
PROFILE OF THE PURDUE MACE OPERATING SYSTEM

v. Y. SHEN

(10/70) LO PMACE

TABLE OF CONTENTS

Page No.

I. Introduction 1

II. The Status of the System After Dead Start 2

III. Loading Jobs to the System 8

IV. Job Scheduling 30

V. Execution 37

VI. Job Termination 50

VII. Storage Management 53

I. Introduction

This report describes the basic functions performed by the

Purdue MACE operating system. Topics covered are. the system status

after dead start; the loading, scheduling, execution, and termination

of simple jobs. The approach of tracing a test job ·through the system

is used. The reader is expected to be familiar with the hardware

configuration and characteristics of the CDC 6500 system as described

in the CDC 6400/6500/6600 Computer Systems Reference Manual (Pub. No.

6010000). Selected system progr~ listings may prove to be helpful at

times but are not necessary.

- 1 -

II. The Status of the System After Dead start

"Dead start" is the term used by CDC to denote the in1 tial

loading process of programs and tables belonging to the operating

system* and the computer will be ready to process users' jobs when

dead start is completed. A small program set by toggle switches on

the system dead start panel is read into PPO, which starts execution

immediately. It starts the reading process of the system tape from

a tape unit, which contains the resident programs and tables of all

processors and all the library progr~. When the dead start process

is completed, all processors are executing their individual resident

programs or "idle loops". The low order area of the main core memory

(about 300008 words) is initiated to contain tables, flags, and

routines, collectively known as the central memor,y resident (CMR).

System's library programs are loaded into CMR, the extended core

storage (ECS), and the disk according to their frequencies of usage.

The CMR is divided into several regions as shown in Figure l~

The idle loop is one of the routines in the next to last region of

CMR. We shall only discuss two regions at this time and bring up the

others in the later sections when it becomes necessar.y.

*There are other phases of dead start which will be described in a

later section.

- 2 -

0

4 -7

;0 5

17

'0

16
17

'7 17
200

POINTERS
AND

CONSTANTS

PPU
C())I((JNICATION

AREAS (10 WDS/PPU)

SYSTEM DATA

CONTROL POINT

AREAS

SYSTEM EXCHANGE AREA

TRACK RESERVATION

TABLE POINTERS

DAYFILE POINTERS

EST,FTr/FST

CEBTRAL RESIDENT PROGRAM,

SYSTEM TABLES AND BUFFERS

CM RESIDENT

LIBRARIES

Figure 1. The central memory resident area

- 3 -

The region designated as PPU communication areas contains 10

blocks of 8 words (108 words) each. There is a block corresponding

to each PPU. Except for PPO, the communication area of each PPU has

the format shown in Figure 2. A FPU uses its communication area to

exchange information with the system monitor. PPO is dedicated to the

monitor program NTR which uses the communication area differently from

the other PPU' s. This will not be discussed at this time.

59 4241 o

CONTROL
PP NAME POINT PARAMETERS INPUT REGISTER

NO.

MTR
FUNCTION PARAMETERS OUTPUl' REGISTER

CODE

4ti47

MESSAGE BUFFER

Figure 2. A PPU communication area

- 3.1 -

An idling PPU is constantly' (every 128 microseconds) checking

the input register of its cOJllllUllication area. When, the PP monitor

MTR writes a three character name in the leftmost 18 bits of the word,

the PPU starts the loading and execution processes of the named PP

program, using the parameter information in the low order bits of the

word if appropriate. During the execution of the PP resident or a

PP program some help from the system monitor may be needed (for example,

an equipment request). The request can be pas sed through the output

register of the communication area. A code for the requested MTR

function is written in the leftmost byte (12 bits) of the word, and

any parameters for the function will be written in,the remainder of

the word and also the message buffer if necessary.

The system monitor is divided into two parts. One is a PP

program MTR which resides in PPO permanently. It is in overall

control of the cOBPuter system. Its functions include the allocation

of the resources of the computer (i. e. central. memory, channels,

equipments, CPU's, and the other PPU' s) • The second part is a set

of routines in CMR. It performs certain executive functions which,

can best be done by a CPU. Examples that use these functions will be

presented in a later section.

Part of MTR's loop consists of checking the output registers

in the PPU communication areas. If a request is recognized, MTR

branches to the part that perfo~ the requeste~ function. Sometimes

other PPU' s may be needed to help in completing the function. When

- 4 -

MTR finishes, it clears the output register of the requesting PPU

and continues on its loop. When the PPU finishes executing the

current PP program, it puts a completion code in the output register.

This, in fact, is another MTR function request. qpon recognizing

this request, MTR checks the recall status (to be described later)

of the central program which is using this PPU and clears both the

input and output registers. The PPU then returns to its idling loop.

PPl through pp8 are called pool PPU' s. They act independently

and are allocated to the user' s central program by MTR. Their

major function is to act as an interface between the central program

and the peripheral equipments. PP9 is dedicated to the dynamic system

display program (DSD). Its function is to provide communication

between the system and the operator. It reserves Channel 10 to

maintain the information displayed on the console screens and to monitor

the inputs from the console keyboard. DSD will . interpret and take

appropriate action for the commands typed in by the operator.

The region designated as control point areas in CMR contains a

number of job control blocks. An active job in the system must be

attached to a control point, which has a block of storage reserved as
i

a control point area to contain all the pertinent information about

the job. The Purdue MACE system may have up to 26 control points,

the exact number is set at the dead start time.

A control point area is a block of 128 (2008) words. The first

16 words are referred to as the exchange package area (Figure 3).

- 5 -

4 5 53 3635 1817 0

p AO

RA Al Bl

FL A2. B2

EM A3 B3

RA -- ECS A4 B4

FL -- ECS A5 B5

MA A6 B6

A7 B7

XO

Xl

X2

X3

x4

X5

x6

X1

,,'" ","

Figure 3. The exchange package area of a control point area

- 6 -

When a job is waiting to be processed by a CPU, the exchange package

area contains the contents of various registers to be placed in the

corresponding registers of the CPU before execution begins. When

the job has a CPU assigned to it and is in execution, the exchange

paCkage area contains a system exchange package Which is to be used

to return the CPU to the idle loop if the job is interrupted for any

reason. The remainder of the control point area contains information

about the job such as status, priority, time limit, equipment assign­

ments, etc. Their use will be discussed in later sections. A 72 word

buffer is also set up for the job control statements at the end of the

control point area.

- 7 -

III. Loading Jobs to the System

Assume we have a number of jobs on cards to be processed by

the system after dead start. Normally the operator would tn>e the

AUTO command at the console keyboard to pr~are th~ system tor full

mu1 tiprogramming mode. For instructional purposes, we shall simplify

the procedure and only type in

1.BATCHIO.

As mentioned in the previous section, part of DSD's loop is to

monitor the input from the console keyboard. It interprets and

displays each character as it is tn>ed in. DSD .isre~ to load a

command overlay containing the input-output package BIO when the operator

types in the last period. The loading process is started when the

carriage return is tn>ed by the operator, and DSD branches to BIO when

the loading is completed. BIO posts a request to MTR for a pool PPU

to execute a PP program called lIO. It does this by first assembling

a word in the following format:

59 4241 3635 0

I lrO I 1 I I

I " PP name control point number

It then writes this word into the first word of the message buff~r in

the PP9 communication area. It next writes the NTH function code to

request a PPU in the output register. PP9 then enters a waiting loop

which scans the output register constantly. If MTR does not re~ond

within a fixed time period, a "SYSTEM BUSY" message will be displayed

- 8 -

and PP9 retums to its main loop.

At this time MTR should recognize that PP9 has an outstanding

request almost immediately since it is not doing anything for anyone

else. HI'R then picks an available pool PPU, copies the first word of

the message buffer of PP9 into the input register of this PPU, makes

a record of the fact that this PPU is assigned to control point 1,

keeps the information about the PPU time used by the job, clears the

output register of PP9 and returns to its main loop. Upon recognizing

that its request for a PPU has been granted, PP9 also returns to its

main loop of refreshing the console displays and monitoring further

keyboard inputs.

Let us assume that PPI is chosen by the monitor and the request

to perform lIO for control point 1 is written in its input register.

The resident program of PPI initiates the loading process of lIO,

which seems to deserve a somewhat detailed description here.

All system PP programs reside in the system peripheral library.

Physically a program may reside in the main core, ECS, or on a di,sk.

Directories are therefore kept in CMR for easy retrieval of these

programs. All PP programs have three-character names; there are .

certain conventions which are followed with respect to the first charac­

ter when assigning names. Primary overlay (sometimes referred to as a

PP transient) names either begin with an alphabetic character or the

digit one (1). They are ,loaded starting from location 11008 of a PPU.

Alphabetic overlays may be called from a running program, a control

- 9 -

card (in some cases), or from within the system, i. e. from a PPU.

Secondary overlay names usually begin with the digit which is closest

to the 10008 word block at which the overlay is to be loaded; for

example, 2TS is loaded at 20408. No conventions have been established

for the second and third characters, except theoretically they should

have some mnemonic value.

A1 though the original design philosphy of the computer system

calls for monitor functions to be performed by a PPU, in practice it

is convenient to have the CPU itself perform some of the monitor functions.

For example, a peripheral library search can be done much faster by a CPU

since the library directory is kept in CMR. Other functions such as the

data transfer between tl2 central memory and ECS, and those requiring

frequent references to CMR, should also be done by a CPU. Therefore a

set of CPU monitor functions are defined and are handled differently from

the MTR functions.

A CPU has two modes of operations which are indicated by a hardware

flip-flop. It is said to be in "problem mode" when it is executing a

user's program at a control point or certain system functions at a

pseudo control point*. It is in "monitor mode" when it is executing the

central monitor programs in CMR. A PPU may request central monitor

service by first putting the corresponding function code into its output

register. MTR will ignore this request since it knows this is not part

of its functions. Instead of waiting for the output register to be

cleared, the PPU issues a monitor exchange jump instruction (MIN) to a

*Control point n + 1, which is reserved for this purpose.

- 10 -

CPU. If the CPU is in problem mode, it is interrupted and set to

moni tor mode. The current contents of various registers are exchanged

with the PPU exchange package, which is a predefined block in the system

exchange area of CMR (see Figure 1). The CPU will proceed to decode

the request in the output register and branch to the appropriate routine.

When the CPU completes the function, it returns to the interrupted job

and problem mode via a central exchange jump (XJ). The leftmost byte of

the output register is cleared to indicate the'completion. If the CPU

is already in monitor mode, the MXN function will be ignored. In this

case the PPU enters a waiting loop and issues MIN again later.

Without fUrther digression, we shall resume the loading process of

110. PPI first requests the monitor to search for the 110 package in

the PP library. Thi sis a CPU monitor function and a predetermined CPU

is switched to perform it. The output register contains the function

code and the name 110 as the parameter, right justified in the word.

The leftmost 24 bits of location 2 (PLDP) in CMR contains an

address which points at the first word of the peripheral library

directory (PLD). The PLD is a block of storage in the next to last

region of CMR (Figure 1). Figure 4 shows the three types of entries

in PLD, which cover all the system PP programs. The entries are prdered

by the names of packages.

- 11 -

/59r~ ADDRESS 36f5 BUFFER LAST WORD

1211 0

First Word
of PLD

/NO. OF ENTRIES I
LRESERVATION FLAG

5958 4847 3635

1 In CM

59 5453 4241 1817 o

In ECS / 01 I LENGTH I ECS ADDRESS I PACKAGE NAME

. 59 5453 4241 3029 1817 o

On Disk TRACK I SECTOR I PACKAGE NAME

Figure 4. Entries of the peripheral library directory (PLD)

The CPU compares the name of the requested PP program package wi th

the package names in PLD using a binary search scheme. It passes the

result back to the PPU through the output register using the right most

four bytes. If the package is stored in the central memory, the length,

load address, and the location in the central memory are written in the

output register. If the package is stored in .ECS, it is read into a

- 12 -

segment of the buffer in the central menory (defined by the two addresses

in the first word of PLD) and the information is passed to the PPU just

as if the package is in the central memory. If the package is stored on

a system disk, the load address and the location are passed to the PPU.

The PLD can be reserved for modification purposes by setting the sign bit

of its first word to 1. Any PPU that requests a search when PLD is

reserved is asked to reissue the request at a later time.

If the requested PP program is already located in the central memory,

the PPU loads it by simply reading it into the location ~ecified by the

load address* and branching to the entry point. Let us assume that lIO

resides on disk. Programs, alphanumeric data files and binary data files,

regardless of content, are stored on the disks in a common structure.

The 808 disk file used by the system has a physical structure shown in

Figure 5. There are two independent units in each cabinet. A physical

track on disk is divided into 100 sectors, each contains 322 l2-bit bytes.

A "track" as interpreted by the system programs is actually a half

physical track consisting of either the odd or the even numbered sectors

of a physical track. The first two bytes of a sector are called the

control bytes and cannot be used to store data. They contain linking

*Certain PP programs can be loaded anywhere in a PPU and the load

address is supplied by the PPU. They are called location-free programs.

- 13 -

STACK 0 STACK I
(HEAD GROUPS 0-15) (HEAD GROUPS 16-31)

- -

-

POSITION ~ IPOIITlON'1I1 l POSITION
VERIFICATION UNIT 0 VERIFICATION
TRACKS TRACKS

..
I~EA: ' FIXEDH::y

CLOCK TRACKS a SECTOR MARKS
MOTOR FOR ENTIRE DISK FI LE MOTOR

POSITION IPOIITIONIIII POSITION
VERIFICATI07 UNIT I ~ERIFICATION
TRACKS TRACKS .

,
~

(ONE OF 3

0....-

PO ITI NS 2 S 0
~ DISK

~SITIONER~=I!=~:::: :
Figure' 5. 808 Disk File Disks and Positioner.

- 14 _

9 DISKS
."

fiLE
UNIT

o

9 DISKS

9 DISKS

FILE
UNIT

I

9 DISKS

infor.mation of the stored data*. The remaining 320 bytes are the data

bytes.

*Specifically, if the first control byte is not zero, it contains

the sector number of the next block of data (the track number if

Bit 11 is set); the second control byte contains the number of

central memory words in the data bytes. If the sector is not

filled, i. e., the second byte contains a number less than 1008'

it indicates the end of a logical record. If the first control
I

byte is zero, it indicates the end of a logic~ file. In this

case the second control byte contains the sector or track number

of the next file; it is zero if the end of information is reached.

A logical record or file may start at any sector of a track; but the

first file ,of a set of files (information) must start at the first
I

I

sector of a track.

_ 15 _

A logical record of a file such as lIO is stored on the system

disk starting fram the sector of a track as given in the peripheral

library directory (Figure 4). In order to read the package lIO from

the system disk, PPI first issues an NTR request for the system library.

NTR maintains several tables in the central memory and PPO to keep track

of the status of all equipments and channels so as to avoid conflicts

of use by different PPU's. The equipment status table (EST) resides in

a region of CMR as shown in Figure 1. It has an entry for each equipment

of the system ordered by equipment number. The fo.mat for a mas s

storage equipment entry (i. e. a disk or disk pack) is shown in Figure 6.

59 58 4847

I *
*set if contains

system library

~

36

CHA.NNEL
IV

hardware unit no ~ .
eq. no.

2":

,~
f*- TYPE

*set if
equip. off.

Figure 6. An entry in the equipment status table

- 16 -

1211 0
ADDRESS OF

TRT
POINTER

MTR constructs a table from EST in PPO during dead start time.

It shows the devices containing the system library (normally only Disk 0)

and the channel assigned to them. PPO also has a channel status table

wi th an entry for each channel. If a channel is used by a PPU the

address of the PPU output register is written in the entr,y corre~onding

to the channel. There is also a cqpy of this table in the central

memory located in the region referred to as system data in Figure 1.

Upon recognizing the request from PP1, M1'R finds the equipment

containing the system library (Disk 0) and reserves the channel assigned

to it (Channel 2) for the PPU by writing "61" (which is the output

register address) into the channel status table for 'that channel. It

updates the table in CMR, returns the equipment and channel numbers to

PPl's message buffer, and clears the output register. In case the

channel is uready in use by some other PPU, MTR will simply ignore the

request by PPl and return to its main loop. It will attempt to perform

this function later when it is time to process PPl's request agai~. This

is the same attitude NTH bas toward all the unfulfilled NTH requests.

Starting from location 6008, all pool PPU's have an overlay area

for input/output drivers of mass storage equipments. The entry points

for the drivers are the same to do reading, writing, and positioning of

disk heads if necessary. The overlays reside in the central memory and

can be loaded by the resident PPU loader very quickly. Before any I/O

attempt, a PPU loads the appropriate driver if it is not already in the

PPU.

- 17 -

After receiving the equipment and the channel, PPI branches to the

appropriate driver and reads in the package of lIO sector by sector.

The control bytes of each sector are cheeked each time to determine

the location of the next sector. The reading process terminates after

the reading of an incompletely filled sector. The channel is then released

through another NTR request, which clears the entry in the channel status

table. PPI then branches to the entry point of lIO.

The first thing lIO does is to load and execute an overlay named

2IO. It uses the same loading procedure as the one used by the PPU

resident program to load lIO itself. 210, when entered, sets the job

name "BATCHIO" in the control point area and issues a request to MTR for

1008 words of central memory storage for control point 1. MTR keeps a

table of unassigned storage blocks and decides what to do with each

storage request. The central memory management algorithm is quite

involved and will be discussed in a later section. We assume that the

request for 1008 words is granted without too much trouble since there

is nothing else going on in the system. The block of storage assigned

to a control point is called the "field length" of the control point.

The reference address (RA) and the field length (FL) are written into

the status wo~ of the control point area, which is the twentieth (octal)

word (Figure 7).

59 o

020 PROC ERROR RA / 1008 FL / 1008 STATUS FLAGS

OPERATED

JOB NAME ASSIGNED
EQUIPMENT

021

Figure 7. The status and job name words of a control point area

- 18 -

The job name will be displayed when DSD executes the overlay that

displays the control point areas. Another function of 210 is to

construct a table of available equipments from the equipment status

table. In addition to the mass storage equipment entry shown in

Figure 6, there are two more entry formats (Figure 8) in the EST.

59 48 23 1211

CP CHAmfEL EQ UNIT * TYPE

set if
~eq. off

" CP troUR CHADELS (MAX.) * TlPE
11

EQ tJRIT

T
converter no.

Figure 8. Entries in the equipment status table.

o
6000 Series

Devices

3000 Series
Devices

210 scans down EST, looking for entries with type LP, CP, or CR. These

are the line 'printers, card punches, and card readers, whose operations

are controlled by 110. The table of available equipments thus contains

an entry for each of such equipment in terms of its location in ~ST and

type. 210 returns to 110 when the table is completed and saved in the

field length of control point 1.

110 scans the table of available equipments and starts the input

or output process for an equipment that is ready to be served. It

maintains a pointer on the table, and picks up the first equipment that

- 19 -

is not assigned to ~ control point (cp field = 0) and not turned off

for 8.D7 reason. It issues an MTR function request to reselVe that

equipment, which puts the number 1 in the CP field. It then issues

another MTR request to reserve a channel for the equipment and uses it

to sense the status of the equipment. If the equipment is a card reader

and no card has been put in the hopper, 110 will consider it not ready,

and will issue monitor requests to drop the channel and the equipment.

It then proceeds to check the next equipment in the available equipment

table. If no equipment is ready at this time, 110 is put on recall.

The current input register is saved in word 25aof the control point

area (RLPW) and PPI is returned to the pool of available PPU' s • Part

of MTR's main loop is to check the activity at each control point. When

MTR notices control point 1 has a PP program on recall, it finds a pool

PPU (if there is one available) and copies word 258. of the control point

into the input register of the chosen PPU. The PPU then starts tl,le

loading process for the PP program and MTR proceeds on its normal business.

In the case of 110, the steps of loading and execution are repeated as

described with the exception that 210 need not be loaded again s~ce we have

already constructed the table of availab1e equipments and saved in the

field length of control pOint 1. This short cut is made possible by
I

setting bit 41 of the i~ut register.

- 20 -

Assume we have a number of job decks sitting on a card reader.

The first one is a FORTRAN job deck which is set up as the following:

MS175

99999,CERTER,CM50000,P5,L500,T50.

RUN(S)

LGO.

eor card (7/8/9)
PROGRAM MAIB(INPUT, OUTPt1r , TAPE5=DPUT , TAPE6=OUTPUT)

READ (5,51) list

WRITE (6,61) list

Elm

eor card (7/8/9)
Data cards

eof card (6/7/8/9)

When the "READY" button on the card reader is pushed, the first card

is iDlllediately read into the buffer of the card reader. This also

signifies the computer that the card reader is ready. 1IO asks MTR

for 11008 words of buffer storage, and puts i tselt -in recall status.

- 21 -

It saves the contents of the input register in word 258 ot the control

point area but, instead ot returning the PPU to the pool ot available

PPU's, it changes the input register directly to load the driver

package leD. This eliminates the monitor steps of dropping and

requesting a PPU.

Before we read in the deck, we have to take some time to explain

the files in the system. Most information in the system exists in

the fora of files. They are stored on disks, t~es, etc. and are

identified in the central memory by a 7 character name and a control

point number. (Files not associated with active jobs are assigned

to control point 0, which is a pseudo control point). The B,fstem

handles the tiles through the tile name table/file status table

(FNT/FST), which is a block of storage in CMR (Figure 1). A file has

an entry of two consecutive words in FlfT/FS'r. The first word is the

FRT entry whose tormat is shown in Figure 9.

1817 1211 6 5 4 0

FILENAME

priori ty read only .

Figure 9. Entry format of the file name table

There are many types ot files and they have different FST entry formats.

For example, the syste. library programs are made a read-only CODIDOD

- 22 -

file (Type 2). COJIIIDOn files have lUlique names and can be used by more

than one job. They are not saved across dead starts and the permanent

files (Type 7) are used to store more permanent information. A job IIlIQ'

create local files (Type 3), which are destroyed when the job terminates.

The FST entry for files stored on a mass storase device has format shown

in Figure 10.

r3 4847 3635 2423 1211 0

~ I FIRST TRACK I c:= I =:r
Figure 10. Entry format of the file status table for a

file stored on a mass storase device.

Other types of files such as input, output, and rollout will be discussed

later.

When a job wants to reference a particular tile, it searches the
I

FNT entries of the FI.fr/FfIr table starting from the beginning. It the

named file is found not assigned to any control point (CP-o), the two

word entry is saved in the PPU. It then makes an MTR request for

Channel 15. If the request is granted, the PPU reads the two word

entry and compares with that saved previously. If they are the same

the PPU changes the CP field to the current control point number and

releases the channel. The above st~s are needed to prevent conflicts

in assigning files. Since all PPU' s work independently , it is possible

that two or more PPU' s want the same file at the same time. Channel 15

- 23 -

is set up as a pseudo channel which must be reserved to assign FIT

entries. Since MTR processes PPU requests one by one, onlY one PPU

can get to the tile. The same conc~t is used to 1imdt the access to

FST (Channel 11,.) and ECS (Channel 16).

leD is responsible tor converting job decks into input files

{or output files if there is an error} to be processed by the system

later. It is the combined driver ot all the readers, printers, and

punches. up to eight of these devices may be driven at &Qy one time.

It has a small monitor program wi thin the package (the equipment manager)

to divide the attention of the PPU tairlY among the active equipments.

Although we have only one card reader active at the time, the reader is

reminded that in the process described below, a large number of branches

are made back to the equipment manager just to make sure every request

is handled in a short period of time.

leD reserves Channel 12 at all times. If there is no equipment

active, it releases both the channel and the PPU. When the equipment

manager recognizes a card reader request, it branches to the card reader

driver. The first column of each card is sensed before it is read into

a buffer in the PPU. The first tour cards in our test deck do not have

special punches in the first column and are read in one by one. Each

character is translated into 6000 series display code and the trailing

blanks of a card are deleted. The card image is then written into the

buffer of control point 1 in the central memory. A card image is

terminated by one or more zero bytes up to a word boundary in the central.

memory. When the first end-of-record card is reached (a 7-8-9 multiple

- 24 -

punch in column 1) or the buffer is completely tilled, the reading

process is interrupted. The PPU makes an MTR request tor another PPU

to execute the PP program TJC, which translates the job card.

Normally a pool PPU is not allowed to malte a request tor another

PPU to perform part of its task without returning itself to the pool.

This rule is set in order to avoid dead-lock si tuations such as all

PPU's are busy waiting for the service of another PPU. leD is sempt

from this restriction because in the normal multiprogramming mode, it

is usually kept very busy serving the up to 6 buffers at the BATCHIO

control point. As mentioned before , it would go away promptly when

there is nothing to do.

The buffer (s) at the BATCHIO control point is a circular buffer.

It has a five word block of central memory in the field length of the

control point which describes the buffer status at all times. The

five word block is called a file enVironment table (FET)*, which is shown

in Figure 11.

5~ 8 117 5 0

fil.ename I code

FIRST

II'

OUT

LIMIT

Figure li. A file environment table

*This is the simplest :form of an FE'!'. An FE'!' may be longer than

five words to store other information about the buffer.

- 25 -

A buffer is usually set up for read/write processes between the central

memor.y and the disk. The FIRST pointer in the FET points at the

beginning word of the circular buffer whereas the LIMIT pointer points

at the word iimnediately after the last word. When the buffer is used

for the first time, both the IN and the Ot1I' pointers are the same as

the FIRST pointer. In a reading process, a PPU fills the buffer start­

ing from the position pointed by IN. IN is incremented as the buffer is

being filled. A CPU can take the information to the running program by

emptying the buffer starting from the word pointed by OUT. OUT is also

incremented as the buffer is being emptied but in no case should it be

incremented past IN. The buffer is circular as when IN reaches the LIMIT,

it is immediately decremented to start from the FIRST again with the

restriction that it should never be incremented past OUT. Therefore the

active record in a circular butfer lies from OUT to IN - 1, and the buffer

space available lies from IN to OUI' - 1. Both pointers will be turned

around the end when necessar.y. The buffer capacity is LIMIT - FIRST - 1,

and it is considered empty when IN = OUT. The s8llle logic applies to a

writing process. This type of buffer structure allows the efficient use

of buffer ~ace as well as the overlapping of the processors.

When TJC is called by lCD, the input register of the PPU contains

the address of the FE'!' as the argument. The colie field in the FET is set

to reflect that this call is from. the BATCHIO job. The first card in

the job deck contains a five character job name (MSl75 in our example).

TJC creates a seven character name for the job by asking NTR for a two

digi t job sequence number. Word 228 of the central memory (JSNL) contains

a job counter. MTR reads this word, increments it, passes it b8,ck to TJC

which then concatenates the number to the user's job name. This process

will distinguish jobs submitted with the same job name card except in

- 26 -

the case when they are entered exactly a multiple of 100 jobs apart.

TJC :finds the system accounting file in the nfl, marks the FST entry

busy and reads the record for the given account number fram the disk.

It uses the accounting information to verifY the parameters of' the job

card. It also computes the "queue priority" of' the job using all

parameters. The value normally lies between 10008 and 40008, and is

higher if the job requires less system facilities •. The queue priority

is used to schedule the job during normal execution and will be des-

cribed in the next section. All the bookkeeping information are saved

in a block equivalent to six central memory Yords, to be transferred

to the buffer later.

TJC loads a location-free PP overlay named OBF which begins a file

by allocating an entry in the FIT/FST. OBF first searches the FIT tor

the seven character job name. If the name, is found, OBF returns and

TJC asks the monitor for a new sequence number. This procedure enables

the system to distinguish jobs submitted with the same job name c~d

exactly a multiple of 100 jobs apart. OBF normally returns with the

address of the allocated FIT entry.

TJC assigns an initial queue priority to the job with the value

dependent on the job category. A job may be a local batch job (as our

test job), interactive job, PROCSY* job, or export/import job.
I

This

information is passed to TJC using the code field in the FET. The

*Purdue Remote Online Computing System

- 27 -

value of this ini tial priority lies between 60008 and 66008• Its use

will be described in the next section.

TJC returns all the information it has obtained by translating the

job card through several unused fields in the FET and the first six

words of the central memory buffer. (By convention, the job name card

image starts at the 7th word wben TJC is called.) The six words contain

the accounting information as mentioned before, or error messages in

case of job card error. The last bit of the code field in the FET is

set to 1 to indicate completion and the PPU is returned to the pool.

The equipment manager in lCD constantly checks the completion bit

of the FET. When it notices that TJC has finished, leD asks MTR again

for a PPU to execute the PP service program lPS. lPS loads the appro­

priate mass storage driver (in this case 2WD) which dumps the buffer on

disk and updates the FST entry. When lPS finishes and drops the PPU,

lCD proceeds to read in the remaining cards of the input deck. It reads

up to the end-of-record card or until the buffer is filled as described

before. lPS is then called again to write the buffer on disk. When the

end-of-file card is reached, lCD changes the file to be of type input

(Type 0), and the FJ.fr/FST entry is shown in Figure 12. The job is said

to have joined the It input queue".

- 28 -

JOB NAME P

TIME LIMIT
FIRST TRA /10

3

P: Priority on job card

ID: Identification of the I/O terminal used by the job

EQ: Equipment number of the disk used

QUEUE PRIORITY: The initial queue priority of the job

Figure 12. Ffrr./FST format for a job in the input queue

If there is a job card error, only the first six words of the buffer

is written on disk. The remaining cards of the job deck are flushed.

The job file is made of type output (Type 1) in the FNT/FST when the

end-oi-file card (a 6-7-8-9 multiple punch in column 1) is reached.

The job is said to have joined the "output queue", waiting to be

printed (in this case with a very high queue priority).

After the set up of the FNT/FST entry, leD issues an MTR request

for the job scheduler (lSJ). The scheduler selects the jobs for

execution and will be described in the next section. leD resets the

buffer parameters and returns to the card reader driver, which reads

the following job decks in the same ~.

The reader is reminded that 110 was put in recall status when

leD was first loaded. MTR assigns another PPU to execute 110 later

which resumes the scanning of the table of available equipments.

- 29 -

If there is another equipment requesting service, lIO checks the

buffers in the field length of control point 1. A new buffer will

be set up (up to a maximum of six buffers) if necessary. The driver

request is set as a buffer parameter and if lCD is still active at a

PPU, 110 releases its PPU and goes on recall again.

The equipment manager of lCD monitors the status of each buffer

area. The dri ver requests are answered in a round-robin fashion, wi th

a variable time slice determined by individual driver procedures.

This design allows the efficient use of the PPU and the channel.

- 29.1 -

IV • Job Scheduling

The operator may start the execution of jobs by typing in

n.NEXT.

at the console, where n is any control point number that is not yet

assigned. Multiprogramming mode can be achieved by entering 1'iEXT

at all control points. Usually the system is started for full multi­

programming mode by typing in

AUTO.

This command has the effect of assigning BATCHIO to control point 1,

and NEXT to all other control points.

When DSD recognizes the n.NEXT command, it branches to a package

called NXT. NXT changes the control status of the control point area

(word 60) to make it available for scheduling and issues an MTR request

for the job scheduler. DSD then resumes its normal acitvities. Since

the previous section is also terminated by the request for the job

scheduler, we shall join the discussions by explaining the priority

scheme used.

There are maximDn and default priorities assigned to each account

number. The PP program TJC (described in the previous section) uses

the job category and the priority specified on the job card of the

program, but in no case greater than the maximum allowed, to compute

the initial queue priority of the job. This is stored in the F'lff/FST

when the job is in the input queue (Figure 12). It is intentionally

made ver.y high (6005
8

for our example) in order to . support the policy

- 30 -

that every job is to be given a time slice in the central memory

shortly after its arrival. As described earlier, TJC also computes the

queue priority of the job using all parameters supplied on the job

card. This is going to be the queue priority of the job when the

tf first pass" time slice (currently 25 seconds of combined CPU and

PPU time) is expended. This priority changes from time to time to

reflect the job status until the job terminates.

The job scheduler is a PP program named lSJ which assigns jobs

to control points according to their priorities and field lengths.

It also calls a PP overlay 2SP at regular intervals to up4ate the

priorities of the waiting jobs on disk. We shall discuss part of its

functions by following our test job.

Suppose MTR picks up the lSJ request from PP9, caused by a

2.NEXT. command. It write~ a call for lSJ in the input register of

an available p~ol PPU and sets up a flag so that as long as lSJ i,s

active in one PPU, requests for lSJ will be answered -directly by

clearing the output register of the requesting PPU. This precaution

is necessary because lSJ is called very frequently from independent

sources as we have already seen in our example, both DSD and leD

request lSJ at about the same time. Like other PP programs, lSJ

branches to an initialization routine right after it is loaded. It

then checks the control point areas for the status of each control point.

It constructs a table of control points ordered by ascending priority.

At thi s time, only control point 1 is occupied (by BATCHIO). It makes

- 31 -

any other available control points "NEXT", which is displayed by DSD

in due course. Since there is no program to be If rolled out It, lSJ

searches the FIT/FST table for files of Type 0 (input) or Type 10

(rollout, to be explained later). They are jobs .in queues waiting

to be processed. If there are more than one job waiting, lSJ chooses

the job with the highest priority which will fit in the available memory

(the central memory blocks assigned to jobs of lower proiori ties are

also considered available in this case). Suppose our test job is chosen,

ISJ proceeds to initiate it at a control point. This includes issuing

MTR requests for the amount of storage required by the job (500008 words),

and changing the appropriate fields in the control point area for the

job such as the job nae word (word 218). lSJ then asks for another

PPU to load and execute the program lAJ (Advance Job Status). We pause

to discuss some of the features of the system at this time but the eager

reader may still follow the test job by proceeding directly to the next

section.

Waiting jobs in the system belong to two types of queues. The

input queue is constructed by 110 and contains jobs that have just entered

the system through input devices. It is described in the previous

section. When a running job requires operator attention, such as a

tape mount request, i t gives up its control point and the central memory

while waiting. The job is said to be rolled out and enters the rollout

queue. A running job may also be rolled out if there are jobs with

higher priority waiting for the storage. The FflT/FST entry of a job

in the rollout queue is shown in Figure 13.

- 32 -

59

JOB IfAME*

TIME
REXAINlllG

2

p

o

*ROLOUT if the file is assigned to a control point (rollout/rollin

in progress).

*iEJ!'he control point number in the above situation.

Figure 13. FNT/FST format for a job in the rollout queue

The rollout file of a job contains all information needed to restart

the job. The FlIT/FST entry of the rollout file replaces the original

FNT/FST entry of the job, which was created by TJC. The file contains

all the FIT/FST entries for other files associated with the job, the

control point area, the dayfile buffer, the contents of its field

length, and the PPU delay stack entries. The description of this process

will be left to a later section.

It is the responsibility of the scheduler to roll jobs in and out

and to ensure the efficient use of the central memory. Usually the

storage blocks occupied by jobs are scattered in the central memory

following the CMR. An example is shown in Figure 14. Field lengths

of control points are ordered according to the control point number.

Since jobs may terminate or be rolled out at different times, there may

be gaps between field lengths in the central memory. Ideally the memory

t tl b - d Thl.-S l.-mplies space available is the memory no curren y el.ng use •

- 33 -

that all the gaps between field lengths be treated as a contiguous bl.ock.

This is made possible by the use of hardware relocation registers, which

enables the system to move blocks of storage around to obtain the needed

space easily. The storage management faeil.i ty can be invoked by an MTR

request which is described in Section VII.

CMR
low core

CPl. FL

high core

Figure 14. A central memory layout example

As mentioned a little whil.e ago, lSJ constructs a tabl.e of control

points ordered by ascending queue priority. The jobs at control. points

with queue priorities l.ower than a fixed val.ue (currently 1008) will be

uncondi tiona.lly rolled out of the central memory. At times the system

may permit every job to stay at a control point for at least a real time

period which is determined by the console operator. The scheduler

considers a job to have a very high queue priority within that time period

so that it will not be inadvertently rolled out. lSJ searches the wr/FST

table for jobs waiting in the input and rollout queues. The highest

priority job which will fit in the available memory (with the necessary

- 34 -

rolling out of lower priority jobs implied) is chosen. lSJ then

rolls out the smallest number of lower priority jobs which gives the

system enough free m.emory space and/or a free control point. It sets

the queue priority of the job's FST entry to zero so that it can be

skipped by future s·cheduling passes. lSJ then issues an MTR request

to obtain a contiguous block of storage for the job. It asks the monitor

for another PPU to execute the PP program 1AJ (Advance Job) or lRI (Roll In),

which loads the job. The entire procedure is repeated as long as there

is m.emory available and jobs waiting. For reasons such as a change of

job status, or a PPU is not available, etc., the scheduling is aborted.

lSJ puts itself in recall status and will start the scheduling process

anew next time.

There is another constraint on the scheduling process. The system

defines five job categories using disjoint ranges of the queue priority.

They are the interactive jobs, PROCSY jobs, export/import jobs, local

batch jobs, and the jobs in the rollout queue. There is a limit on the

number of active jobs for each job category. A proper job mix can be

maintained this w~. The limits may be temporarily lifted for the

efficient utilization of memory if there are jobs vai ting and memory

available but no jobs can be scheduled.

The scheduler lSJ is called whenever the state of the system

changes or every four seconds, which is the "recall period". MTR main­

tains in PPO a table called the PP del~ed stack. A PP program may

enter the tt delayed recall tf state by saving its input register and the

- 35 -

time period in the PP delayed stack. MrR checks the stack once in the

main loop and then initiates the loading process of the PP program

at a PPU if the del$Y t~e has expired.

lSJ is responsible to call the overlay 2SP (Set Priorities) .

periodically (every 10 seconds). 2SP increments the queue priorities

for the waiting jobs in the FlIT/FST. It also checks the accumulated

CPU and PPU running times of jobs at control points who are still in

their Itfirst passes". The initial high priority of a job will be changed

to the queue priority couputed by TJC if the first pass time slice is

expended.

- 36 -

v . Execution

The scheduler has picked our test job for execution. The queue

priority of the job's FST entry is set to zero which causes the

scheduler to ignore the job file during future passes. Suppose control

point 2 is assigned. The new job name (MS17500) "is 'displayed at control

point 2 instead of the original name (NEXT) when DSD updates the console

displays in its next loop. KrR loads the PP program 1AJ for the control

point and the scheduler returns to the loop to schedule the other jobs

that followed MS175 in the input queue. The scheduler will return its

PPU to the pool when there is no job that can be scheduled.

1AJ is a PP program that advances the status of a job at a control

point. It has overlays to process control cards and handle execution

errors. When it is first called for a job, 1AJ issues an MTR request

to load the overlay 2BJ (Begin Job). 2BJ reads the real time clock

and initializes the various timer fields in the control point area. It

also sets up word 678 (CSPW) of the control point

the control statement pointers (Figure 15).

59 48 36 24

area, which contains

12

LIMIT
IBDEX

o

Figure 15. The control statement pointer word ot a control point area.

The leftmost byte of CSPW contains the pointer to the FST entry of the

job file. The current track. and sector are also taken from the FST

entry, and the two indices point at the beginning of the control statement

buffer in the control point area (words 708 to 1778). This is a circular

- 37 -

buffer filled and ~tied by the routine RIB (Read Next Statement)

in the overlay 2TS (Translate Control Statement). If the buffer is

empty when RNS is called, it reads in a sector of words in the job

file. The current track and sector pointers are updated so that the

next read will start at the correct position on disk. Since a sector

in the system contains 320 data bytes, or 64 central memory words, the

reader may wonder why the buffer has a length of 72 central memory words.

We recall that the input cards are packed in the job file in a way that

all trailing blanks are deleted. It is therefore possible for a control

statement to reside across sector boundaries. The extra 8 words (an

80-column card image) in the buffer is needed to handle such a situation.

2BJ loads the overlay 2TS and branches to the routine RNS. RNS

performs the steps needed to read the disk, which include loading the

appropriate driver if necessar.y,reserving the right channel and dropping

it when data have been transferred to a buffer area in the PPU. The data.

are subsequently transferred to the buffer in the control point area and

the indices in CSPW properly updated. The reader is reminded that TJC

constructs six words of accounting information from the job card and

they are put at the beginning of the job file. 2BJ uses the infcrmation

to initialize certain accounting fields in the control point area and

also saves the six words as they are starting f~oa word 418 (ACTW) of

the control point area. The next control statement index (Figure 15)

is incremented so that it points at the job card of the file.

- 38 -

After the record ot control statements is taken care ot, the

FNT/FST entr.y is assigned to the control point and the name is changed

to "IBPUT". The FST entr.y is changed to the format shown in Figure 10,

with the track and sector number pointing at the beginning ot the next

record (the FORTRAN PROGRAM card in this case). This is accomplished by

reading and skipping the data ot the job tile until the tirst end-of­

record card is reached. The job card is written in the job's dayfi1e

and 2TS starts processing the first control statement.

The system provides a dayfile for each job being processed. It

contains the histor.y of the job in the systeJll. Information such as the

time each control card is processed, error messages, and special

requests of system facilities are recorded. The accounting information

is put at tbe end when the job terminates. The system also keeps a

dayfile which is a couplete record of everything that happened in the

system, including the dqiiles of individual jobs. The dayfiles 'are

handled through a table ot d8¥file pointers in CMR (Figure l). The

table contains a two word entry tor each control point and the sy;stem d8¥­

tile. An entr.r contains intormation about the d~ile butter in ~he

central memory and the current location on disk. It is similar to an

Frf/FST pair. A job at a control point ma.y write dayfile messages in

the buffer which is then transferred to the disk. The dayfile bu:fter

~d pointers are copied to the rollout file when the j ob gives up the

control point, and the entire dayfile is copied· to the output file when

the job terminates.

- 39 -

The first control statement of our test job is RUN(S). 2TS

rec~izes that RUN is the name of a program in the system library

on disk. This is accoaplished by scanning the librar,y directories

in CMR. 2TS prepares the PPU to read the program by requesting the

system disk (Disk 0) and the channel (Channel 2), and sets the mass

storage driver as we have seen in several occasions so far. The

program is read into a buffer in the PPU sector by sector. The first

sector contains the load address of the program and the program

format. The program file is transferred to the field length of the

control point starting at the load address. The channel is released

when the loading is completed.

The user may specit,y different ~tiODs of the FORTRAN eODPiler.

The options are passed to the compiler program as arguments enclosed

in parentheses following the program name. For- example, our test

job specifies the liS" option, which means to compile with source list.

There may be more than one ar~nl for a program. 2TS stores them,

in display code, one for each word starting from RA + 2 of the field
I

length. The compiler program is in absolute binary code with table

of constants at the lower end ot the field length and the first execut-

able instruction at location RA + 100S• 2TS clears the exchange ~ackage

area of control point 2 and sets the field for the P register to lOOse

2TS issues an MTR request for a CPU, sends the control statement to the

dayfile, and returns the PPU to the pool.

Since there is no other activity except BATCBIO going on the system,

- 40 -

MTR finds an available CPU ver,y easily and as~s it to control

point 2 using an exchange jump. The exchange package area of centrol

point 2 now contains the idle exchange package and the CPU starts

executing the instruction at location RA + 1008.

We shall not go into the details of the FORTRAB compiler.

Briefly the program creates several. files local. to the control point.

Two of the local files are given the special names "LGO" and "OUTPt1l'''.

It reads the source statements fram the local INPUT file, lists them in

the OUTPUT file, and translates them into relocatable binary form which

is then stored in the LGO file. It loads several overlays in the

process and saves temporary results on local scratch files. The

program terminates by storing "EJlDtt in location RA + 1.

Tbe first word of a user field length (location RA) is reseryed

for use by the hardware in case of an ari tbmetic error. If an

arithmetic error occurs the type of error and the address at which the ,

error occurred is stored in location RA. Location RA + 1 is used a.s a

cODllllUDication area between central programs and MTR. The leftmost 18

bits of the word is used to store a three character message in display

code. There are four special messages which are explained as the following.

1. ABT: To abort the control point.

2. EBD: To end the central program by taking

the CPU away from the control point.

3. ReL: To place the CPU on recall.

4. TIM: To find current time.

A central. program may also call PP programs by. putting the PP name in

RA + 1. Any PP program whose first character is a letter may be called

- 41 -

in this Yay'.

MTRchecks the central programs who are currently having the

CPU's during each pas s ot its loop. Any request put in location

RA + 1 will be processed. MTR also checks tor arithmetic errors

which are indicated by a zero P register. When MTR recognizes the

END message in RA + 1 ot control point 2, it searches all other control

points tor the one with the highest CPU priority_ An exchange jUJll) is

issued which puts the CPU to the idle loop and stores the exchange

package ot control point 2 back to its exchange package area. Another

exchange jump will let the CPU execute the highest priority job. The

CPU also updates the accumulated times tor control point 2 during the

idle loop.

In addition to re~onding to the ~ecial requests from the PPU's

and CPU's, NTH checks the activities ot control points regularly. If

it checks the activity of a control point at one time, then it checks

the next control point after a fixed time period (currently 65 milliseconds).

The PP recall register in the control point area is checked and if set,

the PP program is called again.

The leftmost byte of the status word (Figure 7) is called the

processor status byte. The format is shown in Figure 16.

Figure 16. The processor status byte of the status word in a control

point area

- 42 -

The program at the control point is waiting for a CPU if the W bit

is set. The program is in recall status if the X bit is set. This

means that the program is waiting for some PP program to finish (auto­

matic recall) or for some fixed time period (periodic recall) before it

can proceed further. In case of the automatic recall, the bit

corre~onding to the PPU is also set.

MTR also checks the processor status byte of the control point.

If the W or X bit is set, MTR makes an attempt to start a CPU for the

program. It then returns to its main loop. If there is no acti vi ty

at the control point, MTR advances the status of the control point

by calling the PP program 1AJ again (or lRO if· the control point is

flagged for rollout).

At this time NTH notices that control point 2 has no activity.

It loads lAJfor the control point which proceeds to translate the next

control statement.

The next control card of our test job is LGO. By scanning the

FIT/FST table, the overlay 2TS finds a local file with that particular

name. {The reader should recall that this is a file created by the

FORTRAN compiler.} It rewinds the file by setting the current track

equal to the first track in the FST entry (Figure lO). The status

byte of the FST entry indicates that the·file is of relocatable binary

form, therefore cannot be loaded directly by the PPU. 2TS prepares

the call to the system loader by setting loader control f1~s in the

control point area and putting the file name (LGO) in location RA + 648.

- 43 -

It loads the absolute loader program LDR= into the field length,

requests a CPU, sends the control statement to the dayfile, and

returns the PPU to the pool just as in the case with the FORTRAN

compiler program.

LDR= is the first entry name of the system loader package.

The loader loads a file from disk, recouputes address constants if

necessary, and attempts to satisfy all the external references of

the user program. The reader should consult the documentation for

the loader if he is interested in the details of operation. Since

the loader is a central processor program, it uses· the standard PP

program CIa (Combined Input-Output) to communicate wi. th files. We

shall pause to discuss it briefly.

CIO is the PP program that processes input and output requests

for CPU programs • Although it has the capabili ty of accessing all

the system I/O devices, CIO is used mainly for mass storage devices

and magnetic tapes. In order to perform an I/O function, the central

program BruSt first prepare a buffer larger than a physical record

(64 eentral memort words, or 320 data bytes, which is the size of a

sector on disk). This is a circular buffer as described in Section III,

with an FE'!' similar to the one shown in Figure li. In this application

the FET may have more than five words. The first eight words of a

long FET is shown in Figure 17.

- 44 -

48 3 6 30 24 18 9 0

FILENAME STATUS' CODE

EQ Isp I L FIRST

IN

our

FIT roINTER RECORD 1
BLOCK SIZE PRU SIZE I LIMIT

WORKING LWA + 1 STORA,(}E FWA

IRAlrlClM REQUEST/RETURN IlfFO.

'RA1f'M'M

IIfDEX FWA LWA + 1

Figure 17. A file environment table used by CIO.

The code field in the first word contains a completion bit (Bit 0).

The L field contains the number of words in the FET in addition to the

five basic words. If it is non-zero, the special processing field
I

(sp) tells whether it is a random access file, etc. (Random access

files are files with logical records that can be directly accessed

without reading or writing the entire file.) The three words following
. ,

the LIMIT word are used for random access files. The programmer may

append other information about the tile following the eight words shown

in Figure 17.

The central program enters the CIO request in location RA + 1,

which is shown in Figure 18.

- 45 -

I C I 0

59 42 40

II*!
17 o I FET ADDRESS

. *Automatic recall bit

Figure 18. Format of the call to CIO.

When MTR recognizes this request, it assigns a pool PPU to the

control point and loads the PP program. When CIO terminates success-

fully, it sets the completion bit of the FET (bit 0 of the first word)

to 1 and drops out. The CPU program can therefore determine the status

of the I/O process by checking the completion bit of the FET. However,

in many applications, the CPU cannot proceed before the I/O function

is completed. Instead of wasting time in a tight loop, the programmer

may elect to put the CPU "on recall" by setting the automatic recall

bit to 1 for the CIO call. In this case MTR takes away the CPU and

sets the X bit and the PPU bit of the status word of the control point
I

area (Figure 16). The output register address of the assigned PPU is

also stored in the control point area (Word 228) so that when NTH checks

the recall status of this control point later, it can readily determine

whether the requested PPU function has been completed. An attempt will

be made to restart a CPU if there is no PP functions to wait for.

The left most byte of the LIMIT word. in the FET may contain a

pointer to the FNT entry of the file which is checked by CIO. If the

pointer is not supplied or the file names do not match, CIO makes a

- 46 -

couplete search of the FIT/FST table for the named file assigned to

the control point. It will create an entr,y for the file if it is not

already in the table and sets the address pointer in the FET. The

buffer parameters are also checked before any action is taken.

We shall concern ourselves only with the mass storage I/O at

this time. For a "read" request, CIO loads and executes the overlay

2RD (Read Disk). 2RD uses the PPU mass storage drivers to read data

from the disk sector by sector. The buffer in the field length is

filled in a circular fashion and the OUT pointer is checked after each

sector read. 2RD usually reads up to the end-of-file mark, but it

will stop and exit when the buffer is filled. It can also be instructed

to stop after a sector or at an end-of-record mark. For a "writefl request,

CIO uses the overlay 2WD (Write Disk) to empty the circular buffer. 2WD

decides the location to start writing using the track reservation table

(TRT) of the disk. Figure 19 shows the formats of TRT entries.

FWA OF TRT 1 1 TOTAL
TRT LENGTH TRACKS

CURRENT I
POSITION

59 48 36

I xxxx [xxxx I

(a)

24

xxxx xxxx

(b)

I TRACKS
IH USE

12

Figure 19 (a).

(b) •

Track reservation table pointer format

Track reservation table entry for.mat

- 47 -

o

11111

There is a track reservation table for each mass storage equipment.

The TRTpointers reside in CMR (Figure 1) and can be referenced using

EST entries (Figure 6). An entry in TRT contains information about

four tracks. The right most four bits of the word are the track use

bits. A traCk is considered in use if the corresponding track use bit

is set to 1. If the leftmost bit of a track byte is 1, the remainder

of the byte points at the next track of the file. If the bit is 0, the

remainder is the number of sectors in use of the track, which is also

the last track of the file. The ERT INFO field is used to control the

access of disk tracks and will not be discussed here.

2WD computes the number of sectors to write and determines if

there is enough room in the current track using the TRT. If more

tracks are needed, it attempts to reserve them using an NTR request.

This function is actually carried out by a CPU. MTR passes the request

using its output register (Word 518 of CMR) and begins the centra~

program, which is considered to be assigned to the pseudo control point

n + 1. The CPU reserves the unused tracks by setting their use bits

and next track pointers in the TRT. The buffer is then dumped using the

mass storage drivers in the PPU. We shall return to the loader without

fUrther digression.

The loader reads in the LGO file using el0.·· It proceeds to

modify address references when necessary and tries to satisfy the

external references. It m8Y have to load several programs from the

- 48 -

system library on disk. When the object program is coupletely edited,

the loader moves a few words of code to the high end of the current

field length. The execution of this piece of code moves the object

program down, thus writes over the loader. It then puts a call to the

PP program RFL in location RA + 1 with the length of the object program

as an argument. The CPU then branches to RA +1008, which starts a

loader supplied loop to wait for the acceptance of the RFL request.

The PP program RfL reduces the field length to the size used by the

object program. The CPU branches to the first instruction of the object

program when RA + lis cleared.

The READ statement in our test program calls CIe to read the local

INPUT file and the WRITE statement calls CIO to write the local OUTPlJI'

fiie. The central program is put in the automatic recall status during

these operations. It may give up the CPU at other times such as monitor

function requests from the PPU' s • It may also be interrupted and put

in wait status by a job with a higher CPU priority. It may even be rolled

out and restarted later if there is a higher priority job waiting for the

storage. The END request is put in location RA + 1 when the test program

terminates.

- 49 -

VI. Job Termination

When lAJ is called for a job and there are no more control cards

to be processed, it sets the'ppU input register to ICJ and branches to

the PP resident program. Thus the PPU loads the PP program ICJ

(Complete Job) and starts execution. ICJ reads the real time clock

and updates the running times for the last time. Future processing to

get the job out of the system will be considered system overhead and

will not be charged to the user. It issues an MTR function to release

the field length of the control point, since all information is saved

on files and the central program is no longer needed. It then proceeds

to release the files that also are not needed.

In the case of our test job, all information is written on the

OUTPUT file of the control point. (The dayfile is not considered a

local file and is treated differently). Local files such as LGO and

INPUT are no longer needed. The job may have uS'ed other types of' files

such as the common files, permanent files, etc., which should alsp be

released. In other words, the only files to be saved are the OUTPUT

file and the various punch files if they are used.

To drop a file, the PPU loads the location free overlay ODF. The

simplest file drop is to drop a local file on a mass storage device.

ODF issues an MTR request to drop the tracks used by the file and MTR

uses a CPU moni tor program to modify the TRT, as in the case of reserving

tracks. The FNT/FST entry is then cleared, which completes the process.

- 50 -

a buffer in the field length of control pOint I and loads the PP

program ICD if the latter is not already active at some other PPU.

110 then enters the recall status again.

When the equipment manager of lCD recognizes a line printer

request, it branches to the line printer driver. The driver issues

an Ml'R request for another PPU to execute the service program lPS,

which loads the overlay 2LD. 2LD loads the initial print data in the

buffer, which is the banner page made of the job name in three-inch

composed characters. The driver interpretes the coded information in

the buffer to make appr~riate format controls and starts printing.

IPS is called again and again to fill the buffer in the central memory

wi th the data on the output tile using the overlay 2RD. If for any

reason the printing of the output file must be aborted, lCD uses the

dayfile pointers of the FST entry to print the d~i1e record

inmediately. This proves to be quite usetul to the user sometimes.

When printing is completed, lCD resets the butfer, clears the wr/F~

entry of the file, issues an Ml'R request to drop the tracks, and . returns

to its equipment manager to handle other driver requests.

Finally, when an operator notices that a line printer bas had

some acti~ty, he walks over to check. Our test job is detached from the

printer and put in Box 175, waiting to be picked up by the progr8llllller.

- 52 -

VII. Storage Management

In Section IV we mentioned the fact that it m8¥ be necessary to

move several field lengths in memory at times in order to obtain a

larger block of contiguous storage for a control point. This is usually

called the relocation process. The relocation of jobs can be done very

easily in this computing system since each CPU has a hardware relocation

register. A central program always starts at location zero in its

field length. All address references are defined relative to location

zero. The reference address (RA in Figure 3) is the real hardware

address of the job's location zero when it is running. This value is

kept in the relocation register of a CPU and added to each address

reference during execution to obtain the real address. After the

program is moved only the reference address needs to be changed in order

to resume execution.

The rightmost byte of word 1 (MFLL) in the central memory contains

the total field length of the machine. The size of CMR is stored in

the rightmost byte of word 208 (STSW). Af'ter dead start, !fiR takes

the difference of these figures and stores the available field length

in the rightmost byte of word 568 (CMCL). MTR also maintains a table

of unassigned field lengths in PPO, ordered by control point numbers.

Each entry in the table is the amount of storage in the gap between the

last word of the field length of this control point and the first word

of the field length of the next control point. Field lengths are

measured in uni t,s of 1008 central memory words.

- 53 -

MTR handles all requests for storage. A request will be ignored

if the available field length (location 568 of the central memory) is

not large enough to satisfy the request. Suppose control point 6 in

Figure 14 requires storage. If the gap between the field lengths of

control points 6 and 7 is large enough, MTR as signs the requested

increment to control point 6 and updates the records. If the gap is

not enough to satisfy the request, Ml'R will try to move the field lengths

of the lower control points (control points 3, 2, and 1, ~ .. in this order)

toward the low core until the needed room is obtained. If this is still

not enough, it will try to move the field lengths of the higher control

points (control point 7 in this case) toward the high core.

After it has deter.mined which control point(s) to move, MTR moves

the field 1ength(s) one at a time. If the control point to be moved

has active PPU's assigned, the storage move isdel$Yed and NTR returns

to its main loop. The system programmer is therefore required to put

"pause for relocation" functions in PP programs which might be assigned

to control points for a length of time. This will prevent the unnecessary

inhibition of storage move processes. Next MTR will interrupt t~e central

program if it is being executed. Word 208 of the control point area is

the status word of the central program (see Figure 7). The leftmost byte

is the processor status byte which is shawn in Figure 16. As mentioned

in Section 5, the central program is waiting for a CPU if the W bit is

set. It is in recall status if the X bit is set. In either case the

program is not being executed. MTR clears the W and X bits and saves

the current status. If the program is currently being executed, MTR

- 54 -

finds the waiting job with the highest priority and issues exchange

jump instructions to ft'itch the CPU to the waiting job. The original

job is put in W status and handled the same way as . described above. In

other words, the central program is _de ineligible to be processed by

a CPU until the move process is completed. At that time the original

status will be restored.

Since moving a block of information in the central memor,y requires

a lot of central memory references, it is performed by a central program.

Like the track reservation function described in Section V, the program

is not executed in the monitor mode. It is considered to be assigned to

the pseudo control point n + 1 and therefore interruptable. MTR puts the

requested function code in its own output register, which is location 518

of the central memory. It sets up the exchange parameters in the system

exchange area and begins the central prograa. The process is repeated

until the requested s~orage is obtained.

- 55 -

	001
	002
	01
	02
	03.0
	03.1
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29.0
	29.1
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	52
	53
	54
	55

