MICRAL V PORTABLE MICROCOMPUTER SYSTEM
OPERATOR'S MANUAL

TM-2001
Issued December 1978

MICRAL V PORTABLE MICROCOMPUTER SYSTEM
OPERATOR'S MANUAL

T™M=-2001
Issued December 1978

R2E OF AMERICA
47 Bedford St., S.E.
Minneapolis, Minnesota 55414

(© Copyright 1978 R2E of America ' Printed in USA

PREFACE

PURPOSE

This manual provides all instructions and data necessary to operate the R2E
MICRAL V Portable Microcomputer System using BAL (a superset of BASIC), or
FORTRAN IV or Assembly Language, operating under the Sysmic Operating System.

CONVENTIONS USED IN THIS DOCUMENT

Most (but not all) of the operator commands for the system must be terminated by
a carriage return. Whenever required, this is indicated in text by the symbol
(er).

Optional fields in instruction descriptions are enclosed by brackets [] (do not
enter the brackets in the program). In general, spaces can be inserted as
desired in command strings to improve readability.

REFERENCES

For a detailed description of the BAL Language (Business Application Language -
a superset of BASIC), refer to the MICRAL BAL Reference Manual. This document
explains all the programming conventions and formats and provides a detailed
description of the command structure of the language, plus examples.

The BAL manual also contains a description of the file management system,
describes the command structure and includes examples.

A detailed description of the FORTRAN IV Programming Language can be found in
the FORT//80, FORTRAN IV Reference Manual. »

Refer to the MICRAL Assembler Reference Manual for a description of programming
formats and requirements for the Assembler.

REVISIONS TO THIS DOCUMENT

The descriptions and specifications herein are subject to change without notice.
A comment sheet/mailer is bound into the back of this document. Use it to
report comments/corrections to the manual, and/or to place your name on the
mailing list for any future updates to this manual.

CHAPTER 1.

N —

1.
1.

—
=W

CHAPTER 2.

DN NN
Ul Ewh =

— =0 O3

PN
- O

CHAPTER 3.

ww
N —

www
Ul Ew

3.6

3.7

TABLE OF CONTENTS

SYSTEM DESCRIPTION

General Description

Minifloppy Disk Drive

1.2.1 Minidiskettes :
1.2.2 Proper Insertion of a Minidiskette
The MICRAL V Keyboard

Power

OPERATING INSTRUCTIONS -- BAL

Introduction

Types of Diskettes
Bringing Up The System '
Powering The System Down
Copying And Formatting
2.5.1 Formatting

2.5.2 Copying A Diskette - Dual Drive System
2.5.3 Copying A Diskette - Single Drive System

Creating A Source Program

Translating A Program

Program Execution

Editing A Program

The Debug Package

The Utility Routines

2.11.1 Routines For Handling Source Files

2.11.2 Routines For Handling Various Types Of Files

OPERATING INSTRUCTIONS —- SYSMIC OPERATING SYSTEM
(INCLUDES ASSEMBLER AND FORTRAN OPERATION) ‘

Introduction

General Description

3.2.1 System Files

3.2.2 Definitions

3.2.3 General Command Syntax
Loading The System

Display Directory

Utility Program

3.5.1 Initialize A Diskette
3.5.2 Initialize A File
3.5.3 Create A Volume

.5.4 Declare (Create) A File
.5.5 Delete A File

opy Program

.6.1 Copy A Diskette

3.6.2 Copy A File

Editor

3
3
C
3

1w w N N

JESUr QU P QR T I QP W .
WO ETa0WWOWOO~TITOOO

22
22
22
22
23
24
24
25
25
25
25
25
26
26
26
27
28

3.8 FORTRAN Compiler
3.9 Assembler
3.10 Monitor

APPENDIX A. MICRAL BAL ERROR LIST

General

Errors Found During Execution Of A Program
Errors Found During Translation Of A Program
Errors Found When Using Peripherals

b =]
EwN) —

APPENDIX B. MICRAL FILE SYSTEM RESPONSES

B.1 Table Of Responses

APPENDIX C. SYSMIC ERROR CODES

29
29
30

31
31
32
32

33

33

PAGE 1

CHAPTER 1. SYSTEM DESCRIPTION

1.1 GENERAL DESCRIPTION
The MICRAL V is a portable data processing system for business and industry.

The system is composed of an 8080 CPU, 32K of RAM (up to 64K total in 8K
inerements), a double density Shugart Minifloppy* drive providing 140K of usable
on-line storage, a Panaplex 480 character alphanumeric display (12 lines, 40
characters per line), an ASCII keyboard with a separate 18 key numeric pad, a 32
character per line alphanumeric strip printer, and a power supply. The system
includes an interface for a second minifloppy drive and a parallel printer
interface.

The printer interface is compatable with various printers supplied by the user,
including 30 to 60 cps Xerox-Diablo printers and 180 cps to 1000 lpm Centronics
printers.

Figure 1 illustrates the system. It is mounted in a suitcase, measuring 22
inches (550 mm) wide, 28 inches (350 mm) deep and 6.7 inches (170 mm) high. It
weighs about 18 kg (40 pounds).

The system (not including an external parallel printer) requires 110 Vac, 60 Hz
power at about 5 amps, or it can be powered from a 220 Vac or 12 Vde or 24 Vde
source. '

Figure 1. MICRAL V Portable Microcomputer System

¥Registered trademark of Shugart Associates

PAGE 2
1.2 MINIFLOPPY DISK DRIVE

The system uses a Shugart SA-400 double density minifloppy drive, mounted in the
right side of the case. An optional second drive is supplied in its own
mounting case. (A planned future product is a suitcase mounted system with two
drives standard.) These are rugged mechanical drives using stepping motor
actuators. The drives include a write protect feature.

In all operating instructions, the drive mounted in the right hand side of the
case will be referred to as Unit 0; the externally mounted drive as Unit 1.

1.2.1 Minidiskettes

The minifloppy diskette, illustrated in Figure 2, stores up to 140K (K=1024)
bytes of programs or data as formatted by R2E, using Shugart SA105 hard-sectored
minidiskettes, or equivalent. Each 130 mm (5 1/2 in) Square minidiskette will
store up to 220K bytes, unformatted.

[oo [::cz
@, _
Write Protect
| 0 Notch

Figure 2. Minidiskette

Each minidiskette has 35 tracks with 16 sectors of 256 characters per sector
(double density). The SA105 is a hard-sectored diskette -- with 16 sector holes
per diskette. '

'NOTE: Do not attempt to use 10 sector hard-sectored diskettes
in this system. They will not operate properly with
the system software.

The SA105 minidiskette has a write protect capability; A Write Protect Notch is
located on the diskette jacket as shown in figure 2. When the notch is open,
writing is allowed. When the not¢h is covered with a Write Protect Tab, writing
is inhibited.

PAGE 3

1.2.2 Proper Insertion of a Minidiskette

Figure 3 illustrates the proper insertion of a minidiskette into a drive. Note
the orientation of the slot for reading and the orientation of the write protect
notch. The label of the inserted diskette must face toward the door opening

‘mechanism.

Figure 3. Inserting A Minidiskette

1.3 THE MICRAL V KEYBOARD

Figure 4 on the following page illustrates the MICRAL V keyboard. This is an
upper case ASCII keyboard with an 18 key numeric pad for convenient entry of
both decimal and hexadecimal numbers. A row of special function keys is also
provided. The keyboard uses the standard 64 character upper case ASCII

-character set.

Most of the keys are self explanatory. The functions of a few special keys and
the control keys are explained below the illustration.

PAGE 4

o

000000000000

0000000000000

@)

2ND
FLOPPY
DRIVE

20

3

g
g

900000

o @OPOOOEOEEOD OO

8]818]18]161010]0]0]6]e]SISIoNnIo
Q@WERROOOOLEEM®MOEE

clolclolclalalslclolslalsIolo]e)

GN@XXOMEENMAOOAEIOE®E
C) &) OCO0O

CONTROL KEY
ESC

CTRL

REPEAT

F1-F6

CLEAR

CARRIAGE
RETURN

Figure 4. The MICRAL V Keyboard

FUNCTION

Escape -- Used by BAL as an "Interruption" key to interrupt
the current operation and return to some other point in the
program.

Simultaneously pressing CTRL and SHIFT clears the system,
readying it for a system command. When CTRL-SHIFT is pressed
the word "MICRAL.." and a blinking cursor appear in the upper
left corner of the display.

Holding this key down while simultaneously pressing another
key causes the repeated entry of that»characterkor function.

These are function keys, whose state can be sensed under
program control when using assembly language.

Clears the display screen and returns the cursor to the upper
left corner position.

Used to terminate most keyboard entries. Provides both a
carriage return (cursor moved to beginning of current line)
and a line feed (cursor moved down one line) when pressed.

PAGE 5

DOWN ARROW Moves the cursor down one line, but does not return it to the
(LINE FEED) beginning of the line.

UP, RIGHT & Moves cursor one character position in the direction indicated
LEFT ARROWS by the arrow. These keys are useful only in system dialog,
not in response to a BAL ASK instruction.

1.4 POWER

The MICRAL V is generally powered from a 110 Vac, 60 Hz source. It can also
operate on 220 Vac, 50 Hz; 12 Vdc; and 24 Vde.

The computer has a short power cable with a 6 pin male connector. A separate
mating power cable is provided for each power source. Each cable is wired to
select the proper transformer taps for its input power source. The DC cables
are designed to plug into a vehicle cigarette lighter.

To operate, plug the computer's power connector into the 6 pin connector on the
appropriate power cable (the connectors are keyed to prevent incorrect
insertion). Then plug the power cable into the appropriate power receptacle.

PAGE 6

CHAPTER 2. OPERATING INSTRUCTIONS -- BAL

2.1 INTRODUCTION

This chapter contains complete descriptions of operating instructions for BAL,
the Editor and the Utilities. Instructions for operation of the SYSMIC
Operating System, the FORTRAN Compiler and the Assembler are found in Chapter 3.

2.2 TYPES OF DISKETTES

In the course of using the MICRAL V for various programs, you will use and/or
generate the following types of diskettes containing programs and data:

1. System Diskettes -- The BAL System diskette contains the system pro-
grams and can contain your BAL source program and its translation. We
suggest that you write protect the supplied System diskette and use it
only for making copies of the operating system. You can then write and
translate programs using the copies of your System diskette.

2. Source Program Diskette -- May contain edited copies of your source
program, written in BAL. This source program must be re-written to the
System diskette (starting on track 14) for translation.

3. File Diskettes -- These diskettes contain the files (as necessary) used
by your user program(s). Each diskette may contain several files of
the same or different types.

These different types of diskettes are discussed in more detail in following
paragraphs.

2.3 BRINGING UP THE SYSTEM
Follow the steps below to power the system up and bring the BAL system on-line.

1. One end of the power cord has a 6 pin connector. Plug it in to the
mating connector on the computer's power cable. Then plug the system
power cord into the appropriate power source (110 Vac, 220 Vac, 12 Vdc,
or 24 Vde).

2. When the display has warmed up, the word "MICRAL.." and a blinking
cursor will appear in the upper left corner of your display.

3. Insert the System diskette (normally will be write protected) into Unit
0 with the label side of the diskette facing the door closing mechanism
and close the drive door. Respond to the display by typing B:0(cr).
The computer then loads the BAL program.

I. Once the resident BAL routines are loaded, the system requests the
current date and time. Respond as shown below. The user responses in

PAGE 7

these and all examples in this manual are underlined.

YEAR. 1978(cr) - MONTH.08 (cr) DAY.06(cr)
TIME. 16(cr) MINUTE.Q6(cr) NOTE: Use 24 hour clock.

6. If you enter an illegal date or time (i.e., month 13), the display will
return to YEAR.19. If you make a mistake, such as entering 06 when you
really wanted 08, press the Escape (ESC) key to restart the operation.

7. When the above data is entered correctly, the system résponds:

BAL...

It is now ready to accept BAL commands. The legal BAL commands and the
paragraphs in which they are discussed in detail are listed below.

8. If using an external parallel line printér; make sure it is on-line
and powered up. :

BAL Command Function Section
R(er) RUN -- Begins execution of the translated 2.8
program on the System diskette in Unit O.

T(cr) TRANSLATE -- Translates the source program 2.6
on the diskette in Unit O; recording the & 2.7
translated program on that same diskette.

U(er) UTILITIES -- Calls the utility program which 2.9
includes the Editor.

D(cr) DEBUG -- Loads the Debug package which is then 2.10
used to trace program execution and debug the
translated BAL program.

Cler) COMMAND -- Calls various utility programs such 2.11

as Dump, Formatter, etc.

2.4 POWERING THE SYSTEM DOWN

To power down, remove any diskettes from the minifloppy drives and unplug the
system from the power source.

PAGE 8
2.5 COPYING AND FORMATTING

Before you begin to develop programs for the MICRAL V, you may wish to format
your blank diskettes and make several copies of the System diskette. (We'd
suggest reserving the supplied System diskette as a Master and maklng copies ‘to
use for 'all program development.).

See 2.5.2 for copying a diskette in a dual drive system; 2.5.3 for copying w1th
a single drlve system.

2.5.1 Formatting

Blank diskettes must be formatted prior to use, unless a complete formatted
diskette is to be copied onto the blank diskette. The formatting operation
initializes a diskette, programming it with the proper housekeeping data in the
format required by BAL. Following this, it is ready for use with the system.

Format your diskettes as follows:

1. With the system operating (awaiting a BAL command), insert the System
diskette into Unit 0 and close the door. Make sure that the diskette
is write protected.

2. Type C(cr). This brings in the formatting program and the console
display will be:

COMMAND:

3. For safety, remove the System diskette from Unit O and insert a blank
diskette (or a diskette to be re-formatted) into Unit O or Unit 1.
Make sure that this diskette does not have a tab covering the write
protect notch.

4. Respond to COMMAND by typing P(cr). You must then supply data for
several conditions as indicated below.

COMMAND :P(cr)
OUTPUT :FLO(er) UNIT :0 or 1(er)

This specifies that formatting is to occur on the floppy diskette (FLO)
of Unit 0 or 1. . Note that the System diskette will attempt to
re-format itself if it is still in Unit O and you specify Unit O.

5. The specified drive will step through all the tracks as the diskette
is formatted. When formatting is complete (about a minute), a new
message COMMAND :, appears on the display.

If you note that the display does not change after a couple of minutes,
check to be sure that the diskette is not write protected or try
another diskette.

6. Repeat this operation from step 3 to format another diskette.

PAGE 9
7. To terminate the operation, type M(cr) to return to BAL.
Once a diskette has been formatted and data has been recorded on it, you can |

erase the programs or data by copying new information on the diskette. It is
generally not necessary to re-format a diskette.

2.5.2 Copying A Diskette - Dual Drive System

Prior to developing user programs, you will generally wish to make one or more
copies of your System diskette. These will be used in developing and
translating programs (see 2.7 for further information). Copy your System
diskette as follows:

1. With the system operating, insert the System diskette into Unit O.

2. Type C(cr). The copy program is loaded and the following is displayed
on the screen:

COMMAND :

3. Insert a blank diskette into Unit 1 and close the door. (The diskette
need not have been previously formatted.) This diskette must not be
write protected.

| 4, Respond to the display as follows:
COMMAND :3(cr)
5. The drives will step through all the tracks as the information on the
diskette in Unit O is copied onto the diskette in Unit 1. After the

copying is complete (about 2 minutes), COMMAND : again appears on the
screen.

The diskette in Unit 1 is now a duplicate of the diskette in Unit O,
which is unchanged by this operation.

If a read or write problem occurs, the system retries the operation.
If the copy is not complete after 2-3 minutes, try another diskette.

6. To make another copy, repeat this procedure from step 3.
7. To terminate this operation, type M(cr) to return to BAL.
Note that the COMMAND function includes other utilities in addition to Copy.
They are discussed in paragraph 2.11.
2.5.3 Copyiné A Diskette - Single Drive System
If you have a system with a single drive, you will need to write a short program

to use in copying your diskettes. The steps you will need to use (programming
in BAL) are: :

PAGE 10
Load the diskette to be copied (Diskette A).

Use the BAL BUFIN command to read the first n sectors of data into
memory.

Remove Diskette A and load the diskette to be copied onto (Diskette
B). ;

Use the BUFOUT command to output the first n sectors of data onto
Diskette B.

Swap diskettes and follow the above procedure for the'next n sectors.
Continue until the entire diskette has been copied.

2.6 CREATING A SOURCE PROGRAM

MICRAL V allows the user to create a new source program and have it
syntax-checked on a line-by-line basis as it is entered into the system.
The BAL translator analyzes each instruction character-by-character and
indicates any errors as soon as the next character has been entered.

‘When an error is found, the programmer can correct it immediately. See

Appendix A for an explanation of the BAL error codes. See the MICRAL BAL
Reference Manual for a complete description of the language.

Create a program as follows:

1.

With the system running, insert a diskette containing the system
programs into Unit O.

After closing the drive doors, respond to the BAL prompt by typing
T(er). BAL...T is now on the screen.

The translator is loaded into memory and the following message is

" then displayed:

NEW, OLD (N,O)

To create a new program, type N(cr), then proceed to enter your BAL
program from the keyboard according to the programming rules and
formats defined in the MICRAL BAL Reference Manual.

* As the program is entered, it is analyzed and recorded on the system

diskette, starting at track 14.

When you enter each ESEG statement (end of segment), the last source
code for that segment is recorded on the diskette, the segment is
translated, and the following is displayed for that segment:

PROGRAM LENGTH XX (Will be 0 if this segment cannot
be translated properly.)

DATA LENGTH YY (Only at the end of Segment 0.)

PAGE 11

6. When END is keyed as the last instruction of your program, theksystem

completes the translation and returns to BAL, displaying the BAL...
prompt. ;
You now have a system diskette in Unit O which contains the source
program and the translated version of the program.

If there are no errors, you can execute your translated program. If
any errors are detected (one or more segments has a program length of
0), use the Editor to prepare a corrected Source program. See

paragraph 2.9 for a description of the Editor.

2.7 TRANSLATING A PROGRAM

As you no doubt noted above, the Translator is used both to create a new program
and to translate an existing program. The procedure for translating an existing
program is:

1.

With the system operating, insert a System diskette containing a
source program (beginning at track 14) into Unit O and close the door.
Note that this diskette may NOT have the write protect notch covered.

2. Respond to the BAL prompt by typing T(cr).
3. The Translator is loaded into memory, then several messages are
displayed, requiring operator response as follows:
Message | Response
NEW,OLD (N,0) : N This indicates a new program which is created
: as described in paragraph 2.6.

O An old program, already recorded on the System
diskette, beginning at track 14. Additional
information will now be requested.

ESC Return to BAL.
LIST (Y,N) Y Yes; a program listing is to be output to the
v Display, to the strip printer, or to an external
line printer. : : :
N No; no listing required.
ESC Return to the New-0ld question.
DBUG (Y,N) Y Yes; the hexadecimal address of each line of the

program is printed in parentheses on the listing
along with the program source code.

PAGE 12
If a listing is not selected, the hexadecimal
addresses for lines with statement numbers will be
printed in a table.

N No; no hex addresses are printed.

ESC Return to the New-0ld question.

OUTPUT NUMBER 1 Output the program listing on Display panel.

2 Output listing on external parallel line printer.
5 Output listing on 32 column strip printer.

ESC Return to the New-0ld question.

PART (Y,N) : Y Yes; selects the partial translation of the program

~-- some number of segments to be translated.:
The following additional information is required.

SEG NUMBER :N(cr) Respond to each request
with the number of a segment to be translated.
Respond with (cr) to begin the translation of
the selected segments.

N No; translate the complete program. When segment
0 is modified, or if variables are changed, it is
suggested that the complete program be re-
‘translated. ‘

ESC Return to the New-0ld question.

The source program is read from track 14 of the diskette in drive O and
translated, with the resultant program recorded back on the same
diskette. '

Follow each of the responses with a carriage return.

As translation occurs, syntax errors may be found. When this occurs,
the system indicates the error by displaying an error number on the
Display and halting the listing output. (See the translation time

error list in Appendix A.) The offending character will be enclosed in
parentheses.

EXAMPLE: 25 DCL A, B2, CD
%¥%¥%¥ (D) ERROR 61 DBUG ADDRESS 0007

You must press ESC to continue the translation.

You can stop the translation at any time by pressing the Escape (ESC)

PAGE 13

key. When this occurs, program translation is stopped, and you can
select one of the following options:

a. Continue the translation by again pressing ESC.

b. Change the conditions of the translation by pressing R(er).
You must then respond again to the LIST, DBUG, and OUTPUT
NUMBER questions.

c. Abandon the translation by first pressing R, then responding
to the list message by pressing ESC. When NEW,OLD appears
on the display, again press ESC to return to BAL.

7. When the translation is complete, the system returns to BAL and
displays BAL....

8. At this point your diskette contains both a source program and its
executable translation (provided no fatal translation errors occured).
‘The program can now be executed (see 2.8 below). Note that it is not
necessary to re-translate a program after execution. :

PAGE 14

2.8 PROGRAM EXECUTION

Once your program has been translated, with no translation-time errors, that
program can be executed. The steps are:

1.

With the system operating, insert the translated diskette in Unit O.

If a file diskette is being used, insert it in Unit 1.

Close the doors and type R(cr).

The BAL run-time routines along with the translated program are loaded
into memory and program execution begins.

During execution, if the program is semantically incorrect, a run-time
error will occur. (See Appendix A for a list.) All run-time errors
(except for file system errors controlled by the program) are fatal and
cause execution to halt with the following message displayed.

ERROR N IN SEGMENT X AT ADDRESS YY

Where: N is the error number.
X is the program segment number.
YY is the Debug address within the segment.

If run-time errors are encountered, you may wish to run your program under Debug
control to determine the problem. (See paragraph 2.10.)

2.9 EDITING A PROGRAM

To edit your program, you must provide:

1.

The System diskette containing the source program, or a Source
diskette.

Note that, when it is created, your source program is written beginning

on track 14 of the system diskette. Tracks 0-13 are used for system
functions.

You may need a formatted diskette, either a blank or a diskette to be
overwritten.

The steps for program editing are:

1.
2.

Insert the System diskette in Unit 0, close the door, and type U(cr).

The Utility package is loaded into memory, and the following message
is displayed:

FUNCTION
Respond with E(cr) to call the editor.

Next respond to the following working messages, as shown:

7.

PAGE 15

INPUT :FLO(cr) UNIT :0 or 1(cr) TRACK :YY(cr)
OUTPUT :FLO(cr} UNIT :0 or cr TRACK :ZZ(cr)

You can edit in any one of the following ways:

a.

Edit from track 14 of the System diskette to some higher track
on the same diskette (or vice versa). This method could be used
for smaller programs. Note that each track of a diskette holds
4096 characters, counting blanks and all punctuation, including
carriage return. - ' :

. Edit from the System diskette to a Source diskette in Unit 1

(or vice versa). For example, edit from Unit 0, track 14 to
Unit 1, track O.

Edit from one source diskette to another (System diskette is
removed once the Editor is read into memory).

Note that your edited source program must be written back onto
track 14 of a System diskette before it can be translated.

The first instruction of the program is now displayed, along with a
colon prompt, as shown below.

PROGRAM "TEST"

You must respond with one of the Editor commands. They are summarized
below and explained in detail in the MICRAL BAL Reference Manual. An
invalid command will be rejected by the system and will not appear on

the display.

Command ‘ Function
Space (press Advance to next instruction.
space bar)
M (modify) Modify instruction presently displayed. The cursor is

moved to the beginning of the instruction and you can
begin to enter new characters, replacing the present
characters. Pressing ESC at any point moves the
cursor to the end of the instruction, retaining the
characters passed over.

C (comment) Similar to M, but moves the cursor to the end of the
instruction, so it can be modified or comments can be
added.

R (replace) Delete the current instruction and replace it with one

or more instructions which you now key in.

I (insert) Insert one or more instructions following the instruc-

tion being displayed. This command is used to add new

Dn (delete)

+1n

J(er)

A

,string(cr)

.string(ecr)
%

S(er)

E(er)

PAGE 16

lines to the source file. Pressing cr terminates each
new line entered. Pressing cr before entering an
instruction ends the insert function and the next
sequential instruction in the source file is
displayed.

Delete n lines (0 to 9), beginning with the line cur-
rently displayed.

Advance the display down n instructions, where n is 1
to 9. ‘

Insert source code from some other support device, de-
fined by your response to the question "INPUT :"
which is now displayed. This will generally be a
source file from a diskette. The file to be input
must terminate with an END statement (which will not
be copied). :

Advances to the end of file. "FILE END" is displayéd.
Used to find the occurence of strings in text, begin-

ning from the present line. The line containing the
specified string is displayed.

,string =- Find the first occurrence of the specified
string anywhere in text.

.string -- Find the first occurrence of the specified
string which begins a line.

* -- Repeat previous string command.

Note that a string may be up to 15 characters long.

Abort the edit, cancelling all changes to the source
program. The Utility requests the next FUNCTION.

Write the modified source code to the specified de-
vice. This command must be executed to properly
terminate an edit and obtain the newly edited source
code. This command can be entered at any point in the
edit.

Note: Several keys are used for special functions in the Editor. They

are:

Escape

Left Arrow

Right Arrow

—- For the M and C commands, moves the cursor to the

end of a line, retaining the information passed
over,

—- Backs the cursor up one space without destroying the

character passed over and allows retyping the previ-
ous character.

—- Steps the cursor one character to the right without

PAGE 17
destroying a bypassed character.

@ -- Deletes the line being typed and returns the cursor
to the beginning of the line for re-typing.

Note that the left and right arrows can be used in the M and C
commands to make corrections within an instruction, then ESC can
be pressed to move the cursor to the end of the line, retaining
the information passed over.

8. When your edit is complete, type E(cr). The remainder of the original
, source program is copied into the new file, and the message "FUNCTION
:" appears on the display.

9. You now have an edited Source program on the specified unit. You must
copy the edited program back to track 14 of the System diskette prior
to translation (if you were editing to some other track) .

10. Type M(cr) to return to BAL. You now have an edited source program
which must be translated before it can be executed.

2.10 THE DEBUG PACKAGE

Debug is a routine which allows you to execute your BAL program interactively.
In normal execution of a BAL program, instructions are fetched, checked for
run-time errors, and executed in sequence. Under Debug control, you can execute
instructions in single step mode, insert breakpoints, examine and modify
variables, etc. This is handy when you're trying to figure out why the program
doesn't work the way you planned it.

Use Debug as follows:

1. With the system operating, insert a System diskette containing your
translated program into Unit O. If a file diskette is required by your
program, insert it into Unit 1.

2. Type D(cr) in response to the BAL prompt. The Debug routine and your
object program are loaded into memory and the following message is
displayed:

DBUG
3. At this point, you must provide working instructions to the Debug pro-
gram. A condensed table of these instructions is below. A more
detailed description of these instructions can be found in the MICRAL
BAL Reference Manual.

Command Function

D variable(cr) Displays the present contents of the selected
variable.

M var=value(cr) Replaces the contents of the selected variable

B seg no,addr(cr)

A seg no,addr(cr)

G(er)

G address(cr)

S(er)

C(er)

Space

E(cr)

PAGE 18
with "value".

A breakpoint is installed in program segment
"seg no" at the specified address (addr).

when instruction execution reaches that point in
the program, control is returned to the user
prior to executing the instruction. The break-
point is removed once it has been reached.

A permanent breakpoint is installed at the
specified address’in "seg no". Program
execution stops and control is returned

to the user each time this instruction is
reached. This condition is reset with the
C command.

Continue program execution from the current
point.

Begin program execution from the indicated
point. The address corresponds to one of the
addresses printed on the source listing when
the Debug option is selected during trans-
lation.

Selects single step instruction execution
in which one instruction is executed each
time the space bar is pressed.

Terminates single step mode and the per-
manent breakpoint settings.

Pressing the space bar while in single step
mode results in the execution of the next
instruction in sequence.

Terminates execution of the program under
Debug control and returns to BAL.

4. When a program is running under Debug, control is returned to the oper-
ator: 1) at the first instruction, 2) after each instruction in single
step mode, 3) each time a breakpoint is reached, and 4) upon the
detection of a run-time error. Control is also returned if you press
ESC (if the program is hung up in a loop, for example).

2.11 THE UTILITY ROUTINES

There are two sets of utility routines available. They are described below.

2.11.1 Routines For Handling Source Files

These routines include the Text Editor and the Source Program Copy routine.

PAGE 19
They are used as follows:
1; Insert your System diskette in Unit O and.type U(er).
2. The Utility packageﬂis loaded into hemory_and‘the system displays:
| FUNCTION

3. Type E(er) to call the Editor. The Editor is described in detail in
paragraph 2.9. . , o A

4. Type S(er) to call the Source Program Copy routine. Then respond to
the display messages as shown below.

a. To copy from one floppy disk to anothér'

INPUT :FLO(cr) UNIT :0 or 1(cr) TRACK :0(cr)
OUTPUT :FLO(cr) UNIT :0 or 1(ecr) TRACK :0(cr)

Naturally, you must have the proper diskettes in the drives for
‘this operation. You can copy- from a source diskette in ‘Unit O to a
formatted diskette in Unit 1 or vice versa.

You will normally copy the source program from track 14 on one unit
to track 14 on the other unit, because that's where the Translator
expects to find it. You can copy to other tracks, but be careful
that you don't overlay other valid data. ‘

b. To copy from floppy to the Display or Printer

INPUT :FLO(cr) UNIT :0 or 1(cr) TRACK :Y(cr)

OUTPUT :STY(er) (To the display)
or
OUTPUT :IMP(cr) OUTPUT NUMBER :Z(cr) (To the printer)

Where: Y
' Z

Track number (14 for source program)

1 - Output to display

2 - Output to external parallel printer
5 - Output to strip printer

won

5. Type M(er) to exit the Utility and return to BAL.

2.11.2 Routines For Handling Various Types of Files‘
These utilities include routines for copying files, dumping data and formatting.
1. With a System diskette in Unit O, type Cler) o
2. The Command Utility is loaded into memory and the display is:
COMMAND | - |

PAGE 20

Respond with one of the following valid codes, after loading the
required diskettes in the drives.

Code Function

3(er) Copies the complete contents of the diskette in
Unit O onto the diskette in Unit 1.

R(cr) Copies the complete contents of one diskette onto
another. You must supply system information as
follows:

INPUT :FLO(cr) UNIT :0 or 1(er)

OUTPUT :FLO(cr) UNIT :0 or 1(cr)

P(cr) Formats a diskette. In response to command P, the
system requires the following information:

OUTPUT :FLO(er) UNIT :0 or 1(cr)

You can insert a diskette in either drive and
format it using this command.

D(cr) Dumps the selected sectors from a floppy to the
Display or printer. To use this command, insert
a diskette to be dumped into one drive and type
D(cr). Then supply the system information as shown
below.

INPUT :FLO(cr) UNIT :X(cr) FIRST
SECTOR :AA(cr) NB SECTORS :BB(cr)

OUTPUT :STY(cr) (Dump to display)
or
OUTPUT :IMP(cr) OUTPUT NUMBER :Z(cr)
(Dump to printer)

Where: X = Unit 1 or O
AA = Starting sector number
BB = Number of sectors - decimal or hex
(preceded by /)
Z = 1 - Display

2 - External line printer
5 - Strip printer

' This command dumps the required number of sectors of
data (BB) from Unit X, starting with sector AA onto
the designated device.

Data is dumped 16 characters per line, with the hex-

adecimal numbers on the left and their ASCII equiva-

lents on the right. Unprintable ASCII characters are
represented as a dot, ".".

PAGE 21

Data is output sector by sector. If output is to the
display, the system halts after each sector is output.
Press any key (except ESC) to continue with the next
sector. If you press ESC, the dump is aborted and you
return to the COMMAND message.

L(er) Free Format -- This command copies the specified files,
no matter what format they are in, onto the specified
output device. ~

The procedure for this command;is identical with D,
above.

M(cr) : Return to BAL.
At any point, you can abandon your selection and return to " COMMAND"

by pressing the Escape Key (ESC). The system will print ABORT, then
return to COMMAND. ~ : ~

PAGE 22

CHAPTER 3. OPERATING INSTRUCTIONS -- SYSMIC OPERATING SYSTEM
(INCLUDES ASSEMBLER AND FORTRAN OPERATION)

3.1 INTRODUCTION

The MICRAL Assembler and the FORTRAN Compiler operate under control of the
MICRAL Sysmic Operating System. This chapter provides a complete description of
operating instructions for Sysmic, the Assembler and the FORT//80 FORTRAN
Compiler. '

For a complete description of the FORTRAN language, refer to the FORT//80
FORTRAN IV Language Manual.

Refer to the MICRAL Assembler Reference Manual for a description of Assembly
Language Programming. '

3.2 GENERAL DESCRIPTION

3.2.1 System Files
The Sysmic system is file oriented. The Sysmic diskette contains a number of
system files, which are listed below and described in detail in following
paragraphs.
/ - Requests a directory of files on the diskette.
uT - Utility Program. Includes routines to initialize a
diskette and to create a catalog, create a volume,
and create files. '

CP - Copy. Copies from one device to another.

ED - Editor. Used to create and edit source files. Uses
same commands as BAL Editor.

FTRN

FORTRAN Compiler. Compiles a FORTRAN source program.

ASM - Assembler. Produces an executable program from an
assembly language source file.

In using the system, you must create and edit files as necessary, using ‘the
Utility and Editor programs. If you are creating source programs on a new
diskette, you must use the UT program to initialize that diskette, create a
volume and define files. This is described in detail in paragraph 3.5.

3.2.2 Definitions

Certain terminology is required in system commands, as follows:

Device Name

PAGE 23

FLO - Floppy Disk, Unit O

FL1 - Floppy Disk, Unit 1
"~ STY - Display L

ETY - Keyboard

IMP - Printer

Output Device
Codes

Filename
Program name

File
Specification
(filespec)

1 - Display Panel
2 - External Line Printer
5 - Strip Printer

“All source files are referenced by filename. A fiiename“
~ can be a maximum of 6 characters. R

An executable binary file is assigned a 6 character name
of the same form as the source file.

Source files and executable binary flles are spe01f1ed
differently in a command string. ‘ ;

When used in a command string, a Source flle 1s spe01f1ed o
in the following general format:

[Device name].filename

When used in a command string, a Blnary f11e is spec1f1ed
as: [device name.]filename

The brackets indicate that the device name is optional.
(If the device name is omitted, FLO is assumed.) Note:
that the period is required when a source file is spec-

ified; it is optional for a binary file.

3.2.3 General Comman
The general form of a

[device nanme.
Device name and progr
which must be: speci
detail in the individ

Note the following:‘

¥ Spaces may be
readablllty

¥ Numeric param

d Syntax
Sysmic command is:
]Program name, P1, P2,... Pn(cr)
am name are as defined above. P1 thru Pn ére parameters

fied in the various command strings. They are discussed in
ual command descriptions.

inserted in the commands as desired to provide better

eters are normally expressed in de01mal notation. Hexa-

decimal notation can be used by preceding the hex number with a slash

"/"

. PAGE 24

* Normally a complete command string is typed, followed by a carriage

return. The system program is then loaded, and executed. If you wish,
you can load the system program without executing it, change diskettes,
then finish typing and executing the command. For example, the command
"CP (er) FLO,FL1 (er)" will load the Copy routine from the system
diskette, then halt. You can replace the system diskette with some other
diskette to be copied from Unit O to 1, then enter the rest of the
command and type carriage return. The copy will then occur.

3.3 LOADING THE SYSTEM

1.

First plug the power cord into the appropriate receptacle. When the
display has warmed up, the word "MICRAL.." and a blinking cursor appear
in the upper left corner of the display.

Insert a Sysmic diskette in Unit 0, close the door, and type B:0,1.

The system will be loaded and a double equal sign prompt (==) will be
displayed. You can then enter one of the system commands, as described
in following paragraphs. '

3.4 DISPLAY DIRECTORY

This function prints (on the specified device) a directory of the files on the
specified diskette. '

Command format: [devicel.] /n [,device2], L

Where: devicel

Specifies unit containing System diskette (0 is
assumed if this parameter is omitted.)

/n - / is the name of the directory display program;
n specifies the number of lines on the display
(12 on Micral V) '

device2 - Specifies optional output device. If this para-
meter is omitted, the display is assumed.

L - Specifies print device. 1 - display; 2 - parallel

printer; 5 - strip printer. :

The directory is output in the following format:

Where: .filename

.filename T P:xx L:xx

Specifies name of the file.

T - Indicates one of three file types:
S - source
B - binary
L - free-format
P:ixx - Specifies the starting track of the file (in
decimal)
L:xx - Specifies the length of the file in sectors of

256 bytes (decimal)

PAGE 25

3.5 UTILITY PROGRAM

The Utility program includes several functions: initialiie a diskette,
initialize a file, create a volume (directory), create a file, and delete a
file.

3.5.1 Initialize A Diskette

This function is used to prepare a new diskette for use in the system. The
operating system requires the use of part of the diskette for housekeeping data.
This function writes the diskette into the proper format.

Command format: [device1.] UT,PM,device2(cr)
Where: [devicel.]UT - Specifies the Utility program.
PM _ - Specifies the initialization function.
device?2 - Specifies the unit containing the diskette to be
initialized.

3.5.2 Initialize A File

This function is used to erase a specified file and initialize the space
reserved for that file.

Command format: [devicel.] UT,PM,filespec(cr)
Where: [devicel.] UT,PM have the same function as in 3.5.1, above.
filespec specifies the file to be initialized, such as FLO.TEST.
3.5.3 Create A Volume
This function is used to assign a diskette an identifying volume name and to

create a directory. This function is necessary for the diskette to be
accessable by Sysmic, and must be done prior to assigning file names.

Command format: [devicel.] UT,CT,device2,vol-namel ,nmax](cr)
Where: [devicel.] UT - Specifies the Utility program.
CT : - Specifies "volume creation"
device2 - Specifies the unit containing the diskette being
operated upon.
vol-name - The name of the volume, 1-8 characters in length.
nmax \ - Optional specification of the maximum number of

files which may be contained on this diskette.

3.5.4 Declare (Create) A File

This function permits the user to define various named files on a diskette. A
file must be defined before any data can be written into it. Note that files

PAGE 26

are defined by assigning each a starting track and some length. A file may not
be defined to overlap an area reserved for some other file.

Command format: [device1.] UT,CR,filespec,type,trackl,length](cr)

Where: [devicel.] UT - Specifies the Utility program.

CR - Specifies "create file"

filespec - The name of the new file, such as FLO TEST or

: Jjust .TEST

type - Defines file type as: S (source), B (binary),
or L (free-format)

track - Beginning track on the diskette.

length - Optionally specifies the file length in segments

of 256 bytes. If this parameter is omitted, the
length is specified as O.

When data is entered into a file (using the Editor for example), Sysmic will
expand the file as necessary and assign the correct length (if greater than the
defined length), provided that there is space available. For example, assume a
file ".TEST" of length O declared on track 2 and a file ".NEXT" declared
starting on track 4. When data is written into .TEST it can use up to 32
segments (2 tracks). If entry of data beyond this amount is attempted, .TEST
would be expanded into the area reserved for .NEXT. Sysmic will not allow this,
SO an error message would be issued.

3.5.5 Delete A File

"This function is used to delete a file from the directory.

Command format: [devicel.] UT,SP,filespec(cr)
Where: SP ~ Specifies "delete file".
filespec - Specifies the file to be deleted.

This function deletes the filename from the directory, but does not affect the
data itself. Thus you could use another file declaration (CR) to assign a new
filename to the diskette area containing the data of the deleted file.

3.6 COPY PROGRAM

The copy routine allows the copying or listing of a single file or an entire
diskette.

3.6.1 Copy A Diskette

Command format: [devicel.] CP,unit-x,unit-y(cr)
Where: [devicel.] CP - Specifies the copy program.
unit-x - Specifies the source device, such as FLO.

unit-y - Specifies the destination device, such as FL1.

PAGE 27
This function copies the entire contents of the diskette in unit x onto the

diskette in unit y. The destination diskette does not have to be previously
formatted. The diskette in unit x is unchanged by this operation.

3.6.2 Copy A File
Command format: (filespecl) [,(filespec2)[,typel 1
[devicel.] CP, or r 1(er)

_ o
(device-x) . [,(device-y) [,typel]

Where: [devicel.] CP

Specifies the copy program.

filespeci - Specifies the source file, such as FLO.ED.
filespec2 - Specifies the destination file, such as FL1.ED.
type - Specifies type of file: source, binary, free.

device-x - Used instead of filespecl to specify a source
device. In MICRAL V can be ETY (keyboard).

Used instead of filespec2 to specify a destination
device. Can be STY (display) or IMP (printer). ‘

device-y

When the destination filename or device is omitted, the specified file is
written to the display panel.

PAGE 28
3.7 EDITOR
The MICRAL Editor allows you to create and/or modify source files which are
cataloged on a diskette. The basic Editor commands are identical for both BAL
and Sysmic and are described in paragraph 2.9.

Command format: [device1.] ED, filespecl [,filespec2] [,S](er)

Where: [devicel.] ED - Specifies the editor.
filespeci - Specifies a source file which is to be created or
edited.
filespec2 - Specifies a temporary file for the edited program.
It must be of the same type as source file.
S . - Specifies suppression of the second phase of the

edit (see explanation below).

The Editor is executed in two phases. In phase one, each instruction from file
1 is presented to the user for editing, then stored in file 2. When all
modifications have been made, the second phase of the editor recopies the edited
program from file 2 back to file 1. If the optional S parameter was selected,
the second phase does not occur and file 2 becomes the destination file.

If you do not specify the filespec for file 2, the system creates a temporary
file with the same name as the source file, plus the suffix .S1. This file is
created and cataloged on the same diskette as the source file.

In addition to the BASIC Editor commands described in paragraph 2.9, the
following Editor commands are used in Sysmic:

@EQF Required to flag the end of a Sysmic source file. For
example, it would be used as follows when creating a
FORTRAN source file:

100 CONTINUE (er)
END 10H(cr)
EOF(cr)

D.string Delete all text starting from the current line up to
the first instruction beginning with the specified
string (blanks are ignored).

D,string Similar to the above instruction, but deletes all text
up to the first occurence of the specified string any-
where in text.

P1 Selects a "CARD FORMAT" for an Assembly Language program.
Allows the use of the tabulation key (\ or ESC) with
Sysmic. This command can be selected at any time during
the entry of the Assembly program (at the beginning of
the instruction line).

P2 Selects a "CARD FORMAT" for a FORTRAN program, allowing
use of the tabulation key with Sysmic. This allows the
protection of the "label field" (columns 2-5). This

PAGE 29
command can be selected at any time during the entry of
the FORTRAN program, but only at the beginning of a
instruction. ;

J:filename Insert the specified file. (This is only’a syntax éhange
to the basic Editor's J command.)

¥ This repeats the previous string command, searching for
a string if .string or ,string were specified; deleting
text if D.string or D,string were specified.

3.8 FORTRAN COMPILER

The FORTRAN Compiler can be used to compile your FORTRAN source programs and
produce executable binary files.

Command format : [devicel.] FTRN,filespec,.B1[,NL1[,NBI[,LCI[,LV](cr)

Where: [devicel.] FTRN - Specifies the FORTRAN Compiler. _
filespec - Specifies a FORTRAN source file. See the FORT//80
Reference Manual for a description of FORTRAN
programming requirements.

B1 - Specifies creation of a binary file.
NL - Specifies no listing.

NB - Specifies no binary file.

LC - Create listing and binary file.

LV - Create listing on display or printer,

3.9 ASSEMBLER

The MICRAL Assembler runs under control of the Sysmic Operating System. Refer
to the MICRAL Assembler Reference Manual for programming details.

Command format:

[devicel.] ASM,filespecl ,filespec2 [,NL] [,NS] [,NB] [,LV] (cr)

Where: [devicel.] ASM Specifies the Assembler program.

filespec] - Specifies the source file.

filespec? - Specifies the name of the binary file,

NL - Specifies no listing.

NS - Specifies no symbol table output

NB - Specifies no binary file to be generated.
LV - Listing to be output on the display screen.

Unless otherwise specified, the system generates a binary file and prints a
listing and a symbol table.

In addition to the standard Assembly langauge commands, the following are used

PAGE 30

when operating under control of Sysmic:

PAR

END ETIQ

DCN val

3.10 MONITOR

Pseudo instruction (no operand required) which causes
ASCII characters to be generated with even parity. If
this pseudo instruction is not specified, 7 bit ASCII
characters are generated with the parity bit always set
to zero. '

Pseudo instruction which requires an operand specifying
the beginning address of the program.

Pseudo instruction DCN which may require a one or two
byte value.

The MICRAL MOMIC Monitor can be called when operating iunder Sysmic.

Command format:

[device1.] MOMIC (er)

The operation of MOMIC is described in detail in the MICRAL MOMIC Reference

Manual.

A.1 GENERAL

PAGE 31

APPENDIX A. MICRAL BAL ERROR LIST

When the translator detects an error, either during translation or the execution
of a program, a message is displayed on the screen in the following format:

ERROR N IN SEGMENT XX AT ADDRESS YYYY

Where:

-- The error code as listed below.

-~ The program segment which was being executed
or translated.

YYYY -- The debug address of the instruction which is

in error.

Note: The list of errors below is inclusive for all versions of BAL. Certain
of these error codes are not applicable to the MICRAL V and will never appear on

your display.

A.2 ERRORS FOUND DURING EXECUTION OF A PROGRAM

Error Code

10
1
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32

Explanation
Specified segment not in user program
Data field is too small -- attempt to read non-existent data

Index is zero

Index is too large for the declared table size

Index is non-binary (table or string)

RETURN point in a program is incorrect

Overflow of a variable

The stack of the GOSUB or LDGO.SEG has overflowed

Arithmetic overflow

Undefined variable

Variable is not in floating point format (BCD)

Load segment (LDGO.SEG X) is incorrect

BUFIN or BUFOUT error -- BUFIN & BUFOUT applicable only
to hard disk & floppy '
Incorrect peripheral number specified (ASK or PRINT)
Format error

Common memory overflow

Lock number too large

Memory variable too large

Individual memory overflow

Common variable declaration incorrect

Common variable table overflow

Undefined operation code

Attempt to write a protected common variable

A.3 ERRORS FOUND DURING TRANSLATION OF A PROGRAM

Error Code
50
51
52
53
54
55
56
57
58
59
60
61
62

63
o4
65

66
67

Explanation
Keyword incorrect (READ, PRINT, GOTO, etc.)
Error in the form of instruction (Incorr. label)
Value specified is not binary
Number of segments incorrect
The end of the instruction is incorrect
FOR/NEXT loop is incorrect
Syntax error
Incorrect operator (+, -, ¥, etc.)
Type of variable incorrect (string, BCD, binary)
Format error
Support variable incorrect (FIELD, EQUIVALENCE)
DCL (declaration) error
Binary code generated for this 1nstruct10n is too

large; instruction must be shortened
String is incorrect
BCD is incorrect
Overflow of stack for the nested FOR statement;
number of nested loops must be reduced

Individual memory overflow

- The area selected for wrltlng already in use for a

BAL program

A.4 ERRORS FOUND WHEN USING PERIPHERALS

Error Code
01
02
03
o4
05
06
08
40
41
uy

Explanation
The disk is not ready
Read or write error
Track positioning error
Parameter call error
Peripheral is write protected
Disk hardware error
File is not in binary format
Specified peripheral not in the system
Location of the volume unknown
Volume does not belong to the file system

PAGE 32

NOTE: Certain errors do not result in the immediate abortion of the operation.
In these cases, the system retries the operation and sounds a beeping tone to

alert the operator of the retry.
pressing the ESC key.

You may abandon these retry attempts by
This procedure is applicable to errors 1,2,3,5,6 and 25.

APPENDIX B. MICRAL FILE SYSTEM RESPONSES

TABLE OF RESPONSES

PAGE 33

Hex Decimal Explanation
/0 0 Request correctly executed
/1 1 Peripheral not ready
/2 2 Read or write error
/3 3 Track positioning error
/4 y Incorrect parameter call
/5 5 Peripheral is write protected
/6 6 Peripheral hardware error
/7 7 Start of file detected (tape)
/8 8 End of file detected (tape)
/9 9 Peripheral busy
/40 oU Peripheral or file system resource non-ex1stent
/41 65 Local volume undefined
/42 66 Function undefined
/43 67 Volume unchangeable because it still contains files
/44 68 Volume does not belong to file system
/45 69 Volume not mounted
/46 70 Name of the file does not exist on the volume
/47 71 Incorrect file opening key
/48 72 File open
/49 73 Incorrect logical number
/50 80 Logical number not assigned
/51 81 Relative file not open for writing
/52 82 File name already exists on this volume
/53 83 The volume cannot contain a new file
/54 84 Unknown disk address
/55 85 Volume overflow
/56 86 Incoherant file
/57 87 Logical number already as31gned
/58 88 File system cannot accept opening of a new file
/59 89 The volume is used, therefore cannot be replaced
by another
/60 96 Incorrect file type
/61 97 File not open for writing
/62 98 Sequential file not open for writing
/63 99 Beginning of file
/64 100 End of file
/65 101 Loss of information on reading; your input
buffer contains only the beginning of the re-
corded data
/66 102 Length of the key is incorrect
/67 103 Article found, but does not appear in any of the
' indexes requested
/68 104 Article not found
/69 105 No index :
/70 112 Article already exists’
/71 113 Article in course of modification

PAGE 34

/72 114 Article not authorized for modification
/73 115 Writing or destruction of file not permitted

- because that file is not the last on the tape
/T4 116 Attempt to open a file while it is in safeguard

01
02
03
ou
05
06
08
20
21
22
23
24
25
26
27
28
29
2A

2B

PAGE 35

APPENDIX C. SYSMIC ERROR CODES

Peripheral not ready (or floppy disk write protected)
Read/write error

Track positioning error

Incorrect parameter

Disk is write protected

Peripheral controller error

File not in binary format

Command syntax incorrect

Peripheral unknown

No directory found

Directory full

Specified disk area assigned to another file
Specified filename already exists

File already open

Too many files open simultaneously

File unknown

File number is incorrect

Specified file type is incorrect

Device name or filename syntax is incorrect

PAGE 36

USER RESPONSE FORM
MICRAL V MICROCOMPUTER OPERATOR'S MANUAL

Please use this form to request future updates and/or to record your comments,
suggestions, etc. concerning this document. Return to:

R2E of AMERICA
47 Bedford Street, S.E. :
Minneapolis, Minn. 55414 '

DATE:

NAME :

COMPANY:

ADDRESS:

CITY: STATE: ZIP:

COMMENTS:

	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

