MACE SYSTEM LOADER

(1/73) LO LOADER - |

CONTENTS

General Description

Loader-Related Control Cards
l. The LOAD card 5
The EXECUTE card

The LOADX card

2.

3.

L., The '""filenm.' or Program Call card 7
5. The MAP card

6. The NOGO card B 10
/

8

g.

0

The LINK card 10
" The CLEAR card

The SETCORE card
LIBGEN card

10, The

Special Information

l. Transfer Addresses
2.
3. Overlays

File Usage

4, Reserved Names 23
a. Common block SYSTEM
b. Entry point LDRUSX =

c. External symbol LOAMNER

Loader Error Messages - 23

(1 /73) LOADER - 2

MACE SYSTEM LOADER

General Description

The system loader is a central processor program which transforms programs
from a relocatable binary format* into an absolute form suitable for execution
by the central processing unit., During this process, subroutines which are
called, but which are not present on the file being loaded, can be included
from library files by the loader for use by the cailiing program or subroutine,
The loader assigns each program or subroutine to some specific location 1n the
user's field length., Then it modifies machine instructions which refer to
either the routine or-to variables declared in the routine so that the machine
instructions contain the correct memory addresses. The loader may also generate
a load map which can tell the user what memory locations have been assigned to

each routine,

This loader has been designed to automatically perform certain functions
previously required of the user himself. For example, 1f load errors are de-
tected and the user has not requested a load map, then the loader causes a
partial load map toc be generated. Or if the user's field length 1s long enough
to load the program but not long enough to generate a map, then the loader will
dump the program onto disk in an absolute form, attempt to complete the requested
map, and later bring the program back into memory for execution 1f execution has
been requested. In this case, the program is dumped to a file named LGOB, unless
the LINK control card has been used with the ''B'' parameter specified, in which
case the specified file will be used, The user should be aware of this possibil-
ity because any previous contents of the dump file will be destroyed if and when
such an overflow condition occurs, If the ''B'" parameter is specified then the
file is not destroyed (refer to the section on File Usage) Another loader fea-
ture causes the user's field length to be adjusted before execution of a program
unless either a NOREDUCE card is in effect or unless an absolute overlay form
has just been generated. If the program requires more memory than required for
loading, then a request for additional space will be made to the system; or 1if
all of the currently available space is not required, then the excess will be re-
turned to the system., The user should be aware of this feature, since 1t may be
necessary or desirable for some jobs to readjust their field length again after

the loaded program has completed execution,

Additional loader facilities allow a user to:

1) Generate a user library so that certain routines may be
loaded from a file without lcading the entire file. '

(See LIBGEN card information.,)

Load and execute a program directly from a library.
Parameters to control execution may be passed to the
ioaded program, (See LINK card and EXECUTE card

information.)

2)

% . e s . . .
"For a precise definition of this reiocatable binary format, the interested

reader is referred to Appendix F of the Compass Reference Manual,

(11/71) LOADER - 3

Cause a load map to be written on a file other than OUTPUT.
(See LINK card information.)

L) Exercise control over the contents of the load map (see MAP
card information).

Obtain the absolute binary form of a relocatable program.
(See LINK card information.)

6)

load the relocatable binary form of large overlay programs
(See Special Information-Overlays.)

There is additional general information about the loader available in a
later section called Special Information. That section presumes some familiar-
ity with control card usage and, in general, is valuable for applications which
are slightly more sophisticated than, for example, a job consisting of the com
pilation and execution of a program on cards which has its data also on cards,
Thus the more knowledgeable reader may wish to scan rapidly or skip completely
the following discussion of control cards related to loader usage.

Lloader-Related Control Cards

The first word of each control card is a key word which gives the control
card its name. This first word is often followed by some set of parameter words
which are separated from the key word and from each other by ''delimiter' charac-
ters. The most common are (, and =. The first two may be used interclangeably,
but the third delimiter has a special meaning in that generally it associates two
parameters with each other as well as serving as a delimiter between the two words.:

RUN(S) is exactly equivalent to
RUN,S. or to

RUN(S. or to

RUN, S)

Examples:

or RUN(S,B=BINARY) is exactly the same a
RUN,S,B=BINARY. or
RUN S(B :BINARY) and so on.

However RUN,S,B,BINARY. is generally not
equivalent to the preceding control cards,

In the discussion below, the comma will be used as a dellmqter and the period
as a terminator. Thus the reader should realize that sometimes an = must be sub-
stituted for certain commas used in the general forms below. Squire brackets [and],

will be used to enclose optional parameters or information, which may or may not

(11/7)

be specified according to the will of the user. A vertical line will be
usesd to separate mutually exclusive alternatives, Nested square brackets

may be used to denote optional parts of a larger optional entry. For example,
[, [A)[B][C]] means that the following forms may be coded: ,A ,B ,C ,LAB
JAC ,BC ,ABC or nothing at all (because of the outermost set of brackets).
Similarly, [,A| ,B | ,C] means that any of the forms ,A ,B ,C or nothing
at all could be coded. Capital letters will indicate that the same sequence of
letters should be used on actual control cards, whereas lower case letters mixed
with numerals denote information (usually a file name) which is to be supplied
by the user. For example, RUN[,S][,B=filel]. indicates that '"filel' is a
character string to be supplied by the user if the option is used. The word RUN
and the character . are not optional and must be coded as shown. If the first
option is used, then it must be written exactly as '',S'* and so on,

The control cards related to loader usage will be discussed in their assumed
order of relevance to an ''average'' user. The index at the beginning of this doc-
ument lists the control cards which are discussed and gives the page number of

each discussion.

1. The LOAD card.
LOAD,filel| ,libraryl][,library2 { ,libraryn 1.

This card directs the loader to load all of the relocatable binary decks
from file '"filel" until either an end-of=file (6/7/9 card), end-of-information
(6/7/8/9 card), or two successive end-of-records (7/8/9 cards) are encountered.

Since each relocatable binary object deck ends with the end-of-record card
provided when the deck'wasipunched, this means ‘that when loading object decks

from the INPUT file, the last deck must be followed by either an extra end-of-
record card, or by an end-of=-file or an end-of-information card,

If any subroutines are called which are not present on '"filel', then the
loader will search for them = first in the ''libraryl! library file, then in the

""l1ibrary2'" library file, and so on unti] all necessary subroutines have been
located and loaded, or until no more libraries remain to be searched. Last of
all, and only if necessary, one or more system libraries (not specified by the
user) will be searched.

All of the files are rewound before use, except that the file INPUT
is not rewound. See the Special Information section for more information about
file positioning, '

Note that '""filel' may not contain an absolute program or the absolute form
of an overlay program. Such programs must be loaded with the ''filenm.'' control
card,

A LOAD c§rd initiates what is known as a load sequence. That is, sev-
eral consecutive control cards act together to complete a loading operation
and cause execution of the loaded program. Any number of LOAD cards may appear

(1/73) LOADER - 5

consecutively, This is necessary if more than one file of subroutines is to be
loaded. A load sequence is terminated by a ''filenm.' control card, by a NOGO

control card, by an EXECUTE control card, or by a LOADX control card., All
the cards in the sequence, except the last, must be LOAD control cards.

Examples: LCAD, INPUT. LOAD, INPUT., LOAD, INPUT.

LOAD, LGO. or LGO. or LOADX, LGO.
EXECUTE. |

These commands will load relocatable binary decks from the file INPUT, next load
decks from the file LGO, and finally execute the resulting program, Subroutines
will be fetched from the systems library as necessary, If a load map is to be

generated for a nonoverlay program, then it will not be printed until the last
card of the load seguence has been encountered.

If the file to be loaded (‘filel") contains the relocatable decks of an
overlay program, then any Jload sequence is limited to two cards in length, The
first card would be a LOAD card., The next card could be a NOGO or an EXECUTE
card, If the next card is neither of these, then (for overlays only) the loader
acts as if a NOGO card followed the LOAD card.

For compiete 1nformation about which point in the program would initially
receive controi from the system when the above control cards are used, the
reader 1s referred to Special Information - Transfer Addresses. It 1is enough to
Mention here that if only one main program (in the Fortran sense) is present on
the INPUT and LGO files above, then that main program would receive control,
exactly as one would expect.

2. The EXECUTE card.

or EXECUTE,{ entrynm 1[,parml 1 ,parm2] ,parmn].
EXECUTE., '

This control card directs the loader to execute a program which has been
loaded by the immediately preceding control card or cards., 1If specified,
entrynm'' wilil Torce control to be initially passed to the program entry point
named Y'entrynm'!, except for absoluce or overlay programs. Parameters ‘'‘parml"
through '"'‘parmn'' represent information to be passed to the loaded program in
order to control its execution,

If "entrynm'' 1s specified after LOADing or LINKing an overlay program, then
it will be ignored, 1In this case control will be given to the normal transfer
address in the (0,0) overlay. The "normal transfer address'' is defined in
Special Information - Transfer Addresses. '

Thus in some cases,_fof example witlh overlays or if the normal transfer
address 1s correct, one may omit the “entrynm''! option. Observe that if any other

(1/75) LOADER - 6

parameters are specified then the absence of '"entrynm'' must be indicated by
including delimiters as though it were present.

Example: EXECUTE,,WRITE=YES.

3. The LOADX card
LOADX,filel[,libraryl][,library2][,libraryn].

This carddirects the loader to load all of the relocatable binary
decks from file '""filel'" until either an end-of-file (6/7/9 card), end-of-

information (6/7/8/9 card), or two successive end-of-records (7/8/9 cards)
- @re encountered.

| f- any subroutines are called which are not present onf '"filel'',
then the loader will search for them - first in the ''libraryl" library
file, then in the '""library2'" library file, and so on until all necessary
subroutines have been located and loaded, or until no more libraries
remain to be searched. Last of all, and only if necessary, one or more
system libraries (not specified by the user) will be searched.

After the library searching is completed, the program is placed In
execution in exactly the same manner as if the load sequence had been

LOAD,filel ,libraryl }[,library2][,libraryn].
EXECUTE.

(1/73) LOADER - 6.1

4, The ‘'filenm.' card.

filenm[,parmi][,parm2 1[,parmn 1.

The '""filerm,' control card, which is sometimes also referred to as a
"‘orogram call'’ control card, directs the system to load a specific system pro-
gram or to load an entire file and then begin execution. Any parameters, if
specified, are {oc be passed to the program for controlling its execution,

Iin attempting to carry out this control card request, the operating system
performs certain actions in an important and precisely defined order. First the
system tests for certain common control cards* which may require special actions
to be taxken by the system. Next, the system searches among the local:
files, the fiies associated with the running of this job. If a file with name
'"filenm' is found, then the actions of the system are described in the next par-
agraph. Otherwise the system searches its directory of central processor (CP)-
programs fcr one named '""filenm!'. If such a program is found, then the actions
described in ine csecond paragraph below are carried out. QOtherwise the system
considers the length of the character string '"filenm'!, If the name is three
characters long, the directory of peripheral processor (PP) programs is searched
for one named ‘'filenm''. If such a program is found, then it is assigned to a
peripheral processor for execution, If '"filenm'" is not three characters long,
or if such a PP program 1s not found, then the user is so informed and the job
1s termlnated. The next two paragraphs describe in some detail the actions and
consequences in the first two cases. After that is a brief discussion of the
significance of this search procedure to a user.

If a local Tile named '"filenm'' is found, then the contents of that file are
Joaded and execution is started. This is to say that if 'filenm'' contains re-
iocatable programs, then the effect of the control card is identical to the two
control cards: 'LOAD,FILENM." "EXECUTE.'" Perhaps the most common example of
this case is the control card ""LGO.'' where LGO is the default name for a file
containing the binary output of some compiler. Note that for this control card,
uniike the LOAD card, the local file need not contain relocatable binary informa-
tion, Therefore the ''filenm,'' control card, and not the LOAD card, must be used
to read in and execute the absolut=s binary form of a program or overlay program.
The reason behind this last statement is that the loader does not process absolute
programs. Ratner, the system control card processor looks at the beginning of any
local file used in a "filenm." control card. If the file contains an absolute
program then the file is read into memory and executed, otherwlse the system
loader is called to process the file.

- The second case allows most of the system control cards to be processed as
special cases of the 'filenm.'' control card. If the system finds a program named

%
These control cards are:

CMDUMP, EX PROCEED, and *.

(1/73) LOADER - 7

""filenm'' 1In tne centrai processor program library, then that srogram is copied
into memory and execution started. The program is passed the parameters from
the control card. A common example of this case is the control card RUN,S. If
there is no file named RUN associated with the job, the system checks the central
processoir program library next, and executes with parameter ''S'' the Fortran
compiler named RUN which it finds there. From this, with the additional informa-
tion that the ""B='' parameter tells the Compass assembler which file should re-
ceive the obiect code cutput, one can understand why the second control card
below would invoke the Compass assembler and the third card would not invoke the

assembler, but rather cause the program resulting from the assembly to be executed.

JOBCARD
COMPASS , B=COMPASS .
COMPASS , B=COMPASS.

o

@
&

Presumably, on the third card the ''B='' parameter has some significance to the
user's progiram which was assembled under control of the second card.

S0 what does ail thls mean to the user? First, if one intends to use some
system function, then there had better not be a local file created earlier with
that name, Secondiy, those strange results that occurred when you misspelled

the name of the file to be loaded could be the result of trying to execute some
systems program.

Although not strictly related to the foregoing, this seems |like a good
place to mention that certain file names are ''reserved.'' The possible difficul-
ties from using a file named LGOB were mentioned earlier. Currently the system
subroutine library is contained in a file named SYSLIB., If you create a file by
this name, then the loader will use your file as the system library. Since your
file probably does not contain the necessary subroutines in library format, the
results are unlikely to be of much use to anyone. Some possibility exists that
other iibrary files will be added in the future, but for now SYSLIB is the name

to aveid.

5. The MAP card.

MAP[,parml 7] ,parm2 1{ {parmn].

The MAP card 1s used to control the output listing generated by the loader.
The listing is generated at the end of the loading process for nonoverlay pro-
grams, or, 1f relocatable overlays are being loaded, ther part of the map is
generated at the end of each overlay. Once set by a MAP card, the listing options
remain in effect each time the loader is called to process relocatable decks until:

1) the entire job terminates, or _
2) the options are reset by another MAP card.

In addition, the options currently in effect may be temporarily overridden

(11/71) LOADER - 8

(only for the duration of a single load) by use of the L0 parameter of the
LINK control card.

MAP,ON, or MAP. indicates that a full load map is to be produced, All
of the information indicated under options S, B, E, X, C, and R below will be

produced, MAP,ON, is identical to MAP,S,B,E,X,C,R.

MAP,PART., is identical to MAP,S,B. and requests that a partial load map
be generated., A partial map contains enough information for most debugging

purposes but is much shorter than a full load map.

MAP ,OFF. is the option furnished automatically by the system at the be-
ginning of each job, This option indicates that no load map is desired, Note,
however, that it ioad errors are discovered and this option 15 in effect then,
for the rest of that load, the loader wiil act as if MAP,PART. had been speci-
fied, 1If cveriays are being loaded, then the map will start with that overlay
containing the first load error and continue for the remaining overlays.,

MAP ,SUP, will suppress mapping under all conditions. This is useful when
nonfatal errors are known to be present, and a partial map is not desired. Note
that MAP,0OFF, wiil also prevent map generation, but in that case a partial map
is generated if ioad errors are detected.

MAP,S, will cause a map which consists solely of load time storage require-
ments, execution time storage requirements, initial transfer address, and error
messages if present. This option will not be upgraded to a partial map if errors
are detected, For overlay loads, the name of the overlay file and the path length
are also printed. If an absolute program is written out, the file name is printed,.

MAP,B. is the same as a partial map and causes both the "S'" listing and a
list of all programs and common blocks to be generated.

MAP . E., causes both the ''S" listing and a list of programs and their entry
points. Common biocks are not listed,

MAP . X. is the same as the previous option with the addition of cross refer-
ence information for each of the entry points.

MAP,C., causes generation of both the ''S'" listing and a cross reference list-
ing for ali common block usage, Common blocks are listed and beside each: is
listed the name of all routines which contain instructions referring to that
common biock, WNote that this is not necessarily the same as all programs in which
the eommon biock is declared, |

MAP,R. causes relative rather than absolute addresses to be generated when
listing entry point cross references and/or unsatisfied external references.

The single character options may be specified on the MAP card in any combin-
ation (separated by delimiters of course). The effects of each are additive,.

LOADER - 9

6. The NOGO card.

NOGO,

This control card is useful for ending a load sequence without allowing
the loaded program to execute. Since a load map is only generated at the end
of the loading process for nonoverilay loads, NOGO. may be necessary if only a
load map is desired. When NOGO. is specified it has all the effects of an
EXECUTE. card except that the program is not executed., This 1s to say that
the loader will attempt to satisfy all external references, will complete the
instruction address modification, and will produce any selected load maps,
just as though the program were going to be executed. However, the program 1s
not properly positioned within the field length for execution,

.7. The LINK card.

LINK[,F=ifile][,E=prognm]
[,B | ,B=afile][,L=mapfile]
[,L0 | ,L0=options][,P=libfile]
[,x | ,xp 1.

At present, the primary purpose of the LINK card is to allow a relocat-
able program to be loaded directly from a user library and executed, In ad-
dition to this, certain other problems which arise only occasionally may be
handled nicely by making use of optional LINK features, LINK is controlled by
the specification of the seven options shown above in the general format:

Option Description and Comments

F Hifile'" is the name of a file containing the relocatable program to
be loaded. If this option is omitted then F=LGO0 is assumed, “ifile"
may be a file containing relocatable subroutines from some compiler,
or it may be a library file'containing a program to be loaded using
the E option described below. Note that the file ""ifile!" may not
contain an absolute program or the absolute form of an overlay pro-

gram. Such programs must be brought into memory by the ''filenm,'
control card,

E ‘'prognm'' is the name of a main program (in the Fortran sense) which
is to be loaded from file 'ifile'', If this option is specified,
then the file whose name is defined by the F option must be in the
library format generated by the LIBGEN control card,.

Parameters may be passed to the program ''prognm' by not specifying
X or XP (described below) on the LINK card, and then placing an
EXECUTE card containing the parameters immediately after the LINK
card, If the E option to LINK is not specified, then the file de-
clared by the F option must not be in library format. Rather, the
file should contain one or more relocatable object decks, all of
which dre to be loaded.

(11/71) LOADER - 10

Lo

This option specifies whether an absolute program is to be pro-
vided as an output of the loading process, and if so then the
name of the file to be used., If only the character "B' 1s speci-
fied, then B=LGOB is assumed, If ''B=afile'' is specified, then
1afile! is the file to receive the absolute code, 1If this option
is omitted, then no absolute program is written unless memory over-
f low occurs during the map generation phase, in which case an ab-
solute program is written on file LGOB for later use by the loader
itself, If the B option is specified, then the selected file is

not rewound before writing the absolute program.

Note that if the relocatable form of an overlay program is being
loaded, then an absolute form will be written regardiess of whether
this § option is used, However, if '"B'' or ''B=afile’ is specified,
then the file name LGOB or ''‘afile'" respectively will override all
file names specified as the first argument of OVERLAY statements. The
user should consider that if he overrides the file name in the
OVERLAY statement, then a problem can occur if, in Fortran for ex-
ample, the file name in the CALL OVERLAY(...) statement is no longer
correct.

This cption allows the load map to be written on any file which the
user desires, rather than only on the file OUTPUT, If this option
is omitted, then L=0UTPUT is assumed. Otherwise any map, if gener-
ated, wili be written on file "mapfile'" File 'mapfile' is not rewound
either before or after receiving the map. A map can be suppressed .
by -using the MAP card and omitting this option as described below.

This option allows a user to specify load map requirements which
wilt temporarily override, for the duration of this load, any pre-
vious MAP cards. If only YL8&" is specified, then LO=B is assumed.
'loptions!'is a character string up to six characters long and consist-
ing of any combination of the single character MAP options described
earlier for the MAP card. T .us LO=BXR on the LINK card is in one
sense equivalent to inserting the cemmand MAP,B,X,R. before the LINK
command. The LO option may temporarily override any of the MAP
options, including SUP for map suppression. After performing LINK
and any EXECUTE command which might follow LINK, then the map options
in effect prior to the LINK are effective again. If the LO option is
omitted then LINK uses the MAP options which are currently se;%; There-
fore map output from LINK can be suppressed by placing MAP,SUP{ pre~-
ceding the LINK card and then omitting the L& option,]

This option sgecifies a file named ''l1ibfile' which is in library format
(created by LIBGEN control card) and which is to be searched for any
missing subroutines b fore attempting to load such subroutines from
‘the system library, 'If the P option is omitted, then the system lib-
rary is still searched, If the P option and the E option are specified
together, then'the library specified by P is accessed after loading the

(11/71) LOADER - 11

program specified by E, but before loading any referenced subrou-
tines from the library file specified by the F option.

Coding an X indicates that the loaded program resulting from LINK

is to be executed without parameters., Coding XP means that the
program is to be ''executed in place'' without parameters. The phrase
Mexecuted in place! means that the program is not moved to 1ts normal
location within the field length, instead it and the loader remain in
the field length together while the program executes. Executing in
place may fractionally decrease total job time, but in most cases the
gain is not significant, Programs which are very large (including
named common areas), but which execute in a very short time (one or
two seconds or less) are most suitable for execution in place.

If LINK is used, and if parameters must be passed to the loaded pro-
gram, and if the program is to be executed immediately after loading,
then X or XP should not be used and an EXECUTE card containing the
parameters should be placed immediately behind the LINK command., If

the relocatable form of an overlay program has just been loaded, then
the entry name parameter of the EXECUTE card will be ignored, and the
normal entry point will be used as described under Special Information -

Transfer Addresses,

8 The CLEAR card,

CLEAR, parm.

This card controls the value which the loader is to use in presenting unini-
tialized locations within programs and named common blocks. Ordinarily the loader
presets all words to positive zero, then as the program and data constants are
loaded they overwrite the parts of memory which are to contain machine instruc-
tions. or data. All other words remain as they were preset by the loader. The
codes given below allow memory to be preset to values other than plus zero. Like
the MAP options, the CLEAR option remains set until changed by a later CLEAR

command.

Absolute overlay programs are preset according to the CLEAR option in effect

when the relocatable decks were converted to absolute form. Naturally, when the
absolute version is loaded it is not affected by the current setting of the CLEAR

option,

In the model statement above, '‘parm'' is to be replaced by one of the follow-
ing letter codes to obtain the corresponding memory preset value,

Value of ‘'‘parm! Memory Preset Value
A Plus zero(000000000000000000008)
B Negative zero(777777777777777777778)
C Plus infinity(377777777777777777778)
D Plus indefinite(177777777777777777778)

LOADER - 12

Note that blank common can not be initialized by means of data state-
ments and can not be preset using the CLEAR option. One method of setting

blank common to zero for nonoverlay programs (or for overlays if the blank
common is located in the (0,0) overlay) is discussed with the SETCORE. con-

trol card,

9. The SETCORE card.

SETCORE[,parm].

This control card immediately sets the current field length of a job to
the value indicated by the '''parm'' code., The same ''‘parm’' codes as for the
CLEAR card are used., The card SETCORE. is interpreted as SETCORE,A.

The following control cards demonstrate how this control card may be used

to initialize biank common to plus zero for a nonoverlay program. The relocat-
We

words of memory

able object decks of the program are presumed to be on file LGO originally.

8

aiso assume that the program requires slightly less than 33000

for execution, Note that the field length is set to the proper size before
clearing it to zero with SETCORE.

LINK,F=LGO,B=LGOB.
RFL,33000.
SETCORE.

LGOB.

The LINK card generates an absolute form of the program on filtle LGOB. The
correct field length is obtained by RFL and set to zero by SETCORE. Then the
absolute program is read into memory and executed, Use this method only for
previously written programs which assume blank common to be zero. It is not a
good practice to code new programs under this assumption since a more machine
1ndependent and probably more efficient program would result from using a Do-
loop to preset blark common. A similar setup may be used to initialize memory
before loading the (0,0) overlay of .an overlay program by omitting the B option
to LINK and using the overlay file name instead of LGOB. If blank common is in
the (0,0) overlay, then it can ..e set to plus zero in this way. If blank common
is not in the (0,0) overlay, then whether it is initialized depends upon the
length of particular overlays and upon the order in which overlays are called

into memory.

10. The LIBGEN card.

LIBGEN[,F=ifile][,P=libfile].
[,N=name].

LIBGEN converts a file containing relocatable subroutines into a file con-
taining those subroutines in library format with a cross-referenced directory of

(11/71) LOADER - 13

entry point names. This directory allows efficient retrieval of subroutines
scattered throughout the library,.

Mifile''* 1is the name of the file for input to LIBGEN. If the F option is
omitted then F=LGO is assumed, The file is read until either a zero length
record, end-of-file, or end-of-information is encountered., The file is always
rewound both before and after reading. Therefore F=INPUT may not be specified,
instead the data on the INPUT file must be copied to a separate file before

invoking LIBGEN.

in the second option ''tibfile' is the name of the library file to be output

by LIBGEN. If this option is omitted, then P=ULIB is assumed., Any file ex-
isting for this job with the selected name is destroyed when LIBGEN produces
output., This ocutput file is not rewound after creation, but is rewound by the
loader before searching the library.

The third option allows the library on the library file to be named,
Hpname!! 1is not the name of a file, rather it is part of the data written on
the file and is the name of the library. This option usually need not be spec-
ified, If it is not, then the file name from the P option is used as the
library name.

Special Information

1. Transfer Addresses

A ''"transfer address' is a program location to which control may be given
in order to begin the execution of a set of routines, These routines will
usually consist of one 'main program,'' which contains a single transfer address,

together with any subroutines which are called by the main program or by any
other subroutine,

Each transfer address is defined in one of two ways: elther by an XFER
table which is part of the relocatable binary code or, for nonoverlay programs,
by the ''entrynm'' parameter of the EXECUTE control card. In either case the
definition consists of a character string up to seven characters long which must
be the name of an entry symbol defined somewhere in the load., In Fortran, the

name in the XFER table is the program name from the PROGRAM statement. In Compass,

the XFER table contains the name specifisd in the operand field of the END state-
ment,

- The ''mormal transfer address'' is obtained by retaining the two last encountered
transfer address definitions from XFER tables. Then, near the end of the loading
process, if the name given by the last encountered XFER table has been defined as
an entry point, the location of that entry point is taken as the transfer address.
Otherwise, 1f the last XFER table name has not been defined as an entry point, then
the loader attempts to use the second to last XFER table name in a similar test.

If neither name has been defined as an entry point, then a FATAL load error is
noted.

(11/71) LOADER - 14

In those cases where the "entrynm'' parameter of EXECUTE is accepted and
has been specified, then the above test is made using the name ''entrynm'' before
considering the names from XFER tables. The location of the first defined entry
point which corresponds to one of these names is taken as the transfer address.

It should be noted that control is passed to a transfer address by the
equivalent of an ordinary jump instruction, and not by a return jump instruction,
Thus, for example, it is not possible to successfully use an entry point into a
Fortran subroutine as a transfer address. For the same reason, if a Compass
subroutine is written, it should not have an operand specified on the END state-

ment,

2., File Usage

The next few paragraphs contain additional details about how the loader
uses various files. In general, information already discussed under the appro-

priate control cards is omitted here,

Each file which is to be loaded (i.e. the first file on a LOAD card, a
local file '""filenm" from the "filenm.' control card, or a nonlibrary file spec-
ified by the F parameter on the LINK card) is rewound by the loader before use,
except the file INPUT. The position of such files after use by the
loader is at the end of the relocatable binary records. A local file '"filenm'
from a "filenm." control card is treated in all respects like any other load

file.

Library files are handled in much the same way as load files. Every library
file is rewound before use., However, they are not rewound after use. An inter-
esting feature of this loader is that it will obtain from the operating system
any system common file whose name has been specified as a library and whose name
is not the same as a file already associated with the job. Such files are re-

turned to the system after use,

Example:
JOBCARD JOBCARD
COMMON, FTNOBJ. FTN, L.
FTN, L. LOAD, LGO,FTNOBJ.
LOAD,LGO,FTNOBJ, or EXECUTE.
EXECUTE. 7/8/9
7/8/9

Note that because of this feature it is not necessary to use a COMMON card
for any file whose only use 15 as a library file. However, the COMMON card may
still be used, in which case the loader does not return the file to the system

.after accessing the library.

(11/71). . LOADER = 15

wWhen the default file LGOB is to receive the absolute form of a program
because of memory overflow, then LGOB is first rewound. The file is not re-
positioned after receiving the program. If the B option has been specified
on a LINK card, then an absolute program is created regardless of whether or
not overflow occurs, However, in this case the file specified by the B option
is not rewound before receiving the absolute program. If execution is requested
and the B option is specified and overflow during mapping occurs, then the B
file is backspaced one record after dumping the nonoverlay absolute program,
Thus the file will be positioned to read the absolute program for execution at
the end of the loading process. In reading the absolute program, the file will
be repositioned to just after the program. If the program is not actually
executed because of fatal errors, then the file would remain positioned just

before the absolute program,

Files which are to receive the absolute form of overlay programs are
handied like the second case above, Each overlay is written starting at the
current position of the specified file which is not repositioned after the

write operation.

3¢ U'Ver'iays

The use of coverlays 1s generaiiyfdescribed in the CDC Fortran Reference

Manual. Most of the general information from that publicati?h also applies to
overiays in the Purdue Mace system, except that SEGMENT loading is not avail-
able., More specific information about the use of overlays under Purdue Mace
1s available in PUCC document LO OVERLAY. The purpose of this section is to
describe certain details of overlay usage which are loader-dependent and not
documented elsewhere,

The terminology will.be that of LO OVERLAY in which the (0,0) overlay is+
the ''main'' overlay and also the '‘highest'' overlay in the '‘upward' direction,
A ''‘primary' overlay is numbered (X,0), '8 < X< 778, and is normally called

into memory by the main (0,0) overlay. A ''secondary" overlay is numbered (X,Y),
]8 < X,Y g 77g, and is normally called into memory from the associated (X,0)

primary overlay.

It is necessary to distinguish between a ''relocatabie' overlay and an
‘labsolute'' overlay. The output of system lanquage processors consists of a
relocatable binary record for each program cr subroutine. The OVERLAY state-
ment, described in LO OVERLAY, is physically present between these records.
and serves to separate those records which belong to separate overlays and
also to define the overlay number associated with the immediately following
records, The system loader takes these relocatable‘'records, adds any neces-
sary subroutines trom libraries, resolves all cross references, and produces
an absolute overlay along with information about where the overlay should be
loaded in the job's field length, and where the transfer address of the overlay
will be located. Each overlay is written on the file named by the first para-
meter of the OVERLAY statement, unless this is overridden by the B option of
the LINK controi card.

~ LOADER - 16

In order to load the resulting absolute overlay at execution time, the
name of the file and the overlay number are specified. The file is searched

from its current position to the end, and then from the beginning of the file
to the former position until the specified overlay is located. When found,

the absolute overlay is read into the user's field length at its self-specified
address.

Note that essentially two processes are involved: 1) converting a re-
locatable overlay program into an absolute overlay program, 2) bringing the
absolute overlays from external storage back into memory for execution, These
two steps may be carried out either together or separately. For example, it

is possible to carry out step one and then store the absolute results for later
repeated use, thus eliminating the expense of performing step one for each use

of the program., (This can also be done for nonoverlay programs by using the B
option of LINK to create an absolute program.) The programs which make up the
operating system are stored in absolute form for the sake of execution efficiency.
However, user programs are not normally stored within the system in an absolute
form., The reason for this is that execution efficiency considerations are most
of ten overshadowed by the increased storage space required for the absolute form,
The increased storage requirements occur because an absolute program contains its
own unique physical copy of each library subroutine and labelled common block
which it uses. In the relocatable form, only the name of each library subroutine
and the initialized variables of each labelled common block need be stored on
auxiliary storage, However, cross reference and linkage information must also
be present with the relocatable form, Blank common is not physically present on
auxiliary storage either for an absolute program or for a relocatable program.
If an individual user wishes to determine which storage form is most efficient

for his particular program, the system function CATALOG can be used to determine
the length of each file,

The following examples show various control card sequences to perform the
steps described above in three ways: step one only, step two only, and steps
one and two together., It is assumed that the relocatable binary is on file BIN

and that the (0,0) overlay is written on FILEl because of a statement OVERLAY
(FILE!1,0,0).

Exampie: (Conversion from Relocatable to Absolute Only)

LOAD, BIN. LINK,F=BIN.
NOGO.

i-a
*

Example: (Execute Absolute Program Only)

FILEL,

Example: (Conversion and Immediate Execution)

LOAD,BIN. LINK,F=BIN,X. BIN.
EXECUTE. :

: - LOADER - 17

As described earlier with the LOAD card, all of the relocatable overlays
which are part of a given program must be present on the same file for loading.
In addition, the loader requires that the relocatable overlays be present in a
certain order: 1) The first overlay on the file must be the main or (0,0) over-
lay. 2) Each primary overlay must immediately precede its associated secondary
overlays, i.e. primary overlay (1,0) must immediately precede the secondary
overlays (1,1), (1,2), and so on, 3) The order of secondary overlays after their
primary overlay or of primary overlays after the main overlay makes no difference
unless the "CXXXXXX'' option of the OVERLAY statement is specified. (That option
will be discussed in some detail below in connection with the use of blank common

in overlays.)

It was mentioned eariier that the loader would not adjust the field lengths
of - overlay programs just before execution, The user must perform this task him-
selt If Tield length adjustment is necessary. The foilowing control cards show
one way of accomplishing this for the overlay program used in the examples above,
assuming that 1t requires ZOBK for execution:

LOAD, BIN.
NOGO.
RFL, 20000,

FILE]L.

The CDC Fortran manual and some other manuals imply that Fortran DATA state-
ments which occur in a primary or secondary overlay are able to initialize values
‘in labeled common areas which are physically located in some higher level overlay,
e.g. that a primary overlay DATA statement could initialize variables physically
located in the main overlay. For this loader the implication is totelly false.
This fact is closely related to storage requirements during the loading of relocat-
able overlays. Each absolute overlay is written to auxiliary storage before
starting to process the next relocatable overlay. The field length required for
loading relocatable overlays is related to the longest single overlay, rather
than to the longest path consisting of the main, a primary, and a secondary over-

tay. This former length can be much shorter than the latter for a well designed
overlay structure.

(11/71) LOADER - 18

Blank common may occur in any overlay and is allocated space at the end of
the overlay. In essence, the only restriction is that only one blank common
area will be allocated in any single overiay path. Overlays which are sub-
ordinate to an overlay containing blank common may refer to the common area
directly, as is stated in LO OVERLAY. For example, if blank common is declared
in the (0,0) overlay, then every overlay can refer to this common area and
no overlay can allocate a second blank common area, since the (0,0) overlay
is a member of every overlay path., For another example, let blank common not
be declared in the (0,0) overlay. Then if blank common is declared in the (1,0)
overlay, all (1,Y) overlays may reference the common area. Furthermore, any
(X,0) overlay, X >1, may cause allocation of a completely separate area which
will be known as blank common within the (X,0) and (X,Y) overlays. In addition,
if blank common is not declared in the (0,0) overlay or in the (X,0) overlay,
then any (X,Y) overlay may declare blank common for its own sole use, since
no other overlay will be able to reference that particular blank common area.
Some permissible storage layouts are shown below. The largest blocks represent
particular overlay paths in memory. Within each path, the sections of code
which can refer to the blank common area declared in that path are shaded.

Note that only one blank common area is ever defined for a given overlay path.

Example |, Blank Common in Main Overlay:

(0,0) a (0,0) a o,o) '//

TBLANK | BLANK | BLANK |

|_COMMON |
s / ; /

(1,0) - (2,0) ; ' 3,0) ﬂ

7 B

/‘ (3,Y) - /

Z

(11%71) LOADER - 19

Example 2, Distinct Blank Common Areas in Distinct Primary Overlays:

(0,0) (0,0) (0,0) | - (0,0)

w A

/
- A 60

BLANK
COMMON
Observe that two different primary overlays in general refer to

different areas of storage associated with differen®% definitions
of blank common.

COMMON |

| BLANK
COMMON

77

Example 3, Distinct Blank Common Areas according to the Needs of
Particular Overlays:

LOADER - 20

One can see that it is possible to use blank common for communication between
overlays only if the common area is physically located in a higher level over-
lay which is part of both overlay paths.

The loader places labeled common immediately before the first program or
subroutine which contains (in Fortran) a COMMON statement referring to that
common area. Blank Common is allocated at the end of the overlay.

By now, previous discussion has laid the groundwork for consideration of
the "'CXXXXXX'* option of the OVERLAY statement. The general use of this option
is described in LO OVERLAY. Here the focus is on specifics.,

Within the option, the "XXXXXX'' represent a one to six character octal
number., This number is added to the currently defined address of blank common,
and the resulting address will be the first memory location of the overlay
which used the option. The purpose is to allow changing the length of blank
common at load time.

Example: Blank common is defined in the (0,0) overlay and is used for pass<
ing data to the primary overlays. Primary overlay (1,0) requires
1000 (decimal) words of data, while overlay (2,0) requires 2000
(decimal) words of given data. By design, the amount of code in
overlay (2,0) is' 1000 (decimal) words shorter than the code in
overlay (1,0). Thus a saving in execution-time storage of 1000
words can be easily realized, Storage layouts of the overlays in
memory and the source deck in Fortran are shown below,

(0,0)

1000, | BLANK

_ COMMON
2000

(11/71} “LOADR - 21

OVERLAY (OVFILE,0,0)
PROGRAM ONE (INPUT,OUTPUT)
COMMON A(2000)

DATA OFILE/GHOVFILE/

DO 10 I=1,1000

.
&

10 A(I)= ...
CALL OVERLAY(OFILE,1,0,0)
DO 20 1I=1,2000

20 A(I)= ...
CALL OVERLAY (OFILE,2,0,0)

&
&

END
OVERLAY (OVFILE,1,0,C1750)
PROGRAM TWO

COMMON B (1000)

S
&

END
OVERLAY (OVFILE, 2 ,0,C3720)
PROGRAM THREE
COMMON € (2000)

&
W

END

This example points out several notewortHy details. Observe that the length of

blank common is spec1f1ed in dec imal for the Fortran compiler and in octal wi thin
OVERLAY statements, '

Note also that it rs.necessary Jo . e the C option for overlay (2,0) to in-
crease the size of blank comngnf*}n ZaﬂD fO (37208) even though blank common was -

r;-. ..lr.d

originally declared with YTength 2000%" That il to say, the effect of the C optlon
specified for the (1,0) overly

BY doesﬁpot cease after the (1,0) overlay has been
processed. Instead, the C op; 1_¢;n ha% set the starting location for all primary
overlays which fol Iow unles¢r that ofigin is modified by a subsequent C option as
suﬁrce for overlay (3,0) followed overlay (2,0)
*hen (3 0) would begin at the same location
. —'““aﬁﬁk ¢commor was in a primary overlay, then secondary
‘use Jhe 5 ﬁptlon to ;*:nge the effective length of blank common,
!vou 1d be a change in the™rigin for secondary overlays, and would
“the relocgtable spcondary overlays loaded until either (1) the C option

c,_ﬂl
shown abeve. For example , if]

above and did not use the C thétn

aSE%:‘(Z',;'O) . Sﬁl.l % I .
ovirlays coul ‘
Théfr_¢

LOABER - 22

was used again or (2) another relocatable primary overlay was loaded, thus
effectively wiping clean the secondary overiay origin address.

The € option is qulite powerful for arranging overlays 1n memory and,
when properly used, can allow the successful use of more than three levels
of overlays with Fortran programs in our system. However, such use 1s
definitely a case of ''tricking'' the system. And of course, there 1s no guar-
antee that the trick will remain successful under future versions of the op-
erating system and ianquage processors.

L Reserved Names

The loader recognizes or makes use of several reserved or specilal names,
These names are special because the loader does something when it recognizes
these names that it doesn't do with other names. There 1s a reserved common
block name, a reserver entry point name, and a reserved external reference
name, as follows:

Common blaock SYSTEM - the loader starts this common block at
location O in the fileld length. This provides a simply way to
reference words in low core or to reference words in the field
length by absolute address.

entry point LDRUSX= - the loader replaces all function and sub-
routine calls-to undefined entry points by a call to this entry
noint, The routine LDRUSX on the systems library is normally
loaded when unsatisfied external references exist.

External reference LOADER - the loader disables the normal field
iengihi reduction that would take place after the program is loaded,

LOADER ERROR MESSAGES

This section lists the error messages currently generated by the
Mace System Loader, Each message has one of three severity classes.
""ABORTIVE'' error messages immediately procede the termination of the
loader program, ''FATAL'' error messages are of such a nature as to
preclude the execution of the load:d program. And '"NONFATAL'' errors
indicate either errors or warnings which ‘the programmer should consider.

DUPLICATE PROGRAM ON FILE FIRST COPY LOADED.

NONFATAL. A program on the load file has been preceded by a program or
block with the same name. The second and subsequent programs are ignored.
This error message.is not issued if the duplicate program is read from a
library. However, the program is still ignored.

EMPTY LIBRARY FILE,
NONFATAL. A file specified as being a library was in fact empty.

ERROR IN LINK ARGUMENTS,

ABORTIVE, This dayfile message is issued when a format error is found ir.
the arguments of a LINK control card.

(11/71) LOADER - 23

FATAL LOAD eRRORS.

ABORTIVE, 1Issued at the end of the loading process if fatal errors described
in other error messages have been encountered. If binary output has been
requested for a non-overlay load, the binary file will not be written.
Files will be repositioned properly before termination.

FILE NAME CONFLICTY,
ABORTIVE. The same ftile name has been specified for both input to LIBGEN
and for the ocutput to the user library, The input default is LGO. The
output default is ULIB.

FL TOO SHORT FOR LCAD,
ABORTIVE. This message 1s 1ssued when non-text tables have become too

large for the joader to continue 1n the available field length, Before
generating this message the loader attempts to continue processing in

an error mode by 1ignoring all input TEXT tables. The message is issued
when even this has become impossible,

FL TOO SHORT FOR LOADER, NEEDS 5100.
~ ABORTIVE. This davyfiie message is printed if the loader is called with a

field iength less than the indicated minimum., Note that the indicated
field length does not allow for map creation or for library or overlay
generation. The MAP option requires an additional 1200B words of code,
and overlay or iibrary generation (with or without MAP) requires an
"additionai 20008 words, -

FLL TOO SHKORT FOR LIBRARY GENERATION,
ABCRTIVE. Approximately 7100B words plus room for tables are required,

FL TOO SHORT FOR HMAP.
ABORTIVE., This dayfile message is issued by non-overlay loads when either.,

a user-requested or an error-induced map can not be generated because of
insufficient fieid length, Approximately 6400B words are required in

addition to space for the object deck tables.

FLL TOO SHORT FOR OYERLAY GENERATION.
ABORTIVE. Produced when an OVERLAY directive is encountered but the

field length is too short to allow overlay generation.

FORMAT ERROR ON OVERLAY DIRECTIVE,
FATAL, Issued for three reasons:
1) arguments of an OVERLAY loader directive are 1mproperly formatted
2) no arguments were supplied on the OVER;AY card.
3} the fourth argument on the OVERLAY car”; the origin specification,
did not begin with the letter "C'.

EVEL NUMBER.
FATAL. tither the primary or the secondary level number (the second or
third argyment, resggas tlve]y) of an OVERLAY card was greater than //B
or conta§ *d an inve, ¢d chara®,"- Both numbers must be octal numbers.
Or e lemel specif i'cations mayﬁbqﬁve been of the form 0,x where x was
Fthe character 0 (zero). '

TLLEGAL

TQ:,L.EGAL LIBRARY FILE.
NL' TATAL. 4{1?& specified as a library was not written in proper library
ormat.,

e CPU Loader requires a library format which is not cumpatible
yith older user library’ “rmats.

LOADER - 24

TILLEGAL ORIGIN SPECIFIED,
FATAL. An invaiid character occurred in the origin specification part of
an OVERLAY loader directive. Such a specification must be the fourth
argument on the OVERLAY card and must consist of the letter '"C'" followed
by octal digits giving the origin in terms of the number of words from
the start of biank common,

ILLEGAL OVERLAY GENERATION,
ABORTIVE. An OVERLAY directive was encountered after programs had already

been loaded. Overlays must appear in proper order and before any other
text has been loaded.

ILLEGAL OVERLAY LOAD,
ABORTIVE., An atiempt was made to load an absolute program or the absolute
form of an overlay program. Such programs must be loaded by means of a

"filename.!' card with or without arguments.

INCOMPLETE LOAD,
ABCRTIVE. An improper control card appeared before the load had been completed

Valid commands are LOAD, EXECUTE, NOGO, or the name of a file assigned to
the job, If overiays have been crea ted then this message will not be .
issued, LOAD arnd the name of a flle‘WIII not be recognlzed as valid commands,
and the joader wiil terminate normally before the improper.control card 1is
processed, If the 1mproper command .is a . .LOAD, the loader would then be
reloaded and begin processing anew, (See discussion of the LOAD card and
also see Spﬁflai information - Overlays.)

LEVEL NUMBER MISSz%&G |
FATAL. The primary or secondary level numbers on an OVERLAY di rective- (the

second and third arguments, respectively) were either not spec lﬁléd or:
specified as nultl,

LIBGEN ARGUMENT ERROR.
ABORTIVE, A format error occurred in the arguments on.the LIBGENR gontrol card,

LIBRARY GENERATION FILE EMPTY.
ABORTIVE. The input file to the library generation process was empty.
The default name for the input file is taken as LGO,

LIBRARY NOT FOUND,)
FATAL.. A library file could not be found within the system. This may be the
cause of any UNDEFINED EXTERNAL REFERENCES messages,

LOAD FILE EMPTY,
ABORTIVE., A file which is not a library and which has been specified for
- loading was accessed and found to be empty.

MEMORY OVERFLOW,
FATAL. The available field length was not sufficient to load the program.
However, sufficient memory was available to process the decks if TEXT

tables were ignored., This has been done so that any other errors will
be detected and listed., The load map is complete,

kickk MEMORY OVERFLOW -~ MAP TERMINATED.
NONFATAL. Field length was too short to allow a complete map to be generated.

- L0~ ERROR, MUST BE IN -SBEXCR-. |
ABORTIVE, An invalid character appeared within the 10 option on the LINK
contvol card. Valid options are any combination of S, B, E, X,C, or R.

LLOADER - 25

NO FILE SPECIFIED FOR LOAD.
ABORTIVE, L0AD was cailed without arguments,
file toc be loaded must be specified.

At least the rame of the

NO LOAD FILE SPECIFIED,
ABORTIVE, The F option on the LINK control card was set to 0 (zero)., Thus
no file was specified for loading. The normal default for this option is

LGO,

NO TRANSFER ADDRESS,

FATAL. The obiect decks did not specify an address at which execution of the
orogram should begin., The last two transfer addresses are kept by the
icader, Betore execution, these are searched starting from the one most
recently encountered., The first transfer address which refers to an entry
point defined within the load 1s taken as the transfer address when execu-
tion begins, Ii none of the transfer addresses have been defined as entry
points, then tnis message is issued. (See Special Information - Transfer
addresses,) This error is commonly associated with FORTRAN jobs which have
No main program.

PROGRAM NCT FOURND,

ABORTIVE, The £ option as specified to LINK contained an entry point name
which couid not be found in the library specified by the F option,

REDZFINITION GF COMMON BLOCK . : o

NONFATAL, A labeled common block has been declared ‘to have a Iength longer
than its length when first encountered by the loader, This is not legal.
The ?ength of the common block will be that of the first declaration. Thus

some program may store into other subroutines and produce unpredictable
resuiﬁs -

TRIED TO REDEFINE ENTRY POINT .
NONFATAL., The named entry point has previously been defined for this load.

This subsequent definition will be ignored. All references will be linked
tc the, fipst defipnition,

UNIDENTIFIED LOADER INPUT— .
iABGRTEUE A tabie control word contained either an invaliid identification code
or aninvalid word count, This error is commonly associated with FORTRAN
overiay programs in which the OVERLAY directive does not begin in column 7.
The directive is then taken as a table control word and is usually invalid,

The name following the dash is that of the object program last encountered
orior to. the error,

UNDtFlHLﬂ BLOCK REFERENCE.

NONFATAL., A TEXT table 5pec1f1ed Iqadlng into a block which is either undefined
or outside of the.allowable load limits, When using overlays, an easy way
ftror ¢t s to happen Ts fofr a FORTEAN Data Statement to refer to items in
labe f®d common whlci is phys icel fy positioned in an earlier overlay. Such
referénces ~~exmot &1 md. S' -tatements should be moved into a BLOCK

DATA subro. ine "**#h].Ch Jould ¢ + included in that overlay where the
labelsd common w. 11 phys'caily .1de,

(11/71) LOADER - 26

UNDEFINED EXTERNAL REFERENCES,

NONFATAL. Certain subroutines were caliled which could not be located either
in the user library or in the system library. All such calls have been
directed to a system routine LDRUSX= and will produce an abnormal termina

tion when executed.

LOADER - 27

