
United States Patent [19J

Henson et al.

[54] SHARED MEMORY ARRAY FOR DATA
BLOCK AND CONTROL PROGRAM
STORAGE IN DISK DRIVE

[75] Inventors: James A. Henson, Morgan Hill; James
P. McGrath, Mountain View; Bruce R.
Peterson, San Jose; Tim R. Glassburn,
Milpitas; Michael L. Raab, Fremont;
James H. Do, Milpitas, all of Calif.

[73] Assignee: Quantum Corporation, Milpitas, Calif.

[21] Appl. No.: 56,428

[22] Filed: Apr. 30, 1993

[51] Int. Cl.6
.. G06F 13/12

[52] U.S. Cl 395/439; 364/DIG. 1;
364/DIG. 2; 3641236.2; 364/239; 364/239.4;

364/243; 364/243.4; 364/243.41; 364/243.42;
364/245.5; 364/245.6; 364/246; 364/248.1;

395/827; 395/894; 395/496
[58] Field of Search 364/DIG. 1 MS File,

364/DIG. 2 MS File; 395/200, 250, 400,
425, 500, 800

[56] References Cited

U.S. PATENT DOCUMENTS

4,396,959 8/1983 Harrison et al 360n7.08
4,669,004 5/1987 Moon et al. 360/53
4,730,321 3/1988 Machado 371/38
4,746,998 5/1988 Robinson et al 360/72.1

22

READ/WRITE
CHANNEL

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US005465343A

[11] Patent Number:

[45] Date of Patent:

5,465,343
Nov. 7, 1995

4,835,686 5/1989 Furuya et al. 395/425
5,005,089 4/1991 Thanos et al 360n7.08
5,072,420 12/1991 Conley et al 395/425
5,084,791 1/1992 Thanos et al 360n7.04

OTHER PUBLICATIONS

Excerpt, CL-SH350 Integrated Synchronous SCSI Disk
Controller, Prelim. Data Sheet, Cirrus Logic, Inc, Milpitas,
Calif. Nov. 1988, pp. 1-3, 21-23, 59-66.
OTI-018, Oak Technology, Inc., Hard Disk Controller Chip
Engineering Specification Jun. 1992, Version 4.00.

Primary Examiner-Robert B. Harrell
Attorney, Agent, or Firm-David B. Harrison

[57] ABSTRACT

An improved disk drive architecture includes a microcon­
troller interface circuit connected between a drive micro­
controller and a buffer controller. The microcontroller inter­
face circuit includes address mapping registers for mapping
at least one predetermined portion of directly addressable
memory of the microcontroller to address locations of the
drive's cache buffer. The buffer controller circuit includes an
access arbitration circuit for arbitrating requests for access to
the cache buffer by the drive's data sequencer, the drive's
host interface controller and the drive's microcontroller. A
microcontroller wait state generator responds to the access
arbitration circuit by generating and applying a wait state
sequence to the microcontroller until a request it makes for
access to the cache buffer can be executed.

18 Claims, 12 Drawing Sheets

it)RtVE-£frcfRo'N/Cs-1ci

: SEQUENCER ~
I 24
I I

I
I
I

I
I

38 I

r----------------~ I
I
I
I

28

MICRO­
CONTROLLER
(NEC 78352)

LOCAL
PGM ROM

~42
~ 44

~46
26

77

62

~9

50

MICROCONTROLLER
INTERFACE

;v--48

I DRAM MAP I
I MAP REGS I

c::: 84

BUFFER
CONTROLLER

60
WAIT STATE
GEN

: [_52

I ARBITRATE I

~ 68

CACHE
BUFFER

54 MEMORY
1----'--l-.i (128K BYTES}

34 66
56

[s~vo 11 ~o I HD;m
41 32

,_H_o_s_T -c-oM_P_U-TEi-R~
DET INTERFACE _....___~ JO

74 76 70 72
CONTROLLER !_ ____ _.

L______ ------------------------~

DRIVE
MICRO­
PROCESSOR

UP
WRITE
DATA

UP
READ
DATA

ADDRESS
REGISTER

DATA REGISTER

MEMORY
ADDRESS

MEMORY
DATA

MEMORY CONTROLLER/UP INTERFACE

DRIVE
CACHE
BUFFER

._. .. 1 MEMORY
ARRAY

FIG. 1 PRIOR ART

d • r:.n •
~
~
~ a

'Z
0
~

~-...J

....
\C
\C
!.11

00.
t:r
!'D

~
s,
....
t..,)

01 -..
~
~
01 -..
~
~
~

MICRO­
CONTROLLER
(NEC 78352)

LOCAL
PGM ROM

~2
~44
~46

26

10/
77

20 22 i iJRiV£-fL£crR0Nlcs-1c i
....---""---,

PRE
AMP/
DRIVR

READ/WRITE : SEQUENCER h_
CHANNEL I 24

: IFJFo r39 · ------,
I

,----------------~

l MICROCONTROLLER
I INTERFACE

54 38

CACHE
BUFFER

28

I
I

BUFFER
CONTROLLER

60 r 1 i<62' ----------- 1 i::: 6211 :,r STATE

I I I MEMORY 64
}. : .,. (128K BYTES}

I
I

: '19

'50

34

;v-48

[DRAM MAP I
[MAP REGS I

c:::: 84

l >52

I• ' •I
[ARBITRATE I

~
66

56
40

I FIFO l-41 I 32 ~-----

~ SER I SE;O 11 A:D I HOST : HOST COMPUTER
PORT DET · INTERFACE 30

74
L 76 70 72

CONTROLLER
1

L______ ------------------------~ FIG. 2

d •
rJ'J. •
~
~
f"'f'­
~ = f"'f'-

z
~
~"
"""" \C
\C
(II

00 =­~
::a.
N

s,
"""" N

tJl -..
~
~
tJl -.. w
~ w

U.S. Patent Nov. 7, 1995 Sheet 3of12 5,465,343

58a r- DATA [Cr 50a ,.. LATCH t-f"'--BO _____ __.,.~ WD(7:0}

UPWD(l:O} ~ ADDRESS 1-r 82
MALE LATCH 1--------......_ LADL{l:O)

...__......_ LADD(5:0)
t i>48

I MAPI -; HILADD(15:6)
MADD{15:8} ~+-.i ADDRESS """ ROMRAMN

DECODE ~ BFRSEL ...--------+--+ /FCSN
49 --... DRCT_SEL

_..., WSBFR
REG WR .._._._._. WSSEQ

MWRN -n--==='±===--r--~ PULSE --.. WSMTR
MAP .,..~+------i GENERATOR.._._._.= =~ t--

--.wsTNA
CONTROL 86 ""L t- PREWS

REGISTERS
~ HILADD{18:16)

58b
8
j t-t------~~ADOUT(15:14)

MRDN ..W-=====--iC::::::l--.. REG RD
t --... PULSE i--t-t-...,..... RSBFR

SEQRD(l:D/i ,------. GENERA TOR........++-+ MRDEN
BFRRD(l:O/ _..
TNARD(l:O),.. __ _. READ DATA -c BB
MTRRD(l:O) ___ _ SELECT f'i--90
SERRD(l:D(i

l"L u;;D{7:D)

ADCRD(l:0,1,.. __ ..,. ____ ___. 92
l
UPI r"'"

CONTROL t------..._.. LEDON
REGISTER ,. TSTMODE{3:0)

1------+~-XTLOFFN
-C::. ~ UPICLK

CLKO 10 -+-----+---+---...... ...,. CLOCK IFICLK
CLK32 GENERA TOR = ATMD~C~L'LKK

HSTWAKE -+-----+---+---.-..... VI
1---1-~- SERCLK

94~
1--+"""• MTRCLK
1---1-~- REFCLK
i---+ • CLK040

::===~-t--"'+ TESTCLK

HRSTN -+----~-.___ ------~:NM/ GENERATOR NM/NT
96........,-:L

'-----...iRfSET SIGNAL I----' ... ,. /PORN
RAWPORN -+------

9
-
8

-__r-..... ...,. CONTROL PORN

FIG. 3

FR UPI

58a

36/

FIG. 4

FIG. 4A

FIG. 48

- - I - r- I 111 - - - - 1'" - -

0:::
104

BFRSEL ' ,.1

w-122 ~ 18
I l.-124 ::s 128

RSBFR : I t4B I)-i I
WSBFR - l--J 126 ADR APLRD 8
DRCTSEL __. CPU __.

RPAGEL l/F
APLSEL IMC NXADR

'---" 130
RPAGE
PREWS

120 118
8 RAYS

r;j~
~' ~ ~

133 -r1 L I
fttr~m~--4--_J__= XFCSEL.. XFCTL

BFR

r
+ I

__..

DECODE I CPUSEL
MPLSEL"'

134--rf I XFCSEL:

H-t-+- 132

BFRRD(l:O)

Ls8b

FIG. 48

TO UPI
AND HOST IF

Cj
•
00.
•
~ = """" a
~
~

_,.....:I

....
\C
\C
Ul

rJJ. =­(D

a
~

s,
....
N

Ol ...
~

=" Ol ... w
~ w

FR SEQ

FR DRAM
FR MAIN
FR MAIN

54b
54a

FDIN 7:0
FDOUli 7:0

SEQFCK SEQ
FOVER TO SEQ

FILL l/F
FUN ER l FLUSH
DPARER

SEQBUSY 102
SEQCREG
DISK DIR 103

t3 r I
560 Q I

MEMRD 16:0 ~ 108
SYSCLK
RST/N 17

MEMWDP TO DRAM
SEQDAT DATA MEMWD 15:0 TO DRAM

16 MUX 16 RAMDAT 56b 65
CPUDAT 17 OEN TO DRAM 16,L=-Wi=-='Ei:.:....:.N __ _

HWEN
Ir

l 66a AUTO BFRCTL CASN

WRN 1200 I 106 MWAIT 62 TO K352
- 116' 114 OUTBN h 1/0 DIRECTION

ACKN TO l/F
~ ~~ ~
(..) 18 DSKADR ADR BADDR 9:0 & 18 HSTADR MUX 10 64

110 18 /CMDADR.,

--- •-L ,J[15 __ r__ ~- ---
FIG. 4A

d •
rJ:J.
•
~ = ~
('O

= ~

z
~

~-...J

~

'-=
'-= !.It

rJJ.
=­(D

::a.
!.It

s,
~
N

'-II -..
~

""' '-II -.. w
~ w

U.S. Patent Nov. 7, 1995 Sheet 6of12 5,465,343

164

148_1

58a
UPWD(l:O)

106
RAMDAT(16)

DIRECT DLD
CPU OLD
MUXUPWD

160

RPAGE(1) 7
MAP

48

166

116
CPU ADDR(12}

CACHE ALD

68 BYTE-WRITE ONLY
CPU MEMWD{l:O)

105

ONE-BYTE
R/W CACHE

CPU ADDR 0

152

~
~

WRITE ADDRESS
1-----1 OR LAST

ADDRESS HIT

154

170
UPRD(B)

136

116{0}

(1)
AEQUAL

116' 156

DRAM ADDR (16)

168 UPPER/LOWER• UBYTE

BYTE SELECT CODE 184

TO 28

TO 26

FIG. 5

U.S. Patent Nov. 7, 1995

FC7F
NOT USED FCOO

FBFF UPI BLOCK 34
FBFO
FBEF SEQ BLOCK 38 FBCO
FBAF BFR BLOCK 36 FBBO
F87F TNA BLOCK 70 FB60
FB5F ADC BLOCK 72 FB50
FB4F SER BLOCK 76 FB48
FB47 MTR BLOCK 74 FB40
FBJF l/F BLOCK 40 FBOO

CPU MEMORY MAP
FFFF PROCESSOR RAM FCBO
FC7F AS/CS FBOO
FAFF DRAM FLOATING
FOOO BLOCK 2 - -
EFFF DRAM FLOATING
EOOO BLOCK 1 -

FLOATING DFFF DRAM
WINDOWS COOO PAGE 0-7

----------BFFF DRAM

64K AOOO PAGE 0-7
----------BYTES 9FFF DRAM

8000 PAGE 0-7

7FFF

6000
5FFF

32K CPU INTERNAL
BYTES 4000 ROM 3FFF

2000
1FFF

0000

Sheet 7of12 5,465,343

•-,_ E

!
I

I I
/

E/
I

/
/

D

C A

'\

•..rj

,'1i

'-.....i

/4

'v/ B1

'" .,_
":</ '\
/ \ c
A \

\
~

B' L-

...._,___26

FIG. 6

DRAM

FLOATING
BLOCK 2

FLOATING
BLOCK 1

IPAGE 11

IPAGE 0 I
PAGE 7

PAGE 6

PAGE 5

PAGE 4

PAGE J

PAGE 2

PAGE 1

PAGE 0

1FFFF

xxFFF
xxOOO

xxFFF
xxOOO

14000
13FFF
12000
11FFF

10000 AT LEAST
OFFFF 128K
OEOOO BYTES
ODFFF
00000
OBFFF
OAOOO
09FFF
08000
OlFFF
06000
06FFF
04000
OJFFF
02000
01FFF
00000

U.S. Patent Nov. 7, 1995 Sheet 8of12 5,465,343

t.___ _____ SINGLE PAGE ____ __.j
(64 KILOBYTES)

FIG~ 7A

/
A B C DE r26

~7

A B CD E

FIG. 78

U.S. Patent

RESET OR
UNKNOWN
STATE

202

204

200}

Nov. 7, 1995 Sheet 9of12 5,465,343

IDLE NO
ARBITRATE REQUESTS

206

204 ALL REQ'S EXCEPT
REFRESH

CAS

GAS

DISKREQ•ARB==
DSK (NOT FLUSH)

OR
HOSTREQ•CMD•ARB==
HOST

RAS

N 1-N6=NORMAL CYCLE
SEQUENCE

P 1-P4=PAGEMODE
SEQUENCE

R 1-R6=REFRESH
SEQUENCE

NOT£· RAS PRECHARGE
ALLOW 75 ns

(PAGEMODE)

RAS, ADRICH

RAS
PAGEBREAK
OR NO REQ

CAS FOR ARB
TO WINNER

IDLE

FIG. 8
GAS

U.S. Patent Nov. 7, 1995 Sheet 10 of 12 5,465,343

U.S. Patent Nov. 7, 1995 Sheet 11 of 12 5,465,343

36
LOW FANOUT

TO BUFFERS ADDR

26 "' ADDR ADDR DRAM 0 DRAM 1
CPU DATA/

CODE CACHE/
DAT BUFFER

28A DAT

CONTROL

DRAM
CLOCK CONTROL RAS 0 RAS 1

GAS 0 GAS 1

D WE 0 WE 1
OE OE

40 mhz

FIG. 10

MIDDLE OF PAGE MODE CYCLE
0 25 100 150

RAS O \ 50 125 195

RAS 1
GAS 0 CPU-INST

40 MHZ CLK
25
II ILJl..IlI1J

GAS 1 DRIVE/DATA .,....-----......____,,....----.......____,,....----...___--1,....----.

ADDR I 1 I o
DAT WO W1

WO u u
W1

OE

FIG. 11

RAS
RFSH

WE
ADD(l:O}

GAS
PACSEL(1:0)

206
_L

ROW AND REFRESH
• CONTROL ROW ARRAY • (256•4K}

R•(C•W) •
•

210_!

C•W,, v 256•16

212(_

L2oa

'-I PAGE CACHE AND PAGE CACHE Pac #1 ._ Pac #2 '---1 1---'--1
/0 (256•16)

'-1
L----1 COLUMN CONTROL

'C.214 1: 216 t---
1--

y 16 w,,
r

~
222./ µ--56

FIG. 12
DATA 15:0

'-I Pac #3

T_ 218
0

~ •
rJJ.
•
~
~

""""' ~
= """"'

z
0
~

"'.....:J
.....
\C
\C
Ul

00.
::r
~

~
.....
N

e,
.....
N

Ol
"' ~
~
Ol
"' ~
~
~

5,465,343
1

SHARED MEMORY ARRAY FOR DATA
BLOCK AND CONTROL PROGRAM

STORAGE IN DISK DRIVE

FIELD OF THE INVENTION

The present invention relates to an architecture for a disk
drive data storage device. More particularly, the present
invention relates to a disk drive architecture including a
shared memory array for temporary storage of data blocks in
transfer and control program routines, wherein an embed­
ded, programmed microcontroller, a data sequencer, and a
host interface controller are provided with direct access into
the shared memory array.

BACKGROUND OF THE INVENTION

2
defect list supplied by the drive manufacturer was stored on
outer tracks of the storage disk. The defect list was then
merged with a user-supplied defect list during formatting
and used to flag and bypass defective data sector locations.

5 During initialization of the drive, the merged defect list was
loaded into a section of memory directly accessible by the
embedded drive microcontroller, so that it may take defect
locations into account during track seeking operations.
Commonly assigned U.S. Pat. No. 5,084,791 to Thanos, et

10
al. describes a disk drive architecture in which the embedded
microcontroller was provided with internal and external
RAM and ROM. There was also an indirect data path for the
microcontroller to the block buffer memory so that error
correction operations could be performed on data blocks in

15
transit before delivery to the host computer.

An example of this indirect data path is provided in the
FIG. 1 illustration of prior art. In FIG. 1 within a hard disk

Previous recent disk drive architectures have included drive architecture a drive microprocessor was connected to
embedded programmed digital micro controllers for con- a microcontroller interface. The interface was within a drive
trolling various functions of the disk drive, including, for 20 electronics chip including a memory controller. The memory
example, tasks such as head positioning, spindle motor controller generated addresses and supervised data block
speed regulation, read channel adjustments for zoned data transfers into and out of a drive cache buffer memory array,
recording, and data block transfer and supervision in either from the disk storage surface, or from a host interface
response to commands received from a host computing circuit. When the microprocessor desired to write data into
system. These prior designs have typically included a large 25 the cache buffer array in accordance with a data move
data cache memory array for temporary storage of multiple instruction, the microprocessor transferred from its accumu-
data blocks in transit between the disk data storage surface lator a starting address location into the address register and
and the host computing system. Separately, the embedded then a data byte into the data register. When the data byte
microcontroller has typically required internal and external was placed into the data register, the memory controller then
read only program memory (ROM) for storage and retrieval 30 caused the data to be written to the address pointed to in the
of control program routines, and scratchpad random access cache buffer memory array at a subsequent time in the
memory (RAM) for program variables and tables, etc. memory access cycle, usually within one or several micro-

When disk drives were physically larger, and commanded seconds after the data byte was stored into the data register.
higher prices, designs providing several separate memory During this delay interval, the microprocessor had to enter
chips for program memory and scratchpad access memory, 35 a delay, as by executing "no-operation" loops until passage
separate and apart of the data block transfer buffer memory, of the maximum time necessary to assure that the memory
were feasible and then deemed to be cost effective. Two controller had transferred the byte to the cache buffer array.
marked trends have brought into focus the drawbacks of After this delay time for data transfer to the memory elapsed,
these prior approaches. One trend is that disk drives are the microprocessor then wrote a second byte into the data
becoming physically much smaller; and very small form 40 register, and thereupon an incrementing function (noted as
factors in the 2.5" disk diameter and the 1.8" disk diameter "+ l" in FIG. 1) automatically incremented the address
size ranges are increasingly in use. Small disk drives require register value by one. This indirect data transfer procedure
size-reduced electronics circuit boards. In tum, the electron- was then repeated, with the microprocessor waiting for the
ics chips must support multiple functions, and the number of delay time needed to transfer the second byte, before send-
electronics chips must be reduced to a bare minimum. 45 ing a third byte, etc. This "double-clutching" procedure
Another requirement is reduction of power consumption in through the data register then continued until all of the data
these very small disk drives. The other trend is massive cost bytes of a string were sent to the buffer memory array.
reductions presently being required by manufacturers and During reading operations, the microprocessor would
integrators of computing systems into which small hard disk load a starting address into the address register, and then
drives are being installed and used. Separate program and 50 wait for the delay time needed by the memory controller in
random access memory arrays add significant costs to, and fetching the byte from the cache buffer memory array into
require precious board space on, the electronics printed the data register. The act of reading the data from the register
circuit board portion of the hard disk drive assembly. by the microprocessor then caused the address incrementer

The concept of storing control program routines on a data to increment the address by one, and the next byte was
surface of a hard disk drive and calling them for execution 55 fetched and temporarily stored in the data register until it
as needed is not new. Commonly assigned U.S. Pat. No. was accessed by the drive microprocessor. This process
4,396,959 to Harrison et al. (later U.S. Reissue Pat. No. continued until the block of data bytes desired to be read by
32,075) describes an arrangement whereby diagnostics rou- the microprocessor was fetched and transferred via the data
tines were stored on the disk and called by the drive's register. The act of accessing the data register, whether for
embedded microcontroller for execution as required. In 60 read or write, were carried out by the microprocessor via a
commonly assigned U.S. Pat. No. 4,669,004 to Moon et al., "move" instruction. These external data transfer operations
a disk drive was described in which the disk stack had seven were instruction-intensive, and the external cache buffer
cylinder locations reserved for system software. These loca- memory array did not appear as address space to the
tions included a dynamic media defect map which was microprocessor. Also, transfers were restricted to and from
called by the embedded microcontroller as part of its media 65 the accumulator of the microprocessor, and instructions
defect management control routine. U.S. Pat. No. 4,746,998 were not capable of being fetched from the external array
to Robinson et al. describes a disk drive in which a media into the instruction register and then executed.

5,465,343
3

As illustrated by the foregoing example, the use of a
single memory chip to store data blocks in transit as well as
control program routines, variables and tables has presented

4
between a host computer and the storage surface of the
rotating data storage disk.

Yet one more specific object of the present invention is to
provide a micro-Winchester hard disk drive architecture
with size-reduced, and power-reduced, electronics by pro­
viding a dynamic random access memory (DRAM) array for
storage of drive control program routines, variables and
tables, and multiple data blocks in transit.

a number of difficult problems for the disk drive designer. In
order for the embedded disk drive controller to execute its 5

control program routines from the single memory, the
memory controller must have sufficient reserve bandwidth to
allocate direct access to the microcontroller in order to
achieve reasonable code execution performance. The block
buffer memory must appear to the microcontroller to be
directly addressable within the micro controller's limited
direct address space. Synchronization of the microcontroller
and the block buffer controller is required when other users
need to have direct access to the buffer at the same instant

Yet another specific object of the present invention is to
10 provide an improved buffer memory controller for use

within a hard disk drive in a manner enabling a single
. memory array or device to provide storage of, and access to,
control firmware, vai-iables and tables for a drive microcon­
troller, and data blocks in transit between the host and the

15 disk drive data storage surfaces. as may be needed by the microcontroller. At least three
memory segments must be defined at all times: a first
segment for data blocks in transit; a second segment for the
current control program routine being executed by the
microcontroller, and a third segment for scratchpad memory
for variables and tables.

The present invention provides a solution to the hitherto
unsolved problems associated with use of a shared memory
for both data block and control program storage within a
disk drive.

SUMMARY OF THE INVENTION WITH
OBJECTS

Still one more object of the present invention is to provide
methods for dynamic allocation of segments of a buffer
memory array of a disk drive so that the may store drive
control firmware routines, variables and tables associated

20 with operation of an embedded drive microcontroller.
Still another object of the present invention is to provide

a disk drive architecture which enables an embedded digital
microcontroller to have direct access to a data block buffer,
so that control routines may be transferred from the disk or

25 from an external location into the data block buffer and then
directly accessed and executed by the microcontroller, while
data blocks in transit between the disk and an external
location are simultaneously temporarily stored in the data

A general object of the present invention is to provide a
single, multi-tasked memory array within the electronics of 30

a hard disk drive in a manner overcoming limitations and
drawbacks of the prior art.

block buffer.
One more object of the present invention is to provide a

disk drive architecture which provides a randomly addres­
sable small cache directly accessible by an embedded digital
microcontroller, the small cache being an extension of a A more specific object of the present invention is to

provide a single memory chip within the electronics of a
hard disk drive which appears to an embedded microcon­
troller thereof as one or more segments of directly addres­
sable external memory, either for data or program instruction
storage.

Another more specific object of the present invention is to
provide fixed and floating block segments within the directly
addressable external memory space of an embedded digital
microcontroller of a hard disk drive in a manner enabling
mapping of the controller's external memory space directly
to a single larger memory array.

35
larger external memory array, so that once values requested
by the microcontroller are transferred from the larger exter­
nal memory array into the small cache, the values may then
be delivered directly to the microcontroller in accordance
with its timing requirements for obtaining program instruc-

40 tions and data.
Yet another object of the present invention is to provide

improvements in a disk drive architecture by which dynamic
random access memory may efficiently store and retrieve
user data blocks, tables and program instructions for a drive

45 microcontroller by greater utilization of page mode address­
ing techniques. Yet another specific object of the present invention is to

provide methods and circuitry for synchronizing and con­
trolling data storage and transfer operations of a single,
multi-tasked memory array within electronics of a hard disk
drive so that time critical accesses and transfers are properly

50
carried out.

In accordance with principles of the present invention, a
disk drive includes a base, a data storage disk rotating
relative to the base, a data transducer positioned relative to
the disk for transducing serial data to and from the disk, a
programmed microcontroller for controlling data transfers

Still one more specific object of the present invention is
to provide methods and apparatus for controlling and
refreshing dynamic RAM buffer memory so that it may
serve as a multi-tasked temporary memory storage resource 55

within a hard disk drive and so as to improve efficiency and
increase bandwidth of the buffer memory.

between the disk drive and a host computing system, for
controlling positioning of the transducer means, and for
controlling rotation of the data storage disk, a buffer memory
array for temporary storage of data blocks in transit between
the disk drive and a host, a host interface for transferring
data blocks between the host and the buffer memory array,
a sequencer for transferring data blocks between the buffer
memory array and the data storage disk by converting blocks

Yet another more specific object of the present invention
is to provide a hard disk drive architecture including an
embedded microcontroller and enabling control firmware to
be distributed between internal program memory of the
microcontroller and reserved data tracks of a rotating data
storage disk such that at disk initialization, the firmware
stored on disk is transferred to a single multitasked memory
array of the drive and then directly executed by the micro­
controller as required. At the same time, the memory array
is also providing temporary storage for data blocks in transit

60 to and from serial data and for detecting predetermined data
storage locations on the data storage disk, a microcontroller
interface circuit including a memory translation circuit for
translating external direct addresses put out by the micro­
controller into addresses for addressing the buffer memory

65 array, a buffer memory controller circuit including an arbi­
tration circuit for arbitrating access requests by the micro­
controller, the sequencer and the host interface, and a

5,465,343
5

microcontroller cache buffer for temporarily storing at least
a second byte of a data word sought by the microcontroller
from the cache buffer as a first byte of the data word is
transferred directly from the cache buffer to the microcon-
troller. 5

In accordance with a separate facet of the present inven­
tion, a disk drive architecture includes a rotating data storage
disk, a positionable data transducer for writing data to, and
reading data from, concentric track locations defined on the
disk, a preamplifier/driver connected to the data transducer, 10
a read/write channel connected to the preamplifier/driver, a
sequencer circuit including a sequencer FIFO buffer
memory for transferring user data blocks between the data
storage disk and the sequencer FIFO buffer memory, a host
interface controller including an interface FIFO buffer 15
memory for transferring user data blocks, commands and
status values between a host computer and the interface
FIFO buffer memory, a cache buffer for storing data blocks
in transit between the sequencer and the host interface
controller, a buffer controller for controlling accesses to the 20
cache buffer, a programmed digital microcontroller for
decoding and executing commands received from the host
computer and for controlling positioning of the data trans­
ducer. Within this architecture an improvement is provided
for enabling direct access by the microcontroller to the cache 25
buffer. The improvement includes:

6
executing the request for access to the buffer memory by

the microcontroller by generating and applying a data
location address mapped from an address supplied from
the microcontroller to buffer memory and transferring
data values between the microcontroller and the buffer
memory.

As one aspect of this facet of the invention, the mapping
step comprises the steps of mapping a plurality of predeter­
mined portions of directly addressable memory space of the
microcontroller to plural block address location of the buffer
memory.

As another aspect of this facet of the invention, the
arbitrating step comprises a further step of assigning access
priorities to the sequencer, the host interface controller and
the microcontroller.

As a further aspect of this facet of the invention, the buffer
memory defines addressable storage locations which are
sized to be integral multiples of the data values transferred
between the microcontroller and the buffer memory and the
step of executing the request for access to the buffer memory
by the microcontroller comprises for a first access to a
particular address location of the buffer memory the further
step of caching a portion of a memory value at the particular
address location which is not transferred between the micro­
controller and the buffer memory in a microcontroller cache
buffer. As a related aspect, the step of executing the request
for access to the buffer memory by the microcontroller
comprises for a second and successive access to the par­
ticular address location of the buffer memory the further step

a microcontroller interface circuit connected between the
microcontroller and the buffer controller, the microcon­
troller interface circuit including address mapping reg­
isters for mapping at least one predetermined portion of
directly addressable memory of the microcontroller to
address locations of the cache buffer,

30 of retrieving the portion from the microcontroller cache
buffer.

the buffer controller circuit including an access arbitration
circuit for arbitrating requests for access to the cache
buffer by the sequencer, the host interface controller
and the microcontroller, and

a microcontroller wait state generator responsive to the
access arbitration circuit for generating and applying a
wait state sequence to the microcontroller until a
request it makes for access to the cache buffer can be
executed.

As one aspect of this facet of the invention, the cache
buffer comprises a single dynamic random access memory
chip defining a storage array, and the arbitration circuit
further arbitrates requests for memory refresh operations
generated by the buffer controller.

As one more aspect of this facet of the invention, the
buffer memory array comprises two DRAM chips and the
buffer memory controller circuit includes circuitry for sepa-

35 rately selecting, addressing and refreshing each memory
chip.

As a related aspect of this facet of the invention, the buffer
memory array comprises a main DRAM memory array, and
a plurality of page cache arrays (preferably four), and

40 multiplex circuitry for multiplexing data from each said
page cache array onto a bus leading from the cache buffer.

These and other objects, advantages, aspects and features
of the present invention will be more fully understood and
appreciated upon consideration of the following detailed

45 description of a preferred embodiment, presented in con­
junction with the accompanying drawings.

As a separate facet of the present invention, a method is
provided for sharing a single buffer memory in a disk drive
between a data transfer path between a storage disk and a
host computer and an embedded digital microcontroller for 50

controlling data storage and retrieval operations of the disk
drive whereby the embedded digital microcontroller has
direct access within its address space to any of the storage
locations of the buffer memory. The method comprises the
~~~ " 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the Drawings: 
FIG. 1 is a simplified block diagram illustrating a prior 

architecture for providing indirect access by an embedded 
disk drive microprocessor to a drive cache buffer memory 
array via address and data registers of a memory controller/ 
microprocessor interface circuit. 

mapping at least one predetermined portion of directly 
addressable memory space of the microcontroller to 
address locations of the buffer memory, 

arbitrating requests for access to the buffer memory by a 
sequencer within the data transfer path, a host interface 
controller within the data transfer path and the micro­
controller, 

generating and applying a wait state sequence to the 
microcontroller until a request it makes for access to 
the buffer memory can be executed as determined by 
the arbitrating step, and 

FIG. 2 is a simplified, overall electrical block diagram of 
a miniature hard disk drive architecture incorporating prin­
ciples including an embedded microcontroller and wherein 

60 
the control firmware is distributed between a local internal 
program memory of the microcontroller and a multitasked 
memory array of the drive, in accordance with principles of 
the present invention. 

FIG. 3 is a more detailed electrical block diagram of a 
65 microcontroller interface block within the drive electronics 

IC of the FIG. 2 architecture. 
FIGS. 4A and 4B together provide a more detailed elec-



5,465,343 
7 

trical block diagram of a buffer controller block within the 
drive electronics IC of the FIG. 2 architecture. FIG. 4 
comprises a layout plan for the FIGS. 4A and 4B drawing 
sheets. 

8 
mation, and vice versa. 

Other discrete circuit elements of the exemplary disk 

FIG. 5 is a more detailed electrical block diagram of a 5 

buffer-direct access block within the FIG. 4 buffer controller 
block. 

drive 10 include a multi-function drive electronics IC chip 
24, an embedded, programmed digital microcontroller 26 
and a single memory array 28. A host computer 30 sends 
commands and data blocks for storage to the disk drive 10 
via a digital signal path 32. The interface 32 is preferably a 
bus level interface, and may follow the SCSI II protocol, the 
AT interface, the PCMCIA interface, or any other suitable, FIG. 6 is a detailed memory map diagram for the embed­

ded microcontroller, rnicrocontroller-addressable registers 
of the drive electronics IC, and the multitasked memory 
array of the FIG. 2 architecture. 

FIG. 7 A is a diagram of one example of mapping five 
floating segments of the microcontroller memory space to 
separate block locations in the multitasked memory array in 
accordance with aspects of the present invention. 

FIG. 7B is a diagram of another example of mapping the 
five floating segments of the microcontroller memory space 
to the multitasked memory a.rray as one contiguous memory 
space in accordance with other aspects of the present inven­
tion. 

FIG. 8 is a state diagram of a memory controller state 
machine within the buffer memory access arbitration circuit 
shown in FIG. 4 buffer controller block. 

FIG. 9 is a timing diagram example illustrating memory 
access arbitration operations of the FIG. 4 buffer controller 
block in accordance with principles of the present invention. 

FIG. 10 is a simplified block diagram of a DRAM array 
employing two conventional DRAM chips in multiplexed 
arrangement wherein one DRAM is adapted for direct 
access by the microcontroller, and the other DRAM is 
adapted for direct access by the sequencer and host. 

FIG. 11 is a timing diagram illustrating interleaved data 
transfer operations of the FIG. 10 memory array. 

FIG. 12 is a simplified block diagram of a single chip 
DRAM array arranged as a main segment with four page 
caches, each devoted to a separate disk drive process thread. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT 

FIG. 2 sets forth a block diagram of portions of a disk 
drive architecture which are pertinent to an understanding 
and appreciation of the present invention. An exemplary 
disk drive 10 includes a rotating data storage disk 12, a 
spindle motor 14 for rotating the disk 12 at a predetermined 
rotational velocity. In the case of a Winchester or "flying 
head" disk drive, the velocity must be sufficient to sustain 
flying characteristics of a slider carrying a data transducer 
head 16; typically the rotational velocity will be in a range 
between 3000 RPM and 6000 RPM. An actuator structure 18 
is mechanically linked to the data transducer head 16 and 
functions to position the head 16 at each selected one of e.g. 

10 bus level interface convention. 
The drive electronics integrated circuit 24 includes a 

microcontrollcr interface circuit 34 for interfacing directly 
with the microcontroller 26. The electronics chip also 
includes a buffer controller circuit 36 for addressing and 

15 refreshing the buffer memory array 28. A data sequencer 38 
is included in the chip 24 for sequencing digital data blocks 
to and from defined data block storage locations on the disk 
as a coded serial information stream. The sequencer 38 
includes a small on-board first-in, first-out (FIFO) buffer 39 

20 
which, in this preferred example has a capacity for six 16 bit 
words (12 bytes). A host interface controller circuit 40 is also 
included in the interface chip 24. The interface circuit 40 
implements the predetermined interface convention and 
provides direct communications with, and data block trans-

25 fers between, the host computer 30 via the bus structure 32. 
The host interface controller circuit 40 also includes e.g. a 
four word FIFO 41 for temporary storage of up to four data, 
command or status words at a time. A sixteen bit data bus 56 
leads from the FIFO 41 to the buffer controller 36 and also 

30 
directly to the cache buffer memory 28. 

The microcontroller 26 is a fully programmable digital 
!T'.icroproccssor or microcontrollcr. It includes among many 
architectural features an on-board local program read only 
memory (ROM) 42, an accumulator register 44, and an 

35 instruction register 46. In accordance with principles of the 
present invention, data bytes may be transferred directly to 
and from the accumulator 44 and the buffer array 28. 
Instruction bytes may be transferred directly to the instruc­
tion register 46 from the buffer 28, from a microcontrollcr 

40 cache register 68 in the buffer controller, or from the local 
program ROM 42. Direct access to the buffer 28 is made 
possible and facilitated by a DRAM mapping circuit 48 in 
the microcontroller interface 34. The mapping circuit 48 
includes a plurality of programmable registers which trans-

45 late addresses on an external address bus structure 49 of the 
microcontroller 26 into addresses of like-size blocks which 
may be located anywhere within the larger-sized cache 
buffer 28. The resultant data values pass between the micro­
controller 26 and the interface circuit 34 via a bi-directional, 

50 time-multiplexed data/address bus 50 in which e.g., the 
lower eight address lines are time shared with the data lines, 
in conventional fashion, in order to reduce the number of 
external connections for both the microcontrollcr 26 and for 
the electronics chip 24. 

Within the buffer controller circuit 36 an arbitration state 
machine controller circuit 52 receives data transfer requests 
via at least three separate paths: a path 54 from the FIFO 39 
of the sequencer 38, a path 56 from the FIFO 41 of the host 
interface circuit 40, and a path 58 from the microcontroller 

a multiplicity of concentric data tracks defined on the e.g. 55 
thin film magnetic recording surface of the data storage disk 
12. The rotating disk 12, spindle motor 14, transducer 16 and 
actuator 18 are conventionally included within an enclosed 
housing known as a "head and disk assembly" in the hard 
disk drive art. 60 interface circuit 34. The path 56 also extends directly to the 

cache buffer memory 28. While data transfers between the 
host interface controller 40 and the cache buffer memory 28 
arc carried out under the control of the buffer controller 36, 
the data blocks on the bus 56 bypass the buffer controller in 

The data transducer head 16 is electrically coupled to a 
preamplifier/head selector/write driver circuit 20 which fre­
quently also is included in the head and disk assembly in 
order to be close to the head 16 and thereby minimize pickup 
of extraneous electrical noise, etc. The circuit 20 is electri­
cally connected to a read/write channel 22 which performs 
the task of converting digital information into analog infor-

65 reaching the host interface controller. All other data block 
transfers pass through the buffer controller before reaching 
either the sequencer 38 or the microcontroller interface 34. 



5,465,343 
9 

Arbitration occurs in accordance with a predetermined 
priority. The highest priority is accorded to the sequencer 
FIFO 39, since transfers to the disk must occur in synchro­
nism with rotation of the disk 12. Otherwise, delays incident 
to multiple rotations of the disk will be incurred in storing 5 
or retrieving a user data block. The second highest priority 
is accorded to a refresh function provided by the buffer 
controller 36 when the cache buffer is implemented with 
dynamic memory. (If static memory is used for the cache 
buffer array, the refresh function is eliminated.) The next 

10 
highest priority may be afforded either to the interface 
controller 40 or to the microcontroller interface 34. The 
circuit receiving this priority is programmable, and typically 
will be accorded to the microcontroller 26, unless the data 
transfer rate at the interface 32 is sufficiently high as to 
require additional bandwidth of the cache buffer 28. For 15 

SCSI transfers at five megabits per second, no drawbacks are 
incurred in placing the microcontroller interface 34 above 
the host interface controller 40 in terms of arbitration 
priority. 

In order for the microcontroller 26 to be able to function 
20 

10 
sectors. These sectors may follow a pattern as described in 
commonly assigned U.S. Pat. No. 5,170,299 to Moon, 
entitled "Edge Servo for Disk Drive Head Positioner", the 
disclosure thereof being incorporated herein by reference. 
The microcontroller 26 preferably includes time-critical 
program routines within its own local program memory 42, 
in accordance with the teachings of the referenced, com­
monly assigned U.S. Pat. No. 5,084,791, the disclosure 
thereof being hereby incorporated by reference. These rou­
tines typically include servo interrupt service routines for 
controlling head position via the actuator structure 18. An 
interrupt of the microcontroller 26 occurs incident arrival of 
each servo sector underneath the data transducer head 16. 
Spindle motor speed regulation routines may also be 
executed by the microcontroller during each servo interrupt 
service routine. A bootstrap loader program routine is also 
typically included within the local program ROM 42, so that 
the drive 10 may be initialized at power-on reset, and so that 
firmware routines stored on reserved data tracks of the disk 
12 may be accessed and transferred into the cache buffer 28, 
and thence to the instruction register 46 of the microcon­
troller 16 on a byte-by-byte basis. Also, bum-in and test within the architecture of the disk drive 10, the microcon­

troller 26 must support an externally supplied wait state 
signal. One satisfactory microcontroller which supports 
externally commanded wait states is the NEC 78352, or 
equivalent. A wait state generator circuit 60 within the buffer 
controller circuit 36 monitors the priorities set by the arbi­
tration circuit 52 (as denoted by the dashed line in FIG. 2 
between the arbitration circuit 52 and the wait state genera-
tor 60). In the event that the arbitration circuit 52 detects a 
collision of incoming buffer service requests from the micro­
controller 26 and a higher priority circuit, such as the 
sequencer 38, the arbitration circuit 52 will recognize the 
higher priority buffer access request, and the wait state 
generator 60 will simultaneously generate and put out a wait 

35 
state command over a line 62 to place the microcontroller 26 
into a wait state until its request for access to the buffer 28 
can be honored. One example of arbitration between simul­
taneous access requests from the sequencer 38 and the 
microcontroller 26 is discussed below in conjunction with 40 
FIG. 9. 

routines incident to disk drive manufacture and maintenance 
may be supplied via the interface structure 32 or from the 
disk 12, and executed by the microcontroller 26 without 

25 having to provide a separate program memory or special test 
fixturing. Firmware updates and special configurations may 
easily be provided by enabling the microcontroller 26 to 
access instructions in the cache buffer and directly execute 
them. Execution of an instruction by the microcontroller 26 

30 begins once the instruction is loaded into the instruction 
register 46. 

The drive electronics circuit 24 also includes a servo 
sector decoder circuit 70 which functions to decode embed­
ded servo track identification information recorded in each 
servo sector and supply the recovered information to the 
microcontroller 26. The servo decoder circuit 70 is prefer­
ably in accordance with commonly assigned, copending 
U.S. patent application Ser. No. 07/710,172 filed on Jun. 4, 
1991, entitled "Asynchronous Data Reader for Embedded 
Sector Servo Disk Drive", the disclosure thereof being 
incorporated herein by reference. An analog to digital con­
verter circuit 72 sequentially converts sampled peak ampli­
tudes taken from fine position bursts recorded in each servo 
sector. The quantified amplitude values are also supplied to 
the microcontroller 26. A motor speed regulator circuit 74 
enables the microcontroller 26 to provide precise spindle 
speed regulation for the spindle motor 14 via a motors driver 
circuit 75. Also, a serial data port circuit 76 enables serial 
communications to be carried out via serial control path 77 
with the motors driver circuit and with the read/write 
channel 22, so that data transfer rates may be commanded 
for each radial zone of tracks defined on the disk 12, so that 
zoned data recording techniques may be implemented to 
increase areal density on the disk 12. 

FIG. 3 sets forth in greater detail the microcontroller 
interface circuit 34 implemented within the drive electronics 
chip 24. As shown in FIG. 3, the microcontroller address/ 
data bus 50 includes a micro write-mode path 50a and a 
micro read-mode path 50b. The write-mode functional path 
extends to a data latch 80, an address latch 82, a microcon­
troller address control circuit 84, and a microcontroller 
control registers array 92. The data latch 80 is enabled by a 
micro-write-not line (MWRN) which also enables a register 
write pulse generator 86. The address latch 82 is enabled by 
a micro address latch enable line (MALE) and enables the 
eight low order address bits of the 16 bit microcontroller 

45 address space to be latched and then applied to the address 
decode mapping circuit 48 during a data access cycle. An 
output is also supplied via a local address bus (LADD) to 
other elements of the drive architecture. The micro address 
bus 49, comprising e.g., the eight high order bits of e.g., the 

50 
16 bit address space which is directly addressable by the 
microcontroller 26 (64 KBytes), feeds directly into the 
address decode mapping circuit 48. 

The mapping circuit 48 responds to programmable map 
registers in the control array 84 for translating direct 

55 addressing by the microcontroller 26 to e.g. contiguous 2K 
byte segments of the cache buffer 28 via a high local address 
bus (HILADD). The circuit 48 also decodes addresses into 
circuit enables from the microcontroller directed to the 
buffer controller 36, the sequencer 38 and the interface 

60 controller 40. 

In the presently preferred embodiment, the concentric 65 
data tracks defined on the storage surface(s) of the disk 12 
are interrupted by a series of spaced apart, embedded servo 

The register write pulse generator circuit 86 generates and 
puts out write pulse enables from the microcontroller 26 in 
order separately to strobe the buffer controller 36, the 
interface controller 40, the sequencer 38, the servo circuit 
70, the analog to digital converter circuit 72, the motor speed 
regulator circuit 74 and the serial port circuit 76 when the 
microcontroller 26 desires to write data to their respective 



5,465,343 
11 

register arrays. 
12 

refresh of the dynamic cache buffer memory array 28 and 
also functions to multiplex the ten-bit address bus 64 so that 
the full extent of the e.g. 128 kbyte memory 28 is addres­
sable with only eight address lines (in combination with row 
and column select control lines 65). (For a 512 kilobyte 
array, nine by nine, or eight by ten address lines are 
employed, depending upon the architecture of the memory 
array 28). The arbitrate circuit also generates and puts out 
selection control signals via a path 112 for controlling data 

The programmable registers for controlling mapping 
within the address decode mapping circuit 48 are included in 
the micro address control block 84. These registers are 
loaded directly from the data bus 50a and result in the 5 

translation of addresses which occurs in the address decode 
mapping circuit 48. In this manner, the address translation 
for translating addresses into the buffer memory 28 is fully 
programmable and may be changed dynamically by the 
microcontroller 26. 10 

path selection operations of the data multiplexer circuit 100 
and an address multiplexer circuit 114. 

The address multiplexer circuit 114 memory addresses 
from four sources, microcontroller addresses supplied from 
the microcontroller interface 104 via a path 116, disk 

The register read pulse generator 88 generates read mode 
strobes which are put out to the buffer controller 36 to 
synchronize byte transfers to the microcontroller 26 from the 
buffer controller 36. A read data select circuit 90 is con­
trolled by the micro control register block 92. The circuit 90 
selects one of a plurality of incoming data buses, including 
paths from the sequencer 38, the buffer controller 36, the 
servo decoder 70, the motor regulator circuit 74, the serial 
data port circuit 76 and the analog to digital converter 72. 
One of these buses is enabled during a microcontroller read 
sequence and passes its eight bits of data through the circuit 

15 
addresses supplied from a transfer control circuit 118 via a 
path 120, host addresses supplied from the transfer control 
circuit 118 via a path 122, and command transfer addresses 
supplied from the transfer control circuit 118 via a path 124 
(e.g., to improve SCSI II performance). The transfer control 

90 to the microcontroller via the read mode path 50b. 

20 
circuit 118 includes e.g. eight internal address registers 
which are addressable by the microcontrollcr 26 under 
firmware control in order to _set starting address DMA 
pointers. An address incrementer circuit 126 provides suc­
cessive address values in response from a last address value The microcontroller control register 92 enables the micro­

controller to assert certain flag values which control various 
operations of the interface circuit 34, including a clock 
generator circuit 94 which generates a plurality of clock 
signals for the microcontroller 26, the interface controller 
40, the servo decoder 70, the analog to digital converter 72, 
the serial port circuit 76, and the motor regulator circuit 74. 

30 
A non-maskable interrupt generator circuit 96 generates and 
puts out a non-maskable interrupt to the microcontroller 26 
whenever a circuit, such as the servo circuit 70, or the 
interface circuit 40 asserts a host reset control signal 
(HRSTN). A circuit 98 generates a power on reset signal 

35 
whenever it is enabled by the microcontroller control reg­
ister 92 and whenever a raw power on reset signal is 
received. 

25 
received from the address multiplexer 114 via a path 128, 
and supplies these values over a path 130 to the transfer 
control circuit 118 and to the microcontroller interface 
circuit 104. The incrementer circuit 126 also includes inter-
nal rollover and reload registers which are programmed to 
mark the boundaries of each separate segment of buffer 
memory 28. When an actual count reaches a rollover value, 
the counts put out by the incrementer 126 return to the 
starting address of the segment. A path 130 provides a next 
address value to the transfer control registers 118. Another 
path 132 enables the microcontroller 26 to read the rollover 
and reload register values presently stored in their respective 
registers in the address incrementer circuit 126. 

A decode circuit 134 provides a data output over the path 
58b to the microcontroller interface 34 from either the buffer 
memory 28 via the path 106 and the local CPU interface 104 
and a path 136, from the address incrementer circuit 126 via 
the path 132, or from the transfer control registers 118 via a 
path 133. The decode circuit 134 also decodes certain 
functional control signals including a CPUSEL control sig-
nal which enables the local CPU interface block 104, an 
APlSEL control signal which enables the address incre-
menter circuit 126, and an XFCSEL control signal which 
enables the transfer control circuit 118. 

FIGS. 4A and 4B present a more detailed view of the 
buffer controller 36. A data multiplexer 100 receives data 40 
from the cache memory buffer 28 over an incoming path 
56a, data from a sequencer interface block 102 over an 
internal path 103 and data from a microcontroller interface 
104 via an internal path 105, and selects between these three 
incoming data paths. (The microcontroller interface 104 is 45 
an internal circuit within the buffer controller 36 and is not 
the microcontroller interface circuit illustrated in FIGS. 2 
and 3 and discussed in connection therewith.) Depending 
upon data flow direction, the multiplexer 100 puts out data Turning now to FIG. 5, a buffer direct access circuit 148 

50 within the microcontroller interface 104 includes the micro-to the buffer memory 28 via an outgoing path 56b or puts out 
data over an internal path 106 to either the sequencer 
interface 102 or to the microcontroller interface circuit 104. 
In this sense the buffer controller 36 implements internal 
direct memory access (DMA) channels for the sequencer 38 
and for the microcontroller 26. The DMA channel between 55 
the host interface 40 and the buffer 28 is external to the 
memory controller 36, although it controls operations of that 
DMA channel directly. 

controller data cache 68, as well as other logic required to 
implement direct access by the microcontroller 26 to and 
from the external cache buffer memory 28. A control logic 
circuit 150 includes the wait state generator 60. The logic 
circuit 150 responds to a request for direct access by the 
microcontroller 26 and first determines whether the byte 
value being sought by the microcontroller 26 is presently 
resident in the microcontroller cache array 68. If so, the 
control circuit 150 generates a signal to enable the register In order to perform its memory access arbitration func­

tion, the arbitration circuit 52 within the buffer controller 36 
receives control signal inputs via an incoming path 66a from 
the host interface controller 40, receives control signals via 
an internal path 108 from the sequencer interface 102, and 
receives control signals via an internal path 110 from the 
microcontroller interface 104. The arbitration circuit 52 also 
generates and puts out over the path 65 the periodic row and 
column refresh signals as are needed for conventional 

60 array 168 and put out the byte being sought. If the requested 
byte is not present in the microcontroller cache 68, the 
control logic circuit 150 passes a value to the buffer con­
troller arbitration circuit 52 via the control path 110 which 
thereupon causes arbitration of the micro controller's 

65 request for direct access to the cache buffer memory 28. If 
there are higher priority access requests then pending, the 
arbitration circuit 52 signals this fact to the control logic 



5,465,343 
13 

circuit 150, and it causes the wait state generator 60 to 
generate appropriate wait states and put them out via the 
path 62 to place the microcontroller 26 into a wait state, 
pending access to the buffer memory 28. 

The buffer direct access circuit 148 also includes an 5 

address register 152 and an address comparator 154. The 
comparator circuit 154 compares the last address from the 
microcontroller 26 with the present address being asserted 
by the microcontroller 26. If the two addresses are equal 
(except for the lowest address bit position which must be a 10 
"one", indicating that the high byte is being sought), a signal 
line 156 (AEQUAL) feeds back to the control logic 150, and 
that circuit then determines that the desired byte is located 
in the microcontroller cache 68, and it is then put out through 
a multiplexer 170 to the microcontroller data bus 136 and is 

15 
read by the microcontroller with a minimum delay (typically 
only one wait state, due to transit delays in the electronics 
chip 24). Otherwise, if the comparison is not equal, the 
control logic circuit 150 determines that a data read cycle is 
required by the microcontroller 16 of the buffer memory 28, 

20 
and asserts an arbitration request via a control line 180 
which is included within the data path 110 leading to the 
arbitration circuit. At the same time the circuit 150 asserts 
the microcontroller wait line 62 until data from the buffer 28 
is available at the micro controller's external data bus 50. 

25 
While the presently preferred embodiment limits the micro­
controller cache 68 to a single byte, it is clearly contem­
plated that multiple bytes or values may be stored in an 
expanded cache register array 68, as denoted by the multiple 
storage bins associated with the register array 28 in FIG. 2. 

30 
When the microcontroller 26 desires to write a byte into 

the drive buffer memory 28, the circuit 148 is first enabled 

14 
desired at the drive buffer 28. 

The buffer 28 may not be available presently to write the 
byte stored in the byte register 68. When the arbitration 
circuit 52 determines that free time exists to service the 
microcontrollers request for memory access, the byte will be 
written to the memory array 28 from the register 68 via the 
path 105. At the same time that the address was captured in 
the address register, the low order address bit was also 
captured. This low order bit determines whether the byte 
from the microcontroller 26 is to be written in the upper byte 
space, or the lower byte space of the 16 bit wide location 
defined by the other values in the address register. The upper 
byte/lower byte control is put out to the buffer controller 52 
over a control path 184 in order to control the low byte write 
enable (LWEN) and high byte write enable (HWEN) signals 
supplied to the array 28 via the control path 65. 

If the microcontroller 26 desires to transfer a second byte 
to the drive buffer memory 28 before the first byte stored in 
the register 68 has actually been written out to the buffer 28, 
the control logic 150 determines this fact, and causes the 
wait state generator 60 to generate a wait state and apply it 
over a path 62 to place the microcontroller 26 into a wait 
state before attempting to write the second byte. This 
precaution is made possible by virtue of a prewrite strobe 
signal which enters the control logic 150 over a path 178. 
The prewrite strobe is asserted by logic associated by the 
microcontroller 26 before the byte value to be written is 
actually put out over the external data bus 58. Once the first 
byte is written into the buffer 28, the wait state on the path 
62 is discontinued, and the second byte is ready to be loaded 
into the register 68 in accordance with the sequence just 
described for the first byte. The high order bits which are 
latched into the address register 152 come from the mapping 
circuit 48. The e.g., lower 12 bits (depending upon the size 

by assertion of a control line 172 (DIRECT_SEL) which 
enters the control logic circuit 150. This signal on the line 
172 indicates that the microcontroller 26 is desirous of 
directly accessing the buffer 28 as determined by assertion 
of an address by the microcontroller 26 within its external 
address space which is mapped to the drive buffer 28. If the 
DIRECT_SEL line is false, the circuit 148 is not operative. 

35 
of the direct external address space of the microcontroller 
26) of the address applied to the address latch 152 come 
directly from the micro controller's external address space 
(4 kilobyte address blocks) and are not translated by the 
mapping circuit 48. 

A write strobe signal (WSBFR) on a path 17 4 informs the 40 

control logic circuit 150 that the address being asserted is 
within the address space of the buffer 28 and is now ready 
to be latched into the address register 152. The byte value 
from the microcontroller 26 enters the circuit 148 via the 
path 58a and passes through a multiplexer 158 to reach the 45 

byte register 68. The multiplexer 158 is enabled by a write 
multiplexer control signal (MUXUPWD) which is generated 
by the control logic circuit 150 and put out over a path 160. 
Once the data value from the microcontroller 26 has settled 
at the input of the byte register 68, the control logic circuit 50 

generates a microcontroller write data load signal (CPU_ 
DLD) and applies it through the OR gate 162 to strobe the 
byte into the register 68. Simultaneously, the destination 
address for the byte to be written into the buffer 28 is passed 
via the micro controller's 16 bit address bus 116 into the 55 

address register 152. This address register 152 is strobed by 
an address latch strobe signal (CACHE_ALD) on a path 
168. This signal is also generated by the control logic block 
150 in response to assertion of the write strobe signal on the 
path 174. Once the byte to be written is in the byte register 60 

68, and its destination address is in the address register 152, 
the control logic circuit 150 asserts an access request line 
180 (DIRECT _REQ) which extends to the buffer arbitration 
circuit 52 via the path 110. A NOT state on a companion line 
182 (DIRECT_READ) simultaneously informs the arbitra- 65 

ti on circuit 52 that a microcontroller data write operation, as 
contrasted with a microcontroller data read operation, is 

When the microcontroller 26 desires to read data directly 
from the drive buffer memory 28, the select signal is asserted 
over the path 172, and a read strobe signal RSBFR is 
asserted over a path 176. Simultaneously, the mapped 
address presently being asserted by the microcontroller 26 is 
applied via the address bus 116 to one input of a two input 
address comparator 154. The last address asserted by the 
microcontroller is latched in the address latch 152, and it is 
applied to another input of the comparator 154. If the two 
addresses (except for the lowest order bit position) are 
identical, the value sought is thereby determined to be 
located in the microcontroller cache buffer register 68, and 
it is asserted from the register 68 through the multiplexer 
170 and over the micro controller's data read bus 136. Also, 
the wait state output on the line 62 is shortened, since only 
transit time within the drive electronics chip 24 is incurred 
in delivering the byte from the register 68 to the microcon-
troller 26. Typically, this delay is only one wait state, at a 
microcontroller clocking period of 62.5 nanoseconds, for 
example. When the wait state is removed, this removal 
informs the microcontroller that the data on its external bus 
is valid. 

If the address comparison performed by the comparator 
154 determines that the present microcontroller address is 
different from the last asserted microcontroller address, an 
inequivalence condition is put out over the path 156 to the 
control logic circuit 150. The DIRECT_REQ line 180 is set, 
and the DIRECT _READ line 182 is also set. The micro-



5,465,343 
15 

controller 26 is placed in a waiting state by assertion of the 
line 62. The micro controller's buffer read access request is 
then subjected to arbitration within the arbitration circuit 52. · 
When the requested read cycle is performed by the buffer 26, 
the data is returned over the path 106. One byte of the 5 
retrieved word goes directly onto the microcontroller bus 
136, and the other byte of the retrieved word is passed 
through the multiplexer 158 and latched into the microcon­
troller byte register 62. The direct data load line 164 is 
asserted to strobe the data into the register 68. At the same 

10 
time the present address is strobed into the address register 
152 by assertion of the cache address load data line 168 in 
order to update the address in the register so that a legal 
cache hit may be determined at the next microcontroller read 
command. The micro controller's lowest bit line of its 
address bus, bit zero, determines whether the odd or even 15 

byte of a retrieved data word will be shipped to the micro­
controller from the multiplexer 170 over the data bus 136. 

Ordinarily, the low byte is sent back to the microprocessor 

16 
page mode, are described hereinbelow in conjunction with 
FIG. 8. 

FIG. 6 sets forth an exemplary memory space allocation 
map showing that the microcontroller 26 has e.g. 64 kilo­
bytes of directly addressable memory space, and that the 
drive buffer memory 28 has e.g. 128 kilobytes, or more, of 
addressable memory space in which each separately addres­
sable storage location comprises e.g. a 16 bit data word. 
Within the directly addressable memory space of the micro­
controller 26, the lower 32 kilobytes arc dedicated to 
addressing the local program read only memory 42, and the 
space e.g. from FBOO(Hex) to FFFF(Hex) is dedicated to 
registers within the disk drive electronics chip as shown at 
the top of FIG. 6, and to directly addressable random access 
memory within the microcontroller 26. The micro control­
ler's space between e.g. 8000(Hex) and FAFF(Hex) defines 
a plurality of floating data block windows A, B, C, D and E, 

26 directly through the multiplexer 170, and the high byte is 
stored in the register 68 via operation of the multiplexer 158 
as enabled by the multiplexer control signal on the path 160. 
At the end of the external buffer memory cycle, a signal 
DIRECT _DLD is input from the buffer controller circuit 36 

each of which is mapped by the buffer map 48 into addresses 
of the buffer memory 28, as shown by the several dashed 
lines leading from the floating window space of the micro 

20 controller's address space to blocks of the larger buffer 
memory array 28. 

on a line 164 and informs the circuitry 148 that the buffer 28 25 
has either completed a write cycle, or has completed a read 
cycle and that the data on the data bus 106 is true and that 
it may be strobed into the register 68. Thus, the register 68 
is strobed by the DIRECT _DLD data load signal on the path 
164 via the OR gate 162. Also, the DIRECT _DLD data load 

30 
signal on the path 164 is used by the control logic circuit 150 
to clear the DIRECT _REQ signal which is seeking arbitra­
tion of the micro controller's access request by the arbitra­
tion circuit 52. 

While in the present example the register 68 is described 35 
as being limited to holding a single byte, it is clearly 
contemplated by the inventors that the register 68 may be of 
larger storage capacity, and have a multiple byte storage 
capability. The size of the register 68 is most properly 
determined by taking into account how fast the microcon- 40 
troller 26 will be able to execute a single instruction being 
retrieved from the buffer memory 28. Presently, the NEC 
78352 microprocessor requires about 300 nanoseconds (10 
clock cycles) on average to execute a single instruction. 
However, use of a reduced instruction set (RISC) controller 45 

at the same clock frequency will reduce instruction execu­
tion time to only about three clock cycles (75 nanoseconds). 
Under circumstances of reduced instruction execution times, 
a register 68 containing 15 bytes (in addition to a present 
byte being delivered immediately to the microcontroller via 50 

the path 136) is preferred. At the same time, the address 
comparator 154 will look at the address lines above the four 
low bit lines and will determine that a cache hit has occurred 
if equivalence is detected. In this example, the four low bit 
lines are then applied to address particular byte locations 55 
within the register array 68. The comparator 154 is extended 
in function when the register 68 is sized to hold multiple 
bytes or values. 

Also, when the register 68 is sized to hold multiple bytes, 
prefetching becomes entirely practical, and once a value is 60 

requested which is not in the register 68 and a memory 
access cycle occurs, a page mode access may be executed by 
the buffer controller 36 in order rapidly to prefetch imme­
diately subsequent bytes from the buffer array 28 into the 
storage locations of the buffer 68 as it does for the sequencer 65 
FIFO 39 and for the host interface FIFO 41. Further details 
of operation of the buffer controller state machine, including 

As illustrated in FIG. 7 A, the floating windows A, B, C, 
D and E of the rnicrocontroller 26 may be mapped as plural 
discrete blocks to different address locations A', B', C', D' 
and E' of the buffer memory 28, keeping in mind that the 
block sizes of the discrete windows A-E are respectively the 
same size as the mapped locations A'-E'. FIG. 7B illustrates 
a special case in which the floating block windows A-E arc 
concatenated into a single contiguous address space which is 
translated to the space A'-E' in the buffer memory 28. 

Before discussing an example of arbitration within the 
arbitration circuit 52, as set forth below in conjunction with 
FIG. 9, a buffer control state machine 200 will first be 
discussed. This state machine is also resident within the 
arbitration control block 52 and its states are depicted in 
FIG. 8. The state machine 200 is reset by assertion of a reset 
command at a step 202 or otherwise enters an idle arbitrate 
state 204. So long as there are no access requests asserted 
either by the sequencer 38, by the microcontroller 26, by the 
host interface controller 40, or by a memory refresh require­
ment, the state machine 200 goes through a "no requests" 
loop 206. 

When a request for buffer memory access is received, the 
idle state 204 is left and a first state Nl of a normal cycle 
sequence is entered. The first state Nl causes the full address 
value to be latched from the selected source (such as the 
microcontroller 26) into the address multiplexer 114. During 
a second state N2 of the normal sequence, a row half of the 
latched address is identified within the multiplexer 114. 
During a third state N3 the row address is sent via the path 
64 into the DRAM buffer memory 28 along with assertion 
of a row address select (RAS) control line. RAS remains 
asserted throughout the balance of the normal cycle. State 
N4 continues with assertion of the RAS control line. During 
this state a column portion of the full address is now asserted 
from the multiplexer 114 over the path 64 to the buffer 
memory 28. In this manner, the path 64 need provide only 
one half of the required address lines for addressing the 
entirety of the memory space definable by the memory array 
28. This column address is then applied to the memory upon 
assertion of a column address select (CAS) control value 
during a normal state NS. At the completion of a final state 
N6 of the normal cycle, both the RAS and CAS signals 
become deasserted, and the state machine 200 decides 
whether to return to the idle state 204, or whether to enter a 
page mode. 



5,465,343 
17 

Page mode enables very rapid sequential data word trans­
fers to and from the buffer 28. For example, the first word 
to be transferred into the sequencer FIFO 39 would be 
transferred by the normal mode sequence. The remaining 
five data words needed to fill (or empty) the FIFO 39 would 5 
then be transferred by the page mode, providing the address 
did not cross a data block (page) boundary (wherein a data 
block may comprise 512 data bytes or 256 data words, for 
example). There are four states in the page mode. The first 
state entered in page mode is a state P4. State P4 handles an 
address setup operation during which the address incre-

10 

menter 126 is e.g., incremented by one address count. This 
new address is then stored in a register of the transfer control 
block 118 and put out through the address multiplexer 114 

18 
normal data transfer sequence is followed by two page mode 
sequences. In the meanwhile, the sequencer again requests 
access,· and bumps the host access request. The sequencer 
then obtains direct access to the memory and completes its 
normal and page mode sequences. 

Once a direct access is established between the micro­
controller 26 and the DRAM buffer array 28, further tech­
niques may be employed to increase the effective bandwidth. 
In this regard, it will be appreciated that disk drives are 
somewhat unique in that they manifest three or four dedi­
cated process threads which are ongoing fairly continuously. 
One process thread is the transfer of data between the disk 
storage surface 12 and the buffer 28 via the sequencer 38 and 
sequencer FIFO 39. Another process thread is the transfer of to the buffer memory 28. 

15 data between the host computer 30 via the external bus 
structure 32, interface controller 40 and interface FIFO 41. 
A third process thread is transfer of instruction sequences 
from the buffer 28 to the microcontroller 26, and a fourth 
process thread is the transfer of data tables and values 

During a subsequent state Pl of page mode, a decision is 
made whether or not to continue and, if so, to assert a new 
column address. During state P2, CAS is asserted. State P3 
represents a program delay to enable values to stabilize 
within the memory array. During state P4, the sequencer 
FIFO 39 is being strobed to gather the data word being 
transferred. The FIFO pointer is being incremented, etc. This 
sequence is then repeated automatically for each of the data 
words to be transferred to (or from) the sequencer FIFO 39. 
The same page mode process also applies to data transfers 
between the buffer 28 and the host interface FIFO 41. The 

25 

Pl state checks whether the involved FIFO is full or empty 
(which is a condition for arbitration of priority). If so, or if 
there is a page break, a return is made to the idle state 204. 
The page break is a function of the DRAM 28, and typically 

30 
may be set at each 256 bytes. When a page break in DRAM 

20 between the microcontroller 26 and the buffer 28. 

28 is encountered, it is necessary to return to the normal 
cycle to reset the addresses into the DRAM. 

The refresh sequence is conventional and is specified by 

FIG. 10 shows a modification of the present invention to 
provide two standard DRAM buffer memory arrays (chips) 
28A and 28B. The first DRAM buffer 28A is e.g. primarily 
devoted to storage and retrieval of program instruction 
sequences, tables and variables for use by the microcontrol­
ler 26. The second DRAM buffer 28B serves as a data/cache 
buffer for data block transfers between the sequencer 38 and 
the host interface 40. 

Additional multiplexing circuitry 202 and chip select 

the manufacturer of the particular DRAM selected as the 
buffer array 28. One presently preferred refresh method is to 
assert CAS before RAS, and steps Rl through R6 essentially 
carry out this refresh methodology. Once refresh is com­
pleted, a return is made to the idle/arbitrate state 204. 
Whenever the DRAM 28 sees CAS asserted before RAS, it 
knows that a refresh cycle is being asserted. Counters within 
the DRAM 28 keep track of what area of the array was last 
refreshed, so that the refresh cycle is evenly distributed in 
time over the entire buffer array 28. 

circuitry 204 are provided in the buffer controller 36. This 
architecture of FIG. 10 provides bandwidth improvements in 
that sustained page mode transfers of up to 256 words per 
transfer may be carried out at effectively double the band­
width of an architecture employing only a single buffer 28. 

35 This approach is low cost in the sense that conventional 
DRAM chips may be employed for the memories 28A and 
28B, and the additional chip select circuitry 204 enables 
separate signals to be generated and put out to each of the 

40 

FIG. 9 illustrates an example of arbitration. The DRAM 45 

data bus traffic is illustrated by the top graph. Two requests 
for access are applied to the arbitration circuit 52 at the same 
time. One request comes from the sequencer 38 over the 
control path labeled SEQUENCER_REQ in FIG. 9, and the 
other from the microcontroller 26 over the control path 50 

labeled UC DIRECT_REQ. Since the sequencer has highest 
priority in this example, the sequencer is given first access 
to the buffer, and the microcontroller 26 is placed into a wait 
state by virtue of assertion of the wait line 62. The normal 
cycle sequence, during which one word is transferred 55 

between the buffer 28 and the sequencer FIFO 39, nominally 
requires about 175 nanoseconds. Thereafter, five words are 
transferred during page mode, and the page mode sequence 
only requires about 100 nanoseconds per word transferred. 
Once the six words have been transferred between the 60 

sequencer FIFO 39 and the buffer 28, the microcontroller 
gains access the buffer, and the DIRECT_REQ line 
becomes deasserted. At this point, there are no requests for 
access presented to the arbitration circuit 52, and the buffer 
control state machine 200 idles in the idle/arbitrate state 204. 65 

The microcontroller then asserts an access request and is 
serviced. The host interface 40 then requests access, and a 

chips 28A and 28B. 

FIG. 11 illustrates the timing relationships by which 
interleaved memory access cycles are achieved within page 
mode with the FIG. 10 implementation. In this arrangement 
BAR CAS 0 is out of phase with BAR CAS 1. While BAR 
CAS 0 is true (low) a data word may be read from or written 
to the buffer 28A. While BAR CAS 1 is true (low) a data 
word may be read from or written to the buffer 28B. Writing 
can occur once the address for the particular array has 
stabilized on the multiplexed address bus. The data to be 
written is latched in synchronism with the appropriate 
falling edge of CAS. 

FIG. 12 sets forth a single DRAM 28C following an 
architecture optimized for disk drives, such as the drive 10 
of the present invention. In this chip 28C, a row and refresh 
control circuit 206 generates suitable RAS and refresh 
signals, while a page cache and column control circuit 208 
generates suitable column and page cache control signals. 
The row and refresh control signals generated by the row 
and refresh control circuit 206 are applied to a main memory 
array 210 of the chip 28C, while the page cache and column 
control signals from the circuit 208 are applied to four page 
cache arrays 214, 216, 218, and 220. An internal data bus 
structure 212 provides a data path between the main array 
210 and each cache array 214-220. Bi-directional driver 
circuitry 222 connect data outputs from the cache arrays 
214-220 to the main memory bus 56. 

In the main array 210 in the present example the row size 



5,465,343 
19 

is e.g. 256, and the column size is also 256, with a word 
length of I6 bits. Columns within each page cache 214-220 
are accessed individually using CAS, PACSEL I:O and the 
low eight address lines ADD 7:0. Rows are accessed in their 
entirety (C*W bits being read or written) using RAS and 5 
ADD 7:0. Refresh may occur in parallel by providing an 
internal row counter during absence of a RAS cycle. The 
page caches 214-220 are preferably formed as latch arrays, 
and may preferably be static, rather than dynamic memory. 

The first cache array 214 may be directed to the micro- 10 
controller program process thread, for example. The second 
cache array 216 may be directed to the microcontroller 
tables and variables process thread. The third cache array 
218 may be directed to data transfers between the sequencer 
FIFO 39 and the buffer 28, and the fourth cache array 220 

15 
may be directed to data transfers between the host FIFO 41 
and the buffer 28. These assignments are arbitrary and may 
change in real time under program control of the microcon­
troller 26. This arrangement takes advantage of the fact that 
each of these four process threads statistically tends to 

20 
operate within a single page area (e.g. 256 I6-bit words) for 
some given length of time, and often sequentially. 

Each time one of these process threads involves an access 
to the main array 210, a standard RAS/CAS cycle would be 
carried out, with RAS being the page mode. Once every 25 
process has performed a RAS/CAS cycle, the second and 
subsequent times around, the particular process gets data 
from its particular page, and the RAS cycle is no longer 
needed. Consequently, the access cycle time is cut in half, 
for e.g. up to the next 255 data word accesses. This approach 30 
has proven very efficient for the disk and host block transfer 
processes, since they are sector oriented. It works fairly well 
for the microcontroller program code transfers also, depend­
ing upon how much the process jumps across page bound­
aries. Microcontroller code can be tailored to constrain most 35 
jumps to locations within a memory page, so that random 
accesses may be limited to the address space of the cache 
then holding the program instruction sequence, e.g. cache 
214. In this approach, when switching from one cache to the 
next, the output from the first cache is placed on the bus 56 40 
just long enough to be transferred to its destination, e.g. the 
sequencer FIFO 39. Then, the output from the next cache is 
multiplexed onto the bus 56. This multiplexing, together 
with elimination of the RAS cycles approaches an effective 
quadrupling of bandwidth of the data bus 56, and transfers 45 
at rates up to and above e.g. 40 megabytes per second are 
entirely practical with existing DRAM technology. 

Having thus described an embodiment of the invention, it 
will now be appreciated that the objects of the invention 
have been fully achieved, and it will be understood by those 50 

skilled in the art that many changes in construction and 
widely differing embodiments and applications of the inven­
tion will suggest themselves without departing from the 
spirit and scope of the invention. The disclosure and the 
description herein are purely illustrative and are not intended 55 

to be in any sense limiting. 
What is claimed is: 
1. In a disk drive architecture including a rotating data 

storage disk, a positionable data transducer for writing data 
to, and reading data from, selectable track locations defined 60 

on the disk, a preamplifier/driver connected to the data 
transducer, a read/write channel connected to the preampli­
fier/driver, sequencer means including sequencer FIFO 
buffer means for transferring user data blocks between 
selected track locations of the disk and the sequencer FIFO 65 
buffer means, host interface controller means including 
interface FIFO buffer means for transferring user data 

20 
blocks, commands and status values between a host com­
puter and the interface FIFO buffer means, buffer memory 
means for storing data blocks in transit between the 
sequencer means and the host interface controller means, 
buffer controller means for controlling accesses to the buffer 
memory means, programmed digital microcontrollcr means 
for decoding and executing commands received from the 
host computer and for controlling a positioning mechanism 
for positioning the data transducer at selected track loca­
tions, an improvement enabling program execution by the 
microcontroller means of microcontroller instructions stored 
in the buffer memory means comprising: 

microcontroller interface means connected between the 
microcontroller means and the buffer controller means, 
the microcontroller interface means including address 
mapping register means for mapping at least one pre­
determined portion of directly addressable memory of 
the microcontroller means to address locations of the 
buffer memory means and further including instruction 
prefetch register means for storing microcontroller 
instructions retrieved from the buffer memory means, 

the buffer controller means including programmable 
access arbitration means for arbitrating requests for 
access to the buffer memory means by the sequencer 
means, the host interface controller means and the 
microcontroller means and, 

microcontroller wait state generator means responsive to 
the access arbitration means for generating and assert­
ing a wait state control to the microcontroller means 
until a request made by the microcontroller means for 
access to the buffer memory means can be handled. 

2. The improved disk drive architecture set forth in claim 
1 wherein the buffer memory means comprises a single 
dynamic random access memory chip defining a storage 
array, and wherein the arbitration means further arbitrates 
requests for memory refresh operations generated by the 
buffer controller means. 

3. The improved disk drive architecture set forth in claim 
1 wherein the buffer memory means is arranged to store 
2N-bit wide data at each addressable storage location 
wherein N is natural number and wherein the microcontrol­
ler means is arranged to retrieve IN-bit wide data from the 
buffer memory means, and wherein a first retrieval of a 
IN-bit wide datum by the microcontroller means from the 
buffer memory means causes the instruction prefetch regis­
ter means to concurrently retrieve a second IN-bit wide 
datum from the buffer memory means so that said second 
IN-bit wide datum is transferred directly from the instruc­
tion prefetch register means to the microcontroller means if 
the microcontroller means attempts an immediately subse­
quent sequential read from the buffer memory means. 

4. A method for sharing a single buffer memory in a disk 
drive between a sequencer, a host interface controller and an 
embedded digital microcontroller for controlling data stor­
age and retrieval operations of the disk drive whereby the 
microcontroller may execute a set of microcontrollcr 
instructions stored in the buffer memory without impeding 
accesses to the buffer memory initiated by the sequencer and 
the host interface controller, the method comprising the 
steps of: 

mapping at least one predetermined portion of directly 
addressable memory space of the microcontroller to 
address locations of the buffer memory, 

arbitrating requests for access to the buffer memory by the 
sequencer, the host interface controller and the micro­
controller, 



5,465,343 
21 

loading the set of microcontroller instructions into the 
buffer memory, 

generating and applying a wait state sequence to the 
microcontroller until a request made by the microcon­
troller for access to the buffer memory can be executed 5 

as determined by the arbitrating step, and 
executing said request made by the microcontroller for 

access to the buffer memory by generating and apply­
ing a data location address mapped from an address 
supplied from the microcontroller to the buffer memory 10 

and transferring data values between the microcontrol-
ler and the buffer memory. 

5. The method set forth in claim 4 wherein the mapping 
step comprises the step of mapping a plurality of predeter­
mined portions of directly addressable memory space of the 15 

microcontroller to plural block address locations of the 
buffer memory. 

6. The method set forth in claim 5 wherein the step of 
mapping a plurality of predetermined portions of directly 
addressable memory space of the microcontroller to plural 20 

block address locations of the buffer memory comprises the 
steps of separately mapping for each one of a plurality of 
discrete blocks as independently floating data block win­
dows via a buffer mapping means into address locations of 
the buffer memory. 25 

7. The method set forth in claim 6 comprising the further 
steps of accessing and executing with the embedded digital 
microcontroller a control program routine in the buffer 
memory at locations within one of said independently float­
ing data block windows, and transferring data values to and 30 

from the buffer memory during execution of said control 
program routine at storage locations within another of said 
independently floating data block windows. 

8. The method set forth in claim 4 wherein the buffer 
memory defines addressable storage locations which are 35 

sized to be integral multiples of the bit width of the data 
transferred between the microcontroller and the buffer 
memory and wherein the step of executing the request for 
access to the buffer memory by the microcontroller com­
prises for a first access to a particular address location of the 40 

buffer memory the further step of caching a portion of a 
memory value at the particular address location which is not 
transferred between the microcontroller and the buffer 
memory in a microcontroller cache buffer. 

9. The method set forth in claim 8 wherein the step of 45 

executing the request for access to the buffer memory by the 
microcontroller comprises for a second and successive 
access to the particular address location of the buffer 
memory the further step of retrieving the portion from the 
microcontroller cache buffer. 50 

10. The method set forth in claim 4 wherein the arbitrating 
step comprises a further step of assigning access priorities to 
the sequencer, the host interface controller and the micro­
controller. 

22 
and for controlling rotation of the data storage disk, 

a buffer memory array for temporary storage of data 
blocks in transit between the disk drive and the host 
computing system and for concurrent storage of execut­
able microcontroller instructions, 

a host interface for transferring data blocks between the 
host computing system and the buffer memory array, 

a sequencer for transferring data blocks between the 
buffer memory array and the data storage disk by 
converting blocks to and from serial data and for 
detecting predetermined data storage locations on the 
data storage disk, 

a microcontroller interface circuit including a memory 
translation circuit for translating external direct 
addresses put out by the microcontroller into addresses 
for directly addressing the buffer memory array, and 

a buffer memory controller circuit including an arbitration 
circuit for arbitrating access requests by the microcon­
troller, the sequencer and the host interface, and a 
microcontroller cache buffer for temporarily storing at 
least one value sought by the microcontroller from the 
buffer memory array while another value sought by the 
microcontroller is transferred directly from the buffer 
memory array to the microcontroller. 

12. The disk drive set forth in claim 11 wherein the 
microcontroller includes internal read on! y memory within a 
predetermined segment of microcontroller direct address 
space, and wherein the memory translation circuit translates 
addresses within the microcontroller' s address space which 
are located outside of the predetermined segment. 

13. The disk drive set forth in claim 12 wherein the 
memory translation circuit translates addresses within the 
microcontroller's address space into one of a plurality of 
programmable windows of address space of the buffer 
memory array. 

14. The disk drive set forth in claim 11 wherein the buffer 
memory array comprises a main DRAM memory array, and 
a plurality of page cache arrays, and multiplex means for 
multiplexing data from each said page cache array onto a bus 
leading from the cache buffer. 

15. The disk drive set forth in claim 14 wherein the 
plurality of page cache arrays comprises four cache arrays. 

16. The disk drive set forth in claim 11 wherein the 
sequencer and the host interface each includes a first-in, 
first-out buffer for temporarily holding a plurality of values, 
and wherein the buffer memory controller circuit includes a 
state machine operating in a page mode for automatically 
transferring pluralities of values between the buffer memory 
array and a selected one of the first-in, first-out buffers. 

17. The disk drive set forth in claim 11 wherein the 
microcontroller cache buffer holds a plurality of values, and 
wherein the buffer memory controller circuit includes cir­
cuitry for determining whether a value sought by the micro-

11. A disk drive comprising: 
a base, 
a data storage disk rotating relative to the base, 
a data transducer positioned relative to the disk 

transducing serial data to and from the disk, 
for 

a programmed microcontroller for controlling data trans­
fers between the disk drive and a host computing 
system, for controlling positioning of the transducer, 

55 controller is located within the microcontroller cache buffer 
and if so, for transferring the value directly to the micro­
controller without fetching from the buffer memory array. 

18. The disk drive set forth in claim 11 wherein the buffer 
memory array comprises two DRAM chips and wherein the 

60 buffer memory controller circuit includes means for sepa­
rately selecting, addressing and refreshing each said chip. 

* * * * * 


