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(57] ABSTRACT 

An on-the-fly error correction method and apparatus 
for correcting a data block within a stream of substan· 
tially contiguous data blocks during a data decoding 
process, each block having a Reed-Solomon error syn­
drome calci.ilated and appended during an encoding 
process. The method comprises the steps of: 
passing the block through a syndrome remainder recov­
ery circuit to obtain a remainder related to the error 
syndrome, 

comparing the remainder with zero to determine if an 
error burst is present, and 
if an error burst is present: 
latching the remainder into a remainder latch in order 
to free the syndrome information recovery circuit for 
the next data block of the stream, 
causing a multitasked microcontroller to call and exe­
cute an error correction service routine and thereupon 
selectively transferring the remainder from the remain­
der latch to the microcontroller, 
determining with the microcontroller the location and a 
corrected value for the error burst in accordance with a 
Reed Solomon error correction algorithm, and 
substituting the corrected value for the error burst 
within the block detected to contain the error burst 
before it is delivered to a host system. Cross checking 
the correction, and error detection of data block ID 
fields is also disclosed. 
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2 1 

ON-THE-FLY ERROR CORRECTION WITH 
EMBEDDED DIGITAL CONTROLLER 

bit [GF(21)]. In a one bit implementation, the multiplier 
terms are therefore either present or not present, and 
the summing node is implemented as an Exclusive OR 
gate. Several prior implementations have gone to a 

REFERENCE TO MICROFICHE APPENDIX 

A microfiche appendix containing a firmware pro­
gram listing comprises a part of the present disclosure 
and the disclosure thereof is incorporated herein by 
reference. 

5 Galois Field byte basis (i.e., eight bits per symbol), as 
was done in the referenced U.S. Pat. No. 4,730,321 to 
Machado. In those prior approaches, the syndrome 
generator received eight bits in and put eight bits out. 
The referenced Machado '321 patent employed a Galois 

FIELD OF THE INVENTION 

The present invention relates to methods and appara­
tus for detecting and correcting byte errors within a 
data stream. More particularly, the present inveation 
relates to methods and apparatus for detecting and cor­
recting byte errors within data blocks, such as data 
blocks read out from a storage surface within a rotating 
disk data storage subsystem, wherein the subsystem 
includes a programmed digital controller. 

IO field in which the primitive element alpha! term is 2B 
(Hex) in order to reduce the number of gates needed to 
implement the syndrome generator circuitry. 

The general problem with a classic error correction 
approach, whether bit/input to bit/output or a byte 

15 input/byte output, is that when one or more errors are 
detected within a particular block, the system data 
stream has to be shut down during the interval required 
to determine the location and correct the burst error or 
errors within the block determined to include ~he error. 

20 Particularly in disk drive data storage subsystems, it is BACKGROUND OF THE INVENTION 
now commonplace to encounter one or more pro­
grammed monolithic digital microcontrollers. These 
microcontrol elements are very powerful in carrying 
out operations and calculations appropriate to supervise 
data transducer head positioning and track following 
operations, and to supervise transfers of data, com-
mands and status values with the host computing sys­
tem, on an as needed basis. 

Error correction techniques are known in digital data 
processing systems, including memory stores such as 
disk drive data storage subsystems and tape drive data 
storage subsystems, and they are known in digital data 25 
communications systems. A methodology is selected 
and implemented which generates syndrome informa­
tion from substantially contiguous blocks, sets or sub­
sets of a digital data stream. By "contiguous" is meant 
that the blocks occur one immediately after another, 
with minimum interval or time lapse between or sepa­
rating the blocks. The syndrome information is ap­
pended to the block, set or subset at an encoder end, 
typically within a data writing or transmission process. 

30 Since errors and consequent error correction pro-
cesses occur relatively infrequently in well designed 
and manufactured disk· drives, the calculational power 
of the microcontroller is best adapted to the task of 
performing error location and correction operations on 

At a data reading or reception process, the received 
error correction syndrome information, called herein 
the "remainder", is obtained from the received data 
block and compared with zero. If there are any non­
zero remainder values or bytes, an error is determined 

35 an as-needed, interrupt basis. For example, if data 
blocks are being read from the disk surface, reading of 
subsequent blocks ceases during the error location and 
correction process. As was the case in the referenced 
Machado '321 patent, after the data stream is shut 

to be present. Depending upon the nature and amount 40 
of appended syndrome information, it is possible to 
detect and correct one or more error bursts in the data 
block. 

An error burst is a set of adjacent bit positions which 
are in error. A single error burst is one occurrence of 45 
such erroneous bit positions within a data block, and 
can extend over the interleaves thereof. A double error 
burst is two separate occurrences of error burst within 
the data block, for example. Error correction systems 
and strategies are typically rated upon their ability to 50 
locate and correct single burst and double burst errors, 
as well as the speed of execution and a low probability 
of miscorrection of error bursts by the error correction 
strategy. 

down, the disk drive microcontroller obtains the ECC 
remainder for the data block having the error. Based 
upon the remainder, the microcontroller then calculates 
values for locating and correcting the error. Erroneous 
data values are then replaced by corrected data values 
inserted in the data block in a buffer memory. After 
correction, the data block is then available to be sent out 
to the host computer, and at that point the data stream 
may be permitted to resume its flow of data blocks. 

In summary, the prior approaches, whether bit-based 
or byte-based, perform three common functions: they 
read the incoming data and compare the recovered 
remainder values with zero. If there is an error, they 
shut down the data stream, then they may perform a 
retry by e.g. rereading the data and resending it through 
the syndrome generator in an attempt to eliminate non­
repeating or "soft" errors. If that doesn't work, i.e., a 
hard data error is present, they then perform an error 
correction operation. If the operation is determined to 
be successful, the data stream is thereafter rcinitiated. If 
the error is determined to be uncorrectable, an error 
message is sent to the host computing system or com-
munications system, and data transfer process is stopped 
indefinitely. 

There have been several prior efforts directed to 

In the prior art approach, a syndrome converter is 55 
typically implemented as a shift register with taps and 
with external multiplier elements. In an external form, a 
summer combined multiplier terms from the shift regis­
ter with the incoming data stream in order to generate 
the syndrome. In commonly assigned U.S. Pat. No. 60 
4,730,321, to Machado, the disclosure of which is 
hereby incorporated by reference, an internal form was 
used in which the shift register includes the summing 
nodes, in order to permit logical clements to be shared 
and thereby minimize the number of structural elements 
required to implement the error correction hardware. 

65 performing very rapid error correction. One architec­
ture, believed to be embodied in a special hardware chip 
having many thousands of gates, is described in U.S. 
Pat. No. 4,782,490 to Tenengolts, the disclosure of 

Many error correction code schemes employed 
within disk drives have employed a Galois field of one 
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which is incorporated by reference. While Tenengolts 
speaks of embodiments employing both hardware and 
firmware to implement high speed error correction 
techniques, no practical guidance is provided for imple­
mentation of on-the-fly error correction. For example, 5 
in the Tenengolts patent FIG. 8 "error trapping" em­
bodiment, the same shift register used to detect errors, is 
also used after an error is detected for the error trapping 
process, thereby removing the availability of the shift 
register for the next block of incoming data in real time. 10 

As used herein, the expression "on-the-fly" means an 
error correction process which is carried out with mini­
mized data flow interruption, and which does not re­
quire one or more disk rotation latencies (revolutions) 
for carrying out the correction process. In order to 15 
perform ECC "on-the-fly", it is necessary to detect and 
correct the data errors, and to do so in a manner which 
does not stop the flow of data blocks during a typical 
transfer of multiple blocks. Conventionally, these two 
requirements have heretofore been conceptually 20 
lumped together. Actually, the present inventors have 
discovered that these two requirements are separate and 
separable aspects to the overall problem of error correc­
tion. 

A syndrome generator is typically provided within a 25 
hardware implementation for error correction. This 
syndrome generator operates on-the-fly upon the data 
stream in order to generate an ECC syndrome for each 
predetermined data block. Once the syndrome is gener­
ated, it is typically appended at the end of the data block 30 
during the recording/ECC encoding process. 

As taught by the referenced Machado '321 patent, the 
syndrome generator circuitry may also be used as a 
remainder recovery circuit during data block readback 
from the storage surface. The syndrome remainder 35 
bytes regenerated during readback from the data block 
or subsets coming e.g. from the disk surface are com­
pared to zero by a hardware comparator. If the remain­
der bytes are not zero, an error is present in the read­
back data block or interleave thereof. In the Machado 40 
'321 patent approach, the data stream is then stopped, 
and the non-zero remainder bytes held in the syndrome 
generator shift registers are then passed via a bus struc­
ture to the microcontroller. The microcontroller then 
executes firmware routines to locate and correct the 45 
error or errors. The prior Machado '321 patent ap­
proach, while employing the on-board digital mi­
crocontroller to carry out error correction processes, 
did not do so on-the-fly. Detection of any error caused 
data flow to stop. 50 

Another typical approach to perform on-the-fly error 
correction has been to provide one or more dedicated 
hardware processors whose task it is to calculate the 
correction of errors and to insert corrected data for 
erroneous data into one or more appropriate positions 55 
of the data block undergoing correction. Typically 
associated with dedicated hardware processors is a 
dedicated FIFO or buffer memory, typically four kilo­
bits in storage capacity (512 bytes by 8 bits per byte). 

An example of a hardware-based ECC architecture is 60 
given in the referenced Tenengolts U.S. Pat. No. 
4,782,490. As best understood, Tenengolts provides a 
very general approach to error correction and cross 
checking in conjunction with FIG. 2, and no mention or 
discussion is provided concerning error correction on 65 
the fly. However, in conjunction with his FIG. 8 em­
bodiment, the syndrome that detected the burst error is 
shifted through the original ECC recovery circuit's 

4 
shift registers until the error is located. The number of 
serial shifts required until zero value residue bytes are 
encountered is counted. This count then provides the 
error burst location, while residue bytes immediately 
following the zero byte residue bytes provide a basis for 
determining the corrected data values to be inserted in 
the data stream. While Tenengolts proposes clocking 
the ECC shift registers at a four-times clock rate to 
permit "a single burst correction to be performed in the 
record transfer time" (fenengolts Column 15, lines 
47-48), it is not clear how such a procedure would 
enable the next contiguous block of data to be passed 
through the shift registers in real time (i.e. on-the-fly), 
unless considerable gaps existed between the data 
blocks, or a block transfer delay was actually pro­
grammed into the data stream with a FIFO block 
buffer, etc. While the Tcnengolts FIG. 2 approach is 
stated to be very fast, it is also admittedly complex. The 
FIG. 8 approach is said to be slower, but sufficiently 
fast, even though the decoding process is said to be 
implemented in firmware. While a firmware implemen­
tation is mentioned, no details, such as a firmware code 
listing, are given in the Tenengolts patent. The Tenen­
golts patent also describes cross checking and ID field 
(header) error detecting techniques within the con­
straints of the hardware implementation given in FIG. 
2, for example. 

Another high speed ECC architecture, involving 
dedicated parallel processors operating in pipeline man­
ner to avoid inter-step transfers is described in U.S. Pat. 
No. 4,567,594 to Deodhar, the disclosure of which is 
also incorporated by reference. The technique de­
scribed in Deodhar U.S. Patent No. divides the Reed­
Solomon decoding process into a sequence of steps 
which are carried out by the pipeline dedicated proces­
sors with a minimum of inter-step parameter transfers. 

A more enlightened prior art approach to error cor­
rection makes use of the data block buffer associated 
with the data controller function. This approach uses a 
DMA channel in order to access and control the data 
block buffer. The ECC hardware generates a DMA 
request to the block buffer thereby to gain access to the 
erroneous data cells which are to be corrected. This 
approach recognizes the advantage of using the already 
existent data block buffer memory for the error correc­
tion process. This is the approach followed in the refer­
enced, commonly assigned U.S. Pat. No. 4,730,321 to 
Machado. However, this prior approach did not 
achieve "on-the-fly" error correction. 

In addition to the inability to perform single burst 
error correction on-the-fly, another drawback of the 
approach described in the referenced Machado '321 
patent arises from the probability of misdetection and 
consequent miscorrection of data in the double burst 
correction mode, essentially limiting its utility to single 
burst correction. While the occurrence of random er­
rors within the correction capability of a particular 
Reed Solomon error correction algorithm will result in 
a zero miscorrection probability, if the number of ran­
dom errors exceeds that correction capability, the mis­
correction probability becomes quite high, approxi­
mately 0.233. This means that almost one quarter of the 
errors statistically occurring above the correction capa­
bility will be misdetected and miscorrected. Known 
prior techniques which have been employed to reduce 
the misdetection probability have included cross 
checks, such as including check sums within the data 
block. However, such cross checks have not been par-
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6 
ticularly powerful, nor have they been able to detect 
shuffling or rearrangement of data values within the 
data block. 

SUMMARY OF THE INVENTION WITH 
OBJECTS 

5 

provide methods and structure for carrying out cross 
checking of the error correction process while minimiz­
ing the amount of additional hardware required to per­
form cross checking. 

Yet a further specific object of the present invention 
is to provide a data block ID field error detection pro-

A general object of the present invention is to pro- ccss which employs the same multiplier terms as are 
vide "on the fly" error correction upon blocks of data employed within an error correction process for the 
within a sequence of data blocks by operatively combin- identified data block, thereby enabling use of common 
ing a hardware-reduced ECC syndrome generator cir- 10 multiplier circuitry for both the ID field error detection 
cuit including a remainder latch, and an embedded digi- and the data block error correction processes. 
ta} microcontroller and block buffer in a manner which Still one more specific object of the present invention 
overcomes limitations and drawbacks of the prior art. is to provide an optimized, flexible hardware/firmware 

Another general object of the present invention is to system which performs error correction and cross 
realize a practical hardware-minimized implementation 15 checking of data blocks and error detection of ID fields 
of "on the fly" error correction within a digital data in real time and without data flow interruption, at least 
system in which the correction processes are carried out in the instance of single burst errors. 
substantially within drive-resident firmware executed as In accordance with principles of the present inven-
needed by an embedded microcontroller supervisor as a tion, an on-the-fly error correction method corrects a 
background operation and without interrupting the 20 data block of a stream within a data decoding process. 
flow of data. Each block has ECC syndrome information calculated 

Another general object of the present invention is to and appended in accordance with a predetermined 
provide an ECC syndrome remainder recovery circuit Reed Solomon code during an encoding process occur-

ring before the data decoding process. The correction 
which includes a latch for selectively latching ECC 25 method occurring during the decoding process com­
syndrome remainders not equaling zero, thereby en-

prises the steps of: . 
abling on-the-fly error correction to be carried out by a passing the block of data through a syndrome infor-
microcontroller and block buffer memory without stop- mation recovery circuit to obtain remainder informa-
ping flow of data blocks within a digital data system. tion related to the error syndrome information, 

Another general object of the present invention is to 30 comparing the remainder information with zero to 
provide a Reed Solomon cross check polynomial for determine if an error burst is present within the data 
use to check the corrcctability of error bursts in a data block, and 
block by a Reed Solomon error correction polynomial, if an error is determh;ied to be present: 
wherein both the cross check polynomial and the error latching the recovered information into a remainder 
correction polynomial are based upon a Galois field in 35 latch in order to free the syndrome information recovery 
which a primitive element alpha1 term is not equal to 02 circuit for the next data block of the stream, 
(Hex). transferring the recovered information from the re-

A more specific object of the present invention is to mainder latch to a microcontroller and causing it to 
provide a Reed Solomon cross check polynomial em- execute an error correction service routine, 
ploying a primitive element alpha 1 term having a 40 determining the location and a corrected value for the 
2B(HEX) value. error burst or bursts with the microcontroller in accord-

A more specific object of the present invention is to ance with a predetermined Reed Solomon error correc-
provide an on-the-fly error correction system within a tion algorithm, and 
disk drive data storage subsystem including a supervisor substituting the corrected value for the error burst 
microprocessor which determines error location and 45 within the block that was detected to contain the error 
values within error bursts determined to be present burst. 
from latched non-zero syndrome remainder bytes as a As one facet of the inventive method the data block 
background operation, not usually requiring interrup- further includes Reed Solomon cross check information 
tion of flow of data blocks from the disk to a host com- calculated and appended thereto during the encoding 
puting system. 50 process, and the method further comprises the steps of 

Yet another more specific object of the present inven- latching recovered cross check syndrome information 
tion is to provide an error correction method which into the syndrome latch and determining with the mi-
includes on-the-fly cross chec}c.ing in order to determine crocontroller the effect of the corrected value upon the 
correctability and thereby reduce the possibility of mis- recovered cross check syndrome information in order 
correction of a detected error burst in a data block. 55 to detect possible miscorrection. 

A still further more specific object of the present As another facet of the inventive method, the data 
invention is to provide a hardware-minimized error block includes at least one ID field including Reed 
correction/error detection syndrome generator appara- Solomon ID field error detection information employ-
tus which may be minimally modified in order to per- ing the same multiplier terms as are employed for error 
form either two byte or three byte real time error detec- 60 correction, thereby enabling the syndrome information 
tion for data block ID fields (headers), as well as re- recovery circuit to detect errors in a said data block ID 
cover remainders for error correctiori of data blocks. field. 

One more specific object of the present invention is to Further in accordance with the present invention, a 
provide a Reed Solomon based ID field error detection Reed-Solomon error correction code syndrome genera-
method and apparatus which employs a Galois Field 65 tor apparatus is provided for use in a data block transfer 
generator polynomial with non-consecutive roots in path within a computing system, such as within a fixed 
order to minimize hardware requirements without com- disk drive data storage subsystem. Each substantially 
promising integrity of the error detection process. contiguous data block being transferred includes Reed 
One more specific object of the present invention is to Solomon error correction coding syndrome informa-
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tion appended at the end thereof for enabling detection 
and correction of errors within data of the block. Each 
data block further includes Reed-Solomon cross check­
ing syndrome information appended to each data block 
in a manner such that the error correction coding syn- 5 
drome information is derived further in relation to the 
cross checking syndrome information of the block. 
During an encoding process an error correction code 
syndrome generator calculates error correction coding 
syndrome information in accordance with a Galois 10 
finite field (28) generated by a field generator polyno­
mial having the form xB+x4+x3+x2+ 1 and wherein 
the first term of the field is xS+x3+x+ 1 (which is 
00101011 binary), each error correction syndrome 
being of the form G(x)=x4+(alpha18).x3+(alpha87).x- 15 
2+(alpha18).xl+l. During the encoding process, a 
cross check syndrome generator calculates cross check­
ing syndrome information having the form 
G(x)=x2+alphal. The error correction coding syn­
drome information and the cross checking syndrome 20 

information are then appended to each data block. 
During a decoding process, the Reed-Solomon error 

correction code syndrome generator apparatus operates 
as a remainder recovery circuit to obtain a syndrome 

25 remainder from a data block passing therethrough. The 
syndrome remainder is related to the error correction 
syndrome such that an error burst location and correc­
tion value may be determined for the data block. The 
generator apparatus compares the remainder to zero. If 30 
the syndrome remainder is non-zero, the remainder is 
latched in a remainder latch, together with a cross 
check syndrome remainder which is related to the cross 
checking syndrome. A programmed digital microcon­
troller then determines from the latched remainder the 35 
error burst location and a corrected value and checks 
the impact of the corrected value upon the latched cross 
check remainder. The microcontroller then causes the 
corrected value, if determined not to be a miscorrec­
tion, to be substituted for the error burst within the data 40 
block. 

In one aspect of this facet of the present invention, the 
cross check syndrome generator comprises an input for 
receiving each incoming data block as a clocked data 
stream of serial bytes, a first summing junction for sum- 45 
ming each byte of the incoming data block clocked data 
stream with a feedback byte to produce a sum byte, a 
multiplier for multiplying the sum byte by alpha! to 
yield a first product byte, a first clocked latch stage 
connected to the multiplier for storing the first product 50 
byte during a first byte clock period and for storing 
subsequent product bytes during subsequent byte clock 
periods, and a second clocked latch stage connected to 
the first clocked latch stage for storing the first product 
byte during a second byte clock period, the second 55 
clocked latch stage for feeding back the first product 
byte during the second byte clock period as the feed­
back byte to the summing junction. 

In another aspect of this facet of the present inven­
tion, the Reed-Solomon error correction code syn- 60 
drome generator apparatus described above further 
comprises error detection circuitry for generating in 
real time an error detection syndrome for a data ID 
field of the data block. 

These and other objects, aspects, advantages and 65 
features of the present invention will be more fully 
understood and appreciated by those skilled in the art 
upon consideration of the following detailed description 

of a preferred embodiment, presented in conjunction 
with the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the Drawings: 
FIG. 1 is a schematic graph of a 512 byte data field 

for use with the methods and apparatus of the present 
invention wherein the data field is arranged into three 
interleaves and to which two cross check bytes, and 
twelve error correction bytes have been appended. 

FIG. 2 is a plan view graph of a data surface of a 
rotating data storage disk, illustrating eight data zones 
of tracks Zl through Z8 each having a different data 
transfer rate and user data storage capacity, and com­
monly aligned servo sectors S extending throughout the 
data storage surface. 

FIG. 3A is a schematic graph of a data ID field for a 
data sector as shown in the FIG. 2 graph and employing 
a three byte error detection code. 

FIG. 3B is a schematic graph of a data sector ID field 
not including count information, and therefore able to 
employ a less powerful two byte error detection code. 

FIG. 4(A)(B) are a detailed block diagram of an ECC 
encoder/decoder and cross checking structure imple­
menting the methods of the present invention. 

FIG. 5 is a series of timing diagrams illustrating oper­
ation of the FIG. 2 ECC structure. 

FIG. 6(A)(B) are a block diagram showing the FIG. 
2 ECC structure within a data sequencer element of a 
fixed disk drive. 

FIG. 7 is a block diagram of a fixed disk drive data 
storage subsystem including the FIG. 6 data sequencer 
and ECC structure implementing principles of the pres­
ent invention. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT 

While the present invention is effectively embodied 
in any system transferring blocks of data, whether stor­
age or communication, it finds particular utility and 
efficiency in the field of data storage and retrieval, such 
as within a fixed disk data storage subsystem. In such a 
system, to be described in greater detail hereinafter, 
data blocks are stored as data fields or data sectors 
~ithin concentric data storage track locations of one or 
more data storage disks. As used herein, the terms data 
block, data field and data sector are used substantially 
interchangeably. A data read/write transducer is selec­
tively positioned over the track location of interest, and 
blocks are written to or read from data sector storage 
locations within the track location. It is the process of 
storing and retrieving blocks of data, for example, 
which gives rise to the need for error correction, cross 
checking, and ID field error detection techniques of the 
present invention. 

An exemplary data block or field found within a fixed 
disk data storage subsystem, for example, is set forth in 
FIG. 1. There are 512 data bytes designated [1] through 
[512). Bytes [513) and [514) comprise two cross check 
bytes for cross checking the data bytes [1] through 
[512), and there are twelve ECC bytes [515) through 
[526) which are used for error correction of the data 
b}1es and cross check bytes. As illustrated in the lower 
portion of FIG. 1, in this particular disk drive data 
block example there are three interleaves: interleave l, 
interleave 2 and interleave 3. Interleave 1 contains bytes 
[1], [4), [7), [10), etc. Interleave 2 contains bytes [2), [SJ, 
[8), [11), etc. Interleave 3 contains bytes [3), [6), [9), [12), 
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The encoded data codeword C(x) for each syndrome 

byte within each interleave is produced by the follow­
ing equation: 

C(x)=[x4.D(x) mod G(x)]+x4.D(x) (4) 

During the readback process through the same syn­
drome generator 10, the remainder value R(x) for each 
interleave is recovered, and if not zero, is latched in a 
remainder latch 68 per the following: 

R(x) = C(x) mod G(x) 
=· R3x3 + R2x2 +Rix+ RO 

(5a) 
(5b) 

etc. Interleaves 1 and 2 each include a total of 171 data 
bytes, and interleave 3 contains 170 data bytes. As is 
apparent from FIG. 1, the two cross-check byte posi­
tions (513) and (514) are located in different interleaves, 
and there are four ECC bytes located in each interleave: 5 
bytes (517), (520), [523) and [526) in Interleave 1, bytes 
[515), [518), [521) and [524) in Interleave 2, and bytes 
[516), [519), [522), and [525) in Interleave 3. The use of 
within-sector interleaves is conventional in error cor­
rection schemes in order to extend the ECC capability 10 
to longer error burst lengths. Another reason is to 
spread a contiguous block error burst across several 
interleaves, thereby reducing the complexity of error 
correction techniques, for example. 

15 A programmed microcontroller 196 then decodes each 
partial syndrome byte (Si) of the code word for each 
interleave in accordance with the following: 

In the presently preferred error correction example, a 
single error burst is defined as an error occurring in one 
byte within one of the interleaves. A double burst error 
is defined as an error occurring in two bytes within one 
of the interleaves. Given the three interleaves depicted 
in FIG. 1, it is apparent that a single burst error may be 20 

up to three bytes in length, so long as each byte contain­
ing an error is located within a different one of the three 
interleaves. 

As was true with the single burst error correction 25 method described in the referenced Machado patent, 
the Galois field employed by the present error correc­
tion example is generated from the following polyno­
mial: 

(I) 30 

[Unless otherwise noted hereafter, the symbol "+" 
designates a bit-by-bit exclusive-OR operation.) 

The first element of the field was selected such that 
the number of gates needed to implement the multipliers 
is minimized: 

alpha I =x5+x3+x+ I (2) 

35 

The lookup tables implementing the antilog and Jog 40 

tables for this Galois field are set forth in the microcon­
troller firmware listing included within the microfiche 
appendix of this application. 

The model for the Reed-Solomon code implemented 
within the presently preferred embodiment is defined 45 

by the following generator polynomial G(x) employing 
an exponent offset equal to 126: 

In factored form, equation (3) is: 

G(x)= (x +alpha l26)(x +alpha 127)(x+ alpha 128)(x­
+alpha 129) (3a) 

The twelve ECC bytes are generated upon passing all 
of the user data bytes (and two check bytes) of each 512 
byte block through a syndrome generator 10 (shown in 
FIG. 4) on a serial byte-by-byte basis. The value C(x) is 

50 

55 

an encoded data polynomial written to the disk which is 60 
based upon the data and the cross-check bytes for each 
data block. The value D(x) is an encoded data polyno­
mial based solely upon the data bytes of the data block. 
The value C'(x) is the encoded data polynomial C(x) as 
read back from the disk surface. Thus, C'(x) may con- 65 
tain one or more error bursts which must be detected 
and corrected, if correctable. The value R(x) comprise 
the remainder which is related to the value C'(x). 

Si = R(x) mod (x + alphai+ 126) 
alpha(i+ 126)*4 

(5c) 

where i=O, 1, 2 and 3 and where the exponential+indi­
cates an addition operation). If the remainder bytes (the 
coefficients of R(x)) have a non-zero value, there then 
exists at least one error burst in the read-back data 
block. 

In the presently preferred embodiment given herein, 
the error correction process above has the capability of 
correcting on-the-fly at least one error burst for each 
one of the three interleaves. In this on-the-fly error 
correction process, the partial syndromes have the fol­
lowing forms: 

SO=cl.alpha126*Ll (6) 

St =et.alpha127*LI (7) 

S2=el.alpha128*LI (8) 

S3=el.alpha129'LI (9) 

The solutions for Ll (location) and el (single error 
value) are as follows: 

Lt= log[alphaL I J = log(St/SOJ (JO) 

et= St.(SO/St) 127 (11) 

The system of the present invention also performs 
double-burst error correction in accordance with the 
following partial syndromes: 

SO=et.alpha 126*Ll +el.alpha 126*L2 (12) 

St =el.alpha 127*Ll +el.alpha 127* L2 (13) 

S2=el.alpha 128*LI +el.alpha 128* L2 (14) 

S3=et.alpha129' LI+ el.alpha 129* L2 (15) 

In order to solve these equations, the following steps are 
performed. 

1. Values for <Pl and q,2 are found: 

<l>l = S0.53 + Sl.52 
so.52 + s12 

(16) 
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12 
scribed hereinafter. If the updated cross check bytes are 
not zero after the correction has been made to the data 
field, then the error is determined to be uncorrectable 
by the present methodology. 

2. Roots Xl and X2 of error-locator <f>(x) are found: 5 This approach provides a very rapid, on-the-fly 
method for verifying an error correction to determine 
that the present error burst is not within a predeter­
mined miscorrection probability, such as 0.233, for the 
double burst correction case for example, and that an 

(18) 

There are several ways for solving the linear quadratic 
equation (18). One classic way is to implement a Chien 
Search loop which substitutes all Galois Field elements 
into the equation and detects for zero value. When a 
zero-value result is found, the loop stops and the input 
element is thereupon defined as Xl. If no soluti<;m is 
found, an uncorrectable error event has been detected. 
Since equation (18) is a linear quadratic equation, 

<l>l=xltx2 (!Sa) 

X2 may be found as follows: 

X2=Xlt<l>l (19) 

3. Locator values Ll and L2 are then evaluated: 

10 error correction operation performed on-the-fly in the 
single burst error scenario has not resulted in an errone­
ous correction or "miscorrection" of the data burst. 

As noted it is desirable to use a predetermined alpha I 
(a Galois field constant) of a value not equal to 2 in the 

15 cross check polynomial (5) above. By selecting a Reed 
Solomon code with a predetermined beginning offset, 
e.g. 126, a desirable alpha! constant turns out to be 
2B(HEX), or 00101011 (binary). In this particularly 

' preferred embodiment, there are as many ones as there 

Ll=log[xl] 

20 are zeros in the preferred alpha! constant. Thus, it has 
sufficient "mass" or "substance" to be surprisingly ef­
fective within the cross check polynomial, as it scram­
bles itself very rapidly as it propagates through the 
ECC syndrome generator. 

(20) 
25 Thus, in choosing the root alphan for the cross check 

L2=log[x2] 

4. Error values el and e2 are then evaluated: 

el = SO.X2 + SI 
XI 126.d>I 

e2 = SO.XI ± SI 
n126_cJ>J 

(21) 

(22) 

(23) 

polynomial, the roots selected for the ECC polynomial 
are to be avoided. In the presently preferred embodi­
ment, the ECC roots have been chosen to be n= 126, 

30 n=127, n=128 and n=129. These values, being differ­
ent than the cross check root n= 1, simplify the firm­
ware and speed up cross checking of single error burst 
correction per interleave on-the-fly. 

The data format for a disk drive in which the present 

Given appropriate processing capabilities and speed 
at the microprocessor 196, and given a reasonable user 
confidence level in the correction process, it is practical 

35 invention is implemented employs a plurality, e.g. eight, 
radial data zones. Each zone includes plural concentric 
data tracks wherein each track has a predetermined 
number of data sectors. Each data sector contains a data 
ID field, followed by the FIG. 1 arrangement of 512 
data bytes, two cross check bytes, and twelve ECC 
bytes. The data ID field includes an address field fol­
lowed by three EDC bytes. In order to maximize data 
storage split data fields or data sectors are employed. By 
"split data field" is meant that the servo sectors S extend 
as radial spokes on the data surface and interrupt or 
"split up" at least some of the data sectors into seg­
ments. Zoned data recording techniques of the pres­
ently contemplated type employ either a constant disk 
angular velocity and a variable data transfer rate, or 

to correct double burst errors on-the-fly with the pres- 40 
ent methodology. 

In order to reduce the probability of miscorrection 
below 0.233 for multiple random errors, a generator 
polynomial Gxc(x) has been selected for performing a 
Reed Solomon cross check. This generator polynomial 45 
is of the form: 

G_.c{x)=X2+alphal (24) 

50 they employ a fixed data transfer rate and e.g. slow the 
disk speed as the data transducer moves from a radially 
outer zone to a radially inner zone. Presently, a 
switched data transfer rate is preferred. Consequently, 
there are different data transfer rates for the different 
data zones, and there are different numbers of data 
sectors within the tracks of the different zones selected 

This cross check polynomial turns out to be a surpris­
ingly powerful algorithm. It cross checks the error 
correction process and is sensitive to scrambling or 
misordering of the data values within the data block. 
This cross-check method is designed so that it may be 
carried out on-the-fly for the case at least of a single 
burst error per interleave, and with sufficient processing 55 

speed, for the case of a double burst error per interleave. 
If a particular error exists, a correct way of express­

ing the error is as a polynomial E(x) where: 

· to optimize data storage capacity in the disk storage 
format. Also, as described in commonly assigned U.S. 
Pat. No. 4,675,652 to Machado, entitled "Integrated 

E(x)=e,'X/; (25) 60 Encoder Decoder for Variable Length, Zero Run 
Length Limited Codes", the disclosure of which is 
hereby incorporated by reference, a 1,7 RLL coding 
arrangement is preferably employed for data compac­
tion on the storage surface of a data storage disk 162. 

In order to determine the effect of the error correc­
tion made to a data block on the corresponding cross 
check syndrome, alpha! is substituted into the error 
polynomial (25) for x, and then the cross check syn- 65 
drome (XC) is updated. Syndrome cross check 
(XC)=previous (XC)+e,alphaii, wherein e,alphaii is 
computed by a programmed microcontroller 196 de-

As shown in the example provided by the FIG. 2 
layout diagram, the two opposite data storage surfaces 
of e.g., a two and one half inch diameter rotating data 
storage disk 162 may be defined to include a radially 
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outermost zone Zl having e.g. 110 concentric data 
storage tracks per surface, each of which includes 60 
data sectors and a raw data rate of 18.13 megabits per 
second (Mbps) (a coded data frequency of 27.20 MHz) 
for a total storage capacity of 6.48 MBytes, for example. S 
The next radially inward zone Z2 for example may 
contain 109 data tracks, each of which includes 56 data 
sectors and has a raw data rate of 17.45 Mbps (a coded 
frequency of26.18 MHz). Zone 2 stores 6.19 megabytes 
ofuser data on both sides of the disk 162. The third data 10 
zone Z3 contains 109 data tracks, each of which has 52 
data sectors, and has a raw data rate of 15.69 Mbps (a 
coded data frequency of 23.53 MHz), and therefore 
stores 5. 75 megabytes of user data on both sides of the 
disk 162. The fourth data zone Z4 has 109 data tracks, IS 
each having 52 data sectors, and has a raw data rate of 
15.69 Mbps (a coded data frequency of 23.53 MHz), and 
therefore stores 5. 75 megabytes of user data on both 
sides of the disk. The fifth data zone ZS may have 109 
data tracks, each having 47 data sectors, and has a raw 20 

data rate of 14. 77 Mbps (a coded data frequency of 
22.15 MHz), to achieve storage of 5.19 megabytes of 
user data on both sides of the disk 14. The sixth data 
zone Z6 has 108 data tracks, each having 44 sectors, and 
has a raw data rate of 14.00 Mbps (a coded data fre- 2s 
quency of 21.00 MHz), and achieves a capacity of 4.81 
megabytes of user data on both sides of the disk 162. 
The seventh data zone Z7 has 108 data tracks, each 
having 41 sectors and use a raw data rate of 12.95 Mbps 30 
(a coded frequency of 19.43 MHz) so as to store 4.48 
megabytes on both sides of the disk 162. The eighth data 
zone ZS may include 108 data tracks, each having 39 
data sectors for example, and has a raw data rate of 
12.09 Mbps (a coded frequency of 18.13 MHz) in order 3s 
to store 4.26 megabytes on both sides of the disk 162. A 
radially outermost region SYS of the data surface 12, 
e.g. comprising 14 concentric data tracks following the 
Zone 8 format, may contain system information needed 
for operation of the disk drive subsystem 100. Several 40 
tracks inside of the eighth data zone, and having the bit 
transfer characteristics of the eighth data zone may be 
made available for storage of system diagnostics and 
other values. 

While these eight data zones are described as having 4S 
the characteristics given above, it is to be understood 
that the number of zones, the number of tracks and 
sectors per zone, and the data transfer rates within each 
zone, may vary from the examples given, as is well 
understood by those skilled in the art, depending upon so 
head and media design and quality, head position servo 
system, and desired storage capacity. In the present 
example, a data storage capacity of 42.91 Megabytes is 
achieved with a single 2! inch diameter thin-film media 
data storage disk 162 and with thin film data transducer ss 
heads 170a and 170b. 

The data transfer frequencies employed within each 
zone are preferably synthesized e.g. by a frequency 
synthesizer 190 operating under the control of the sys­
tem microcontroller 196. The synthesizer is therefore 60 
set to synthesize and put out to a PLL 188 the coded 
frequency for each data zone. 

What is to be considered important from the FIG. 1 
example is the inclusion of count bytes within each data 
sector ID field, which enables a data sequencer 100 to 65 
determine immediately the structural layout of the im­
mediately following data field of the sector. This layout 
may or may not comprise a split data field and include 

one or more interrupting servo sectors, as shown in 
FIG. 2. 

FIG. 2 also illustrates diagrammatically a plurality of 
uniformly spaced apart servo sectors S (e.g. 52 servo 
sectors) which are uniformly disposed about the data 
surface of a storage disk 162 and are embedded between 
or actually interrupt the data sectors in each zone. Since 
these servo sectors S "interrupt" at least some of the 
data sectors, following every servo sector interruption 
there is a special data sync field to enable the drive to 
resynchronize to the data rate. The data field count 
information provided in the data block ID field is used 
by the data sequencer 100 during the data writing and 
readback process to determine the layout (i.e. number 
of and locations of servo sector interruptions and the 
length of each resultant data field segment) of the data 
field of interest. Since the byte position counts may vary 
from data ID field to data ID field, it is very important 
to confirm the accuracy of the information recovered 
from the ID field in real time. The present invention 
advantageously employs the same syndrome generator 
circuit 10 (FIG. 4) in order to perform Reed Solomon 
error detection process in real time for each one of the 
data ID fields read by a selected head 170. 

FIG. 3A illustrates a presently preferred data block 
ID field arrangement particularly well suited for split 
data field formats. Each ID field includes a nine byte 
preamble, an ID field address mark byte, three data field 
count bytes: count 3, count 2 and count 1; a sector 
identifier byte; and a head identifier byte. There are 
then three error detection code bytes: EDC byte 1, 
EDC byte 2, and EDC byte 3, followed by a two byte 
pad, a write splice gap (gap 2) byte, and the data field, 
which ends at a servo sector S location. The values 
present within the three count bytes determine respec­
tively the lengths of up to three segments of the data 
field as may be interrupted by servo sectors. For exam­
ple, if there are no interruptions of the data field, count 
byte 1 would indicate a full field segment length of 512 
bytes for example. If there are two servo sector inter­
ruptions of the data field, as is the case with some data 
blocks, count byte 1 would set forth the byte length of 
the first data field segment, count byte 2 sets forth the 
byte length of the second data field segment, and count 
byte 3 sets forth the length of the third data field seg­
ment, for example. 

With the ID fields used in the preferred zoned data 
recording scheme containing byte count values, it be­
comes very important to provide an error detection 
method which will check the validity of the information 
read back from each ID field. A three byte code is 
presently preferred in this application having split data 
fields with embedded servo sectors S interrupting at 
least some of the data blocks. An important aspect of 
the present invention is to provide an error detecting 
coding arrangement which makes use of the FIG. 4 
syndrome generator. Such an arrangement has been 
discovered. The following presently most preferred 
code will generate three error detection check bytes 
which are appended to each data ID field: 

GEDCJ(X)=x3+ax2+bx+c (26) 

In presently preferred form, this error detection code 
may be expressed as follows: 

(26a) 
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In factored form, equation 26a is rewritten: 

G EDO(X) = (x+alpha°l(x+ alpha I08)(x +alpha 147) (26b) 

It is apparent by inspection that these alpha coefficients 5 
are not consecutive. This code will generate three error 
detection bytes. Since the syndrome generator depicted 
in FIG. 4 already has the alpha87 multiplier logic, that 
logic is available for use in the error detection process. 

For drives not employing embedded servo sectors 10 
which interrupt data fields of data sectors (and in which 
the data ID sectors do not contain byte counts) a two 
byte error detection code has been determined to be 
sufficient. One example of an ID field employing a two 
byte error detection code is depicted in FIG. 3B. In the 15 
example given in FIG. 3B, the ID field includes a nine 
byte preamble, an ID field address mark byte, a cylinder 
high byte, a cylinder low byte, a head byte, a sector 
byte, and two error detection code (EDC) bytes: EDC 
1 and EDC 2. These EDC bytes are followed by a two 20 
byte pad, and by a gap 2 byte before reaching the data 
field which continues uninterrupted until the next data 
sector •. which may be preceded by an embedded servo 
sector S. 

A presently most preferred two byte EDC code may 25 
be generated by the following generalized relationship: 

(27) 

where b is unequal to one. A more specific form of this 
relationship is: 30 

GEDC2(X)=x2+x+alpha18 (27a) 

logic gate 13, a data extender latch 14 passes the serial 
data on the bus 12 onto an internal ECC bus 16. The bus 
16 leads to a byte-wide exclusive OR (herein XOR) gate 
array 18 wherein each incoming byte is exclusive-ORed 
(herein XORed) with a byte exiting the ECC portion of 
the circuit 10 on an outflow bus 63. The resultant sum is 
passed by the gate 18 onto a bus 20 which leads through 
a zeroer circuit 22 to another bus 24. The zeroer circuit 
22 is used to force bus 20 to zero when appending ECC 
or EDC bytes to data fields, such as during data writing 
to disk operations or disk format operations, for exam­
ple. 

The bus 24 leads into a three byte register 26, the 
output of which leads to an XOR gate array 28. The bus 
24 also leads to a bi-coefficient multiplier which gener­
ates and puts out an alphal8product on a bus 32 and 
which also generates and puts out an alpha87 product on 
a bus 34. The alpha IS product is XORed with the output 
from the shift register 26 in the byte-wide exclusive OR 
gate array 28, with the resultant sum then passed 
through another three byte shift register 36. The al­
pha87 product on the bus 34 is then XORed with the 
output from the register 36 in another byte-wide XOR 
gate array 38. An output sum of the XOR array 38 
passes through another three byte shift register 40 and, 
the alpha87 product on the bus 32 is XORed with the 
output from the shift register 40 and yields an output 
sum on a bus 43. 

The output sum on the bus 43 is then selectively 
passed through a multiplexer 44 to a single byte register 
46. The multiplexer 44 operates in conjunction with the 
EDC process, explained hereinafter. An output from 
the single byte register 46 is then XORed with the al-

In factored form, equation 27a is: 

GEDC2(X)=(x+alpha22)(x+alpha251) (27b) 

With this code, only one multiplier circuit is required: 
alphalS, which circuit is already present in the FIG. 4 

35 pha87 product on a bus 54. In this regard, the alpha87 
product on the bus 34 passes through a multiplexer SO 
and a zeroer circuit S2 to reach the bus S4. An output on 
a bus SS from an XOR gate array 48 then passes through 

ECC syndrome generator circuit. 40 
Other EDC codes are known to be available for de­

tecting errors within the ID field of a data block. How­
ever, each of the following algorithms require an addi­
tional multiplier term, and therefore are slightly more 
complicated to implement than the algorithms (26) and 45 
(27) given above. 

A presently less preferred three byte EDC code may 
be generated by the following relationship: 

G£DO(X) = x3 + alpha81.x2 + alpha87.x + alpha18. 
= (x + alpha5)(x + alpha6)(x + alpha 7) 

(28) 50 
(28a) 

a multiplexer S6 to reach a second single byte shift 
register S8. The multiplexers SO and S6 are used to select 
between ID fields having either two EDC bytes, or 
three EDC bytes. 

An output of the register S8 is then XO Red with the 
alpha87 coefficient on the bus 54 in an XOR gate array 
60. A resultant sum put out by the XOR array 60 is then 
passed into and through a single byte shift register 62 
which leads directly to the output bus 63. It is apparent 
that the last register group comprising registers 46, S8 
and 62 are split up by the XOR gate arrays 48 and 60 so 
that the EDC function can be carried out on either two 
or three EDC bytes. In this manner a Reed-Solomon 
error detection code of either two bytes or three bytes 
for checking data sector ID fields may readily be real­
ized and implemented within the existing ECC syn-

A presently less preferred two byte EDC code may 
be generated by the following relationship: 

55 drome generator io with minimal additional circuitry. 

GEDQ(X) = x2 + alpha81.x + alpha81. 
= (x + alpha J05)(x + alpha23 I) 

(29) 
(29a) 

With reference to FIG. 4, an ECC syndrome genera­
tor circuit 10 simultaneously implements circuitry for 60 
performing the ECC function for the data fields, the 
cross checking function for the data fields, and the EDC 
function for the data block ID fields. These multiple 
functions carried out within a single, simplified circuit 
10 facilitate on-the-fly error correction in accordance 65 
with the present invention. The FIG. 4 ECC circuit 10 
includes an incoming serial data bus 12 carrying serial­
by-byte data. In accordance with the output state of a 

During normal ECC operations, the zeroer circuit S2 
presents zero coefficients, in lieu of either an incoming 
byte value (two byte EDC) or the alpha87 product 
(three byte EDC). Thus, during normal ECC opera­
tions, the XOR gate arrays 48 and 60 are functionally 
inoperative in the paths between the registers 46, S8 and 
62. The multiplexer S6 places the alpha87 product into 
the register S8 during a two byte EDC operation. 

The output bus 63 from the last register 62 leads 
through a multiplexer 64 to an ECC output bus 66 
which enables the circuit 10 to generate and clock out in 
proper time twelve ECC syndrome bytes which are 
appended into the ECC check byte positions of each 



17 
5,241,546 

data field, as depicted in FIG. 1. Two control signals: a 
byte clock signal BYTCLKA, and an ECC enable oper­
ation signal ECCENOP are combined in the AND gate 
13, and its output then provides a master clock signal for 
clocking bytes progressively through the latch 14, and 5 
the shift registers 26, 36, 40, 46, 58 and 62. The shift 
registers 26, 36, 40, 46, 58 and 62 are initialized with 
predetermined initial values by assertion of an initializa­
tion control signal CTLIEC. The values may be arbi­
trarily selected, but are repeated at each initialization of 10 
the shift registers. 

As noted hereinabove a syndrome remainder latch 68 
is provided within the syndrome generator circuit 10. 
This latch 68 receives and stores a number of rcmaipder 
bytes. Three remainder bytes are received from the 15 
register 26 including a first byte over a bus 70. Three 
more remainder bytes arc received from the shift regis­
ter 36 including a fourth byte over a bus 72. Three more 
remainder bytes arc received from the shift register 40 
including a seventh byte over a bus 74. A tenth remain- 20 
der byte is received from the single byte shift register 46 
over a bus 76; and an eleventh remainder byte is re­
ceived from the shift register 58 over a bus 77; while a 
twelfth remainder byte is received over a bus 79. 

The remainder latch 68 is controlled by three control 25 
signals. First, a five bit control signal LADD[4:0] com­
prises the five least significant address bits of the mi­
crocontroller cycle currently in operation. These five 
address bits are used by the microcontroller in order to 
fetch a particular latched remainder byte for processing 30 
by the microcontroller 196 during an on-the-fly ECC 
operation. Second, a syndrome latch close control 
SYNLCLS signal is used to operate the remainder latch 
68 to latch a particular (e.g. non-zero) remainder for 
on-the-fly ECC operations. The remainder latch 68 is 35 
normally in the transparent mode. Upon detection of an 
error as at the output line 80, the data sequencer 100 
asserts this signal asynchronously to latch the remainder 
bytes from the shift registers 26, 36, 40, 46, 58 and 62. 
This operation is carried out before a reinitialization 40 
which occurs for the next data sector. Thus, the twelve 
byte ECC syndrome remainder provides the informa­
tion from which the error location(s) and error value(s) 
can be determined by the microcontroller 196 and cor­
rected while the next data sector is being circulated 45 
through the syndrome generator circuit 10 and its re­
mainder bytes are being recovered. Third, a syndrome 
latch open control SYNLOPE signal must be the oppo­
site of the syndrome latch close control signal. This 
SYNLOPE signal is true when the syndrome remainder 50 
latch 68 is in its transparent mode, and low when the 
syndrome latch 68 is latched. 

The byte values on the buses 70, 72, 74, 76, and 77 are 
passed to the zero detect circuit 60 and checked to see 
if they are zero. Since syndrome bytes progressively SS 
clock through the shift register groups 26, 36 40 and the 
last group of individual shift registers 46, 58 and 62 in 
three interleaves, only those bytes from the first one of 
each of the four groups of syndrome registers need to be 
input to the zero detect circuitry for ECC syndrome 60 
zero checking. This arrangement saves logic elements. 
A parity with zero during data read operations indicates 
no errors have been detected within the present data 
block. 

Five control values enter the zero detect circuit 78: 6S 

the ECC enable operation control ECCENOP; an error 
detection operation control CRCOP; an error correc­
tion operation control ECCOP; the byte clock signal 

18 
BYTCLKA, and a no cross check operation control 
NOXC. These control signals progressively enable the 
zero detect circuit 78 to determine whether a particular 
ECC syndrome, cross check syndrome or EDC syn­
drome is zero, thereby facilitating on-the-fly correction. 

A single bit remainder output control value is pres­
ented on a line 80. This line will be at one logical state 
when the remainder bytes being checked are equal to 
zero, and it will be at another logical state when there is 
no parity with zero, as determined by the zero detect 
circuit 78. An on-the-fly service routine is called by the 
microcontroller 196, and as part of the execution 
thereof, the syndrome byte values actually latched by 
the syndrome latch 68 are put out over a syndrome data 
bus 82 to the microcontroller 196 of the disk file when­
ever the single bit syndrome value on the line 80 indi­
cates non-zero parity. Such a condition could arise from 
checking the twelve ECC bytes appended onto each 
data field. Another error condition microcontroller 
intervention could arise from checking either a three 
byte ID check field, or a two byte ID check field, dur­
ing an error detection code (EDC) operation, for exam­
ple. 

Once the microcontroller 196 locates and corrects an 
error burst in a sector on-the-fly, the possibility of a 
miscorrection having occurred is then tested by having 
the microcontrollcr 196 determine the impact of the 
correction of data upon the cross check remainder bytes 
which are also held in the remainder latch 68 and read 
by the microcontroller 196 as needed. 

In order to obtain the cross check remainder bytes, 
the data block on the ECC data bus 16 is passed through 
an exclusive OR gate 84. An output from the gate 84 is 
passed through a multiplier 86 which calculates and 
puts out an alpha! product on a bus 88. The alpha! 
product is then latched into two byte cross check shift 
registers 90a and 90b. An output from the shift register 
90b feeds back to the XOR gate array 84 and also pro­
vides another input to the multiplexer 64, so that the 
cross check bytes can be appended to the data field as 
shown in FIG. 1. 

An output bus 94 from the register 90a enables the 
first cross check byte to be latched into the syndrome 
latch 68 and also to be checked by the zero detect cir­
cuit 78. Similarly, an output bus 96 from the register 90b 
enables the second cross check byte to be latched into 
the remainder latch 68 as well as checked for zero par­
ity by the zero detect circuit 78. 

When an ECC remainder byte value is determined 
not to be zero and the twelve ECC remainder bytes are 
latched into the remainder latch, the two cross check 
remainder bytes then present in the registers 90a and 
90b are also latched into the remainder latch 68. The 
cross check remainder bytes are then converted into 
partial syndrome bytes XCl and XC2. After an ECC 
operation following calculation of an error burst cor­
rection by the microcontroller 196, it then calculates the 
impact of the correction upon the partial syndrome 
bytes XCl and XC2. If those bytes, after correction of 
the data error, are not zero, an error which cannot be 
corrected by on-the-fly error correction is determined 
to be present, the data stream is stopped, and retries may 
then be handled in accordance with conventional ECC 
procedures, invoked in accordance with e.g. the SCSI 
interface convention, as one example. Ultimately, if the 
cross check remainder bytes are not zero after a correc­
tion, the error is determined to be uncorrectable, and 
the disk drive stops and informs the host equipment that 
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an uncorrectable error has occurred. If the cross check late the syndrome while it is being clocked out by the 
bytes are zero after error correction, a possibility of a byte clock BYTCLKA. 
miscorrection of data is thereby determined to be signif- CRC2B · EDC Two Byte Format: When asserted 
icantly reduced. true, this control signal selects a two byte format for the 

The cross check shift registers 90a and 90b are initial- 5 EDC on the data ID field. In this case, the same syn-
ized by the initialization control signal CTLIEC which drome generator is used for two byte EDC. When deas-
sets them to a known state, and are clocked by the byte serted, this line selects a three byte EDC syndrome 
clock signal BYTCLKA and by a signal indicating that process. 
ECC and cross check operations are being performed SYNDO Remainder Equals Zero: This control signal 
(instead of an ID field error detection operation), as 10 put out by the zero detect circuit 78 is used for detecting 
determined by a control gate 89. errors. On two byte EDC formats, this signal will be 

The following description summarizes the various asserted following the rising edges of BTYCLKA if 
control and data signals whose labels appear in FIG. 4. both EDC remainder bytes are equal to zero. With. 
Timing for these signals is provided in the timing graphs ,three byte EDC formats and during ECC operations, 
set forth in FIG. 5. 15 this control signal will indicate a.zero EDC remainder 

SYNLDAT[7:0] Syndrome Latched Data: A byte of byte condition if, following the final three rising edges 
syndrome data is read out from the selected latched of the byt~ clock BY'fCLKA, this si~~ is asserted 
syndrome byte position as determined by the address on true. That is to say, if, on .the last two nsmg edges of 
the five bit latched address (LADD) bus. This byte is ~1;'TCLKA, ECCENAB IS asserted true, and on the 
passed over a microcontroller address/data bus during a 20 nsmg e~g~ afte~ BYTCLKA after ECCE~AB deas-
microcontroller read operation. This data is strobed by serts this signal IS true, then the ECC remamder bytes 
a RSECC control signal. are equal to zero. . . . 

LADD[4·0] L t h d Add B . Th fi l t SERDOUT[7:1] Senal/Desenal Data Out: This bus . a c e ress us. e 1ve eas 12 . · d b h ECC · · 10 . . . . cames m ata ytes to t e c1rcu1try upon 
s1gmficant address bits of the m1crocontroller address 25 h. h d · t be t d D ta t b 

1 . . . w 1c a syn rome 1s o compu e . a mus e 
c.yc e currently m operatlo~ are mput to address a par- valid on the rising edge of BYTCLKA. On data se-
tJcular one of the byte registers of the syndrome latch d t" ECCIN d ta f th . . h. quencer rea opera ions, a comes rom e 
68. These five address bit.s are used to determm.e w 1ch serializer/deserializer SERDES 106, as more fully ex-
latched syndro~e byte. will be read out to the m1c~ocon- plained in the previously referenced, commonly as-
troller 196 durmg a m1crocontroller read o~era~1on. . 30 signed U.S. Pat. No. 4,675,652 to Machado. All of the 

SYNLCLS Syndrome Latch Close: This signal 1s data bytes, cross check bytes and ECC bytes are 
used to .close the syndrome latch 68 f?r on-the-fly. error clocked in synchronism with BYTCLKA. On data 
correction. The syndrome l~tch 68 is no~ally m the sequencer write operations, ECCIN data comes from 
transparent mode. On detect1~n o!' an error .m the ECC the FIFO buffer memory; all data bytes are clocked in 
syndrome, a data sequencer c1rcu1t 100 (FIG. 6) asserts 35 synchronism with BYTCLKA and the cross check 
this signal asynchrono~sly to. latch .the data from the bytes and the syndrome bytes 'are calculated and ap-
syndrome generator shift registers mto the syndrome pended to the data stream. Following the final data 
latch 68. so that the synd~ome da!a indicative of the byte, ECCIN must be connected to ECCOUT, so that 
error will not be lost. This assertion by the data se- the ECC syndrome may be calculated on the cross 
quencer 100 is done prior to a reinitialization that occurs 40 check bytes. 
f?r the next data sector via the initializatio~ .control ECCDOUT[7:0] ECC Data Out: This bus 66 carries 
signal CTLIEC. Thus, the syndrome contammg the data out of the ECC circuit 10. Data is valid on the 
encoded error location can be d~coded by the m!- rising edge ofBYTCLKA. ECC syndrome data is avail-
cr~controller 196, and corrected while the next ~ector.1s able at this port in byte serial format while W~GA TE 
bemg read and passed through the syndrome shift reg1s- 45 and ECCOP control lines are asserted true. EDC syn­
ter sets 26, 36, 40 and the last group of registers 44, 58 drome data is available while WRGA TE and CR COP 
and 62. 

SYNLOPE Syndrome Latch Open: This control 
signal must be the opposite of the Syndrome Latch 
Close control signal. It is true when the syndrome latch 50 
68 is in its transparent mode (latch output=syndrome) 
and false when the syndrome latch 68 is latched and 
static. 

ECCCRCN ECC/CRC Control: This signal indi­
cates what type of syndrome the ECC generator 10 is to 55 
calculate. When true, this control line indicates that 
ECC and a cross check are to be computed on data 
bytes. When false, this line indicates that EDC is to be 
computed on the bytes of an ID field. 

CTLIEC Control Interrupt ECC: When true, this 60 
control line asynchronously sets all syndrome bytes of 
both the ECC generator and the cross check generator 
to a predefined initialization value, which may be an 
invariant, yet arbitrary pattern of ones and zeros. 

WRGA TE Write Gate: This control signal is used 65 
while either CRCOP (error detection of ID field) or 
ECCOP (ECC operation) are asserted true in order to 
stop the syndrome generator from continuing to calcu-

control lines are asserted true. 
BYTCLKA Byte Clock A: This signal represents the 

basic clocking signal for all ECC and EDC operations. 
ECCENOP ECC Enable Operations: This control 

line indicates which BYTCLKA edges contain data for 
the ECC circuit 10. The BYTCLKA signal is gated 
internally with this signal in the AND gate 13 so that 
any transient errors will not occur while BYTCLKA is 
true. 

CRCOP EDC and Cross Check Control: This con­
trol line indicates which bytes are EDC bytes, and 
which bytes are cross check bytes. This signal must be 
asserted true on the rising edge of BYTCLKA on 
which an EDC or cross check byte will be clocked into 
the ECC generator block 10. 

ECCOP ECC Operation Control: This control line 
indicates which bytes are ECC bytes. This signal must 
be asserted true on the rising edge of BYTCLKA dur­
ing which an ECC byte will be clocked into the ECC 
syndrome generator 10. 

With reference to the timing diagrams of FIG. 5, the 
upper group of timing signals along a common horizon-
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ta! time base represent the various logical conditions of 
the listed control signals during an EDC check upon an 
ID field. The lower group of timing signals in FIG. 5 
represent the various logical conditions of the listed 
control signals during an ECC and cross check opera- 5 
ti on. 

Turning now to FIG. 6, it is to be seen that the ECC 
syndrome generator circuit 10 is but one functional 
element within the data sequencer 100 of an overall disk 
drive architecture 160, as shown in FIG. 7 and dis- 10 
cussed in greater detail hereinafter. The data sequencer 
100 includes a data field address mark detector 102 
which receives incoming data directly from a pulse 
detector. The detector 102 looks for a sequence of high 
frequency flux transitions, and when such is detected, 15 

the PLL 188 is then locked to the sequence and the 
recovered digital run length encoded data is checked 
for the presence of the address mark sequence. In this 
regard, the address mark detector 102 monitors the data 
stream in order to detect a unique bit sequence which is 20 

not consistent with the 1,7 encoding rules and which is 
predetermined to represent an address mark. The ad­
dress mark detector 102 generates the byte clock signal 
BYTCLKA from the raw data stream as well as an 

25 address mark found control signal whenever a bit se­
quence representing an address mark is found in the raw 
data stream. 

A 1,7 run length limited encoder/decoder 104 en­
-codes and decodes serial data into and from a 1,7 run 30 
length limited (RLL) code, and the serializer/deserial­
izer (SERDES) 106 bundles and unbundles data bytes 
into and from serial bit-by-bit format. The encoder/de­
coder 104 and SERDES 106 are substantially as de­
scribed in the referenced Machado U.S. Pat. No. 35 
4,675,652 noted above. A FIFO byte register 108 ena­
bles data bytes to be asynchronously transferred be­
tween the sequencer 100 and an external cache buffer 
memory array 214, clocked by an external crystal clock 
standard (as opposed to the BYTCLKA which is syn- 40 
chronized with the raw data stream read back from the 
disk). A multiplexer 110 regulates bidirectional data 
flow through the serializer/deserializer 106 and en­
coder/decoder 104 so that ECC syndrome bytes gener­
ated by the ECC generator 10 may be appended to data 45 
blocks flowing to the storage surface, and so that data 
values present on a writable control store (WCS) bus 
134 may also be sent to the disk for storage. 

Reference data sector (i.e. physical sector and trans­
ducer head) identification bytes read from data ID fields 50 
are passed through a comparison multiplexer 112 to a 
comparison circuit 114. The comparison circuit 114 
compares actual data sector identification bytes re­
ceived from the SERDES 106 with the reference identi­
fication bytes held in a sector counter 116. If a corre- 55 
spondence exists, the desired sector location has been 
reached, and a Compare=O control signal is put out by 
the comparison circuit 114 to a jump control multi­
plexer circuit 132. 

A writable control store (WCS) 116 provides the dual 60 
function of storing control words which control all of 
the operational states of the sequencer 110, and which 
may be loaded with information directly read and writ­
ten by the microcontroller 196 at locations thereof con­
trolled by addresses decoded by a microcontroller ad- 65 
dress decoder 118. During one half of the BYTCLKA 
clock cycle, a multiplexer 120 enables direct access by 
the microcontroller 196 to the control store 116. 

During the other half of the BYTCLKA cycle, ad­
dresses from a sequence controller 122 are used to ad­
dress the control store memory area 116. The controller 
122 includes a sequence control decoder block 124 
which enables the controller 122 to jump to a plurality 
of predetermined states, a sequence address multiplexer 
which selects between various addresses, a last address 
register 128 for holding the last sequencer address for 
application to the control store 116 via the multiplexer 
120, and a writable control store multiplexer 130 which 
selectively feeds back the last address held in the regis­
ter 128 to the sequence address multiplexer 126. 

The sequence controller 122 is directly controlled by 
a jump control multiplexer 132 which generates a jump 
control signal from a plurality of logical inputs as indi­
cated in FIG. 6. A 28 bit wide writable control store 
(WCS) data bus 134 directly communicates with the 
writable control store memory 116 and enables the 
values held therein to circulate throughout the se­
quencer 100 along the paths shown in FIG. 6. An op­
code bus 136 leads to an opcode decoder 138 which 
decodes each five bit op code into a plurality of logical 
conditions on the control lines shown coming out of the 
opcode decoder 138. The ECC/CRC SEL line, the 
ECCOP line, and the CRCOP line directly connect to 
the ECC syndrome generator 10, as previously ex­
plained. A PUSH SEL line extends to a Push multi­
plexer 140 which enables e.g. data field count bytes C3, 
Cl and Cl to be pushed directly onto the top of a four 
byte register stack 142. A top of stack (TOS) bus and a 
next of stack (NOS) bus connect the stack 142 to a byte 
sequence counter 146 via a multiplexer 144 which also 
has the ability to load the sequence counter 146 with 
"1" values. The byte sequence counter 146 maintains 
the present byte count (remaining field length in bytes 
within a block) within the sequencer 100. When the 
presently loaded byte count increments to zero, the end 
of a particular field is reached, and the sequence counter 
146 puts out a SCNT=O value to the jump control 
multiplexer 132, so that a next state may then be in­
voked. 

A control decoder 148 receives primary control 
bytes, secondary control bytes, and count select bytes 
from the writable control store 116 and decodes these 
values into specific logical control values which are put 
out over the control lines shown coming out of the 
decoder 148 in FIG. 6, including the write gate signal 
WRGA TE and an initialize ECC signal IECC which 
directly control the ECC syndrome generator 10. 

A loop counter 150 is preset with a number of loops 
to be made during a particular data block transfer trans­
action (each loop nominally represents the states re­
quired to transfer a data block), and generates a 
LOOPCNT=O control value when the count reaches 
zero. This control value signifying that the required 
number of data blocks has been transferred is also pro­
vided to the jump control multiplexer 132. An index 
timeout counter 152 keeps track of the beginning of 
each track by generating an index timeout value 
INXCNT=O which is used to control the sequence 
controller 124. A once per revolution raw index signal 
stored in the first one of the servo sectors S is detected 
by the servo control circuit 180 and used to clock the 
index counter 152. Other inputs to the sequence control­
ler are the jump value from the jump control multi­
plexer 132, the address mark found value AMFOUND 
from the address mark detector 102, and the byte se-
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quence counter SCNT=O value from the sequence 
counter 146. 

Referring to FIG. 7, a fixed disk drive data storage 
subsystem 160 includes at least one rotating data storage 
disk 162 which may be a 3.5 inch diameter, or more 5 
preferably a 2.5 inch diameter storage disk, for example, 
(although this invention will work to advantage in con­
junction with any practical disk diameter, whether 
larger or smaller) and which is rotated at a substantially 
constant angular velocity, such as 3600 RPM, by a 10 
spindle motor 164, such as a direct drive brushless DC 
spindle motor which is formed in conjunction with a 
disk spindle hub to which the disk 162 is secured. The 
motor 164 is driven by a motor driver circuit 166 which 
is controlled by a motor control circuit 168 contained 15 
within a VLSI circuit chip also containing the se­
quencer 100, the ENDEC 104, a servo controller 180 
and PWM output 178, a microcontroller interface 202 
and a buffer memory controller 210. 

The motor control circuit 168 is directly responsive 20 

to the servo control circuit 180 which supplies a raw 
index pulse read from e.g. the first one of the plural 
servo sectors S. The raw index pulse is timed against the 
reference frequency, and the servo control circuit 180 

25 .delivers speed up or slow down commands to the motor 
driver 166, as may be indicated from time to time. 

A plurality of e.g. thin film data transducer heads 
170a and 170b are respectively associated with opposite 
major data storage surfaces of the at least one data 30 
storage disk 162. The data transducer heads are prefera­
bly, although not necessarily, mounted to in-line aligned 
load beams which in turn are attached to vertically 
aligned arms of an arm assembly 171 ofa mass balanced 
rotary voice coil actuator 172. The heads 170a and 170b 35 
operate conventionally in a contact-start-stop relation­
ship with respect to the data surface, and they "fly" 
above the surface during operations upon an air bearing 
as is conventional with Winchester fixed disk technol-
ogy, for example. 40 

A coil of the actuator 172 is driven by a servo driver 
circuit 174 which develops bidirectional driving current 
in response from low pass filtered width-modulated 
pulses received from a filter 176. The filter 176 is con­
nected to the servo pulse width modulator 178 within 45 
the servo control circuit 180. Servo pulses which are 
shaped by a pulse detector 184 and peak detected by a 
peak detector 192 are converted to digital values in an 
analog to digital converter 194 and delivered directly to 
the microcontroller 196. Coarse head position informa- 50 
tion read by the head 170 from the embedded servo 
sectors S is directly decoded by the servo control cir­
cuit 180 in a manner which is independent of the PLL 
188, ENDEC 104 and sequencer 100. The servo control 
circuit 180 is implemented with a master state machine 55 
which establishes timing for the various fields compris­
ing each servo sector, including a track identification 
field which is decoded by a data reader of the circuit 
180 and fine position offset signals. The amplitudes of 
the fine position offset signals are sampled and held in 60 
the peak detect circuit 192 and processed by the mi­
crocontroller 196 during a servo phase of its time shared 
operations. Further details of the servo arrangement 
presently preferred for the drive 160 are to be found in 
a commonly assigned U.S. patent application Ser. No. 65 
07/569,065, filed on Aug. 17, 1990, now U.S. Pat. No. 
5,170,299, the disclosure of which is hereby incorpo­
rated by reference. 

Each data head 170a or 170b, for example, is selected 
by head select circuitry contained within a pream­
plifier /select/write driver circuit 182, such as a type 
SSI 32R4610R 2 or 4 channel thin-film head read/write 
device made by Silicon Systems, Inc, Tustin, Calif., or 
equivalent. The analog flux transition signals trans­
duced by the selected head are preamplified in a pream­
plifier portion of the circuit 182 which is preferably 
mounted to a thin, flexible plastic substrate (Mylar tm) 
carrying multiple conductive traces within a hermeti­
cally sealed head and disk assembly and in close proxim­
ity to the data transducer heads 170a and 170b in order 
to increase the signal to noise ratios of the analog signals 
recovered from the storage surfaces. 

The recovered analog data is then passed through a 
pulse detector 184 which transforms the analog flux 
transitions into digital logic edges as is conventional. A 
write precompensation circuit 186 precompensates data 
to be written to the disk received from the sequencer 
100. The precompensated write data is supplied directly 
to the head select/preamplifier circuit 182 for delivery 
to the selected head transducer. A phase locked loop 
circuit 188 operates to separate the digital edges into 
data bit pairs (encoded data) and delivers those data bit 
pairs to the encoder/decoder 104 which is illustrated in 
FIG. 5 as being a part of the sequencer 100. A fre­
quency synthesizer 190 enables a variety of reference 
frequencies to be synthesized in order to provide for 
zoned bit recording as described hereinabove. The syn­
thesizer 190 operates directly under the control of a 
programmed microcontroller 196. The pulse detector 
184, write precompensation circuit 186, PLL 188, fre­
quency synthesizer 190 and servo burst peak detector 
192 are all preferably contained within a single VLSI 
integrated circuit package, such as a type DP8491 made 
by National Semiconductor Corporation, or equivalent. 

A microcontroller address/data bus 198 and a high 
order address bus 200 extend directly from the mi­
crocontroller 196 to a microcontroller interface 202 
which directly communicates with the sequencer 100, 
encoder/decoder 1104, motor control 168, servo con­
trol circuit 180 and a buffer memory controller 210. As 
mentioned, these circuits are preferably, although not 
necessarily, embodied within a single VLSI application 
specific CMOS circuit, as suggested by the single block 
for these circuits in FIG. 6. An address bus 204 extends 
from the microcontroller interface 202 to a program 
memory 206. Certain of the address bit positions for 
addressing the program memory 206 are generated and 
put out directly to the program memory 206 by the 
microcontroller 196 over an address bus 208. 

The buffer memory controller 210 generates buffer 
addresses and puts them out over a bus 212 to a buffer 
memory 214 which may preferably be configured as a 
data cache. In the present example the buffer memory 
214 is arranged as an 8 kilobit by 8 bit array (64 kilobit). 
-Data blocks are transferred to and from the FIFO regis­
ter 108 within the sequencer 100 and the buffer memory 
214 via a buffer data bus 216. This bus 216 also extends 
to an interface control circuit 218 which receives data 
blocks and command values via an interface bus 220 
connected to a host system and stores the values and 
blocks in the memory 214, and which returns status 
values and data blocks from the memory 214 via the 
interface bus 220 to the host. The interface circuit may 
implement industry standard host-subsystem bus level 
interfaces, such as the SCSI interface standard, or it 
may implement the IDE interface standard (IBM AT 
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bus), as is conventionally known in the art. For exam­
ple, an NCR type 5380 SCSI interface controller is a 
suitable interface control circuit 218 for implementing 
the SCSI bus convention standard. 

A direct memory access path exists between the mi- 5 
crocontroller 196 and the buffer memory 214 via the 
micro interface 202 and the buffer control 210. With this 
path, it is practical for the microcontroller to access 
particular byte locations of the buffer memory 214 in 
order to withdraw an erroneous byte from an error 10 
location, XOR the erroneous byte with a correction 
value, and write the correction value to the error loca­
tion, in order to implement an on-the-fly error correc­
tion method of the present invention. 

As noted repeatedly hereinabove, the disk drive 160 l5 
is a presently preferred subsystem or environment for 
utilization of the on-the-fly error correction techniques 
of the present invention. As will be appreciated by those 
skilled in the art, many of the low level repetitive syn­
drome generating and checking tasks are carried out in 20 

the syndrome generator hardware shown in FIG. 4 and 
described in conjunction therewith. The high level task 
of calculating error correction values is carried out as 
needed by the m~crocont.roller 1~ in accordance with 

25 the error correction service routme program accompa­
nying this specification by way of microfiche disclosure 
incorporated herein by reference. 

Preferably although not necessarily, the microcon­
troller 196 is a single monolithic microcontroller such as 

30 
the NEC 78322, or equivalent, operating in a two-phase 
time divided arrangement per servo sector wherein a 
first time interval upon the arrival of each servo sector 
is devoted to servo control operations for head position­
ing, with a second and following time interval devoted 35 
to other tasks, including supervision of data block trans­
fers and error correction operations, for example. An 
overview of this form of disk drive architecture is pro­
vided in commonly assigned U.S. Pat. No. 4,669,004 to 
Moon et al., the disclosure of which is hereby incorpo- 40 
rated by reference. A hierarchical system for managing 
the tasks performed by the microcontroller 196 during 
the second and following time interval is disclosed in 
commonly assigned U.S. patent application Ser. No. 
07/192,353, filed on May 10, 1988, now U.S. Pat. No. 45 
5,005,089, the disclosure of which is hereby incorpo­
rated by reference. The error correction functions of 
the exemplary microcontroller 196 could readily be 
carried out by one or more microcontrollers in a multi­
ple microcontroller architecture, with improved real 50 
time performance, but at higher cost of implementation. 

In overview, the error correction process for a data­
read-from-disk operation includes during the data read­
ing back process (and after each data block has had 
syndrome bytes and cross check bytes appended thereto ss 
during a previous data writing operation) the following 
steps: 

1. Preset the shift registers of the syndrome generator 
10 to a predetermined known state, which may be a 
recurrent pattern of arbitrarily ordered ones and zeros. 60 

2. Generate syndrome remainder bytes and cross 
check syndrome remainder bytes for a data block (data 
sector) from the stream of data bytes read from the disk 
by passing those bytes through the syndrome generator 
10. 65 

3. Check to see if the remainder bytes for each inter­
leave are equal to zero as the last byte interleave is 
clocked into the syndrome generator 10. 

a. If the remainder bytes for each interleave are equal 
to zero, wait until the next block or sector, as no 
correction is required. 

b. If one or more remainder bytes for an interleave 
are not equal to zero and if the syndrome latch is 
available to hold the syndrome, proceed to step 4. 

c. If the remainder bytes are not equal to zero and if 
the syndrome latch is not presently available to 
hold the syndrome (meaning that remainder bytes 
from the last data block remains latched therein 
during an already-commenced on-the-fly error 
correction operation), stop data flow; on-the-fly 
error correction cannot continue to be performed. 

4. Latch the remainder bytes for each interleave into 
the syndrome latch 68. These remainder bytes have the 
form RO, Rl, R2 and R3 (for each interleave) wherein: 

R(x)=R3x3+R2x2+Rlx+RO (30) 

After the remainder bytes Ri for a present data block 
are latched into the syndrome latch 68, the syndrome 
generator 10 then continues to decode remainder bytes 
for the next data block. A pair of non-zero remainder 
bytes from adjacent data blocks will effectively shut 
down the presently described implementation of on-the­
fly error correction process as the microcontroller 196 
presently employed lacks sufficient random access 
memory space to receive and store remainder bytes 
from successive data blocks on-the-fly. However, there 
is no reason that increased random access memory 
space may be used to- hold these bytes and thereby 
enable continuing on-the-fly error correction for multi­
ple successive data blocks. The potential for shut-down 
is also dependent upon the time required by the mi­
crocontroller 196 to correct the first error and test the 
correction with the cross-check syndrome. A further 
limitation resides in the size of the block buffer memory 
214. Also, the syndrome generator 10 may be modified 
by provision of additional circuitry for directly calcu­
lating and putting out partial syndrome bytes to the 
microcontroller 196 via the syndrome latch in order to 
speed up error correction. 

5. Cause the microcontroller 196 to call and execute 
the error correction service routine and begins execut­
ing that routine. As is known by those skilled in the art, 
this step may be implemented through interrupt or pol­
ling techniques. 

6. Transfer remainder bytes from the remainder latch 
68 to the microcontroller 196 on an as needed basis 
during execution of the error correction algorithm. The 
firmware then converts remainder bytes R(x) to partial 
syndrome bytes S(x) if any of the remainder bytes are 
unequal to zero, in accordance with: 

Si _ R(x) mod (x + alphai+ 126) 
- alpbaCi+ 126)"4 

(Sc) 

where i=O, l, 2 and 3 
[wherein the plus symbol in the exponent indicates 
arithmetic addition, rather than an exclusive OR opera­
tion] so that partial syndromes SO, Sl, S2 and S3 are 
obtained. We must go through this conversion process 
because the syndrome generator circuit 10 is also used 
during data readback to provide the remainder bytes Ri 
in order to more optimally minimize the amount of 
required hardware. 
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7. For each interleave, convert the remainder bytes to b. If the cross check partial syndrome is unequal to 

partial syndrome bytes within an interleave of three: zero, on-the-fly error correction is stopped, and 
SO=Data modulo (X+alphal26) step 11 is performed. 
SI= Data modulo (X +alpha 127) 11. One or more retries are then undertaken, until a 
Sl=Data modulo (X+alphal28) S correction is achieved, or the error is determined to be 
S3=Data modulo (X+alpha129). much larger than originally contemplated, in which 
a. On-The-Fly Single Burst Error Correction. For case an uncorrectable error is flagged to the host. When 

on-the-fly single-burst error correction, let LI a retry is commanded by programming at the microcon-
equal the error location and el equal the error troller 196, the retry is performed by the microcon- · 
value. 10 troller off line in the sense that this process is carried out 
(1) If (SO=O), or (Sl=O) or (Sl=O) or (S3=0), after data flow has been interrupted. An error message 

then go to the double burst error correction may be generated and sent to the host, and the retry 
algorithm. process may continue for e.g. eight retries, as is standard 

(2) If (Sl/SO=Sl/Sl =S3/Sl) then continue, oth- at the interface. 
erwise go to the double burst error correction IS Thus, on-the-fly ECC occurs essentially in the back-
algorithm. ground as a part of the read channel process by which 

(3) Perform: Ll=Log [SI/SO] and el=Sl data is transferred from the disk to the host in a manner 
(SO/SJ)127 transparent to the host machine. If the transparent on-

(4) If LI is outside of a predetermined range, (i.e. the-fly ECC methods described herein are unable to 
0-175 for interleave I; 0-174 for interleaves l 20 correct the error or errors to a user-acceptable confi-
and 3), then go to double burst correction, else dence level, then more conventional error recovery 
proceed to step 8 below. activities and procedures may occur in the foreground 

b. Double Burst Error Correction. For double burst at the interface with the host, as· per the conventional 
error correction, let LI and Ll equal the error 2S SCSI error correction standard, for example. 
locations; and, let el and el equal the error values Error detection processes for checking the ID fields 
at the respective locations. are carried out entirely within the sequencer 100, so that 
(1) Calculate <f>l and <f>l in accordance with equa- if an error is detected in the ID field, repeats are made 

tions (16) and (17) above. until either the sector is declared to be inaccessible, or it 
(2) If the denominator or numerator of <f>l or <f>l is 30 is accessed. 

equal to zero, then flag an uncorrectable error to With reference to the Microfiche Appendix accom-
the host. panying the application for this patent, a few changes 

(3) Find the roots of the quadratic equation (18) made at the time of filing of the application resulting in 
given above and output the resultant XI and Xl this Patent should be noted in the disclosure thereof: the 
values. 3s code at line 1171 was deleted and reinserted at line 1166; 

(4) If <f>(x) has no solution, flag an uncorrectable the code at line 1183 was deleted and reinserted at line 
error to the host. 1177; and, the code at line 1181 was deleted. 

(5) Calculate error locations LI and Ll in accor- Having thus described an embodiment of the inven-
dance with equations (19) and (20) above. If tion, it will now be appreciated that the objects of the 
either LI or Ll has a value located beyond the 40 invention have been fully achieved, and it will be under-
predetermined permissible range of values, then stood by those skilled in the art that many changes in 
flag an uncorrectable error to the host. construction and widely varying embodiments and ap-

(6) Calculate error values el and el in accordance plications of the invention will suggest themselves with-
with the equations (21) and (22) given above. If out departing from the spirit and scope of the invention. 
either el or el equal zero, then flag an uncorrect- 45 The disclosures and the description herein are purely 
able error to the host, else proceed to step 8 illustrative and are not intended to be in any sense limit-
below. ing. 

8. The microcontroller 196 then computes the effect What is claimed is: 
of the changed byte upon the cross check partial syn- 1. In a data handling system comprising a first data 
drome and saves this computed value and repeats this so source apparatus for sending and receiving a sequence 
process for each of the other two interleaves of the data of data blocks, a block buffer means for temporary 
block. storage of sequences of data blocks, a second data 

9. If the correction passes the cross check checking source apparatus for sending and receiving a sequence 
step 8, the microcontroller 196 then corrects the error of code blocks wherein each code block includes user 
using its DMA channel to the buffer memory l14 lead- SS bytes contained in a corresponding data block and addi-
ing through the micro interface lOl and buffer control tionally contains error correction syndrome bytes re-
llO by withdrawing the erroneous byte from the error lated to the user bytes, an interface circuit between the 
location within the block, XORing the erroneous byte first data source apparatus and the block buffer means, 
with a correction value to yield a corrected byte, and an encoder/sequencer between the block buffer means 
writing the corrected byte back to the error location. 60 and the second data source apparatus for encoding the 

10. Taking the error correction into account: data blocks in code blocks and for sequencing the code 
a. If the cross check partial syndrome is equal to zero, blocks to a data destination ·apparatus, and a pro-

the error correction process is determined to be grammed microcontroller for supervising block transfer 
within the probability of miscorrection and is operations of the interface circuit and the encoder/-
therefore completed; the syndrome latch 68 is re- 65 sequencer, Reed-Solomon error correction apparatus 
leased, and the data block in the memory buffer l14 for performing on-the-fly error correction upon a data 
containing the corrected error is then released for block within the sequence, the error correction appara-
transfer to the host. tus further including: 
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Galois Field syndrome generator and remainder re­

covery circuit means connected to the encoder/­
sequencer to receive and process each code block 
from the second data source apparatus for recover­
ing error correction remainder bytes for said code 5 
block while the user bytes thereof are transferred 
into the block buffer means as said data block, said 
error correction remainder bytes being related to 
the syndrome bytes appended to the code block, 

the generator and remainder recovery circuit means 10 
including comparing means for comparing prede­
termined ones of said recovered error correction 
remainder bytes with a nominal value, and latch 
means for latching recovered plural error correc­
tion remainder bytes in response to a non-equiva- 15 
lcnce as determined by said comparing means, 
thereby freeing the generator and remainder recov­
ery circuit means for recovering error correction 
remainder bytes from a next one of the code blocks 
of the sequence without significant interruption of 20 
data block flow in the system, 

the microcontroller being responsive to a said non­
equivalence for calling and executing an error cor­
rection service program routine and thereupon 
selectively obtaining the recovered error correc- 25 
tion remainder bytes from the latch means, and 
including calculation means responsive to the se­
lectively obtained error correction remainder bytes 
for performing an error correction calculation by 
calculating at least one error location and a corre- 30 
sponding error value and for generating corrected 
data to replace erroneous data of the block, and 
further including direct access means for directly 
accessing the block buffer means for substituting 
the corrected data for the erroneous data before 35 
the block is transferred by the interface circuit to 
the first data source apparatus. 

2. The apparatus set forth in claim 1 wherein the 
generator and recovery circuit means further comprises 
Reed-Solomon cross check syndrome generator means 40 
for recovering cross checking syndrome information 
appended to each data block by the encoder/sequencer 
and for storing said recovered cross checking syndrome 
information in said latch means, and wherein the mi­
crocontroller means upon executing the error correc- 45 
tion service program routine further verifies the accu­
racy of an error correction calculation with the recov­
ered cross checking syndrome information. 

3. The apparatus set forth in claim 2 wherein the 
recovered cross checking information is related to 50 
Recd-Solomon cross check syndrome information in 
accordance with a polynomial, G(s)=x2+a, where a is 
unequal to one. 

4. The apparatus set forth in claim 3 wherein the 
Reed-Solomon cross check syndrome information is in 55 
accordance with a polynomial; 

G(x} = x2 + alpha I where alpha I is unequal to one. 

5. The apparatus set forth in claim 1 wherein each 60 
said code block includes a data identification field, and 
the generator and recovery circuit means further com­
prises error detection means for recovering and check­
ing error detection syndrome information previously 
appended to said data identification field of each code 65 
block. 

6. The apparatus set forth in claim 5, wherein the 
error detection means detects an error in said data ID 

field having error detection information appended 
thereto in accordance with a two byte syndrome gener­
ated in accordance with a polynomial: 

GEDC2(x)=x2+ax+b, where bis a constant which 
is unequal to one. 

7. The apparatus set forth in claim 6 wherein the error 
detection means detects an error in said data ID field 
having error detection information appended thereto in 
accordance with the two byte syndrome generated in 
accordance with a polynomial: 

G£DC2(x)=x2+x+alpha18. 

8. The apparatus set forth in claim 6 wherein the error 
detection means detects an error in said data ID field 
having error detection information appended thereto in 
accordance with a two byte syndrome generated in 
accordance with a polynomial: 

GEDC2(x}=x2+aJpha81.x+alpha81. 

9. The apparatus set forth in claim 5, wherein the 
error detection means detects an error in a said data ID 
field having error detection information appended 
thereto in accordance with a three bytes syndrome 
generated in accordance with a polynomial: 

GEDC3(x)=x3+ax2+bx+c. 

10. The apparatus set forth in claim 9 wherein the 
error detection means detects an error in said data ID 
field having error detection information appended 
thereto in accordance with a three byte syndrome gen­
erated in accordance with a polynomial: 

GEDC3(x)=x3+alpha87.x2+alpha87.x+ I. 

11. The apparatus set forth in claim 9 wherein the 
error detection means detects an error in said data ID 
field having error detection information appended 
thereto in accordance with a three byte syndrome gen­
erated in accordance with a polynomial: 

GEDC3(x)=x3+alpha81.x2+alpha87.x+alpha18. 

12. The apparatus set forth in claim 5 wherein the 
Galois Field syndrome generator and remainder recov­
ery circuit means calculates error correction coding 
syndrome information in accordance with a Galois field 
(28) generated by a field generator polynomial having 
the form xS+x4+x3+x2+1 and wherein the first term 
of the field is x5+x3+x+ 1 (which is 00101011 binary), 
each error correction syndrome being of the form 
G(x)=x4+(alpha 18).x3+(alpha87).x2+(alphal8).xl + 1. 

13. The apparatus set forth in claim 12 wherein the 
error detection means generates a two byte syndrome in 
accordance with a polynomial: 

GEDC2(x)=x2+ax+b, where bis unequal to one. 
14. The apparatus set forth in claim 13 wherein the 

error detection means generates a two byte syndrome in 
accordance with a polynomial: 

G£DC2(x)=x2+x+alpha18. 

15. The apparatus set forth in claim 13 wherein the 
error detection means generates a two byte syndrome in 
accordance with a polynomial: 

G£DC2(x)=x2+alpha81.x+alpha81. 
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16. The apparatus set forth in claim 12 wherein the 
error detection means generates a three byte syndrome 
in accordance with a polynomial: 

clock period as the feedback byte to the summing 
junction. 

23. Reed-Solomon error correction apparatus for 
performing on-the-fly error correction within a disk 

G£DC3(x)=x3+ax2+bx+c. 

17. The apparatus set forth in claim 16 wherein the 
error detection means generates a three byte syndrome 
in accordance with a polynomial: 

5 drive storage subsystem including at least one rotating 
data storage disk, at least one data transducer head 
which is controllably positioned for writing data to the 
disk and for reading data from the disk, head positioner 
means for positioning the data transducer head, a read/-

G£DCJ(x)=x3+aJpha87.x2+a!pha87 . .x+ I. 

10 write data channel, sequencer means for encoding 
blocks of data into code blocks and for sequencing the 
code blocks from a block buffer memory means serially 
onto the disk via the read/write channel and data trans-

18. The apparatus set forth in claim 16 wherein the 
error detection means generates a three byte syndrome 15 
in accordance with a polynomial: 

G£DC3(x)=x3+alpha81 . .x2+alpha87.x+alphal8. 

19. The apparatus set forth in claim 1 wherein the 20 
generator and recovery circuit means generates error 
correction coding syndrome information in accordance 
with a Galois field (28) generated by a field generator 
polynomial having the form xB+x4+x3+x2+ 1 and 
wherein the first term of the field is xs+x3+x+ 1 25 
(which is 00101011 binary), each error correction syn­
drome polynomial being of the form G(x)=x4+(al­
phal8).x3+(alpha87).x2+(alpha18).x I+ 1. 

20. The apparatus set forth in claim 19 wherein the 
generator and recovery circuit means further comprises 30 
Reed-Solomon cross check syndrome generator means 
for recovering cross checking syndrome information 
appended to each code block and wherein said latch 
means also stores recovered cross checking syndrome 
information, and further wherein the microcontroller 35 
means verifies the accuracy of an error correction cal­
culation with the recovered cross checking syndrome 
information, the Reed-Solomon cross check syndrome 
generator means for calculating cross checking syn­
drome information in accordance with a polynomial; 40 

G(x)=x2+b, where bis unequal to one. 
21. The apparatus set forth in claim 20 wherein the 

cross check syndrome generator means calculates cross 
checking syndrome information in accordance with a 
polynomial; 45 

G(x)=x2+alpha 1. 

22. The apparatus set forth in claim 20 wherein the 
cross check syndrome generator means comprises 50 

an input connected to the encoder/sequencer for 
receiving an incoming block as a clocked data 
stream of serial bytes, 

first summing junction means for summing each byte 
of the clocked data stream with a feedback byte to 55 
produce a sum byte, 

first multiplier means for multiplying the sum byte by 
alpha! to yield a first product byte, · 

first clocked latch stage means connected to the first 
multiplier means for storing the first product byte 60 
during a first byte clock period and for storing 
subsequent product bytes during subsequent byte 
clock periods, 

second clocked latch stage means connected to the 
first clocked latch stage means for storing the first 65 
product byte during a second byte clock period, 
the second clocked latch stage means for feeding 
back the first product byte during the second byte 

ducer head during data writing operations and for de: 
coding and sequencing serial data code blocks into data 
blocks for delivery to the block buffer memory means 
during data reading operations, the block buffer mem­
ory means being capable of storing a plurality of contig­
uous ones of said data blocks, an interface controller for 
transferring data blocks between a host computer and 
the block buffer memory means, and programmed mi-
croprocessor means for supervising the head positioner 
means and for controlling operations of the data se­
quencer means, the block buffer memory means and the 
interface controller, the error correction apparatus fur­
ther including: 

Galois Field syndrome generator and remainder re-
covery circuit means connected to the sequencer 
means to receive and process each data block for 
generating plural partial error correction syn­
drome bytes for said data block, said bytes being 
appended to the data block to form a correspond­
ing code block to be written to the disk during data 
writing operations, said generator and recovery 
circuit means for detecting errors by recovering 
plural error correction remainder bytes from each 
code block read from the disk during data reading 
operations, 

the generator and recovery circuit means including 
comparing means for comparing predetermined 
ones of said regenerated plural error correction 
remainder bytes with a nominal value, and latch 
means for latching recovered error correction re­
mainder bytes in response to a non-equivalence as 
determined by said comparing means, · 

the programmed microprocessor means being re­
sponsive to a said non-equivalence for calling and 
executing an error correction service program 
routine and thereupon selectively obtaining recov­
ered error correction remainder bytes from the 
latch means, and including calculation means for 
calculating at least one error location and at least 
one error value from the obtained regenerated 
error correction remainder bytes, the calculation 
means for generating a corrected value to replace 
the error value, and the microprocessor means 
controlling direct access means for directly access­
ing the block buffer memory means for substituting 
the corrected value for the error value of a data 
block stored therein including the error location 
before the data block is transferred by the interface 
controller to the host computer and without signifi­
cantly stopping flow of data blocks to the host 
computer. 

24. The apparatus set forth in claim 23 wherein the 
generator and recovery circuit means further comprises 
Reed-Solomon cross check syndrome generator means 
for calculating and appending cross checking syndrome 
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33. The apparatus set forth in claim 32 wherein the 
error detection means generates a three byte syndrome 
in accordance with a polynomial: 

G£DC3(x)=x3 +alpha87.x2+alpha87.x+ I. 

information to the code block during data writing, and 
wherein the cross check syndrome generator means 
recovers cross checking remainder bytes from each 
code block read from the disk, and wherein the latch 
means additionally latches the recovered cross check 5 
remainder bytes, and further wherein the error correc­
tion service program routine causes the microprocessor 
means to verify the accuracy of a proposed error cor­
rection in relation to the recovered cross check remain­
der bytes prior to substitution of the corrected value for 

34. The apparatus set forth in claim 32 wherein the 
error detection means generates a three byte syndrome 

10 in accordance with a polynomial: 
the error value within the data block. • 

25. The apparatus set forth in claim 23 wherein each 
said code block further includes a data identification 
(ID) field therein, and wherein the generator and reeov­
ery circuit means further comprises error detection 15 
means for recovering and checking error detection 
remainder bytes of the data ID field of each said code 
block. 

26. The apparatus set forth in claim 23 wherein the 
generator and recovery circuit means error correction 20 
coding syndrome information in accordance with a 
Galois field (28) generated by a field generator polyno­
mial having the form x8+x4+x3+x2+ l and wherein 
the first term of the field is x5+x3+x+ l (which is 
00101011 binary), each error correction syndrome 25 
being in accordance with a polynomial: 

G(x)=x4+(alpha18).x3 +{alpha87).x2 +(al­
pha 18J.x +I. 

27. The apparatus set forth in claim 26 wherein the 
30 

generator and recovery circuit means further comprises 
Reed-Solomon cross check syndrome generator means 
for calculating checking syndrome information in ac­
cordance with a polynomial: 35 

G(x)=x2+a, where a is unequal to one. 

G£DC3{x)=x3+aJpha81.x2+aJpha87.x+alpha18. 

35. The apparatus set forth in claim 23 wherein the 
programmed microprocessor means comprises a single 
microprocessor. 

36. The apparatus set forth in claim 35 wherein the 
programmed microprocessor devices its functional ac­
tivities between head position control and data flow 
supervision including execution of said error correction 
service program routine. 

37. The apparatus set forth in claim 23 further com-
prising a head positioner means for positioning said data 
transducer head among a multiplicity of concentric data 
tracks, and a servo control loop for controlling the head 
positioner, the servo control loop further including the 
programmed microprocessor means. 

38. The apparatus set forth in claim 37 wherein the 
disk includes prerecorded servo information for the 
servo control loop embedded within the multiplicity of 
concentric data tracks, and wherein the servo control 
loop includes servo data recovery means for recovering 
the embedded servo information read by the data trans­
ducer head. 

39. The apparatus set forth in claim 37 wherein the 
multiplicity of data tracks are arranged as a plurality of 
contiguous zones, each said zone having a data transfer 
rate determined in relation to radial offset of the said 
zone from an axis of rotation of the disk, and wherein 

28. The apparatus set forth in claim 27 wherein the 
cross check syndrome generator means calculates 
checking syndrome information in accordance with a 
polynomial: 

G(x)=x2+alphal where alphal is unequal to ~:me. 
40 the sequencer means sequences data blocks from the 

disk to the block buffer memory means at a first prede­
termined data transfer rate fixed in relation to radial 
offset of the said zone from an axis of rotation of the 

29. The apparatus set forth in claim 26 wherein the 
generator and recovery circ1:1it means further comprises 
error detection means for detecting an error in a data 
identification field of each said block by generating a 45 
two byte syndrome in accordance with a polynomial: 

GEDC2(x)=x2+ax+b, where bis unequal to one. 
30. The apparatus set forth in claim 29 wherein the 

error detection means generates a two byte syndrome in 
accordance with a polynomial: 

G£DC2{x)=x2+x+alphal8. 

disk, and further wherein the interface controller means 
controls transfer of data blocks from the block buffer 
memory means to the host computer at a second data 
transfer rate. 

40. The apparatus set forth in claim 23 wherein the 
sequencer means encodes the data blocks into run 

50 length limited code values incident to generation of 
code blocks during data writing operations, and 
wherein the sequencer means decodes the code blocks 
from run length limited code values into unencoded 31. The apparatus set forth in claim 29 wherein the 

generator and recovery circuit means further comprises 
error detection means for detecting an error in a data 55 

ID field of each said code block by generating a two 
byte syndrome in accordance with a polynomial: 

data blocks during data reading operations. 
41. The apparatus set forth in claim 40 wherein the 

sequencer encodes the data blocks, and decodes the 
code blocks, in accordance with a 1,7 run length limited 
code. 

G£DC2{x)=x2+alpha81.x+alpha81. 42. An on-the-fly error correction apparatus in a data 
60 storage system for a host computer, the system includ-

32. The apparatus set forth in claim 26 wherein the ing an interface to the host computer, an interface con-
generator and recovery circuit means further comprises troller for controlling data block transfers of the inter-
error detection means for detecting an error in a data face, a data block buffer memory for temporarily stor-
identification field of each said code block by generat- ing a string of data blocks, a magnetic data storage 
ing a three byte syndrome in accordance with a polyno- 65 medium for storing sequences of code blocks, a mag­
mial: netic data transducer for writing code blocks to the 

GEDC3(x)=x3+ax2+bx+c. 

medium, a read/write channel connected to the mag­
netic data transducer for processing code blocks read 
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36 
from the medium by the data transducer, a data se­
quencer connected to the data block buffer memory and 
to the read/write channel for converting data blocks 
into code blocks during data writing, and for convert­
ing code blocks to data blocks during data reading, a 5 
block buffer memory controller storage operations in 
the data block buffer memory, and a programmed mi­
crocontroller for controlling the interface controller, 
the data sequencer, and the block buffer memory con­
troller, and having a direct access path to the data block 10 

buffer memory, the on-the-fly error correction appara­
tus comprising: 

Galois Field syndrome generator and remainder re­
covery circuit means connected to the sequencer 15 
means to receive and process each data block for 
generating plural partial error correction syn­
drome bytes for said data block, said bytes being 
appended to the data block incident to formation of 
a corresponding code block to be written to the 20 
disk during data writing, said generator and recov­
ery circuit means for detecting errors by recover­
ing plural error correction remainder bytes from 
each block read from the disk during data reading, 

the generator and remainder recovery circuit means 25 
including comparing means for comparing prede­
termined ones of said regenerated plural error cor­
rection remainder bytes with a nominal value, 

the generator and remainder recovery circuit means 
further including cross check generator and recov- 30 
ery circuit means for calculating and appending 
cross checking syndrome information to the code 
block during data writing, and for recovering cross 
checking remainder bytes from each code block 
read from the disk, 35 

the generator and remainder recovery circuit also 
including latch means for latching recovered error 
correction remainder bytes and recovered cross 
check remainder bytes in response to a non-equiva-
lence as determined by said comparing means, 40 

45 

50 

55 

60 

65 

the programmed microcontroller being responsive to 
a said non-equivalence for calling and executing an 
error correction service program routine and 
thereupon selectively obtaining recovered error 
correction remainder bytes and the recovered 
cross check remainder bytes from the latch means, 
and including calculation means for calculating at 
least one error location and at least one error value 
from the recovered error correction remainder 
bytes, the calculation means for generating a cor­
rected value to replace the error value, the mi­
.crocontroller thereupon verifying accuracy of the 
corrected value in relation to the recovered cross 
check remainder bytes, and the microcontroller 
thereupon controlling the block buffer memory 
controller and substituting the corrected value for 
the error value of a data block stored therein in­
cluding the error location before the data block is 
transferred by the interface controller to the host 
computer and without significantly stopping flow 
of data blocks to the host computer. 

43. The apparatus set forth in claim 42 wherein the 
generator and recovery circuit means generates Reed 
Solomon error correction coding syndrome informa­
tion in accordance with a Galois field (28) generated by 
a field generator polynomial having the form 
x8+x4+x3+x2+ 1 and wherein the first term of the 
field is x5+x3+x+ 1 (which is 00101011 binary), each 
error correction syndrome being in accordance with a 
polynomial: 

G(x) =x4 +(alpha I 8).x3 +(alpha87).x2 +(al­
pha 18).x +I; 

and wherein the cross check generator and recovery 
means generates Reed Solomon cross checking syn­
drome information in accordance with a polynomial: 

G(x)=x2+alpha1. 

* * * * • 


