductively in this fashion:

(l) ri = i-1 - (8@ Xy) ypi-l’ rO = x/2)

&7

where
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[ c agh ¥y 4 f sm (Eri_l - (#gn xy) )

1 sgn v, ; = een (2r, , - (sem xy) ).

We next define qi as
f/_pi 8gn xy = +1

(2 A
: l-pi sgn xy = -1

We now show that
sgn r, = 8gn X, Qrii <'lyl .
We prove these inductively. They are evidently true for 1 = 1. We

ghow they are true for i + 1 assuming they are true for i. If

sgn r, = egn (2r, - (sen xy) * 3)

then
r1+l = 21'1 - (sgn xy) - J
and
Bgn T, , = 8gN T, = 8gn X.
Next,
or, - (sgnxy) - y=28esmr, * ; r,| -8sgnx " sgny-y-=
=280 X ¢ ria -8sgnx ' {yl =os8sgnx (2 ! rié -y ).
Thus
- . . de il i
Ty, SSER Ty C|Tyy =8en X Ty, =sgx (2 1y y
and
i i = § P - i ! ; o : = ;
Ty T 0Ty - ¥ <2y R Yo

which completes the induction in this case. In the contrary case

Ty T Ty



and
sgn x = sgn v, fegn (or; - (sgn xy) * y) =senx - s@m (2|ryf -y ).
Thus
sgn (2 |1y - 1y ) =1,
i.e.
il =2 <yl

and sgn ri, = sen ari =sgnr, = 8gn X, since Eri is in the mechine's

number range. Hence we have proved our inductionm.

We multiply both zides of (1) by 271! 4nd sum for 1 = 1, 2, vuey

n. We find
-(n-1) _ ol .
2 r, =27, - (sgn xy) * ¥y P,
where
n-1l -4
P=3 27 p:
i=0
Thus
(&) x = (sgn xy) P -y +R
where
R = 2—n+1 r
n
since 21r0 = X.

If sgn xy = +1, (4) becomes with the help of (3)
X =Q7 +K,

where

If sgn xy = -1, then

n-1 1 n-1 Y

- g -1 )
a=5 2tq =7 2ip) =2-p) -2,
i=0 1=0
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i.c. apart from the term 2-(n-1) Q is the complement of P. Thus our
guotient is wrong in the last place.

Up to this point we have made no mention of "rounding procedures.
We o not wish in this place to discuss the theoretical background of
such procedures. Instead we merely call the reader's attention to such
a discussion in a previous reportl) and state the rules we have adapted.
In the maltiplication operation a digit is added to 2‘“0 and the result
sruncated after 39 digits after all cerries have been completed. In the
division operatlion we perform 39 steps determining the sign and 38 informa-
tion digits. The 39th such digit is automatically made 1.

We complete our discussion with a discuasion of the roles of RI,
RII, RIII during the divislon operation.

At the start of this operation the dividend is in RI, the divisor
<3 in RITI. Although left shifts are to be performed the channel from
RI to RII which normnlly transmitts for a left shift is suppressed. In-
stead the quotient digits are inserted serlatim into position 38 of RII
and shifted left. The operation continues until the sign digit of the
quotient reaches position O of RII. At this time the remainder is 1in RI.

It remaine only to explain how the machine makes the discrimina-
tione indicated in (2), (3) above. First we note that in (2) the expres-

sion "szn ri-l" can be replaced by sgn 3. Thus (2) becomes

1) Preliminary Discussion of the Logical Design of an Electronic Comput-
ing Instrument, Burks, Goldstine and von Neumann, Pt. I, Vol. I,
1946, pp. 19, ff.



0 senx#smm (er, | - (sgn ) y)

T = <’

(‘-') pi-l |
( 1 senx =seg (2r, | - (sam 57) ¥).

It was not convenient engineering-wise to detect the signum of
2ri-l - {sgn xy) y and therefore a scmewhat different quantity was ob-
gerved. To explain this we suppose for the moment that

s =or, ;) - (san xy) ¥
is expressed not as

P = o 2 5 n-1
8 =Ty +-w1/2 + 1/2 +oee. 4 n-l/z
~ n-2

n_l/z .

I.e. we regard 0 not ag a eign diglt but as an arithmetic digit and

g = O'_1+L%/2+ 31/224» vee +

1 @8 the sign diglt. The convention adopted is now this:

70 (L-sgmx)/e= s
(2" D4 =

‘1 (L - sgnx)/f2# s,

It is not difficult to sse that conventions (2') and (2") are equivelent.



II. THE ORDERS

We proceed now to an explanation of each order in terms of the
contents of RI, RII, RIII and of certain other facte relevant to the
coder. It is desirable first, however, to mention the digital structure
of the orders.

Each order consists of 20 binary digits, the first 10 of which
usually specify a Memory location and the second 10 of which specify
the operation to be performed. Two orders are grouped together into a
single 40 digit word. The Control is so arranged that it first executes
the left-hand one of the pair and then the right-hand one. Thege are
referred to as the first and second phases of the order-word, respec-
tively. In what follows we number the digite of an ordesr 0 through 9
for the Memory location and 10 through 19 for the operation.

We now describe the orders.

0.1. THE PLUS CLEAR ORDER.

a) This order may be in either the first or second phase
of an order-word.

b) The digits 0-9 (20-29) express the Memory location
from which operand is to come.

¢) The so-called step-digit, digit 11, may be a O or a 1.

In either case the order is executed. In the former case the Control is

prevented from proceeding to the next order and the machine stops. If
after the stop the step digit is changed to a 1, the order is re-done

and the machine proceeds normally.
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d) At the start of the order the contents of the

registers ere:

Rl irrelevant
R2 irrelevant
R3 irrelevant

¥ - b, the addend
e) At the end of the order the contents of the regis-
ters and of memory location x are:
Rl b
R,, unchanged

2
RS b
xr b
0.2. THE PLUS HOLD ORDER.
a), b), c) The same as for O.l.

d) At the stert of the order the contents of the

registers and x sre:

R1 a, the augend
R2 irrelevant
RJ irrelevant

x b, the addend.
e) At the end of the order the contents of the regis-

ters and x are:

Bl a +b
32 unchanged
R3 b

b 4 b



0.3. TEE MINUS CLEAR ORDER.
a), b), c) The same as for 0.1.
d) At the start of the order the contents of the
reglsters and x are:
R irrelevant
R, irrelevant
irrelsvant
x b, the subtrakend
e) At the end of the order the contents of the regis-

ters and x are:

Rl 2 -5

32 irrslevant
B3 »

x b

0.4. TEHE MINUS HOLD ORDER.
a), b), ¢) The same as for 0.1.
d) At the start of the order the contents of the
registers and x are:
R, a, the minuend
irrelevant
R3 irrelevant
X b, the subtrahend
e) At the end of the order the contents of the regis-

ters and x are:
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32 unchanged
B
x b
0.5. THE PLUS ABSOLUTE CLEAR ORDER.
a), b), ¢) The same as for 0.1.
d) At the start of the order the contents of the
registers and x are:
irrelevant
irrelevant
irrelevant
x b, the addend
e) At the end of the order the contents of the regis-
ters and x are:
Y

unchanged
3 b

W W

o)

x Db
0.6. THE PLUS ABSOLUTE EOLD QRDER.
a), b), o) The same as for 0.1l.
d) At the start of the order the contents of the
regleters and x are:

a, the augend

f

R irrelevant

w N

irrelevant

X b, the addend



e) At the end of the order the contents of the regis-

ters and x are:

Bl a + | b|
32 Unchanged
33 b
X b.

0.7. THE MINUS ABSOLUTE CLEAR (RDER.

a), b), ¢) The same as for O.1l.

d) At the start of the order the contents of the regis-

ters and x are:
Rl irrelevant
32 irrelevant

E3 irrelevant

x b, the subtrahend

e¢) At the end of the order the contents of the regis-

ters and x are:

R, 2~ |b]

1
R2 unchanged
RS b
x b.

0.8. THE MINUS ABSOLUTE EOLD ORDER.

a), b), ¢) The same as for O.1l.

d) At the start of the order the contents of the

registers and x are:



o
-1

Rl a, the minuend

R2 irrelevant
R3 irrelevant
X b, the subtrahend

e) At the end of the order the contents of the regiasters

and x are:
Rl a -b
R2 unchanged
R3 b
x bl

0.9. THE MULTIPLY NO-ROUND OFF CORDER.

a) The same as for 0.1.

b) The digits 0-9 (20-29) express the memory location
from which the multiplicand is to coms.

c) The step digit is as in 0.1. The clear digit 18(38)
may be a 0 or a 1. In the former case the contents of RI at the start
of the order will be added to the first partial product. I.e., if c is
in RI at the start and if the desired product is a b, then what is pro-

39d. In the latter case the contents of

duced in this case is ab + 2
RI are clsared to 0 at the gtart of the multiplication.
d) At the start of the order the contents of the regis-
ters and x are;
R, irrelevant if "clear”
R, &8, the multiplier

33 irrelevant

X b, the multiplicand.
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e) At the end of the order the contents of the regis-

ters and x are:

R3

X

cgr €11 ***7 C3g
(l-bo), Chgr " 20gs vhere ab =
= Cqr Cys ety c39, Cho? T °78 and bo is
the sign digit of b. (We assume the “"clear”
case.)

b

b.

0.10. THE MULTIPLY ROUND-CFF CRDER.

a), b), ¢) The same as for 0.9.

d) The same ss for 0.9.

&) At the end of the order the conteuts of the regis-

ters and X% ere:

33

X

a’oJ a.lJ g'2.! M | ?)’39

(l-bo), Opp * Lo Cyys vrs Cqgi wherae B’O,

Kl, ceey 39, cm + 1, oy 378 - (CO, Cl,
c c ¢ C.g) = 2‘“0

.l‘, 39,' ho’ hl, .O.’ 78 L]

b

.

0.11. THEE DIVISION ORDER.

a) The same as for 0.1.

b) The digits 0-9 {20-29) express the memory location

from which the divisor is to come.

¢c) The same as for O.1.



d) At the start of the order the contents of the regis-
ters and x are:
Rl K, the dividend
Ra irrelevant
33 irrelevant
x D, the divisor.
e) At the end of the order the contents of the regis-

ters and x are:

1 2R, twice the remainder

2 Qs Qg 200y q38, 1, cf. Chapter I
3

R
R

R D

x D
0.12. THE LOAD RII CRDER.
a), b} The same as for 0.1.
c) The same as for 0.1. If the clear digit is a 1,

then R, 1s pre-cleared to O.

1
d) At the start of the order the contents of the regis-

ters and x are:

R Irrelevant

1

Rg Irrelevant

33 Irrelevant
x b

e) At the end of the order the contents of the regis-

ters and x are:

R, Unchanged if clear digit is 0; O if clear

1
digit is 1.



Ba b
RS »
x b.
0.13. THE STORE ORDER.
a) The same as for O.1.
b) The digits 0-9 (20-29) express the memory location
into which the contents of RI are to be placed.
c) The step digit mst always be a 1. Thus the store

order cannot be used as a stop order.

d) At the start of the order the contents of the regis-

ters and x are:
Bl b, the word to be stored

R irrelevant

2
33 irrelevant
x irrelevant

e) At the end of the order the contents of the regis-

ters and x are:

0.1%. TEE STORE CLEAR ORDER.
a), b), ¢) The same as for 0.13.
d) At the start of the order the contents of the regis-

ters and x are:
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R, Irrelevant

1

R, Irrelevant

2
Ba Irrelevant
x Irrelevant
e) At the end of the order the contents of the regis-
ters and x are:

R, ©

1
R, Unchanged

2
B o
x O
0.15. and 0.16. THEE UNCONDITIOBAL TRANSFER ORDERS.

a) The sams as for O.1.

b) The ddgits 0-9 (20-29) express the memory location
to which the control is to be transferred. I.e., the location where
the next order is to be found.

c) If the step digit is a 0, the control transfer takes
place to the same phase of the new order-word as that of the order in
question. If the step digit is a 1, the transfer takes places to the
opposite phase.

d) At the start of the order the contents of the regis-
ters and x are:

Irrelevant
Irrelevant

33 Irrelevant

x b, the next order-word



and x are:

32.

e) At the end of the order the contents of the registers

v W
w N

Ry

X

Unchanged
Unchanged
0
b

b.

0.17. and 0.18. THE CONDITIONAL TRANSFER CORDERS.

a), b), ¢) The same as for 0.15 - 16.

d) At the start of the order the contents of the regis-

ters and x are:

and x are:

Case A

Ry

BQ
g3

b 4

a> 4]
Irrelsvant
Irrelevant

b, the next order-word

Cese B

1 a<i

32 Irrelevant

R3 Irrelevant

X b, irrelevant

e) At the end of the order the contents of the registers

Case A

Unchanged
Unchenged
0
b

Case B

Rl Unchanged
R, Unchanged

R, Unchanged



0.19. THE QUICK-SUM ORDER.

a) The order may be only in the first phease of an order-
word.

b) The digits 0-9 express the memory location x from
vhich the first operand is to come. It is obtained from the orders
0.1. - 0.8., inclusive, by setting digit 19 to 1. In this case the
order specified without this digit being 1, i.e. one of the set 0.1 -
0.8, 1s performed first at the location x and then serially at each fol-
lowing location through 1023 after which the order terminates. The sec-
ond phase order must be a transfer of the countrol to the location of the
next order-word. This 1s due to the fact that the order counter no
longer stores the location of the next order-word.

¢} The step digit must be a 1.

d) At the start of the order the contents of the registers
and x are:

Rl a
32 Irrelevant

33 Irrelevant

!+i b 1‘0,1,-0-,1023”

i
e) At the end of the order the contents of the registers

and x are:

Ry bipy 1£0:1,3,50r7

e+ = £(b 1 0.2, , 6, 8

x+1)

Ra Unchanged

3
R% B3



3k,

vhere
T v 1to.2
-b if 0.k
{v| 1r 0.6
-iv| tro.8
0.20. RIGHT SHIFT, NO-ROUND OFF ORDER.
a) The same as for 0.l.
b) The digits 4-9 (24-29) express the number of shifts
40 be exscuted. This number n is expressed as an integer times 2'9
(2°%%)., The aigits O - 3 are irrelevant. The number stated in digits
b - 9 (2-29) must not exceed L7 and must not be 0. (A shift by 0 is
sxecuted as a shift by 1.)
¢) The sams as for 0.1.
d) At the start of the order ths contents of the regis-
ters are:
By 8gr &) 8y -ves Baps By
82 ‘DO, bl’ b’&’ very b38’ ‘b39
R3 Irrelevant
s) At the end of the order for s shift of 1 the contents
of the registers are:
Bl 8y» 857 81) 8, ooty "38
32 3.39, bo, bl, b2, cevy b38
2% by, by, by, oo, by
for s shift of n this is iterated n times.
£) This order may be given vith the olear digit, digit 18



(38), a 0 or & 1. The situation above shows the case of this digit = O.
We show below the case when it is 1
e') At the end, for a shift of 1, the contents of the
registers are:
0

b., b

o’ P17 ba, veoy b39
We note that even though.Bl has been cleared to O before ths shift
starts the sign of the numbder that was there is propsgated by the ehift.
0.21. RIGHT SHIFT, ROUND OFF ORDER.
This order 1s not yet avallable.
0.22. LEFT SHIFT ORDER.
a), b), ¢} The same as for 0.20.
4) At the start of ths order ths contents of the regis-
ters aret

1 %o By By crvs B3gr By

Re bo, bl, b2, LN b38, b39

R3 Irreleveant

e) At the end, for a shift of 1, the contents of the
registers are:
Rl &l’ ae, ey 538, 539, ao
RQ bl’ bz, ceey b38’ b39, ao
33 bo, bl’ ceey b38’ b39
For a shift of n this isg iterated n times.

f) This order may be given with the clear digit a O or a 1.
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The situation sbove shows the case of this digit = 0. We show below
the case when it ias 1.

e') At the end, for a shift of 1, the contents of the
registers are:

B 0, 0, sy 0’ G’O

1
R

2 D1r by eees Bagy bog, O
B3 b, by, .ee, byos Bags bag

g) We indicate next what occurs when a left-shift (of 1)
is followed by & right shift (of 1).

e") At the end of the order the contents of the regis-
ters are:
1 %0 12 Bpr vy B3gs B39
0y By, byy ey bagy bog

W

W N

R b, b, «ony b

1’ 397 %o

0.23. THE RQ TO Rl ORDER.

a) The same as for O.l.

b) This order is actually not one but a set of eight dif-
ferent ones. These are essentially the orders 0.l. - 0.8. except that
the operand comes not from a memory location x but rather from RII. One
other feature is available in connection with this order. To describe
this we consider the digits 0-9 (20-29). Of these 0 - 3 (20-23) are ir-
relevant. The digite 4 - 9 (2k-29) are as indicated in b) of 0.20. They
express an integer times 29 (2"29) vhich is > 0 and < 47.

c¢) The seme as for 0.1.

d) At the start of the order the contents of the regis-

ters are:



)
oo |

Bl a

32 b
BB Irrelevent
e) At the end of the order the contents of the regis-
ters are:
{/ég(a) + (a+1) £(b) if n is odd
Ry ¢
' gle) + nf{b) /2 if n is even,
vhere £ is defined in the discussion of Order 19 and
(/h if 0.2, 4, 6, 8
g(a) =<
0 1£f0.1,3,5,7
R2 b
R v.
0.2%. and 0.25. IBM AND DRUM PRIMING ORDER.

a) These orders must be second phase ones. Their use is
to specify the number of cards to be read or punched by the IBM repro-
ducer or the starting word block nusber and the number of such blocks to
be loaded or unloaded om or from the drum.

There are 12 words on an IBM card occupying the columms l-k, 6-9,
11-14, 16-19, 21-24, 6-29, 31-34, 36-39, k1-4h, ¥6-49. The columms 3,
10, 15, 20, 25, 30, 35, 40, hé are never used. Columns 66-80 are used
for identifying informationm for the human operator. Each word occupies
a row on the card, a hole indicating a 1, no hole a 0.

The Magnetic Drum contelins 2048 words divided into two main
groups of 1024 each. Each of thess is composed of 32 blocks of 32

words each.



b) The address portion of the order is used to apecify
the number of cards in the case of IBM operation or the starting block
pumber and the number of blocks in the case of drum operation. In the
former case, ths IEM one, the dlgits 20-22 are irrelevant; 23-29 express
as an integer times 2'29 the number of carda to be processed. In the
latter case, the drum one, the digits 50-2h are used to express the start-
ing block number as an integer times 2-2h; the digite 25-29 the number of
blocks to be processed, the number being an integer times 272, 1t 18
important to note thet the blocks and the number of blocks are counted
1, 2, ++-, 32. Thus 00000 means block 32 if it appears in positions 20-
- and means 32 blocks if in 25-29.

c) It is best elways to put & step-digit, digit 30, imto
thig order.

In principle this is not one but a set of 18 orders, 0.1 - 0.18;
it differs from these only in that the address portion does two things:
It is not only the operand for the order 0.1 - 0.18 but is also sent to
s aspeclal register in the IBM-Drum Control. I% remains there permanently
until altered by another such order.

Since the analogous 0.1 - 0.18 order will be executed using the
given address as operand 1t will bring an irrelevant quantity into the
aArithmetic Unit. Thus if the contents of RI are relevant and it is
desired to prime, it is best to use & load R2 type of order, whereas
if the contents of RII are relevant, one of the type 0.1 - 0.8. The
priming order differs from 0.1 - 0.13 only in that digit 31 is a O.

0.26. TIBM INPUT TO MBMORY ORDER.
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a) This must be first phase. The second phase of the
sams order-word must be a transfer of the control to the next order-word.

b) The digits 0-9 are used to specify the memory loca-
tion x for which the order is first executed. The order is then exscuted
for x +1, X + 2, «.. until the number of cards previously set by the
prior priming order has been reached.

c) The step digit must de a 1.

d) The only register that is unchanged is RII.

0.27. IBM OUTPUT TO MEMCRY ORDER.
a), b), ¢) The same as for 0.26.
d) All registers are altered.
0.28. IRUM INPUT TO MEMORY CRDER.

8) The same 8¢ for 0.26.

b) The digits 0-9 are used to specify the memory loca-
tion x for which the order is first executed. The order is then exe-
cuted for x + 1, ¥ + 2, +.. until the number of blocks previously set
by the prior priming order has been reached.

c) The same as for 0.26.

d) The same as for 0.26.

e) The drum stores 1024 bits per track and has 80 tracks.
These 80 are divided into 2 sets of 40 each which congtitute the major
groups mentioned above in the discussion of order 24. The selection of
the proper group is controlled by digit 15. If it is & O, group A 1is

selected; if it is a 1, group B 1s gelected.



0'8‘

IRUM QUTPUT FROM MEMORY ORDER.
a), b), ¢) The same as for 0.28.
4) The same as for 0.27.

e) The same as for 0.28.
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