E FOR NED USERS
TSC Computer Facility User's Memo No. 1

April 1980 (Revision 10)

David Yost and Judity Westbury
The Rand Corporation
Santa Monica, California

International

333 Ravenswood Ave. « Menlo Park, CA 94025
(415) 859-6200 « TWX: 910-373-2046 « Telex: 334 486

CONTENTS

Section _
I. INTRODUCTION. ¢ttt ereeensseaisenassassesasnannssssnnsasensss
Major Changes From Ned.......iiieeneenensnsannsansansanas
Document SyUNTaX. .. oveeeeevoosscososososoanssonnsnansoscesas

II. RUNNING E!C........ll'lll..lllll.lll.'ll.l'..l'.lll..ll..l

IITI. <CMD> KEY. ..ttt iotitiiettioeenseanossansasstscancsssssonssnsas
To Get OfFf The Command Line.....cooeevcvenns I
To Abort A Command.ccvvnvunn Tt eretectetenta e
The Command MOde@......tciiitntnennsessecsnnsssanasansass

IU- FUNCTION KEYS....-.:...--........ ----- e 685 0 2 8 & ® 9 0 2 e s o0 0 0 2 0

U. <MARK> KEY: FOR DEFINING ARREAS WITH THE CURSOR...cces e aun
HOW TO MarkK..oieeieiosoaesoosssssosnsnssasssnsnsanssancsans
Examples of Marking COMMaANOdS....eseseesnecnacssasansssan
To Cancel Marking......c.oveeeneeranoacososenavssacsanacasss
Describing areas on the Command Line......... Cesereeeen

UI. RECOUERY‘I'....Q..QII.Q llllllll QlI'I.I..I...I.'.‘..'..‘.‘.‘

Appendix ‘

A. SOME EDITING OPERATIONS. ...ttt eesnesecstnsnancsacnnnnsaonas
Under lining..cceeeiinsesiesesnscsenssesasnsaassssnsansnsans
DOUDIESPACING .o c v v v vnvvoeenssnsensnosnsosanassssonssosssas
Changing text to all upper or lower CaSf....cccveuseecen
Using the tee and cat commands from within e........c...
Invoking other system commands while in e.... v nuun.s
Fill, justify, and center.....ccceseceonrenssccnsosnsssans
Replacing text...iiiiriiinrneesecensasnnnssnass cete e
Renaming and deleting files........ccieerveccrecscancans
WIiNOOWS . ..o ittt eteentnsossossnssosssessanassssnasasesssas
Typing on the Command LiNe...cecienennnsaasse ces s e saenea
- Y« - - - = -

B. ADUANCED AND MISCELLANEOUS TOPICS....cccteinrsiosenncnnssnnas
Logging directly into e, bypassing unix shell....coeauu
Invoking e and selecting optionNs.....coevveveecooscsncons
Linked filesS..iiiiiiiiiertinieessnnssscssasnnnssssssancnnsss
E’s work files......... Cececsectseseas et te e nn e
Files and directoriesS. ...t ietnesescsessnnsnsansnnassas
New commands and other ChangesS......ccanssveecsas Ceeesena

C. SUMMARY OF FUNCTIONS IN E, LISTED BY TOPIC....covevvevcness

D. SUMMARY OF FUNCTIONS IN E, LISTED BY OLD WAY IN NED.......

E. CHART OF <CMD> KEY COMMANDS. ctcetreeresoonsesosoncnsns

F. CHANGES FROM REVISION S.......cccvceeceesnseansancas cee e

m~N~N0 b VNV

1]

I. INTRODUCTION

First of all, don’t be put off by the size of this document. The
appendices make up the‘major portion, and they are mostly tables of
information organized for reference.

This paper is intended for users éxperienced with ned. "E" is a
second-generation descendent of "ned'", and although it is similar to
ned, it incorporates some changes that will totally confound you if |
you try to use it before reﬁding this. It should be noted that this
document has only limited use for those who log directly into E,
bypassing the UNIX shell (futﬁre Text Processor users).

Ned was put through a metamorphosis to fix all known problems, to
make it easier to learn, and to add many new and powerful features for
experienced users. MWhat came out of all that is the new editor |
Qescribed here: "E". Perhaps the best news for the user is that
recovery after a crash is dﬁne automatically ?or you. The best news
architecturally might be that E.is virtually unlimited regarding ihe
addition of new commands. Ned relied almost totally on function keys
(colored keys) to invoke commands. But the number of function keys is
limited, and therefore the number of cémmands was limited. E,
however, has gne command key called <CMD> that can process all
commands and to which new commands can be added. E also utilizes
almost all the function keys too, so you can choose which way you
prefer to invoke many commands. E has other advantages, the vast
majority of which has been attained without losing the nice things
about ned. 1In fact, much of ned has been retained. |

The penultimate appendix of this document lists in some detail

(almost) every command available with E. The last appendix is a chart

of commands available with the new <CMD> key.

MAJOR CHANGES FROM NED

E is different from ned in three major ways:

1) the <ARG> (argument) key has now become the <CMD> (command) key;

2) a few of the special function keys (colored keys) are now used

differently;

3) the <PUT> key has now become the <(MARK> key.
Eventually these particular keys will be physically reﬁiaced at your
terminal so that, for example, the key that now says ARG on itiwill
éag CMD. For the time being, however, just remember tnat’when you
press the <{ARG> key you will see "CMD:' on your screen.

| This document devotes one section to each of these three major

changes.

DOCUMENT SYNTAX
For the purposes of this document, the following syntax has been
adopted:
1. Capital letters inside "<>" are function keys (colored
keys). |
Examples: <RETURN>, <OPEN>, <+PAGE>.
The one exception to this is the <CTRL> key, or the
control key. It is always used in conjunction with
another key so its syntax here includes that other key.
For example, <CTRL-S> means hold down the <CTRL> key as

you press the key with S on it (this will move the text

S.

window over to the right as it always did3.
{n> means a decimal number.
Examples: 1@, 2, 3S.
{area> means a specified area within the window in lines
or paragraphs and-sor columns.
Examples: "3p" or "3P" (3 paragraphs), "31"” or "3L"
(3 lines), "31x78" or "3Lx78" (a rectangle 3 lines
down and 78 columns across)., "3px78" or "3Px78" (a
rectangle 3 paragraphs down and 78 columns across).
{cursor> means any sequence of cursor movements.
Other lower case letters inside "<>" mean a word or phfase
of that type.
Example: <filename>.
Letters or words inside "[]1" indicate options.

Example: [<area>l].

II. RUNNING E

To edit a file, type "“e" instead of '"ned".
Example:
% e <filename>
When E calls up a file, it first puts out a message like "e reQ 18 is
starting...”. This lets you know that you can start typing ahead at
that point.

If you call up a new file, one that you haven’t created before.,
an empty window will appear and below it E will ask, "Do you want to
create <new filename>?" If you do, type the single letter "y" or “Y”
and the window will open for your use.

E refrains from clearing the screen until it has to, and does not

clear the screen upon exit.

III. <CMD> KEY

The biggest change E incorporates is the <CMD> key (known in the
past as the <ARG> key), which can invoke any command. When giving a
command with the <CMD> key, the syntax is always the same: Hit the
<CMD> keg; type out your command(s) with area andsor gption(s), then
hit the <RETURN> key or other function key:

Example:

<CMD> i1l <RETURN>

This will fill one paragraph of text.

As with ned, one paragraph is the default for fill,

Justify, and center.

When you type this command, you will notice that "CMD:" aépears
on your screen right below the bottom window line, just as "ARG:" used
to. We will refer to that line as the "Command Line”. The line.
directly below the Command Line is now referred to as the Info Line,
and that is where the word "INSERT" appears when you press the <{INSERT
MODE>.keg. If you use the <MARK)> key (more later), the word “MARK"
will also appear on the Info Line, next to where ":NQERT“ appears.

With the <CMD> key, your typed-out command can be abbreviated as
long as the abbreviation is unambiguous. While we are on the subject
of abbreviations, some comands take options, and they can be
abbreviated also; Upper and lower case are not distinguished for
command names and their options.

Example:

<CMD> fi <RETURN)>
This will also fill one paragraph.

If you want to override the default of one paragraph, right after

you type out the command, type out the area you wish the command to

work on.
Examples:

<CMD> fi 31 <RETURN>
This will fill three lines down from the cursor.

<CMD> fi S <RETURN>
or:
<CMD> fi Sp <RETURN?>

This will fill five paragraphs down from the cursor.

Every command invoked by function keys (colored keys) is now also
available through the <CMD> key. For example, you can open or close
lines as before by hitting the <OPEN> or <CLOSE> keys. But in E you
can also type out these commands with the <CMD> key.

Example:

<CMD> open <RETURN>

This will open one blank line.

(As with ned, one line is the default for the

{OPEN>, <CLOSE> and <PICK> function keys and, as above,

when these functions are typed out with the <CMD> key.)

Some commands are no longer available on function keys. You used
to exit from ned by hitting the key. You can’t do that anymore;
now you exit via the <CMD> key. (No longer will exit if you
accidentally hit the key when you intended to hit <RETURN>.)

Example:

<CMD> exit <RETURN> .
This will exit you from E and update your files.

Besides the familiar commands in the examples above, E
incorporates some entirely new commands to be used with the <CMD> key

(see Appendix D).

JO GET OFF THE COMMAND LINE

a) If you hit the <CMD> key and then decide you don’t want to
give a command, simply hit the <RETURN> key. "CMD:' on your screen
will disappear and your cursor will move from the Comman& Line back
into the text window for editing.

b) If you have hit the <CMD> key, typed out a command, and then
decided you don’t want to give the command, backspace over the typed-
out command and then hit (RETURN>,

Or type <CTRL-C>, which will wipe out the Command Line with

the command in it, and mowve your cursor back into the text window.

(<CTRL-C> is now the "Interrupt"” key. More on that later.)

IO ABORT A QOMHQNﬁ

You have hit the <CMD> key, typed out gourICQMmand. and hit
<RETURN>, only to change your mihd. You want to abort the command as
it is working. Hitting <CTRL-C> (the interrupt) will do this. fhe
interrupt works on searches and the following commands: run, feed.,
fill, justify, and center.
NOTE: Typing within the text window while the command is executing
will not automatically abort the command, as was true in the latest

ned. Therefore, you no longer have to wait for a command to complete

execution before typing ahead.

IHE‘QQMMAND MODE
The notion of "Command Mode* has been created. If you give this

command: ‘

<CMD> command <RETURN>
your cursor will stay on the Command Line so that you can give
continuous commands. When you wish to return your cursor to the text
window, type:

<CMD> -command <RETURN>

This facility may be withdrawn later if it is not found useful.

IV. FUNCTION KEYS

Some of the meanings for function keys (colored keys) have been
changed or deleted. Examples of this have been noted above, including
<CTRL-C>, which used to mean "change windows" but now means
"interrupt," and the key, which used to exit you from ned but
now has no meaning. is only biding its time, however; it will
be used later, when we get to some of the Features of the Future. The
other function key with a b}g change is <GOTO>. It used to take you to
a specified line number, but now it has become the (REPLACE> key.

More on that later.
Below is a listing of esach function key, what it used to do in

your text window, and what it does now ,unde‘r E.

FUNCTION KEY OoLD USE NEW USE
<ARG> Introduced arguments Is now tbe;<CMD> key
for functions. (see <CMD> KEY section).
<+TAB> and Moved the cursor to Same, except that they don’t
<{~-TAB> next tab setting. wrap around any more, and they

won’t take you all the way to
a2 border unless there is a
tabstop there.

<BS> Backspaced to erase Same, plus:
text. To erase text to left of
cursor on cursor line, hit:
<CMD> <BS>

with INSERT Mode off.

To close text to left of
cursor on cursor line, hit:
<CMD> <BS>
with INSERT Mode on.

 Exited user from ned. Has no use now.
To exit from E and
save your file, type:
KCMD> exit <RETURN>
To exit and abort the changes
you made, type:
{CMD> exit abort {RETURN>

<RETURN>

<HOME >

Arrouws

<GOTO>

-18~-

Returned the cursor
to first column,
next line.

Moved cursor to upper
left-hand corner of
text window.

Moved cursor around
screen.

Moved the text window
to the beginning of
the file. With <ARG>
moved to the end of
the file or to a
specific line number.

Same, but alsoc executes
<CMD> key commands (see
<CMD> KEY section).

Same, plus:

To move cursor to lower
left-hand corner, type:

<CMD> <HOME>

Same, plus:

Cursor no longer wraps around tt
window.

If you are at the bottom line of
a window, and you hit
<down arrow)>
the screen will scroll up.
Similarly for the other three
directions.

You can use <left arrow> and
{right arrow> on the Command
Line.

To move cursor to the end of
text on current line, hit:
<CMD> <right arrow>

If you are beyond end of text
‘on current line,
<CMD> <right arrouw)>
takes you to rightmost column.

To move cursor to column 1
of current line, hit:

{CMD> <left arrow>

To move cursor to line 1,
same column, type:
<CMD> <up arrow>

To move cursor to bottom line of
window, same column, type:
<CMD> <{down arrowd
(If the end of the file comes
before the bottom of the windou
you will stop there, and you c:
get to the bottom of the windou
by tuping ’

{CMD)> <down arrouw>
again.

Is now the <REPLACE> key.
See section on replacing in
Appendix C.

To move to the beginning
of the file, type:
<CMD> goto b <RETURN>
or
<CMD> <-PAGE>

<+PAGE> and
<-PAGE>

<+LINE> and
<-LINE>

<+SCH> and

<-SCH>

<INSERT MODE>

<DEL CHAR>

<PUT>

_11—

Moved the text window
forward or backward
one page.

Moved the text window
forward or backward
11 lines.

Searched through
text for a given
word or string.

Inserted characters
or blanks where the
cursor sat.

Deleted characters
or blanks where the
cursor sat. '

Put what was in the
pick buffer, or
with the <ARG> key
put what was in the

To move to the end of
the file, type:
{CMD> goto e <RETURN>
or
<CMD> <+PAGE>
To move to a certain
line number, type:
<CMD> goto <n> <RETURN>
<CMD> gotoc <n> <RETURN>

Same. :

To move the window forward
4 pages, type:

<CMD> 4 <+PAGE>
Backward 2 pages would be:
{CMD> 2 <-PAGE>

Same.

To move the window forward
4 lines, type:

<CMD> 4 <+LINE>
Backward 2 lines would be:
<CMD> 2 <~LINE>

Same.
Use <CMD> key as you would have
used <ARG> before.

For example,

{CMD> <{text> <+SCH>
or v
{CMD> <(text> <-SCH>

Same. However, when you

hit the key, you no longer
see 'INSERT MODE"™ on the

line below the window.

Now you see "INSERT'" on

the following line (the

Info Line). Also, you can
use it to edit on the Command
Line. '

Same, plus:

You can use it to edit the
Command Line.

To remove text to right of
cursor on current line, hit:

<CMD> <DEL CHAR>

Is now the <MARK> key
(see {MARK> KEY section).
To put the pick buffer,

type:

- <OPEN>

<CLOSE>

<PICK>

<CTRL-S>

<CTRL-A>

<CTRL-B>

{CTRL-~-2Z>

<CTRL-C>

-4{2-

close buffer,

Inserted a blank line
above the line uwhere
the cursor sat.

Closed up fhe line
where the cursor sat.

Placed a line in the
pick buffer without
removing it from
text.

Moved the text window
over to the right
16 columns at a time.

Moved the text window
over to the left
16 columns at a time.

Brought another file
into the text window,
and exchanged current
file and alternate
file.

Created a new window.
With <ARG>, closed
most-recently-made
window.

Moved you from

<CMD> <PICK>

or

<CMD> -pick <RETURN>
To put the close buffer.,
type:

<CMD> <CLOSE>

or -

<CMD> -close <RETURN>

Same. ‘
To open 4 lines, type:
<CMD> 4 <OPEN>

or

<CMD> open 4 <{RETURN>

Same. ~

To close 2 lines, type:
<CMD> 2 <CLOSE)>

or

<CMD> close 2 <RETURN>

Same

or:

<CMD> pick <RETURN>
To pick 4 lines, type:
<CMD> 4 <(PICK>

or

<CMD> pick 4 <RETURN>

Same.

To move window over to
column where cursor sits, type:
<CMDB> <CTRL-S>

Same.

To move window left all the way
back to original position, type
<CMD> <CTRL-A>

Now this only alternates between
current file and alternate file
To bring up another file

by name, type:

<CMD> e <filename> <RETURN>

Now it moves you from
window to windouw.
To create a window, type: :
<CMD> window [<filename>l <RETU
To close last-made window, type:
<CMD> -window <{RETURN>

Is now the "Interrupt Key"

<CTRL-V>

CCTRL-X>

CCTRL-L>

-1{3-

window to windouw.

Updated file on disk
with present textual
changes.

Executed unix programs

when given with the
<ARG> Kkey.

Set a new tab where
the cursor sat, or
with <ARG)>, clear

a- tabstop, or with
<ARG> filename, set
tabs according to a
file of tab settings.

(see "To Abort A Command"
above),
To move from window to
window, type:

<CTRL-2>

Has no meaning nouw.

You can no longer update

your file this way. You can
save the file (with its present
changes) to another filename

by typing:

<{CMD> save <new filename)> <RETL
You can save your file in
another directory by typing:
<CMD> save <pathname> <RETURN?>

Has no meaning nouw.

The most commonly used unix
commands are now bujilt-in
commands, e.g. “fill™.

To run a system command, see
“EXECUTE" section in Appendix C

Same, except: :
To set tabs according to
tab file, type:
<CMD> tabfile <file> <(RETURN>
There’s more. See "“TABS" sectio
in Appendix C,

-14-

U. <(MARK> KEY: FOR DEFINING AREAS WITH THE CURSOR

Many commands, such as open and close, can operate on a number o%
lines or a rectangular area as defined by the cursor. The <{MARK> key
(previously known as the <PUT> key) allous gbu to "mark' such areas
using the cursor. 1In ned, the <ARG> key was used for marking areas.
Marking is much more flexible now that marking is done with a separate
<MARK> Kkey because now you can invoke functions requiring the <CMD>
key to help you define gour-area-—for example, moving off the current
window or go to a certain line number. 1In fact, you can give just
~about any <CMD> key command you want while marking.

You should play witﬁ marking using a scratch file until you feel

comfortable with it.

HOW TO MARK

Hit the <{MARK)> key; this mill‘mark the current cursor position.
On’the Info Line under the text window you will see "MARK 1", which
means you have marked 1 line. Now you can move the cursor and the
window around to mark as many lines or as large a rectangle as you
like. VYou can also use the <CMD> key freely as necessary to do things
such as search for strings or go to the end of the file. All the.
while to the right of the "MARK" indicator you will see numbers noting
how big an area you have defined. ‘If you have marked a rectangle, you
will see something like "MARK 188x4B", meaning 188 lines by 4@
columns.

The area you have marked is defined between the current cursor

position and the original cursor position (the beginning of your

-15-

marked area). To check the boundaries of the marked area, you can
move the cursor back and forth between these two positions simply by
hitting <MARK> again. This changes only the cursor position; the
marked area, as shown by the "MARK" numbers, remains the same. After
moving back and forth between the limits of the marked area in this
way, you can still continue to redefine the area as before. Howewver,
be careful to note the “MARK" indication, always making certain the
cursor defineé only the area you want.

| Now that you have marked the lines or rectangle you want, perform
the operation you choose--either by hitting a function key (such as
{CLOSE> to close the area you’ve marked) or bg giving a command with
the <CMD> key (such as “<CMD> center <RETURN>" to center the lines
you’ve marked). When the command finishes execution the cursor will
return to the upper-left corner of the area you marked. If necessary.
the window will be moved so.that the cursor can be put there. Also,
after execution is completed, the marking (e.g., "MARK 188x48") will
disappear. |

WARNING: Marking can be dangerous. If you forget that you have
something marked, you can, for example, close a much bigger area than

you intended.

EXAMPLES OF MARKING COMMANDS
Some marking examples are.

{MARK> <{cursor> <{CLOSE>

This will close the lines or the rectangle the cursor
has defined and put the lines or rectangle into the
<CLOSE)> buffer.

<MARK> <cursor> <{OPEN>
This will insert blank lines or a blank rectangle into

-6~

the area the cursor has defined.

<MARK?> <cursor> <CMD> justify <RETURN>
This will justify the lines the cursor has defined.

<{MARK> <CMD> <+PAGE> <CLOSE>
This will close up the lines between the original
cursor position and the end of the file, which was

moved to with the +PAGE command. It will put the
lines in the <CLOSE> buffer.

<MARK> {CMD)> goto <n> <RETURN> <CMD> justify <RETURN>
This will justify the lines between the original

cursor position and the line number you moved to with
the goto command..

IO CANCEL MARKING
If you want to cancel the marking you are doing, type <CMD>{MARK>
There is a danger here: if you are giving commands via the <CMD> key

while marking, you cduld accidentally cancel the marking.

gﬁscnlszne AREAS ON THE COMMAND LINE
Rather than using the <MARK> key, you can designafe an area by
typing its siée on the Command Line. To do so, hit the <CMD> key., type
out the area you wish to define, then hit the function key you wish.
Examples:
<CMD> 188x48 <CLOSE> .)
This will close a rectangle 188 lines down by 48 columns

across.

<CMD> 1p <CLOSE>
This will close to the end of this paragraph.

<CMD> 3 <OPEN> .
This will insert three blank lines.

To designate an area to a typed-out command, hit the <CMD> key.,
type the command and the area, then hit (RETURND.

Example:

-17-

<CMD> center SL <RETURN>
This will center five lines.

-18~

UI. RECOQUERY

If the system crashed when you were in E, recovering your lost
work is simple. When the system comes up again, change into the
directory you were in when you started your crashed E session, and
- type "e" with no arguments whatsoever, including no filename. E will
redo your lost session quietly. When it is done, the screen will be
updated to the way it looked just before the crash. At that point,
you should exit immediaielg_to save your work, just as you would in

ned.

Ned used to allow you to watch a fast replay of your crashed
session on the screen. E gives you that option. To get a recovery
“movie" is not so simple. Refer to the following two sections in

Appendix B: "Invoking E and Selecting Options" and “E‘’s Work Files".

-19-~

Appendix A

SOME EDITING OPERATIONS

Ned allowed you to give special editing commands, such as for
doublespacing lines (“space') and sorting (“"sort“) by sending your
text to a system command and replacing that text with the output of
the system command.

This capability has been rétained and expanded by E.

However, you no longer‘use {CTRL-X> to execute system commands.
Now you use the "run'" command with the <CMD> key:

<CMD> run [<area’>l] <system command> <RETURN>
To see exactly how “run" works, note the examples of special editing
commands below, plus some other useful editing operations.

If you don’t specify an <area> for the “run" command, the deféuit
is zero lines. If you give a number, it wili be considered as a
number of lines. (This is aifferent frqm the ned {CTRL-X) which
defaulted to 1 paragraph.) Therefore, if you want the command to work

on a paragraph you must type "1ip" or "1P" as the <area).

UNDERLINING
_You can underline in two wags, as you could before.
a) To underline something short: If you wish to Jnderline one
word you can., as you have always been able to, type:
<CTRL-\>H
once for each letter, and then type an underline for each letter.
b) To underline a line of text, move the cursor to that line,

and then type the old underline command while inveking "run" with the

<CMD> key.

That is:

-28-

<CMD> run 11 just .ul <RETURN>

This will underline the current line.

DOUBLESPACING

If your file is singlespaced and you wish to doublespace or

triplespace all or part of it, use the old “space" command with the

“run" command. -2 indicates doublespacing and -3 indicates

triplespacing. (As before, you cannot singlespace a doublespaced or

triplespaced file.)

Some examples:

<{CMD> run S1 space -2 <RETURN>
This will doublespace five lines down from the cursor.

<CMD> run 2p space -3 <RETURN>
This will triplespace two paragraphs down from the cursor.

CHANGING IEXT IO ALL UPPER OR LOWER CASE

Once again, this
“run"” command with the
convert two paragraphs

<CMD> run 2p dd

or
<CMD> run 2p tr

is done as it used to be, except you use the

{CMD> key instead of using <CTRL-X>. To
to upper case, type:
convzucase <RETURN>

"La=-21" "[A-21" <RETURN>

To convert one line to lower case, type:

<CMD> run 1 dd conv=zlcase <RETURN>

or
<CMD> run 1 tr

This also converts the

"[A-Z1" "La-z]" <RETURN)>

first letter of every sentence, so you must

—21-
change each one back by hand.

USING THE TEE AND CAT COMMANDS FROM WITHIN E

| In ned, you might have used the "tee" and "cat'" system cohmands
with <CTRL-X> to move text from one file to another. You should not
use those commands in this way in E. Their use is inherently tricky
and can ruin your chances for a successful replay in the event of a
crash. (This was true in ned, too.) Rather, you should edit one file,
pick from it the lines you want, then edit the second file and put the
lines there. Now that E lets you easily mark as many lines as you

like, this should be a simpler way to accomplish the same task anyway.

INUOKING OTHER SYSTEM COMMANDS WHILE IN E

As with ned, you can issue many system commands while you are
still in E, inserting their.output into the text window. Again, in
ned you would use the <CTRL-X> key., but in E you use the "“run®
command.

Since the default number of lines sent to the command and
replaced by its output is zero in E, you can run ordinary system
commands like "who" easily.

Some examples:

<CMD> run df <RETURN)>

This will list off disk space for all directories; the listing
will begin where the cursor sits.

<CMD> run df /mnt <RETURN>

This will list the disk space in smnt; the information will

appear on the cursor line.

<CMD> run 1s <RETURN> v
This will list the files of the directory you are in.

22'

Another new command similar to "run'" is the "feed" command. It
is just like the run command, but it doesn’t close out the text that

is sent to the system command.

WARNING: Since the result of running many commands can be different
depending on when you run them, you can ruin gouf chances for a
successful replay in the event of a crash by using this feature. For
example:vsag you run a "who' command and then close out the lines
after looking at the result. Then you go on editing, and the system
crashes. Now gbu try to recover., and when the "who" is issued at the
time of the replay, there are fewer users on the system, and so there
are fewer lines to close. The replay, however, goes on closing the
lines as you did in the original session. The replay will have closed

some lines it shouldn’t have.

FILL, JUSTIFY AND CENTER

Fill, justify, and center are new built-in commands that should
never be used with “run“. First, invoking them with “rﬁn" is
inefficient, and second, replay cannot be guaranteed. You should type
these commands in the standard <CMD> key format as described in the
<CMD> KEY section:

<CMD> ju <RETURN>
This will justify one paragraph.

You can override the default line length of 75 columns by adding
4 width option of whatever line length you prefer.
Example:
<CMD> ju width=65 <RETURN>

ar
<{CMD> ju w=65 <RETURN>

_23-

This will justify one paragraph, giving it a line length
of 65 columns.

Whatever width you set becomes the default line length until you
redefine it. The same line length will still be in effect if you exit

and reenter E with no file arguments.

REPLACING TEXT
In ned you used the "rpl" system command with <CTRL-X>. E has a

new "“replace" command. Example:
<CMD> replace S8 s/rightslefts <RETURN>

replaces the word "riéht" with the word "left" throughout the next
fifty lines, including the current line starting at the cursor
position. Here is the formal specification for the replace command:
<CMD> replace C(area)J'CshowJ 7£stri>/0<{str2>l/ <RETURN>
or ; . or
-replace Cinteractivel
where "-" represents the "string delimiter” and can be any printing
character except letters, numbers, "." or v, ("-replace" works
backwards in the file.) If no <area> is given, then "all the way in
the appropriate direction" is assumed. You can also mark an area for
the replace commands. A fcrward‘repl§ce starts with the first
occurrence of <strl)> on or after the current cursor position, and a
backwards replace starts with the first occurrence of <stri> to the

left of the current cursor position.

{(stri1> is the "search string", and <str2> is the “replacement

string”. If <str2)> is null, as in “replace ~sthe//' then all

-24~-

bccprrences of the first string are deleted. VYou are given freedom to
pick your own string delimiter so that any character can appear in a

search or replacement string.

Normally, a replacemeﬁ£ is done quickly, all at ﬁnce, and the
only thing you will see happenihg on the screen is the replacements
that are in your current window position. You can select the “shouw"
option to show goﬁ all of the replacemenis as they are happening, and

the window will move as necessary so that you can see them happen.

The "interactive” option sets up the <REPLACE> key (old <GOTO>
key) for interactive replacing. Here’s what happens: An initfal
search for <stri)> is attempted. 1If you specified an <area>, then the
se#rch is limited to within that area. The <+SEARCH> and <-SEARCH>
are set to search for <stri>, and the <REPLACE> key is "armed'" to do
the'replace you specified. .If <stri> was found, you can do one of |

three things:

1. type <+SEARCH> or <-SEARCH> to skip to next instance of <(stri>
2. type <REPLACE> to do the replace
3. abandon the replacing and go on to other editing
The <REPLACE> key will }emain “armed“ until the next "replace"”
command. You can type it at any time, but it won’t do anything unless
the cursor is at an instance of <stri>. The <+SEARCH> and <-SEARCH)
keys will stay set to search for <stri> until you use them to search

for something else.

An "interactive" or "show" option can be either before or after

an <area> option on the Command Line.

-25-

You can use control characters in either <strid> or <str2 by
using the appropriate <CTRL-\>{char)> sequence (e.g. <CTRL-N\>L for
form-feed). Newlines (<KCTRL-\>J) are a speeial case, however. They
-cannot appear in the replacement string, and they can only appear at

the beginning and-sor end of the search string.

RENAMING AND DELETING FILES
Two other new commands have been added:

name <newname>

delete
Each of these works 6n the current file. “Name" assigns a new name to
that file upon exit, if possible. Delete marks it for deletion upon
exit. Nothing really happens until exit, so that your edit session is

replayable.

WINDOWS
To create a window; set the cursor mhére you want thé window to

appear, then type:

<CMD> window <filename> <RETURN>
where {filename) is the name of the file you want in the new window.
. The curreni file will become the alternate file of the new mindom. If
you don’t type a filename, the current file and alternate file (if
any) will carry over to the new window, so you will have two windows
of the same file. (0Old ned used to bring up an empty default file.)
Since E accepts abbreuiatiohs for commands, you could type:

<CMD> w <filename> <(RETURN>

and get the same results. You can create up to ten windows., as in

-26-

ned.

To move from window to window, type:
<CTRL~-Z>
Windows are numbered in the order they were created, S0 you can
go to the third window by typing:
<CMD> 3 <CTRL-2Z>
To»remoue the last window you created, type:
<CMD> -window <RETURN>

or
<CMD> -w <RETURN>

JYPING ON THE COMMAND LINE

E lets you type <CTRL-\> on the Command Line and thus: You can
search for strings with control characters in them! You can also ﬁse
any number of occurrences of.<CTRL-\>J or <CTRL-\>j in search strings
to specify beginning-of-line or end-of-line context. When used by
itseif as an argument to <+/-$ERRCH>; <CTRL=-\>J will find the ends of
lines; <CTRL-\>J<CTRL—\>J finds blank lines.

E lets you edit the Command Line much as you would edit a line in
the text window. The key to this new facility is thatbgou can use the
left and right arrow keys on the Command Line as you would in the text
window. All of the other stuff you can do with <INSERT MODE>, <BS>,
and <DEL CHAR)> are functional on the Command Line, too. Note that
once you are on the command line, certain keys like <DEL CHAR> take on
an alternate meaning when preceded by the <CMD> key, just as in the
text window. For example,

<CMD> <DEL CHAR> will erase the rest of the Command Line.

-27 -

In addition to these features which work just as they do in the

text window, there are two other useful features:

<CMD> <CTRL-B> will bring up the Command Line as it was last
time you typed on it, and

<CMD> <PICK> will ihsert into the Command Line the word
pointed to by the cursor in the text window. ("word" here is all
characters to the right of the cursor up to the first blank}.

The ﬁld, easy way to search for a string that alreadg exists in
your text still works: Go into the text window and set the cursor at
the beginning of the string (a "string" here is all characters to the
right of the cursor up to a blank); then hit: A

<CMD> <+SCH> This will move the cursor to the next occurrence
of the string. It will also put that string into the searchkey buffer
and the "last command" buffer.

To execute commandé given on the Command Line, the cursor need
not be at the end of the typed-out command. - It can be anywhere under
the command when you type <RETURN>. Howewver, if you are typing <CMD>
<{string> <+SRCH>, you can only get trailing spaces into the search
string by having the cursor be after the last space when you type the

{+SRCH> key. (Similarly for <-SRCH>, of course.

PAGE EJECTS
Page ejects are set the same way in E as in ned. Type:

{CTRL=\>L

...29...

Appendix B

ADUANCED AND MISCELLANEOUS TOPICS

This section is basically for system programmers., though there
may be specialized information here just for you. If you’re

interested, read on. 1If you don’t understand something just skip it.

LOGGING DIRECTLY INTO E, BYPASSING UNIX SHELL

Some users log directlg into E without entering the UNIX shell.
To deal with their special situation, the following two new features
were put in:

If this user logs on when there is no state file to tell E what
he was editing last, E will create a file called '"scratch” in the
current directory. This file can be used as usual and will be savéd
on normal exit. (Ned would have put up a default file in that case
with a message in it saging.thére was nothing to edit.)

E login users are giuen a special way to gét a shell to do things
difficult or impossible to do from within E. For them.the "shell”
command has been created. While in E they can tgpé:

<CMD> shell <RETURN>
and this will move them into the shell without iogging them off. HWhen
the shell exits, they are prompted to hit <RETURN>, which will take
them back into E. E is reentered as if it had been invoked with no
arguments. The new "call" command works similarly but allows the user
to give one system command to be run by the shell before returning to
-E.

Both of these commands go through the same sequence of updating

-30-

files, saving the edit state, restoring tty modes, etc., that E would
do on a normal exit, but then they run a shell as a sub-process. Call
runs the program with the given arguments. Shell, if invoked with no
arguments, runs an interactive shell. Shell with érguments is

equivalent to using call.

INUOKING E AND SELECTING OPTIONS
If the system didn’t crash while you were in E, invoking it with
no arguments (just typing e) brings up all windows and alternate files
from the last session, just as "ned !'" used to. (If there was a
crash, this is the recovery procedure.) |
When you invoke E, you can specify some options; they should be
typed in this order:.
e <options> <filename>
The options are -help, -inplace, and -notracks. -replay, and -silent.
If you type
e —help <other option(s)> [<¥ilename§]
E will list out for you what options are available and put an asterisk
next to the ones you just invoked, including defaults.
Typing
e -notracks {filename>
will allow you to edit a file without using or disturbing the work
files (keys, state, and change files) from your previous E.
To use the -inplace option, see "Linking" be;dw.
Typing:
e -replay

will cause E to replay the last session. When replay is completed.,

-31~-

save by exiting as usual,.
Typing:
e -replay=filename
allows you to replay with a specified keys file, where "filename"
represents that keys file.

Typing:

e -silent -replay
allows you to replay the recovery, but E won’t show you the replay.
You will see the file after replay is completed. You can’t inuvoke the
-silent option without the -replay option.

If you want to watch a crash recovery, you will use the "¥replag“
option, which will do the replay from the keys file made by the
crashed session. You wili have to do one more thing., however, before
you can get a crash replay. You will have to delete the E’s "changes"
work file, i.e. the file it .used for the changes during the crashed
session. When you do a normal silent recovery by typing e with no
arguments, E automatically removes its changes file. The sure way to
find out the name of the changes file so you can delete it is to run
"e —help”. E will tell you the name of the changes file, and you can

delete it. See also the section below on "E’s Work Files",

LINKED FILES

If you make changes to a file that has multiple links, the normal
updating procedure when you exit from E is as folloms:.gour link to
the file is renamed to “,<filename>" and the changed version is
written out to a completely new file with only one link. Thus you

won’t disturb the file that everyone was originally linked to.

-32-

E gives you the option of updating so that the changes are made
in the original file with all of the links. This is called updating
"in place”. MWhat you need to do is set the "inplace" flag associated
with the file(s) you want updated that way. Onerwag to do that is to
run your E session with the "-inplace™ option. That will make
"inplace"” the default method of updating all multilink files. Anocther
way is to explicitly set the "inplace™ flag for the file(s) with E’s
new "update’ command. -

<CMD> update inplace <RETURN> will set the "inplace" flag for
the current file.

<CMD> update -inplace <RETURN> will clear the "inplaceé flag
for the current file.

<¢MD> —update <RETURN> will make sure that no matter how many
changes you have made or will make to the'file; it won’t be updated at
all on exit. |

One more point on links. Say you are editing a fiie callied “f1*,
and there is another file, "f2", linked to it, which is to say that
that file is also known as f2. Now you type <CMD> edit 2 <RETURN>.

E will know that f2 is just another name for f1, and what you will get
is the exact file you are currently in with all the changes you’ve
made. It will even have the name of your current file rather tﬁan of

the other linked file.

-33-

E’S WORK FILES

Since recovery is now automatic, you needn’t know about the work
files.(kegs; state, and change files), but if you’re interested read
on. |

If you have write permission in the current directory, the state.,
keys, and change files are now in the current directory. If you are
the owner of that directory, the files are named ".es1", '".eki1", and
".ecl” respectively. Also, there is now a backup keys file called
".ekib". During a recovery or a replay from the default keys file,
this contains the key strokes from your previous editing session. If
you are not the owner of the directory, your login name is appénded as
in ".eki.day"”. If you don’t have write permission in the current
directory, your work files are in s/tmprsetmp/ (like the old
"stmpsnedimp”), with names (based on your login name) such as ki.day,
si.day, and ci.day .

. When E exits normally, it writes out a state file containing
information such as which file you were editing, where you were in it,
and so on. The state file now saves more information than it used to.,
including the search string, the state of Insert Mode, the time the
session started, and the last “"widthzn" argument to fill, justify, or
center. E uses the state file information to set you up in the same
edit environment you were when you exited. In ned, if you took an
abort exit the state file would be updated. That’s no longer true.

As before, "e filename" edits that filename and ignores the state
file.
Saving your editing environment in your current directory

considerably speeds up entering and exiting E. It also allows you to

-34-

go back and forth between different enuironmenis depending on the
directory you are in, and it makes it easier to guarantee that you are
in the right directory to do a reliable replay. As a result of this
new policy, and to keep from proliferating useless files, the .
keystroke file is deleted on normal exit. It is not removed when the
system crashes, when you exit with the dump option, or when you exit
with the abort option, however. ‘The change file is removed except
when the system crashes or when you exit with the dump option.

If you exit with the abort option, the state file is not
disturbed and the keys file, as noted above, is not removed.
Therefore, if you have a good edit session except for your Iasf
command, which somehow destroyed your file, you can recover that
session by typing |

e -replay
and interrupt the replay before that last command replays. It is
recommended that you interrupt with either the interrupt:
<CTRL-C>
or by hitting the <CMD> key.

A revision number is put out as the first two bytes of the étate,
file and keys file. Also a number telling the type of terminal you
were at during the session is put out as the second and third hgtes'uf
the state file and keys file. E now checks that the revision number
and terminal screen size in the state file (if used) and the keys file
(if replaying or recovering) match the current revision. If not, E
complains and stops. .

The keys that you type go through a translation stage before they

are written to the keys ‘Fi‘IEo S0 that the codes that are put into the

- =-35-

keys file tell what you typed regardless of whai type of terminal you
were on.

An interrupt (<CTRL-C>)> that doesn’t interrupt anything is not
put out to tﬁe keys file.

The new commands fill., justify, and center take an optional
"width=n" argument, which is remembered in the state file until the
next time it is set. Recent versions of the fill and just programs
kept a file for each user in /tmp/nedtmp/ that kept the last-used line

length. Those files are not used any more.

FILES AND DIRECTORIES

If you try to edit a file that doesn’t exist and you ansuwer
affirmative to the question as to whether you want to create it, the
file is NOT actually created at that time, as it used to be in ned.
The file will only be created when and if you do a normal exit which
does a permanent save. It qsed to be that ned created an empty file
until you exited, when it put the text in. That’s why you had to
remove the unsaved file from your directory before recerring. E
makes the creating of files replayable, no longer necessitating the
removal of unsaved files from your directory before reéovering.' Also,
a zero-sized backup file is no longer created.

Files used to always be created with protection mode "rw-r—--r—-'",
Now it is "rw-r--r--" if groupid=1 (which is the case for most users).
Otherwise the mode is "rw-rw-r--",

File and directory permission checkihg for '"save" and “edit" is
completely rewritten. You can edit directories but you can’t modify

them. VYou aren’t allowed to edit devices (also known as special

-36-

files) or save-to them. VYou aren’t allowed to trg to save to a
directorg; You can’t modify a file or create a file if you can’t
write in the directory.

In UNIX Uersion 7, the "SHELL" environment variable is used to
find the appropriate shell for you. In Version 6, if there is a “sh*“
in the current directory., it is used as the shell. Otherwise "sh" is
in your private bin, otherwise it’s in "/bins/sh"“.

NEW COMMANDS AND QOTHER CHANGES

The save command can now only be used for saving to files not
already held iniernallg by E. "Save" with no argument is now illegal.

If you type an interrupt, but there was nothing to interrupt, E
will tell you that. {CTRL-C> interrupts searches and the commands
run, feed, fill, just, and center.

The “run® and "feed" commands now always work by invoking the
shell, so all of the special characters like ? % and ! gou type in
arguments to the system command are interpreted by the shell. You
should never explicitly invoke the fill, justifg and center commands
with “run",

Two new commands are:

call <program> [<args>]

shell [<args>]
To see more on them, refer to “Users Who Log Directly Into E.,
Bypassing the UNIX Shell" abowve.

If an “"edit" or “window" command is given with a filename which
is alre#dg held internally, the file will come up on the screen at the

same window position and cursor position within the window as the last

-37-

_time you saw it.
<CTRL-B> is now only usable to change from current file to
alternate file. Instead of
<CMD> filename <CTRL-B>
type
<CMD> edit <filename> <RETURN>
Ned’s <ARG> <CTRL-B> feature was getting naive users into terrible
trouble when they invoked it by accident, and it has been withdrauwn.
The cursor position after <+/-PAGE> and <+/-LINE> and goto is
different. The column position is preserved except for a goto to line
1, when the cursor is put "home". <+/-PAGE> leaves the cursorAin the
same place on the screen. <+LINE> will leave the cursor at the
uppermost line in the window if the line the cursor was on is no

longer wvisible. (Similarly for <-LINE>.)

-39~

Appendix C

SUMMARY OF FUNCTIONS IN E, LISTED BY TOPIC

EUNCTION
ARGUMENT

ABORT
Abort and
exit

Abort a
<MARK>
command

Abort a
<{CMD> command

Get off the
Command Line

ALTERNATE FILE
Change text
window to
alternate

file

CENTER
Center 1 line

Center n lines

Center n
paragraphs

CHANGE
Change windouws

Change to
<n>th created
window

Change to
alternate
file

Change the
name of the
current file

CLEAR THE SCREEN

<{ARG> a

Nonexistent.

Nonexistent.

Nonexistent.

<CTRL-B>

<ARG> 11 center <CTRL-X>
<ARG> <n>1 center <CTRL-X>

<ARG> center <n> <CTRL-X>

<CTRL-C>

<ARG> <n> <CTRL-C>
<CTRL-B>
Nonexistent.

Nonexistent.

<{CMD> ex a <RETURN>

{CMD> <{MARK)>

<CTRL-C>

<CMD> <RETURN>

{CTRL-B>
or
<CMD> e <RETURN>

<CMD> ce <RETURN>
<CMD> ce <n> <RETURN>

<CMD> ce <n>p <RETURN>

<CTRL-2Z>

<CMD> <n> <CTRL-Z>

<CTRL-B>
or
<CMD> e <RETURN>

<CMD> n <filename> <RETURN>

<CMD> redraw <RETURN>

—48_

AND REDRAW
WINDOW TO DELETE
SYSTEM MESSAGES

CL OSE .
Close 1 line <CLOSE> {CLOSE>
or
{CMD> clo <RETURN>
Close 4 lines <ARG> 4 <CLOSE> <CMD> 4 <CLOSE>
or
<CMD> clo 4 <RETURN>
Bring 1 line <ARG> <CLOSE> {CMD> jo <RETURN>
up to end of) or
another (join - <CMD> -sp <KRETURN>
2 lines) '
Close lines or <ARG> <cursor> <CLOSE> <{MARK> <cursor > <CLOSE>
rectangle or ' .
<CMD> <area> <CLOSE>
or
<CMD> clo <area> <{RETURN>
Close area but Nonexistent. <CMD> er <area> <{RETURN>

don’t move
rest of text

(erase)
COMMAND MODE Nonexistent. ' <{CMD> co <RETURN>
CREATE WINDOWS
Create window {ARG> <filename> <CTRL-Z> <CMD> w <filename> <RETURN)>
with new

file in it

Create window CARG> <curfilename)> <CTRL-Z> <CMD> w <RETURN>

‘with current Didn’t take alternate file Takes alternate file with i
file in it with it. ‘ ‘ '
CURSOR
Move cursor to <{HOME> <HOME>
line 1.,
column 1
Move cursor to Nonexistent. , ' <CMD> <HOME>

bottom line of
of screen.,
column 1

Move cursor to Nonexistent. <CMD> <right arrouw)>
end of text
on current

line

Move cursor to
last column
of current
line

Move cursor to
column 1.,
current line

Move cursor to

bottom line of
screen, cursor

column

Move cursor to

line 1, current

column
DEFINE AREA

DELETE
Delete current
file upon
exit

Delete
individual
characters

Delete last
window
created

DUMP EXIT

EDIT A FILE

Bring up a

file into
text window

ERASE AREA

WITHOUT MOVING
REST OF TEXT

EXECUTE
Execute some
function

-41-

Nonexistent. <CMD> <right arrow>
(repeat if necessary)

Nonexistent. <CMD> <left arrow>

Nonexistent,. <CMD> <down arrow>
(repeat if necessary
at end of file)

Nonexistent. <CMD> <up arrow>>

<ARG> <cursor> <function key> <MARK> <cursor> <function }

Nonexistent. <{CMD> del <RETURN}

<DEL CHAR)> <DEL CHAR>

<ARG> <CTRL-Z> <CMD> -w <RETURN>
Nonexistent. <CMD> ex d <RETURN>

<ARG> <filename> <CTRL-B> <CMD> e <filename> <RETURN]
Nonexistent. <CMD> er <area> <RETURN>
<ARG> <functiond> <CTRL-X> <CMD> run 1p <func> <RETURM
or or

<ARG> <n> <func> <CTRL-X> <CMD> run <n>p <func> <RETL
or or '

{ARG> <n>1 <func> <CTRL-X> <CMD> run <n> <func> <RETUR

Execute some
function
without
closing

EXIT
Exit and sawve

Exit and abort
Exit and dump

Exit, then
execute load

“"FEED"” IS LIKE
RUN BUT DOESN’T
CLOSE

FILE
Bring up

alternate file

into text
window

Change text
window to
alternate
file

Create window
with new
file in it

Change windouws
Change to

<{n>th created
window

Change the
name of the
current file

Create window
with current
file in it

Delete current

—42_

CARG> <n> tee <{CTRL-X>
{ARG> <CLOSE>

<DEL)>

<ARG> a
Nonexistent.

{ARG>

Nonexistent.
{ARG> <filename)> <CTRL-B>
<CTRL-B>

{ARG> <(filename> <CTRL=-2Z>

<CTRL-C>

<ARGY> <n> LCTRL-C>
Nonexistent.

{ARG> <filename> <CTRL-Z>
Didn’t take alternate file
with it.

Nonexistent.

<CMD> feed 1p <func> <RETUF

<CMD> ex <RETURN?>

or

<CMD> bye <RETURN>

or

<CMD> logoff <RETURN>

<CMD> ex a <RETURN>
<CMD> ex d <RETURN>

<CMD> ex 1 <RETURN>

See "EXECUTE" abowve.

{CMD> e <filename)> <RETURN:

{CTRL-B>
or
<CMD> e <RETURN>

<CMD> w <filename> <{RETURN,

- <CTRL-2Z>

<CMD> <n> <CTRL-2Z>

<CMD> n <filename> <RETURN:
{CMD> w <RETURN>

Takes alternate +file with i

<CMD> del <RETURN>

file upon
exit

Delete last
windouw
created

Exit and save

Exit and abort
Exit and dump

Exit, then
execute load

Save current
changes onto
backup file

Save current
changes as a
second file

Save file in
another
directory

FILL
Fill n lines

Fill 1
paragraph

Fill n
paragraphs

Fill 3
paragraphs
sverriding
default line
length

GOTO

Goto beginning

-43~-

<ARG> <CTRL-2Z>

<ARG> a
Nonexistent.

{ARG>

<CTRL-V>

Nonexistent.

<ARG> <pathname> <CTRL-U>

{ARG> <n>l fill <CTRL-X>

<ARG> fill <CTRL-X>
CARG> <n> fill <CTRL-X>

<ARG> 3 fill .11 65"
<CTRL-X>

<GOTO>

<CMD> -w <RETURN>

<CMD> ex <RETURN>

or

{CMD> bye <RETURN>

or

<CMD> logoff <RETURN>
{CMD> ex a <RETURN>
<CMD> ex d <RETURN>

{CMD> ex 1 <RETURN>

No equivalent now.
<CMD> sa <new filename> <R

<CMD> sa <pathname> <RETURI

<CMD> fi <n>l <RETURN)>
or
{MARK> <cursor)> <CMD> +i <f

<CMD> fi <RETURN)>

{CMD> fi <n> <RETURN>

<CMD> fi 3 w=65 <RETURN>

ar '

<CMD> fi w=65 3 <RETURN>

aor

<MARK> <cursor> <CMD> i w=
' <RETUR

<CMD> <-~PAGE>

of file

Goto end of

file

Goto specific
line number

INPLACE UPDATING

Set inplace
update mode

Clear inplace
update mode

INSERT
INDIVIDUAL
CHARACTERS

JUSTIFY
Justify n
lines

Justify 1
paragraph

Justify n
paragraphs

Justify 3
paragraphs
overriding
default line
length

1ARK AREA
WITH CURSOR

IOVE TEXT WINDOMW

Move text
window to
the right

Move text
window to
the left

<ARG> <GOTO>

<ARG> <n> <GOTO>

Nonexistent

Nonexistent

<INSERT MODE>

u

{ARG> <n>1 just <CTRL-X>

{ARG> just <CTRL-X>

CARG> <n> just <CTRL-X>

{ARG> 3 just ".11 65"

CCTRL-X>

<{ARG> <cursor> <function key>

<CTRL-S>

<CTRL-A>

or

{CMD> g <RETURN>
or

<CMD> g b <RETURN>

<CMD> <+PAGE>

or '

<CMD> g e <RETURN)>
<CMD> g <n> <RETURN>

{CMD> u i <RETURN>

<CMD> u =i <RETURN>

<INSERT MODE>

<CMD> ju <n>1 <RETURN>»
or
<MARK> <cursor> <CMD> ju <R

<CMD> ju <RETURN>
<CMD> ju <n> <RETURN>

<CMD> ju 3 w=65 <RETURN>

ar

<CMD> ju w=65 3 <RETURN>

ar

<{MARK> <cursor> <CMD> ju w:
<{RETUR

<MARK> <cursor) <function k
<CTRL-S>

<CTRL-A>

Move right so
that cursor
column becomes
left column

Move all the
way back to
the left

OPEN
Open 1 line

Open n lines

Open
rectangle

Open a line
in the
middle
(split 1
line in 2)

PICK
Place 1 line
in pick buffer

Place 4 lines
in pick buffer

Place lines or
rectangle in
pick buffer

PUT
Put pick
buffer

Put close
buffer

-45-

Nonexistent.

Nonexistent.

<OPEN>

<ARG> <n> <OPEN>

<ARG> <cursor> <OPEN>

<ARG> <OPEN>

<PICK>

{ARG> 4 <PICK)>

<ARG> <cursor> <PICK>

<PUT>

<PUT> <CLOSE>

<CMD> <CTRL-S5>

{CMD> <CTRL-A>

<OPEN>
or
<CMD> o <RETURN>

<CMD> <n> <OPEN>
or
<CMD> 0 <n> <RETURN>

<{MARK> <cursor > <OPEN>
or :

<CMD> <area> <OPEN>

or

<CMD> o <area> <RETURN>

<CMD> sp <RETURN>
ar
<CMD> -j <RETURN>

. {PICK>

or
<CMD> pi <RETURN>

<CMD> 4 <PICK>
or
{CMD> pi 4 <RETURN>

<{MARK> <cursor> <PICK>

. or

<CMD> <area> <PICK>

or
_<CMD> pi <area> <RETURN>

<CMD> <PICK>
or
<CMD> -p <RETURN>

<CMD> <CLOSE>
or '
{CMD> -c <RETURN>

Put erase
buffer

REDRAW THE
SCREEN CLEARING
SYSTEM MESSAGES

“"RUN" EXECUTES
COMMANDS

SAVE
Save current
changes onto
backup file

Save current
changes as a
second file

Save file in
another
directory

Ensure update
of current
file on exit

Prevent update
of current
file on exit

Set inplace
update mode

Clear inplace
update mode

IaB ,
Set a tabstop

Clear a tabstop

Set tabs
according to
a‘file of

Nonexistent.

Nonexistent.

<CTRL-X>

<CTRL~-VU>

Nonexistent.

<ARG> <pathname> <CTRL-U>
Nonexistent

Nonexisteﬁt

Nonexistent

Nonexistent

<{S/R TAB>

<{S/R TAB>

<ARG> <(file> <S/R TAB>

{CMD> -e <RETURN>

<CMD> red <RETURN)

<CMD> run [<area>l <commanc
Coptionsl <RETURH

No equivalent nouw.

<CMD> sa <new filename) <RE

<CMD> sa <pathname> <RETURMN

<CMD> u <RETURN)>

<CMD> ~u <RETURN>

<CMD> u i <RETURN>

<CMD> u -i <RETURN>

<S/R TAB>

ar

<CMD> tab <RETURN>
or

<CMD> tab <column#t> <RETURN

<CMD> <S/R TAB>

or

<CMD)> -tab <RETURN>

or

<CMD> —-tab <columni#> <RETUR

<CMD> tabfile (file> <RETUR

tabstops

Set tabs every
<{n> columns

Set tabs every
<n> columns
within a
range of
columns

Clear tabs
on every <n>
columns

Clear tabs every

<{n> columns
within a
range of
columns

Clear all
tabstops

Cilear all
tabstops
within a
range of
columns

IEE

UPDATE
Ensure update
of current
file on exit

Prevent update
of current
file on exit

Set inplace
update mode

Clear inplace
update mode

WINDOWS
Create window
with new
file in it

-47-

<ARG> <n> <S/R TAB>
worked for some <n)>’s

Nonexistent

Nonexistent

Nonexistent

Nonexistent

Nonexistent

CARG><n>]1 tee <(name>{CTRL-X>

Nonexistent
Nonexistent

Nonexistent

Nonexistent

<ARG> <filename> <CTRL-2Z>

<CMD> tabs <n> <RETURN>
<MARK> <right -or left arrou

<CMD> tabs <n> <RETURN>

<{CMD> -tabs <n> <{RETURN>

<MARK> <right or left arrou
{CMD> -tabs <n)> (RETURN>
<CMD> ~tabs <RETURN>
<{MARK?> <right or left arrou

<CMD> -tabs <{RETURN>

<CMD> <n> <PICK>
<CMD> e <name>
<CMD> <PICK>

<CMD> u <(RETURN>
<CMD> -u <(RETURN>

<CMD> u i <RETURN>

{CMD> u =i <RETURN>

<CMD> w <filename> <RETURN:

Create window
with current
file in it

Change windows
Change to

<n>th created
window

Delete last
window
created

-48-

{ARG> <(filename> <CTRL-2Z>
Didn’t take alternate file
with it.
<CTRL-C>

{ARG> <n> <CTRL-C>

<ARG> <CTRL-Z>

<CMD> w <RETURN>
Takes alternate file with

<CTRL-Z2>

<CMD> <n> <CTRL-2Z>

<CMD> -w <RETURN>

-49-

Appendix D

SUMMARY OF FUNCTIONS IN E, LISTED BY OLD WAY IN NED

<ARG> <ARG>
<ARG> <command> <ARG>

<ARG> S5 <right arrow>
<ARG> 5 <left arrow>

<ARG> 5 <up arrow>
<ARG> S <down arrow>

<ARG?> 11 center <CTRL-X>
<ARG> <n>! center <CTRL-X>

ARG> center <{CTRL-X>

<CLOSE>
<ARG> <n> <CLOSE>

<ARG> <CLOSE>

<ARG> <cursor> <CLOSE)>

FUNCTION

To enter the
Command Line

To get off the
Command Line

To get off the
Command Line

Move the cursor
S columns to
the right

Move the cursor
S columns to
the left

Move the cursor
S lines up

Move the cursor
S lines doun

Centervl line

Center n lines

Center 1.
paragraph

Close a line
Close n lines

Bring t line
up to end of
another (join
2 lines)

Close lines or
rectangle

<CMD> <RETURN>

<CMD> <command> <CTRL-C>

No equivalent.

No equivalent.

<CMD> 5 <up arrouw>

<CMD> S <down arrow)>

<CMD> ce 1 <RETURN>
{CMD> ce <n> <RETURN>

{CMD> ce 1p <RETURN>

<CLOSE>
or
<CMD> clo <RETURN>

<CMD> <n> <CLOSE>
ar
<CMD> clo <n> <RETURN>

<CMD> jo <RETURN>
or
{CMD> -sp <RETURN)>

<{MARK> <cursor> <CLOSE>
or

<CMD> <area> <CLOSE>

or

<CTRL-A>

<CTRL-B>
<ARGY» <CTRL-B)>

{ARG> <filename> <CTRL-B>

<CTRL-C>

<ARG> <n> <CTRL-C)
<CTRL-S>

<CTRL-U>

<ARG> <pathname> <CTRL-U>
<ARG> <CTRL-Z> -

<ARG> <filename> <CTRL~Z>
{ARG> <filename)> <CTRL-Z>

<ARG> <cursor)> <func key>

-5

Move text
window to
the left

Change text
window to
alternate
file

Bring up filename
at cursor

into text

windouw

Bring up file
into text
window

Change windows

Change to
<n>th created
window

Move text
window to
the right

. Update current

changes into
current

Save file in
another
directory

Delete last
window
createq

Create window
with new
~file in it

Create window
with current
file in it

Define area
with cursor

<{CMD> clo <area> <RETURN>

<CTRL-A>

<CTRL-B>
or
<CMD> e <RETURN>

{CMD> e <CMD> <PICK> <RETUR
i

{CMD> e <filename> <RETURN.

{CTRL-2Z>

<CMD> <n> <CTRL-2Z>

<CTRL-S>

No equivalent now.

<CMD> sa <pathname> <RETURN

{CMD> -w <{RETURN>

<CMD> w <filename> <RETURN>

<CMD> w <RETURN>

Takes alternate file with i

<{MARK> <cursor)> <function k

<ARG> <cursor> <ARG>
CCTRL-X>

<{ARG> <function> <CTRL-X>

or

<ARG> <n> <func> <CTRL-X>

or

{ARG> <n>1 <func> <CTRL=-X>

<ARG>
<ARG> a

<DEL CHAR>

<ARG> fill <CTRL-X>
<ARG> <n> fill <CTRL-%X>

<ARG> <n>! fill <CTRL-X>

{ARG> 3 fill ".11 65
CCTRL=-X>

<GOTO>

<{ARG> <GOTO>

-51-

- Abort a defined

area

Execute
commands

Execute some
function

Exit and save

Exit, then
execute load

Exit and abort
changes

Delete
individual
characters

Fill

paragraph

Fill n
paragraphs

Fill n lines

"Fill 3

paragraphs
gverriding
default line
length

Goto beginning

of file

Goto end of
file

{MARK?> <{cursor)> <{CMD> <MAREK

<CMD> run [<area>] <commanc
<RETUF

<CMD> run 1p <func> <RETURM
or
<CMD> run <n>p <func> <RET
or

<CMD> run <n> <funcd> <KRETU

<CMD> ex <RETURN>

or

<CMD> bye <RETURN>

or

<CMD> logoff <RETURN>

<CMD> ex 1 <RETURN>
<CMD> ex a <RETURN>

<DEL CHAR>

<CMD> fi <RETURN>
<CMD> fi <n> <RETURN>

<CMD> fi <n>! <RETURN>
or i
<MARK> <cursor)> <CMD> fi <R

<CMD> fi 3 w=65 <RETURN>

or)

<CMD> fi w=65 3 <RETURN>

or

<{MARK?> <cursor> <CMD> fi w=
{RETUR

<CMD> <-PAGE>

or

<CMD> g <RETURN>
ar

<CMD> g b <RETURN>

<CMD> <+PAGE>
or

<ARG> <n> <GOTO>

<HOME>
{INSERT MODE>

{ARG> just <CTRL-X>
{ARG> <n> just <CTRL-X>

{ARG> <n>1 just <CTRL-X>

<{ARG> 3 just .11 65"
<CTRL-X>

<OPEN>
<ARG> <n> <OPEN>
<{ARG> <cursor> <OPEN>

<ARG> <OPEN>

<PICK>

CARG> 4 <PICK>

-52-

Goto specific
line number

Move cursor to
line 1,
column 1

Insert
individual
characters

Justify 1
paragraph

Justify n
paragraphs

Justify n
lines

Justify 3
paragraphs
overriding
default line
length

Cpen 1 line

open n lines

Cpen
rectangle

Open a line
in the
middle
(split 1
line in 2)

Place 1 line
in pick buffer

Place 4 lines

<{CMD> g e <RETURN>

<CMD> g <n> <RETURN>

<HOME>
<INSERT MODE>

<CMD> ju <RETURN>
<CMD> ju <n> <RETURN>

<CMD> ju <n>1 <RETURN>
or
<{MARK> <cursor> <CMD> ju <Ff

<CMD> ju 3 w=65 <RETURN)>

or .

<CMD> ju w=65 3 <RETURN>

or

<MARK> <cursor> <CMD> ju u:
<RETUF

<OPEN>

<CMD> <n> <OPEN>
or
<CMD> o0 <n> <RETURN>

<{MARK> <cursor > <(OPEN>
or

<CMD> <area> <OPEN>

or ,

{CMD> 0 <area> <RETURN>

<{CMD> sp <RETURN>
or
<CMD> ~j <RETURN>

<PICK>
ar
<CMD> pi <RETURN>

<CMD> 4 <PICK>

<ARG)> <cursor> <PICK>

<PUT>
<PUT)> <CLOSE>

<S/R TAB>

<SR TAB>

<ARG> <file> <S/R TAB>

<ARG> <n> <S/R TAB>
(worked for some <n>’s)

<ARG> <n>1 tee
{new filename> <CTRL-X>

..53-.

in pick buffer

Place lines or
rectangle in
pick buffer

Put pick
buffer

Put close
buffer

Set a tabstop

Clear a tabstop

Set tabs
according to
a file of
tabstops

Set tabs every
<n> columns

Tee, create
new file from
old without
closing

ar
<CMD> pi 4 <RETURN>

<MARK> <cursor> <PICK>
or

<CMD> <area> <PICK>

or '

<CMD> pi <area> <RETURN>

{CMD> <PICK>
or
<CMD> -p <RETURN>

<CMD> <{CLOSE>
or
<CMD> -c <RETURN>

<S/R TAB>

or

<CMD> tab <RETURN)>
or

<{CMD> tab <column#> <RETURN

<CMD> <S/R TAB>

or ’ :

<CMD> —-tab <RETURN>

or

<CMD> -tab <column#> <RETUR

<{CMD> tabfile <file> <RETUR

<CMD> tabs <n> <{RETURN>

<CMD> <n> <PICK)>
<CMD> e <new filename>
<CMD> <PICK>

-55-~

Appendix E

CHART OF <CMD> KEY COMMANDS

Below is a list of the words now recognized as commands by the
<CMD> key. Acceptable abbreviations are indicated with underlining.
In some cases, the number of required characters is more than you
might expect. That is because we already know.what some of the future
commands will be, and we don’t want you to have to relearn the
abbreviations when they are introduced. Upper and lower case are
accepted for commands and command options. An asterisk denotes
something you couldn’t do before.

bye Same as_exit (see below).

*call <{command> Users who log into E can give a shell command.
center Centers area you marked or typed out.

close Closes up area and puts it in “close' buffer.
*xcommand Puts you into Command Mode.

xdelete Deletes current file upon exit.

e [<filename>1] Guaranteed unambiguous synonym for "edit"
edit <filename> Calls up <filename> into text windouw.

edit Alternates between files.

*xerase Erases area but does not move rest of text.
exit ’ Exits you from E and updates files.

exit abort Exits without updating.

exit dump Simulates crash; for editor testing.

exit load Exits and compiles; for software development.
*feed Like run but doesn’t close.

fill Fills text for rough right margin.

goto : Moves text window to beginning of file.

goto b Moves text window to beginning of file.

goto e Moves text window to end of file.

goto <line#) Moves cursor to specific line number.

ioin Joins current line with line below at cursor.
Jdustify Justifies text for even right margin.

logoff Same as exit.

name <{newname> Changes name of current file upon exit.

gpen Puts blank area into area you marked or typed.
-pick Picks area and puts in "pick" buffer.

xredraw Redraws window, eliminating system messages.
xreplace ‘ Replaces words or strings throughout text.
run Executes system commands.

save <filename> Saves current file to <filename).

*shell Run a shell as a sub-process.

split Splits line at cursor.

tab Set tab(s).

tabfile <(filename> Set tabs according to tab file.
xtabs <interval$ Set tabs every <intervalf#> columns.

xupdate Ensure updating of current file on exit.
*update inplace Set inplace update flag for current file.
xupdate -inplace Clear inplace update flag for current file.

window Makes a new window into current file

window <filename)
-close
*-command
X-prase
-ioin
-pick
*-replace
-split
-tab
*-tabs
*-update
—window

at=1-T

Creates window of specified file.

Puts 'close” buffer.
Moves cursor from Command Line into text
Puts '"erase" buffer.

Same as split.

Puts “pick" buffer.

Replace text.

Same as join.

Remove tab

Remove tabs :

Prevent update of current file on exit.
Closes up last window created.

window,

-7 -

Appendix F

CHANGES FROM REVISION 9

The editor now looks ahead for <CTRL-C> from the terminal, so
that if you are doing a search, then type some keys other fhan <CTRL-
C>, then type a <CTRL-C>, the search will be interrupted and all the
keys you typed between the search and the <CTRL-C> are thrown away.

ES would have interrupted only the function immediately preceding the
<CTRL-C> in the keystroke stream.

The remaining changes in E18@ over ES are related to the handling
of terminals, and the normal user need not read further.

Earlier versions of ned and E wrote keys out to the keys file one
key behind. Thus the keystroke that caused an editor crash was neber
in the keys file, and couldn’t be read in on a replay or recovery fo
crash you again. E108 doesn’t do this write-behind to the keys file.
Instead, it refrains from réplaging the last keystroke in the keys
file so that you won’t crash again.

More than one kind of terminal can be handled by the same copy of
the editor. This is handled by compiled-in code in the editor, and
presently works only on version 7 unix systems using the environment
variable "TERM". Presently handled types of terminals and thé values

for TERM to operate with them are:

TERM Terminal type

aa Ann Arbor 48x89 terminal
3a Lear Siegler ADM3a

31 Lear Siegler ADM31

k1 Heathkit H89

	001
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	29
	30
	31
	32
	33
	34
	35
	36
	37
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	55
	56
	57

