ﬁﬁO@W \WZZ\W Software Program

Products

BASIC

2000.001

© 1977, PROGRAMMA CONSULTANTS

October 1977 Edition

This edition (2000 001) is a major revision-
and obsoletes all prev1ous editions and
.documents.

Technical changes are marked with a bar in
the outer margin. Changes due to subsequent
releases will be documented in future
publications bulletins or revisions.

Requests for copies of PROGRAMMA publications
- should be made to your PROGRAMMA representative
or to the PROGRAMMA central office.

A reader's comment form is provided at the
back of this publication. If the form has
been removed, comments may be addressed to
PROGRAMMA CONSULTANTS, Publications Dept.,
P.O. Box 70127, Los Angeles, CA 90070,

. PAGE iii OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

PREFACE

This reference publication is intended for programmers using
the PROGRAMMA CONSULTANTS FBX BASIC Language. This publication
describes how to write BASIC source statements, system start-up,
alteration of system parameters, and error handling. '

The reader should be familiar with the hardware manuais and
operational procedures for the devices in his particular
computer configuration. : ‘

FORM DOC-101 8-76

Genera! Documentation

© 1976 PROGRAMMA CONSULTANTS

PAGE jy OF

| SYSTEM NAME

SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER DATE DOCUMENTED

- I,
II.

IIT.

Iv.

VI,

TABLE OF CONTENTS

Intr‘oduction‘.""'.“'l...’.l..‘...l..........l..l’

Implementation of BASIC
A From Dlsklo0'.0.'...0.00.ll.o......ll.‘ltﬁz
B' From Cassette’ ® 0. 609 0606000066000 00000000 .4

Data Representation

A. Constants
1. Numeric..........-.....-.,....’......-.5
2. Literal...’.'....'..O..O0.0’...I...O..?

B. Variables
l Numerlc...0'...0..0......0'0.....OIOCS
2 Arrays..............‘...0..0‘0.0..!.10
3 theral.‘...o.I..Q..Q.l..b..l.0...0.12

Expressions and Equations
A. Numeric Expressions

1. OperatorsS.:ccescecssssesscccssccsssadll

20 Order Of operationl.lllﬂﬁb......000015

3 Equatlons..‘..‘....t.‘...l'......l'!.l?
B. Literal Expressions

1. Strlng Equa‘tlons................-...18

C. Intrinsic FunctionS..eescesccscscsssesesesl9

BASIC Program Structure
A. Simple ProgramsS.scessscescsscsssssscssssell
B. Multiple StatementS.ceesccecsscsscscscseell
C Symbols.....'.l0...00'0..0..0'..9.0.00.'02“

BASIC Statements
Clear. ® 0 92 2 006 00 0 90 8 0 0 0 50 58 00000000009 Ee e 0 l26
DimenSion- ® 5 0 06 008 % 0 4 0 8 0 00 000600606 008008 " 0 st e 27
End " 9.0 080 0 ¢ 0 000 000 B80SO SN OO OEN 0P '. ® o 08 0 28
For/IQext‘ S @ 690600 060 0008000000000 ". ® &0 00 0 0 0 00 !29
G‘OSU.b/Re turnl ® 6 ¢ 5 5 5 8 00 00080 008 00 s Q‘ o0 0 ¢ 000 0o .31
Goto...t..‘lO......-.l.QO....C..'..I..‘....I0032
If'.ll!l.0.0'.'0000'll..‘...l...,.......QQOOOQBQ
Input. ® 0 0608 050 0060 0050 0800000t . 96 &0 ‘ L N] 036

Let............l...0..0......‘.D....l.......j?

Fryprsa ¢ e, 1N -

PAGE vy OF

SYSTEM NAME

SYSTEM NUMBER '

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

'IDATE DOCUMENTED

VI. BASIC Statements(con't)
Matrix. « « « « « &

POKE v v o o o o o o o o o o o oo o o o« o o« « o ko
Print v o o o o o o s o o o o o o o o o . . . Wb2
REMATK o b4
USGI’ o o . . . o‘ .) - o. 45
~VII. BASIC Commands -
C1CAA v o o o o o o o o o 4 o o o o . Y N
CSAVE. « o o o o o o o o o o o o o o « o o + « « . 48
ONTL Ae v v o o o o o o o o o o o 2 o . . . Jh9
CNTL D 4 4 o o o o o o e o o o s o o o o o o o o« @« 50
CNTL E 4 v o o o o o o o o o o o o o o o o o « « o 51
DUMP/RELOAA « o o o o o o o o o o o o o o o o o 52
TASE v o o o o o o o o o o o o o o o e o o 4 o o . 54
TOBA &+ o o o o o o o o o o o s o o o s s e o « o 55
NEW o o o o o o o o o o o o o o o o56
RUN v ¢ o o o o o o o o o o o o o . e e e W57
Save . . (] . .] 3 3 0 58 '
SIZE v o o o o 6 o o o o o o o o o e o e s e o « 59
VIII. Appendices ~ '
A, EPror COAES o o o « o o o o o o o o o o o o o« oAl
B, Cassette Loading . . « « ¢ « o & . .« « « oB1
C. Quick Reference . « ¢« « o o o . e o« o oC1
D, GlOSSABTY + o o o o s o s o o o . e« o o D1
FrOnm noc . 101 a 7e ey AN pamnt Al oy Ve DA RARRS R T ANy

_PAGE] OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

stand

I. INTRODUCTION

computer understands.
several languages.

or business problems.

quickly available.

will also bevavailable.

To use a computer, the user must learn a language the
Sphere M6800 computer systems under-
Most of these are meant for some
special purpose, such as the solution of scientific, engineering,
BASIC is intended as an all-purpose
language, hence the name; Beginners All-purpose‘Symbolic
Intérpretive Code. ~

‘Because of its similarity to English, BASIC is a
good language for users who are not interested in the
internal workings of the computer.

This manual has been written as a tutorial/reference
guide to Programma Consultants Full BASIC Extended. The
chapters are logically ordered and concise on every tbpic
necessary to the beginner and experienced user alike.

The sections on BASIC instructions and commands are
easily referenced and clearly indexed to make the information
All functions, commands and statements
are also listed in the appendix “BASIC Quick Reference”.

This manual was designed and written for FBX 2,0, as
new versions of FBX are issued updated pages of this book
It is recommended that the user keep
these pages in a three-hole punch notebook. Updates can then
‘be easily added and obsolete pages removed. | ‘

Developed for Programma

Consultants by

M. Higgins

&

A. Rosenthal

Fryneas r.npe 1m"mt -

PAGE 2 OF
SYSTEM NAME SYSTEM NUMBER '~ : |CATALOGUE NUMBER
- JPROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

l.
2!
3.

2

I1. IMPLEMENTATION OF BASIC

following manner:

System powered up and Reset.
Disk reader power on and diskette in reader,
Load boot strap prbgram IP from Cassette

(see appendix "Cassette Loading Procedure”).
Execute program IP at location OQOOH.
CRT will display “$"fprompt character.
Type "BASIC* and press the ESCAPE key.

When the cursor returns BASIC is loaded and running.
is now ready to accept commands or instructions.
~all the disk only commands; DUMP, RESTORE, and Cntl E.

1 pps - Sphere Program Development System Monitor on EPROM
0S/1 - Disc Operating System Monitor for the ICOM FD-360 Floppy

System requirements for execution of Full BASIC Extended:

PROM.

MEMORY | At least 12K RAM.
- INPUT DEVICE Keyboard

OUTPUT DEVICE | CRT

STORAGE DEVICE Cassette I or II.

OPTIONAL DEVICES Printer, Disk reader,
Plotter, Paper tape reader
punch. '

SOFTWARE FBX and Sphere PDS on

OPTIONAL SOFTWARE 0s/12 for Disk reader.

Implementation of BASIC from floppy disk is achieved in the

It

These include

Feorvesa r.ve YA

Ceve gy eres

PAGE 3 OF

TsysTeEm NamE

SYSTEM NUMBER '

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

IMPORTANT INFORMATION.

PRINT DRIVER ROUTINE

File Name

File Type

Load Address

End of Code
Execution Address
Soft Startl Address

Memory Limit Pointer?

TTY OKI

BASIC BASIC
OBJ OBJ
0600 0600
1EE7 1FD2

0600 0600

0602 0602

1BOF 1BOF

1 should your BASIC program abend abnormally, or should you
be forced to reset the computer Central Processing Unit (CPU),
open this location from PDS DEBUG and type Cntl G. The
current BASIC source program in the memory will be intact.

This location and the one following it will contain the
physical end of RAM memory that is found in your machine.
This pointer may be changed to any reasonable value, if you
desire tc limit the memory requirements of the BASIC Interpreterq
Under normal operating conditions, the end of memory limit
pointer should not be set to any value less than 8K (H 1FFF).

PR~-40

BASIC
0BJ
0600
1EF0

10600
0602

1BOF

FORM DOC-101 8-76 Gereral Documentation

© 1976 PROGRAMMA CONSULTANTS

PAGE 4 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

"|PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

information:

PRINT DRIVER ROUTINE

File Name

File Type

Load Address

Ehd of Code

Execution Address
'Soft Start Address

Memory Limit Pointer

TTY OKI

‘BT BO

CASS CASS
0600 0600
1EE7 1FD2
0600 0600
0602 0602
1BOF 1BOF

- For implementation of BASIC from Cassette I or II, see
appendix "Cassette Loading Procedure" with the following

BS

PR-40

CASs
0600
1EFO
0600
0602

1BOF

FORM DOC-101 8-76 General Documentation

(]

1976

PROGRAMMA CONSULTANTS

PAGE 5 OF

SYSTEM NAME i SYSTEM NUMBER ' CATALOGUE NUMBER

‘| PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

111, DATA REPRESENTATION

A. CONSTANTS
1. NUMERIC

A numeric constant consists of a string of digits that
represent an unchanging amount or number. For example; the
number of eggs in a dozen is said to be constant at 12. The
force of gravity on the surface of the earth is constant at
9.8 meters per second squared. The number of hours in a day
is constant at 24.

Numeric constants may also have a decimal portion.

‘Such as the representation of the sales tax rate in the state

of California at 0.06. Another example is the base of natural
logarithms at 2.714818. :

All numeric constants have another attribute, that of
sign; a plus sign (+) for values greater than zero and a
minus sign (-) for values less than zero. The absence of
any sign indicates a value greater than zero. :

In this version of BASIC numeric constants have a llmifed
range. Numeric constants must fall within the limits of
99999999 to -99999999 inclusive.

FBX has one predeflned numeric constant. The letters
PI are the same as using the numeric constant 3.1415926.

Examples of Valid Numéric Cohstants

6 123.75 0 .0038 PI -67 18
3.14159 1.4143 -.000003 0.00 0675

T oFrvDea

LETAY ol No) R

.....

page 6 OF

SYSTEM NAME ’ SYSTEM NUMBER ' CATALOGQE NUMBER

PROGRAM NAME "] PROGRAM NUMBER DATE DOCUMENTED

Examples of Invalid Numeric Constants

L6,312 ' ‘ ‘no commas allowed
$23.60 no dollar sign allowed
90456739854 exceeds range
-+2345 only one sign per number allowed
.0154 j no leading zero preceediﬁg decimal point

All numeric constants that may contain a decimal point are
subjected to the following syntax restriction:

If the numeric constant represents the fractional part of
a whole number, then the decimal point of the numeric¢ constant
must be preceeded by the numeric zero.

For Example:

.0154 would be represented as 0.0154

Page of 2000.001
Revised 10-31-77

LA KR N AT TN

TNL-2000.001-1

PAGE 7 OF

- |SYSTEM NAME SYSTEM NUMBER ' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

A, CONSTANTS
2. LITERAL

A literal (string) constant is a set of Characters*
enclosed in double quotation marks (“). In BASIC a
string constant may consist of from O to 255 characters.

A name is a good example of a string constants“FARRAH
- FAWCETT-MAJORS”. The only restriction on the contents of
a string constant is that it may not contain a double quote

mark.
Examples of Valid Literal Constants
A.H. ROSENTHAL" “1600 PENN. AVE." “# (##) *IS HERE "
Examples of Invalid Literal Constants
"MELVIN" NORRELL" | - string contains quote mark
rew string also contains quote
NOW IS THE TIME FOR missing quote marks

#ASCII Character set.

American Standard Code for
Information Interchange

PAGE 8 OF

|SYSTEM NAME : SYSTEM NUMBER" " JCATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

B. VARIABLES
- 1. NUMERIC

Numeric varlables are used to store changing values. The
time of day, the score in a game, and the stock market prices
are all variable quantities.

Variables are locations in the computer's memory. These
locations are referenced by symbolic names. The diagram below
illustrates a simple symbol table of memory locations with
symbolic names. :

Symbolic Name A Z - R K7

Memory Locationl I I T

Numeric variables are used by the programmer to store
numeric constants, but unlike constants, numeric variables
can be altered by the program. This is accomplished by the
use of the correct symbolic name.

Symbolic names for numeric variables may consist of just
a single letter of the alphabet (A,B,C,...Y,Z), or a single
letter followed by a single digit (0 to 9). Using all the
p0551b1e combinations, there are 286 legal symbollc names for
- numeric variables.

Numeric varlables have the same value range limits as
those found for numeric constants. Numeric variables may
have a sign specified in the same manner as a numeric constant.

Exambles of Valid Numeric Variables

X Al %9 T Q0 c7

1 Memory lccations are taken from program storage given to
- variable storage as each symbolic name is encountered.

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 9 OF

SYSTEM NAME

SYSTEM NUMBER ' CATALOGUE NUMBER

[prOGRAM NamE

PROGRAM NUMBER DATE DOCUMENTED. -

XX
A2B
*3
APLHA

Examples of Invalid Numeric Variables

~must begin with letter

cannot contain two letters
only single digit after letter
must begin with letter (A-Z)
only_single létter allowed

Fetrva (arne 1A .

PAGE 10 OF

" |SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

B. VARIABLES
2. ARRAYS

A numeric variable with more than one storage location
associated with its name is called an array. Each separate
value in an array is called an element of that array. .The
diagram below illustrates an array called A, which contains
five elements.,

Memory locations

The Array
A

The array above is a one-dimensional array called a
vector. A single column of elements with a common symbolic
name is termed a vector. A two-dimensional array is called a
matrix. A matrix is shown below.

Memory locations

Col Col Col Col
1 2 3 4
Row 1 ' ‘ 11
1,1 1.27 1.3 1.4
The Matrix Row 2 : |
2,1 2,2 2,3 2,4
Z Row 3 | |

3,1 3,2] 3,3 3,4

Freyprea 1.\ 1N -

PAGE 11 OF

SYSTEM NAME . SYSTEM NUMBER' CATALOGUE NUMBER

: PROGRAM NAME S , PROGRAM NUMBER DATE DOCUMENTED -

The array 2 is a 3 by 4 matrix, containing 12 separate
elements. When referring to any two-dimensional array it is
described in terms of rows by columns.

Every element of an array can be independently accessed
by subseripting the array name. For examples 2(1,3) refers
to the element at row one, column three. In the array A shown
before, A (3) would name the third element from the top, where
A(1) would be the first or top. It should be noted that A(6)
would be an error, as the array A has only five elements.

Each element of an array is a numeric variable. All the
attributes and rules which apply to a numeric variable, apply

to the elements of an array.

The rules for array symbolic names are different from those
which apply to simple numeric variables. The symbolic name of
an array must be a single letter of the alphabet, no digit is
allowed. A and A (3) are two different variables.

The subscripts of an array must be positive integers
greater than zero, and must define the array. For example:
take the array Z from before, the symbolic name Z must have
two subscripts. Like 2(1,2) or 2Z(3,3)

Examples of Valid Arrays

A(10,12) defines a matrix of 120
‘ elements in 10 rows of
12 columns

K(5) ' specifies a 5 element vector

R(1,120) this also defines a 120
element matrix

Examples of Invalid Arrays

D{3,4,5) | too many subécripts. 2 max.
R3(5) illegal symbolic name, not allowed
Z2(3.5) non-integer subscript not allowed

P(0,3) both subscripts must be greater
, than zero

Frypren

toene Any -

PAGE 12 OF

SYSTEM NAME : SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER- DATE DOCUMENTED

B. VARIABLES
3. LITERAL

A literal variable is a series of contiguous memory
locations, referenced by a symbolic name, and used to store
any combination of alpha-numeric characters. The contents
of a literal variable can change during program execution.
Literal variables can be used to store literal contants in
much the same manner that numeric varlables can be used to
store numeric contants.

Symbolic names for literal variables are subﬁect to the
following restrictions: they must be a single letter of the
alphabet followed by a dollar sign ($) character.

The amount of storage assigned to a literal variable is

determined by the programmer. A literal variable can never
contain less than one or more than 255 characters.

Exzamples of Valid Literal Variables

AS (of] HS z$ K$ s$

Examples of Invalid Literal Variables
A0S must be a single letter,
: no digit allowed

B4 single letter must be
followed by dollar sign

58 first character must be
a letter (A to Z)

FORM DOC - 101 5-76 General Documaentation ‘ © 1976 PROGRAMMA CONSULTANTS

PAGE 13 oFf

SYSTEM NAME : . : SYSTEM NUMBER'’ CATALOGUE NUMBER

PROGRAM NAME) PROGRAM NUMBER DATE DOCUMENTED

IV. ARITHMETIC EXPRESSIONS

A. NUMERIC EXPRESSIONS
‘1. OPERATIONS

A numeric expression is a series of constants and/or
variables combined with arithmetic operations to form a logical
statement. For example: 5-3, read five minus three, is a
correct expression.

In BASiC the following operators may be used in an
arithmetic expression: '

Operator Operation Example of use
#— b
+ Unary Positive , - +5
- Unary Negative -D
* Multiplication 6*8
/ Division 234/45
+ Addition = 36+82

Subtraction 639-987

The first two operators in the table are used on a
single variable or constant to specify the sign, hence the
term unary (meaning single or one). In unary expressions
the plus sign (+) is optional. The last four operators
in the table are binary operators requiring two values to
work on.

In arithmetic expressions there can only be one operator.
between two values and only one value between two operators.

Examples of Valid Use of Operators

Operator o Explanation
-3 negative three
+5 positive five
3%A | three times the value in A

6/2 v six divided by two.

LEAREAR] 1.ry

PAGE 14 OF

SYSTEM NAME

SYSTEM NUMBER ' CATALOGUE NUMBER

-JPROGRAM NAME

PROGRAM NUMBER - DATE DOCUMENTED

Operator

--6

4R

6%-B

6 X 7

Examples of Invalid use of Operators

Explanation
only one operator may
precede a number

missing operator; not
the same as 4*R

only one operator between
two values

villegal operator

Frinsa 1.rve YA

PAGE 15 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

" .|PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

. A, NUMERIC EXPRESSIONS

‘2. ORDER OF OPERATION

Evaluation of large arithmetic expression, i.e. those
with two or more operators, follows a logical order of
operation.

In the table below the operators are listed showing
" the order of precedence.

Operator Meaning Order of Operation
+ Unary Plus 1 (Highest)
- Unary Minus 1
* Multiplication 2
/. Division 2
+ Addition 3 -
- Subtraction 3 (Lowest)

As the table indicates, during the evaluation of an
arithmetic expression all Unary operators and their operands
are computed first. Next all Multiplication and Division and
finally all Addition and Subtraction operations.

The BASIC evaluation of an arithmetic expression is
left to right by order of operation. When two or more
operations of the same precedence appear in a single expression
they are computed at the same time.

Examples of BASIC Evaluation of Arithmetic Expressions

Expression Evaluated as Explanation
1+2%3 . ? multiplication first‘
: addition second
12/2%4 24 left to right

- 5%2-9/3 7 multiplication first
‘ : ~division second
subtraction third

LEAEIAL N ATA ol Ko i e v o . . s PRI TP SN

PAGE 16 OF

"I SYSTEM NAME) ’ SYSTEM NUMBER ' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

To alter the sequence of normal evaluation in an arithmetic

expression the parenthesises () are added to the top of the
list of legal operaters. When used, the parenthesis have the
highest value in order of precedence. Parenthesis must occur
in left right pairs, for every open there must be a close.

Portions of arithmetic expressions isolated by a set of

parenthesis are operated on first. All sets of parenthesis
must have a sign or operator. For example: (3/4) * (6-7) or

-(3)-(3/4).

In the following expressions, the operators and operands
remain the same and parenthesis are used to alter the order

of evaluations

- Expression Evaluation
1+2%3/4 2,666
(1+2)%3/4 | 2.25

(1+2%3)/4 ' 1.75

Ferirea

teve T a0 Vo . . . [TR

«««««

~ PAGE 17 OF

SYSTEM NAME

SYSTEM NUMBER CATALOGUE NUMBER

| PROGRAM NAME

PROGRAM NUMBER DATE DOCUMENTED

A. NUMERIC EXPRESSIONS
3. EQUATIONS

, In BASIC an equation is defined as a numeric variable,

- followed by an equal sign, followed by an arithmetic expression.
‘The right side of the equal sign, the expression is evaluated
and the results stored in the variable on the left of the equal
sign. There can never be anything but a numeric variable on the
left of the equal sign. Unlike algebraic equations, all the
variables on the right side of the sign must be defined and
have a value.

Examples of Legal Equations

Equation Evaluation of Equation
A=2+6+8/2+6 A=18 ‘

Bl=12/2%3 B1=18

R(3)=12/(2%3) | R(3)=2

J(1,6) = -5+2 J(1,6)=-3

A7=(2+4,)/ (-5)+23) A=.33333

Q=Q+1 , - Value in Q equals

value plus one

Examples of TIllegal Equations

Eguation Error
R=3-/6 too many binary operators

" K=(6%*3) (2-5) missing parenthesis operator
L6=(3-(2%6) missing right parenthesis
F(2)=3/(4-1) division by zero
3/6=A variable on wrong side

P(3,78)=AJ/16 AJ not legal variable

- . R
e v o . e . PR T AP

PAGE 18 OF.

SYSTEM NAME SYSTEM NUMBER ' . CATALOGUE NUMBER

TerocrAM NAME PROGRAM NUMBER DATE DOCUMENTED

B. LITERAL EXPRESSIONS

1. EQUATIONS

A strlng (llteral) equation consists of a literal variable,
followed by an equal sign, followed by either a string constant
or another string variable. Example: AS$ = "THE IBM CORP."

" Before a string variable can be used in a program, the
programmer must determine the length, or the number of
characters that will be used with the string variable. A
special BASIC statement called the DIMension statement is used
to let BASIC know the size of a string variable.

Literal equations are used to assign values, either
constant values or the values of other variable strings, to
legal variables. Note that a literal equation is commonly
refered to as an assignment or LET statement.

There(are no string equation operators available in

' BASIC. The only valid statement to the right of the equals
sign is either a constant or a single variable.

Examples of Legal Literal Equatidns

A$ = "THIS IS A BASIC STRING"
C$
zZ$

AS

"DARTH VADAR LIVES!"

Examples of Illegal Literal Equations -

~A$ = B$ - 3 - no operators allowed
C$ = "1l6" + "2" no operators or operatlons
allowed
A = C$§ the string variable to the

left of the equals sign cannot
be a numeric variable

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 19

OF

SYSTEM NAME :) SYSTEM NUMBER" : CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER OATE DOCUMENTED

C. INTRINSIC FUNCTIONS

Many arithmetic operations are needed so commonly
in programming that BASIC has some of these operations
as predefined functions. When the user wishes to use one
of these functions he types the two, three or four character
function name followed by a numeric argument if required.
~ Functions may be placed anywhere that a numeric constant or
- variable may be used.

The following numeric functions are supported by BASIC:

PEEK ‘ :
The PEEK function allows the user to examine a single
memory location in the computer. The PEEK function takes a
positive integer in base ten and returns the value that
is stored at that location in base ten. The form of the
PEEK function is...

PEEK (address)
ABS

The ABS function computes the absoiute value of a

constant, variable or expression. The form of the ABS funct
lSooo B
ABS (numeric value)

SGN
The SGN function returns the sign of the numeric

- argument. If the argument is positive a positive one

(1) will be returned, if the argument is negative a

negative one will be returned and if the argument is

zero a zero will be returned. The form of the SGN

function is...

SGN (numeric value)

INT .
= The INT function will take a numeric argument and
truncate the decimal portion and return only the integer
portion. The INT function has the following form...

INT (numeric value)

numeric argument. The ABS function operates on any numeric '

ion'

LR AN LN I BV 1N . e "'.

PAGE 20 OF.
SYSTEM NAME SYSTEM NUMBER ' CATALOGUE NUMBER
PQOGRAM NAME PROGRAM NUMBER DATE DOCUMENTED)
RND

The RND function will return a random number greater
than zero and less than one. The RND function requires

'a numeric argument,howeven'the argument is a dummy

value and is not used in the computation. = The form of the
RND function is...

‘ RND(0)

PI
The PI function does not use a numeric argument. 1Its
purpose is to return the value and pi 3. 1415926 to the number
of digits desired. The form of the PI functlon isees
PI

The following string functions are suppbrted‘by BASIC:

LEN . :
’ The LEN function will return the length of the string
used in the argument. The target variable for this function
must be a numeric variable or array element., The form of
the LEN function is ...
LEN (iiteral variable)

STR :
The string function has the form...

STR (string, start, length) ‘
In the string function the “string® is a literal variable
. it can be the same varlable as the target (left of the equal
sign); "start” is a numeric constant which describes where in
the strlng to start (which character); "length” is again
a numeric constant which tells how many after "start” are to

be moved cr compared.

STR is the only BASIC function which may occur on
elther or both sides of the equal sign.

Examples of the use of STR

Example Results of function
A$=STR(B$,3,5) ‘ characters 3 to 7 of

B$ are placed in A$

Txpss torve 1"t - .y " -

PAGE 21 oFf

SYSTEM NAME : SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

V. BASIC PROGRAM STRUCTURE

A. SIMPLE PROGRAMS

A BASIC program is a series of predefined statements
or instructicns that are executed in a specific order.

When using BASIC the programmer gives each instruction
a line number. BASIC instructions are executed in ascending
numerical order, except thru modification of the program
structure by specific instructions for this purpose.

Execution of a BASIC program is similar to reading a _
book. One starts at page one and continues in order unless
instructed to reference another part of the book.

When entering BASIC programs into the computer the
programmer is not required to enter the lines in numerical
order. Instead the computer will arrange the lines in
numeric order just prior to execution. For example, the
programmer might enter line number 10 and then line number 20.

If he then wishes to place a line between 10 and 20 he
could enter line number 15 (or any number between 10 and 20),

To change a line once it is stored the programmer
need only type the line number followed by the new text.
For examples -

5 REM

20 PRINT

30 GOTO 5

40 END

20 PRINT "HELLO"

would list as:

5 REM

20 PRINT "HELLO”
30 GOTO 5

Lo END

To remove a line once it is stored the programmer
simply types the line number followed by a carriage return.
For example: :

5 REM
23 GOTO 50
30 PRINT
23

[A Y SLY I

PAGE 22 OF

SYSTEM NAME SYSTEM NUMBER |CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

would 1list as:

5 REM
30 PRINT

In BASIC there are two types of instructions, statements
and commands. Statements are proceeded by line numbers and
are grouped together and stored as a BASIC program. These
statements require no immediate action by the computer.

- Commands are not proceeded by line numbefs and are
executed immediately by the computer. They are not stored.

Once a BASIC program has been entered into the computer
and completed the programmer may issue the RUN command and
the computer will execute the program. '

(AN A AT N YA Vol W] ~

PAGE 23 oF

SYSTEM NAME . SYSTEM NUMBER CATALOGUE NUMBSBER

PROGRAM NAME - : PROGRAM NUMBER DATE DOCUMENTED

B. MULTIPLE STATEMENTS PER LINE

‘The one exception to the standard ruleées presented
so far is the multiple statements per line feature of
BASIC. Two or more statements may be placed on the same
line number if they are separated by a back slash (\)
character. When that line is executed all the statements
will be executed in left to right order. The general form

of the multiple statement per line 1s...

line number statement Y\ statement \\k statement...
where., .. |
line number :

is any legal BASIC statement.

For example:
10 X=0\R=9\ IF P=10 GOTO 30
234 PRINT \ PRINT\ PRINT

~are correct usage of multiple statements per line feature.

" The following are examples of 1llegal usage of the
multiple statement per line feature:

20 X= Zjh—t?RINT J-—~-~missing back slash

The END, GOTO, and RETURN statements must appear at
the end of a multiple statement because none of the statements
after them will ever be executed.

r

[ANRAL] '

PAGE 24 oOF

| sYSTEM namE

SYSTEM NUMBER- - |CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER DATE DOCUMENTED .

C. SYMBOLS USED

- Symbol
b

cr

*line number’

A® or cntl A

ESC

{ } braces

: [] brackets

The following symbols are used throughout this manual
to help explain BASIC statements and commands:

Meaning

indicates a space character is used
here

indicates a carriage return is
used here

any legal line number is used here;
line numbers must be integer values
between 1 and 65535 inclusive

super script ¢ or cntl indicates
a control character is used here

ESCape character
used to enclose required attributes

used to enclose optional attributes

Ferxesa oo yan

PAGE 25 OF

|SYSTEM Name

SYSTEM NUMBER"

CATALOGUE NUMBER

. |PrOGRAM NAME

PROGRAM NUMBSBER

DATE DOCUMENTED

VI. FULL BASIC EXTENDED: STATEMENTS

Versionyz.o

LT P LT R Ay R

PAGE 26 OF

SYSTEM NAME ‘ SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER - |JDATE DOCUMENTED

CLEAR statement;

" The CLEAR statement is very useful in formatting output.
Itg function is to clear the CRT screen of all printing and
then to position the blinking cursor at the upper left-hand
corner of the screen. The general form of the CLEAR statement
ls...)

line number CLEAR

Where LI

line number _
is any legal line number.

No additional arguments are needed for the CLEAR statement.
An example of the use of the CLEAR statement is...

10 CLEAR
20 INPUT A
30 CLEAR

0O PRINT A,A%A, A*A%A
50 GOTO 10
60 END

This program will allow the user to enter a number,
CLEAR the screen, print out the number and it's square and
it's cube, CLEAR the screen again and repeat the cycle.

OO e 1At v e e L) e e

PAGE 27 OF

SYSTEM NAME) SYSTEM NUMBER CATALOGUE NUMBER

| PROGRAM NAME) PROGRAM NUMBER DATE DOCUMENTED

DIM statements:

The DIM statement is used to set aside computer memory
for the storage of arrays or strings. Whenever an array
or literal string is to be used in a program it must be
DIMensioned. The DIM statement tells the computer the name,
length and size of each subscript of the array or string.
The DIM statement has the following general form...

line number DIM symbolic name (dimension)
where...

line number ; _
is any legal line number.

symbolic name v _
is any single letter (A-Z). for arrays or any single
letter (A-Z) followed by a dollar sign ($) for
strings. :

dimension - v
is a single integer greater than zero and less than 256"
for literal strings or a single integer greater than
zero for single dimensioned arrays called vectors or
two integers greater than zero for a two dimensional
array called a matrix.

The largest string possible is 255 characters. The
largest array possible is dependent on the amount of
memory on the computer. R

The following DIM statements...

10 DIM W(10) , T(5 , 5)
20 DIM R$(72)

will set aside memory for an array called W that is a vector
ten elements long, an array called T with two dimensions
five long each that will hold 25 elements and finally a
literal string called R$ that will hold 72 alphanumeric

characters.

FIYI%a t.rve 100 - - e . L)
. : . R

PAGE27 .1 OF

| SYSTEM NAME ‘ : SYSTEM NUMBER" CATALOGUE NUMBER

“IPROGRAM NAME) PROGRAM NUMBER DATE DOCUMENTED

DUMP statement:

The DUMP statement is fully explained under the commands
section of this manual under DUMP/RELOAD. The user is
instructed to check this section for a full explanatlon of
the use of the DUMP statement. ,

The DUMP statement can be used under program control
to save the symbol table and dynamically allocated variables
to cassette or disk. The general form of the DUMP statement
is as follows:

line number DUMP XX
disk file name

where...
XX 1ie any valid cassette file name

disk file name is any valid disk file of type D for DATA

Page of 2000.001
Revised 11-03-77
TNL—2000.001-1~

FORM DOC-101 8-76 General Documentation ‘ © 1976 PROGRAMMA CONSULTANTS“

PAGE 28 oF

| SYSTEM NAME : SYSTEM NUMBER ' CATALOGUE NUMBER

| PROGRAM NAME

PROGRAM NUMBER DATE DOCUMENTED -

END statement:

The END statement causes termination of a’BASIC program.
Upon f£finding the END statement the computer will stop .
execution of the program currently running and wait for
further instructions from the operator thru the keyboard.

The END statement is usually the highest numbered,
and therefore last statement in a BASIC program. The END
statement however can be placed anywhere in a BASIC
program. The general form of an END statement is...

line number END cr

where...

line number
is any legal line number.

Examples of Valid END statements are:

9999 END
65535 END

Frygrea

roeve vAr s Vs . Lo . v e gr e

PAGE 29 OF

.]SYSTEM NAME SYSTEM NUMBER ' CATALOGUE NUMBER

..|PROGRAM . NAME ' PROGRAM NUMBER DATE DOCUMENTED

FOR . . . NEXT statements:

A gréup of statements in a program that are executed
repeatedly are called loops. A GOTO statement may be used
to make an infinite loop, that is a loop that repeats as long
as the computer is on. Sometimes, however, theprogrammer
only needs to execute a loop a certain number of times.
This can be done with a FOR ...NEXT loop. The FOR statement
has the following general form... g ' :

1inelnumber FOR index variable =v’1ower limit
TO upper limit '
where...

line number :
is any legal line number.

index varlable t
is any single letter or any single letter followed
by a 31ngle digit. ,

‘lower limit ‘
any legal numeric constant, variable or expression.

upper limit
any legal numeric constant, variable or expression
~ that is greater than or equal to the lower limit.
The NEXT statement has the following genefal form...

line number NEXT index variable

where...

line number
'is any legal line number.

index varlable s
is any single letter or any s1ngle letter followed
by any single digit.

Fryi)va LY AYal ARA R . v i ' N B B N T

PAGE 30 OF

‘|sysTem Nname SYSTEM NUMBER" CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

When the FOR statement is encountered the computer will
set the index variable to the value of the lower limit.
Control then goes to the statement following the FOR statement.
Execution proceeds normally until the NEXT statement is
reached. The NEXT statement causes the value in the index
variable to be incremented by one and compared with the
value in the upper limit. If the value in the upper limit
is greater than the value in the index variable control
is passed to the statement following the FOR statement
and the loop continues. If the value in the upper limit
is less than or equal to the value in the index variable
control is passed to the statement following the NEXT
statement and the loop is said to have terminated.

An example of a FOR. . . NEXT loop is. . .
10 FOR I=1 TO 10

20 PRINT I
30 NEXT I
4O END

This program will print the sequence 1,2,3,4,5,6,7,8,9,10.

FOR . . . NEXT loops may also be nested, that is,
a loop maybe placed inside another loop. As example...

10 FOR I=1 T0 10 -~--------
20 FOR J=2 TO 22 ~------ R

30 FOR K =39 TO R*4 -=1 1 1
40 PRINT I,J,K NEST I,II,II}

-~ —

50 NEXT K -
60 NEXT J memmmmed
70 NEXT I R EEE RS
80 END -

The programmer should be careful not to jump into the

middle of a FOR . . . NEXT loop outside the loop. If

a NEXT statement is encountered before a matching FOR
statement is executed an error will result. Also the
programmer should be careful not to accidently change
the index variable inside the FOR . . . NEXT loop
since this could cause unpredictable results.

Frymes rorn

PAGE 31 OF

fsvysTtem Name SYSTEM NUMBER - CATALOGUE NUMBER

" |PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

GOSUB . . RETURN statements:

It is often necessary for a group of statements to

be executed at several points in a program. One way of doing
this is with a FOR. . . NEXT loop and another way is with
a GOTO statement. A third way to do this is by setting up

- a group of statements as a subroutine and call that subroutine
from several different points in the program. A subroutine
is called by executing a GOSUB statement. GOSUB statements
work almost like a GOTO statement but in addition to a transfer
of control to another part of the program the line number of
the statement following the GOSUB is saved. The subroutine
is then executed until a RETURN statement is encountered. The
RETURN statement will cause the computer to jump to the line
after the calling GOSUB statement. The general form of the
GOSUB statement is... '

line number GOSUB subroutine location
where...

line number :
is any legal line number.

subroutine locatioen 1
is any legal line number.

The general form of the RETURN statement is...
line number RETURN
where...

line number 1
is any legal line number.

The return addresses (line number of statement following
calling GOSUB statement) are saved on a last-in-first-out
basis. This use of a last-in-first-out stack allows subroutines
to call other subroutines. For example, the main program might
call a subroutine that computes square roots. The square root
subroutine might call another subroutine that will get
input from the user. When the input routine is completed
the RETURN statement will return control to the square root
routine. When the square root routine is completed the
RETURN statement will return control to the main program.

LAl R LT YA o AL B -

PAGE 32 OF

SYSTEM NAME . SYSTEM NUMBER " CATALOGUE NUMBER

PROGRAM NAME ’ PROGRAM NUMBER DATE DOCUMENTED

GOTO statements:

Very often, in programming, it is necessary to have the
computer repeat a block of statements. For instance, a
program to add pairs of numbers together might look like
this...

10 INPUT A,B
20 PRINT A;"PLUS";B; “EQUALS";A+B
30 END

This program will work fine unless the user w1shes to add
more than one pair of numbers together. Each time another
pair must be added the: program must be RUN again. ‘

BASIC allows the programmer to make uncondltlonal
transfers of control from one part of the program to another.

~ This is done with the GOTO statement. The GOTO statement

has the following general form...
line number GOTO destination
where...

line number:
is any legal line number.

destination
is any legal line number.

GOTO statements do exactly what the word implies.
They GOTO another part of the program. The line number that
control is to be passed to is the destination. :

In the addition program above the following GOTO
statement may be added...

25 GOTO 10
The program‘now reads...

10 INPUT A,B

20 PRINT A;“PLUS"; B'“EQUALS"'A+B
- 25 GOTO 10

30 END

Fevnea o

(ol R e e : . e e e

PAGE 33 OF

SYSTEM NAME , SYSTEM NUMBER' CATALOGUE NUMBER

-|PrOGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

This program will allow the user to INPUT two numbers,
PRINT the two numbers and their sum and GOTO the INPUT
statement again. In this program the END statement is
never executed instead the program is in an infinite

loop that can only be stopped by resetting the computer

‘or by entering a CNTL A command during the INPUT statement.

Examples of Valid GOTO Statements:

100 GCTO 2505
534 GOTO 600
950 GOTO 65535,

LAY Y B Y Y S

PAGE 34 oF

SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

IF statements:

IF statements allow the program to branch to one of
two statements depending on the outcome of a predefined
condition. IF statements are called conditional branching
instructions as compared to GOTO statements which are called

~unconditional branching instructions. The general form of
an IF statement is...

_liné number IF condition statement
where...

line number. 3
is any legal line number.

condition
is any numeric expression followed by any relation operator
followed by a numeric expression or any literal value
followed by any relation operator followed by a literal
value.

statement :
is any BASIC statement that may follow an IF statement.

The condition part of the IF statement is a test to
however a numeric value may not be compared with a literal value.

The following are legal relation operators...

Operator Definition

= - equal to.
< less than

Vv

greater than
{= , less than or equal to
>= ‘greater than or equal to

<O not equal to

compare one value with another. The values may be numeric or literall

[a ¥ LY B Ve 11 “

PAGE 35 oOF

SYSTEM NAME SYSTEM NUMBER ' CATALOGUE NUMBER

PROGRAM NAME . . PROGRAM NUMBER DATE DOCUMENTED

The statement part of the IF statement is executed
if and only if the condition part of the IF statement is
true. If the condition part of the IF statement is not
true control will pass to the next line of the program
and the statement part will be skipped over. The following
may be used as the statement part of an IF statement... :

CLEAR , clears CRT

PRINT print output

LET o assign value to variable

GOTO transfer to anofher part of;progrém'
GOSUB ‘ execute subroutine

RETURN return from‘subroutine

END ' stop execution of program

- Examples of Valid IF statements:

100 IF A-56 = Y GOTO 990

554 IF A3 = “YES" PRINT "DONE" END
20 IF A >= 0,004 RETURN

7770 IF H$=I$ CLEAR

mirsa . “ . . . :
£ L AT AN Ra) ' R . A . . (e e e

PAGE 36 OF

SYSTEM NAME

SYSTEM NUMBER'

 CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

INPUT statement

Most BASIC programs are designed to operate on several sets
~of different data. It is therefore useful to have the program
request keyboard data entry. This is done by using the INPUT
statement. The general form of the input statement is...

line number - INPUT wvariable list
where...

line number
is any legal line number.

variable list
is any group or combination of numeric or literal
variables, separated by commas.

When the INPUT statement is executed by the computer a
flashing cursor will appear on the CRT as a prompt for data
input. At this time the user should enter the required data,
if more than one piece of data is requested, commas should
be used to separate the values. When all the requested data-
has been entered the user types a c¢r and program execution
will continue. The variables listed in the variable list now
have values as assigned by the INPUT statement.

Examples of Valid INPUT statements:

io INPUT A
285 INPUT A$
1000 INPUT R$,X,Y,2(1),2(2),2(3)

The following BASIC program demonstrates the use of the
INPUT statement:

10 INPUT A
20 LET B=A%A
30 PRINT A; *“SQUARED IS “;B
b0 END

The program allows the user to enter any legal BASIC
numeric constant, and receive as output the square of that
number.

PAGE 37 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

|PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

LET statements:

It is often necessary to assign values to variables
durlng program execution. The way that this is done in BASIC
is to use the LET statement. The LET statement is used to ’
assign the value of another variable to a spec1f1ed variable,
or to assign a constant value to a variable. It is assumed
that the variables mentioned above are of the numeric type.
Conversely, the LET statement is also used to assign the
string value of another string variable to a string variable,
or to assign a string constant to a string variable.

The general form of a numeric LET statement is...

line number LET numeric variable = numeric expression
where...

line number;

is any legal line number.
numeric variable;

is any numeric variable.
numeric expression;

is any numeric constant, variable, or expression.

BASIC will evaluate the expression on the right side of
the equals sign and proceed to store the resultlng value in the
numeric variable on the left side of the equals sign. For
1nstance, look at the following BASIC LET statement...

10 LET A=5%3-1

it will compute the value of the expre551on 5*3-1 for a result
of 14, and it will store that result in the numerlc variable
called A.

BASIC allows the numeric variable that appears'on the
left of the equal sign to also appear on the right side of the
equal sign. Look at the following statement...

250 LET X1=X1-1

it directs the computer to "take the value stored at location
called X1, subtract one from it, and proceed to store the

FORM DOC-101 8-76 Generai Documentation . © 1976 PROGRAMMA CONSULTANTS‘

PAGE 38 OF

SYSTEM NAME

SYSTEM NUMBER '

CATALOGUE NUMBER

PROGRAM NAME

DATE DOCUMENTED

PROGRAM NUMBER

result in the location called X1."

LET statements may also be used to assign literal values to
literal variables. The general form of a string LET statement
is as follows... :
line number LET 1literal variable #bliteral value
where:
line number :
is any legal line number.
literal variable :
is any legal string variable name (AS$, B$, CS$)

literal value :

is any legal string variable name or any legal
string constant.

Again, BASIC will evaluate the left hand side of the equal
sign and store that value in the variable named on the right
hand side of the equals sign. For example'

10 LET AS
20 LET BS$

"CHARLIE'S ANGELS"
A$

Line number 10 will assign the literal string "CHARLIE'S ANGELS"
to the literal variable called A$. Note that the double ampersand
(quotes) marks are used only to define the string and are not
actually stored with the string. Line number 20 will take the
value stored in literal string AS and proceed to store that value
in literal string B$. B$ and AS$ now contain the string:
"CHARLIE'S ANGELS".

Examples of Valid LET Statements:
10" LET A =0

20 LET P$
30 LET RS

"STAR TREK"
P$

In this version of BASIC, the word "LET" is optional
and does not have to be specified when forming a LET statement.

It n

40 T = 234
50 A(23) =5

FORM DOC-101 8-76 General 'Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 39 OF

- | SYSTEM NAME : SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

MAT statements:

It is often necessary to fill an array with several
different values. If there are many values to be stored
it is usually too time consuming to use LET statements.
BASIC allows the user to fill arrays quickly and easily.
with MAT statements. The general form of the MAT statement
1S.Ol N

line number MAT array name value list

where...

line number :
is any legal line number.

array name .
is the name of the array to be filled followed by
the starting location of the fill.

value list '
is the list of numeric constants separated by commas.

The MAT statement will fill the array named with the
numbers in the value list starting at the element in the
‘array desired. Examples of MAT statements are...

10 MAT A(1) 2,4,3,66,5,-7,.55
20 MAT B(1,1) .9 7 45 78,-999
30 MAT R(5,8) 3.34 4s5,56,67,78,90

Frypreas

(R AV IR X B TR o 8 ’ ve e e

PAGE 4O OF

SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME ' PROGRAM NUMBER DATE DOCUMENTED

POKE statement:

The POKE statement allows the user to put any integer
value from zero to two-hundred fifty-five (0 - 255) into
any single memory location or any value from two-hundred
fifty-six to sixty-five-thousand-five-hundred-thirty-five
(256 - 65535) into any two consecutive memory locations.
The general form of the POKE statement is...

line number POKE location , value

where...

line number -
is any legal line number.

location -
is any integer value from O to 65535 in decimal.

value 3 .
is any integer value from O to 65535 in decimal.

The following example...
10 POKE 1000 , 20

will place the value of twenty (hex value 14) into memory
location 1000 (hex location 314). ‘ ~

One of the most important uses of the poke statement
is to specify the number of digits of accuracy to the right
of the decimal point theprogrammer wishes to have. This is
done by poking the number of decimal digits needed into memory
location 240, For example the following program...

10 POKE 240 , 2
20 PRINT 22/7
30 END

will print out...
3.14
10 POKE 240 , 4

20 PRINT 22/7
30 END

Foypsa @

PAGE 4] OF

'1SYSTEM NAME SYSTEM NUMBER - CATALOGUE NUMBER

' PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

will print out...
3.1428
The number of digits to the right of the decimal point

is set to zero each time the RUN or NEW command is used
and when BASIC is first executed. ‘

Fryirea [Y aYal ANaR] .

PAGE 42 OF

SYSTEM NAME ' SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

PRINT statements:

- PRINT statements are used to output data to a list device
such as a CRT or TTY. A PRINT statement may consist of literal
or numeric values separated by commas (,), semi-colons (;)
or colons (¢+). Literal values may be in the form of variable
strings (such as A$,G$,K$) or constant strings enclosed in
double quote marks (such as “PROGRAMMA CONSULTANTS", "DOCUMENTING
IS DULL*). Numeric variables may be in the form of constants
(such as 5,285,19.56), symbolic variable names (such as A,P6,
A97)) or numeric expressions (such as 5%7, 34-R,P/A). If there
are no values following the word PRINT a line-feed carriage
return is generated only.

The destination of the values to be printed may be specified
by the programmer. This is done by entering a pound sign (#
followed by a single digit zero (0) or one (1) at the
beginning of a PRINT statement. If #0 is used print out will
be to the CRT screen only. If a #1 is used the values to be printed
will be output to the TTY only. If neither #0 or #1 is used the
values will be printed to the CRT screen.

If more than one value is to be printed in a single
PRINT statement the values must be separated by a comma,
colon or semi-colon. If a colon (is used to separate
two values in a PRINT statement BASIC will print the two
values with no spacing between them. If a semi-colon (;)
is used BASIC will place a single space character between
the two values. If a comma (,) is used for separation
between two values BASIC will divide the print device into
4 fields of 8 columns each and print the second value at
the beginning of the next field. When all the values in
the PRINT statement have been printed BASIC will move the cursor
to the beginning of the next line. However, if a separator
character appears at the end of the PRINT statement BASIC
will carry out the action required for the separator and
not move the cursor to the beginning of the next line.
PRINT statements have the following general form...

line number PRINT 1list device print list

where...
line number _
is any legal line number.

list device
' is optional specifying where output is to be directed.

Frynea .oy, 11 ~ “r I . . . PRI DS P

PAGE43.10F

ISYSTEM NAME , SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

RELOAD statement:

The RELOAD statement is fully explained under the DUMP/
RELOAD section of the commands. The user is instructed to
check this section for a full explanatlon of the use of the
RELOAD statement.

The RELOAD statement can be used under program control
to restore the symbol table and dynamically allocated variables
from a cassette or disk file. The general form of the RELOAD .
statement is as follows: :

line number RELOAD XX
disk file name

where...
XX 1is any valid cassette file name previously DUMPed

disk file name is any valid disk file type D that was DUMPed ”

Page of 2000.001
Revised 11-03-77
TNL-2000.001-1

FORM DOC-101 8-76 General Documentation @ 19/6 PROGRAMMA CONSULTANTS

PAGE 43 OF

- | SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

print list
any number or combination of literal or numeric values
separated by colons, semi-colons or commas.

Examples of Valid PRINT Statementss

10 PRINT “STAR TREK"
20 PRINT *"SHIELDS CONTAIN";S
30 PRINT A$,A,B$,B

FOYOSA e vArY A

PAGE 44 oF

SYSTEM NAME . SYSTEM NUMBER CATALOGUE NUMBER

JPROGRAM NAME . PROGRAM NUMBER DATE DOCUMENTED

REM statements:

A very useful feature of FBX is the REM statement. A
REM statement is used to document or comment on a BASIC
program without affecting program execution. In other words,
a REM statement does absolutely nothing except supply the user
with information about a program. The general form of a REM
statement is...

line number REM any text cr

where...

line number
is any legal line number.

any text ; ‘ o
is any comment or message the user wishes to enter

Examples of Valid REM statements:

10 REM THIS PROGRAM IS BY GEORGE WASHINGTON »
225 REM THIS PROGRAM COMPUTES TEMP. AT V. FORGE
664 REM

Fryerea

[EY ATl RN S v . [’ : . e v r e

PAGE 45 of

SYSTEM NAME SYSTEM NUMBER ' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

USER statement:

It is sometimes useful to be able to calla user written
machine language program from a BASIC written program. These
programs or subroutines may be in the PDS monitor or user written
routines in RAM memory. This can be done by the USER statement.
The USER statement has the following general form...

line number USER (machine language subroutine location)
where...

line number :
is any legal line number.

machine language subroutine location
is the base ten location of the subroutine to be executed.

The subroutine must end with a RTS (39) instruction.
This will return to the next line in the basic program being
executed,

: Before returning from the subroutine the user must set
the Carry bit flag. This can be done with the SEC (OD).
If the Carry bit flag is cleared when the RTS is reached BASIC
will respond with...

ERROR 255 XXX

If the Carry bit flag is set when the RTS ‘is reached BASIC
program execution will continue with the next statement.

To inactivate the Carry bit flag error facility the
program must...

POKE 5215 , 54856
sometime before the USER statement is reached.

To reactivate the Carry bit flag error facility the
program must ...

POKE 5215,’ 51710
Examples of Valid USER Statementss

250 USER (4321)
1903 USER (8000)

LAY R Y o N R Vo . C . . L e gy ey

PAGE 46 oF

SYSTEM NAME SYSTEM NUMBER ' CATALOGUE NUMBER

| PROGRAM NAME . PROGRAM NUMBER DATE DOCUMENTED

VII. FULL BASIC EXTENDED: COMMANDS

Version 2.0

Feyg:sa .o 17 -

PAGE 47

OF

|SYSTEM NAME SYSTEM NUMBER. . |CATALOGUE NUMBER

PROGRAM NAME ' PROGRAM NUMBER DATE DOCUMENTED

CLOAD.commahds

The CLOAD command is used to enter a BASIC program or
part of a BASIC program from the cassette unit into the
computer workspace. The program need not be in completed
form, however, it must be a BASIC source. The CLOAD command
has the following general form... :

CLOAD BASIC program name

where...

BASIC program name
is a one or two character program name.

The BASIC program will be searched for on the tape and
only the program with the correct name will be read in. If
no name is specified then the first program found will be
loaded. When the blinking cursor returns the program has
been read in. Checksum and Trailer messages will be
displayed if read errors occur.

FrNgrea

L e R R 4 e . e e e

PAGE47 .1 oF

| SYSTEM NAME - SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME ; PROGRAM NUMBER DATE DOCUMENTED

CONVERT command:

Prior to Version 2.0 of FBX BASIC, all user written
- BASIC programs were stored in a form very similar to what
is actually displayed upon the CRT screen, at the time that
one does a LIST. Specifically, each BASIC line of source
code contained the following internal form:

l. 2 Byte BASIC Statement Number in Binary
2. 1 Byte Line Length in Binary
3. Source BASIC Statement in ASCII with variable length

In order to implement new features easily and in order
to speed the interpretation phase of BASIC, FBX 2.0 and above
employees a technique called "tokenizing." This technique
encodes all BASIC language keywords, such as LET, PRINT, IF...,
with a one byte representative code. The changes to the above
method of internal representation occur in the source BASIC
statement itself. These changes are merely, an encoding scheme
for all keywords. Therefore, it would be expected that the
total memory requirements of a program will decrease. As a
resylt of having all keywords encoded at the time that a BASIC
statement is entered, then the BASIC Interpreter performs at
a substancial increase in speed.

The purpose of the CONVERT command is to translate those
BASIC source programs that were created for TBX Version 1.3 or
below into the new internal form of FBX 2.0. To use this
command, the user merely loads the old BASIC program from
cassette or disk, and then issue the CONVERT command. As each ,
line is being translated, it will be displayed upon the console.
For example: :

CLOAD BA : | LOAD PAYROLL
CONVERT CONVERT

CSAVE BA SAVE PAYROLL

Page of 2000.001]

Revised 11-03-77
TNL-2000,001-1

FORM DOC-101 8-76 = General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 48 oF

SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME . ‘ PROGRAM NUMBER ODATE DOCUMENTED

CSAVE command

The CSAVE command is used to save a BASIC program on to
cassette storage. The BASIC program need not be in completed
form to be saved. The general form of the CSAVE command is...

CSAVE BASIC program name
where...

BASIC program name
is any one or two ASCII characters.

~ When the CSAVE command is executed and the cassette unit
is set to record, the contents of the program workspace will
be stored on to cassette. When the program is copied onto
cassette, the blinking cursor will be displayed. The CSAVE
command copies, it does not move the BASIC program onto ‘
cassette. The original program is still in memory. If errors
occur during CSAVE, Checksum or Trailier message will be
dlsplayed.

Frxtrea

[T AT B N Vo L
;)) : e e gy e

PAGE 49 - OF

SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

: PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

CNTL A command:

If the user wishes to stop execution of a BASIC program,
instead of resetting the computer, he may enter a CNTL A v
character followed by a carriage return during any INPUT
statement (when the cursor is blinking). This will cause

an error to be displayed on the particular input statement
and a return to Command Mode. : '

Eriee vk aAn

- PAGE 50 OF

SYSTEM NAME SYSTEM NUMBER " CATALOGUE NUMBER

. |PROGRAM NAME ’ PROGRAM NUMBER OATE DOCUMENTED

CNTL D command:

, The user may stop execution of the BASIC interpreter
and give control to the PDS DEBUG routine. This is done by
entering a CNTL D character whenever a blinking cursor is
being displayed.

rrigrea [ENAYal 1t R

PAGE 51 OF

SYSTEM NAME

SYSTEM NUMBER -

CATALOGUE NUMBER

-[PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

*kx D I S K *%%

will respond with a $

CNTL E command:

The user may transfer control from the BASIC interpreter
to the 0S/1 system by entering a CNTL E character. The system
v The user then may issue any
legal OS/ilexecutive directive. This is for disk users only !

Fryfrea [ERAYaENES No N

PAGE 52 OF

SYSTEM_NAME R ’ SYSTEM NUMBER ' CATALOGUE NUMBER

PROGRAM NAME C , , PROGRAM NUMBER - |DATE DOCUMENTED

DUMP /RELOAD commands:

If at any time during program executlon of a BASIC source
program the user wishes to stop the program and continue at a
- later date, he may use the DUMP command to save the "state" of
the program and the BASIC Interpreter, and later on he can issue
the RELOAD command and continue with the program.

For example, assume that the user is playing a game of
STAR TREK and he chooses to stop and continue the game later
on. First, the user must stop execution of the program. This
can be done by typing Cntl A during any INPUT request, or by
typing SAVE when the game asks for the next command. The user.
then proceeds to enter the DUMP command.

: The function of the DUMP command is to save to a cassette
or to a disk file a copy of the symbol table used by the BASIC
interpreter, and a copy of those variables that were dynamically
allocated. The symbol table in BASIC is a listing of all of the
variables that are used in a program together with their
corresponding values. Variables that are dynamically allocated
are those that are specified by using the DIMension statement.
Note that the DUMP command never saves a copy of the actual
BASIC source program itself.

The DUMP command has the following general form:

For Cassette: DUMP XX
Fer Disk: DUMP disk file name
where...

XX is any valid cassette file name.

disk file name is any disk file of type D for DATA.

When the user wishes to continue the game at a later time,
~he must do the reverse of the above. First, he must load the
source BASIC code for the STAR TREK program back into the
computer. Next, he must issue the RELOAD command with the
proper cassette/disk file name , in order that the symbol table
and the dynamic allocated variables can be restored. The
general form of the RELOAD command is as follows:

For Cassette: RELOAD XX Page of 2000.001
' Revised 11-03-77
For Disk: RELOAD disk file name ~TNL=2000.001-1

FORM DOC-101 8-76 General Documentation . ©. 1976 PROGRAMMA CONSULTANTS

PAGE 53 oF
TSYSTEM NAME ; i : SYSTEM NUMBER ' - CATALOGUE NUMBER' .
“|prOGRAM NAME : . PROGRAM NUMBER DATE DOCUMENTED
where:

XX jis;any valid cassette file name7pfeviously DUMPed.

disk,file name is any disk file of the_D that was DUMPed.

After hav1ng RELOADed a BASIC se551on, the user must type
a GOTO command to restart program execution at the point of
where the program is re-started. If the user tries to start
- the program with the RUN command, then all variables will be
~reset to zero. As an example, if the program was terminated
at line 1035, then the user would re-start the program by
~issuing a GOTO 1035 S B

- The. follow1ng is an example of DUMPlng and RELOADlng a-
‘game of STAR TREK... DT
34 UNITS HIT SECTOR (5,2) 1920 UNITS'REMAINING.A

COMMAND? SAVE

DUMP S1 - DUMP TREKSAVE
CLOAD ST LOAD STARTREK
'RELOAD S1 | RELOAD TREKSAVE
GOTO 1035

COMMAND? PHASERS

‘Page of 2000.001

Revised 11-03-77 .
TNL-2000.0001-1

FORM DOC-101 8-76 General vDocumentatlon © 1976 PROGRAMMA CONSULTANTS

- PAGE 54 oF

. I SYSTEM NAME - v SYSTEM NUMBER ' CATALOGUE NUMBER

. |PROGRAM NAME R PROGRAM NUMBER DATE DOCUMENTED

LIST command:

; The LIST command is used to direct a copy of the current
program in memory to the CRT or TTY. This is useful for
“debugging because it allows the user to see ‘exactly what
" he has. typed in so far. The general form of: the LIST
command 1s...,

LIST ;deVice designator starting addr€$6 ending'address~

'where...

‘device des1gnator s
is optional and defaults to #0 causing program 1lst1ng
~ to be directed to the CRT screen, #1 causes all listing
to be dlrected to the printer and CRT" screen.

startlng address $ '
if no ending address is given this. line number will be
listed, if an ending address is given: all 11nes between
starting and endlng will be listed.v N ,

ending address :
the last llne of the group from starting to endlng address.‘

The LIST command can be used with any. all or none of the
attributes above. LIST alone will cause the entire BASIC :
program to be listed in pages. Once a full screen has been
printed or viewed a carriage return will cause the next page
to be listed. To get out of LIST mode before all pages have
been called, type escape.

Frygrsa terne 1N -

" | SYSTEM NAME

PAGE 55 OF

SYSTEM NUMBER" CATALOGUE NUMBER

"|PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

k% D T S K **%

LOAD command :
The LOAD command is used to read a BASIC program off

‘of disk storage and into the BASIC program workspace. The
LOAD command has the following general form...

LOAD file name

where...

file name s '
is any BASIC file name that has previously opened on

disk storage. This pertains to file type B only.

Frygea t.rvr -

PAGES56 . 1 0F

‘}SYSTEM NAME - ’ SYSTEM NUMBER ' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

RENUMBER command:

The purpose of the RENUMBER command is to re-sequence
the line numbers of a BASIC source program into ascendlng
sequence. The way that this is accomplished is to assign
the first statement encountered, line number 10. Each line
of source code thereafter is automatically incremented by
10 and assigned that value. This is all done automatically
by the BASIC program. GOTO statements and GOSUB statements
are automatically re-organized to proceed to their new
line numbers.

The user may enter the RENUMBER command at any point
in time that he feels that he wishes to reorganlze the line
numbers of his program. For example:

RENUMBER

Page of 2000.001
Revised 11-03-77
TNL-2000.001-1

FORM DOC-101 8-76 General Documentation : © 1976 PROGRAMMA CONSULTANTS

PAGE 56 OF

SYSTEM NAME SYSTEM NUMBER - CATALOGUE NUMBER |

- |PROGRAM NAME

PROGRAM NUMBER DATE DOCUMENTED

NEW command:

The NEW command is used to clear the program workspace.
When the user has finished with a program in the computer
and wishes to write another one, he uses the NEW command.
This will erase the program that js presently residing in
the computer and resets all variables and internal flags.

It will not erase programs that are on disk or cassette. ‘

The NEW command has the following general form...
NEW

‘No line number is allowed.

Frynsae ¢ rap, 1r0

PAGE 57 OF

SYSTEM NAME L SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME , PROGRAM NUMBER DATE DOCUMENTED

RUN command

Once a set of 1nstruct10ns have been entered into the
computer and debugged, it is time to try it out. This is
done by using the RUN command. The RUN command instructs
the computer to immediately set all variables to zero, clear
out all arrays and strings and begin program execution
starting at the first line in the program. The RUN command
has the following general form...

RUN

No line number is needed.

vvvvv

PAGE 58 oF

ISYSTEM NAME SYSTEM NUMBER " JCATALOGUE NUMBER

PROGRAM NAME ' o PROGRAM NUMBER DATE DOCUMENTED

% %k % DIS K‘***

SAVE command

The SAVE command is used to save BASIC programs onto
disk storage. The file on disk must have been previously
opened thru the 0S/1 EDITOR. The program need not be
completely written and debugged to be saved, BASIC will
- save whatever has been entered into the workspace so far.
The save command has the following general form...

SAVE file name
where...

file name s
is any previously opened file name on disk storage type B.

Frypsa .oy, ANa R} -

PAGE 59 OF

SYSTEM NAME SYSTEM NUMBER - CATALOGUE NUMBER

‘| PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

SIZE commands

The SIZE command may be used when the user wishes to
know how much memory he has remalnlng. The general form of
the SIZE command is...

SIZE

. When the SIZE command is used, the computer w1ll respond
by printing out the number of bytes of unused memory. The
number prlnted is in base 10,

Frygrea t.oone A EaR] . “r K ' . . . BT ey ey

PAGE 60 OF

|svsTem NamEe

SYSTEM NUMBER'

CATALOGUE NuMm BER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

A,

B.

C.

'VIII. APPENDICES

Error Codes for FBX 2.0
Cassette Loading Procedure
BASIC language Quick Reference
1. Statements
2. Commands

3. Functions

Glossary

L S Vo N, X I

0

10
11
12
13
14
15
16
254

pace Al of
SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER
PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED
APPENDIX A : !

Error Codes

Error number

Description of_ error

CNTL A entered during execution of
INPUT statement.

Statement is not part of BASIC State-bk

ment set.
Tape read error, reload tape.

Illegal character in the statement
or inputed data.

Missing closing quote in string cons-
tant. :

Arithmetic expression too compléx.
Illegal arithmetic expression.

Label assigned in GOTO or‘GOSUB
does not exist.

Division by zero attempted.
Subroutines nested too deep.
RETURN with no prior GOSUB.
Illegal variable name;
Statement is not recognized.
Error iﬂ use of pafenthesis.
Memory error.

unassigned to date

Illegal FOR variable

Carry bit not set in USER function

Fryfrea trve v

PAGE Bl OF

SYSTEM NAME

SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM

NAME

PROGRAM NUMBER DATE DOCUMENTED

1.
2,
3.
L,
5e
6.

7
8.

9.
10,
11.
12,
13,
14,

APPENDIX B

 Cassette Loading Procedure

Enter Sphere DEBUG routine,

Open
Open
Open
Open
Open

Open
Open
Open

(CNTL 0) location 0009 h, change (space) to 00,

and

and

and

and

and

and

and

two byte

Open

and

change location

change location

‘change location

change location

change location

'change location

‘change location

0033 h to 00,
0034 h to 00,
0038 h to FO,

0039 h to 60 for CASS II
50 for CASS I

003A h to 01,
003B h to 01, |
003C h to the first byte of the

location where the program is to be stored,

change location

the storage location,

003D h to the second byte of

Open and change location 003E h to 00,

Open and change location 003F h to 00,

Open location FBOO and type CNTL J (jump),

Open location FB91 and type CNTL J.

locations 33 and 34 can be set to the program name in hex

if it is necessary to search for a specific program. For example:
0033 42
0034 41

would cause the tape to be read until BA was found
and read in.

[AV LY IRy

A : - PAGE (0] OF

| SYSTEM NAME

SYSTEM NUMBER |CATALOGUE NUMBER

| PROGRAM NAME

PROGRAM NUMBER DATE DOCUMENTED

=
-
=

END

*CLEAR

APPENDIX C
. BASIC Quick Reference

Statements

clears CRT screen, HOMES cursor.
line number CLEAR

dimensions strings or arrays.
line number DIM symbolic name (- first dimension
» second dimension

terminates BASIC program.
line number END

begin of FOR ... NEXT loop.
line number FOR index variable = lower limit
TO upper limit

calls BASIC subroutines.
line number GOSUB subroutine location

unconditional transfer.
line number GOTO destination

conditional transfer.
‘line number IF expression relation operator
expression statement

assigns a value to a variable. ,
line number LET symbolic name = expression

- assigns values to an array

line number MAT array name = constant list

* indicates statement may be used with or without line number,

PAGE cp OF
SYSTEM NAME . SYSTEM NUMBER CAT_'ALOGUE NUMBER
' PROGRAM NAME : PROGRAM NUMBER DATE DOCUMENTED
NEXT

end of FOR ... NEXT loop.
line number NEXT index variable

% POKE o
: pokes numeric value into one or two memory locations.
line number POKE(location , value
% PRINT
outputs values to list device.
11ne number PRINT device designator print llst
* RETURN

returns from BASIC subroutine program. '
line number RETURN .

* indicates statement may be used with or without line number.

, PAGE Cc3 OF
SYSTEM NAME : SYSTEM NUMBER CATALOGUE NUMBER
. |PROGRAM NAME . PROGRAM NUMBER DATE DOCUMENTED
Commands
CLOAD

loads program from cassette storage.
CLOAD cassette file name

CNTL A : _
stops execution of BASIC program returns user to DEMAND mode.
‘control and A keys pressed at the same time. :

CNTL D
returns user to PDS DEBUG.
control and D key pressed at the same time

CNTL E ‘ -
: returns user to 0S/1 system nucleus.
control and E key pressed at the same time

CSAVE : : :
saves program onto cassette storage.
- CSAVE program file name
DUMP '
dumps symbol table and variable list to disk file type D.
.DUMP disk file name or XX
EDIT
edits line of program.
EDIT 1line number
LIST : '
. lists contents of program workspace to list device.
LIST device designator starting line number
» ending line number ’
LOAD f :
loads program from disk file.
LOAD disk file name
NEW

clears program workspace and variables.
NEW

Page of 2000.001
Revised 11-01-77
TNL-2000.001~-1 |

[e L B P .

PAGE Cl4 OF
| SYSTEM NAME : SYSTEM NUMBER CATALOGUE NUMBER
- |PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED
RELOAD

restores variables and symbol table previously DUMPed.
RELOAD XX or File-Name

Starts execution of BASIC program, clears all variables.
RUN o
SAVE :
saves BASIC program onto disk file.
' SAVE disk file name
SIZE ' _ ,
returns number of remaining bytes of memory.
SIZE ‘
RENUMBER ' '
allows the BASIC source statements of a program to be
numerically arranged in ascending sequence, beginning
with the first statement as 0010, the next as 0020, and
incrementing each statement thereafter by ten.
RENUMBER
CONVERT

allows the BASIC source statements for a Version 1.3
TBX to be converted to the new FBX 2.0 format.
CONVERT :

Page of 2000.001
Revised 11-01-77
TNL-2000.001-1

Fragrsa [BYAYal 170 . .y) T) - . N B PRI R S

PAGE C5 OF
SYSTEM NAME SYSTEM NUMBER" CATALOGUE NUMBER
|PROGRAM NAME PROGRAM NUMBER - DATE DOCUMENTED

-
=

LEN

PEEK

RND

Functions

returns absolute value of an expression.
ABS(numeric expression)

returns integer portion of a numeric expression
truncates decimal part.
INT(numeric expression)

returns number of characters stored in strlng.
LEN(strlng name

returns value stored in memory 1ocat10n.
PEEK memory locatlon

returns a random number between 0 and 1
RND (0)

returns sign of expression; 1 if positive, -1 if negatlve
or 0 if gzero.
SGN(numeric expression)

returns sub strlng of string.
STR(string name , beginning position , length

returns value of pl 3.14159
PI

)

(AN AL I YAV ¥ X1

PAGE p)7 OF

SYSTEM NAME

SYSTEM NUMBER"

CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

APPENDICES D
GLOSSARY

Algorlthm
A specific method des1gned to yield a solution to a

problem.

Alphanumerlc
The set of ASCII characters which 1nclude the letters A

to Z, the digits £ to 9 and the special characters.,;: =
21/% -@35#7«&%

Attribute !
A rule or characteristic which applles to a statement,
instruction, command or item of data

Argument
A numeric or literal constant or variable which is

operated on by a predefined function. X is said to be the argument
of the sine function 2Z=SIN (X)

Array = »
A set of numeric variables that are associated with a

“single symbolic name. See also vector matrix

ASCII ,
American Standard Code of Information Interchange

BASIC

Beginners All-purpose Symbolic Interpretive Code

BASUC Command ‘
An 1nstruct10n to the BASIC compiler entered without a
line number, i.e. LIST, RUN etc.

Binary .
‘ A number system in base two

Brggching, Conditional
Transfer of program control which is dependent upon
the outcome of a logic test

Fernea

[RYAYolE X X - .

PAGE D2 oF
SYSTEM NAME . . SVSTEM NUMBER - CATALOGUE NUMBER
1 PFOGRAM NAME PROGRAMi NQMBER JOATE DOCUMENTED‘ :
Compiler

A program usually written in Assembler, which converts
a high level language into obJect code

Computer
~ A network of logic circuits, memory and 1/0 circuits

capable of addition and storage of data received

Contiguous
In a loglcal. usually arlthmetlc order

Constant '
An amount or number which does not change

Constant, theral ' '
A set of ASCII characters enclosed in quotatlon (") marks

Constant, Numerlc :
A series of digits (#-9)

CPU

Central Processing Unit
‘CRT |

Qathode Ray Tube
Data

Literal or Numeric variables supplled to the computer

ffor storage

Debug
' A M68#F subroutine on V3N PROM set
To remove errors from a program
Decimal

A system of computation using base 10 numbers i.e. 5,
10,1000

Disk :
A mass storage device used for hi-speed data transfers

Diskette
A flexible magnetic card which is read from or written
upon in a dlsk :

Edit :
A M6800 subroutine on V3N _PROM set
Element |

A single numeric storage location in an array

AN LY MENUEI2

Hardware

PAGE D3 of
. ISYSTEM Name 1 sYSTEM NUMBER" CATALOGUE NUMBER
. |PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED.
Equation

A target variable followed by an equal sign, followed -
by an arithmetic expression.

Exgres31on

A series of variables and/or constants combined with
arithmetic operators.

Flag ‘
A variable used to test for a condition usually g or 1

Flowchart
A series of graphic shapes used to document or draft
a program. See-Appendlx, Flowchart

Function
A predeflned expression available to the programmer

Electrical devices used by the computer for storage
or communications

Hexadecimal
-A system of numbers using base 16

Index Variable
The variable in a For/Next loop

Input

To answer questions or provide data to the program

Interface '
To provide the CPU with a means of communlcatlons with

external devices

Instruction ‘
A word or phrase used to communicate with the compller

1/0

;nput/ﬁutput
Loop

A group of instructions which are executed more than
once in succession

Matrix - _
An array with 2 subscripts

Fryprea

LEYAT ol NN] . . FEN N . B PR R

‘ PAGE D4 OF
SYSTEM NAME ' SYSTEM NUMBER ' CATALOGUE NUMBER
PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED
Memory

A dev1ce used by the computer to store data or program
instructions

Numeric .
Having a number or amount as a value. No letters or
special characters

Octal ’ ‘
A system of numbers based on digits O through 7

Object Code
Low level language understood by the computer

Operator
— The mathematlcal signs +,-,%,1,(,), .

Order of Operation

A loglcal sequence of evaluation of expre331ons. Order
ist 1. sign of number

2. multiplication/division

3. addition/subtraction

OQutput

A response by the computer of data received and acted upon

Overflow ‘
To go beyond the 1limits on the number range

Parameter ‘
An attribute or limitation of a function or expression

Program ‘
A series or group of 1nstruct10ns which cause the computer

to act on data

PROM
Programmable Read Only Memory
RAM

Random Access Memory

Range, Line Numbers
' Line numbers must be 1nteger values such that 0 IN 65536

ROM

Eead iny Memory

Ferirea

e 1n -

PAGE D5 oF
SYSTEM NAME ’ ’ SYSTEM NUMBER CATALOGUE NUMBER
PROGRAM NAME . PROGRAM NUMBER DATE DOCUMENTED
Routine

A group or sub;ect of 1nstruct10ns whlch accomplish a
specific goal

 Scalar . v ‘ .
A numeric variable with only one element associated with it

Software :
Instructions given the computer to accomplish a task

Statement ,
A BASIC instruction preceded by a line number

String ,
‘ A series of Alpha numeric values either a constant or
assigned to a literal variable

Subroutine
See - Routine

Subscript | :
An'integer value describing a location in an array

Symbolic Name

For Scalar Numeric Variables: a single letter (A toZ)
followed by an optional digit (0 to 9) :

For Arrayss: a single letter

For literal variabless a single letter followed by the
$ character _

Syntax ' '

‘ The rules of grammar for a computer language

TTY R |
Teletype I/0 device

Unary

One or single. The minus plus sign precedlng a constant
. or variable is the unary operator

‘Underflow
To go under the limit of the range of numbers

Variable
That which changes or can be changed

Variable, Literal
A symbolic name used to identify the location of a literal

string in memory

Frypsa roove’ o ane “ o A e o e gy by

PAGE D6 OF

SYSTEM NAME

SYSTEM NUMBER '

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

Variable, Numeric
' A symbolic name used to identify a numeric value in

memory

Vector
An array with 1 subscript

rry(rea LAY tn

	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27.0
	27.1
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43.1
	43
	44
	45
	46
	47.0
	47.1
	48
	49
	50
	51
	52
	53
	54
	55
	56.1
	56
	57
	58
	59
	60
	A-01
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06

