E Eﬁh@@@bg gb Software

Program

Products

| Reference Manual

6800.001

M6800 FORTH ') : ‘ PAGE 1

1. INTRODUCTION.

6800FORTH is a wunique threaded language that is ideally suited for
microprocessor system$. - Programs written in 6800FORTH are compact;
i.e. in 5K to 6K bytes, the user may have the interactive 6800FORTH
compiler/interpreter running stand-alone wusing the system's monitor
for I/0, and other run-time rzoutines , plus an assembler in 680CFORTH,
cassette memory software, and a text editor. Not only does all of this
fit into the 5K to 6K bytes (4K of which are written in 6800FORTH),
but also, it runs in the same space with no additional symbol table
area, overlays, swapping, or use of any other software. :

while 6800FORTH gives all of the conveniences of interactive
interpreters, it is_ also very <fast. For most applications, the
run-time overhead is 70 to 100 perxrcent for microcomputers, as compared
to 1000 percent or more which is common fozr interpreters such as
BASIC. Number crunching applications in 6800FORTH may take much
longer, however, if 6800FORTH is not fast enough, the user may choose
to use the system's own assembler to re-code inner loops.

One of the best advantages of 6800FORTH over other programming
languages 1is that software development times are c¢ut in half or much
more over assembly language programming. The programming in 68CO0FORTH
is entirely done in a structured manner (there is no GOTO), and the
resulting code is re-entrant and can be designed for PROM.

The 6800FORTH implementation of the FORTH language requires a machine
configuration that c¢ontains both an input Kkeyboard device and an
output .'display device. A recommended memory configuration is 16K
bytes, however, the system will work satisfactory in 8K bytes. A disk
device 1s nice for storing 6800FORTH source programs, but the audio
cassette recorder (or similar sequential unit) suffices to simulate
the wvirtual memory storage of socurce programs. 6800FORTH works uwell
with a CRT video display unit, so hard copy is not necessary.

The FORTH_ language has existed for several vyears, and is used
commercially in a number of installations. Until recently it has been
priced far out of the reach of the amateur hobbyist. Most computer
professionals have never heard of it. The FORTH language, houwever, is
in the public domain, and 6800FORTH is the first implementation on the
6800 Microprocessor unit.

The original FORTH language was first developed by Charles H. Moore at
the National Radio Astronomy Observatory wunder contract with the
National Science Foundation. A paper in the Journal of Astronomy and
Astrophysics Supplement (1974, 15, 497-511) titled "FORTH: a New Way
to Program a Mini-Computer", by Charles H. Moore, describes the
original specifications and description of the FORTH language.

M6800 FORTH PAGE 2

2. OVERVIEW.

The basic element of the 6800FORTH system is termed a "word", which is
roughly comparable to a subroutine. A 6800FORTH woxrd, when referenced
(or executed), causes an action or sequence of actions to be
performed. Therefore, when a word is executed, a subroutine is called
and the various actions indicated by the subroutine occur. Before a
word ~can be executed, it must have been previously defined and stored
in the 6800FORTH "dictionary™. The dictionary is a linked list of
words together with their meanings or actions. The actions may be
expressed as machine-language instructions or as =a sequence of other
words. The 6800FORTH dictionary initially contains around 200 words,
which are referred to as the "standard vocabulary”. Some of these
words can be used to define new words. Writing a 6800FORTH source
brogram consists of defining a series of new woxrds in terms of the old
definitions.

A 6800FORTH wuser at +the keyboard terminal may type words intoc the
computer. Any sequence of characters may be used to define a word. The
only reserved characters are those that have special meaning for the
machine environment that's being used. Otheruwise, any combination of
letters, numbers, and special characters can be used in defining the
name of a 6800FORTH word. A word must be separated from other words by
a deliminator character. The deliminator character is normally a space
or blank. Input from the Kkeyboard terminal is "buffered" by the
6800FORTH = system, and control passes to the system for execution when
the "Carriage Return” Rey is depressed. For erample, the input stream:

7 3 + . CR

will cause the numbers 7 and 3 to he added together and a result of 10
(assuming base 10) to be printed on the output device. The 6800FORTH
system will then do a "Carriage Return" and "Line Feed" and proceed to
prompt the user for further input.

In ordexr to conserve computer memory, not all of the characters in a
name are stored. In the 6800FORTH implementation, a name is recognized
on the basis of the first four (4) characters.

Reverse Polish Notation (RPN) and Last-In First-Out stacks (LIFO),
such as those wused in Hewlett-Packard calculators, are used in the
6800FORTH systen. Therefore, to further explain the previous example
in detail: The number 7 was pushed onto the stack, and it was followed
by the number 3. Both numbers were then added togethexr and "popped"
off the stack by the previously defined word "+". The result of 10 is
"pushed" onto the stack by the "+" operation also. The word "." then
"pops" the stack to its initial condition and prints the number 10 on
the output list device.

If a word that is typed in the input stream cannot be located in the
6800FORTH dictionary, the system attempts to treat it as a numbex. If

M6800 FORTH e " PAGE 3

this is ©possible, that is, if the word is actually a number in the
proper foxrmat and base, then the number is converted to binary and
made available for <further processing. If the word c¢annot be
interpreted as a number, or 1if conversion 1is not possible, then
6800FORTH will issue its standard error message: 7?7 (a question mark).

Words c¢an be added to the 6800FORTH dictionary in several ways. As
with any programming language or notation, the fastest route to
fluency 1is through examples and hands—-on usage. Therefore, if the
input stream consists of:

2 VARI VALU

6800FORTH defines a new word in the dictionary called "VALU", which is
a 16=-bit (two byte) variable, whose value is preset to "2". Remember
that ©6800FORTH only looks at (and only remembers) the <£first 4
characters of a word. The input stream:

2 VARIABLE VALUE

would produce exactly the same results. Continﬁing with the same
example, the input stream: ~

VALU 4

causes the address of "VALU" to be pushed onto the stack. The "a" then
replaces the address on the stack with the contents found at that
address. The "." causes the entry on the stack to be printed on the
output device. Hence, a two (2) would be printed on the output device.

Words that are already in the 6800FORTH dictionary may be used to form
other new words using the ":" word. For example:

?d .
This input stream defines a new word called "?" which when executed
causes the word "d" and the word "." to be executed. The ";" woxd is

the 6800FORTH woxrd that terminates the definition mode. With the above
new word, the usexr can now input:

VARLU ?

which will cause the value of the variable "VALU" to be printed on the
output device. In this case a two (2) would be printed.

The words that compose the "STANDARD VOCABULARY"™ are listed in the
section titled "standard VOCABULARY"™. The actions of the Standard
Vocabulary words are also explained in that section.

Inpdt to thé 6800FORTH system c¢an also c¢ome from a block buffer
instead of the Reyboard. This buffer normally c¢ontains ASCII
characters that have been previously stored on a mass storage device.

M6800 FORTH PAGE 4

3. STACKS.

Numbers and other data are normally handled through the 6800FORTH
"Normal Stack"™ (parameter stack). This is a "push~-dowun" stack that
uses the "Last-In First-out”™ (LIFO) technique. A Push-Down stack is a
storage management structure in which a new data item may be stored
(pushed) on top of older data items. The item on top of the stack may
be retrieved by "popping"™ the stack.

One advantage of a "push-down" stack is that fixed storage locations
in memory need not be assigned for temporary data. Hence, storage is
conserved and the programmer's "bhookkeeping"” effort is reduced.

Most 6800FORTH words, which operate on data, accept their data from
the normal stack, operate on them, and then push the xesults back onto
the stack. Therefore, arithmetic esxupressions must be specified in
"Reverse Polish Notation". (i.e. with operands preceeding operators).

6800FORTH users have the option of specifying the top of RAM memory,
and defining the locations of +the - FORTH dictionary, the "Return
Stack"™, the "Normal Stack", and the buffers. It is recommended that
the default values be used, because 6800FORTH will only check for
overflous of these areas if they are in their default locations. By
specifying a different location for any one of these areas, the user
will cause 6800FORTH to bypass the boundry checking feature. (The top
of RAM memory can be specified without cancelling this feature).

There are +three (3) stacks used by the 6800FORTH system. All of them
use the Last-In First-0Out (LIFO) technique. Assuming the defaults are
used for memory allocation, the "Normal Stack"™ is variable in length
(depending on the RAM size available); and it grows downward toward
the FORTH dictionary, which in turn grows upward. The FORTH word "Sp"
(stack pointer) is a constant that points to the address of the top
(current) stack wvalue. This address points to the most significant
byte (MSB) of the 16 BIT stack value.)

The "Return Stack™ is fixed in length (2 pages) and it originates on
the same location as the normal stack. It however, grows upward (it's
still referred to as a "push down" stack because of its LIFO

technique). The FORTH word "RS" (Return Stack) is a constant that
points to the address of the top (current) Return Stack value. This
address also points to the MSB of the 16 BIT value. The Return Stack
is used primarily by the FORTH system for loop processing.

The third stack is the "Hardware Stack"™ used by the 6800

Microprocessor. It is located at location $01FF and it grows downward
toward low memory. Its location cannot be changed by the 6800FORTH
user. This stack is not normally used by 6800FORTH programmers, so

‘there is no FORTH word that contains its address.

M6800 FORTH PAGE 5

4. DICTIONARY.

The 6800FORTH dictionary is a linked list of words. The dictionary
normally begins from the end of the 6800FORTH nucleus and grows toward
high memory. The dictionary <c¢ontains all of the 6800FORTH words
available to the user.

There are three (3) groups of information that can be found within
each word in the dictionary. The first four bytes of any dictionary
word contain the name of the word in ASCII code. The Most Significant
Bit of the first byte of the word may be set to one (1) to indicate to
the 6800FORTH system that this 1s an immediate word. 0f all the
dictionary words, immediates are those that are executed directly when
found in the input stream. Names are considered equivalent if their
first four characters are the same. Names that have less than four
characters are automatically padded with spaces or blanks.

The next two bytes of a word following the name contain the address of
the first byte of the previous dictionary entry. These two bytes are
used to link the dictionary. The link address of the first word in the
dictionary 1is set to zero (0000), and indicates the beginning of the
dictionary. This is also the end of the chain of linked dictionary
words, because the dictionary is searched backwards (from the last
word entered +to the first). These first six bytes (the name and the
link pointer) are commonly referred to as the "Header".

The ' remaining bytes of an entry in the dictionary consists of machine
language c¢ode, which is really a subroutine. Hence, the word is
executed (by the FORTH nucleus) by doing a Jump to Subroutine (JSR) to
the first byte of machine code. The machine language code normally
terminates with a Return from Subroutine (RTS) instruction.

M6800 FORTH ‘ PAGE

For example:
ABC CLR CR ;

will generate the following dictionary entry:

ADDRESS CONTENTS COMMENTS
1000 $41 AW Header Start
1001 42 - "R"
1002 43 new
1003 20 " " padding of a blank character
1004 OF MSB of link to next word header
1005 EO LSB of l1link to next word header
1006 BD JSR instruction OP code
1007 0A MSB of address of CLR word subroutine
1008 00 LSB of address of CLR word subroutine
1009 BD J3R instruction OP code
10048 0B MSB of address of CR word subroutine
100B FF LSB of address of CR word subroutine
100C 39 RTS instruction OP code

M6800 FORTH ‘ PAGE 7

5. BLOCK STORAGE.

Most practical applications of +the 6800FORTH language require an
auriliary storage device. "Floppy Disks™ are wusually preferable,
however, sequential magnetic tape cassettes suffice for the average
user.

Block storage is used as a "Virtual Memory" scheme, where one may
'store data in blocks when there is insufficient space in the
computer's main memory. Blocks are suitable to store large amounts of
data. Normally, in the 6800FORTH system, this data is the source text.

Blo¢ks are usually <called "Screens", and are numbered sequentially
beginning at one (1). The name "Screen" comes from the use of a Memory
Mapped CRT screen for the block storage buffer. 6800 machines that
have this feature actually store the source data (and read it in)
using the CRT screen's memory locations. This allows source editing
using the curser controls. Two large buffers (Buffer 0 and Buffer 1)
are set aside for those 6800 machines that don't have the feature, to
allow editing. ,

M6800 FORTH PAGE 8

6. KERNEL.

The Kernel (nucleus) of the 6800FORTH system is an assembly language
program whose basic¢ function is to provide the capability of starting
and adding new word entries to the dictionary. Some of the tasks that
are performed by the Kernel of the 6800FORTH system are:

1. Initializing the systen

2. Buffering the input from the keyboard
3. Searching the dictionary

4. Converting ASCII input to numbers

5. Parsing the input buffer

6. Executing words in the dictionary

7. Adding words to the dictionary

8. <Checking for errors

The Kernel 1is located at a fixed location in memory and is usually
followed by the dictionary. The dictionary grous toward high memory.
The Kernel uses temporary storage in Page Zero (0) of main memory.

M6800 FORTH PAGE 9

7. DEFINING NEW WORDS.

The distributed 6800FORTH system comes with about 200 words defined in
the dictionary. These woxds provide the functions that are commonly
needed by most application programs. Programming in the 6800FORTH
language actually consists of defining new words, which drau upon the
existing vocabulary, and which in turn may be used to define even more
complex applications. ~

6800FORTH provides a number of ways +to define new words into the
dictionary. The language even provides a facility for defining words
whose function is to define words. There are four common ways that may
be used to define words using the standard system.

The word ":" (colon) is used to define other 6800FORTH words in terms
of existing words in the dictionary. Colon definitions are usually
machine independent, since each refers to code definitions or other
colon definitions. An example of a colon definition is:

NEW CLR 1234 . CR ;

Here the word "NEW" is defined as a sequence "CLR", 1234, ".", and
"CR". The words axe assumed to be present in the dictionary at the
time the definition takes place. The number (123%) will cause code to
be generated that will place it onto the stack when the word "NEWY is
executed. Semicolon ";" is a woxrd that indicates the end of the
definition. '

The woxds "[" (left bracket) and "]" (right bracket) allow the user to
define words whose actions are expressed directly in machine
(assembly) language. The words that are used within the brackets are
dictionary words that cause the binary machine code to be added onto
the dictionary. The names of these words have been conveniently chosen
to c¢losely resemble the machine's assembler mnemonics. For this
reason, the words that are wused within the brackets are machine
dependent, but they give the programmer the means to achieve maximum
possible speed of execution. The brackets are two of several words
that can only be used within a ":" and ";" definition. For example:

KILL [0 LDX # 0 CLR, ,X INX FB BRA ;

Here the word "KILL" 1is being defined as a sequence of machine
instructions after the bracket word is detected. if "KILL" wuas
subsequently executed, it would clear a large portion of memory.

Constants may be defined through the word "CONS". For example;
1234 CONS X1

£0RTH word X1. Whenever X1 is executed, it will push

defines the 68
1 onto the stack. The use of X1 in an input streanm

00
the constant 23

M6800 FORTH PAGE 10

would create fewer machine instructions than the use of the number
1234. However, both methods produce the same xesults.

Data may be stored in named locations as well as on the stack. The
named locations are in the dictionary. This is done by using the
6800FORTH word "VARI". As an example:

1234 VARI X2

defines the word X2 which is the name of an address that contains the
initial _value of 1234. When X2 is executed, the address of the value
1234 will be placed onto the stack. Other 6800FORTH words are
available that can either fetch the value from the address on the
stack or change the value at that address. ,

The difference between "CONS" and "VARI" is that "CONS" defines a word

which represents a value. "VARI"™ defines a word that represents an
address.

M6800 FORTH PAGE 11

8. INPUT / OUTPUT.

Undexr normal operation, 6800FORTH acqguires its input for execution
from the keyhoard. The system is usually idle and waiting for the user
to type a complete 1line of words. When this is done, the systen
interprets the line, tries to execute the wvalid words, and then
proceeds to prompt the user for more input.

6800FORTH may also take its input from the Block buffer. The word
"LOAD" causes the system to read a screen from the mass storage device
‘and load it into the Bloc¢k buffer. The input that is zead is called a
screen. The user should enter the desired screen ID onto the stack
prior to executing the word "LOAD".

The data in the Block buffer can he edited and then executed just as
if it had all been keyed in at the Keyboard again. The word "EXEC"
causes the input to come from the Block buffer instead of the Keyboard
buffex. The input always starts from the beginning of the Block bhuffer

and -continues until the first occurance of the woxrd ";S8". The ";8"
word stops the scan of the Block buffer. Any data found in the buffer
after the ";S" is ignored. The ";S" also suitches the system back into

the Keyboard mode of input.

The data in the Block buffer can be written to the Mass Storage device
with the word "“KEEP", The user should first ready the Mass Storage
device, then put onto the stack the ID of the screen to be written.
The word T"KEEP" is then placed in the Block buffer immediately after
- the last 1line of good text in the buffer. The "KEEP" word clears the
Block buffer to spaces beginning with it's own position in the buffer.
It then places, in the buffer, at the position it occupied, the ";8"
word. The buffer is then written to the Mass Storage device with the
ID from the top of the stack. The ";8" is placed at the end of the
data in the buffer as a convenience for the subsequent "LOAD" and
"EXEC" of the screen.

M6800 FORTH PAGE 12

9. CONDITIONAL BRANCHES.

- 6800FORTH provides several techniques for controlling the flow of
- program execution. The methods described in the following paragraphs
and the examples must be used within ":" (colon) definitions. A1l of
these definitions are immediate 1words. (i.e. they are executed
immediately - during the compilation - and cause machine language code
to Dbe added into_the dictionary. It is undesirable to add anything to
the dictionary unless a word is being defined).

The = simplest <conditional branch is specified through the use of the
words "BEGIN" and "END". The "BEGIN" - "END" construct is useful for
program loops, when the loop termination condition can be expressed by
leaving a =2erxro or non-zero value on the stack. The "END" word tests
the stac¢k value and if it's zerxo the loop is repeated. For example:

EX 5 BEGIN 1 - DUP NOT END DROP ;

First the wvalue 5 is pushed onto the top of the stack. The word
"BEGIN" indicates the beginning of a loop. Everything between the
words "BEGIN" and "END" will be repeated until the word PEND" finds a
non-zero value on the stack. The value on top of the stack is always
removed by the word "END"™. The first thing the loop does is push a 1
onto the stack. Then the 1 is subtracted from the 5 by the word "-".
The only thing on the stack now is the value 4. The word "DUP"
duplicates the top value on the stack. This is necessary because the
word ~"END"™ is going to remove one value. So nouw, after the "DUP", the
stack contains two values of 4. the "NOT" word switches the top value
on the stack to 0 (had it already been 0, NOT would have switched it
to 1). The "END" word tests the top value on the stack for 0 and then
removes that value. The stack now contains only the value 4. Since the
"END" word found a zero value, the loop is repeated. This process will
continue to decrement the value on the stack until it reaches zero.
When it becomes zero, the NOT word will switch it to 1. When "END"
finds the 1, its search will be satisfied; it will remove the 1, and
the word after the "END"™ will be executed. The word "DROP" removes the
top value on the stack. It is used in this example to remove the
residual zero (0) left on the stack. It's important to leave the stack
as you found it. Remember, none of this will happen until the word
"EX" is subsequently found in the input stream and executed.

An endless loop can be created by the following:

X1 BEGIN 0 END ;
Other words can be placed between the "BEGIN" and the "0O" to give the
endless loop more purpose. Once the word EX1 is executed, it can only
be stopped with the Non-maskable Interrupt key. The program must then
be "Softstarted™. -

6800FORTH contains a looping facility that is very much like the

M6800 FORTH PAGE 13

FORTRAN DO~LOOP construct. The words DO, LOOP, and +LOOP are used to
define the FORTH DO-LOOP facility. The following example will
illustrate the use of these new words:

* EX2 4 0 DO I . LOOP ;

When the word EX2 is executed, the constants % and 0 will be pushed
respectively onto the stack. The word DO uses these top two values as
the 1limit and the initial index of the loop. These numbers will be
removed form the Normal stack and pushed onto the Return stack. Then
the words after the word DO are executed. The word I copies the index
value <from the Return stack and pushes it back onto the Normal stack.
(The index value is now on top of both stacks). The word "." (period)
removes the top value on the Normal stack and prints it. The word LOOP
increments the index value (on top of the Return stack) and then tests
it with the limit value (second value on the Return stack). If the neuw
index wvalue is less than the limit, then control returns to the first
word after the DO. Otherwise, the index and limit are popped from the
Return stack and control passes out of the loop. The output produced
by execution of the word EX2 is: ~

012 3

Note that the limit gives the number of times the loop is executed
when the initial index is set to zero (0). The range of a DO loop is
always executed at least once. Since DO loops use the Return stack,
c%zek must be taken if the words within the loop also use the Return
stack. »

Loops _that increment +the index by a value other than +1 are
accomplished with the +LOOP word. +LOOP is like LOOP, except that the
current Normal stack value is used to determine the new index. If the
current Normal stack value is negative, then looping continues until
the new index becomes less than the limit value.

Forward conditional branches may be made in 6800FORTH using the words
IF, THEN, and ELSE. These words are more easily explained through the
use of an example:

EX3 IF (true-words) ELSE (false words) THEN ;

WHhen EX3 is executed, the word IF tests, and removes, the current
stack value. If the wvalue is non-zero, then the "true-words" are
executed. If the value is zZero 0l then the "false-words" are
executed. The word THEN indicates the end of the IF...ELSE construct.
It is always required. The word ELSE is optional. For example:

EX4 IF (true-words) THEN ;

EX4 will cause the "true-words"™ to be executed only if the top stack
value is non-zero. .

6800 FORTH | | PAGE 14

~10. ERROR CHECKING.

~6800FORTH produces various error indications. The standard FORTH error
is -~ a ? (question mark). This is usually caused by a word in the input
~stream that cannot be found in the dictionaxy. Another error is "ERROR
nn" where nn is an identification of the error. When either message is
produced, 6800FORTH stops its current activity and returns to the

input mode. If a word was in the process of being defined, the
dictionary is returned to its state prior to the beginning of the
“definition. The stacks are re-initialized. The effect is vary similar
to a 6800FORTH "Softstart".

MESSAGE EXPLANATION

word ? - The word cannot be found in the dictionary, or it's

‘ use is illegal (e.g. ";"™ found while not in ":" mode).
nnnn ? - The number cannot be converted to a 16 bit binazry

value using the current base.

ERROR 00 - Return stack overflouw. Too many values pushed onto
the Return stack or too many levels of DO nesting.

ERROR 01 - Return stack underflow. A word was executed that pulls
. a value from the Return stack, but the value wasn'¥®
entered prior to the word's execution.

ERROR 02 - Normal stack underflow. Same as for Return stack.

ERROR 03 - Normal stack s dictionary cross. Too many values on

' the Normal stack causing it to overlay the dictionary.
Since the dictionary and Normal stack grow toward
each other, this error ocecurs more frequently as the

dictionary becomes large. The dictionary may be
damaged.
ERROR 04 - Keyboard buffer (or Block buffer during EXEC)

exceeded its upper boundry.

ERROR 05 =~ Block buffer 0 exceeded its upper boundry.

ERROR 06 - Block buffer 1 exceeded its upper boundry.
ERROR 09 - A word containing an IF word was executed, but no
THEN word was used. THEN is always required when

IF is used.

Errors 00 through 06 will only be produced if the memory locations of
the stacks, buffers, and dictionary are allowed to default. If the
user initializes any of these locations (other than memory size) prior
to a "Hardstart", these tests are not made.

M6800 FORTH PAGE 15

11. STANDARD VOCABULARY.

Following each word difination is & graphic demonstration of the
word's effect on the Normal stack. (1 2 3 4 werd 1 2 3) shows that the
values 1, 2, 3, and 4 were entered, with 4 on top of the stack. Then
"word" was entered. In this case "word" caused the top stack value to
be "popped™ leaving the 3 as the top value. Examples using A0O0O
indicate an address on the stack.

TYPING WORDS

Convert and type the signed value on top of the stack according
to the current radix. (1 2 3 4 . 1 2 3)

#DIG A variable whose value sets the tabulation stops for the word
"." (period). The number of spaces and digits typed is equal to
the wvalue of #DIG. If #DIG is too small to allow complete
typing of a number, it is ignored. (stack is un-affected)

B Types the unsigned value on top of the stack (Usually in HEX).
f?rztgp&ng agdre%sgsé)machine instructions, etec.

? Uses the top of the stack as an address; and types the value at
that address according to the current radix.
(1 2 3 a000 ? 12 3)

ECHO Types the LSB on top of the stack in ASCII. If the character is
non-printing, a space will usually be printed.
(1 2 3 4 ECHO 1 2 3)

SPACE Types a single space. (stack is un-affected)

MSG Types a string of characters until a %04 HEX value is found. The
top stack value provides the address of the first byte of the
string +to be typed. Control ¢haracters may be imbedded in the
string. (1 2 3 4 MSG 12 3)

" Is wused in_a ":" (colon) definition of a word that will, when
executed, place an address on the stack. The address points to
a string of characters that is followed by a $04 HEX value. The
string of characters is included in the definition and follous
the word being defined. It is enclosed in " (gquotes). The first
blank following " (quote) is a 6800FORTH requirement and will
not be included in the character string. EXAMPLE:
: MSG1 " TEST MESSAGE" ;

TYPE Types a string of characters whose address is found as the second
: value on the stack. The top stack value contains the number of
characters to be typed. (1 2 A000 4 TYPE 1 2)

i
i

M6800

CR
CLR

?BASE

DICT

BLOCK
BUFL

BUFH

LDBF

SAVE

KEEP
LOAD

EXEC

H

FORTH PAGE 16

Ooutput a carriage return. (Stack is un-affected)

Clears a CRT display device to blanks. CLR should not be used
for hard-copy devices. (stack is un-affected)

Types the current radix using Decimal as a temporary radix for
conversion of the typed number. (stack is un-affected)

Types every word in the 6800FORTH dictionary in the oxder it is
searched. The address of each word's header is typed after each
word. (stack is un—-affected)

I/0 WORDS

Places the low address of the screen buffexr on the stack.
(1 2 3 4 BUFL 1 2 3 4 E0CO0O)

Places the high address of the screen buffer on the stack.
(1 2 3 EO0OQO BUFH 12 3 EO0O00C E200)

Initializes the «cassette I/0 <routines with the beginning and
ending values, of the block to be output, using the second and
top values from the stack. (1 2 E000 E200 LDBF 1 22

Writes a buffer to cassette tape. The top value on the stack is
the ID of the screen foxr subsequent retrieval. SAVE will
replace itself in the buffer with the ";S" word; then clear
everything after the ";S" word to blanks.

(12 3 4 SAVE 12 3)

Combines BUFL BUFH LDBF and SEVE to write the current screen to
cassette tape. KEEP wuses +the top value on the stack for the
screen ID for subsequent retrieval. (1 2 3 Yy KEEP 1 2 3)

Reads a block from the cassette tape into the screen buffer. The
%?pzvglﬁe ogoghe s¥a§k3%s the ID of the block to be read.
D

Causes the <contents of the current screen to be scanned and
passed through the key-in routines Jjust as if it was being
received <from the Keyboard. The scan begins with the start of
the screen and c¢continues wuntil the ";8" word is found. When
EXEC 1is used, the screen should only contain word definitions
followed by a single ";S" word.

(stack is un—-affected)

Used in conjunction with EXEC to indicate the end of the scan. ;8
returns 6800FORTH to the normal input mode.
(stack is un—-affected)

M6800

WORD-

IMME

CONS

VARI

ARRAY

FORTH ' PAGE 17

DEFINING WORDS

Begins a colon definition. The next word in the input is taken as
the name of the new word. The intexrpreter is automatically set
to the Compile mode. (stack is un—affected)

Terminates the colon definition, places a "Return to subroutine™
(RTS) instruction in the dictionary, then switches the system
back to Interpret mode. This word should only be used while in
Compile mode.

(stack is un—-affected)

Used within ":" (colon) definitions to cause the words following
to be executed rather then compiled. The effect is as if all
words following the bracket wexe "Immediates".

(stack is un-affected)

Used within ":" (colon) definitions after the "[" (left bracket).
This word reverses the effect of the left bracket. Actually,
both the left bracket and the right bracket woxrds have the same
effect on the system. Eithexr will toggle the state of the
system from Compile mode to Interpret mode, and vice versa.
They are both included to allow the group of words, that are
forced into the Immediate mode, to be set off in brackets.
(stac¢k is un-affected)

Used within ":" (colon) definitions just prioxr to the ";" word.
It indicates, to. the systen, that the word which is being
compiled should be identified as an "Immediate"™ woxd. An
"ITmmediate" word is always executed when it is encountered in
the input stream, regardless of the Compile/Interpret mode of
the system. It will always be treated as if it were enclosed
within brackets. (stack is un—-affected’

Defines a word that will, when executed, push a constant value
on the stack. The value of the constant is obtained from the
top of the stack when CONS is executed. CONS is not normally
used in a ":" (colon) definition. (1 2 3 4 CONS 1 2 3)

Defines a word that will, when executed, push an address on the
stack. the address points to a value in the dicticonaxy. The
address can then be used to reference oxr change the value. When
VARI is executed, the top stack value becomes the initial value
of +the wvaliable, VARI is not normally used in a ":" (colon)
defination. (1 2 3 4 VARI 12 3)

Sets aside a region in the dictionary whose length (in 16 bit
words) is the top stack value. The name of the array follous
the woxrd ARRARY in the input stream. When the new word is
subsequently executed, the address of the firxrst element of the
array is pushed on the stack. HNone of the elements of the array
are initialized. (1 2 3 4 ARRAY 12 3)

M6800 FORTH PAGE 18

Is used in a ":" (colon) definition of a word that will, when
executed, place an address on the stack. The address points to
a string of characters that is followed by a $04 HEX value. The
string of characters is included in the definition and followus
the word being defined. It is enclosed in " (quotes). The first
blank following " (gquote) is a 6800FOCRTH requirement and will
not be included in the character string. EXAMPLE:

: MSG1 " TEST MESSAGE"™ ;

CONSTANTS.

BASE -

H

SP

RS

NORMAL
DROP

DOWN

DUP

OVER

ROT

SWAP

Address of the current radis (or base) value.
(1 2 3 4 BASE 12 3 4 62)

Address of +the pointer to the next available dictionary
location. (1 2 3 4 H 1 2 3 4 58)

Address of the pointer to the current (or top) Normal stack
value. (1 2 3 4 SP 1 2 3 4 54)

o
2

address

£ the pointer to the current (or top) Return stack
value.. (1] 4 RS 1 2

3 3 4 84

STACK OPERATIONS.

Removes (or POPS) the current Normal stack value. The second
stack value becomes the current value. (1 2 3 4 DROP 1 2 3)

Pushes the Normal stack. The current stack value becomes the
second stack value. The new current stack wvalue is

unpredictable. (1 2 3 4 DOWN 12 3 4 5)

Duplicates the current, Normal stack value. After DUP, the
current and second stack values are the same.
(1 2 3 4 DUP 12 3 4 4)

Duplicates the second stack value and pushes it on the stack.
The current Normal stack value becomes the second stack value
and the top and third values are the same.

(12 3 4 OVER 1 2 3 4 33

" Moves the third stack value to the top of the stack. The top

stack wvalue becomes the second and the second stack value
becomes the third. (1 2 3 4 ROT 1T 3 4 2)

Interchanges the top Normal stack value with the second value.
(1 2 3 4 "SWAP 1 2 4 3)

M68J0 FORTH ‘ PAGE 19

RETURN STACK OPERATIONS.

DRP. Removes the current Return stack value. The second Return stack
value becomes the current value. (Normal stack is un-affected)

DWN. Pushes the Return stack. The current‘Return stack value hecomes
the second Return stack value. The new, current, Return stack
value is unpredictable. (Normal stack is un—affected)

<R Removes the c¢urrxent Noxrmal stack value and pushes it on the
Return stack. (1 2 3 4 <R 12 3)

R> Removes the current Return stack value and pushes it on the
Normal stack. (1 2 3 4 R> 1 2 3 4 5)

I Pushes the current Return stack value on the Normal stack without
removing it from the Return stack. After "I"™ the current values
on both stacks are the same. (1 2 3 4 I 12 3 4 5)

DICTIONARY OPERATIONS.

HERE Pushes the address of the next available dictionary location on
the Normal stack. (1 2 3 4 HERE 1 2 3 4 A000)

TRUNC Truncates (or deletes) the dictionary beginning with the address
that is found on the top of the Normal stack. The address must
be six higher than the header of a word in the dictionary.

(12 3 4 TRUNC 1 2 3)

FORGET Truncates (or deletes) the dictionary beginning with the word
whose name follows the woxrd FORGET. (stack is un-affected)

’ Places the current Normal stack value (16 BITS) into the next
two available dictionary locations. (1 2 3 4 s 12 3)

c, Places the LSB (8 BITS) of the current Normal stack value into
the next available dictionaryY location. (1 2 3 4 Cc, 1 2 3)

D= Places the machine's accumulator (Register A) into the next

available dictionary location (8 BITS). (stack is un-affected)

CONDITIONAL BRANCHES.

None of the following group of words can be used outside of a
wow (colon) definition. The stack descriptions show the effect
on the stack when the word, that is being defined, 1is
subsequently executed. It is not the effect during compilation.

M6800 FORTH - PAGE 20

BEGIN

END

DO

LOOP

Starts a loop which will be terminated by END. BEGIN can only
be used within a ":" (colon) definition. (stack is un-affected)

Terminates a BEGIN/END loop. END c¢an only be used within a ":*¥
(colon) definition. When the word +that is being defined is
subsequently executed, the code generated by END will pop the
current, Normal stack wvalue and test it for zero. If it is
zero, & branch will be taken back to BEGIN.

(1 2 3 4 END 1.2 3)

Starts a loop which will be terminated by either LOOP ox +LOOP.
DO can only be used within a ":" (colon) defination. When the
word that 1s being defined is subsequently executed, the DO
uses the «c¢urrent stack value for the loop index; and and the
second stack wvalue as the final loop index. These values are
pushed onto the Return stack so that the currxent, Return stack
value is the loop indewx. (1 2 3 4 DO 1 2)

Terminates a DO/LOOP construct. Execution of the LOOP word will
add one to the loop index. If the new index value is less than
the final index value (second value on the Return stack), then
control is transfered to the word following the DO, and the

loop 1is zrepeated. Otherwise, the two index values are popped
from the Return stack and the looping sequence ends. The
DO/LOOP <construct is only used within ":" (¢olon) definitions.

(Normal stack is un-affected)

+LO0OP Terminates a DO/+LOOP construct, and is exactly like the DO/LOOP

IF

ELSE

previously defined. The exception is that the current, Normal
stack value is added to the loop index (on the Return stack) to
form the new loop index. If the current, Normal stack value is

negative, looping will continue while the new index value is
greater than the final wvalue (second value on the Return
stack). The DO/+LOOP construct is only used within ":" (colon)

definitions. (1 2 3 4 +LOOP 12 3)

Starts an IF/THEN c¢onditional bxranch. The IF word, when
executed, tests (and removes) the current, Normal stack value.
If the value is not equal to zero, then the clause immediately
following the IF is executed. If the value is zero, then the
clause following the ELSE is executed. If the ELSE is omitted,
then control is given to the c¢lause following the THEN. THEN is
always required with the IF word. IF can only be used within
":" (colon) definitions. (1 2 3 U4 IF 12 3)

Indicates the beginning of a false (equal to zero) clause in an
IF/ELSE/THEN c¢onstruct. ELSE is only used within ":" (colon)
definitions, and only with IF. Its use with IF is optional.
(stack is un—-affected)

M6800 FORTH PAGE 21

THEN Terminates the IF/THEN c¢onstruct. Words following < THEN are
executed without respect to the preceeding IF conditional test.
THEN is only used within ":" (colon) definitions, and only with
IF. IF cannot be used without a terminating THEN. If a woxrd is
defined using IF without THEN, ERROR 09 will be printed when
that word is subsequently executed. (stack is un-—-affected)

ADDRESS OPERATORS.

d Uses the current stack value as an address, and places the 16 BIT
value at that address on the stack. The address that was on the
stacKk is replaced by its value. (1 2 3 A0CO a 1 2 3 4)

Ca Uses the current stack value as an address and places the 8 BIT
LSB of the 16 BIT value at that address on the stack. The
address that was on the stack is replaced by the 8 BIT value.
(1 2 3 A0O0O Cd 12 3 4)

' Uses the currxent stack value as an address and stores the second
(16 BIT) stack value at that address.(1 2 3 A000 ! 1 2)

c! Uses the current stack value as an address and stores the (8 BIT)
k%go ofcvthe1 g?cond stack value at that address. (1 2 3

+! Uses the current stack value as an address. The value at that
address 1is replaced by the sum of itself and the second stack

value. Both the address and the addend are removed from the
stack. (1 2 3 A00O0 +! 1 2)

LOGICARL OPERATORS.

AND Performs a ldgical "AND" with the top twovstack values. The two
Y?lgeg 3re i;glac?dé 8? the stack, by the result.

OR Performs a logical "OR" with the top two stack values. The twuwo
Y?l%eg ﬁre gipla?eg,7?n the stack, by the result

X0OR Performs a logical "EXCLUSIVE OR"™ with the top two staék values.
%?eztgoqvalggi ar% éeg%aced, on the stack, by the result

SWAB Exchanges the LSB with the MSB of the current, stack value.
(1 2 3 4 SWAR 1 2 3 400)

M6800 FORTH ; PAGE 22

TEST OPERATORS.

0= Tests the current stack value for zero. If the value is zero, it
is replaced on the stack with the value one (1). & non-zero
value is replaced with the value zero. (1 2 3 4 0= 1 2 3 0)

NOT Identical to 0= (above). (1 2 3 4 NOT 12 3 0)

0< Tests the current stack value for negative. If the value is
negative, 1t is replaced on the stack with the value one (1). A
??s%t§v3 (og(zer?)zvglg? is replaced by the value zero.

= Tests the top two stack values for equality. If they are equal,
both values are replaced by the value one (1). Otherwise, both

values are replaced by the value zero. (1 2 3 4 = 12 0)
> Tests the second stack value for greater than the top stack
value. A signed comparison is used. If the second stack value

is greater, both wvalues are replaced by the value one (1).
??hgrgiﬁe, Eoth1valg?s are replaced by the value zero.

< Tests the second stack value for less than the top stack value. &
signed comparison is used. If the second stack value is less,
both wvalues are replaced by the value one (1). Otherw%s§,1§oth

values arxe replaced by the value zero. (1 2 3 4 <
MIN Compares the top two stack values and Keeps only the smallex
value. The greater wvalue (or top value if equal) is removed

from the stack. A signed comparison is used.
(1.2 3 4 MIN 12 33

MAX Compares the top two_stack values and Kkeeps only the larger
value. The smaller wvalue (or top value if equal) is removed
from the stack. A signed comparison is used.

(1 2 3 4 MAX 12 4)

ARITHMETIC OPERATORS.

+ Adds the top two stack values and replaces them, on the stack,
with theixr sum. (1 2 3 4 + 12 7))

1+ Increments the top stack value by 1. (1 2 3 4 1+ 1 2 3 5)
- Subrtacts the top stack value from the second stack value and

replaces them, on the stack, with their difference.
(1 2 3 4 - 12 -1)

M6800 FORTH PAGE 23

X Multiplies the top two stack values and replaces them, on the
stack, with their 16 BIT product. (1 2 3 4 X 1 123}

2% Doubles the top stack value. (1 2 3 Y4 2% 12 3 8)

/7MOD Divides the second (16 BIT) stack value by the top (16 BIT)
stack value. The second stack value (dividend) is replaced by

the (16 BIT) quotient. The top stack wvalue (divisor) is
replaced by the (16 BIT) remainder. (1 2 5 3 /MOD 12 1 2)

MINUS Changes the sign of the top stack value.
(1.2 3 4 MINUS 1 2 3 -4) ,

ABRS Replaces the top stack value with its absolute value. (Negative
Y?lgeg aﬁe madg po?igige;)positive values are left alonel.
- A B .

DECI Changes the radix (ox base) to decimal. Rrithmetic operations and
SCII c¢onvexrsions are affected by the value of the radix.
(stack is un-affected)

HEX Changes the radix (oxr base) to hexadecimal. Arithmetic operations
and ASCII conversions are affected by the value of the radix.
(stack is un—~affected)

OCTA Changes the radix (or base) to octal. Arithmetic operations and
ASCII conversions are affected by the value of the radiwx.
(stack is un-affected)

MISCELLANEOUS WORDS.

' The dictionary is searched for the woxrd that immediately follous
the ' (quote). When that word is found, the address of the
executable machine code (following its headexr) is placed on the
stack. (1 2 3 4 ' woxrd 1 2 3 4 R000)

(Begins a string of text that will be skipped by the 6800FORTH
interpretex. The string being ignored must be terminated by a
e, The first blank following the "(" is a 6800FORTH
requirement and cannot be omitted. (stack is un-affected)

BYE Returns control to the machine's monitor.

FSE Places the 6800FORTH system in "FORTH SCREEN EDIT" mode. The
effect 1is that all keyboard input is ignored. The keyboard
buffer remains enmpty. This allows the cursor controls to be
used to edit a screen without f£illing the keyboard buffer with
partial word definitions. FSE mode remains in effect until the
first carriage return. (stack is un—affected)

M6800 FORTH ‘ ‘ PAGE 24

RNDM

ABIT

SECO

$NEW

ZERO

Generates a random number. The top value on the stack is used
to determine the upper limit £or the number. The number
generated will be positive and less than the top stack value.
The top stack value will be replaced by the random number.

(1 2 3 4 RNDM T2 3 1)

Holds the 6800FORTH system in a tight loop for about a quartex
of a second. It is wused din <c¢onjunction with a DO/LOOP or
BEGIN/END loop to allow a pause during word execution.

(stack is un-affected)

Uses the top value on the stack as the number of iterations for
a loop containing four ABITs. The effect of "5 SECONDS" would
be a delay of approximately 5 seconds. (1 2 3 4 SECO 1 2 3)

Prepares a 6800FORTH program, including a newly expanded

dictionarxy, for output by the machine monitor's output
facility. $NEW updates the dictionary initialization words to
include any newly added words. It alsoc c¢lears all of the

boundry initialization words. After $NEW, the 6800FORTH system
must be "Hardstarted". For this reason, $NEW will give control
to the machine's monitor.

Clears an area to Hex zeros. The second stack value is used as
the beginning address of the area to be cleared. The top stack
XalugEég th? %u?ber of 8-BIT locations to be cleared. (1 2 4000

M6800 FORTH | PAGE 25

12. 6800FORTH ASSEMBLER

A large number of the woxrds in +the 6800FORTH dictionary closely
resemble the 6800 mnemonic instruction set. They are used to generate
6800 machine code and add it to the dictionary. For this reason, they
need to be executed immediately (i.e. during the compilation of some
other word). To cause them to be executed immediately, they usually
follow the "[" (left bracket).

Although the mnemonics are almost the same, the syntax of the
instructions is quite different. The traditional "OPERATOR followed by
OPERAND" format has been reversed to accomodate the 6800FORTH syntax.
This allows the operands to be pushed onto the stack and then operated
upon by the mnomonic OP codes. The use of the stack also requires that
the ©6800FORTH ‘assembler words be informed of the desired addressing
mode of +those instructions +that contain addresses. The 6800FCRTH
assembler format is as follows:

OPERAND MNEMONIC ADDRESSING MODE

All of the 6800 mnemonic instruction set has been included in the
6800FORTH dictionary. Those mnemonics that could be confused with
valid HEX numbers or with other valid 6800FORTH words (e.g. ADDA ADCEB
BCC CLR) have been altered slightly to avoid the confusion. (e.g. ADA,
ACB, BCC, CLR,) The alteration, in all cases involves adding a comnma.
The following page contains a list of all of the 6800FORTH assembler
mnemonic OP codes. The *X (asterisk) following some words is not part
of = the word. It indicates which of the words requires an addressing
mode identifier.

The list is divided into three sections. The words in the first
section <require an operand on the stack and an addressing mode
identifier following *the word. This group of words will add either 2
or 3 bytes of machine code (depending on the addressing mode and
instruction) to the dictionary.

The second group of words all imply the relative addressing mode, so
no mode identifier is used. This group of words also finds its
operands on the stack. Two (2) bytes of machine code will be added to
the dictionary by any of these words.

The third group of words are implicit, and require neither an operand
nor an addressing mode identifier. each of these words will add 1 byte
of machine code to the dictionary when executed.

M6800 FORTH - : PAGE 26

GROUP 1 (Format: OPERAND MNEMONIC MODE)
ACA, X ACB, X ADA, X ADB, X
ANDA X ANDB X ASL X ASR X
BITA X BITB X CLR, X CMPAR X
CMPB X com X CPX X DEC, ¥
EORA X EORB X INC X JMP X
JSR X LDAR X LDAB X LDS X
LDX X LSR X NEG X ORAA X
ORAB X ROL X ROR X SBCAR X
SBCB X STAR X STAB X STS X
STX X SUBA X SUBB X TST X

GROUP 2 (Format: OPERAND MNEMONIC)

BCC, BCS BEQ BGE

BGT BHI BLE BLS

BLT BMI BNE BPL

BRA . BSR BVC BVS

GROUP 3 (Format: MNEMONIC)

ABA, ASLA ASLB ASRA
ASRB CBA, CLC CLI

CLRA CLRB CLV COMA
COMB DAA, DCR, DCB,
DES DEX INCA INCB
INS INX LSRA LSRB
NEGA NEGB NOP PSHA
PSHB PULA PULB ROLA
ROLB RORA RORB RTI

RTS SBA SEC SEL

SEV SWI TAB ' TAP

TBA TPA TSTA TSTB
TSX TXS WAT

¥ The three addressing mode identifier woxrds are:

Immediate

» X Indexed

a# Direct/Extended (Direct is used if the address
value, on the stack, is less than 256. The

system will make this determination.)

It is the zresponsibility of +the usexr +to insure that only valid
addressing modes are used.

The 6800FORTH assembler words are executed by the system just like any
other word. Unlike most other words, the assembler woxds will add data

M6800 FORTH PAGE 27

to the dicfionary when they are executed. The words:
5 LDAA

will cause tuwo bytes (86 05) to be added to the dictionary. This is
undesirable wunless a word is being defined. For this reason, the
assembler words should only be used within ":" (conon) definitions,
and then, only within the "[" and "]" (bracket) words. For example:

KILL [0 LDX # 0 CLR, ,x INX FB BRA ;

defines a word (KILL) in the dictionaxy. The ":" and "KILL" words are
the standard beginning of a colon definition, They cause a header to
be added to the dictionary. (the description of the dictionary on

pages 5 and 6 will explain the header in detail). Following the header
1s aluways some machine executable code. Usually that code consists of
one or more JSR (jump-to subroutine) instructions. In this example the
nipw (bracket) word causes the words that follow to be executed
immediately. Since +the words that follow +the "[" add data to the
dictionary when they are executed, they will cause seven bytes (CEQO
7e00 08 20fb) to be placed in the dictionary after the header for the
word. 'KILL. It i1is important to understand the effect of the "["
(bracket). Had it not been used, the machine executable code following
the headex for "KILL" would have been a list of nine JSR instructions.
The JSR instructions, when executed, would add the same seven bytes
(CEQO0 7E00 08 20FB) to the dictionary. The important difference is
that the seven bytes would not be added unitl the word KILL was
exXecuted, and they would not be a part of the KILL word's definition.

This is an important distinction, and if used properly it can add a
powerful MACRO extension to the 6800FORTH assembler. Words can be
defined which will add machine executable code te¢ the dictionaxy each
time they are executed. Some of these MACRO words have been used in
the development of 6800FORTH. They remain in the dictionary and can be
of use to the user. they are as follows:

MACRO CODE GENERATED COMMENTS

X=8P 54 LDX J# Loads the Index register with the
address of the current stack value

SP=X 54 STX a# Stores the address of the current
stack value from the Index register

¥=RS 84 LDX a% Loads the Index register with the
addzess of the current Return stack
value

RS8=X 84 STX a#% Stores the address of the current

Return stack value from the Index
Register

M6800 FORTH

SPd

SP=

RSAd

RS

1]

54 LDX
1 LDAA
0 LDAB

54 LDX
1 STAA
0 STAB

84 ldx

1 LDAA

0 LDAB
84 LDX

¥

s X

J#

PAGE 28

Loads the Index register with the
address of the current stack value
and the BA registers with that
16-BIT value

Loads the Index register with the
address of the current stack value
and stores the 16-BIT value from
the BA registers at that addzress

Same as SPd except for the Return
stack

Same as SP= except for the Return
stack

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

