The CDC 6500

and the

MACE SYSTEM

(2/73) LO CDCMACE

~ CONTENTS

. cpoc 6500 . e

.1

General System Description - 1
1,2 Floating Point Notation o - 2

1.3 Exit'Hodes.-_- _ - : 5

2. MACE

Hardware/Software Integration

File Structure

2.2, 1 Filenames and Filetypes

2.2.2 Logical Structure of Files

2.2.3 Physical Structure of Files

2.3 JobProcessing _ _ 20

oL

Appendix A 026 Cha racter Codes

(2/73) CDCMACE

. C€DC 6500

l.1 General System Description

The CDC 6500 computer consists of two central processors (or CP's) and ten
peripheral processors (or PP's) which share a common central memory. Each pe-
ripheral processor possesses 1ts own additional !'private'' memory, 1naccessible
to the other peripheral processors or to the central processors.

The central memory consists of 98,304 words (or locations) each containing
60 bits. It is a core memory with a read/write cycle time of one microsecond.
Each peripheral processor has a memory unit consisting of 4,096, words of 12 bits

each.

~ _Each peripheral processor may read or write any location of central memory at
any time. However, at any given time, a central processor is restricted. to a con-
tiguous block of storage beginning at a given point (the '"‘reference address'') and
extending a given number of locations (the ''field length''). All addressing of cen-
tral memory by the central processor 1s relative to the reference address, thus a
central processor program may be loaded into any part of central memory and will
run properly, provided that the reference address and field length are properly

set.

The prime purpose of the central processors is performing the computational
part of user programs. The instruction set is oriented toward floating point cal-
culation, address calculation, arithmetic decision making, and masking.

Each central processor has eight 60-bit arithmetic reqisters (X0,...,X7) in
which most calculation is done, eight 18-bit address registers (A0,...,A7) which
control data transfer between memory and the arithmetic registers, and eight 18-
bit increment registers (BO,...,B7) which are used for address calculation, loop
counting, and other purposes. (B0 is special; it always contains zero). In ad-
dition, there are the program address register (P) which contains the address of
the next instruction to be executed, the reference address register (RA), the field
length (FL) and the exit mode register (EM). The exit mode register will be explain-

ed later.

The central processors do not have any input or output instructions, and cannot
directly communicate with any input/output device, or even with the computer opera-

tor.

The peripherai processors share twelve data channels, to which are connected
all input/output devices, including the operator's commurication and display con-
sole. Thus, the responsibiiity for all input and output, including operator com-
muni:cation, rests with the peripheral processors.

In addition, each peripheral processor has the ability to perform a special op-
eration called ''exchange jump''., This consists of exchanging the contents of the cen
tral processor registers X0,...X7,A0,...,A7, BO,...B7, P, RA, FL, EM with the contents
of a specified area of central memory. Prior to doing this, the peripheral processor
must, or course, see to it that that area contains the proper information to start
or continue some program stored in centval memory. By the exchange jump, the peripn-
eral processor interrupts the progrem presently using the central processor, saves
all information necessary to continue that program exactly where it left off, and
sets some other program (stored elsewhere in central memory) into operation. A pe-

ripheral processor can thus switch a central processor from one task to another in
''midstream'' without losing its place in any of the tasks.

COCMACE - |

1.2 Fiqating Point Notation

Floating point numbers are represented internally in the following form:

BIT 59 58
o ————
1+1 CHARACTERISTIC | MANTISSA l
L L L L L L L L L L P T L +
t t

--=Sign of Mantissa Assumed Binary Point=-~-

The mantissa is a signed-integer (48 binary digits plus sign) and the char-
acteristic is an 11~bit integer biased by one's complement addition of octal 2000
(decimal 1024). When the sign (bit 59) is negative (i.e., 1), then all other bits
of the number are complemented (1's and O's interchanged.) The number represented
by this notation 1s |

(characteristic-bias)

(signed mantissa) x 2

A tloating point number is said to be normalized if bit 47 is the complement
of bit 59, Floating point arguments and results are usually, though not necessar-
ily, kept in normalized form.

Number (Decimal) Floating Point Internal Notation (Octal)

0000 0000 0000 0000 0000

1777 771771 71777 717717 77717
1720 4000 0000 0000 0000

6057 3777 7777 7717 7777
1720 7400 0000 0000 0000

6057 0377 7777 7777 7777
1731 7640 0000 0000 0000

6046 0137 7777 7777 7777
1714 4000 0000 0000 0000

6063 3777 7777 7777 7777

It is important to note that there are distinct representations of positive
and negative zero. In tests, they are treated as follows: a branch on zero (or
non-zero) treats both forms as zero, whereas a branch on sign treats positive zero
as positive and negative zero as negative.

As arguments to floating point calculations, any number with a sign plus char-

- acteristic of 0000 or 7777 will be treated as positive or negative zero respectively,
regardless of the mantissa. However, if normalized arguments are used, any ftloating
point calculation with a zero result (or a result too small in magnitude to be rep~-
resented) will yield a positive zero with identically zero mantissa (i.e., a word of
all zeros). Negative zero cannot be produced as a result of floating point calcula-
tions, but can result, of course, from integer, masking, or certain other operations,.

(2/73) COCMACE - 2

In addition to the special treatment of the sign plus characteristic values
0000 and 7777, four other values have special meanings as described in the table

below.

‘Sign plus charac- Symboll ‘ - Meaning _
teristic (octal) . - o '
3777 ' +INF Argument out of range in positive

direction. -

4000 ‘ - INF Argument out of range in negative
- ‘dlrectlcn. '
1777 -~ +IND Argument value 1ll-defined 1ndeter-
6000 *

- IND o minate, or indefinite.

- The values +INF and - INF arise naturallywhen the result of a floating-point
calculation reqU1res a larger characteristic value than can bé stored in eleven
bits. The sign of INF in this case is the proper sign for the result ~ These
-values may alse arise 1in certain other cases (see table below)

~+IND may be produced as the result of a floating point operation whose result
is not well-defined, such as dividing zero by zero. The table below gives full
details on this, -IND is never praduced by a floatlng p01nt cperatlan but has
meaning in tests and as an arqgument. | -

| In tests or as argument_s, the mantissa of +INF, --INF +IND or =1IND will be
1gnored As a floating point result, however, +INF, - INF and +IND wil 1 a lways
have a #antissa of 48 binary zeros. - S _

CDCMACE - 3

NON-STANDARD FLOATING POINT ARITHMETIC

"In the tables below W is any floatxng point numbe r except +INF or +IND
any positive floating except +INF, +IND or +D.

SUBTRACTION A-B

e o]
u. - INF +INF ‘
mmmmm
mmm

+IND +IND

ADDITION A+B

+IND IND |
S

DIvISINA/B ULICIN _ o

l. Exit Modes

The Exit Mode Register (EM) is used to specify, to the central processor, con-.
ditions which are to cause immediate interruption of the program and an exit to
the operating system. It may contain one of eight values, 0 through /7, shifted
left 12 bits. The meaning of these values can best be expressed by thinking of
the exit mode as a three-bit binary number. For the following discussion, the
rightmost bit is bit O, -and the leftmost is bit 2. -

Address out of range. _
If a memory address out of range is encountered, either as an argument
‘address or next ‘instruction address the central processor will exit,

Bit 0 = O If a next instruction address out of range is encountered, the central

o ' processor will exit. However, if an attempt is made to pick up an ar-
gument from an address out of range, the value zero is given to the ar-
gument, and the central processor proceeds normally. Also, if an at-
tempt 1s made to store in an address out of range, the store is 1gnored
and the centrai processer proceeds normally

|

- Bit 1 Argument _93_; _gj _[a_n_g_.i
o - If anarfument of + INF or - INF is encountered by a floating point add
- subtract, multiply, or divide instruction, the central processor will

exit. Results of floating point operatlons are not checked.

o !"H.I|II|

Arguments of + INFor - INF do not cause exits{.

Indeflnxte arqument.
If an indefinite (+ IND or - IND) argumen is encountered by a floatlng
point add, subtract, multiply or divide instruction, the central pro~

cessor w1il exit, Results of floating point operations are not check-
ed. -

Bit 2= 0 Indefinite arguments will not cause exits,
_ If a combination of the bits are set, then all exits selected will be in effect.
For example, exit mode 3 means '"'exit for addresses out of range and for arguments

of + INF or - INF, but not for indefinite arquments'',

CDCMACE -~ 5

2. MACE

2.

Hardware/Sof tware Integration

The Purdue MACE system executive consists of a PPU monitor (MTR), a CPU
monitor (CPUMTR) and a resident PPU executive (PPR). These routines talk to
each other us ing the hardware exchange jump feature of the 6500 and a set of
communication cells cons 1sting of eight words of central memo ry for each pe -
rlpheral processor.

PERIPHERAL PROCESSOR UNITS

MACE uses the PPU's to perform all input/output as well as the functions
of MTR and PPR. Although the ten PPU's are identical and usually perform
tasks mterchangeably, MACE currently dedicates four of them to specific jobs:
one of the PPU's permanently executes MTR; a second drives the operator con-
sole keyboard and display; a thlrd drives remote console devzces and a fourth
drives remote batch devices. The remaining PPU's perform services on request
and are called ”poo]” PPU's. - - . ‘ E

The pool PPU's are initially aSSIQHEd to read their input reglsters el
(specific locations in central memory) over and over. To make a request,
CPUMTR 1nserts a 51gn1f1cant word into the input register of a PPU. When the .
PPU reads its input reglster it obeys the request or determines that it canni
not do so. The PPU returns to its idling state after 51gnalllng CPUMTR that
it has processed the request When idling, pool PPU S contlnually ;eaé the:r |
input registers looking for work to do. '

Each pool PPU uses its output register (another particular locat 10N 1n
central memory) for requests to MTR and CPUMTR and for completlon status of
those requests. MIR perxodlcally searches the PPU output reglsters for re-
quests that it can handle. If a PPU wants CPUMTR processing, it uses a hard-
ware exchange jump to get the attention of a CPU. Both MTR and CPUHTRiwIII*

zero out certain bits in the PPU output reqgister when the request has been
satisfied.

The main JOb MTR performs is to cont inually review the status of the
system and to issue approprlate stlmul1 to CPUMTR when necessary. In addition
to this monitoring activity MTR also processes a small number of PPU requests
which typically- requ1re long-term proce551ng

Al though the prlmary task of a PPU is to act on requests from CPUMTR, a
PPU must occasionally have the cooperation of another PPU. Permission to use
another PPU or an input/output (I/0) channel must be obtained from CPUMTR.
Since each PPU is capable of connecting itself to any channel " CPUMTR main-
tains a list of channels and their status to avoid two PPU's attempting to use
the same channel (whlch would hang up both PPU's and the channel). Upon re-
quest CPUMTRwllI assica a channel for exclusive use by a PPU. When flnlshed
with the channel, the PPU specifies to CPUMTR that the cannel is now free.

(8/71) CDCMACE - 6

. ._'CEJusestheCPU*s to perform all program compllatlons, assembl1es and
executions as well as to execute CPUHTR '

CPUMTR controls all PPU activity in the system, manages all system tables
and assigns CPU's to jobs. AIll access to CPUMTR is based upon the use of the
exchange instruction. As discussed earlier, a PPU can obtain CPUMTR processing
through the MXN instruction. A CPU program can access the facxlltles of CPUHTR-
by executing the XJ instruction, ' - - '

CENTRAL MEMORY (60-BIT WORDS) -

_ ‘A number of programs may be executed concurrently under MACE. These proqrams
are stored in central memory (user area) along with a set of necessary data for sys-
tem:operation (central memory re51dent) Central memory 1is accessible to both the
CPU(wlthln the field length of a given program) and the PPU's and thus forms the
cemmunlcat1ons 1ink between the twelve processors and the system. '

- Central memory reSIdent contains the llbrary dlrectcry, sys tem eommunlcatlon
area, system tables, the CPU resident routine, and information about each job cur-
rently being executed The user area contains the programs currently being executed
for each job. - o - o ' o

__ Central memery words are 60 bits in length and contain five 12-bit PPU memory
words. These flve PPU words , called bytes are numbered 0 through 4

9 ,48 “7) 36 35 2 23 12 101 0

ffCentral Hemory Word '

A much moOre detailed system-or1ented descrlptlon of the Purdue MACE system is
‘available as Computing Center document LO-SMACE. ‘ - -

(8/71) CDCMACE - 7

2.2 File Structure

2.,2.1 FifenameSJand Filetypes

The MACE Operating System handles all 1nformat10n in the form of files, A file
is a collection of data, programs, or other information in the form of records which
‘may be read by, or wrztten by, the system. Each file has a name assigned by either
the user or the system. The name consists of |-7 alphanumeric characters with the _
first character alphabetic. While a job is executing, certain file names are reserved
to the operating system for special purpose disk resident files. They are as follows:

INPUT - Contains the users card deck. It is initially positioned at the
start of the record immediately following the control card record.

OUTPUT - Contains coded line images to be printed.

PUNCH - Contains coded card images to be punched in Hollerith (026) format.

PUNCHB - Contains card images to be punched in binary format.

PUNCH8 - Contains card images to be punched in 80 column format.

No other file names have reserved usages. Thus, a programmer can select any other
file name to identify 1nformat10n within a job and he may associate it with any -
physical device by the appropriate control card. MACE assigns all other fl!es to ;
scratch disk storage uniess the user has Spec1f1cally 3551gned other dev1ces e.qg.

by a REQUEST control card

In addition to each file havzng a name, each file also has a type assoc1eted

with it that serves to identify the file to the system, Types of files are: _mpu{_
prlnt, punch, punchb, punch8 common, permanent, rollout, and local.

_ The system maintains a i ist of files in the File Name Table/Fl le Status Tabie |
(FNT/FST) that resides in central memory. This table contains the file name, its
type, the I/0 device to which it is ass igned, ‘and information about the pProg ress of

readlng or wrltlng the flle.

In order to appreciate the importance of the FNT/FST to MACE, it isibecessary to
understand the steps a job goes through when being processed by the system. When
MACE reads a job file from the card reader, it copies the file onto dlSk storage and
makes it a type 1nput file with the jobname as the filename.

When the system startsexecutlng 3 JOb it changes the job file name to INPUT =
and it remains a type input file. When necessary, MACE establishes files named OUTPUT,

PUNCH,PUNCHB, and PUNCH8 with file types print, punch, punchb, and punchB respectzvely
A type common file can be assigned to a job by a COMMON control card., However, access

to type common files is read-only, 1.e,, write operation are not allowed on type com-
mon files., A type permenent file may also be assigned to a Job by the appropriate
control cards.

(8/71) CDCMACE - 8

Type local files can be creaied by the job during execution. For example, the
first time a job references a file LGO, the system searches the FNT/FST for a file of
that name for that job. If one does not exist, the system creates a file that is
initially empty. This file has the name LGO and has an entry in the File Name/File

Status Table as a type local file assigned to that job.

Files are also grouped together into queues as follows:

Queue Description

input jobs waiting to be run

print files waiting to be printed

punch fiiles waiting to be punched 1in
Hollerith (§26) format

punchb files waiting to be punched 1in
binary format

punch8 files waiting to be punched in
80 column format

rol lout jobs that have been rolled out.

When a job terminates, MACE returns the INPUT file, all files of type local,
type common, and type permanent and changes the filenames to the jobname for files
of type print, punch, punchb, and punch8 as it places these files in the respective

queues,

2.2,2 Llogical Structure of Files

All files under the MACE system, regardless of type and regardless of physical
- device characteristics, are organized into logical records and possible, logical
files. The basic Eoglcal unit of data is the logical reccrd. Each logical record
is terminated by an end-of-record (EOR) mark. Logical records may be grouped to-
gether into logical files. Each logical file is terminated by an end-of-file (EQF)
mark, Finally, logical files may be grouped together into a file. An end-of-infor-
mation (EOI) mark terminates a file.

MACE recognizes two types of files: sequential and random-access.

A sequential file 1s one in which information is read or written in sequential
order, as on a magnetic tape. Such a file is positioned at a given point at any
time, ready to read or write the next record. When a sequential file is written on,
information following the record just written is lost.

A random access file is one in which any record may be read or rewritten at any
time, without positioning. Also, new records may be added at any time., The records
1n such a file may be indexed by number (in order of creation) or by names assigned
to each record by the user,

A sequential file may reside on magnetic tape or in disk storage, Random access
files may reside only on disk storage.

(10/72) CDCMACE - 9

2.2.3 Physical Structure of Files

The physical format of a logical record is determined by the device on
which the file resides. The physical record unit (FRU) size is the smallest
amount of information the system transfers during a single physical read or
write operation for each device. Logical records consist of one or more PRU's.

Files within the system may be in binary or coded format.

Binary files consist of logical records which are images of central memory
words blocked into PRU's.

Coded files on disk storage or on standard format magnetic tape have the
same structure as binary files, however, logical records of coded files are
divided into display-coded lines of characters. The coded line may be of any
length, but should be of a size corresponding to the device to which the line
will be written. Coded lines consist of groups of CM words, ten characters
per word. The low order twelve bits of the last CM word of a coded line must

be zero; this is the end-of-~line mark.

The following paragraphs describe file formats for each device.

Printed Output

Printed output is associated with the file named OUTPUT.

A print line starts on a central memory word boundary and consists of only
display code characters. A line is terminated by either on end-of-line mark
(a trailing zero byte) or a count of 140 characters, whichever comes first.
Table 2-1 presents the maximum number of characters per line for each printer
type (the count includes the carriage control character). Any characters be-
tween the last printable character on a line and the termination of the line

are never printed and are lost.

The printers normally operate in an '"automatic page eject' mode; thus when
the end of a page is sensed, an eject to the top of the next page is automatically
issued. Line spacing on all printers is normally done in a "post-print pacing"
mode; therefore, a line with no carriage control will print and then the carriage
will space to the next line. Carriage control characters cause the operation
of the printer to be altered from the normal page ejection and ''post-print spacing’

modes.

The first character of a line is a carriage control character and is never
printed. There are two types of carriage control characters; namely, ones which
take action once for the line printed and ones which remain in effect until
later modified. Table 2-2 presents the carriage control characters which are
processed once per line. The characters take the specified action either before
or after printing the line. Table 2-3 presents the carriage control characters
whose action remains in effect until later i hanged—note that the lines with these

characters are NOT PRINTED,

(2/73) CDCMACE - 10

When a printer other than the IBM 1403 is operating in "automatic page
eject' mode, any paper motion (e.g. from 0, -, 7, G carriage control characters)
past the last line of & page will result in a skip te the top of the next page.
To position the carriage at the top of an even-fold page, It Is necessary to

clear "automatic page eject” before printing a line whose control character i

/7 or G, and then, 1f desired, to reset "automatic page eject.’

Table 2-1

Printer Characteristics

M I e SR N ¢ Y- A P i 0 "R e o e el RERES ol mmam B 2" e e =Tl B 0 PR

= == B = =y L ki o P NS T e _H_-——m-—mm———r.“.“—- TR g wm Pw ot g e s el ey e e R & P e Y B AT s = o BN T T AP P Y Lt g o T R R R

Characteristic Printer

PR I U S ool e e, St et A T T s e P o ph T AN DY T ~ Balrun.g, v s Eeeri et e, T eSS el el e . T Y L e W S I Sgf gy N WS S ejEm T mE S - ™ al ma= -

| f
i | CDC 501 CDC 512 IBM 1403 DATAPRINTER
! T e A T n e e e mmmmmmm————— ""“""“""'_- '—'“"""—'+""_I S USSR L L

61 61 61

Number of lines/normal page

!
|
i Number of lines/full page 66 66 66

137 137 133 1373

Maximum numbey of characters
per line (includes carriage

control character)

%
i at 8 lines/inch

| 4 e R S R A S Syr- E See =ueerrarnrlir = rre— .
mem_——_—. i S e e, 5 e el g o Ll e S e g TR Y P pan . ol e B r— N T ——— . - P

" Rt e b N - e N L s B =S gl e R SRR ool = w =By

(2/73) CDCMACE

Table 2-2

Carriage Control Characters Processed Once Per Line

Character _ Action I ~ Exclusions

CDC501 CDC512 IBM1403 DATAPRINTER

Skip 1 line before
Eject to top of next page
- betfore _
Skip to next 1/2 page before
Skip to next 1/3 page before
Skip to next 1/4 page before
Skip to next 1/5 page before
Skip to next 1/6 page before -
Skip to to top of next even- b b
fold page before E *
8 Skip to last line of page ‘ ' c
before _ _ o :
Unspecified (before)-512 only d d,h d
Eject to top of next page ' -
after
Skip to next 1/2 page after
Skip to next 1/3 page after
Skip to next 1/4 page after
Skip to mext 1/5 page after
Skip to next 1/6 page after
Skip to top of next even- b b
fold page after o
Skip to last line of ‘page
atter *
Unspec1fled (after) -512 only
Unspecified (after) -512 only
Unspecified (after) -512 onlyﬁ
Unspecified (after) -512 only
Unspecified (before)- 5120n1y
Unspecified (before)-512 only
Unspecified (before)-512 only
Suppress ''advance to next
line'" for previous line
- (before)
- Skip 2. llnas before :
Sk Suppress "advance to next f
- _ ' line" after
blank Advance to next line after . o d
other - Advance to next line after g g |

> \O ~ OV U oI~ WO - O
O B PP

G HEHOO W

as
O

oVl o Vil a W = Wl Wi « W o

4+ N o< MR G
N SV = V- V= Ve VR - =W
A Ao

(2/73) CDCMACE - 12

(b)

| ' Qee Table 2-4 for definitiQn of page boundaries.

To position the carriage at the top of an even-fold page,
it is necessary to clear "automatic page eject' before
printing a line whose control character is 7 or G, and
then, if desired, to reset '"automatic page eject."

Note the last line in Table 2-4.
This character is treated as a ''blank.'
This positions the paper to the line above line 1.

There is no ''suppress line advance' feature on the printer.

This character is treated as a 'blank."

(g)° If not listed in Table 2-3.
(h) When printing PUFFT, this me&ns suppress automatic
~ page eject for this line.
Table 2-3
Carriage Control Characters
In Effect Until Changed

Charaeter - | - Action3

Q. Disable automatic page eJection _

R Enable normal automatic page ejection

S* Prlnt normal 6 llnes/lnch (512 only)

T Print 8 11nes/1nch (512 only) _

U Enable ncrmal ‘carriage control. character recognition

vl Disable carrlage cont 1 character recognltion (excePt U)

1When this is in effect 1ine3'w1th Q, R, S, and T carrlage control
characters will be pr1nted (without the carriage control characters)
but will not control the carriage. ' '

fWhen switching from 6 11nes/1nch to 8 llnes/lnch (or v1ce~versa)
~on the 512 printer, there may p0881bly be some overprinting or an
_unexPected gap in the printing. It is suggested that a blank line

be printed after issuing an S or T control character to alleviate

- such difficulties. _ _ o
- This character 1s treated as a blank on other printers.

 3The lines containing'these characters*are NOI'PﬁINTED-

(2/73) CDCMACE - 13

Table 2-4

Normal Page Boundaries

" Line

Boundary | CDC 501, DATAPRINTER

| ¢CDbC 512 (6 lines/inch) {CDC 512 (8 lines/inch)] IBM 1403

|- Top of even page 1 _ 1 o 0
' ‘Top of page 1 ' - 1 N El

1/2 pége - ; 1,31 ' | 1,41 B AR

1/3page :. 1,21141 L 1,28,54 | 3,22;41

1 1/4 page - 1,16,31, 46 _ 1,21,41,61 | 4,18,32,46

1/5 page - | 1,13,25,37,49 ©1,17,33,49,65 5,16,27, 38,49

6,15,24,33,42,51

1/6 page | 1,11,21,31,41,51 | 1,14,28,41,54,68

61

Last line of page 61 _ _ ' 81

(2/73) CDCMACE - 14

Table 2-5

DisplayCodeto Graphic Character Maps

Type of Line Printer

Display Code Character CDC 501 & 512 - IBM 1403 - DATAPRINTER

blank blank blank
A-Z _ A-Z A-Z
0-9 0.9 0-9
+ ‘ o+

+
, ,)
/ / /
(((
)))
$ $ $
blank ‘ ~ blank _ ~ blank

’ . 9 . >
* _

¢ bd ey (] ®

(

)

t

.

* B &
(

%:

v _] ‘VI./\ vV A -€—+><+*IL

(2/73) CDCMACE - 15

Table 2-4 displays the normal page bouﬂdariesfor'eachpriﬁter,

The graphic character printed for a given display code character
depends on the particular printer as can be seen in Table 2-5. It may
be noticed that any given alphabetic and numeric display code character
is printed as the same graphic character on all printers. The only dif-
ferences occur in the special characters whose display code values are
60, through 77g- .

8
There are three CDC 501 printers, one CDC 512 printer, and one
IBM 1403 printer located in the main PUCC facility in the Math-Science
building. In order to guarantee a job's output being printed on a
particular printer, it is necessary to make a special request at the I/O
desk in room B1l0 (Math Sciences). -

The printer at ENAD is an IBM 1403. The one at Krannert is a
DATAPRINTER. , D . -

(2/73) CDCMACE - 16

Punched Card Qutput

- The EOR mark for punched output 1S a card contalnlng 7-8~9 in column i, The
EOF mark is a card contalnlng 6=7-9 in column 1. The EOI mark is a card containing
6-7=-8=9 in column 1. The central site card punch is capable of offsettlng all of

the above cards plus any mispunched cards.” All offset cards are marked by operatlonf
personnel. Thus all marked punched output should be checked for being EOR's, EOF's
or EOI's., If they are not any of the preceedlng, those cards should be removed from

the deck.

~ MACE allows three distinct formats for punched output.
1) Coded Cerds

Coded punched cards are in Hollerlth (026) code 80 characters per card.

The system punches data for a card until an EndﬂofﬂLlne mark or the 80th
character appears. If an End-of=-Line mark does not appear after 80 char-
acters, data is lost, Since the search for an End-of=Line mark terminates
when 14 CM words have been checked, a maximum of 60 characters may be lost
if this condition occurs. Coded punched card output is associated with the
file named PUNCH. ‘ - '

- 2) Binary Cards |

Binary cards contain:

. a 7-9 punch in column 1, _ . _
word count of card in.column 1, rows 0, 1, 2, 3,
an ignore checksum punch in column 1, row &4,

. the checksum module 4,095 in column 2, - '
. up to 15 CM words per card coded into columns 3, through 77,

. a blank in column 78, and
e the bxnary sequence number in columns 79 and 80

Binary card output is assoczated WIth the flle named PUNCHB.-

80 Column Binary Ca rds -
80 Column bina ry cards contain binary 1nformatlon in all
80 columnsw1thout any word coun?s or checksums or sequence numbers,

Each column of twelve ‘punches (rows 12~9) contalns one 12 bit byte of bznery
data (bits 11- O), where the presence of a punch in a column represents a one bit,
Five columns (bytes) taken left to right contain one CM word. Each card (80
columns) contains 16 CM words. 80 column binary card output is assocrated with the

file named PUNCHS.

(4/71) CDCMACe - 17

Punched Cardlnput

The EOR mark for punched card input is a card containing 7-8-9 in column 1.
The EOF mark is a card containing 6-7-9 in column I. The EOIl mark is a card con-

taining 6-7-8-9 in column 1. Punched card input is associated with the file named
INPUT. MACE allows five distinct formats for punched card input records. '

1) 026 Coded Cards

026 coded punched card input records are in Hollerith (026) code,
80 characters per card. See appendix A for the relationship be-
tween 026 card punches and line printer characters. MACE reads
data from cards, converts it to display code, deletes trailing
blanks and packs it into a line of up to nine CM words.

2) FORTRAN 029 Coded Cards

FORTRAN 029codedpunchedcard'lnput records are punched 80 characters
- per card with the code as described in document VO-VFYDECK. Since
records of FORTRAN 023 coded cards cannot be interpreted directly by

the operatung system, they must be processed by VFYDECK (see VO-
VFYDECK) - - - -

3) EBCDIC-Coded-Cards _

EBCDIC (or full 029 keypunch) coded punched card input records are:
punched 80 characters per card in the code as described in VO- CODECVT
Records of EBCDIC coded cards cannot be directly interpreted by the

~operating system; therefore, they must be preprocessed by CODECVT
(see document VO- CODECVT) - B _

4) 'Bmarz Cards-' .

Binary punched card |nput records follow the format of btnary punched
card output. | h - _ _

80 Column Biharﬁards

80 column punched binary input records follow the format of 80 column
binary punched card output. The beginning of an 80 column bsnary in-
put record is signified by a flag card with a 5-7-9 multipunch in
column 1, a 4,5,6,7,8,9 multlpunch in column 2 and anything else in
the remaining 78 columns. The end of a logical record of 80 column
‘binary cards is signified by either an EO| card or an identical flag

card (all 80 columns the same as the initial flag card) followed by
‘an EOR, EOF, or EOl card.

The PRU for disks and disk packs is the sector. A sector of disk storage)
holds the equivalent of 64 words of central memory. Associated with each sector
are a number of control bits which indicate the use of that sector. These con-
trol bits will indicate one of the follownng conditions: .

(1) the sector contains a full 64 words of data.
(2) the sector contains less than 64 words of data.
This condition is the EOR mark on disk storage

) the sector is an EOF mark.
) the sector is an EOl mark.

(3
(4

lf a Iog:cal record of data happens to be an even multiple of sector suze, a zero-
length PRU is written as the EOR mark. A zero-length PRU is a sector containing
’nodata, Thus an EOR mark normally precedes every EOF mark on disk storage.

Sectors are grouped into tracks. The number of sectors per track is device
dependent but for the main system mass storage 'unit there are 49 sectors per track

Al files beginon a track boundaryanduse at least onetrack.

Magnetic Tape Storage

I) Standard Format Magnetic Tape
~ The standard MACE magnettc tape format is /-track |/2-|nch tape. The
system writes to tape in odd parity; 512 CM word PRU's. An EOR mark _
~is a short PRU (less than 512 words) Data is written in CM word images .

2) External BCD Format Mac netlc Ta-e -
- External BCD format is - -track 1/2—;nch tape. The system writes to tape
~ in even parity, n character PRU's where n < 4096 is specified by the _
user on the REQUEST card. The default value for n is 136. The system
converts coded lines to External BCD code, adds trailing blanks if o
necessary, and writes the PRU, discarding characters that occur after

the spec1f|ed number n.

IOUnits

~ For each job that is run, a count of the number of I/O units transferred
is accumulated. One I0 unit is defined as one thousand characters transferred
in input/output operations. Actions counted include the count of characters

transferred to load processors (such as compllers, uttltty routlnes and the
loader) as well as the JOb I/0. Job rollin/rollout transfers are not included

in the count.

(10/72) CDCMACE = 19

2.3 Job Frocessing

A job consists of one file of punched cards or card images. The first logical
record in a job file contains control cards that specify the type of processing the
user desires. The system processes jobs in three sequential but independent stages:

Input
. Execution
. Qutput

Many jobs may be in the input and cutput stages of processing but only n (current-
ly n = 12) jobs (one for each control point) may be in the execution stage. Each.job
must begin with a@ job card and end with an end~of-information card., All control cards
must appear between the job card and the first record separator. The end of the con-
trol cards is signified by a 7-8-9 punch card (End-of-Record) or a 6-7-8-9 (End-of-
Information) if the job consists of control cards only.

CONTROL POINTS

The system can execute several jobs simultaneously. During execution, these jobs
are numbered (1-n). The index of each job is called a control point. When the sys-
tem has selected a job for execution, it assigns the job to a controi point. The con-
trol point number identifies and differentiates the job from the other jobs in execu-
tion. Each control point has a control point area in central memory that contains all
the information necessary for MACE to define and process the assignhed job.

When a job is in central memory, the control point area to which it is assigned
contains such information as job name, length, starting address in CM, elapsed time,
assigned I/0 equipment, and control statements. The control point area also cbntains
a lb-word section called the exchange package. The exchange package contains all nec-

essary information for starting or resuming a CM program - the contents of all regis-
ters used in executing a program.

In the control point system, a five bit number identifies a job in process. For
exampie, a user's program requests the system to read a magnetic tape. This request
generates several internal requests (which the PPU's pass back and forth). Each of
these requests requires only five bits to identify the user's job.

JOB SCHEDULING

MACE is an autoroll system that permits automatic scheduling of jobs based on cal-
culated queue priorities, In general if a job has a calculated priority K, then it
will be brought to a control point ac soor as it is the highest priority job that will
fit into availabie space, where available space is all unused space plus all space 1in
use by jobs with priority less than K.

JOB INPUT b

The system uses a PPU to read an entire job from the card reader and store 1t on
the system disk as a type input fiie. The jobs on disk of type input unassigned to a
control point form the input queue. A typical type input file has three logical re-
cords: control cards, program cards, and data cards. Every job that comes i1nto the
system is given a very high starting priority. This guarantees that all jobs will be

brought to a control point and run for at least a short interval of time very soon
after they are loaded,

CDCMACE -~ 20

JOB EXECUTION
The system executes a job by:

. bringing the job to a control point,

. renaming the job as the file INPUT and positioning INPUT at the second
record,

. following the directives of the control cards, and

accumuiating data for the output stage of job processing.

A job 1is executed only when it is assigned to a control point. O0One job is assign-

ed to each control point. When a control point becomes available, the system selects
a job. from the input queue or rollout queue and assigns it to the free control point.

After a job is assigned to a control point, MACE advances the job according to the
job control cards. These controil cards contain directives (such as LOAD or EXECUTE)
that are interpreted and obeyed, one at a time, in the order they appear in the job

file, For example, a compilation is achieved by a load and execute of the desired
compiler program,

During execution, the system accumulates the line printer output data and punched
output (if there is any} in files on the system disk.

A job retains its high starting priority until it has accumulated X (currently
X = 25) seconds running time. This X seconds includes both CPU time and PPU time.
After a job has had its X second run, a new queue priority, the execution priority
~1s calculated, This calculation involves the job card priority, memory requirements,
“time limit. line and card limits, etc. In general, the less a job impacts the sys-
tem, the hlgher its execution priority and the sooner it continues execution. When
a job gets bumped due to priority, it is said to be rolled out because physically it

1s copied to the system disk, The priorities of rolled out jokbs are automatlca!ly
reviewed and increased so that they don't stay rolled out forever,

At times it may become necessary for the system to restart a job that 1s in execu-
tion., Canditions such as power failures, system failure, etc. can make it impossible
to continue execution for a job, For this reason, it is important that jobs be struc-
tured so that they can be restarted at any point during execution. Thus, operations
such as reading and then rewriting magnetic tape files or permanent flles during a
single job execution should be avoided.

JOB OUTPUT

After the system has processed the last control card for a job, the INPUT file and
all files of type local, common, and permanent are returned. Then the filename for
files of type print, punch. punchb, and punch8 are changed to the jobname and placed
in the respective queues, As equipment becomes available, files are selected for

printing or punching based on the size of the file. Shorter files get higher priorities.

(4/71) CDCMACE - 21

CONTROL CARD TRANSLATION
MACE translates a control statement by:

1. Reading the statement from the control point control card buffer, 1If

necessary, the system reloads control statements from the file INPUT.

2. Deleting all blanks between the beginning of the statement and the

termination character (a period or a right parenthesis). All other non-
a lphanumeric characters are treated as separators for parameters.

3. Searching the list of special control card names (i.e. CLEAR, COMMENT,
EXIT, MAP, MODE, NOMAP, and PROCEED) and comparing them with the name
of the card being processed. |If the card name is on the tist, the
system processes the control statement according to the parameters.
|f the card name is not on the list, the system searches further.

Lk, Searching the File Name Table for a file assigned to the control point with

a name 1dentical to the name specified on the control statement. If the
card name 1s not in the table, the system goes on to step 5. If the system
finds such a file, and if the file resides on a non-disk storage device,

the job is aborted. If the file resides on a disk storage device, the file
is rewound (except for the INPUT file) and the format of the assumed program
is checked., 1If the program is in overlay format, it is read to central
memory and executed, If the program is in absolute format, the program is
read to central memory and executed at the first entry point unless the file
name matches an entry point name. In this case, the program is executed
from the entry point matching the file name. If the program is in relocatable
format or if the record is a text record with the name *0VERLAY*, the relo-
catable loader is given control., 1If the record is a named text record, it
is assumed to contain *XEQ* directives and XEQ 1s given control. The arqgu-

ments for the program call are extracted from the control statement and
stored in RA+2 - RA+n.

5.

If a virtual system exists, it is searched for a program with the name on
the control statement. If one is found, it is processed as in (4.) above,
If the program is not. in the virtual system or if the virtual system does
not exist, the CPU program library directory is searched for the program,

If found and it 1s 1n eilther overlay or absolute format it 1s processed as
in (4.) above.

6. Searching the Peripheral Library Directory if the statement name is three

characters long and begins with a litter., 1If the system finds such a pron-

gram, 1t constructs a call tc a PP using the name and up to 2 octal argu-
ments from the control statement.

/. If all of the above fail, the control statement is assumed to be a system

procecure and *XEQ* 15 called to process it from the system procedure file
SPL¥. XEQ will abort if the procedure does not exist.

If MACE cannot process the control statement during these steps, it declares

the control statement illegal, issues a dayfile message, and aborts the control
point job,

Note: The phrases '"'aborts the job'' and "abnormally terminates'' are equivalent and
used interchangeably in MACE documertation.

For further details see library document LO-1AJ. (10/72) CDCMACE - 22

TLLEGAL CONTROL CARD.* = The control statement could not be identified.

w FILE NOT IN MASS STORAGE;=FilereQUested for program execution does not
reside on a mass storage device, -

= File requested for execution 1S empty.

% TOO MANY ARGUMENTS.* = The number of arguments on the control statement
exceeds that a?icwed by the program.

ﬁ'FORMAT ERROR ON CONTROL CARD.* = An error has been detected in the format of
the control statement. T 1

« MAP OPTION ERROR, *:Illega]parametef detected on map card,

: UNIDENTIFIED PROGRAM FORMAT % = Reques ted program is not one oF the types
averlay, absolute, reiocatabie or named text record,.

J* FL TOO SHORT, NEED XXXXXX % = QOverlay or absolate programw1ll not fit in the
current field length XXXXXX words are reqU1red ' ~

7 NEGATIVE LOAD FWA.* = Load address spec1F1ed 1n overlay or. absolute program
is negative.

- ILLEGAL PP CALL.* = Attempt to load PP routine for Wthh job does not have
author:zatlon.' . _ _ _

VIRTUAL SYSTEM ERROR --XXXXXX = Program XXXXXX was required to be loaded from
vzrtua! system and could not be Iocated -

VIRTUAL SYSTEM INDEX ERROR XXXXXX,% ~Disagreement be tween virtual system index
and the fike XXXXXX. - - S o - -

(2/72) CDCMACE - 23

Appendix A

026 CHARACTER CODES

CDC
Line Printer
Character

Exte rna' |

 Display Code ~ BCD Code

Hollerith (026)
Card Punch

Ol
02

03
0L

05

06

07
10
11

70

61
62
63
64
65
66
6

12-]

12-2

12-3

] 2= 4

12-5

- 12-6

12-7
12-8
“12-9

A

B

c

D

E

F

G

H

J

K _
L 14
M 15
N 16
0 17
P 20
Q 21
R 22
S 23
T 24
U 25
V 26
vl

X

Y

V4

0

i

2

3

L

5

6

7

8

9

+

%

/

N

)

$

27
30
31
32

- NAO OOV FWN — O \W 0o

X
-

0-8-4
12-8-4
11-8~3

CDCMACE - 24

blank (space)

3

o JIVIAVA «=> <l wee e il

Character

BCD Code

20

33
73

36
17
32

00

14
35
52

37

55
56

/2

- 57
15

76

13

77

~ Hollerith (026)

. 8-3

- space or 8-6
0-8-3
- 12-8-3
0-8-6

11-0 or 11-8-2
0-8-7

11-8-5

11-8-6

12-0 or 12-8-2
11-8=7

. 85

12-8=5

- 12-8-6
12=8=7

results are

undéfined for

~other punch
combinations

(2/72) CDCMACE - 25

