ANTEL

CORPORATION

BUSINESS
ASSEMBLY
LANGUAGE

REFERENCE MANUAL

QANTEL

BUSINESS
ASSEMBLY
LANGUAGE

(Q/BAL)

REFERENCE MANUAL

QANTEL Sales Offices: 3474 Investment Blvd., Hayward, CA 94545, (415) 783-3410 - 1700 So. El Camino Real,
San Mateo, CA 94402, (415) 349-8400 - 8622 Bellanca Avenue, Los Angeles, CA 90045, (213) 641-8644 -
1 Alexander Lane, Littleton (Denver), CO 80121, (303) 770-2411 - 1000 Skokie Blvd., Wilmette (Chicago), IL
60091, (312) 256-2800 - P.O. Box 13302, Kansas City, MO 64105, (816) 842-0384 - 725 14th St., Marion, 10 52303,
(319) 377-8277 - 26525 Southfield Rd.. Southfield, MI 40875, (313) 356-6686 - 500 North Avenue. Wakefield, MA
01880, (617) 246-0936 - 1381 Marshall Avenue, St. Paul, MN 55104. (612) 646-6573 - 245 Park Avenue, New York,
NY 10017, (212) 867-5035 - 2316 Seventh Avenue South. Birmingham, AL 35233, (205) 252-0114 - 2907 Bay-to-
Bay Blvd., Tampa, FL 33609. (813) 837-2438.

QANTEL

MARCH 1, 1973

PARAGRAPH

1-1

1-4

1-6

1-8

1-12
1-14
1-16
1-19
1-21
1-23
1-26
1-28
1-32
1-34
1-36
1-38
1-40
1-42
1-45
1-47

2-1

2-3

2-5

2-6

2-8

2-11
2-14
2-16
2-21
2-23
2-25
2-30
2-33
2-35
2-37
2-40
242
243
2-45
2-47
2-50
2-54

TABLE OF CONTENTS

SECTION I — GENERAL DESCRIPTION

Introduction .
Related Reference Pubhcatlons .
Definition of Terms .
System Description .
High-Speed Memory
Control Memory .
Hexadecimal System
ASCII
System Spec1ﬁcat10ns
Assembler Description .
Pass One .
Pass One Error Detectlon .
Pass Two . .
Update Operation .
Source Program Library Flles
Magnetic Tape Source Program Files
Disc Source Program Files
Object Program Library Files
Loadable Object Programs
Library Object Files

SECTION II — PROCESSCR FUNCTICNS

General .
Data Format
Instruction Format
Single-Address Instructions .
Two-Address Instructions
Indirect Addressing .
Operation Code and Variant .
Instruction Length .
Addressing Structure
Reserved Memory
Interrupt Feature
Switch Settings
Switch One
Switch Two .
Switch Three .
Standard Instructions
Data Handling Instructions .
Move - MOV (OP CODE 6) .
Store Accumulator - STA (OP CODE 6)
Load - LD (OP CODE 5) . .
Edit - EDT (OP CODE 9, VARIANT 9) .
Unedit - UED (OP CODE 9, VARIANT A)

il

PAGE
1-1

1-3

1-6

1-7

1-8

2-1

2-1
2-1
2-2
2-2
2-3
2-3
24
2-4
24
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-8

29
2-10

PARAGRAPH PAGE

2-58 Move Numeric - MN (OP CODE 9, VARIANT 4 2-12
260 Move Zone - MZ (OP CODE 9, VARIANT 3 T 2-12
2-62 Shift Bit Left - SBL (OP CODE 9, VARIANT 7) 2-13
2-64 Shift Bit Right - SBR (OP CODE 9, VARIANTS8) 2-13
2-66 Pack - PAK (OP CODE 9, VARIANTB) 2-14
2-70 Unpack - UPK (OP CODE 9, VARIANTC) 2-15
2-72 Translate - TRN (OP CODE 8, VARIANT 2) 2-15
2-74 Arithmetic and Logical Instructions 2-16
2-75 Decimal Arithmetic Instructions - General 2-16
2-78 Add Decimal - ADD(OPCODE 1) 2-17
2-82 Subtract Decimal - SBD (OPCODE2) 2-18
2-84 Multiply Decimal - MPY (OPCODE 3) 2-18
2-87 Divide Decimal - DIV (OPCODE4) 2-19
291 Add Binary - ADB(OPCODED) 221
293 Subtract Binary - SBB(OPCODEE) 222
2-95 And AND (OP CODE 9, VARIANT Q) 2-23
2-98 - OR (OP CODE 9, VARIANT 10) . . . Ce e e e 2-23
2-100 Excluswe Or - XOR (OP CODE 9, VARIANT 2) e 2-24
2-102 Decision and Control Instructions . . . e e 2-24
2-103 Branch On Overflow - BOV (OP CODE A VARIANT 1) e e e 2-24
2-105 Branch On Minus - BMI or BGT (OP CODE A, VARIANT2) 2-25
2-107 Branch On Non-Zero - BNZ or BNE (OP CODE A, VARIANT3) 2-26
2-109 Branch Equal - BEQ or BZ (OP CODE A, VARIANT 4) 2-26
2-111 Branch Not Minus - BNM or BLE (OP CODE A, VARIANT 5) 2-27
2-113 Unconditional Branch - BRU (OP CODE A, VARIANT 7) 227
2-115 Halt and Branch - HLT (OP CODE A, VARIANT8) 227
2-117 Branch and Link - BLI (OP CODE A, VARIANTY9) 227
2-119 Test Bit - TBT (OP CODE 9, VARIANT 3). 2-28
2-122 Compare Decimal - CD (OP CODE 9, VARIANT 6) 2-28
2-125 Compare Logical - CMP (OP CODE 7) . . . e e 2-30
2-127 Return From Interrupt - RTI (OP CODE 9, VARIANT F) e 2-31
2-129 No Operation - NOP (OP CODE A, VARIANT (2)) Ce e e 2-31
2-131 Programming Note e 2-31
2-133 Special Instructions . . e e e e 2-32
2-134 Load Address - LDA (OP CODE F) A e 2-32
2-136 Micro-Instruction Mode - MIM (OP CODE A, VARIANT B) e e 2-32
2-139 Search Equal - SEQ (OP CODE 8, VARIANT3) 2-33

SECTION III — ASSEMBLER INSTRUCTION CODING

3-1 General L L L L Lo oL 3-1
3-3 Labels L Lo s 3-1
3-5 Label Form L .o 3-1
3-7 Label Value 3-3
39 Label Length e e e e e 33
3-11 Programmer Access To Svmbol Lengths () e e 33
3-13 Decimal Values L ... 34
3-15 Hexadecimal Values . . e e e e e e, 34
3-17 Current Location Operand (*) e e s e e 3-4

3-20 Expressions L L L o000 2.5

iv

PARAGRAPH

3-22
3-24
3-26
3-28
3-30
3-32
3-34
3-36
3-38
3-40
3-44
3-46

4.1
43

4.7

4-10
4-12
4-14
4-16
4-19

5-1

5-3

5-8

5-11
5-13
5-16
5-18
5-22
524
5-28
5-30
5-31
5-33
5-36
5-39
541
5-43
546
5-48
5-50
5-51
5-53

Free Format Coding
First Character Position
Comment Character (¥)
Pin Address Character (@)
Letters (A to Z) .
Space (Blank) . . .
Digits (¢ to 9) or Special Characters .
Label Field Ce
Op-Code Field
A/B Operand Field .
Indirect Addressing
Comment Field

SECTION IV — ASSEMBLER DIRECTIVES

Introduction

Origin Control (ORG)

End Control (END) .

Define Constant (DC) .

Define Address Constant (DAC)
Define Area (DA) .
Equate (EQU).

Execute (EXE)

Typewriter Control (SKP, TYP)

SECTION V — INPUT/OUTPUT INSTRUCTIONS AND DEVICES

Introduction
Buffered I/O Dev1ces
Unbuffered 1/O Devices
Status
Status Byte L. L0 .
Flag Bits
Status Bits
Read Sequence
Firm Status
I/O Instructions . .
1/O Read And Write Instructlons
Read - RD (OP CODE 0) .
Read and Count - RDC (OP CODE 0, VARIANT 2)
Read Hex - RHX (OP CODE 0, VARIANT 1)
Read Hex Count - RHC (OP CODE 0, VARIANT 3)
Write - WR (OP CODE B, VARIANT 0) .
Write and Count - WRC (OP CODE B, VARIANT 2)
Write Hex - WHX (OP CODE B, VARIANT 1) .
Write Hex and Count - WHC (OP CODE B, VARIANT 3) .
I/O Control Instructions . ..
Reset I/O - RIO (OP CODE 9 VARIANT E)
Status-In - SIN, Set Read - SRD and Device Control - CTL
(OP CODE 9, VARIANT D)

PAGE

3-5
35
3-5
3-5
3-5
3-6
3-6
3-6
3-6
3-6
3-7
3-8

4-1
4-1
4-1
42
42

4.3
43
43

5-1
5-1
52
5-2
52
5-2
5-3
5-3
54
54
5-5
5-5
5-5
5-5
5-6
5-6
5-7
5-8
5-8
59
59

59

PARAGRAPH

5-61
5-63
5-66
5-69
5-70
572
5-75
5-78
5-80
5-82
5-84
5-87
5-89
591
596
598
5-100
5-102
5-104
5-106
5-108
5-110
5-112
5-114
5-116
5-118
5-120
5-122
5-125

6-1
64
6-6
6-8
6-10
6-12
6-13
6-15
6-17

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

Read Status 2 - RS2 (OP CODE 8, VARIANT 4),
Initial Program Load (IPL)
Programming Notes

Input/Output Devices
Typewriter

Typewriter Flags and Slgnals
Typewriter Status Checking .
Typewriter Device Control
Typewriter Reset I/O
Typewriter Set Read
Magnetic Tape Transports
Magnetic Tape Device Control
Magnetic Tape Status Checking
Disc Drive . .
Disc Status Checkmg and Control .
Card Reader
Card Reader Set Read
Card Reader Status Checking
Paper Tape Reader/Punch
Ten-Key Keyboard . .
Ten-Key Device Control
Ten-Key Status Checking
Line Printers . .
Line Printer Device Control .
Line Printer Status Checking

System Clock/Interval Timer

Setting System Clock

Reading Interval Timer

System Clock/Interval Timer Status Checkmg

SECTION VI — ASSEMBLER OPERATION

Introduction
Program Loading
IPL From Magnetic Tape L1brary
IPL From A Disc Library
Assembler Programs . .
Assembler Program Operatlng Instructlons .
Pass 1 Operation .
Pass 2 Operation
Error Messages

APPENDIXES
Hexadecimal-Decimal Number Conversion Table
ASCII Code
Powers of 2

QANTEL Standard Instructlon Set
Reading An Assembler Listing
Programming Techniques .

vi

PAGE

s-11
5-11
5-12
5-12
5-12
5-12
5-12
5-13
5-13
5-13
5-15
5-15
5-15
5-15
5-16
5-17
5-17
5-18
5-18
5-18
5-18
5-20
5-20
5-20
5-22
5-22
5-22
5-22
5-22

6-1

6-1
6-2

6-2
6-2
6-3
6-4

A-1
B-1

D-1
E-1
F-1

FIGURE
NUMBER

1-1

1-2

1-3

1-4

2-1

22

2-3

2-4

2-5

2-6

2-7

2-8

29

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
223
2-24
2-25
226
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
241
242
243
244

LIST OF ILLUSTRATIONS

Assembler Create Operation .

Assembler Update Operation .

Program Library Files .

Object Program Formats .

Fight-bit Byte

Single-Address Instruction Machlne Language Format
Single-Address Instruction Coding Example .

Two-Address Instruction Machine Language Format .

Two-Address Instruction Coding Example

Machine Language Representation of Instruction Length

Interrupt Sequence in Fetch Cycle

Return from Interrupt Instruction .

Move (MOV) Instruction Machine Language Format

Move (MOV) Instruction Coding Example . .
Store Accumulator (STA) Instruction Machine Language Format
Store Accumulator (STA) Instruction Coding Example .
Single-Address Load (LD) Instruction Machine Language Format
Single-Address Load (LD) Instruction Coding Example .
Two-Address Load (LD) Instruction Coding Example .
Two-Address Edit (EDT) Instruction Machine Language Format .
Two-Address (EDT) Instruction Coding Example . ..
Single-Address Edit (EDT) Instruction Machine Language Format
Single-Address Edit (EDT) Instruction Coding Example . .
Two-Address Unedit (UED) Instruction Machine Language Format
Two-Address Unedit (UED) Instruction Coding Example .
Single-Address Unedit (UED) Instruction Machine Language Format
Single-Address Unedit (UED) Instruction Coding Example .

Two-Address Move Numeric (MN) Instruction Machine Language Format

Two-Address Move Numeric (MN) Instruction Coding Example .

Single-Address Move Numeric (MN) Instruction Machine Language Format .

Sirigle-Address Move Numeric (MN) Instruction Coding Example

Two-Address Move Zone (MZ) Instruction Machine Language Format .

Two-Address Move Zone (MZ) Instruction Coding Example

Single-Address Move Zone (MZ) Instruction Machine Language Format

Single-Address Move Zone (MZ) Instruction Coding Example

Shift Bit Left Operation .

Shift Bit Left (SBL) Instruction Machlne Language Format

Shift Bit Left (SBL) Instruction Coding Example .

Shift Bit Right Operation .

Shift Bit Right (SBR) Instruction Machrne Language Format

Shift Bit Right (SBR) Instruction Coding Example

Pack Operation

Two-Address Pack (PAK) Instructron Machme Language Format
Two-Address Pack (PAK) Instruction Coding Example . . .
Single-Address Pack (PAK) Instruction Machine Language Format .
Single-Address Pack (PAK) Instruction Coding Example

Unpack Operation . .
Two-Address Unpack (UPK) Instructron Machme Language Format

vii

PAGE

1-5
1-6

1-7
2-1
2-1
2-2
2-2
2-2
2-3
2-5
2-6

2-8

2-8

2-8

29

29

29

29

2-10
2-10
2-10
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-13
2-14
2-14
2-14
2-14
2-14
2-14
2-14
2-14
2-15
2-15
2-15
2-15
2-16

FIGURE
NUMBER

2-45
2-46
2-47
248
2-49
2-50
2-51
2-52
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-64
2-65
2-66
2-67
2-68
2-69
2-70
2-71
2-72
2-73
2-74
2-75
2-76
2-77
2-78
2-79
2-80
2-81
2-82
2-83
2-84
2-85
2-86
2-87
2-88
2-89
2-90
291
292
293
294

Two-Address Unpack (UPK) Instruction Coding Example . . .
Single-Address Unpack (UPK) Instruction Machine Language Format .
Single-Address Unpack (UPK) Instruction Coding Example

Translate (TRN) Instruction Machine Language Format

Translate (TRN) Instruction Coding Example .

Decimal Arithmetic Operand Field . . .
Single-Address Add Decimal (ADD) Machine Language Format .
Single-Address Add Decimal (ADD) Instruction Coding Example
Two-Address Add Decimal (ADD) Instruction Machine Language Format
Two-Address Add Decimal (ADD) Instruction Coding Example . .
Two-Address Subtract Decimal (SBD) Instruction Machine Language Format
Two-Address Subtract Decimal (SBD) Instruction Coding Example .

Single-Address Subtract Decimal (SBD) Instruction Machine Language Format .

Single-Address Subtract Decimal (SBD) Instruction Coding Example
Two-Address Multiply Decimal (MPY) Instruction Machine Language Format
Two-Address Multiply Decimal (MPY) Instruction Coding Example .
Two-Address Divide Decimal (DIV) Instruction Machine Language Format
Two-Address Divide Decimal (DIV) Instruction Coding Example .
Single-Address Divide Decimal (DIV) Instruction Machine Language Format
Single-Address Divide Decimal (DIV) Instruction Coding Example .
Two-Address Add Binary (ADB) Instruction Machine Language Format .
Two-Address Add Binary (ADB) Instruction Coding Example .
Single-Address Add Binary (ADB) Instruction Machine Language Format
Single-Address Add Binary (ADB) Instruction Coding Example . .o
Two-Address Subtract Binary (SBB) Instruction Machine Language Format .
Two-Address Subtract Binary (SBB) Instruction Coding Example
Single-Address Subtract Binary (SBB) Instruction Machine Language Format
Single-Address Subtract Binary (SBB) Instruction Coding Example
Two-Address AND Instruction Machine Language Format .

Two-Address AND Instruction Coding Example -

Single-Address AND Instruction Machine Language Format

Single-Address AND Instruction Coding Example .

Two-Address OR Instruction Machine Language Format

Two-Address OR Instruction Coding Example .

Single-Address OR Instruction Machine Language Format

Single-Address OR Instruction Coding Example .

Two-Address Exclusive OR (XOR) Instruction Machine Language Format
Two-Address Exclusive OR (XOR) Instruction Coding Example . .
Single-Address Exclusive OR (XOR) Instruction Machine Language Format
Single-Address Exclusive OR (XOR) Instruction Coding Example

Branch On Overflow (BOV) Instruction Machine Language Format .

Branch On Overflow (BOV) Instruction Coding Example

Branch On Minus (BMI) Instruction Machine Language Format .

Branch On Minus (BMI) Instruction Coding Example

Branch On Non-Zero (BNZ) Instruction Machine Language Format

Branch On Non-Zero (BNZ) Instruction Coding Example .

Branch Equal (BEQ) Instruction Machine Language Format

Branch Equal (BEQ) Instruction Coding Example

Branch Not Minus (BNM) Instruction Machine Language Format

Branch Not Minus (BNM) Instruction Coding Example

viii

PAGE

2-16
2-16
2-16
2-17
2-17
2-17
2-17
2-17
2-18
2-18
2-19
2-19
2-19
2-19
2-20
220
220
2-20
221
2-21
221
221
2-22
2-22
2-22
222
222
2-22
2-23
2-23
223
2-23
2-24
2-24
2-24
2-24
2-25
2-25
2-25
2-25
2-25
225
2-26
2-26
2-26
2-26
2-26
2-26
227
2-27

FIGURE
NUMBER

2:95
296
2:97
2:98
2:99
2-100
2-101
2-102
2-103
2-104
2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112
2-113
2-114
2-115
2-116
2-117
2-118
2-119
2-120
31
32
33

34
35
3-6
3.7
3-8
39
3-10
41
4.2
4.3
44
4.5
4-6
4.7
4-8
5-1
52
5-3
54
5-5
5-6

Unconditional Branch (BRU) Instruction Machine Language Format
Unconditional Branch (BRU) Instruction Coding Example

Halt and Branch (HLT) Instruction Machine Language Format

Halt and Branch (HLT) Instruction Coding Example . .

Branch and Link (BLI) Instruction Machine Language Format

Branch and Link (BLI) Instruction Coding Example .
Two-Address Test Bit (TBT) Instruction Machine Language Format
Two-Address Test Bit (TBT) Instruction Coding Example . .o
Single-Address Test Bit (TBT) Instruction Machine Language Format .
Single-Address Test Bit (TBT) Instruction Coding Example
Two-Address Compare Decimal (CD) Instruction Machine Language Format
Two-Address Compare Decimal (CD) Instruction Coding Example .

Single-Address Compare Decimal (CD) Instruction Machine Language Format .

Single-Address Compare Decimal (CD) Instruction Coding Example
Two-Address Compare Logical (CMP) Instruction Machine Language Format
Two-Address Compare Logical (CMP) Instruction Coding Example .

Single-Address Compare Logical (CMP) Instruction Machine Language Format .

Single-Address Compare l.ogical (CMP) Instruction Coding Example
Return From Interrupt (RTI) Instruction Machine Language Format
Return From Interrupt (RTI) Instruction Coding Example.

No Operation (NOP) Instruction Machine Language Format.

No Operation (NOP) Instruction Coding Example . -

Load Address (LDA) Instruction Machine Language Format .
Micro-Instruction Mode (MIM) Instruction Machine Language Format
Search Equal (SEQ) Instruction Machine Language Format .

Search Equal (SEQ) Instruction Coding Example

QANTEL Business Assembler Language Coding Form

Correct Labels Coding Example oL

Incorrect Labels Coding Example .

“Length Of” Operator (.) Coding Example

Correct Coding of Decimal Values .

Correct Coding of Hexadecimal Values

Current Location Operand (¥) Coding Example

Expressions Coding Examples

A/B Operand Field Format Requ1rements

Indirect Addressing Coding Example

Origin Control (ORG) Instruction Coding

End Control (END) Instruction Coding

Alphameric, Decimal and Hexadecimal Define Constant (DC) Codmg
Define Address Constant (DAC) Codmg

Define Area (DA) Coding .

Equate Instruction Coding

Implementation of the Execute (EXE) Instructlon

Typewriter Control Instructions

Status Byte Format .

Reading A Buffered Device

Insuring Firm Status .

Read Instruction (RD) Machine Language Format Exa.mple

Read Instruction (RD) Coding Example

Read and Count Instruction (RDC) Machine Language Format

ix

PAGE

227
227
2-28
2-28
228
2-28
2-29
2-29
2-29
2-29
2-29
230
2-30
2-30
2-30
2-30
2-30
2-30
231
231
2-31
231
231
2-32
2-32
2-33
32
3.1
33
33
34
34
34
35
3.7
3.7
4-1
4-1
42
42
4-3
4.3
4.4
4-4
52
54
5.5
5-5
5.5

FIGURE
NUMBER

5-7

5-8

59

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
522
5-23

5-24
5-25
5-26
5-27
5-28
529
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41
5-42
5-43
544
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53

Read and Count Instruction (RDC) Coding Example .
Read Hex Instruction Two-Byte Combination Method
Read Hex Instruction (RHX) Machine Language Format
Read Hex Instruction (RHX) Coding Example .

Read Hex and Count Instruction (RHC) Machine Language F ormat .

Read Hex and Count Instruction (RHC) Coding Example
Write Instruction (WR) Maching Language Format

Write Instruction (WR) Coding Example .

Write and Count Instruction (WRC) Machine Language Format
Write and Count Instruction (WRC) Coding Example .

Write Hex Instruction (WHX) Machine Language Format

Write Hex Instruction (WHX) Coding Example .

Write Hex and Count Instruction (WHC) Machine Language Format .

Write Hex and Count Instruction (WHC) Coding Example

Reset I/O Instruction (RIO) Machine Language Format .

Reset I/O Instruction (RIO) Coding Example

Status-In (SIN), Set Read (SRD) and Device Control (CTL)
Instructions Machine Language Format

Status-In Instruction (SIN) Machine Language Format Example

Status-In Instruction (SIN) Coding Example .

Set Read Instruction (SRD) Machine Language Format Example .

Set Read Instruction (SRD) Coding Example

Device Control Instruction (CTL) Machine Language Format Example .

Device Control Instruction (CTL) Coding Example

Read Status 2 Instruction (RS2) Machine Language Format
Typewriter Status-In Instruction Coding

Checking Multiple Status Conditions .

Typewriter Device Control Instruction Coding .

Typewriter Reset 1/O Instruction Coding .

Typewriter Set Read Instruction Coding .

Magnetic Tape Transport Device Control Instruction Codmg
Disc Seek INstruction (SEK) Machine Language Format .
Disc Address Field Organization

7.6M Byte Disc Status-In Instruction Codmg

30.7M Byte and 60M Byte Disc Status-In Instruction Codlng
Disc Drive Control Instructions Coding

Card Reader Status-In Instruction Coding .
Paper Tape Reader/Punch Status-In Instruction Codmg .
Card Reader Status-Checking Flowchart

Ten-Key Keyboard Device Control Instruction Codmg
Ten-Key Keyboard Status-In Instruction Coding . .
60-100 LPM Serial Printer Device Control Instruction Codmg .
Line Printer Device Control Instruction Coding . .
60-100 LPM Serial Printer Status-In Instruction Coding .
Line Printer Status-In Instruction Coding .

System Clock Time-of-Day Setting .

Interval Timer Read Coding .
System Clock/Interval Timer Status-In Instructron Codmg .

PAGE

5-6
5-6
5-6
5-6

5-7
5-7
5-7
5-7
5-8
5-8
5-8
59
59
59
59

5-10
5-10
5-10
5-10
5-11
5-11
5-11
5-13
5-13
5-14
5-14
5-14
5-15
5-16
5-16
5-16
5-17
5-17
5-18
5-18
5-19
5-19
5-20
5-20
5-21
521
5-21
5-22
5-22
522

TABLE
NUMBER

1-1
1-2
1-3
2-1
2-2
2-3
2-4
2-5
5-1
52
5-3
54
5-5

LIST OF TABLES

Table of Terms

Hexadecimal Numbering System

System Specifications .

Instruction Length Indicators

Reserved High-Speed (Main) Memory Allocatlons
Rules for AND Operation ..
Rules for OR Operation .

Rules for Exclusive OR (XOR) Operatlon

I/O Control Byte Flag Bits

I/O Control Byte Status Bits

I/O Control Instruction Bits . .

Device Control Byte and Typewriter Slgnal Lamps
Device and Allowable Read and Write Instructions

xi

PAGE

1-2
1-3
14
2-3
2-4
2-23
2-24
2-24
5-3
54
5-10
5-11
5-14

QANTEL ANSWER PROCESSOR SYSTEM

SECTION 1

GENERAL DESCRIPTION

1-1. INTRODUCTION

1-2. The QANTEL Business Assembly Language
(Q/BAL) is provided by QANTEL Corporation to permit
assembly language programming of the QANTEL/AN-
SWER Processor System. Assembly language pro-
gramming allows the programmer to write programs
using mnemonics instead of machine language instruc-
tions and operation codes. The assembler mnemonics are
indicative of the particular instructions and the assem-
bler programs contain many aids to greatly simplify
programming for the QANTEL/ANSWER Processor
System.

1-3. The purpose of this reference manual is to
provide the experienced programmer with the informa-
tion necessary to use the QANTEL Business Assembly
Language and to familiarize the programmer with the
operation of the QANTEL/ANSWER Processor System
standard instructions. The manual is divided into six
sections and supporting Appendixes. These sections
contain the following information:

a. Section I, General Description - describes the
reference manual, lists related publications,
provides definitions of terms, describes fea-
tures and specifications of the QANTEL
hardware, and describes the functional op-
eration, library capabilities and object pro-
gram formats of the QANTEL Business
Assembly Language.

b. Section II, Processor Functions — describes
machine language processor functions and
programming requirements for the QAN-
TEL/ANSWER Processor System.

1-1

c. Section III, Assembler Instruction Coding —
describes the coding formats and the rules
for coding QANTEL Business Assembly Lan-
guage statements.

d. Section IV, Assembler Directives — describes
the instructions used to control the assem-
bler and to produce constants and data
areas.

e. Section V, Input/Output Instructions and
Devices — describes the various input/output
instructions and programming requirements
for the various input/output devices.

f. Section VI, Assembler Operation — provides
the operating procedures for the Q/BAL
Assembler programs.

g. Supporting Appendixes.

1-4. RELATED REFERENCE PUBLICATIONS

1-5. The QANTEL Business Assembly Language
Reference Manual is complemented by the following
additional QANTEL publications:

a. QANTEL Business Assembly Language Pro-
grammers Training Manual — especially use-
ful for teaching new programmers.

b. QANTEL Micro-Assembler Manual — re-
quired only for those customers intending to
alter the instruction set.

c. Product Specifications for the QANTEL/
ANSWER Processor System and I/O Devices
— for original equipment manufacturers.

TABLE 1-1. TABLE OF TERMS

An 8-“kt'ﬂorage location in memory which may assume any of 256 possible bit

Data represented in a byte, or combination of bytes, that is used in some operation.

Operands in the QANTEL/ANSWER Processor System are addressed by referring to
the least significant byte (highest memory location), except in the case of input/output

Refers to a hardware device or main memory positions used for the temporary storage
Software package that allows programmers to use symbolic language references for

A micro-program stored in the Read-Only Memory that represents a function found on
all QANTEL/ANSWER Systems, e.g., Add Decimal, Edit, Branch and Link, Read, etc.

Single byte instructions contained in the Read-Only Memory (or main memory) that

Read-Only Memory. A hard-wired control memory that delivers a series of micro-
instructions specified (addressed) by the decoded standard instruction. The ROM is
installed in the QANTEL/ANSWER Processor System at the factory and cannot be

Preformance of an instruction is completed by the fetch and Execute cycles. In the
fetch cycle, the instruction is read from main memory, and is examined byte-by-byte
so that its format can-be determined. Once all addresses and operation codes have been
examined, the execution cycle performs the actual operation indicated by the

Generally, the A operand is the source operand, and the B operand is the resultant or
second operand. In an Add Decimal Instruction, for example the A operand is added

The number of consecutive bytes to be operated on by an instruction. Length is variant
in several standard QANTEL Instructions, and is counted down as the instruction is
executed byte-by-byte. When count zero is reached, the length of the operand field is
said to be exhausted. The maximum léngth of most variable length instructions (except
Move), is sixteen bytes, and is represented by zero in the instruction. Minimum length

TERM DESCRIPTION
Bit Single binary digit having the value of zero or one.
Byte
configutations (from hex 00 to FF).
Operand
Operand
Address
instructions.
Buffer
of data. In both cases, the buffer size is described by its length in bytes.
Assembler
instructions and addresses, thereby simplifying the programming task.
Standard
Instruction
Micro-
Instruction are decoded to preform specific operations.
ROM
altered.
Fetch/Execute
Cycles
instruction.
A and B
Operands
to the B operand, and the result is placed in the B operand.
IPL Initial Program Load.
ASCII American Standard Code for Information Interchange.
Length
is one byte.

1-6. DEFINITION OF TERMS

1-7. Some of the terms used throughout this refer-
ence manual may have different meanings to the readers
as a result of their previous experience. Table 1-1 defines
some of these terms to make the interpretation of the
information as easy as possible for a reader desiring to
acquaint himself with the detailed operation of the
QANTEL/ANSWER Processor System.

12

NOTE

Successful operation of the QANTEL/ANSWER
Processor System and pre-programmed environ-
ment (standard applications software packages)
does not require a detailed knowledge of the
processor operation.

1-8. SYSTEM DESCRIPTION

1-9. The QANTEL/ANSWER Processor system is
designed for small-scale data applications as self-
contained units or as intelligent terminals (satellite). The
heart of QANTEL Processor System is a serial processor
which eliminates the need for complex software, thereby
reducing the effort required to implement operational
work. Simultaneous input/output and computing is
provided through hardware buffering during operation
with many of the standard QANTEL peripherals.

1-10. With the QANTEL/ANSWER Processor system,
the user has the option to utilize pre-programmed
applications, to program at the processor standard
instruction levels or, for the experenced staff, to
program at the micro-instruction level. Processor organi-
zation, together with an extremely basic Read-Only
Memory word design, provides the unusual versatility of
the QANTEL/ANSWER Processor Systems. The stan-
dard internal code of the processor is in ASCII format.
However, any desired data format may be used, per-
mitting QANTEL/ANSWER Processor System to oper-
ate satellite to any major computer.

1-11. The components of the basic system are nor-
mally mounted in a standard L-shaped secretarial desk
with I/O typewriter recessed in the desk extension side.
The power supply/processor control panel is mounted
underneath the extension.

1-12. High-Speed Memory

1-13. Program and data storage within the processor
are provided by an eight-bit, variable address, IC main
memory that has a complete cycle time of 1.5 micro-
seconds. Cycle time is the time required to transfer one
byte of information from memory to the memory
register and regenerate the byte back into storage. The
main memory is made up of modules, each having 4096
separately addressable eight-bit locations. At the time of
this printing memory combinations of one, two, four,
six, or eight modules are available.

1-14. Control Memory

1-15. Processor internal control is a function of
micro-instructions generated in the Read-Only Memory
(ROM). The standard ROM now contains 1536 control
words that are used to configure the algorithms of
micro-instructions that make up the standard instruction
set and disc control instruction logic. Machines that were

1-3

installed prior to the release of the ANSWER Processor
Systems, and that did not include a disc drive, and the
additional 512 word disc ROM that was installed with
these machines, contained a ROM of 1024 control
words. Therefore, these machines will not contain the
newest standard instructions. These new standard in-
structions are noted on the list of QANTEL Standard
Instructions shown in Appendix D. On the ANSWER
Processor System an additional 512 control words are
available, as an option, to supply any other instructions
desired by the user. Also, all or part of the micro-
instruction complement furnished by the ROM may be
optionally specified by the user to meet special de-
mands.
1-16. Hexadecimal System

1-17. Machine language addresses and characters used
in the processor are in binary form. Because binary
combinations are often difficult to work with and
describe, QANTEL publications use the hexadecimal
numbering system to represent characters and addresses.

1-18. The Hexadecimal system is a method commonly
used to describe the 16 different configurations of four
binary bits. Table 1-2 shows how the first ten con-
figurations (in binary sequence) are represented by the
decimal numbers zero through nine (0-9). The last six
configurations are represented by the alphabetic letters
A through F.

TABLE 1-2. HEXADECIMAL NUMBERING SYSTEM

HEXADECIMAL BINARY DECIMAL
(BASE 16) (BASE 2) (BASE 10)
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

NOTE QANTEL Product Specifications available for original

A complete hexadecimal-to-decimal conversion equipment manufacturers.
table is presented in Appendix A.at the rear of
this manual. 1-23. ASSEMBLER DESCRIPTION

1-24. The Q/BAL Assembler programs described in
the following paragraphs perform several general func-

1-20. ASCII is used within the QANTEL/ANSWER tions. These functions include: '
Processor Systems. A complete ASCII table is included a. Line Entry — accepts each line of the coded

_in Appendix B as an aid to system planning exercises. assembler language program by means of
keyboard entry from the typewriter or

80-column punched cards and checks each
statement for correct syntax.

1-19. ASCII

1-21. System Specifications

1-22. Pertinent specifications for the QANTEL/ b. Generation of Program Source File — gener-
ANSWER Processor System are listed in table 1-3. More ates an intermediate source program that can
detailed specifications are contained in the respective be modified using typewriter or card input.

TABLE 1-3. SYSTEM SPECIFICATIONS

PROCESSOR
Main Memory IC memory, 4096 eight-bit locations, expandable to 8192, 16384, and
32768, 1.5 microsecond cycle time.
Processor Control Read-Only Memory with 50 nano-second cycle time.
Physical Dimensions 26" x 17" x 17%”

(max. configuration)

INPUT/OUTPUT (Basic System)

Typewriter IBM 735 Heavy Duty Selectric 14.7 characters per second Fully buffered
(128 characters)

NOTE

The basic QANTEL/ANSWER Processor System may be expanded using
additional 1/O typewriters, magnetic tape units, disc drives, card
readers, printers, communications capabilities, CRT’s, optical mark
readers, ten-key keyboards, and a programmers control console. For
specifications on these varied I/O devices refer to the QANTEL Product
Information sheets and engineering specifications.

POWER SUPPLY
Input Voltages 105-125 vac, 210-250 vac at 48 to 61 HZ
Primary Power
Failure Protection Primary power interruptions of up to eight milliseconds cause no ill
effect on system operation
Short Circuit Protection Fuse protection provided
Physical Dimensions 17"x17"x 7"
ENVIRONMENTAL
CONDITIONS 0 to +40°C (32°F to 104°F), up to 85% relative humidity without

condensation

14

¢. Production of Object Program and/or Listing
— assembles the program source file and
produces a loadable object program and/or a
printed listing of the assembled program
showing the instructions in both assembler
and machine language. A loadable object
program, once loaded, forms an executable
set of machine instructions and associated
data that is capable of performing useful
data processing tasks.

1-25. The following paragraphs describe the two
passes of the Q/BAL assembler, program update opera-
tion, source program library files, and the object
program library files.

1-26. Pass Ome

1-27. The QANTEL Business Assembly Language
uses two separate programs, run in sequence, to perform
the assembly operation. The first assembler program
generates the source program and is referred to as Pass
One. Operation of the Pass One program performs the
following functions:

a. Accepts the Assembly language input from
the typewriter or card reader and/or pre-
viously created source file (disc or magnetic
tape) and checks for errors in format, oper-
ation codes, statement syntax and label
assignments.

. Creates a table of the labels or tags used as
the program statements are entered and
assigns values to these labels.

c. Places the entered program and tag table on
the new source file to create the source
programs for processing by Pass Two. Refer
to figures 1-1 and 1-2.

1-28. PASS ONE ERROR DETECTION

1-29. There are many possible errors that may occur
in the syntax of an input statement. Each of these erros
is detectable during Pass One operation. When an error is
detected during Pass One operation, an appropriate
diagnostic message will be generated. The exact mode of
presentation for this diagnostic message is dependent on
the device used for input of the new or modified source
statements.

1-30. When the typewriter is used for input, it is
assumed that the programmer (as opposed to an opera-

1-5

CARD INPUT

LISTING OF
TYPED INPUT

SOURCE
PROGRAM
FILE*

MAY RESIDE ON EITHER MAGNETIC
TAPE OF DIC, DEPENDING ON THE
SYSTEM CONFIGURATION

** PAPER TAPE OBJECT QUTPUT IS
USEFUL FOR CREATING PROGRAMS
WHICH ARE TO BE EXECUTED ON
QANTEL SYSTEMS THAT DO NOT
HAVE MAGNETIC TAPE DRIVES.

PASS TWC

0BJECT PROGRAM
PAPER TAPE **

PROGRAM
LISTING

tor without knowledge of the program) is entering the
lines of source code. When an error is detected, an
appropriate diagnostic message will be printed out, and
the program will request that the user re-enter the line in
question. This mode of operation is especially useful for
small modifications of existing source programs that are
resident on magnetic tape or disc. Also, this feature is
useful for initial use by a programmer who is not
experienced in the use of the QANTEL Business
Assembly Language.

Figure 1-1. Assembler Create Operation

1-31. Using the card reader as an input device to the
assembler is especially appropriate when a number of
programmers are developing programs using the
QANTEL Business Assembly Language, and an operator
is available to supervise the assembly of these programs.
When using the card reader, the operator cannot correct
an erroneous input line at the time the error occurs,
therefore, the Pass One program will mark the line in
error on the source file, produce an appropriate diagnos-
tic message on the file, and proceed to the next input
line. When the resultant source file is processed by Pass
Two of the assembler, these diagnostic messages will be
printed following the lines in error. This will allow the
programmer to code the appropriate corrections to his

* SOURCE AND GBJECT PROGRAM FILES

OLD
SOURCE
PROGRAM)

FILE

ED INPUT]
(PROGI

PASS ONE

PASS TWO

NEW
OBJECT PROGRAM
PAPER TAPE

LISTING OF
UPDATED
PROGRAM

Figure 1-2. Assembler Update Operation

program and resubmit the corrections to the operator
for updates. When the lines in error have been replaced
or deleted by the subsequent updates of the source tape,
the error messages will be ignored and not passed on
when an updated source file is created.

1-32. Pass Two

1-33. Asshown in figure 1-1, the Pass Two program is
run subsequent to the Pass One operation to accept the
source program file and produce an object program file.
During this operation, the assembly language instruc-
tions are translated into machine language instructions.
The resuit of the Pass Two operation is an absolute or
machine language object program and a printed listing of
the program. This listing shows the instructions in both
the assembler and machine languages. The production of
either the object program or the printed listing may be
suppressed at the option of the operator or programmer.
The listing of the source and machine language instruc-
tions will provide an aid to the programmer for
debugging and future modification of the assembled
program.

1-6

1-34. Update Operation

1-35. A previously assembled program may be up-
dated by modifying the old source program, eliminating
any need to re-enter the entire program. As shown in
figure 1-2, the old source program can be modified by
Pass One of the assembler using corrections or changes
entered by way of the typewriter or card reader. The
result of this update operation is a new, or updated,
source program that may be assembled by the Pass Two
operation of the Q/BAL Assembler programs. The final
result of the update operation is a new source program, a
new object program, and a new listing.

1-36. Source Program Library Files

1-37. As described in the previous paragraphs, the
Pass One operation of the Q/BAL Assembler produces a
source program. This source program can reside on
either magnetic tape or disc. Some of the advantages of
magnetic tape and disc source program files are de-
scribed in the following paragraphs.

1-38. MAGNETIC TAPE SOURCE PROGRAM
FILES
1-39. Magnetic tape source files can be arranged by

the assembler and/or the library maintenance programs
so that several programs can be contained on one reel of
tape. Further details on this are presented in the
Assembler Operating Instructions, Section VI. The Pass
One operation permits the operator to request the
desired source program file from the tape when
necessary for updating purposes. Advantages of main-
taining multiple source program files on one magnetic
tape include a more efficient use of magnetic tape, and
an ease of producing a single object file containing all
programs of the library. This is especially advantageous
when all programs are part of the same system. The
primary disadvantage of using magnetic tape for multiple
source program storage is the extended processing time
required to copy programs not being updated when
those programs contain many lines of code.

1-40. DISC SOURCE PROGRAM FILES

1-41. The use of disc for source program files allows
assembly of programs on systems configured with one
disc drive and one magnetic tape unit. In addition to all
of the advantages of magnetic tape source files, the use
of disc source files also offers the user the advantage of
greater speed and flexibility that is not available when
using magnetic tape source files.

1-42. Object Program Library Files

1-43. Like source programs, object programs can be
maintained on either magnetic tape or disc. However,
the assembler will create object files on magnetic tape
only. The differences in the speed and convenience of
disc over magnetic tape object files is great. This is
especially so when it becomes necessary to mount and
dismount tape reels. The object program library files can
be created or updated by either of the two following
methods:

a. Adding, replacing, or deleting individual
object programs on the library file by means
of the appropriate magnetic tape or disc
library maintenance program.

b. Performing the Pass Two operation on the
entire source program library file (magnetic
tape output only).

1-44. Any object program produced by the QANTEL
Business Assembly Language program can be placed on
an existing library file using the appropriate QANTEL
library maintenance program. Figure 1-3 illustrates how
the object programs are fed into the library routine with
the existing library file to produce an updated or new
library file.

1-45. LOADABLE OBJECT PROGRAMS

1-46. A loadable object program is one that has only
its own loader on the first portion of the object tape,

LDR | PROGRAM

"LOADABLE" PROGRAM FORMAT
(Paper or Magnetic Tape)

First Program
A

PASS TWO

PROGRAM
LIBRARY
ROUTINE

NEW

LIBRARY
FILE

Figure 1-3. Program Library Files

immediately preceeding the object program. Refer to
figure 1-4. All object programs produced by QANTEL
Business Assembly Language programs are of this type.
However, the magnetic tape and disc object programs
produced by the assembler programs are usually object
programs that constitute a library file containing one or
more object programs.

LSR|ID | LDR| PROGRAM | EOF | EOF

Second Program
A

"LIBRARY FILE" PROGRAM FORMAT
(Magnetic Tape only)

Last Program End of Tape
A A .

= A s

N\ 7

LSR|ID| LDR | PROGRAM | EOF | ID | LDR | PROGRAM | EOF | ID | LDR | PROGRAM | EOF | EOF

MULTIPLE PROGRAM ""LIBRARY FILE' PROGRAM FORMAT
(Magnetic Tape only)

LSR = Library Search Routine
LDR = Loader Routine

ID = Program Seven-Character Identification
EOF = End-of-File Indicator (hexadecimal 13)

Figure 1-4. Object Program Formats

1-47. LIBRARY OBJECT FILES

148. The library file object program consists of one
or more loadable object programs identified by a unique
(within the file) seven character program identifiers that
precedes the object program loader. See figure 1-4. The
first record of the object tape contains a Library Search
Routine (LSR) capable of searching the object tape file
for a routine specified by the operator. End-of-File

(EOF) characters are written on the magnetic tape to
mark the end of each ohject program. Two consecutive
EOF characters‘are written to mark the end of the entire
library file. The library file may be used as a separate
library or, it may be combined with other library files to
construct a larger library file. This is accomplished by
using the appropriate program library maintenance
routine.

SECTION II

PROCESSOR FUNCTIONS

2-1. GENERAL
2-2. The QANTEL/ANSWER Processor System has
51 standard instructions that are hard-wired in the

Read-Only Memory (ROM). See section I for a descrip-
tion of the ROM. These instructions include fourteen
input/output processing and control instructions, and 37
data handling, arithmetic and logical, decision and
control, and special instructions. This section provides a
description of the various processor functions such as
data and instruction formats, addressing structure, the
interrupt feature, and the various switch settings. Also
included are descriptions of all the standard instructions,
except for I/O instructions, along with examples of both
machine language instruction format and examples of
assembly language instruction coding. The 1/O instruc-
tions are described fully in section V of this manual.

2-3. DATA FORMAT

2-4. The basic unit of information used in the
QANTEL/ANSWER Processor System is the byte. Each
byte is made up of eight binary bits and can represent an
alphabetic letter, a numerical digit, a special character,
or a hexadecimal number from 00 to FF. The byte is the
smallest addressable unit in the processor, which has a
storage capacity of either 4096, 8192, 16384,.24576, or
32768 such bytes. Each of the eight bits within a byte is
identified by its binary weight expressed in powers of
two as illustrated in figure 2-1. Throughout QANTEL
publications, the low order bits are always placed to the
right side of the byte. The internal code used in the
processor is ASCII. Appendix B of this manual shows a
complete ASCII table. ASCII is used to represent all

2-1

alphameric characters, operands, and special contro]
characters (e.g., communications).

27| 28 25 | 2% 23| 22| 2t 2°
Figure 2-1. Eight-bit Byte
2-5. INSTRUCTION FORMAT
2-6. Single-Address Instructions
2-7. The QANTEL/ANSWER Processor is a single-

address and two-address computer. When single address
instructions are used, the instruction operand address
becomes the address of the A operand field. An
accumulator, which occupies the low order 16 positions
of main memory, becomes the implied B operand field.
The format of the single-address instruction is basically
the same as that of the two-address instruction (de-
scribed in the following paragraphs), except that it
consists of only three (instead of six) bytes. Figure 2-2
illustrates the machine language format of a single-
address instruction and figure 2-3 shows a sample of
single-address instruction coding.

A OPERAND OR

INDIRECT ADDRESS
INDIRECT / -
ADDRESS —f T
CONTROL BIT A A {
ap VARIANT OR
CCDE LENGTH

Figure 2-2. Single-Address Instruction
Machine Language Format

PROGRAM
LABEL NP-Code OPERANDS
1 2 345 6 71819 1011 12}131141516 17 1819

PAK QTY

NOTE
Refer to section V of this manual for a complete
description of two-address I/O instructions. This
includes the different types of Read and Write
instructions.

Figure 2-3. Single-Address Instruction Coding Example

2-8. Two-Address Instructions

2-9. All two-address instructions are made possible
by the Load Address instruction which indicates to the
processor that the instruction is to be treated as the
two-address type. The Load Address instruction is
described fully in paragraph 2-134. In the fetch cycle for
the two-address instruction, the operation code included
with the first instruction (Load Address instruction)
initiates a sequence that continues fetching, so that both
operands are identified prior to the execution,

2-10. In the two-address instruction (with the excep-
tion of the Read or Write I/O instruction), the operand
address of the Load Address instruction is the address of
the B operand field, and the operand address of the
second instruction is the address of the A operand field.
In either mode of addressing (single-address or two-
address), the individual instructions are always three
bytes in length, making a total of six bytes for a
complete two-address instruction. The two-address in-
struction has the format shown in figure 24. Figure 2-5
shows a coding example of a two-address instruction.

INDIRECT ADDRESS

PROGRAM

LABEL
12 345 6 7|8]9

OPERANDS
10 11 12]131415 16 17 1819 20 :

A K QT\Y|; TM|P

Figure 2-5. Two-Address Instruction Coding Example

NOTE
Individual field definition may differ; however, the
definitions are explained as each instruction is
examined later in this section.

2-11. Indirect Addressing

2-12. The most significant bit in any instruction is
the indirect address control bit. If the indirect address
control bit is in the *““17 state, indirect addressing is
indicated to the processor, and the instruction address is
used as source of the operand address. If the most
significant bit (of the most significant byte) of the
indicated address is also in the ‘1" state, it is also used
as an indirect address and the operation will continue
until an operand address is found with the indirect
address control bit in the ““0” state. Indirect addressing
is invaluable when it is necessary to reference a location
that it is not convenient to address directly.

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
T 4 |
B B F : A A !
N 3 _ 0P\ VLENGTH y ~ 0P\ N LENGTH
B OPERAND OR CODE A OPERAND OR conE
INDIRECT ADDRESS INDIRECT ADDRESS
O I\ -/

LOAD ADDRESS

g

Figure 2-4. Two-Address Instruction Machine Language Format

[\
'
[

NOTE
Indirect address looping is a possibility in the
QANTEL/ANSWER Processor, and care should be
exercised to insure proper setup of instruction
formats.

2-13. Indirect addressing is valid for both the single-
address and two-address instructions. This powerful
feature can be used to index through a table, or for
other operations that require changing addresses.

2-14. Operation Code and Variant

2-15. The most significant four bits of the least
significant byte in any instruction is the operation code.
See figures 2-2 and 2-4. The operation code, in conjunc-
tion with a variant (if required), indicates the type of
operation to be performed by the instruction. The
variant occupies the least significant four bits of the
instructions, when used. All operation codes and variants
are listed with their respective instruction definition and
mnemonic in Appendix D at the rear of the manual. In
addition, each QANTEL Instruction is described under
the heading of Standard Instructions. Description is in
sufficient detail to provide the programmer with a
working knowledge of the QANTEL Standard Instruc-
tions.
2-16. Instruction Length
2-17. Instructions with operand that are variable in
length (Add, Subtract, Store, etc.) carry length indi-
cators in the instruction. When used, the length indicator
occupies the least significant four bits of the instruction
as shown in figure 2-6. Also, certain instructions (e.g.
Move Numeric) utilize a length only when the two-
address form is used. In this case, the length is specified
in the Load Address instructions.

A OPERAND OR

INDIRECT ADDRESS
r A ™
INDIRECT T
ADDRESS ——— A A X 1 X
CONTROL BIT I \
0P\ LENGTH
CODE

Figure 2-6. Machine Language Representation
of Instruction Length

2-18. In the single-address mode, the length of the B
operand field is 16 positions (the length of the accu-
mulator).

2-3

NOTE

Using the two-address mode is often more eco-
nomical in elapsed time, especially if the operand
length is much less than maximum.

2-19. In all except the Input/Output instructions (see
section V), the length indicator specifies the operand
field length beginning at the least significant byte
(highest memory position).

2-20. A length indicator of zero within a particular
instruction specifies the maximum field length of 16
positions. However, a maximum field length of 256
positions can ‘be used in the two-address Move instruc-
tion. Refer to paragraph 2-43 for a complete description
of the two-address Move instruction. The hexadecimal
length indicators are listed in table 2-1 with their
respective lengths given in positions.

NOTE

The two-address Move instruction combines the
length'fields of the Move and associated Load
Address instruction into a one byte (eight bit})
length indicator. For a maximum length, 0 indica-
tors are used to form a byte of 00, ,(00000000),,
or 256 .

TABLE 2-1. INSTRUCTION LENGTH INDICATORS

OPERAND
FIELD LENGTH
(Positions)

16

LENGTH INDICATOR
(Hexadecimal)

O

2-21. ADDRESSING STRUCTURE

2-22., The addressing structure of the QANTEL/
ANSWER Processor System is binary. The lowest possi-
ble is zero, and the highest position (decimal) is 4095,
8191, 16383, 24575, or 32767, depending upon the
number of memory modules installed in the system.
Wrap around does not occur in the QANTEL/ANSWER
Processor, and techniques using this operation should
not be attempted. Add Binary and Subtract Binary
instructions are a part of the standard instruction
complement and provide a means of modifying an
address. The operand addresses given in all instructions,
except for I/O instructions, specify the location of the
least significant byte (highest memory position) of the
operand field. For example, if the operand address is
1000 (decimal), and the specified length is 10 (decimal),
the specified operand field occupies positions 991
through 1000 (decimal).

2-23. RESERVED MEMORY

2-24. The first 32 positions of main memory (0
through 31) are reserved for use by the processor during
the execution of a program. This portion of main
memory serves as intermediate storage, arithmetic

operands, I/O control areas, and micro-program utility
areas. The reserved area is a convention in the standard
QANTEL/ANSWER Processor System and is utilized as
described in table 2-2 when the standard instruction set
is installed. The locations in reserved memory are
addressable by the programmer, and may be required in
the normal mode of operations.

NOTE

Reserved memory areas should not be used for
temporary storage unless the programmer com-
pletely understands processor treatment of these
areas.

2-25. INTERRUPT FEATURE

2-26. The QANTEL/ANSWER Processor System can
be equipped with a no-cost Interrupt Feature which
allows the operator to interrupt the regular program by
pressing the FLAG 1 pushbutton on the I/O typewriter.
When the operator presses the FLAG 1 pushbutton, and
the interrupt is not inhibited, the program instruction in
progress is completed and the succeeding program
instruction address is stored in positions 16 and 17 of

TABLE 2-2. RESERVED HIGH-SPEED (MAIN) MEMORY ALLOCATIONS

LOCATION DESCRIPTION
(number in decimal) '
0-15 Accumulator positions. If the instructions are used in the single-address mode,
the implied second operand is the accumulator and its contents.
16-17 Two bytes used to store the current program address when an interrupt occurs.
18 Single byte used to store the contents of the switches and the-status of interrupt
availability.
19-20 Two bytes which contain the address that replaces the current program address
when an interrupt occurs.
21-22 Two bytes which contain the final address-plus-one for an I/O instruction. As
the data is taken from or put into main memory, the address is incremented.
When the last operation is performed, the address is incremented once more and
then stored in bytes 21-22. By using this feature, the programmer can effect
consecutive reads or writes to successive core locations from various 1/O devices.
23 One byte which receives the 1/0 Control Byte when the Status-In instruction is
executed. Status-In is described in section V of this manual.
24-25 Two bytes used to store the current program address when a branch instruction
is executed on the (QANTEL V only), or the address of the match on a Branch
Equal instruction on the QANTEL/ANSWER.
26-31 Micro-program utility bytes. Refer to the QANTEL Micro-Assembler Manual.

24

main memory. The settings of switches one, two, and
three are stored in the least significant bits of main
memory position 18 (see paragraph 2-30). The most
significant bit of position 18 is set to the 17 state to
inhibit any succeeding interrupt signals. The processor
then branches to the interrupt routine located at the
address stored in positions 19 and 20 of main memory.
Refer to figure 2-7. Prior to using the Interrupt Feature,
the correct interrupt address must be placed in positions
19 and 20 by the program, and the most significant bit
of position 18 must be initially set to the “0”” state.

NOTE

In systems employing more than one 1/O device
with an interrupt capability (such as a typewriter
and communications modem), the programmer
must determine which device is interrupting. Re-
fer to section V.

2-27. After the program interrupt has occurred and
the program state has been changed, operations placed in
the interrupt routine take place until a Return-From-
Interrupt (RTI) instruction is encountered. Normal
interrupt routine operations could alter Reserved Mem-
ory locations used by the regular program (i.e. the
accumulator) so that any instructions affecting these
areas should be preceded by a sequence of instructions
to save the data. This is especially true if the interrupt
routine is to perform I/O instructions, since the termina-
tion address of the I/O instruction portion is
automatically altered. A simple storing and restoring of
the entire area is the simplest and safest way in insuring
against these problems.

2-28. The Return-From-Interrupt (RTI) operation
restores switches one, two, and three to their former
settings (before the interrupt occurred) using the least
significant three bits-of position 18. It also resets the
interrupt inhibit bit (most significant bit of position 18)
to the “0” state (interrupt enable), and returns the
program to the address stored in positions 16 and 17.
Refer to figure 2-8.

2-29. The Interrupt Feature can be inhibited so that
any attempted intervention by the operator has no
immediate effect on the regular program. The inhibit
action is accomplished by placing the most significant
bit in main memory location 18 in the “1” state. (This
occurs automatically whenever interrupt takes place to
prevent a second interrupt.) Setting the bit to the “1”
state may be done in the regular program as a result of.

2-5

PERFORM

NEXT ¢
INSTRUCTIOGN

INTERRUPT
PENDING

ACCESS

BYTE 18

INTERRUPT
INHIBITED

STORE SWITCH
SETTINGS 1IN
BYTE 18 & IN-

HIBIT INTERRUPT

v

STORE PROGRAM
REGISTER 1IN
BYTES 16 & 17

v

SET PROGRAM
REGISTER FROM
CONTENTS OF
BYTES 19 & 20

Figure 2-7. Interrupt Sequence in Fetch Cycle

an OR operation, or by simply moving a byte having the
most significant bit in the “1” state into position 18.
With the Interrupt Feature inhibited, any interrupt
signals from the operator (by means of the FLAG 1
pushbutton) do not affect the regular program, but
remain pending until the interrupt inhibit bit is reset to
the ““0” state. At this time, any pending interrupt will be
acted upon in the manner previously described.

NOTE

A pending interrupt can be removed by pressing
the FLAG 1 pushbutton a second time, so that the
interrupt routing’ will not be entered when the
interrupt inhibit bit is reset to the “0” state.

SET SWITCHES
Ls 2. & 3 FROM
BYTE 18

RESET
INTERRUPT
INHIBIT
BIT

!

SET PROGRAM
REGISTER FROM
CONTENTS OF
BYTES 16 & 17

BRANCH TO INTER-
RUPT PENDING
CHECK IN THE
FETCH CYCLE

Figure 2-8. Return From Interrupt Instruction

2-30. SWITCH SETTINGS

2-31. The term switch in this reference manual refers
to a hardware device within the QANTEL/ANSWER
Processor System, which may be set and reset as a result
of arithmetic and logical operations. At the conclusion
of such an operation, the results can be determined by
examining one or more switches and interpreting their
settings. The programmer may examine the switch
settings by means of the Branch On Overflow, Branch
On Minus, Branch On Non-Zero, Branch Equal, and
Branch Not Minus instructions. (Branch Not Minus is
not available on the QANTEL Processors at this time
and will be implemented at some future date.)

NOTE

The Branch instructions must be performed im-
mediately after an arithmetic or logical operation
due to the fact that any following instructions
(except the Branch instructions) will alter the
switch settings to be examined.

2-32. The five Branch instructions listed in the
preceding paragraph examine the settings of three (3)

26

separate switches within the processor and act upon
these settings to replace the current program address
with the branch address.

2-33. Switch One

2-34. Switch one is referred to as the “carry” switch.
When an addition takes place in the processor, switch
one is set to the “1” state if the result of the addition
creates carry (overflow). This condition is input to the
next add operation, unless the length has been ex-
hausted, in which case, no add takes place. In this
situation, the carry remains and switch one can be
examined by the Branch On Overflow instruction.

2-35. Switch Two

2-36. Switch two is referred to as the ‘“‘minus”
switch, and is set to the “1” state if the result of an
arithmetic operation is a negative quantity. The setting
of switch two may be examined by the Branch On Minus
and Branch Not Minus instructions.

2-37. Switch Three

2-38. Switch three is referred to as the “non-zero”
switch. When set to the “1” state, switch three indicates
that the result of an arithmetic, a logical, or an edit
operation is something other than all zero bits. The
Branch On Non-Zero instruction examines switch three
for the “1” state (non-zero result).

2-39. In addition, switch three can be used to
indicate equal or zero result from one of the Compare
instructions, or any arithmetic and logical or decision
control instructions. A Compare in the QANTEL/
ANSWER Processor System is actually a subtract opera-
tion, except that neither operand is altered, and the
result is reflected in the setting of the switches. For
example, if two operands are equal and are compared
(subtracted), the result of the operation would be zero,
and switch three would be set to the “0” state to
indicate the zero result, which in the Compare operation
would be an equal result. Conversely, the comparison of
two unequal operands would yield a non-zero result, and
set switch three to the “1” state. The result of a
Compare instruction can be checked for equality by
means of either the Branch On Equal or Branch On
Non-Zero instruction.

2-40. STANDARD INSTRUCTIONS

2-41. The following paragraphs provide working de-
scriptions of each QANTEL standard instruction. The
instructions are divided into five categories as follows:

1. Data Handling Instructions

Move — MOV

. Store Accumulator — STA
. Load - LD

. Edit — EDT

Unedit — UED

Move Numeric — MN
Move Zone — MZ

. Shift Bit Left — SBL
Shift Bit Right — SBR
Pack — PAK

. Unpack — UPK
Translate — TRN

SRS R D e A0 o e

2. Arithmetic and Logical Instructions

Add Decimal — ADD

. Subtract Decimal — SBD
Multiply Decimal — MPY
. Divide Decimal — DIV

. Add Binary — ADB
Subtract Binary — SBB

. And — AND

. Or—-OR

Exclusive Or — XOR

3. Decision and Control Instructions

a. Branch On Overflow — BOV

b. Branch On Minus — BMI (BGT — Branch
Greater Than)

c. Branch On Non-Zero — BNZ (BNE —
Branch Not Equal)

d. Branch Equal — BEQ (BZ — Branch On
Zero)

e. Branch Not Minus -~ BNM (BLE -

Branch Less Than or Equal)

Unconditional Branch — BRU

Halt and Branch — HLT

. Branch and Link — BLI

Test Bit — TBT

Compare Decimal — CD

. Compare Logical — CMP

. Return From Interrupt — RTI

m. No Operation — NOP

4. Special Instructions

a. Load Address — LDA
b. Micro-Instruction Mode — MIM

M@ e Ao o R

ueatE T~ X LR

2-7

c. Search Equal — SEQ
5. Input/Output Instructions

a. Read —RD

b. Read and Count — RDC

c. Read Hex (hexadecimal) — RHX

d. Read Hex and Count — RHC

e. Write — WR

f. Write and Count — WRC

g. Write Hex — WHX

h. Write Hex and Count — WHC

i. Status-In — SIN

j. Read Status 2 — RS2

k. Set Read — SRD

1. Reset I/O — RIO

m. Device Control — CTL

n. Seek — SEK
The Input/Output instructions are described in
section V.,

NOTE

A complete listing of all QANTEL standard
instructions with their mnemonics, operation
codes, and variants is presented in Appendix D.

242. Data Handling Instructions
2-43. MOVE — MOV (OP CODE 6)
244. Move (MOV) is a two-address instruction that

transfers consecutive bytes from the A operand to the B
operand. The B operand field is determined by the Load
Address instruction (all two-address instructions contain
the Load Address instruction), and the A operand
address is taken from the Move instruction. During the
operation, the four bit length fields of the two individual
instructions (Load Address and Move) are combined
within the processor to form one eight-bit length field.
The four-bit length field of the Load Address instruction
becomes the high order four bits of the composite
eight-bit length field, while the four-bit length field of
the Move instruction becomes the low order four bits of
the eight-bit length field. This feature permits the
programmer to move any number of consecutive bytes,
up to 256, from the A operand to the B operand. An
example of a 255 byte transfer using the Move instruc-
tion is shown in figure 2-9. Figure 2-10 is a coding
example of this type of operation.

INDIRECT ADDRESS INDIRECT ADDRESS
CONTROL BIT CONTROL BIT
Pl I - I
B B F : F A A 6 } F
[y \ J
~ 0P\ \ LENGTH ~ 0P\ \LENGTH
B OPERAND OR CODE OF B A OPERAND OR ~ copE OF A
INDIRECT ADDRESS INDIRECT ADDRESS
" I\ - —
LOAD ADDRESS MOVE
Figure 2-9. Move Instruction Machine Language Format
PROGRAM 1.D.] PROGRAM
T LABEL NP-Code OPERANDS
12 345 6 7{8]9 1011 12]13141516 17 1819 20 21 2223 24 25 26 27 28 29 30 31 3233434
1 malv| | [z[R[3],a|s|s|; [t[5|T |
2 |
Figure 2-10. Move Instruction Coding Example

245. STORE ACCUMULATOR - STA (OP CODE 6)
2-46. Store Accumulator is. a single-address instruc- PROGRAM
tion which transfers consecutive bytes from the accu- —— — TS
mulator (implied B operand) to the A operand. The 1% a5 6 7]8l9 10711 12]1912 15 16 17 18 19 20
length field in the Store Accumulator instruction deter- A wIRlK 1o

mines the number of bytes transferred from the acc-
umulator, beginning with the least significant byte (main
memory position 15), and progressing toward the most
significant byte, until the A operand length is exhausted.
If the Store Accumulator instruction is preceded by a
Load Address instruction, the operation transfers data
from A to B, instead of from B to A. The operation code
for both Move and Store Accumulator is 6. Figure 2-11
shows the machine language format for Store Accu-
mulator and figure 2-12 is a sample of coding.

A OPERAND OR
INDIRECT . ADDRESS
INDIRECT . - :
ADDRESS —
CONTROL BIT A A 6 1 X
oP LENGTH
CODE OF A

Figure 2-11. Store Accumulator Instruction
Machine Language Format

2-47. LOAD — LD (OP CODE 5)

2-48. Load is either a single-address or two-address
instruction used to transfer consecutive bytes from the

]

Figure 2-12. Store Accumulator Instruction
Coding Example

A operand to the B operand. This instruction acts as a
clear and add instruction. When used as a single-address
instruction, the accumulator is loaded with the contents
of the A operand so that the least significant byte of the
A operand is transferred to location 15, the least
significant position of the accumulator. The operation
continues transferring each consecutive byte (from the
least significant to the most significant) until the A
operand length (as specified in the instruction) is
exhausted. If.the A operand length is less than the B
operand length, decimal zeroes are supplied as additional
A operand characters until the B operand length is
exhausted. If the A operand length is greater than the B
operand length, the number of bytes transferred is equal
to the B operand length. Figure 2-13 shows the machine
language format for the single-address Load instruction
and figure 2-14 is a coding example.

A OPERAND OR
INDIRECT ADDRESS

r

Al

INDIRECT

ADDRESS ~——] A A 5 : X

CONTROL BIT] N
oP \ LENGTH
CODE OF A

Figure 2-13. Single-Address Load Instruction
Machine Language Format

PROGRAM

LABEL OP-Code OPERANDS

12345 6 7|8}9 1011 12}1341415 16 17 18 19 20
LD AMT

Figure 2-14. Single-Address Load Instruction
Coding Example

2-49. In its two-address format, the Load instruction
is preceded by the Load Address instruction and permits
the transfer of consecutive bytes from the A operand to
any specified B operand. This amounts to “floating’ the
accumulator. The execution cycle of the Load instruc-
tion checks the units position of the A operand for sign.
The Branch On Minus instruction is used to check for a
negative sign. Figure 2-15 shows a coding example of the
two-address Load instruction.

2-50. EDIT - EDT (OP CODE 9, VARIANT 9)
2-51. Edit is a single-address or two-address instruc-
tion in which the B operand is edited under control of
the A operand mask, and is placed in the A operand.
That is, the data moves from B to A. In the two-address
Edit instruction, the length of the B operand is specified

INDIRECT ADDRESS

PROGRAM

LABEL NP-Code OPERANDS

12345 6 71819 1011 121134141516 17 1819 20
L AMT|; IT|O|T

Figure 2-15. Two-Address Load Instruction
Coding Example

in the Load Address instruction. Figure 2-16 shows the
machine language format of the two-address Edit in-
struction and figure 2-17 is a coding example. In the
single-address Edit instruction, the length is assumed to
be the accumulator length. Figure 2-18 shows the
machine language format of the single-address Edit
instruction and figure 2-19 shows a coding example of
the single-address Edit instruction.

2.52. The Edit operation performs a right to left scan
of the A operand in order to determine the most
significant character of the edit mask. This is done by
allowing the least significant position of the mask as a
sign indicator, then counting one position to the left for
each position of the data field. The count does not
include commas or periods. A left to right pass then
enters the data into the mask (A operand) field
according to the following rules:

1. The most significant character of the
mask is used as a fill character.

2. Significance is established by a non-
zero character in the B operand, or by
a zero in the mask.

3. If significance is not established, the

fill character replaces the mask char-
acter (including commas and periods).

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
I T T

B B F { X A A 9 : 9
A ~ 4 0P\ \LENGTH - v —

B OPERAND OR CODE OF B A OPERAND OR ogpE VARIANT

INDIRECT ADDRESS INDIRECT ADDRESS

I\ ___J
LOAD ADDRESS EDIT

Figure 2-16. Two-Address Edit Instruction Machine Language Format

29

PROGRAM |I.D. } PROGRAM
S TUEBE;'BL4 5 6 718 gP-]%o?;am 1‘2'I::|E5P‘lé?\1h735;8192021 222324 2526 27 28 29 30 31 323334
EDT| | JMS|K, |7; |DIRIT]
C
d
Mis K D.C MW, BB B |
DIAIT DC 1/11213|4|5
PR[T DA 18
MoV | MSIK|; |P|IR|T
ED|T | WPIRIT], |75 [DIAT

Figure 2-17. Two-Address Edit Instruction Coding Example

ADDRESS —-

A OPERAND OR
INDIRECT, ADDRESS
\
1
A A g I 9
1
0P VARIANT
CODE

Figure 2-18. Single-Address Edit Instruction

Machine Language Format

NP-Code OPERANDS

45 6 7189 1011 121134141516 17 1819 20

ElD|IT W|R|K

Figure 2-19. Single-Address Edit Instruction

Coding Example

If significance is established, the data
from the B operand is entered into the
mask, unless the mask is a period or
comma. If the mask character exam-
ined is a period or comma, it is left
untouched and the next mask char-
acter is examined. This continues until
neither a period or comma is en-
countered, and the data character can
be entered into the A operand field.

S. If the data field is negative, the least
significant character of the mask is
unchanged, and the sign of the least
significant digit is changed to positive.
If the data field is positive, the least
significant position of the mask is
replaced by a blank.

2-53. The following example of the Edit operation is
provided to further clarify the preceding edit rules.
Figure 2-17 shows the coding for the following example.

B operand (data) 0112345

A operand (mask)$H,bB0.p1
A operand result $1,123.45

NOTE

The execution cycle of the Edit instruction checks
the B operand for sign. A negative result can be
checked with the Branch On Minus instruction.

2-54. UNEDIT - UED (OP CODE 9, VARIANT A)

2-55. Unedit is a single-address or two-address in-
struction in which the A operand is changed from an
edited form to an unedited form, and placed in the B
operand. When used as a two-address instruction the
Load Address instruction indicates the address and

2-10

INDIRECT ADDRESS

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
y o~
I I
B B F} X A A 9; A
- ~ / 0P\ \LenemH™ v 7 oP\ \
B OPERAND OR cooé \ OF B A OPERAND OR cODE VARTANT
INDIRECT ADDRESS INDIRECT ADDRESS
|\ v __J_ v g
LOAD ADDRESS UNEDIT

Figure 2-20. Two-Address Unedit (UED) Instruction-Machine Language Format

length of the B operand. The length of the A operand
must be equal to the length of the B operand. When the
Unedit instruction is used in the single-address form, the
implied B operand is the accumulator with a length of
16 characters. Figure 2-20 shows the machine language
format of the two-address Unedit instruction and figure
2-21 is a coding example of UED. Figure 2-22 shows the
machine language format of the single-address Unedit
instruction and figure 2-23 is a coding example of UED.

A OPERAND OR
INDIRECT ADDRESS
r - N\

INDIRECT T

ADDRESS ———] A A 9 1 A

CONTROL BIT L IN
0P\ VARIANT
CODE

Figure 2-22. Single-Address Unedit Instruction
Machine Language Format

2-56. In the unedit operation, the B operand is
constructed by scanning the A operand from right to left
and moving all numeric characters to the B operand,

right justified. The B operand is filled to the left with
decimal zeroes. If the scan of the A operand encounters

"a minus (-) before the least significant digit, a minus

zone is placed over the low order byte of the B operand.

2-57. The following, of the Unedit operation is
provided to further clarify the preceding statements.
Figure 2-21 is a coding example of the following Unedit
operation.

B operand (miscellaneous data) XYZ1234Z$X
A operand (edited form) $1,123.45%

B operand result 0000112345
PROGRAM
LABEL OP-Code OPERANDS
12345 6 718)9 1011 12|13414151617 181920
U|eiD WIR|(K

Figure 2-23. Single-Address Unedit Instruction
Coding Example

PROGRAM |.D. | PROGRAM
RN 1LAZBE3L 45 6 718 .gPi%o%e 12113 SF;%F?%'\{?%S 19 20 21 2223 24 25 26 27 28 29 30 31 32 3334k
1 welp| | |olR|T|, [t |€]; ms|c
2
3 '
4 DIAT plc $(1],/1'23].45¥
5 MiSic A 1@
6

Figure 2-21. Two-Address Unedit (UED) Instruction Coding Example

2-11

INDIRECT ADDRESS INDIRECT ADDRESS
CONTROL BIT CONTROL BIT
/
T {
B B- F I X A A 9 1 &
1 l
\ N ~ 0P\ MLENGTH \ _ 0P\ \VARIANT
E OF MOVE . o CODE
B PR s cop A OPERAND OR
INDIRECT AD INDIRECT ADDRESS
L — ~/
LOAD ADDRESS MOVE NUMERIC
Figure 2-24. Two-Address Move Numeric (MN) Instruction Machine Language Format
NOTE A OPERAND OR
The execution cycle of the Unedit instruction INDFIzEggT ’ LSOO n
checks the B operand result for sign. Negative ADD! — A A 9 1 u
sign can be checked with the Branch On Minus CONTROL BIT ' L
instruction. oP VARIANT
CODE

2-58. MOVE NUMERIC - MN (OP CODE 9,
VARIANT 4)
2-59. Move Numeric is a single-address or two-address

instruction in which the low order four bits of each A
operand byte are transferred to the low order four bits
of the corresponding B operand bytes. In the two-
address instruction, the B operand is indicated by the
operand address of the Load Address instruction, and
the length of the move is controlled by the length field
of the Load Address instruction. Figure 2-24 shows the
machine language format of the two-address Move
Numeric instruction and figure 2-25 is a coding example.
In the single-address instruction, the implied B operand
is the accumulator, and the length is assumed to be the
maximum of 16. Figure 2-26 shows the machine
language format of the single-address Move Numeric
instruction and figure 2-27 is a coding example. During
the Move Numeric operation, the A operand and the
high order four bits of each byte in the B operand
remain unchanged.

Figure 2-26. Single-Address Nove Numeric (MN)
Instruction Machine Language Format

PROGRAM

LABEL NP-Code OPERANDS

12 345 6 7018]9 1011 12]13J1415 1617 1819 20
MmN LiTIR

Figure 2-27. Single-Address Move Numeric (MN)
Instruction Coding Example

2-60. MOVE ZONE - MZ (OP CODE 9,
VARIANT 5)
2-61. The Move Zone instruction performs a similar

function to that of the Move Numeric instruction,
except that the high order four bits of each A operand
byte are transferred to the high order four bits of the
corresponding B operand bytes. During the Move Zone

PROGRAM 1.D. | PROGRAM
R LABEL NP-Code OPERANDS
12 345 6 7]18}9 1011 12}1341415 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 32 3334
1 MiN LITIR], | |LITIR|-|3
2

Figure 2-25. Two-Address Move Numeric (MN) Instruction Coding Example

2-12

operation, the A operand and the low order four bits of
each byte in the B operand remain unchanged. The Move
Zone and Move Numeric instructions are both written in
the basic instruction format, but with different variants
in the least significant four bits of the instruction. Figure
2-28 and 2-29 show the machine language format and a
coding example of the two-address Move Zone instruc-
tion, and figures 2-30 and 2-31 show the machine
language format and a coding example of the single-
address Move Zone instruction.

2-62. SHIFT BIT LEFT - SBL (OP CODE 9,
VARIANT 7)
2-63. Shift Bit Left is a single-address instruction

used to shift the contents of a single byte (indicated by
the operand address), one bit to the left. Because the
instruction operates upon only one byte, no length
information is required or provided in the instruction.
During execution of the Shift Bit Left instruction, the
byte is internally checked for overflow and non-zero
conditions. Overflow may be checked with the Branch
On Overflow instruction, and non-zero results may be
checked with the Branch On Non-Zero instruction.
Figure 2-32 illustrates the results of the Shift Bit Left
operation. Figures 2-33 and 2-34 show the machine
language format and a coding example of the Shift Bit
Left instruction, respectively.

INDIRECT ADDRESS

A OPERAND OR
INDIRECT, ADDRESS
INDIRECT ’ \
ADDRESS —| T
CONTROL BIT A A s 1S
0P VARIANT
CODE

Figure 2-30. Single-Address Move Zone (MZ)
Instruction Machine Language Format

PROGRAM

LABEL NP-Code OPERANDS

12 345 6 7]18}9 1011 121131141516 17 1819 20
Mz LIT|R

Figure 2-31. Single-Address Move Zone (MZ)
Instruction Coding Example

2-64. SHIFT BIT RIGHT - SBR (OP CODE 9,
VARIANT 8)
2-65. Shift Bit Right is a single-address instruction

used to shift the contents of a single byte, one bit to the
right. As in the Shift Bit Left instruction, the operation

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
o~ l -~ l
B B F { X A A 9 } 5
\ ~ 2 oP\ \LENGTH S v - \
B OPERAND OR CODE\ OF MOVE A OPERAND OR cODE VARIANT
INDIRECT ADDRESS INDIRECT ADDRESS
— I\ ~ -
LOAD ADDRESS MOVE ZONE
Figure 2-28. Two-Address Move Zone (MZ) Instruction Machine Language Format
PROGRAM 1.D. | PROGRAM
R LABEL OP-Cod OPERANDS
12 345 6 7}8§9 1011 12{13]14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3334}
1 M| Z LITIR|, | 1];|L[T|R]+ !
2

Figure 2-29. Two-Address Move Zone (MZ) Instruction Coding Example

2-13

BYTE BEFORE SBL

BYTE AFTER SRIL

Figure 2-32. Shift Bit Left Operation

A OPERAND OR
INDIRECT, ADDRESS
INDIRECT </ ~
ADDRESS ~—] T
CONTROL BIT A A o 17
oP VARIANT
CODE

Figure 2-33. Shift Bit Left (SBL) Instruction
Machine Language Format

PROGRAM

BY1E BEFURE 5BR

BYTE AFTER SBR

Figure 2-35. Shift Bit Right Operation.

A OPERAND OR
INDIRECT ADDRESS
p
INDIRECT — T
ADDRESS A A 9 1 8
CONTROL BIT 1 N
0P\ VARIANT

CODE

Figure 2-36. Shift Bit Right (SBR) Instruction
Machine Language Format

LABEL OPERANDS
12345 6 7819 1011 12]13]141516 17 1819 20

S|B|L BIY[T

Figure 2-34. Shift Bit Left (SBL) Instruction
Coding Example

takes place upon only one byte, eliminating the need for
length information in the instruction. No overflow or
non-zero checks can be made for the Shift Bit Right
instruction. Figure 2-35 illustrates the results of the
Shift Bit Right operation. Figures 2-36 and 2-37 show
the machine language format and a coding example of
the Shift Bit Right instruction, respectively.

2-66. PACK - PAK (OP CODE 9, VARIANT B)

2-67. Pack is a single-address or two-address instruc-
tion which alters the A operand from zoned format to

INDIRECT ADDRESS

PROGRAM

TABEL TP Code OPERANDS

12 345 6 7)8f9 10711 12]131215 16 17 1819 20
S|B|R BiYIT

Figure 2-37. Shift Bit Right (SBR) Instruction
Coding Example
B Operand A Operand
x{x|xix|xix| |zi2|zis|zi6]+13

Operands Prior to Pack Operation

B Operand A Operand
0i2]516(31+| |zi2]zis|zi6[+13

Operands Subsequent to Pack Operation

Figure 2-38. Pack Operation

INDIRECT ADDRESS

CONTROL BIT - CONTROL BIT
4 : / l
B B Folox A A 318
\ v ~ P\ MLENGTH \ - ~ 0P\ N vARIANT
B OPERAND OR CODE OF A A OPERAND OR CODE
INDIRECT ADDRESS INDIRECT ADDRESS
- v~ —\ J
LOAD ADDRESS PACK

Figure 2-39. Two-Address Pack (PAK) Instruction Machine Language Format

PROGRAM 1.D. | PROGRAM

S YRR 5 6 o |ef 97O 12]1g1315 16 17 18 16 20 21 22 23 24 25 26 27 28 20 30 31 323334
1 PR QT|Y|, 3], TM|P
2

Figure 2-40. Two-Address Pack (PAK) Instruction Coding Example

packed format. The result of the Pack operation is
placed in the B operand. As shown in figure 2-38, the
zone bits of the least significant byte are interpreted as
the sign, and a high order zero is inserted when the
length of the unpacked field is an even number of bytes.
Figures 239 and 240 show the machine language
format and a coding example of the two-address Pack
instruction, respectively.

2-68. When used as a single-address instruction, the B
operand is the least significant 9 bytes of the accu-
mulator, and the packed result is placed in these
positions, beginning at the least significant position
(memory position 15). The length of the unpacked field
(A operand) in the single-address instruction is 16
positions. Figures 241 and 242 show the machine
language format and a coding example of the single-
address Pack instruction.

2-69. The length of the packed field, in either the
single-address or two-address format is equal to N2 +1,
where N is equal to the length of the unpacked field (A
operand) in the number of bytes.

A OPERAND OR
INDIRECT ADDRESS
INDIRECT r — T
ADDRESS —— A A 9 1 B
CONTROL BIT] N
P\ VARIANT
CODE

Figure 2-41. Single-Address Pack (PAK)
Instruction Machine Language Format

PROGRAM

LABEL 0OP-Code OPERANDS

12345 6 7]8}9 1011 12}13141516 17 1819 20
PIRIK | [QT)Y

Figure 2-42. Single-Address Pack (PAK)
Instruction Coding Example

2-15

NOTE

The Pack Operation transposes the high and low
order bits of the least significant byte of the
packed operand.

2.70. UNPACK - UPK (OP CODE 9, VARIANT C)
2-71. Unpack is a single-address or two-address in-
struction that alters the A operand from packed format
to zoned format. The result of the operation is placed in
the B operand. The length of the resulting unpacked
field (B operand), which must be specific in the Unpack
instruction, is equal to 2N — 1, where N is equal to the
length of the packed field (A operand) in the number of
bytes. In the single-address instruction, the length of the
packed field is nine bytes (most significant half byte
ignored). Figure 243 is an example of the Unpack
operation. Figures 244 and 245 show the machine
language format and a coding example of the two-
address Unpack instruction. Figures 2-46 and 2-47 show
the machine language format and a coding example of
the single-address Unpack instruction.,

B Operand
X|X|x|x|x

A Operand
x| [6]1]2]7]5]+]

XX

Operands Prior to Unpack Operation

B Operand
Z|1|Z|2{Z

A Operand
6112175

+

6 T|+]5

Operands Subsequent to Unpack Operation

Figure 2-43. Unpack Operation
2-72. TRANSLATE - TRN (OP CODE 8,
VARIANT 2)

2.-73. The Translate instruction is a seven-byte in-
struction that allows data stored in main memory to be
translated into another form, i.e., ASCII to EBCDIC.

INDIRECT ADDRESS

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
»~ P
’ T I
B B Fol X A A 9 } c
N— v Y] UP \ LENGTH \ v _J \
B_OPERAND OR CDDE\ OF B A OPERAND OR cOpE VARIANT
INDIRECT ADDRESS INDIRECT ADDRESS
. - —_ -)
LOAD ADDRESS UNPACK
Figure 2-44. Two-Address Unpack (UPK) Instruction Machine Language Format
PROGRAM |.D. | PROGRAM
N LABEL NP-Code OPERANDS
1 2 345 6 718}9 1011 12]13]1415 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 31 323334}
1 wpPlK| | [TIOIT|,!|5]; |O|PR
2
Figure 2-45. Two-Address Unpack (UPK) Instruction Coding Example

This instruction uses a translate table with a maximum
length of 256 bytes that is stored in memory at any PROGRAM
location divisible by 256, i.e., 256, 512, 1024, etc., as CABEL TP Code OPERANDS
part of the program. The specified data is replaced .in 12345 6 718§9 1011 12}13{1415 16 17 181920
memory with the appropriate translation from the ulp K TO|T
transiate table by adding the value of the input data to

the starting address of the translate table. Figure 2-48
shows the machine language format of the Translate
instruction and figure 2-49 illustrates a method for
coding this instruction.

A OPERAND OR
INDIRECT, ADDRESS
INDIRECT ’ - ‘
ADDRESS ~—
CONTROL BIT A A S 1 c
g'p VARTANT
CODE

Figure 2-46. Single-Address Unpack (UPK)
Machine Language Format

2-74. Arithmetic and Logical Instructions

2-75. DECIMAL ARITHMETIC INSTRUCTIONS -
GENERAL

2:76. Decimal instructions can be performed as

single-address or two-address instructions. In the single-
address instruction, no Load Address instruction is used,
and the accumulator becomes the implied B operand
with a fixed length of 16 positions. The decimal
instructions assume operand contents conforming to the

Figure 2-47. Single-Address Unpack (UPK)
Instruction Coding Example

ASCII internal format, and no check is made to insure
that operands have the correct format except in the case
of the divide exception. Operands for decimal operations
are signed numbers, with the controlling sign represented
by the high order four bits in the low order (least
significant) byte of each operand, as shown in the
following illustration. After treating the least significant
byte as a signed digit, the balance of the decimal
operation performs the indicated arithmetic on the low
order four bits (numeric digits) of each byte in the
operand field. All zone bits except those of the least
significant byte, are ignored during the operation. Figure
2-50 illustrates the decimal arithmetic operand field
format.

2-77. Decimal instruction operangs always have speci-
fied lengths and are addressed by the highest memory
position (least significant digit) Decimal instructions are
always signed operations that follow the rules of algebra,
and are performed with the assumption that the field is
unpacked with a sign over the least significant byte.

INDIRECT ADDRESS

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
/ /
]] ! | [} I T
oL | L gL F 1o At alaadalsi2fTT
| i I i i I !
\ v s o\ VM NOT . _ 8PE\ N
B OPERAND OR CODE ySED D OR CODE VARTANT
INDIRECT ADDRESS IN‘D\IEFE’?%DRESS TRANSLATE TABLE
ADDRESS (HIGH ORDER)
L. v I\ v _
LOAD ADDRESS TRANSLATE
LLL = LENGTH OF INPUT DATA
AAAA = ADDRESS OF INPUT DATA (LOW ORDER)
T =

MOST SIGNIFICANT 8 BITS OF TRANSLATE TABLE ADDRESS (HIGH ORDER),

LEAST SIGNIFICANT 8 BITS ARE ASSUMED TO BE 0G.

Figure 2-48. Translate (TRN) Instruction Machine Language Format

OPERAND FIELD

MSB IGNORED ZONE BITS
£ \ ——A——my

I
| I
RN

N MSIGN OF OPERAND
NUMERIC DIGITS

Figure 2-50. Decimal Arithmetic Operand Field

Decimal arithmetic uses the A operand as the first
operand, and the B operand as the second and resultant
operand. The resultant operand is extended to meet the
length requirements of multiply operation results.

2-78. ADD DECIMAL - ADD (OP CODE 1)

2-79. Add Decimal is a single-address or two-address

instruction in which the data found in the A operand is
decimally (and algebraically) added to the data in the B

A OPERAND OR
INDIRECT ADDRESS
r ~ N

INDIRECT T

ADDRESS A A 11 X

CONTROL BIT 1 N
P\ LENGTH
CODE

Figure 2-51. Single-Address Add Decimal (ADD)
Machine Language Format

PROGRAM

LABEL OP Code OPERANDS

12 345 6 7|89 1011 12|131215 16 17 1819 20
D AMT

Figure 2-52. Single-Address Add Decimal (ADD)
Instruction Coding Example

PROGRAM (.D. PROGRAM i
S TL/.;.BESL 45 6 718 gpi%o?f 12]13] 1%':;‘5531%[\{9818 19 2021222324 2526 27 28 29 30 31 32 33 3415
1 NAG $41\d
2 I WISIEIRT| T|AB|LIE
3 5[
4 cR/D DA 3¢ |
5 3 |
° TRWM | [cRD ;98 |
7 DC $01 TABLE KDDRESS
° 5 |
9 | - 1 RN

Figure 2-49. Translate (TRN) Instruction Coding Example

2-17

operand. The result of the ADD operation is placed in
the B operand. In the single-address instruction, the
impiied B operand is the accumuiator, and has a fixed
length of 16 positions. Figures 2-51 and 2-52 show the
machine language format and a coding example of the
single-address Add Decimal instruction. If the A operand
field is shorter than the B operand, zeroes are supplied in
the A operand until the B operand length has been
satisfied.

2-80. In the two-address instruction, the B operand
address and length is indicated in the preceding Load
Address instruction. Figures 2-53 and 2-54 show the
machine language format and a coding example of the
two-address Add Decimal instruction. As in the single-
address mode, zeroes are provided as the A operand, if
necessary, to obtain the same field length as the B
operand. A typical two-address Add Decimal is shown in
figure 2-54.

NOTE

If the specified length of A operand field is greater
than that of the B operand field, the operation is
terminated at the end of the B operand field with
the truncated results in the B operand field. The
truncated results reflect the sum of the numbers
considered, with any high order numbers in the A
operand ignored. The A operand is never altered in
a decimal instruction.

INDIRECT ADDRESS

2-81. The results of the Add Decimal operation are
also indicated by the internal switch settings described in
paragraph 2-30. The switch settings are examined by
means of the Branch On Overflow, Branch On Minus,
Branch Equal, or Branch On Non-Zero instructions. A
Branch On Overflow indicates that when the B operand
length was exhausted, carry into the next position was
pending. Branch On Minus indicates a negative result,
while Branch On Non-Zero indicates a result of some-
thing other than zero.

2-82. SUBTRACT DECIMAL - SBD (OP CODE 2)

2-83. The Subtract Decimal instruction shares all the
rules and characteristics of the previously described Add
Decimal instruction. The two instructions are differ-
entiated by the operation code. Figures 2-55 and 2-56
show the machine language format and a coding example
of the two-address Subtract Decimal instruction, and
figures 2-57 and 2-58 show the machine language format
and a coding example of the single-address instruction.

2-84. MULTIPLY DECIMAL - MPY (OP CODE 3)

2-85. Multiply Decimal is a single-address or two-
address instruction in which the B operand is multiplied
by the A operand and the result placed in the B operand.

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
» -~ '
i
B B F : 6 A A 1 : 4
N ~ / OpP LENGTH ™= ~ ~ 0P \LENGTH
B OPERAND OR coDE\ \ OF B A OPERAND OR oooé OF A
INDIRECT ADDRESS . INDIRECT ADDRESS
\ v - ~ —
LOAD ADDRESS ADD DECIMAL
Figure 2-53. Two-Address Add Decimal (ADD) Instruction Machine Language Format
PROGRAM |.D. | PROGRAM
I LABEL NP-Code OPERANDS
12 345 6 7]8}9 1011 12]1311415 16 17 1819 2021 2223 24 25 26 27 28 29 30 31 32 3334
: Ap|o], T4l 7o T, Te Hw
2 1 T
l

Figure 2-54. Two-Address Add Decimal (ADD) Instruction Coding Example

2-18

INDIRECT ADDRESS INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
Ve y -
| |
B B F { X A A 2 } X
s ~ < 0P\ \LENGTHS v 7 oP\ \LENGTH
B_OPERAND OR cooé \ OF B A OPERAND OR cooé OF A
INDIRECT ADDRESS INDIRECT ADDRESS
o __J\, ___J
LOAD ADDRESS SUBTRACT DECIMAL
Figure 2-55.

Two-Address Subtract Decimal (SBD) Instruction Machine Language Format

2-86. As in the Add Decimal instruction, internal
switch settings may be examined to determine the

PROGRAM PROGRAM
LABEL NP-Code OPERANDS LABEL OP-Code OPERANDS
12345 6 7|8)9 1071112131215 16171819 20 12345 6 7]8}9 1011 12]131415 16 17 1819 20
S BD AMT|; TO|T S/B|D AlmT
Figure 2-56. Two-Address Subtract Decimal (SBD) Figure 2-58. Single-Address Subtract Decimal (SBD)
Instruction Coding Example Instruction Coding Example
A CPERAND OR results of the' Multlgly operation by using the appro-
INDIRECT ABDRESS priate Branch instruction.
INDIRECT r » T
ADDRESS A A 21 X 2-87. DIVIDE DECIMAL — DIV (OP CODE 4)
CONTROL BIT 1 N
0P\ LENGTH
CODE 2-88. Divide Decimal is a single-address or two-

address instruction in which the B operand is divided by
the A operand with the algebraic results going to the B
operand. In the two address instruction, the length of
the B operand is indicated in the preceding Load

Figure 2-57. Single-Address Subtract Decimal (SBD)
Instruction Machine Language Format

In the two-address instruction, the length of the B Address instruction, while the length of the A operand is
operand is indicated in the Load Address instruction, indicated in the Divide Decimal instruction. Figures 2-61
while the length of the A operand is indicated in the and 2-62 show the machine language format and a
Multiply Decimal instruction. During the operation, the coding example of the two-address Divide Decimal
B operand is extended to a length equal to the sum of instruction. In the single-address instruction, the accu-
the A and B operand lengths. Extension of the B mulator becomes the implied B operand. After the
operand takes place in the high order positions. Figures division, the B operand field contains a signed quotient
2-59 and 2-60 show the machine language format and a and remainder. The remainder is equal in length to the
coding example of the two-address Multiply Decimal divisor and carries the sign of the divident. Figures 2-63
instruction. and 2-64 show the machine language format and a

coding example of the single-address Divide Decimal
NOTE instruction.

The single-address Multiply Decimal instruction
should not be used.

NOTE

The dividend field must contain sufficient leading
zeroes to prevent the occurrence of the divide
exception.

2-19

INDIRECT ADDRESS INDIRECT ADDRESS

CONTROL BIT CONTROL RBRIT
/
: T
B B F : 3 A A 3 | 5
1
- v s 0P\ MLENGTH | g ~ 0P\ N LENGTH
B OPERAND OR CODE OF B A OPERAND OR CODE OF A
INDIRECT ADDRESS INDIRECT ADDRESS
. ~ o\ o
LOAD ADDRESS MULTIPLY DECIMAL
Figure 2-59.

Two-Address Multiply Decimal (MPY) Instruction Machine Language Format

PROGRAM 1.D. | PROGRAM

[LABEL NP-Code OPERANDS
R 12 345 6 7]18§9 1011 12]131415 16 17 1819 20 21 2223 24 25 26 27 28 29 30 31 32 3334}

1 § eyl | |HRs|, 13 |RIAT], |5

Figure 2-60. Two-Address Multiply Decimal (MPY) Instruction Coding Example

INDIRECT ADDRESS INDIRECT ADDRESS
CONTROL BIT CONTROL BIT
-~ o
| |
B B Flox A A R
- v / oP\ \LENGTH - v — 0P\ \LENGTH
B OPERAND OR CODE\ \ OF B A OPERAND OR cooé “OF A
INDIRECT ADDRESS INDIRECT ADDRESS
\- ~ e \ -~ -
LOAD ADDRESS DIVIDE DECIMAL
Figure 2-61

Two-Address Divide Decimal (DIV) Instruction Machine Language Format

PROGRAM

LABEL NP-Code OPERANDS
12345 6 71819 1011 121131141516 17 1819 20

l&ﬂﬂdlv oT|Y|; lalmT

Figure 2-62. Two-Address Divide Decimal (DIV)
Instruction Machine Language Format

A OPERAND OR
INDIRECT ADDRESS
r N

INDIRECT T

ADDRESS A A Lo1oX

CONTROL BIT 1 N
0P\ LENGTH
CODE

Figure 2-63. Single-Address Divide Decimal (DIV)
Instruction Machine Language Format

PROGRAM

LABEL OP-Code OPERANDS

172 345 6 7]8f9 1011 12}131215 16 17 1819 20
plLV QT|Y

Figure 2-64. Single-Address Divide Decimal (DIV)
Instruction Coding Example

2-89. During the divide operation, a trial subtraction
is performed (using absolute values) of the divisor from
the most significant positions of the dividend. The result
of the subtraction should show the tested dividend
positions to be less (in value) than the divisor. If the
tested dividend positions are not less than the divisor,
the divide exception occurs. Placing leading zeroes in the
dividend is the simplest method of avoiding the divide
exception. Divide exception also occurs when the length
field of the divisor is greater than or equal to the length
of the dividend.

2-90. If the divide exception is noted during the
Divide Decimal operation, the overflow switch (switch
one) described in paragraph 2-33 is set to the ““1” state,
the remainder of the divide operation is suppressed and
both operands are left unaltered. Successful and un-

INDIRECT ADDRESS

successful divide formats are snown in the following
examples.

323456
022

00323456

= EXCEPTION = SUCCESSFUL

2:91. ADD BINARY - ADB (OP CODE D)

2-92. Add Binary is a single-address or two-address
instruction that is similar to the Add Decimal instruc-
tion. In the two-address Add Binary instruction the data
stored at the A operand is binary added to the data
stored in the B operand and the result of the operation is
stored in the B operand. The maximum length for each
operand field is 16 characters (bytes). Overflow can be
checked by means of the Branch On Overflow instruc-
tion. Figures 2-65 and 2-66 show the machine language
format and a coding example of the two-address Add
Binary instruction. In the single-address instruction the
accumulator becomes the implied B operand. The length
of the implied B operand is assumed to be 16 characters
and the result of the operation is stored in the
accumulator. Figures 2-67 and 2-68 show the machine
language format and a coding example of the single-
address Add Binary instruction. Binary numbers in the
QANTEL/ANSWER Processor System are unsigned and
arithmetic is performed using absolute numbers.

PROGRAM

LABEL OPERANDS
12 345 6 71819 1011 1211341415 16 17 1819 20

RDB| | le[NT];[T/B/T

Figure 2-66. Two-Address Add Binary (ADB)
Instruction Coding Example

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
/
. T
l |
- v / UP\ \ LENGTH | - o 0P\ N LENGTH
B OPERAND OR CODE OF B A OPERAND OR CODE OF A
INDIRECT ADDRESS INDIRECT ADDRESS
o v o\ _J
LOAD ADBRESS ADD BINARY
Figure 2-65

Two-Address Add Binary (ADB) Instruction Machine Language Format

221

A OPERAND OR

INDIRECT ADDRESS
r N
INDIRECT T
ADDRESS A A D | X
CONTROL BIT 1 N
P\ LENGTH
CODE

Figure 2-67. Single-Address Add Binary (ADB)
Instruction Machine Language Format

PROGRAM

LABEL OPERANDS
12345 6 71849 1011 12113141516 17 1819 20

A DB CIN|T

Figure 2-68. Single-Address Add Binary (ADB)
Instruction Coding Example

2-93. SUBTRACT BINARY - SBB (OP CODE E)

2-94. Subtract Binary is a single-address or two-
address instruction that is similar to the Subtract
Decimal instruction. In the two-address Subtract Binary
instruction the data stored in the A operand is com-
plemented and added to the data stored in the B
operand. The result of the operation is stored in the B

operand. Both operands in the two-address instruction
require length indicators if the length differs from the
implied length of the operand and the maximum length
of each is 16 characters. Figures 2-69 and 2-70 show the
machine language format and a coding example of the
two-address Subtract Binary instruction. In the single-
address instruction the data stored in the A operand is
complemented and added to the implied B operand, the
accumulator. The result of the operation is stored in the
accumulator. The length of the implied B operand is
assumed to be length of the accumulator, 16 characters.
If the A operand is less than the length of the
accumulator, hexadecimal zeroes are supplied in the high
order positions of the A operand. Figures 2-71 and 2-72
show the machine language format and a coding example
of the single-address Subtract Binary instruction.

A OPERAND OR
INDIRECT, ADDRESS
INDIRECT / \
ADDRESS — T
CONTROL BIT A A E1X
N\
0P LENGTH

CODE

Figure 2-71. Single-Address Subtract Binary (SBR)
Instruction Machine Language Format

PROGRAM PROGRAM

LABEL 0OP-Code OPERANDS LABEL NP-Code OPERANDS

12345 6 718§9 1011 12]13]141516 17 1819 20 12 345 6 7|89 1011 12}13141516 17 1819 20
B8R [GlL|e]; TNV SiBB T|O|T

Figure 2-70. Two-Address Subtract Binary (SBB)
Instruction Coding Format

INDIRECT ADDRESS

Figure 2-72. Single-Address Subtract Binary (SBB)
Instruction coding Example

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
et -~
|]
B B F Il X A A E | X
| 3
— ~ / 0P\ \LENGTH = v ~ 0P\ \LENGTH
B_OPERAND OR CDDE\ \ OF B A OPERAND OR CUDE\ OF A
INDIRECT ADDRESS INDIRECT ADDRESS
| v _____ > _J
LOAD ADDRESS SUBTRACT BINARY
Figure 2-69.

Two-Address Subtract Binary (SBB) Instruction Machine Language Format

2-22

2-95. AND - AND (OP CODE 9, VARIANT) TABLE 2-3. RULES FOR AND OPERATION

BIT IN BIT IN

2-96. And is a single-address or two-address instruc-
A OPERAND B OPERAND | BIT IN RESULT

tion in which the bits of the A operand are logically

ANDed, bit by bit, with the corresponding bits of the B 0 0 0
operand. In the two-address format, both operand fields 1 0 0
have the implied length of one (1) position (byte), and if 0 1 0
the instruction is in the single-address format, the least 1 1 1
significant position (highest memory location — byte 15)
of the accumulator becomes the B operand. Figures 2-73
and 2-74 show the machine language format and a A OPERAND OR
IND
coding example of the two-address AND instruction, and INDIRECT / SECTADDRESS n
figures 2-75 and 2-76 show the machine language format égﬁ.?ggﬁ BIT | A A s 1 0
and a coding example of the single-address instruction. '
opP VARIANT
2-97. During the AND operation, the bits of the A CODE
and B operands are combined according to the rules Figure 2-75. Single-Address AND Instruction
shown in table 2-3, with the result of the operation Machine Language Format
going to the B operand. The A operand remains
unaltered. The result of the operation can be checked
with the Branch On Non-Zero instruction, and the
branch will be taken if a bit match occurs. PROGRAM
LABEL 0OP-Code OPERANDS
12345 6 71819 1011 12]113]141516 17 1819 20
AIN[D BTl
PROGRAM
LABEL OP-Code OPERANDS
12335 6 71819 1071 1213414151617 1819 20 Figure 2-76. Single-Address AND Instruction
RIND NIg|I ; IN§|2 Coding Example
2-98. OR - OR (OP CODE 9, VARIANT 1)
. . 2-99. The OR instruction is similar to the AND
Figure 2-74. Two-Address AND Instruction instruction, except that different variants are used and
Coding Example different rules are applied during the operation. The
rules used during the OR operation are shown in table
INDIRECT ADDRESS INDIRECT ADDRESS
CONTROL BIT CONTROL BIT
/ 4
T 1
B B F ; 0 A A 9 { 0
N . ~ 0P\ \ ~ OP\ N VARIANT
B OPERAND OR CODE A OPERAND OR CODE
INDIRECT ADDRESS INDIRECT ADDRESS
— I\ —
LOAD ADDRESS AND

Figure 2-73. Two-Address AND Instruction Machine Language Format

2-23

2-4. Figures 2-77 and 2-78 show the machine language
format and a coding exampie of the two-address OR
instruction, and figures 2-79 and 2-80 show the machine
language format and a coding example of the single-

address instruction.

TABLE 2-4. RULES FOR OR OPERATION

BIT IN BIT IN
A OPERAND B OPERAND | BIT IN RESULT
0 0 0
1 0 0
0 1 1
1 1 1

2-100. EXCLUSIVE OR - XOR (OP CODE 9,
VARIANT 2)

2-101. The Exclusive OR instruction is similar to the
AND instruction, except that different variants are used
and different rules are applied during the operation. The
rules used during the Exclusive OR operation are shown
in table 2-5. Figure 2-81 and 2-82 show the machine
language format and a coding example of the two-
address XOR instruction, and figures 2-83 and 2-84
show the machine language format and a coding example
of the single-address instruction.

PROGRAM

LABEL NOP-Code OPERANDS

12 345 6 7]18}9 1011 12]13141516 17 1819 20
OR LITiH]; uT2

Figure 2-78. Two-Address OR Instruction
Coding Example

INDIRECT ADDRESS

TABLE 2-5.

RULES FOR EXCLUSIVE OR (XOR) OPERATION
BIT IN BIT IN
A OPERAND B OPERAND | BIT IN RESULT
0 0 0
1 0 1
0 1 1
1 1 0
A OPERAND OR
INDIRECT, ADDRESS
e .
ADD —
CONTROL BIT A A o 11
N
oP VARIANT
CODE

Figure 2-79. Single-Address OR Instruction
Machine Language Format

PROGRAM

LABEL NP-Code OPERANDS

12345 6 7|89 1011 12]1314151617 1819 20
0R B(T| I

Figure 2-80. Single-Address OR Instruction
Coding Example

2-102. Decision and Control Instructions

2-103. BRANCH ON OVERFLOW - BOV (OP CODE
A, VARIANT 1)

2-104. Branch On Overflow is a single-address instruc-

tion used to test the result of the previous arithmetic

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
/ : 4 l
|
\ . s P\ \ _ 0P\ N\ VARIANT
v CODE
B OPERAND OR CODE A OPERAND OR

INDIRECT ADDRESS

INDIRECT ADDRESS

LOAD ADDRESS

OR

Figure 2-77. Two-Address OR Instruction Machine Language Format

INDIRECT ADDRESS

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
4 /
! |
B B F I o A A . 9 1 2
1 1
N - ~ P\ \ o 0PN\ N yARIANT
CODE - CODE
[NDINECY ADORESS A OPERAND OR
INDIRECT ADDRESS
\ v I\ |
LOAD ADDRESS EXCLUSIVE OR
Figure 2-81.
Two-Address Exclusive OR (XOR) Instruction Machine Language Format
A OPERAND OR
PROGRAM INDIRECT ADDRESS
TABEL P Code OPERANDS INDIRECT - T
12345 6 7]|8}9 1011 12]131415 16 17 1819 20 ADDRESS ——1 A A A1l
p— CONTROL BIT L N
X|0|R Y|A[l|; [VIR|2 ngE\ VARIANT

Figure 2-82. Two-Address Exclusive OR (XOR)
Instruction Coding Example

A OPERAND OR
INDIRECT, ADDRESS
INDIRECT — ~
ADDRESS —
CONTROL BIT A A o 12
0P VARIANT
CODE

Figure 2-83. Single-Address Exclusive OR (XOR)
Instruction Machine Langnage Format

PROGRAM

LABEL OP-Code OPERANDS

12345 6 7 8{9 10 11 12}13}14 15 16 17 18 19 20
X|0O|R L

Figure 2-84. Single-Address Exclusive OR
(XOR) Instruction Coding Example

operation for an overflow (carry) condition. An over-
flow condition is indicated within the processor by the
setting of switch one as described in paragraph 2-33.
When switch one is set to the “1” state by a carry in the
result of the previous operation, the current program
address is replaced by the branch address given in the
Branch On Overflow instruction. Figure 2-85 shows the
machine language format of the Branch On Overflow
instruction and figure 2-86 is a coding example.

2-25

Figure 2-85. Branch On Overflow (BOV)
Instruction Machine Language Format

PROGRAM

LABEL OP-Code OPERANDS

12345 6 7}8}9 1011 12]134141516 17 1819 20
ADID| | |[AMT]; |@T|Y|
BOV| | [EIRIm
SiBID| | [TIA[X|; |AMT

Figure 2-86. Branch On Overflow (BOV)
Instruction Coding Example

2-105. BRANCH ON MINUS - BMI OR BGT (OP
CODE A, VARIANT ?2)
2-106. Branch On Minus (Branch Greater Than) is a

single-address instruction used to test the result of the
previous arithmetic operation for a negative result.
Negative results are indicated within the processor by
the setting of switch two as described in paragraph 2-35.
When switch two is set to the “1” state, the current
program address is replaced by the branch address given
in the Branch On Minus instruction. Figure 2-87 shows
the machine language format of the Branch On Minus
instruction and figure 2-88 is a coding example.

A OPERAND OR

INDIRECT, ADDRESS

INDIRECT , \

ADDRESS — T

CONTROL BIT A A AL 2
OP VARIANT
CODE

Figure 2-87. Branch On Minus (BMI) Instruction
Machine Language Format

A OPERAND OR
INDIRECT, ADDRESS
INDIRECT ’
ADDRESS —! T
CONTROL BIT A A A LS
0P VARIANT
CODE

Figure 2-89. Branch On Non-Zero (BNZ) Instruction
Machine Language Format

PROGRAM PROGRAM

LABEL OP-Code OPERANDS LABEL OP-Code OPERANDS

12 345 6 71819 1011 12]1341415 16 17 1819 20 12 345 6 71819 1011 121134141516 17 1819 20
M Py AR|; AB S|B|D CINT|; |TIO|T
Bim|1 T|Y|P B|N|(Z RIP|IT
s/8|D AlC|; |A|B A/D|D O|N[E|; |C[TIR

Figure 2-88. Branch On Minus (BMI)
Instruction Coding Example

2-107. BRANCH ON NON-ZERO - BNZ OR BNE
(OP CODE A, VARIANT 3)

2-108. Branch On Non-Zero (Branch Not Equal) is a
single-address instruction used to test the result of the
previous arithmetic, logical, or editing instruction for a
result of something other than zero. A non-zero result is
indicated within the processor by setting switch three to
the *“1" state as described in paragraph 2-37. When
switch three is set, the current program address is
replaced by the branch address given in the Branch On
Non-Zero instruction. Figure 2-89 shows the machine
language format of the Branch On Non-Zero instruction
and figure 2-90 is a coding example.

2-109. BRANCH EQUAL - BEQ OR BZ (OP CODE
A, VARIANT 4)

2-110. Branch Equal (Branch On Zero) is a single-
address instruction used to test the result of the previous
operation for an equal (zero) result. As described in
paragraph 2-39, the result of the compare operation
when the operands are equal produces a zero result. The
Branch Equal instruction checks the setting of switch
three for the “0” state (indicating a zero result), and
when true, replaces the current program address with the
branch address given in the Branch Equal instruction.

2-26

Figure 2-90. Branch On Non-Zero (BNZ)
Instruction Coding Example

A OPERAND OR
INDIRECT ADDRESS
INDIRECT - ~ :
ADDRESS —|
CONTROL BIT A A AL E
QP VARIANT
CODE

Figure 291. Branch Equal (BEQ) Instruction
Machine Language Format

PROGRAM
LABEL 0OP-Code OPERANDS
12345 6 71819 1011 12[13114151617 181920
cD Al R2
BE|Q]T|R
AD|D O|N|E|;|R|2

Figure 2-92. Branch Equal (BEQ)
Instruction Coding Example

Figure 2-91 shows the machine language format of the
Branch Equal instruction and figure 2-92 is a coding
example.

2-111. BRANCH NOT MINUS - BNM OR BLE (OP

CODE A, VARIANT 5)

2-112. Branch Not Minus (Branch Less Than or Equal)
is a single-address instruction used to test the result of
the previous arithmetic/compare or edit operation for a
positive (not minus) condition. As described in para-
graph 2-35, the not minus condition is indicated within
the processor by the checking of switch two, the minus
switch, for a “0” state, indicating a not minus or positive
result. When the switch two is in the “0’ state, the
current address is replaced by the branch address given
in the Branch Not Minus instruction. Figure 2-93 shows
the machine language format of the Branch Not Minus
instruction and figure 2-94 shows a coding example.

NOTE

This instruction is not presently contained in the
QANTEL/ANSWER Processor System and will be
implemented at a later date.

A OPERAND OR
INDIRECT, ADDRESS
Dt —
ADD —]
CONTROL BIT A A AL S
N\
oP VARTANT

CODE

Figure 2-93. Branch Not Minus (BNM) Instruction
Machine Language Format

PROGRAM

550 s 6 7|89 1T 12]id 1215 18 17 18 19 20
S|BID T|o|1|;|T|o|2
BINM CIN[T
AD|D FINT|; [T|o|2

Figure 2-94. Branch Not Minus (BNM)
Instruction Coding Example

2-113. UNCONDITIONAL BRANCH - BRU (OP

CODE A, VARIANT 7)

2-114. Unconditional Branch is a single-address in-
struction used to replace the current program address
with the branch address given in the instruction. No

227

internal processor conditions are checked to complete
this operation. Figure 2-95 shows the machine language
format of the Unconditional Branch (BRU) instruction
and figure 2-96 is a coding example.

2-115. HALT AND BRANCH - HLT (OP CODE A,
VARIANT 8)

2-116. Halt and Branch is a single-address instruction
which stops the processor and program immediately
upon execution. Pressing the START button on the
processor control panel (power supply panel or Pro-
grammer’s Control Console) causes the program to
branch to the address given in the Halt and Branch
instruction. Figure 2-97 shows the machine language
format for the Halt and Branch instruction and figure
2-98 is a coding example.

A OPERAND OR
INDIRECT ADDRESS
INDIRECT / =~ ,
ADDRESS —
CONTROL BIT A A AL T
0P VARIANT
CODE

Figure 2-95. Unconditional Branch (BRU) Instruction
Machine Language Format

PROGRAM

LABEL 0OP-Code OPERANDS

12345 6 7 8{9 10 11 12]13]14 15 16 17 18 19 20
CD Alll; A2
BIN|Z RIT
BIRU | [S[TIR

Figure 2-96. Unconditional Branch (BRU)
Instruction Coding Example

2-117. BRANCH AND LINK - BLI (OP CODE A,

VARIANT 9)

2-118. Branch and Link is a single-address instruction
which stores the current program address and uncondi-
tionally branches. Figure 2-99 shows the machine
language format and figure 2-100 is a coding example.
The link address (current program address) is stored
beginning at the address given in the Branch and Link
instruction. Subsequently, one byte is skipped and the

A OPERAND OR
_____ _ INDIRECT, ADDRESS
IW§PE(§lS4| r A T
ADD —
CONTROL BIT A A AL 8
g]p VARTANT
CODE

Figure 2-97. Halt and Branch (HLT) Instruction
Machine Language Format

A OPERAND OR
INDIRECT ADDRESS

L4 -
ADDRESS T
CONTROL BIT A A At K
gtp VARIANT
CODE

Figure 2-99. Branch and Link (BLI) Instruction
Machine Language Format

PROGRAM PROGRAM
LABEL OP-Code OPERANDS LABEL NP-Code OPERANDS
12 345 6 7]8}9 10711 1213141516 17 1819 20 12 345 6 718l9 1011 12]13]1415 16 17 1819 20
HLT| | WRT BLT WRT
RIE(T s|e|b| | |AB]; A1
Figure. 2-98. Halt and Branch (HLT)

Instruction Coding Example

next instruction is taken from the next memory posi-
tion. For example, if the address in the instruction is
1000, the link address is stored in 1000 and 1001,
position 1002 is skipped, and the next instruction is
taken from position 1003. Position 1002 is left for the
programmer supplied Unconditional Branch operation
code (hexadecimal A7). For example:

0100 1000A9 Branch and Link
0130 Next instruction

Before BLI After BLI
1000 XXXXA7 0130A7

NOTE

A7 is the operation code for Unconditional
Branch. Therefore, to return to the original “next”
address, the programmer unconditionally branches
back to location 1000. This in turn, is an
unconditional branch back to the “next” instruc-
tion at location 0103.

2-119. TEST BIT - TBT (OP CODE 9, VARIANT 3)

2-120. Test Bit is a single-address or two-address
instruction. In the two-address instruction, the bits of
the A operand are checked against the corresponding
bits of the B operand. The bits are checked to determine
if any corresponding two bits in the two operands are
both in the state. In this instruction, neither
operand is altered and both operands have an implied
length of one (1) position (byte). Figure 2-101 shows

“ln

228

Figure 2-100. Branch and Link (BLI)
Instruction Coding Example

the machine language format of the two-address instruc-
tion and figure 2-102 is a coding example. If the Test Bit
instruction is a single-address instruction, the least
significant position (highest memory location — byte 15)
of the accumulator becomes the B operand. Figure
2-103 shows the single-address instruction machine
language format and figure 2-104 is a coding example.

2-121. If none of the corresponding bits are both in
the ““1” state, the result of the operation is zero (can be
checked using the Branch Equal instruction). Con-
versely, if any of the corresponding bits are both in the
“1” state, the result of the operation is something other
than zero (non-zero), and can be checked by using the
Branch On Non-Zero instruction.

2-122. COMPARE DECIMAL - CD (OP CODE 9,
VARIANT 6)

2-123. Cempare Decimal is either a single-address or
two-address instruction used to compare the signed
decimal values of the A and B operands, without altering
either operand. The results of the Compare Decimal
operation are indicated by internal switch settings that
can be examined by the Branch On Minus, Branch On
Non-Zero, and Branch Equal instructions. Because the
compare instruction is actually a subtraction of the A
operand from the B operand, a negative result indicates
that the B operand is smaller than the A operand. This
type of result can be checked with the Branch On Minus

INDIRECT ADDRESS

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
T 2 T
B B F } 0 A A 9 1 3
|
. . ~ P\ \ . o 0P\ N VARIANT
B OPERAND OR COE A OPERAND OR oo
INDIRECT ADDRESS INDIRECT ADDRESS
— - A)
LOAD ADDRESS TEST BIT
Figure 2-101.
Two-Address Test Bit (TBT) Instruction Machine Language Format
A OPERAND OR
PROGRAM INDIRECT ADDRESS
LABEL 0P Code OPERANDS pIRECT T z T
12 345 6 7]|8}9 10711 12]131215 16 17 1819 20 CONTROL. BIT | A A 9 1 3
1
T|B[T BT|l|;B[T|2 N\
QP VARIANT
CODE

Figure 2-102. Two-Address Test Bit (TBT)
Instruction Coding Example

instruction. If the compared operands are egqual; the
result of the internal subtraction would be zero, and can

Figure 2-103. Single-Address Test Bit (TBT)
Instruction Machine Language Format

be checked with the Branch Equal instruction. PROGRAM

LABEL NP-Code OPERANDS
2-124. In the Compare Decimal instruction, both 172345 6 7]|8le 1011 1213141516 17 1819 20
operand fields must be of equal length or the overflow TIBT AcCiuk
switch (switch 1) will be set. Figure 2-105 shows the
two-address machine language format and figure 2-106 is

a coding example. In the single-address format, the
implied B operand field is the 16 accumulator positions,

INDIRECT ADDRESS

Figure 2-104. Single-Address Test Bit (TBT)
Instruction Coding Example

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
1 / [

B B F } X A A 9 } 5
\ y s 0P\ VLENGTH \ . o 0P\ N VARIANT

B OPERAND OR CODE A OPERAND OR CODE

INDIRECT ADDRESS INDIRECY ADDRESS
|\ v AL -y
LOAD ADDRESS COMPARE DECIMAL
Figure 2-105.

Twe-Address Compare Decimal (CD) Instruction Machine Language Format

2-29

PROGRAM

LABEL 0OP-Code OPERANDS

12345 6 7]849 1011 1213414151617 181920
CiD AMT|,; T|O|P

Figure 2-106. Two-Address Compare Decimal (CD)
Instruction Coding Example

and the A operand field is 16 memory positions
beginning at the memory address (least significant byte)
given in the instructions. Figure 2-107 shows the
machine language format of the single-address instruc-
tion and figure 2-108 is a coding example.

2-125. COMPARE LOGICAL - CMP (OP CODE 7)
2-126. Compare Logical is a single-address or two-
address instruction. In the two-address instruction the A
and B operands are compared in a bit-by-bit fashion.
Figure 2-109 shows the machine language format of the
two-address instruction and figure 2-110 is a coding
example. In the single-address format, the B operand is
the 16 accumulator positions. The length given in the
single-address instruction is the length of the A operand.
If this length is less than 16 (length of the accumulator),

A OPERAND OR

INDIRECT, ADDRESS
INDIRECT ;
ADDRESS — T
CONTROL BIT A A o 16
0P VARIANT
CODE

Figure 2-107. Single-Address Compare Decimal (CD)
Instruction Machine Language Format

PROGRAM

CABEL P Code OPERANDS

12 345 6 7)8}9 1011 12]13121516 17 1819 20
an) AMNT

Figure 2-108. Single-Address Compare Decimal (CD)
Instruction Coding Example

A OPERAND. OR
INDIRECT ADDRESS

’

-

INDIRECT

ADDRESS ———| A A 7 1 X
CONTROL BIT I N
0P\ LENGTH
CODE

Figure 2-111. Single-Address Compare Logical (CMP)
Instruction Machine Language Format

PROGRAM PROGRAM

LABEL NOP-Code OPERANDS LABEL OP-Code OPERANDS

12 345 6 718}9 1011 12]13}141516 17 1819 20 12345 6 7|8}9 1011 12]13414151617 181920
Pl | |0]T|Y]; Lim[T Pl | TNV

Figure 2-110. Two-Address Compare Logical (CMP)
Instruction Coding Example

INDIRECT ADDRESS

Figure 2-112. Single-Address Compare Logical
(CMP) Instruction Coding Example

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
£ T £ 1
B B F { X A A 7 { X
N - - OP\ \ LENGTH \) ggé\ \ LENGTH
M C OF A
B OPERAD OR CODE OF B A OPERAND OR
INDIRECT ADD INDIRECT ADDRESS
W N\ o/
LOAD ADDRESS COMPARE LOGICAL

Figure 2-109.
Two-Address Compare Logical (CMP) Instruction Machine Language Format

2-30

leading logical zeroes are used in the operation to
equalize the length of the operands and facilitate the
compare. Leading zeroes are also supplied in the
two-address instruction under the same circumstances.
Figure 2-111 shows the machine language format of the
single-address instruction and figure 2-112 is a coding
example. The results of the Compare Logical operation
can be checked by means of the branch instructions in a
manner similar to that described for the preceding
Compare Decimal instruction.

2-127. RETURN FROM INTERRUPT — RTI
(OP CODE 9, VARIANT F)

2-128. Return From Interrupt is a single-address in-
struction at the end of the interrupt routine to bring
control back to the regular program address next in
sequence before the interrupt occurred. During the
Return From Interrupt operation, settings of switches
one, two, and three are restored to their former settings,
the interrupt inhibit bit is reset, and the program is
returned to the address stored in memory positions 164
and 17,. (A detailed description of the Interrupt
Feature and its requirements is presented in paragraph
2-25). An example of a typical Return From Interrupt
instruction in machine language format is shown in
figure 2-113 and figure 2-114 is a coding example.

NOTE

Because all QANTEL/ANSWER Processor System
single-address instructions are three bytes in
length, the Return From Interrupt instruction is
also three bytes in length. However, only the
operation code and variant (third byte) are recog-
nized during the operation. As a result, any type
of data may be used to fill the first two bytes as
long as the Indirect Address control bit is 0.

2-129. NO OPERATION - NOP (OP CODE A,
VARIANT 0)

2-130. No Operation is always a single-address instruc-
tion which performs no immediate function in the
program. Figure 2-115 shows the machine language
format and figure 2-116 is a coding example.

2-131. PROGRAMMING NOTE
2-132. The No Operation instruction may be modified

to the form of a Branch instruction by subsequent
program steps (such as Add Binary, Move Numeric, etc.).

A OPERAND OR

INDIRECT, ADDRESS
INDIRECT , ~
ADDRESS — T
CONTROL BIT X X s I F
oP VARIANT
CODE

Figure 2-113. Return From Interrupt (RTI)
Instruction Machine Language Format

PROGRAM

LABEL 0OP-Code OPERANDS

12 345 6 71819 1011 121131141516 17 1819 20
RTI

Figure 2-114. Return From Interrupt (RTI)
Instruction Coding Example

A OPERAND OR
INDIRECT, ADDRESS
INDIRECT 7 =\
ADDRESS — I 1
CONTROL BIT DISREIGARDED A : 0
oP VARIANT

CODE

Figure 2-115. No Operation (NOP) Instruction
Machine Language Format

PROGRAM

LABEL
1 2345 6 7]8

OPERANDS
12}13}14 1516 17 18 19 2C

02
0
o0
=8
[

Ol
o

Figure 2-116. No Operation (NOP)
Instruction Coding Example

B OPERAND OR
INDIRECT ADDRESS
P

INDIRECT T T

ADDRESS B B F1loX

CONTROL BIT 1 N
P\ LENGTH
CODE

Figure 2-117. Load Address (LDA) Instruction
Machine Language Format

2-133. Special Instructions

2434, LOAD ADDRESS - LDA (OP CODE F)

2-135.

The Load Address instruction is contained in
the first three bytes of all two-address instructions.

control memory. This method may be used in the
OANTEI /ANSWER Procacenr Suctam ta control tha

LRIV L Lo £3MI YV AaN DIULOGOUL Sy ol U LULIUUL uiv

various communications data sets. The micro-instruc-
tion mode is left, and the standard-instruction mode
regained, whenever the control instruction from the
main memory is a return to the fetch cycle. Figure 2-118
shows the Micro-Instruction Mode machine language

When a Load Address is identified, the fetch cycle
continues loading the appropriate registers with the next
operand address. Early in the fetch cycle, the standard
address for the accumulator is created for the B operand
address, and is changed only if a Load Address is
encountered. By this method, any instruction that is not
a Load Address has a B operand address which is the
address of the accumulator. The Load Address machine
language format is shown in figure 2-117. The Q/BAL
assembler program will automatically generate all Load
Address instructions required by a program being assem-
bled.

2-136. MICRO-INSTRUCTION MODE - MIM (OP
CODE A, VARIANT B)

2-137. The QANTEL/ANSWER Processor System has
as a standard feature, the ability to take its control
instructions (micro-instructions) from the main memory.
The instruction used to enable this feature is called
Micro-Instruction Mode, and requires a complete under-
standing of the QANTEL Micro-Assembler Manual.
When this feature is utilized, positions 2048 through
4095 of main memory may be made to act as the

format.

2-138. The micro-instruction mode can be used to
perform instructions not included in the standard
instruction set. These could be arithmetic to a different
base or packed decimal arithmetic common on some
large systems. QANTEL Corporation has several types of
micro routines available for customer use. However, if
specific situations require use of the Micro-Instruction
Mode instructions, users should contact the QANTEL

Programming and Systems Department.

BRANCH MICRO-INSTRUCTIONS
TO ACCESS MICRO-PROGRAM

INDIRECT . -
ADDRESS ~— T
CONTROL BIT A A ALB
0P VARIANT
CODE

Figure 2-118. Micro-Instruction Mode (MIM)
Instruction Machine Language Format

TABLE
INDIRECT ADDRESS INDIRECT ADDRESS
CONTROL BIT CONTROL BIT INCREMENT
Vi / \
J T T
B B F : M A A 8 : 3 0 } L
N . — OP\ “LENGTH \ -) ggE\ \ VARIANT
CODE C
It\gIgE(E;AXnggSS A OPERAND OR
INDIRECT ADDRESS
N v N\ g
LOAD ADDRESS SEARCH EQUAL
B Operand = ADDRESS OF ARGUMENT (LOW ORDER)
M = LENGTH OF ARGUMENT
A Operand = ADDRESS OF TABLE (HIGH ORDER OF FIRST ENTRY}
L = TABLE INCREMENT (SEARCH PROCEEDS FROM LEFT TO RIGHT UNTIL A

MATCH IS FOUND, ADDRESS OF MATCH , LOW ORDER, IS STORED IN

2410 AND 2510.)

Figure 2-119. Search Equal (SEQ) Instruction Machine Language Format

2-32

2-139. SEARCH EQUAL - SEQ (OP CODE 8,
VARIANT 3)

2-140. The Search Equal instruction is a seven-byte
instruction that allows the user to search through a
table, located at some known position in memory (the A
operand is the high order of first entry), in increments of
L until a match is found for the argument (the B
operand is the argument address and M = argument
length). Then the address of the match is stored in
positions 2414 and 25, in reserved memory. See table
2-2 for a description of Reserved Memory locations. If
the increment of search (L) is not 1, then the argument
must be property aligned. The maximum length for the

table increment is 16 (0016). The programmer, to
avoid looping memory if the match is not found, should
move (MOV) the argument to the memory address
immediately following the last position of the table. This
will cause a match to occur, stopping the search
operation to prevent looping memory. If a match occurs
during the search operation, the address of the match
location can be compared against the address of the data
stored at the end of the table to determine that the
match has occured within the table and not to the data
stored at the end of the table. Figure 2-119 shows the
machine language format of the Search Equal instruction
and figure 2-120 shows an example of Search Equal
instruction coding.

PROGRAM I.D. | PROGRAM PROGRAM
FE LABEL -JOP-Code OPERANDS COMMEN"
12 345 6 71819 1011 12]13]1415 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 32 33 34}35 36 37 3
AR|G DA y A|R|G|UM E|NIT
¢
‘1
sele| | [Tlnl8]; R RG], |4
DC $48 | siT|le(P| s|t|z|g| 1]l
45 |
‘l
TialB EQUl | |
Dle g@d17939 76
D¢ 0@ @ 22134321
Dc 0016341159654
¢ |
J)

Figure 2-120. Search Equal (SEQ) Instruction Coding Example

2-33

SECTION III

ASSEMBLER INSTRUCTION CODING

3-1. GENERAL

3-2. When the QANTEL Business Assembly Lan-
guage (Q/BAL) is used to write programs for the
QANTEL/ANSWER Processor System, the instructions
are coded in a free format assembly language. In order to
write programs properly in this free format assembly
language the programmer must strictly adhere to the
rules set forth in this section. Figure 3-1 shows the
coding form used when writing programs for the
QANTEL Business Assembly Language. The following
paragraphs describe the various portions of the state-
ments used to create the machine executable instruc-
tions that make up the object program. Refer to section
II of this manual for a detailed description of the
operation of those machine executable instructions.
Assembler directives used to control the operation of the
assembler and the loader, and to generate constants and
data areas, are discussed in detail in section IV of this
manual.
3-3. LABELS

3-4. Labels are programmer-created names that are
meaningful to the programmer and, in a restricted sense,
to the assembler. When the object file output of the
assembler is loaded, the instructions in the object file
bear no particular relationship to the specific labels that
were chosen by the programmer when writing his
original program. To illustrate this (in a program that
contains no naming conflicts), the characters that are
used for any given labels may be changed to a net set of
characters. Providing that no new naming conflicts are
created, the resultant machine language program will be
identical to a program created using the original labels.

3-1

The following paragraphs describe the rules which must
be followed creating labels for programs written in the
QANTEL Business Assembly Language.

3-5. LABEL FORM

3-6. Labels must start with letters A through Z and
can contain up to five characters. Characters, other than
the first character, must be letters (A to Z) or digits (@
to 9). Only the first three characters aré stored in the
assembler’s internal tag table. Consequently, each label
created by the programmer must be uniquely defined by
the first three characters. The additional character
positions are provided for programmer convenience. A
maximum of 350 labels, or tags, may be defined in any
one program. Figure 3-2 shows samples of the correct
way to code labels, and figure 3-3 shows some incorrect
ways to write labels.

PROGRAM 1.D. |PrROGRAM
LMY s 6y 8[3P'1%°?$1213

1 B|W F|F|R

2 Tl p’

3 RIZ

4 uio2

5 N|a|Mm

6 N|RME

7 X112|34

8 J

Figure 3-2. Correct Labels Coding Example

PROGRAM | D, | PROGRAM PROGRAMMER I QANTEI— 'DATE PAGE
P a5 5 7 1301015 16,17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 343415 S 07 S8 30 40 41 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 50 60 61 62 63 64 65 66 67 68 60 70 71 72 73 74 75 76 77 78 70 80
1 1
2 1.
3 i 3
4 4
5 5
o 11 e
1 7
. 7 1s
9 y 9
10 10
11 ‘ N 1
12] 2
13) 13
14 1) 0
15 IR 15
1 N 16
7 e 17
8 | 18
19, T 19
20 20
21f 21
22 | 22
23 23
24 24
25 s
26 N ks
27 o Tl
28 s
20 17 20
30 o
o 172345 67 8010111213 141516 17 18 18 20 21 22 23 24 25 26 27 26 20 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 60 51 52 53 54 55 56 57 58 50 60 61 62 63 04 05 66 67 68 69 70 71 7273 74 75 76 77 78 79 80

Figure 3-1. QANTEL Business Assembler Language Coding Form

PROGRAM PROGRAMMER

ABEL 0OP-Code OPERAN COMMENTS
1 2 345 6 71819 1011 12]131141516 1 8 19 20 21 2223 24 25 26 27 28 29 30 31 32 3334}35 36 37 38 39 40 41 42
2 A FIL|RIS|T CHHRHCTER W UMIEIR|I|C
BIU|F |FIE|R EIX|C|E|E|DIS| |L|E|N|GTH RIEQUT|REMIEINTIS
2150 FliRIsit] lelnlaRlalke [TiElR] [ulmle|r]i e
4 slelelel1]alL] leHaRIAleT|EIRS] VB[T| |alL|LOlWED
$ 12| s|Plele|I|AlL| [C|HAR/AICITIERS| WB|T| |AIL|LOWE|D
PROIGRA M E[X|CIEIED|S| |LIENGTH [REQWIREMENT|S

Figure 3-3. Incorrect Labels Coding Example
NOTE 3-9. LABEL LENGTH

If the labels NAM and NAME were to appear in 3-10. A label obtains a length at the same time that it

the same program they would be treated as the
same label. If both of these labels appeared in the
same program a naming conflict could exist, or a
potential point of confusion could exist for
persons reading the listing of the program.

3-7. LABEL VALUE

3-8. Each distinct label in a program, when defined,
will possess a value. A label becomes defined when it
appears in the label field of some coding statement. The
value of the label is stored within the assembler’s tag
table. These values are usually memory addresses that
are significant at program execution time. They may also
be I/O device assignments, table lengths, or any other
value significant to the programmer. Label values are
stored in the assembler tag table in two eight-bit bytes,
and are consequently restricted in value to positive
integers between 0 and 32767 (hexadecimal 7FFF).

obtains a value. This length has nothing to do with the
nature of the label, but is a property dependent upon
the statement which the label identifies. The lengths are
stored in the assembler’s tag table in a single, eight-bit
byte, and are restricted in value to positive integers
between 0 and 255. Due to the way these lengths are
used in instructions and the manner in which the
computer treats length fields, the zero length represents
a length of 256. Lengths are generally byte counts for all
variable length operations other than I/O instructions.
These lengths are used by the assembler in the automatic
assignment of lengths to these operations. The lengths
that are assigned to labels are discussed, when appro-
priate, in following paragraphs.

3-11. PROGRAMMER ACCESS TO SYMBOL
LENGTHS ()
3-12. The ““length of” operator, period (.), allows the

programmer access to the lengths stored in the assembler

PROGRAM PROGRAMMER
LABEL 0OP-Code OPERANDS COMMENTS
12 345 6 7 8{9 1011 12]13]14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 323334135 36 37 383 39 40 41 42
/
ER|2 DIC \pliisie| IP|AIR|T[T|Y! |CIHEC|K
WR|C| | [ER|-|.IER|1|+|1], #];|- ERIL

Figure 3-4. “Length Of” Operator (.) Coding Example

3-3

tag table. Each label has, in addition to its assigned
value, an assigned or implied length. (This length is
distinct from the number of characters in the label). This
length is stored within the assembler program and may
be accessed by the “length of” operator, period (.). The
period must be followed by a label with a value and
length that has been previously assigned. Figure 3-4
shows a coding example of the use of the “length of”
operator. In this example, a Write and Count (WRC)
from the Defined Constant (DC) labeled ER1 is done to
device O (usually the typewriter) for a length of ERI.
One of the conveniences the use of the “length of”
operation (.) will allow is changing the Defined Constant
(DO), in this case an error message, without having to
change other portions of the program.

3-13. DECIMAL VALUES

3-14. Decimal Values appear in the input line as
strings of decimal digits (O through 9). These values are
distinguished from labels containing digits, e.g., X1234,
by the fact they begin with a decimal digit. Decimal
values may contain only decimal digits and are quite
distinct from decimal constants used in program execu-
tion time calculations. Decimal constants are discussed
in section IV. Decimal values are limited to integers with
a maximum value of 32767. Figure 3-5 shows some
samples of the correct ways to code decimal values.

PROGRAM

LABEL NOP-Code QOPERANDS

12345 6 7]18]9 101 1211314 15 16 17 1819 20

RiBIC DA 11213

lelolr biale! | 15

LIEl EQu | |21g |
wiae | [213),19); 12

Figure 3-5. Correct Coding of Decimal Values

3-15. HEXADECIMAL YALUES

3-16. Hexadecimal values are distinctly different
from hexadecimal constants that are used in program
execution time calculations. Refer to section IV of this
manual for a description of hexadecimal constants.
Hexadecimal values must always begin with a dollar sign
(3). These values may contain from one to four
hexadecimal digits (0 to 9 and A to F). Figure 3-6 shows

6 7|slo 1637 12191216 16 17 18 19 20 21 2223 24 25
MOV| | |Al; |$|2|F|FIF |
sisls| | |HFL];¢11]7],|2
Wr|C| | |B|UlF|, |$/D|; |- |B|UIF

Figure 3-6. Correct Coding of Hexadecimal Values

some examples of correct methods for writing hexa-
decimal values.

3-17. CURRENT LOCATION OPERAND (*)

3-18. The assembler program contains an internal
register that contains the memory location of the high
order (low memory address) byte of the current instruc-
tion, constant, or data area. This register is accessable to
the programmer through the use of the asterisk (¥)
operand. The asterisk (*) operand is used as though it
were a label, but this operand should never appear in the
label field. Using the asterisk (*) operand in the label
field in this instance would be meaningless. See para-
graph 3-34.

3-19. The A operand address is coded as an asterisk
(*) in the operand field. When coded in this manner, the
A operand address is that of the instruction itself. See
figare 3-7 for a coding example. This method of coding
the A operand address is used in conjunction with
address modification as a convenient means of
addressing a point in the program in relation to the
current instructions. For example, statement 00380 in
appendix E performs a Halt and Branch instruction to
the beginning of the next statement. It can be seen that
the Halt and Branch instruction occupies location 1067,
1068 and 1069 in memory. Consequently, the asterisk
(*) indicates location 1067 because that is the low-

PROGRAM

LABEL NP-Code OPERANDS

1 2 345 6 71819 1011 12]131141516 17 1819 20
HL T K+3
HILIT *

Figure 3-7. Current Location Operand (*)
Coding Example

numbered memory position of the statement. By modi-
fying this address with the +3, the statement actually
causes a Halt and Branch to location 106A, which is the
beginning of statement 00400. The asterisk (¥) can be
used with any address modification.

3-20. EXPRESSIONS

3-21. Expressions are composed of operands sepa-
rated by the operators plus (+) or minus (-). The
operands used in expressions may be labels, length of (.)
labels, decimal values, hexadecimal values, or the current
location operand (¥*). The value of any label appearing in
the expression must be known to the assembler at the
time that portion of the expression is evaluated. In
current versions of the assembler some expressions or
parts of expressions must be evaluated during Pass One.
Labels appearing in such expressions must be defined at
the time they are encountered, therefore they must have
appeared as labels in previous statements. Figure 3-8
shows some coding examples of expressions.

6 718 Lgpi%o?f 12|13 191*)1%R1%1\1‘9818 192021222324 25
Al+|B-|C
- |$|EF
.|BlUF-|1
K~ 6
T|AB|L E~-|. TIABLE
ARG+ ¢ EIF
2 |
; i

Figure 3-8. Expressions Coding Examples

3-22. FREE FORMAT CODING

3-23. The fields present in the fixed character posi-
tions of previous QANTEL assemblers must be placed in
the input lines of a QANTEL Business Assembly
Language program in the same basic order. Refer to the
coding form figure 3-1. Since the assembler does not
require that field entries be made at fixed character
positions, various field separators are used to delimit the
fields. The major fields will appear justified on the listing
if the coding form format is used as an aid to its reading,

3-5

and the line will be present in the intermediate file
exactly as it is originally entered. The following para-
graphs describe the various fields used when coding

programs with the QANTEL Business Assembly
Language.
3-24. First Character Position

3-25. The first character in an input line has a special
meaning in several cases. These cases are described in the
following paragraphs.

3-26. COMMENT CHARACTER (*)

3-27. If the first character position of an input line
contains an asterisk (¥*) the remainder of the line will be
understood to be a comment. Such a line will appear in
the listing, but will not cause the generation of any
object code. Refer to Appendix E for an example of the
use of the comment character.

3-28. PIN ADDRESS CHARACTER (@)

3-29. If the first character position of an input line
contains an at sign (@), the label, if present, will be
forced to assume the value of the assembler’s location
counter at the time the statement is processed. This
feature "is meaningful only when the operation code is
Define Constant (DC), Define Area (DA), or Define
Address Constant (DAC). Lines 00200 through 00260 of
the assembler listing in Appendix E show the use of the
pin address character. Without the presence of the pin
address character (@), the label takes on the value of the
last byte of the area or constant. This is the address
normally used when performing arithmetic or logical
operations and when moving data within memory. The
use of the pin address character (@) will pin the value of
the symbol to the first byte of the area or constant. This
feature is especially useful when naming strings to be
written to an output device since it eliminates the
necessity of doing address arithmetic in the I/O instruc-
tion. The assembler directives DC, DA, and DAC are
explained more fully in section IV of this manual. The
use of the pin address character (@) with any other
operation codes, or its use when not followed by a label,
is meaningless.

3-30. LETTERS (A TO Z)

3-31. If the first character of an input line is a letter
(A to Z), a label is assumed to be present. If the first

character position contains the pin address character, the

second character should contain

Fivot

ces +ho
charactar nacitin tne iirst

e
pUSILIVLL

character of a label.

3-32. SPACE (BLANK)

3-33. If the first position of an input line contains a
space (blank) the assembler assumes that no label is
present. The first nonspace character position that is
encountered in a left-to-right scan of the input must be
the first character of a legal operation code or assembler
directive.

3-34. DIGITS (0 to 9) OR SPECIAL CHARACTERS
3-35. The presence of a digit as the first character of
an input line when a source file is being created is
assumed to be part of a source file number. See section
VI, assembler operation, for instruction of what to do in
this case. The use of special characters, other than the
comment character (*) or pin address character (@) as
explained in previous paragraphs, in a label is illegal.
3-36. Label Field

3-37. If a label as described in the previous para-
graphs, is present at the beginning of an input line, it
must satisfy all of the requirements for a legal label.
These requirements have been explained in paragraphs
3-3 through 3-12 of this section. Also, the first three
characters of the label must not have appeared as the
first three characters of any other label already en-
countered by the assembler in the program being
assembled.

3-38. OP-Code Field

3-39. The OP-Code (operation code) field of an input
line must be preceded by one or more blanks. OP-Codes
are two or three character names for the various
QANTEL machine operation codes and the assembler
directive codes. No naming conflicts will be created if
the programmer creates symbols identical to any of the
OP-Codes. Only legitimate OP-Codes may appear in the
OP-Code field. The various operation codes and asse-
mbler directives are described in sections II and IV of
this manual.

3-40. A/B Operand Field

3-41. The A/B operand field is, in its most general
form, composed of an A operand address expression

3-6

separated from an A operand length/device expression
by a comma (,). The A opcrand length field is separated
from a similar B operand by a semicolon (;). The various
forms that an A/B operand field may take are described

in figure 3-9.

3-42. The instruction operand field requirements are
not as simple as the formal specification shown in figure
3-9 represents. There are several classes of instructions,
some of which do not possess B operands and others
that require B operands. Still others may have an implied
B operand (the accumulator, or the first 16 bytes of
memory). Length/device expressions are still more com-
plex. Some two-operand instructions require a length for
each operand and other two-operand instructions require
a length for only the A operand. There are also a group
of instructions that require an A operand length if the
two-address form is used, but not if the one-address
form is used. Another instruction may require a length/
device field, but has no A operand. The requirements of
all of the various QANTEL instructions and assembler
directives are described in sections II, IV, and V of this
manual. Also, to make the process of coding the A/B
operand easier, a number of aids have been incorporated
into the QANTEL Business Assembly Language to
ensure that the requirements of each and every instruc-
tion are satisfied. These requirements are stored in the
tables within the Q/BAL assembler program and if an
instruction is entered that does not satisfy these require-
ments an appropriate error diagnostic will be generated.
Also, the programmer is relieved from many of the
potential problems associated with operation lengths by
the automatic length assignment feature of the Q/BAL
assembler programs.

3-43. If an instruction requiring a length assignment
is entered, but the length is not assigned, a length will be
automatically assigned in most cases. Each defined label
possesses a length in addition to its value. When a label is
referenced as an operand in an instruction requiring
explicit length assignment, and that length is not
provided, the assembler program will fetch the required
length from the assembler symbol table. There are
several important exceptions to this operation. These
are: 1) since this assignment applies only to the length
field, 1/O instructions, which in most cases uses the B
operand address to specify the operation length, are
excluded from the automatic length assignment, and 2)
if the address expression of the A or B operand contains
other than a single label, the length, if required by the
machine language instruction, must be explicit.

<A/B OPERAND> ::
<A OPERAND> ::
<B OPERAND> ::
<OPERAND> :: = <ADDRESSEXPRESSION> [,<LENGTH/DEVICE EXPRESSION>]

<ADDRESS EXPRESSION> ::

<LENGTH/DEVICE EXPRESSION> ::
<DIRECT EXPRESSION> ::

<TERM> ::

<DIRECT SYMBOL> ::
<HEX VALUE> ::

<HEX DIGIT> ::
<LABEL> ::

<LETTER> ::

<NUMBER> ::

<ALPHA CHAR> ::
<SYMBOL> ::

<INDIRECT OPERAND> ::
<CURRENT LOCATION> ::
<LENGTH OF LABEL> ::

= <A OPERAND> [;<B OPERAND>]
= <OPERAND>
= <OPERAND>

= <SYMBOL> | <SYMBOL> + <DIRECT EXPRESSION>
<SYMBOL> - <DIRECT EXPRESSION> | <DIRECT EXPRESSION> |

= <DIRECT EXPRESSION>
= <TERM> | <TERM> + <DIRECT EXPRESSION>
<TERM> - <DIRECT EXPRESSION>

= <DIRECT SYMBOL> | <CURRENT LOCATION> | <HEX VALUE>|
<DECIMAL VALUE> | <LENGTH OF SYMBOL>

= <LABEL>
= $<HEX DIGIT> (REFER TO PARAGRAPH 3-15)

=0l1]21314l5]6l718l9lalBlCIDIEIF
= <LETTER> {<ALPHA CHAR>} § (REFER TO PARAGRAPH 3-3)

=alslcl...Ixlylz

=pl1121...1819

= <LETTER> <NUMBER>

= <DIRECT SYMBOL> | <TERM>

= @ <ADDRESS EXPRESSION>

= * (REFER TO PARAGRAPH 3-17)

= . <LABEL> (REFER TO PARAGRAPH 3-11)

Figure 3-9. A/B Operand Field Format Requirements

3-44. Indirect Addressing

3-45. An indirect address may be defined as an
operand containing not the data being referenced, but
the address of the data being referenced. In other words,
the indirect address identifies the location that contains
the desired data. Indirect addressing is accomplished by
placing an at sign (@) in the place preceding the address
(actual or symbolic) for either the A operand or the B
operand, or both. Either the first operand (A operand)
or the second operand (B operand) may be indirectly
addressed in any instruction. Indirect addressing can be
extremely useful when indexing through a table or when
address alterations occur during execution of a program.
Figure 3-10 shows an example of indirect addressing. In
figure 3-10, the indirect contents of LEN is to be moved
to the field referenced as WRK. For additional informa-
tion on indirect addressing refer to section II of this
manual and to the QANTEL Business Assembly
Language (Q/BAL) Programmers Training Manual.

3-7

0OP-Code OPERANDS
718]9 1011 12 1j 141516 17 18 19 20 21 2223 24 25
MOV @ LIEW|, |5]; WRK

Figure 3-10. Indirect Addressing Coding Example

NOTE

Indirect addresses cannot be modified at program
execution time by using relative addressing. Any
alteration to an address that is indirect must be
made with the Add Binary or Subtract Binary
instructions.

3-46. Comment Field

347. A comment may be entered following a source
statement providing at least one blank separates the
comment from any preceding field. Line by line com-
menting can greatly help the maintainability of programs
written in assembly language. While the assembly lan-
guage statements can often show what is happening,
especially if the labels involved have sufficient
mnemonic value, the why and how of an assembled

3-8

program often requires a knowledge of the entire
This kn_owledge.

is readily available

I3 Teallly avallaDlo

program or system,
to the programmer/system designer, but it can be
acquired only with great difficulty by another person
who needs to modify the program unless meaningful
comments have been provided. Such comments are
especially necessary when the contents of instructions
are modified by the program and when non-standard

subroutine returns are used.

SECTION IV

ASSEMBLER DIRECTIVES

4-1. INTRODUCTION

4.2, The QANTEL Business Assembly Language
includes several instructions which may be entered as
part of the program to perform such functions as
beginning the program at a specific memory address,
entering constant data into memory with the program,
reserving areas of memory, etc. This section describes
these assembler directives and provides coding examples
where necessary for clarification.

4-3. ORIGIN CONTROL (ORG)

4-4. The Origin Control instruction is used to
specify the memory location at which storage of the
program begins. As shown in the example of figure 4-1,
the OPERANDS portion of the coding form is used to
specify the origin address. The Origin Control instruc-
tion actually resets the program location counter so that
any statements following the instruction (program state-
ments or data) will be loaded into consecutive memory
positions following the specified address. An example of
the Origin Control statement is also shown in statement
00100 of Appendix E.

NOTE

The only instruction which may be assembled
below location 86 o is the Defined Area (DA)
instruction, as this area of memory is occupied by
the standard magnetic tape loader. The loader is
automatically placed at the beginning of all object
programs. The disc loader, used with object
programs residing in a disc resident object library,
occupies memory locations below 220 o Define
Area (DA) statements should not begin below
27, since these areas may be written by the
Processor.

4-5. END CONTROL (END)

4-6. The End Control instruction is used to signify
the end of a program to the Q/BAL assembler program,
and to indicate the address at which program execution
begins. The End Control instruction is coded as shown in
figure 4-2, with the OPERANDS portion of the coding
form specifying the address or label of the first
instruction to be executed. All programs are terminated
with the End Control instruction.

PROGRAM PROGRAM
LABEL NOP-Code OPERANDS LABEL NP-Code OPERANDS
12345 6 71819 1011 121131141516 17 1819 20 12 345 6 71819 1011 12]113y141516 17 1819 20
0 RG 49|96 ElND BlG|W
0RIG | |STR Ewp| | 198

Figure 4-1. Origin Control (ORG) Instruction Coding

4-1

Figure 4-2. End Control (END) Instruction Coding

PROGRAM I.D. PROGRAM
Dol i LABEL 0OP-Code OPERANDS
P Lo 12345 6 7]819 1011 12}13141516 17 18192021 222324 2526 27 28 29 30 31 323334
! ___|enpM D|C “IR|E|AD| [HEIX| [TIEIS|T
2 DIAIT D¢ \2l4lalPIRI7|2]
3 AMT D 459|103
4 DAT D|C 4$17|112.34/5\6/7/8/9/ABC|DIE|F
5

Figure 4-3. Alphameric, Decimal and Hexadecimal Define Constant (DC) Coding

NOTE

The statement containing the End Control instruc-
tion and the branch address or label should never
be deleted when updating a program.

4-7. DEFINE CONSTANT (DC)

4-8. The Define Constant instruction permits the
programmer to enter necessary data into memory along
with the assembled program. The Define Constant
instruction is coded as shown in figure 4-3. The
statements may or may not be labeled and the DC
operation code is entered into the Op-Code portion of
the coding form. The OPERANDS field of the first two
statements shown in figure 4-3 are examples of the
method used for coding text strings. Text strings will
always be preceded and followed by an apostrophe ().
The third statement in figure 4-3 shows the coding
format for a decimal constant and the fourth statement
shows the coding format for hexadecimal constants. The
first character of a decimal constant must be a numeric
digit (O through 9). The first character of a hexadecimal
constant must be the dollar sign (3). Since each
hexadecimal character occupies only one-half of a

memory location, two hexadecimal characters are placed’

in each byte of memory. No attempt should be made to
enter an odd number of hexadecimal characters.

4-9. To observe the coding rules for the DC state-
ment, refer to statements 00200 through 00280 in
Appendix E. In statement 00200, the defined constant
data is a READ HEX TEST (terminated by a carrier
return character). These 14 alphabetic characters are
coded as shown in the first example of figure 4-3. The
label of the DC is NAM and references the first
(leftmost) character of the field since the pin address
character (@) is used. The label NAM is coded in the

42

LABEL field. The operation code DC is coded in the
Op-Code field.

4-10. DEFINE ADDRESS CONSTANT (DAC)

4-11. The Define Address Constant instruction is
used to define a two-byte address constant. An example
of this is shown in figure 4-4. Upon completion of
program assembly of this particular example DAC, the
field “ADD” will contain a value two less than the
two-byte address of the field labeled STP. If for
example, the address of the STP label, coded in figure
4-4 is 102A16’ the defined constant address would be
1028, .. Any direct expression may be used for address
modification.

PROGRAM
LABEL NP-Code OPERANDS
1 2345 6 71819 1011 1211314151617 181920
ADD pac| | |siTipl-12
LIEW plule| | [.ls[T]P
PITIR Ipai| | |#,11

I

Figure 4-4. Define Address Constant (DAC) Coding

4-12. DEFINE AREA (DA)

4-13. The Define Area instruction allows the pro-
grammer to reserve specific areas of memory for use
during program operation. The assembler reserves these
areas of memory for use during program operation by
skipping over them instead of inserting program instruc-
tions or constant data. Figure 4-5 shows the coding for
the DA instruction. An example of a Define Area
instruction is also shown in statement 00300 of Appen-

dix E. In the statement shown in figure 4-5, the area
being reserved consists of ten memory locations, the
highest numbered (right end), of which has the label
BF1. The length of the Defined Area is coded as a direct
expression, i.e., any symbol used within the expression
must be defined in preceding statements. The expression
(with a value of up to 0255) actually specified the
number of consecutive memory positions to be skipped
before entering the next program statement into
memory. This allows data areas to overlay executable
code (using the ORG statement).

PROGRAM
CABEL OPCode OPERANDS

12 345 6 7|8}9 1011 12]13141516 17 1819 20

B|F |1 DA 1

BJF |2 DA BS|Z

Figure 4-5. Define Area (DA) Coding

4-14. EQUATE (EQU)

4-15. Equate is an assembler directive that is used to
assign the specified label to a particular memory address.
The first example shown in figure 4-6 assigns the value
182 (decimal) to the symbol TA1. The second example
assigns the memory location 10 positions before the
location having the label BEG to the label TA2 and
assigns a length of one (1) to TA2.

NOTE

The Equate assembler directive must appear in the
program before any reference to the label assigned
by the instruction.

4-17. Programs which would otherwise exceed the
available memory can sometimes be made to fit by
coding the program in two or more segments. The
segments are separated by the EXE statement and the
ORG (Origin Control) statement which are used to
assign routines in different segments to the same
memory locations. The effect of the EXE statement is to
create an end block on the object tape which causes the
program loading to terminate and execution to begin at
the address or label specified in the EXE statement. The
remainder of the program remains positioned on the
input device and is loaded up to the next EXE or END
statement from tape by moving a constant of 00F2 to
location 10 (decimal) and branching to location 26
(decimal). To implement this procedure, locations 26
through 85 (decimal) cannot have been altered by the
preceding segment of the program.

4-18. To illustrate the use of the EXE instruction in
the overlaying of program segments, an example pro-
gram is presented in figure 4-7. A typical use of this
overlay technique may be to place program initialization
routines in the first segment(s), and overlay them after
they have been executed.

4-19. TYPEWRITER CONTROL (SKP, TYP)

4-20. Assembler directives are provided to control the
I/O typewriter or line printer during the second pass
listing of the assembly operation so that the programmer
can eliminate the printing of selected portions of the
program. By printing the program in a selective manner,
such duplicate prinfing can be avoided to speed up the
assembly process.

4-21. The operation codes used are SKP and TYP.
Upon encountering the SKP OP Code, the assembler will
skip the printing of the succeeding program statements
until a TYP OP Code appears in the program. The TYP

4-16. EXECUTE (EXE) OP Code causes the assembler to resume printing of
PROGRAM |.D. | PROGRAM
R R LABEL 0OP-Code OPERANDS
1 2 345 6 7]8}19 1011 12]1311415 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 323334
! T|A|1 ElQu 122
2 T|R|2 eQu | (BElG|-|1/@], [1
3

Figure 4-6. Equate Instruction Coding

4.3

PROGRAM PROGRAMMER
'1LA28E:3L 45 6 7]8 (Q)P%%O?f 1211y 1(2P1E5 16 7 18 192021222324 252627 2829 30 31 323334 gEO%hggrégSBQ 4041 42 43
3 s|AMP|LIE! |P|R0|G|R|IAM| T|5| |TI|LILIWS[TIRATIE
% uls|e| |o|F| |E|X|E| |A|S|S|EMB|LIER| |P|T|R|EIC|T|T|VIE
¥ FIo|R| |PIR|B|6|RAM
Pk
T|Plg ElQu| | |d TIY\P|E|R| [B|wTPluT| DEV|TICIE

oiR| | [1/4)9]
SR WRric| | msl2|, T|P|d]; . sl

MBWV| | lclala:i2lg) | [TH|IIS| T W|S[T|RUeC[T|{I0W
¥ ClAlKS|Els| |RIEIW|IT|I|AILII|ZATIIOW
¥ D/F| [TIHE |L|6|ADER

IBIR U 2|6 BIRAW|CIH BlAC|K [Tlo| [LO|ADER
@eMs|1 DIC ‘BE|FIG|REl [O|VIERIL Y
Cdlv Dl $\g|F\Fa

EXIE| | |STIR

oRG | [1d¢
RISTT wiric| | Misi2, TPg|;|. MS2

HLUT X
@MS2 Dc \A|FTIEIR| |BIVIERILIAY

ElnD| | RS

Figure 4-7. Implementation of the Execute (EXE) Instruction

the program statements. (The OP Codes SKP and TYP

will always be typed). Generally, if it is known that the PROGRAM

program being reassembled does not change up to a 1LA28ESL4 5 6 718 QP}%O?{E 12113 19%%@'}'9%819 20
certain point, the SKP instruction would be used at the

beginning of the program, and the TYP instruction S K|P

inserted before the corrected area. The SKP and TYP T Y P

instructions are coded as shown in figure 4-8.

Figure 4-8. Typewriter Control Instructions

4-4

SECTION V

INPUT/OUTPUT INSTRUCTIONS AND DEVICES

5-1. INTRODUCTION

5-2. This section contains the basic information
required to code read and write instructions, issue
commands and properly check the status of each of the
various QANTEL I/O devices. The information pre-
sented in this section includes a basic description of
buffered and unbuffered 1/O devices, I/O device status,
and descriptions of each of the thirteen standard I/O
instructions along with machine language format and
coding examples. Also included in this section are
descriptions of the methods for issuing commands and
checking status for each type of the QANTEL I/O
devices.
5-3. BUFFERED I/0 DEVICES

5-4. The typewriter unit is an example of a device
that is buffered within its respective controller when
attached to the QANTEL/ANSWER Processor System.
Other devices that are buffered include the discs,
printers, 10-key, card reader, Video Display and various
Communications Controllers. The buffer is part of the
controller hardware, and does not occupy main memory
positions. Data to be read from the typewriter keyboard
to the processor is first typed serially, byte-by-byte, into
the buffer until the buffer-filling operation is termi-
nated. Buffered devices are self-terminating, and termi-
nation occurs in the typewriter when the buffer is fully
loaded with 128 characters, when the carrier RETURN
key is pressed, or when the TERM button is pressed. At
this time, the keyboard is locked and the device notifies
the processor of the terminated condition by means of a
request for service. The processor then issues a Read
instruction and empties the buffer, byte-by-byte, placing

5-1

the data into main memory positions specified in the
Read instruction, beginning with the lowest memory
address. After the buffer has been emptied into main
memory, the programmer can determine the firm status
of the device and unlock the keyboard. The operator
may then continue to type until termination is again
encountered. In this operation (unlock-read-unlock), the
keyboard lock-out occurs for only a fraction of a second
while the processor receives and stores the buffered data,
and would be unnoticeable to the operator.

5-5. Since the QANTEL/ANSWER Processor
System is a serially organized processor, a Read instruc-
tion to an unloaded buffer in the typewriter would cause
the processor to wait for the operator to fill the buffer
at typing speed. This delay is not consistent with the
buffering concept, so the QANTEL input/output orga-
nization includes an instruction (Set Read) that unlocks
the typewriter keyboard or other input media and allows
the buffer to be filled while the processor is doing other
work. This feature eliminates idle processor time and
enables the processor to operate independent of the
buffered 1/O device.

5-6. In the other direction, data is written from the
processor main memory to the buffered device in serial
form until the buffer is fully loaded, or until count zero
is reached. At this time, the I/O device is terminated,
and the processor goes on to subsequent instructions
while the buffer contents are printed onto the type-
writer page, printer page or stored on the disc.

5-7. The typewriter delivers data at a relatively slow
speed when compared to the processor (14.7 characters
per second for the typewriter, as compared to 136,000

characters per second for the processor). Since the
buffer is not capable of receiving new data while still
unloading characters to the printing or storage device,
another attempt to write data to the previously ad-
dressed device would be delayed until the device has
emptied the buffer. In this situation, the processor must
wait until the pending Write command is taken by the
device.
5-8. UNBUFFERED 1/0O DEVICES

5-9. The tape reader/punch and magnetic tape drives
are examples of unbuffered devices which must have the
full attention of the processor during any read or write
operation. That is, the processor cannot be allowed to
do other work as long as the unbuffered device is busy
reading or writing data, The busy status of the device (or
any 1/O device) is reflected within the Status Byte by
the read and write bits. Refer to paragraph 5-13.

5-10. Unlike buffered devices, some unbuffered
devices are not self-terminating (such as the tape
reader/punch). The Read and Write instructions used
with an unbuffered device must have the count function,
such as Read and Count, and Write and Count. With
these instructions, the processor counts down from a
predetermined amount as each character is transferred to
or from the processor. When count zero is reached (all
desired data has been moved), the processor sends a
terminate command to the device. At this time, the
device completes the current mechanical cycle and
indicates to the programmer (by means of the Status
Byte) that service by the processor is no longer required,
and that the device has finished the operation. Status
must be requested by the programmer in order to
determine the condition of the device at any given time.

5-11. STATUS

5-12. Status is the term used to describe the condi-
tion of an I/O device. That is, if the device is busy, in
need of service by the processor, inoperable, finished
with all current operations, or involved in the Interrupt
routine. The programmer can determine the status of
any I/O device by means of the Status-In instruction,
subsequently described in paragraph 5-53. When status
of a device is requested with the Status-In instruction,
the addressed device controller reacts by generating the
Status Byte.

5-13. STATUS BYTE

5-14. When requested by the Status-In instruction,
the Status Byte is produced by the device and fed to the
processor to be stored in location 23 of reserved
memory. From this location, the Status Byte can be
examined by the program to determine device status.
The format of the Status Byte is shown in figure 5-1.

5-15. Each of the eight bits in the Status Byte has a
particular significance regarding the condition of the
associated I/O device. For example, if the inoperable
(27) bit is set, the device is inoperable and requires
operator attention,

5-16. Flag Bits

5-17. The high order four bits (24 through 27) are
the flag bits, and can differ in meaning between devices.
The flag bits indicate information concerning the devices
that are for the program. This could be a device
inoperable condition, or a switch on the typewriter that
is set by the operator to convey information to the

STATUS BYTE

Ve —~
27 20 2° 2% 23 22 2L 20
(INOPERABLE)__Jf \\L_
FLAG 4 READ
FLAG 3 WRITE
FLAG 2 END
FLAG 1 SERVICE
REQUEST

Figure 5-1. Status Byte Format

5-2

TABLE 5-1. STATUS BYTE FLAG BITS

1/0 DEVICE
FLAG NO. AND TAPE READER
I/0 CONTROL TYPEWRITER PUNCH /
BYTE BITS
Flag 1 Indicated Interrupt if Interrupt Feature is installed. Other- Not used
Bit 2* wise, Flag 1 as defined in the program
Flag 2 Flag 2 as defined in the program. Reader inoperable (out
Bit 2° of tape or no AC
power).
Flag 3 Flag 3 as defined in the program Punch inoperable (out
Bit 2° of tape or no AC
power).
Flag 4 Inoperable. Total inoperable (no
Bit 27 power). Terminates a
read orwriteinstruction.

program. The meaning of the flag bits for the typewriter
and tape read/punch is described in table 5-1.

5-18. Status Bits

5-19. The low order bits of the Status Byte are device
status bits. These bits are used by the micro-program
logic in order to perform an 1/O operation. They may
also be used by the programmer to determine the status
of the device prior to issuing an 1/O instruction, such as
Read or Write to a buffered device. The write operation
in the buffered device concerns an I/O typewriter
printing off-line (from the buffer). If status is requested
during the write operation, the write bit (2) in the
Status Byte would be set to indicate that the addressed
device is busy writing, and that the exact status of the
complete operation is not yet known. That is, the
typewriter could still become inoperative while empty-
ing the buffer, which could not be indicated by the
Status Byte until the failure actually occurred. Conse-
quently, status is not firm until the Read and Write bits
are reset to indicate that the operation is complete. This
method of checking status may also be used to simply
check the success of a read or write operation.

5-20. In the buffered device, the programmer can
issue a Set Read command to unlock the keyboard,
examine status by means of the Status-In instruction and
Status Byte, and when service request is set, issue a Read
command. This technique enables the processor to
perform other work while the buffer is filling. An

5-3

attempt to use this technique with an unbuffered device,
such as the tape reader/punch, will result in data overrun
(loss of data because the device was not serviced in
time). In the case of the unbuffered device, the Read
and Count instruction should be issued and status should
not be requested until after the device no longer reports
busy status. Status of the unbuffered device may be
checked shortly after termination is initiated. The
unbuffered device ties up the processor for the duration
of the read or write operation.

5-21. A truth table of the four status bits is shown in
table 5-2. This table gives a brief explanation of the
status bit configurations in reference to device status.
5-22. Read Sequence

5-23. A flow chart showing the logical procedure
performed when reading from a buffered device is given
in figure 5-2. The flow chart shows that the Set Read
command is issued (to unlock the keyboard and allow
the operator to type), followed at some time by a
Status-In instruction. The Status-In instruction delivers
the device status (by means of the Status Byte) to the
processor, and check is made for service request. If the
device is mot yet determined, service will not be
requested, so the processor performs other work. Status
is examined repeatedly by the program until service
request is true. At this time, the Read command is sent
to the device and the buffer is emptied into the
processor main memory.

TABLE 5-2. STATUS BITS

STATUS BYTE
23 22 21 20
sr|END| WR | RD DEVICE STATUS
X| X | X 1 Device is busy reading.
X! X 1 X Device is busy writing.
0 1 0 0 Device is not busy and does
not need service.
0 0 1 Device requires service.
0 1 0 Device requires service.

NOTE

Accessing the Status Byte can be interrupted if the
Interrupt Feature is installed. In this situation, it is
the {espons1b1hty of the interrupt handling pro-
caﬁaure to store and restore status, and to deter-
o n‘3mme which device is interrupting (by means of the
~ Status-In instruction and flag 1 of the Status
Byte).

5-24. Firm Status

5-25. When the 1/O device no longer requires service
by the processor, i.e., when the buffer has been loaded
or emptied by the processor; or in the case of the
unbuffered device, when informed by the processor
(using the instructions w1th count) that data transfer is
complete, the end bit (2) of the Status Byte is set. The
programmer has no need to examine this bit. The fact
that it is set does not indicate that the operation (read or
write) is finished. It only indicates that the device no
longer needs the processor to continue its task (e.g.,
during off-line printing from the buffer). When status is
requested by the programmer, firm status is indicated by
the end bit being set and the read and write bits being
reset. Checking the end bit alone has no significant
meaning. The read and write bits are reset when the
device has actually finished reading or writing the last
byte of data.

5-26. Although the read sequence for an unbuffered
device is different, (see paragraph 5-20), the firm status
technique is the same for all devices. When a write to a
paper tape punch is terminated on count (the punch is
not self-terminating), the termination, as far as the
processor is concerned, occurs about 20 milliseconds
before the last character is punched. Since the
QANTEL/ANSWER Processor System will execute

many instructions in 20 milliseconds, a Status-In instruc-
tion would show both the end bit (no more processor
assistance needed) set and the write bit set. Again, the
programmer should wait until the write bit has been
reset before assuming status is firm.

5-27. A flow chart showing the program steps used to
determine the success of a read or write operation (by
means of obtaining firm status) is given for the buffered
device in figure 5-3. After the Read or Write command is
issued, status is requested. If the read or write bit of the
Status Byte is set, the device is busy and the processor
may go on to other work. Status is re-examined until
neither read nor write are set. At this time, status is firm
and can be evaluated by examining the flag bits for an
inoperative or error condition.

SET
READ
STATUS
w
IN
DO
NO OTHER
PROCESSING
VES
READ
Figure 5-2. Reading a Buffered Device
5-28. I/O INSTRUCTIONS
5-29. The QANTEL/ANSWER Processor System is

provided with 13 instructions to control operation of
the I/O devices. Eight of the 13 instructions are
variations of Read and Write, and the other five are I/O
control. Each instruction is described separately in the
following paragraphs with accompanying illustrations
where necessary for clarification. All Read and Write
instructions begin at the specified memory address and
progress toward the high memory positions.

READ

WRITE

v

STATUS

IN

DEVICE IS
READ BUSY
OR WRITE DO OTHER
SET PROCESSING

IF POSSIBLE

STATUS IS
FIRM
EXAMINE FLAGS

Figure 5-3. Insuring Firm Status

5-30. 1/O Read and Write Instructions
5-31. READ - RD (OP CODE 0)
5-32. Read is a single-address instruction in which the

processor reads data from the addressed device into the
main memory. The data is placed in main memory
beginning at the A operand address specified in the
instruction and progressing toward the higher memory
positions. The Read instruction can only be used with a
self-terminating device. If used with a computer-
terminating device, the device would attempt to read
indefinitely, and would tie up the processor for the same
length of time. In the Read instruction, the operation
code variant is assumed by the operator to be zero. The
Read instruction machine language format is shown in
figure 5-4 and figure 5-5 is a coding example.

A OPERAND OR DEVICE
INDIRECT ADDRESS NUMBER
— ~ N pd
INDIRECT i
ADDRESS A A 0 O
CONTROL BIT i
]
opP
CODE

Figure 54. Read Instruction (RD) Machine
Language Format Example

5-5

PROGRAM

LABEL OP-Code OPERANDS

12345 6 7189 1011 121131141516 17 1819 20
R|D Ij|P|-|4d|, 11

Figure 5-5. Read Instruction (RD) Coding Example

5-33. READ AND COUNT - RDC (OP CODE 0,
VARIANT 2)
5-34. Read and Count is a two-address instruction in

which the processor reads data from the addressed
device into the main memory, beginning at the A
operand address specified in the instruction. During the
Read and Count operation, the processor counts down
to zero from a specified amount as each character is
transferred from the device to the processor. (The count
is specified in the associated Load Address instruction).
When the count reaches zero, the device is terminated by
the processor.

5-35. The Read and Count instruction may be used
with self-terminating or computer-terminating devices.
In the case of the self-terminating device, the terminate
may occur before the count reaches zero, such as when
the buffer is empty. The terminate (end bit set in the
Status Byte) generated by the device ends the Read and
Count instruction, and the processor goes on to the next
instruction. The Read and Count instruction (written in
hexadecimal — machine language) illustrated in figures
5-6 and 5-7 tells device number one to read 80 (decimal)
characters into main memory beginning at location 1000
(decimal).

INDIRECT

ADDRESS A OFERAND ADDRESS

COUNT

CONTROL BIT (80 DECIMAL) (1000 DECIMAL)
. DEVICE
\ — /NUMBER
T
K} 0 C | 5 0 l F 2 I[o 3 | E 8 I o1 1
1
N, t
QP CODE READ op

FOR LOAD
ADDRESS

Figure 5-6. Read and Count Instruction (RDC)
Machine Language Format Example

VARTANT

5-36. READ HEX - RHX (OP CODE 0, VARIANT 1)
5-37. Read Hex is a two-address instruction in which
the processor reads data from the addressed (self-
terminating) device into the main memory, beginning at
the A operand address specified in the instruction. As
each byte (character) is received, it is translated by the

PROGRAM I1.D. PROGRAM
A LABEL OP-Code OPERANDS
12 345 6 71819 1011 1213A14151617 18192021 222324252627 2829 3031 323334
: RDIc| | |1ig@8], |2];13]¢
2

Figure 5-7. Read and Count Instruction (RDC) Coding Example

micro-program into a hexadecimal digit and is then
combined into an eight bit byte. By combining digit 1
with digit 2, digit 3 with digit 4, etc., two characters
from the device make one new byte for main memory.
This method (used in the prceding Read and Count
example— permits the programmer to use all eight bits
of each memory location to express all 256 possible
binary combinations of the eight bits. For further
clarification, this method is illustrated in figure 5-8. If an
uneven number of characters are read, the last one is
lost.

5-38. The machine language format for the Read Hex

instruction is shown in figure 5-9 and figure 5-10 is a
coding example.

Translated and Pacliad

r—L
Character 1 6 |1 (ASCII A) FIRST
POSITION OF
A OPERAND Al 7
FIELD Lﬁ
Character 2 317 (ASCII 7)

'

Translated and Packed

Figure 5-8. Read Hex Instruction
Two-Byte Combination Method

INDIRECT ADDRESS

IN

PROGRAM

LABEL NP-Code OPERANDS

1 2 345 6 71849 1011 12113141516 17 181920
RWiX| | [11418], 10

Figure 5-10. Read Hex Instruction (RHX)
Coding Example

5-39. READ HEX COUNT - RHC (OP CODE 0,
VARIANT 3)
5-40. Read Hex and Count is similar to the Read Hex

instruction except that a count is established in the
instruction so that it may be used with a computer-
terminating device, or to obtain only a certain number
of bytes. The count specified in the instruction is the
number of main memory positions to be filled, not the
number of bytes to be transferred to the processor. If an
uneven number of bytes are read, the last byte is lost.
The machine language format of the Read Hex and
Count instruction is shown in figure 5-11 and figure 5-12
is a coding example.

5-41. WRITE - WR (OP CODE B, VARIANT 0)
5-42. Write is a single-address instruction in which the
processor writes data to the addressed device from main

DIRECT ADDRESS

CONTROL BIT CONTROL BIT
yd »
1 |
X X X X F : 1 A A 0 } 1
- v S READ v - oP\ \DEVICE
B OPERAND OR coné\ VARIANT A OPERAND OR CDDE\ NUMBER
INDIRECT ADDRESS INDIRECT ADDRESS
1N\ N\)

v

LOAD ADDRESS

READ HEX

Figure 5-9. Read Hex Instruction (RHX) Machine Language Format

5-6

INDIRECT

ADDRESS A OPERAND OR

INDIRECT ADDRESS

DEVICE
NUMBER

memory. The data is brought from main memory
beginning at the A operand address specified in the

CONTRCL BIT COUNT
T
l o
i

instruction and progressing toward the higher memory

N
oe cove /

FOR LOAD
ADDRESS

Figure 5-11. Read Hex and Count Instruction (RHC)
Machine Language Format

READ
VARTANT

ap
CODE

e 1 - 1]
I |

PROGRAM

LABEL OP-Code OPERANDS

1 2 345 6 71819 1011 12|131141516 17 1819 20
RIHC| | l2ldP|, 18| 4

Figure 5-12. Read Hex and Count Instruction (RHC)
Coding Example

A OPERAND OR DEVICE
INDIRECT ADDRESS NUMBER
r - N /
INDIRECT T
ADDRESS — =] A A B 1 1
CONTROL BIT 1 !
oP
CODE

Figure 5-13. Write Instruction (WR) Machine
Language Format

positions. Like the preceding Read instruction, it can
only be used with a self-terminating 1/O device. The
Write instruction machine language format is shown in
figure 5-13 and figure 5-14 is a coding example.

5-43. WRITE AND COUNT - WRC (OP CODE B,
VARIANT 2)
5-44., Write and Count is a two-address instruction in

which the processor writes data to the addressed device
from main memory, beginning at the A operand address
specified in the instruction. During the Write and Count
operation, the processor counts down to zero from a
specified amount as each character is transferred from
the processor to the device. (The count is specified in
the associated Load Address instruction). When the
count reaches zero, the device is terminated by the
processor. The specified count for the typewriter cannot
exceed 128 (decimal).

5-45. The Write and Count instruction may be used
with self-terminating or computer-terminating devices.
In the case of the self-terminating device, the terminate
may occur before the count reaches zero, such as when
the buffer is full. The terminate (end bit set in the Status
Byte) generated by the device (as a result of the count

PROGRAM reaching zero) ends the Write and Count instruction, and
LABEL NP-Code OPERANDS the processor goes on to the next instruction. The
12545 6 71849 1011 1213141516 17 1819 20 21 instruction format for Write and Count is similar to that
WIR BIPIRI-1b , 1115 of the Read and Count instruction, only a different
operation code is used. Figure 5-15 shows the machine
language format of the Write and Count instruction and
Figure 5-14. Write Instruction (WR) figure 5-16 shows some coding examples.
Coding Example
INDIRECT ADDRESS INDIRECT ADDRESS
CONTROL BIT CONTROL BIT
T I { T |
1,0 COUNT F { 2 A A B ! X
]
- ~ 4 oP\ b ~ — 0P\ \DEVICE
B OPERAND OR CODE VARIANT A OPERAND OR copE NUMBER
INDIRECT ADDRESS INDIRECT ADDRESS
— I\ v -/
LOAD ADDRESS WRITE AND COUNT
Figure 5-15.

Write and Count Instruction (WRC) Machine Language Format

5-7

PROGRAM I.D.] PROGRAM
Lol LABEL NP-Code OPERANDS
12345 6 718}]9 1011 12]13141516 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 32 3334}
L WRic| | [DAR|-14\2], |9 ;|5|¢
2 WRic| | |pH]s|, pjew]; | |olAls
3 Wirle| | l@oT|4,|90]; @clvm
: I
Figure 5-16. Write and Count Instruction (WRC) Coding Example
5-46. WRITE HEX — WHX (OP CODE B, instruction is similar to that of the Read Hex instruc-
VARIANT 1) tion, only a different operation code is used. Figure 5-17
_ shows the machine language format of the Write Hex
5-47. Write Hex is a two-address instruction in which instruction and figure 5-18 is a coding example..

the processor writes data to the addressed (self-
terminating device) from main memory, and is essen-
tially the reverse action of the Read Hex instruction.
The Write Hex instruction writes data from main
memory beginning at the A operand address specified in
the instruction. As each memory position of the
processor is accessed, the eight bits are divided so that
the most significant four bits are translated and trans-
ferred to the device as byte 1, while the least significant
four bits are subsequently translated and transferred as
byte 2. Similarly, the next position is split to make up
bytes 3 and 4, and so on. The format for the Write Hex

PROGRAM
LABEL NP-Code OPERANDS
12 345 6 7]18}9 1011 12}13414151617 181920
WAY | [RMT, 1
t

Figure 5-18. Write Hex Instruction (WHX)
Coding Example

5-48. WRITE HEX AND COUNT - WHC (OP
CODE B, VARIANT 3)
5-49. Write Hex and Count is similar to the Write Hex

instruction except that a count is established in the
instruction so that it may be used with a computer-
terminating device, or to output a limited amount of
information. The count specified in the instruction is the
number of main memory positions to be transferred to
the device, not the number of buffer positions to be
filled. That is, to fill a 128-character buffer, a count of
64 (decimal) or 40 (hexadecimal) would be written in
the instruction. The specified count for the typewriter
cannot exceed 128 (decimal). The format. for the Write
Hex and Count instruction is similar to that of the Read
Hex and Count instruction, only a different operation
code is used. Figure 5-19 shows the machine language
format for the Write Hex and Count instruction and
figure 5-20 is a coding example.

INDIRECT ADDRESS INDIRECT ADDRESS
CONTROL BIT CONTROL BIT
-~ s
1 {
X X X X F } 1 A A B } X
\ v / OP h ~ / oP\ \pevice
B_OPERAND OR CODE VARIANT A OPERAND OR cope
INDIRECT ADDRESS INDIRECT ADDRESS NUMBER
. v 7\ v g
LOAD ADDRESS WRITE HEX
Figure 5-17.

Write Hex Instruction (WHX) Machine Language Format

5-8

INDIRECT ADDRESS

INDIRECT ADDRESS

CONTROL BIT CONTROL BIT
V- l l ~ I
1,0 COUNT F { 3 A A B } X
|
|\) L -
. or\ \ v 0P\ \pevice
INDIRECT ADDRESS INDIRECT ADDRESS
[\ v ___J_ v ___J
LOAD ADDRESS WRITE HEX AND COUNT
Figure 5-19.

Write Hex and Count Instruction (WHC) Machine Language Format

PROGRAM

PROGRAM

LABEL OP-Code OPERANDS
1 2345 6 7]8}9 1011 12]13]1415 16 17 18 19 20 21

LABEL OP-Code OPERANDS
12 345 6 7189 1011 12[13}1415 1617 1819 20

u WHC | [2)94],8; 15

Figure 5-20. Write Hex and Count Instruction
(WHC) Coding Example

5-50. I/O Control Instructions
5-51. RESET I/O — RIO (OP CODE 9, VARIANT E)

5-52. Reset 1/O is a single-address instruction which
may be used to interrupt any current operation being
performed by the device, such as reading data to the
associated buffer. In this case, execution of the Reset
1/0 instructions locks the keyboard to the operator and
allows the program following the Reset I/O instruction
to proceed. The machine language format of the Reset
1/O instruction is shown in figure 5-21 and figure 5-221s
a coding example.

1 T i
X 1 X X1 X 9 1 E
1] |
DEVICE opP VARTANT
NUMBER CODE

Figure 5-21. Reset 1/O Instruction (RIO)
Machine Language Format

5.53. STATUS-IN - SIN, SET READ - SRD AND
DEVICE CONTROL - CTL (OP CODE 9,
VARIANT D)

5-54. The Status-In, Set Read, and Device Control
instructions provide different control functions for the

H R15| | |d],|s

Figure 5-22. Reset I/O Instruction (RIO)
Coding Example

addressed device, using only one basic instruction
(operation code 9, variant D). Each instruction is a
varjation of the basic instruction shown in figure 5-23,
and is signified by setting the appropriate bit of the most
significant byte.

INDIRECT DEVICE CONTROL
ADDRESS BYTE
CONTROL BIT

f__\
1
I [o1 2]
1
—
6_J//) N
STATUS IN 2 DEVICE op VARIANT
5 NUMBER CODE
SET READ 2
DEVICE
CONTROL 2

Figure 5-23. Status-In (SIN), Set Read (SRD) and
Device Control (CTL) Instructions
Machine Language Format

5-55. During the operation of the control instruc-
tions, the bits of the most significant byte are examined
from left to right, and the first bit found to be set
determines the type of instruction. For example, if both
the Status-In and Set Read bits are set, the instruction
would be taken as Status-In and the Set Read bit
disregarded. In this manner, only one of the three
control functions can actually be indicated in a single
instruction. Status-In, Set Read, and Device Control are

TABLE 5-3. 1/0 CONTROL INSTRUCTION BITS

5-57. To check device status for a particular condi-

tion, the appropriate bit(s) of the Device Control Byte
must be set to enable an automatic Test Bit operation
(refer to section II) with the corresponding bits of the
Status Byte (described in paragraph 5-13). For example,

MOST
SIGNIFICANT BYTE DESIGNATED
26 28 24 INSTRUCTION
1 X X | SIN (Status-In)
0 1 X | SRD (Set Read)
0 0 1 CTL (Device Control)

if it is desired to check the addressed device for service
request status, the 2° bit of the Device Control Byte
must be set to check the 2® bit of the Status Byte. The
23 bit of the Status Byte, when set, indicates a request

individually specified in the 2°, 2%, and 2* bits of the
most significant byte in the instruction as listed in table
5-3. A functional description of the three commands is
provided in the following paragraphs.

5-56. Status-ln is set to the addressed device to
determine the current status (refer to paragraph 5-11) of
the device. Execution of the Status-In instruction causes
the addressed device to generate a Status Byte which
reflects the current status of the device, and which is
subsequently placed in position 23 (decimal) of main
memory for examination by the processor. By specifying
a Status-In instruction (setting the 2% bit in the most
significant byte), the Device Control Byte (refer to
figure 5-23) may be used by the programmer to further
clarify the type of status being checked for. That is, the
status of a device may be checked for a particular
condition (such as busy, service request, flag I, etc.)
with a single instruction, instead of first requesting
status, and then performing a separate examination of
the Status Byte to determine which bits are set.
DEVICE CONTROL

BYTE
(SERVICE REQUEST)
e A

BRDNDE

N NN
STATUS IN///// DEVICE 0P VARIANT

INSTRUCTION NUMBER CODE

Figure 5-24. Status-In Instruction (SIN) Machine
Language Format Example

PROGRAM

LABEL NP-Code OPERANDS

12 345 6 7]18§9 1011 121134141516 17 1819 20
SIIIN | |$i7l3], 12
BIE|Q ¥ -3

Figure 5-25. Status-In Instruction (SIN)
Coding Example

for service. The instruction for the example would
appear in machine language (hexadecimal) as shown in
figure 5-24 and figure 5-25 shows a coding example.

5-58. Set Read is an instruction used to unlock the
typewriter keyboard so that the operator may proceed
to fill the buffer while the processor is doing other work.
The Set Read instruction cannot be used with unbuffer-
ed devices. The Set Read instruction is formed by setting
the 2° bit in the most significant byte, and would appear
in machine language (hexadecimal) as shown in figure
2-56. A Read or RIO instruction must be issued to that
device before a CTL, SRD, WR, WRC, WHX, or WHC
instruction can be used. Figure 5-27 shows a coding
example of the Set Read instruction.

DEVICE CONTROL

BYTE
T T
21 0 | X X | 9] D
1]
SET READ//// DEVICE ol VARTANT
INSTRUCTICN NUMBER CODE

Figure 5-26. Set Read Instruction (SRD)
Machine Language Format Example

PROGRAM

LABEL MP-Code OPERANDS

12 345 6 71819 1011 121131141516 17 1819 20
SRRID iﬂ |

Figure 5-27. Set Read Instruction (SRD)
Coding Example

NOTE

In the Set Read instruction, the Device Control
Byte has no meaning, and any information inclu-
ded in this byte is disregarded during the
operation.

5-59. The Device Control instruction may be used by
the programmer to perform various functions with the

5-10

TABLE 54. DEVICE CONTROL BYTE AND TYPEWRITER SIGNAL LAMPS

DEVICE CONTROL BYTE
27 26 28 2 22 22 2t 2 OPERATION
X X X X 0 1 0 0 None
X X X X 0 1 0 1 Lamp 1 set to on
X X X X 0 1 1 0 Lamp 2 set to on
X X X X 0 1 1 1 Bot lamps set to on
X X X X 0 0 0 0 None
X X X X 0 0 0 1 Lamp 1 set to off
X X X X 0 0 1 0 Lamp 2 set to off
X X X X 0 0 1 1 Both lamps set to off

different 1/O devices. Setting the Device Control (24) bit
of the most significant byte in the I/O controt
instruction causes the Device Control Byte to be
considered during the operation. Within the Device
Control Byte, the individual bits can be set to indicate
various commands to the addressed device. For example,
typewriter signal lamps.may be turned on and off by the
program to indicate any desired program condition to
the operator. Control of the communications lamps is a
function of the Device Control Byte, whose bits may be
set as listed in table 5-4 to obtain the desired results.

5-60. The Device Control instruction is then used to
turn the typewriter lamps on and off by using the Device
Control Byte as shown in table 5-4. Figure 5-28 shows
an example of the machine language format of a Device
Control instruction in which lamp 2 is set to off. Figure
5-29 shows a coding example.

DEVICE CONTROL
BYTE (SEE TABLE 5-4)

——HA——
T T
I 1100 | x 2 I 9] DJ
1 1
DEVICE CONTRGL/ DEVICE op VARIANT
INSTRUCTION NUMBER CODE

Figure 5-28. Device Control Instruction (CTL)
Machine Language Format Example

PROGRAM

LABEL
12345 6 7]8

Figure 5-29. Device Control Instruction (CTL)
Coding Example

5-11

5-61. READ STATUS 2 - RS2 (OP CODE 8,
VARIANT 4)
5-62. The Read Status 2 instruction is an 1/O control

instruction that performs approximately the same func-
tion as the Status-In instruction. The exception is that
Read Status 2 is used to check the second status byte on
certain devices having two status bytes. Devices that
have two status bytes are video displays, certain discs
and certain QANTEL communications controllers. Addi-
tional information on the QANTEL communications
controllers is contained in the QANTEL Data Communi-
cations Techniques manual. Figure 5-30 shows the
machine language format of the Read Status 2
instruction.

NOTE

The Read Status 2 instruction is not available in
the QANTEL Prockssors at this time and will be
implemented at a future date.

DEVICE CONTROL

BYTE
I - 1
x 1 1 X X 8 } D
i
DEVICE oP VARIANT
NUMBER CODE

Figure 5-30. Read Status 2 (RS2) Instruction
Machine Language Format
5-63. Initial Program Load (IPL)
5-64. The term IPL refers to the first instruction or
series of instructions performed by the processor. To

perform IPL, the operator presses the IPL switch on the
processor control panel to generate a general reset to all

devices. This action resets the program register to zero

and generates a Read Hex instruction addressed to

devicé number zero. The associated main memory
address for the Read Hex instruction is zero, and
because the current program address (program register)
is zero, the data (hexadecimal) to be read into location
zero will serve as the first instruction to be fetched.

and ocanerates a

5-65. The amount of hexadecimal data (instructions)
that can be entered from the device into the main
memory (beginning at location zero) is determined by
the typewriter buffer. In the case of the typewriter, 128
characters can be entered before automatic termination
occurs and the instructions are initiated.

5-66. Programming Notes

5-67. When the buffer-filling operation on a keyboard
device is terminated by a carrier RETURN character, the
character is actually placed in the buffer. If the
subsequent transfer of buffer contents to main memory
is effected by a Read instruction, the carrier RETURN
character will be transferred to main memory.

5-68. The Read instruction associated with 1PL stores
the final address plus one in locations 21 and 22. As a
result, there is an effective limit to the number of
instructions that could be entered through IPL before
initiating some other method for program entry.

5-69. INPUT/OUTPUT DEVICES
5-70. Typewriter
5-71. The typewriter is the basic I/O device. It is

supplied as part of the basic QANTEL/ANSWER Pro-
cessor System and is used to initialize all operations
which require the loading of a program. The typewriter
is a buffered device having a 128-byte hardware buffer.
The buffer allows the operator to enter data while the
processor is processing, thereby preventing the relatively
slow speed of the typewriter from impairing the perfor-
mance of the processor. The typewriter will read or
write up 128 bytes of data as a result of a single read or
write command. Read operations without a specified
length are terminated by the typewriter when the buffer
is full (with 128 alphabetic/decimal or 64 hexadecimal
characters), or by the operator when the TERM or
carrier RETURN key is pressed. (Write operations
without a specified length are illegal and will cause
indeterminate results). Read operations which do have a
specified length also allow the operator to fill the buffer.

5-12

However, those characters which exceed the specified
length are not read into memory when the buffer is
emptied, but are lost. For example, during a Read with
Count, the operator enters more data into the buffer
than specified in the instruction, only the specified
number of characters will be read into memory when the
operator presses the carrier RETURN or TERM key. It is
also possible for the operator to press the carrier
RETURN or TERM key before the specified number of
characters have been entered. The program can check for
this condition by examining locations 21 and 22
(decimal) of reserved memory to determine the final
address-plus-one of the operation. It should be noted
that the difference between the carrier RETURN and the
TERM Kkeys is that the carrier RETURN key terminates
the read operation and enters a carrier return character
into memory (if the specified length allows), while the
TERM Kkey simply terminates the read operation without
the inclusion of the carrier return character. Those read
and write instructions which may be used with the type-
writer are indicated in table S-5.

5-72. TYPEWRITER FLAGS AND SIGNALS

5-73. The typewriter is equipped with three switch/
lamps (flags) designated FLG 1, FLG 2, and FLG 3; and
is also equipped with two signal Jamps designated SIG 1
and SIG 2. This arrangement of flags and signals provides
the necessary operator-program communication. The
three flags can be selectively set by the operator, and can
be examined, separately or collectively, by means of the
Status-In instruction described in paragraph 5-56. The
signal lamps can be set and reset, separately or together,
by the program using the Device Control instruction
described in paragraph 5-59.

NOTE -

The flags are reset (other than by the operator) by
the execution of any read, write, Set Read or
Reset I/0 instruction.

5-74. The setting of any flags by the operator is
reflected in the device status. To check for the presence
of a set flag, the program must examine the device status
to determine if any of the flags, or a particular flag, have
been set. The method of determining typewriter status is
described in paragraph 5-75.

5-75. TYPEWRITER STATUS CHECKING

5-76. The status of the typewriter is determined by

means of the Status-In (SIN) instruction. The methods
of coding this instruction to determine the various
possible status conditions are shown in figure 5-31.
(Note that column 13 or 14 contains the device
number). The SIN instruction is usually followed by a
Branch On Non-Zero (BNZ) or Branch Equal (BEQ)
instruction, and if the condition checked for is true, the
BNZ is executed. Conversely, if the condition is checked
for is not true, the BNZ is not executed and the program
falls through to the next instruction or a BEQ instruc-
tion may be executed.

5-77. The programmer may choose to check more
than one status condition in this manner by using several
SIN and BNZ statements. Or, he may choose to check
two or more conditions with one SIN instruction. For
example, if it is desired to determine whether or not the
operator has set any of the flags or if the typewriter is
inoperable, the SIN statement would be coded as shown
in figure 5-32. The $FO (hexadecimal) entered in
columns 8 to 10 is obtained by adding the coding for the
individual conditions shown in figure 5-31 (i.e., 1074 *+
201t 40;6 t 8014 = F0y¢). If any or all of the tested
conditions are true, the subsequent BNZ instruction
would be executed. (If the program needs to determine
precisely which of the four tested conditions is true,
further status checking must be performed).

NOTE

When status indicates busy reading or busy wri-
ting, the operation is still in progress and the
remaining status conditions are subject to change.
As a result, status checking for operability should
be performed when the device does not indicate
busy reading or writing.

5-78. TYPEWRITER DEVICE CONTROL

5-79. The Device Control (CTL) instruction is used to
operate the signal lamps on the typewriter. The CTL
instruction is coded as shown in figure 5-33 to perform
the indicated functions, provided the device is not busy.

5-80. TYPEWRITER RESET I1/O

5-81. The Reset I/O (RIO) instruction is coded as
illustrated in figure 5-34. This instruction performs the
function of resetting all flags. It may also be used to
terminate any typewriter operation and lock the key-
board to the operator.

5-13

PROGRAM

LABEL
12345 6 7]81

©D
o
O
o]

=Q
s}

S
- o
N
@
W
[o¢]

T A P B [A | [A A o | | B |2

18 20

oP
~— - - - -
~NO

-

0w onoy W Naesa s s szl

NN ivimbLbLiniLkhh hvinwin
_'_HHHHHHHHHHMHHH
S =zl

ASNASRASYASNASN DS [N o= W

Figure 5-31. Typewriter Status-In Instruction Coding

PROGRAM

LABEL e OPERANDS
12345 6 7]8)9 1011 12|1313a15 16 17 1819 20

o | [¢Fid, ¢

Figure 5-32. Checking Multiple Status Conditions

5-82. TYPEWRITER SET READ

5-83. The Set Read (SRD) instruction is coded as
shown in figure 5-35 and may be used to simply unlock
the typewriter keyboard. When the typewriter keyboard
is unlocked by the SRD instruction, the operator may
enter data into the 128-byte buffer without interrupting
the processor. With this method of typewriter operation,
the system may perform other processing while the
operator enters the data. The subsequent read instruc-
tion may be issued at any time to move the data from
the typewriter buffer into memory. If the operator has
not finished the entry, the processor waits.

TABLE 5-5.
DEVICE AND ALLOWABLE READ AND WRITE INSTRUCTIONS

[/O DEVICE
INSTRUCTION TYPE LINE PAPER TAPE | MAGNETIC | CARD TEN-KEY DISC
(MNEMONIC) WRITER | PRINTER | RDR/PCH TAPE READER |KEYBOARD | DRIVE
Read (RD) yes no no yes yes yes yes
Read and yes no yes yes yes yes yes
Count (RDC)
Read Hex yes no no no yes no no
(RHX)
Read Hex and yes no no no yes no no
Count (RHC)
Write (WR) no yes no no no no yes
Write and Count yes yes yes yes no yes yes
(WRC)
Write Hex (WHX) | no yes no no no no no
Write Hex and yes yes no no no no no
(WHC)
PROGRAM I.D. | PROGRAM
Soron o LABEL 0OP-Code OPERAN
12 345 6 7189 1011 12]113]141 5161718192021222324
' el | 461, ¢ Tun SIG 1 off
2 CTiL ¢¢Q; Turn SIG 2 off
3 ey | [$43], ¢ Turn SIG 1 and SIG 2 off
4 CT|L $ﬁ51¢ Turn SIG 1 on
5 CT|L $¢6;¢ Turn SIG 2 on
6 CT|L 347,48 Turn SIG 1 and SIG 2 on
7
Figure 5-33. Typewriter Device Control Instruction Coding
PROGRAM PROGRAM
LABEL OP-Code OPERANDS LABEL 0OP-Code OPERANDS
1 2 345 6 7]8}9 1011 12]131415 16 17 1819 20 12345 6 71819 1011 12]134141516 17 1819 20
R1lc | |8, 10 sirio| | |d,, |4

Figure 5-34. Typewriter Reset 1/O Instruction Coding

5-14

Figure 5-35. Typewriter Set Read Instruction Coding

5-84. Magnetic Tape Transports

5.85. Data written to the various QANTEL magnetic
tape transports is arranged into records and files. The
records are separated by inter-record gaps, while files are
separated and ended by end-of-file indicators (see
paragraph 5-86). Record length is variable and is
determined by the character count specified in the Write
and Count instruction. Write and Count is the only write
instruction used with the magnetic tape transport since
the device cannot determine the desired length of the
record and terminate the operation itself. The Read and
Read with Count instructions may be used with the
magnetic tape transport. The Read (without count)
instruction causes the device to ‘read one complete
record of data and halt .at the beginning of the next
record. The Read with Count instruction causes one
complete record of data to be passed by the read
mechanism, but only the specified number of characters
are read into memory. Error checking is performed on
the entire record regardless of the specified count.

5.86. Records may be any desired length as long as
they are at least 12 characters. (Although a 12-character
minimum is possible, a 20-character minimum is
recommended). Records shorter than 12 characters
(bytes) are considered erroneous when read, and are so
indicated in the device status as an illegal block length.
An exception to the 12-character minimum is the
end-of-file (EOF) indicator which is written to the tape
unit when it is desired to designate the end of a
particular file. The EOF indicator is a one-byte record

and rewind. The Erase command causes the transport to
erase the next 3% inches of tape. The Check Read
command causes the tape unit to read one record and
perform error checking, the result of which is reflected
in the device status. This command usually follows a
write and backspace operation. The Backspace command
causes the tape transport to back up to the beginning of
the preceding record. The Rewind command causes the
tape transport to rewind the tape to the beginning-of-
tape position. The CTL instruction is coded as shown in
figure 5-36 to perform the indicated operations.

5-89. MAGNETIC TAPE STATUS CHECKING
5-90. Checking the status of the magnetic tape
transport in the most efficient manner is a somewhat
more complex procedure than that for the other I/O
devices. To simplify the programmer’s task of properly
using the magnetic tape transport, an Input/Output
Control System (I0CS) Utility is provided by QANTEL
Corporation. These subroutines include the necessary
status checking and are described in the QANTEL

Input/Output Control System (IOCS) Operating
Instructions.

591. Disc Drive

5-92. The QANTEL disc systems can use any of three

different sizes of disc, a 7.6M Byte disc, a 30.7M Byte
disc and a 60M Byte disc. These units are sectored and
organized as follows:

consisting of 13, (0001001 12),, and is written to the 7.6 Byte Disc 30.7M Byte Disc 60M Byte Disc
device after the last record of the file. 10 disc surfaces 20 disc surfaces 20 disc surfaces
200 trks/surface 200 trks/surface 400 trks/surface
5-87. MAGNETIC TAPE DEVICE CONTROL 10 sectors/track 10 sectors/track 10 sectors/track
380 bytes/sector 768 bytes/sector 768 bytes/sector
5-88. The Device Control (CTL) instruction is used to 7.6M Bytes 30.72M Bytes 61.44M Bytes
perform such functions as erase, check read, backspace storage storage storage
PROGRAM 1.D. PROGRAM
N LABEL OP-Code OPERANDS
12345 6 7|8)9 101112 1311415 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 32 33434}
1 eiTiL| | {61818, X E\R|Als|E
2 cTiL | [$141], X C|H Elck| [RIE|AD
3 cTiL | |82, x glAlcikis Plac|e
“ cT|Ll | [pF13], (X R|E|WI ¥|D
5

Figure 5-36. Magnetic Tape Transport Device Control Instruction Coding

5-15

el

BYTE 6 BYTE 5 BYTE 4 / BYTE 3 BYTE 2 BYTE 1
DEVICE TRACK/HEAD TRACK HEAD SECTOR
NUMBER GROUP (B845) (#-9) 0-9)
Figure 5-38. Disc Address Field Organization
5.93. The QANTEL/ANSWER Processor System b. Byte 2 — decimal head number @ through 9

ROM contains a disc Seek instruction (SEK). This
instruction is actually a seek and fill buffer command.
Read or Write to any sector is usually preceded by a
single-address (three byte) Seek instruction with OP
Code 8 and Variant 0. Figure 5-37 shows the machine
language format of the Seek Instruction.

A OPERAND OR
INDIRECT, ADDRESS
INDIRECT / S
ADDRESS — '
CONTROL BIT A A 810
o'p VARTANT
CODE

Figure 5-37. Disc Seek Instruction (SEK) Machine
Language Format

5-94. The A operand address field of the Seek
instruction points at byte six (6) of the actual six byte
disc address field. Figure 5-38 shows the organization of
the disc address field.

5-95. The information contained in the six bytes of
the disc address field are as follows:

a. Byte 1 - decimal sector number @ through 9

c. Byte 3 and 4 — decimal number ¢ through
99 designating the track address
Byte 5 — 7.6M Byte Disc: decimal number ()
or 1 designating the track group @¢ through
99 or 109 through 199,
30.7M B 6/te Disc: decimal number § through
3; bit 2V indicates head group — @ if head
group § through 9 and 1 if head group 10
through 19 — bit 2! indicates track group,
60M Byte Disc: decimal number ¢ through
7; same as 30.7M Byte Disc except addi-
tional head group are indicated by 2? bit.
. Byte 6 — hexadecimal device number with a
3 zone 30 to 3F

d.

5-96. DISC STATUS CHECKING AND CONTROL
5-97. When writing programs for disc systems using
the QANTEL Business Assembly Language it is recom-
mended that the programmer use the QANTEL Input/
Output Control System (I10CS) to perform device Status
checking and control. If the programmer desires to write
his own status checking and control routines he should
refer to figures 5-39 and 5-40 for the coding format of
the Status-In instruction for the 7.6M Byte disc and the

through 9

PROGRAM 1.D. PROGRAM

S 'ILAZBE3L 45 6 7]8 SPFOO?TQ 12113 1% al% 71819 20212223242526
L ST | |91, X READ BUSY
2 STN | BIF|2), X WRITE BUSY
3 ST | 8184, X END
4 STV | |$8)%), X SERVICE REQUEST
5 s | 8114, X ERROR
6 SIWN | #1218, X MARKED SECTOR
7 ST | |$]44, X INVALID SEEK
8 ST | |2)210, X INOPERABLE
9

Figure 5-39. 7.6M Byte Disc Status-In Instruction Coding

5.

16

PROGRAM 1.D. | PROGRAM
i PS5 6 7]sl9 100 12 126 1611738 19
1 STV | |$/#|1], X| | READBUSY
2 sz | g2, X | wriTE BUSY
3 sz | [$10]4], x| | BxD
4 STV | |§18/9], X| | SERVICE REQUEST
5 Si‘ I} $1 d » (X| | SEEK OR WRITE TERMINATED
6 STW | K|#6|, X| | ERROR, MARK SECTOR, INVALID SEEK
7 s1/v| | |£]9|4, x| | INOPERABLE
8
Figure 5-40. 30.7M Byte and 60M Byte Disc Status-In Instruction Coding
PROGRAM
B 45 6 7]sle 181 2lha 125161738 19 20
criL| | g4z, X Inhibit Track Verify
cTiLl | 181412], X Inhibit Read After Write Check
CIT|L $ ﬂ 3) X Inhibit Track Verify and Read After Write Check
CT|IL ¢ 1 ¢) X Disable Termination Interrupt
CTIL f 14) X Enable Termination Interrupt (2314 Type Disc Only)
i , \

Figure 5-41. Disc Drive Control Instruction Coding

30.7M Byte or 60M Byte discs, respectively, and to
figure 5-41 for the coding format of the Device Control
instruction.

5-98. Card Reader

5-99. The card reader is a buffered device having an
80-byte hardware buffer. As the card is read, column by
column, the Hollerith coded characters are translated to
ASCII and stored in the buffer. (A blank column on the
card shows up as an ASCII space or blank character).
Read operations with the card reader are performed by
means of either the Read or the Read with Count
instruction. A read operation causes one card to be read
into the buffer and then to memory. If the instruction is
a Read with Count, only the specified number of
characters (up to 80) are transferred from the buffer to
memory. Data transfer is terminated by the card reader

when the buffer becomes empty, or by the processor
when the count is exhausted.

NOTE

The Read with Count instruction could be used to
conserve memory in cases where only the front
portion of the card needs to be read.

5-100. CARD READER SET READ

5-101. The Set Read (SRD) instruction may be used to
read a card into the hardware buffer while the processor
operates on the data read from the previous card. (The
processor can do a significant amount of processing in
the length of time it takes to read a card into the
buffer). The SRD instruction causes the card reader to
read a single card into the buffer in an off-line mode. A

5-17

PROGRAM
1LAZBE3L4 5 6 78 gP%COO(ljf 12113 1?31% 16 17 18 19 20
st | #)d]2],IX De
ST N $ 6‘/ /] X Re
ST | 6], X
sTW | [$28], X
ST | 122], X
STW| | 1#14)4), X
st | |¢g/f], x

vice busy reading

ad operation finished

Service request

Read error — data unreliable (300 CPM Card Reader Only)
Feed error — card jam, etc. (300 CPM Card Reader Only)
Hopper empty/stacker full or hold

Inoperable, feed error

Figure 5-42. Card Reader Status-In Instruction Coding

PROGRAM I.D. [PROGRAM
N LABEL OP-Code QPERAN
12 345 6 71819 1011 12{131141516 1 1 19 20 21 22
1 S|TN 12 d' ; X Reader out of tape/no ac power
2 ST $ﬁ, ¢) X Punch out of tape/no ac power
3 NYyar $ 9 ¢ , X Inoperable (both units)
4

Figure 5-43. Paper Tape Reader/Punch Status-In Instruction Coding

subsequent Read or Read with Count instruction causes
the buffer contents to be read into memory.

5-102. CARD READER STATUS CHECKING

5-103. Card reader status is checked by means of the
Status-In (SIN) instruction. The methods of coding this
instruction to determine the various possible status
conditions of the card reader are shown in figure 5-42.
In addition, a flowchart of a typical card reader status
checking routine is presented in figure 5-44.

5-104. Paper Tape Reader/Punch

5-105. The status of the paper tape reader/punch is
determined in a manner similar to that of the typewriter,
in that the SIN and BNZ instructions are used. The
methods of coding this instruction to determine the
various possible status conditions of the paper tape
reader/punch are shown in figure 5-43. The read and

5-18

write instructions used with the paper tape reader/punch
are listed in table 5-5.

5-106. Ten-Key Keyboard

5-107. The ten-key keyboard is a buffered numeric
(ASCH) input device. Read operations with the numeric
keyboard are performed by means of either the Read or
Read with Count instruction. As the operator presses
and releases the numeric keys, the data is read into the
31 character buffer. When the terminate (T) key is
pressed by the operator, service request is set and the
processor reads the buffer into the designated portion of
memory.

5-108. TEN-KEY DEVICE CONTROL

5-109. The program can, by means of the Device
Control (CTL) instruction, cause the device to produce
an audible tone to signal the operator. Coding the CTL
instruction to turn the signal on and off is shown in
figure 545,

BUSY
OFF-LINE?

FEED ERROR?

INOPERABLE?

READ ERROR?

r

SIN $40 —3
ALERT OPERATOR
DO OTHER
@I PROCESSING
READ
O, ALERT
SIN $20 > OPERATOR S
®l
) ALERT
SIN $80 ™ oPERATOR |
© -

SIN $10

®y

HALT-MANUALLY
REPLACE CARD

Figure 544. Card Reader Status-Checking Flowchart

PROGRAM 1.D. | PROGRAM
Tt : @ @ | LABEL OP-Code OPERANDS
it J12 3 a5 6 7]8)9 1011 12131415 16 17 18 19 20 21 2223
CIT|L ¢ ¢¢) X Turns signal off
CTIL $ ¢ 1) X Turns signal on
CTIL v ¢ 6|, X Disable termination interrupt
CTIL ¢ ﬂ 7, X Enable termination interrupt

Figure 5-45. Ten-Key Keyboard Device Control Instruction Coding

5-19

PROGRAM I.D. | PROGRAM

EEEEE 1L'§BE3L 45 6 718 8P1%0?1e 12113 1%)!:;%':{1%[\1‘9818 19 20 21 2223 24 25 26 27
! ST ~¢ ¢ 1) X Device busy reading
2 ST £ 1814, X Read terminated
3 SIw {2 ¢) X F2 set
4 ST |V $4¢) X F3 set De
5 S TV £s d) X Device inoperable
6

Figure 5-46. Ten-Key Keyboard Status-In Instruction Coding

PROGRAM I.D. | PROGRAM

. 1LA28E3L 45 6 718 3‘31%0(1.’119 12113 T%)F;EBR{g'\{QS'IS 19 20 212223 24 25
L CTIL ¢3 d) X Skip to Channel ¢
2 C T L $ 31) X Skip to Channel 1
3 LC_TL $32 , X | Skip to Channel 2
4 ICTIL £33 y X Skip to Channel 3
5 CTL $34|, X Skip to Channel 4
6 CT|L $35, X Skip to End-of-Form
7 ZT L $ 36, X Skip to Top-of-Form
8 ¢ TL $ 37, X Skip to Next Line Only
9

Figure 5-47. 60-100 LPM Serial Printer Device Control Instruction Coding

5-110. TEN-KEY STATUS CHECKING

S-111. Status checking is performed by means of the
Status-In (SIN) instruction, which is also used to check
flags 2 and 3 (F2 and F3). These flags are similar to
those used in the typewriter, but can only be turned on
during a Read. The operator can set the flag(s) by
pressing a button to indicate certain conditions or
function to the program. The methods of coding the SIN
instruction to determine the various possible status
conditions of the ten-key keyboard are shown in figure
5-46.
5-112. Line Printers

5-113. QANTEL Corporation has several printers that
are used with the QANTEL/ANSWER Processor System,

5-20

a 60-100 LPM Serial Printer, a 200 LPM Line Printer, a
245-1100 LPM Line Printer and a 700-1800 LPM Line
Printer. Data may be written to these printers by means
of the Write, Write and Count, Write Hex, and Write Hex
and Count instructions. If the Write or Write Hex
(without count) instructions are used, the printers will
print one line (132 characters) and halt. If a count is
specified in the write operation, that number of
characters is printed on a single line and the operation is
terminated. The printers will automatically advance to
the next line after each write operation.

5114. LINE PRINTER DEVICE CONTROL

5-115. The Device Control (CTL) instruction is used to
control the Vertical Format Unit contained within the
various printers. The Vertical Format Unit uses one-inch

PROGRAM 1.D. | PROGRAM
Tt . 1 | LABEL OP-Code OPERANDS
12345 6 7]18)9 1011121311415 617 1819 2021 22

1 CTL # ﬂ) X Skip to Top-of-Form (Channel 1)
2 CTIL (4 ¢ 1), X Skip to Next Line Only (Line Feed)
3 ICTIL £ ﬂ 2, X Skip to Channel 2 (Vertical Tab)
4 CTiL $ 2 ¢ , X Reset: Allow Termination Interrupt
5 CTL $ 6|0) X Set: Allow Termination Interrupt
6

Figure 5-48. Line Printer Device Control Instruction Coding

PROGRAM 1.D. | PROGRAM
R LABEL OP-Code OPERANDS
12345 6 7]|8)9 1011 12]13(1215 16 17 1819 20 21 2223 24 25 26
1 SIITD $ dﬂ yI X Write Busy
2 szo | |$8Y],X End
3 STV t b ¢))(Inoperable or No Paper
4l

Figure 5-49. 60-100 LPM Serial Printer Status-In Instruction Coding

PROGRAM I.D. |PROGRAM
Tt : ¢ ¢ | LABEL OP-Code OPERAN
12 345 6 7)8l9 10711 12]1314 15 16 17 18 19 20 21 2223 24 25 26
1 S|ITIL $¢2, 1 Write Busy
2 st | |48, X End
3 SIW 31\, X Interrupt
4 ST $l/¢’ X Always Set
5 SN $ ﬁ , X Inoperable or No Paper
|
6 \

Figure 5-50. Line Printer Status-In Instruction Coding

punched tape in the form of a loop to control the
positioning of the continuous form paper used with the
printers. The punched tape loop is created by the
programmer or systems person, to meet the needs of the
particular program and/or report. The CTL instruction
for the 60-100 LPM Serial Printer is coded as shown in
figure 5-47 to perform the indicated functions. The CTL
instruction for the three line printers is coded as shown
in figure 548 to perform the indicated functions.

521

NOTE

If the Vertical Formal Unit finds the top-of-form
position before the requested position, the form
feeding halts at that point.

5-116. LINE PRINTER STATUS CHECKING

5-117. The status of the printers is determined in a
manner similar to that of typewriter, in that the SIN and
BNZ instructions are used. The methods of coding this
instruction to determine the various possible status
conditions of the 60-100 LPM Serial Printer are shown
in figure 5-49 and figure 5-50 shows coding for the line
printers.
5-118. System Clock/Interval Timer

5-119. The System Clock provides time-of-day in 10
millisecond increments up to 23 hours, 59 minutes,
59.99 seconds, thereafter resetting itself to zero and
resuming its count. The Interval Timer can be set to a
time as large as 99 hours, 59 minutes and 59.99 seconds
and uses the Interrupt feature to inform the processor
when the interval has elapsed.

5-120. SETTING SYSTEM CLOCK
5-121. Time-of-day is set into the System Clock by a

Device Control (CTL) 9 instruction followed by a write
instruction (eight bytes). The system clock auto-

PROGRAM

LABEL OP-Code OPERANDS

1 2 345 6 718]9 1011 1213141516 17 1819 20
cTiL | |29, |3
WR TIIME|, |3

Figure 5-51. System Clock Time-Of-Day Setting

matically terminates a write-without-count operation
after eight bytes have been received. The eight bytes
representing time-of-day are to be transmitted with the
most significant byte (tens-of-hours) first. Figure 5-51.
shows the coding to set time-of-day into the System
Clock.
5-122. READING INTERVAL TIMER

5-123. The current amount of time remaining in the
Interval Timer is read by means of a Device Control
(CTL) OC instruction, followed by a normal read
instruction. The device self-terminates on a read-
without-count operation after eight bytes have been
sent. Figure 5-52 shows the coding to read the interval
from the Internal Timer.

PROGRAM

LABEL OP-Code OPERANDS

12 345 6 71819 1011 12113141516 17 1819 20
etiL| | |dle|, |3
R|D 1|07TR, |3

Figure §-52. Interval Timer Read Coding

5-124. A desired interval is set into the Timer by a
normal write instruction. The device self-terminates a
write-without-count operation after eight bytes have
been received.

PROGRAM I.D.] PROGRAM
SEREE 1LAﬁBE3L 45 6 7]8 ngCOOTGle 12|13 1(2'?1‘55}:]1%\[\1]9818 192021222324
1 §:[D ¢¢1,X Read Busy
2 § ey $¢2) I X Write Busy
3 ST | |$14], X End
4 SI”A_) § ¢ 2, X Service Request
5 B) §;I L ¢1 ¢ , 1 X Interrupt (Interval Elapsed)
6 EI N $12 ¢) X Time Incorrect
7 \ | Z

Figure 5-53. System Clock/Interval Timer Status-In Instruction Coding

5-22

5.125. SYSTEM CLOCK/INTERVAL TIMER
STATUS CHECKING

5-126. The status of this device is determined by
means of the Status-In (SIN) instruction. The methods
of coding this instruction to determine the various
possible status conditions of the Clock/Timer are shown
in figure 5-53.

5-23

NOTE

Timer Incorrect will be set as result of powering
up the system, or initiating the “Test” feature. It
is reset by a CTL ¢9, Load Time-of-Day. The
“Test” feature consists of issuing the device a CTL
02 instruction, and causes the clock to speed up so
that 24 hours of running is reduced to 5 minutes,
38 seconds.

SECTION VI

ASSEMBLER OPERATION

6-1. INTRODUCTION

6-2. This section contains the operating instructions
for the QANTEL Business Assembly Language (Q/BAL)
assembler programs. Three separate assembler programs
are used to assemble programs coded in the QANTEL
Business Assembly Language. These programs consist of
two Pass 1 programs and one Pass 2 program. These
programs are described in complete detail in later
paragraphs of this section.

6-3. QANTEL Corporation also supports several
library maintenance programs which can be used with
both source files and object programs or libraries that
are created using the (Q/BAL) assembler programs.
Descriptions and operating instructions for these various
library maintenance programs are contained in the
QANTEL Software Operating Instructions binder. These
programs are the Q/BAL Source Converter (LMSDCTX),
Source Library Maintenance (LMSDMTX), Object
Library Maintenance (OBJTPTP), Object Library Con-
tent (OBIDIRT), Disc Object Maintenance (OBJITPDK),
Disc Object Library Condense (OBJCOND), and Disc
Object Library Directory List and Delete (OBJDIRD).
6-4. PROGRAM LOADING

6-5. The Q/BAL Assembler Object programs can
reside on either magnetic tape or disc. In order for the
programmer or operator to use these programs he must
be able to load the program into main memory. The
following paragraphs provide initial program load (IPL)
procedures used to load the object programs into main
memory from either magnetic tape or disc.

6-1

6-6. IPL From Magnetic Tape Library

6-7. The following procedure should be used to load
object programs into main memory from a magnetic
tape object library.

a. Mount the magnetic tape library on a tape
transport and bring the tape to LOAD point
by pressing the LOAD pushbutton twice.
When the tape is at LOAD point, the LOAD
indicator will light.

b. Press the IPL pushbutton.

c. Using the typewriter, enter the magnetic
tape bootstrap 00030X (where X is the
device number of the tape transport which
has the library mounted on it) and press
carrier RETURN.

d. The typewriter will print out PROGRAM
ID? Enter the seven character program iden-
tifier and press carrier RETURN.

e. The library tape will be searched for the
requested program and the program will be
loaded into memory.

NOTE

If the typewriter prints out NOT FOUND fol-
lowed by PROGRAM ID? during program loading,
reenter the desired program identifier and press
carrier RETURN. If the typewriter prints PARITY
ERROR or the SIG 1 and SIG 2 lamps light, the
procedure should be repeated starting with step a.
If the problem continues, cleaning and/or service
for the tape transport, or replacement of the
magnetic tape is indicated.

f. When the program loading is completed,
program execution will begin.

6-8. IPL From A Disc Library

6-9. The Disc Loader that resides in sectors) and 1
of a disc object library is used to execute programs from
the disc. To use the Disc Loader, the following proce-
dures should be follows:

a. Mount the object library disc pack onto the
disc drive and close the disc drive cover.

b. Press the POWER ON push-button on the
disc drive. The POWER ON indicator should
light and the disc pack will begin to rotate.

c. When the disc is up to speed, the 0 indicator
will light, approximately 30 seconds after
energizing the disc drive. If the SECTOR
LOCK indicator comes on, de-energize the
disc drive and attempt to turn on again. If
the SECTOR LOCK indicator continues to
come on, there is a malfunction in the disc
drive.

d. When the O indicator lights, press the EN-
ABLE ON push-button to enable the disc
system. The ENABLE ON indicator will
light.

e. Press IPL, enter 0022810X (where X is the
disc drive number 0-9 or A-F) and press
carrier RETURN. PROGRAM ID? will type
out.

f. Enter the seven digit mnemonic of the
program to be used and press carrier
RETURN. The program will load into
memory and when loading is complete,
program execution will begin.

NOTE

If the typewriter prints out NOT FOUND fol-
lowed by PROGRAM ID? during program loading,
reenter the desired program identifier and press
carrier RETURN. If the SIG 1 and SIG 2 lamps
light, the IPL procedure should be repeated
starting with step e. If the program continues,
cleaning and/or service for the disc drive, or
replacement of the disc library is indicated.

6-10. ASSEMBLER PROGRAMS

6-11. The three Q/BAL assembler programs are de-
fined as follows:

6-2

LPADCIX Pass I of the assembler using fypewriter or
punched card input to create or update
source programs on magnetic tape. Magnetic
tape or disc resident.

LPADD1X Pass I of the assembler using typewriter, disc
or magnetic tape input to create or update
source programs on disc or magnetic. Mag-
netic tape or disc resident.

LPADA2X Pass 2 of the assembler using magnetic tape
or disc to produce an object program on
paper tape or magnetic tape. and a source
listing on typewriter or printer. Magnetic
tape or disc resident.

The following paragraphs provide the operating proce-
dures necessary to use the Pass 1 and Pass 2 programs. A
description of the error messages and recovery proce-
dures is provided at the end of the operating
instructions.

6-12. Assembler Program Operating Instructions

6-13. PASS 1 OPERATION

6-14. The operating procedures for using either of the
two Pass 1 programs (LPADCIX or LPADD1X) are
identical except for the input/output devices that may
be used. To use the Pass 1 programs, load the desired
Pass 1 program from the program library and perform
the following steps:

a. The program modification base and iden-
tifier message followed by CRD RDR DEV
#? will type out.

b. If using card input, enter the one digit
hexadecimal device number of the card
reader. If not using card input, press carrier
RETURN.

c. OUTPUT DEVICE NUMBER? will type out.
If using the LPADDIX program with disc
output, press carriecr RETURN and DISC
SELECTED ENTER DEVICE NUMBER will
type out. Enter the one digit hexadecimal
disc device number and press carrier
RETURN. If using LPADC1X or LPADDI1X
without disc output, enter the one digit
hexadecimal output device number and press
carrier RETURN’

d. UPDATE, YES-NO will type out. If a new
program is being assembled, enter NO, press
carrier RETURN and proceed with step e. If
an existing source program is being updated

enter YES, press carrier RETURN and skip
to step. g.

. PROGRAM ID will type out. Enter the seven
character mnemonic program identified of
the new program being created and press
carrier RETURN.

. 00020 will type out. If the typewriter is
being used as the input device (typewriter
will always be the input device when creat-
ing a new program using LPADD1X) com-
mence entering the program. If the card
reader is being used as the input device, type
in a space and CRD (CRD), and the
assembler will begin to read the new pro-
gram from cards.

. INPUT DEVICE NUMBER? will type out. If
using LPADDI1X with disc input, press
carrier RETURN and DISC SELECTED,
PROGRAM ID will type out. Enter the
seven digit program identifier of the program
being updated, press carrier RETURN and
skip to step i If using LPADCIX or
LPADDIX without disc input enter the one
digit hexadecimal input device number and
press carrier RETURN.

. PROGRAM ID will type out. Enter the
seven character mnemonic program iden-
tifier and press carrier RETURN.

i. CHANGE ID? YES-NO will type out. If the

identifier of the program being updated is to
be changed enter YES, press carrier RE-
TURN and continue to step j. Otherwise,
enter NO, press carrier RETURN and skip to
step k.

j. PROGRAM ID will type out. Enter the new

seven character mnemonic program iden-

tifier and press carrier RETURN.

. RENUMBER, YES-NO will type out. If the

program is to be renumbered, enter YES and

press carrier RETURN. If the program is not
being renumbered, enter NO and press

carrier RETURN. When not renumbering a

program, a new line number must be entered

with each new line in the update.

. 00020 will type out. If the update is being
entered from cards, enter CRD and press
carrier RETURN. If the typewriter is being
used to enter the update, commence enter-
ing the update lines appropriate.

.If it is desired to delete an existing statement
from the program, enter the reference num-
ber of the statement followed by a comma,

6-3

followed by a repeat of the reference num-
ber. For example, to delete statement num-
ber 00240, enter the following:
00240,00240.

NOTE

The statement containing the End Control instruc-
tion and the branch address or label should never
be deleted when updating a program.

n. If it is desired to delete a group of state-

ments, enter the reference number of the
first statement, followed by a comma, fol-
lowed by the reference number of the last
statement in the group to be deleted. For
example, to delete statements 00240
through 00280, enter the following:
00240,00280.

. To terminate the update operation and

generate the remainder of the new source
program tape without interruption, enter a
reference number greater than that of the
last statement in the program (e. g. 99999).

PASS 2 OPERATION

Load the Pass 2 program from the program
library and perform the following steps:

a. The program modification level and iden-

tifier message followed by INPUT DEVICE
NUMBER? will type out.

b. Mount the source tape or disc.
. If using magnetic tape source input, enter

the one digit hexadecimal device number of
the tape drive on which the source tape is
mounted, and press carrier RETURN. If
using disc source input, press carrier RE-
TURN and DISC SELECTED ENTER DE-
VICE NUMBER will type out. Enter the one
digit hexadecimal disc device number and
press carrier RETURN.

. ASSEMBLE COMPLETE FILE? YES-NO

will type out. If a complete object file is
being assembled enter YES, otherwise enter
NO. Press carrier RETURN.

. OBJECT OUTPUT? YES-NO will type out.

If an object output is desired, enter YES,
press carrier RETURN and continue with
step f. If no object output is desired, enter
NO, press carrier RETURN and skip to step
h.

f. OBJECT OUTPUT DEVICE NUMBER? will
type out. Enter the one digit hexadecimai
output device number and press carrier
RETURN.

g. LISTING? YES-NO will type out. If a source
listing is desired, enter YES, press carrier
RETURN and continue with step h. If no
source listing is desired, enter NO, press
carrier RETURN and skip to step 1.

h. LISTING DEVICE? T or P will type out. If
the typewriter is being used as the listing
device, enter T, press carrier RETURN and
continue with step i. If the printer is being
used, enter P, press carrier RETURN and
skip to step j.

i. If YES was entered in step d, and a complete
file is being assembled, SET TABS TO 23,
31, 40 will type out and the Pass 2 program
will begin assembling. Skip to step n. If NO
was entered in step d, and a complete file is
not being assembled. SET TABS TO 23, 31,
40 AFTER SPECIFYING PROGRAM ID
PLACE PAPER TO TOP OF PAGE will type
out. Skip to step 1.

j. PRINTER DEVICE NUMBER will type out.
Enter the one digit hexadecimal printer
device number and press carrier RETURN.

k. If YES was entered in step d and a complete
file is being assembled, the Pass 2 program
will begin assembling immediately. Skip to
step n. If NO was entered in Step d and a
complete file is not being assembled, con-
tinue to step 1.

NOTE

When a complete file is being assembled, i.e., the
answer to the program question ASSEMBLE COM-
PLETE FILE? YES-NO was YES, all files on the
source tape or disc will be assembled by the Pass 2
program and PROGRAM ID will not be requested.

m. When the selected program has been assem-
bled PROGRAM ID will type out again. If
no other programs are to be assembled, press
carrier RETURN and continue to the next
step. If another program is to be assembled,
enter the seven character identifier of the
new program, press carrier RETURN and the
new program will begin assembling. This step
will be repeated until a carrier RETURN is
entered after PROGRAM ID is typed out.

6-4

. ADDITIONAL FILES? YES-NO will type

Coa T o Adiai o1 s £filag arn +4 hao
Uut., 11 4dudiuviidl >SUUILT (1G> dlC WU Ul

assembled enter Y and continue to the next
step. If the assembly is complete, enter N
and the tapes will rewind.

. MOUNT FILE ON INPUT DEVICE will

type out and the START/STOP lamp will
light. Mount the new source file to be
assembled on the input device selected in
step ¢ and press START/STOP.

. If the answer to step d was Y the assembly

will begin immediately. If the answer to step
d was N, PROGRAM ID will type out. Enter
the seven character identifier of the program
to be assembled, press carrier RETURN and
the selected program will begin assembling.
When this assembly is completed, step m will
be repeated.

6-17. Error Messages

6-18. When errors are incurred in a program being
assembled, the Q/BAL assembler program will type out
an error message followed by the line number and the
actual erroneous line of coding. This will allow the
programmer or operator to enter a corrected line of

coding in

place of the erroneous coding line. The

following list shows the error messages that are produced
by the Q/BAL assembler program and describes the
meaning of each error message.

MESSAGE
OP CD

DEFINITION

Appears when the Op
Code specified by the
programmer cannot be
found in the assembler
program Op Code table,
i.e., the Op Code used is
not a legitimate machine
operation code or a legit-
imate assembler
directive.

REC2NDOPR Requires second operand

— produced when the
assembler has been un-
able to find a second or B
operand for an instruc-
tion that requires two
operands. Example: The
Move (MOV) instruction
always requires two
operands.

MESSAGE
2NDOPRILL

OVR/UNDRFLOW

LENILL

DEVNOTSPEC

EXCESSHEX

SYMBOLERR

DEFINITION

Second operand illegal —
machine operation spec-
ified by the programmer
may have only one
operand and two have
been provided. Example:
The Store Accumulator
(STA) instruction may
have only one operand.
Overflow or underflow —
meaning that the evalua-
tion of an addressed ex-
pression has produced a
value greater than 32,767
or, if signed, a value less
than minus 16,384.
Length illegal — meaning
that the machine opera-
tion specified by the pro-
grammer does not allow
a length. Example: The
logical operation Exclu-
sive Or (XOR) does not
allow an explicit assign-
ment of length since this
operation is always per-
formed on only one byte
of memory.

Device not specified —
produced only for input/
output instructions for
which the programmer
has not specified an ex-
plicit device number.
Excessive number of
hexadecimal digits — pro-
duced when a hexa-
decimal address value
specified by the leading
dollar sign contains more
than 4 hexadecimal
digits.

Symbol error — pro-
duced when the
assembler attempts to ex-
tract an illegal symbol
from an input line.
Symbols must begin with
a letter followed by up
to 4 additional characters

6-5

MESSAGE

DUPLICATE TAG

TAG TABLE FULL

UNDEFINED FORCE ZERO

TOO BIG

DEFINITION

which must be either let-
ters or digits.

Produced when a symbol
appears as a label more
than once in a program.
This message will be pro-
duced on all subsequent
encounters of that label.
Produced when more
symbols appear as labels
than can be stored in the
assembler programs inter-
nal symbol table. The
maximum number of
symbols which may be
stored in the symbol
table is 350.

This error message will
be produced when a
symbol that has not been
encountered and defined
as a label is used to spec-
ify lengths or devices in
machine operations, or
lengths in a Define Area
(DA) statement. If type-
writer input is being used
this message must be an-
swered either yes (Y or
carrier RETURN) or no
(N or any other
character). If the answer
to the question is yes,
the assembler program
will insert a value of O
for the value it could not
obtain. If the answer is
no, the assembler pro-
gram will retype the line
containing error so that
it may be reentered.
Device control specifica-
tion out of limits — ap-
pears when the operand
field of a Device Control
(CTL) or a Status-In
(SIN) instruction exceeds
the hexadecimal value
FF.

MESSAGE
ILLCHAR

UNEVN#HEX#S

WHAT’S 1T

TOO BIG

DEFINITION

Illegal character — ap-
pears when a Define Con-
stant (DC) statement de-
clared as a hexadecimal
constant contains char-
acters other than the let-
ters A — F or the decimal
digits 0 — 9.

Uneven numbers of hexa-
decimal digits — all hexa-
decimal constants de-
clared in Define Constant
(DC) statement must
contain pairs of hexa-
decimal digits. One byte
of memory contains one
pair of hexadecimal
digits.

This message will appear
when a Define Constant
(DC) statement is ana-
lyzed and neither a
decimal constant, a hexa-
decimal constant or a
text string can be found.
This message will appear
when a Define Area (DA)

6-6

MESSAGE

TOO SMALL

LENTOOBIG

DEFINITION

statement operand is
evaluated and the value
obtained is greater than
256.

This message is presented
when an expression is
evaluated for a Define
Area (DA) statement and
the value obtained is zero
or negative.

Length too large — pre-
sented when an expres-
sion is evaluated for the
purposes of obtaining a
length for a machine
operation and the value
obtained is too large to
be stored in the file re-
served for that length.
The limit is 16 for most
instructions except for
the Move (MOV) instruc-
tion which allows a value
up to 256. This message
will never appear for an
1/0 instruction.

0

0000
0016
0032
0048

0064
0080
0096
0l12

0128
0144
0160
0176

0192
0208
0224
0240

0256
0272
0288
0304

0320
0336
0352
0368

0384
0400
0416
0432

0448
0464
0480
0496

0512
0528
0544
0560

0576
0592
0608
0624

0640
0656
0672
0688

0704
0720
0736
0752

0768
0784
0800
0816

0832
0848
0864
0880

1

0001
0017
0033
0049

0065
0081
0097
0113

0129
0145
0161
0177

0193
0209
0225
0241

0257
0273
0289
0305

0321
0337
0353
0369

0385
0401
0417
0433

0449
0465
0481
0497

0513
0529
0545
0561

0577
0593
0609
0625

0641
0657
0673
0689

0705
0721
0737
0753

0769
0785
0801
0817

0833
0849
0865
0881

2

0002
0018
0034
0050

0066
0082
0098
0114

0130
0146
0162
0178

0194
0210
0226
0242

0258
0274
0290
0306

0322
0338
0354
0370

0386
0402
0418
0434

0450
0466
0482
0498

0514
0530
0546
0562

0578
0594
0610
0626

0642
0658
0674
0690

0706
0722
0738
0754

0770
0786
0802
0818

0834
0850
0866
0882

3

0003
0019
0035
0051

0067
0083
0099
0115

0131
0147
0163
0179

0195
0211
0227
0243

0259
0275
0291
0307

0323
0339
0355
0371

0387
0403
0419
0435

0451
0467
0483
0499

0515
0531
0547
0563

0579
0595
0611
0627

0643
0659
0675
0691

0707
0723
0739
Q755

0771
0787
0803
0819

0835
0851
0867
0883

APPENDIX A. HEXADECIMAL-DECIMAL

4

0004
0020
0036
0052

0068
0084
0100
0116

0132
0148
0164
0180

0196
0212
0228
0244

0260
0276
0292
0308

0324
0340
0356
0372

0388
0404
0420
0436

0452
0468
0484
0500

0516
0532
0548
0564

0580
0596
0612
0628

0644
0660
0676
0692

0708
0724
0740
0756

0772
0788
0804
0820

0836
0852
0868
0884

NUMBER CONVERSION TABLE

5

0005
0021
0037
0053

0069
0085
0101
0117

0133
0149
0165
0181

0197
0213
0229
0245

0261
0277
0293
0309

0325
0341
0357
0373

0389
0405
0421
0437

0453
0469
0485
0501

0517
0533
0549
0565

0581
0597
0613
0629

0645
0661
0677
0693

0799
0725
0741
0757

0773
0789
0805
0821

0837
0853
0869
0885

6

0006
0022
0038
0054

0070
0086
0102
0118

0134
0150
0166
0182

0198
0214
0230
0246

0262
0278
0294
0310

0326
0342
0358
0374

0390
0406
0422
0438

0454
0470
0486
0502

0518
0534
0550
0566

0582
0598
0614
0630

0646
0662
0678
0694

0710
0726
0742
0758

0774
0790
0806
0822

0838
0854
0870
0886

7

0007
0023
0039
0055

0071
0087
0103
0119

0135
0151
0167
0183

0199
0215
0231
0247

0263
0279
0295
0311

0327
0343
0359
0375

0391
0407
0423
0439

0455
0471
0487
0503

0519
0535
0551
0567

0583
0599
0615
0631

0647
0663
0679
0695

0711
0727
0743
0759

0775
0791
0807
0823

0839
0855
0871
0887

A-l

8

0008
0024
0040
0056

0072
0088
0104
0120

0136
0152
0168
0184

0200
0216
0232
0248

0264
0280
0296
0312

0328
0344
0360
0376

0392
0408
0424
0440

0456
0472
0488
0504

0520
0536
0552
0568

0584
0600
0616
0632

0648
0664
0680
0696

0712
0728
0744
0760

0776
0792
0808
0824

0840
0856
0872
0888

9

0009
0025
0041
0057

0073
0089
0105
0121

0137
0153
0169
0185

0201
0217
0233
0249

0265
0281
0297
0313

0329
0345
0361
0377

0393
0409
0425
0441

0457
0473
0489
0505

0521
0537
0553
0569

0585
0601
0617
0633

0649
0665
0681
0697

0713
0729
0745
0761

0777
0793
0809
0825

0841
0857
0873
0889

A

0010
0026
0042
0058

0074
0090
0106
0122

0138
0154
0170
0186

0202
0218
0234
0250

0266
0282
0298
0314

0330
0346
0362
0378

0394
0410
0426
0442

0458
0474
0490
0506

0522
0538
0554
0570

0586
0602
0618
0634

0650
0666
0682
0698

0714
0730
0746
0762

0778
0794
0810
0826

0842
0858
0874
0890

B

0011
0027
0043
0059

0075
0091
0107
0123

0139
0155
0171
0187

0203
0219
0235
0251

0267
0283
0299
0315

0331
0347
0363
0379

0395
0411
0427
0443

0459
0475
0491
0507

0523
0539
0555
0571

0587
0603
0619
0635

0651
0667
0683
0699

0715
0731
0747
0763

0779
0795
0811
0827

0843
0859
0875
0891

C

0012
0028
0044
0060

0076
0092
0108
0124

0140
0156
0172
0188

0204
0220
0236
0252

0268
0284
0300
0316

0332
0348
0364
0380

0396
0412
0428
0444

0460
0476
0492
0508

0524
0540
0556
0572

0588
0604
0620
0636

0652
0668
0684
0700

0716
0732
0748
0764

0780
0796
0812
0828

0844
0860
0876
0892

D

0013
0029
0045
0061

0077
0093
0109
0125

0141
0157
0173
0189

0205
0221
0237
0253

0269
0285
0301
0317

0333
0349
0365
0381

0397
0413
0429
0445

0461
0477
0493
0509

0525
0541
0557
0573

0589
0605
0621
0637

0653
0669
0685
0701

0717
0733
0749
0765

0781
0797
0813
0829

0845
0861
0877
0893

E

0014
0030
0046
0062

0078
0094
0110
0126

0142
0158
0174
0190

0206
0222
0238
0254

0270
0286
0302
0318

0334
0350
0366
0382

0398
0414
0430
0446

0462
0478
0494
0510

0526
0542
0558
0574

0590
0606
0622
0638

0654
0670
0686
0702

0718
0734
0750
0766

0782
0798
0814
0830

0846
0862
0878
0894

F

0015
0031
0047
0063

0079
0095
0111
0127

0143
0159
0175
0191

0207
0223
0239
0255

0271
0287
0303
0319

0335
0351
0367
G383

0399
0415
0431
0447

0463
0479
0495
0511

0527
0543
0559
0575

0591
0607
0623
0639

0655
0671
0687
0703

0719
0735
0751
0767

0783
0799
0815
0831

0847
0863
0879
0895

0

0896
0912
0928
0944

0960
0976
0992
1008

1024
1040
1056
1072

1088
1104
1120
1136

1152
1168
1184
1200

1216
1232
1248
1264

1280
1296
1312
1328

1344
1360
1376
1392

1408
1424
1440
1456

1472
1488
1504
1520

1536
1552
1568
1584

1600
1616
1632
1648

1664
1680
1696
1712

1728
1744
176U
1776

1

0897
0913
0929
0945

0961
0977
0993
1009

1025

1041
1057
1073

1089
1105
1121
1137

1153
1169
1185
1201

1217
1233
1249
1265

1281
1297
1313
1329

1345
1361
1377
1393

1409
1425
1441
1457

1473
1489
1505
1521

1537
1553
1569
1585

1601
1617
1633
1649

1665
1681
1697
1713

1729
1745
1761
1777

2

0898
0914
0930
0946

0962
0978
0994
1010

1026
1042
1058
1074

1090
1106
1122
1138

1154
1170
1186
1202

1218
1234
1250
1266

1282
1298
1314
1330

1346
1362
1378
1394

1410
1426
1442
1458

1474
1490
1506
1522

1538
1554
1570
1586

1602
1618
1634
1650

1666
1682
1698
1714

1730
1746
1762
1778

APPENDIX A. HEXADECIMAL-DECIMAL NUMBER
CONVERSION TABLE (CONTINUED)

3

0899
0915
0931
0947

0963
0979
0995
1011

1027
1043
1059
1075

1091
1107
1123
1139

1155
1171
1187
1203

1219
1235
1251
1267

1283
1299
1315
1331

1347
1363
1379
1395

1411
1427
1443
1459

1475
1491
1507
1523

1539
1555
1571
1587

1603
1619
1635
1651

1667
1683
1699
1715

1731
1747
1763
1779

4

0900
0916
0932
0948

0964
0980
0996
1012

1028
1044
1060
1076

1092
1108
1124
1140

1156
1172
1188
1204

1220
1236
1252
1268

1284
1300
1316
1332

1348
1364
1380
1396

1412
1428
1444

1460

1476
1492
1508
1524

1540
1556
1572
1588

1604
1620
1636
1652

1668
1684
1700
1716

1732
1748
1764
1780

5

0901
0917
0933
0949

0965
0981
0997
1013

1029
1045
1061
1077

1093
1109
1125
1141

1157
1173
1189
1205

1221
1237
1253
1269

1285
1301
1317
1333

1349
1365
1381
1397

1413
1429
1445
1461

1477
1493
1509
1525

1541
1557
1573
1589

1605
1621
1637
1653

1669
1685
1701
1717

1733
1749
1765
1781

6

0902
0918
0934
0950

0966
0982
0998
1014

1030
1046
1062
1078

1094
1110
1126
1142

1158
1174
1190
1206

1222
1238
1254
1270

1286
1302
1318
1334

1350
1366
1382
1398

1414
1430
1446
1462

1478
1494
1510
1526

1542
1558
1574
1590

1606
1622
1638
1654

1670
1686
1702
1718

1734
1750
1766
1782

0903
0919
0935
0951

0967
0983
0999
1015

1031
1047
1063
1079

1095
1111
1127
1143

1159
1175
1191
1207

1223
1239
1255
1271

1287
1303
1319
1335

1351
1367
1383
1399

1415
1431
1447
1463

1479
1495
1511
1527

1543
1559
1575
1591

1607
1623
1639
1655

1671
1687
1703
1719

1735
1751
1767
1783

A-2

0904
0920
0936
0952

0968
0984
1000
1016

1032
1048
1064
1080

1096
1112
1128
1144

1160
1176
1192
1208

1224
1240
1256
1272

1288
1304
1320
1336

1352
1368
1384
1400

1416
1432
1448
1464

1480
1496
1512
1528

1544
1560
1576
1592

1608
1624
1640
1656

1672
1688
1704
1720

1736
1752
1768
1784

0905
0921
0937
0953

0969
0985
1001
1017

1033
1049
1065
1081

1097
1113
1129
1145

1161
1177
1193
1209

1225
1241
1257
1273

1289
1305
1321
1337

1353
1369
1385
1401

1417
1433
1449

1465

1481
1497
1513
1529

1545
1561
1577
1593

1609
1625
1641
1657

1673
1689
1705
1721

1737
1753
1769
1785

A

0906
0922
0938
0954

0970
0986
1002
1018

1034
1050
1066
1082

1098
1114
1130
1146

1162
1178
1194
1210

1226
1242
1258
1274

1290
1306
1322
1338

1354
1370
1386
1402

1418
1434
1450
1466

1482
1498
1514
1530

1546
1562
1578
1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770
1786

B

0907
0923
0939
0955

0971
0987
1003
1019

1035
1051
1067
1083

1099
1115
1131
1147

1163
1179
1195
1211

1227
1243
1259
1275

1291
1307
1323
1339

1355
1371
1387
1403

1419
1435
1451
1467

1483
1499
1515
1531

1547
1563
1579
1595

1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

C

0908
0924
0940
0956

0972
0988
1004
1020

1036
1052
1068
1084

1100
1116
1132
1148

1164
1180
1196
1212

1228
1244
1260
1276

1292
1308
1324
1340

1356
1372
1388
1404

1420
1436
1452
1468

1484
1500
1516
1532

1548
1564
1580
1596

1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772
1788

D

0909
0925
0941
0957

0973
0989
1005
1021

1037
1053
1069
1085

1101
1117
1133
1149

1165
1181
1197
1213

1229
1245
1261
1277

1293
1309
1325
1341

1357
1373
1389
1405

1421
1437
1453
1469

1485
1501
1517
1533

1549
1565
1581
1597

1613
1629
1645
1661

1677
1693
1709
1725

1741
1757
1773
1789

E

0910
0926
0942
0958

0974
0990
1006
1022

1038
1054
1070
1086

1102
1118
1134
1150

1166
1182
1198
1214

1230
1246
1262
1278

1294
1310
1326
1342

1358
1374
1390
1406

1422
1438
1454
1470

1486
1502
1518
1534

1550
1566
1582
1598

l16l4
1630
1646
1662

1678
1694
1710
1726

1742
1758
1774
1790

F

0911
0927
0943
0959

0975
0991
1007
1023

1039
1055
1071
1087

1103
1119
1135
1151

1167
1183
1199
1215

1231
1247
1263
1279

1295
1311
1327
1343

1359
1375
1391
1407

1423
1439
1455
1471

1487
1503
1519
1535

1551
1567
1583
1599

1615
1631
1647
1663

1679
1695
1711
1727

1743
1759
1775
1791

0

1792
1808
1824
1840

1856
1872
1888
1904

1920
1936
1952
1968

1984
2000
2016
2032

2048
2064
2680
2096

2112
2128
2144
2160

2176
2192
2208
2224

22406
2256
2272
2288

2304
2320
2336
2352

2368
2384
2400
2416

2432
2448
2464
2480

2496
2512
2528
2544

2560
2576
2592
2608

2624
2640
2656
2672

1

1793
1809
1825
1841

1857
1873
1889
1905

1921
1937
1953
1969

1985
2001
2017
2033

2049
2065
2081
2097

2113
2129
2145
2161

2177
2193
2209
2225

2241
2257
2273
2289

2305
2321
2337
2353

2369
2385
2401
2417

2433
2449
2465
2481

2497
2513
2529
2545

2561
2577
2593
2609

2625
2641
2657
2673

2

1794
1810
1826
1842

1858
1874
1890
1906

1922
1938
1954
1970

1985
2002
2018
2034

2050
2066
2082
2098

2114
2130
2146
2162

2178
2194
2210
2226

2242
2258
2274
2290

2306
2322
2338
2354

2370
2386
2402
2418

2434
2450
2466
2482

2498
2514
2530
2546

2562
2578
2594
2610

2626
2642
2658
2674

APPENDIX A. HEXADECIMAL-DECIMAL NUMBER
CONVERSION TABLE (CONTINUED)

3

1795
1811
1827
1843

1859
1875
1891
1907

1923
1939
1955
1971

1987
2003
2019
2035

2051
2067
2083
2099

2115
2131
2147
2163

2179
2195
2211
2227

2243
2259
2275
2291

2307
2323
2339
2355

2371
2387
2403
2419

2435
2451
2467
2483

2499
2515
2531
2547

2563
2579
2595
2611

2627
2643
2659
2675

4

1796
1812
1828
1844

1860
1876
1892
1908

1924
1940
1956
1972

1988
2004
2020
2036

2052
2068
2084
2100

2116
2132
2148
2164

2180
2196
2212
2228

2244
2260
2276
2292

2308
2324
2340
2356

2372
2388
2404
2420

2436
2452
2468
2484

2500
2516
2532
2548

2564
2580
2596
2612

2628
2644
2660
2676

5

1797
1813
1829
1845

1861
1877
1893
1909

1925
1941
1957
1973

1989
2005
2021
2037

2053
2069
2085
2101

2117
2133
2149
2165

2181
2197
2213
2229

2245
2261
2277
2293

2309
2325
2341
2357

2373
2389
2405
2421

2437
2453
2469
2485

2501
2517
2533
2549

2565
2581
2597
2613

2629
2645
2661
2677

6

1798
1814
1830
1846

1862
1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

2054
2070
2086
2102

2118
2134
2150
2166

2182
2198
2214
2230

2246
2262
2278
2294

2310
2326
2342
2358

2374
2390
2406
2422

2438
2454
2470
2486

2502
2518
2534
2550

2566
2582
2598
2614

2630
2646
2662
2678

1799
1815
1831
1847

1863
1879
1895
1911

1927
1943
1959
1975

1991
2007
2023
2039

2055
2071
2087
2103

2119
2135
2151
2167

2183
2199
2215
2231

2247
2263
2279
2295

2311
2327
2343
2359

2375
2391
2407
2423

2439
2455
2471
2487

2503
2519
2535
2551

2567
2583
2599
2615

2631
2647
2663
2679

8

1800
1816
1832
1848

1864
1880
1896
1912

1628
1944
1960
1976

1992
2008
2024
2040

2056
2072
2088
2104

2120
2136
2152
2168

2184
2200
2216
2232

2248
2264
2280
2296

2312
2328
2344
2360

2376
2392
2408
2424

2440
2456
2472
2488

2504
2520
2536
2552

2568
2584
2600
2616

2632
2648
2664
2680

9

1801
1817
1833
1849

1865
1881
1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

2057
2073
2089
2105

2121
2137
2153
2169

2185
2201
2217
2233

2249
2265
2281
2297

2313
2329
2345
2361

2377
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

2569
2585
2601
2617

2633
2649
2665
2681

A

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

2058
2074
2090
2106

2122
2138
2154
2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
2394
2410
2426

2442
2458
2474
2490

2506
2522
2538
2554

2570
2586
2602
2618

2634
2650
2666
2682

B

1803
1819
1835
1851

1867
1883
1899
1915

1931
1947
1963
1979

1995
2011
2027
2043

2059
2075
2091
2107

2123
2139
2155
2171

2187
2203
2219
2235

2251
2267
2283
2299

2315
2331
2347
2363

2379
2395
2411
2427

2443
2459
2475
2491

2507
2523
2539
2555

2571
2587
2603
2619

2635
2651
2667
2683

C

1804
1820
1836
1852

1868
1884
1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

2060
2076
2092
2108

2124
2140
2156
2172

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2396
2412
2428

2444
2460
2476
2492

2508
2524
2540
2556

2572
2588
2604
2620

2636
2652
2668
2684

D

1805
1821
1837
1853

1869
1885
1901
1917

1933
1949
1965
1981

1997
2013
2029
2045

2061
2077
2093
2109

2125
2141
2157
2173

2189
2205
2221
2237

2253
2269
2285
2301

2317
2333
2349
2365

2381
2397
2413
2429

2445
2461
2477
2493

2509
2525
2541
2557

2573
2589
2605
2621

2637
2653
2669
2685

E

1806
1822
1838
1854

1870
1886
1902
1918

1934
1950
1966
1982

1998
2014
2030
2046

2062
2078
2094
2110

2126
2142
2158
2174

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

2446
2462
2478
2494

2510
2526
2542
2558

2574
2590
2606
2622

2638
2654
2670
2686

F

1807
1823
1839
1855

1871
1887
1903
1919

1935
1951
1967
1983

1999
2015
2031
2047

2063
2079
2095
2111

2127
2143
2159
2175

2191
2207
2223
2239

2255
2271
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447
2463
2479
2495

2511
2527
2543
2559

2575
2591
2607
2623

2639
2655
2671
2687

26838
2704
2720
2736

2752
2768
2784
2800

2816
2832
2848
2864

2880
2896
2912
2928

2944
2960
2976
2992

3008
3024
3040
3056

3072
30838
3104
3120

3136
3152
3168
3184

3200
3216
3232
3248

3264
3280
3296
3312

3328
3344
3360
3376

3392
3408
3424
3440

3456
3472
3488
3504

3520
3536
3552
3568

2689
2705
2721
2737

2753
2769
2785
2801

2817
2833
2849
2865

2881
2897
2913
2929

2945
2961
2977
2993

3009
3025
3041
3057

3073
3089
3105
3121

3137
3153
3169
3185

3201
3217
3233
3249

3265
3281
3297
3313

3329
3345
3361
3377

3393
3409
3425
3441

3457
3473
3489
3505

3521
3537
3553
3569

2690
2706
2722
2738

2754
2770
2786
2802

2818
2834
2850
2866

2882
2898
2914
2930

2946
2962
2978
2994

3010
3026
3042
3058

3074
3090
3106
3122

3138
3154
3170
3186

3202
3218
3234
3250

3266
3282
3298
3314

3330
3346
3362
3378

3394
3410
3426
36442

3458
3474
3490
3506

3522
3538
3554
3570

APPENDIX A. HEXADECIMAL-DECIMAL NUMBER
CONVERSION TABLE (CONTINUED)

3

2691
2707
2723
2739

2755
2771
2787
2803

2819
2835
2851
2867

2883
2899
2915
2931

2947
2963
2979
2995

3011
3027
3043
3059

3075
3091
3107
3123

3139
3155
3171
3187

3203
3219
3235
3251

3267
3283
3299
3315

3331
3347
3363
3379

3395
3411
3427
3443

3459
3475
3491
3507

3523
3539
3555
3571

2692
2708
2724
2740

2756
2772
2788
2804

2820
2836
2852
2868

2884
2900
2916
2932

2948
2964
2980
2996

3012
3028
3044
3060

3076
3092
3108
3124

3140
3156
3172
3188

3204
3220
3236
3252

3268
3284
3300
3316

3332
3348
3364
3380

3396
3412
3428
3444

3460
3476
3492
3508

3524
3540
3556
3572

5

2693
2709
2725
2741

2757
2773
2789
2805

2821
2837
2853
2869

2885
2901
2917
2933

2949
2965
2981
2997

3013
3029
3045
3061

3077
3093
3109
3125

3141
3157
3173
3189

3205
3221
3237
3253

3269
3285
3301
3317

3333
3349
3365
3381

3397
3413
3429
3445

3461
3477
3493
3509

3525
3541
3557
3573

2694
2710
2726
2742

2758
2774
2790
2806

2822
2838
2854
2870

2886
2902
2918
2934

2950
2966
2982
2998

3014
3030
3046
3062

3078
3094
3110
3126

3142
3158
3174
3190

3206
3222
3238
3254

3270
3286
3302
3318

3334
3350
3366
3382

3398
3414
3430
3446

3462
3478
3494
3510

3526
3542
3558
3574

2695
2711
2727
2743

2759
2775
2791
2807

2823
2839
2855
2871

2887
2903
2919
2935

2951
2967
2983
2999

3015
3031
3047
3063

3079
3095
3111
3127

3143
3159
3175
3191

3207
3223
3239
3255

3271
3287
3303
3319

3335
3351
3367
3333

3399
3415
3431
3447

3463
3479
3495
3511

3527
3543
3559
3575

A4

2696
2712
2728
2744

2760
2776
2792
2808

2824
2840
2856
2872

2888
2904
2920
2936

2952
2968
2984
3000

3016
3032
3048
3064

3080
3096
3112
3128

3144
3160
3176
3192

3208
3224
3240
3256

3272
3288
3304
3320

3336
3352
3368
3384

3400
3416
3432
3448

3464
3480
3496
3512

3528
3544
3560

3576

9

2697
2713
2729
2745

2761
2777
2793
2809

2825
2841
2857
2873

2889
2905
2921
2937

2953
2969
2985
3001

3017
3033
3049
3065

3081
3097
3113
3129

3145
3161
3177
3193

3209
3225
3241
3257

3273
3289
3305
3321

3337
3353
3369
3385

3401
3417
3433
3449

3465
3481
3497
3513

3529
3545
3561

3577

A

2698
2714
2730
2746

2762
2778
2794
2810

2826
2842
2858
2874

2890
2906
2922
2938

2954
2970
2986
3002

3018
3034
3050
3066

3082
3098
3114
3130

3146
3162
3178
3194

3210
3226
3242
3258

3274
3290
3306
3322

3338
3354
3370
3386

3402
3418
3434
3450

3466
3482
3498
3514

3530
3546
3562

3578

2699
2715
2731
2747

2763
2779
2795
2811

2827
2843
2859
2875

2891
2907
2923
2939

2955
2971
2987
3003

3019
3035
3051
3067

3083
3099
3115
3131

3147
3163
3179
3195

3211
3227
3243
3259

3275
3291
3307
3323

3339
3355
3371
3387

3403
3419
3435
3451

3467
3483
3499
3515

3531
3547
3563

3579

C

2700
2716
2732
2748

2764
2780
2796
2812

2828
2844
2860
2876

2892
2908
2924
2940

2956
2972
2988
3004

3020
3036
3052
3068

3084
3100
3116
3132

3148
3164
3180
3196

3212
3228
3244
3260

3276
3292
3308
3324

3340
3356
3372
3388

3404
3420
3436
3452

3468
3484
3500
3516

3532
3548
3564

3530

D

2701
2717
2733
2749

2765
2781
2797
2813

2829
2845
2861
2877

2893
2909
2925
2941

2957
2973
2989
3005

3021
3037
3053
3069

3085
3101
3117
3133

3149
3165
3181
3197

3213
3229
3245
3261

3277
3293
3309
3325

3341
3357
3373
3389

3405
3421
3437
3453

3469
3485
3501
3517

3533
3549
3565

3581

E

2702
2718
2734
2750

2766
2782
2798
2814

2830
2846
2862
2878

2894
2910
2926
2942

2958
2974
2990
3006

3022
3038
3054
3070

3086
3102
3118
3134

3150
3166
3182
3198

3214
3230
3246
3262

3278
3294
3310
3326

3342
3358
3374
3390

3406
3422
3438
3454

3470
3486
3502
3518

3534
3550
3566

3582

F

2703
2719
2735
2751

2767
2783
2799
2815

2831
2847
2863
2879

2895
2911
2927
2943

2959
2975
2991
3007

3023
3039
3055
3071

3087
3103
3119
3135

3151
3167
3183
3199

3215
3231
3247
3263

3279
3295
3311
3327

3343
3359
3375
3391

3407
3423
3439
3455

3471
3487
3503
3519

3535
3551
3567

3583

0 1
EG 3584 3585
El 3660 3601
E2 3616 3617
E3 3632 3633
E4 3648 3649
ES 3664 3665
E6 3680 3681
E7 3696 3697
E8 3712 3713
E9 3728 3729
EA 3744 3745
EB 3760 3761
EC 3776 3777
ED 3792 3793
EE 3808 3809
EF 3824 3825
FO 3840 3841
Fl 3856 3857
F2 3872 3873
F3 3888 3889
F4 3904 3905
F5S 3920 3921
F6 3936 3937
F7 3952 3953
F8 3968 3969
F9 3984 3985
FA 4000 4001
FB 4016 4017
FC 4032 4033
FD 4048 4049
FE 4064 4065
FF 4080 4081
HEXADECIMAL

1000

2000

3000

4000

5000

6000

7000

2

3586
3602
3618
3634

3650
3666
3682
3698

3714
3730
3746
3762

3778
3794
3810
3826

3842
3858
3874
3890

3906
3922
3938
3954

3970
3986
4002
4018

4034
4050
4066
4082

APPENDIX A. HEXADECIMAL-DECIMAL NUMBER
CONVERSION TABLE (CONTINUED)

3

3587
3603
3619
3635

3651
3667
3683
3699

3715
3731
3747
3763

3779
3795
3811
3827

3843
3859
3875
3891

3907
3923
3939
3955

3971
3987
4003
4019

4035
4051
4067
4083

4

3588
3604
3620
3636

3652
3668
3684
3700

3716
3732
3748
3764

3780
3796
3812
3828

3844
3860
3876
3892

3908
3924
3940
3956

3972
3988
4004
4020

4036
4052
4068
4084

~

b

3589
3605
3621
3637

3653
3669
3685
3701

3717
3733
3749
3765

3781
3797
3813
3829

3845
3861
3877
3893

3909
3925
3941
3957

3973
3989
4005
4021

4037
4053
4069
4085

DECIMAL

4096

8192
12288
16384
20480
24576
28672

6

3590
3606
3622
3638

3654
3670
3686
3702

3718
3734
3750
3766

3782
3798
3814
3830

3846
3862
3878
3894

3910
3926
3942
3958

3974
3990
4006
4022

4038
4054
4070
4086

7

3591
3607
3623
3639

3655
3671
3687
3703

3719
3735
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895

3911
3927
3943
3959

3975
3991
4007
4023

4039
4055
4071
4087

8

3592
3608
3624
3640

3656
3672
3688
3704

3720
3736
3752
3768

3784
3800
3816
3832

3848
3864
3880
3896

3912
3628
3944
3960

3976
3992
4008
4024

4040
4056
4072
4088

9

3593
3609
3625
3641

3657
3673
3689
3705

3721
3737
3753
3769

3785
3801
3817
3833

3849
3865
3881
3897

3913
3929
3945
3961

3977
3993
4009
4025

4041
4057
4073
4089

HEXADECIMAL

A-5

8000
9000
A000
B00O
C000
D000
E000
F000

A

3594
3610
3626
3642

3658
3674
3690
3706

3722
3738
3754
3770

3786
3802
3818
3834

3850
3866
3882
3898

3914
3930
3946
3962

3978
3994
4010
4026

4042
4058
4074
4090

B

3595
3611
3627
3643

3659
3675
3691
3707

3723
3739
3755
3771

3787
3803
3819
3835

3851
3867
3883
3899

3915
3931
3947
3963

3979
3995
4011
4027

4043
4059
4075
4091

For numbers outside the range of the table, add
the following values to the table figures:

C

3596
3612
3628
3644

3660
3676
3692
3708

3724
3740
3756
3772

3788
3804
3820
3836

3852
3868
3884
3900

3916
3932
3948
3964

3980
3996
4012
4028

4044
4060
4076
4092

D

3597
3613
3629
3645

3661
3677
3693
3709

3725
3741
3757
3773

3789
3805
3821
3837

3853
3869
3885
3901

3917
3933
3949
3965

3981
3997
4013
4029

4045
4061
4077
4093

DECIMAL

32768
36864
40960
45056
49152
53248
57344
61440

E

3598
3614
3630
3646

3662
3678
3694
3710

3726
3742
3758
3774

3790
3806
3822
3838

3854
3870
3886
3902

3918
3934
3950
3966

3982
3998
4014
4030

4046
4062
4078
4094

F

3599
3615
3631
3647

3663
3679
3695
3711

3727
3743
3759
3775

3791
3807
3823
3839

3855
3871
3887
3903

3919
3935
3951
3967

3983
3999
4015
4031

4047
4063
4079
4095

APPENDIX B. ASCII CODE

USASCII CODE

B,-B, { 0000§0001]0010]0011]0100]0101{0110/0111]1000{1001|1010{1011|1100|1101f1110|1111
N>
B,-B 0 1 2 3 14 5 6 7 8 9 | A |B |c |D |E F
av 5
0000[o0 | NUL [SOH |STX |ETX |EOT |ENQ |ACK |BEL | BS | HT | LF | vTr | FF | cR | so | s1I
0001 | 1 DLE |DC1 {DC2 |DC3 |DC4 |NAK |SYN |ETB |cAN | EM |suB |esc | Fs | G6s | Rs | US
oo10f 2 | sp ! LA I I B B ' C 1) * |+ , - . /
0011 | 3 0 1 2 3 4 5 6 7 8 |9 <€l >
0100 | 4 @ AlB |c |D |E F |G |H I J K |L |M [N (O
0101} 5 P Q R |s [T u v | w {|x Y yA CIN|Y A
01101} 6 M a b c d e f g h i j k 1 m n)
0111] 7 p lalr s [t]Julv]w x|y [z]{]]} |~]oE

B-1

APPENDIX C. POWERS OF 2

2 n 27"
1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125
16 4 0.0625
32 5 0.03125
64 6 0.015 625
128 7 0.007 8125

256 8 0.003 906 25
512 9 0.001 953 125
1024 10 0.000976 5625
2048 11 0.000 488 281 25

4096 12 0.000 244 140 625
8192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32768 15 0.000 030 517 578 125

65536 16 0.000 015 258 789 062 5
131072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524288 19 0.000 001 907 348 632 812 5

1048576 20 0.000 000 953 674 316 406 25
2097 152 21 0.000 000 476 837 158 203 125
4194304 22 0.000000 238 418 579 101 562 5
8 388608 23 0.000 000 119 209 289 550 781 25

16 777216 24 0.000 000 059 604 644 775 390 625

33554 432 25 0.000 000 029 802 322 387 695 312 5

67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0,000 000 003 725 290 298 461 914 062 5

536 870912 29 0.000 000 001 862 645 149 230 957 031 25
1073741824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967296 32 0.000 000 000 232 830 643 653 869 628 906 25

8589934592 33 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

C-1

APPENDIX D
QANTEL STANDARD INSTRUCTION SET

INSTRUCTION MNEMONIC OPEC%;%ON VARIANT
Read RD 0 0*
Read Hex RHX 0 1*
Read & Count RDC 0 2%
Read Hex & Count RHC 0 3%
Add Decimal ADD 1
Subtract Decimal SBD 2
Multiply Decimal MPY 3
Divide Decimal DIV 4
Load LD 5
Move MOV 6
Store Accumulator STA 6
Compare Logical CMP 7
Seek SEK 8 0
Disc Bootstrap .- 8 1
Translate *** TRN 8 2
Search Equal*** SEQ 8 3
Read Status 2**** RS2 8 4
And AND 9 0
Or OR 9 1
Exclusive Or XOR 9 2
Test Bit TBT 9 3
Move Numeric MN 9 4
Move Zone MZ 9 5
Compare Decimal CD 9 6
Shift Bit Left SBL 9 7
Shift Bit Right SBR 9 8
Edit EDT 9 9
Unedit UED 9 A
Pack PAK 9 B
Unpack UPK 9 C
Device Control CTL 9 D**
Set Read : SRD 9 D**
Status-In SIN 9 D**
Reset 1/O RIO 9 E
Return From Interrupt RTI 9 F
No Operation NOP A 0
Branch On Overflow BOV A 1
Branch On Minus BMI (BGT) A 2
Branch On Non-Zero BNZ (BNE) A 3
Branch Equal BEQ (BZ) A 4
Branch Not Minus*** BNM (BLE) A 5
Unconditional Branch BRU A 7
Halt and Branch HLT A 8
Branch and Link BLI A 9
Micro Instruction Mode MIM A B
Write WR B 0*
Write Hex WHX B 1*
Write and Count WRC B 2*
Write Hex and Count WHC B 3*
Add Binary ADB D
Subtract Binary SBB E
Load Address LDA F

*Variant is located in the Load Address Least significant byte.
**In CTL 2 bit of MSB should be set, in SRD 2°bit of MSB should be set, and in SIN 2° bit of MSB should be set.
***Available on newer model processors only.
****Not available at this time, for future implementation.

00020
00040
00060
600892
00190
60120
00140
9C160
00180
802090
802292
no240
§6026¢C
5c280
go3no
0320
£o340
6e360
0138¢
coLeo
noL20
ooLue
00460
eCchL80
05090

1000
100E
122D
1635
1045
104D
1255
1¢58
161
1067
1C6A
10780
1076
1079
107F

APPENDIX E

READING AN ASSEMBLER LISTING

72656164206865
7075742074617
656E6420746573
30313233343536
?123456789ABC9

"

170089
103581
100EBY
106AA8
174D01
105478
01C0NA3
102089
1n55A8

.
A

PDV
GNAM
AMS G
GEND
aouT
DAT

IN

BGM

RFAD HEX TEST

DEFINE ADDRESS OF ERROR ROUTIME

ORG

L4nag

DEFINE DATA

EQU
DC
DC
DC
DC
DC
DA
WRC
WRC
YWRC
HLT
RHC
cMp
BNZ
WRC
HLT
END

1 PUNCH DEVICF ¢
'READ HEX TEST

'PUT TAPF IN READFR PRESS START
'END TEST!

'7123456729ABCDEF!

§n123456789ABCDEF
8
NAM, 75 (NAM TYPF NAMF

OUT,PDV; 16 PUMCH DATA
MSG, ;5 . MSG

“43

IN-.IN+1,PDV; . IN RFAD DATA
IN; DAT TRAMSLATED OK?
256 GO TO ERR RTN
END, M3 FND

BGM

BGM

- . .
§ X
REFERENCE MACHINE
NUMBER LANGUAGE
| DATA MACHINE LANGUAGE
INSTRUCTIONS
5
Agﬁgggg SYMBOLIC LANGUAGE INSTRUCTIONS
ORRESPOND TO CODING SHEET FORMAT
(HEXADECIMAL) (c D TO CODING SHEET F)

E-1

1. REFERENCE NUMBER

A Reference Number is assigned by the Assembler
Program, Pass 1, to each statement in the program.
The first assigned number is always 00020 and
succeeding statement numbers are incremented by
20. During an update operation, the programmer
specifies the statement number of the statement to be
changed or deleted. If statements are to be added
during the update operation, the programmer must
specify a number between the preceding and succeed-
ing statement numbers unless such statements follow
a deletion or modification of existing statements.

. HEXADECIMAL MEMORY ADDRESS
Hexadecimal memory addresses are assigned by the
Assembler Program, Pass 2. The first memory address
is the hexadecimal equivalent of the decimal number
entered in the Origin Control (ORG) statement. For
example, if the ORG statement specifies a start
location of 4096 (decimal), the first hexadecimal
memory address will be 1000. Instructions and data
are stored sequentially starting at the address spec-
ified in the Origin Control statement.
Each hexadecimal memory address is the address of
the first byte of the instruction field. For example,
the instructions at memory address 1055 of the
illustrated program is a two-address Write and Count
(WRC) instruction, All two-address instructions re-
quire six bytes of memory. Therefore, the instruction
must occupy locations 1055 through 105A. The
hexadecimal address of the next instruction would
thus be 105B. Statement number 00380, a Halt and
Branch instruction, has the address 1067. Since it is a
single-address instruction, it must occupy locations
1067 through 1069. The address of the next sequen-
tial instruction will, therefore, be 106A.
The hexadecimal memory addresses of DA’s and DC’s
are also the addresses of the leftmost bytes of the
field. For example, statement number 00200 is a DC
statement of length 15. Its hexadecimal memory
address is 1000. Since the address 1000 is the address
of the left-most byte in the field, the DC must
occupy locations 1000 through 100D. The address of
the next sequential DC must, therefore, be 100E.

NOTE

Recall that labels assigned to instructions refer to
the leftmost byte of the three-or-six byte instruc-
tion field, while labels assigned to DA’s and DC’s
refer to the right-most byte of the defined field.
Recall also that all, except 1/0, instructions must
reference the rightmost byte of a field and all 1/O
instructions must reference the leftmost byte of a
field.

E-2

3. MACHINE LANGUAGE INSTRUCTIONS

By means of the Assembler Program, Assembly
Language instructions are translated into machine
language instructions which ultimately become the
loadable object program. The machine language (hex)
equivalent is printed along side each symbolic pro-
gram statement during the listing operation of Pass 2
of the Assembler. The programmer may take correc-
tions to a program by altering the machine language
instruction and entering the change into memory
with the Control Panel or the Memory Manipulation
and Capture Program.

The instruction in statement 00320 appears in the
machine language as follows:

LOCATION 1055 1056 1057 1058 1059 105A
— m——— ~— — — ~—
INSTRUCTION 00 0 E RAA 10 00 B.0,
[} + + b~
1/0 €OUNT VARINAT ADDRESS OPERATION DEVICE
DECIMAL 14 OF CODE NUMBER
FIRST
LOAD OPERAND

ADDRESS

The programmer, may, for example, change the
device number specified in the instruction by using
the Control Panel to address location 105A and
entering “BX” where “X” is the desired device
number. Refer to the QANTEL Programmer Control
Panel Operating Instructions.

. MACHINE LANGUAGE DATA

The first seven bytes of all DC’s are printed in the
listing in USASCII code. (See Appendix B-USASCII
Code). For example, statement number 00180 de
fines the alphabetic constant, “READ HEXT TEXT¢”
length 14. The machine language data corresponds
directly to the first seven bytes of the constant:

R E A D H E
7 2 65|61|64]20 6 8 65

If the constant being defined is hexadecimal, the
machine language data will appear exactly as it is in
the DC statement; i.e. statement number 00280. No
machine language coding appears for DA’s.

. SYMBOLIC LANGUAGE INSTRUCTIONS

The symbolic language instructions correspond
exactly to the coding sheet format originally entered
by the programmer at the time of the program
creation.

APPENDIX F
PROGRAMMING TECHNIQUES

This appendix contains descriptions of programming
methods used to circumvent certain problems which
may arise in QANTEL programs.

1. Use of the Set Read (SRD) Instruction.

If a program issues a Set Read instruction to the
typewriter and checks for service request (service by
processor required) to determine when to issue the
Read instruction, a loop will result if the operator
presses the TERM (terminate) key without entering
any data. To avoid this loop, the program must check
for End (service by processor no longer required) if
service request is not indicated. The “‘service by
processor no longer required” indicates that no data
was entered. A coding example using this method of
checking status to avoid the looping is shown in the
accompanying diagram.

2. Setting Flags in Programs with Typewriter Output

In programs with typewriter output, a significant
portion of the processing time is spent waiting for the
typewriter to become not busy. Using normal pro-
gramming techniques, it is not possible for the
operator to set a flag during this waiting time and
have it recognized by the program. (Flags are reset by
the write instructions).

To avoid this problem, each write instruction to the
typewriter should be followed by a loop which waits
for the typewriter to become not busy. This wait
loop need not directly follow the write instruction if
there is other processing that can be overlapped, but
should precede any subsequent read or write instruc-
tion to the typewriter. The following diagram illus-
trates the proper sequence for examining typewriter
flags.

F-1

PROGRAM PROGRAMMER
TLQB%L 45 6 7|8 gP-]COo%e 12|13 12}31%’1%’\49818 19 20 21 2223 24 25 26 27 28 29 30 31 323334 550%%5%2839 4041 42 43
* SIET| [RIE|AD| |[C[o|D|1|NG
ra
ap siR|D
A4 SIv | |$42), &
Bn2 A2 SERVITIICE| RIEQUE|ST
SIv | B84, ¢
B/ wz A2 E ND
BRUW | A1
A2 eD TvP,
¥ ClslpTwé Ts HAMDLE DaTA
BRW | kg |
A3 N© i
* Clo/DIWG |FsR Wa DATA EMTIERED
BRW | |A¢ BER |

Y
EXAMINE
FLAGS

WRITE TO
TYPEWRITER

DO OTHER
PROCESSING

WAIT UNTIL
NOT BUTY

EXAMINE
FLAGS

'

READ FROM
TYPEWRITER

|

3. To Fill An Area in Memory with a Particular
Character
The programmer may fill an area in memory by
coding a DC and entering as many of the fill
characters as required. This method is agreeable for
small areas, but the filling of larger areas requires a
short-cut. The following example shows how to fill a
defined area with the desired character. In the
example, the area is 25 memory locations in size and
is called WRK, will the fill character is a space

(hexadecimal 20).
PROGRAM I.D. | PROGRAM
Tt LABEL OP-Code OPERANDS
o Lo 12 345 6 7]1849 1011 12]13]1415 617 1819 20 21 2223 24 25 26 27 28 29 30 31 32 33
1 IsiPl Del | | |[$28
2 Wik DA 25
3 : MoV siPlAl, |1]; WIRK
4 molv | WRK|, 24|; WRK| -1
5

ANTEL

CORPORATION

3474 Investment Blvd.
Hayward, Ca. 94544
415/783-3410

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	C-01
	D-01
	E-01
	E-02
	F-01
	F-02
	xBack

