PRO-LOG STD 7000

CORPORATION

7303
Keyboard/Display Card

USER’'S MANUAL

NOTICE
The information in this document is provided for reference only. Pro-Log does not assume any liability arising
out of the application or use of the information or products described herein.

This document may contain or reference information and products protected by copyrights or patents and
does not convey any license under the patent rights of Pro-Log, nor the rights of others.

Printed in U.S.A. Copyright © 1981 by Pro-Log Corporation, Monterey, CA 93940. All rights reserved. However,
any part of this document may be reproduced with Pro-Log Corporation cited as the source.

7303

KEYBOARD/DISPLAY CARD
USER'S MANUAL

P[L|PRO-LOG

J)corrPoRATION 4/81

FOREWORD

This‘ manual explains how to use Pro-Log’s 7303 Keyboard/Display Card. Itis structured to reflect the answers
to basic questions you, the user, might ask yourself about the 7303. We welcome your suggestions on how we
can improve our instructions.

The 7303 is part of Pro-Log’s Series 7000 STD BUS hardware. Our products are modular, and designed and
built with second-sourced parts that are industry standards. They provide an industrial manager with the
means of utilizing his own people to control the design, production, and maintenance of the company’s
products that use STD BUS hardware.

Pro-Log supports its products with thorough and complete documentation. Also, we teach courses on how to
design with, and use, microprocessors and the STD BUS products.

You may find the following Pro-Log documents useful in your work: Microprocessor User’s Guide, and the
Series 7000 STD BUS Technical Manual. If you would like a copy of these documents, please write to us on
your company letterhead.

O

Contents

Page

FOP@WOI ettt et e s s e e R e et et e en e i
Figures v
Section 1 - Purpose and Main Features 1-1
Section 2 - Installation and Specifications ... 21
I/0 Mapped Card Addressing.........o........ 2-1
Changing the Port Addresses 2-2
Alternatives to Soldered Wire Jumpers 2-5
Electrical and Environmental Specifications 2-5
Mechanical Specifications 2-7
Section 3 - Operation and Programming.... 3-1
Alphanumeric Display 3-2
Output Port Bit Assignments for Character Mode 3-4
Cursor Mode 3-6
Output Port Bit Assignments for Cursor Mode ... 3-6
=17 0T T- ¥ o .. 3-8
Binary LED DiSplay ...cooooeomeeeeeeeeeee e 3-11
Rocker Switches 3-11
Section 4 - Operating Software 4-1
Introduction 4-1
Memory Addresses..........ccooerooceeeeeens 4-1
VL@ o] ¢ Qo (o] ¢ - T U 4-1
Software Package CONENS ... e eeeeeem e er e e s e aese s e e enmene 4-2
LY =T g] VA -V o T 4-4
ASCI| Display Driver Module 4-9
SUbroOUtiNg (DISP LAY) et 4-10
Subroutine (MEM.DISP) ... 4-11
Subroutine (STROBE).. 4-12
Cursor Control Module.. 4-13
Subroutine (CURSORS) 4-14
Subroutine (CLR. CURSORS) ..o 4-15
Display Service Routines Module 4-17
Subroutine (CLEAR.DISPLAY) 4-18
SUDBroUtING (CLEAR.BOTH) ... e ee e eece e eeme e e e e s ee e eemem e eeemmeme s meemsameemesmeeenmenenennns 4-19
Subroutine (DISPLAY.8) 4-20
Subroutine (LAMP.TEST).. 4-21

Contents (continued)

Hexadecimal/ASCIl Conversion Moduleccoceoeeeneeeeen..

Subroutine (HEX/ASCII)

Subroutine (MEM/ASCII) ...

Subroutine (DISP.HEX)..
Subroutine (DISP.2.IN.C)

Formatted Messages Module

Subroutine (MESSAGE) ...
Subroutine (BILLBOARD)

Key and Switch Data Entry Module
Subroutine (READ.KEY) ..o

Subroutine (DECODE.KEY)..

Subrouting (SCAN) .o eeee e

Subroutine (ROCKER.STATUS)

Auxiliary Timing Module

Subroutine (DISPLAY.DELAY)
Subroutine (LONG.DELAY)

Subroutine (DEBOUNCE.DELAY)

Demonstration/Test Programs
DISPLAY.DEMO ... e

DISPLAY.SELF

CALCULATOR. ..t e seemeeseene s

DISPLAY.TEST oo ne s enesaeeeos

KEY.TEST

(070Te [75Te T oo ¢ ¢ T SO

Section 5 - Maintenance ...

Reference Drawings......
Signal Glossary ...

4-23
4-24
4-25
4-27
4-28

4-29
4-30
4-31

4-42
4-34
4-35
4-36
4-37

4-39
4-40

. 4-41

4-42

4-43
4-44
4-45

.. 4-46

4-47

4-49

5-1
5-1

5-4

Keyboard Label Replacement

5-56

Keyboard Disassembly
Special Parts eeeereeemeneneaen

5-56

Return for Repair Procedures..... .

5-5

Appendix A - Front Panel Mounting of 7303 Card (PLAN 131)

Introduction

A-1

A-2

Remote 7303 Drive Via I/0 Lines..

Panel Mounting

- A-3

il

Figure

1-1
1-2
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
4-1
4-2
4-3

4-4
4-5
4-6

Figures

Page

1-1

7303 Keyboard/Display Card
Block Diagram of the 7303 Keyboard/Display Card

1-2

I/0 Mapped Operation in Local Card Rack ..

.......... 2-1

Decoder Jumper Pad Numbering for the 7303
7303 I/0 Address Decoder and Schematic for 2 Addresses Per Card

2-2
2-3

Jumpers Required for 7303 Port Address Mapping

2-4

Electrical Specifications - 7303 Keyboard/Display Card

2-5

STD BUS Electrical Characteristics over Recommended Operating Limits

Edge Connector Pins for the 7303

2-5

2-6

Switching Characteristics over Recommended Operating Limits - 7303 Card

2-6

7303 Alphanumeric Display Timing Waveforms

Mechanical Characteristics over Recommended Operating Limits - 7303 Card

7303 Keyboard/Display

Alphanumeric Display Programming Model for the 7303
Hexadecimal Values of ASCII Characters

Data Port Bit Assignments for Character Mode - 7303 Card

Control Port Bit Assignments for Character Mode - 7303 Card

Display Position Addressing - 7303 Card
Flow Diagram of Character Mode Events for the 7303

Character Mode Timing Waveforms - 7303 Card

Data Port Bit Assignments for Cursor Mode - 7303 Card
Control Port Bit Assignments for Cursor Mode - 7303 Card ...

Left/Right Display Position Group Select for Cursor Mode - 7303 Card

Flow Diagram of Cursor Mode Events for the 7303
Cursor Mode Timing Waveforms for the 7303

Keyboard Programming Model for the 7303

Programming Key Bounce and Noise Rejection for the 7303

3-10

Recommended System-Level Keyboard Procedure for the 7303
Binary LED Display for the 7303

3-11

Rocker Switches for the 7303 ...

3-11

Rocker Switch Status for the 7303

3-11

Index of Demonstration and Test Programs for the 7303

4-2

Index of Keyboard and Display Subroutines for the 7303

4-3

16K Memory Map—7303 Software Package in 7801/7803
Processor Card Onboard Memory Sockets

4-4

4-5

256-Byte Memory Map—7303 Alphanumeric Display Subroutines

256-Byte Memory Map—7303 Keyboard Subroutines and Demonstration Programs

256-Byte Memory Map—7303 RAM “MAILBOX” Allocation

.................... 4-6

4-7

Figures (continued)

4-7
4-8

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-a7

Vi

Flowchart—ASCII Display Driver Module for the 7303

Register and Memory Allocation for 7303 Subroutine (DISPLAY)

Characteristics of 7303 Subroutine (DISPLAY)

Register and Memory Allocation for 7303 Subroutine (MEM.DISP)
Characteristics of 7303 Subroutine (MEM.DISP)

Register and Memory Allocation for 7303 Subroutine (STROBE)

Characteristics of 7303 Subroutine (STROBE) ..
Flowchart—Cursor Control Module for the 7303

Register and Memory Allocation for 7303 Subroutine (CURSORS)

Characteristics of 7303 Subroutine (CURSORS)
Register and Memory Allocation for 7303 Subroutine (CLR.CURSORS)

Characteristics of 7303 Subroutine (CLR.CURSORS)

Flowchart—Display Service Module for the 7303

Register and Memory Allocation for 7303 Subroutine (CLEAR.DISPLAY)
Characteristics of 7303 Subroutine (CLEAR.DISPLAY)

Register and Memory Allocation for 7303 Subroutine (CLEAR.BOTH)

Characteristics of 7303 Subroutine (CLEAR.BOTH)
Register and Memory Allocation for 7303 Subroutine (DISPLAY.8)

Characteristics of 7303 Subroutine (DISPLAY.8)

Register and Memory Allocation for 7303 Subroutine (LAMP.TEST)
Characteristics of 7303 Subroutine (LAMP.TEST) :

Flowchart—Hexadecimal/ASCIHl Conversion Module for the 7303

Register and Memory Allocation for 7303 Subroutine (HEX/ASCII)

Characteristics of 7303 Subroutine (HEX/ASCII)
Register and Memory Allocation for 7303 Subroutine (MEM/ASCII)

Characteristics of 7303 Subroutine (MEM/ASCII)

Register and Memory Allocation for 7303 Subroutine (DISP.HEX)
Characteristics of 7303 Subroutine (DISP.HEX)

Register and Memory Allocation for 7303 Subroutine (DISP.2.IN.C)

Characteristics of 7303 Subroutine (DISP.2.IN.C)
Flowchart—Formatted Messages Module for the 7303

Register and Memory Allocation for 7303 Subroutine (MESSAGE)

Characteristics of 7303 Subroutine (MESSAGE)

Register and Memory Allocation for 7303 Subroutine (BILLBOARD)
Characteristics of 7303 Subroutine (BILLBOARD)

Flowchart—Key and Switch Data Entry Module for the 7303

Register and Memory Allocation for 7303 Subroutine (READ.KEY)
Characteristics of 7303 Subroutine (READ.KEY) ..

Register and Memory Allocation for 7303 Subroutine (SCAN)

Characteristics of 7303 Subroutine (SCAN)

Register and Memory Allocation for 7303 Subroutine (ROCKER.STATUS) ...

Figures (continued)

4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
5-1
5-2
5-3
5-4
5-5
A-1
A-2
A-3

4-37

Characteristics of 7303 Subroutine (ROCKER.STATUS)........
Flowchart—Auxiliary Timing Module for the 7303......

Register and Memory Allocation for 7303 Subroutine (DISPLAY.DELAY)

.-..4-39

4-40
4-40

Characteristics of 7303 Subroutine (DISPLAY.DELAY)
Register and Memory Allocation for 7303 Subroutine (LONG.DELAY)

Characteristics of 7303 Subroutine (LONG.DELAY)

Register and Memory Allocation for 7303 Subroutine (DEBOUNCE.DELAY)
Characteristics of 7303 Subroutine (DEBOUNCE.DELAY) ..

4-41
4-41
4-42

Flowchart—DISPLAY.DEMO Demonstration/Test Program for the 7303

Flowchart—DISPLAY.SELF Demonstration/Test Program for the 7303

Flowchart—CALCULATOR Demonstration/Test Program for the 7303
Flowchart—DISPLAY.TEST Demonstration/Test Program for the 7303

Flowchart—KEY.TEST Demonstration/Test Program for the 7303

Schematic for 7303 (reference only)
Assembly for 7303 (reference only) i

STD BUS Edge Connector Signals for the 7303....

Internal 7303 Signals...........ooooeeriee
Special Parts for 7303

Cable Connection when Operating the 7303 as an 1/0O Load

Cutout Details of 7303 Panel-Mounting....

Profile Mounting of 7303 in User’s 1/8-in. Panel

4-42
4-43
4-44
4-45
4-46
4-47
.5-2
.5-3
.5-4
.5-4
.5-56
.A-2
-A-3
-A-4

vii

SECTION 1
Purpose and Main Features

The 7303 is a general purpose, control panel card with data input and display capability (Fig. 1-1). It includes
an 8-position alphanumeric display keyboard with 24 program-definable keys plus system reset, an 8-bit
binary LED display, and two rocker switches. (See Fig. 1-2 for the block diagram.)

You can use the 7303 in applications where you need a low cost interface for system control, data entry, status
display, and operator prompting. Also, the card is useful for system development, testing, and training

applications.

The 7303 can be mounted in the first position in a card cage with an open-end panel, on acard extender such
as the 7901, or on a 1/8-in. thick panel.

Main Features of the 7303 are:

e 8-position alphanumeric display with ASCII input
e 24 programmable keys plus reset

o Repairable keyboard and replaceable key labels
o 8-bit binary LED display

e 2 rocker switches

o Simple program control of displays and keys

e On-card I/0 ports for processor control

e Single +5V Operation '

PRI N K

Figure 1-1. 7303 Keyboard/Display Card.

11

sw2 SW1|
ROCKER

SWITCHES jL
« / /

; 7 7
DATA BUS %‘,\JTSA 8 7
D7-Do BUFFERS

conRoL 06066083

PORT >/
LATCHES /4 EIGHT-CHARACTER
ALPHANUMERIC
\74;’— CONTROL DISPLAY
DATA

10ExP > CARD /7 /f /j /" /’ /f /f /f /f
o 2a80RRRAS

SELECT EIGHT INDICATORS

ADDRESS BUS LOGIC >

A7 - AD

\ 4

\L—»] porT VA,
8 8

}8
LATCHES
4
/ 4

NS

COLUMN SELECT
v e E
|0|;c;z i /0 ‘ j : i : : ROW READ |—»—
B Jnane
SYSRESET* > BUFFERS Ka/:%:;o RESET KEY >
PBRESET* <

*Active low level logic

Figure 1-2. Block Diagram of the 7303 Keyboard/Display Card.

'SECTION 2
Installation and Specifications

The 7303 operates as part of an STD BUS card rack system. You can plug it directly into the STD BUS
backplane (Fig. 2-1) or extend it from the motherboard with a 7901 card extender, or equivalent. In this
configuration, the card is mapped at processor I/O port addresses.

Insert the card in the left-most socket (viewed from the card ejector end of the rack) of acard cage that has the
left end plate open.

insert a 7901 card extender in any card slot and plug the 7303 into the card extender. In this position, the 7303
clears the other cards and is accessible.

If you mount the 7303 remotely from the card rack, you will need buffering between the card rack and the 7303.
A suitable method is to operate the card as an I/O load driven by input and output ports, rather than as an I/0
mapped processor-backplane load. For more information, see Pro-Log’s Application Note PLAN 131
(Appendix A).

I/0 Mapped Card Addressing

In its normal operation, the 7303 is addressed directly by the processor card. The 7303’s input and output ports
respond to single read and write instructions executed in the processor’s operating program. The 7303 is
enabled when a jumper-selected combination of address lines AO through A7 is present, and when the
following control lines are active: IORQ*, IOEXP, and either RD* or WR*.

The 7303 occupies two consecutive I/0 addresses regardless of its mapping assignment. The card is shipped
with the control port mapped at D1 and the data port mapped at DO. You may retain these addresses or change
them by moving the installed jumper wires. By using DO and D1, the preferred addresses, you can easily adapt
standard Pro-Log software. While the card’s port addresses are generally arbitrary, they must differ from all
other I/O port addresses in the system. If they do not differ, multiple cards will respond to the same READ
instruction, resulting in BUS contention.

7800 SERIES
CPU CARD

STD BUS
—\

7303
KEYBOARD/DISPLAY
CARD

Figure 2-1. /O Mapped Operation in Local Card Rack.

Changing the Port Addresses

Locate decoders U3, U4, and U5 (74LS42) next to the STD BUS edge connector. Each decoder device has a
dual row of pads that form decoder output select matrices. Make one (and only one) connection to each of the
matrices next to U3 and U4, and two connections next to U5. ~

The decoder pad numbering (Fig. 2-2) shows the numbering of the pads next to the decoder chips on the 7303.
Also shown are the jumpers (at X6, Y4, 20, Z1) that produce the hexadecimal port address D0 and D1, the
selection made when the card is shipped.

The I/0 address mapping and jumper selection for two addresses per card is shown in Figs. 2-3 and 2-4. It
indicates where to place jumper straps to obtain any port address in the 00-FF hexadecimal range. Using the 2-
digit hexadecimal port addresses desired, find the hexadecimal port addresses along the vertical axis, and
read the corresponding strap positions from Fig. 2-4. For example, port address DO and D1 are obtained by
connecting jumpers at X6, Y4,Z0,and Z1. This is the preferred address and is shown on the table by the shaded
area.

-

S ut
4 74L8248

O N Q Q0 0. 000

20 u2 1
/ 748240

U0 U O U U U U

dz =i

=3P
P
~ P
F Y
rep
g«p
LO
]
@ @0
1OC50

©w
x

=00
P|-O O
(O O
Pl O
p|~QO O
PO O
pfe O
=pj~O O

~
ry
2
v
»
N

p~O O
=c pl«00O
pl«O O
JEleXe)
=p|~O O 2%

;D°OO -
p|I=-O O

@ b=

74L842

°Q0
a0
~O
«00
(Y

14 8

| 74LS32

&
[cced

Figure 2-2. Decoder Pad Numbering for the 7303.

N W

CARD SELECT DECODERS
74LS244

)4
| 1, 3 12 u3
1 10exp (35— O—O—O—Ofo 74542 o7
§1o
S6
-

A'I@ 13§ . S5

sS4

s3
A6 @-——-——ﬁa
52

| $1

as (19) 134, s0

sxA\

' 12 us
' p 74LS42 g7 sy A
} s6

13 s5
. e @—
5 s4

s3

: 1
! A3 (23 B
| @ o

s1

a2 @E————————2 s0

PORT SELECT DECODER
12 us
D 74LS42 g7

74LS244 S6
uz7

9
b2
' 7
: o—
} 6 14 13 ssjot—
1 1oRQ* c
; 5
i w ! s¢fO sz A\ 7aL832
‘ 4
| O-
<

= s3

14
a1 @ 8 o
siptem o o—

74L832
18

ke 7415244

) Figure 2-3. 7303 I/0 Address Decoder and Schematic for 2 Addresses Per Card
(shown mapped at DO and D1, the preferred card address).

2-3

PORTS JUMPER WIRES PORTS JUMPER WIRES PORTS JUMPER WIRES PORTé JUMPER WIRES .
a X0, Y0, 20, 1 { |—2 X2, Y0, 20, Z1 - |—37 x4, v0, 20, 21 { |3 X6, Y0, Z0, Z1-
o X0, Y0, 22, 23 4 }—2% X2, Y0, 22, 73 |—2= x4, ¥0, 22, 23 |5 X6, Y0, Z2, 23
- X0, Y1, 20, 1| |—a¢ X2, Y1, 20, 21— —e x4, 1,20, 214 &2 X6, Y1, 20, Z1—
o X0, Y1, 22, z3 { —=2 X2, Y1, 22, 23 t—22 X4, Y1, Z2, 23 gs X6, Y1, 22, 23
o X0, v2,20, 214 |—32 X2, ¥2,20, 214 |—o¢ x4,v2,20, 214 |—& X6, Y2, 20, Z1—
gg X0, v2, 22, 23 32 x2, Y2, 22, 23 |—o8 X4, Y2, 22, Z3 gg X6, Y2, Z2, 23
o X0, Y3, 20, 21 f—4= X2, Y3, 20, 21 - |—2% X4, Y3, 20, z1 |—EE X6, Y3, 20, Z1—]
< X0, Y3, 22, 73 { |2 X2, Y3, 22, 23 o |—2= X4, Y3, 22, 3 |—&= X6, Y3, 72, Z3-
L X0, Y4, 20, z1 |32 X2, Y4, 20, 21 | |—a2 X4, Y4, 0, Z1 3‘1’

L X0, Y4, 22, 23 4 |—32 X2, ¥4, 72, 23 | |—2——1- X4, Y4, 22, 3 |—= X6, Y4, 22, 23
i X0, Y5, 20, 21 4 |—o2 X2, 5,20, 21 - = x4, Ys, 20, 21 - (—22 X6, Y5, Z0, Z1
22 X0, 5, 22, 23 { {—22 X2, Y5, 22, 23 }—22 x4, vs, 22, 23 |—22 X6, Y5, Z2, 23+
2 x0, Y6, 20, 21 4 |—22 X2, Y6, 20, 21 - |—= x4, Y8, 20, 14 —22 X6, Y6, Z0, 21—
L X0, v6, 72, 23 —8. X2, Y6, 22, 23— |—o¢ x4, Y6, 72, 23 |—28 X6, Y6, 22, 3
= X0, ¥7, 20, 21 =& X2, Y7, 20, 1| }—aE X4, Y7, 20, 1 f—p< X6, Y7, Z0, Z1—
LS X0, Y7, 22, 23 |—3= X2, Y7, 22, 23 t—2¢ x4, Y7, 22, 23 |—2¢ X6, Y7, 22, 23
L X1, Y0, 20, 21 |—22 X3, Y0, 20, Z1 o |—43—— X5, Y0, 20, Z1 - [—£2 X7, Y0, Z0, Z1
L X1,Y0, 22, 23 4 |2 X3, Y0, 22, 23 - |22 x5, Y0, 22, 23 |—E2 X7, Y0, 22, 23—
= X1,Y1,20, 21 4 | —22 X3, Y1, 20, 21 o |—23 Xs, Y1, 20, 21 | —=£3 X7, Y1, 20, Z1-
L X1,Y1,22, 23— X3, Y1, 22, 23 |22 x5, Y1,22, 23 |—2 X7, Y1, Z2, Z3—
s X1,v2,20, 21 4 |22 X3, Y2, 20, Z1-{ |53 x5, Y2, 20, 21 |—£¢ X7, Y2, Z0, Z1—
o X1, Y2, Z2, 73 4 g: X3, Y2, 72, z3{ |44 X5, Y2, 22, Z3 - __:Q L X7, Y2, 22, 23
= X1,Y3, 20, 21 |—< X3, v3, 20, 1 | [—4E X5, v3, 20, 21 = X7, Y3, 20, Z1-
= X1,v3, 22,23 4 L3¢ X3, Y3, 22, Z3-{ |55 X5, 3,22, 23 |—22 X7, Y3, 22, 23
= X1, Y4, 20, Z1 - {—13 X3, Y4, 20, 1 f—23—1 X5, V4, 20, 1 | —2 X7, Y4, 20, Z1-]
2 x1,v4, 22, 23 { |22 X3, Y4, 22, Z3 __gg L X5, Y4, 22, 23 —Z X7, Y4, 22, Z3-
= X1, s, 20, 21 4 |—23 X3, Y5, 20, 1 - f—22—— X5, ¥5, 20, Z1 Ee—1— X7, Y5, 20, 1
= X1,Ys, 22, 23 { —0= X3, Y5, 72, 23— “—:g X5, Y5, 72, 3 T X7, Y5, 22, 23
gg X1, Y6, 20, Z1 ;g L X3, Y6, 20, Z1— gg L X5, Y6, Z0, Z1 T"i:—_'— X7, Y6, 20, Z1—
2 X1, 6, 22, 23 - |—& X3, Y6, 22, 23| |—pa Xs, Y6, 22, 23-| —a X7, Y6, 22, Z3—
x x1,v7, 20, 21 { |—L< X3, Y7, 20, Z1 4 |—o< X5, Y7, 20, 21 —E= ' X7, Y7, 20, Z1—
= x1,v7, 22,23 1= X3,Y7, 22, 23 |—oF X5, Y7,22, 23 |—= X7, Y7, 22, Z3~
Shading denotes as-shipped configuration.
Figure 2-4. Jumpers Required for 7303 Port Address Mapping.
2-4

O

b

The jumpers installed at the time of manufacture may be removed and installed at different locations, imple-
menting different port addresses. The preferred method of removing jumpers that have been soldered to the
board is to first cut the jumper in half, then unsolder each half individually and discard. Remaining solder
should then be removed from the holes and new jumpers installed at the appropriate locations.

NOTE

On some early 7303 cards, circuit traces were used instead of wire jumpers to implement ports DO and
D1. In such cases, cutthe jumper trace and remove it from the board with a sharp knife, taking care not
to damage the board or any other traces; then proceed to install the new jumper(s).

Alternatives to Soldered Wire Jumpers

If occasional or frequent changes in address mapping jumpers are anticipated, remove the wire jumpers and
populate the jumper pads with 0.025-in.square posts, which are availableindividually and in single and double
strips corresponding to the 0.100-in. gridjumper pad spacing on the card. The posts may then be connected by
wirewrap or by jumper clips available from several sources. Check the height above the board thatthese parts
may protrude, in order to avoid interference with adjacent cards. The recommended wirewrap square post for
SXand SY is AMP No. 87215-5, or equivalent. For SZ, it is AMP No. 87215-1, or equivalent. The recommended
jump clip is AMP No. 530153-2, or equivalent.

Electrical and Environmental Specifications

RECOMMENDED OPERATING LIMITS | ABSOLUTE NONOPERATING LIMITS
SYMBOL PARAMETER
MIN TYP MAX MIN MAX UNIT
Vce Supply voitage 475 5.00 5.25 0.0 5.50 \
Ta Free air temperature 0 25 55 0 55 °C
Ry Humidity 2 5 95 0 95 %RH
a Noncondensing.
Figure 2-5. Electrical Specifications - 7303 Keyboard/Display Card.

SYMBOL, PARAMETER MIN TYP MAX UNIT
lcc STD BUS supply current® 300 500 mA
- STD BUS input load Seel Fig. 2-7 See lFig. 2-7
- STD BUS output drive See: Fig. 2-7 See :Fig. 2-7

a Al segments driven.

Figure 2-6. STD BUS Electrical Characteristics over Recommended Operating Limits.

Figure 2-8 shows the timing requirements that must be observed by the 7303’s operating software.Tgiand Tg;
define the uncertainty period for input port data after a mechanical key or switch opens or closes. Figure 2-9

PIN NUMBER PIN NUMBER
OUTPUT (LSTTL DRIVE) OUTPUT (LSTTL DRIVE)
INPUT (LSTTL LOADS) INPUT (LSTTLLOADS)
MNEMONIC MNEMONIC -
+5V VCC 2 |1 vce | +5v
GROUND GND 4 || s GND | GROUND
-5V 6 I| 5 -5V
D7 1 |s5 87| s5] 1+ |D3
D6 1 |55 [1olfo| 55| 1 |D2
D5 1 |55 12| 55 1 b1
D4 1 |55 |1a]f3] 55 1 |po
A15 16 || 15 1 | A7
Al4 18 |f 17 1 | A6
A13 20 |} 19 1 | A5
A12 22 || 21 1 | A4
A1 24 || 23 1 | A3
A10 26 || 25 1| A2
A9 28 || 27 1 [At
A8 30 |f 29 1 | A0
RD* 1 32 || 31 1 | WR*
MEMRQ* 34 || 33 1 | 10RQ*
MEMEX 36 || 3 1 | 10EXP
MCSYNC* 38 || a7 'REFRESH*
STATUS 0% 40 || 39 STATUS 1%
BUSRQ* 42 || ¢ BUSAK*
INTRQ* a4 || @ INTAK*
NMIRQ* 46 || 45 WAITRQ*
PBRESET* out| a8 || # 1 | SYSRESET*
CNTRL* 50 || 49 CLOCK*
PCI IN 52 || 51 | ouT PCO
AUX GND 54 || 53 AUX GND
AUX -V 56 || 55 AUX +V

* Active low-level logic

Figure 2-7. Edge Connector Pins for the 7303.

defines the other data parameters listed below.

SYMBOL PARAMETER FROM TO MIN MAX UNIT
‘ Key depressed or
te1 Key bounce released Key data stable 15 ms
tga Rocker bounce g\évétggdclosed Or | switch data stable 15 ‘ms
tgq Data setup ASCII data Position pulse 1.2 us
tg2 Write setup Position address Write pulse 0.6 us
tw Write width Write pulse active | Write puise inactive 1.1 us
ty Write hold Write pulse Invalid data 0.5 us

: address
Figure 2-8. Switching Characteristics over Recommended Operating Limits—7303 Card.
2-6

R

S amaba o o e e
g v o

e Y el LR EREUSY e Ee

o

DATA

ADDRESS

ASCIl CHARACTER VALID \
tH

Ao

WRITE

DISPLAY POSITION
ADDRESS VALID

tg2
WRITE ACTIVE

tw

Figure 2-9. 7303 Alphanumeric Display Timing Waveforms.

Mechanical Specifications

The 7303's storage and nonoperating temperature range is limited to 0 to 55°C.

(Note: Waveforms illustrate program values. WRITE is low level active in hardware.)

The 7303 meets all general mechanical specifications of the STD BUS except for component height, which is
0.95in. (2.14 cm) maximum. If you use the 7303 as an interface card, installitin one of two ways that allow you

access to the component side of the card, utilizing a single slot in the card rack.

SYMBOL PARAMETER MIN TYP MAX UNIT
- Key life expectancy 3x106 Operations
- Component height 0.95 in.

Figure 2-10. Mechanical Characteristics over Recommended Operating Limits—7303 Card.

2-8

SECTION 3
o Operation and Programming

The 7303, as a general-purpose control panel card, operates as part of the STD BUS card rack system. You
can use the 7303 for system control, data entry, status display, and operator prompting in low-cost interface
applications. The 7303 can also be used for system development, testing, and training.

The 7303’s operator interface consists of an 8-position alphanumeric display; 24 program-definable keys plus
a fixed-function reset key that resets the systems’s processor card; an 8-bit binary LED display; and two
rocker switches. This section shows how each of these elements works and how they are programmed. Actual
program examples are found in Section 4.

Figure 3-1 shows the physical layout of the 7303’s switches and indicators. It also shows the display position
numbers (7-0), the numeric values of the keys in hexadecimal (0-17), and the rocker switch numbers (S1 and
‘ S2). These designations are important when programming the 7303, and you will probably want to refer back
| to Fig. 3-1 while reading the rest of this section.

ALPHANUMERIC DISPLAY

LEFT LEFT HALF RIGHT HALF RIGHT
s2 PEIRRABB®O® |
= 7 6 5 4 3 2 1 0
ROCKER ROCKER
w swiich @ @ @ © ® ® ® @ swicH
LED DISPLAY —
RE-
14 || 15 || 16 17 || ser
C D E F 13
8 9 A B 12
4 5 6 7 11
0 1 2 3 10
KEYBOARD

Figure 3-1. 7303 Keyboard/Display.

Alphanumeric Display '

The display consists of eight, 16-segment alphanumeric positions. Each position displays any character from
the 64-character ASCIl set. It can also display a cursor character (all segments on). Each display position has
an ASCII character memory and a separate cursor memory. These separate memories allow the cursor to be
displayed and removed without altering the ASCIl character memory. Each display position is randomly
addressable,

Two onboard output ports drive the display (Fig. 3-2). The display’s operation is controlled by program
manipulation of the output bits from these ports. The ports provide the display with data, addressing, and
control signals, giving the program random access to any of the eight display positions.

You can program each display position in either of two modes: character or cursor. By flashing the cursor (all
segments on) alternately with another character, you can draw attention to one or more of the display
positions. Also, you can use the cursor as alamp test. The display can have any combination of characters and
cursors present.

In the character display mode, you can load each display position with any of the characters shown in Fig. 3-3.
Use the SPACE character to blank the position. Note that the display uses 7-bit ASCII code. Each display
position has its own ASCII character memory, ASClI-to-16-segment decoder, and lamp drivers.

In the cursor display mode, each display position can show the cursor character, and each position has a
separate cursor memory in addition to its character memory. Since setting the cursor-on memory bitdoes not
alter the content of the ASCII character memory, you can flash the cursor and an ASCI| character alternately
by setting and clearing the cursor memory.

The functions of the two onboard output ports differ between character display mode and cursor display mode
(including display clearing). We discuss these two modes separately; also we provide separate subroutine
modules for the 7303’s alphanumeric display operation in each mode (see Section 4).

LEFT HALF RIGHT HALF
7 6 5 4 3 2 1 0
POSITION MODE ASCHI
WR SELECT SELECT INPUT
/3))
/
CONTROL PORT DATA PORT
d7 d7 MODE b6
OUTPUT OUTPUT
PORT -WR PORT
ADDRESS [A2) ADDRESS b0
D1 L~ A7 DO
— AO
do do

do-d7 /8
/

Figure 3-2. Alphanumeric Display Programming Model for the 7303.

O

AscClI HEX ASCII HEX ASCH HEX ASClI HEX

CHAR CODE CHAR CODE CHAR CODE CHAR CODE

SPACE A0 0 BO @ co P DO
! A1 1 B1 A c1 Q D1
" A2 2 B2 B c2 R D2
A3 3 B3 c c3 s D3
$ A4 4 B4 D c4 T D4
% A5 5 B5 E Cc5 U D5
& A6 6 B6 F o v D6
’ A7 7 B7 G c7 w D7
(A8 8 B8 H c8 X D8
) A9 9 B9 ! co Y D9
* AA : BA J CA Z DA
+ AB . BB K cB [DB
, AC < BC L cc \ DC
- AD = BD M cD 1 DD
. AE > BE N CE A DE
/ AF ? BF o CF — (Note) DF

Note: Underscore.
Figure 3-3. Hexadecimal Values of ASCII Characters.

Initialization: Reset Characteristics. The 7303’'s SYSRESET* input clears its output ports but does not clear
the alphanumeric display or its character and cursor memories. If SYSRESET* occurs while the program is
changing the content of the alphanumeric display, the content may be altered unpredictably. Therefore, make
sure you restore or clear the alphanumeric display after a system reset.

Also, after power-on, the display’s content is unpredictable. So initialization by a programmed instruction
sequence is generally needed soon after power-on. To blank the display, load the SPACE character (ASCII
/hexadecimal AO) in each display position. Note that a separate instruction sequence is required to clear the
cursors.

ASCII Character Set. The 7303 can display 64 different characters. These characters, and the hexadecimal
code to produce each one, are given in Fig. 3-3.

To usethisfigure, identify the character you wish displayed. The code to the right of the character is a two-digit
hexadecimal number that uniquely identifies the character. Forthe 64 characters that the 7303 can display, the
codes range from AO through DF. For example: the hexadecimal code for the SPACE character is AOQ, for the
number 3 it is B3, and for the letter M it is CD.

The use of hexadecimal codes not listed in the figure results in either a blanked display position (if bit 7 of the
code is 1), or undefined cursor activity (if bit 7 is 0).

NOTE on Port Addresses

Section 2 shows how you can remap the 7303’s address decoders to allow the card to occupy any
two consecutive port addresses in the 00-FF hexadecimal range.

The 7303 is shipped with port addresses DO and D1 selected by jumper wires, and all of the
explanation of the card’s operation and programming in this section assumes that these addresses
remain connected.

If you elect to remap the 7303, regard the onboard ports as the Data Port and the Control Port (ports
D0 and D1, respectively). .

Output Port Bit Assignments for Character Mode

Data Port. Output port DO selects character mode (bit 7 = 1) and specifies one of the 64 ASCIl characters to be
displayed in bits 0-6. Figure 3-4 shows the bit assignments in the data port for character mode.

DATABUS | MNEM DESCRIPTION
d7 MODE 1 = Character mode
dé b6 ‘ MSB
d5 b5 T
d4 b4
d3 b3 7-bit ASCH character
d2 b2
d1 b1 v
do b0 LSB

Note: Standard data port address is HEX DO.
Figure 3-4. Data Port Bit Assignments for Character Mode—7303 Card.

Control Port. Output Port D1 selects the alphanumeric display position address (bits 2, 1, 0) and enables the
display’s WRITE function as shown in Fig. 3-5.

DATA BUS MNEM DESCRIPTION
d7 X
dé X Don't care
ds X
d4 X
d3 WR 1 = Write, 0 = Write inhibit
d2 A2] .
po v Display position address 0-7
p 0 See Fig. 3-6

Note: Standard control port address is HEX D1.
Figure 3-5. Control Port Bit Assignments for Character Mode—7303 Card.

Figure 3-6 shows the bit patterns required in the control port’s bits 2, 1, 0 to address the eight alphanumeric
display positions 0-7.

DISPLAY POSITION
DATA BUS MNEM
716|514 (13]2]1 0
d2 A2 1 1 1 1 ojojoj}o
d1 Al 1 1 01011 1 0j o0
do A0 1 0] 1 011 011 0

Figure 3-6. Display Position Addressing—7303 Card.

3-4

Programming in the Character Display Mode. Causing one of the ASCII characters to appear in one of the
7303’s display positions requires four steps in the program. These four steps can be summarized as follows:

0 1. Output the hexadecimal value of the ASCII character to be displayed (Fig. 3-3) to the 7303’s data
port (Fig. 3-4).

2. Output the 3-bit address of the display position the character is to occupy (7-0) with the write
bit = 0 to the control port (Fig. 3-5).

3. Repeat step 2, but set the write bit = 1.
4. Repeat step 2 (write bit returns to zero, protecting the display).

These steps are summarized as a flow diagram and resulting waveforms in Figs. 3-7 and 3-8 below.

‘ DISPLAY ASCII ’

WRITE CHAR- . N
STEP 1 | ACTER CODE T Find program values in Fig. 3-3.
DATA PORT

<
WRITE POSITION
STEP 2 AD%REZSOST\(A;ITH
CONTROL PORT DISPLAY POSITION
PROGRAMSTEP | 7|6|5]4|3|2|1|0 | COMMENT
WRITE POSITION ite =
sreps | ADDRESS WiTH ¢ Step 2 07{06{05{04/03|02{01[00 Write = 0
cont T orT ~ step3 or |oe |opfoclos|oaos{os | write = 1
0 Step 4 07106 |05| 04|03} 02|01]00 Write = 0
WRITE POSITION
ADDRESS WITH Program Values for Steps 2, 3, 4.
STEP 4 WR-0TO
CONTROL PORT)

(FINISHED ’

Figure 3-7. Flow Diagram of Character Mode Events for the 7303.

STEP 1
STEP 1
DATA !
PoRy PO-b6 X CHARACTER CODE VALID ><
|
STEP 2 STEP 3 STEP 4
! K H
1
A2,A1,A0 X POSITION ADDRESS VALID)<
| . ;
i
CONTROL , : !
PORT \ | WR 1 |
|
WRITE . wro, ACTVE N WRo
o Figure 3-8. Character Mode Timing Waveforms for the 7303.

(Note: Waveforms illustrate program values. WR is low active in hardware.)

Cursor Mode v
Once a valid ASCII character is loaded into the display position’s ASCIl memory, the position can display the

cursor character. Note that ASCII characters must be displayed before the cursor can be displayed; the O

SPACE character satisfies this requirement.

Output Port Bit Assignments for Cursor Mode

Cursor mode and character mode share the same output ports, but the bit functions differ between the two
modes.

Data port. Output port DO selects cursor mode (bit 7 = 0). Bits 0, 1, 2, 3 specify the cursor on/off state for four
display positions at a time. Either the right half of the displays (positions 0, 1, 2, 3) or the left-half of the displays
(positions 4, 5, 6, 7) can be addressed in one operation. Figure 3-9 shows the data port bit assignments for
cursor mode.

DATA BUS MNEM DESCRIPTION

d7 MODE 0 = Cursor mode
dé b6
ds5 b5 Don’t care
d4 b4
d3 b3 Cursor enable, positions 3 and 7 Set bit = 1 to
d2 b2 Cursor enable, positions 2 and 6 display cursor.
di b1 Cursor enablé, positions 1 and 5 Reset bit = 0 to
do b0 Cursor enable, positions 0 and 4 remove cursor.

Note: Standard data port address is HEX DO. 0

Figure 3-9. Data Port Bit Assignments for Cursor Mode—7303 Card.

Control Port. Output port D1 controls the display’s WRITE function (Fig. 3-10) and selects between the right-
hand four displays and the left-hand four displays (Figs. 3-10 and 3-11).

DATA BUS | MNEM DESCRIPTION
d7 X
dé X
Don'’t care
ds X DISPLAY LEFT HALF RIGHT HALF
d4 X POSITION 71l6|5|al3|[2}1)0
d3 WR 1= Write; 0 = Write inhibit DATA BIT B3 |B2)B1)B0 B3 |B2)B1]BO
1 = Left-half select (positions 7, 6, 5, 4 A2 1 0
d2 A2 0 = Right-half selecgp(positions 3,21,)0)
di A1
Don't care
do AD
Note: Standard control port address is HEX D1.
Figure 3-10. Control Port Bit Figure 3-11. Left/Right Display Position 0
Assignments for Cursor Mode—7303 Card. Group Select for Cursor Mode—7303 Card.

Programming in the Cursor Display Mode. With a valid ASClI character loaded to a display position, the cursor
character can also be displayed in that position. When the cursor is removed, the same ASCII character will

reappear.

Cursor characters can be turned on or off in any combination, in groups of four display positions (righthalf=
positions 0, 1, 2, 3 and left half = positions 4, 5, 6, 7). Controlling all eight cursors requires two separate

operations.

Setting/clearing the left-half or right-half cursor memories requires four steps in the program:

1. Output the desired states of four of the cursors to the data port (Fig. 3-9).
2. Output the left/right select bit with write = 0 to the control port (Fig. 3-10).

3. Repeat step 2, but set the write bit = 1.

4. Repeat step 2 (write bit returns to zero, prdtecting the display).

These steps are summarized as a flow diagram and resulting waveforms in Figs. 3-12 and 3-13 below.

o
]

PLAY
SORS

O
P

U

WRITE 4 CURSOR
STEP 1 STATES TO
DATA PORT

T SONRCY
STEP 2 LEFT/RIGHT
DISPLAYS AND WR=0

WRITE CONTROL
PORT SELECTING

STEP 3 LEFT/RIGHT
DISPLAYS AND WR=1

PORT SELECTING
STEP 4 LEFT/RIGHT
DISPLAYS AND WR=0

‘ FINISHED ’

DISPLAY POSITION

PROGRAM STEP | LEFT HALF |RIGHT HALF | COMMENT
Step 2 04 00 Write = 0
Step 3 oC 08 Write = 1
Step 4 04 00 Write = 0

Program Values for Steps 2, 3, 4.

Figure 3-12. Flow Diagram of Cursor Mode Events for the 7303.

STEP 1
=

|
DATA pop ><
PORT 3 |

4-BIT CURSOR PATTERN VALID

X

STEP 2 STEP 3
T

T

STEP 4
= —

LEFT-1
A2 RIGHT-0

1
X A2 (L/R SELECT) VALID
I

e

CONTROL
PORT

WRITE

|
! WR=1

[l

|
|
!

I

|

| |

|

' wao /S ACTVE N oo

Figure 3-13. Cursor Mode Timing Waveforms for the 7303.
(Note: Waveforms illustrate program values. WR is low active in hardware.)

3-7

Keyboard
The keyboard consists of a RESET key and 24 program-definable keys (Fig. 3-14).

The RESET key is not programmable. When pressed, it grounds the 7303’'s PBRESET* outputto the STD BUS
backplane. This signal is provided to reset the system processor card, which responds by generating
SYSRESET*. SYSRESET* is an input to the 7303 card, which resets the 7303’s output ports. The exact
characteristics of the SYSRESET* signal depend on the processor card in use.

The 24 program-definable keys are wired in a 4 x 6 switch matrix. The four columns (vertical axis) are driven by
the data port (output DO port bits 0, 1, 2, 3) and the six rows (horizontal axis) are sensed by input port DO bits 0,
1,2,3,4,5.

Reading the keyboard is a programmed operation. The program strobes each column of keys in turn, using
rotate or shift instructions to move the strobe (a logic “1”) from column to column. As each column is strobed,
the program reads the input port to see if a switch closure has connected the strobe bit to the input port. If so,
both key coordinates are now known (the program generated the column value and the input port read the row
value), so that the value of the key can be computed. If not, the program steps the strobe to the next columnand
repeats the process until a key closure occurs.

TYPICAL
+5V KEYSWITCH
RE-
SET|
gL
I—o O——» PBRESET*
vr/ ID LINE DATA PORT
O L—
b LINE "OC INPUT a5
ol PORT
ADDRES
0
9 do \)
DATA PORT

PRI

do-d7 /8

A

(2]
o
m
n
@

®
©
»
@
-
N

IS
o
o
~
pry

o
-
N
w
S

Physical Layout

Figure 3-14. Keyboard Programming Model for the 7303.

T

Key Values. The value assigned to a key is an arbitrary, unique identifier that can be derived once the column
and row coordinates are known. The (DECODE.KEY) subroutine provided in the 7303’s software package in
Section 4 uses an algorithm that identifies each key with a hexadecimal numberinthe 00-17 range. The 7303 is
shipped with key labels that show the value that will be generated by the (DECODE.KEY) subroutine when the
key is pressed.

Frequently, the value associated with a key is meaningless in relation to the application, and the user may wish
to rename the key with a more meaningful label. The generalized (DECODE.KEY) subroutine is still used to
locate a key closure, but the value returned is decoded a second time to lead to a specific system function. For
example, the CALCULATOR program example in Section 4 shows how to use the compare and conditional
jump instructions to detect the “11” key and assign it the “CLEAR DISPLAY” system function.

Key Reading Procedures. |n addition to simply detecting and decoding a key closure, the program may also be
responsible for the following key-control procedures:

1. Differentiate between noise and a genuine key closure.

2. Ignore key-contact bounce when a key closes or opens.

3. React only when the key closes, not when it opens (or vice versa).

4. Avoid multiple responses to the same closure.

Noise and key-contact bounce can be suppressed by programming a double READ with a time delay between
the READs as shown in Fig. 3-15.

........___;'
|
i

SCAN
KEYBOARD

KEY
NO cLoszn>
?

ACCEPT

DETECT REJECT DETECT KEY
KEY AS KEY &
SAVE KEY CLOSURE NOISE CLOSURE DECODE
COORDINATES
DELAY DELAY
+5V
GND V IV u m
TIME DELAY
=15ms FOR
SWITCH BOUNCE Voltage Waveform at Row in Key Matrix

KEY

COORDINATES

UNCHANGED
?

DECODE
THE
KEY

Example of Program Flow

Figure 3-15. Programming Key Bounce and Noise Rejection for the 7303.
(Note: This figure illustrates the technique of read/delay/re-read/compare, which allows the
program to differentiate between noise and a legitimate key closure, and to pause while the key
contacts settle.)

In most instances, it is desirable for the key to be effective when pressed, not when released. Because of the
speed of microprocessors, there is also a real possibility that the system might react more than once to the
same key closure before the operator can remove his finger (with practice, an operator can deliberately close
and release a small pushbutton in about 50ms; however, this represents an absolute minimum and the
program should not make assumptions about the operator’s characteristics).

The (READ.KEY) subroutine in Section 4 shows how to combine the key decode process with procedural
controls to produce reliable, error-free keyboard entries.

The basic assumptioninthe (READ.‘KEY) routine is that when the subroutine is entered, the operator’s fingeris
still on the key that was just decoded. The software waits until the operator releases the previous key, then
waits again until he presses the next key, then decodes the next key. This technique ensures two important
characteristics:
1. The system will react one and only one time to one key closure.
2. The system’s reaction will take place immediately after the key is closed and not when it is
released.

Figure 3-16 shows a flow diagram of the major events during the (READ.KEY) subroutine.

((READ, KEY) ’

PREVIOUS KEY
STILL CLOSED?,

DECODE
NEW KEY

< EXIT ’

Figure 3-16. Recommended System-Level Keyboard Procedure for the 7303.
(Note: Contact bounce and noise rejection are not shown.)

3-10

e Vo

Binary LED Display

The 8-bit binary LED display (Fig. 3-17) is driven directly by output data port DO—the same output port that
strobes the keyboard and supplies ASCII data to the alphanumeric display. When a bit from this portisin the
high state, the corresponding LED lights up. The LED display is cleared by the SYSRESET* input.

Because output data port DO is used in both alphanumeric display and keyboard decoding operations, the
binary LEDs change when you address either the display or keyboard. The binary LEDs are useful in training,
or in developing programs for the alphanumeric display and keyboard.

You can also use the binary LEDs to display data that is unrelated to the alphanumeric display and keyboard,
but when you do:
1. Refresh the binary LED display after any keyboard scan or alphanumeric display operation.

2. Note that the binary LEDs will show dynamic keyboard-scanning activity for as long as a
keyboard key is depressed (using the subroutine in Section 4).

3. Do not output binary display information to the LEDs, unless the alphanumeric display’s WRITE
bit (output port D1, bit 3) is first set to the “0” state to inhibit changes in alphanumeric display.

DATA PORT +t’iV

OROR o808

b7* b6* b5* b4* b3* b2* b1* b0*

b0o*

AN ;%// / / /

>

*Low Level Active

Figure 3-17. Binary LED Display for the 7303.

Rocker Switches

Two rocker-type toggie switches (uncommitted) provide general mode selection. They connect directly to bits
6 and 7 of input port DO, respectively (Fig. 3-18). Their condition (ON or OFF) can be read by the program at
any time. Figure 3-19 shows the logic state returned according to switch position. Switch S1ison the right side
of the display and S2 is on the left.

DATA PORT
B7
5
ON (UP) —] PoRT
AD%%Essi
LEFT ®2 ROCKER SWITCH
OFF (DOWN) — SWITCH s1 s2
= POSITION oN| OFF [oON | OFF
+5V (up) | (down) | (up) | (down)
(LON (UP) Input Port DO | Bit7 | — — 1 0
RIGHT S1 (Data Port) Bit 6 1 0 — —
OFF (DOWN)
Figuré 3-18. Rocker Switches for the 7303. Figure 3-19. Rocker Switch Status for the 7303.

3-11

3-12

SECTION 4
Operating Software

Introduction

This section contains hardware-level subroutine modules with which to operate the display and keyboard. It
also includes short programs that may help you in testing or repairing the card, and that illustrate how the
subroutines can be linked to work together at system level.

The software in this section can be used without license from Pro-Log. Although tested and believed correct,
this software is not represented to be free from errors or copyrightinfringement, or appropriate for any specific
application.

The subroutines are in STD instruction mnemonics, using 8080 assembly codes. They execute in 8080, 8085,
Z80, NSC 800, and other code-compatible microprocessor systems. The coding forms are grouped at the end
of this section, following the flowcharts.

Flowcharts, which do not refer to microprocessor characteristics, allow the subroutines to be easily adapted to
other microprocessor types.

The subroutines are grouped in functional modules. Each module specification describes the module’s
content, including flowcharts. Individual subroutine specifications give memory, entry, and exit requirements
for each path, plus timing, and other necessary information.

Memory Addresses

Full memory addresses are given. They are preferred addresses that allow the subroutines to work with those
provided for other Series 7000 STD BUS cards from Pro-Log. The program addresses correspond to the Series
7800 processor cards’ onboard ROM/EPROM and RAM sockets.

If your system can not use the memory addresses in the 7303’s software package, simply change the memory
page addresses, as required, when loading these modules into your system. Memory addresses that must be
located in RAM are noted on the program coding forms. Other locations are intended for ROM storage, but
they can also be executed in RAM.

I/0 Port Addresses

The 7303's I/O ports are assigned preferred hexadecimal addresses DO and D1 for compatibility with other
Series 7000 cards. Section 2 shows how to remap these addresses if necessary. This software can be used by
simply changing the port addresses when loading the program modules into your system.

Note that each input (IPA) and output (OPA) instruction is extended to three bytes by the addition of a no-
operation (NOP) instruction in this software. This allows the user to replace the IPA and OPA instructions with
the 3-byte LDAD/STAD instructions, if the 7303 card is memory-mapped (with a memory page address
decoder provided by the user on another card to generate the IORQ* signal). Also, the IPA/OPA instructions
can be replaced by jump-to-subroutine (JS) instructions for constructing subroutines in RAM, to read/write
the 7303’s ports. This allows the program to vary the port address, which in turn allows the same software
package to be used for several 7303 cards in the same card rack.

Software Package Contents

Figures 4-1 and 4-2 list the demonstration/test pr

package.

Figure 4-1 lists short, endless-loop operating programs for demonstrating and repairing the 7303. These
programs are examples of how the subroutines in the software package can be linked together. Monitor the
execution of these programs with an M800 system analyzer and other test equipment to facilitate repair of the

7303, or use them as programming examples or for educational purposes.

ograms and subroutines, respectively, in the 7303's software

PROGRAM NAME

FUNCTION

SEE
FIGURE

DISPLAY.DEMO

Uses (BILLBOARD) and (LAMP.TEST) subroutines. lllustrates
a technique for displaying a long message on a display with a
limited number of positions. Repeats the message “PRO-LOG
7303” twice, tests LED segments, then repeats.

4-56

DISPLAY.SELF

Displays address/data for the 256 memory bytes in memory
page 10, which is where the display subroutines are stored.
Displays information on the program coding forms in this
section, then repeats. Uses (DISP.2.IN.C).

4-57

CALCULATOR

Illustrates how (READ.KEY) and (MESSAGE) can work
together with memory manipulation to create a calculator-
style data entry, with keystrokes shifted from right to left across
the display.

4-58

DISPLAY.TEST

Uses (DISPLAY.8) to step the 7303’s display through the entire
ASCII character set with each character displayed in sequence
in all eight display positions.

4-59

KEY.TEST

Uses (READ.KEY) and (DISP.2.IN.C) to display the 2-digit hex
value of each key when the key is pressed. Allows the operator
to test each key or to monitor the decode and display pro-
cesses on the M800 system analyzer.

4-60

Figure 4-1. Index of Demonstration and Test Programs for the 7303.

() Denotes subroutine labels

(Note: Because these programs are written as endless loops, it is necessary

to reset the system processor to exit from them.)

O

Figure 4-2 lists the general purpose, hardware-level subroutines provided for operating the 7303. These
subroutines allow the user’s program to communicate with the 7303 via data “mailboxes” in the processor’s
internal registers and in RAM, avoiding the need to write port and bit manipulation software.

o

MODULE NAME SUBROUTINE NAME AND FUNCTION SEE FIGURE

ASCII Display Driver 4-7
Controls ASCII display (DISPLAY) Displays any one ASCll character| 4-8 & 4-9
operation in any one position

(MEM.DISP) Displays one ASCIl character| 4-10 & 4-11
from memory
(STROBE) Pulses the display’s WRITE line | 4-12 & 4-13

Cursor Control 4-14
Controls cursor display (CURSORS) Turns on/off any combination of [4-15 & 4-16
operation cursors

(CLR.CURSORS) Removes cursors (not ASCIl| 4-17 & 4-18
characters)

Display Service 4-19
Miscellaneous service (CLEAR.DISPLAY) Blanks ASCIlI characters (not| 4-20 & 4-21
routines cursors)

(CLEAR.BOTH) Removes both ASCII characters | 4-22 & 4-23
and cursors

(DISPLAY .8) Displays only one ASCII char-| 4-24 & 4-25
acter in all 8 display positions

(LAMP.TEST) Turns on all LED segments and | 4-26 & 4-27
indicators

Hexadecimal/ASCIl Conversion 4-28
Accepts hexadecimal input (HEX/ASCH) Converts one hex digit to one| 4-29 & 4-30

0 from various sources ASCII character
(MEM/ASCII) Converts block of binary in mem-| 4-31 & 4-32
ory into displayable ASCIi codes
(DISP.HEX) Combines (HEX/ASCIl) and| 4-33 & 4-34
(DISPLAY)
(DISP.2.IN.C) Displays two hex digits ininternal [4-35 & 4-36
register

Formatted Messages 4-37
Ready to use message (MESSAGE) Displays 8-character ASCIl mes-| 4-38 & 4-39
formats sage from anywhere in memory

(BILLBOARD) Displays N-character message | 4-40 & 4-41
from anywhere in memory in bili-
board fashion

Key and Switch Data Entry 4-42
Performs all key and switch | (READ.KEY) General keyboard read routine 4-43 & 4-44
hardware manipulation (DECODE.KEY) Not for general use - see text —

(SCAN) Detects keyboard activity 4-45 & 4-46
(ROCKER.STATUS) Moves switch states to processor | 4-47 & 4-48
status flags

Auxiliary Timing 4-49
Inexact delays for display (DISPLAY.DELAY) Not for general timing applica-| 4-50 & 4-51
viewing and switch debounce tions - see text

(LONG.DELAY) Not for general timing applica-| 4-52 & 4-53
tions - see text

(DEBOUNCE.DELAY) Not for general timing applica-| 4-54 & 4-55
tions - see text

() Denotes subroutine labels

Figure 4-2. Index of Keyboard and Display Subroutines for the 7303.

Memory Maps

Figures 4-3 through 4-6 are memory maps. Figure 4-3 shows the 16K address space occupied by the Series
7800 processor cards and the location of the 7303 software package within the processor card’s memory.
Figures 4-4 and 4-5 map the specific subroutines within memory pages 10 and 11 (hexadecimal locations
1000-11FF). Figure 4-6 shows the RAM “mailbox” area within memory page 21 (hexadecimal locations

2100-2109).
PAGE | x0 x1 | x2 x3 | x4 x5 x6 | x7 | x8 | x9 | xA | xB | xC | xD | xE | xF
0000 0800
0x PROM 0 SOCKET PROM 1 SOCKET
(User's Program)
O7FF OFFF
10001100 1800
T i
Wy |
w
58
1x g3 g PROM 2 SOCKET PROM 3 SOCKET
~5 O ’
o
o« 1
|
|
1
ﬂOFF:11FF: 17FF 1FFF
2000 ' 2400 2800 2C00
f 10! 1
al 1> 1
g << '
24180 RAM RAM RAM RAM
-3
2 <3S stk 2nd 1K 3rd 1K 4th 1K
s X vl
O's | 1 !
8 < 1= o !
wh 'é 2 '
x? :n N !
* 10 | 1
N |
20FF)"‘$! 123FF 27FF 2BFF 2FFF
3000
NOT USED
3x
3FFF
NOTES

1. 7801 (8085A) and 7303 (Z80) processor cards have sockets for 8K ROM/PROM (sockets labeled PROM 0 - PROM 3).
These cards are shipped with these sockets empty. Also, the cards have sockets for 4K.RAM, and the card is shipped with

1st 1K loaded and 2nd, 3rd, and 4th 1K sockets empty.

2. This map shows the 7303 software loaded in user-supplied PROM 2. Ten locations (2100-2109) in the RAM supplied with
the processor card are used by the software. Page 20 (memory addresses 2000-20FF) is recommended for the subroutine

return address stack.

Figure 4-3. 16K Memory Map—7303 Software Package
in 7801/7803 Processor Card Onboard Memory Sockets.

O

PAGE ADDRESS 10

LINE LABEL LINE LABEL LINE LABEL LINE LABEL

00 (MEM.DISP) 40 80 (CLR.CURSORS) co

01 a1 7] 81 ' 7] C1]
02 B a2 7] 82 (CURSORS) Cc2]
03 7 43] 83 c3 N
04] 44 B 84] [

05 I3 7] 85] C5

06 7] 46] 86 7 C6]
07 (STROBE) a7 7] 87] C7 (DISP.HEX)

08 7 48 7 88] [+ 7
09 49 89 C9

0A B 4A B 8A] CA]
0B a8 7] 8B CB i

oC 7] ac v] 8C 7 cC 7
0D 4D (DISPLAY 8) 8D CD

[] I3] 8E] CE (DISP.2.N.C)

OF 4F 8F CF

10 7] 50] 90 7] DO]
11 h 51] 91] D1 _
12] 52] 92] D2]
13 53 93 D3)
14 7 54] 94] Da N
15] 55 B 95] 05]
16 v 56 96 D6

17 57] 97 N D7 7
18 B 58] 98 7] D8]
19 7] 59] 99 7] D9 7]
1A (CLEAR.BOTH) 5A] 9A 7] DA B
iB 7] 58 v] 98 v] DB]
iC 7 5C 9C DC B
1D (CLEAR.DISPLAYJ | 5D] 9D (HEX/ASCI) DD 7]
1E] 5E B 3 DE \ 4]
1F 7] 5F] 9F 7] DF

20 7] 60 DEMO MESSAGE AD 7] EO (DISPLAY.DELAY)
21 n 61] Al — £ pa=
22 62 - A2 — 02]
23 . 63 7 A3 ~1 €3 —
24 7] 64 7] A4 7] E4 ' B
25 7] 65 B A5 7 E5 (DEBOUNCE.DELAY)]
26 7] 66 B A6 7 £6 B
27 B 67] A7 7 E7 —+
28] 68 B A8 7 E8 7]
29 B 69 A9 \ 4 E9]
2A _ . 6A B AA EA (LONG.DELAY)
2B (MESSAGE) 6B] AB (MEM/ASCII) EB 7
2C , 6C 7 AC EC

20 7] 6D B AD 7] ED B
2E 7] 6F] AE 7] EE]
2F 7] 6F B AF 7 EF]
30 7] 70 7] B0 7] 0 |]
31 a 71] B1] F1]
32 72] B2 7] F2 v]
33 n 73] B3] F3 (CAMP.TEST) _
34 N 74] B4 a F4 B
35 B 75 7] B5 i F5 7]
36 76 B6 F6]
37] 77] 87] F7]
38 \ 4 n 78 7] B8]] B
39 (BILLBOARD) _| 79] B9 B F9 _]
3A] 7A] BA 7] FA]
3B 78 BB B FB B
3C . 7C 1 B 1T] FC 7]
3D _ 70 8D FD L 4

3E] 7E _ BE_ n FE]
3F 7F v BF FF

Figure 4-4. 256-Byte Memory Map—7303 Alphanumeric Display Subroutines.

PAGE ADDRESS 11

LINE LABEL LINE LABEL LINE LABEL LINE LABEL
00 DISPLAY.DEMO 40 80 co CALCULATOR
01 7 a1] 81 7 ci]
02] 42] 82] c2]
03 7 43 _ 83] c3]
04 44] 84 7] ca]
05 B 45 85] C5]
06] 46] 86] Cé _
07 7 47] 87 c7
08 7 48 7 88] c8 7
09 49 7 89 7] c9]
0A] 4A] 8A i CA _
0B a8 88 c8
oC] ac] 8C 7 cC 7
D aD 8D cD
0E] aE] 8E B CE]
oF aF 8F 7 CF _
10] 50 7 90 B DO
11 B 51] 91] D1]
12 B 52 \ 4 92] D2 _
13] 53 93 D3]
14] 54] 94 B D4 _
15] 55 (READ.KEY) 95 7 D5 _
16 56 96 D6
17 7] 57 7] 97] 07]
18 7 58 _ 98] b8]
19 59 99 D9
1A +] 5A 7 9A 7 DA]
1B DISPLAY.SELF _| 58 B 9B B DB]
C 5C 9C DC
1D] 50 B 9D B DD]
1E SE 9E DE]
1F B 5F] 9F N DF]
20] 60 1A] EO]
21 _ 61 | A1 _ E1 _
22 62 a A2 \ 4 E2
23] 63 A3 | E3]
24 R 64 (DECODE.KEY) _| Ad - Ed —
25 65] A5 i E5 _
26 A 66 A6 , E6]
27 7] 67 B A7 (SCAN) E7]
28 N 68] A8 N E8]
29 69] A9 ’ E9
2A] 6A AA EA
28 7 68] AB] B]
2C N 6C 4 [ac 7] EC v
2D] 6D N AD B ED H
2E 6E ' AE EE 7
2F] 6F] AF i EF
30 N 70 _ 80] FO KEY.TEST
31 7 71] B1 v 1]
32 N 72 7 82] F2]
33] 73 n B3 F3 B
34 B 74 B4 |(ROCKER.STATUS)| F4]
35] 75 B B5 7] F5 n
36 76 B6 F6 R
37] 77] B7 7] F7 7]
38 78] B8] F8]
39 i 79] B9 B F9 B
3A a 7A 7 BA] FA _
3B 78 88 B FB i
3c 7 7C] BC |] FC]
3D i 7D] 8D i FD _
3E] 7E n BE N FE |
3F 7 7F BF FF J

4

PAGE ADDRESS 21 - RAM

LINE I LABEL LINE LABEL LINE LABEL LINE LABEL

00 TEXT START ADDR. 40 80 co

01 |] X 7] 81 7 C1 7]
02 CHARACTER 7 a2 82 | c?

03 h 43 a 83 i c3 7]
04 44 84 7] ca]
05 MESSAGE | 45 7] 85] =5]
06 BUFFER] 46 B 86] C6]
07 47 87 c7

08] a8] 88 B c8 n
09 CHARACTER 0 49] 89] c9

A B 4A N 8A] ca]
0B 7 4B] 88 CB _
0c 7 ac B 8C : 7] cc

0D] 4D] 8D] CD]
0E aE 3 CE

of] aF 7] 8F] CF]
10 7] 50 | 7 90 7] DO B
11 7] 51] 91] D1 n
12 B 52 7] 92 B D2]
13 53 93 D3

14] 54] 94] D4 N
15 55 95 D5

16 B 56 B 96 B D6 j
17 57 97 07

18 7] 58 7] 98 B D8 7]
19 7] 59] 99 7 D9 B
1A] SA 7] 9A B DA]
B] 58 B 98] DB 7
iC a 5C B 9C 7] DC]
1D B 5D 7] 90 7] DD]
1E] S5E 7] 9E 7] DE]
1F 7 SF 7] 9F 7 DF 7
20] 60 B AQ N EO _
21 61 Al E1

27] 62] A2 7] E2 B
23 7 63 7] A3] 3]
24] 64 B Ad B E4]
25 65] A5] ES

2% N 56 7] A6 T £6 7]
27 67] A7] €7]
28] 68] A8 7 ES]
29 R 69] A9] E9]
2A 6A AA EA

28] 68 N AB 7 (] N
2¢ n 6C n AC B EC]
2D] 60 | AD ED

2E 6E 7] AE] EE]
2F 7] 6F 7] AF 7 EF B
30 h 70 7] 80 N Fo]
31] 71 7] B1] F1 7]
32 72 N B2 7 F2_-]
33 n 73] B3] F3 N
34] 74 B4 Fa]
35] 75 7 85 7] F5 i
36 76 86 F6]
37 h 77 7 B7] F7 7]
38] 78 _ 88] F8]
39 B 79] B9 7 F9 B
3A] 7A] BA 7 FA]
38 78 BB FB B
3C n 7C] 8C n FC 7
3D] 7D] 8D _ FD]
3E] TE _ BE 7 FE]
3F 7F BF FF

NOTE

Only RAM locations 2100-2109 are used by the 7303; however, other Pro-Log software packages may use other
portions of the processor card’s onboard RAM memory. The designer should consult the users’ manuals for the other
cards being used to find the total amount of RAM needed for subroutine support.

Figure 4-6. 256-Byte Memory Map—7303 RAM “MAILBOX” Allocation.

4-8

ASCII Display Driver Module

This program module displays single ASCII characters at addressable positions in the 7303’s alphanumeric
display. The module-s subroutines handle all of the hardware requirements of the display; data communi-
o cation with the subroutines is through “mailbox” locations in registers and memory. See Fig. 4-7 for flowchart.

This module consists of hardware-level subroutines that are used by other portions of the software package
to create more complex display operations. The designer can use these subroutines to adapt the ASCII
display to any desired format.

The subroutines are based on the 7303 programming requirements as shown in Section 3 of this manual.

Displays ASCII characters shown in Fig. 3-3.

Addressable display positions.

Does all hardware manipulation.

Not for cursor control—see cursor control module.

See DISPLAY.DEMO program for application example.

Contents:

(DISPLAY)—Displays any one ASCII character in any one position
(MEM.DISP)—Displays one ASCII character from memory
(STROBE)—Pulses the display’s WRITE line

Fig. 4-8 Fig. 4-10 Fig. 4-12
Fig. 4-9 Fig. 4-11 Fig. 4-13
(toispLay)) m (sTroBE)
1000

FETCH ASCH
CHARACTER
FROM MEMORY

]
0 1001 |
OUTPUT ASCIi

WITH
PARITY BIT = 1
TO DATA PORT

le
1007 [

OUTPUT DISPLAY
POSITION ADDRESS
TO CONTROL PORT
WITHWRITEBIT=0

100C ‘

SET WRITE
BIT =1

1010 I

SET WRITE
BIT=0

1016

RETURN

Figure 4-7. Flowchart—ASCII Display Driver Module for the 7303.

0 () Denotes subroutine label

Low level active
E/R Entry/return path identifier encircled

Subroutine: (DISPLAY) | E1 Starting Address: 1001

This subroutine allows any one ASCII character to be displayed in any one of the eight alphanumeric display
positions.

Preset register B with the desired display position. Use the 3-bitcodes shown in Fig. 3-6 to specify one of eight
positions, loading the code in register B’s bits 2, 1, 0 with bits 3through 7=0. For example, load register B with
hexadecimal 06 to specify display position 6 (second display from the left).

Preset the accumulator (register A) with the desired ASCII character’s hexadecimal code as shownin Fig. 3-3.
The (DISPLAY) subroutine sets the parity bit (bit7 =1) as required by the 7303’s displays, so that the character
may be brought in from an external interface and displayed without code alteration.

Upon exit from the subroutine, the display position remains unaltered in register B, but the ASCll characterin
register A is lost.

PARAMETER
ETEMENT- T ADDRESS ENTRY) RETURN(R) COMMENT
Register A ASCII character 27 N
Register B Display position Display position Lﬁfssb;ﬁrgb;h%o;lg;
Register F XX 7 _
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 77 means contents are unknown or meaningless.

Figure 4-8. Register and Memory Allocation for 7303 Subroutine (DISPLAY).

: RETURN
svmBoL SUBROUTINE Q) uNITs
MIN MAX

Ns Stack memory 2 Bytes
Np Program memory 22 Bytes
Npt Total program memory 22 Bytes
Nr RAM memory 0 Bytes
Te Execution time 8085 98 Time
280 102 states

Figure 4-9. Characteristics of 7303 Subroutine (DISPLAY).

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

4-10

O

Subroutine: (MEM.DISP) E2 Starting Address: 1000

This subroutine allows any one ASCII character to be read from memory and displayed in any one of the eight
alphanumeric display positions.

Preset register B with the desired display position. Use the 3-bitcodes shown in Fig. 3-6 to specify one of eight
positions, loading the code in register B’s bits 2, 1, 0 with bits 3 through 7=0. Forexample, load register B with
hexadecimal 06 to specify display position 6 (second display from the left).

Register pair H,L is used as a memory pointer and must be preset to the address of the memory location in
ROM or RAM, where the ASCII character to be displayed is located. Figure 3-3 shows the ASCII character set
that can be displayed, and the range of codes that must be preloaded in memory before (MEM.DISP) can be
used successfully. Use the (MEM/ASCII) subroutine in advance to translate raw binary memory data into
ASCII if necessary.

Upon exit from the subroutine, the display position in register B and the memory address in pair H, L remain
unaltered.

PARAMETER ENTRY €2 RETURN /) COMMENT
ELEMENT ADDRESS
Register H, L Memory address Unaltered Cr:,",;'r;;g}t?nt%éi?r;
Register B Display position Unaltered —
Register A XX 27 —
Register F XX 7 —_
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-10. Register and Memory Allocation for 7303 Subroutine (MEM.DISP).

SYMBOL sp‘ﬂ':&‘g_'é": RETURN @) UNITS
. MIN MAX

Ns Stack memory 2 Bytes
Np Program memory 23 Bytes

Npt Total program memory 23 ‘ Bytes
Nr RAM memory 1 Bytes
Te Execution time ‘ 8085 105 Time
Z80 109 states

Figure 4-11. Characteristics of 7303 Subroutine (MEM.DISP).

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

Subroutine: (STROBE) E3 Starting Address: 1007

This captive subroutine is used by other subroutines to drive the 7303 display’s write line (WR*) low/high/low,
while maintaining the desired display-position-address constant. This is explained in detail in Section 3.

Use (STROBE) to adapt the 7303's display to an application for which'the other subroutines in the software
package are not suitable. It is important to note that other methods for driving the WR* control line may result
in unwanted changes in the display, unless the programming rules outlined in Section 3-are followed.

PARAMETER
ELEMENT | ADDRESS ENTRY €3 RETURN @) COMMENT
Register A Display position 0-7 7 -
Register F XX 7 —_
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. ?? means contents are unknown or meaningless. -

Figure 4-12. Register and Memory Allocation for 7303 Subroutine (STROBE).

SYMBOL SUBROUTINE RETURN &) UNITS
PARAMETER MIN MAX

Ns Stack memory 2 Bytes
Np Program memory 16 Bytes
Npt Total program memory : 16 Bytes
Nr RAM memory 0 Bytes
Te Execution time 8085 73 Time
Z80 76 states

Figure 4-13. Characteristics of 7303 Subroutine (STROBE).

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

4-12

L]

O

Cursor Control Module

This program module controls the on/off state of the cursor characters. The module’s subroutines handie all of
the hardware requirements of the cursors. The full 8-position cursor on/off pattern is specified by a single 8-bit
o pattern preset in a register “mailbox.” See Fig. 4-14 for flowchart.

The subroutines are based on the 7303 programming requirements as shown in Section 3 of this manual.

o

Controls all eight cursor on/off states.
Does all hardware manipulation.

One 8-bit word specifies cursor pattern.

See DlSPLAY.DEMO» program for application example.

Contents:

(CURSORS)—Turns on/off any combination of cursors.
(CLR.CURSORS)—Removes cursors (not ASCII characters).

Fig. 4-15

Fig. 4-16

‘ (CURSORS))

@ Fig. 4-17

Fig. 4-18

(CLR.
CURSORS)

1080

SET CURSOR
BIT PATTERN
TO ALL ZEROS

Figure 4-14. Flowchart—Cursor Control Module for the 7303.

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

1082

OUTPUT CURSOR
BIT PATTERN FOR
POSITIONS 0,1,2,3
TO DISPLAY'S
RIGHT SIDE

108A l

STROBE
THE
DISPLAY

108D

OUTPUT CURSOR
BIT PATTERN FOR
POSITIONS 4,5,6,7
TO DISPLAY’S
LEFT SIDE

1099

STROBE
THE
DISPLAY

Fig. 4-13

Fig. 4-13

4-13

Subroutine: (CURSORS)

E4 Starting Address 1082

This subroutine allows any combination of cursors to be displayed or removed in one operation, using a single

8-bit word to specify the cursor on/off pattern.

NOTE

Each display posmon must have a valid ASCII character present in its character memory before it
can display the cursor character. The SPACE character satisfies this requirement; use the (CLEAR.
DISPLAY) or other subroutine to preload valid ASCIl characters at least once, before using the
(CURSORS) subroutine.

Preset register B with the desired cursor pattern. Register B’s bits have 1:1 correspondence with the eight
displays (bit 7 controls the cursorin dlsplay position 7). Set the bit =1 to turn the cursor on, orbit=0toremove

the cursor. Upon exit, the cursor pattern in register B is unaltered.

ELEMENT
|

PARAMETER
ADDRESS ENTRY . RETURN COMMENT
Register B Cursor pattern Cursor pattern —
Register A XX 27 —
Register F XX 27 —
NOTES

2. XX means no specific data required at entry, but entry contents will be lost.
3. ?? means contents are unknown or meaningless.

|
1. For registers not shown, entry contents are not used and remain unaltered at exit.

Figure 4-15. Register and Memory Allocation for 7303 Subroutine (CURSORS).

RETURN
SYMBOL SUBROUTINE ‘ UNITS COMMENT
PARAMETER MIN MAX
| Stack Subroutine (STROBE)
| Ns memory 4 Bytes used. E3 Fig. 4-12,
Np ;‘:g';’;‘ 26 Bytes —
Npt | T program 2 -
Nr RAM memory 0 Bytes —_
Te ::‘eecuhon 82:3 ggz Time states | Absolute time varies

Figure 4-16. Characteristics of 7303 Subroutine (CURSORS).

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

4-14

Subroutine: (CLR.CURSORS)

E5 Starting Address: 1080

This subroutine removes all eight cursors from the alphanumeric display. The ASCIl characters loaded into
the display’s ASCII memories before displaying the cursors will reappear when the cursors are removed.

Register B is cleared by this subroutine.

PARAMETER ENTRY €9 RETURN @2 COMMENT
ELEMENT | ADDRESS
Register B XX 00 —
Register A XX ?? -
Register F XX ?? —

NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-17. Register and Memory Allocation for 7303 Subroutine (CLR.CURSORS).

: RETURN {®2)
SUBROUTINE
SYMBOL UNITS COMMENT
PARAMETER MIN MAX
Stack Subroutine (STROBE)
Ns memory 4 Bytes used. E3 Fig. 4-12.
Np m’:‘;‘r';‘ 28 Bytes _
Npt | vowl program Y Bytes —
Nr RAM memory 0 Bytes —
Te tEi::acutlon sg:g 3(73‘1‘ Time states Absolute time varies

()

-

Figure 4-18. Characteristics of 7303 Subroutine (CLR.CURSORS).

Denotes subroutine label
Low level active

E/R Entry/return path identifier encircled

4-15

4-16

Display Service Routines Module

This program module provides hardware-level service routines for clearing and testing the 7303’s alpha-
. numeric display. See Fig. 4-19 for flowchart.

® (CLEAR.DISPLAY) removes ASCII characters only.

o

Fig. 4-20
Fig. 4-21

((CLEAH.D!SPLAY))

®

101A

(CLEAR.BOTH) removes both ASCII and cursor characters.

(DISPLAY .8) allows the testing of each ASCII character in each display; it finds bad latches, decoders,
drivers, and LED segments.

(LAMP.TEST) allows the testing of all alphanumeric and binary LED segments.
See DISPLAY.TEST program for application example.

‘ (DISPLAY.8) ’
10F3

Fig. 4-22
Fig. 4-23

REMOVE
CURSORS

®

Fig. 4-17

Figure 4-19. Flowchart—Display Service Module for the 7303.

Denotes subroutine label
Low level active
E/R Entry/return path identifier encircled

101D 1

FETCH ASClI
SPACE
CHARACTER

<

Fig. 4-26

LOAD CURSOR
BIT PATTERN
=ALL CURSORS

DISPLAY ALL
CURSORS

104D

START AT
DISPLAY
POSITION 7

DISPLAY
AsCil
CHARACTER

DECREMENT
DISPLAY POSI-
TION ADDRESS

.

10F8 I

LOAD LED
BIT PATTERN

10FA l

OUTPUT BIT
PATTERN TO
DATA PORT

Fig. 4-27

.a Fig. 4-15

The subroutines in this module are used to initialize the 7303 after power-on, to clear the display when desired,
and to provide general service functions needed in incoming inspection, field testing, and repair of the 7303
card.

Subroutine: (CLEAR.DISPLAY)

E6 Starting Address: 101D

This subroutine blanks the alphanumeric display by loading the SPACE character in each of the eight

positions.

Note that the cursors are unaltered by this subroutine. Use (CLR.CURSORS) to remove cursor characters.

Register B is cleared by this subroutine.

PARAMETER .
ELEMENT | ADDRESS ENTRY €9 RETURN COMMENT
Register A XX 29 .
Register B XX s —
Register C XX 27 —
Register F XX 27 —
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-20. Register and Memory Allocation for 7303 Subroutine (CLEAR DISPLAY).

RETURN
SYMBOL R OuTINE ® UNITS COMMENT
MIN MAX

Stack , Subroutine (DISPLAY)
Ns memory 4 Bytes used. E1 Fig. 4-8.
Np :":,g?r’;‘ 20 Bytes _
Nt | 1o pregram G -
Nr RAM memory 0] Bytes —

Execution 8085 1228 ; _
Te fime 780 1513 Time states

Figure 4-21. Characteristics of 7303 Subroutine (CLEAR DISPLAY).

() Denotes subroutine label

*

Low level active

E/R Entry/return path identifier encircled

4-18

Subroutine: (CLEAR.BOTH) E7 Starting Address: 101A

This subroutine removes all cursor characters from the display and blanks the alphanumeric display by
loading the SPACE character in all eight positions.

Register B is cleared by this subroutine.

PARAMETER ENTRY E2) RETURN @9 COMMENT
ELEMENT | ADDRESS
Register A XX ?? —
Register B XX 00 —_
Register C XX ?? —
Register D XX 77 —
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. ?? means contents are unknown or meaningless.

Figure 4-22. Register and Memory Allocation for 7303 Subroutine (CLEAR.BOTH).

SUBROUTINE RETURN
SYMBOL UNITS COMMENT

Ns Stack 4 Bytes See note
memory

Np :";gfr’;‘ 23 Bytes —

Npt L‘:::opr;"gram 73 Bytes —

Nr RAM memory 0 Bytes —_—
Execution 8085 1510 ; _

Te | time 80 1501 Time states

NOTE

Subroutines used: (CLR.CURSORS) E5 Fig. 4-17.
(DISPLAY) E1 Fig. 4-8.

Figure 4-23. Characteristics of 7303 Subroutine (CLEAR.BOTH).

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

4-19

Subroutine: (DISPLAY.8) ; E8 Starting Address: 104D

“This subroutine displays the same ASCII character in all eight display positions simulfaneously. Itis aservice

routine for implementing the (CLEAR.DISPLAY) subroutine, and is useful for alphanumeric display test
operations.

Preset the accumulator (register A) with the character to be displayed.
Upon exit, register C contains the ASCII character displayed and register B is cleared.

PARAMETER
—TemEnT | ADDRESS ENTRY RETURN COMMENT
Register A ASCII character ?? —
Register B XX 00 —
Register C XX ASCII character —
Register F XX 7? —_—
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-24. Register and Memory Allocation for 7303 Subroutine (DISPLAY.8).

RETURN
SUBROUTINE
SYMBOL UNITS COMMENT
PARAMETER MIN MAX
Stack Subroutine (DISPLAY)
Ns memory 4 Bytes used. E1 Fig. 4-8.
Program _
Np memory 15 Bytes
Npt Total program 37 Bytes _
memory
Nr RAM memory 0 ' Bytes —
Execution 8085 ~ 1211 ; _
Te | time Z80 1196 Time states

Figure 4-25. Characteristics of 7303 Subroutine (DISPLAY.8).

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

4-20

Subroutine: (LAMP.TEST)

E9 Starting Address: 10F3

This subroutine displays the cursor character in all eight display positions (illuminating all LED segments in
the alphanumeric display). It also writes hexadecimal FF to the 7303’s output data port, which illuminates all of
the eight binary LEDs located directly below the alphanumeric display.

NOTE

All the keyboard and display routines, except (ROCKER.STATUS) and (LAMP.TEST), will write to
the output data port, altering the all-on state of the binary LED display.

Consequently the designer should follow (LAMP.TEST) with a time delay, or other method, that
gives the operator an opportunity toexamine the LED display before executing other portions of the
software package.

PARAMETER
ENTRY (€9 RETURN (R9) COMMENT
ELEMENT | ADDRESS
Register A XX ?? —
Register B XX ?? —
Register F XX 7? —

NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-26. Register and Memory Allocation for 7303 Subroutine (LAMP.TEST).

RETURN
SUBROUTINE
SYMBOL PARAMETER N MAX UNITS COMMENT
Ns Stack 4 Bytes See Note
memory
Program _
Np memory 1 Bytes
Total program _
Npt memory 53 Bytes
Nr RAM memory 0 Bytes -
Execution 8085 313 : _
Te | time Z80 320 Time states

()

*

Figure 4-27. Characteristics of 7303 Subroutine (LAMP.TEST).

Denotes subroutine label
Low level active

E/R Entry/return path identifier encircled

4-21

4-22

Hexadecimal/ASCIlI Conversion Module

This program module converts binary data, in registers and in blocks of memory, into ASCll-encoded data
suitable for display by the 7303 and for transmission via RS-232, TTY, and other media. See Fig. 4-28 for flow-

chart.

® Accepts one 4-bit hexadecimal digit (0000 through 1111 binary or 0-F hexadecimal) from a register and

outputs one 8-bit ASCII character, 0-9 or A-F.
® Accepts two 4-bit hexadecimal digits in each of 1-256 locations anywhere in memory and outputs 2-512

ASCII characters to RAM memory.

® Produces ASCll characters 0, 1,2,3,4,5,6,7,8,9and A, B, C, D, E, F, (upper case only) with parity bit set

(bit 7 =1).

® See DISPLAY.SELF and KEY.TEST for application examples.

® Contents:

(HEX/ASCIil)—Converts one hexadecimal digit to one ASCII character code.
(MEM/ASCIIl)—Converts block of binary in memory into displayable ASCIt codes.

(DISP.HEX)—Combines (HEX/ASCIl) and (DISPLAY).
(DISP.2.IN.C)—Displays two hexadecimal digits in internal register.

(HEX/ASCIl) Fig. 4-29
Fig. 4-30

109D

REMOVE BITS
4,5,6,7

YIELDS
80-89 ADD B0,¢

ADD 87, YIELDS

6 c1-ce

RETURN

®

MEMORY BITS
4-7 BECOME
BITS 0-3

RETURN

10A8

Fig. 4-31
Fig. 4-32

FETCH BINARY
USING DATA
SOURCE POINTER

10AD I

RIGHT-ADJUST
HIGH-ORDER
HEX DIGIT

1082 I

CONVERT
HEX TO ASCll

Fig. 4-20

10BS i

STORE ASClI

USING DATA

DESTINATION
POINTER

®

®

1086]

INCREMENT DATA
DESTINATION
POINTER

1087 |

FETCH BINARY
USING DATA
SOURCE POINTER

1088 l

ISOLATE LOW-
ORDER HEX DIGIT

10BA [

CONVERT
HEX TO ASClI

108D l

STORE ASCH

USING DATA

DESTINATION
POINTER

10BE l

INCREMENT
SOURCE AND
DESTINATION

POINTER

10co l

DECREMENT
BYTE COUNTER

Fig. 4-20

)

isPHEX)) Fi9 453
10C7
CONVERT HEX)
TO ASCl Fig. 4-29
10CA I @
DISPLAY Fig. 4-8
oispaine)) Fig 538
10CE
ISOLATE AND
RIGHT ADJUST
BITS 4,5, 6,7
FROM REG. C
1005 1 @
biseLay Hex | | Fio- 4-33
1008 [
DECREMENT
DISPLAY
POSITION
ADDRESS
1009 l
ISOLATE BITS
0,1,2,3 FROM
10DC l @
DISPLAY HEX Fig. 4-33

RETURN

Figure 4-28. Flowchart—Hexadecimal/ASCIl Conversion Module for the 7303.

() Denotes subroutine label;

* Low level active;

E/R Entry/return path identifier encircled .

4-23

Subroutine: (HEX/ASCII)

E10 Starting Address: 109D ;
. I
This subroutine converts a 4-bit binary/hexadecimal code into one of 16 ASCII characters: 0, 1,2, 3,4,5,6,7, k
8,9, 0rA, B, C, D, E, F (upper case only) with parity set (bit 7 = 1). , ;
The ASCII codes returned by the subroutine for the 16 characters are shown in Fig. 3-3. 0 1

Enter with the hexadecimal digit loaded in bits 3, 2, 1, 0 of the accumulator (register A). The most significant |
bits (4 through 7) of register A are “don’t care” and will be masked by the subroutine. ‘ f

Upon exit, the ASCII character code is stored in register A, bits 7 through 0, and the input binary code is lost.

NOTES

1. For registers not shown, entry contents are not used and remain unaitered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-29. Register and Memory Allocation for 7303 Subroutine (HEX/ASCII).

PARAMETER L
ENTRY RETURN RETURN COMMENT
ELEMENT ADDRESS ’
Hexadecimal ASClI ASCII Converts ‘
Register A digit 0-F character character bits 0-3.
0-9 A-F Bits 4-7 of
accumulator are
“don’t care.”
Register F XX ?? 27 —

SYMBOL SUBROUTINE RETURN RETURN UNITS
PARAMETER MIN | MAX MIN | MAX

Ns Stack 2 2 Bytes ‘1

memory .

Program i

Np memory 13 13 Bytes]

Nr RAM memory 0 0 Bytes :

Execution 8085 See note See note : i

Te time 80 41 41 Time states)

NOTE :
8085 time states are variable:

38 if digitis HEX A, B, D, C, E, F. ;

41 if digit is BCD (0-9). a‘

Figure 4-30. Characteristics of 7303 Subroutine (HEX/ASCII). \

|

‘i

() Denotes subroutine label ;

* Low level active : o \1’

E/R Entry/return path identifier encircled \

4-24 '

)

O

Subroutine: (MEM/ASCII) E11 Starting Address: 10AB

This subroutine converts a block of memory locations (each containing 8-bit binary data expressed as two 4-
bit hexadecimal digits) into a block of data with one ASCII character in each location.

NOTE

Since each 4-bit half of the binary input data is converted into one 8-bit ASCIl character, the
resulting block of output data written to RAM by this subroutine is twice as large as the block of input
binary data.

Preset register pair H,L with the first (lowest) address in the block of input binary data in memory, which may
be in ROM or RAM space. !

Preset register pair D,E with the first (lowest) address in the block of output ASCII character data in memory,
which can be in RAM only.

Preset register B with the number of bytes in the block of input binary data. Use 01 for one byte, 02 for two
bytes, etc., FF for 255 bytes, and 00 for 256 bytes.

Upon exit, register B is cleared; register pair H,L points at the next location past the input data block; register
pair D,E points at the next location past the output data block.

ELEMEP::AMEZ:‘)RESS ENTRY @ RETURN COMMENT
Register H,L MEM pointer input Last input +1 Note 4
Register D,E MEM pointer output Last input +1 -
Register B input data counter 00 —

NOTES

. For registers not shown, entry contents are not used and remain unaltered at exit.

. XX means no specific data required at entry, but entry contents will be lost.

. 7?7 means contents are unknown or meaningless.

. First byte in ASCII output memory block is ASCII conversion of bits 4-7 of first byte in binary
block; second byte in ASCII output memory block is bits 0-3 of first byte in binary block, etc.

Figure 4-31. Register and Memory Allocation for 7303 Subroutine (MEM/ASCII).

HOON =

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

4-25

Subroutine: (MEM/ASCII)

RETURN ®?)
SUBROUTINE
SYMBOL PARAMETER MIN MAX UNITS COMMENT

Stack Subroutine (HEX/ASCII)

Ns memory 4 Bytes used. E10 Fig. 4-29.
Program Bytes _

Np memory 26 : yte

Not Total program 39 Bytes _

P memory

Nr RAM memory 3 |768 Bytes —

' Execution 8085 Note 1 . _

Te | time Z80 Note 2 Time states

NOTES

1. 8085 time states are variable; first binary memory location converted:
229 if both digits are HEX A, B, C, D, E, F
226 if one digit is BCD (0-9)

223 if both digits are BCD.
Each additional location: subtract 7 time states from above totals.

2. Z80 time states:
—First binary memory location converted,
230 time states.
—Each additional binary location,
220 time states.

4-26

Figure 4-32. Characteristics of 7303 Subroutine (MEM/ASCII).

Subroutine: (DISP.HEX) E12 Starting Address: 10C7

This subroutine uses lower-level subroutines to display one hexadecimal digit (0-9 or A-F) in any one of the
eight display positions.

Preset register B with the desired display position. Use the 3-bitcodes shown in Fig. 3-6 to specify one of eight
positions, loading the code in register B’s bits 2, 1, 0 with bits 3 through 7= 0. For example, load register B with
hexadecimal 06 to specify display position 6 (second display from the left).

Preset the accumulator (register A) with the binary bit pattern of the hexadecimal digit (0000 through 1111
binary) in register A’s bits 3, 2, 1, 0; bits 4 through 7 are “don’t care” and may contain any bit pattern.

Upon exit, the display position remains unaltered in register B, butthe hexadecimal digitin the accumulatoris
lost.

PARAMETER
ENTRY @ RETURN COMMENT
ELEMENT ADDRESS
Hexadecimal 29 _
Register A digit O-F
Register F XX ? —
Display Display _
Register B position 0-7 position 0-7
NOTES

1. For registers not shown, entry contents are not used and remain unaitered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. ?? means contents are unknown or meaningless.

Figure 4-33. Register and Memory Allocation for 7303 Subroutine (DISP.HEX).

RETURN @)
SUBROUTINE
SYMBOL UNITS COMMENT
PARAMETER MIN MAX
Stack Subroutine (HEX/ASCII)
Ns Memory 4 Bytes used. E10 Fig. 4-29.
Program _
Np memory 6 Bytes
Total program _
Npt memory 41 Bytes
Nr RAM memory 0 Bytes —_
Execution 8085 See note ; _
Te time 280 180 Time states
NOTE

8085 time states depend on data:
177 if digitis HEX A, B, C, D, E, F
174 if digit is HEX (0-9).

Figure 4-34. Characteristics of 7303 Subroutine (DISP.HEX).

() Denotes subroutine label
Low level active
E/R Entry/return path identifier encircled

4-27

Subroutine: (DISP.2.IN.C) E13 Starting Address: 10CE

This subroutine converts the two 4-bit hexadecimal digits in register C into two 8-bit ASCII characters in the
range 0-9 or A-F, and it displays them in two adjacent display positions.

Preset register C with the data to be displayed. The subroutine converts register C's bits 4-7 into an ASCII
character and displays the character in the display position specified below. Then, register C’s bits 0-3 are
converted into a second ASCII character and displayed in the display position immediately to the right of the
position specified.

Preset register B with the leftmost of two desired display positions. Use the 3-bit codes shown in Fig. 3-6 to
specify one of seven positions, loading the code in register B’s bits 2, 1, 0 with bits 3 through 7 = 0.

CAUTION

Do not specify position zero; register B should contain the combinations 01, 02, 03, 04, 05, 06, or 07
only after this step.

Upon exit, register B will have been decremented by 1 from its initial condition, and two hexadecimal digits in
register C will have been unaltered.

PARAMETER
ENTRY RETURN COMMENT
ELEMENT ADDRESS
Register C Two hex digits Two hex digits Note 4
Register B Display position N Position N-1 Note 5
Register F XX ?? —_
NOTES
1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.
4. Bits 4-7 converted to an ASCII code and displayed in specified display position:
bits 0-3 displayed as ASCII character in adjacent display position on right.
5. Bits 0-2 specify display position and must be nonzero (do not specify position 0).

Figure 4-35. Register and Memory Allocation for 7303 Subroutine (DISP.2.IN.C).

RETURN (R
SUBROUTINE
SYMBOL PARAMETER MIN | MAX UNITS COMMENT
Stack
Ns memory 6 Bytes Note 2
Program —
Np memory 17 ,_ Bytes
Total program 58 Bvtes _
Npt memory 4
Nr RAM memory 0 Bytes -
Execution 8085 See note : _
Te ltime ~Z80 278 Time states
NOTES

1. 8085 time states are variable:
413 if both digits are HEX A, B, C,D, E, F
410 if one character is BCD (0-9)
407 if both characters are BCD.
2. Subroutine used: (DISP.HEX) E12 Fig. 4-33.

Figure 4-36. Characteristics of 7303 Subroutine (DISP.2.IN.C).

() Denotes subroutine label, * Low level active; E/R Entry/return path identifier encircled.

4-28

|
i
!

i

Formatted Messages Module

This program module (see Fig. 4-37 for flowchart) uses the hardware-level subroutines to format and display

messages of the designer’s choice. Two styles are available:

o 1. (MESSAGE) displays a static 8-character ASCII message from anywhere in memory.

2. (BILLBOARD) displays a dynamic message of 8 characters or more from anywhere in memory,

rotated across the display in billboard fashion.

These formats can be used repeatedly and in combination to show system status, prompt the system’s
operator, and other applications. Use the Hexadecimal/ASCIll Conversion Module and the Cursor Control
Module for more variations on these basic formats.

® Static 8-character ASCIl message display.
* Dynamic “billboard” display for messages of 8 characters or longer.

® See DISPLAY.DEMO and CALCULATOR demonstration programs for application examples.

0O ——

Denotes subroutine label

*

E/R

®

Fig. 4-38
(MESSAGE) Fig. 4-39
1028
START AT DISPLAY
POSITION 7
@
DISPLAY ONE Fig. 4-10
CHARACTER
FROM MEMORY

103D

POSIJ‘ION

1034

INCREMENT
MEMORY
POINTER

103!

DECREMENT
DISPLAYPOSITION
ADDRESS

L

®

BILLBOARD
1038

Fig. 4-40
Fig. 4-41

READ MESSAGE'S
START ADDRESS
FROM MEMORY

‘ 103C 'l

SAVE CURRENT
START ADDRESS

103D I

DISPLAY EIGHT
CHARACTERS
OF MESSAGE

Fig. 4-40

wo |

PAUSE APPROX.
315ms

Fig. 4-50

1043 |

SAVE NEXT
CHARACTER
OF MESSAGE

1045 l

RESTORE
CURRENT START
ADDRESS

1046

END-OF-TEXT
FLAG NEXT?

1049

INCREMENT
CURRENT
START ADDRESS

]

Figure 4-37. Flowchart—Formatted Messages Module for the 7303.

Low level active

Entry/return path identifier encircled

4-29

Subroutine: (MESSAGE) E14 Starting Address: 102B

This subroutine displays an 8-character ASCIlI message from anywhere in memory. The job of creating a
variable-format display can be simplified by manipulating an 8-character text buffer in RAM memory, then
unconditionally displaying the content of the buffer using (MESSAGE) after each alteration of the buffer’s
content. See (BILLBOARD) for an example.

Preset register pair H,L with the first (lowest address) memory location to be displayed. This can be in either
RAM or ROM memory, and it appears in the leftmost display position. The (MESSAGE) subroutine fills the
display from left to right, incrementing the H,L register pair each time until all eight locations are loaded with
ASCII characters.

Upon exit, register B is cleared and register pair H,L points at the last character (highest memory address)
displayed. The displayed memory locations are unaltered.

PARAMETER ‘
ENTRY RETURN @ COMMENT
ELEMENT ADDRESS
i . H,L points to 8th Note 4.
Register H,L Memory pointer character displayed
Register A XX ?2? —
Register B XX 00 —
Register F XX ?? —
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.

2. XX means no specific data required at entry, but entry contents will be lost.

3. ?7? means contents are unknown or meaningless.

4. Set to point at first character (lowest address) in memory block containing 8 ASCII characters.

Figure 4-38. Register and Memory Allocation for 7303 Subroutine (MESSAGE).

SYMBOL SUBROUTINE RETURN UNITS COMMENTS
PARAMETER MIN MAX

Ns Stack
memory 4 Bytes See note
P

Np m’:g';’: 14 Bytes —
Total program 37 B —

Npt memory ytes ‘

Nr RAM memory 8 Bytes —_
Execution 8085 1321 .

Te time Z80 1337 Time states -

Note: Subroutine used: (MEM.DISP) E2 Fig. 4-10.

Figure 4-39. Characteristics of 7303 Subroutine (MESSAGE).

() Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

4-30

j

o

Subroutine: (BILLBOARD) E15 Starting Address: 1039

This subroutine shifts a long message of eight or more ASCII characters across the 8-positiondisplay, leaving
each character combination in the display for about 300 ms before shifting. The text can begin anywhere in
memory and be of any desired length.

The entire message is displayed once, then the routine exits with the last eight characters in the message
remaining in the display. This gives the program an opportunity to alter the message before the nextiteration,
if the text is loaded in RAM. Execute the (BILLBOARD) subroutine repeatedly to create an endlessly rotating
billboard effect.

The message consists of any number of ASCII characters (limited by the size of the user's contiguous
memory), terminated by hexadecimal FF. The subroutine will exit after the FF code is encountered.

Preset two sequential memory locations labeled TEXT.START (See RAM map, Fig. 4-6) with the first (lowest)
memory address of the ASCIl message. Do this only once—the subroutine can then be used repeatedly
without additional presets.

Upon exit, the text-start address in RAM is unaltered.

NOTE
When constructing the message, we recommend that the SPACE character (hexadecimal AO) be
loaded as the first seven and last eight characters in the text. This produces the smooth transition
from the end of the message to the beginning, which is characteristic of billboards.

ELEMEP::AMEIE:)RESS ENTRY @ RETURN COMMENT
Register HL Memory pointer Memory points —
Register AF XX 29 —
Register B XX 77 —
Register Cc XX 29 —

NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7? means contents are unknown or meaningless.

Figure 4-40. Register and Memory Allocation for 7303 Subroutine (BILLBOARD).

SYMBOL SUBROUTINE RETURN 619 UNITS COMMENTS
PARAMETER MIN MAX
Stack
Ns memory 6 Bytes Note 3
Program
Np metgory 20 Bytes —
Npt Total program 76 Bytes _
memory
User
Nr RAM memory 10 dependent Bytes —
Execution 8085 Note 1 .
Te _ time Z80 Note 2 Time states -
NOTES

1. 8085—First 8 characters:

1,433 time states + delay. Each additional character = 1,427 time states + delay.

2. Z80—First 8 characters: 1,920 time states + delay. Each additional character = 1,919 time states + delay.

3. Subroutines used:

() Denotes subroutine label

*

(MESSAGE) E14 Fig. 4-38. (DISPLAY.DELAY)
Figure 4-41. Characteristics of 7303 Subroutine (BILLBOARD).

Low level active

E20 Fig. 4-50.

E/R Entry/return path identifier encircled

4-31

4-32

—_— T s e T T e e o S S e TR

O

Key and Switch Data Entry Module

This module controls the 7303’s hexadecimal keyboard and translates the general purpose rocker-switch

states into program status information for decision making. See Fig. 4-42 for the flowchart.

The module contains subroutines that perform all procedural requirements of keyboard-reading and

decoding as well as general subroutines that allow the user to design a special keyboard procedure.

® Returns a unique 5-bit hexadecimal number (range 00-17) for each of 24 uncommitted keys—use

table lookup and change key labels to perform any numeric or nonnumeric program function.

® Performs all procedures including switch debounce, noise rejection; activate on depression/

ignore key release.

®* (READ.KEY) reads single key only—use other subroutines in module for multiple key closures

and different procedures.
® (ROCKER.STATUS) moves on/off states of switches to

jumps.

® See CALCULATOR and KEY.TEST for application examples.

()

*

E/R

DEBOUNCE
DISPLAY Fig 4-54

1164 l

ROTATE A SINGLE
BIT ACROSS KEY
COLUMNS

174 NO

ANY KEY

CLOSED?

nrr

SAVE ROW
AND COLUMN
COORDINATES

178 I @

DEBOUNCE
DELAY Fig. 4-54

17¢ [

COMPARE SAVED
AND PRESENT
COORDINATES

11 =

YES

CONVERT ROW

TO KEY VALUE

Denotes subroutine label
Low level active
Entry/return path identifier encircled

processor status flags for conditional

Fig 4-45

11A7

STROBE ALL XEY
COLUMNS
SIMULTANEOUSLY

11AC [

READ ALL
KEY ROWS
SIMULTANEOUSLY

11AF 1

SEY 2 FLAG
IF NO KEY
CLOSED

181 !

(ROCKER.STATUS)
11B4

Fig. 4-47

READ ROCKER
SWITCH STATUS

1187 I

SET CARRY
I8 52 CLOSED

1188 I)

SET SIGN FLAG
AND CLEAR Z

1S CLOSED

118A |

Figure 4-42. Flowchart—Key and Switch Data Entry Module for the 7303.

4-33

Subroutine: (READ.KEY) E16 Starting Address: 1155

This subroutine is recommended for most keyboard read/decode operations, regardless of the functional
assignments associated with the keys and their labels.

(READ.KEY) begins by determining that the keyboard isidle, and it will not proceed untilitis. It then waits until
a key is pressed, and it decodes the key’s value after rejecting noise and switch bounce. Once entered, the
subroutine cannot exit until a valid key closure has occurred.

The 7303 card is shipped with labels attached to the keys. The hexadecimal labels in the 00to 17 range are the
values that will be decoded by (READ.KEY) for the key pressed (Fig. 3-1 shows label values; note that the
RESET key is electrically isolated from the other 24 keys and is not read by this subroutine). Even if you relabel
the keys to nonnumeric functions (such as MOTOR START or CLEAR ENTRY), you would still use this
subroutine to read the keyboard. Simply use the decoded value to determine which function to perform—see
the CALCULATOR demonstration program for an example.

Upon exit, the decoded key value is in both register A (forimmediate use) and in register B, where itcan be held
momentarily if the accumulator is needed for other functions.

PARAMETER
ELEMENT ADDRESS ENTRY RETURN COMMENT
Register A XX Key‘value —
Register B XX Key value —
Register B XX ?? —
Register F XX ?? -

NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.

3. 77 means contents are unknown or meaningless.

Figure 4-43. Register and Memory Allocation for 7303 Subroutine (READ.KEY).

. RETURN (R11
SUBROUTINE O
SYMBOL PARAMETER MIN MAX UNITS COMMENTS
Stack
Ns memory 4 Bytes Note 2
Program _
Np memory 78 Bytes
Npt Total program 103 Bytes —
memory
Nr RAM memory 0 Bytes —
Execution 8085 Note 1 ;
Te time 280 Noto 1 Time states
NOTES

1. Not predictable, due to human intervention.

2. Subroutines used:

Figure 4-44. Characteristics of 7303 Subroutine (READ.KEY).

() Denotes subroutine label
. Low leve! active
E/R Entry/return path identifier encircled

4-34

(SCAN) E18 Fig. 4-45; (DEBOUNCE.DELAY) E22 Fig. 4-54

P

Subroutine: (DECODE.KEY) E17 Starting Address: 1164

This subroutine is similar to (READ.KEY), but it omits testing for the keyboard-idle condition before reading
and decoding the key.

IMPORTANT

Unless the user adds additional procedural instructions when using the (DECODE.KEY) sub-
routine, the system may react more than once to the same key closure, causing a system error.

This subroutine is provided only to allow the user to design a special keyboard read/decode
procedure, in applications where the (READ.KEY) subroutine, which is normally recommended, is
not useful.

For decoded key values and their location upon exit, see (READ.KEY).

4-35

Subroutine: (SCAN) E18 Starting Address: 11A7

This subroutine is used to check keyboard status, by determining whether any key is closed. If a key closureis
detected, (SCAN) is unable to determine which key is closed.

The subroutine is included for use with (DECODE.KEY), allowing the user to design a keyboard read/decode
procedure if the (READ.KEY) subroutine, which is normally recommended, is not useful.

Upon exit, the Z (zero) flag can be tested to determine if any key has been pressed. The conditional jump
instructions are as follows: :

1. The JP 20 instruction will result in a jump if a key is closed; no jump will occur if all keys are idle.
2. The JP Z1 instruction will result in a jump if all keys are idle; no jump will occur if any key is pressed.

Note that (SCAN) can be mislead by switch bounce or noise. For this reason, we recommend that no
program decision be made until the (SWITCH.DEBOUNCE) subroutine has been executed and (SCAN) has
been repeated. See the (READ.KEY) flowchart (Fig. 4-42) for an example.

PARAMETER
ENTRY @ RETURN @ COMMENT
ELEMENT ADDRESS

Register A XX 77 —
Register F XX Keyboard status —
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-45. Register and Memory Allocation for 7303 Subroutine (SCAN).

cvmrnml SUBROUTINE RETURN @ ;
SYMBOL , UNITS COMMENTS
PARAMETER MIN MAX
| Stack
Ns | memory 2 Bytes —
Np | :g:;z';' 11 Bytes —
Npt Tptal program ' 11 Bytes -
memory
Nr RAM memory 0 Bytes -
, Execution 8085 52 ; —

Te time 780 54 Time states

Figure 4-46. Characteristics of 7303 Subroutine (SCAN).

{) Denotes subroutine label
* Low level active
E/R Entry/return path identifier encircled

4-36

e

Subroutine: (ROCKER.STATUS) E19 Starting Address: 11B4

This subroutine moves the on/off status of the two rocker switches into the processor’s flag (register F). This
allows conditional jump instructions to aiter the program flow according to the on/off (closed/open) status of
the two uncommitted rocker switches.

Upon exit, use the following conditional jump instructions:

1. JP 81 or JP 20 will cause a jump if the right-hand rocker switch is closed.
2. JP SO or JP Z1 will cause a jump if the right-hand rocker switch is open.
3. JP C1 will cause a jump if the left-hand rocker switch is closed.

4. JP CO will cause a jump if the left-hand rocker switch is open.

PARAMETER
ENTRY RETURN @ COMMENT
ELEMENT ADDRESS
Register A XX ?? —
Register F XX Switch status —
NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-47. Register and Memory Allocation for 7303 Subroutine (ROCKER.STATUS).

RETURN @13
SUBROUTINE
NITS COMMENT
SYmBoL PARAMETER MIN MAX v o S

Ns Stack 2 Bytes -_—

memory

Program —
Np memory 7 Bytes

Total program 7 Byt —_
Npt memory yies
Nr RAM memory 0 Bytes —_

Execution 8085 35 ; _
Te time 780 % Time states

Figure 4-48. Characteristics of 7303 Subroutine (ROCKER.STATUS).

() Denotes subroutine label
Low level active
E/R Entry/return path identifier encircled

4-37

4-38

Auxiliary Timing Module

This module contains captive subroutines used by the key and switch data entry module and by the demon-

stration and test programs in the 7303’s software package. See Fig. 4-49 for flowchart.

The subroutines in this module are designed to provide satisfactory operation with a wide variety of micro-
processor types, including 8080, 8085A, Z80, and NSC 800, all presumed to operate at the maximum clock
frequency. Accordingly, these subroutines are not capable of generating accurate timing and should not be
used in any application requiring accurate timing. They are intended only to reduce the processor’s execution
rate to maintain human readability of the display in the demonstration programs, and to provide switch

debounce time for the 7303’s keyboard.

® Approximate time delays used for display readability and switch debouncing.

® Captive subroutines used by other 7303 program modules only.

Fig. 4-50
(DISPLAY.
DELAY)

10E0

@

10EA

@

Fig. 4-52 Fig. 4-54
(LONG. (DEBOUNCE.
DELAY) DELAY)
10E5

LOAD DELAY LOAD DELAY LOAD DELAY
LOOP COUNT LOOP COUNT LOOP COUNT
(= 315 ms) (=625 ms (= 20 ms)

[|

4 10EC
DECREMENT
LOOP COUNTER

Figure 4-49. Flowchart—Auxiliary Timing Module for the 7303.

() Denotes subroutine label
* Low level active

E/R Entry/return path identifier encircled

s

4-39

Subroutine: (DISPLAY.DELAY) E20 Starting Address: 10EQ

This captive subroutine is used by (BILLBOARD) to pause about 315 ms between display shift operations.

(DISPLAY.DELAY) produces an approximate time delay, which depends upon both microprocessor type and
clock frequency and is not recommended for other timing applications.

ELEM:::AMEZIE:)RESS ENTRY RETURN COMMENT
Register A XX 29 , .
Register B XX 00 —
Register C XX 00 —
Register F XX 27 —

NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-50. Register and Memory Allocation for 7303 Subroutine (DISPLAY.DELAY).

RETURN (R14 '
SUBROUTINE O
SYMBOL . UNITS COMMENTS
PARAMETER MIN | MAX
Ns Stack 2 Bytes —_
memory
Np :‘r:'g::r';' 19 Bytes -
Npt I“;‘:"o‘:rg'am 19 Bytes -
Nr RAM memory 0 Bytes —
Execution 8085 27 + 24N : N = Loop count in
Te | time Z80 27+ 24N Time states B.C pair

Figure 4-51. Characteristics of 7303 Subroutine (DISPLAY.DELAY).

() Denotes subroutine label
Low level active
E/R Entry/return path identifier encircled -

4-40 s

o

Subroutine: (LONG.DELAY)

E21 Starting Address: 10EA

This captive subroutine is used by a demonstration program to pause about 625 ms between display opera-

tions.

(LONG.DELAY) produces an approximate time delay, which varies with microprocessor type and clock
frequency and is not recommended for other timing applications.

PARAMETER
ENTRY @ RETURN COMMENTS
ELEMENT ADDRESS
Register A XX 2? —_
Register B XX 00 —
Register c XX 00 —
Register F XX ?? —_

NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-52. Register and Memory Allocation for 7303 Subroutine (LONG.DELAY).

~

RETURN
SUBROUTINE
SYMBOL UNITS COMMENTS
Ns Stack 2 Bytes —
memory
P
Np mrgrg':r’;‘ 9 Bytes —
Npt L:t;lo;:;ogram 9 Bytes _
Nr RAM memory 0 Bytes —
Execution 8085 17 + 24N : N = Loop count in
Te ltime Z80 17+ 24N Time states - B,C pair

()

*

E/R

Figure 4-53. Characteristics of 7303 Subroutine (LONG.DELAY).

Denotes subroutine label
Low level active

Entry/return path identifier encircled

4-41

Subroutine: (DEBOUNCE.DELAY)

E22 Starting Address: 10E5

This captive subroutine is used to debounce the key switches, producing a delay in the range of 15-25 ms.

Because the time delay is approximate, varying with microprocessor type and clock frequency, this subroutine
should not be used for other timing applications.

PARAMETER ENTRY @ RETURN COMMENT
ELEMENT ADDRESS
Register A XX ?? —
Register B XX 00 -
Register Cc XX 00 —
Register F XX ?? —

NOTES

1. For registers not shown, entry contents are not used and remain unaltered at exit.
2. XX means no specific data required at entry, but entry contents will be lost.
3. 7?7 means contents are unknown or meaningless.

Figure 4-54. Register and Memory Allocation for 7303 Subroutine (DEBOUNCE.DELAY).

SUBROUTINE RETURN
SYMBOL UNITS COMMENTS
PARAMETER MIN | MAX
Ns Stack 2 Bytes —
memory
Np :":ng";';‘ 18 Bytes -
Npt Total program 18 Bytes —
memory
Nr RAM memory 0 Bytes —
Execution 8085 27 + 24N ; N = Loop count in
Te time Z80 57+ 24N Time states B,C pair

()

E/R

4-42

Figure 4-55. Characteristics of 7303 Subroutine (DEBOUNCE.DELAY).

Denotes subroutine label
Low level active

Entry/return path identifier encircled

0

Demonstration/Test Program: DISPLAY.DEMO Starting Address: 1100

This program demonstrates a technique for displaying a long message on a display with a limited number of
positions, then performs a lamp test. It repeats the message “PRO-LOG 7303” twice, turns on all LED
segments, then repeats. See Fig. 4-56. for flowchart.

Requires no initialization except setting the stack pointer.

NOTE
This is an endless loop demonstration program—not a subroutine.

DISPLAY.DEMO

1100 L

SET TO RUN
BILLBOARD TWICE

1102

SAVE MESSAGE
START ADDRESS

IN RAM
1108 l
RUN FULL
BILLBOARD Fig. 4-40
MESSAGE ONCE

1103 l

DECREMENT
COUNT

110C
NO

YES

110F

TURN ON ALL
DISPLAY LEDS Fig. 4-26
+ SEGMENTS

- 1112 J

DELAY
N =625 ms Fig. 4-52

1115 |

CLEAR THE ~
DISPLAY Fig. 4-22

I

Figure 4-56. Flowchart—DISPLAY.DEMO Demonstration/Test Program for the 7303.

() Denotes subroutine label
Low level active
E/R Entry/return path identifier encircled

4-43

Demonstration/Test Program: DISPLAY.SELF

Starting Address: 111B

Displays address/data for every location in memory page 10, which is where the software package’s display
subroutines are stored. Shows full hexadecimal address (1000-10FF) and hexadecimal data stored at each
address, then repeats. See Fig. 4-57 for flowchart.

This is an endless loop demonstration program—not a subroutine.

NOTE

4-44

()

*

E/R

DISPLAY. SELF

111B M|

CLEAR THE
DISPLAY

111E I

SET POINTER
TO START AT
(MEM.DISP)
SUBROUTINE

’@Fig, 4-20

1121 [

DISPLAY
CURRENT
MEMORY
ADDRESS

1020 l

DISPLAY
CURRENT
MEMORY
DATA

1133 I

WAIT APPROX.
06s

1136

INCREMENT
MEMORY
ADDRESS

POINTER

1137
END OF PAGE?

&

Fig. 4-35

)

Fig. 4-35

Fig. 4-52

Figure 4-57. Flowchart—DISPLAY.SELF Demonstration/Test Program for the 7303.

Denotes subroutine label

Low level active

Entry/return path identifier encircled

0

Demonstration/Test Program: CALCULATOR

Starting Address: 11CO

display. See Fig. 4-58 for flowchart.

This program reads keystrokes and shifts them across the display, right to left, in the manner of a calculator.
The program demonstrates the modular technique of changing display format by manipulating memory rather
than rewriting the display routine each time for each new format. The same display subroutine, (MESSAGE),
o displays the same portion of RAM memory each time, but the memory data is changed each time prior to

NOTE

This is an endless loop demonstration program—not a subroutine.

11C0 I

SET TO CLEAR
DISPLAY BY
LOADING KEY
INPUT BUFFER
(IN RAM) WITH
“SPACE” CHARS.

[1

DISPLAY
CONTENT OF
KEY INPUT
BUFFER

1102 l

READ A KEY
FROM
KEYBOARD

11D§
“CLEAR
DISPLAY”
KEY?

NO

11DA

CONVERT
KEY'S VALUE
TO ASClt

11DD

SHIFT NEW KEY
INTO KEYINPUT
BUFFER AS NEW
LSD; FORMER MSD
IS SHIFTED OUT
AND LOST

@Fig. 4-38

Fig. 4-43

Fig. 4-29

Figure 4-58. Flowchart—CALCULATOR Demonstration/Test Program for the 7303.

ﬁ
" o () Denotes subroutine label

* Low level active

E/R Entry/return path identifier encircled

4-45

Demonstration/Test Program: DISPLAY.TEST Starting Address: 1140

This program allows operator testing of the displays by observing each display position as the program cycles
all eight displays through every ASCli character (Fig. 3-3) that can be displayed by the 7303. See Fig. 4-59 for |
flowchart.

NOTE :
This is an endless loop demonstration program—not a subroutine.

(D1sPLAY.TEST)

1140 N 1

PRESET DATA |
COUNTER TO ‘
“SPACE"” CHAR P

1043

|
CHAR IN ALL Fig. 4-35 :

8 POSITIONS

1046 l

WAIT @Fig. 4-52

600 ms

” o

INCREMENT
ASCll DATA

COUNTER 0 y ﬂ“
il

104B Y
YES "
)

NO

Figure 4-59. Flowchart—DISPLAY.TEST Demonstration/Test Program for the 7303. l

() Denotes sub}outine label
* Low level active
E/R Entry/return path identifier encircled

4-46

Demonstration/Test Program: KEY.TEST Starting Address: 11F0

This program allows an operator to test the 7303’s keyboard, by observing that the key value (as labeled on the
keys when the card is shipped) appears in the display each time one of the keys is pressed. It does not apply to
o the RESET key, which resets the system processor (Section 3). See Fig. 4-60 for flowchart.

NOTE
This is an endless loop demonstration program—not a subroutine.

KEY.TEST
11F0

| CLEAR @

DISPLAY Fig. 4-22
]

WAIT FOR KEY

TO BE PRESSED Fig. 4-43

10F3

|
11F6 [

DISPLAY KEY'S
HEX VALUE IN
! POSITIONS 1 &0

O [

Figure 4-60. Flowchart—KEY.TEST Demonstration/Test Program for the 7303.

o () Denotes subroutine fabel
* Low level active
E/R Entry/return path identifier encircled

4-47

4-48

K

Coding Forms

PRO-LOG CORPORATION

PROGRAM ASSEMBLY FORM

HEXADECIMAL MNEMONIC TITLE DATE
FiSE ;'3‘,5 INSTR. LABEL INSTR. MODIFIER COMMENTS
10 lool[7E |[(mem DisP) [LDAN] H, L T FETCH ASCTT CHRRACTER FROM MEMOR
o1 Fo | (D1sPLaY) [oRrA| T
2180 PRRITY BT OLUTPUT AscTl WITH PRRITY. BiT=1T
3D OPA DATH PORT
4 DO DATA PORT
5100 NOP
5|78 LDRA B
o7 E6|(5TROBE) [ANAT TouTPUT DISPLRY POS\TION RADDRESS
83 F7 POSITION: BITS | [TO CONTROL PORY W \TH WRA\TE B(T=0
3 D3 oOPhH
A D1 CONTROL PORY
:RleYe} NOP :
c|Fb ORALY T SET WRITE BT =\
DIO8& LRITE BT
ED3 OPH
F } ICONTROL PORT
10 [t oloo NOP T S€ET WRITE gAT=0
1 |EE YRAT
208 WRITE. B\T
3 D3 el da)
alpy rONTROL PORY
5100 NOP
6]C9 RTS
7
8
9
L alc D J(cLERRBOTHY| TS T CLEAR CULRSORS
B|lRO CLERR CHRSORS
clio -_—
\ o 3E [CLEDR DIsPLAY) L DRT] WRITE QSCIE "SPRCE. TO BL\L
£l RO RS S SPRCE] DASPLEYS
FI1C3 Ip
\O (204D DISPLAY 8)
1110 —]
2
3
4
5
6
7
8
9
A
2.8 106 |[(MESSHGE) [LDBI STRRY AT DISPLAY POSITION 7
c|07 POSITION 7
2.0 |CD |[MESSAGE-LODP| TS) DISPLYY oONE CUHARBCTER FROM
E |00 MEM - DisP) MEMARY
3 K¥e) — v
o 30|78 LDA B T
1|FE CPRT CHECK \F POSITION ¢ s
2100 POSITION O LORNDED
3|C8 RIS | 2N
4|23 \CP | W L ' INCREMENT __MEMORY POINTER
51085 DCB 3 DECREMENT DISPLAY POS\TION RDDRESS
6|C.3 JP
72D IMNESSAGE LODP
8|10 — <
39/2p ((RLLBONRDILDPD| W 1 T READ MESSAGES <TART PDDRES
Al00 TEXT-STRAT FROM MNEMORY
B2 REAM 1
3¢ E];; BALLE OERD LHOP &}ssp WL 4 SRVE CORRENT STHRT BDDRESS
olc
El2R (ME 9SRGE) DISPLAY EIGHT CHARBCTERS OF MESSHEE]
F110 -—

100001 2777

4-49

4-50

PRO-LOG CORPORATION

PROGRAM ASSEMBLY FORM

HE.

PAGE

DR_

ADECIMAL
[TONE

ADR

MNEMONIC

TITLE

INSTR.

LABEL

INSTR,

MODIFIER

DATE

COMMENTS

10 [40[CD IS T ©RUSE RPPROX IMATELY Y2 SECOND
1EO (D14PLAY DEIAY
2 \O —— <
323 1cP TN T SANE NEXT CHBRACTER OF MESSAGE
4| LDBN| W L
s [E\ PLP | WL T RESTORE CURRENT STHRT HDDRESS
s |FE | CPRAT
7 |EE END-TEXT AR END OF TEXT FLAG NEWT ?
8C8 RYS Z\]
9123 \cg W, P INCREMNENT CORRENT START WDDRESS
AlC3 J
8 [3C 111 ROBRD-LOOP)
c\D P—
40 4F (DIsPLAY-8) \DC |. R T _STHRYT AT DISPLRY POS\TION
E|Qb \DRT
FiO7 POS\TIONT |9
10 |5 0[79 IDI4P-8-1L00P LD;. C DISPLEY BT CHBRHCTER
: 11D 3
2O\ (D1SPLRY)
3 \0: e v
4|78 LDB 8 POS\TION ZERO LOADED
5 |FE CPRAT
[AleYe) POSITION O
TICR RIS 21
3 0§ DR
s |C3 IP
AlS DISP 8 LOOP
Bl1O X —
C
]
13
F
10 & o |AO IDETHO MESSH SPECE | DEMO MESSKGE
11AQ SPACE. LOOK UP THBLE
2 A SPRCE
3 AD SPACE
4 AO SPRACE
5 | AD SPRCE
s |RO SPRCE
7 [AD <PRCE.
8| AA *
9 IAA ¥
ADO P
B D2 R
clCFE (@]
o |AD —~—
ECC [
FICE (@)
6 170iC7 [G)
11A7 4 (APOSTRO PHE)
2 |D3)
3RO SPRCE
4 1B7 7
5 |IB3 3
s ' BO (@)
7|B3 3
s AO sPRCcE
3 [AD SPACE
AlAO PE
B |AQ SPICE.
clAD SPACE.
o iAO <PBCE
EIAD <SPRCE
10 17 frlFE ; . 3 END OF TEXT FLAG

100001 2/77

i

PRO-LOG CORPORATION

PROGRAM ASSEMBLY FORM

ADR

HEXADECIM
PAGE | LINE

ADR

AL

MNEMONIC

INSTR.

LABEL

INSTR.

TITLE DATE

MODIFIER

COMMENTS

10 [8 0 |[OGCLRCURMRS LDRT SET CLURSOR BIT PATIERN TO
100 00 e BL\ ZEROS
10 [82|3E | (CURSORS)[LDAT T _OUTPUT CcuRSOR R\ PRTTERN FOR
3 |OF POSITIONS 32 POSITIONS ©123 TO RIGHT SIDE
ALY BNB B OF D\WPLRY
5 D3 OPH
s DO DATH PORT
7100 NOP
8 3F LDRT
leYe) RIGHT S\DE
AlCD IS T STROBE THE DIsPLBY
B |07 («TRORE)
clio mene— y
0|78 OB/ B T ouT PUT cLRIOR BIT PRTIERN
e |QF RAR EOR POS\TIONS 45671 Y0 LEFET
FlOF RRB S\DE_OF D\SPLAY
O 90 |0F RRH
1 |OF RRA
2 |[Eb ANAT
3 OF POSITIONS 324
4Ds oPR
5 DO DATH PORT
s OO NOP
7 [3E LDAT
s |04 LEET SIDE |
9|C3 IJIP T STROBRE THE D1sPLBY € EXLT
NleYi (sTROBE)
Bl IO —
[¥
90 |Eb [HEX-ASCTL) BNK T REMOVE BATS 4567
E|IQF OF
v FIFE CP AT T 1S HEX> 9
1o Ao |OR OR
1/D8 3P c\
2 [A7 0-9
slo —
C ADRT T NO-HEY CHRRBCTER B-F ADD
s [B7 B7 81 (YLELDS Cl-Clo cODES)
6|C9O RYS
A7|Fb 0-9 ORDT T HEX CHARRCTER ©-9 ADD
s [BRO (o) BO (YIELDS BO-BS CODES)
9 |C9 RYTS
A L
A e [7E(MEM /ASCID) LDB‘% WL ¥ FETCH BINBRY USING DATR SOURCE POWNTER
clE® ANA
o |FO £O RGHT-BDIYST THE WieH-0RDER
E|OF RRA WEX D\G\T
FIOF RRA
\0 [Bo|OF RRH
1 OF RRN Y
2 (D IS T CONNERY WEX TO BSAT
3|9D (HF_xImqD »
4110 .
s[12 STON D [T STORE RSCIL LSING DATH DESTINATION PAUNTER
6113 \¢cP DE 3 N TR POt
7| IE LDBN | WL FETCH BINARY USING DATA <OVRCE POINTER
8 |[Eln ANRAY T 1<0LATE THE oW ORDER HEX DIGLT
9 |QF OF L
alcD JS T CONNERT HEX TO Bsct
B ?D CREXRSCIL)
cliO e L
plle STHN T STORE BT LSING DATH DESTINATION POINTER |
EEEN 3 DF_ T INCREMENT SOURCE AND DESTINATION POINTER |
F]23 1CP \-\ L

100001 2777

4-51

4-52

PRO-LOG CORPORATION

PROGRAM ASSEMBLY FORM

HE.

ADECIMAL

MNEMONIC

TITLE

DATE

T&E IAIB‘RE INSTR. LABEL INSTR. MODIFIER COMMENTS
o [ColOs DCR T DEcREMENT BYTE COUNTER
1C2 Jp 20
2 [AB [MNEM JASCIT)
3|10 —_—
4|C9H RTS
5
6
C71CD [(DsP-HEX) [TS T CONNERY HEX TO BDSCIT
8 ? (WEX/ASAL)
9 O ——
AlC3 JP T DIsPLAY nscIt CHARACTER
B O\ (DIsPLAY)
cllo h—
D
Cel79 [DI1sP-2:N-C) [LDA C iy \SOLATE BND RIGHT- BDIUST
FlEG AN AT BAYS 4567
16 [PolFO o)
1 |OF RRA
2 |OF RA
3 |OF RRA
4 |OF RA
5 |CD IS T DWPLAY HEX
s [CT (D1sP - MEX)
7110 —
8 |08 DL DeCREMENT DISARY POSITION ADDRESS
9179 LDR C
A | Elb ANBT \SOLATE BITS O\23
8 |OF OF [
clC3 JP T DiIsPLAY HEX
olCT (DI1SP- HEX)
EINO —
F
10 |E o |0k [DIKPLNY DELRYY L DBT LORAD DISPLAY L0OP cOUNT
1180 1~ 385 msg
2|C 3 JP
3 [EC PAVSE.
LHYe) L
E.5 [O [VERNNCE DELAY) LDBT T LoAD DELRY LOOP COUNT
s |OR ~v20mMs
71C3 JIP
s |[EC.) PRALSE
9| lO L
Ea [O6[(LONG DELRY)LDBT T LoRD LoNG DELAY LooP COUNT
s |[FF ~N S MS
JEc|OB | PAUSE DCP ®,C T DECREMENT LOQOP COUNTER
0 [78 DA | B T DEIAY COUNT =& ?
E [Pl ORD | C
FlC2 IP 20
\Q |Ee |EC PAVSE
110 —
2|C9 RTS 3
E 3 |06 |(LAMe TEST) LDRT T LoRD c.uRSOR BIT PATTERN
s |FF BLL CURSORS '
5 1CD JS T DISPLAY ALL CURSORS
6|82 (QRSO0RS)
7110 s
8 |3E. \DAT T 1o0AD LED BIT PATTERN
s |FF BLL LEDS
A D3 QPR [ouTPUT BT PATIERN To
B[DO DATA PORT DAaTh PORYT
c |00 NOP
D|CS RIS
E
F

100001 277

PRO-LOG CORPORATION

PROGRAM ASSEMBLY FORM

HEXADECIMAL

PAGE
ADR

MNEMONIC

LINE
ADR

INSTR.

LABEL

INSTR.

MODIFIER

TITLE

DATE

COMMENTS

-y

1L _Oo|lE [MsPLaY DEMO [LDET SET _TO6 RON BILLBOARD TWICE
1102 COUNT 2.
FY LDPT HL v
310 DEMO-MESSACE L T LORD MESSACE. <TART ADDRESS IN
a0 R— R AM
522 <TPD B L
[HleYe) TENT STBRT
7]2 1 RAM y
108 |cD [DEMD IODP [TS T RUN EULL. BILLBOBRD MESSAGE ONCE
9]39 (BILLRORARD)
AllO —_ \
81D DCE T DECREMENT LOOP COUNTER
cic2 Ip 20 T __EQUBL_TO REROY
D08 NO__LoOP
E {1l —-—
FICD I3 T YES- TURM ON By DISPUAN <EcMENTS
IL_[10]F3 (LamPe TeST) .
v 1o —
2|CD IS T PRAUSE 625 MILLISECONDS
s|EA (\oNG DELAY)
4|10 — L
5CD Js i N CLEMR THE DISPLAY
6 1A CLERR BoTH)
710 —
8|C3 JP T REPEAT
9|00 DISPLAY -DEMO
Al 1l e 7
1 B iCD IDISPLAY-SELFE | TS T CLEAR THE DISPLAY
c 1A (CLEAR ROTH)
0|10 -—
El2] IpPT | H, L T <ET POINTER To STRRY AT (MEM DISP)
__ | rloo (MEM DISP)
WL leelley -
21 14C [sELF-LpoP | LDC H T ©1sPLAY THE <CURRENT MEMORY ADDRESS
2 06 LDRT
3107 POSITION 7
41CD JS
s ICE (DIsP -z IN-¢) (PRGE ADDRESS - A8-ALS)
s [1O —
74D LDh¢ L
8 |0 DRI
9 [0S POSITION 5§
AICD JS
s |CE (DIsP21IN-C) CLINE ADDRESS AO-AD
c |10 —
b |[4E LDCN WL T DIsSPLAY THE cORRENT MEMORY DRTH
AT LDBRT 7
FlO| POSITION L
W]130|CD JS
VcE XA
2 1o — _
3|CD JS
4 EM (LoNG DELRY) \WALT (2.5 MELISECONDS
s[1O —
6123 P H L INCRE MENT ¢ORRENT MEMORY ADDRES
717D DU [END OF PAGE.?
8 |FE CPAT
9 o0 faYe)
AC? JP 20
B |2 SELE-1LO0P
cl 1l — p
DiC3 JP T YES — STARYT OVER
e|\R DISPLAY. SEAE
.

100001 2/77

4-53

4-54

PRO-LOG CORPORATION

PROGRAM ASSEMBLY FORM

C

HEXADECIMAL MNEMONIC TITLE DATE
PA&E I;:S‘E INSTR. LABEL INSTR. MODIFIER COMMENTS
U _[4o]IE [MSABRYTEST |IDET T _PRESET pscl. DATA couNTER TO
1A ST ™ SPRCE” SPACE CHARPMCTER
42[7P [TEST LOOP | LDB E T DISBAY CURRENT ASCIT CHARNCTER
3/CD IS IN ALL EIGHT POSITIDNS
414D (DISPLBY- 8)
510 — A
6 CD JSs T WAT <ECONDS
7]EA LONG DELRY
s [l —
9 | TR LDRA E T \INCREMENT PASCIT DATHA COUNTER
AllC \CE L
B |FE CPAT T NBLD AacTL CHRRACTERT
c |[DF A SC *uNDERL
ofc2 J» | 2o (UNDERUNE WAS WIGHEST VALID ASCIX |
E 4|2 TEST L0o0P CODE)
13
Wl |§o0ic3 JP T NO - STARTOVER
1 DISPIRY TRST | |
2 g
3
4
55¢D KREAD KEY) IS T ANY KEY CLOSED®
5 |A7 (o)
711 CMOTE-THIS SEQLENCE ENSURE N
8 |C2 JP 20 A PREVIOUSIY DECODED WYEY HAS REEN
9 515 READ KEX) RELEASED BEFORE SENSING P NEW KEY)
Al —
B |CD IS T No, PALSE FoR KEY SETILE TINE
clgs (DEBOUNCE DELNY)
DIlO -
E[CD Js T ANY WKENY C(LOSED?
FIAT [N .
U Jeo L —_— (NOTE - DUPLICATED SC AN
1]C2 JP 20 SEQUENCE REIJECTS NOISED
2|85 READ KEY)
3|l . —
4 |0 ([DECODE. KEY)LDRT T ﬁo-g_\?mm_&ﬁ.mg_aﬂ’_&o_si_
5 (80 O\ KEY ¢OLOMNS IN KEY BoPRD MATRIX
s 78 DELODE LOOP [LD™ B UNTWL A KEY CLOWRE \S DETECTED.)
7|07 RLA
847 LDBR A
9 | FE CORT
Allo 10
8ICA JP Z\
cled ODE_REY)
o1l
E(D3 OPA T ANY WKEN CLo<ED?
F DO DATA PORY
I\ [70[DB IPR
1 Do DRTH PORT
2 AN AT
3 |3F ALL ROWS
alC A JP Z\
5 &|:|lo DECODE. LOOP
6
1 |AF LOC | A T NMES-SAV
s ICS PSP | BRC v COORDINATES FOR DECODING _N’ER
9 |CD IS ’ T PAv
A |ES [DEBOUMCE DELAY)
B 1D :
clcy pLP BRC T _comPPRE =AVED +PRESET COORDINATES
o | DR \PH FOR NOISE - RETECTION
EDO . DATH PORX
F EG ANNT

100001 277

PRO-LOG CORPORATION

PROGRAM ASSEMBLY FORM

HEXADECIMAL MNEMONIC TITLE DATE
T&E ADR INSTR. LABEL INSTR. MODIFIER COMMENTS
L [80(3F ALL ROWS
1R PR C 3
2C2 JP Zz0 T~ ARE THE CONRDINATES THE SAME?
3 o4 (DECODE KEY)
altl -—
5179 LDA C T NES-CONNERT ROW €O« DINATE
6§ |OE DT ONE OF & INPUT PORT BATS TO ON
7100 00 OF (0 HEX NUMBERS!
88 |1F |FIND ROW |RRBC 00,0l 02,03 04 OR OF
o [DA JP c\
A ?{3 ONNERT RON
B an—
clac t¢.C -
0IC3 JP
e |88 FIND ROW
Fill et
H_ 19079 KONUERT ROW LD C T MULTIPLY ROW COoRDINBYE BY 4T0
1|07 RLA PRODUCE HEX OO, 04 . OR OC 10 \4
2 107 RLA 7 Y 7 T
3 |4F LDC A
1178 LDA ® T CONVERT _COLUMN COAoRDINBTE ERoM
5 [0k LDRY ONE OF FOUR OQUTPUT PORT BITS
6 |00 (ae) ONE OF FOUR HEX NUMBERS! |
97 {\F |EIND COLUtW | RRAC 00 0L 02, 03
8 DA IP c\ !
9 ?|F ADD R0OW+ COL.
A q——
B |O4 B
c|C3 IP
D 9“7 EIND oL
E .
Sr |78 ADDROWHCOLILORA | B n ¥ N
U {Aol8] ADB | C 10 ODUCE (= (N I
1147 LDR | A RANGE 00-17 NEXRADECOMAL
21C9 RS e\
3
4
5
6
A7[3E | (5CAN) LDAT <TRORE ALL REY (HUMNS
8 |OF ALL COLUMNS SIMULTAN EousLY
9 |D3 OPRA
A DO 5 DATR PORY
B A
c gg R>Oh T READ PLL XEY ROWS SIMyLTANEOUSL
o | DO DATA PORT
[{eYe) NOP s
FlEG ANRAT 5 TR T DELEJF 1= BQg_sEE <uNTcH BITS AND SET
L 2.
H B: Sg RTS BT z=o \F ANY KEN \S CLOSED
2
3
B4 DR KER STATIS) 1 PR T READ ROCKER sWITCH STATES
5 1D6 DRI H PORT
s |00 NOP J
7117 RUDNC) SET CARRY FLAG \E 2 CLOSED
8 |Eb ANAT SET S\eN FLRG Y CLEM ZERO FLiN
-9 |80 SIGN BT IE S| CLOSED
A[CS RIS 1
B
C
D
E
F

100001 277

.4-55

4-56

PRO-LOG CORPORATION

PROGRAM ASSEMBLY FORM

HE

ADECIMAL

MNEMONIC

TITLE DATE

T[)6§ k'gRE INSTR. LABEL INSTR. MODIFIER COMMENTS
WL [Col2] KALCUIBTOR IDPT | HL T SET 70 CLEAR THE DI\SPLAY RY FILLING
102 KEY RUFFER | | THE KEN-I
2[2] RAM WITH ASCIL “<SPheE” CHARBCIERS
3106 LDRT
1|08 COUNT 8
C s |30 |ERASE LOOP |l DONT
e |AO | ASCIL SPACE”
7123 1P H)
8 108 D¢ !
slC2 JP z20
AlCE ERASE LooP
B ||l —
Ccl2.1 PISPLRY RUFFER [LDPT H, L T DISPLRN THE CONTENTS oF THE
0|02 KEY HUFEER KEY-INPUT RUFFER
E|2 RAM
FICD JS
Il [Dol2R MESSAGE)
1110 h— i
D2cD [NEW KEY | TS T WA\ FOR A XEY TO BE PRESSED
3 5“5 (READ KEY)
a piine
5 |FE PAT T CLEAR DISPLAY?
s [\l CLEARKEY CKEY ¥l 15 ARBITRARILY ASSIGNED]
7 |CA 3P 2z THE “CLEAR DISPLAY" FUNCTION)
8 c|o CRALCULNTOR
91 e
AlCD Js T NO- CONVERT THE KEY TO ASCIT
89D HEX/ASCIL)
clio —
Di2] LDOT WL T SHIFT INTO THE YXEN-INPUT BUFFER
E 09 KEY BUFFER+7 AS THE NEW LSD (oD MNSD 15\0SD
Fl21 RAM
W lE0|O6 LDRT
1108 COUNTS
2 [4E [SHIFT BUFFER |[LDCN H,L
3|77 STAN | W L
479 Lbd [¢’
s[28 RDCP | H L
6 |08 D¢R
7 |C2 JP Zz0
s E2 SH\ET: BUFFE
9 | 1\ —_—
AlC3 TP] REPEAT INDEFINITELY
8 |CC DR NN -RUFFER. ‘
c |yl — g
D
E
F .
\I| [FolcD|[XEYTEST | J$ T CLEAR TRE DISPLAY
1 1A (CLEAR BOTH))
2110 — ¥
3|CD | REPEAYT | IS T WAIT FOR A XEY 16 BE PRESSED
4|55 (READ KEY)
511 — T~ DISPLAY THE KEYS HEXADECIMAL VAWE
s 48 LhC =Y IN_POS\TION _{ ANDO
7100 LDBT
3 Ol POSI\TION: |
9 |ICD JS
AlCE DISP2: INC)
B|lO -_ L 4
clC3 JP REPEAT INDEFINITELY
o|F3 REPERMT
AT — \S
- _

100001 277

SECTION S
Maintenance

Reference Drawings

The schematic (Fig. 5-1) and assembly drawing (Fig. 5-2) in the following pages are included in this manual
FOR REFERENCE USE ONLY. They may differ in some respects from the card and documentation that the
user receives from Pro-Log.

The schematic and the assembly drawing shipped by Pro-Log with the card are those from which the card was
manufactured.

5-1

¢S

s | 7 | [5 | 4 3 2 | 1
T Nevistows
SYSRESETY o U7 o BUS BUFFERS CONTROL PORT el
@-—%—RST* LS ?':
07@ I) u2 \oD3_5} [6 WRx =
jraLs244 7415240 wrR P
0 (® N w = Nz OUT [s o
15 15 Al
DS@ _5_0_5\ NooL 13 N m
b| o4(a i EaEN AD »
oo 2| 1 N
05(?) 8 U o P
TYP! (TYPY ! o T +5v
02@ 6| ™ —’4—02\ 0&_] T—RST*
4 o D
oI
| w@—— —
13109 gl
= SLRIGHT
KL‘%M CARD SELECT DECODERS
10exp (B A5>500 %] 1557 « A
19 7
DATA PORT.
¢ [}
746175 .
7__MODE 3V B N D\ A\ | - DS
Ny i T @ TN
2 &
ka1 ez W23 kes R2-5
é :g* - @cm o e AN A 1D4¥
o — 09 EIEIELE —
10 b4 & (g (] (LY k2o -5 1
— THYE) CR5 B ’5 X I\ - 103% |
© TN
Ri~4
w3 Ki4 IS Kle
RST# A - A [aan iD2%
74,8175 5% SAINAING
N B ey ra— F AL
NoD3 5] A o bd¥ O CR4 %o () o %2 1_53123_
P FBN AR\ A8 AR f D
N2 af OVUT F3 ™oy ()RS NAINCH NN
8 2 &7 & L]
0Dl 13 :i ?l* [cRr2 XS (3 (3 8 RI-2 ——
t P w0 o/ SOonEN AR { il -
2 pu_eos @cm J({J AJK{
o (Y X2 %3 (4
L e T
3 0350% RSTX
7407 R2-3 N
a3% u@c\o o o——(48) PRRESETX |__..
R2-4 .‘_l? [° |-
_ b2x 9 8 [m.\W/P o s : —
R2-2 " A= RIM CONTACT
bl 13 12 [%. CENTER CONTACY
47 R2-6
4 " I bO% 5 6 S
wex (3)—245> w7 2 R @’ SPARE _GATES
RO* (B)—= z%cm ! 150% RIS, |) y
741532 | i) "R -
745244 4 3 ASSEMBLY NO. - 104974
we T g REFERENCE ONL R 5
Al ra® _sv AT AR o o2 A
+5v (i 5V aux oNd (B——o 2. ALL RESISTORS 4.7K. PRO-LOG CORPORATION
+5v® e | ce9 . o /N PORTS ARE MAPPED AT DO AND DI AS SHOWN. SEEREEEEET o CHEMATIC . 7303
+:: I.gii: OuuF AUX GND @ © SZ SELECTS t OF 4 PORTS ADDRESSES . S T e m——
GND 5cv 50V SY SELECTS 1| OF 8 BLOCK 4 PORTS PER BLOCK. —SA MARULLOm»M»
® ey () © 5X SELECTS | CF 8 BLOCK 32 PORTS PER BLOCK. I acsean A
6D (2) 1 -1V (8o NOTES: UNLESS OTHERWISE SPECIFIZD. = 07 o
1

|] 5 4 | 3 2 | 1

Figure 5-1. Schematic for 7303 (reference only)

o

s 7 6 l 5 | 4 3 2 | !
REVISIONS]
¢ ooc_mey. m DATE
1 DELETE RUGBER PRD. A
A A 8])
IWRK K A Asuxzsmm Mhe q!)
-—— B8 REVISED PER PD‘ 0895 209 Vwa
SECTION A-A C_[REVISED PER PCN 1128 [onwm|re
D D
4.
@ s
DETAL B
2 PLACES
KEY TAL
A (RMA CONTACT)
B (CENTER (W
¢ 3,2 1 0 w1 e " THE
2= .\{81@ voan| o ® MOA LI b
— wsal o @ @ o |xse
oK B e . | e
—nad :i’: o enm LETR I e
00000090
-‘ 36365080 wa | e @ © o |xns
=t * KI2B XiD8 o
K98 . K98
O xon| o ® oA ° o KA o o | xioa
K7A . PRy “oB © - X78
} R o T[S
} K3A - o ka8 & “t e ® X38
78 ‘oon . K8
e I m’:o‘?n IANIG 8% XA ® o |k
B
} < s&cTion ¢-¢ e
B CIRC SIDE OF KEYBOARD
] ASSYr0as7a} T
| J— ° °
L—,dl REF
A UE 0106 16 AFT0007 TO FiX HEIGHT OF KEY BOARD. TR CTE] D
A\ INSTALL SPACERS PRIR TO SOLDERING SWITCHES. oETAL © 15
A\IDENTFY WiTh ASSEMBY REV LETTER USING RUBBER STAWP. 14 J4.7K NETWORK JR1.2
8 FEFERENCE DESIGNATIONS ARE FOR ICATING PURPOSES !
ONLY AND MAY NOT APPEAR ON ACTUAL PA Lk] 12
7 DO NOT IMMERSE CARD IN SOLVENT. REFE Fa Q g ¥ i 10.F. 30V [c
A ﬁ‘"’“ LOCKTITE 10 SCREWS @ ""53- m, &N Va égl i 9 [O4F 50V |234567.89 A
MOUNT KEYBOARD WITH LETTERING N CWRC. SIDE UPSIDE - DOWN. ITEM] DESCRIPTION REF. DESIGNATION
/A BREAK OFF DOTTED AREA OF TAB. PRO-LOG CORPORATION
A\ CARD MAPPED TO PORTS DO AND DI. M
SCHEMATIC 104973
2\ DENDTES PIN 1 END OF IC'S. PARTS LIST 104975
|. BOARD TO CONFORM WITH ASSY STANDARD ASI004 .
NOTES: UNLESS OTHERWISE SPECIFIED.
) 7 6 5 4 | 3 2

Figure 5-2. Assembly for 7303 (reference only).

Signal Glossary

See Figs. 5-3 and 5-4.

MNEMONIC MEANING PIN(S) | DESCRIPTION FUNCTION
D0-D7 Data bus 7-14 High-active |8-bit, 3-state bidirectional data bus.
A0-A7 Address bus |15, 17,19 High-active Low-order 8 bits of address bus, used for
21, 23, 25 I/0O port addressing. 7303 responds to ports
27, 29 DO, D1 as shipped.
SYSRESET* System 47 Low-active Originates at processor card in response to
reset power-on or PBRESET™.
PBRESET* Pushbutton 48 Low-active Drives processor card’s PBRESET* input.
reset switch closure
IOEXP 1/0 port 35 High-active }Bank select; must be low for7303; grounded
expansion by 7801, 7802, 7803 processor cards.
IORQ* I/0 request 33 Low-active Indicates that the address bus has a valid
port address on AO-A7.
RD* Read 32 Low-active Indicates that the processor is reading from
the addressed input port.
WR* Write 31 Low-active Indicates that the processor is writing to the
addressed output port.
PCIi Priority 52 High-acti Card level serial interrupt priority; trace
PCO chain 51 Igh-aclive | maintains continuity on 7303.

Figure 5-3. STD BUS Edge Connector Signals for the 7303
(see also STD BUS pin list, Fig. 2-7).
Note: Unused pins are open; pads are provided on some unused pins for user signals.

MNEMONIC

MEANING

DESCRIPTION

COMMENTS

A0, A1

Display digit address

High-active

Selects one of four digits in each half of the
display.

A2, A2*

Display chip select

Low-active

Selects the left-hand four digits (A2 =1) or
the right-hand four digits of the display
(A2 = 0). ;

IDO*-ID7*

Input port bits

Low-active

IDO* - ID5* are used to read key closures
from the keypad matrix.

ID6* is used to read the state of rocker
switch S1.

ID7* is used to read the state of rocker
switch S2. :

IS0*

Input port select

Low-active

Decoder output used to read input port DO.

b0-b7

Output latch bit

High-active

b0-b6 are used as the ASCII character
bus to the display digits.

b7 selects cursor mode when low, char-
acter mode when high.

b0*-b3*

Output latch bit

Low-active

Used to strobe the keypad for key reading/
decoding operations.

0so0*, ost*

Output select

Rising edge

Used to latch data bus data to output ports.,
(DO, D1 as shipped.)

RST*

Reset

Low-active

Buffered SYSRESET* used to reset the out-
put ports and the binary LED display.

Figure 5-4. Internal 7303 Signals.

Keyboard Label Replacement

To change akeyboard label, grasp the clear keyswitch cover at the top and bottom edges with the fingernails of
your thumb and index or middle finger, then pull directly out and away from the keyboard. The clear plastic
cover will snap free from the keyswitch, exposing the legend area below. The legend may then be replaced or
covered over by a new legend such as those legends provided by Pro-Log or appropriate sized legends
provided by the customer. Replace the clear plastic cover on the keyswitch.

WARNING
Do not expose the 7303 keyboard to fluxes, solvents, cleaning solutions, or their fumes.

Keyboard Disassembly

To replace an individual key, take out the eight slotted screws located underneath the keyboard. Holes in the
circuit card provide access to these screws from the card’s rear. When the screws are removed, the keycaps fall
free with the cover for easy removal. When re-assembling the keyboard, use a mechanical screw starter.

Special Parts

The following parts (Fig. 5-5) may not be readily identifiable by markings on the parts themselves. Should the
user desire to obtain these parts from local sources other than Pro-Log, the following information is given
concerning their manufacture:

PRO-LOG MANUFACTURER'S

PART PART NUMBER MANUFACTURER PART NUMBER
Alphanumeric 902085 LITRONIX DL-1416
Display
Keyboard 902084 K. B. DENVER MOD 25-01-02-00
Rocker Switch 901359 C&K COMPONENTS 7810

or
JBT SUBMINIATURE SWITCH MT77

Please note that replacement of parts by the customer may VOID THE PRO-LOG WARRANTY. Pro-Log
assumes no responsibility for the continued availability of these parts.

Figure 5-5. Special Parts for 7303.

Return for Repair Procedures

Domestic Customers: ,
1. Call our factory direct at (408) 372-4593, and ask for CUSTOMER SERVICE.

2. Explain the problem and we may be able to solve it on the phone. If not, we will give you a Customer Return
Order (CRO) number.

Mark the CRO number on the shipping label, packing slip, and other paperwork accompanying the return.
We cannot accept returns without a CRO.

3. Please be sure to enclose a packing slip with CRO number, serial number of the equipment, if applicable,
reason for return, and the name and telephone number of the person we should contact (preferably the
user), if we have any further questions. '

4. Package the equipment in a solid cardboard box secured with packing material.

CAUTION: Loose MOS integrated circuits, or any product containing CMOS integrated circuits, must be
protected from electrostatic discharge during shipment. Use conductive foam pads or conductive plastic
bags, and never place MOS or CMOS circuitry in contact with Styrofoam materials.

.5. Ship prepaid and insured to:

Pro-Log Corporation
2411 Garden Road
Monterey, California 93940

Reference CRO #

International Customers:

Equipment repair is handled by your local Pro-Log Distributor. If you need to contact Pro-Log, the factory can
be reached at any time by TWX at 910-360-7082.

Limited Warranty: Seller warrants that the articles furnished hereunder are free from defects in material and
workmanship and perform to applicable, published Pro-Log specifications for one year from date of shipment.

This warranty is in lieu of any other warranty expressed orimplied. In no event will Seller be liable for special or

consequential damages as a result of any alleged breach of this warranty provision. The liability of Seller
hereunder shall be limited to replacing or repairing, at its option, any defective units which are returned F.O.B.
Seller’s plant. Equipment or parts which have been subject to abuse, misuse, accident, alteration, neglect,
unauthorized repair or installation are not covered by warranty. Seller shall have the right of final deter-
mination as to the existence and cause of defect. As to items repaired or replaced, the warranty shall continue
in effect for the remainder of the warranty period, or for ninety (90) days following date of shipment by Seller or
the repaired or replaced part whichever period is longer. No liability is assumed for expendable items such as
lamps and fuses. No warranty is made with respect to custom equipment or products produced to Buyer's
specifications except as specifically stated in writing by Seller and contained in the contract.

APPENDIX A
Front Panel Mounting of 7303 Card
o PLAN 131

A-1

introduction

The 7303 is designed as a direct interface to the STD BUS. If you mount the 7303 outside the STD BUS card
rack, do not connect it directly to the STD BUS through a long cable. Such a connection increases backplane
capacitance and cross coupling, and results in excessive crosstalk, noise, and generally degraded perfor-
mance.

Instead, connect the 7303 to the end of I/0 portlines. This type of connection (Fig. A-1) requires more program
involvement, but it avoids the problems associated with transmitting fast processor signals over a long cable.
In this mode, a TTL I/0 card with 3-state 1/0 lines provides the signals needed to control the 7303 in place of
the direct STD BUS drive. The program generates these signals by executing short instruction sequences
instead of the single read and write instructions used in I/0 mapped operation.

7605 TTL 1/0 Card

or
7507 1/0 Module Mounting Ribbon Cable 7303 Keyboard/Display Card
Rack Interface Card (up to 6 feet) (remote-panel mounted)

!

9

T |}']'“"!'I'||'i' A

Figure A-1. Cable Connection when Operating the 7303 as an 1/0 Load.

Remote 7303 Drive Via I/0 Lines

When driving the 7303 via I/0 lines, the 7303’s address decoder circuitry is not used, since the program,
instead of the usual hardware, controls card selection. Only address line A0 is retained to select between the
two sequential port addresses on the 7303. In addition, the IORQ* and IOEXP lines are not used, since the RD*
and WR* signals alone can maintain full card control.

Using either Pro-Log’s 7507 module mounting rack interface, 7605 general purpose TTL I/O card, or equiva-
lent I/0 card with bidirectional I/O capability, connect the 7303's edge connector as follows:

1. Ground address lines A1 throu A7 (edge connector pins 15, 17, 19, 21, 23, 25, 27, to pins 3, 4);
move address jumpers to X0, YO, Z0, and Z1.

2. Ground IORQ™* and IOEXP (edge connector pins 33 and 35 to pins 3, 4).

3. Connect a 3-state I/0 port (8 lines) to the 7303's data bus d0-d7 (edge connector pins 13, 11, 9,
7,14, 12, 10, 8), maintaining one-to-one bit significance for programming convenience.

4. Connect four output-only lines to the 7303's A0, RD*, WR*, and SYSRESET* lines (edge
connector pins 29, 32, 31, and 47, respectively). Note that these lines are always outputs from the
3-state 1/0 card and must remain driven at all times for correct 7303 operation. Do not allow
these lines to float unless pull-up resistors are connected. :

» NOTE
In steps 3 and 4 above, the interface cable to the 7303 should consist of ribbon cable with
alternating ground-signal-ground, or multiple twisted pairs consisting of signal/ground in each
pair. Limit cable length to 6 feet (2 meters).

5. Connect +5V 5% and logic ground to edge connector pins 1, 2, and 3, 4, respectively, via a
twisted pair of 18-gauge wires or larger.

6. (Optional). If the 7303’s reset pushbutton is to be functional, connect the card’s pin 48 to STD
BUS trace pin 48.

O

To program the 7303 as an I/O load, substitute instruction sequences for the single read/write instructions
normally used. These sequences are as follows:

WRITE Sequence

READ Sequence

Panel Mounting

Select AO = 0 or 1 (select the 7303's data or control output ports).
Write output data to d0 through d7 at the 7303.

Set WR* = 0.

Set WR* = 1,

Float the data bus drivers.

Set A0 = 0 (select the 7303’s input port).

Set RD* = 0.
Read the input data from 7303’s dO through d7.
Set RD* = 1.

The recommended cutouts for mounting the 7303 in a panel are detailed in Fig. A-2. Mount the 7303 in panel
stock of up to 0.125-in. thickness, using the four mounting holes prcvided on the card. The display bezel is
recessed approximately 0.375 in. below the keycaps and binary LEDs. This recessing allows for beveling
around the display cutout, while the keys and LEDs protrude from the panel front (Fig. A-3).

< 4.250
l—— 38600 —-—————>—’|
—————2.850 ———» .213 in. dia. - 8 Plcs.
«——2.100—>
+— 1.400 —py
125 «1.188-p l
- . S P T
I 1.281 i
1.562 l IS I
1.tiso p S
1750 [Npi T L]
750 4 ,
4.165 le—— —2.475 > L
< 3.228 . —»~
< -3975>__ < >
OPEN
Pl N
125 R No
dia. - 4 Plcs. s AN
v ! /// N |
y - Lié.— ~-—+ - ?_
125! ie— ‘
l41.000 -»|
< 4.343 >
le—— 5225 >
CUTOUT DETAIL A
P 4343 >
1251 [€1.000p,
3= in— — - _+' -
| \, / |
| N Y
\ 7/
\ /
N /
Ve
\\ s
4.242 N L7 !
OPEN
2N
/N
/ \
/ AN
/ \
/ \
7/
, \
| ; \\ |
) o} - —
i

CUTOUT DETAIL B |

Figure A-2. Cutout Details of 7303 Panel-Mounting (dimensions in inches).

A-3

A-4

‘4—1.145"—>

A __Bl R

-

MR : AR

—

4.562"

<+— 950" —»

Figure A-3. Profile Mounting of 7303 in User’s 1/8-in. Panel.

ALPHANUMERIC
DISPLAY

BINARY LED
DISPLAY

KEYBOARD

- L"1/8" PANEL

PANEL THICKNESS
0.125 in.
0.318 cm.

o

USER'S MANUAL *

P[|PRO-LOG

CORPORATION

2411 Garden Road
Monterey, California 93940
Telephone: (408) 372-4593
TWX: 910-360-7082 o

105999C 4/81

