
Quelo™

LINKER
AND

OBJECT
LIBRARIAN

MANUAL

Copyright
Copyright © 1984 by Quelo, Seattle, WA. All rights reserved. No part of this publication may be re­
produced, transmitted, transcribed, stored in a retrieval system, or translated into any language or
computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of Quelo.

Disclaimer
Quelo makes no representations or warranties with respect to the contents hereof and specifically dis­
claims any implied warranties of merchantability or fitness for any particular purpose. Further,
Quelo reserves the right to revise this publication and to make changes from time to time in the con­
tent hereof without obligation of Quelo to notify any person of such revision or changes.

Trademarks
CP /M is a registered trademark of Digital Research. PC-DOS is a registered trademark of IBM.

Contents.

TABLE OF
CONTENTS

Section 1. Hands On.
Section 2. Linker Overview.
Section 3. Linker Usage.
Section 4. Linker Directives.
Section 5. HEX Utilities.
Section 6. The Object Librarian.

Appendix A. Sample Listings.
Appendix B. Restrictions and Limitations.
Appendix C. Relocatable Object Format (Quelo Linker Text).
Appendix D. HEX Load Formats.
Appendix E. Linker Error Messages.
Appendix F. SPLIT Error Messages.
Appendix G. IMAGE Error Messages.
Appendix H. Librarian Error Messages.

Index.

Section 1. Hands On.

Introduction ... 1.1
Working Disk Preparation ... 1.1
Program Execution ... 1.1
Execution Date and Time .. 1.1
Running the Linker ... 1.2
Enter the Following Commands .. 1.2
Using the Linker. 1. 3

Section 2. Linker Overview.

Introduction ... 2.1
Link Specification .. 2.1

The Linker End Product. .. 2.1
The Linking Process ... -......... 2.1

Module Information Accumulation ... 2.2
Section Relocation. 2.2
Symbol Relocation ... 2.2
Linking and HEX File Production. . .. 2.3

Memory Allocation ... 2.3
ORG Directives Establish Absolute Addresses 2.3
SECTION Directives Reserve Space ... 2.3
DC and DCB Directives Generate Code .. 2.3
SET and EQU Directives Define Symbols .. 2.3
IFxx and ENDC Directives Conditional Linking 2.3

In Summary ... 2.3

© 1984 by Quelo .1

QLINK Table of Contents

Section 3. Linker Usage.

Command Line to Invoke the Linker. . .. 3 .1
Command Line Invoked Options ... 3.1
Comand Line Examples .. 3.2
General Syntax Rules ... 3.2
User-Defined Symbols .. 3.3
Program Counters .. 3.3
Constants ... 3 .4
Strings .. 3 . 4
Operators for Expressions. 3. 5
Operator Precedence .. 3. 5
Expression Evaluation .. 3.5
Expression Result Type Determination ... 3.5
Expression Usage Restrictions .. 3.6
Expression Result Truncation .. 3.7
Conditional Linking .. 3.7
Relocation and Linking Considerations .. 3. 7
Software Configuration Tracking ... 3.8
Macros ... 3.8
Linker Error Detection .. 3.8
Linker Error Message Content. .. 3.9

Section 4. Linker Directives.

Introduction ... 4.1
Data Generating Directives.4.1
DC
DB
DCB
DL
DS
DUPB
DUPL
DUPW
DW
END
ENDC
EQU
IDNT
IFxx
INCLUDE
LINK
LIST
LLEN
MSG
NO LIST
NOPAGE
OFFSET
OPT

Define constant (68000 byte order) 4.1
Define byte (Z80 byte order) .. 4.2
Define constant block (initialized space) 4.2
Define long word (Z80 byte order)4.2
Define storage (uninitialized space).4.2
Define block of bytes4.3
Define block of long words ... 4.3
Define block of words.4.3
Define word (Z80 byte order) ... 4.3
End of link specification. 4.3
End of IFxx conditional assembly4.3
Assign a permanent value to a symbol.4.3
Identify module ... 4.4
Beginning of conditional link specification 4.4
Include another file4.5
Specify items to be linked .. .4.5
Enable listing ... 4.6
Set the maximum listing line length.4.6
Message to console .. 4.6
Suppress listing ... 4.6
Disable vertical page formatting 4.6
Begin an "offset" label defining section 4.6
Specify one or more options. . .. 4. 7

Listing: CEX, NOCEX, CL, NOCL, MC, NOMC, MD, NOMD, MEX, NOMEX
ORO Begin absolute memory allocation4. 7
OUTPUT Specify HEX output format. ... 4.7
PAGE Begin new listing page .. .4.8

© 1984 by Quelo .2

QLINK Table of Contents

PLEN
REVLIST
SECTION
SET

Establish listing vertical format .. 4. 8
Select revision list option ·4.8
Assign sections to absolute address4.8
Assign a non-permanent value to a symbol.4.9

SPC Blank lines to listing .. .4.9
TTL Establish page title information. 4.9

Section 5. HEX Utilities.

The SPLIT Program
Splits HEX into even and odd .. 5.1

The IMAGE Program
HEX to binary memory image .. 5 .1

Section 6. The Object Librarian.

Object Library Benefits ... 6.1
Librarian Features .. 6.1
Object Librarian Demonstration .. 6.1
Command Line to Invoke the Librarian .. 6.3
Command Line Invoked Options. 6.3
Command Line Examples. 6.4
Librarian Usage .. 6.4
General Syntax Rules ... 6.5
Command Descriptions ... 6.5

Listing: ADD, COPY, CREATE, DELETE, END, EXTRACT, IDNT,
MUST, QUIT, SLIST, UPDATE

Command Reference Table. . .. 6. 7

Appendix A. Sample Listings

LT30.PRN Assembler Listing ... A.1
LT31.PRN Assembler Listing ... A.2
LT32.PRN Assembler Listing ... A.4
LT33.LST Linker Listing ... A.6
LT33.HEX Linker HEX output. .. A.8
L T33.RPT Linker Reports via QSYM

Module Summary List. ... A.9
Symbol Table and Cross Reference : A.10
Load Map ... A.11

QT33.LST Object Librarian Listing ... A.12
QT33.RPT Library Reports via QSYM

Module Summary List. .. A.13
Symbol Table and Cross Reference .. A.14

Appendix B. Restrictions and Limitations
Conditional Linking Nesting ... B.1
Expression Arithmetic .. B.1
Expression Complexity. B.1
Expression Values B.1
Linkable Objects ... B.1
Listing Line Length .. B.1
Program Size .. B.1
Link Specification Line Length ... B.2
Symbol Length .. B.2
Symbol Table Size. B.2

© 1984 by Quelo .3

QLINK Table of Contents

Appendix C. Relocatable Object Format (Quelo Linker Text).

Object Format Specification Reference Number. C.1
Object Header ... C.1
The MODULE File. , C. l
The LIBRARY File .. C.l
Quelo Linker Text Detail. ... C.2

Appendix D. HEX Load Formats.

Default HEX format. .. D.1
Motorola S-Record Format. .. D.1
Intel HEX Record Format. ... D.1
Mostek HEX Record Format. ... D.1

Appendix E. Linker Error Messages.

Appendix F. SPLIT Error Messages.

Appendix G. IMAGE Error Messages.

Appendix H. Librarian Error Messages.

Index.

© 1984 by Quelo .4

Introduction:

SECTION 1
Hands On

The linker program is used to bring together separately assembled modules to make up
one large program. Code is relocated to absolute memory addresses and references be­
tween modules are resolved. Individual modules lose their identity in the linking pro­
cess. Operation of the linker is controlled by a link specification file. The end result of
linking is a HEX load module containing load address information and the data to be
loaded.

The object librarian program is used to bring together separately assembled modules
into one file for later linking. No relocation or linking is performed. Each module in a
library file retains its identity separate from all others. Operation of the object librarian
is controlled by a library specification file. Object libraries are a convenience feature
and are not required for use of the assembler package.

The linker program will be demonstrated using sample files which are supplied on your
distribution disk.

In addition to this manual, there may also be some supplemental documentation. This
may be in printed form and/ or in a text file on your distribution disk. Look for a file
named "READ.ME" on the disk.

IMPORTANT - Read the supplemental information first. It may contain corrections
or additions to the manuals. It will contain information specific to your operating
system.

Working Disk Preparation:

Do NOT try the samples directly on your distribution disk. First copy the contents of
the distribution disk to a working disk and then store your distribution disk in a safe
place. If you should damage your distribution disk, a replacement may be had from
Quelo for the cost of materials, shipping and handling.

Program Execution:

The command used for program startup may vary from one operating environment to
another. In this manual, commands suitable for CP/M-80(CP/M1.4, 2.2, 3.0, MP/M
x.x, etc.) will be used for illustration purposes. These commands will also be applicable
to the 8086 and 68000 versions of CP /M and MP /M and also MSDOS and PCDOS on
the IBM PC. For other environments, the program startup commands may vary,
especially in the area of input/ output file specification. Supplementary documentation
should be consulted for the specific operating environment.

Execution Date and Time:

When available, the current date and time are placed in the listing file produced by the
program. The source of the date and time is system dependent and is covered in the
supplemental documentation.

© 1984 by QUELO 1.1

QLINK Hands On

Running the Linker:

The simplest command line for linking consists of the linker name followed by the
name of the link specification file. In this case some options will also be included in the
command line. Note that the files LT30.A68, LT31.A68 and LT32.A68 must first be
assembled to produce LT30.LTX, LT31.LTX and LT32.LTX, respectively. The
discussion of this example covers the linker reports: module summary, symbol table,
cross-reference and memory load map.

Enter the Following Commands:

A68K -L LT30
A68K -L LT31
A68K -L LT32

Read assembler source,
Produce listings,
Produce object files,

QLINK -LISX LT33

Read link specification,
Read object files,

Produce listing file,
Produce hex load file,
Produce symbol file,

QSYM -IBM LT33

Read symbol file,
Produce report file,

; assembly command
; assembly command
; assembly command

LT3x.A68
LT3x.PRN
LT3x.LTX

; link command

LT33.LNK
LT30.LTX
LT31.LTX
LT32.LTX
LT33.LST
LT33.HEX
LT33.SYM

; report command

LT33.SYM
LT33.RPT

The "L" option instructs the assembler and linker to retain lower case in symbols. The
"I", "S" and "X" options instruct the linker to place module summary, symbol table
and cross-reference data in the ".SYM" output file. The "I", "B", and "M" options
instruct the symbol report program to generate three reports: module summary (IDNT
directive information), combined symbol table and cross-reference, and a memory load
map.

Examine the listing file, LT33 .LST. It should appear similar to that provided in Ap­
pendix A, with the possibility of minor differences due to changes in the listing format
or due to editing necessary to make the listing fit the basic format of this manual.

The IDNT directive establishes a name for the program. This name is placed in the
''SO'' header record of the hex load file. The LINK directives determint; which modules
are to be linked and the order in which they are linked. The position of the LINK direc­
tives in the link specification do NOT have any bearing on where code from the
modules is positioned in memory. Code is located by section alone, unless it was
assembled under an ORG directive, in which case the position of the code was deter­
mined at the time of assembly.

The linker ORG directive, like the assembler ORG directive, is used to establish an
absolute memory location. However, the linker SECTION directive is unlike the
assembler SECTION directive in that it only reserves space for the specified relocatable
section or sections. The assembler SECTION directive selects one of the 16 relocatable
program counters.

To the linker, "SECTION 2" means reserve space for all of the code for section 2 from
all of the modules to be linked. In this example, modules LT31 and LT32 both con-

© 1984 by QUELO 1.2

QLINK Hands On

tribute code to section 2. This can be seen in the module listings and the memory load
map in Appendix A. Note in the load map that the order of the section 2 blocks from
these two modules was determined from the order of the LINK directives in the link
specification.

Section 0 was located at address $4000. Section 4 was located immediately following
the revision list data (to be discussed later). Section 3 was located immediately follow­
ing section 4, etc. To reiterate, code is primarily located by the use of ORO and SEC­
TION directives and the order of the LINK directives affects module code location
within a section.

The REVLIST directive causes the linker to place module name, version and revision
information into the program being constructed. REVLIST may be considered to
represent a 17th relocatable section whose data comes from the IDNT directives of all
the modules being linked. With this data included in the final program, there can be no
doubt as to the program configuration.
Examine the hex load file, LT33.HEX. The sample shown in Appendix A has been
edited to include commentary information. Data in the hex file h are generated as
modules are linked, so that in general the hex record load addresses will not be in ascen­
ding sequence.

The END directive has a symbol in the operand field. This specifies the value of that
symbol as the starting point of the program. The address of this symbol appears in the
"S9" end-of-file HEX record. The linker also generates an internal symbol
''< < < < < < < <'' which appears in the symbol table and load map to indicate the starting
point of the program.

For the sake of experiment, try changing the order of LINK and SECTION directives
and observe the effect on the load map.

Using the Linker:

Section 2 describes the overall operation of the linker.

Section 3 of this manual elaborates on the previous discussion.

Section 4 of this manual describes each of the linker directives in detail.

Section 5 of this manual covers the HEX file utilities. SPLIT is used to split a Motorola
S-Record HEX file into separate Intel HEX files for even and odd address bytes for 8
bit wide ROMS in systems with a 16 bit wide data bus. IMAGE is used to create a
memory image binary file from a HEX load module. IMAGE would be used to create
an executable file for CP/M-68K for instance.

Section 6 of this manual describes the object librarian and its use.

Appendix A contains listings referenced in the preceding discussion.

Appendix B covers the restrictions and limitations on the linker.

Appendix C describes the relocatable object format.

Appendix D describes the various HEX load formats available from the linker.

Appendix E explains the linker error messages.

© 1984 by QUELO 1.3

Introduction:

SECTION 2
Linker Overview

Although substantially different in appearance from the Motorola linker, QLINK per­
forms a very similar function. Code from each of the modules being linked is grouped
by relocatable section. Each of the 16 relocatable sections may be independently
located in memory. This facilitates separation of RAM and ROM spaces and separa­
tion of code, initialized data and uninitialized data spaces.

The link specification is patterned after assembly language source code. Although the
linker does not assemble machine instructions, it does process such directives as ORO,
DC, DCB, DS, EQU, IFEQ, etc., the same as the assembler. Symbols may be defined
by the SET and EQU directives or as labels. All symbols defined in the link specifica­
tion will be public and may be referenced as externals in the modules being linked. Ex­
pressions used as operands to the linker directives may contain references to symbols
defined as public in the various modules being linked.

This scheme provides considerable flexibility and a language already familiar to the
programmer, rather than the cryptic commands found in most linkers. The link
specification may even be generated using the macro pre-processor, M68K. The
minimal link specification would require LINK directives to select the modules for link­
ing and an ORO directive to locate the program in memory.

The linker does not generate a memory image of the final program and does not load
the program in memory. The IMAGE program may be used to create a memory image
of the program. As object modules are processed, absolute HEX object records are
generated directly. Consequently, the HEX object records will not be arranged in
ascending load address order. This is not a problem, but just a statement of fact.
Memory space is required only for symbol table storage. No HEX object code is
generated for uninitialized space.

The Linker End Product:

The linker produces a HEX object file of Motorola S-records. Optionally, Intel style
hex records and Mostek hex records may be had. See Appendix D for descriptions of
these formats.

The linker also produces a listing file comparable to that of the assembler. Command
line options may be used to write symbol table data and cross-reference data to a
separate file for subsequent generation of module list, symbol table, cross-reference
and memory map reports.

The Linking Process:

Since object code is accumulated by section, the linker must interrogate all object
modules for section sizes before it can allocate memory and begin the linking process.
Therefore, the first order of business is to determine what modules are to be linked.
The LINK directive is used to specify object files for loading.

© 1984 by QUELO 2.1

QLINK Linker Overview

The smallest unit that can be loaded by the linker is known as a module. A module is
the relocatable-linkable object code produced by one execution of the assembler. A
library is a collection of modules gathered together by the object librarian program.
One application for a library is to keep a collection of utility modules which might be
useful in a number of different programs. Another application is to collect all modules
for a given program in one file.

Several formats are available for LINK directive operands. The type of the specified
file (module or library) and the specific operand syntax used determine what action the
linker takes. The following actions are available:

• Load a module file.

• Load a module file only if it is needed to satisfy undefined symbols.

• Load all modules in a library file. This would be useful in the case of a
library of modules for a given program.

• Load modules from a library file according to a list of specified
module names. Library files have a table of module names at the
beginning to facilitate searches. Associated with each module name is
an offset to the location of the module in the library file.

• Load modules from a library file only if they are needed to satisfy
undefined symbols. This action is usually known as a library search
and would typically be used for a library of utility modules. Library
files have a table of globally defined symbols at the beginning to
facilitate searches. Associated with each symbol is an offset to the
location of the module in which the symbol is defined. The undefined
symbol search process repeats each time another module is selected
from the library. This iterative search process eliminates the need for
careful ordering of the modules in a library and insures that all re­
quired modules will be loaded.

Refer to Section 4, Linker Directives, for the LINK directive syntax. Note that LINK
directives are processed as encountered in the link specification file. If a new module is
loaded after a library search and the new module needs a module (not loaded) from the
library previously searched, it will be necessary to use another LINK directive to ini­
tiate another library search. Thus, the order of appearance of link directives may be
important in a particular application.

During the process of determining which modules are to be linked, a symbol table is
constructed from the symbols for each module and the section sizes from each module
are accumulated. The order in which the modules will be linked is the same as the order
of appearance of the LINK directives. In the case of modules included from library
searches, the order is unspecified.

At the end of this first phase of linking the total size for each of the 16 relocatable sec­
tions will be known. Given this information, the linker can then allocate memory based
on the ORO and SECTION directives in the link specification. At this point, the sym­
bols will be of type constant, absolute address or relocatable address.

The next phase of linking is to process the link specification in two passes, correspon­
ding to the two passes of the assembler. The first pass is needed to deal with forward
referenced symbols. References in the link specification to symbols defined in the
modules being linked are permitted, but references to relocatable symbols are
restricted. For instance, in "DCB expl ,exp2", expl (the block size) may not be
relocatable but exp2 may be relocatable. No expression that could affect memory
allocation may reference relocatable symbols.

At the end of this first pass, all relocatable symbols are assigned their final absolute
memory addresses. The second pass is then used to output hex code for such directives
as DC, DCB and possibly, REVLIST.

© 1984 by QUELO 2.2

QLINK Linker Overview

At the end of this second pass, the final phase of linking begins. It is this phase that
processes the code portions of the modules being linked. External references are resolv­
ed and absolute object code is output in the form of hex ·records for subsequent loading
into the target 68000 system.

Memory Allocation:

The ORO directive is used to establish absolute addresses. As in the assembler, it
assigns a value to the program counter.

SECTION directives follow ORO directives to specify where the section is to be located
in memory. The program counter is incremented by the size of the particular section
specified in the directive. A section may be made to immediately follow another section
by not preceding the SECTION directive with an ORO directive or by specifying
several sections with a single SECTION directive.

The link specification may include DS directives to reserve space. DC and DCB may be
used to create data in 68000 byte order. DB, DW, DL and DUP may be used to create
data in Z80 byte order. Labels may also appear in the link specification. Such labels
will have a type of "absolute address" and will be treated as any other global symbol.

SET and EQU directives are also available for defining symbols in the link specifica­
tion. The IFxx and ENDC directives, as in conditional assembly, may be used for con­
ditional linking.

All symbols defined in the link specification are available when the object code linking
process actually begins. Therefore, external references in the various object modules
may be satisfied by symbols defined in the link specification.

In Summary:

The linker performs the following agenda:

Initial Phase.
Process LINK directives.
Build list of modules to be linked.
Build symbol table from modules.
Accumulate relocatable section sizes.

Middle Phase.
Ignore LINK directives.
Pass 1.

Process ORO, SECTION, DS, DC, DCB, IDNT,
REVLIST, SET, EQU and IFxx directives.

Allocate memory.
Add to symbol table.
Relocate symbols to absolute addresses.

Pass 2.
Generate code for DC, DCB and possibly

the REVLIST directive.

Final Phase.
Read object modules.
Resolve external references.
Output HEX load file.

© 1984 by QUELO

Output module, symbol table and cross-reference
information if requested.

2.3

SECTION 3
Linker Usage

Command Line to Invoke the Linker:

QLINK <filename>
QLINK =<filename>
QLINK <hex>,<listing>,<symbol>=<link spec>

; short form
; intermediate
; full form

------------------------------------1/ 0 Specification Equivalence------------------------------------
XYZ XYZ.HEX,XYZ.LST,XYZ.SYM = XYZ.LNK
,CON: =XYZ NUL:,CON:,NUL: =XYZ.LNK
=XYZ XYZ.HEX,NUL:,NUL: =XYZ.LNK
XYZ.OBJ =XYZ.SRC XYZ.OBJ,NUL:,NUL: =XYZ.SRC
,CON: =CON: NUL:,CON:,NUL: =CON:
B:,C:,D: =A:X B:X.HEX,C:X.LST,D:X.SYM =A:X.LNK
.OBJ,.PRN =X X.OBJ,X.PRN,NUL: =X.LNK

Note that these examples apply to "CP /M like" environments. Supplementary
documentation deals with issues specific to the operating system under which QLINK is
being used.

Command Line Invoked Options:

The command line may consist of several items, one of which must be the 1/0
specification. Command line items are separated by spaces, implying that the 1/0
specification may not have embedded spaces. Items beginning with a minus sign are in­
terpreted as option selections.

The "-B" option has the same effect as selecting both the "-S" and "-X" options.

The "-E" option causes local labels from linked modules to be retained in the symbol
table for inclusion in the memory map. These labels will not otherwise be used by the
linker.

The "-Hx" option selects the format for the HEX object output. The "x" may be "S"
for Motorola S-records, "I" for Intel HEX records or "M" for Mostek HEX records.

The "-I" option causes module summary information (from IDNT directives) to be
written to disk for subsequent processing by QSYM. Whether or not this file is actually
written depends on the input/output specification in the command line. The same disk
file is used for the "I", "S" and "X" options. From this information, the QSYM pro­
gram produces a list of all modules linked including module name, version, revision
and description.

The "-L" option causes the linker to distinguish between upper and lower case letters
in user-defined symbols. Upper and lower case letters will still be considered the same
in directives.

The "-S" option causes the symbol table to be written to disk for subsequent process­
ing by QSYM. Whether or not this file is actually written depends on the input/output
specification in the command line. The same disk file is used for the "I", "S" and
"X" options. The QSYM program formats a symbol table report and/or a cross
reference report and/or a memory map.

© 1984 by QUELO 3.1

QLINK Linker Usage

The "-T" option causes truncation of long symbols to 8 characters, rather than the
usual 31 characters.

The "-V" option is used to put an ASCII formfeed character at the beginning of the
listing output.

The "-X" option causes cross reference data to be written to disk for subsequent pro­
cessing by the QSYM program. Whether or not this file is actually written depends on
the input/ output specification in the command line. The same disk file is used for the
"I", "S" and "X" options.

Command Line Examples

"QLINK -S XYZ" specifies that a symbol file is to be produced, that the link specifica­
tion file is "XYZ.LNK", that the listing file is "XYZ.LST", that the hex object file is
"XYZ.HEX" and that the symbol file is "XYZ.SYM".

"QLINK -LE XYZ"specifies the same link specification, listing and hex object files as
the previous example, but specifies the "L" and "E" options. In this case there is no
symbol file since the "I", "S" and "X" options are all absent. Note that the options
may be concatenated following a single minus sign. "QLINK -L XYZ -E" would pro­
duce the same effect.

"QLINK ,CON: =XYZ"suppresses the object and symbol files, sends the listing to the
console and specifies "XYZ.LNK" as the link specification file. Here, the console is
the "standard output" device of the C programming language.
"QLINK ,CON: =CON:" suppresses the object and symbol files and uses the console
for both source input and listing output ("standard input" and "standard output" in
C). This means that the linker may be used interactively, with certain limitations: The
linker makes three passes over the link specification input. So, unless the same infor­
mation is entered for each pass, errors will probably result, especially in the area of
user-defined symbols. Also, the listing is produced during pass 2, so that no feedback
will be seen until the first "END" directive is entered.

General Syntax Rules:

The link specification syntax is field oriented, with spaces and/or tabs serving as field
delimiters. Spaces and tabs will be referred to as blanks in the following discussion.
The implication of this is that, except for strings and character constants, blanks may
not appear in expressions.

The label field normally begins in column 1. For labels beginning in column 1, a ter­
minating colon is optional. For labels preceded by blanks, a terminating colon is re­
quired in order to prevent the linker from confusing the label field with the operation
field.

The second field is the operation field, where linker directives appear. If a symbol is
present in the label field, a colon or blank or both must precede the operation field, if
the operation field is present. Note that an asterisk may appear in the operation field to
indicate that the rest of the line is commentary (i.e. in this context, the asterisk may be
considered a linker directive which means "comment").

In another context the asterisk may be considered a symbol to represent the program
counter in expressions. And last, but not least, the asterisk serves as the multiply
operator in expressions. This triple duty for the asterisk is consistent with the
assembler, A68K. A semicolon may be used in place of the asterisk to indicate com­
ments.

© 1984 by QUELO 3.2

QLINK Linker Usage

Linker directives are described with examples in Section 4, Linker Directives. Although
some directives are partially explained in this Section, Section 4 should be referenced
for complete details.

A label may appear on a line by itself. Anything following the label field will be as­
sumed to be a directive, unless it is begun with an asterisk to indicate commentary. An
asterisk as the first non-blank character on a line indicates that the entire line is com­
mentary.

The third field is for any operands of directives. For those directives not requiring
operands, anything appearing in the operand field will be treated as commentary. The
fourth field is always treated as commentary.

User-Defined Symbols:

Symbols begin with a letter, a period or an underscore. Additional characters may be
letters, digits, periods, dollar signs and underscores. Upper and lower case letters are
not distinguished, unless the "-L" option is in effect. Symbols may retain up to 31
significant characters. If the "-T" option is in effect, long symbols are truncated to 8
characters.

Symbols in the link specification may represent constants or absolute addresses. The
implications of this symbol typing are discussed under Expression Evaluation.

Symbols may be defined by use in the label field of certain directives. In the case of the
SET and EQU directives, the symbol value and the symbol type are derived from the
expression in the operand field of the directive. The expression may NOT contain for­
ward references, but may contain references to non-relocatable global symbols defined
in the modules being linked.

Note that a size designation may be appended to the SET and EQU directives to govern
the way character constants appearing in the expression are handled. Character con­
stants are left justified according to size and zero filled. This issue is further discussed
under Constants.

The IDNT directive defines a symbol as the name of the module being assembled. The
symbol itself appears in the label field. See Software Configuration Tracking later in
this section for the purpose of IDNT.

Other symbols appearing in the label field are assigned the type and current value of the
program counter. From now on such symbols will be referred to as labels. Labels are
used to reference specific points in a program or data area and have a type of "absolute
address".

The symbol table includes symbol type information and an indication as to how the
symbol was defined (SET, EQU, label, etc.). All symbols defined in the link specifica­
tion are global, and must not have the same name as symbols made public by the
XDEF assembler directive in the modules being linked.

Program Counters:

Program counters are selected and initialized by the OFFSET and ORO directives. The
OFFSET program counter is of type "constant". The ORO program counter is of type
"absolute address". An asterisk may be used as a symbol in expressions to represent
the current value of the currently selected program counter.

OFFSET is similar to ORO, only no object code related features may be used
("SECTION", "REVLIST", "DC" and "DCB"). "DS" is used to increment the off­
set counter. OFFSET is handy for generating offset labels for use in the d(An) and
d(An,Ri) addressing modes available in the assembler.

© 1984 by QUELO 3.3

QLINK

Constants:

Strings:

Linker Usage

All sections and all constants of size word and size long (except when defined by the
Z80 byte order directives) are required to reside at an even address. QLINK forces such
items to an even address by insertion of a zero byte when necessary. Note that "DS O"
may be used to force an even address. If the program counter is already at an even ad­
dress, no action is taken.

When a label appears on the same line as a directive, value assignment is postponed un­
til after even address adjustment occurs. This assures that a word or long data item
label falls on an even address. However, there will be no even address adjustment when
a label appears on a line by itself. If the program counter value is odd, a lone label will
be assigned that odd value. The label would then not be useful if the next line contained
a word or long data item. QLINK flags this as an error.

Constants, other than decimal, are preceded by a special character to indicate the for­
mat of the constant as follows:

character
hex - $
octal - @

binary
decimal

-%
- 0 thru 9

Character constants are enclosed in single quotes. Two adjacent single quotes are used
to force one quote into a constant. The number of characters that may appear in such a
constant is dependent on the context in which the constant is used. For instance, the
character constant in "DC.B 'x' + 128" is limited to 8 bits, or one character. Note that
'x' in this example is a character constant and NOT a string because of the "+ 128".
Strings have unlimited length. In DC.W the character constant would be limited to 16
bits or two characters. Likewise, in DC.L the limit would be 32 bits or 4 characters.

One or two characters are left justified in 16 bits and three or four characters are left
justified in 32 bits. For DC.B, one character is NOT left justified in a word. More
characters than the limit results in an error message.

The Z80 byte order directives, DB-DW-DL-DUP, do NOT left justify character con­
stants.

In the expressions for the SET, EQU and IFxx conditional assembly directives, the
character constant justification is in a word for two or less characters. For three or four
characters, the justification is in a long word. For more than four characters, an error
message is produced. A size designation may be appended to SET, EQU and IFxx to
force justification to byte, word or long sizes.

Strings are delimited by single quotes. Two adjacent single quotes are used to force one
quote into a string. For instance "" is a string containing one single quote mark.
Strings may be used as operands to the DC directive. Such strings are padded with
zeros if the size designated with the DC directive is word or long. Thus, the total
number of bytes generated for the string will be some multiple of 2 or 4 for word and
long sizes respectively.

No padding takes place for the byte size. The default size for the DC directive is word
(DC.W). The Z80 byte order directives, DB-DW-DL-DUP, do NOT pad strings with
zeros for boundary alignment.

(c: 1984 by QUELO 3.4

QLINK Linker Usage

Operators for Expressions:

+ add

*
I
OJo
&
I

A

<<
>>

subtract
signed multiply
signed divide
signed modulus
bitwise AND
bitwise OR (both allowed)
bitwise exclusive OR
logical shift left (zero fill)
logical shift right (zero fill)

unary minus (two's complement)
rv unary NOT (one's complement)

mm - "!" allowed for consistency with the
Motorola assembler

Operator Precedence:

mm

unary not, minus
shift left, right

- highest precedence

and, or, exclusive or
multiply, divide, modulus
add, subtract - lowest precedence

Precedence may be altered in the usual way by using parentheses.

Expression Evaluation:

Except within character constants, embedded blanks are not allowed in expressions.
Blanks serve as field delimiters. Expressions have a type attribute to facilitate evalua­
tion and error detection. By the time expression evaluation takes place, all relocatable
symbols from the various modules being linked have been assigned absolute addresses.

Symbol and expression "type" attributes are:

c - constant
a - absolute address
r - relocatable address

Expression Result Type Determination:

The type and class attributes are processed separately. The following table is used to
determine the result type for each binary operation. A minus sign indicates an error
situation and a result type of c.

© 1984 by QUELO 3.5

QLINK Linker Usage

---------- operand ---------- ------------------- result types ------------------­
types

left right

c c
c a
c r

a c
a a
a r

r c
r a
r r

other

c c

a
c
c

r
c
c

+
c
a
r

a

r

The following table is used to determine the result type for each unary operation. A
minus sign indicates an error situation and a result type ot c.

operand result types
type "-'

c
a
r

c c

If it is necessary to use operators other than + and - with absolute addresses, base sym­
bols can be subtracted to convert to a constant value. An absolute base symbol would
be defined by following "ORG O" with a label, "BASE".

Expression Usage Restrictions:

Expressions may appear as parameters to various linker directives. In some cases, ex­
pressions may not contain forward references. References to relocatable symbols in the
modules being linked will result in error messages in most expression applications. The
exceptions are in the DC and DCB directive data operands and in the starting address
operand of the END directive. Expressions will also be found in the object modules
being linked, but in a binary, postfix format. The following table summarizes the
restrictions:

Exp. Fwd. Valid Type Value
Use Ref. Range
DB,DW,DL, ok c,a,r, unsigned 32, 16, 8
DC,DCB ok c,a,r unsigned 32, 16, 8
DCB size no c 0 to 32767 *
DS no c 0 to 32767 *
DUP size no c 0 to 32767 *
DUPB,W,L ok c,a,r unsigned 32, 16, 8
END no c,a,r
EQU no c,a
IDNT ok c 0 to 32767 *
IF xx no c,a
LLEN no c 79 to 132
OFFSET no c,a
ORG no c,a
PLEN no c 24 to 120
SECTION no c 0 to 15
SET no c,a
SPC no c 0 to 120

* Negative result treated as 0

© 1984 by QUELO 3.6

QLINK Linker Usage

Expression Result Truncation:

Truncation from 32 bit to 8 and 16 bit quantities is required in various situations. For
example: "DC.B PDQ+ X2" requires unsigned truncation of the result of the expres­
sion, "PDQ+ X2", to 8 bits.

Signed truncation to byte and word objects requires the expression value to be in the
ranges (-128 .. 127) and (-32768 .. 32767) respectively. Signed truncation applies to the
68000 absolute short addressing mode and to the displacements associated with other
addressing modes.

Unsigned truncation to byte and word objects requires the expression value to be in the
ranges (-128 .. 255) and (-32768 .. 65535) respectively. Unsigned truncation applies to im­
mediate operands and data for the DC and DCB directives.

Conditional Linking:

Conditional linking is implemented via the IFEQ, IFNE, IFLT, IFLE, IFGT, IFGE
and ENDC arithmetic test directives. The value of a single expression is tested for the
condition specified. For example, the IFLT test result is "true" if the expression value
is less than zero. Note that the expression may not contain forward references or
relocatable symbols.

Character constants appearing in the expression are handled as described previously
under Constants. For example, "IFNE.W" will cause any character constants in the
expression to be left justified in 16 bits, with zero filling.

Unlimited nesting is supported for conditional linking. Each IFxx directive must be
matched by a corresponding ENDC. When an IFxx directive test result is "false", all
subsequent source input lines will be ignored until the matching ENDC is encountered.
All intervening IFxx and ENDC directives are recognized to make the nesting work cor­
rectly.

Additional information on the conditional linking directives may be found in Section
4, Linker Directives.

Relocation and Linking Considerations:

Items to be resolved by the linker may be byte, word and long objects. All objects to be
resolved are evaluated in 32 bit arithmetic by the linker. Byte and word objects are then
truncated to 8 and 16 bits respectively. The truncation may be signed or unsigned,
depending on the nature of the object.

None of the 16 relocatable sections are assigned any special purpose. The user may
allocate any section for code, data, ROM, etc. The linker groups all of the code for a
given section together. The final location for the code of each section is established in
the link specification by the combined use of ORO and SECTION directives.

Symbols declared external (XREF) to a module must be defined and tagged as global
(XDEF) in another module. Also, all symbols defined in the link specification are
global and symbols defined in some module being linked may be referenced in the link
specification. When there is no global definition for a symbol which is declared exter­
nal, the linker will produce an error message. A given symbol may be tagged global in
only one place. More than one global definition of a symbol will result in an error
message.

Note that all symbols defined in the link specification are automatically global and may
be referenced by any module. A given symbol may be declared external in more than
one module. When symbol type information is specified in an external declaration, the

© 1984 by QUELO 3.7

QLINK Linker Usage

type must agree with that specified in the definition of the global symbol. Otherwise,
an error message will result.

All global symbols must be unique in a given program link. Two global symbols of the
same name, even if defined in different sections, will be treated as duplicate global
definitions, and an error message will result. Named relocatable sections (COMMON)
are NOT supported in QLINK at the present time.

Software Configuration Tracking:

Macros:

The IDNT directive in A68K and QLINK and the REVLIST directive in QLINK may
be used together to insert module version and revision information into your final pro­
gram. That way, inspection of the program memory image can reveal exactly which
modules were used to make up the program. That information includes the module
name and the module version and revision numbers.

For this feature to be useful, you must remember to change the version and/or revision
number in the IDNT directive each time a module is modified. This information is
passed on to the relocatable object code (linker text). Essentially, the revision list may
be considered a special 17th relocatable section. When the REVLIST directive is omit­
ted from the link specification, the revision information will not appear in the final ob­
ject code.

The sample program on your distribution disk (LT30.A68, LT31.A68, LT32.A68 and
LT33.LNK) displays its own revision list at the terminal of an ERG 68000 system. The
terminal character output routine found in L T32.A68 may be modified for your par­
ticular hardware or operating system. The ORG directive in LT33.LNK may be chang­
ed to locate the program at a convenient place for your system. Each of L T30, L T31
and L T32 are to be assembled by A68K. The object modules are then to be linked using
LT33 as the specification to QLINK.

Try these commands:

A68K LT30
A68K LT31
A68K LT32
QLINK LT33

Macros can be used to construct link specification files. Macros are implemented via a
separate pre-processor program. This is necessary due to the limited memory space
available on CP/M-80 systems. The symbol table is memory resident, occupying the
TP A space from the end of the linker program to the beginning of BDOS, less stack
and file control table space. The macro pre-processor is discussed in detail in the
assembler manual in Section 7, The Macro Pre-Processor.

Linker Error Detection:

Various situations can produce error messages. In some cases a single error may actu­
ally produce more than one message. Invalid characters in symbols will confuse the
parser, so that error messages will vary, depending on the context in which the symbol
is found. The error message may be for invalid operands, invalid expression or both.
Error messages are listed and explained in Appendix E.

A period without a size may follow the mnemonic for a directive which has an
associated size. This permits null macro parameter substitutions without causing er-

© 1984 by QUELO 3.8

QLINK Linker Usage

rors. If parameter zero in "DC.\O XYZ" is null, no error will be generated. The size
for the directive will be the default as usual.

Invalid operands for directives will produce error messages.

Syntax errors may produce a variety of error messages, depending on the situation.

The expression evaluator places restrictions on the types of operands that are valid for
each operator. Invalid types will cause error messages. Embedded blanks or other syn­
tax errors will also produce error messages. Character constants with too many
characters will result in error messages.

Expressions are used in many different contexts, many of which place restrictions on
the nature of the expression. Forward references are taken into account for error
checking. Expression value truncation to 8 or 16 bits may produce errors if the value is
out of range.

Linker Error Message Content:

All error messages will include a message and "ERROR" or "WARNING" or a blank
field for extensions of a previous error message.

During processing of the link specification file, error messages will contain the name of
the current input file (normal input or "include" input), the listing line number and the
line number of the current input file. This style of error message can appear during the
first part of linker phase 1 (specification pass 0) or during linker phase 2 (specification
pass 2).

During processing of an object module for symbol information in linker phase 1, error
messages will include the module name. Such messages will appear in the listing file
before the actual listing and will be caused by such things as duplicate symbols or
discrepancies between the definition and use of a symbol.

During processing of an object module for relocation and linking in phase 3, error
messages will include the module name and address information. If the code was
assembled under the ORO directive, only the absolute address will be given. If the code
was assembled under a SECTION directive, the section number will be given with the
relative offset from the beginning of the section for the module. The absolute address
to which the code was relocated will also be given.

With the module name and the address information, the offending source code can
easily be found in the assembly listing for the module. For instance, if a BSR.L instruc­
tion references an external symbol which ends up located more than 32K from the loca­
tion of the branch instruction, a "Word signed truncation" error message will result.
In the module listing simply scan the address column to find the address given in the er­
ror message. In this case the error message address will be the address of the BSR in­
struction plus two.

© 1984 by QUELO 3.9

Introduction:

SECTION 4
Linker Directives

Linker directives perform a variety of functions, from generating object code to con­
trolling the linking process. For instance, the DC directive is used to place data in the
resulting object code. The EQU directive is used to assign a value to a user-defined
symbol. The IFEQ directive is used to enable or disable processing of the link specifica­
tion lines which follow the directive.

Some directives control various aspects of the link listing. The OPT directive is used to
make selections from a variety of listing options.

The syntax for each directive is described in this section. Examples are given for each of
those directives having an operand field. Blanks in the syntax descriptions are not
significant. Required white space for field delimiters is represented by a <s>. Other
notations used in the syntax descriptions are:

<s>
<olabel>
<rlabel>

<.z>

represents one or more spaces or tabs
represents optional label
represents required label
represents no label allowed
represents optional .B, .W or .L

Data Generating Directives:

Directives are provided to generate data in Z80 or 68000 byte order. No boundary
alignment is performed for Z80 directives, and character constants in expressions are
right justified.

68000 Z80

DC.B DB
DC.W DW
DC.L DL
DCB.B DUPB
DCB.W DUPW
DCB.L DUPL

DC - Define constant (68000 byte order).

<olabel> DC<.z> <s> <list of data items>

This directive provides the means for assembling data into a program. <list of data
items> is a list of data items separated by commas. The data item size may be BYTE,
WORD or LONG, with the default being WORD. A data item may be a string of
characters enclosed in single quotes or a data expression. In the case of a string, the size
controls the number of zeros padded at the end of the string to round out a word or
long word.

Note that there is a difference between 'abcdef' and 'ab'+ 128. The first case is a string
which may have any number of characters. The second case is a data expression, in

© 1984 by QUELO 4.1

QLINK Linker Directives

which 'ab' is a character constant. The handling of character constants is discussed in
detail in Section 3, Linker Usage - Constants.

The data expression may contain forward references and may contain relocatable sym­
bols as well as a constant and absolute symbols. The data expression is subject to un­
signed truncation for BYTE and WORD sizes. Truncation is discussed in Section 3,
Linker Usage - Expression Result Truncation.

Examples:

DC.B

DC

DC

DC

DC.L

DC.B

'Hello Quelo'

'Hello'

'AB'+ 128

MAIN

* 48 65 6C 6C 6F 00

* 41 C2

PROCO,PROCl ,PROC2,PROC3

31,28,31,30,31,30,31,31,30,31,30,31

DB - Define byte (Z80 byte order).

<olabel> DB <s> <list of data items>

See the paragraph on data generating directives at the beginning of this section.

DCB - Define constant block (initialized space).

<olabel> DCB<.z> <s> <count expr>, <data expr>

This directive provides the means for assembling a block of identical data items into a
program. <count expr> is an expression that specifies the number of data items. The
count may not exceed 32767. A negative count or a count greater than 32767 is treated
as a count of zero. The count expression may NOT contain forward references and
may NOT have a relocatable value. Such cases will be flagged as errors.

<data expr> is an expression that provides the data value. The data value size may be
BYTE, WORD or LONG, with the default being WORD. The data expression may
contain forward references and may contain relocatable symbols as well as a constant
and absolute symbols. The handling of character constants is discussed in detail in Sec­
tion 3, Linker Usage - Constants. The data expression is subject to unsigned truncation
for BYTE and WORD sizes. Truncation is discussed in Section 3, Linker Usage - Ex­
pression Result Truncation.

Examples:

DCB

DCB.B

DCB.L

3,0

25,' '

10,ERROR

DL - Define long word (Z80 byte order).

<olabel> DL <s> <list of data items>

* three words of zeros

* 25 ASCII spaces

See the paragraph on data generating directives at the beginning of this section.

DS - Define storage (uninitialized space).

<olabel> DS<.z> <s> <count expr>

This directive is used to reserve uninitialized space in a program. <count expr> is an ex­
pression that specifies the count of space items. A space item is BYTE, WORD or
LONG, with the default being WORD. The count of space items may not exceed
32767. A negative count or a count greater than 32767 is treated as a count of zero. The
count expression may NOT contain forward references and may NOT have a
relocatable value. Such cases will be flagged as errors.

© 1984 by QUELO 4.2

QLINK Linker Directives

Examples:

DS 16 * 16 words (32 bytes)

DS.B BUFFER.SIZE

DS.L 7

DUPB - Define block of bytes.

<olabel> DUPB <s> <list of data items>

DUPL - Define block of long words.

<olabel> DUPL <s> <list of data items>

DUPW - Define block of words.

<olabel> DUPW <s> <list of data items>

See the paragraph on data generating directives at the beginning of this section.

DW - Define word (Z80 byte order).

<olabel> DW <s> <list of data items>

See the paragraph on data generating directives at the beginning of this section.

END - End of link specification.

------- END <optional expression>

The linker ignores any lines following the END directive. If the END directive is in an
"included" file, the remainder of the main input file, as well as the included file, will
NOT be processed. The <optional expression> must include a leading space if present.

The expression establishes the entry point for the program being linked. The linker
generates an internal symbol, "< < < < < < < <", which appears in the symbol table and
load map reports to indicate the program starting address. The value of this expression
appears in the HEX file end record address field.

If an entry point is also specified in one of the modules being linked, the linker will pro­
duce an error message. Refer to the assembler END directive description. If the symbol
is omitted, it will be necessary to precede any comment with an asterisk.

Examples:

END

END MAIN.PROO

ENDC - End of IFxx conditional assembly.

------- ENDC

* no symbol given

no * necessary

This directive terminates the IFEQ, IFNE, IFGT, IFLT, IFGE and IFLE conditional
assembly directives.

EQU - Assign a permanent value to a symbol.

<rlabel> EQU<.z> <s> <expression>

This directive assigns a permanent value to the user symbol <rlabel>. The expression
may NOT contain forward references and may NOT have a relocatable value. The
symbol value may NOT be defined more than once in the link specification and the
value must be the same for passes 1 and 2. The symbol will be globally defined, and
must not conflict with public symbols defined in the modules being linked.

© 1984 by QUELO 4.3

QLINK

IDNT

Linker Directives

Note that a size designation may be specified with the directive. This enables the user to
control the justification of character constants in expression evaluation. The default
size is WORD for two or fewer characters and LONG for more than two characters.

The handling of character constants is discussed in detail in Section 3, Linker Usage
-Constants. Justification is to the left with zero filling. A constant of more than four
characters will be flagged as an error.

Examples:

ABC EQU 'a' * 00006100

ABC EQU 'ab' * 00006162

ABC EQU 'abc' * 61626300

ABC EQU.B 'a' * 00000061

ABC EQU.W 'abc' * error

ABC EQU.L 'ab' * 61620000

XYZ EQU 0

XYZ EQU BUFFERS*BUFFER.SIZE

- Identify module.

<rlabel> IDNT <s> <ver> , <rev> <description>

This directive establishes the program identification, where <rlabel> is the program
name, <ver> is the version number of the program and <rev> is the program revision
number. These two numbers may range from 0 to 32767. <description> is the optional
comment field and serves to give a brief description of the module.

This directive provides the means for software configuration tracking. The REVLIST
directive in the linker will cause the program and module names and their version and
revision numbers to be placed in the final program produced. Thus, the program con­
figuration can be discovered by direct inspection of the memory image of the program.

Examples:

UTI L IDNT 1,3 Utility routines

IFxx - Beginning of conditional link specification.

------- IF<conditionX.z> <s> <expression>

These directives, IFEQ, IFNE, IFGT, IFLT, IFGE and IFLE, begin conditional link
specification. Note that the linker does NOT support IFC and IFNC, the string com­
pare version of conditional linking. However, these IFC and IFNC are supported in the
macro pre-processor program. These conditional linking directives are terminated by
the ENDC directive. Conditional linking structures may be nested and each IFxx must
have a matching ENDC.

<condition> specifies the test to be applied to the value of <expression>. The expres­
sion may NOT contain forward references and may NOT have a relocatable value.
IFEQ is true only if the value of the expression is zero. IFLE is true only if the value of
the expression is less than or equal to zero. The others have similar interpretations.

Note that a size designation, <.z>, may be specified with the directive. This enables the
user to control the justification of character constants in expression evaluation. The
default size is WORD for two or fewer characters and LONG for more than two
characters.

The handling of character constants is discussed in detail in Section 3, Linker Usage
-Constants. Justification is to the left with zero filling. A constant of more than four
characters will be flagged as an error.

© 1984 by QUELO 4.4

QLINK Linker Directives

Examples:

IFEQ 0 * always true

IFNE 0 * always false

IFGT PDQ * true if PDQ > 0

IFLE PDQ * true if PDQ < = 0

INCLUDE - Include another file.

------- INCLUDE <s> <file specification>

This directive causes link specification input to be temporarily switched over to another
file, specified by <file specification>. When the end of the include file is reached, the
input is switched back to the original source file at the next line following the IN­
CLUDE directive. The exact nature of <file specification> is operating system depen­
dent and is discussed in a supplemental document specific to the system on which the
linker is to be used.

If an included file contains an INCLUDE directive, a warning message will be
generated and the input will be switched to the new include file. None of the remaining
lines of the first include file will be processed. The end of an include file always returns
to the original source file. Thus, nesting of INCLUDEs is not supported but chaining
is.

Examples:

INCLUDE SYSDEF.A68

LINK - Specify items to be linked.

------- LINK <s> <item> , <item> , ...

This directive is used to specify items to be linked. An item may be a module, an entire
library or selected modules from a library. Module selection may be made explicit or
may be based on what is actually needed to satisfy references to undefined symbols.
The type of file (module or library) and the syntax used to specify the link item deter­
mine the action taken by the linker. Variations for <item> follow.

<module file> causes a module to be loaded.

<module file> () causes a module to be loaded only if needed to satisfy references to
undefined symbols.

<library file> causes all modules in the library file to be loaded.

<library file> (<module list>) causes all modules listed in <module list> to be loaded
from the library file. <module list> is a series of module names separated by commas.
Module names are established by the IDNT directive in the assembler source code.

<library file> () causes the library to be searched. Only those modules needed to satisfy
references to undefined symbols will be loaded from the library.

Library and module file name syntax is operating system dependent.

Examples:

© 1984byQUELO

LINK

LINK

LINK

LINK

LINK

LINK

MODULE!

MODULE2()

LIBRARY!

LIBRARY2(MOD7 ,MOD8,MOD9)

LIBRARY3()

Ml,M2,M3(),Ll(M4,M5),L2()

4.5

QLINK Linker Directives

LIST - Enable listing.

------- LIST

This directive is used to cancel the effect of the NO LIST directive. The source line con­
taining this directive appears in the listing.

LLEN - Set the maximum listing line length.

------- LLEN <s> <max length>

This directive sets the maximum line length for the listing. The range limits of <max
length> are 79 and 132.

Examples:

LLEN 79 * screen size

MSG - Message to console.

------- MSG <s> <message>

This directive sends the <message> information to the console. It may be used to
monitor the progress of long linker runs or to signal the operator that console input is
required when the line following the MSG directive has an "INCLUDE CON:" direc­
tive. Note that "INCLUDE CON:" is applicable to CP/M-like systems, but may not
be applicable to other operating environments. Since the linker makes three passes over
the link specification file, it will be necessary to enter information for the INCLUDE
three times.

Example:

MSG Enter "BASE EQU ???"

NOLIST - Suppress listing.
------- NOLIST
-------NOL

These directives suppress listing output until a LIST directive is processed. Listing out­
put is enabled as the default. The source line containing these directives appears in the
listing.

NOP AGE - Disable vertical page formatting.

------- NOP AGE

This directive suppresses page titles and top and bottom margins. The effect is a con­
tinuous, unbroken listing.

OFFSET - Begin an "offset" label defining section.

------- OFFSET <s> <expression>

This directive selects and initializes a special "program counter", whose value type is
"constant", as opposed to "absolute address". The value of <expression> is used to
initialize the program counter. NO data producing directives may be used under the
OFFSET directive. OFFSET and ORO directives may be intermingled freely in a link
specification. The default program counter at the beginning of linking is ORO 0.

Typically, labels and DS directives would be used following OFFSET to assign cons­
tant values to symbols. This provides a convenient means for defining data structures.

Examples:

OFFSET 0

OFFSET PCB.BASE

© 1984byQUELO 4.6

QLINK Linker Directives

OPT - Specify one or more options.

------- OPT <s> <option list>

<option list> is a list of option selection mnemonics, separated by commas. Options
CL and MEX are used to control the presence of conditional assembly and macro ex­
pansions in the listing.

CEX use multiple lines for - default
object code if necessary

CL print conditional assembly - default

MC print macro calls
MD print macro definitions
MEX print macro expansions

NOCEX disable CEX
NOCL disable CL
NOMC disable MC
NOMD disable MD
NO MEX disable MEX

Examples:

OPT NOCL

OPT MC,MD * defaults

ORG - Begin absolute memory allocation.

------- ORO <s> <expression>

- default
- default

- default

This directive initializes the absolute "program counter", whose value type is "ab­
solute address", as opposed to "constant" (OFFSET). The value of <expression> is
used to initialize the program counter. OFFSET and ORO directives may be inter­
mingled freely in an assembly. The default program counter at the beginning of linking
is ORO 0.

Examples:

ORO

ORO

$800

BASE

OUTPUT - Specify HEX output format.

OUTPUT <s> <format>

This directive may be used to specify the HEX output file format as follows:

I Intel HEX
INTEL Intel HEX
M Mostek HEX
MOSTEK Mostek HEX
MOTOROLA Motorola S-records
S Motorola S-records

The default format is Motorola S-records. "MOT" followed by anything will get
S-records. Otherwise, only the first letter is actually used to determine format. This
directive takes priority over the command line HEX format specification, so the com­
mand line "-H" option will be ignored if this directive appears in the link specification.

Examples:

© 1984 by QUELO

OUTPUT M

OUTPUT I

4.7

QLINK Linker Directives

PAGE - Begin new listing page.

------- PAGE

This directive begins a new page. If the NOP AGE directive has been used, the PAGE
directive will have no effect. Also, if the NOLIST directive is in effect, the PAGE
directive will have no effect. If the NO PAGE directive is not in effect, the appropriate
number of blank lines will be sent to the listing to fill out a page. The vertical page for­
mat may be set using the PLEN directive.

Also, if the NOPAGE directive is not in effect, the new page will begin with a top
margin. The top margin will include a title if the TTL directive has been used. The
PAGE directive source line does NOT appear in the listing.

PLEN - Establish listing vertical format.

------- PLEN <s> <page length>,<top>,<bottom>

This directive may be used to control the listing page length and top and bottom
margins. The default page length is 66 lines. The default top margin is 0 lines. The
default bottom margin is 6 lines. That leaves 60 lines for the actual listing information,
including 4 lines of page heading. The operand expressions may NOT contain forward
references and may NOT have a relocatable value.

The range limits of page length, top margin and bottom margin are (24 .. 120), (0 .. 8)
and (-8 .. 8) respectively. When a negative bottom margin is indicated, page breaks will
be accomplished with blank lines and the absolute value of the number given will deter­
mine the bottom margin. Otherwise, ASCII formfeed characters are used for page
breaks. Vertical page formatting has no meaning when the NOPAGE directive is in ef­
fect.

This directive should only be used near the beginning of the link specification file,
otherwise the linker may have difficulty compensating for the change in vertical page
format. It does NOT have to be the first line, because that is typically where the TTL
directive will be used.

Example:

PLEN 66,0,6

REVLIST - Select revision list option.

------- REVLIST

* the default

This directive, like the SECTION directive, reserves space for a special section to con­
tain module revision information. This software configuration information will appear
in the final program output by the linker. If the REVLIST directive is not used, no
space will be reserved and no configuration information will be placed in the final pro­
gram. See Section 3, Linker Usage, under Software Configuration Control.

SECTION - Assign sections to absolute address.

------- SECTION <s> <section number list>

<section number list> is a list of <section number> items, separated by commas. <sec­
tion number> may be an expression that evaluates to 0 through 15. This directive is
unlike the SECTION directive in the assembler. In the link specification, the function
is to reserve space for the specified section or sections at the current location of the pro­
gram counter, established by a preceding ORG directive.

Thus, "SECTION 3" is equivalent to "DS <section 3 size>", except that the DS
directive would not communicate the necessary section number to the linker. <section 3
size> refers to the accumulated sizes of the section 3 portions of all modules being

© 1984 by QUELO 4.8

QLINK Linker Directives

linked. Even though code for various sections may be intermingled at assembly, the
linker will keep the code for each section separate in the final program. This scheme
permits generating programs for RAM-ROM environments.

Sections not explicitly allocated will be assigned in numerical sequence following
everything else in the link specification.

Examples:

SECTION 3

SECTION DSEG

SECTION 2,5,l

* locate section 3

* DSEG defined by EQU somewhere

* location order is 2,5, 1

SET - Assign a non-permanent value to a symbol.

<rlabel> SET<.z> <s> <expression>

This directive assigns a value to the user symbol <rlabel>. The expression may NOT
contain forward references and may NOT have a relocatable value. The symbol value
may be defined more than once in a program. The symbol will be globally defined, and
must not conflict with public symbols defined in the modules being linked.

Note that a size designation may be specified with the directive. This enables the user to
control the justification of character constants in expression evaluation. The default
size is WORD for two or less characters and LONG for more than two characters.

The handling of character constants is discussed in detail in Section 3, Linker Usage
-Constants. Justification is to the left with zero filling. A constant of more than four
characters will be flagged as an error.

Examples:

ABC SET 'ab' * see EQU for string examples

XYZ

XYZ

XYZ

SET

SET

SET

SPC - Blank lines to listing.

45

2*(XX-YY /5)1$800

XYZ+l

------- SPC <s> <blank line count>

If the NO LIST directive is in effect, the SPC directive will have no effect. This directive
causes a number of blank lines to appear in the listing. The range limit of <blank line
count> is 0 through the maximum listing lines per page. The count expression may
NOT contain forward references and may NOT have a relocatable value. The SPC
directive does not appear in the listing.

Examples:

SPC 3

SPC NSP

TTL - Establish page title information.

------- TTL <s> <title string>

* 3 blank lines to listing

The title string is limited to 60 characters and appears at the top of each successive
listing page until another title directive takes effect. The PLEN directive determines the
size of a page. The title string begins with the first non-blank character and carries
through to the end of the line. The string is NOT enclosed in quotes. For the title to ap­
pear on the first listing page, no printable source lines may precede the TTL direcive.

Example:

TTL Gizmo Program - 9/8/83

© 1984 by QUELO 4.9

SECTION 5
HEX Utilities

The SPLIT Program:

This program is used to split a HEX file of Motorola S-records into separate even and
odd address data HEX files of Intel hex records. This separation of data is required for
programming 8 bit wide ROMs to be used in systems having a 16 bit wide data bus. The
program prompts the user for starting and ending addresses. All data outside that ad­
dress range will be discarded.

The starting address must be even and the ending address must be odd.

All addresses in the specified range for which no data is present in the input file will
have a value of zero. The first byte in the even output file will be the byte at the starting
aodress. The first byte in the odd output file will be the byte at the starting address plus
one.

The first address in both of the output files will be zero, as the addresses in the output
files are relative to the beginning of the specified range. The program keeps track of the
highest address used within the specified range and does NOT output data for any ad­
dress beyond that.

The command line to run the program is as follows:

SPLIT XYZ ; short form
SPLIT XYZ.EVN,XYZ.ODD=XYZ.HEX ; long form

The two command lines above are equivalent. The long form permits giving the output
files different names if desired.

The IMAGE Program:

The purpose of the IMAGE program is to transform a HEX file of Motorola S-records
into a memory image binary file. This might be used to create an executable file to run
on CP /M-68K, provided that header information is included at the beginning of the
program.

The entire HEX file is read once to determine the size of the memory image. If the
image is too large for the available working memory, the HEX file will be processed in
multiple passes to create the output file. If the memory space available to IMAGE is
sufficient, only a second pass will be required.

The command line to run the program is as follows:

IMAGE XYZ
IMAGE XYZ.IMG=XYZ.HEX

; short form
; long form

The two command lines above are equivalent. The long form permits giving the output
file a different name if desired.

© 1984byQUELO 5.1

SECTION 6
The Object Librarian

Object Library Benefits:

The Object Librarian provides the means for creating and maintaining a library (collec­
tion) of relocatable object modules in a single file. There are several benefits to keeping
modules in a library. For one, utility subroutines used by a number of different pro­
grams may be collected in a library. Such a library would then be searched by the linker
for modules required to complete the linking process.

Another benefit is a reduced burden on the directory of the computer operating system.
For instance, collecting all of the modules for a given program into a library reduces
the directory usage from many file names to the single file name of the library.

Librarian Features:

The librarian is controlled by a library specification input. This input may come from a
file prepared in advance or from the console for interactive use. The librarian produces
a listing output which contains the specification input, error messages and other infor­
mation. This output may go to a file, the console or the listing device. If the output is
directed to a file and the input is from the console, the output will also go to the con­
sole. It is important to keep in mind that QLIB maintains internal tables for module
names and global symbols. The ADD and DELETE commands operate on these tables
and do not affect the files on the disk. The contents of the module table at the time the
END command is processed determines the contents of the new library to be con­
structed.

Means are provided for creating a new library, updating an existing library and copying
selected modules from a library into individual files. Library contents may be reported
by creating a file for use by QSYM. Module summary, symbol table and cross­
reference reports are available.

Object Librarian Demonstration:

The Object Librarian will be demonstrated using sample files which are supplied on
your distribution disk.

The simplest command line for using the librarian consists of the librarian name
followed by the name of the librarian specification file. In this case some options will
also be included in the command line. Note that the files LT30.A68, L T31.A68 and
L T32.A68 must first be assembled to produce L T30.LTX, L T31.L TX and L T32.L TX,
respectively.

Enter the following commands:

A68K -L LT30
A68K -L LT31
A68K -L LT32

©1984 by Quelo

; Assembly command.
; Assembly command.
; Assembly command.

6.1

QLINK

Read assembler source,
Produce listings,
Produce object files,

LT3x.A68
LT3x.PRN
LT3x.LTX

The Object Librarian

The following will demonstrate the method for creating a library file using a librarian
specification file. Enter the following command.

QLIB -SLIX QT33 ; Librarian command.

Read librarian specification,
Create object library file,

QT33.LIB
LIBRARY.LTX
LT3x.LTX
QT33.LST
QT33.SYM

Add object files to library file,
Produce listing file,
Produce symbol file,

The "L" option instructs the librarian to retain lower case in the module names used
by the librarian commands. The "I", "S" and "X" options instruct the librarian to
place module summary, symbol table and cross-reference data in the ".SYM" output
file. Enter the following command.

QSYM -IB QT33 ; Report command.

Read symbol file,
Produce report file,

QT33.SYM
QT33.RPT

The "I" and "B" options instruct the symbol report program to generate two reports:
module summary (IDNT directive information) and combined symbol table and cross­
reference.

Examine the listing file, QT33.LST. It should appear similar to that provided in Ap­
pendix A, with the possibility of minor differences due to changes in the listing format
or due to editing necessary to make the listing fit the basic format of this manual.

The CREATE command selects the librarian operating mode. The IDNT directive
establishes a name for the library along with version, revision and description informa­
tion.

Next is a demonstration of a method to update the library file created above using the
Object Librarian interactively.

Enter the following commands:

QLIB -L CON: ; Librarian command.
UPDATE LIBRARY ; Select the update mode.
MUST ; List the module names.
DELETE lt32 ; Delete lt32 module.

MUST
END

; Note: the module name lt32 must be
; entered in lower case because the
; module name appears in lower case within
; the IDNT information found in the source
; file L T32.A68. The "-L" option must also
; be included in the QLIB command line.
; List the module names.
; End specification phase and begin
; construction of the new library file.
; Note: the library file contents are not
; changed until the "end" command is
; encountered.

Next is a demonstration of a method to extract a module from the library created above
and copy the module to a disk file.

© 1984 by Quelo 6.2

QLINK The Object Librarian

Enter the following commands:

QLIB -L CON:
EXTRACT LIBRARY
MUST
COPY lt30,0LDLT30

END

; Librarian command.
; Select the extract mode.
; List the module names.
; Copy the lt30 module to a file.
; Note: the module name lt30 must be
; entered in lower case because the
; module name appears in lower case within
; the IDNT information found in the source
; file LT30.A68. The "-L" option must
; also be included in the QLIB command line.
; End specification phase and begin copy
; process.

Command Line to Invoke the Librarian:

QLIB <filename> ; short form
QLIB =<filename> ; intermediate
QLIB <listing>, <symbols>= <lib spec> ; full form

----------------------------------- 1/0 Specification Equivalence -----------------------------------
=CON: CON:,NUL:=CON:
CON:,XYZ=CON: CON:,XYZ.SYM=CON:
XYZ XYZ.LST,XYZ.SYM=XYZ.LIB
CON: =XYZ CON:,NUL: =XYZ.LIB
=XYZ XYZ.LST,NUL: =XYZ.LIB
XYZ.ABC = XYZ.SRC XYZ.ABC,NUL: = XYZ.SRC
B:,C: =A:X B:X.LST,C:X.SYM =A:X.LIB
.ABC, .SYM = X X.ABC,X.SYM = X.LIB

Note that these examples apply to "CP /M like" environments. Supplementary
documentation deals with issues specific to the operating system under which QLIB is
being used.

Library and object module file names appear with various librarian commands in the
library specification file. The default extension for such file names is ".LTX", an ab­
breviation for "linker text".

Command Line Invoked Options:

The command line may consist of several items, one of which must be the 110
specification. Command line items are separated by spaces, implying that the 1/0
specification may not have embedded spaces. Items beginning with a minus sign are in­
terpreted as option selections.

The "-B" option has the same effect as selecting both the "-S" and "-X" options.

The "-I" option causes module summary information (from IDNT directives) to be
written to disk for subsequent processing by QSYM. Whether or not this file is actually
written depends on the input/output specification in the command line. The same disk
file is used for the "I", "S" and "X" options. From this information, the QSYM pro­
gram produces a list of all library modules including module name, version, revision
and description.

The "-L" option causes QSYM to distinguish between upper and lower case letters in
module names appearing with the ADD, COPY and DELETE commands.

© 1984 by Quelo 6.3

QLINK The Object Librarian

The "-S" option causes the library symbol information to be written to disk for subse­
quent processing by QSYM. Whether or not this file is actually written depends on the
input/output specification in the command line. The same disk file is used for the "I",
"S" and "X" options. The QSYM program formats a symbol table report and/or a
cross reference report and/or a module summary report.

The "-T" option causes truncation of long module names to 8 characters, rather than
the usual 31 characters. This only affects module names appearing with the ADD,
COPY and DELETE commands.

The "-V" option is used to put an ASCII formfeed character at the beginning of the
listing output.

The "-X" option causes cross reference data to be written to disk for subsequent pro­
cessing by the QSYM program. Whether or not this file is actually written depends on
the input/output specification in the command line. The same disk file is used for the
"I", "S" and "X" options.

Command Line Examples:

"QLIB -S XYZ" specifies that a symbol file is to be produced, that the library
specification file is "XYZ.LIB", that the listing file is "XYZ.LST" and that the sym­
bol file is "XYZ.SYM".
"QLIB CON:= XYZ" suppresses the symbol file, sends the listing to the console and
specifies "XYZ.LIB" as the library specification file. Here, the console is the "stan­
dard output" device of the C programming language.
"QLIB CON:= CON:" suppresses the symbol file and uses the console for both source
input and listing output ("standard input" and "standard output" in C). This allows
the librarian to be used interactively.

Librarian Usage:

A library specification must begin with the name of the library to be operated upon.
For this purpose the CREATE, UPDATE and EXTRACT commands are provided to
establish the librarian operating mode and the file name for the "current library". On­
ly one of these commands may be used in a given specification.

The IDNT command is used to establish the new library name, version, revision and
description. This command is similar to the linker IDNT directive, only the library
name is placed as the first command operand since there is no label field as with the
linker directive.

The ADD and DELETE commands are used for manipulation of individual modules
under "create" and "update" operating modes.

The COPY command is used to copy a module from a library to a file under the "ex­
tract" operating mode.

The MUST and SLIST commands may be used to determine the current state of the
library being operated upon. For instance, one might want to list the global symbols
after adding a new module.

The END command terminates the library specification and initiates the actual con­
struction of the new library file in the "create" and "update" operating modes. In the
"extract" mode the only effect of the END command is to close the library file. The
ADD and DELETE commands only manipulate the symbol and module tables for the
library being constructed and the COPY command has no effect on the library file.

© 1984 by Quelo 6.4

QLINK The Object Librarian ·

No library file changes will be made on disk until an END command is processed or an
end-of-file condition is detected for the library specification file.

The QUIT command may be used in place of the END command to exit from the
librarian without making any library file changes.

If the specification input is from a file, an end-of-file condition will have the same ef­
fect as the END command. If the input is from the console, a control Z may be used in
place of END.

The internal structure of a library precludes the inclusion of more than one module
defining a given global symbol. A library file begins with a table of modules and a table
of all globally defined symbols. Associated with each symbol is information as to the
location in the library of the module which defines the global symbol. This structure
eliminates the need for the linker to search the entire library file to find specific module
names or globally defined symbol names.

Library summary information in the form of a module listing, a symbol table table
listing and a cross-reference listing may be had via the QSYM program. This is ac­
complished via a symbol file created in response to command line options.

Other librarian commands are INCLUDE, LIST, LLEN, MSG, NOL, NOLIST,
NOP AGE, PAGE, SPC, PLEN and TTL. These commands operate the same as the
linker directives of the same name. Refer to the linker directives for explanations. The
only difference is that linker directives are preceded by a label field and librarian com­
mands have no label field.

General Syntax Rules:

Asterisks and semicolons may be used to indicate comments in the specification file.
Commands may begin in column 1 or may be preceded by spaces and/or tabs. Some
commands may be abbreviated as shown later in a table. The command word (or ab­
breviation) must be followed by at least one space or tab (represented by <s> below) if
additional information is part of the command. Commands may be in upper or lower
case.

Module names are subject to the same restrictions imposed by the assembler and linker
on symbols.

File name restrictions are operating system dependent.

Command Descriptions:

ADD Add module(s) to the current library.

ADD <s> <add list>

<add list> is a list of items, separated by commas, specifying module(s) for addition to
the current library. A list item may have one of the following three possible formats:

<module file> specifies a simple module file, such as that produced by an assembler,
for addition to the current library.

<library file> specifies that an entire library file is to be added to the current library.

<library file> (<module list>) specifies individual modules to be added to the current
library from a library file. <module list> is a list of module names separated by com­
mas.

Example: ADD mfl,mf2,lfl(mn8,mn3,mn5),lf2.

© 1984 by Quelo 6.5

QLINK The Object Librarian

COPY Copy a module from the current library to the specified file.

COPY <s> <module name> , <module file name>

CREATE Establish a new, empty current library for subsequent ADD and DELETE comands.

CREA TE <s> <library file name>

If the file specified by CREA TE exists, it will be deleted when the END command is en­
countered. The IDNT command is required.

DELETE Delete a module from the current library.

DELETE <s> <module name>

END End the library specification phase and construct the new library file.

END

EXTRACT Establish a current library for subsequent COPY commands.

EXTRACT <s> <library file name>

If the file specified by EXTRACT does not exist, an error message will result.

IDNT Identify module.

IDNT <s> <module name>,<ver>,<rev> <s> <description>

This directive establishes module identification, where <module name> is the module
name, <ver> is the version number of the module and <rev> is the module revision
number. These two numbers may range from 0 to 32767. <description> is the optional
comment field and serves to give a brief description of the module.

MLIST List the module names for the current library.

MUST

QUIT Exit without altering any existing library files .

. QUIT

SLIST List the global symbols for the current library.

SLIST

© 1984 by Quelo 6.6

QUNK The Object Librarian

UPDATE Establish a new current library from an existing library for subsequent ADD and
DELETE commands.

UPDATE <s> <library file name>

If the file specified by UPDATE does not exist, an error message will result. If it does
exist, two things will happen: The module and symbol tables will be initialized from the
existing library and the existing library will be renamed to have an extension of
".L TB" when the END command is encountered. The IDNT command is optional. If
no IDNT command is given the identification information will be carried over from the
old library file and the revision number will automatically be incremented for the new
library file.

Command Reference Table:

"create" "update" "extract"
mode mode mode

CREATE UPDATE EXTRACT
CR UP EX

IDNT (req.) IDNT (opt.)
ID ID

ADD ADD
A A

DELETE DELETE
D D

COPY
c

MUST MUST MUST
M M M

SUST SUST SUST
s s s

END END END

QUIT QUIT QUIT

© 1984 by Quelo 6.7

APPENDIX A
Sample Listings

Quelo ••• A68K D5.0L 1/3/85 ••• Run on Jan 9, 1985 12:35:31
A:LT30.LTX , A:LT30.PRN , = A:LT30.A68

lt30

* 1.3
* 1.2
*

idnt 1,3

01/09/85 P. Adams
05/01/84 R. Curtiss

••• Page 1

remove nopage and llen
from main.a68 1.1

1.
2.
3.
4.
5.
6.
7.
8.
9.

* Main program for linker testing

0 1000000

0 1000000
0'000000 41F8'0000
0'000004 4EB8'0000
0'000008 4EB8'0000
O'OOOOOC 4EB8'0000
0'000010 4E75

0 1000012
0 Errors

© 1984 by Quelo

*

* * Entry points

*

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

xdef main.prog

* * External procedures referenced

* xref.s disp.config
xref .s line.out
xref .s cr.lf .out

*
* External data referenced

* xref .s sign.on

section 0

27. main.prog
28. lea
29. jsr
30. jsr
31. jsr
32. rts
33.
34. end

proc
sign.on,aO
line.out
cr.lf.out
dis~.config

A.l

QLINK

Quelo ••• A68K D5.0L 1/3/85 ••• Run on Jan 10, 1985 16:44:49
A:LT31.LTX , A:LT31.PRN , = A:LT31.A68

1. pl en 66,6,6
2.
3. lt31 idnt 1,7
4.
5.
6. * 1. 7 01/09/85 P. Adams
7. * 1.6 05/04/84

Sample Listings

••• Page 1

remove nopage and llen
spelling correction

8. * 1.5 remove short branches
9. * 1.4 05/01/84 R. Curtiss from config.a68 1.3

10. * 11. * Linker test module
12. * 13.
14.
15. * 16. * Entry points
17. * 18. xdef disp.config
19. * 20. * External procedures referenced
21. * 22. xref .s string.out
23. xref .s spaces.out
24. xref .s er.If .out
25. xref .s char.out
26. * 27. * External data referenced
28. * 29. xref .s rev list
30.

1'000000 31. section 1

-- -- -- -- -- -- -- -- -- --

1'000000 32. disp.config proc
33.

1'000000 41F8'0000 34. lea revlist,aO
35.
36. repeat

1'000004 1010 37. move.b (aO),dO end of list check
38.

1 1 000006 6738 39. break.s if <eq> loop exit
40.

1'000008 2248 41. move.I aO,al save string origin
l'OOOOOA 4EB8'0000 42. jsr string.out aO at end of string

43.
l'OOOOOE 7020 44. moveq #32,dO 32 column field
1 '000010 D089 45. add.I al,dO pad count =
1'000012 9088 46. sub.I aO,dO 32 - (aO - al)
1 1000014 4EB8'0000 47. jsr spaces.out

© 1984 by Quelo A.2

QLINK

Quelo ••• A68K DS.OL. 1/3/85 ••• Run on Jan 10, 1985 16:44:49
A:LT31.LTX , A:LT31.PRN , = A:LT31.A68

1'000018 5288
l'OOOOlA 3008
l'OOOOlC COBC 00000001
1'000022 DlCO

.. 1'000024 3018
1'000026 4EB9'00000000

l'00002C 7002
l'00002E 4EB8'0000

1'000032 3018
1'000034 4EB9'00000000

l'00003A 4EB8'0000
l'00003E 60C4

1'000040 4EB8'0000
1'000044 4E75

2'000000

2'000000

2'000000 2200
2'000002 7404

2'000004 E959
2'000006 3001
2'000008 C07C OOOF

48.
49.
so.
51.
52.
53 •
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

add.I
move
and.I
add.I

move
jsr

moveq
jsr

move
jsr

jsr
endr

#1,aO
aO,dO
#1,dO
dO,aO

(aO)+,dO
hex.word.out

#2,dO
spaces.out

(aO)+,dO
hex.word.out

er.If .out

jsr
rts

er.If .out

section 2

hex.word.out proc

move.I dO,dl
moveq #4,d2

repeat
rol #4,dl
move dl,dO
and #$f,d0

Sample Listings

••• Page 2

past end of string

word boundary adjust

version

two spaces

revision

repeat count

nibble mask

2'00000C B07C 0009 6F02
2'000012 SE40

70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

if dO <gt> #9 then.s

2'000014 D03C 0030
2'000018 4EB8'0000
2'00001C 5342
2'00001E 66E4

2'000020 4E75

2'000022
0 Errors

© 1984 by Quelo

add #7,dO
endi

add.b
jsr
sub

until

rts

end

#'O' ,dO
char.out
#l,d2

<eq>

offset to 'A'

ASCII bias

A.3

QLINK

Quelo ••• A68K D5.0L 1/3/85 ••• Run on Jan 10, 1985 16:46:10
A:LT32.LTX , A:LT32.PRN , = A:LT32.A68

1. pl en 66,6,6
2.
3. lt32 idnt 2,1
4.
5.
6. * 2.1 01/09/85 P. Adams
7. * 2.0
8. * 1.9
9. * 1.8 05/01/84 R. Curtiss

10. *
11.· * Linker test module
12. *
13.
14. *
15. * Entry points
16. *
17. xdef line.out
18. xdef string.out
19. xdef spaces.out
20. xdef er .lf.out
21. xdef char.out
22.
23.

4'000000 24. section 4

-- -- -- -- -- -- -- -- --
4'000000 25. line.out proc
4'000000 6100 **** 26. bsr string.out
4'000004 6100 **** 27. bsr er .lf.out
4'000008 4E75 28. rts
3'000000 29. section 3

-- -- -- -- -- -- -- -- --
3 1000000 30. string.out proc

31. repeat
3'000000 1018 32. move.b (aO)+,dO
3'000002 6700 0008 33. break if <eq)
3'000006 6100 0008 34. bsr char.out
3'00000A 60F4 35. endr
3'00000C 5388 36. sub.l #1,aO
3'00000E 4E75 37. rts
2'000000 38. section 2

-- -- -- -- -- -- --

2'000000 39. spaces.out proc
2'000000 3200 40. move dO,dl
2'000002 7020 41. moveq #' '>>8,dO

© 1984 by Quelo

Sample Listings

••• Page 1

remove nopage and llen
' '>>8
remove short branches
from util.a68 1. 7

-- -- --

-- -- --

end of string

aO at string terminator

-- -- --

space count
space character

A.4

QLINK

Quelo ••• A68K DS.OL 1/3/85 ••• Run on Jan 10, 1985 16:46:10
A:LT32.LTX , A:LT32.PRN , = A:LT32.A68

42. repeat
2'000004 4A41 43. tst dl
2'000006 6FOO OOOA 44. break if <le>
2'00000A 6100 **** 45. bsr char.out
2'00000E 5341 46. sub #1,dl
2'000010 60F2 47. endr
2'000012 4E75 48. rts
1'000000 49. section 1

-- -- -- -- -- -- --

1'000000 so. cr.lf .out proc
1'000000 700D 51. moveq #$0d,d0
1'000002 6100 **** 52. bsr char.out
1'000006 700A 53. moveq #$0a,d0
1'000008 6100 **** 54. bsr char.out
l'OOOOOC 4E75 55. rts
3 '000010 56. section 3

-- -- -- -- -- -- -- -- -- --

3 '000010 57. char.out proc
58. repeat

3'000010 1838 FFOl 59. move.b $ffffff01,d4
3'000014 C83C 0001 60. and.b #1,d4
3'000018 67F6 61. until <ne>
3'00001A llCO FFOO 62. move.b dO, $ff ff ffOO
3 'OOOOlE 4E75 63. rts

64.
3'000020 65. end

0 Errors

© 1984 by Quelo

Sample Listings

••• Page 2

count dl <= 0

-- -- --

carriage return

linefeed

-- -- --

get port status
TxRDY bit mask

output data

A.5

QLINK Sample Listings

Quelo ••• QLINK DZ.OJ 1/15/85 ••• Run on Jan 16, 1985 15:21:55
A:LT33.HEX , A:LT33.LST , A:LT33.SYM = A:LT33.LNK

••• Page 1

00004000

00004000

© 1984 by Quelo

1.
2.
3. lt331
4.
s. *
6. *
7. *
8.
9.

10. * 1.5
11. * 1.4
12. * 1.3
13. *
14. *
15. *
16. *
17. *
18. *
19. *
20. *
21. *
22. *
23. *
24. *
25. *
26. *
27. *
28. *
29. *
30. *
31. *
32. *
33. *
34. *
35. *
36. *
37. *
38. *
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49. *
so.

pl en

idnt

01/16/85
05/04/84

66,6,6

1,5

05/01/84 R. Curtiss

REVLIST demonstration

"lt331" appears in the
SO record of the HEX
load module

remove llen and nopage
more comments
from sample.168 1.2

Linker test - link/locate specification

O. Print this file, LT33.LNK, for
reference.

1. Assemble LT30.A68, LT31.A68 and LT32.A68
and print the resulting LT30.PRN,
LT31.PRN and LT32.PRN files.

A68K -L LT30
A68K -L LT31
A68K -L LT32

2. Link using this link specification file,
LT33.LNK. Print the resulting LT33.LST
and LT33.HEX files.

QLINK -SLIX LT33

3. Generate module list, symbol table, cross
reference and load map. Print the resulting
LT33.RPT file.

QSYM -IBM LT33

opt cex

link
link
link

org

lt32
lt30
lt31

$4000

section 0

modules
to

link

begin here

reserve space for
section 0

A.6

QLINK Sample Listings

Quelo ••• QLINK D2.0J l/1S/8S ••• Run on Jan 16, 198S 1S:21:SS ••• Page 2
A:LT33.HEX , A:LT33.LST , A:LT33.SYM = A:LT33.LNK

00004012
00004012 2E 2E 2E S3 61

6D 70 6C 6S 20
70 72 6F 67 72
61 6D 20 74 6F
20

00004027 69 6C 6C 7S 73
74 72 61 74 6S
20 72 6S 76 69
73 69 6F 6E 20

0000403B 6C 69 73 74 20
66 6S 61 74 7S
72 6S 00

00004048 <00000000>

00004048

00004070 0000

00004072

00004400

00004400
0 Errors

© 1984 by Quelo

Sl.
S2. sign.on:
S3. de. b ' ••• Sample program to'

S4. de. b 'illustrate revision '

SS. de. b 'list feature',O

ds 0 insure word boundary

revlist:
rev list

S6.
S7.
S8.
S9.
60.
61.
62.
63.

de 0
rev info all modules
terminate revlist

64.
6S. *
66. *
67.
68.
69.
70. *
71. *
72.
73.
74.

section 4,3,1,2

org $4400

end main.prog

reserve space for
these sections in
the order shown

all other sections
in case any code
exists for them

start label - see the

A.7

QLINK Sample Listings

LT33 Hex Output

S00800006C7433336C45
S12040122E2E2E53616D706C652070726F6772616D20746F20696C6C7573747261F6
SllC402F7465207265766973696F6E206C69737420666561747572650024
S105407000004A
S10D40486C7433336C0000010005B2
SlOD40526C74333200000002000118
S11D407261000008610000244E751018670000086100000860F453884E758D
Sll740F0320070204A416FOOOOOA6100FF90534160F24E7559
Sll1409C700D6100FFEC700A6100FFE64E75C6
Sl13408Cl838FF01C83C000167F611COFF004E75DB
S10D405C6C7433300000000100030F
S115400041F840124EB840724EB8409C4EB840AA4E75D2
S10D40666C74333100000001000700
S12040AA41F840481010673822484EB8407C7020D08990884EB840F052883008C040
S12040C7BC00000001D1C030184EB90000410470024EB840F030184EB900004104BA
S10F40E44EB8409C60C44EB8409C4E7521
Sl20410422007404E9593001C07COOOFB07C00096F025E40D03C00304EB8408C539D
Sl0841214266E44E7546
S9034000BC

© 1984 by Quelo A.8

QLINK

LT33 Module Summary List

Quelo ••• QSYM D2.0A 9/4/84 ••• Run on Jan 16, 1985 15:21:55
A:LT33.RPT = A:LT33.SYM ...

••• 68000 Linker ••• Module Summary

Module Ver Rev Name Description

o.
1.
2.
3.

1
2
1
1

5 lt331
1 lt32
3 lt30
7 lt31

© 1984 by Quelo

REVLIST demonstration

Sample Listings

••• Page 1

A.9

QLINK

LT33 Symbol Table and Cross Reference

Quelo ••• QSYM D2.0A 9/4/84
A:LT33.RPT = A:LT33.SYM

••• Run on Jan 16, 1985 15:21:55

••• 68000 Linker ••• Symbol Table and Cross Reference

Sample Listings

••• Page 2

Value Atr Symbol Module number reference/definition(=)

00004000 a-I <<<<<<<<
0000408C 3 P char.out
0000409C 1 P cr.lf .out
000040AA 1 P disp.config
00004072 4 P line.out
00004000 0 P main.prog
00004048 @ L revlist
00004012 @ L sign.on
000040FO 2 P spaces.out
0000407C 3 P string.out

+++++++++++++++

Value Type

constant

M register mask
@ abs address

O •• F reloc address
U unspecified
a address
% error

© 1984 by Quelo

Attribute Legend

Def /Ref Flag

def &ref
- def only
? ref only

% error

0=
l=
l=
2
l=
0
0=
0=
l=
l=

3
2
3=
2
2=
3
2
3
3

3

+++++++++++++++

By S,E,L,P = public

s SET directive
e EQU directive
r REG directive
1 label
p procedure label
x XREF directive
i internally def
% error

A.IO

QLINK

LT33 Load Map

Quelo ••• QSYM D2.0A 9/4/84 ••• Run on Jan 16, 1985 15:21:55
A:LT33.RPT = A:LT33.SYM

••• 68000 Linker

Section Address

0 Start 00004000
0 00004000
a 00004000
0 00004000
0 End 00004011

0 Size 12

@
@

00004012
00004048

4 Start 00004072
4 00004072
4 00004072
4 End 0000407B

4 Size A

3 Start 0000407C
3 0000407C
3 0000407C
3 0000408C
3 End 0000409B

3 Size 20

1 Start 0000409C
1 0000409C
1 0000409C
1 000040AA
1 000040AA
1 End 000040EF

1 Size 54

2 Start 000040FO
2 000040FO
2 000040FO
2 00004104
2 End 00004125

2 Size 36

© 1984 by Quelo

••• Absolute Address Load Map

Module name Symbol

2. lt30

1. lt32

1. lt32

1. lt32

3. lt31

1. lt32

3. lt31

<<<<<<<<
main.prog

sign.on
rev list

line.out

string.out
char.out

er .If.out

disp.config

spaces.out

Sample Listings

••• Page 3

A.11

QLINK Sample Listings

Quelo ••• QLIB Dl.OM 10/25/84 ••• Run on Jan 16, 1985 16:23:50
A:QT33.LST , A:QT33.SYM = A:QT33.LIB

1. * 1.0 01/16/85 P. Adams
2. *
3. *
4. *
5. *
6. *
7. *
8. *
9. *

10. *
11. *
12. *
13. *
14. *
15. *
16. *
17. *
18. *
19. *
20. *
21. *
22. *
23. *
24. *

QLIB test specification

o.

1.

2.

3.

Print this file, QT33.LIB for reference.

Assemble LT30.A68, LT31.A68, LT32.A68 and print
the resulting LT30.PRN, LT31.PRN, LT32.PRN files.

A68K -L LT30
A68K -L LT31
A68K -L LT32

Run QLIB using this librarian specification file,
QT33.LIB. Print the resulting LIBRARY.LST file.

QLIB -SLIX QT33

Generate the librarian module summary and symbol
table report. Print the resulting QT33.RPT file.

QSYM -IB QT33

25. idnt library,1,0 QLIB test specification
26. create library
27. add lt30
28. add lt31
29. add lt32
30. mlist

Module
1. lt30
2. lt31
3. lt32
31. slist

Global symbol
1. char .out
2. cr.lf .out
3. disp.config
4. line.out
5. main.prog
6. spaces.out
7. string.out
32. end

From file
lt30
lt31
lt32

Defined
lt32
lt32
lt31
lt32
lt30
lt32
lt32

in module

••• Page 1

,1,L,library,1,0,QLIB test specification <--New library being constructed
0 Errors

© 1984 by Quelo A.12

QLINK

QT33 Module Summary List

Quelo ••• QSYM D2.0A 9/4/84
A:QT33.RPT = A:QT33.SYM

••• Run on Jan 16, 1985 16:23:50

Librarian ••• Module Summary

Module Ver Rev Name Description

o.
1.
2.
3.

1
1
1
2

0 library
3 lt30
7 lt31
1 lt32

© 1984 by Quelo

QLIB test specification

Sample Listings

••• Page 1

A.13

QLINK

QT33 Symbol Table and Cross Reference

Quelo ••• QSYM D2.0A 9/4/84
A:QT33.RPT = A:QT33.SYM

••• Run on Jan 16, 1985 16:23:50

Librarian ••• Symbol Table and Cross Reference

Sample Listings

••• Page 2

Value Atr Symbol Module number reference/definition(=)

00000010 3 P char.out
00000000 1 P cr.lf .out
00000000 1 P disp.config
00000000 4 P line.out
00000000 0 P main.prog
00000000 ? revlist
00000000 ? sign.on
00000000 2 P spaces.out
00000000 3 P string.out

+++++++++++++++ Attribute Legend

Value Type Def /Ref Flag
------------------- ------------

constant def &ref
- def only

M register mask ? ref only
@ abs address

O •• F reloc address
u unspecified
a address
% error % error

© 1984 by Quelo

By

2
1
1
1
1=
2
1
2
2

. 3=
2
2=
3=

3=
3=

3=

+++++++++++++++

S,E,L,P = public

s SET directive
e EQU directive
r REG directive
1 label
p procedure label
x XREF directive
i internally def
% error

A.14

APPENDIX B
Restrictions and Limitations

Conditional Linking Nesting:

The is no limit to the nesting of conditional assembly blocks.

Expression Arithmetic:

Expression evaluation is accomplished using 32 bit signed 2's complement
arithmetic. The right shift is an exception in that zero filling is used instead of
sign bit filling. Therefore, it is a logical right shift rather than an arithmetic
right shift.

Expression Complexity:

Expression complexity is limited by the space allotted for an operator stack,
an operand stack and a result string. The space reserved should be ample for
any normal application.

Expression Values:

An expression value is restricted by the context in which the expression is us­
ed.

Linkable Objects:

Objects for resolution by the linker may be byte, word or long word in size.

Listing Line Length:

The listing line is limited to 132 characters.

Program Size:

Program size is limited by the file space available on disk and the memory
space available for storage of symbols. Disk space and memory space limits
are system dependent and are covered in supplementary documentation.

© 1984 by Quelo B.1

QLINK Restrictions and Limitations

Link Specification Line Length:

Input lines are limited to 252 characters.

Symbol Length:

User defined symbols may be any length, but only the first 31 characters will
be significant to the assembler.

Symbol Table Size:

Each user defined symbol uses N + 9 bytes of symbol .table space, where N is
the number of characters in the symbol.

© 1984 by Quelo B.2

APPENDIX C
Relocatable Object Format

(Quelo Linker Text)
Object Format Specification Reference Number:

Each linker text file begins with a reference number to insure that the linker and object
librarian do not try to process object format versions for which they are not designed.

Object Header:

The reference number appears in the header which begins each MODULE and each
LIBRARY file. Information in the header identifies the file as a MODULE or a
LIBRARY. Also, the header contains the module or library name, version number,
revision number and description (IDNT directive information). Finally, the creator of
the MODULE or LIBRARY is also identified in the header. This creation information
includes creator identification (program name, version and date) and creation date.

For user convenience, the entire header is in ASCII text format so that the file can be
directly sent to a terminal for quick determination of file type and revision. The text is
terminated by a control Z character to indicate end-of-file for display purposes. This
will work for the CP /M "type" command but may or may not work for other pro­
grams and/or operating systems.

Information following the header is not ASCII text except for things like symbol
names. Any information beyond the control Z may confuse your terminal to the point
of requiring a reset or power off/on sequence.

The MODULE File:

One execution of the assembler produces one MODULE. The smallest item that can be
handled by the linker or object librarian is the MODULE. Only an entire MODULE
can be included in linking or can be added to or deleted from a LIBRARY. MODULEs
usually contain globally defined symbols and external references to globally defined
symbols of other MODULEs.

The LIBRARY File:

A LIBRARY is a collection of modules constructed by the object librarian program. A
LIBRARY is a convenience feature for linking and is not required in any way. The
order that modules are placed in a LIBRARY is NOT important to the linking process.
A given LIBRARY may not contain more than one instance of a globally defined sym­
bol. In other words, two MODULEs in the same LIBRARY may not both globally
define the same symbol.

© 1984 by Quelo C.1

QLINK Relocatable Object Format

Following the library file header are module name and global symbol name tables.
Associated with each name is information which enables direct access to the module
body in the library. These tables facilitate library searches and eliminate the need to
read through all of the text of all of the modules in the LIBRARY.

Quelo Linker Text Detail:

Following the previously mentioned header, an object MODULE consists of a series of
binary records. The first byte of the record indicates record type. Record types include:
symbol information, relocatable section summary, constant data for loading,
relocatable expressions and end-of-module. The second byte of the record indicates the
record length in bytes.

Relocatable expression records are in a postfix (RPN) format and may include all of
the usual arithmetic and logical operators. Operands may be variable length constants,
relocatable section base references and external symbol references.

The Quelo linker text is described in detail in a separate document. This document is
available from Quelo for a nominal cost.

© 1984 by Quelo C.2

APPENDIX D
HEX Load Formats

Default HEX Format:

The linker normally produces the Motorola HEX format unless the format is changed
by command line option or the OUTPUT directive to the linker.

Motorola S-record Format:

The Motorola HEX file format has a one line per record organization.

S0cc0000clc2c3 ... cnkk header record
Slccaaaablb2b3 ... bnkk data record
S2ccaaaaaab 1 b2b3 ... bnkk
S3ccaaaaaaaab 1 b2b3 ... bnkk
S7ccaaaaaaaakk
S8ccaaaaaakk
S9ccaaaakk

cc

data record
data record
end record
end record
end record

byte count - includes cc, aa ... , kk

aaaa, aaaaaa, aaaaaaaa

bl, b2, ... bn

16, 24 and 32 bit load addresses or start address

data bytes

cl, c2, ... en

kk

Intel HEX Record Format:

program name characters

checksum such that cc + aa... + b 1... + kk
== FF

The Intel HEX file format has a one line per record organization.

:ccaaaa00blb2b3 ... bnkk data record
:OOaaaaOlkk end record

cc

aaaa

bl, b2, ... bn

kk

Mostek HEX Record Format:

data byte count

load or start address

data bytes

checksum such that cc+ aa ... + bl... + kk
== ()()

The Mostek HEX file format consists of lines of 64 characters each. There is no cor­
respondence between lines and records. Records follow one another without breaks.

© 1984 by Quelo D.1

QLINK

The last line of the file is padded with ASCII zero characters.

There are four record types:

FO - module header record
F2 - enumerated data record
F4 - iterated data record
F6 - module end record

HEX Load Formats

Note that the iterated data record described here is not the full format allowed by
Mostek. Nested iterated data blocks are never produced by the Quelo linker and
therefore are not described.

FOccccnnc lc2c3 ... cnzzii ttllllhhhhk k

F2ccccaaaab 1 b2b3 ... bnkk

F4ccccaaaarrrr00b 1 b2b3 ... bnkk

F6ccccsssskk

cccc - record byte count including checksum but excluding Fxcccc

zz - address size (two hex digits)
10 - 16 bits (Z80)
20 - 32 bits (68000)

ii - processor id
00 - unknown
01 - 3870
02 - 8080
03 - Z80
04 - reserved
05 - 68000
06 - 68200

tt - module type bits as follows:
OOOOOOmt

1 .. transfer address in F6
1 ... main module

kk - checksum such that all bytes in the record from Fx through kk add up
to zero

rrrr - replication factor

llll - lowest address to load is 32 bits
(8 hex digits) for the 68000
(4 hex digits for the Z80)

hhhh - highest address to load is 32 bits
(8 hex digits) for the 68000
(4 hex digits for the Z80)

aaaa - load address field is 32 bits
(8 hex digits) for the 68000
(4 hex digits for the Z80)

ssss - transfer address field is 32 bits
(8 hex digits) for the 68000
(4 hex digits for the Z80)

b 1, b2, ... bn - data bytes

c 1, c2, ... en - program name characters

nn - number of characters in program name

© 1984 by Quelo D.2

Introduction:

APPENDIX E
Linker Error Messages

Linker error messages may appear in several different formats, depending on the pro­
cessing phase at the time the error message is produced. Truncation errors may occur
during link specification processing or during object module processing. Note that dur­
ing object module processing, the error message includes sufficient information to
locate the offending line in the assembly listing of the module in question. See Section
3, Linker Usage, under Linker Error Message Content.

Some error messages come from utilities (such as 1/0) which are common to all of the
programs in the Quelo Assembler Package. These error messages, usually not caused
by user error, are documented in the Overview Manual.

Error Message Explanations:

Address reference alignment.

This indicates that a relocatable expression, representing an address, evaluates to an il­
legal value when resolved by the linker.

Example:
XREF
MOVE.W

xxx
#3,XXX

Since this is a word move operation, the destination address, XXX, must relocate to an
even boundary, otherwise the above error message will result. Note that the error
message includes sufficient information to locate the offending line in the assembly
listing of the module in question.

ALLOC failure. (ABORT)

Unable to allocate sufficient memory for the symbol table. Refer to the operating
system supplement for more information. Contact Quelo if the problem cannot be
resolved.

Bad postfix operator.

This indicates an error in the object module being processed by the linker. This error
should be reported to Quelo.

© 1984 by QUELO E.1

QLINK Linker Error Messages

Bop not implemented.

Binary operator not implemented. This error should be reported to Quelo.

Byte signed truncation.

The expression contains undefined and/ or non absolute symbols or the value of the ex­
pression is out of the range -128 .. 127.

Byte unsigned truncation.

The expression contains undefined and/or non absolute symbols or the value of the ex­
pression is out of the range -128 .. 255.

Character constant too long.

Too many characters in a character constant within an expression. See Section 3,
Linker Usage, under Constants.

DS, DCB out of range.

The value of the count expression for one of these directives is out of the range
-32768 .. 32767. See Section 4, Linker Directives, under DS or DCB.

Duplicate definition.

Only symbols defined using the SET directive may be redefined, and then only with
another SET directive. Permanent value symbols are defined as labels or by using the
EQU directive or as global symbols in the modules being linked. See Section 3, Linker
Usage, under User-Defined Symbols.

Duplicate program start.

A program start address is specified in more than one module being linked. The op­
tional expression allowed with the assembler and linker END directives specifies the
program start address.

Duplicate section definition.

A SECTION directive for a given relocatable section has appeared more than once.

ENDC without IFxx.

An ENDC directive was encountered without a preceding IFEQ, IFNE, IFGT, IFGE,
IFL T or IFLE directive.

© 1984 by QUELO E.2

QLINK Linker Error Messages

Expr. stack ufl.

Expression stack underflow. Unless something wrong can be found in the expression,
this error should be reported to Quelo.

Expression class-type invalid.

The class-type of an expression is not valid for the context in which the expression is
used. See Section 3, Linker Usage, under Expression Usage Restrictions.

Expression type. (WARNING)

During expression evaluation an operator was applied to operand(s) of a type for which
the operator is not valid. For instance, multiplying two addresses together. See Section
3, Linker Usage, under Expression Result Type Determination.

Expression undefined.

An expression containing forward references is used in a context where forward
references are not permitted. See Section 3, Linker Usage, under Expression Usage
Restrictions.

Extra IDNT encountered.

More than one IDNT directive was encountered in the link specification.

I/O specification error. (ABORT)

The input/output specification in the command line was in error. See Section 3, Linker
Usage.

IFxx without ENDC.

At the end of link specification processing an IFEQ, IFNE, IFGT, IFGE, IFLT or
IFLE directive was left unterminated by an ENDC directive.

Include file not present.

The file specified with the INCLUDE directive could not be opened for reading.

Include file specification error.

The filename specified with the INCLUDE directive was not recognized as being mean­
ingful. Note that filename specifications are operating system dependent.

© 1984 by QUELO E.3

QLINK Linker Error Messages

Invalid directive.

The item in the directive field was not recognized as a linker directive.

Invalid expression.

The parser failed to find a reasonable terminating character when it finished processing
the expression. Expected terminating characters are: a blank, a comma, an opening
parenthesis, an end-of-line, or possibly others in various situations. Syntax errors
might cause an early processing halt in the middle of the expression.

Invalid label.

The user-defined symbol in the label field contains characters not allowed for symbols.
See Section 3, Linker Usage, under User-Defined Symbols.

Invalid object record.

Object file error. Please report this to Quelo.

Invalid operand(s).

See Section 4, Linker Directives, for valid directive operands.

Invalid option. (ABORT)

A command line option was not recognized. See Section 3, Linker Usage, under Com­
mand Line Invoked Options.

Invalid section number.

The section number specified is out of the range 0 through 15.

Invalid size.

The size designation is not valid for the particular linker directive. Sizes are .B, . W or
.L, for byte, word or long respectively. The size designation is appended to a directive
mnemonic. See Section 4, Linker Directives, for valid directive sizes.

Label missing.

The directive requires a label. See Section 4, Linker Directives.

Label not permitted.

A label is not permitted with this directive. See Section 4, Linker Directives.

© 1984 by QUELO E.4

QLINK Linker Error Messages

Label on odd address. (WARNING)

The preceding label was assigned an odd address and might possibly be used in
references to instructions or to word or long data items. "<label>: DS O" may be used
to insure that the label falls on an even address.

Link file specification error.

The filename specified with the LINK directive was not recognized as being mean­
ingful. Note that filename specifications are operating system dependent.

Link specification file not present.

Input file is missing.

M68K reject. (WARNING)

The line was rejected by M68K. See the Assembler Manual, Appendix F, Macro Pre­
processor Error Messages.

Module not found in library.

The LINK directive permits selection of individual modules from a library file. This
message results if a selected module is not found. See section 4, Linker Directives,
under LINK.

More than one 110 specification. (ABORT)

Only one input/output specification is allowed in the command line.

Nested include encountered. (WARNING)

The remainder of the first include file will never be processed. See Section 4, Linker
Directives, under INCLUDE.

No 1/0 specification. (ABORT)

An input/ output specification is always required in the command line.

Not allowed under OFFSET.

A code generating directive such as DC or DCB, was used following the OFFSET direc­
tive. See Section 4, Linker Directives, under OFFSET.

© 1984 by QUELO E.5

QLINK Linker Error Messages

Not defined in pass 1.

A definition for a particular symbol was encountered during pass 2, but not during
pass 1. This could easily happen when the linker is used interactively with input from
the console. Or, it could be caused by an unusual use of conditional linking where some
portion of code was linked during one pass and not the other.

Object file error.

Please report this to Quelo.

Obj. seek.

A difficulty was encountered in randomly accessing an object file (module or library).
Please report this to Quelo.

Object file missing.

Unable to open an object file (module or library) for reading.

Op().

Please report this to Quelo.

Operand out of range.

See Section 4, Linker Directives, for the ranges of operands.

Operand stack overflow.

The expression is too complex for the allotted operand stack space. Simplify the ex­
pression.

Operand stack underflow.

Look for invalid operands following operators in the expression. Operands may be
another expression, symbols, constants or an asterisk to represent the program
counter.

Operator canceled. (ABORT)

Linker processing was stopped by the operator via the console. The check for operator
entry is made prior to reading each link specification line and prior to accessing each
object module during linker phase 3.

© 1984 by QUELO E.6

QLINK Linker Error Messages

Operator stack overflow.

The expression is too complex for the allotted operator stack space. Simplify the ex­
pression.

Option not implemented.

Passl - pass2 value diff.

The value assigned to a symbol differed between pass 1 and pass 2. This could easily
happen when the linker is used interactively with input from the console. Or, it could
be caused by an unusual use of conditional linking, where some portion of the link
specification was linked during one pass and not the other.

PC> 65535.

Program counter is out of range.

ST code.

Object file store code error. Please report this to Quelo.

Symbol not allowed in expression.

The symbol was either not defined as a label, or by the SET, EQU, or XDEF directives.

Symbol reference/definition conflict.

An XREF directive specified a section number for a symbol that was actually defined
in a different section.

Symbol table overflow. (ABORT)

Increase the amount of available memory or reduce the number and/or length of
global symbols.

Symbol tagged for signed 16 bit value.

A symbol with the attribute of XREF .S has a value outside the range of the low or high
32K block of memory.

Unable to open hex output file.

Unable to open listing file.

Unable to open symbol file.

© 1984 by QUELO E.7

QLINK Linker Error Messages

Unable to open temporary file.

The temporary file contains a summary of modules to be linked. It is written during
phase 1 as each LINK directive is processed and is read during phase 3 processing.

Undefined external reference.

A reference to an undefined symbol was encountered in processing a relocatable ex­
pression in an object module. Note that the error message includes sufficient informa­
tion to locate the offending line in the assembly listing of the module in question.

Undefined symbol.

An undefined symbol was referenced in the link specification.

Unknown hex format. (ABORT)

The hex format specified by the "-H" command line option was not recognized. See
section 3, Linker Usage, under Command Line Invoked Options.

Unknown output format.

The hex format specified by the OUTPUT directive was not recognized. See section 4,
Linker Directives, under OUTPUT.

Uop not implemented.

Unary operator not implemented. This error should be reported to Quelo.

Word signed truncation.

The expression contains undefined and/ or non absolute symbols or the value of the ex­
pression is out of the range -32768 .. 32767.

Word unsigned truncation.

The expression contains undefined and/or non absolute symbols or the value of the ex­
pression is out of the range -32768 .. 65535.

© 1984 by QUELO E.8

Introduction:

APPENDIX F
SPLIT Error Messages

Some error messages come from utilities (such as I/O) which are common to all of the
programs in the Quelo Assembler Package. These error messages, usually not caused
by user error, are documented in the Overview Manual.

Error Message Explanations:

ALLOC failure. (ABORT)

Unable to allocate sufficient memory for buffer space. Refer to the operating system
supplement for more information. Contact Quelo if the problem cannot be resolved.

Check sum bad.

The checksum computed for a S-record does not match the checksum at the end of the
record.

1/0 specification error. (ABORT)

The input/output specification in the command line was in error. See Section 5, HEX
Utilities, under The SPLIT Program.

Invalid hex digit.

The S-record contains a non-hex character.

Invalid option. (ABORT)

A command line option was not recognized.

More than one 1/0 specification. (ABORT)

Only one input/output specification is allowed in the command line.

© 1984 by Quelo F.1

QLINK SPLIT Error Messages

No 1/0 specification. (ABORT)

An input/output specification is always required in the command line.

Operator canceled. (ABORT)

Split processing was stopped by the operator via the console.

Record has no Sin column 1.

Verify that the input file is in the Motorola hex format.

Record type invalid.

The second character in an S-record line is a digit representing the record type. Valid
types are: 0, 1, 2, 3, 7, 8 and 9.

S-record file not present. (ABORT)

The input file was not found.

Unable to open even file. (ABORT)

Unable to open the even address data output file.

Unable to open odd file. (ABORT)

Unable to open the odd address data output file.

Unexpected end of record.

The S-record line is shorter than the length implied by the record count field.

© 1984 by Quelo F.i

Introduction:

APPENDIX G
IMAGE Error Messages

Some error messages come from utilities (such as 1/0) which are common to all of the
programs in the Quelo Assembler Package. These error messages, usually not caused
by user error, are documented in the Overview Manual.

Error Message Explanations:

ALLOC failure. (ABORT)

Unable to allocate sufficient memory for buffer space. Refer to the operating system
supplement for more information. Contact Quelo if the problem cannot be resolved.

Check sum bad.

The checksum computed for a S-record does not match the checksum at the end of the
record.

Excessively large memory image. (ABORT)

Probably caused by locating data in high and low memory of a 32 bit address space.
Examine the linker memory map for load address information.

1/0 specification error. (ABORT)

The input/output specification in the command line was in error. See Section 5, HEX
Utilities, under The IMAGE Program.

Invalid hex digit.

The S-record contains a non-hex character.

Invalid option. (ABORT)

A command line option was not recognized.

© 1984 by Quelo G.1

QLINK IMAGE Error Messages

More than one 1/0 specification. (ABORT)

Only one input/output specification is allowed in the command line.

No data. (ABORT)

There is no S-record data from which to build a memory image.

No 1/0 specification. (ABORT)

An input/output specification is always required in the command line.

Operator canceled. (ABORT)

Image processing was stopped by the operator via the console.

Record has no Sin column 1.

Verify that the input file is in the Motorola hex format.

Record type invalid.

The second character in an S-record line is a digit representing the record type. Valid
types are: 0, 1, 2, 3, 7, 8 and 9.

S-record file not present. (ABORT)

The input file was not found.

Unable to open binary output file. (ABORT)

Unable to open error file. (ABORT)

Unable to open the error message output file.

Unexpected end of record.

The S-record line is sorter than the length implied by the record count field.

© 1984 by Quelo G.2

APPENDIX H

Librarian Error Messages
Introduction:

Some error messages come from utilities (such as 1/0) which are common to all of the
programs in the Quelo Assembler Package. These error messages, usually not caused
by user error, are documented in the Overview Manual.

Error Message Explanations:

ALLOC failure. (ABORT)

Unable to allocate sufficient memory for the symbol table. Refer to the operating
system supplement for more information. Contact Quelo if the problem cannot be
resolved.

Cannot create temp file. (ABORT)

The librarian uses a temporary file to aid in recovering symbol table space after a
module has been deleted from the tables.

Could not add to module table.

Symbol table space is full. No more modules can be added.

Could not add to symbol table.

Symbol table space is full or a particular symbol already exists in another module and
may not be duplicated. Therefore symbol table information is incomplete for the last
module added to the tables.

Error in writing to temp file. (ABORT)

This is the temporary file used for reclaiming symbol table space after a module has
been deleted.

Error reading temp file. (ABORT)

This is the temporary file used for reclaiming symbol table space after a module has
been deleted.

© 1984 by Quelo H.1

QLINK Librarian Error Messages

Extra IDNT encountered.

More than one IDNT directive was encountered in the library specification.

File specification error.

The filename specified by an INCLUDE, CREATE, UPDATE, EXTRACT, ADD or
COPY command is invalid.

1/0 specification error. (ABORT)

The input/output specification in the command line was in error.

IDNT command missing.

The IDNT command is required by the CREA TE mode.

Include file not present.

The file specified with the INCLUDE command could not be opened for reading.

Include file specification error.

The filename specified with the INCLUDE command was not recognized as being
meaningful. Note that filename specifications are operating system dependent.

Int. A. (ABORT)

Internal error. Please report this to Quelo.

Int. B. (ABORT)

Internal error. Please report this to Quelo.

Invalid ADD specification.

See the ADD command syntax description in Section 6, The Object Librarian, under
Command Descriptions.

Invalid librarian command.

The item in the command field was not recognized as a librarian command.

Invalid object record.

Object file error. Please report this to Quelo.

© 1984 by Quelo H.2

QLINK Librarian Error Messages

Invalid operand(s).

See Section 6, The Object Librarian, under Command Descriptions.

Invalid option. (ABORT)

A command line option was not recognized. See Section 6, The Object Librarian,
under Command Line Invoked Options.

Library specification file not present.

Input file is missing.

Module not found in library.

The module specified for a library file by the ADD command was not found.

Module not in table. (WARNING)

The module specified in the DELETE command is not in the module table.

More than one 110 specification. (ABORT)

Only one input/output specification is allowed in the command line.

Nested include encountered. (WARNING)

The remainder of the first include file will never be processed. See Section 4, Linker
Directives, under INCLUDE.

No 1/0 specification. (ABORT)

An input/ output specification is always required in the command line.

Not library file.

The file specified in the UPDATE or EXTRACT command is not a library file.

Obj. seek.

A difficulty was encountered in randomly accessing an object file (module or library).
Please report this to Quelo.

Object file error.

Please report this to Quelo.

©1984 by Quelo H.3

QLINK Librarian Error Messages

Object file missing.

Unable to open an object file (module or library) for reading.

Operand out of range.

See Section 4, Linker Directives, for the ranges of operands.

Operation mode already set.

A library specification may contain only one of the following commands: CREATE,
UPDATE or EXTRACT.

Operation not allowed.

The operation specified does not apply to the selected operating mode. For example:
the COPY command cannot be used while in the UPDATE mode.

Operator canceled. (ABORT)

Librarian processing was stopped by the operator via the console. The check for
operator entry is made prior to reading each library specification line.

Problems during re-opening temp file. (ABORT)

This is the temporary file used for reclaiming symbol table space.

Replacing module in table. (WARNING)

The module specified with the ADD command is already present in the module table.

Space exhausted. (ABORT)

The symbol table is full. Increase the amount of available memory or reduce the
number of modules and/or global symbols in the library.

Unable to open listing file.

Unable to open object file.

This applies to either the new library file being generated or the file specified by the
COPY command.

Unable to open symbol file.

© 1984 by Quelo H.4

QLINK Librarian Error Messages

Unxpected end of module.

Please report this to Quelo.

© 1984 by Quelo H.5

INDEX
"$"character as initial indicates hex constant .. 3.4
"O-/o" character as initial indicates binary constant. .. 3 .4
''''' character as initial indicates character constant .. 3 .4
"<<<<<<<<"internal symbol .. 1.3
''@'' character as initialindicates octal constant .. 3 .4
-------notation for no label allowed ... 4.1
-B option (same as -S and-X together) ... 3.1, 6.3
-E and -L options example of command line in shortform 3.2
-E option for inclusion of local labels inmemory map 3.1
-HI option for selecting Intel HEX file format .. 3 .1
-HM option for selecting Mostek HEX file format .. 3 .1
-HS option for selecting Motorola S-record HEX file format 3.1
-I option for module summary report output ... 3.1, 6.3
-Land -E options example of command line in short form 3.2
-L option for upper and lower case in symbols .. 3.3
-L option for upper case vs lower case in user-defined symbols 3 .1, 6.3
-S option example of command line in short form 3 .2, 6.4
-S option for symbol table report output ... 3 .1, 6.4
-T option fortruncating significant characters of symbols 3.3
-T option for truncation oflong symbols to 8 characters 3 .2, 6.4
-V option for formfeed output at start of listing 3.2, 6.4
-X option for cross-reference of symbols report output 3.2, 6.4
68000 byte order data generating directives summary 4.1
<.z> notation for optional .B, .W or .L size designator 4.1
<olabel> notation for optional label .. 4.1
<rlabel> notation for required label ... 4.1
<s> notation for spaces or tabs ... 4.1

A (absolute address) type attribute of symbols and expressions 3.5
A68K .. 1.2
Absolute address

assigned to relocatable symbol ... 3.5
assignment to symbol, of absolute address ... 2.2
may be represented by a link specification symbol 3.3
type attributed to ORG program counter .. 3.3
absolute address attribute of symbols and expressions 3 .5
absolute address symbol type .. 2.2
absolute address type given to label symbols .. 3.3
absolute address type is assigned to link specification labels 2.3

Absolute object code output ... 2.3
Actions of linker ... 2.2
Actions of the linker program .. 2.3
ADD and DELETE commands manipulate modules in CREATE and UPDATE modes 6.4
ADD command in librarian .. 6.5
Address, absolute

address, absolute assigned to relocatable symbol 3.5

Cc\ 1984 by Quelo I.l

QLINK Index

address, absolute attributed to ORG program counter 3.3
address, absolute may be represented by a link specification symbol 3. 3
address, absolute type given to label symbols ... 3 .3

Address
absolute address symbol type .. 2.2
adjustment to even value, and label usage .. 3 .4
assignment of absolute memory address to symbol 2.2
even address forcing by QLINK automatically or by DS 0 directive 3.4
load address ... 1.1, 1.3
relocatable address symbol type .. 2.2
starting address of program .. 1.3

Addressing modes d(An) and d(An,Ri) in the assembler 3.3
Agenda of the linker program .. 2.3
Allocation of memory .. : 2.1, 2.2
Alphabetic character allowed in a symbol .. 3.3
Appended size designation allowed in SET and EQU directives 3.3
Application of libraries ... 2.2
Assembler addressing modes d(An) and d(An,Ri) ... 3.3
Assembler

example invocation ... 1.2
assembler directives available in the linker ... 2.1
assembler program ... 2.2

Assignment of absolute memory addresses to symbols 2.2
Asterisk character

in operation field .. 3 .2
may mean comment, multiply or program counter 3 .2
used as a symbol in expressions ... 3 .3

At sign character as initial indicates octal constant. .. 3 .4

B option (same as Sand X together) ... 3.1, 6.3
Base symbols subtracted yield constant result ... 3 .6
Binary constant indicated by percent sign character .. 3 .4
Blank characters and/ or tabs delimit fields ... 3 .2
Blank characters in expressions ... 3. 5
Byte order (Z80 and 68000) data generating directives summary 4.1

C (constant) type attribute of symbols and expressions 3.5
Case (upper vs lower) in user-defined symbols (L option) 3.1, 6.3
Case of letters in symbols (L option) .. 3.3
Changes to library files not made until END command or end-of-file 6.5
Character

allowed in a symbol .. 3 .3
asterisk has multiple meanings, by context ... 3 .2
asterisk in operation field ... 3 .2
asterisk used as a symbol in expressions .. 3.3
at sign as initial character indicates octal constant 3 .4
blank character in expressions .. 3.5
colon as label delimiter .. 3.2
digit character as initial indicates decimal constant 3.4
dollar sign as initial indicates hex constant ... 3 .4
form feed at start of listing output (V option) 3 .2, 6.4
parenthesis used in expressions ... 3. 5

© 1984 by Quelo 1.2

QLINK Index

percent sign as initial indicates binary constant .. 3 .4
semicolon indicates comments -.... .' 3 .2
single quote as initial indicates character constant 3 .4
space character in expressions .. 3 .5
tab character in expressions .. 3.5
character constant indicated by single quote character 3.4
character constant length .. 3 .4
character justification in constants .. 3 .4
character justification in SET and EQU expressions 3 .3

Class and type attributes processed separately .. 3.5
Code and data spaces, separation of .. 2.1
Code output in absolute form .. 2.3
Code processing from modules ... 2.3
Code showing example of displaying version and revision information 3.8
Colon character as label delimiter (optional sometimes) 3.2
Column one of link specification line .. 3 .2
Command line example of long form with listing output only 6.4
Command line example of short form with S option 6.4
Command line, examples of short, intermediate and full forms 6.3
Command line, short and intermediate and full forms 6.3
Command line

example of long form with listing output only .. 3 .2
example of short form with L and E options .. 3 .2
example of short form with S option .. 3 .2
examples of short, intermediate and full forms .. 3 .1
short and intermediate and full forms ... 3 .1
simplest .. 1.2

Command, startup ... 1.1
Comments may be indicated by asterisk or semicolon 3 .2
COMMON not supported by QLINK ... 3.8
Conditional linking defined .. 3. 7
Configuration of software, identification .. 3.8
Configuration tracking example program with display 3.8
Configuration, software : 1.3
Console input and output example of command line 3 .2, 6.4
Console output listing only example of command line 3.2, 6.4
Constant

binary constant indicated by percent sign character 3 .4
character constant indicated by single quote character 3.4
character constant justification in SET and EQU expressions 3.3
character constant length .. 3 .4
decimal constant indicated by an initial digit (0 thru 9) 3.4
hex constant indicated by dollar sign character .. 3 .4
may be represented by a link specification symbol 3 .3
octal constant indicated by at sign character .. 3 .4
string constant length ... 3.4
string constant padding ... 3.4
type attributed to OFFSET program counter ... 3 .3
constant symbol type ... 2.2
constant type attribute of symbols and expressions 3.5

COPY command in librarian .. 6.6

© 1984 by Quelo 1.3

QLINK Index

COPY command used in EXTRACT mode to copy a module from a library to a file 6.4
Copy modules from a library .. 6.1
Corrections and additions ... 1.1
Counters, program .. 3. 3
Create a new library .. 6.1
CREATE command in librarian .. 6.6
CREATE UPDATE and EXTRACT commands for naming the current library 6.4
Cross-reference and symbol table selected at once (B option) 3 .1, 6.3
Cross-reference of symbols report output (X option) 3.2, 6.4
Cross-reference report .. 1.2, 2.1
Current library name (in CREATE, UPDATE and EXTRACT commands) 6.4

d(An) addressing mode of the assembler ... 3.3
d(An,Ri) addressing mode of the assembler · 3 .3
Data and code spaces, separation of ... 2.1
Data generating directives summary ... 4.1
Data generating directives ... 2.1
Date and time ... 1.1
DB directive(s) .. 2.3
DB directive described .. 4.2
DC directive data generation ... 2.2
DC directive(s) .. 2.3
DC directive described .. 4.1
DCB directive data generation ... 2.2
DCB directive(s) ... 2.3
DCB directive described ... 4.2
DELETE and ADD commands manipulate modules in CREATE and UPDATE modes 6.4
DELETE command in librarian .. 6.6
Delimiter must appear if label and operation fields appear 3 .2
Delimiter of label (colon and/or blank) .. 3.2
Delimiters spaces in command line .. 3 .1, 6.3
Description, name, version and revision of a library are given in IDNT 6.4
Digit character as initial indicates decimal constant .. 3.4
Digit character allowed in a symbol ... 3.3
Directive

DB .. 2.3
DB directive described .. 4.2
DC .. 2.2, 2.3
DC directive described .. 4.1
DCB ... 2.2, 2.3
DCB directive described ... 4.2
DL .. 2.3
DL directive described .. 4.2
DS ... 2.3
DS directive described .. 4.2
DS directive used to force an even address (OS 0) 3 .4
DS directive used to increment the offset counter 3.3
DUP ... 2.3
DUPB directive described ... 4.3
DUPL directive described ... 4.3
DUPW directive described4.3
DW .. 2.3

© 1984 by Quelo 1.4

QLINK Index

DW directive described .. .4.3
ENDC · ~ 2.3
ENDC directive described ... 4.3
END directive described4.3
END directive starting address symbol .. 1.3
EQU ... 2.3
EQU directive described .. 4.3
EQU directive used to define a symbol. .. 3.3
IDNT directive described4.4
IDNT directive used to define a symbol as the name of a module 3 .3
IDNT directive .. 1.3, 1.2
IFxx ... 2.3
IFxx directive described ... 4.4
INCLUDE directive described ... 4.5
LINK directive described4.5
LINK directive operands .. 2.2
LINK directive ... 1.2, 2.1
LIST directive described4.6
LLEN directive described ... 4.6
MSG directive described .. 4.6
NOLIST directive described .. .4.6
NOP AGE directive described .. 4.6
OFFSET directive described .. .4.6
OFFSET directive usage described .. 3 .3
OPT directive described ... 4.7
order in link specification file of LINK directives 2.2
ORO ... 2.2
ORO directive assembler vs linker .. 1.2
ORO directive described .. 4.7
ORO directive functional definition ... 2.3
ORO directive in assembler .. 1.2
OUTPUT directive described4. 7
PAGE directive described ... 4.8
PLEN directive described ... 4.8
REVLIST .. 2.2
REVLIST directive described .. 4.8
REVLIST directive ... 1.3
SECTION .. 2.2
SECTION directive assembler vs linker .. 1.2
SECTION directive described4.8
SECTION directive functional definition .. 2.3
SET, EQU and IFxx directive character constant justification 3.4
SET ... 2.3
SET directive described ... 4.9
SET directive used to define a symbol ... 3 .3
SPC directive described4.9
TTL directive described 4.9

Directives appear in operation field ... 3.2
Directives for defining symbols ... 2.1
Directives for generating data .. 2.1
Directives from assembler also available in linker ... 2.1

© 1984 by Quelo 1.5

QLINK Index

Disk
distribution disk ... 1.1
replacement disk ... 1.1
working disk ... 1.1

Display of version and revision information example code 3.8
Distribution disk ... 1.1
DL directive(s) .. 2.3
DL directive described4.2
Documentation, supplemental ... 1.1
Dollar sign character allowed in a symbol .. 3.3
Dollar sign character as initial indicates hex constant 3 .4
DS directive used to force an even address (DS 0) .. 3 .4
DS directive used to increment the offset counter .. 3.3
DS directive(s) .. : 2.3
DS directive described .. 4.2
DUP directive(s) ... 2.3
DUPB directive described .. .4.3
DUPL directive described .. .4.3
DUPW directive described4.3
DW directive(s) ... 2.3
DW directive described .. .4.3

E and L options example of command line in short form 3 .2
E option for inclusion of local labels in memory map 3 .1
Embedded spaces in 1/0 specification ... 3.1, 6.3
END command in librarian .. 6.6
END command starts new library file construction in CREA TE and UPDATE modes 6.4
END directive, starting address symbol .. 1.3
END directive described .. 4.3
ENDC and IFxx directives must be matched .. 3. 7
ENDC directive(s) ... 2.3
ENDC directive described .. .4.3
EQU directive(s) ... 2.3, 4.3
EQU directive used to define a symbol ... 3.3
EQU, SET and IFxx directives character constant justification 3 .4
ERROR and WARNING messages are issued from QLINK 3.9
Error messages issued by IMAGE

listed and explained .. G .1
Error messages issued by QLIB

listed and explained .. H.1
Error messages issued by QLINK

described generally ... 3. 8
listed and explained .. E. l

Error messages issued by SPLIT
listed and explained .. F .1

Error
for external symbollacking global .. 3.7
for global symbols with duplicate names ... 3.8
for incompatible types of expression operands .. 3 .6
for mismatched symbol types .. 3.8
for multiple global definition of a symbol .. 3. 7
if character constant length too great .. 3 .4

© 1984 by Quelo 1.6

QLINK Index

if odd address label precedes word or long data 3 .4
Evaluations are done in 32-bit arithmetic, then truncated 3. 7
Even address adjustment, and label usage .. 3 .4
Even address forcing by QLINK automatically or by DS 0 directive 3 .4
Example of command line with console input and output 6.4
Example of long form of command line with listing only 6.4
Example of short form of command line with S option 6.4
Example(s) of input and output specifications in command line 6.3
Example

HEX load file ... 1.3
of A68k invocation ... 1.2
of command line with console input and output 3 .2
of input and output specifications in command line 3.1
of long form of command line with listing only 3 .2
of QLINK invocation ... 1.2
of QSYM invocation ... 1.2
of short form of command line with Land E options 3 .2
of short form of command line with S option ... 3.2
of version and revision use for configuration tracking 3 .8
example files .. 1.1
example listings ... A.1

Existing library updates ... 6.1
Expression

operators defined .. 3.5
result truncation ... 3. 7
result type determination .. 3. 5
use of asterisk character as a symbol in expression 3. 3
expression and symbol type attributes ... 3.5
expression may not contain blanks unless in constants 3 .2
expression used to define a symbol in SET and EQU directives 3 .3

External and global symbol correspondence rules ... 3. 7
External references from modules and link specification labels 2.3
External references resolved ... 2.3
EXTRACT command in librarian .. 6.6
EXTRACT CREATE and UPDATE commands for naming the current library 6.4
EXTRACT mode uses COPY command to copy a module from a library to a file 6.4

Field oriented link specification syntax .. 3 .2
Field

label ... 3.2
operand .. 3.3
operation ... 3 .2

File
"READ.ME" ... 1.1
example file ... 1.1
HEX load module file .. 1.1
HEX load file example .. 1.3
HEX object file of Motorola S-records or Intel or Mostek 2.1
HEX file format, selection of (HS, HI, and HM options) 3.1
library specification file ... 1.1
link specification file .. 1.1, 1.2
listing file ... 1.2

© 1984 by Quelo 1.7

QLINK Index

object library file .. 1.1
object file ... 1.2
order of LINK directives in link specification file 2.2
report file .. 1.2
source file .. 1.2
symbol file .. 1.2

First character of a symbol .. 3 .3
Format of HEX file, selection of (HS, HI, and HM options) 3.1
Format of relocatable object modules ... C. l
Formats of HEX load modules .. D.1
Formfeed character output at start of listing (V option) 3 .2, 6.4
Forward reference

restrictions in expressions ... 3 .6
forward reference disallowed in expressions defining symbols ~ 3.3

Forward references prohibited in link condition expressions 3. 7
Full form of command line, examples ... 3.1, 6.3
Full form of command line .. 3 .1, 6.3
GLIST and MLIST commands show the current status of a library 6.4
GUST command in librarian .. 6.6
Global symbol references to modules allowed if not relocatable 3 .3
Global symbol treatment is given to link specification labels 2.3

Hex constant indicated by dollar sign character ... 3 .4
HEX

object file of Motorola S-records or Intel or Mostek 2.1
record order not by consecutive memory addresses 2.1
records not generated for uninitialized data space 2.1
HEX file converted to binary memory image by IMAGE program 5 .1
HEX file format selection (HS, HI, and HM options) 3.1
HEX file split into even and odd by SPLIT program 5 .1
HEX load file example .. 1.3
HEX load module formats .. D.1
HEX load module .. 1.1
HEX record output .. 2.3

HI option for selecting Intel HEX file format ... 3 .1
HM option for selecting Mostek HEX file format ... 3.1
HS option for selecting Motorola S-record HEX file format 3 .1

I option for module summary report output .. 3.1, 6.3
IDNT command specifies library name, version, revision and description 6.4
IDNT directive summary of modules report output (I option) 6.3
IDNT

directive described ... 4.4
IDNT directive in A68K and QLINK used for version and revision information 3 .8
IDNT directive summary of modules report output (I option) 3 .1
IDNT directive used to define a symbol as the name of a module 3 .3
IDNTdirective ... 1.3, 1.2

IFxx and ENDC directives must be matched .. 3. 7
IFxx directive(s) ... 2.3
IFxx, SET and EQU d~rectives character constant justification 3 .4
IFxx directive described ... 4.4
Image of memory not generated by the linker ... 2.1

© 1984 by Quelo 1.8

QLINK Index

IMAGE program used to generate memory image from HEX file : 2.1
IMAGE Program error messages .. G .1
INCLUDE command in librarian behaves like in linker 6.5
INCLUDE directive described .. .4.5
Initialized and uninitialized data spaces, separation of 2.1
Input specification in command line ... 3 .1, 6.3
Input to librarian program .. 6.1
Intel HEX file format selection (HI option) .. 3.1
Intel or Mostek HEX records, or Motorola S-records available 2.1
Intermediate form of command line, example ... 3.1, 6.3
Intermediate form of command line ... 3 .1, 6.3
Internal symbol"<<<<<<<<" .. 1.3

Justification of characters in constants .. 3 .4
Justification of characters in SET and EQU expressions 3.3

Land E options example of command line in short form 3.2
L option for upper and lower case in symbols ... 3.3
L option for upper case vs lower case in user-defined symbols 3.1, 6.3
Label symbols described .. 3 .3
Label

field of some directives used to define symbols .. 3.3
local label included in memory map (E option) .. 3 .1
may appear alone in a line ... 3.3
label field ... 3.2
label may appear in link specification ... 2.3

Length of character and string constants ... 3 .4
Length of symbols (T option) .. 3.3
Letter character allowed in a symbol .. 3 .3
Librarian specification input controls librarian program 6.1
Librarian

error messages .. H.1
object librarian program .. 1.1
librarian program .. 2.2

Library name (in CREATE, UPDATE and EXTRACT commands) 6.4
Library name, version, revision and description given by IDNT command 6.4
Library

definition oflibrary .. 2.2
object 1.1
library searches and order of LINK directives ... 2.2
library specification file ... 1.1

Limitations and restrictions ... B.1
Line

command line examples of short, intermediate and full forms 3.1, 6.3
command line short, intermediate and full forms 3.1, 6.3
label alone in a line ... 3 .3
simplest command line .. 1.2

LINK directive
operands ... 2.2
order in link specification file .. 2.2
specifies modules and linking order ... 1.2
used to specify object files for loading ... 2.1

© 1984 by Quelo 1.9

QLINK Index

Link specification
may use macro facilities ... 3.8
minimal link specification necessary .. 2.1
order of LINK directives in link specification file 2.2
link specification syntax is field oriented ... 3 .2

Link specification .. 1.2
LINK directive described4.5
Linker

actions ... 2.2
error messages .. E.1
example invocation ... 1.2
Motorola linker .. 2.1

Linking conditionally, defined .. 3. 7
LIST command in librarian behaves like in linker · 6.5
LIST directive described .. 4.6
Listing file .. 1.2
Listing only example of command line in long form 3 .2, 6.4
Listing output, new page at beginning (V option) 3 .2, 6.4
Listings of examples ... A.1
LLEN command in librarian behaves like in linker .. 6.5
LLEN directive described ... 4.6
Load address .. 1.1, 1.3
Load file, HEX example .. 1.3
Load map report, memory .. 1.2
Load module HEX formats ... D .1
Load module, HEX .. 1.1
Local labels included in memory map (E option) .. 3 .1
Lone label in a line allowed .. 3. 3
Long form of command line example with listing output only 3 .2, 6.4
Lower and upper case letters in symbols (L option) .. 3.3
Lower case vs upper case in user-defined symbols (L option) 3.1, 6.3

M68k macro processor use with the linker .. 2.1
Macro processing is available for link specifications 3 .8
Macro processor use with the linker ... 2.1
Map (of memory) report .. 2.1
Map report, memory load ... 1.2
Memory allocation ... 2.1, 2.2
Memory image generated by IMAGE program from HEX file 2.1
Memory image not generated by the linker ... 2.1
Memory load map report .. 1.2
Memory map report .. 2.1
Messages issued by the IMAGE program indicating errors G .1
Messages issued by the librarian indicating errors ... H .1
Messages issued by the linker indicating errors .. E. l
Messages issued by the SPLIT program indicating errors F .1 ·
Minimal necessary link specification .. 2.1
MUST and GUST commands show the current status of a library 6.4
MUST command in librarian .. 6.6
Module selection from a library .. 6.1
Module summary report output (I option) ... 6.3

© 1984 by Quelo 1.10

QLINK Index

Module

code processing module ... 2.3
definition of module .. 2.2
expressions in module being linked .. 3.6
HEX load module formats .. D.1
version and revision information ... 3. 8
module name symbol defined in IDNT directive 3.3
module summary list report .. 2.1
module summary report output (I option) .. 3 .1
module summary report ... 1.2

Mostek HEX file format selection (HM option) ... 3.1
Mostek or Intel HEX records, or Motorola S-records available 2.1
Motorola linker .. 2.1
Motorola S-records format selection (HS option) ... 3 .1
Motorola S-records or Intel or Mostek HEX records available 2.1
MSG command in librarian behaves like in linker ... 6.5
MSG directive described4.6

Name of current library (in CREATE, UPDATE and EXTRACT commands) 6.4
Name, version, revision and description of a library are given in IDNT 6.4
Name

program name ... 1.2
name of a library used instead of many module names 6.1
name of a module symbol defined in IDNT directive 3.3
name of symbol must be distinct from names made public in modules 3 .3

Named sections not supported by QLINK .. 3.8
Nesting depth for conditional linking is unlimited ... 3.7
New library creation .. 6.1
New page at start of listing output (V option) ... 3.2, 6.4
NOL command in librarian behaves like in linker ... 6.5
NO LIST command in librarian behaves like in linker 6.5
NOLIST directive described ... 4.6
NO PAGE command in librarian behaves like in linker 6.5
NOP AGE directive described4.6
Notation for syntax of directives ... 4.1
Notation used in directives syntax descriptions .. 4.1
Null size designator allowed after period character suffix 3.8
Numeric character allowed in a symbol .. 3.3

Object
format of relocatable object modules ... C.1
HEX object file of Motorola S-records or Intel or Mostek 2.1
object code output in absolute form ... 2.3
object file ... 1.2
object librarian program .. 1.1, 2.2
object library .. 1.1
object module expressions ... 3.6

Octal constant indicated by at sign character ... 3.4
OFFSET and ORO directives used to select and initialize program counters 3.3
OFFSET directive usage described .. 3.3
OFFSET directive described .. .4.6
Operand field ... 3.3
Operand, left and right ... 3.6

©1984 by Quelo 1.11

QLINK Index

Operands of LINK directive ... 2.2
Operating system ... 1.1, 3.1, 6.3
Operation field .. 3.2
Operator precedence defined for expressions ... 3 .5
Operators for expressions defined .. 3.5
OPT directive described ... 4. 7
Option

examples ... 1.2
L for upper and lower case in symbols ... 3.3
T for truncating significant characters of symbols 3 .3

Optional (sometimes) label delimiter is colon ... 3.2
Order

importance for library searches of order of LINK directives 2.2
of actions of the linker program .. 2.3
of HEX records not by consecutive memory addresses 2.1
of sections .. 2.3
order of bytes (Z80 and 68000) in data generating directives, summary 4.1
order of modules in memory ... 1.2, 1.3

ORG
directive described ... 4. 7
directive .. 2.2
ORG and OFFSET directives used to select and initialize program counters 3.3
ORG directive functional definition ... 2.3
ORG directive in assembler .. 1.2
ORG directive, assembler vs linker .. 1.2

Output from l~brarian program .. 6.1
Output of absolute object code ... 2.3
Output specification in command line ... 3.1, 6.3
OUTPUT directive described .. 4. 7
Padding of string constants .. 3 .4
PAGE command in librarian behaves like in linker .. 6.5
PAGE directive described .. .4.8
Parenthesis characters used in expressions ... 3.5
PC (program counter) described .. 3.3
Percent sign character as initial indicates binary constant 3.4
Period character allowed in a symbol .. 3 .3
PLEN command in librarian behaves like in linker .. 6.5
PLEN directive described .. .4.8
Precedence of operators defined .. 3.5
Processing of module code .. 2.3
Program counters described ... 3. 3
Program name .. 1.2
Program

assembler program ... 2.2
linked together from modules .. 1.1
object librarian .. 2.2
object librarian program .. 1.1

QLINK ... 1.2
QSYM ... 1.2
QUIT command exits librarian without making library changes 6.5
QUIT command in librarian ... 6.6

© 1984 by Quelo 1.12

QLINK Index

Quote character as initial indicates character constant : 3 .4

R (relocatable address) type attribute of symbols and expressions 3.5
RAM and ROM spaces, separation of ... 2.1
Range of value restrictions in expressions .. 3 .6
READ.ME file .. 1.1
References to external symbols resolved ... 2.3
Relocatable address symbol type ... 2.2
Relocatable

special 17th relocatable section from IDNT directives 1.3
relocatable address type attribute of symbols and expressions 3.5
relocatable object format ... C. l
relocatable symbol absolute address assigned ... 3 .5
relocatable symbols prohibited in link conditional expressions 3. 7

Report contents and module summary information from a library 6.1
Report

memory load map report .. 1.2
module summary report ... 1.2
reports available from linker ... 2.1
symbol table and cross-reference report .. 1.2
report file ... 1.2

Restriction of symbol references .. 2.2
Restrictions and limitations ... B.1
Restrictions in expression use (values, types, forward references) 3.6
Result of expression, determination of type .. 3.5
Result truncation for expressions ... 3. 7
Result type for expressions (table) .. 3.6
Revision and version information for modules .. 3.8
Revision, name, version and description of a library are given in IDNT 6.4
REVLIST directive data generation ... 2.2
REVLIST directive in QLINK used to insert version and revision information 3.8
REVLIST directive ... 1.3
REVLIST directive described4.8
Right justification of character constants in expressions 4.1
ROM and RAM spaces, separation of ... 2.1

S option example of command line in short form 3 .2, 6.4
S option for symbol table report output .. 3 .1, 6.4
S-record (Motorola) HEX file format (HS option) ... 3 .1
S-records (Motorola) or Intel or Mostek HEX records available 2.1
SO header record ... 1.2
S9 end-of-file record of HEX load file ... 1.3
Sample of command line with console input and output 6.4
Sample of long form of command line with listing only 6.4
Sample of short form of command line with S option 6.4
Sample(s) of input and output specifications in command line 6.3
Sample

HEX load file ... 1.3
of A68k invocation ... 1.2
of command line with console input and output 3 .2
of input and output specifications in command line 3 .1
of long form of command line with listing only 3 .2

© 1984 by Quelo 1.13

QLINK Index

of QLINK invocation ... 1.2
of QSYM invocation ... 1.2
of short form of command line with Land E options 3.2
of short form of command line with S option '. 3.2
of version and revision use for configuration tracking 3. 8
sample files ... 1.1

Search of a library for needed modules .. 6.1
Section (special 17th) for version and revision information 3. 8
SECTION directive functional definition .. 2.3
SECTION directive, assembler vs linker ... 1.2
SECTION directive ... 2.2, 4.8
Section

17th relocatable with IDNT directive data .. 1.3
may be assigned for any purpose without restriction : " 3. 7
named section not supported ... 3. 8
size of section ... 2.1
sizes ... 2.2
use for separating RAM, ROM, code and data spaces 2.1

Select modules from a library .. 6.1
Semicolon character indicates comments ... 3 .2
Separation of code and data spaces ... 2.1
Separation of initialized and uninitialized data spaces 2.1
Separation of RAM and ROM spaces ... 2.1
Sequence of actions of the linker program .. 2.3
SET directive(s) .. 2.3, 4.9
SET directive used to define a symbol ... 3 .3
SET, EQU and IFxx directives character constant justification 3 .4
Short form of command line example with Land E options 3 .2
Short form of command line example with S option 3.2, 6.4
Short form of command line, example ... 3.1, 6.3
Short form of command line ... 3.1, 6.3
Signed truncation of expression results .. 3. 7
Significant characters of symbols (T option) .. 3.3
Single quote character as initial indicates character constant 3 .4
Single quote character in constant indicated by two adjacent quotes 3.4
Size

of sections .. 2.1, 2.2
padding to fill size of string constants ... 3.4
size-designator suffix may be null after period with directive 3.8
size designation allowed in SET and EQU directives 3.3

Software configuration tracking .. 3.8
Software configuration ... 1.3
Source file .. 1.2
Space characters and/ or tabs delimit fields ... 3 .2
Space characters in expressions ... 3 .5
Spaces as delimiters in the command line ... 3.1, 6.3
SPC command in librarian behaves like in linker .. 6.5
SPC directive described ... 4. 9
Special characters indicate format of constant .. 3 .4
Special section (17th) for version and revision information 3.8
Specification input to librarian program ... 6.1

© 1984 by Quelo 1.14

QLINK Index

Specification
library specification file : 1.1
link .. 1.2
link specification file .. 1.1, 1.2
link specification minimal necessary .. 2.1
order of LINK directives in specification file for linker 2.2
specification file syntax for linking is field oriented 3 .2
specification for linking may use macro facilities 3.8

SPLIT Program error messages .. F .1
Starting address of program ... 1.3
String constant length .. 3.4
String constants padding .. 3 .4
Summary of linker program action agenda ... 2.3
Summary of modules report output (I option) .. 3.1, 6.3
Summary report, module .. 1.2
Supplemental documentation .. 1.1
Supplementary documentation ... 3 .1, 6.3
Symbol report program example invocation .. 1.2
Symbol table and cross-reference selected at once (B option) 6.3
Symbol table report output (S option) ... 6.4
Symbol

absolute address symbol type .. 2.2
assignment of absolute memory addresses .. 2.2
constant symbol type ... 2.2
cross-reference of symbols report output (X option) 3 .2, 6.4
defined in label field of some directives .. 3. 3
in link specification is global ... 3.3
internal symbol"<<<<<<<<" .. 1.3
relocatable address symbol type : 2.2
relocatable symbol absolute addresses assigned 3.5
restriction of relocatable symbol references .. 2.2
rules for syntax of symbol ... 3 .3
truncation of symbol to 8 characters (T option) 3.2, 6.4
user-defined, upper case vs lower case (L option) 3.1, 6.3
symbol and expression type attributes ... 3.5
symbol defining directives ... 2.1
symbol file .. 1.2
symbol table and cross-reference selected at once (B option) 3.1
symbol table content described ... 3.3
symbol table report output (S option) ... 3 .1
symbol table report ... 1.2, 2.1

Syntax notation for directives4.1
Syntax of link specification is field oriented .. 3 .2

T option for truncating significant characters of symbols 3.3
T option for truncation oflong symbols to 8 characters 3.2, 6.4
Tab characters and/ or spaces delimit fields ... 3 .2
Tab characters in expressions .. 3 .5
Table of expression use restrictions ... 3 .6
Table of result types for binary operations ... 3.6
Table of symbols report output (S option) .. 3 .1, 6.4
Time and date ... 1.1

© 1984 by Quelo 1.15

QLINK Index

Truncation of expression results .. 3. 7
Truncation of symbols to 8 characters (T option) 3 .2, 6.4
TTL command in librarian behaves like in linker .. 6.5
TTL directive described ... 4.9
Type

absolute address type of symbol .. 2.2
constant type of symbol ... 2.2
determination of type for results of expressions 3.5
relocatable address type of symbol .. 2.2
type-of-symbol matching rules ... 3. 7
type attributes of symbols and expressions ... 3 .5
type of a link specification symbol may be absolute address or constant 3.3

_Un~~§COre character allowed in a symbol. .. 3.3
Uninitialized and initialized data spaces, separation of 2.1
Uninitialized data spaces get no generated HEX records 2.1
Unsigned truncation of expression results .. 3. 7
Update an existing library ... 6.1
UPDATE command in librarian .. 6. 7
UPDATE CREA TE and EXTRACT commands for naming the current library 6.4
Upper and lower case letters in symbols (L option) .. 3.3
Upper case vs lower case in user-defined symbols (L option) 3 .1, 6.3
User-defined symbols, upper case vs lower case (L option) 3 .1, 6.3

V option for formfeed output at start of listing .. 3 .2, 6.4
Value range restrictions in expressions ... 3.6
Version and revision information for modules .. 3. 8
Version, name, revision and description of a library are given in IDNT : 6.4

WARNING and ERROR messages are issued from QLINK 3.9

X option for cross-reference of symbols report output 3.2, 6.4
XDEF assembler directive symbols in modules and link specification symbols 3 .3

Z80 byte order character constant justification .. 3 .4
Z80 byte order data generating directives summary4.1

© 1984 by Quelo 1.16

