PTT
&

STAATSBEDRIJF DER POSTERIJEN, TELEGRAFIE EN TELEFONIE

REPORT 164 MA

“PROCESS FOR AN ALGOL TRANSLATOR
PART ONE: ‘
THE TRANSLATOR

- DR.NEHER LABORATORIUM

REPORT 164 MA

“PROCESS FOR AN ALGOL TRANSLATOR
PART ONE: ‘
THE TRANSLATOR

B » \ BY: G, VAN DER MEY

WITH THE CO—OPERATION OF: W.L. VAN DER POEL
P.A. WITMANS
G.G.M, MULDERS

- JULY 1962

1.0 .General comment

1.1 - Procedure SO : stoies‘WOrd in object program on address P,

1.2 Procedure SOa: extracts from list L and conjugates.

1.3 Procedure SOc: stores word in list L on address S.

1.4 Procedure S04: equips object programme with storing and
] 4 ' extracting a partial result.

1.5 Procedure SOe: stores declaration list I.

1.6 Procedure SOf: looks up identifier f in 1list I,

1.7 Procedure SOg: shifts 1list I to the mid of the range P...T.

1.8 Procedure SOh: completes dynamic introduction of a block..

1,97_ - Procedure S0i: reserves address P of the object programme

’;AH for a pass instruction,

1.10 Procedure SOk: places extract normally instruction.

1,11 . Procedure S0l: contra declares a label.

1,12 Procedure SOm: stores word in list L on address So-1.
1.13 Procedure SOn: stores contra declaration and internal
o equivalent of an identifier,

1.14 Procedure SOp: contra declares name of function having no

B parameters,
Procedure SOr: inverts gression bit of instruction d.
SO0s: makes contra declaration of subscripted

. Procedure
' actual parameter.
Progressive and regress1ve after-actions of the opening symuﬂs
.. Compound statement "Entry" ‘ |
Compound statement S1: Entry for delimiters being elther an
operator, or a separation or closing

K o symbol,

,1;20 ‘ Compound statement S2: Pre-action of the opening symbol 1f.
'1121; Compound statement S2a:After-actions of the opening symbol,lg;
51:22 Compound statement S3 :Pre-action of the opening symbol begin,
»3.23 Compound statement S3a:Entry for declarators and specificatoré.
1,24 . . Compound statement S3b:After-action of the opening symbol begin,

1 ,25 Compound statement S3c:Entry for colon. .
1,26' _ Compound statement S4 :Entry for identifiers.

1 ‘27 ~fempound statement S4a:Entry for constants,

T 28 fj ‘pound statement S5 :Pre-action of the opening symbol (.

1. 29 ‘ound statement S5a:After-actions of the opening symbol (.

1.30

1.31

1.32

1.33
1.34

1.35

1.36

Compound

Compound

Compound
Compound
Compound

Compound
Compound

Compound

Compound

‘Compound

Compound

statement
statement
statement
statement
statement

statement
statement

statement

statement.

statement
statement

S5 b:
S6
Séa:
S7
S7a:

S8 ¢
S8a:

S8b:
S84d:

59
SQa:

Action of the
Pre-action of
After-actions
Pre-action of
After-actions
for.
Pre-action of
After-actions
go to.
After-actions
switch.
Aftérfactions

procedure,

Pre-action of

After-actions

delimiter 1sq.

the opening symbol { .

of the opening symboll[,
the opening symbol for. L

of the opening symbol

the opening symbol go ig.
of the opening symbol

of the opening symbol
of the opening symbol

the opening:Symbolz=;
of the opening symbol:=,

1.0 General comment : S C 1.0
- ALGOL Translator
begin | \ - comment

Restrictions in action:

1 In any block head within a text to be translated, the
declarations of simple varables and arrays are supposed
to precede those of procédures and switches.

2 The bounds of own arrays are supposed to be integral
constants. _

3 The controlled variable of a for statement may not be
a subscripted variable. ‘

Notations:

1 Above each labeled line, all references to the label are
gathered, represented by "approximate" labels.

2 Within the programme, many constants are written in a
semi-binary notation, in which pbwers of 2 occur as
factors and terms. '

Crosses x on the right-hand side of the pages mark the
lines, in which such non-variable expressions appear
which, of course, should better be replaced in the text
by their values.

3 Other constants, listed in table 1E, are conveniently ’
referred to by names which, in praxis, are to be replaéed
in the text by the appropriate values. Crosses + on thé
right-hand side of the pages mark the lines concerred.

Composition:

The translator, a block, contains procedure wrong, the
procedures of the SO-series,

; the switches sw and SW, and the compounds S1, s2, S2a, S3, S3a, SSb,

S3c, su,sua 85, S5a S5b,S6, s6a »S7,57a2,58,58a,58D, 08d s9 S%a,
input and in uti.

1,042

input, depending on the kind of string taken from
the tape, goes to either S4L4 (for an identifier), or to
Shali (for an unsigned number), or to one of the labels
mentioned in tables 1A and 1B. It assigns the value of
the string to variable f of table 4i, which is, however,
not necessary when the string is a delimiter

: = ([begin for go to if 1lsq .

When £ is 2 number, input assigns the value :
0 000000t01 O...0 to variable g. The bit t indicates the
representation of the number f.

input (cf. S5b).

Non-ALGOL features:
1 The translator considers boolean type to be the same
as integer type. Thus variables declared boolean may
assume integral values. Internally, true and false are
,represented by O and -1 respectlvely. Then the
significance of operator or can be extended as follows:
2 When applied to integers p and q, por a denotes the
logical product of p and q which, of course, might also
be obtained by a procedure logical product (pari, par2).
3 The ZEBRA, for which this translator has been developed,
is 'a binary machine with 8192 locations in its store,
“each of which containing 33 bite by, b eee Dgye
bo is the sign digit: bo—o-» PoOSey 1. 4 nege
Then X < O 1is a short notation for logical product
(x, 232) # 0; |

10093
comment

own integer array st [PO: Q0]; In this space, object programmes are built up, and it +
also contains the lists I and L needed in translation
time (cf. variables P, T, S of table LA);

integer a, b, c, 4, e, T, g, cf. table LA;
D, mark, P, g, R, S, S accent,
SO’ T’ T1 [2 T2’ u, V;

procedure wrong; This hardware programme stops and printsiaddress; from
which it has been invoked. That address corresponds to
the occurred kind of misérj listed in’table 5 as.a
function of a variable assuming labels as valﬁesj

procedure SO(F);

begin :
st[P] : =F; P: =P + 1;
if P>S0-2 then SOg;

end S0;

comment

stores word in object programme on address P;

for shifting 1ist L away from object programme

10101

1e241

comment
procedure SO0a; extracts from list L and conjugates;
begin
c : = st[s - 3]; . S
d : = stfs - 2];
e : = st[S - 1];
a s =480 or d; b : =L4B0 or £; 48O is = 514 -~ 34, thus b is = 32 x rank of

] delimiter £ (cf. tables 1 A and B)
end SOa;

1031

comment
procedure SOc(F);

begin

st[s] : =F; S : =85+ 2
if S+ 1 > T then SOg;
end SOc;

stores word in list L on address S;

-
>

for shifting list L away from I

Tolted
comment
procedure S04; equips object prograume with storing and extracting a
partial result;
begin
st[Saccent - 1] : =
2123 x 3 + 2126 x 63;
80(partres)
end 504;

procedure SOe(F)

begin
st[T - 1]: = e;
stlrl: =PF; T: =T~ 2;

if S+ 1> T then SOg;
end - SOe;

comaent
stores declaration in list I;

is internal equivalent of identifier F;

for shifting 1list L away from I (cf.SOc)

1.561

14607

comment

procedure SOf; looks up identifier £ in list I. on addresses
T1+2, ™M+ 4, ... T2,
If £ is found, then c¢ : = lowest address where T
occurs, and d : = corresponding internal equivalent,
which is positive.
Otherwise d : = =1,
If £ is found to be a simple variable or formal
parameter, then € : = d.

232 + £, which is the contra-
identifier of f, being negative.
If £ is found to be an array identifier,. then
g : = the ard instruction which is the internal
equivalent of the factor identifier, being neg.(cf.S6L8) and
u 3 = d, which-is used on S6L 17

begin Otherwise g : = O;

Otherwise e :

if T2 = ¢ then go to _.. Then identifier has not been found;

SOfL3;

c :=10¢+ 2; ,

if st{c] # f£:then go to for extracting the next identifier;

SOfLA ; g

d:=¢e : = stfec - 1]; which is the internal equivalent of identifier f;
if 2 xd > O then

begin .

if 4 x 4 > O then go to for label, switch- and procedure identifier;
SOfLL;

et =¢c=~-1; f is array identifier;

SOfL2

SOfL3
SOfLY

e

.o

B

'Sbf;:

=e-2; g: = stle];

g > O then go to SOfL2;

= d; go to SOfLL;

£+ 2132

comment

Then ar1 irstruction is not yet found;

This compound statement is omitted in the case of a
formal parameter or simple variable

1.6.2

S0glL1:

procedure SO0g;

begin

a :=(P+T~-8~80) + 2;

Saccent : =
S : =8 + a3
SO : = SO + aj .
if P+ 2 > SO then

wrong ;.

b
Fb

X

[b]: =

1)
=

Se

H

do st[b] :
end sOg;

Saccent + a;

a > 0 then
or b : = S step -1 until SO
o st

st[bv- a]

or b : = SO step 1 until S

st[b - a]

comment
shifts list L to the mid of the range P ... T;

The distance from the mid of S0.,..S to that of

PeoeoT is = a + 1 with either 1 = O, or %, or -3z;

Then translator is short of working space.
Otherwise P + 2 is £ SO

and, because of abs(l)s 2y also S + 1 £ T

as required in procedures SO, SOc, SOe, and SOm;

1e el

procedure SOh;

o

egin

H O Q O
o0 »
! i

ct
|

begin

st[s - 7];

= st[s - 3];

=-8t{S ~11;

£fd=322and c#£O
n

d

if a > O then st[a]
P + 2123 + 2126 x 121

if'D < O then a
stfs - 7] :
if a < O then

begin

= aj

.
.

D else a

and a z 0

o

= st[S ~ 2];

.
’

14841
comnment
is invoked after reading the first array identifier
of a 1ist being not own (cf.SL4L17), cnd also, when
translation of a statement is beginning (cf. S2, S3,
s5, S6, S7, S8, S9, S3cL2 and S3bL1). Bridging pass

"instructions are inserted in the dynamic introduction

of a block on addresses previously reserved by
procedure S0i, and the introduction is also completed
by putting the instruction retain to its end.

The procedure assigns the same values to variables c,
d and e as does procedure S0a;

This only happens, when translation of a block head is
still running; | |

Then pass instructibn (cf. tabie_1D)“isﬂinserted on x
address a; |

Dynamic introduction of block is completed.
q is smallest address reserved for simple variable
which is local to block;

1842

‘comment B
SO(retain); cf. table 1 E +
end o
end SOh S Thus, when st[S - 2]= 322 which is the value of

begin and st[8 - 3]1# 0, (cf. S3 and S3a), then

st [S - 7] can be the address where to insert a
pass instr. in dynamic introduction of block at
next call of procedure SOh (ef. S0i), or O when no
paéslinstf; is to be inserted, or negative, when
introduction is ready; ' " S

procedure SOi;

Af st[S - 7] =0
st[S - 7] : = P;
80(0) ;
‘end S01;

then

——————
i

comment
is invoked on SLL40, S4L4L, SLL24, SUL37.
Unless there has already been reserved an address, it
reserves address P of the object programme for a pass

instruction, which is to be inserted later by
procedure. SOh; '

A preliminary zero is inserted;

1091

1¢10.1
comment
procedure SOk; equips object programme with filling the
accumulator, which is required whenever a cmputation
is beginning in the object programme. For const. 98
cf. table 1C;

e
H

I
0Q

it
o
2
3

e, if > 0, is the internal equivalent of either a

simple variable or formal parameter. If < O, e is the
contra-identifier of a function name. € = O occurs only
at a call from S1L10. Then nothing is added to the object
programme ;

F
(0]
e
to]

if e # O then

begin

if e > O then S0(e + 2126 x 98)

else SOp

end if e > O;

end if g = 0

bégin o o Representation of constant e is indicated by bit t of g =
0 000000%t01 Oss+0;

S0 (g + 2126 x 98); - : S x

so(e); Thus, in the object programme, constant e is subsequent

to the extract normally instruction concerned;

-

end elSeA
end SOk;

SOiL1:

procedure SO01;

if g = O then SOn(2123 x 127)
else

if e < O or 2t24 s e then
wrong;

~ else

begin

a :=¢e¢+ 2124 x 63 + 2132;

et = P+ 2123 x 127;
SOe(a);

s0(0)

end SO01;

comment
contra~-declares a label, which is either identifier
st[S] or, when g # O, the constant e.
For 127 = 0 001111111 cf. table 24;

cf. table 5

e + 242 x 63 is the identifier form of a
constant label e;

1el11e1

1e121
comment

procedure SOm(F); stores word in list L on address SO = 1;

begin

S0 : = S0 - 1; st[s0o] : =F
if P+ 2 > SO then SOg;
end SOm;

-
2

compare procedure SO

1¢13.1

comment

procedure SOn(F); stores contra-declaration of identifier st [S]

(cf. SLI23)in 1ist I, with P + F as internal equivalent;
begin

e ¢: =P + F;
SOe (st[S] + 2132);

SO(O); Thus a preliminary zero is stored in the place of

an instruction which is inserted later
‘end SOn; '

procedure SOp;
begin

a: = e;

e ¢+ = P+ 2123 x 31;
SOe(a);

so(o)

end S0p;

1eiled
comment

contra-declares name of function having no parameters;

which is the contra-identifier of the function name;

141541

comment

procedure SOr; inverts gression bit of instruction 4;

begin

g : = d or 2126; x
if g = O then

begin

a :=4d or 2126 x 126 ;)

if a = 2126 x 64 or a = 2126 x 68 : _ X X
or a = 2126 x 70 or a = 2126 x T4 |

or a = 2126 x 80 or a = 2126 x 82

or a = 2126 x 88 |

then g : = - 2126 ' - X
: end’ R Then operator (cf. table 1A) is not commutative.

When the operator is commutative, the bit;d6‘= 0]
is not replaced by 1;

o &
i

o
. |
(1]

B
3

procedure SO0s;

begin
: = st[P];
: = 2423;

a
e .
if a # O then e

if e = O then a
a + 2123 + 2126

SO(a);

-

(108-125) ;

son(2123 x 255 - 1);

end SO0s

comment
This procedure makes a contra-declaration of
jdentifier st[S] according to the value
p =0 011411111
listed in table 2A together with an explanation.

The procedure is invoked only on S2al19 and S5aLl27
and S2al19;

Then e = O indicates that a is an ar2 instruction
(cfe S6al61) referring to a formal parameter;

Cf. VERIFY and ar2 in table 1D;

Thus either a VERIFY instruction is stored, or an
ar2 instruction or O is restored;

Then P is again increased, and a zero is stored
on address P - 1, while the contra-~declaration
made refers to the address P - 2

141641

1171
comment

Progressive after-actions of opening symbols

(cf. table 41 B).

S1L6;
switch sw : =
S5aLt, S6aL1, S3bL1, S%aL1, S7all,
S8alL2, S2aLi1, S8dL0O, S8bL2;

Regressive after-actions of opening symbols.
S1L21;

switch SW : =

S5al3, S6al5,:S3blL2, S9al2, S7aL2,

' 88alL1, S2aL13, S8dL1, S8bL1;

The entries correspond to the after-actions of
([begin : = for go<to if procedure switch;

entry:

P PO + 1;

Q@ :=Q0; T g ="T4: = QO0=-2xh;
T2 : = QOO;

SO0 : = LO;

8 : =1+ 80;

st{SO - 1] : =R : =0
go to S6ali4;

.0

.
H

end entry;

comment
Compound statement entry.
The constants
L0, PO, Q0, and QOO of tabel 41E
are the initial values of the address variables.
When, on S3bL8, the translation finishes, the
first word of the object programme is inserted on
address PO;

Then Saccent : = 8191,

st[80]: = g : = mark : = O.

As the opening symbol begin occurs in front

of any text, input goea to compound S3.
Procedure SOh cannot do any harm, for

st[S - 2] = O differs from the internal value 322

of begin.

1¢1841

S114: SOa;

,gS1L2;>;£,Seccent =

if g < O then g : = 0O;

if e = O and g
S1L3;
AL £ £ 32 x 5 + 2426 x:97
.then go to S1Lu
S1L2a- wrong,

S1L3 if a < 128 then

S1L3a: wrong;
If £ =32 x 3 + 2126 x 72
ihen go to input;

S then go to S1LY4;

= O then go to

1191
"comment

Compound statement S1.

After reading a delimiter f which is. either an
operator (table 1A) or a separation or. c1031ng
symbol (table 1B),

procedure input goes to here;.

Then ¢ = st[S - 3],.d4 = st[s -~ 2], e = st[S - 1]
a= 32 x rank rd of delimiter 4,
b = 32 x rank Te of delimiter f;

cf. S3all. and S5aLl5. Then. the identifier or constant
preceding. delimiter T 'in theltext need not be
examineq; ' h o | |
Then identifier st[S] f e - 232 represents an array
(cf. sLL22). As this significance of the identifier is
nonsens here, it must be non-local, and another
local declaration of the identifier may be expected _
later. o . , E |
Only exception"identifier is actual parameter,
representing array. Then g : = O does no harm;

Then delimiter f is preceded in the text by. the
O-identifier (there is no identifier and no constant)

Operator not is preceded by an identifier or comnstant.
S1L2; ‘

Then an identifier or. constant has been omitted behind
the arithmetic operator 4;
for skipping + 1in a = + D etce;

J|'01902

. , ‘comment .
if 4 = 322 then go to S1L21; for a dunmy statement. Then the after-action of 4
' with f = semi-colon'or end is considered to be regressive;

if £ = 32 x 5+ 2126 x 97 for operator not;
then go to S1LL;
Af £ £ 32 x 3 + 2426 x 74 then

81L3: wroﬁé; o - Then an identifier or constant has been omitted;
f =232 x 3+ 2126 x 96; Ina=-Dbetce - is treated thisway.

, o S1L2; : .
S1L4: if b < a then go to.S1L26; Then reading c¢ontinues and d is a regressive operator or

opening symbol.
Otherwise reading is interrupted: ;
S1L5: if Saccent = S then go to S1L21; Then 4 is either a regressive operator, or an opening
symbol which is repressive with respect to the after-action
with f (cfs S52aL5 and S3ally).
In general, however, an operator or opening symbol . &
which is translated first after interrupting the
reading, is progressive: ;
S1L6: if a = 320 then go to sw [d-319]; for progressive after-actions of opening symbols;

S1L7: if Saccent + 2 < S then S0d4; Then object programme must.be provided with storing and
extracting a partial result;
S11L8: a : = 4 or 2123 x 5; Then a is either = O or

a = 0.000000t0f O...0 and c a programme const. whose
representation:is indicated by the bit t. For g and e
it is analogous(cf. S1L26 and S1129);

S11L9: 4 : = 4d - a + g; which is thus associated to e instead of c;
S1L10:if Saccent + 2 = S then go to | Otherwise object programme must be equipped with
S1L41; £illing the accumulators:;.
g =a; S
as:=¢€e; e =cycCc:=a8a; ¢ and e interchange their values;

51111 s

S1L12:

S0k; e : = c;

Af d or 2123 # O then go to
$1T45; |
if e > O then go to S1L4iL;

if 4 # 32 x 3 + 2126 x 96 and
d #32 x5+ 2126 x 97
then go to S1113;

S41L13:

go to §1L22;
S0 (partres);

- 80p;

e ¢ = 2123 x 507;

SOr;

‘1.19.3

comment

Thus previous value of ‘e Is restored.

51110, -81L25;"

Then instruction- 4 is ready and e is a programme
constant to be used by instr. 4; :
Then e is the internal equivalent of either a simple
variable or formal parameter. B

Otherwise e - 292 is an identifier (cf. S4L22) which,
in this position, can only be the name of a function
having no parameters:
Otherwise d 1is an operator not or - such as
does not, in operation time, require to store

a previous partial result: ;

Compare S1L13;

S1L12;

for storing previous partial result;

Thus a contra-declaration of identifier c - 232

is made according to p = 0 000011111 which constant
is listed in table 2A together with an explanation;
For, ‘in operation time, instruction 4 must
extract a partial result;

Thus the gression bit d6 is inverted. When, for

.
2

example, function —« p x @ + e.ee is translated, then

operator -~ 1is regressive according to the general
rule. Thus p x q is translated first. Before, in
operation time, function may be invoked, the object
programme must at first store the partial result accu
which is p x . Therefore the minus instruction is to

be translated in the form
accu : = accu - (partial result)
which is progressive instead of regressive.

S1L14:

S1L45:
S1L16:

S1L17s

S1148:

S1L19:

S1L21;

S1L22:

S1L23:

e s =€ = 2126 x 63 + -
(a4 or 2126 x 127);

£9o to S1L16;

so(a);

so(e);

Saccent - : = 8§ ¢ = 8§ - 2;

S0a;
if b < a then go to S3L5;

if a = 320 then go to
swla - 319];

if @ # 32 x 5 + 2126 x 97
then go to S1L23;
e : = take inversion;

go to S1L46;
if 4 # 32 x 3 + 2126 x 96

then go to S1L2k;

e : = take complement;

go to S1L16;

1.49.4

| . comment :
S1112;

S1L11; :

S1L4L, S41L22, SiL23;

Thus instruction or programme constant is stored. .
in the object programme.

83bL14,.S7aL18, S8al3, S9aL2;

Operator st[S] has been translated and will be
overwritten now;

cf. S1L1;) Ce

Then translator again procééds to readinge. -
Otherwise translation continues (cf.S4LL4).
51L5, S1L3;

for regressive after-actions of opening symbols
(cf. S116). '

S1L42;

N , . X
That code instruction of table 1E is the regressive
version, and extract inversion of table 1C is the
progressive version of gperator not;

S1L22; ‘ _ _
That code instruction of table 4E is the regressive X

version, and extract complement of table 1C which
has been introduced a2t the end of S1L3 is the
progressive version of operator

by the O-identifier;
S1L23;

-~y When - 1is preceded

~ 84L24: SOr;

S1L25: go to S1L11;
S1L26: SOc (f + g);

S1L27: mark : = O;

S1128: st [8 = 1] : =0

wse

S51L29: g : = O;
£e to input;

end S1;

1195

comment |
That procedure sets the gression bit d6 which is
still = O, to 1, for operator 4 is regressive;
If that is a programme constant, the indication
of its representation is already recorded in 4; .
S1LL4;
with either g = O, or g = O 0O00000t041 O...0, the bit
t indicating the representation of e which is a
programme constant. (cf. S1L29).
if, at the next actlon of this compound S1, operator
st[S - 2] just 1isted in L is found to be progressive,
the g-pqrt is removed from it and replaced by the next
value of g, on S1L9._
S3L5, S5aL6 S6aL11,
cf. table MC.
S3ally, S3cL6 S5L9, SGaL31, S6aLé61, S8L2, S84L8, SOLL ;
If the translator proceeds to SuLZB or SuaLz, this O
is replaced by something else.

SLL21 ;

Lfter runding a conctant, ‘proccdurc input gocs to

compound Sha with g = O 000000t01 O..+0 in which bit
t “indicates the representatlon of the constant £ read.
On SML22, occasionally an ar1 instruction is assigned

to varlable g as value'

begin

S2L1l: £ : = 326
SOh;

S2L2: SOc(mark);
go to S3L3;

_ comment
Compound statement S2.
Prc-action of the opening symbol if;
Cf. if in tablc 1B-
Cf S3L2~

Then,'for‘translatlng an if—expression, there is
listed in L: B
st[S ~ 4] = mark (cf. table LC),
st[S - 3] =0, '
from 1st after-actlon' minus address P’
where to store a test 1nstruction,
from 2nd aiter-actlon. plus address P"
where toOStore a pass instruction.
st [8 - 2] = value,326 of if,
st [S~-1]=o0.
Signal mark is set to 0. The 1lsted value,
st [8 - 4], is re-introduced on the 1st and 2nd
after—actlons of . if~

12041

12141
comment

begin ' Compound statement S2a.

Ifter-actions of the opening symbol if.
Delimiter f is either then or else or the
closing symbol of a condltlonal expression or
- statement E. On-S1L%, the value O or -P* or
+P", mentioned in compound S2, has already been
assigned to variable c.

Progressive:

' 'Thejexpressidn; preceding delimiter £, is a
~ single identifier or constant i

S1L6;
S2ali: 4 : = st [S = 4]; . being the value of mark retalned by compound
- ‘ statement S2; ‘
S2aL2: if ¢ x 4 # O then go to S2all; Then the 2nd or 3rd after-actlon of ~ 1f' is

beginning, f belng 'else or the closing symbol,
and, in addition, d is = 1 or 2. i
Then 1 may be a lsbel. -

Otherwise 1 is no label: ;3

S2al3: SOk; | Thus ob;)ect programme is equipped with filling
, the’ phentom accumulator-" S
o 1o S2aL20; S2al2; |
S2all: if & = 2 then go to S2ald7; Then i is a 1abe1 (or a formal paramoter that.

may only represent a 1dbel), and E is a
designational expre351on.
Otherwise express1on E is an actual parameter*

S2aL5: if g # O then go to S2ali1; ' ’Then iis the constant e.
‘ ' Otherwise i is an identifier I
S82al6: if e < O then go to S2al9; Then 1 = e - 032 is found to be no simple

variable and no formal parameter (cf.S4lL22).

1¢21,.2

comment

Identifier i is found to be a simple variable
or formal parameter with the internal equlvalenu €e:;

S2aL7: if e - 2123 x 505> O Then 1 is.a simple variable, and an ex tract-normally
then go to S2ali8; instruction is added to the objcct programme..
Otherwise 1 1is a formql parameter:;)
S2al8: g : = € + 2123 + 2?26x(110-6§°wh1ch is a verify instruction (cf. table 1D). X

In operation time, the‘b;txgg 1 of instruction g

makes the test on S10L13 fail, and the interpreter
proceeds to S40L4LO. There the instruction X whose

formal parameter represents the actual parameter in
which expre881on E is contalned, is examined: If X is

no Jjump 1nstruct10n, then the formal parameter 1 to
which the verlfy 1nstruction refers, cannot represent

a label so that the verlfy 1nstruct10n is to be
interpreted as the extract normally instruction referring

to 1.
squG"'
S2aL9: S0(g); S2al48; |
S2aL10:g ¢ = st [S] + 2132; being the contra~identificr of i - X
(cf. SLL23); ,)
e : =P+ 2123 x 511 - 13 - R N x
go to S52al12; The”centra-declaration g5 . e to be stored how is made

according to p = O 111111111 which constant is listed in
table 2f together with an explanatlon. It refers to the
address x = P - 1, where the object programme contains
elther the mentloncd verlfy or extract normally

1nstruct10n or O.
S2al5;

S2al41:

g i = e + 2124x63 + 2t32;

S2al42:

S50k;

-if e <O por 22, s e

then go to S2al20;

e

=P+ 2131 x 3 - 2;

soe(g) ;

() EQ_SZaLZO;

S2al13;
S2alils

S2al15:

d : = st[S - L4];

if ¢ x d = 0 then go to
S52al20;
P:=P~1;

12143
comment

Then st[P - 2] is the extract normally instr.

which, in operation time, extracts the programme
constant st [P - 1] =

Then constant 1 1is not suitable for being a label.

. Constant i may occur as a label: X

which is the contra-identifier of a constant label i;

The contra-declaration g, € to be stored now is X
made according to p = 41 4100000000 which constant is |
listed in table 2A together with an explanation. It

refers to the address x = P - 2, where the object

programme contains the extract normally instruction. The
internal equivalent e
S2al10;

thus the contra-declaration is stored now;

Regressive:

The expression I preceding delimiter f is non-trivial
(no identifier and no constant).

S1L21;

cfs S2al1;

Then expression I cannot be a switch designator
(cf.S2al2) and has already been translated.

OtherWise,I = 1 [E] is either a subcripted varigble

or a;éwitch designator., The subcript E has been
translated .in compound S6a;

Then st[P] is either the ar2 instruction referring to
i, in which case 1 has been found to be either an
array identifier or a formal parameter, or O

(cf. S6al61);

is negative.

S2al16:

S2al17:
'S2a118:

S2al19:
S2al.20:

S2al21:
S2al22:
S2al23:

S2al2l:
S2al25b:
S2al26s

S2al27:

S2aL28:

S2aL29:
S2aL30:

S2al31:

S2alL32:

if 4 =1 then go t

S2al19;

S01;

go to S2aL20;

S0k ; ,
go to S2al10;
SOs; 4
mark : = a;

e : = P;

if ¢ < O then go to S2al28;
if ¢ # 0 then go to S2al31;

e ! = - 63

st[S=-3]: =

S0(0);

go 1o S1L28;

if £ # 326 then e := e - 1;
st[-c]: =e+1+2123+2126x111;

-
2

comment
Then 1 [E] is contained in an actual parameter.
i [E] is a switch designator thus i a switch
identifier:
S2all;
Label or switch identifier is contra-declared;
82aL7; |

S52al16;

s2al3, S2alit, S2al12, S2alilh, S2aLAT;

At the after-actions with £ = then or glse signal
mark is restored to the value retained by compound S52;

for the 2nd after-action;
for the 3rd after-action.
1st after-action:;
S2aL30;

At the next after-action, this O is replaced by a
test or pass instruction;

S2al22; ;

Cf. else in table 1B;

Cf.test in table 1D;

if £ # 326 then go to S2al32;Then the separation symbol else is not present;

go 1o S52al25;

st[c]i= e+2123+2t26x121;

S : =8 ~2;
go to S8al3
end S2a;

else is present.

S2al23; |

Cf.pass in table 1D.

' S2al30;

Thus, at the last after-action of if, mark is set to O

1e21.4

S3L1: £

322;
. s = 2123 x 1023
S3L2: SOh;

L\
1

S3L3: st[S - 1]: = 0;
S3LY4: Saccent : = 8191;
S3L5: S0c(f);

£o to S1127;

- comment-

Compound statement s3.

Pre—-action pf'the opening symbol begin;

Cf. begin in table 1B;

Cf. D in table 2;

Perhaps opening :symbol begin immediately follows a
block head. Then procedure SOh complctes the: dynamic
introduction of the block. ‘

S2L2, S6L9;

s7L2, S9L10-

S1L19, SHLL4, S6L19;

After pre-action of opening symbol, reading
continues.

For translatlng a compound statement there is listed
in L: ’

st[s - 3] = 0,
st{s - 2] = value 322 of begin,
st[S -~ 1] =0~ o

1.22.1

1¢23.1

begin / comment
Compound statcment S3a.
/After rcading a declarator or specificator (table 2),
procedure input goes to here;

S3al1:D : = D or 1 Thus declaration is replaced by its logical product
with f;

if (D or 21428) = O then go to Then f is a specificator or specifying declarator;
S3aLll;

S3al2: S0a; - for extracting opening symbol from list L;
if 4 # 322 then

S3al2a: wrong; Then declarator occurs in the wrong place;

S3al3: if c # O then go to S3all ‘Then block has already been prepared in L by a

previous déclarator.
First declarator of a block:;
st[S - 1] | -
S0c(P);
S0(0);
st[s - 1]
s0c(322); S3al1, S3al3, S3bL2, S4L30, S5L2;
S3all}: Saccent @ For translating a block there has been listed in L:
go to S1128; ‘ st[S = 7]= 0, which O may be replaced through
procedure S0i by an address to inform procedure SOh,
st[S - 5] = g', being the highest address occupied by
a local variable,
st[S - L] = address P' where the block has its object
programme beginning, B o
st[S - 3] = T', being the highest address in the list I,
occupied by any identifier declared in the block,

st[S - 2] = value 322 of opening symbol begin,
"st[S~-1]1=0

]|
L]
o

i
(0]
Ve

end S3a;

|o&t+eo

begin ‘ ' comment
Compound statement S3b
After-actions of .opéning. symbol begin
’Delimiter f last rcad is either comma or semi-colon

or end.
Progressive-'
s1L6; - . o
S3bLl: SOh; A block head may bc followed by a procedure statement
consisting of a single procedure identifier (cf.S3L2);
son(2123 x 31); ‘ A eontra-'-declarntion of the procedure identifier is X

‘made according to p = 0 000011111 which constant is
1isted in taoble 2a- together with an explanatlon.

Regre531ve-

S1121; IR

S3bL2: if £ # 330 then go to S3bL3; Then' f is no comma (cf. table 1B);

CIE D > O then go to S3alli; Thén*obmmé‘ocours in list of identifiers to be

‘@éclared; -

S3bL2a:Wrong; Comma occurs in a block as separator of statements.
S3bL2;

S3bL3: T4: = T; This bound is observed by procedure SOf;

S3bLh4: D : = 2123 x 1023; as happens also on S3L1;

S3bL5: if £ = 332 then go to S6ali1; for reading next declaration or statement of compound
"statement‘or block, which is sdbsequent to semi-colon f;
if £ # 322 then . R
S3bLba: wrong; . _ 'Then a declaratlon or statement of a compoind statement
| ‘ ‘ - ' " or block is followed by a delimiter, différing from
semi-colon and end.
. >After-act1on of begin with end:
" on S1L1, st[S - 3], as leéft by either compound- 83 or
"S}a, has been a381gned to variable.c;
S3bL6: if c # O then go to S3bLI; Then a block is.closing.
A compound statement is closing;

¢ = QO0~2xh;

lTedlres

comment
which 1s the highest value T can have;

€
if S = SO + 3 then go to S3bL13;Then the text is a compound statement instead of

S3bL7: if S > SO + 3 then go to input;

S3bL8: S0(0);

- st[PO] : = P;
S3bL8a wrong;
S3bL9: S : = S =~ 2; S0a;
S : =8 -2;
S3bL10: st[d] : = g+R+2t23+2126x127;

S3bL11: SO(c+R+2123+2126x119);

S3blL12: g : = c;
S3bL13: a : = T;

S3pLik: if a # e then go to

S3bL15;

a blockc quels may occur in it.’

S3pLil;

1nput, in this comment situation, looks for the next
delimiter £ ‘which is equal to either semi-colon or
end or celse, then going with f to S1L17. Then the

delimiter precedlng beg in the 1list L, is going to
after-act with f. : : '

The whole tcxt has been read:;

Thus last word of object programme is O, but may be a
jump to any stop of the machine;

Thus st word of object programme is address where
working space begins;

Objcct programme is ready!

S3bL6; ‘ :

Now st[S - 4] is the delimiter preceding begin in the
list L. For ¢ = g' etc. cf. compound S3a;

Thus, in object programme of block, an adjust
instruction is the first word;

Thus in objeet programme of block, a restore instruction x

(cf.table 1D)is the last word.
S8ALT; |

Thus value of g, which was present when first declarator

of block was read, is restored.

S3bL6;

On S3bL3, the value of T was also assigned to Tt.
S3bL15, S3bL48, S3bL20, S3bL3L;

Then the contra-identifier occurring next on the addresses

a+2, a+li, ..ec is looked upe.

12443

comment
All contra-identlfiers have been considered:
™ ¢+ =T : = e; Thcn in the 1ist I tis the hlghcst address,

occupied by an 1dont1flcr Whlch is local to the
translated block; ’

T2 : = QOO; Cf. table 1E; S - a +
if st {8 - 3]<O then go to Then it is a ‘block that closes, R
S3bL7, _ st[S - 3] hav1ng beén made negative by procedure

SOh qfter readlng the block head.
A proccdure is closing

£ = 332; Thus semi-colon f of compound S8d is restored~.
g_ o S1147; as ultimately happens too Wlth a block .
k | (cf. s3bL7) |
S}bL1h
S3bL15: a : = a + 2; Then st [a] is a normal (positive) identifier.
f : = st [a] + 2132; st [a] is a contra-idcntifier:;
(if £ < O then go to S3bLal; ,
S}bL16: T2 : = e; SOf; Then identifler h iy corrcspondlng to contra-
' o : identifier st [a] 1s looked for on the addresses
T+2, T+4, ...T2-
b : = stf[a - 1]; being the 1nterna1 equlvalent of the contra-
| , identifier;
S3bL17: if 4 > O then go to S3bL21; Then procedure SOf has found identifier f on

address c, d = stle -1] being the internal
equlvolent (cf. table 2) of f. Then contra-identifier
st [a] can be satigfied.
Identifler f has not been found so that the
, » . contra-identifier remains unsatisfled:; N
S3bL18: € : =.T2; | T Thus the volue of e as it was on S3bLi6, is
‘ restored.

S3bL18a:

S3bL19:

S3bL20:
S3bL21 :
S3bL22:

if S > SO + 3 then go 1o
83bL19;

if b ¢ O then go to S3bLil;

wrong;

stfla = 1] ¢ = st [e - 1];
stla] : = st [e];

st{e - 1] : = b;

ste] ¢+ = £ + 2132;

a : =a - 2;

e = e = 2;

g0 to S3bLak;

T4 ¢ = c;

e : =dor (2123 - 1);
c :=Dbor 8491;

"Then f -2

1e2h.4

comment

-Then the transletor does not yet see the end of

the text, thus may regard the unsatisfied contra-
identifier as to He non-local to the closing block
or procedure. ' ' '
Otherwise the text, either a block or a compound
statement, is closing:;

2h x 63 is a programme constant, that,
because of its position within an actual parameter,
was expccted to be perhaps a reference to a label,
but is found now to bec not; '

any identifier of the text has not been defined.
S3bL18;

Thus 2 decclarations are interchanged;

The non-satisfied contra-identifier is considered to
be no longer local, Thus e 1is again the highest
address where a local identifier is listed in I;
S3bI17;

which is used on S3bL33;

being address + 210 x rank;

being the address where either an instruction or the
main word of e parameter key is to be inserted.

For internal equivalent b cf. table 24; -

Then b = O indicates, that the contra-declaration

refers to thc key of an actual parameter that is a single

identifier.,
Therec must be formed either 4 = main word, and

1.24.5
comment S O ,
~.e = by-word of the key (cf. table 3) of an actual

parameter that is an identifier or a constant,

-or 4 = instruction; e v .
S3bL23: if b #'0 then go to S3bL35; for a constant parameter or an instruction.

Parameter is an-identifier:j. S
S3bL2L: if 2 x d < O then go to S3bl29; Then parameter represents either a formal parameter
B LT or a simple variable (cf. table 2); - .

S3bL25: if 4 x 4 < O then go to S3bL28; Then parameter represents an-array;
S3bL26: if 8 x d ¢ O thcn go to S3bL30; Then parameter represents a:label or switch.
Parameter represents a procedure:; E :
S3bL27: 4 : = e or (2123 ~ 2t13); being 212 x rank of procedure identifier; : X
e : = e~+‘14¥'d; being 1 + address where procedure has its object-
: programme beginning; '
d : =4+ 2123 x 57; . -
go to S$3bL31; S3bL25; o
S3bL28: e : = g - e = 2123 - 2126x126; Cf, ari in table 41D;
go to S3bL31; As procedure SOf assigned an ar1 instruction
) : ~(cf. S6L8) to variable g as value, ¢ -is a
difference of addresses now.
S3bL2L; : e o
“83bL29: if (& or 2123) = O then Then actual parameter represents a formal - X
a:=e+ 2126 x 3; parameter
S3bL26;
S3bL30: e : = O; .Thus, for a2 parameter representing a simple variable

‘or formal parameter or label or switch, the by-word
~is cleared, which is facultative.
S3blL27, S3bL28;
S3bL31: st[c - 1]: = e; Thus by-word is stored. . , ,
The key main word of a parameter, rcpresenting a simple

S3bL32: stlc] : = 4;
S83pL33: SOf;

if @ > O then
S3bL33a:wrong;
S3bL34: T4 : = T;

e :-= T2;
go 1o S3bLil;

S3bL35: 4 d - e;
g : e or 8191;

S3bL36: if b < O then go to S3bLLS;
S3bL37: if 2 x b <« O then go to S3bLL3;

S3bL38: if L x b < O then go to S3bLL2;

1ot eD
comment

variable or array or label or switch i, is equal to
the. internal equivalent of i. :
83bLL7; - , .
Thus key main word or instruction is stored.
S3bLL42, S3bLL3;
Cf. S3bL21;

Any identifier has been defined twice in the same
block or , or in the same procedure outside the
blocks .contained in it;

Thus the value of T4 as it was on S3blL1lL, is
restored;

Ditto;

Satisfaction of contra-identifier st{a] is ready.
S3bL23;

Then g is the addrecss taken from the declaration.
Now the kind of the object referred to by the contra-
declaration (cf. table 2A) is examined. It must be in
acecordancc with that of the object referred to by the
corresponding declaration (cf. table 2);

Then a constant occurring in an actual parameter (or

. being an actual parameter) is found to be used as a label

too - the declaration of which having been found;

Then stfc] is a verify. or extract normally instruction
or 0, occurring in the object programme of an actual
parameter (cf. S2al6); _

Then st [c] is a VERIFY or ar2 instruction or O,

occurr;ng in the object programme of an actual
paramcter (cf. S2ali5);

1.24.7

comment

83bL39: if 8 x b < O then go to S3bL45; Then a jump instruction is to be inserted in the

S3bLLO: if 4 £ 2126 x 63 then go to
S3bLL ;

g : = if 16 x b < O then
2126 x 120 else 226 x 98;
go to S3bLL7;

S3bLL1: if @ > 2129 then

S3bLL1a swrong;

if 16 x b > O then go to

S3bLLL;
if st[g + 11> 0 then go to
S3bLULb;

S3bL41b:wrong;

S3bLU2: if d = 2126 x 63 then go to
S3bL33;
if 2 x d < O then

dbaoct programme of a switch or go to statement,
identifier f having been contra-declared on S8al2
for examplc.

In the'dbjcct progremme of a function designator or
procedure statement, the 1st word must be adjusted,
idcntlfler £ hav1ng been contra—declared on

ssalé or S1143 or S3bl4 for example;

Then identifier f may only have the significance
of a”pfocedure identifier. | X
Identifier £ has been found in the signiflcance of
a formal paramcter:;

Cf. extract normally and prostat in tables 1 C - X
and 1 D; :
S3bLLO;

= X

A procedure statement or function de51gnator
invokes nonsense;

A function designator or procedure statement having
actual paramcters, invokes a function or procedure
having no formal parameters.

SBbL}B'

Then 1dentifier f is a formal parameter; o %

83bL42a :wrong; :
if b x d < O then go %o
S3bL33;
if 8 x d < O then go 1o
S3bLL6;

S3bLL42b :wrong;

S3bL43: if 2 x d < O then go to-

S3bL33;
if 4 x 4 < O then
83bL43a swrong;

if 8 x 4. < O then go to
S3bLL6; '

S3bLul: if st{g + 1] > O then
S3bLilia :wrong;

S3bLLLb:e : = JO;
go 1o S3bLLT;

comment
A subcript has been atteched to a simple variable;
Then f is an array identificr; I

Then st [e] is fepiacéd_byta jump instruction;

A subscript has been nttached to a proccdure
identifier.

S3bL37;

Then identifier f is either a simple variable
or a formal parameter and st[c] is not changed;

An array identifier occurring within an expression
is not followed by a subscript;

Then f_.is a switch identifier or a label;
Identifier £ 1is a function or procedure name.
The funétidh‘designétof or procedure statement
haskno’actual,parameters:»‘_

S3bL41 ;

A function designator or procedure statement having

1.24.8

no actual perameters, invokes a function or procedure

having formal paramcters.

S3bLL1; ‘

Cf. table 1E;

Cn address c¢. , a codc instruction is stored which,
in operation time, jumps to address g where the
object programme of the function or procedure
beginse. | .
S3bL39;

S3bLL5: Af b = d then go to S3bLLG;

g : = 2926 x 122;
if 4 = 2126 x 63 then go to
S3bLL7;

S3bLL4baswrong;

1l

S3bLL46: g : = 2923 + 2126 x 122;

S3bLL47: 4 :

e+ g;
to S3bL32;

18

S3bLL8: g : = if 2 xb < O
then 2123 + 2126 x 109

comnment
Thcn £ 1is o label or switch identifier.
Idcntifier £ is a formal parameter:;
Cfe jump in table 41D;

Then f is indeed a formal parameter;
nonsensc, referred to in a designational
cxprcssion.

S3bLL42, S3bL43;

Cf.jump in table 4D. _ .

S3bLL40, S3bLll, S3bLL5, S3bLLS;

for storing instruction or key main word.
S3bL36;

Cf.Verify in table 1D-.and key main word of
constant parameter in table 3;

1e2L4.9

begin

S3cl4: Af(D or 2124) # O then go to
S3cL2;

£ :=33;
g9 to S1I4;
S3cL2: SOhj; . »
S3cL3: if g > O then go to S3cL7;

ife=0 then
S3cL3a:wrong;
S3clh: £ : = st[S];

S3cl5: e : = P+ R + 2123 x 127;
SOe(f); ' -
S3cL6: SO (g + R + 2123 + 2126x119);
go to S11L28;
S3cL7: if e <0 or 2124 < = e then
S3cL7a:wrong;
S3cl8: £ : = e + 2124 x 63;
go to S3cl5
end S3c;

comment
Compound statement S3c.
Colon gocs to hcre from input;

Then colon declarcs the label preceding it
in the text.
Otherwise pattern D contains the type

1¢2541

indication of an array declaration, colon being the
scparation symbol bectween a lower and upper bound:;

Cf. colon in table 13B;
S3cli;

Cf.S3L2; N
Then"iabei is an integer
(compare procedure SO1);

Label has been omitted;

Cf. Sil23. -

S3cL8; ,

Cf. label in toble 23

Thﬁs declaration of label is listed;
Cf. rcstore in table 1D;

s3¢L3;

Cf. table 5;
being the internal value of constant label

SLLl1:

SiL2: if 2 x D < O then go to SL4LI;

S4L3: if 4 x D < O then go to SL4L11;
.SuLL: if 8 x D < O then go to SWL37;
"SLL5: if 16 x D < O then go to SLL2L;

SLL6: if (D or 2123) # O ‘

o o then go to SLL32;
SUL7: P : = P - 1;
e : = st[P];

S4L9:

suy110:;

SUL11:
ShL12:

begin

if D < O then go to ShL22;

SO(D), so(e);

e 1 = q+ 2126 x 63;
qQ:=4q-2;

go to SuL19;

if 8 x D < O then go to SLL18;

S50i;

Bo to SAL15,

6 :=st[s-1];

if 8 x D < O then go to SLIA6;

102641
..comment
Compound statcmcnt Su. o S
Aftcr reading an identifier f procedure input
goes to herec.
Then identifler f must be 1ooked for in the
list I.
Identifier f must be d801urbd or specifled
(dutmﬂezy,' | |
Then identifier f is declared a simple variable;
array identifier; |
switch identifier;
procchre identifier;. x
Then- f ~ds: elther a value parameter, or is to be specified.
Identifier f is a formal parameter to be listed in I:;

Then st[P - 2] = D, and st[P - 1]= 2?3 x rank of
procedure (cf. SLL28);

Relative addfésses q+ 3 and g + 2 are reserved for
the main - and by-word of the parameter key.

SML2°

Then varlable 1s not ovn.

Varlﬁble is own:;

Cf. SHLZA

SuLj,

Then array is not own.
Array is own:;

SLL13: if c # O them go to SULA5;

SLL1L: SO1;
st[s - 1]

SL4L15: e

=P+ D+ 2129;

S0(0);

g0 to
SUL16: if c

S4L17: SOh;

st[S - 1]: =
s4L18: e : = q + D;
Si4l19: e : = e + R;

SML20°

% O then go to S4L48;

=P;

12642
- comment
Then f is not the 1st identifier of the list.
1st identifier of the list:
Cf. SLL2k;
Then st [S - 1] is no longer = O.
Compound S6a will insert pre-value [a] of a = 4st array

of declaration (cf. explanation)

on address P.

SLL10, S4TA3; _, | |
Then the bit ey Of the intornal equivalent = = 4, x
as it is in the case of a variable or array bcing

not own; .

A place for the 81mple variable or the pre-value of
the array is reserved in the object programme;

sh1i2;

Then f is not the first 1dent1flcr of the liste.

1st identlfler of the list:;

Thus the space of own varisbles and - arrays and of
the_dbject prbgrammes of procedures and switches,
Whieh eventuully precede the non-own array declaration,
is brldged by insertlna a pass 1nstructlon in the
dynanic 1ntroduct10n of the block;

The relatlve address g 1s reserved for the

pre-value [a] (cfe SHLAL), that is an internal
(non—declared) varlable of the object programme.

SLL9, S4I16; '

Thus 1nternal equivalent e of identifier £
contﬂlns ‘the address reserved.,

SLL8;

cf. SLL26,

S4Li5;

, 1¢26.3
comment

S4L20: T : = T;
T2 : = st[S - 3]; . That is the address T' mentioncd in compound S3a;
soe(f); ' Thus declaration is listed in I;
SOf;

if 4 > O then go 1o S3bL33a; Then identifier f is defined twice in the same
"Dblock or procedure heading.

A SLL36;
SihL24: T2 : = QOO; Ccf. table 1E' Lo N
£o to S1L29; | | SLTA; o
Si122: SOf; Identifier f 1s looked for on addresses T4 + 2,

T + u, ees T2, as explained in SOf~
s4L23: st[S - 1] : = e; st[s]: = ‘ - , . :
go to input; "Because“of'tﬁé'pdsSiblc necessity to make a
contra-declaration, identifier f remains available
on address S, until the next delimiter is stored
“there in the list L.
| SiL5;
SuL2L: 504 | As the objcct programme of the procedure which is
B ‘ going to be translated now, is to be passed by the
dynamic introduction of the block, a location is
reserved for the pass instruction needed, unless this
 reservatiQn has already been made earlier on '
- S4L40, ShL4L, SLL2h or S4L37; |
S4L25: e : = P + R + D; ‘Thus the address P where the procedﬁﬁe has its
- object progremme beginning, is contained in the
| , 'internal equivalent e of procedure identifier f;
“é&L26: R : =R + 2913; ‘R 1s cleared in caompound entry, and decrecased on
S8dL3. r = 2~19 x R is the rank of the procedure,
r - 1 1is the rank of the procedure identifier;

e

L7

12664

comment
shL27: S0(X); S Cf. table 1E; = ‘ - _ +
sL4L28: SO(-R); The petterns of eventual formal paramcters arc

inserted between instruction X and constant =R so
that the latter must be shifted then (cf.S4L7);

6]}

c-+.
—
n

' ‘
-
—

(X

1}
le;
-e

S41.29:

Cf. procedure in table 4B.
qg:=Q0 ~-1; SLL39;. + x
a : = 327; -
S4L30: S0c(P);
st[S = 1]: = T;
soc(d);
soe(f); | Cf. SLL20;
SLL31: go to S3all; For translating a procecdure, there has been listed
in L: N ‘ ' .
st[S -~ 5] = value .q' of ¢ which was present when
declarator procedure was rcad, ,
8t[S - 4] = 2 + address P' where instruction X has
been stored,. ;
st[S - 3] = nddress T' where procedure identifier £
has been listed in I,
st[S = 2] = value 327 of opening symbol procedure,
st[Ss - 1] = O.
to be compared with the information listed by
compound S3a.
, SUL6;
S4L32: e : = P - st[S = 4]; being the number of the formal parameters
‘ v ' (cf.P' in SLL31);
T2 : =R + e + e; On that address the 4st parameter identifier is

listed in I;

S0f; Thus identifier f 1is looked up in parameter list;

142645

comment
if 4 < O then
SL4L33: wrong; Then specified identifier does not occur in the
parancter 1list of the procedure;
S4L34: e : = P -1 + (T - c)%2; On that address the pattern of the parameter to be

specified, is listed in the objcct programme;
suL35: stle] : = stle] or D;

SL4L36: go to SuL21; SLLL;
SLL37: SOi; Cf. S4L2L;
SuL38: D : = 2123 x 1023; X
™ s =T; ‘ Cf. S3bL 3 and 4. The expressions of the switch
list must be translated now;
Q:=q-=-1; This is compensated by S8bL9.

#8 there is supposed that the declarations of all
local variables and arrays are precedent to those of
switches and proccdures, q + 41 is the lowest address,
occupied by a local variable (namely the internal
variable which is used hy the adjust and restore
instructions) the switch 1list may contain deliberate
: statements (jumping or not) as its elements;
som(0) Within the 1list L, this O will be preceded by the
pass instructions leading to thec object programmes
of the switch list clements, until the 1list of
these pass instructions can be stored in the object
programme of the switch (ef. S8bL7);
S4L39: 4 : = 328; o | S
| g0 to SLL30; For translating a switch, there is to be listed now
in e o) A o
st[S - 4] = address where the switch 1list element to
be read now has its object programme beginning,

- comment v :
st[S - 3] = address where switch identificr is
listed in I, the internal equivalent being stored
in I on S8bL40,
st[S - 2] = value 328 of opening symbol switch,
st[s -1] =0 L a

142646

162761
comment N
begin Compound sthtement'sua.
- After roadlng a constant f, input goes to here
with f and g = 222 x § 000000TO{ in which tho bit
t indicates the representation of f: t = 1 » £ is
real, O » integral or boolean;
Sheli: if D > O then | | |
ShaLia:wrong; Then a conStdnt océurs within a list of identifiers
o to be declared; ' | |
SuaL2- st[8 - 1] : = £; ,
g0 to input' The delimiter which is subsequent to the constant
~ is read
end Sha; |

8514 ¢

begin

SOh;
if D < O then go to S5L3;

if 4 # 327 then

S5L1a:wrong;

ShL2:

SHL3:

D : = 2123 x 30;
g0 to S3alli;

if g > O then

- S5L3a :wrong;

S5LL .

85L5:

S5L6:

if Saccent < S then S04;

ASaccent : = 8191;

£ : = 320; ’
if e = 0 then go to S3L5;

son(2t23 x 63);

comment
Compound statement S5.
Pre-action of the opening symbol (;
Cf. S3L2;
Then either a function designator or a procedure
statement or an expression enclosed within
parentheses is going to be translated.
A formal parameter list is beginning.
Procedure SOh has assigned the value of opening
symbol procedure (cf. table 1B) to variable 4;

Then (occurs in an identifier list of a block
head;

S8daL8;

Cf. table 2;

The parentheses of a formal parameter part are not
listed in L.

S511 ;

Then (1is prcceded by a constant;

Compare this with S1L7, where the operator st[S - 2]
which is on the p01nt of belng translated, has
already been listed in L- '

as happens too on S6aL11'

cf. (in table 1B;

Then an expression enclosed w1th1n pqrenthescs is
beginnlng in the text. o

function des1gnator or procedure statement:

Thus identifier f is contra-dcclarcd qccording

top=20 00011iﬁ11, which constant is listed in
table 2A together with an explanation;

12841

402842

, ‘ comment
S5L7; sSOm(0); sSOm(0); The keys of the actual parameters will be listed
SRS in L, until all actual parameters will have been
translated (cf. S5ali7);
S5L8: S0c(P); S

s0(0);
s0c(f); B S5al15;
S5L9: 8t[s = 3] ; = P; - ’
mark : = 13 Cf. teble LC;
go to S1L28; For translating a function designator or procedure

statement, having actual parameters,
there has been listed in L: |
"8t[S =‘4] = address where to store the key address of
the function designator or procedure statement
(cf. S5al23).
st[S - 3] = address where the object programme (it
may be empty) of the next actual parameter begins,
st[S = 2] = value 320 of (,
ist[s8-1] =0
end S5; S o

{

if ¢ # O then go to S5aL7;

Shal1:

S5al2: SOk;

S5al3: if c # O then go to Sh5al2l;

if f = 321 then go to S5al5;

S5ally: if £ # 320 then
Shallia swrong;

comment
Compound statement Sba.
After-actions of the opcning symbol (.
Delimiter f read last is either a comma or).
On S1L4 the volue of st[S ~ 3], as left by compound
S5, has already been assigned to variable c,
Progressive:
Delimiter £ 1s preceded in the text by p which
is either a string or a trivial expression (identifier
or constant).
S116;
Then p is an actual parameter.
p, though enclosed within ‘parentheses, is no
parameter; '
Thus the object programme is equipped with filling the
accumulatorsy: B : -
Regressive:
Delimiter f is preceded in the text by a non-trivial
expression p. o |
S1121;
Then p is an actual parameter,
P is no actual parameter:;
Then expression p is enclosed within brackets
(ef. S6L12).
S5al23;

Actual paramcter, orvexpression intended to be
encloscd within parentheses (or brackets), is
followed by a wrong delimiter. ‘

S5alL3, S6al26, S6aLL2;

1.29.1

Shalb:
S5al6:

S5aL7:

Shal.8:

85al9:

Saccent : = 8§ ¢: = 8 - 2;
£o to S1127;

if g > O then go to S5al10;

if c > 0 then go to S5al8;

c : = st [S] + 2132;

a T;
go to Sbal13;

.
1l

comment

1.29.2

Delimiter st [322] is regressive, for it is precedent
to parenthcses or brackets in the text. If its rank
should be not greater than that of the delimiter to

S5ald;

Then . p is a. constant, e, and g =

bit. t

. be read next regressivity is dctected on S1L5.

0 000000t01...0,

1nd1cat1ng the rcpresentation of e;

Then p is an identifier, st [S] (ef. SLI23),
¢ being the address listcd in L on S5L8.

p is a string, ¢ being the complement of the
mentioned address (cf. compound S5b)-'

Thus the object programme of the string occupies the

addresses

d,d+1, -0-6-10

a4, e becomes the strlng key (cf. table 3)

S5aL7,_

As the parameter may be a label or a procedure- or b3
switch identlfier decclared later in the text, the
parameter key may (and possibly can) not yet be

formed. Thus a contra—declaration of identifier st [s]

will be made accordlng top =

0 OOOOOOOOO whlch

constant is listed in table 24 together with a

general €3 plqnation~__

The cdhﬁra-declaration is to point to the.addresé b <

where the key main word will be inserted in the object

programme. As X - is still unknown in this stage of

the translation, the address

d where contra-identifier

1.29.3
comment :

¢ will be listed in I, is stored in L as a - pre-
- liminary key main word to be used on S5al20 for
storing the internal equivalent of c.

ssali7; : - . o
S5al10: 4 : = g + 2126 x 63; which is similar to the internal equivalent X
of a simple variable (cf. table 2);
Shali4: if e < O or 2%24 5 ¢ Then constant . e is either no integer or anyhow
then go to S5alil; unsuitable for being used as.a label. Thus no x

contra~-declaration is made. ,
Otherwise the constant parameter e will be contra-
declared~according,to; p = 1 000000000 which constant
is listed in table 2A together with an explanation:;

S5al12: ¢ : = e + 2124 x 63 + 2132; which is a contra-identifier;
d : =4+ T Again (cf. S52L9) the . preliminary key main word
points to an address in I.
S5alg; »
S5al13: SOe(c); Thus contra-identifier - ¢ is listed in I.

On S5al20 its internal equivalent is stored.
: , - 85alL7, S5ali14, S5al26; , L .
Ssalil: if f # 330 then go to S5al46; Then delimiter f 1is no comma, thus the actual
parameter part is closing in the text.
f is a comma (cf. table 41B):;

S5aL15: SOm(d); SOm(e); - Then there is in L:
go to S5L9; . st{s0] = by-word e, and

st[SO + 1] = main word d of parameter key, and
the next actual parameter is read.
Shalils;

§5aL16: S0(0);

S»al17: Af d < O then go to S5al21;

S5al18: g : = P + 1;
c : = 8191 or 4;
dad : =4 - cj

S55al49: if 4 = O then go to S5aLl20;

d : =4+ P;

(1.0}
it

g + 2132;

S5aL20: if c¢ > T then stc - 1]: = g;

comment _
Then, .in the object programme, st[P - 1] = O,
st[P]-becoming~the by-word of the parameter which
is the last element of the parameter list. .
Transport cycle:
S5al.22;
Then parameter is a non-trivial expression and the
key is ready (ef. 85al25);
The key main word is to be stored on address g;
Then ¢ 1is either = O, or the address where the
required contra-declaration is to e listed in I,
or the address where the object programme of the
string begins;

Then parameter is either a single identifier or
a.string.

Parameter is a constant:;

Then the key of the parameter looks as follows:

st[P]= constant e,
st[P+ 1] =da =P+ 0 111111t01 O...0;

which = P + 1 + 232, 17 ¢ # O, then constant e
may occur as a label (cf. table 2A).
55a119;

which is the internal equivalent of the contra-

identifier stored in I on Shalii3. It refers to the

1429.4

main word of the parameter key which is to be formed

or modified, when the translator will have arrived

on SZ)bLZ}c :
S5al17;

S5al21:

Shal22:

S5al23:

ShaL2lt

85aL25:

so(e); s0(a);

e : = st[s0}; 4 : = st[s0+1] ;

SO : = SO + 23
if 4 # O then go to Shalil7;

8 ¢: =8 - 2; S0a;

go to S5ally;

if mark # O then go to S5al27;

SO(return);

o
1]

c + EO;
2123 x 10173

Q
il

S5aldl;
: P -1

comment
Thus there has been added to the object programme: .
st{P - 2] = by-word e, and
st[P = 1] = main word d of the parameter key;
Thus next parameter key is extracted from L;

Then the next key is transported.

All keys have been stored in the object programme;
Then d 1is the address denoted with- st[S - 4]

on S5L9; . |

which is the key address of the function designator
or procedure statement;

Shal3; = ¢

Then mark = 4, the parameter having the form i[E],

in which identifier i = st{S].

i is expected to be either an array- or switch
identifier. , v
Parameter is a non-trivial expression differing
from i[E]:; . A

cf. table 1E. In the object programme of a

parameter i[E] which is a subscripted variable or

12905

switch designator, the last word = O instead of return.

S5al27;

cf. table 1E; - :

d, e 1is the key of an actual parameter which is
a non~trivial expression; (cf. table 3);

S5al2k; . ; '

Then st [P] is either an ar2 instruction or O
(cf. S6alb1);

SO0s;

go to S5al25
end Sb5a;

comment
The mentioned identifier 1 is contra-declared
because the ar2 instruction might, and a zero must
be replaced later by a jump instruction.
A zero is added to the parameter's object programme;

1¢29.6

13041

comment
begin Compound S5Db.
Action of delimiter 18g (cf. table 1B);
S5bL1: SOa; Then 4 = delimiter st[S - 2], the parenthesis
having the value 320;
if 4 £ 320 orc=20 Otherwise the string beginning in the text is an
then go to S5bL2; actual parameter;
st[S -~ 3] : = « ¢; Thus the address P 1listed in L on S5L8 is replaced

by its complement;

go to inputi; Then the string is read. For storing the successive
words, procedure SO is recommended, because it also
pays attention to the position of the list L.
After skipping delimiter rsg, inputi1 goes to S4L28;

S55bL2: wrong; This string is no actual parameter thus perhaps a
piece of code programme to be included in the object
programme?

143101

L comment
"bééin ' ‘ Coﬁpbund'stetement'é6.
v Pre-action of the opening symbol [.
S6L1: £ : = 321; . [in table 1B;
;_kp < O then go to S6L10; Then a subscript list is beglnning fn the text.
s - - bound pair list: | |
S6L2: SOa; - ‘ Then the following assignments are performed:

¢ = value, variable T had, when the {st declarator
of the block was read (cf. S3al5),

d = value 322 of the opening symbol be in,

e = address, reserved for the pre~value [a] of the
18t array, called a in the explanations (cf. SLLAL

and ShL16)
if e = O then
S6L2a: wrong; Then a list of arréy'identifiers has'been omitted;
S6L3: D : =D + 2132; for D must be negative during the translation of the

expre531ons of the bound pairs, Then the tests on
S6L1 and SLIq succeed;

S6LL4: if B or 2129 # O then go to Then the arrays are not own.
S6L6; Arrays are own:;
S6L5: e : = P; which = 1 + address where pre-value [c] of ¢, the

last array of the 1list, is to be stored later
(cf. S6ally1);

g0 to S6L7; S6LL; |
S6L6: e : = q; That address is reserved for the internal variable u.
Thus address e + 1 is reserved for pre-value [c] of c,
the last array of the list;
™ o= c; for, within the bounds, there only occur non-local
variables. |

S6L5;

1e31.2

comment
S6L7: SOcl(e); : . -
S6L8: e : = e + R + 2123 - 2 + cf. ar4 in table 1D;
2126 x 126; o -
SOe(2t2l4 x 62); In the case of an own declaration, the internal

equivalent of the factor identirier 224 x 62 is not
_e and will be inserted later on S6al38;

S6L9: go to S3L3; Then, for translating a bound pair list, there is

: listed:in L: - ' : - ‘

st[S - 5] = address reserved for the pre~value [a] of
8 = 1°% array of the 1ist mentioned in the
explanations, ;
st[S - 4] = ¥ 4 + address reserved for the pre-value
[c] of ¢ = last array of the list,
st{S - 3] = =1 + number of bound pairs already
translated, '
st[S - 2] = value 3214 of [,
st[S = 1] = 0 ’
S6L2 ;- ‘

S6L410: SOh; for a procedure statement with actual parameters can
be the 1st statement in the compound tail of a block
(cfe S3L2); o - i

'S6L11: if g # O then go to S6L15; Then [is preceded by an array identifier;

S6L12: if e = O then go to S5LL; Then there is beginning an expression enclosed
- A s within brackets, which is no subscript.)
[1s preceded by either a formal parameter or a switch
identifier:; ' ’ '
S6I43: if e or (2132 + 2123) # O then ‘cf. ar2 in table 4D.
e : = 2126 x (63 = 125); Then [is not preceded by a formal parameter. Thus x

it is preceded by a switch identifier whose declaration’
may, of course, occur later in the text;

S6L14: st[S - 1] : = e + 2126 x
(126 = 63);

g0 to S6L18;
S6L15: Af g > O then
S6L1 5a :wrong;
S6L16: st[S - 1] : = g;

S6L17: e : = U+ 2134;

1}

S6L18: S : = S + 2;
if S + 1 > T then SOg;
st[S - 1] : = e + 2126 x
(125 - 63);
S0c (- mark);
st[s - 1] : = 0;
S6L19: go to S3L5;

1e¢3143

comment
That is either the ar4 instruction referring to a
formal parameter, or a positive and harmless
constant;
S6L11;

Then [is preceded by a number;
which is the ar4 instruction listed in I on S6L8 and

referring to the 1st factor of the array declaration;

Then bit e, = 1 as it is in the case that e is the
internal equivalent of a formal parameter.

S6L1L;

as happens in procedure SOc;

as is indicated in table 4C;

Then, for translating a subscript list, there is
listed in L: '

st[S - 7] an ar{ instruction or a positive constant,
st[S = 6] = the array- or switch identifier or the
formal parameter, preceding [in the text,

st[S = 5] = an ar2 instruction‘ofyo;:

st[S - L] minus the value of mark which was

present when [was read,

1.31.4
. comment ' .
st[S'= 3] = = 41 + number of subecripts already
translated, o ‘
‘st[8'= 2] = value 321 of [,
st[s = 1] =0 o
end S6; | |

163241
commnent

begin : Compound statement S6a. -
Aftcr-actions of the opening symbol [
Delimiter f read last is either a comma or a colon
or]« On 8111 (or S1L18) the value of st[S - 3] as left
by compound 36, has already been assigned to variable c.
Progressive:
In the text, delimiter f is preceded by a trivial
expression p (a constant or identifier).
S6L1 ;
S6ali: d : = st[S - 4]; L Compare S6L9 with S6149;
86al2: if d - O they go to S6ally3; Then p is a subscript.
P 1is a bound:;
S6al3: if D or 2129 = O then go to Then declaration is own.
'S6ali27; Declaration is not own:;
S6alli: SOk; . Thus p 1is translated.
) Regressive: _
expression p 1is not trivial and is already
translated.
: S1L21;
S6al5: 4 : = st[S -~ L]; cf. S6ald;
86al6: if 4 S: O then go to S6al53; Then p is a subscript.
: : P 1is a bound:;

S6al7: if D or 2%29 = O then - o x
S6al7a:wrong; Please only constant bounds'in an own array
- ' : declarations;

S6al8: if ¢ # O themd : = d + 1; Thus, in the case of the 1st bound pair, d is
: T ‘the address of variable u, otherwise d is the
address of variable v = [c], as is indicated in
the explanations;

S6al9: if f # 331 then go to S6ali2;

S6al10: SO(A+R+2123+2126x117);

Saccent : = 8191;
go to S1L27;

S6al11 :

S6al12: if ¢ = O then g : = q - 1;

S6aL13: SO(A+R+2123+2126x74);

S6alil: SO(q+R+2123+2126x115);
86ali5: if ¢ = O then e : = O glse
e ¢t = ¢+ 2;

so(e); |

S6al16:

S6al17: q :

1l

a-1;

S6al18: st[S = 3]: = c s =c + 1;

S6al19: if f = 330 then go to S6alii;

comment)
Then delimiter £ 1is .no.colon.
colon:;
cf. store accu in table 1D.

Thus u : = accu or Vv .3 = accu is translated.

entry, S3bL5, S7aL9, S7al47, S6al19;

As long as S' has the value 8194, the tests on
S1L7, SH5LL and S6allly cannot succeed.

S6al9;

the latter being the same as ¢ : = d -~ 1.

Then ¢q is the address to be reserved for the
variable H,, the value of which is the number of

array elements; .

cfe =~ in table Jl.A.t
Thus. accu : = acc¢u '= U Or accu : = accu = VvV is
translated;

cf. store factor: in- table 41B;

else e : = d - q may be written instead;
Thus the constant O or k = i + 2 (i < k, cf.

explanation) is subsequent to the store factor .
‘instruction;

That address is reserved for the variable to be
introduced next which is possibly another factor

Byqe |

S6al36, S6alb58;

Thus the number of bound pairs or subscripts is
counted;

Then 1 1is a comma;

1¢32.2

if £ # 321 then
S6aL19a:qung;

S6aL20: D : = D + 2132;
S6al21: S : = § - 2;

S6al22: if D or 2129 = O then go to

S6al23: SOa;

sGéLzu{'SO(c+R+2123+2126x11u);
S6al25: S0(d - c);

S6al26:

BB

to S5alb;

S6al27: if g = O then go to S6al7a;

a

S6al28: if g + 2125 x 127 < O then go
. to 86al7sa;

S6aL29: if f # 331 then go to S6al32;

S6aL30: if c £ O then v : = e
else u : = e; |

S6al31: go to S1L28

S6al32: if c # O thene : = e = Vv
else € ¢ = e - u;

S6aL33: if e < O then
S6al33a:wrong;
e :=¢e + 1;

163243

' ‘commenf

Then a subscript, or a bound of an array declaration,
is not followed by the required comma,]
which compensates for S6L3;

, Or colon;

for own;
Then is (cf. S6L9):
c = address reserved for variable [a],

d = address reserved for u;

cf. store pre-value in table 4D;

In the object programme, the store pre-value
instruction is followed by the constant which is the
difference (address of u minus that of [a]);

The brackets are exhausted.

S6al3; ' _

Then a variable bound occurs within a declaration
of own arrays;

Then the bound has not the integer representation;

S6aL29;

Then lower bound is greater than upper bound;

S6aL3L:

86aL35: i
_st[so0 +cl =
Laoe =

- S6al36
S6aL37:

;SOﬁ(e);

if ¢ = O then go to S6al36;

st[SO + c] x e;
ux e+ v;

:egg'jg S6al18;

g : = st[s0]; so(g);
80 : = 80 + 1;
‘ci=c - 1;

if ¢ # O then g_ to S6al37;

- S6aL38: st[T+1]: = P+2123+2126x126~2;
- 86aL39: 80(u);.
S6alL0: SOa;
S68LLH: .»St['vC]' = - uj; P:=P=7g3
’,c‘“:'=c+1-

’if c # d then go to S6ally;

;_Séthzf Af P>S0-2 then SOg;
| g,sg o S5aL5;
S6alli3: if ¢ # O then go to S6all5;

Tedlk o

comment
In the store, the calculated constants must'eppear
in the same order as have the factor variables of the
arrays being not own. Storing in L through procedure
SOm is a means of reversing the order;

which is the next value of Hk;
which is the next value of u.
S6al35;

S6al22, S6al37;

thus the constants hﬂ, eee Dy 45 and Hk are listed
in the object programme,

g being Hk at the end;

which is the correction announced on S6L8;
Constant u 1is stored;

cf. S6al23,
Addresses c and d-1 are reserved for the first
and last pre-value constants.

S6all1; -

Thus space for own arrays is reserved in object
programme'

‘s6al2;

Then the identifier or constant p to be translated
is not the first subscript of the list.
First subscript:;

S6ath

S6allL5:

SGaLh6:

S6all7:

S6aL48:

S6aLL9:
S6alLh0:

86alb1:

S6albh2:

S6aL53

S6aL54: if

ir. Saccent + 2 < S then
SO0k;

B0t
P

S04 ;

S6albl;
: =P -1

i lo

if g # O then go to S6aL50;

if e < O then go to S6alb2;

e : =e + 2126 x (72 - 63);

8o 1o S6al51;

SO(g + 2126 x 72);

so(e);
go to S6albL;

P:=P+1;

SOp;

if c % O then
s0(2123 3 4 2126 x 72);

£=321 then go to S6al59;

‘Then subscript p

1.32.5
, comment
as happens also on S4L7;
Thus 18t subscript 1is translated;
S6all3;

Then st{P] = instruction partres, stored at the

previous action of this compound. Séa on. S6aL57,

Then g indicates the representation of e,

e being a constant subscript. :

is a procedure identifier namely
no simple variable and no formal parameter.

Simple variable or formal parameter;

cf. + in table 14; x
S6all6; o ‘ ' v

‘cf. S6all8. } x
S6aLli9; |
‘not: to 536--.

S6alli7;"

Thus instruction partres remains in the dbjeéf
programme:; , o o
Thus a contra-declaration of function name

The test on S6al53 succeeds.

p 1is made.

_S6al6; :)
‘¢f. + in table 1A, This 1nstruction

accu : = accu + (partial result) corresponds to the x
instruction partres, added to the object programme
during the previous action of this compound S6g on

-.86aLl57«

S6allil, S6aL51;

cf.] in table 1B. Then the last subscript has been
translated.

S6al55: 4 : = st[S - 7];

if d > O then
S6al55a:wrong;

S6al56:

so(c);

S6al57: SO(partres);

S6al58: go to S6al18;
S6al59: mark : = -~ 4;

86al60: -Saccent : = S
S6aL61: SOo(st[sS + 1]1);

if 4 - 2123 - 2126x126 < 0O
then S0(d) else ¢ :

a - c;

S - 6;

1.32.6
| “ comment
Subscript 1list is not yet exhausted:;
That is cither en ard instruction referring to an
array ‘identifier or formal parameter, or positive;

Then 2 or more subscripts are attached to an identifier
whichvis'no array identifier and no formal parameter;

Thus the ar1finétruction just stored either refers
itself to the factor h; (i < k) required, or it
refers to the key of a formal parameter which refers
to the facto? hk-1 of the array representcd by the
parameter, while ar{ is followed, in the object
programme, by the constant k - 1 - 1; '
cfe table 1E +
This instruction partres corresponds to the
instruction

accu : = accu + (partial result)

which will be ﬂddod to the obaect pro gramme during
the next action of this compound (cf. S6al53).
However, often both instructions are dispensable;
S6alsl; o

Thus the value of mark, listed in L on S6L19, is
restored

Compere this with S5al5;

Then st[P - 1]is the ar2 instructlon or O, mentioned
on S6L49.

o S1L28

comment
st[S] is thc identifier to which the subscripts
are attached in the text;

16327

1e33.1

comment
begin Compound statement S7.
Prec-action of the opening symbol for
S7L4: SOh; cf., S3L2;
S7L2: st[S = 1] : = 0; Thus an identifier or constant preceding opening
symbol for is skipped;
SOC(O);
st[S - 1] : = - P;
£ o= 324;
go to S3LL; Then, for translating a for statement, there is
listed in L:
st[s - 5] = 0,
st[S - 4] = 0 to be replaced by the internal

equivalent of the controlled variable v on
S9LL.,

st [S - 3] = minus address P' where the object
programme of the for list clement to be read next
is to begin,

st [S - 2] = value 324 of the opening symbol for,
st[8=-1]=0

1e3l.1
. ‘comment
“begin - Compound statement S7a. . _
After—-actions of the opening symbol for .
Delimiter f rcad last may be a separation symbol

step, until, while, comma, or do, or the closing
symbol of the for statement.

Progressive:

Express1on D precedlng delimiter f in the text
is trivial (an identifier or constant).

P - S1L6; _
S7aL4: SOk; for translation of p.
b — Regressive: |
Expression p 1is not trivial.
S1L24;
S7al2: S : = 8 - 2; , , ; .
¥ - 80a; - ' o Thus internal equivalent of controlled vefidble is

assigned to variable d
WU , (cfe st [S = L] in compound S7);
ifa s 0 then T T) _
S7al2a:wpong; : Then either controlled variable is no simple variable
and no formal parameter, . .
or even : = has been omitted;
S7aL3: if c < O then go 1o S7al48; Then after-action of for with do has already taken
- : place so that f is the closing ‘symbol . (compare
st[S - 5] in S7aL16 with that in S7al45 or S7L2);

S7all: S a'=]s.+'2; Thus previous value of S5 is restored;
Af £ # 324 then go to S7al10; Then f is either comma or do (cf. 324 in table 1B);
S7alb::if e < O then go to S7aL7; Then delimiter f is cither step or while.

Delimiter f = until:;
- 87aL6: st[e] : = a+2t26 x(123-63); cf. ford1 in table 1D; o

S7aL7:

S7al8:
S7aL9:

S7aL10:

S7aL11s -

S7alL12:

so(a -+ 2126 x (117 - 63));

st[S = 3] : = c;
go 1o S6ali1;

if e > O then go to S7ali2;

if e # O then

begin

so(d + 2126 x (11 - 63));
b : = for2;

nd

else b : = d + 2126 x (74-63);
so(b) ;
go to S7alil;

b

st [e];

. comment,
cf. table 1E; |

S7al5;

Thus address wheré object programme of while~ or

1 0311-02

step element begins, is retained in object programme

itself on address c;
cf. store accu in table_ﬂD,
S7al6, S7al15; |

st[S - 2] = for remains in L,
S7ally;
Then value of e

f disappears.

has been listed in L during

previous action of this compound on S7aL7-8.
It is a while element whose object programme is to be

completedj

element is an expression

cfs tablc 1E

cf. in table 1A. It is a step element

Objéct programme of step- or expression element is

rcady.

S7aL10;

That is the address
form: F while Q.

S7aL13;

¢ of S7alL7. Element has the

1.34.3
comment
S7aL413: stfe] : = st [e = 1]:
e t=¢-1; :
if e # b then go to S7ali3; Thus object programme of expression F is shifted
over one place; '
st [b] : = for2; cf. table 1E.
Thus instruction for2 precedes object programme of F.
S7aLl11;
S7alil: if £ = 323 then go to S7al16; cf. do in table 1B;
if £ £ 330 then |

S7al1la:wrong; Then for statement contains wrong delimiter;
A S7al15: st[S - 5] : = P; That is the address where to insert a for instruction
_ later (cf. S7al16);
S0(e); On address st[S - 5] the previous address where to

insert a for instruction, is stored;

go 1o S7aL8; Thus c¢ 1is the complemented address where the object
programme of the next for list element is to begin.
: S7aLil; :
S7al16: e 3 = P+2+2123+2126x124; cf, for 1in table 1D; ' X
so(e); Thus last for instruction is stored;
st[S - 5]: = -'P; That is the complemented address where to store a
: pass instruciion later (cf. S7aLl18); '
s0(0); For the time being, O is inserted.
- B - ST7al17; A . S .
S7al17: if ¢ = O then go to S6ali4; Then all for instructions have been inscrted;
b:=c; c:=stlec]; | R | A
st[b] . : = e; Thus next for.instruction is inserted on address b;
£o to S7alAl7; 57aLl3;

S7aL18: S0(for0);

1344
comment '
cf. table 1E. | | +
Thus object programme of for statement is concluded
by ddding the word for0O;

st[-c]: = P + 2123 + 2126 x 124;Thus a bridging pass instruction (cf. table 1D) is

go 1o S1117;

end S7a

inserted;

There variable S is again (cf. S7al2) decreased
with 2, and the delimiter prezeding for in L, is
going to after-act with delimiter f

begin

88L1:‘SOh;
S0c(325);

S8L2: mark : = 2
Saccent : 8491
go to S1L28
end S8;

| we

, commcnt
Compound statement 38.

Pre-action of the opcning symbol go to;

of. S3L2;

Then st [8 - 2] is the value 325 of go to

(ef. table 1B)
S8bl6, S9L3;

- cf. taplc LC;
as happens also on S6alii;

1 03501

< 103661
comment

begin Compound statement S8a.
After-actions of the opening symbol go to .
Regressive (cf. S8bL4):

S1L21 ;
S8aL4: if mark = O then go 1o S8al3;
P:=P-1; Progressive (cf. S8blL2):
S1L6;
S8al2: SC1; ' S2al32, S8ali, S8bL11;
S8al3: mark : = O;
| go to S1L47; Delimiter st[S - L] is going to after-act with

delimiter ¢
end S8a;

143741

comment
begin : Compound statement S8b.
After-action of the opening symbol switch .
f = delimiter read last is either the separation
symbol comma. or .the closing symbol scmicolon of the
switch-deciération.,
-Regressive: -
The designationalvexpression p preceding delimiter
f in the text, is not a single label.
L o S1L21; o

S8bL4: if mark = O then go to S8bL3; Then. p contains more than a switch designator and
has already bcen translated and contra-declared.
p - is a switch designator i[E], Translation of E is
ready. st{P - 1] = O or-én ar2 instruction
(ef. S6aL61) which is to be replaced by a jump
instruction later.
Identifier i is aveilable as st[S] and g = 0;

P:=P~-1; 'Progressive:
p 1s a label.
: S1L6; : :
S8bL2: S01; Thus there is made a contra-declaration of the label

or switch identifier, referring to address P - 1
where a jump instruction will be inserted later
(cf. S3bL39).

' , S3bL1; . _ .
S8bL3: S : = S - 2; SOa; Now d 1is the address where the designational
- ' expression preceding delimiter f in the text, has
. it object programme beginning (cf. S8bL6 and SLL39);
S8bL4: e ; = d + 2123 + 2126 x 121; which is the pass instruction referring to 4; X

| 1.37.2
comment
S8bL5: if £ # 330 then go to S8BL7; Then f 1is a semicolon.

f is a comma: ;

S8bL6: S : = S + 2; Thus prcvious value of S 1is restored;
st{s - L] | o | |
som(e); ¥or the time being, pass instruction is listed in L;
go to S8L2; for resding next switch list element.
: S8bL5; ”
S8bL7: 4 : = O; for counting the cntries of the switch 1list i.ce
pass instructions preliminarily listed in L.
S8bL8;

S8bL8: 4 : =4 + 1;
SO(ec); SO : = S0 + 1;
c : = st[SO - 1};
if ¢ # O then go to S8bL8; Then the next pass 1nstructlon is stored in the
object programmc. T
The list of pass instructions has becen stbred in the
. _ object programme:;
' S8bL9: g : = g+ 1; cf. S4L38;
S8bL10: st[e ~ 1] :+ = P+R+2123x127; Thus internal equivalent (table 2) of switch x
| identifier is listed in I;
S8bL41: SO(q + R + 2123 = 1 + 2126x112) ¢f. switch in table 1D;
so(d); Thus, in object programme, the switch instruction
v is followed by the number of entries;f;'
8o to 88al3;” ' T
end S8b;

138,
comment
begin Compound statement S8d.

After-actions of the opening symbol procedure.
Progressive:

S116;
S8dL0: wrong; . Procedure body is a dummy or a single identifier
or constant.
Regressive:
81121 ;
S8aL41: if D > O then go to S84L8; Then body must still be rcad.

Body has been translated:;
if £ # 332 then

S8dL1a:wrong; Then procedure body is not followed by a semi-colon;
88dL2: S : = S - 2; SOa; Then ¢ = ¢', d = P' + 2 and e = T' are the values
mentioned on SLL31;
S8dL3: R : = R - 2M3; for compensating the action of SLL26; X
s8dLh: if (st[e - 1] or 2t24) = O then cf. table 1E. +
S0(extract procedure); Thus instruction extract procedure only appears in

the object programme of a type procedure;
S8dL5: SO(Y); table 1E. +

Thus, in object programme of any procedure,
instruction Y is the last word;

S8dL6: if st[d -~ 1] < O then Thus, in object programme of a procedure having no
st[d = 2] : = X1; parameters, instruction X1 of table 1E is 1st word; +
S8dL7: e : = e -~ 2; go to S3bl12; S84l ; '
SBdL&ﬁﬁgg £ = 332 then go to S8dl9; for semi-colon;
if (D or 2t23) = O then go to . ..
S5L2; ' " for rcading- the next formal parameter;
Eo to S1L28; for reading parameter to be next specified.

S8dl8;

1.38.2
» commentk
S8AL9: T4 : = T; D : = 2123 x 5U43; Table 2; | X
Zo to S6allq o
end S84;

begin

S9L1: if g # O then
S9L1a:wrong;
S9L2: SOh;

S9L3: if d = 328 then go to SB8I2;
S9LL: if @ # 320 t n,g_ to S9L5;
st[S - 4] : =
Ee to 3_1,1:25.:

S9L5: If e < O then go to SIL11;

if e #0 then go to SILT;

ifi(st[P - 1] or 2126 x 127) #

L 2126 x 125 then
’S9L5a-wrong,

S9L6: e : = - 1;
g9 to S9L9;
S9L7: e : = e + 2126 x (117 - 63);
SOL8: if e -~ 2123 - 2126 x 117 > O
~ then go to S9L10;

16391
comment
Compound statement S9.
Pre—-action of the opening symbol : =;
Then : = is prececded by a constant;
as happens also on S3L2. The procedure performed the
following assignments:
d:=st[8~2], ¢ := st[S ~-1];
Then the delimiter listed last in L is switch
(cfo S4L39);
Otherwise the delimiter listed last in L is for:;
as was announced in compound S7;
S9LL ;
Then : = is preceded in the text by the identifier
of a type procedure;' |
Then either a simple varisble or a formal parameter
is precedent. to .:= : |
A subscripted variable is precedent to =

X
Then, withln an a831gnment statement, : = is not
preceded by a (simple or subscripted) variable or
formal perameter or identifier of a type procedure;
S9L5; - . _
'cf. store accu 1in table 1D- X
Then a simple variable is precedent to : = X

Formal parameter;

5919:
S9L410;

S9L41 2

e’y =re ?. 21’26; ’

'éO(éés.'r"

e 3 = extract address
%
st[S - 1] : = e;
£ :.=:325;
g0 to S3LL;
£ : = e + 2132; S0f;
e : = (4 or 2126-2113)+2113

+ 2126x113+3+QQ

;g (d.or 2t24 + 2129) =
then go to SIL10;

go to S9L5a

end 89; -

. commenm
cf. store address
S9L6;

Then st[P - 1] is either a store address instruction

or the constant -1;
cf, table 1E.
S9L8, S9L11;

in table 1D.

Thus. elther a store accu-or store procedure- or.

extract address instruction is listed in L;

cf, : = in table 1B;
S9L5;.

Thus procedure 1dentif1er is again 1ooked up,

cf.. store procedure and QO
1E; |

in tables 41D and

Then 1dent1fier 31gn1f1es a type procedure;

S9al1: SOk;

S§9aL2: S0(c);

EO to S1L47;
end S9%a;

comment
Compound statement S9a.
After-actions of the opening symbol : =
On 8111 or S1118, the value of st [S - 3] has been
a331gned to variable c.
Progr9881ve-
The expression preceding delimiter £ in the text
is a single identifier or constant Do
S1L6; '
Thus p 1is translated.
Regressive:
P has already been translated.
51L.21;
Thus st[P - 1] is the instruction listed in L on
S9L10;
cf, S8al3;

1440.1

	1.00.000
	1.00.001
	1.00.002
	1.00.003
	1.00.01
	1.00.02
	1.00.03
	1.01.01
	1.02.01
	1.03.01
	1.04.01
	1.05.01
	1.06.01
	1.06.02
	1.07.01
	1.08.01
	1.08.02
	1.09.01
	1.10.01
	1.11.01
	1.12.01
	1.13.01
	1.14.01
	1.15.01
	1.16.01
	1.17.01
	1.18.01
	1.19.01
	1.19.02
	1.19.03
	1.19.04
	1.19.05
	1.20.01
	1.21.01
	1.21.02
	1.21.03
	1.21.04
	1.22.01
	1.23.01
	1.24.01
	1.24.02
	1.24.03
	1.24.04
	1.24.05
	1.24.06
	1.24.07
	1.24.08
	1.24.09
	1.25.01
	1.26.01
	1.26.02
	1.26.03
	1.26.04
	1.26.05
	1.26.06
	1.27.01
	1.28.01
	1.28.02
	1.29.01
	1.29.02
	1.29.03
	1.29.04
	1.29.05
	1.29.06
	1.30.01
	1.31.01
	1.31.02
	1.31.03
	1.31.04
	1.32.01
	1.32.02
	1.32.03
	1.32.04
	1.32.05
	1.32.06
	1.32.07
	1.33.01
	1.34.01
	1.34.02
	1.34.03
	1.34.04
	1.35.01
	1.36.01
	1.37.01
	1.37.02
	1.38.01
	1.38.02
	1.39.01
	1.39.02
	1.40.01

