PIRIOEIRANMINMIZAY sottwars

Program
Products

Reference Manual
(FLEX)

' SPL/M

Copyright (c) 1979 by Thomas W. Crosley and Programma
International, Inc.

All rights reserved. Reproduction in any part or form of the
contents of this document or its accompanying cassettie tape or
disk, except for the personal use of the original purchaser, 1is
strictly forbidden without the expressed written consent and
permission of Programma International, Inc.

PAGE 4 OF
SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER
PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

jI'
II.

IIT.

IV.

VI.

VIT.

VIIT.

IX.

X

XI.

TABLE OF CONTENTS

INTRODUCTION. e veeveesnccaaceocnacannasacencennens 7
PRIMITIVES.eee.. cecsecsssanans ceeccoscssssesansenn .2
IdentifiersSeeecece.. cesecesssscanae cectsecanael
DATA REPRESENTATIONS.ceeeeeacnceoccnnnansaocnnnnes 5
COnStants'OQ...‘ * ® ® %O 9w e W OO s e e s .3
Varia‘bles...“‘....0...‘...0‘‘t...‘.".4
FXPRESSIONS AND ASSIGNMENT STATEMENTS eeeeveceeeans 5
Orerator PrecedenCe..cecceceeeces ceevescna ceesbd
Assignment StatementS.eeeeeeeeeeecenenceesns ceved
Implicit Tyre ConversionSeeecee.. ceecene IS
DECLA.RATIONS'.....Ol..""."‘.ll.’..O.'-‘l'..l...'..g
Variable DeclarationSeeeceeeseeeees crecenses «.9
Constant Data DeclarationS.cccecececescecceessll

Symbolic Constant PeclarationSeeceeeessecsesaall

FLOW OF CONTROL & GROUPING e eeeveoacsococcsncnneanel?
I At emENt e e e eeeeeeeecnnscnencessnncnseandl?

DO-FND GrOUTSeceeocccesccsoaan tecveesacsnsvane Z
DO-WHILE Statement................ eeene .13
PROCEDURES oooooo ® 9 0 00 00 eE e e e ® " O® SO SN0 SIS S 0en 15
CALL Statement....-OQOvtooo‘no»o.oooﬁunor.oo~-15
RETURN Statement...... . 4
PISCFLLAL\IT—‘OUO FACILITIES. ® e 0w e easeae 0 8 SB UV OSRERD GG RNRS 18

Direct References t0 MEHNOIY.coeeeesoncsaceeeasld
Explicit Tyre CONversionS.eesosesscncecnacsasl
GENERATE Statementeceeeeeeceas cecscnncasas ...18

PROGRAM ORGANIZATION AND SCOPE.eecoeccacoccenaassell
Block Structure and SCOTE.cecosacccssonnneesel]

Program OriginSeeeescececscssscesecnsoeannones 22
COMPILE AND CONFIGURATION OPTIONCee¢eeeesoaosnses .24
Systen ConsiderationS.eeeeecescesas ceccsnsscas 24
Comrpiler DisSKeeeeeeeooaacannan cesestsscuncens 24
Running the Comriler.........u.... secesecanes 24
Include FileSeeeeceanececooanns cetesansrsacnea 26
Printer ConsiderationS........ ceccececancanan 27
Memory Usag€eeeseccsas Gessceencecscsnesnsanas 28

ERROR I‘{A&P;[DLII‘:G ooooooooooooo e e 200 e ® e o0 a0 een o ¢ e see 29

FORM DOC- 101

8 -

76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 11 oF

SYSTEM NAME SYSTEM NUMBER" CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

XIT. APPENDICES
A. SPL/M Compiler Interface Routines........A.]
B. SPL/M DOS Library ROULINESe.eceecncnseceaasBell
C. "Size" Program (SPL/M SOUICE).escassveasalal
D. SPL/M Reserved WOrdS..eeeecesscccacscessalall
Fo Grammar for SPL/Meceecscccceescscsoasnsselal

FORM DOC-101 8-76 General Documentation ©® 1976 PROGRAMMA CONSULTANTS

PAGE] OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

I. INTRODUCTION

SPL/M (Small Programming Language for Microrrocessors) is
based on the language PL/M, 1initially developed by the Intel
CorrToration.

SPL/M is a Tlock-structured language which features
arbitrary length identifiers and structured programming
constructs. It is suitable for systems rrogramming on small
comruters, since the compiler requires cnly 20K of memory to run.
Either two cassette decks or a disk are also required.

The 1language can be compiled in only one pass, which means
that the source code has to be read only once.

Unlike most high-level language translators available for
microprocessors, SPL/M is a true compiler: it generates absolute
6800 object code which requires no run—-time interpreter. Due to
extensive intra-statement optimization, the generated code is

"almost as efficient as the equivalent assembly language.

The compiler has a number of compile-time options, including
a printout that contains the interlisted object code.
Syntactical error messages use position indicators to indicate
exactly where an error occurs.

_ This menual has been crganized to be usable as both a
tutorial and a reference guide. In addition to the many examples
in the text, a complete SPL/M program is presented in Arpendix C.

As an example of the type of arplication SPL/M is suited
for, this entire manual was formatted using a text rrocessing
system written in S00 lines of SPL/M.

Some details of the compiler implementation are presented in
the paper "SPL/M - A Cassette-Eased Compiler", by Thomas W.
Crosley, in the Conference ZProceedings, Second West Coast
Comyuter Faire, March, 19/8.

FORM DOC-101 8-76 General Documentation

© 1976 PROGRAMMA CONSULTANTS

PAGE 2 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

II. PRIMITIVES

. An SPL/M program consists of primitives (reserved words,
identifiers, and constants), along with special characters
(operators).

One or more Dblanks (spaces) are required between any two
primitives on the same line, to tell them apart. Blanks are
allowed anywhere else, except in the middle of a primitive or a
two character operator (such as >=). A carriage return is
treated the same as a blank; therefore statements can spill over
onto as meny lines as necessary.

Comments may be embedded in an SPL/M program anywhere a
blank is legal. Comments are delimited by a /* ... */ pair:

/% COMMENTS MAY GO OVER
MORE THAN ONE LINE */

Identifiers

An identifier is a programmer assigned name for a variable,
procedure, or symbolic constant. Identifier names may be up to
%1 characters long.

The first character must be alphabetic (A-Z), while the
remaining characters may be either alphanumeric (A-Z, 0-9) or the
separation character ($). The latter is completely ignored by
the compiler: an identifier with imbedded $°s is equivalent to
the same identifier with the $°s omitted.

Examples of valid identifiers:

ACIANO ACTIASNO (same variable)
BUFFER1
A$RATHER$LONGSPROCEDURESNAME

Tdentifier names must not conflict with the reserved _words
of SPL/M, such as DECLARE, PROCEDURE, etc. A complete list of
reserved words for both Versions 1 and 2 of SPL/M is provided 1in
Appendix D.

All identifers must be declared before they are referenced.
Variables and symbolic constants are defined via the DECLARE
statement (Section Vg; procedures are defined via the PROCEDURE
statement (Section VII

-

FORM DOC:101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 3 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

III. DATA REPRESENTATIONS

Constants

Constants can be either a number or a character string. As
their name implies, their value remains constant during program
execution.

A numeric constant, or number, is a string of digits
representing an unsigned integer in the range 0-655%5. A number
is assumed to be decimal unless it is terminated by the letter H,
indicating hexadecimal. The first character of a hexadecimal
constant must always be numeric (a leading zero is always
sufficient).

Examples of numeric constants:

~

0 22 65525
10 20H OFFITFH
OAH

A character constant, or string, consists of one or more
ASCII characters enclosed in apostrophes. A null string (i.e.
“*) is not permitted. Imbedded apostrophes are represented by
two consecutive apostrophes (e.g. DONT).

Constants of one or two characters are equivalent to the
nunmeric constant representing the ASCIT code for the
character(s). In a two character constant, the left-most
character is placed in the most significant byte.

Character constants of more than two characters may only
appear in a DATA declaration (Section V).

Examples of character constants:

‘AT = 41H

e = 20H

“12° = 3132H .
#v¢s = 27H (one)
*THIS IS A LONG STRING®

FORM DOC-101 8-76 General Documentation . ©® 1976 PROGRAMMA CONSULTANTS

PAGE 4 OF
SYSTEM NAME SYSTEM NUMB_ER‘ CATALOGUE NUMBER
PROGRAM NAME . PROGRAM NUMBER DATE DOCUMENTED
Variables

Variables are memory locations set aside by the programmer
to hold date that changes during the execution of a program.
Variables can be declared as either type BYTE (8 bit data) or
type ADDRESS (16 bit data). BYTE varlables should be used
whenever possible to avoid the overhead associated with double
precisicn arithmetic on the 68C0.

) Variables are defined using the DECLARE statement (Section
V), €.8.

DECLARE CTR BYTE;
DECLARE BUF$PTR ADDRESS;

Vectors (one dimensional arrays) can also be declared, e.ge.
DECLARE LIST. (10) BYTE;

which sets aside 10 bytes of storage. A vector has n
elements, referenced as :

V(0), V(1)y «ee, V(n=1)

The value in parentheses is the subscript, which can be any
SPL/M expression (Section 1IV). The subscript is added to the
base address for BYTE vectors to generate the correct memory-
reference. For ADDRESS variables, twice the subscript is added
to the tase to generate the correct memory reference.

For example, if the BYTE vector LIST declared above was
located at memory address 4C0, then 1IST(4) would refer to memor
address 404. However if LIST was an ADDRESS vector, then LIST(4
would refer to memory addresses 408 and 409.

Subscripted variables can be used anywhere a variatle is
allowed in SPL/M, except as the operand of the dot operator
(Section IV).

The first element of a vector may also be referenced without
the subscript; i.e. V and V(0) are the same.

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 5 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

IV. EXPRESSIONS AND ASSIGNMENT STATEMENTS

An expression is simply a way of computing a value.
Expressions are formed by combining operators (such as + or *)
with either operands (variables or constants) or other
expressions enclcsed in parentheses. ' :

~An arithmetic expression consists of one or more operands
which are combined using the following arithmetic operators:

addition
subtraction (unary minus also allowed)
unsigned multiplication
unsigned integer division
oD modulo (remainder from a division)
dot operator (see below)

~ *x | +

V]

Ll
=

Examples:

X

ALPHA - BETA

10 MOD 3 (result =1)
-1

X*(Y+Z) /2

.BUF

The unary dot operator (.) generates a numeric constant
equal to the memory address of a variable. The variable cannot
have a subscript.

A relational expression consists of +two arithmetic
expressions combined with one of the following relational
operators:

< less than

<= less than or equal to

= equal to

<2 not equal to

>= greater than or equal to
> greater than

Comparisons are always performed assuming the operands are
unsigned integers. If the specified relation holds, a value of
OFFE (true) is returned; otherwise the result is O (false).

FORM DOC-101 8-76 General Documaentation "© 1976 PROGRAMMA CONSULTANTS

PAGE © OF
SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER
P!ROGRAM NAME PRQQRAM NIUMBER DATE DOCUMENTED
Examples:
A>1
CNTR <= LIMIT+OVER
LOOP<>0

A logical expression consists of either arithmetic or

relational expressions combined with one or more of the following
logical operators:

OR btitwise OR

XOR . Dbitwise exclusive OR

AND bitwise AND

NOT 1*s complement (unaryoperator)
Examples:

LADIES AND GENTLEMEIL

NOT FLAGS (same as FLAGS XOR =1)

X>10RY K2

The following table summarizes the effect of each logical

orerator:
X Y XO0RY XXORY X AND ¥ NOT X
0 O 0 0 0] 1
0 1 1 1 0 1
1 O 1 1 O 0
1 1 1 0 1 0]

lLogical expressions are used_ in assignment statements to
erform bit manipulation, and in IF¥ and DO--WHILE statements
%Section VI) to specify a series of conditional tests.

Operator Precedence

The order of evaluation of operators in an expression 1is
primarilyrdetermined by operator precedence.

Operands are assoclated with the adjacent operator of
highest precedence. Operands adjacent to two operators of equal
precedence may be associated with either one. Operators with the
highest precedence are evaluated first. Two operators of the
same precedence may be evaluated in either order.

FORM DOC-101 8-76 General Documentation . © 1976 PROGRAMMA CONSULTANTS

PAGE 77 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME ’ PROGRAM NUMBER DATE DOCUMENTED

y The following 1list summarizes the operator precedence for
SPL/M:

highest: () .
unary -
* /7 MOD
-+ —
= < 2> <O <K= o=
NOT

: AND
lowest: OR XOR

Since parentheses have the highest precedence, they can be
used to override the implicit order of evaluation. The following
fully parenthesized expression

IF (A=3) OR (B > (10%(I+1))) THEN
can also be written:
IF A=3 OR B>10%*(I+1) THEN

The parentheses around the I+1, to force the addition to be

done first, are the only ones required in this case.

Assignment Statements

Assignment statements perform the real work of a prograi.
They are used to assign the result of an expression to a variable
location. The format is:

variable = expression;

The value of the variable on the left—hand side of the equal
sign is replaced by the value of the expression on the right-hand

side.
Examples:
CIR = CIR + 13
LIST(I) = O;

- FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 8 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

Implicit Type Conversions

Mixed mode is a situation which arises when BYTE and ALDRESS
variables or constant are combined in the same expression or
assignment statement. To avoid generating unexpected results,
SPL/M attempts to wuse double-precision arithmetic throughout
mixed mode expressionse.

As soon as an ADDRESS variable or constant is encountered
(scanning from left to right), then the remainder of the
statement or expression 1is evaluated in double-precision mode.
For example, if X is an ADDRESS variable, then

X:—-1;)

will set X = OFFFFH since the unary subtraction will be'
carried out in double precision.

When operating 1in double-precision mode, the high-crder
eight bits of any BYTE variables or constants in an expression
are assumed to be O. In an assignment statement, if the variable
on the left-hand side is type BYTE, whereas the expression on the
right-hand side 1is type ADDRESS, then the high-order eight blts
of the expression will be lost.

In a complex relational expression involving ADDRESS
variables on one side and BYTE variables on the other, the
ADDRESS variables should appear first to force the entire
expression to be evaluated in double-precision.

Note: the rules used by SPL/M for evaluating mixed—mode
expressions are not the same as PL/M.

‘Functions for performing explicit type conversions are also
available in SPL/M; see Section VIII.

.FORM DOC-101 &-76 General Documentation : © 1976 PROGRAMMA CONSULTANTS

— - . Lo - s

PAGE Q OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

V. DECLARATIONS

Variables, constant data arrays, and symbclic constants are
defined wusing the DECLARE statement. (DCL dis an allowed
abbreviation for DECLARE). All programmer-defined identifiers
must be declared before they are referenced 1in the program.
Declarations are subject to "scope", which is explained under
program organization (Section IX).

Variable Declarations

The general form of the declare statement is:
DECLARE identifier [(bounds)] type;

where "(bounds)" is optional and is used only for vector
declarations (see below). The "type" may be either BYTE,
dencting 8-bit data, or ADDRESS (abbreviated ADDR), denoting
16-bit data. .

Examples:

DECLARE CTR BYTE;
DCL BUF$PTR ADDRESS;

Vectors (one-dimensional arrays) are defined by specifying
the numter of elements following the variable name; e.g.

DCL LIST (10) BYTE;
which sets aside 10 bytes of storage, and
DCL AS$LIST (10) ADDR;

which éllocates 20 bytes (two for each address element). Vectors
are referenced using subscripts as explained in Section III.

The number of elements in a vector declaration may be zero,
in which case no storage is reserved. The variable will refer to
the same memory location as the next data declaration. For
example, .

DCL BIG$CTR (O) ADDR,
HIGH$CTR BYTE,
LOW$CTR BYTE;

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE1(Q OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

HICH$CTR and LOWSCTR overlay tne high and low bytes of
BIG$CTR. This example also shows how several variables can be
declared in the same statement. FEach declaration is serarated by
a comma.

Sometimes it 1is desirable to declare a variable at a
rarticular memory location. This 1is done &by rreceding the
DECLARE statement with an origin, which will cause the next RYTE
or ADDRESS variable to be allocated at the given address.

”’

Origins consigt of a number followed by “:°. For example,
%8H: DCL ACIASNO ADDR, NO$PRNT BYTE;
5CH: DCL BUF$BEG ADDR;
DCL BUF$END ADDR;

will cause the following allocations to take place:

2C8H-39H ACTANO
2AH NOPRNT
) 5CH-2DH BUFBEC

3FH-3FH BUFEND

If a declaration is not preceded by an origin, variables are
allocated storage immediately following the last declaration.
Unless cverridden by an explicit origin, the first variable
declaration starts at 10H. Declare origins have no effect on DCL
DATA and DCL LIT statements {(discussed telow); however an origin
on either will affect the next variabvle allocation.

Constant Data Declarations

It is often necessary to define constant data, such as
character strings or a table. This is done via a DECLARLE DATA
statement, which has the general form:

DECLARE identifier DATA (constant list) ;

where "constant list" is a 1list of numeric or character
constants, separated by commas.

It is assumed that data declared in this way will not change
during execution of the program. The data is located within the
program object code.

FORM DOC-101 8-76 General Documentation ©® 1976 PROGRAMMA CONSULTANTS

PAGE 11 OF

SYSTEM NAME SYSTEM NUMBER CATALOGUE NUMBER

PROGRAM NAME ' PROGRAM MUMBER DATE DOCUMENTED

T

The identifier defined in a DCL DATA statement is always of
type byte, and is referenced using subscripts the same as any
vector. '

Examples:

DECLARE REVERSE$DIGITS DATA (9,8,7,6,5,4,3,2,1,0);

'DCL MSG DATA (“A MESSAGE STRING”,4);

Symbolic Constant Declaration

The DECLARE LITERALLY statement provides a compile-tinme
symbolic constant substitution mechanism similar to the "equate"
facility in assemblers. The general form is:

DECLARE identifier LITERAILY ‘number’;

LITERALLY may be abbreviated as LIT. Whenever the
identifier is encountered in the program, it will be replaced by
the number. .

Examples:

DECLARE CASS1 LITERALLY “OFO50H”;
DCL TRUE LIT “OFFH", FALSE LIT “0°;

-

IF DECK <> CASS1 THEN
DEFAULT = FALSE;

FORM DOC-101 8-76 General Documentation "© 1976 PROGRAMMA CONSUL.TANTS

PAGE 12 OF

SYSTEM NAME | SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

VI. FLOW OF CONTROL & GROUPING

Various SPL/M statement types are used to alter the path of
program execution. SPL/M does mnot have the GOTO statement
available in BASIC and FORTRAN. However the structured
programming constructs (IF~-THEN-ELSE, DO-END, and DO-WHILE) can
be dused to express any program more clearlJ than if GOTO’s were
use

IF Statement

The IF statement selects alternate execution paths, based on
a conditional test. IF statements have two forms:

a) IF expression THEN statement-1;

b) IF expression
THEN statement-1;
FLSE statement—2;

Execution of an IF statement begins by evaluatin the
expression following the IF. If the right-most %least
significant) bit of the result is a 1, then statement-1
executed. If the ©bit is a 0, no action is taken for the flrst
form (a), and statement-2 is executed for the second form (b).

Since the result of a relational expression is either OIFFH
(true) or O (false), the construction "IF relational-expr THEN"
has the expected result.

In the second form of the IF statement above (Db),
statement—-1 may not be an IF statement. This avoids any
ambiguity in the following construction:

IF expression
THEN IF expression
THEN statement-1;
ELSE statement-2;

The rule in this case is that the ELSE belongs to the second
(innermost) IF statement. If needed, a DO-END group (defined
below) can be used to associate the ELSE with the first IF
statement:

FORM. DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 1% OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

IF expression
THEN DO;
IF expression THEN statement-1;
END;
ELSﬁ statement-2;

The ELSE now clearly belongs to the first IF. The following
are examples of IF statements:
IF CFLAG THEN CTIR = CTR+1;

IF A > O AND B > O
THEN A=B;

IF X>0 THEN ¥=1; ELSE Y=2;

DO-END Groups

The DO-END statement is used to group together a sequence of
SPL/M statements, such that they are treated as a single
executable statement in the flow of control. For example,

~ IF SWITCH

b4
TEMP=A;
A=B;
B=TEMP;
END;

All three statements in the DO-END group will be executed if
the wvariable SWITCH 1is true. Note that indentation is usually
used with IF and DO statements to make the logic of the program
stand out.

Simple DO-END groups are also used (less frequently) to

create a Dblock in which 1local variables are declared, as
described in Section IX.

DO-WHILE Statement

The DO-WHILE statement causes a group of statements to be
repeatedly executed as long as a condition 1is satisfied. The
general form is:

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 14 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

DO WHILE expression;
statement~1;

-

statément—n;
END;

The statements within the DO-WHILE are executed as long as
the result of the expression has its right-most bit equal to 1.
The expression is evaluated at the beginning of each execution
cycle.

This version of SPL/M does not have the PL/M iterative-type
DO (like the FOR statement in BASIC). However the more general
DO-WHILE can be used in an identical manners:

I=20;

DO WHILE I < 10;
CHAR = I+707;
CALL PUTCHR; /* DISPLAY 0-9 */
I =1I+1;

END;

It is sometimes desirable to terminate the execution of a
DO-WHILE abnormally (i.e. for some condition other than the
expression following the DO). This is facilitated by the BREAK
statement, which causes a transfer of control to the first
statement following the END which terminates the innermost
DO-WHILE.

Example:

I = 0; FOUND = O;
DO WHILE NOT FOUND;

IF LIST(I) = KEY /¥ SEARCH LIST FOR KEY */
THEN FOUND = 1; /¥ EXIT NEXT CYCLE */
ELSE DO;
I = 1I+1;
IF I >= 100 THEN BREAK; /* ABNORMAL EXIT */
END;
END;

If the key is found in the list, the DO-WHILE will exit
normally with FOUND=1 and I equal to the list indexX. Otherwise
the BREAK will terminate abnormally with FOUND=O.

Note: the BREAK statement is an SPL/M extension and is not
in PL/M.

FORM DOC-10i 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 15 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM MUMBER

DATE DOCUMENTED

VITI. PROCEDURES

Well designed programs make frequent use of subroutines,
each of which is related to a particular function. In SPL/M,
subroutines are called procedures, and are defined as follows:

label: PROCEDUREF;
statenent-1;

-

-

statément—n;
END;

The "label" is the procedure name, which is required later
when the procedure 1is called. PROCEDURE may be abbreviated
PROC.

In this version of SPL/M, all procedures must be defined at
the beginning of the program (see Section IX) and nesting of
procedure definitions is not allowed.

Since a procedure is a block (also discussed in Section IX),
all variables declared ' within it are "local™ and cannot be
referenced outside of the procedure. All storage declared in
SPL/M is static. Automatic stacking of local variables is not
done on entry to a procedure.

All valuves passed to and from procedures must be done via

global variables since procedures cannot have parameters in this
version of SPL/M.

CALL Statement

Procedures are invoked by the CALL statement:
CALL procedure—-nanme;

where the procedure must have been previously defined as
described above.

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CdNSUFTANTS

PAGE 1¢ OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM MUMBER DATE DOCUMENTED
Example:

DCL MAX$LINE LITERALLY “807;
DCL LINE (MAX$LINE) BYTE; /* CLOBAL */

-

P

CLEARSLINE: PROCEDURE;
%g% I BYTE; /* IOCAL */
2
DO WHILE I < MAX$LINE;
LINE(I) = °~ *;
I =1+1;
END;
END;

CALL CLEARS$LINE;

It is also possible to call a procedure by its address.
This makes it easier to link to assembly language subroutines in
an operating system. For example,

CALL OFC37H; /* HOME CURSOR */
CAIL OFC3DH; /* CLEAR SCREEN */

Note: the construction "CALL number" is an SPL/M extension
and is not in PL/M.

The “declare literally" facility (Section V) can be used to
define the address as a symbolic constant to keep the reference
symbolic:

DCL HOME LIT ‘OFC37H”;

-

-

CALL HOME;

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 17 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

RETURN Statement

When a procedure is called, it starts execution at the
beginning of the procedure and normally does not return until the
END matching the PROCEDURF statement is reached. However it 1is
possible to force an earlier return by wusing the RETURN
statement, e.g.

7

IF ERROR THEN RETURN;

Whether a RETURN statement is used or not, a procedure
returns to the statement following the original CALL.

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 18 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

VIIT. MISCELLANEQUS FACILITIES

Direct References to Memory

It is sometimes desirable to refer to the memory address
space of the 6800 directly. (In fact this is the only -way 1/0
can be performed directly in SPL/M, since the language does not
have explicit input/output statements. But I/0 is wusually done
via calls on existing operating systems routines.)

When required, direct reference to memory can be done using
the MEM and MEMA vectors, which are predeclared to start at
address O. MEM is type byte, while MEMA is type address. The
normal doubling of subscripts is not done for MEMA; for example

- MEMA(38H) = OFO5CH;

sets memory locations 38H and 39H to the hexadecimal value
OFO50H.

Note: MEM and MEMA are SPL/M extensions and are not in
PL/M.

When used on the left—-hand side of an assignment statement,
MEM is like the POKE function in some BASIC’s. On the right-hand
siide, MEM is like the PEEK function.

The subscript can be any arithmetic expression, but usually
is Just an address variable. In the following byte move
subroutine, global variables BUF1 and BUF2 contain the start
addresses of two buffers, and BSIZE is the number of bytes to
move s

BYTE$MOVE: PROC;
. DO WHILE BSIZE <> O
MEM(BUF2) = MEM(BUF1);
BUF1 = BUF1+1; BUF2 = BUF2+1;
BSIZE = BSIZE-1;
END; '
END;

FORM nNnoOC-101 8/8.7aA Nanara 1 Nacmimantatinn (E) 1976 PROGRAMMA CONSULTANTS

PAGE 19 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME pRQGRAM NUMBER DATE DOCUMENTED

Explicit Type Conversion

Section V discussed implicit (automatic) type conversions in
mixed mode expressions. SPL/M also provides two explicit type
conversions in the form of built-in functions, which take address
expressions as arguments. The functions may appear anywhere an
expression is legal.

IOW(expr) returns the least-significant byte of its
argument.

HIGH(expr) returns the most-significant byte of its
argument.

GENERATE Statement

It dis occasionally necessary to link to operating system
subroutines which pass values in registers. The GENERATE
statement can be used to produce machine code "patches" to
accomplish this. It generates code in-line wherever it appears
in an SPL/M program. Because of the low-level nature of this
statement, and the possibility of making errors, it should be
used only where absolutely necessary.

The GENERATE statement has the form:
GENERATE (constant list);

where "constant 1list" is a list of numeric, character, or
symbolic constants, including address (dot) references. GENERATE
may be abbreviated GEN.

Note: the GENERATE statement is an SPL/M extension and is
not in PL/M.

The following exémple stores the contents of the accumulator
at location 42H after calling a subroutine to input a character:

CALL OFC4AH;
GEN(9TH, 42H);

However wusing only hexadecimal constants makes the code
nearly impossible to read. This can be improved by using DCL
LIT” s and declaring a variable at address 42H:

FORM DOC-101 8-76 General Documentation ® 1976 PROGRAMMA CONSULTANTS

PAGE DO OF

CATALOGUE NUMBER

SYSTEM NUMBER '

SYSTEM NAME
DATE DOCUMENTED

PROGRAM NUMBER

PROGRAM NAME

42H: DCL CHAR BYTE;
DCL GET$CHAR LIT ‘OFC4AH’,
"~ STAA LIT “97H’;

CALL CET$CHAR;
CEN (STAA, .CHAR);
For additional examples, refer to the SPL/lN litrary routines
presented in Aprendix B.

AN

© 1976 PROGRAMMA CONSULTANTS

.FORM DOC-101 8-76 General Documentation

PAGE 21 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME : PROGRAM NUMBER DATE DOCUMENTED

IX. PROGRAM ORGANIZATION AND SCOPE

In general, an SPL/M program consists of a set of global
declarations, followed by any procedure declarations, followed by
the "main" portion of the program. The last line of the program
must contain the characters EOF (end of file) which generates an
RTS instruction to return to the caller of the main program.

DECLARE statements may appear anywhere in SPL/M, but their
location may have different effects due to the "scoping” rules
discussed below. In all cases, all names, whether they are
variables, procedures, or symbolic constants, must be defined
before they are referenced in the program.

Block Structure and Scope

The largest syntactic unit in an SPL/M program is the
outermost program block, which consists of the global
declarations, procedure definitions, and the "main" program.

Global declarations will be known, or available, to all
procedures and the main program. Each procedure may also contain
i1ts own declarations, which are local; i.e. known only within
that procedure.

Procedures and/or the main program may also have DO-END
groups (Section VI) containing additonal declarations, which are
local to each group.

Example:
DCL A BYTE, B BYTE; /* GLOBAL*/]B
_ A
XYZ: PROC;
DCL B ADDR, C ADDR;
DO; B
DCL A BYTE; A c’
END3 -
END; - -
XYZ
/% MAIN */
DCL C BYTE; B A
. C
| FOF _ _

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE oo OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

The brackets indicate the "scope" of each variable.

Variables, once defined, can be redefined only within a
nested Dblock (procedure or DO-END group), which will result in
additional static storage being allocated. The new definition is
known only within the nested block(s); when the end of the nested
block is reached the original definiticn is in effect again.

. Variables, unless redefined, are known within the block in
which they are declared and in all blocks nested within it.

Program Origins

Origins, which are simply a number followed by “:7, have
already been discussed in the context of declare statements
(Section V).

A program origin is any origin not preceding a DECLARE
statement. Program origins affect the generation of the next byte
of object code, including DCL DATA constants (which are located
within the program object module).

In this version of SPL/M, program origins are restricted to
the following locations:

1) First statement of a program (defines starting
address).

2) Beginning of each procedure definition (the origin must
be placed just ahead of the procedure name).

3) First statement of "main" (allowed only if the program
contains procedure definitions).

In =2ll the cases above, origins are optional. In the
absence of any origin the first byte object code will start at
location 1COH. If the main program or a procedure lacks an
origin, the asscciated code will follcw the code inmmediately

preceding.

- If provided, the initial (start) origin must be inmediately
followed by 2 '"null statement" (e.g. QA1COE:;) to distinguish it
from a declare origin.

Yhen an origin 1is specified, the user is resrernsible for
insuring that the resulting code does nct overlap code that has
already been genrnerated.

FORM DOC-101 8-76 General Documentation ® 1976 PROGRAMMA CONSULTANTS

PAGE 23 OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

The following example summarizes the SPL/M progran
organization. Everything 1in brackets [] is opticnal; and any
addresses are for example only. Necte that declares can go
anywhere; however for clarity it is best to restrict them to the
begimming of the program, the beginning of each procedure, and
the beginning of "main®.

[200H:;] /* OPT. START ADDRESS */

([42H:] DCL’s | /* GLOBAL DECLARES */

[[300H:] XYZ: PROC; /* OPT. PROCEDURE
. DEFINITIONS */

-

END;
[400H:] /* OFT. ORIGIN FOR MAIN */

/% main */

EQF

A jump from the beginning of the program (e.g. 200H) to the
beginning of the code for main (e.g. 400H) is automatically
generated if there are procedure definitions and if there is
either an explicit start address provided or there are any global
DCL DATA’s.

Refer also to Appendix C.for an example of a complete SPL/M
program that contains many of the elements described above.

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE’24 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

X. COMPILE AND CONFIGURATION OPTIONS

(FLEX Version 1.2)

System Considerations

This
Operating

version of the compilér is designed to run on a
6800-based system, such as the SWTPc, running under the FLEX

System. In particular, it assumes the existence of:

FLEX 1.0 or 2.0 (not miniFLEX)

20K of user RAM starting at location 0O0CO

SWTBUG monitor

Comriler Disk

files:

The disk supplied

SPLM.CMD -
FIX102.TXT -
SPIM.LIB - -
SPIMREAD.LIB -
SPLMWRIT.LIB -
SIZE.TXT -

The SIZE.TXT source
the compiler. It also
the #INCLUDE facility discussed below.

Running the Comriler

from the keyboard.

SPLM[, <source>[,<binary>][,+<option list>]]

ROM or equivalent

with the comriler contains the following

SPL/M compiler

Assembler source for compiler interfaces
SPL/M library (general DOS interfaces)
SPL/M library (reading sequential filesg
SPL/M library (writing sequential files
SPL/M source for sample program (SIZE)

file is intended to be used as a test of
brings in two of the library files using

The compiler has several compile-time options which control
the generation of listings and tinary files.

The general syntax for the SPLM command is:

The ‘<>’ enclose a field defined below and are not actually
typed. The °[7]° surround ortional fields.

All parameters are optional. If none are
comriler runs interactively with the source input coming directly
This is useful for experimenting, to see what
kind of code the compiler generates for a particular input. 1In

rrovided, then the

FORM DOC-101 8-76

General Documentation

© 1976 PROGRAMMA CONSULTANTS

PAGEDS OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

this mede a full code listing is always outrut to the terminal.
A binary obJect file is not produced.

The normal mode however is for a <source> file name to be
specified to be compiled. In this case the compiler reads the
named file from disk until an EOF statement is encountered in the
source. The defaults for the <source> file specification are a
-TXT extension and the working drive number.

If the optional <binary> file name is also specified, it is
used as the name of the object file written to disk. If <binary>
is not included in the command, the binary file will have the
same ‘name’ as the source file, but with a .BIN extensicn.

The option 1list 1is prefixed with a plus sign (’+°), with
each option represented by a single letter. The letters may be
in any order. The following options are available:

B (No binary). Do not create a binary file on disk, even if a
<binary> file name is specified.

Y (Yes, delete). Delete an old binary file of the same name
as the one about to be produced. If this option is not
specified, the comriler will prompt if the Dbinary file
already exists. Respond with ‘Y’ to delete it.

t=

(Display errors only). The compiler normally produces a
line-numbered source listing. If this option is selected
only error lines (if any) will be displayed.

C (Display code). Output a full listing, including both the
source and the interlisted object code.

G (Display globals symbols). Output a symbol table containing
only globally-declared symbols ?which includes all procedure
entry points¥.

A (Display all symbols). Output a symbol table with both
global and local symbols. Each symbol table block will be

displayed as the block is exited.

If a binary file is being produced, it will have a transfer
address only if an initial origin (e.g. OA100H:; is srecified
as described in Section IX.

If the code option (C) is selected, the object code for each
statement is output as it is generated. Since this is a one-pass
comriler, occasionally lines like:

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

.

PAGE D¢ OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

155C: 7E 00 00

are output when the compiler knows that a forward Jump is
required (for example in an IF or DO-WHILE statement) but doesn’t
know the addresss yet. In such cases an additional entry is
outrut further down in the listing, when the address is resolved.
Parentheses are used to indicate that this entry is a "fixur" to
a previous unresolved jJjump:

(155C: TE 15 S0)

A symbol table is output only if one of the options A or G
is selected. The symbols are alphabetized on the first character
only. Along with each symbol is listed the type (BYTE, ADDR,
PROC, or LIT), and its value. Appendix C was printed with the G
option.

When the compiler has finished executing, it will display
the number of errors, followed by the highest memory address used
by the symbol table. If the compiler returns to the monitor
without displaying these last two items, a fatal error has
occurred (see Section XI).

Examples:

SPLM Interactive input from keyboard

SPIM,SIZE - Source = SIZE.IXT, binary = SIZE.BIN

SPIM,SIZE,+CY - Source = SIZE.TXT, binary = SIZE.BIN,
display globals, delete cld binary

SPLM,SIZE,0.SIZE.CMD,+E - Source = SIZE.TXT, binary = C.SIZE.CMD,
display errors only

Include Files

The compiler has a built-in include processor, which allows
source library files to be brought in during a compile. The
syntax is:

#INCLUDE <source>

where the <source> file name defaults to a .TXT extension and the
working drive. The #INCLUDE must start in column 1. The include
statement 1is replaced by the file it includes. When the end of
the include file is reached, the compiler switches back to the
original file. Included files should not be terminated by an EOF
statement, and must not themselves contain #INCLULE statements
(i.e., includes can not be nested)..

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 27 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

The source from an included file is normally output to the
listing in place of the #INCLUDE statement. However this can bte
inhibited by the #NOLIST statement:

#NOLIST

source text
#LIST

None of the source text between the #NOLIST and the #H#LIST
will be listed, except for any lines in error. Both statements
must start in column 1, and neither are outyut tc the listing.

The library files 1listed in Appendix B are intended to be
included at the beginning of an SPL/M program, as needed. All
the files have a [NOLIST statement at the beginning, and a #LIST

statement at the end, so they won’t be 1listed during every
comrile.

Printer Considerations

To have the 1listing outrut to a printer, precede the SPLM
comrand with a P (see the P command in the FLEX User’s Manual).
For example,

P,SPIM,SIZE

would cause the line-numbered source listing for SIZE.TXT (along
with any error messages) to be output to the printer.

Each mage of the 1listing starts with a form-feed (OCH)
character, which is followed by the top margin, title and finally
the source/object listing. The title includes the source file
name (without extension), date, and page number and is followed
by two Dblank 1lines. This title is generated in FLX102.TXT and
thus can be changed by the user if desired.

The ©byte at location 3A2H specifies the tor margin, i.e.
the number of blank lines from the top of the page to the title.
This number can be O, which will cause the title to be rrinted on
the top line.

The Dbyte at location 3A1H specifies the number of lines to
be printed on each yage before the formfeed is issued. This
count includes the tcp margin (see above), plus three for the
title.

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE g OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

To accomodate narrow-width printers, if the byte at location
O39DH = 1 the title and source/object listing is limited to 40
columns = (assuming the input source 1is kept less than 322
; characters wide).

Note: printer spooling should not be peformed during a
comrile, since the compiler reroutes SWI‘s back to the ROM
moritor to handle fatal errors (see Section XI). The SWI vector
is restored when the compiler returns to the DOS.

Memory Usage

The main part of the compiler uses RAM from O380H to ZI'FFH.
The symbol table starts at location 40CCH and can gc up to 47FFH.
The highest address actually used by the symbol table is
displayed at the end of each compile.

The interface routines which link the compiler with the DOS
are assembled to reside at 4800H-4FIFTH, but they can be easily
moved by changing one ORG statement in FLX102.TXT if more room is
needed for the symbol table.

The compiler also uses low memory up to location OFFH. The
top of the stack is set to 1FFH on entry but is restored on
exit.

FORM DOC-101 8-76 General Documentation © 1976 P‘RQGRAMMA CONSU[-TANTS

PAGE pg OF

SYSTEM NAME SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

XI. ERROR HANDLING

(SSB/FLEX Version 1.2)

When an errcor 1is detected, the source 1line 1is rprinted
followed by a line containing one or mecre single-character flags
indicating the ecror(s). The error codes are:

Duplicate declaration of the same identifier
Origin error (see Section IX for rules)

Procedure definition error (Section VII)

Syntax error; statement has an illegal construction
Undefined identifier

Chhrgoyg
U A

The flags are positioned under the rprimitive or operator
where the error was discovered. For example, in the printout
below,

0210 TBL(I) = CTR1 ++ CTR2;
*xxk% U S U

TBL and CTR2 are undefined, and there is a syntax error because
of the second “+7. When a syntax error is discovered, the
remainder of the statement is ignored (up to the next “;7),
except that undefined identifiers will continue to be flagged.
Also, when undefined identifiers are encountered code is still
generated (assuming an address of 0) to allow ratching.

The above errors are the only ones which should cccur for
most users. They are all non-fatal; that 1is the conpile is
allowed to proceed.

In addition there are a number of fatal errors which result
in the compiler aborting. They are implemented via software
interrurts, and result in the ROM monitor %e.g_ SWTBUG) Dbeing
entered. '

If the comriler quits and a register dump is displayed, then
a fatal error has occurred. The next to the last field of the
dump gives the address of the software interrupt, which should be
listed on the next rage:

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE 3(OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

OE73 — expression too complex (operaﬁor stack overflow)
CE7F — expression too complex (operand stack overflow)
OE83 — expression too complex (expr type stack overflow)
15AB — program too complex (symbol table nesting >64)
- 1B94 - input line too long (>80 characters)

26A9 - program too complex (fixup jump for IF or DO-WHILE is
longer than 512 bytes)

2712 - bad source format (input doesn’t end with ODH)
29FEF - program too comrlex {(IF chain nest >60)
29FA - identifier too long (>31 characters)

2F83 - out of symbol table memory (as defined by location
0386H)

If any of the above errors occur, return to the DOS via the
warm start address, correct the problem and recompile.

If a fatal error occurs that is not listed above, an
internal "impossible" comriler error has occurred. Please send
the error ccde rlus a- listing of the program causing the error to
Programma Consultants, using the attached SER (Suspected Error
Report) form.

FORM DOC-101 8-76 General Documentation © 1976 PROGRAMMA CONSULTANTS

PAGE A.1 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

APPENDIX A

SPL/M Compiler Interface Routines

FORM DOC-101 8-76

General Documentation

©

1976

PROGRAMMA CONSULTANTS

SPL/M CCMPILER - FLIFX LINKACES

0C00
0001
0003
0004
0C0C
COZE
0002
0001
C0C4
-~ 0C0C
0C03
0002
0001
0COo0
CO16
0002
0003
B406
B403
AD2D
AD3F
ADO3
AOE0
AC14
AD1B
ACTZ
AD15
AD13
AD12
ADZ2T
ADZZ
AD2A
AD24
ADZ9
ACCE
ACCTF
AC10

6-12-7C TEC ASSEMILER PACE

A.2

Ko W K KK e N W He R H W H I KK e KKK W F K e N HHK S HAe KR HH KA RN K

*
*
*
#*
*
*
*
*
*
*
*

*

* TQUATES FOR ILEX DOS

*

XIC
KES
XUN
XFN
XEX
XSC
QS04
QSO4R
QSCL
QDEL
FIE
FEOF
TXTEXT
BINFXT
TRNREC
BINREC
IFNLEN
FMS
FMSCLS
GETFIL
RPTTRR
WARIS
IB
LINPTR
INBUTT
CURCHR
GETCHR
PUTCHR
QUTCH2
HNXTCH
SETEXT
RSTRIO
PCRLF
OUTLEC
MCOUTH
DAY
YEAR

SPL/M COMPILER — INTERIACE ROUTINIIS
(C) COPYRIGHT 1679 BY THOMAS W. CROSLEY

FLEX 1.0/2.0 COMPILER VERSION 1.2

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

WOno

JP\)%’}O—-\(D\)JF—\-;-P-—\M\H—‘—!—_H—*O

THIS COLE CONTAINS THE DOS--SPECIFIC ROUTINES
NECESSARY TO INTFRFACE THE SPL/M COMPILER
WITH A PARTICULAR OPERATING SYSTEM.

FUNCTION CCDE
ERROR CTATUS
UNIT NUMEER
FILE NAME
EXTENSION

SPACE COMP TFLAC
OPEN FCR . VWRITE
OPEN T'CR READ
CLOSE

DELETE

FILF EXISTS

END OF FILE
TEXT EXTENSION
BINARY IEXTENSICH
TRANSFER RECORD
BINARY RECORD
FILE NAME LEN

INPUT LINE BUFFER
IB POINTER

X %k 3k ok ok X ok k Kk X

e He e e HHe e W AR e eI KKK W FW K IR NI K WK KKK I A KKK

SPL/M COMPILFR - FLFX LINKAGFS 6-12=7¢ TSC ASSFMELER PAGE A.3

*
* RQUATFS FOR SWTBUC
E124 SFE1 EQU 2E124 ON~VECTORED SVI
A012 SWIJMP EBQU $AO12
*
* EQUATES TO INTERFACE WITH REST OF COMPILER
0570 INPOPT EQU $570 INPUT OPTION
0571 PRTOPT EQU $571 PRINT OPTION
0572 OUTOPT EQU $572 COTE GENERATION OPTION
0573 SYMOPT EQU 3573 SYMBOL TABLE OPTION
3D80 SBFFND EQU $£3D80 END OF SOURCE EUF
00CO INTORG EQU $CO INITIAL ORIGIN FLAC
003C EUFADR EQU $3C CURRENT BUF PTR
O03E BUFEND EQU $3E END OF BUFFER PTR
*
000D CR FQU &D
0020 ' SPACE EQU 220
*
* VECTOR TARLE FOR COMPILER:
*
0380 ORG $380
* COLD START ENTRY POINT
0380 7E 2C 78 JMP %2C78
*
* QETPARMS —~ JUMP TO USER SUB TO PARSE COMMAND LINE
0383 TE 48 00 JMP GPARMS
*
* HIGH MEMORY - HIGEEST “WEM LOC USAELE EY SYMBOL TAELE
0386 47 FF FDB CPARMS-1
*
* TOADX — ADDRESS OF USFR SUB TO TRANSFFR BA TO X
0383 00 00 FDB O IF O, COMPILER WILL GENERATE
*
* PCRLF - JUMP TQ USER ROUTINE TO OUTPUT CRLF
038A TF AD 24 JMP PCRLF
*
* PUTCHR — JUMP TO USER OUTFUT ROUTINE
038D 7F AD 18 JMP PUTCER
*
* CASS/DISK READ — JUMP TO USER ROUTINE TO READ SOURCE
0390 TF 49 7D JMP DREAD
*
* CASS/DISK WRITE — JUMP TO USER ROUTINE TO WRITE OEJECT
0393 TE 4A 65 JMP DWRITE
* .
* MULT — ADDRESS OF USER SUE TO MULTIPLY BA BY CONTEARTS
* OF BYTES 0,1 — RESULT IN EA
0396 00 00 FDB C IF O, COMPILER WILL GENERATE
*
* DIV - ADDRESS OF USER SUB TO DIVIDE BA EY CONTENTS OF
* BYTES C,1 — QUOTIENT IN BA, REMAINDER IN 0,1
0393 0C 00 FDB © IF O, COMPILER WILL GENFRATZ:
*

SPL/M COMPILFR — FLEX LINKAGES 6-12=7C TSC ASSEMELER PAGE A4
LINBUF — ADDRTSS OF LINE BUTFFFR USED EY INBUFT
0301 AO 20 LINEUF FDB IR
*
039C 00 FCB © NOT USED
*
\ * NARROW — SET TO 1 IF PRINTER HAS 40 COLUMNS
039D 00 NARROW FCB O
¥*
* GETCHR — JUMP TO USER KEYBOARD CHARACTER INPUT ROUTINE
03SE TE ‘AD 15 JMP CETCER
*
* PLEN — NUMBER OF LINES OUTPUT AFTER FORMFFED
0341 3¢ FCB 57
*
* TMAR — NUMBER OF BLANK LINES BETWEEN FORMEFED AND TITLE
0%A2 02 FCB 2
*
03A% 00 FCB 0O NOT USED
*
* LINEIN — JMP TO USFR KEYBOARD LINE INFUT ROUTINE
03A4 TF AD 1B JMP INBUTF
*
* PTITLE — JMP TO USFR SUB TO OUTPUT TITLE AT TOP
* OF PAGE
03A7 TE 4B 1F JMP PTITLE
*
* WRAPUP — JMP TO WRAPUP ROUTINE
03AA TR 48 44 JMP CLOSE
*
*
* NOTE — THF FOLLOWING CODE IS VECTOREL TO FROM LOCATICNS
* 380-3AC, AND CAN EE REASSEMBLED ANYWHTRE BY CHANCING THE
* THE FOLLOWING ORIGIN:
4800 ORC $4800
* .
%%* NOTE: NEXT 2 INSTRUCTIONS FOR SUTBUG ONLY %
4800 CE E1 24 GPARMS LDX #SFE1 RECTORE NORMAL SWI‘S
4803 FF AO 12 STX SWIJMP
*
4806 TF 05 70 CIR INPOPT CLEAR OPTION FLAGS
4809 TF 05 71 CLR ¢ PRTOPT
480C 7F 05 72 CLR OUTOPT .
480F TF 05 73 CLR SYMOPT
4812 TF 4B F3 CIR DELOPT
*
* PARSE THE COMMAND LINF
4815 BE AC 18 IDA A CURCH
4818 81 0D CMP A {CR
4814 26 09 BNE GP10
481C BD AD 2A JSR RSTRIO INTERACTIVE KEFYBOARD OPTION
481F BD 4B COF JSR ITITLE OUTPUT TITLE
4822 TF 48 F4 JUP CPT0

SPL/M

4825
4827
4324
482D

4830
4837
4826

48%9
48%C
483F
4841
1844
4847

434
ABAC
184F
4871
4873
4876

4878
48" B
48" E
4861
4864
4867
436A
486C
486F

4870
4873
4875
4377
4879

4878
ASTE
ASTF

4882
4885
4828
482A
488D

COMPILFR - FLFX LINKAGES

0o
Q0

BY
7C

Tr
TF
Tr

CE
BD
24
BD
BD

TE

86
BD
86
AT

26

CF

CE
IT
BD
CE
6T
6T
6F

BD
&1
27
81
27

FE
09
FF

CE
BD
25
BD
a1

02
05

05
4B
4C

40

4D
AD
B7
AD
2B

70
71
72
FE
60
03
2D
3F

2z

03

27

14
14

-

2D
27

*

* SET DETAULTS

GP10

*

* PARSE

ERRCR
CLOSE

*

6-12=-7C TSC ASSEMELER PAGE

* OPEN SOURCE FILE

GP30

*

*

* PARSE

IDA-A 12

STA A INPOPT
STA A PRTOPT
INC OUTOPT
CLR INCLP
CILR REQF
CLR PAGENO
SOURCE FILE NAMF
LDX #RFCB
JSR GETFIL
BCC CP30
JSR RPTERR
JSR MSCLS
JMP VARMS
IDA A #TXTEXT
JSR SETEXT
IDA A {QS04R
STA A XFC,X
JSR IMS

BNE ERROR
LDX #RFCB
STX XTMP
LDX LWFCB
STX XTMP2
JSR COPYFEN
ILDX #WFCB
CLR XEX,X
CIR XEX+1,X
CLR XEX+2,X
JSR NXTCH
CMP A #CR
BEQ GP70
CMP A #7+
BEQ OPTLP
LDX LINPTR
DEX

STX LINPTR
BINARY FILE NAME
LDX #YFCE
JSR CETFIL
BCS ERROR
JSR NXTCE
CMP A #°+

FOR DISK INPUT

INPUT IROM DISK
SOURCE PRINTOUT
PRCDUCE BINARY

INCLUDE NEST=0

READ FCF=FALSE
PAGE NUMBER=0

BRANCH IF OX
CLOSE ALL TTLES

DEFAULT EXT IS .TXT

COPY SOURCE FILE NAME TO BINARY

CLEAR EXTENSIOK

USE DEFAULTS
GET OPTIONS

RECET IOR GETFIL

A.o5

SPL/M COMPILTR - FLEX LINKAGFES 6=12=T2 TSC ASSEHELER PAGE 4.6

ARSF 26 6% BNE CP70 USE DEFAULTS
#*
* OFET OPTIONS (+BYECAG)
48%1 BD AD 27 OPTLP JSR NXTCE
4324 31 0D CMP A #CR
4896 27 5C BEQ GP70 ALL DONE
4893 31 42 CMP A #°B DON‘T PRODUCE EINARY
480A 26 05 BNE OPT10
48SC TF 05 72 CLR OQUTOPT
489F 20 FO BRA DTLP
48A1 81 59 OPT10 CMP A #°Y DELETE OLD BINARY
48A% 26 05 BNE OPT20
48A5 7C 4B F3 INC DELOPT
48A3 20 E7 BRA OPTLP
48MA 81 45 OPT20 CMP A #°E PRINT FRROES OFLY
48AC 26 07 BNE OPT30
48AF 86 01 IDA A #1
48BO B7 05 71 OPT25 STA A PRTOPT
48B% 2C DC BRA CPTLP
48B5 31 43 OPT20 CMP A #°C FULL PRINTOUT VITH CODE
48B7 2€ 04 BNE OPT40
48B9 86 03 IDA A {3
48BB 2C T3 BRA OPT25
48BD 81 41 OPT40 CHMP A §°A PRINT ALL SYMBCLS
48RF 26 07 BNE OPT50
48C1 86 02 IDA A 42
48C% B7 05 73 OPT45 STA A SYMOPT
48C6 20 C9 BRA OPTLP
48C3 81 47 OPTS0 CHMP A #°G PRINT CNLY CIOEAL SYMBOLS
48CA 26 04 BNE OPTE0
48CC 26 01 IDA A 1
48CT 20 F3 BRA OPT45
+*
48D0 CE 48 D9 OPT60 LIX #TLLOPT IILECAL OPTION
48D% BD 4B 6C JSR QUTST2
48D6 TF 48 44 JMP CLOSE
48D%9 OL OA ITLOPT TFDB SODOA
48DR 4¢ FCC ILLECAL OPTION SPECIFIED”
48F3 04 FCB 4
*
48F4 7D 05 72 GPT70 TST QUTOFT
48F7 26 01 BNE GP75
48F9 39 RTS NO BINARY

*

* OPEN BINARY FILE
48FA CT 4D 4% GP75 DX LWFCE

48FD 86 00 LDA A IBINEXT

ASFF BD AD 33 JSR SETEXT DEFAULT EXT IS .BIN
4902 36 02 ILDA A #Qs04y

4304 A7 00 STA A ¥FC,X

4906 BD B4 06 JSR TFMS

4909 26 05 BNE GP8O

430B 86 T IDA A E3FF

430D A7 3B STA A ¥SC,X NO SPACE CONMPRESSION

PL/i COMPTLER — FLTX LINKAGFS E=12=7C SC ASSTELLER PACE ALY

490% Z¢ RTS ATI DON™ WITH COWiZED LINE
*

49710 A 1 oPRC DA A X758, X GFTY rff"ﬁ

4912 21 02 CMP A {TFE EXISNTS LUADYY

491“‘1' 2 > ”ZO ENE F .A.tl OL kl‘ S\)l‘ ? '\/”‘_-I \'l ,Tlv\‘\{ L%

4916 7L 4B I3 TST DELORT
4919 2¢€ 10 ENE GPSO DELFTZ OLD EIN/AR
491E CE 49 61 LDX #DELESC
4917 BL 4B 6C JSR QUTST2
4921 ED AD 15 JSR CETCER
4924 21 59 CMP A /7Y
4926 27 0% EBEQ cheC
40272 TE 48 44 JMP CLOSE AECRT
*
* DELFTI OLD BIKARY FILF
492E CF 4D 42 GPEC DX MIFCE
4927 FT 4B T4 STX XTHP
49721 CE 4E 33 LDX JIFCE
4934 TT 4B T6 STX ATMP2
4937 BD 49 4¢ JSR COPYIN USE INCL ICE AS THLIP
4928 CF 41 22 LDX #IFCE
497D =26 0OC LDA A “ﬁDEL DELETE DFSTROYS ICL
493% A7 00 STA A XFC X
4941 BD B4 C6 JSR MS
~944 7 B4 BEQ CPT75 oW GO COPLI IT
' IS FRRCRO JMP IRROE

CPY FILENAMT IN FCB(XTHP) TO (XTiP2)
YFN LDA B "12

RN

il
¥
*
ce “C C
P CPLP I.DX 2THp
A6 O: LDA A XUN,X
oF INX
I 4B 4 STX XTHMP
FF 4B 6 DX VMWDZ
A7 O3 CPIR STA & XUN,X
OF INX
FF 4B ¢ STX XTMP2
54 DEC B
) T 26 FB DNE CPLP
4C60 3C RTS
*
4961 OD CA DELFSG FDB TODCA
4Q€EZ% 44 FCC ‘DELFTE CLD EINARY (
497C 04 I'CB 4
*

* RWAD & /U?C“ TOM DISK

NI

OLOWDWDLOADWOOONOND
Jéb@Q#Janmw

N N N N N N N N

\

J

<

|
Z
.
\

497D 7T 4B FF DREAD TST r\ FOT

4020 27 05 BEQ READT

4922 CF 4C 03 oy Aw;}

4885 20 67 BRA T 3ROM TRYTHC TO LIAD DAST BOI
*

)

Ne 2
M
)
N~
M3
os)
=
=
{‘3‘ =3 tr)

=

YT OF SOURCE LIfr

4987

Sl
S
r
v'

T*F—]

SPL/: COHPILFR — FLEX LIKKAGES 6-12-7¢ TSC ASSFHILER PAGE 1.8
40z 21 23 Chp A 74

42c 27 5F PEQ INCL SHECK I0D

A0S 2p OF DRTAD2 BSR T READ RTOAL B

45C4 6 2D LDA L VSEFEX CH"CE WDR EUJEE“

4996 7€ 80 LDA A /SBFFiD

4983 oC ZF SUB A BUIEND+1

4SSp D2 3T SBC B EUFELD

49cC 2¢ 01 ENE EH

4901 4D TST A
Qi B EH BHI TREADT
AQAI 3¢ RDOKE RTS READ UROUGE FOL KOV
*
49A2 DE 3 RDLINE LDX EUTFELD
49A4 AT 00 RLCE STA A C,X ASSUNES ONT HEID PFTORT CALL
A9AE 08 INX

=
kO
O
s B
N
N
(e
a9}
jny

A0AT7 DT AR STX FUFEND
40An &1 0D CHMP A "CR

49AE 27 04 BEQ [L10
494D ST 03 BSR PP
AQLF 20 T3 BRA LL
49B1 %C RL1C RTS

*

* READ EYTE FROM DISK

RBED STX XTWP

40P5 CE 4C RBFLO IDX #RFCE DEFAULT IS RFAD FCE

49BQ 7T 4B TE TST INCLP

P 27 0% EEQ LEFD1

CF 4F 23 IDX {IFCE SWITCH TO INCLUDE iCR

BL B4 O6 RBFD1 JSR S

- 27 1% BEQ FOX

AE G LDA 4 XZS,X

2108 CMP A {TROT GO

o6 1T BUE TRRORT

B FF TST ILJACLP YES, CFTCK Ir 1. IECLULT FIL.
or BER SFOT

4B FT CLR THCLF YPS, SYITCP EACL TC HATLL

IDA £ [GSCL

o STA A XIC,X

E4 06 JSI THS CLOSE IxCIUDY 1ILE

B BNE FRROR1

D7 DRA EBFDO

49B2 FEF 4B

kg O ks
HES AWNELN

[R BN R N =5 B Ry |
[
RSN
o>

-J\NhjRjﬁsbjﬂ)ﬁbh)hjk>ﬂ)~JR)~J

£ 01 SZOF LDA A /1

7 4B IT STA A EWOF

D ROK TST A

7 DA BEQ EBFD1 ICKORE [ULL CLARS
T 4D T4 IDX ~ ¥TNP

c 278

o P

T 47 41 TARORT JNP TRROR

-X-

ap C% I4CL ESR ROFD

o1 40 CHp A H°T CH¥S FCi. JUDT “HT7
o7 OB DG THCLOS

nE T LDX [UFEND SOLETHING FIST, HRESTORY
cc 23 LDA B &7

5> DE

: C/l LITﬁn

LT\
2C oF

04

3¢
At 00
) 26 04
7‘" 4B B

//

*8 FE

.26

15

(.’/ J.7

- ILEX LINKACTS
STA E
IHX
STX

ERA

mC”‘I‘
BNE
BSR
CMP A
BEQ
CMP A
BNE
BSR
CMP A
BEQ
LDX
STX
STA A
INX
CMP A
BEQ
BSR
BRA
LDX
JSR
BCS
LDA A
JSR
pA
STA
JSR
BNE
1nC
JMP
LDX
JSR
DX
BRA
LDX
JSR
JMP
FDB
FCC
FCB

INCLOS
INCL10

INCIL20

INCL30

= >

INCC

INCE

INCMSG

*
* WRITE
DWRITE

OBJECT
LDX
LDA A
I"J.TT‘
CLR
oIS
CHP A
DTTT”
TDA A
EEQ

HO1
IO"Z

£-12-7¢

C,X

UFTED
FD“AD‘/
INCLP
IUCJ,

INCL10
RBFD
Il,’(:R
IHCE
LINBUF
LINPTR
0, X

#CR
INCLZC
RRFD
INCL20
HTFCB
CETFIL
INCC
FTXTEXT
CETEXT
#0504
Y, X
MS
INCO
INCLP
CREAD1
H#THCKSG
oUTSTZ
FII'CB
FRROR1
HINCMSE
OUTST?
CLOSE
20DOA
“ATNCIUDE
4

FUTTER
EUTADR
C,X
ISTRT

TC

SAFF
W10
TNTORG
01

TEC ASEENLLER PACE AL9

RET WITH 2KD CIAR Td ACCA

FRROR - NESTED INCIUDE

qu‘Oﬁ - (\.O

SILFHANTY
IGNORE TO NEXT

SPACE

I8TC THZUT

PARSE INCLUDE IILE NAME

DEFAULT EXT IS .TIXT
OPEX IHCLUTE FILE

ERROR

DISK
POIHTS TO CEJ TUF
GET RECORD TVEPT

STRT RECORI INITIALIZATION
D RECCRD

LUrEi

M COFPILFR - FLEX LINKAGWS 6=12=-7¢ TSC ASSFIILFER PACE 4.10

2E 16 LDA & ITRHRENC GOTD BILOCK
D4R 0D Si WERBTD
RE 4B EC DA & CTRT TRAUSET S ADDL
. ET 4B OD JSe2 v ETD
C2 E€ 4B ID LDA A ETRT+1
4B COD MNP WwBTD

W10 CHP A ”1

VS]
“A ?c,‘FZ ENE 01

ce INX RECULAR O2J RECCORD (MAX 512 BYLES)

o INX

iNas

LS TNX

ADF 51 B0 cu

IF 4B 8 STX CODE SAVE PTR TC EFC OF CODE
DE 3¢ w15 ILDA B FEUFEND
a¢ 2T ILDA A EUFTELD+1

5 BC 4R I'9 SUB A CODF+1

) e 4B I3 SEC B -1

CODE BA EAS LIECT
> 2¢€ 5B ENE HSEC Ir >12 BYTE
1530

24 57 BHS EST

7D 4B I'B TST ISTRT

, SPLIT UE

p=2

> 26 13 ENE WELK
21 02 CMP A 12
0 2€ OF BIE WBLK
AR & 00 ILDA B GC,X
C1 78 CMP E ”“7“ DULMY JURP ONLY?

2¢ 09 BNE WEBLK DON’T OUTRPUT JUST 7R CQOO
5T CLR
2 01 CMP
L 26 04 BNE
1 02 CMP

1,%
‘,“;’1 BLK
C. ’ X

to toty

9 27 3R EEQ VRTS

ED 26 02 T.DA

0748 FA O WELK ST COUNT

FBINRRC BIFARY PLOCK

¥

I 20 4C ESR WETD

S 2D 22 W30 DSR

DE 2C T.DX PUFADR

A€ O1 LDA & 1,X

5 70 4B FB TST ISTRT

726 0% BIE %20

. P7 4B IC STA & STRT RELEMBER INITIAL STRT AD
2L 38 Y20 BSR WBTD WRITE CTRT ALDE

" A6 D2 LDA A 2,X

70 4B TR TST STRT

L 2€ 03 BNE %30

, B7 4B ID STA A STRT+1

g “BTD
P 26 01 TDA A ™
i A

cf‘ il (ur‘n“\m
STA

9|
-1
S
v}
=
}

OosD . ! DAl
4B FA INC COUNT DOmMALIZY TIECTH
2C 4B IA LDA £ COUNT
=025 ESR WEBTT WRITE LTEGTH
T 4p e LDX CODE
AC OO WILCCY LDA A C,X YrITE CUT CODT
=Tom BEL VETD

SPL/::

LAT
4ATD
LATT
40F5
ANF?

LAFO
LATB
4AFD
4AFE
4BC1T

4BC3 &

4B05
4207
4B0S
4BCE

4BCD
4B10
4B1%

4B15
4B12
4B1B
4B1C

4B17
1520
1724
1826
4327
1521
482D
4827
4B2V

4B%1
ABZ4
4BZ7
ABAL
4B%C
4B3T
4B42
4LB44
AB47
ABAA
4B4w
ABF I
AR 6
4 B5<C
4R C

CE

26

IT 4

ZO
e

CTF
Cé
A€
26
26
B
Ge

=
P

26 I

cr
BD
pé
27

BF
20
CF
ET

cr

nr
3

7C
EE
er

7"

N TN
Oy

o

1‘(1

BD

01
02
80
00
01

02

oI
=2

4B 1

BB

Co

FF

U/

3 72

=
3
i€

n
%3]
&

* YRIT
WBTD

“RRORZ2

*

* QUTPUT TITLE

PTITLE

PTTIOS

PTTLA2
PTTLA5

T1iY
DEC
BiE
aTY
RTS

LDA
ESR
LDX
LDA
LDA
ADD
ADC
STA
STA
ERA

S5TX
LDX
JSR
BNE
LDX
RTS
JUMP

LDX
LDA
LDA
PNE
LDA
JSR
IN?

DEC
BNE

LDX
JSR
LDA
BEQ
LDX
JSR
BRA
LDX
JSR
JSR
LDX
J SR
INC
LDA
JSR

JMP

— FLTX LINKAGTS

E
A

A

to

A.ll

G=12-T7C TEC ASSTIILER PAGTE
SAVE FI TC wilD DYLD
WRITE 2 SFECTIOL (123 BYTES)

E BYTF TO DISK

b4 A‘P
f.FCB

XFN, X
prTii0
ISPACT

DUTCER

PITLCS

HTITLEO
QUTSTR
KARROW
PTTIN2
FTITLF2
OUTSTR
PTTL15
ETITIRZ
QUTSTR
DATTE
fPAGE
CUTSTR

T\‘A G.L_..ll
PAGESD
CITEDEC
2CRLY

Or

AL} 122 TO STAR'D ALDR
PACE
LENGTH OF FILE NAMFE

CZT CHIAR O Tu
PAD

40 CHA
MO

L PRINTOUT®?

OUTPUT COMPILER VERSIOw

OUTPUT DATF

ouUlPUT

.)’C\/\‘_ .‘.'A ;

b)
i

n

PL/Y:

4B F
1861
4567
4865
4BED
ABEO
AB6T

4B6C
4867
4B70
4872
4B7S
4B7¢

4B73 B

4BTR
4BTY
4B7F

4B82
4BSS
4887
4BEA
4B
4BSD
407

APCH

i 0

4BS

48P

4BOT
4B1
4BIA
4BAG
4BAO
ABAC
4BLF
4BED

<
4BES

4BE®

4BEE
4BLC
4BCO
4BC4
4BCS
4BF2
4EFA

A€
27

ED
02
2c

-
rE

5T

BE
ED
76
ED
BE
BT
[Yol

29
ED

,,,,,,

" (\
NS
04

;06
L AD

r4

00
04
Fo
AD

I'4

4C
AC

FOAD

N T
ixPIA, S

12

TTTY
- LliTA

LINKACFS

6-12-7¢

TSC ASSEMLLER

*¥ SAFIAS PETRNC TMCEPT HO INITIAT CiLF

DUTSTR

ARV RS

LDA A
CHP &
SE0
JSR
INX
BRA
OSRTS RTS
*

* SAME
OUTST2 ILDA A
CMP A
BEQ
JSR
INX
ERA

0,X
i

kel
G mc

[R

PUTCER
QUTSTR

AS OQUTSTR EXCEPT USES OQUTCH2

0, X
M
4
OSRTS

CUTCEZ2
OUTST2

QUTPUT ONE BYTE IN DECIMAL

*

*

ONEDEC STA A

LDX

CIR B

JMP

*

* QUTPUT DATF

DATT LDA A
JSR
LDA A
JSR
LDA A
JSR
LDA A
JSh
LDA A

JHP
+
* TITLE TOR
ITITLE JSR

IDA A
ENE
LDX
JSR
LDX
JSR
DX
JSR
JiP

ITTI0

*
TITLEO
TITLHY

£'CC
CC
FCC
rCB
FCC
F'CB
r'cc

DCT+1
“DGT
NO LEADING SPACES

OUTDEC

PuTCIR
TAY

PUTCER
YEAR
CHEDFC

ITMTTRACTIVE UST

PCRLT

L ARROY
ITTL1O
FTITLEO
QUTSTR
HTITLEY
OUTSTR
JTITLER
CUTSTR

PCRLY

rd rd

rd ’

4 ,

4 ‘

’ . N ey Frees AT
SPL/ii CCHPILFR VFRSIOH 1.2

4

A

PAGE

o) 1=
PAGE

AJ.l2

SPL /i

,_-
o

™
L, . .L',-)

4BF7

4771
4BIH
4BF2
4BFA
4BTD
4B¥C
4BFV
ABFE
4CCO
4.C01

4C03
4D4%

St

N2 T
COii

on
e
co
ce
co
cc
CC
o0
oC
CC
CC

CO

FLTN LINKACES

DFICET
ATHT T
_.’TIIT‘/
\/JD
COURT
ISTRT

M
STR

TNCLP
REOF
PACEIO
DT

*
RECE
YECE

TR

R W

H

PGEIID

r'CB

FCB
DB
I'DB
DB
FCB
I'CB
DB
I'CB
FCB
FCB
DB

RMB
RMB
RIiB

MQU
V“\TD

JEnN

DOOOOOHOOODD

BE

CLOST
CrLP1
DELMZG

DRAD2

INCL?
Ol
SOy T
. - o
OPTZ20
ATME N

QUTDZC
PAGINO
PTTICS
ODFEL
RBFDD
RYCE

RSTRIO

SPACT
TITLH
101
WZ0
ULOO2
AFC
XUN

AD2A
coz20
4BBC
4067
AADO
ALER
COC0o
CO0Z

T T
BINTX

CCDE
CK

ey g
NTTONT

T L
[I A v

OTT75
TICB
T1:CLOS
TiCHSC
ITITLY

HARROW
0rTZ2>
OrTel
OUTOPRT
PCRLE
PTTLIC
QRECL
REFD1
RILOD
SHBIEND
STR
TITLEZ
‘;;’C‘ Z
WARMS
WRTE
Xl
YELR

T T
.’JI JRAWY:

0Ccco
4 B}
0COD
4BE%
4AGS
4STA
AL15

YT
42TA

4EC
4OFT
4A54
ARCEHE
C3<Dh
4ZE0D
4810
0572
ADZ4
4B2A
OCC4
4SCO
4¢p4
ZDEO
4BFC
4BCO
4ABF
ADCZ
4ATS
CO04

ACT10

[§e}

ACTIS

4)

}_‘: AT T
_.'I ST 2

COPYFN
CURCHR

Laal
DJ.L
TTOT

FRRORZ
OITIIL
GPZC
ITIOPT
INCI10
INCC
ITTLAC
HXTCH
OPTZ0
OpTLD
OUTET2
PCEID
FTTLI2
(E04T

o“MNT T
EDLIR

[

SFOr
SWIJHDP
TITLES
W10
WELK

™
1:"178 il C

L8C

s
4E6C
LFCE
4PR44
CoO
4082
4981
£0D1
AOT2
4BCE
AABE
AADBA
4ATFO
COZB

e A

SUADR
CCURT
DETE
DRFAD

fat ot
Toade A

At
PR

GP10
GESO

TEBUTE

InCL20
IKN20PT
LINEUEX
Qi DIC
0PT40
QERTE
OUTSTK
PRTOPT
PTTL1S
QE04Y
REONT
RHCK
SETEXT
SYMOPT
TRNRIC
W15
WETD
RORS)

KTHP

DPTEDS

OUTCHZ

LPAGEH

PTITLE
PUTCHR
RETT
ey
PuaoAJ L
aPTERR

el Nk
[N

I s

TITLEO
TXTLXT
W20
WECE

Ay
« ¥

ALLA

XTHE2

PACGE

P

4248
ACOF
49737
43417
£407
A4 N
4300
LALE
LADG
COHCO
LC14
LA
i5C3
£EDN2
4 EEA
AETE
ADYES
4980
4EFT
AD3E
124
4 LEB
C001
4ACD
4Dz
CO0C
LBFE

A.clq'

PAGE T ,10F

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

APPENDIX E

SPL/M DOS Library Routines

FORM DOC-101 8-76

General

Documentation

© 1976

PROGRAMMA CONSULTANTS

L)PIJA is II T. 6_ 'i 2_'7?‘

Unry T

FEL OI,.L ;'T

! % —ul'nTx TT mADY nnr\,; T nl

/ o LIPRARY “GPLM.LIBY —
DOS INTLRFACK RCUTINTS

FLEY VERSION 1.0 6-0=7C */

/% THESE RCUTINES CAN EE USED EY AN
SPLH PROGRAI TO INTTRFACT WITH
THE DOS. ZPARAMETERS NORMAILY
PASSFD I RFCISTERS ARE PLACED
Iii GLOBATL VARIABLES INSTEAD.

SFE THE FLFX 2.0 "ATLVANCED PRO-

CRANMERSE PULDF" FOR A DETAILIE

m”(‘C“’I “TTON OF FACH OF THE
DOUTTINES.

THE VERSION NUMEER OF TEE PROGRAM
'UST BE DECLARED AS A SYMBOIIC
CONSTANT BEFORE INCLUDING TFIS

FILE. THEE STARTING ADDRFSS AND ANY
GLOBAL VAnIAPLLL NOT ON PACF O (SUCE
AS ARRAYS) SEOULD ALSO BE DECLARED
BEFORE THE TIBuﬂRY INCLUDES, E.G.

OATCOH:
DCL VERSION LIT “1°

CAS40E: DCL REF (790) EYTF;
“THCIUDE SPL?.TIB
‘INCIUDF SPLMREAD.LIB

VARTAELFS DTCLARTD AFTER THT INCLUDES
WITI. BE PLACYD CN PACE C UNLESS
?RTFFUFP BY AN ORIGIH. */

/¥ GENFRATE VFPRSION NUMBER */
CEN(/*BRA 1%/20C1H,VERSION);

/* OVERIAY FOR PART OF DOS MEMORY MAP */
‘AO80H: DCL LINPUF (123) BYTT;

OACO2H: DCL FOLCER EYTE;

OACOEH: DCL EMOKTH BVTT, SDAY BYTE, SYFAR BYTE;

OACTTH: DCL LASTT¥RE BYTE;

OAC14F: DCL LINPTR ADDR;

QAC1=E: DCL CURCHR EYTE, PREVCER BYTT;

DCL TRUF LIT °“OFFH”;
DCL FALER LIT 7C7%;
DCL CHRLE LIT '”FOAI

/¥ SYYPOLIC COECTANTS FOR DISK IO */
DCL XFC LIT “07; /* FCB OVERLAY */
DCL X7 LIT “1°;

SPLit.LIE

L]

DCL XUW LIT ‘%7

DCL Y& LIT “4°;

DCL X7X LIT “127;

DCL XFS 1LIT ‘157

DCL XNC LIT “597;

DCL ¢SRVW LIT “07; /* FUKCTION DEFS %/
DCL QS04R LIT “17;

DCL QS04% LIT “2°;

DCL QSC4U LIT “2°;

DCL QSCLS LIT ‘47

DCL QSREW LIT “57;

DCL FEOF LIT “27; /* EBROR STATUS */
DCL DXBIW LIT ‘C7; /* DFFAULT TMTENSTORS */
DCL DXTXT LIT “1°;

DCI. D¥CyD LIT “27;

DCL DXSYS LIT ‘475

DCL DXBAX LIT “57;

DCL DXOUT LIT “11°7;

WARMS 3 DPOC
N(/*J‘D*/7“H QADOZH) 3
END;

10H:DCL CEAR BYTE;
/* READ ONE BYTT INTO CHAR */
CETCHR :PROC;
CALL /*"VTC¥R*/nAD1)”
CEN(/*ST A% JOOTH, .CEAR) ;
T’W“TD

/¥ URITF ONF EYTE FROM CHAR */
PUTCHR PTOC,
GEN(/*LDAA* /OG6E .CIAR),
CATT J%PUTCERR JOADTEF s
“NDs
/¥ OUTPUT A S
SPACT:PREOC;
”PN(/*LTﬂA*/OC’E, ‘
CAIL /*PUTCER* /OAD1EH

PACF */

FND;

DCL INBUFF LIT ‘OAD1BH;
DCL %SCA ADDR;
/% OUTDUT STRIC
IS I VSCA */
PSTRIIC :PROC;
GEN(/*LDY* /CDEE, .1 SCA),
CAII' /*PSTRIG* /CADIFH

WFOSE ADDRESS

THD;

DCL TRROS BYTE;
/¥ CTASSIFY CUAZ; WRROR = TRUE
TF DCT ALPEAVUNIEIC */
CLASS :PROC;
TRROR = OFFY;

PLGE B.3

SPLiA.LIF C=12-

GEN(/*LDpA* /06T, . CHAR);
CALL /*CLASS* /OAD21E
“"’(/*D(C*/le 1)3 RETURN;

W'ﬁ
TRROR oF

FND;
DCL PCRLF LIT °CAD24H’
/¥ CFT HTXT BUFLER CUﬁRACTVR
I:HTO CHAR */
NXTCH:PROC;
CALL /*NKTCH*/OAP27
GEN(/*ST/ A*/O7h,.CHA?),
FND;

DCL RSTRIO IIT “OAD2AH’;

DCL FCEA ADDR;

/* OFT TIHE SPTC INTO FCE WFOSE
ADDRFSS IS IN FCRA. NORMALLY
OnLY CATTPD BY LIBRARY ROUTINFS
RDOPFN AED WTOPEN */

GETFIL:PROC;

JLU.LOL = Oﬁ}j”
GFN(/*LIA*/ODFM,.FCEA),
CALL /*CTTFII*/OAD2DH;
GFN(/*PCC*/44F,1), RETURN 3
-RQOF = k/,

TND;

DCL LOAD LIT ‘OADZOH

DCL DFFFXT RBYTT;

/* ST DFFAULT FXTTESIO
CONTAINED IN DEFFXT */

SETTYT:PROC;

””'?/*Tfﬂﬁ*/“ﬁf,.Dnl“x”)

OTN(/*T.0X* /CDEH, . FCEA) ;

CALL /*STTTYT* JOADZH;
ID;

DCL DGTA ADLZ, IDQ“C RBYTE;

/* QUTPUT DEFCIMAT NUMBER WHOSE
ADDREFSES IS Ik DGLA. LEADTING
SPACES WIIL, BE PRINTTD IF
LDSPC = TRUE */

OUTDFC :PROC

Gru(/*LIDAB* /OD6I, JLLSPC) 4
GTN(/*LTX* /CDEH, . DGTA) 5
CALL /*CUTDF C*/FAD;CU

D

/% CUTPUT HTX BYTE HOSE
ATDRYTSS IS I DGTA */

QUTEZX :PROC;

m“”(/"TJ */CDEH, . DGTA) ;
CALL /*’”TT?X*/CADBCH;

©ND;

/* RFPORT DCS FRRORS. NORMALLY

S

FPAGE

R.4

SOT TT™ E=12=70

LD F201 DISK 1/0
‘. h el ‘rY{_‘—‘I T'r'l("! */ -

RPTE;E:P?OC-

GV“(/*TT*/FW““,.rCLA)

CALL /*ZPTERR* /OAD3IH;

~Ui ADDE, ALYDGTS BYTE
T ERX lU‘“ﬁ ILTO IUM.
FolOR S8BT TRUR IT NOT HEX.
SET <> C IF ANY DIGITS

HUM=0; TOROR=0TTH; ANYDOTS=03;

CATL /-X(‘”“TI”‘“ */(’* I\D49rr

?""(/“ 3CC* /24H,1) 3 RTTURH s
DC‘“‘_(\.

Gr‘§/*owx*/CDF T, JNUM);

GEN(/*STAB* /ODTE, . ANVDGTS) 3

:,LuD
/* OU'”’“Um 2 FEX BYTFS YWHOSE
APDRrPS Iu I DCTA */
QUTADR:TROC;
GEN(/*LDX* /CDEH, JDGTA) 3
CALL /*GUTAP‘*/OAD4R”'
T,"PT

/% 1YDUT DECTMAT NUMDER INTO UM
TRROF SET IF INVALID NUMEFR.
DOTS SFT <> € IF ARY DIGITS
Y'\()U * /
INDEC:PEAC;
HUM=C; FRROR=0FFH; AKYLDCTS=0;
CAIL J*THDEC* /DADARE
*B(

OFN(/*BCC* /248,1) ; RETURI s
TRROR=0;

G?Né/ STX* /ODFH, .1 UI),
GEH(/*STAR* JODTE, . AKYDCTS) 5

THD;

DOCKID: PROC
CALL /*DOCHID* /OADAEE
GEN(/*STAB* JODTE, .ERROR) 5

/% SFT FRROE = CFFH WITEOUT
DTSTRQYTEG CEAR I ACCA */
PRROR = O; FRROR = FRROE-1;
cm(/ *LTK*/”D“",.fCPA),
CALL' /*TiiS* JOB4CHH
GEN(/*BEQ* /2TH,1); RETUEN;
TRRCR = 03 /% ACCA SITLL EAS CHAR +/

T‘ﬁ?\T
9

QQL MSCLS LIT ‘OB40ZH
ATIST

PACE B.DS

VIOITAT ™ - s e
SPLMATAT . IIE H=12-7C

ST TT DALY
SPLy LIERARY

LEAD ROUT

FLEX VERSION 1.0 6-9=70 %/

/¥ THESE ROUTINFE CAY EE USED EY AN
SPLY PROCRAN TO RFAD A SEQUFNTIAL
FILE. A FILE CONTRCL BILOCK HAMED
‘RFCB” MUST EE DRECLARED BEFORE
TEF LIBRARY INCIUDE, E.G.:

DAZ40H: DCL RFCB (320) EYTF:
ATNCLUDFE SPLIN.LIRB

oy P . e

MT¥CIUDF SPLMRTLD.LIB */

/* RDCLOSE - CLOSE A FILE PREVIQUSTY
OPTNED IOR RFADING */

PDCINST : PROC
RFCE(XFC) = 0SCLS:
FCRA = .Q2FCR;
CALL Fi'S;
IF FRROR TEFN DO;
CATL RPTERR;
CATI WARNS;

FCBA = JRFCL;
CALL RPTTRR;
CALIL RDCTLOST';
CALL WARMS;

/* TRDOFFN - OPTN A FILF FOR READING.
ON FNTRY, (GLOBAT) DEFEXT MUST
CONTAIN THT DEFAULT EXTENSICH
TYPF - SFF “SPLi.LIB FOR
STHEOLIC COUSTANTS TO Ugw.

SP2ACT COMERFESICH IS ALUVAYS

THRTBITED BY DEFAULT */

RDOPTIT 1 PROC;
FCBA = JRICE;
CALL CUTFIL;
IF TRROD THUEN DC;
CAII RPTFRR;

CAIL WARNS;

PA

GE

td

DIMAITAD T

L/.. Sl e I

Ryc:(XEr)
CALL
CALL FNS;
IF TRROF

/—x rUILTrl
arc “(tNC)
TiD;

F
b
F
G

=y
SPACF COMP */
TRUT';

/* RBET = "'“N" O"’“ ”YT‘“ FRCH DISK
I

r”’IT ir nr

PCL RFOT EYTYE;

2 BY D"’”CC'
2E0T = TRU
RJCB(XFC)
FCBA = .1}
CATL FrS’s

b

= TDU" IF =iD OF

RTOF = FALSE */

GEN(/*STAA* /OTH, .CEAR) 3
IT TRROL THEN DC;

I¥

RF B(X S) = FEOF THFL RETURN;

ELSE CALL RDER;

n
THD;
RFEQF = ZALSE;

THD;

/¥ JBEIFTF — RFAD O
INT™ (CTOBAL)
E‘ILF L‘AL\ ,/*J"T‘ JA

ABFDT:PEOCS
CLLL REID;
IT /FCEF TI

NY OBYTE FROM TISK
Cl AR. ENT O.L
S FATAL ERROR */

Til CALL RLTR;

b

\,

/‘VT"

41 o

E.7

MHOLIST
RS AVEARE
/¥ SPLY LIBRARY “SPLMUR

IT
VRITF ROUTINES

’,
ITE" —

FLEX VERSICN 1.0 €6-9-79 */

LI PROGRAM TO WRITE A
FITE. A FILE CCONTRCL
“WFCB” FUST BE TTCLARED BRFORE
THE LIBRARY INCIUDES, E.C.:

1CCF =

/¥ THESE RCUTINZES CAN [E USFD
v
o

DCL RECB (320) BYTF,
DCL WICB (320) BYTZ;
“TLCLUDF SPLI{.LIR

"INCIUDE SPIHRFAD.LIR

UTYCLUDE SPIMWRIT.LIEB x/

BY AN
A SFQUENTIAL
BLOCK NAMED

/¥ VWICLOSE - CLOST A FILE FREVIOQUSLY

OPTNFD FOR URITING */
YTCLOST:PROCS
vPCBZAFc) = (SCLS;
FCBA = .WFCE;
CALL FuS;
IF FRROR TEFN DO;
CATI. RPTERR;
CATI WARNS;
FD;
TND;
TATAL READ TREORS

[aEX B o

/¥ UITR - FANDLE

WTTR L PRC C;

FCRA = JWECE;
CAIL RPTFRR;
CAIL WICLOST;
CATI, WARMS;

/¥ WTOPEN - OPF¥N A FILE FOR
OH TNT“', (CLOBAL) DEFEXT MUST
CONTAIN THT DEFAULT TXTFNSICH
TYPF — S71 “SPLy.LIEY FCR

SYHFOLIC COHETARTS TO USF.
SPAF“ COMPRI'SSICH IS ALWAYS
INUTEITED BY DEFAULT */

YTOPTI ¢+ PROC
TCEL = JUIFCLS
CATT ©
Ir FRRCE THFEN DCj

CALL RPTERR;

WRITING.

CALL VWARKS;
r-"\rl-\
',”-\(‘ (vw") - ’04 ‘J'
CALL STT’—L T; /* DP IFXT MUST BE ST
CALL IVE;
I¥ FRROE THIN DCj
CALL RPTERR;
CALL WARMS;
«-“T:D;
/* INHIEIT SPACE COMP */
FCF(XN(‘) = TRUL;

J* VWEBIT - WRITT ONT DYTF FROM (GLOFAL)
CFAR TO DISK. */

WETD:PRCCy
'“Ci(x () = QSLH
FCBA = JWIECE
GRN(/%11 fA*/96H,.CHAR);
CALL “'1'0;
IF TRROR THFN CALL WTER;
DMD
’!_LLIQIIs

6=12=T7C

UP */

PACE

B.9

PAGE (- 70F

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

"Size" Procram (SPL/M

DIX C

Source)

FORM DOC-101 8-76

General

Documentation

© 1976

PROGRAMMA CONSULTANTS

SIZE

nCO1
0C02
0COZ
0004
0C05
0006
00T
0008
000¢%
0710
0011
0012
0012
0014
0015
0016
0322
072%
032,
0325
0226
0327
032¢
0320
0230
0Z31
0332
NZ37R

0337
0%35
0336

537

0330

N\
0338

0340
0341
0342
0 4%
D24

0245
0346
0347
034¢&
034¢

r'ﬁ

™

7% CHFCR

/% A FILE.

CL1C0H:
DCI VERS

OA=40E

/* /INCL
ITNCL

DATE < FROC

LD

ASIZF:PR

SPL/M COMPILER VERSION 1.2 6-=12=7¢

— DICPLAYS SFCTOR COuUwT, */
'H IN DECIFAL AND EZX, */

ER OF LINES (CR’S), PLUS */

SUi AD CREATION TATE OF */
*/

*/

FLEX VERSION 1.C */
£=11=79 *)/

ION LIT “17;

DCL RFCR (%20) RYTF;

UTE SPLM.LIB -
ULZ SPLMRIAD.LIB */

r—y

Cs /% OUTFUT DATE AS UM-LD=YY =/

DCL KONTH LIT “25°7, DAY LIT ‘267, YFAR LIT ‘27

DCL DGT ADDR;:

LDSPC = F»Lsr

IF RFCB(MONTH) < 10 THFN CALL SPACT;
TOTA = .DCT;

DCT = RECB(NMOLTH); CALL OUTDEC;
CEAR = ‘=73 CALL PUTCER;

DOT = RFCB(DA); CALL OUTDEC;
CYAR = ‘=73 Cafl TUTCH:

DCT = ?FCB(YFAa), CALL ﬂUlDEC

IF RFCR(DAY) < 10 THEN CALL SPACE;
CATI, SPACE;

DCL BYTERCTR ADDR, LINFZCTR ADDR, CHE
DCL TEYTEECIR ADDE, ILAG EYTE;

{

PAGE

LIEUARIES INCLUDFD HERE

4
.
3

PROC; /¥ OUTPUT SIZE AUD CHECKSUL IrI0 TG A FILE
Sl LYTE;

DCL XsIZ LIT “21°7; /% 10OC OF SECTCR SIZE Ii ICE */

DCL Cit LIT “CLE”;

PVmF“FTR = 03 LIEF3CTR = C; IFLAC = FALSE; CHESUM =

CATL REFD;
DC WHILE NOT RIOF;
IF FLEC ALD (CIA“ <> 0) TELE 1LAC =
IF NOT FLAG AND (u}Aﬂ C) TIEL DCj
IIAC = TRUE;
/¥ MARK TﬁST WON=ZFRO REYTL %/
TEYTEZCTE = w“fTI_“S:(“'““-
FLD;
CEXSUN = CHKSUE + CHALR;
BYTESCTR = BYTE2CTIR + 1'
1T FI!’? = CR TUrk LINTECTH = LIFITCTR
CLIL RPED;

FLLSE;

*/

e

~9

SIZE SPL/i COMPILER VERSION 1.2 H6-12-77¢ PAGE CL3

0Z52 I# FLAG TUEN /* STEING OF LUTLS AT fiD #/
0359 SVTESCTR = TBYTIACTIR;
260
261 ITSPC = THUE;
0762 DCTA = .RECB+XSIZ; CALL QUTDEC; /* SICTOR SIZE */
0763 CATL SPACT;
036
0365 DGTA = .BYTE3CTR; CALL OUTDEC; /* DYTT CCULT */
0%66 CATL SPACE; CAILL SPACE; |
0367
0369 CLLL OUTADR; /% T EFX */
0%60 CALL SPACE;
0570
0371 DCTA = LINESCTR; CALL QUTDEC; /* LINF CCUKT %/
Z70 CLLL SPACF; CALL SPACK; '
0272
037" DCTA = .CEXSUL; CALL QUTETH; /* CLICKXSUL %/
0275 TLD;
0376
0577 /* MAIN
0378 DCL w?AD?a DATA (° DATE XS DEC EEX LIETS CS”,
0379 CRLY,CRLF,4);

0320

0231 DFFFXT = DXTXT:
0382 CALL RDOPFN;
0382

0%3" NSGA = EFADFR; CATI PSTRNG:
0385 CALL DATE;

0286 CALL ASIZE;
0337

0382 CALL RDCLOSE;
0330 CATL WARHS;
0390

0391 LVL CC

001C ANYDCTS BYTF
A2AS ASIZE PROC
AC18 CURCHERE BY&P
"DOA CELF IIT
010 CEAR EYTE
A127 CLASS PROC
NO00C DXEBIN 1IT
0001 DXTXT IIT
Q002 DXCHD I1IT
nN004 DXSYS TIT
N00% DXBAX LIT
C00B D¥OUT LIT
0016 DEFFTAT BYT™
0017 DCTA ADDR
AT9QE DCCMNT PRCC
pA257F DATE EROC

SIZE

ACO2
0008
0013
0000
0014
ATA4
B403
AT0A
A138
Al164
A%66
AD1B
A184
AO80
AC11

AC14
AD30
0019
0011

A132
001A
A150
A158
A1TE
AC19
A110
A11C
AD24
D000
VGO

0002
0003
0004
0005
A840
ADZ2A
A15E
A1B6
ADD
A1E"

001D
A216
A244
ACCOE
ACOF
AC10
A116
A148
OOFF
0CO1

A106
C000

SPL/M COMPILER VERSION 1.2

EOLCHR BYTE
FFOF LIT
FRROR BYTE
FALSE IIT
FCBA ADDR
FMS PROC
FMSCLS 1IT
GETCHR PRCC
GETFIL PROC
GETHEX PROC
HEADER BYTE
INBUTF LIT
INDEC PROC
LINBUT BYTE
LASTTFRM BYTE
LINPTR ADDR
LOAD IIT
IDSPC BYTE
MSGA ADDR
NXTCH PROC
NUM ADDR
QUTDEC PROC
OUTHEX PROC
OUTADR PRCC
PREVCHR BYTE
PUTCHR PROC
PSTRNG PROC
PCRLF LIT
QSRW LIT
QSO04R LIT
QS04W LIT
S04U LIT
QSCLS LIT
QSREW LIT
RFCB BYTE
RSTRTIO LIT
RPTERR PROC
RDCILOSE PROC
RDER PROC
RDOPEN PROC
RFOF BYTE
REFD PROC
REFDE PROC
SMONTH BYTE
SDAY EYTE
SYEAR BYTF
SPACE PROC
SETEXT PRCC
TRUE LIT
VERSION LIT
WARMS PROC
XTC LIT

6-12-7G

PAGE C.4

SIZE

0CO1
0003
0004
000C
OCOF
Q03B

0391

KK

HIGH

SPL/M COMPILER VERSION 1.2

LFS LIT
/XUN LIT
XFN LIT
XFX LIT
XFS LIT
XNC LIT

ECTF
NO ERRORS
ADDR USFD: 44D6

6-12-7

PACE

Ce5

PAGE D,1 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

APPENDIX D
SPL/M Reserved Words

FARM MNA- . 101

2 .78

~

@ 1976 PROGRAMMA CONSULTANTS

PAGE D, 2 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

SPL/M Reserved Words

ADDR
ADDRESS
AND
BASED
BREAK
BY

BYTE
CALL
DATA
DCL
DECLARE
DO

ELSE
END

ECOF

GEN
GENERATE
* HIGH

- IF

i

X

LIT
LITERALLY
LOW

MEM

MEMA
MINUS

MOD

* % ok Xk

% MONITCR

NOT
OR

** PTUS

PROC
PROCEDURE
RETURN
THEN

** TO

WHILE
XCR

* — Reserved word in Version 1 cnly

% — Reserved word in future versions;

illegal in Version 1

FORM DOC-101 8-76

Canars it Nacumantation

© 1976 PROGRAMMA CONSULTANTS

"
PAGE ¥,] OF
SYSTEM NAME $SYSTEM NUMBER'’ CATALOGUE NUMBER
PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED
APPENDIX E

Grammar For SPL/M

FORM DOC-101 8-76 Generai Documentation ® 1976 PROGRAMMA CONSULTANTS

PAGE 1, D OF

SYSTEM NAME

SYSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER DATE DOCUMENTED

<main>

Grammar for SPL/h V1.1

<program> ::= <init> <main> EOF

<init> s::= <istmt list> | <origin> ; <istmt list>
<istmt list> ::1= <istmt> | <istmt list> <istmt> ; NIL
<istmt> ::= <decl stmt> ; | <proc def> ; , <gen stmt> ;
<origin> ::= <number>:

<proc def> ::= <proc head> <stmt list> END

<proc head> ::= <identifier>: PROCEDURE ;

<identifier>: PROC ;
<origin> <proc head>

t
4
]
|

1= <stmt list> | <origin> <stmt list>

<stmt listd> ::= <stmt> | <stmt list> <stmt> | NIL
<stmt> ::= <basic stmt> | <if stmt>

<basic stmt> ::= <assignment> ;

{group> ;

<call stmt> ;

RETURN ; !
BREAK ;

<decl stmt> ;

<gen stmt> ;

<if stat> ::='<i§ clause> <stmt>
i

<if clause> <basic stmt> ELSE <stmt>

<if claused> ::= IF <expr> THEN
<group> ::= <group head> <stmt list> END
{group head> ::= H

| DO WHILE <expr> ;

<call stmt> ::= CALL <identifier> | CALL <number>

FORM DOC-101 8-76

General Documentation . ® 1976 PROGRAMMA CONSULTANTS

PAGE T, AF

SYSTEM NAME $YSTEM NUMBER' CATALOGUE NUMBER

PROGRAM NAME PROGRAM NUMBER DATE DOCUMENTED

<decl stmt> ::= DECLARE <decl element>
1 DCL <decl element>
i <decl stmt> , <decl element>
| <origind> <decl stmt>
<decl element> ::= <identifier> <type>,
:) <identifier> (<number>) <type>
i <identifier> DATA <data list>
i <identifier> LITERALLY ‘<number>’
< <identifier> LIT ‘<number>’

<type> ::= BYTE | ADDRESS : ADDR
<data list> ::= <data head> <constant)>)
<data nead> ::= (| <data head> <constant> ,

<gen stmt> ::= GENERATE <data list>
| GEN <data list>

<assignment> ::= <variable> = <expr>

<expf> s:= <logical factor>
, <expr> OR <logical factor>
, <expr> XOR <logical factor>

<logical factor> ::= <logical secondary>
i <logical factor> AND <lcgical secondary>

<logical secondayy) ::= <logical primary>

i NOT <logical primary>>
<logical primary> ::= <arith expr>

1

i <arith expr> <relation> <arith expr>
<relation> :== | < | > 1 <O | &= >=

arith expr> ::= <{termw
| <arith expr> + <term>

4V <arith expr> - <termw»

<term> ::= <secondary>
| <term> * <secondary>
| <term> / <secondary>
' <term> MOD <seccndary>

FORM DOC-101 8-76 Gensral Documentation . © 1976 PROGRAMMA CONSULTANTS

PAGET, 4 OF

SYSTEM NAME

SYSTEM NUMBER'

CATALOGUE NUMBER

PROGRAM NAME

PROGRAM NUMBER

DATE DOCUMENTED

{identifier>

<{secondary> ::= §primary>

i — <primary>

<primary> 2= {constant>

1 <variable>

1 (<expr>)

! HIGH (<expr>)
i LOW (<expr>)

<{variable> ::= <1dent1fler>

, <identifier> (<expr>)
i MEM (<expr>)
! MEMA (<expr>)

<constant> ::= <number> ;| ‘<string>’ | .<identifer>

= <letter>
<identifier> <dec digit>

[}
1
, <identifier> <letter>
y <identifier> $

ldetterD> ::= A | B

C oo : Z

<number> ::= <dec number> | <nex number> E

<dec number> ::= <dec digit>

| <dec num> <dec digit>
! <dec num> $

<hex number> ::= <dec digit>

| <nex num> <hex digit>
i <hex num> $

<dec digit> ::= 0 |
<nex digit> ::= <dec digit> } A 4 B 1 C |

<str element> ::= <ASCII char> ,

1:2000:9

<string> ::= <str element> | <string> <str element>

L4

D,E | F

FORM DOC-101 8-76

General Documentation

© 1976 PROGRAMMA CONSULTANTS

S; P(—-/!L1 \/Qd. 933

This is to document version 1.3 of SPL/M, a Systems Programming Language
for Microcomputers. These pages are in addition to the SPL/M Reference Manual
for version 1.2,

SPL/M has proven itself a useful and appropriate language for systems and
utility programming for the 6800 microcomputer. Faster than an assembler,
SPL/M generates code at the rate of 1000 lines of source per minute. Code is
easily block structured and simply documented for clean code generation. And
I/0 libraries make interfacing with various computers just a matter of
substituting the appropriate libraries.

Now SPL/M is being enhanced from v.l.2 to v.1l.3. There are currently
four compilers running under development:

SPIM0O, the enhanced 6800 compiler;

SPIM09, a 6809 compiler which runs on the 6809;

SPIMO9X, a 6809 cross—compiler which runs on the 6800; and
SPLMOOX, a 6800 cross—compiler which runs on the 6809.

Currently being developed are cross—-compllers to generate 8088 and 6502 code.

If the enclosed disk is for generating 6809 code on a 6809 FLEX system,
it contains:

SPLM09.CMD

FLX09.TXT, source for the I/0 portion of SPLM09.CMD, and its LIB
files, FLXA-C09, FLXB, FLXC-T68, FLXD-CO9, FLXE, and FLXF.
SPIM.LIB, SPLMREAD.LIB, and SPIMWRIT.LIB for FLEXO09.

SPIM”s transfer address remains 380H.

The I/0 section (the files starting with "FLX") is located at $7000--you
may relocate it elsewhere if you wish by changing it in FLXD-COO.TXT or
FLXD-C09,.TXT (whichever is on your disk). We have put it at $7000 to allow us
larger symbol tables and thus larger programs.

Version 1.3 of SPIM is still under development, but here are the changes
from version 1.2 so far:

1) Lower case is now fully supported: within the code being
compiled; in response to prompts; in naming filenames in
includes; and in listing options on the command
line--that is, everywhere. For identifiers and reserved
words, upper and lower case are treated ldentically.

2) The dot-operator can be used with procedures, i.e.,
“.proc” generates a numeric constant equal to the memory
address of a procedure.

3) Jumps around data declarations: When the primitive “DCL”

is used only once with more than one set of “DATA”
declarations (each set separated by commas), for example,

SPL/M A SYSTEMS PROGRAMMING LANGUAGE FOR MICROCOMPUTERS

SPL/M v. 1.3 -2-

DCL GOFLAG DATA (0),
TEST DATA (1),
RUNFL DATA (0);

only one jump is generated around all of the data code
(subject to the fixup jump limitation of 512 bytes); in
v. 1.2, a jump was generated around each “DATA~
declaration; to maintain compatibility, v. 1.3 will
generate a jump around each "DATA” declaration when a
“DCL” is put in front of each ome and a semicolon is used
to separate them.

4) The maximum line length is changed from 80 characters to
132,

5) Indirect CALL”s can now be made. This can be done two
ways, both involving use of an ADDR variable:

a) There are times when a specific address has been set
aside to hold the address to which you want to jump.
For example, in the Color Computer, $A002 holds the
address of the CHROUT routine=-to call it in 6809
assembly language means writing JSR [$A002]. Doing
the same indirect call in 6800 assembly language
means writing several lines of code, loading X with
the variable”s address and jumping indexed (and
indirect) through it. To do the same indirect call
in SPIM, first declare the specific address as a
variable,

0a002h:dcl jump addr;
Then Jjust
CALL JUMP;

b) On the other hand, you may have set up a data table
of addresses, possibly using the new .proc function,
in your SPIM code. Your code has figured out which
of the addresses to call. So, having declared AAA an
ADDR variable, write:

AAA=mema (data);
(or AAA=.proc or whatever) and

CALL AAA;
CALLing variables was illegal in v.1.2. Now only
calling BYTE variables is illegal-—a variable byte
wide obviously can”t be holding the address of the

procedure to be called indirectly. If you call a
variable that has been declared as a BYTE variable, a

SPL/M A SYSTEMS PROGRAMMING LANGUAGE FOR MICROCOMPUTERS

SPL/M v. 1.3 =3~

new error, "T" for Type Error, will be put in the
code as it“s compiled, below the variable name you“ve
tried to call.

6) Fatal errors send messages to the screen, then return to
FLEX (WARMS). Supposed "impossible” errors send the
address at which the program failed to the screen along
with a message, then return to WARMS (if you get the
error message "IMPOSSIBLE ERROR", please send an error
report to SOFTWEST, 465 S. Mathilda Ave., Suite 104,
Sunnyvale CA 94086). No longer do fatal errors of either
type cause a register dump, then bomb to the monitor.

7) While the manual (p. 30) documents 64 levels of symbol
table nesting before the program is too complex, it was
wrong. The old level was 8. The new level is 30.

8) The default address at which variables are put, always
10H until now, has been changed to 0 and put in a data
table so the user can change it. It”s called IDATA and
is declared in the 1/0 section in FLXC-T68.TXT.

9) The default address at which the program is put remains
100H, but is now in a data table so the user can change
it. TIt”s called IPC and is declared in the I/0 section
in FLXC-T68.TXT.

10) SPLM now checks numbers as it reads them and puts a "T"
for Type Error on those hex numbers greater than Offffh
and those decimal numbers greater than 65535. So now
users get notified when they try constructions like

DCL JUMP DATA (7E3FOOH);
T

which should be written
DCL JUMP DATA (7EH,3FOOH);

11) The multiply and divide routines no longer use memory
address space: v.l.2 put variables at locations O and 1;
v.l.3 uses no memory--only the registers and the stack.

12) #PAGE is the first of a series of new #directives.

#Directives, directives to the compiler itself, were
limited in v.1.2 to: #INCLUDE, #LIST, and #NOLIST.

Unlike program source statements, #directives need not be
ended with a semicolon, but must appear on a single line,
with their first character, the “#7, in column 1 of the
line. Comments (/*comments*/) must never be put on the
same line with a #directive.

SPL/M A SYSTEMS PROGRAMMING LANGUAGE FOR MICROCOMPUTERS

SPL/M v. 1.3 -4~

#Directives which are printed out (only #LIST, #NOLIST
and #PAGE are not printed out) are not prefaced by line
numbers, since they are messages to the compiler and not
source statements.

#PAGE is a page formatting command which calls for a
formfeed to be output. #PAGE does nothing, however, when
found inside a nolist area (delimited by #NOLIST and
#LIST), so that when source is not being listed,
formfeeds are obviously not required either.

#PAGE causes a change, but is never printed on the
listing itself, just as #NOLIST and #LIST are not printed
on listings.

13) #INCLUDE lines are now printed on listings to tell you
from which file the source you“re reading came.

14) #SPLMVERSION 1is the first of two several portability
#directives. Any program with lower case, for example,
or longer—than—=80-column lines or use of dot=proc
requires at least version 1.3 of the compiler to compile
it. So the programmer would want to write "#SPLMVERSION:
1.3" at the beginning of the program. The SPLM compiler
spots the statement and compares the number with its own
version number, located in an internal data statement, to
be sure it can compile the program. If not, it outputs a
polite message and calls WARMS. This will become
important as future versions of SPL/M provide further
enhancements, which previous versions cannot support, and
particularly as SPL/M programmers trade, sell or give
away source code.

15) #PROCESSOR is another portability command. If a
programmer writes a GEN statement for, say, a
6809-machine-language LDY instruction, then the program
is clearly 6809-bound. He or she would want to indicate
that by inserting in the program: "#PROCESSOR: 6809".
If, on the other hand, he or she puts in a GEN statement
for a jump, the code for which is the same for 6800 and
6809 machines, the statement to include would be
"#PROCESSOR: 6809, 6800" (in either order). The
compiler, when it encounters the statement, checks to bhe
sure one of the named processors (separated by commas) is
the same as the processor it compiles code for. TIf not,
it outputs a polite message and calls WARMS. This will
become increasingly important as we do SPL/M compilers
for the 6805, the 6502 and the 8088.

Until the compiler encounters either statement
(#PROCESSOR or #SPLMVERSION), it will assume that any
version and any processor will do. Attempting to compile
a program which includes either of these two commands

SPL/M A SYSTEMS PROGRAMMING LANGUAGE FOR MICROCOMPUTERS

SPL/M v. 1.3 -5=

using the v.1l.2 compiler will result in a syntax error
flag.

16) Files, either main files or #INCLUDE files, can be
chained together with the new #CHAIN #directive. In
other words, when the compiler encounters

#CHAIN NXTFIL

it closes the file it has been reading source from and
opens the file NXTFIL for continued reading. Nesting
#INCLUDE files is still not allowed, but a file called as
a #INCLUDE file could be chained to another file with
#CHAIN and both would be read before the compiler
returned to the main file.

#CHAIN and #INCLUDE errors, however, are fatal (both the
erroneous line and an error message are put before the
return to WARMS).

17) Conditional compilation is now allowed using the new #IF
and #ENDIF #directives. Now you can write just one
program which will compile different ways (one source
listing which will compile four sets of object, each with
a different terminal driver, for example; or one set of
source which will compile two ways, one for 6800 and one
for 6809), depending on the values of a few initial
LITERALs.

For example, you could set up a file PROGRAMO:

/*PROGRAMO: PROGRAM FOR THE 6800%/
DCL TARGET LIT “68007;
##SPLMVERSION: 6800

#CHAIN PROGRAM

And another file PROGRAM9:

/*PROGRAM9: PROGRAM FOR THE 6809%/
DCL TARGET LIT “6809~;
#SPLMVERSION: 6809

#CHAIN PROGRAM

Now PROGRAM will be written to contain the source for
both 6800 and 6809 versions with #IF to differentiate:

/ *PROGRAM* /

#IF TARGET=6800
OA100H:;

#ENDIF

#IF TARGET=6809
OC100H:;

SPL/M A SYSTEMS PROGRAMMING LANGUAGE FOR MICROCOMPUTERS

SPL/M Va 1-3 -6-

#fENDIF
DCL VERSION LIT “17;

#IF TARGET=6800
OA840H:DCL RFCB(320) BYTE;
#INCLUDE SPLMO0O.LIB
#INCLUDE SPLMRDOO.LIB
#ENDIF

#IF TARGET=6809
0C840H:DCL RFCB(320) BYTE;
#INCLUDE SPLMO9.LIB
#INCLUDE SPLMRD09.LIB
#ENDIF

/*REST OF PROGRAM*/

The compiler will compile only #IF segments which are
true. So working on the 6800 computer, you can type
SPIMOO PROGRAMO and get 6800 code or SPLMO9X PROGRAM9 and
get 6809 code. The #SPLMVERSION protects you from doing
an SPIMOO PROGRAM9 or a SPIMO9X PROGRAMO: both will issue
you a message noting the incompatibility and return you
to WARMS.

The syntax of #IF is limited to two forms, both requiring
a previously declared LITERAL:

#IF <literal-mame>
#IF <literal-name> <relational-operator> <constant>

For example, #IF TARGET would evaluate TARGET just as it
would be evaluated in the source line IF TARGET THEN DO;
-- that 1is, based on whether the rightmost bit of
TARGET”s value is a “1” (in which case it evaluates true)
or a "0 (in which case it evaluates false).

Examples of the second #IF statement, using relational
operators, include the #IF TARGET=6800 above, #IF
TARGET>=6800, #IF GIMIX=0FFH, #IF GIMIX=FALSE (with FALSE
defined as a LITERAL earlier as well as GIMIX defined as
a LITERAL earlier), and #IF TARGET<>8088.

If a #IF #directive is found to be true, every statement
which follows is compiled as though the #IF is not there,
except that a matching #ENDIF must be encountered before
the EOF ending the program.

If, on the other hand, a #IF #directive is evaluated
false, then all source is ignored to the matching
#ENDIF: No object is generated; the ignored source is
printed out, but without line numbers; and only a subset

SPL/M A SYSTEMS PROGRAMMING LANGUAGE FOR MICROCOMPUTERS

SPL/M v. 1.3 -7-

of the #directives are executed:

#INCLUDE
#CHAIN
##PAGE
#LIST
#NOLIST

The portability commands #PROCESSOR and #SPLMVERSION are
not evaluated inside invalid-#IF segments.

#IF #directives may be nested up to 8 deep (deeper
nesting causes a fatal error).

If a #IF is encountered inside a #IF segment already
found invalid, the new #IF is automatically evaluated
false. Now two #ENDIF #directives must bhe found to match
both #IF s before object code generation will continue.

The #ENDIF to match a #IF should always appear in the
same file. That is, if you use a #IF before calling a
#INCLUDE file, do not put the matching #ENDIF in the
#INCLUDE file; the matching #ENDIF must be found in the
calling file following the #INCLUDE.

18) A command line option, +I, has been added. If used, the
source inside invalid-#IF segments will not be printed on
listings (and the #PAGE command found inside an
invalid-#IF segment is not honored).

Using the +I option, you could print out separate
listings for each of the sets of object a single program
compiles.

19) A new “#° error flag has been created to put beneath
non-fatal erroneous ffdirective lines. This error flag
would be put for example, for incorrectly written
#SPIMVERSION and #PROCESSOR lines, or beneath the EOF
when a #IF has not been matched with a #ENDIF at the
point the EOF is reached (note: if the EOF is inside an
unmatched=-but=invalid=-#IF segment, it won”t even be seen
and you”1ll get FLEX"s "Read Past End of File" error
message).

20) Symbol tables now include both the line number and the
address at which a procedure, literal, or variable is
declared (previously, line numbers were not included in
the symbol table). This makes it simple and
straightforward to use the symbol tables to reference
into source-only listings (in which no object code is
listed).

SPL/M A SYSTEMS PROGRAMMING LANGUAGE FOR MICROCOMPUTERS

As has always been the case, SPL/M-generated code is
interrupt—-compatible. Stack space below the stack pointer is never used
without first decrementing the stack pointer (thus, in case of interrupt, no
data can be written over when the registers are stacked).

If this is a 6809 version of the compiler, here are two 6809 compiler
design assumptions:

The compiler does not use the U register at all--we left
it free for 05-9°s use. An 0S-9 version of SPL/M is under
development.

SPIMO9 does not support any direct page other than O, at
this time, so SPLM09 automatically sets the direct page to O
in the first few bytes of every program it compiles.

Code generated by the current level of SPLMO9 is not
relocatable. A relocatable 6809 code generator is under
development, and of necessity will be a part of the 08-9
version of SPL/M.

SPL/M A SYSTEMS PROGRAMMING LANGUAGE FOR MICROCOMPUTERS

Thie purpose of the SPL/M libraries is to create an operating
svelen interface and 170 support functions in a portabhle mannee .
Cwneres of GFL/M may use the libraries in any programs they write,
including programs for oommeroial digtribution, free of any
ke g beyond the original purchase price of SPL/M.

The SFL/M Libraries

23

are nobt necessary for writing a progream
i BFLL/M. SFL/M ds often used, for example, for writing
instrument controllers, an application for which a Libwrary
lesigned to interface with a standard microcomputer operating

; and computer has no use. On the other hand, sone
i have found it useful to cresate theiv own libraries of
5 (perhaps to put ocharacters and strings on the displav,
even bthough it s an LOD display) which matoh the Libirary
routines, allowing some testing to be done with standard
Vitraries on an TEM or SWTF before the code is recompilaed with
the special Llibraries and moved into the instroment.

set of SFL/M libraries crestes an 1/0 interface to a

rating svstem and/or compuber. The litvaries arae
2 owriting to or reading from s terminal, printer,

Tine., or disk files sasv.

They are also desioned to create
Hy portable between the many
whiich the diffe
Froutine in the librari
Pdentical parame

an L/70 interface which is
amputers and operating
ent sets of libraries support: Fach
ie called in the same way and sent the
cers regardless of the target computer or chip.

For example, to outpult a message Lo the terminal e e
sebtting & library parameter called MSEOS arqual to the address of
ther me 2 (Wwhich is terminated by a @) before calling a library
L L Led FUTTERMSBTR, which prints it on the scresn. Using
the library routine allows vou to ignors the incompatibhilities
the FLEX operating svstem, which has a routine to print
g terminated by a 4, and the IBM DOS operating sysbem,
whii ch has & routine to print strings terminated by & %7 . and
) rotaerninators for
q ronakines. The SFL/M library roubine
METR Ffor FLEX printe strings terminated by a @, the SPL/M
Libwrary rouwtine FUT METR for ITBM DOES prints strings terminabed
by & @, and the SPL/M library routine PUTTERMSTRE for all obther
operating svet brings terminated by a @,

print

&
At e

14 b s

@ Library interfaces bo sach DOS

ley, w0 routines are divided into three

iy

SGELM L LSLITR Chhe underlines are for characte which change
- IR For S800 FLEX runming with the SWTRUG

SFLMBPF . LIR for 6809 FLEX, and SPLMBSMILLIE

8R0S runring on the TEBM PCY is made up of

. foto ouvtput to the soreen, printer, and

communications line (plus a redirectable set): to clear

the soresny o ring the terminal ‘s bell: to ottt

P

svirdaht Ge) 1REE BOFTWEST

Introduction

| or Mexy bto dinpult (a ocharacter oF a
mit bhe terminal kevboard, a character from the
mmunications line, a character from a redirectable

and her or decimal numbers); toos arnd et
and time; Lto move stringss to classify characters:
i, oy dnmdtialize 2ll these library roubines. Thi s
Tibrary also 5 imitial 1 abions for all variables

wl For the progeamn. This library may

robhe libraries
b usmed exclousive of bthe obther two librarcies,

s

i written for specific terminals; it mav or may
portable to vours. It contains routines which
¥ @ocursor position or position the cursor, homes
Lty olesr to e of line, olear to end of soresn, {(all
ot owbid oy eeopad e a terminal with go-to-w-y addressing)
anc o put ouanderline, boldface, and rever characters
o the soreen, for terminals so capable. Foutines in
library call routines located in SPLM PR S

Library must be included before this one

+

D

1
FDWT IR is made up of routines for accomplishing disk
ab i s e Betting and setting the working deivesy
thing fresspace on a disky doing a disk direchtorys
deleting a Filey renaming a file; doing a binary 1oad;g
raading from two siomultaneously open files (open files,
aach byvbe, and o > Filedy and wreiting to two files
siomul taneously (open File, wite bvte, and close
Rowtines in this library call roubine
in Mo W LIR. so that Library mast be inolu
this one d

r

Tilﬁ

5 Located
dedd et ore

The libraries are brought into s progeam by using the
IFNPIHD“ Lermesrit . Recause SFLM LI sets the initial
atdor, Thi]1hwnrv must b ineluded prior to
1“€|MW1HH army obher compiler- 1mrdtmd variakiles in vour
OF course (sinoce SPL/M i & Lo
bedore any of bheil

Lemes Limesgl,

LI CICTE M .
ampd lar) . Libraries must bhe
are called o their

Eoth SPLM . CLIB arndd RDWT WLIE are sprinkled with
condiltional compil

lation statements to shorten the amount of oode
The Libraries genee vl "1 neecd to declare literals prior Lo
inoluding the 11hraan¢ e n't a number of sections Lo conpile
il For example, to compile codes from the printer routines in
M o« LTIB, vouw' ll have to put the following stateonent into vour
g oprior o including the Liberarys

DL MEEDPRT LTT "TRUE 3

oo dust oas the literal NEEDFRT controls compilation of
printing roubines, NEEDCOM controls com-ling routinss, NEEDNUMS
controls numeric input and output routines,
:nnkrulc oli sk : (directory, fressp PR AR §

i alen. 3, 3 eontrols disk-read vuuftneﬁ, arel
corbeol s cuirite routines. AL are initialized to
s hhat withiin will ng e generated, T turn

; i 3 LEOM, NMEEDNUMES, or NEEDDISEUTIL
HECRES or MEEDWFOBES literally 17 or

e AL
rad Frumn ol

Cond 1REE BOFTWEST

Trite oot don

clpanding on if vou need one or two read or weite $1es T
st a bime.
Yot may also trim both bthe size of the sourcs File and e
of code generated by editing down the Vibrary files to just
ot in aried wvariabl you need for a specific program.

Thers are limits to portability:

The SBORN SLIE library has the least portability. Each
SHCRN SLIE Library supports a single terminal. Terminals must
Fawve et oy adoee ing to be able to implement any of the
cursor functions in the libracy. A progeram which usss theses
functions is not portable to compute with terminals which
cannot go-to-xe-vs the results are unpredictable. 0On the other
Mamd, programs which call for chars s to be displaved in
boldface, or underline are portable to terminals without
ar attributes:s Characters are displaved normally on

5

-

« variables, and other identifisrs which are not

Lo e portable from one machine/operating svstem/chip
» hawve b given labels which begin with "722", such as
SR, whiieh loads a bhinary file into memory ., bhuat not

). : warrgd that using any library label ginring with
in S VOHAPT PO am poartability at

L ERET

B TWE

Copeer ot (o)

LIRS (hhe underlines are for characters which change
<<<<< o GEER EX with the SWTBUG monitor, it's called SPLMOOFS.LIE,
o HEA% I SFLMAYFLIR, and on BO8S MEDOS for the TBEM FC
SFLMEBMILLIE is made up of:

HELM

corstante,
iable

4

general routine
e)
radirectable rowting
mlime routines (Communio:
e gk routines,

time and date routines,
move routines, andg '
numbier input and oubpot routines (both hes and decimal).

g

L

This library also sets an initial variable location for all
bles in the libraries and the program. Use of this Library

Wkl alk
doss not require use of either of the obther two SPL/M libraries.

The libraries are brought into & program by using the
FINCLUDE statement. BRecause SFLM_ JLIBR sets the initial
var i able lc

aliorn, this library must be included prior to
declaring any other variables in vour program.

to shorten the amount of code the libraries generatasy
l to declare literals prior to including the libraries
] a number of sections To compile code. This i notead in
ach section Lo which it applies (printer, communicetions Line,
and numbers) .

SHLM LIE i sprinkled with conditional compilation

Copyreignt (o) 1983 SOFTW

rovtines CGinput from the bevboards; outpol to the soreen) .,
o Cinput from anywheres; output to anvwhere) ,
tions line via modem or local network),

i

Laibrari ees

WL IE

HRLM W LIE provides a set
arvvironmant which the library ds
arer clec] ared Literals
purposs i patohing them.

regul rements, Ml are available for use

TARGET is a
in your

Literal which
wese e 1 ater

specl fies
(e g HIF

L 6

g bhe ASCIY value which the

M il
communications
prh b e

o B

to t
to
T

Lime
Line
Line
Line

achd
acel
actod
acld

T el
+eed to

constants wsmad to det

k

o

o owith & line feed (the const
if the hardware takes care of the
s oregquired to be put oat all (it'g

of columneg
et ool umng
ot 1ine

numb e
Fvambs e
ryambs evp

VO
(SN RS wINE o
O vour

Copveight (o)

Coretants

constant s
skl For.

it ; dee) ared
them to be patohed should different hardwaros praasent

e ne
#rding a or to a particul ar hardwares device, follow
ant
Furnotion
et

printear will
SO EEN

a5

te gdescribe the
Some cornstants
there would be no
as data to allow
ciffering
LIECICT M

v vour

the *
TARGE

arget microchip for
=&6300) .

backspace key on the

1 mes

i

the Library must .,

sy
o
erepuiall

is goptal to (vl
no o 1dres

ey @) .

1),
el

print

LT EEN

SFLM_ LLTH: Variabl

pAage A

SELM_ LIE initializes & starting origin for variabl
dvnamically alloca

g and
tes space for all the variables in both
Tibraric and your proge am. nly variables which are
itically assigned locations by vouwr program (as opposed to

@ for which space must be dyramic 1ly allocated) may be
declared prior to including this library.

Tt dis permi

ible to remove the variable origin from the
Vibrary and pl it oon the first variable in the FIETCICH ST
provided that that variable really is the first variable tey e
dymamically allocated space in the proacgram and provided that all
variables which are listed in the library source as mage @

\ soremain so {(the tvpe of addressing ussad in lLibrary GEN
shatemnsents requires them to be "pags A" tvpe variables),

&)

Most of the library variables are intended to serve solelv
oy g parameters to oand from certain routines. A routiine
May L and/or change both its own parameters and ary obher
Libwary variable.

[3t that thers are certain library variables which, by
design, can be guaranteed to at all times hold certain
information (set sither by the library itself, by your program,
o by either):

£

LINFTR, an ADDR variable, is desigrned to point into the line
bt Fer ., It is initially selt by LIRINIT to point bto the
first character of the $irst argument on the command line
CPollowing the program name which invoked this LIF Iy r am

i 1 F). I no arguments exist on the command Lime, it
poaints to the or terminating the command line. LINPFTR is
antomatically reset by the INBUFF routine and advanced bry
i MEXTOMAR routine. LINFTR must be set to point to a
filenane befors calling many of the disk routines.

HOURS . MINUTES, SECONDS, HSECONDS

These BYTE variablss must be set bheforoe calling SETTIME,
T Pold their values - after being set or after a rall to
GETTIME.

YEAR, MONTH. DAy

These variables moust be set betors calling SETDATE. Thaw
hold their valuss — after being selt or after a call to
GETDATE,

This fyy BYTE variable holds the last terminator - the most
t 1t mon--al phanumer o characher eneour el by CLASBS (and
thse by NEXTCOHAR, OUTDEC, OUTHEX, and OUTADDE) .

Comwright (o3

SFLAM Libraries L SLTBr NMariables paces 7

CLRGHAR

This BYTE variable holds the most recent character parsed by
MEXTIOHAR,

This BYTE variable holds the character previous Lo the most
Nt character parsed by NEXTOHAR.

LIBINIT sets BUFFER to the address of the first bvte
available for a user-program data boffer.

LIBINIT sets MEMEND to the address of the 1as rvte
available for a user-program data buffer.

N GEMON
These BYTE +lags, initialized FOLSE by LIBIMIT, indicate

whether the orinter and communications 1ine respechively
Mave beaen initialized.

Copweiobt (o) 1982 SOFTWEST

BRLAM L e sur i e

e L TE Library Initialization pracye B

INMIT

This routine initializes the libraries and setse up the line
puffer, a number of variables, and the file control blocks

necassary for reading or writing to disk.

Whern a program reaches main, the first code put is a call to
LIBINIT. This is done awtomatically, provided voo ve
previowsly included LIRINIT in vowr $1le (@ither

BELM L SLIE s LIRINIT or vour own). This guiar antees

whol e s of parameters on which othes library routinss
depend will be initialized. I+ you haven 't included

LM SLIEBG o iF LIBINIT has besn removed from the library
o i name changed, then no automatic call is nenerateacd,

LIBINIT sets upe

BLUFFER, an ADDR variable which halds the address of the
First byvte of bhuffaer space available to vour program.

MEMEND , an ADDR variable which halds the address of the
highest memory location available to VO IO am. w1t
may design a text-processin program, for example, to
i oas much text as po ibhle, filling memory from
location in BUFFER to the location in MEMEND .

A line buffer, which holds the command Tine, and
LINFTR, an ADDR variable, which points into the 1ine
bk Fer ., Imitially, LINPTR pointe to a cr (ADH, a
carviage return) 14 the program name was the only word
typed on the comnand line which involked the program.
Utherwise, LINFTR points to the first non-del imiter
character following the PO BM miame ., Warning:
Calling INBUFF chenges the contents of the Line budfer
and resets LINPFTR o point to the beginning of the new
corhents,)

File control blocks: It vou have literally declare
MEEDRFCRS to be 1 or 2y othen LIBRINIT creates 1 or 9
Fead file control blocks, respectivel v, It vou have

Viterally declared NEEDWFOERS to be 1 o Py then LIRINMIT

creates 1 oo 2 wite file control bhlockes,

Inmitial 170 vectors:
FUTTERM is veotored to output normal sorsen
characters (as opposed to reveras, boldface,
i,).
FUTCHAR is vectored ta FUTTERM, to put characters
o the soreen.
GETOHAR i veotored to GETTERMIMVIS, to aet
characters from the kevboard.

g FRTON and COMON: set false to indicate that
Lhher printer nor communicatiorns line hags breren
imitialized.

Copyright (o) 19875 SOFTWEST

LA

Loty e e

Thye
for e

Iriterrupt

mobhe oo

el TR

Ear e

I

1 opausing Flag
e atd on

i b ary

ey el

in DOERE

(o) 198E SOFTY

Tritialization Py es

(making ths kevbhoard live

BWhEre) .

and the soreen widbh are

7

LAY Ldbraries S5PLM . JLIF: General Footines page 10

Genesral Foubd rees

DL

This routine terminates a PFOgyram, res
gaved parameters, and returns to DOS.

The last code put in & program is a call to DOSRET 3
this is done automatically when the EOF end-of-—€ile operator
isn parsed, provided vou ve previously included DOSRET in
v F il e.

SOHTES ANy previowsly

T™his routine converts lower to Upper casmes I the ASBCII
valug in the BYTE variable CHAR reprasents a lower case
larbter, it is converted to upper case.

This routine classifies the value im the BYTE variable

CHER: Upon exit, @f the value in CHAR is not a letter or a

numbier (not alphanumeric) . the BYTE variahle ERROR ia sed
and the valus in CHAF ig auttomatically stored in the
BYTE variable LASTTERM: on the other Prared, iF CHAR is
alpharnumeric, FREOR is set FOLSE.

This rouwtine also classifiss the value in the BYTE variable
CHAR: Upon exit, if the value in CHAR is not a letter (nob
alphabetic), the BYTE variable ERROR is seb TRUES on the
ather hand, i CHAR is alphabetic, ERROR is set FALSE.

CLASENLIM

This routine also classifies the value in the BYTE variable
CHAR: Upon exit, if the value in OHAR is nobt a number (not
muamericd , the BYTE variable ERROR is sot TRUE S on the obher
hand, if CHAR is numeric, FRROR is set FALSE.

e
i

Copyrighh (o) 198E S0FTWEST

HPLM Librariss SPLM_ JLIED Terminal Routines page 11

Terminal Routines

1w

CLRTERM clears the terminal sor
: - 1.

alle the TRM BIOS INT

CLERTER]
ZZCLR (rowmally the forofeed charactar, QCH) to

Catput the character in CHAR to the terminal. I+ the
character is a carriage return, then 1§ ADDLFT is other than
p a line feed is also oubput. I+ the character is
o and the terminal can backspacs, then FUTTERM

¢ chepacs, writes a space at this position, and
ramaing thera,

P M is revectorable, LIBINIT initializes PUTTERM
Lo a standard teletyvpe kind of output to the screen (one
char ac at a time abt the cursor, with the cursor position
moving riaht and down). Calling the BEGSPECIALSCRN roubine
in othe SCRN . JLIB library revectors PUTTERM to the soroeen
oubput routine in that library, which allows cursor
positioning and bold, reversed, and underlined characters.
Calling ENDSPECIALSCRN resets PUTTERM to teletyvpe soreen
autput.,

FUTTERM is intended primarily for guarantesing message
autput to the screen regardless of where the main curbput
through PUTCHAR is veotored.

FLEX: I+ PUTCHAR is outputting to the printer, PUTTERM
tgnore the TTYSET parameters like widbth and DALSLNg.

i

Bend one space to the screen.

-~

= R MINLIMEE

Send MUM rumber of spaces to the screen (set NUM egual to
the number of spaces vou want before calling
FUTTERMNUMSED) |

Sand one carriage return Cand, 1F ADDLFT is not REO, A
matohing line feed) to the screen.

FLTTERMNUMCRLE

Send to the screen NUM number of carriage returns tand, i+
ADDLFT i not rero, matceching line feeds). $Set NUM segual to

The number of CRLFs youw want before calling PUTTERMNUMCRLE .

EUTTERMS TR

Copyeight (o) 1983 SOFTWEST

BRLAM Libraries SPLM JLIBD Terminal Routines page 12

Dutput o the soresn a #Lring which is terminated by & 2ero
Y (the e indicates the end of the string: it is not
ettty L MBEA to the location of the first bylte in the
string before calling PUTTERMSTR. For @ramples:

DOL MBEL DATA (CR, " This is a message. L,@)
MBGEA=, MEG1y /%8t MBGEA to point to MSGB1x/
CALL PUTTERMSTH; /*0utput MSGL to the soreens/

Firg the terminal ‘s bell.

Hat one character from the kevboard and echo it to the
B EEN This and the obther get-character routines will halt
a program until a character is typed on the kevboard.
SROS: None of the routines which gat a character froam
sard will return extended ABCTT (a @ followsd by a
@y oept that a @ followsd by a 3, which raprassnts the
Le returned as its accepted ASCIT value of B, Obher
il ABCTT characters are ignored arnd the routine
continues to await a valid charactar.

hve

GETTERMINVIS

Get one character from the keyboard and do not echo it to
the scoreen.

The FLEX operating system doss not provide an
eoho-less getchr roatine. S0 the library routine goes
hirectly to the SWTBUG monitor to tuwrn off echo befors
calling FLEX s GETOMR. Obher monitors may regquire revisions
Lo this rouwtine,

Check the kevboard, I & key has been pressed, CHAR is set
(to read the depressed key, follow with & call to
GETTERM or GETTERMINVIS) . I no key has been pressed, CHAR
iw sel FALSE. (To actually read a pressed key, call
EDSTATYy i it rebturns TRUE, then call GETTERM o
GETTERMINVIG.)

AH800 FLEX: FEDSTAT is dependent on ZZEBDTYF being
oy @B for serial kevboard or 1 for parallel kevboard., and on

)

i

. iﬁitially selt for the kevbosrd to be conmected to
Port 1 Qocation B@QA4H) .

but & lime (berminated by the user pressing ENTER or

Froom the kevboard into the lime buffer. MAoor is
1oin the buffer at the end of the lins. O oexit, the
variable LINPTR points to the first character in the
brond F e, Met e s The line buffer is used on entryv to &
ain o hold the remaindse of the command lines since
sobo TNBLUFF would replace that command line with the
From the kevbosed, anmy paréging of the command line must

Copyeright (o) 19873 SOFTWE

X

SRLAM LA b s

SPLM L GLITEY Terminal Roubines pace 103

brer done prioe to calling INBUFE,

the character pointed to by LINFTR and bobth eetwrn it in
and save Lt oin CURCHAR (after first saving CURCHAR @
oo FREVOHOGR) . MNEXTOHOAR calls 5 bhefore

MR ER AT i CHAR ds alphanumeric, ERROR iz seb FALSE:

g, ERFEIR s set TRUE and CHAR is also stored in

T CHAR is & ocarr
t

iage return (or i FLEXs it it
croor bhie TTYSET BEodeoed -

5
mot advanced, and sube

character) . then
calls to NEXTOHAR

LINPTR 4w
Faturn the same obar
el se, LINPTR

s advanc to o podnt to the next
v the line buffer. I CHAR is a space, bthen
NEXTCHAR advances LINFTR to point to the first non—-spa
character (so maltinle gpaces
s oreturned) .

skipped and a single space

oy ot oy 15

ST

LA Librar i esBFLM _ JLTR: Redirectable Fewb i mes pace 14

dirwotable ko

Output the charaoter CHAR. LIBINIT initializes
o oubput o th g FUTCHAR ds revectorable to the
Ty O AGALL FTCERUTRR o to o the commundcations Line
EOM . o to either disk file that ‘s beor opened for
wred ting (FIOEWFCEL and PICEWFCED) , as well as restorable to
the soresn (REFUTTERMY « Ses FUTTERM, PUTPRT, PUTCOM,
WETDL . and WBTDZ for details on bow characters are output to
choddevi s, I the case of output to the screen,
retoring FUTTERM to special s 2 capabiliti {(hold and
cursor posibtionings SR

FLITCHAR

Beam

ing RETRPUTTERM revectors PUTCHOR to the soreom. T

alveady vectored to the scresn, there s no effect.
FLE R 3 Calling RETRFUTTERM atter printing restores

Bosrresn paramneters (pausing, widbh) . in addition to
o i mo FLTOHSR

H

T W TR o

Hand one space out theouob PUTCHOR.

ek NUM ramber of spaces oot through PUTCHAR (set NUM egual
ey the number of spaces to be cutput betforse calling
FUTHMUMESRCY .

SBand one’ carviage return (and line feed 54 the appropei ate
ADDLE add-line-fead flag is not zero) ook throuagh PUTCOHOR.

Cetiput threowgh PUTCHGR a string which is terminated by a
waroe (@) s the zero terminator is nob ettt .

Lo the addee of bhe firet bybe in the stein 1
calling PLUTS

6 @opal
et ore

ToHMR TN TS

ore eharacters oo notb
IBRINVIS s redirectabl e, Trvid 11 i o b LIBINIT o et
aracter from bhe kevbe th, BETCHARINVIS mayv be

o get it from 2o conmunications line

O TNV T Feonn wmit dofile (FPICERBFDRL and
1YY BET PTINS TE s GETOHARINVIS to get
s f e o b kvl
rc et

mocbvy b oy e

SELIN]

Foubdine dn o the libearw

Coowr ot Co TR S0P TR

LM e TEr Redirectable Roubines prage 185

one character
A oreaclir
iy reaal 1y do a
calls, the first to

ok At b bthe soresn) s T+ wonn don’ b
boovon want e thern call GETTERM: i+
both redirection and echo, then make twe
ETOHARINY IS, the second bto PUTTERM.

B

ETTERMINVIE kevboard input routine as the
characters for the redirectable GETCHARINVIS

AT Libhrariss BPLM 0 JLTEr Comling Foutines pracie 1é

mmbing routines are desioned to put characters out theowak
poet o s communications line., or bo osth characters $eam
sl cat i orms Line,

Comline routines are nob normally oompd Leds They are
fitionally compiled by the compiler directive #IF NEEDCOM,
Wi o sl hes o FaLsE. To compile the comling routines, tvpe

LIT "TRUE 3 in vouwr progeam b

fore the HINCLUDE

CLMIMET

Initialize the communicabtions 1ime. This routine is called
atonatically upon the first call to eithsr GETOOM or
FLITCOM, iF it hasn't been already initialized by & direct
call. (It knows Decauss of the BYTE flag COMON.)
FLEDX arel MEDOS A& ononportablse BYTE DATAS item,

iw oset o initialize the commuanications line $or
Lostop bit. and #8-bit word length.

TLCOMDERS A THEMa
arntrol Ted ded: rate to 2400 baad. Cexml i rie
amaume the fi . card. The COMIMIT routine
TEM BIOS INT 14H. .
A The hardware controls bthe bauad e
rnowipertabhle ADDRE DATAH 1tem Z700MPORT Lo
coosmmanl cation Line ACTA i Port @ (Lo

L Thie
Al

Lo B

CUTCEM
thatput & character in the BYTE
somnmuanl cations lime. I+ mece ary i COMON s FAaLSE) ,
] SOMINIT fo imdtialize the comline. T4 the
a carriage return and ADDLFD is not sero. then
a line fesd Lo the conline following the or.

variable CHAR to the

e

Dutput the string, terminated by @ and pointed to by MSGEA6,
to bthe communications line.

oy

DI T8

a character from bthe communications line (no scho to
2) IF necessary (0F COMON is FALSEY ., firs call
MIT ey drndtialize the comline.

fron the communications Line (by calling
« bhen echo the character Lo bthe scroon.

Copwright o) 1 GO TRWE ST

e b IRy Cloml dmer Roubtines pacie 17

Mesvaotor GETOMOKR to its characters from

TOOMINVIE,

MErAT

Cheok bthe o s of bthe communications Line. CHAR ie

if a bvte is readv to be received (receiver dala
s Fully, SENDFLAG is set TRUF 4 communicabtions

G sl anot e N (transmitter data register

i

ity).

ECF T

BELAM Libraries SPLM JLTED Printer Roubines [V 62

Friamter roubines
N T IR W T

arned to output ocharacters to a

Feinmter roubines., Like
compi lads They are
chiy v, arl M FRT is by oefault
pednter routines, tvpe DOL NEEDRRT
Prepfore The $TNOLUDE SRLM < L. TEL

are pot normal ly
WRT concditional compiler
Tor comni le the
=y i vouur proge am

ol dme ot dn
within & #H1IF NP

ERTIMIT

Imitialize the printer. This routine is called

tly (it knows beo
remainsg FALSE until PRTINIT is called). Sugyeyestion:
FLEX can return from PRTINIT uninitialized (be
can’h Find FRINT.S8YS, or becau the printer is ale
Busy spoolingd, vou will be safest to 11
thern test for FRTON being true (suw

FLEX: PFRTINIT loads FRINT,
Lurns pausing off and sebts TTYSET

Badly
FRTINIT oire

BHAT VW T oaleo
width to @,

Output » character in the BYTE variable CHOR to bhe

i rvh e . TFE gary (if FRTOM is FALBEY , first call
FERTINIT o initialize the printer. T+ the ohar 1% &
carriacge return and ADDLEFF is not zrero. then PUT ke
Linme feed to the prister following the return.

aotor PUTCHAR ¢ outout to PUTERT,

FLEX Turns off pausing and sets the TTYSET widbth to
. Freviows widbh and pausing stabus are saveds they are
rastored by ocalls to RETRPFUTTERM o

Output the string, which is terminated by 0 and pointed to
by MEGA, Lo the printer.

Domprwedobt (o) DT9RE SUFTWE

]

ause the BYTE £1ag
AL ED

N VN
initialization).

SBELAT Libreries BPLM 0 JLTED Time/Date Routines pacye 19

Gert bhe month, day and vear. et o e
variable MONTH sgual to 1 to 12, RBYTE L
Ioto 21, and ADDR variable YEAOR o to 1988 to ROV, Wi

raturn, ERROR is FALSE i+ the set operabion was successtul .

calling, set BYTE
varlable DAY egual bo

B YL

et the time. Befors calling., set

bow EE, MINUTE

urichrecla oFf

FLBE D F the
FlLExs

this roubines

THLIE

var-lables HOURS to @
Hoto @ bo SB9, SECOMDSE to @ to 59, and HSECONDS
HEC) g B oo 99, O return, ERROR s

G - e bl .
clock card, vouw 1Y have to rewsite
ity as witten, it returns with ERROR

The olate, On return, MONTH souals 1 to 132, DAY equals 1
Hl. and YEAR eauals 198G bo 2o

The bidme. O returm, BYTE

A% MINUTES @ to %9, SECONDS © to =9, and HS
thundreds of a second) D to 99, T4 i me
all will he set Lo @GFFH,

wardabhles HOURS should return
CONDS

ta onot avallable,

FLEX I+ vou have a clock card,

this routine to get ity as written, it reburns with all fouwr
varidables set to AFFH.

vou'll have to rewrite

Doy iaht (o3

crves NLIM

e

Move a line ended by a

From SO
crad 1o,
Brvbe al

arch DEST

TR

ridmbier of byvbes from 8
o Pointers to the beginning byvtes of th
abion arrays, and NUM before calling.

ROE
I+
e

ok e . Meytens

T

o} gz

SELM L

the et Fo

Thigs

M

et
My o
st L mat i

arny lenoth
E o ard DES
arel the o

=k
L ONLUIM,
+ound
cimation s seb

o D (-

A2oorois noh

Moves

[

by
al
wlg!

£
IR}
by
o

Fue

st L res

el ol

Cimation arrave overlan.

£ 0n
LAY

aryrane, ed

to DEST.

mar i muam of

ROCE

the NUMER
A .

and DES

[en

rot e wused

SOUIRCE
inrvimg bvhe
2 ocalling.

ey

et SBOLURCE

ML by oy
T et on

]

moving an arvay of bvbes from one

if

lir e and

vie, Ul NUME R

Ca DB Mombier Fonat s

pracies

Mumber oubput roubinss are designed Lo oukpot

i alrlvd o, i mither hes or decimal form, nunbers which are
f : bk e, Mumber input rouatines are o gned o take

string of hex or decimal digits., convert them into a number in

Brimary form, and return it in the ADDR variabls NUM.

Mumbier routines are not normallv croampd Leds They are

corli tionally compiled based on NE ONLIME , and NEEDNUMS defaul te
FLSE . To compile the number routines, tyvpe DOL NEEDNUMS LLIT
TTRUE s dn vouwr program bedfore the #TNCLL 2 I W

FLEX: The numbier outpul routinos
i lity and fFor useability. I+
rimbienrr s to bhe SOFEEN, Yol may use FLEX s mnomber outoot routines,
wivi o are mach shorber

Faplace the innards of PUTDED withe

are redirectable bobth for
s meed solely to send

] ol W

EMC@ADER, L LEADERDY 3 /%L DAER LEADSPD%/
WNOADEH, . DETA) g ARLDX DET =/
Dl B39 ARCALL FLEX S OUTDEC ROUTINEX/

Feplace the innards of PUTHEYX withs

GBEN CBDEH, - DETA) 4 FRLLDK DETA*/
CALL @aDEcH, ARCALL FLEX S OUTHEX ROUT TN %/

Replace bthe innards of PUTADDR withs

GEN (@DEM, . DETA) 3 FRLDX DETA®/
CALL DADASH; /*COLL FLEX S OUTADR ROUTINE%/

Gutput (redirectable) in decimal an unsiogned loa-bit number
AL pua of which is im0 DETA. Before calling, i+ the

bw o held in & BYTE variable., then assiogn it to an

variableys set DETA to point to the addersss of the ADDR

e which holds the number. Het the BYTE variable

. Costpual to TRUE aoridgbht-dustify the number in a

e-character field (that is to sav. to print a space for

leading zero) s selt LEADBEPD to FALSE Lo lett-justify the

(o output omly digits starting with the firat

TETC O) .,

Gt o Ted aw two hee digits an unsigned B-hit
b, = adole e of which is in DETA. Before calling,

DETE Yo point Lo the address of the BYTE variable whick
ok ols Dhe number,

b

n

v, b

Iw
e acholr g

@) as four her digits an wnsigned lée-hit
of whidobl ods odn DETAH. Before calling, if

SO

Doamved ot (o) 1e

SRLSM Libraries SELM WL TBEr Mumber Fowbines DAL e

The mumber ds held in s BYTE variable, then ¢ g it o
are ADDR vardiable - or ocall FUTHEY instead; sset DGTA to porint
for the address of the ADDRE variable which holds the nombes .

urnst aned hex digits and convert
Bririanr sy mmbiee Dt the hex digits are already in memory, set
LANETR o point to the address of the first dioit. O o
get the bed nueber From the user, OALL THNRUFF, then COLL
THIZX . '

them into a lé-bhit

f
¥

i)

O returmy ERFROR s TR i LINFTR points to an
irvalic mumber or FOLSBE &4 LINFTR points teo a valio number
e bo s separator character: use ANYDIGITS 14 ERROR is FAL
bhaen if ANYDIGITS iz other than rero then LINFTR 4
pevinting to s valid number, but iF ANYDIGITS is zero then
i TR poidnts Lo a sesarator oharacter. T & valid number
found, it s rebturned dre MUM Cbruncated to 14 brites) s NMUM
s s o rara iF LINFTR points to a separator char acter

LAINFTR ds left pointing to the char Fol lowing hhe
the separator is a or (the samng
Al

parator character, unl oees
rute as for NEXTOHORY

oA ungioned decimal number (& series of ASCTIT decimal
digits) amd convert it into a 1é-bit birmary number. Tt The
numbier s already in menory (as digits in oa shring) , sab
LINFTH to point to the addre of the first diagit. O o
et the decimal number from the user, OOLL TNELIFE, then TALL
GETDEC.

O retuwrns ERROF ds TRUE 44 LINPTR points ta an
invalid mumber or FALSBE i+ LIMPTR points to a valid number
me bo s separator characters use ANYDIGTTS 44 F Rods FALS
------ Thern 16 ANYDIGITS is obher than 2ero then LINFTR is

but if ANYDIGITS is zero then
parator character. I+ & valid mnumber
goraturred e NUM Cheane of o 1A Diteds NUM
o i f LINFTR points to & sepsr-ator characters
o lett pointino the character following the
sriarator character, unless the separator i a o (the sano
Fuder as for MEXTOHAR)

LT

R T S Rl B I D

e B TE i s made up of

Foutines in this 1ibers y call routines located in
GFLM_ L LIE, so that 1ibrary must be included before this one

L.

e TR ds weitten for s ; it omay or mav
1 65 rabile to vowrs., The 50 SLITE Library has the least
portabd ity of + .] LLIE Library supports

@omingl e Iy addeessing te
e able to implemsnt anv of the DL S Or Fun

Libraries. £ £
Terminals must have
tions in the librarvys

wees these funchtions is nob portable to ocomputers
LRV On the obther handg,
Laved in revers

K

@ prrogram which
Wit rominals which cannot go-
which call for ohar: tor e o
o wrcderlinge are g e to v i a wi thout such
atbei bt Bt wi thout the thally displaved

ay o ke The SGORN . JLIEB routines would be clummy

ey we

HH

anly of

Sl (i)

..

At Librari e

R W R B

MY

Py e

LR PR),

Fow e

o

inhang

[Y

e IR

ihior, and
post blon.
loemendt
terminal
24 -l

[WE ol SFIRE W

COLLIFN, Th

a4

Tl

the cursoe

Fange i

e oo sor

Sior . I+ t

& ihs po

IRWARD

L s
alre

from the

froom the

]

GOFRN

e B TE provic

a met of
which ole

ek IBE Do sor

AL G

rondtd mes whio

Terminals must kb
ary of the oursor

ts differant,

e

esigred for it.

G

per b poesi b

i

o spead f e

mel COLUFN, The wp

tlown one row,
AR IAI If the cursor is already on the bottom Oy o

LA I

e

o

fyut

ek om

ar o a line or Lines st

SN ER P

o

L g y
B

el

“ting

pracie 24

et the
Fram

i b

functions in the librarys

Toermid ral

ritey e Y

position s (@,

faey

(the

mad rntain

meeca

TE va
.

[AMEGY

thie

£

ioabl

BYT

position i

et t

Alne

£

&

coeloLmn

aintain the same column

Forward ore colomen, on bhe

dv i bhe 1 ast

el
fire

ChLar 4 to o bhe

cursnr to the

opevrdoaht (o)

el

i,
t oo

el

gl

wine oo mo

orn bhis o

45 A M
t o

S

AITE 1 OW :
lum, do not change its

ot the 1inme,

mf bhie soresn.

already on the top row,

e,
Iy e

" 1

o not

T+ The
it

.{Z

el T

Goyresn Charag [e e

LB provia SO

reen with
T4

el

Y

of routines Ffor sending

Lal attributes -~ bold,

arminal to whioh s particoulare
ares o more of bthese

ricthing .

cubpat of FUTTERM (and, when going o the
' ITCHMAR - that =t bhe output of all
sy ok gt orotdn o dr i over whidoh o allows
bput of ¢ oWl th s attributes This rouwtine

oot turn onoany of the special attributes - that ‘s dor
LLCHARS, RBEGRFUHGRS, and BEG
coutine el so s care of any initializati
raguired to prepare for output of special charact o
2 Te, SURNBOFG.LIR for the 4800 FLEY GIMIX viden card, :
wrdittern, initializes the card to allow reverse characters o
[EXEETRE S THE

I+ the terminal has laolight/hilight capabi Lities,

LIALBCRN puts it into lolight mode Chy 2
ey changes, with normel oharact 5 ortpat
arnd boldfa characters in the TRM s double-inte
famals, ho ar, lolight I :
SFECTALECRN dimditiali s b
& row ol i Frad i ek
cutput at the

e

[N

rrninal s

e (14
s) o o

I o normal ohannel s
cutput with special atitribut

under Lining

i

H Lhndde
sl bo e sore

“line every character which $ollows

VL G S Boldface everyv character which follows

et to bhe

. bread ol f &
which ia «

AVl

FUERVENT G L e 8 e

sE @mvery character which $ol1ows
e sent to the screen.

Erel wnderlining of characters to the sore

ST

LY S W L I T T =t

AURNM

iy of characters to bthe sore

el reversing of ocharacg

ters to the

SO TRMORMCHARS

ArtyY S0

character attributes being sent to the
Lore outout of normal characters (but don 't
Frr ottt rowtd ne from the special

i ver - thal ‘e dob For

routines For reading

Soms svetems, libke
oy odisl with two bvtes, a or/1f

wingle bvbe, = o, a5 A

i AN g urnmd bry Fhm o W b

SR 3

T

tabi Libw,
T mi rral
MEDOES :
oo disk are f
urn-!1n¢f irs, the SPLAM *"l~§:lm
tines auwtom ally write a linefeod ahﬁwamuur kn]
ing each carriage return character o d L @1mt1drlvv
Library routines to read byvhe from disk astomatically
aff & Linefeed whioh immediately follows a careri;
andard DOS file. T FLEX text files, on the obher hane

5oars not added or removed, since lines in stancard FLE
on disk are terminated only by carriage returns.

: et
Thus . in
i le
4

Linet

RODWT L LIR s made up of:

.....) n
utllmkv routines,

vl Fi e o . anc
Wi te File routines

5w

this library call routines 1oc o in
that Llibrary must be included bedors this orne

sk routines return the BYTE
o e arny problem, however,
i ; The BYTE variable ZIERRNO mayv &l so
o ane of tr. error Literals Lo indicate which twpe of
ocoureecds but all start with the 77° moreportabi ity
cakor Deoaa o unfortunatelyv, the tvp of errors which may
A.urmad From oisk rowkine vary enormously from one svstem to
b e,

TRUE,

23

=t

“mmfrm1 ﬂﬂﬂﬁWﬁtimh of code within
sk ubility routines

: DRFOBS control s
wrihe routines
theav u|rrruu!d

By
munkrml
w0 That @
o code generation:
Lare NEEDRFCE or NE
iF owvow nesd one or

1 are
] mmf

Hl(—krmllv
Wikt a0l

two reacd o

oipyeEr at

o

e s one routine which is alwayve compiled, regardle
litiornal compila wly

HELLAM

Lo B s

sy ol
i bl g

Coapwrd ahh

Wi ok

(3

LN A)

CHIEN

el T her

LT

LA L b ari e RDWT L TRy Constants pacie 29

BOWT LLTE provid
petweaen different oisk

of cometante
syt mimes s

£ o mmrtbhility

TRESTORIVE

SYSDRIVE

P

ogdrive Les
r

o number ds specifisd o the oireed
Atime (DIFR) by sending it a lit

@l s FIRBTORIVE,
SECONDDRIVE , THIRDDRIY o arel FC HDRIVE are fairly obvious:
WOREDRIVE angd SYSDRIVE @y

srify, respectively, the wer ki neg
drive (location of test or data files) and svestem drive
tion of commands) on syvstems which have EEAR T o}
Lgnationsy on obther svebtems which have omly one such
automatically selectod diriwve, they bobh specifv thﬁ "olefanlt
e v

LY

DR TVERT MG ;
it to khm T character used to apecify the firah

CFAT A MEDOS, 0 din FLEXY. A progeam whieh rail#
51 raectory routine might, for exanple prrompt e
The drive letter of the cdhirectory dwmir%d«

a literal which, added to FIRQTDRIVE, corver b
ol i v

lhw ASCTT charscter which, in a $ilenamne
. A nls drive letter from fFilename., wseful
'fﬁF'i;dV‘dle o hru Lebinmg 41 emamess

e The ABOIT
w R peam i

e whioh dis w
usefl For

wenarate o
| . o .
e o bd Lading

runber of byvbes ne
t

ted to hold a

srminator (such as $ AP L age

&
ity the length of an array WL

uwm)”
iribend bo

F e

wing or building a filename. ol uded

e MAXFILMOAMLEN iw For the drive le rooor mumtier, bhe

dirilwve ¢ arator, the filename, the ecdtension separator, the
: Lo, and the terminator e (eag. ;

NHMF,IXI o fa FTLENAME, TXT s A carriage return

SRl L e are

i e

ROWT

AFT AP 1an

DR VE

Lurn
ot the
T o
skl

CHAMGEDRIVE

ih
3
[D IRV R |
Literal
1i

APCIE
[0 il o3

[EIaE a1

L
VL

i th
wWer b
ot by
ting

thie w
cal b
gt b e

e Like

Y ¥

EMTETONT O EY GRS)

aried FRR

)
!%L

DIR

Hutwuk

Wik o |
+4 o
CEAL 3 T
UYL #
The Fin
Llimag

et L e

Frooam ofd

radmE o

.i.. t“ f:"' r.|
e,

] e
NI

e

o b
e, 4
Lhn
) .
L e
(l].
LI
ik

of THL

Wi o
T
W

(\

vk b

ey cles

PG am

e b TRy Dhesk U410t es

o

o

W
et theas

@ BYTE variable CHOR
ne Codefault) dreive.
Je 1iterale (

& portaly

the literal

o ki

g CHAMNEE

(T W N T {1

+ bhe ol

et TRL

mbrenr of
He
Aalsa (FIR
crom b adn

o LRMVAL.

fore o

f e
#I

ive
I
B

froee secbors

S1TDF
stk

amel 77

Llirg,

seat ofF oli sk
TILE literallyw TH

m?mr 1Hul

ot L e

the 65011
Thi .:Luw
FIRST

DRIVERIAS.,

Fault) driv
IVE ., wset
(oonvert o
FIRSTODRIVE, hv actol

o

}RIVR LE

TITVE,
Ve mtmhr

-

e wmet TRUEDY

@ termima
e el ng
thi sk 8
Beafore o
Aale (FIRE

st
o e

EER T o i i

=

v ods i

Yook st e

fivma el

Lhres s

if;}i\; j

1liﬁﬁw
STDRIN

[

iy

ot

Vinme r
at sor

LIVE L et

[NER SR 1 Tt ol

ample. afte
precaeded by oa single or using PUTT
SV whioh would pa

doing the

FL

atry b
vhat
FrEER ,

s oblvan COAT

v mal

ﬁ

& to o the o
HESR wqual
e of
ing Ih:
rumbier is
ot
g

availabhle
HE&H to one
Y. (i ret
of Frews

- | .
tory or catalon of the oislk

eport on b

ARt one

A R T quﬂrmm%u#
seraentul From o scrolling off the
i gt

tharn one 1
11

t bhe o

T ama

LI G
i reotory

3 RO OOMMAND Y e et i e T

R TR o T T
et TN
iF vy owi
o Charnge

alog comma

1

e

udlng\Lhm FROWT
iy mm%milmu

letter or rumber
may e converted
etol) (R3]
|

e

Ln

LﬁVdﬂLdﬂ th
pat tb the T
aual to ZZETDSY .,

2 &M

on the disk
of bhe i we

TUETY #h@ ADDR

hors (unl ess

. |
hae fres spa

nfuls (hit a charactaes T

of the deive

Aclcins N eTal

HOFEEN, VLR

i mef e breaf o e
o nkh it might

RMWWM

it oa AT
. EREOR i

£) ($mmuﬁd thu
TREMD, T4 vou‘ ve
why ber LEe &

ot s

ot

sets LINFTR Lo point to
: which should be

valid « £ " " Ceoonmima,
eiample) . [) ERROIR s
ety amch LIMPTR ds updated to
Fol lowing the oy S w
perimt b b itwelf
ot mel s

[
narators,
it At s oa

TATE &
first

Beafore calling.
b by o wbat will be
showld be b oa ovalid
T o point to the firet char i

which should be terninated by & valid arat o
- Orc return, EREOF de set TEUE if no §file WS

The £ile being renamed must ot be already open.
2 e ofF The Filename el
o LTXT AF none is specitfied; the sut sion of what
the new filename defanlts to the setension of the
eriainal mame 1F mone 1w specified.

ame, whiels

st

Thie b

Fowtines are provided for loading a Bimary $ila into

FHER I Y o T are totally nonep bl e Fach is different
ore different svetens. See the particulsr Librear
oodde for parameters and details.

|
S i brrard e ROT L TRy FRead Files ! e

s

R P G Y RV
B Literally 217
Feom, anc ol o
litearally Tt et
from, and olosing bws op

-f
Coroatd nes
reac 41
-

. Dise
ympd e Fo L
il e mimultam&mu%hi.

Gwhich we will generically 1 "raeagdtilel"y for
" Bafore calling, set LINFTR to point to the
e of the filename; the Filenamse should be
by & valid arator oharacte On return, BERROR
! it the filename was invalid it obhe file ooul
: founds EREOR met FALEE and R1I0F i O TRUE 4+
the Fi e was suc stully apened; and LINPTR §ig Andated o
padint to bhe character following the separator oF
sl o e, it o will stop and point to a DAL A0
wnodf it encounters that character.

ME DO & up L med e o i bextdile
Looks For FRl~7 s I O R T
X detaunlt extension of i1

i RCY M e 22

dimg b
toohar
F1 L 1 &

i

Te up

For reardinc .,
Loup For beimarsy
=Y BINE finary Files find end-of-file by rmhﬁtimq biv b enes
and comparing to number of bvbtes 1isted a LMiﬁgliﬁ the
File. ‘

Framarht il el "

apal s i

1 RDGPENlF@HTE

k Bats default esvtension of filesnane o be o E el
CEINE dhsahl e compresst on For reading %immrvn

v

Brwbe from actfilel dinbto the i oakl e

file Mave previously bee Fully

The calling program need not ob : salue of

ALY read errors (obher than Finding end-of-file) ars
wht in a =11 to
the end of the $ils: FE
b in o the File: then, the
Dread and of File) setb TRUE,
Uy EElwE SRR SN N N SRS VTRE SR Y
) i the file left to t
tevtes din & File
following coces:

LY TE

returns the last
call to FEEEDL re
FROR may also be .
RECFL to check for no
Preac Tor read ! all the
ey, vois might, for srample, w

LU T s

DAL FRET
DOV WL

HEE Y
TRTER+ 1y

LM L b ard RODWT VLT E: Fead Files

+ cor
-1 i 2eael palrs e
turm to o vowr prooramy and Stel -7
el e

T onlvoa
oL e e

pred for reading text, space
wprs din Files opsned for reading binary,
iw disabled. . i

FOLOFEN i
il

raturmecd FOLSE
Afilel i no lor
el are el d ormed.

ROF shouled be
From TRUE to FALSE, indicating re
Ay fFile-closing operations ne

=

the redivectablse input rowtioes
have to onen and ol ose

ADOFENSFORTEXT . RDCE CIRETIN, REF

ad from, and clc a el readd

v orthogonal with the set of

(with the number "1 in them) el
cred File oo Block for
IRFOBS must have A e
2ot i e compile.,

vy

2o more for bhes

ST WL

SRR L e s

RDWT WL TE

vraos R4

e LB provide s a -
1 i f(’l ally “17 to get rou
arcd olosing one wei e

i rally 9% o .
gl Tameo

wrd te ot d e

to compile for

toae i me, D] are

o compi e +u¢ wreiting to
\

riomc,

tovai e d

WTDRE

Open weitefilel for weiting text. BEedfore calling, "
LIMPTR to point to the filename, which s lw§3a\} 2 berminat e
el separator oh : “ hy peturm, F IR i "
the filenang was znvaild o LF the filenbme alreads
as oa File on bthe disk or iF the disk is 1
~protected (in XYy ERROR e set FALBE and WIOFEN is
WHUI it the File was suco sfully openeds and LINPTR ie
1ot podint bto the fFir Character following the
L o separators, except it o will s and! point to a
de return IF 4t encounters that char ‘

D &

acter. |
B fAdds s Final Cherl-7 as textfile QHHLQ{M$iqu

i the Files avtomaticalls ~ites s 1ihefesd
EVEITY CAarrd acge vety " : - o MSDOS

: : an be read with bthe M ; Fomanc
st i ng ADDLFD soaual to zero).

default sxtension of filenang Lo be opered
L cor For oweibing beet

BT

For Wl g .
Fou Binary weid
clenf sl e ban

TE MY E

above in WTOPENLIFORTEXT,

o of fi lenamse o De opened
sion for reading bhinary.

i UHAR o the disk wrei
wturr, and the file was
is obher Linn ero, then & character is
Ply and cmmt pately written to disk after the

Al T § rors return o with ERRODR s

the character umweitten to the disk. |

I+ the bvite
tolwrite text,

+

andc

owrdtetilel.,
MEDOS T dhe File was opened for text, output a final
Ut le-Z sndeof-fi le marker before closing the filé.

goocbhe ot
R TATEN R TR]
Thonagi e e ore

for the redirectéable output
mo Lo oper i

wrt%;nu o it

[y

BOFTWEST

& gl

AL b ard e

BT TR Wreite Files pane A

WTOFEMIFORTEXT . WTOPENZFOREON, WRTDS .,

gorothin oper, wrilte to., and oloss a
ey are complete o thogonal owith the :

i o i il G i them) except bthat bR :
wied write File conteol bl oo wed b

st have been declared literallsy 92 or
o compile. ‘

mo e e

ovyrdoobt (o

	0001
	0002
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	G-23
	G-24
	G-25
	G-26
	G-27
	G-28
	G-29
	G-30
	G-31
	G-32
	G-33
	G-34
	G-35

