f

CHESS-PLAYING PROGRAMS AND THE PROBLEM
OF COMPLEXITY

A+ Newell
Js+ C+ Shaw
H. A, Simon#*

P-1319

September 4, 1958

-

To be published in the IBM Journal of
Research and Development

*Carnegle Institute of Technology.

1700 MAIN ST, « SANTA MONICA ¢ CALIFORNIA =i

P-1319
9-4-58
-11-

Summary

Efforts to pregram computers to play chess .
provide an instructive example of the
1imitations of humans to conceive and specify
systems of high complexity. The programs
developed by Shannon, Turing, Kister, et al.
of Los Alamos, Bernstein of IBM, and Newell,
Shaw, and Simon, can be viewed as a sequence
of attempts to get from programs that play
chess by "asystem" to programs that reason
about the chess situation. The various pro-
grams and the chess they play will be described
and compared to show what progress has been
made in specifying complex processes, and the
nature of some of the difficulties to further
progress.

P-1319
9-458
-1-

CHESS-PLAYING PROGRAMS AND THE PROBLEM OF COMPLEXITY
Allen Newell, J. C. Shaw, and H. A. Simon%*

Man can solve problems without knowling how he solves
them. This simple fact sets the conditions for all attempts
to rationalize and understand human decision making and problem
solving. Let us simply assume that 1t 1s good to know how to
do mechanically what man can do naturally — both to add to
man's knowledge of man, and to add to his kit of tools for
controlling and manipulating his environment. We shall try to
assess recent progress in understanding and mechanizing man's
intellectual attainments by considering a single line of attack —
the attempts to construct digital computer programs that play
chess.

Chess 1s the intellectual game par excellence. Without

a chance device to obscﬁre the contest, it pits two intellects
against each other in a situation so complex that neither can
hope to understand it completely, but sufficiently amenable to
analysis that each can hope to out-think his opponent. The
game is sufficiently deep and subtle in its implications to
have supported ﬁhe rise of professional players, and to have
allowed a deepening analysis through 200 years of intensive
study and play without becoming exhausted 6r barren. Such

characteristics mark chess as a natural arena for attempts at

*Carnegie Institute of Technology, Pittsburgh, Pennsylvania

P-1319
g-4-58
-

mechanization. If one could devise a successful chess machine,
one would seem to have penetrated to the core of human
intellectual endeavor.

The history of chess programs is an example of the
attempt to conceive and cope with complex mechanisms. Now
there might have been a trick — one might have dilscovered some-
thing that was as the wheel to the human leg: a device quite
different from humans in its methods, but supremely effective
in its way, and perhaps very simple. Such a device might
play excellent chess, but would fall to further our under-
standing of human intellectual processes. Such a prize, of
course, would be worthy of discovery in its own right, but
there appears to be nothing of this sort in sight.

We return to the original orientation: Humans play chess,
and when they do they engage in behavior that seems extremely
complex, intricate, and successful. Consider, for example,

a scrap of a player's (Whilte's) running comment as he analyzes
the position in Figure 1:

"...Are there any other threats? Black also has

a threat of Knight to Bishop 5 threatening the

Queen, and also putting more pressure on the King's

side because his Queen's Bishop can come over after

he moves his Knight at Queen 2; however, that 1is

not the immedlate threat. Otherwise, his Pawn at

King 4 is threatening my Pawn..."

BLACK

O g
| S S |
W

i

a2 ™ |

X o | S
P : o
n 2| 2, | 25
Aar | M a | A
l.l e | T3
o~ QA | Y
agdi AN . 0 | <
M o =2 | @,
| - | &

[] — | 3
PR 1 a | e
s | .) /3y .3

Figure 1

Notice that his analysis is qualitative and functional. He
wanders from one feature to another, accumulating various bits
of information that will be available from time to time
throughout the rest of the analysis. He makes evaluations

in terms of pressures and immediascies of threat, and gradually
creates order out of the situation.

How can we construct mechanisms that will show com-
parable complexity in thelr behavior? They need not play in
exactly the same way; close simulation of the human is not the
immediate issue. But we do assert that complexity of behavior
is essential to an intelligent performance — that the com-
plexity of a successful chess program will approach the
complexity of the thought processes of a successful human
éhess player. Complexity of response is dictated by the task,
not by idiosyncracies of the human response mechanism.

There is a close and reciprocal relation between com-
plexity and communication. On the one hand, the complexity
of the systems we can specify depends on the language in
which we must specify them. Being human, we have only
limited capacities for processing information. Given a more
powerful language, we can specify greater complexity with
limited processing powers.

Let us 1llustrate this side of the relation between
complexity and communication. No one considers bullding chess
machines in the literal sense — fashioning pleces of electronic

gear into automatons that will play chess. We think instead

of chess programs: speclifications written 1n a language,
called machine code, that will instruct a digital computer of
standard design how to play chess. There 18 a reason for
choosing this latter course — in addition to any aversion we
may have to constructing a large piece of specilal-purpose
machinery. Machine code is a more powerful language than the
block diagrams of the electronics engineer. Each symbol in
machine code specifies a larger unit of processing than a
symbol in the block diagram. Even a moderately complicated
program becomes hopelessly complex 1if thought of in terms of
gates and pulses.

But there is another side to the relation between com-
munication and complexity. We cannot use any old language we
please. We must be understood by the person or machine to whom
we are communicating. English will not do to specify chess
programs because there are no English-understanding computers.
A specification in English is a specification to another human
who then has the task of creating the machine. Machine code
is an advance preclsely because there are machines that under-
stand it — because a chess program in machine code 1s operation-
ally equivalent to a machine that plays chess.

If the machine could understand even more powerful
languages, we could use these to write chess programs — and
thus get more complex and intelligent programs from our limited
human processing capacity. But communication 1s limited by the

intelligence of the least participant, and at present a computer

has only passlve capability. The language it understands is
one of simple commands — it must be told very much about what
to do. |

Thus 1t seems that the rise of effective communication
between man and computer will coincide with the rise in the
intelligence of the computer — so that the human can say more
while thinking less. But at this point in history, the only
way we can obtaln more intelligent machines 1is to design them —
we cannot yet grow them, or breed them, or train them by the
blind procedures that work with humans. We are caught at the
wrong equilibrium of a bi-stable system: we could design more
intelligent machines 1if we cduld communicate to them better;
we could communicate to them better if they were more intellil-
gent. Limited both in our capabilities for design and com-
munication, every adyance in either separately requires a
momentous effort. Each success, however, allows a correspond-
ing effort on the other side to reach a little further. At
some point the reaction will "go," and we will find ourselves
at the favorable equilibrium point of the system, possessing
mechanisms that are both highly intelligent and communicative.

With this view of the task and its setting, we can turn
to the substance of the paper: the development of chess
programs. We will proceed historically, since this arrange-
ment of the material will show most clearly what progress is
being made in obtaining systems of increasing complexity and

intelligence.

Shannon's Proposal

The relevant hilistory begins with a paper by Claude Shannon
in 1949 (11)*. He did not present a particular chess program,
but discussed many of the baslic problems involved. The frame-
work he introduced has gulded most of the subsequent analysis
of the problem.

As Shannon observed, chess is a finite game. There is
only a finite number of positions, each of which admits a finite
number of alternative moves. The rules of chess assure that
any play will terminate: that eventually a position will be
reached that 1s a win, loss, or draw. Thus chess can be com-
pletely described as a branching tree (as in Figure 2), the
nodes corresponding to positions and the branches corresponding
to the alternative moves from each position. It is intuitively
clear, and easily proved, that for a player who can view the
entire tree and see all the ultimate consequences of each
alternative, chess becomes a simple game. Starting with the
terminal positions, which have determinate payoffs, he can
work backwards, determining at each node which branch is best
for him or his opponent as the case may be, until he arrives
at the alternative for his next move.

This inferential procedure — called "minimaxing" in the
theory of games — 1s basic to all the attempts so far to
program computers for chess. Let us be sure we understand it.
Figure 2 shows a situation where White 1s to move and has

three choices, (1), (2), and (3). White's move will be followed

¥Numbers 1in parentheses refer to references at the end of the
paper.

BLACK

Figure 2

+ White wins
0 draws
— White loses

*n“6

.,.QM
6ELEr-4d

i
]

,
= B

[N

P-1319
9-4-58
g
by Black's: (a) or (b) in case move (1) is made; (c) or (d)
if move (2) is made; and (e) or (f) if move (3) is made. To
keep the example simple, we have assumed that all of Black's
moves lead to positions with known payoffs: + meaning a win
for White, O meaning a draw, and — meaning a loss for White.
How should White decide what to do — what inference procedure
allows him to determine which of the three moves 1s to be
preferred? Clearly, no matter what Black does, move (1) leads
to a draw. Similarly, no matter what Black does, move (2)
leads to a loss for White. White should clearly prefer move
(1) to move (2). But what about move (3)? It offers the
possibility of a win, but also contains the possibility of a
loss; and furthermore, the outcome 1s in Black's control. If
White is willing to impute any analytic ability to his opponent,
he must conclude that move (3) will end as a loss for White,
and hence that move (1) is the preferred move. The win from
move (3) is completely insubstantial, since it can never be
realized. Thus White can impute a value to a position — 1in
this case draw — by reasoning backwards from known values.
To repeat: If the entlire tree can be scanned, the best
move can be determined simply by the minimaxing procedure.
Now minimaxing might have been the "wheel" of chess — with
the adventure ended almost before 1t had started — if the
tree were not so large that even current computers can dis-
cover only the minutest fraction of it in years of computing.

Shannon's estimate, for instance, 1is that there are something

P-1319
9-4-58
-10-

120 16

like 10 continuations to‘be explored, with less than 10O
microseconds avallable in a century to explore them.

Shannon then suggested the following framework. Play-
ing chess conslsts of considering the alternative moves,
obtaining some effective evaluation of them by means of
analysils, and choosing the preferred alternative on the basis
of the evaluation. The analysis — which is the hard part —
could be factored into threé parts. First, one would explore
the continuations to a certain depth. Second, since it is
clear that the explorations cannot be deep enough to reach
terminal positions, one would evaluate the positions reached
at the end of each exploration in terms of the pattern of men
on the chess board. These static evaluatlons would then be
. combined by means of the minimaxing procedure to form the
effective value of the alternative. One would then choose
the move with the highest effective value. The rationale
behind this factorization was the reasonableness that, for
a given evaluation functlon, the greater the depth of
analysis, the better the chess that would be played. In the
limit, of course, such a process would play perfect chess by
finding terminal positions for all continuations. Thus a
metric was provided that measured all programs along the
single dimension of thelr depth of analysis.

To complete the scheme, a procedure was needed to evaluate
positions statically — that 1is, without making further moves.

Shannon proposed a numerical measure formed by summing, with

P-1319
9-4-58
-11-

weights, a number of factors or scores that could be computed
for any position. These scores would correspond to the
various features that chess experts assert are important.
This approach gains plausibility from the existence of a few
natural quantities in chess, such as the values of pieces,
and the mobility of men. It also gains plausibility, of
course, from the general use in sclence and engineering of
linearizing assumptions as first approximations.
To summarize: the basic framework introduced by
Shannon for thinking about chess programs consists of a series
of questions:
1. Alternatives: which alternative moves are to be
consldered?
2. Analysis:
a. Which continuations are to be explored and to
what depth?
b. How are positions to be evaluated statically —
in terms of thelr patterns?
¢c. How are the static evaluations to be integrated
into a single value for an alternative?
3. Final Cholce Procedure: . what procedure is to be
used to select the final preferred move?
We would hazard that Shannon's paper is chiefly
remembered for the specific answers he proposed to these
questions: consider all alternatives; search all continuations

to fixed depth, n; evaluate with a numerical sum; minimax to

P-1319
9-4-58
-12-

get the effective value for an alternative; and then pick the
best one. His article goes beyond these specifics, however,
and discusses the possibility of selecting only a small number
of alternatives and continuations. It also discusses the
possibility of analysls in terms of the functions that chess
men perform — blocking, attacking, defending. At this stage,
however, it was possible to think of chess programs only in
terms of extremely systematic procedures. Shannon's specific
proposals have gradually been realized in actual programs,
whereas the rest of his discussion has been largely lgnored.
And when proposals for more complex computations enter the

' research pilcture again, it is through a different route.

Turing's Program

Shannon did not present a particular program. His
specifications still require large amounts of computing for
even such modest depths of analysis as two or three moves.

It remained for A. M. Turing (3) to describe a program along
these lines that was sufficiently simple to be simulated by
hand, without the aid of a digital computer.

In Table I we have characterized Turing's program in
terms of the framework just defined. There are some additional
categories which will become clear as we proceed. The Table
also provides similar information for eéch of the other three

programs We wlll consider.

Turing's program considered all alternatives — that 1is,
all legal moves. In order to 1imit computation, however, he
was very circumspect about the continuations the program
considered. Turing introduced the notion of a "dead" position:
one that in some sense was stable, hence could be evaluated.
For example, there is no sense in counting material on the
board in thé middle of an exchange of Queens: one should
explore the continuations until the exchange has been carried
through — to the point where the material 1s not going to
change with the next move. So Turing's program evaluated
material at dead positions only. He made the value of material
dominant in his static evaluation, so that a decision problem
remained only if minimaxing revealed several alternatives that
were equal in material. In these cases, he applied a
supplementary additive evaluation to the positions reached by
making the alternative moves. This evaluation included a
large number of factors — mobility, backward pawns, defense of
men, and so on — points being assigned for each.

Thus Turing's program is a good 1nétance of a chess-
playing system as envisaged by Shannon, although a small-scale
one in terms of computational requirements. Only one published
game, as far as we know, was played with the program. It
proved to be rather weak, for it lost against a weak human
player (who did not know the program, by the way), although it
was not éntirely a pushover. In general its play was rather

aimless, and it was capable of gross blunders, one of which

cost 1t the game. As one might have expected, the subtletles
of the evaluation function were lost upon 1it. Most of the
numerous factors included in the function rarely had any
influence on the move chosen. In summary: Turing's program
was not a very good chess player, but it reached the bottom
rung of the human ladder.

There is no a priori objectlion to hand simulation of a
program, although experience has shown that it is almost always
inexact for programs of this complexity. For example, there 1is
an error in Turing's play of his program, because he — the
human simulator — was unwilling to consider all the alternatives.
He failed to explore the ones he "knew'" would be eliminated
anyway, and was wrong once. The main objection to hand
simulation 1s the amount of effort required to do it. The
computer 1s really the enabling condltion for exploring the
behavior of a complex program. One cannot even realize the
potentialities of the Shannon scheme without programming it

for a computer.

The Los Alamos Program

In 1956 a group at Los Alamos programmed MANIAC I to

play chess (5).* The Los Alamos program is an almost perfect

*There are two other explorations between 1951 and 1956 of
which we are aware — a hand simulation by F. Mosteller and a
Russian program for BESM. Unfortunately, not enough informa-
tion 1s available on elther to talk about them, so we must
leave a gap in the history between 1951 and 1956.

P-1319
9-4-58
-15-

example of the type of system specified by Shannon. As shown
in the Table, all alternatives were considered; all continua-
tions were explored to a depth of two moves (i.e., two moves
for Black and two for White); the static evaluation function
consisted of a sum of material and moblility measures; the
values were integrated by a minimax procedure,* and the best
alternative in terms of the effective value was chosen for the
move.

In order to carry out the computation within reasonable
time limits, a major concession was required. Instead of the
normal chess board of eight squares by elght squares, they
used a reduced board, six squares by six squares. They
eliminated the blshops and all special chess moves: castling,
two-square pawn moves 1n the opening, and en passant captures.

The result? Again the program is a weak player, but
now one that 1s capable of beating a weak human player, as
the machine demonstrated in one of its three games. It is
capable of serious blunders, a common characteristic, also,
of weak human play.

Since this 1is our first example of actual play on a
computer, it is worth looking a bit at the programming and
machine problems. In a normal 8 x 8 game of chess there are
about 30 legal alternatives at each move, on the average;

thus looking two moves ahead brings 304 continuations, about

*The minimax procedure was a slight modification of the one
described earlier, in that the mobility scors for each of the
intermediate positions was added in.

P-1319
9-4-58
-16-

800,000, into consideration. In the reduced 6 x 6 game, the
designers estimate the average number of alternatives at about
20, giving a total of about 160,000 continuations per move.
Even with this reduction of five to one, there are still a lot
of positions to be looked at. By comparison, the best evidence
suggests that a human player considers considerably less than
100 positions in the analysis of a move’(u). The Los Alamos
program was able to make a move in about 12 minutes on the
average. To do this the code had to be very simple and
straightforward. This can be seen by the size of the program —
only 600 words. In a sense, the machine barely glanced at
each position it evaluated. The two measures in the evalua-
tion functlon are obtained directly from the process of
looking at continuations: changes in material are noticed 1if
the moves are captures, and the mobility score for a position
is equal to the number of new positions to which it leads —
hence 1s computed almost without effort when exploring all
continuations.

The Los Alamos program tests the limits of simplifica-
tion in the direction of minimizing the amount of information
required for each position evaluated, just as Turing's program
tests the limits in the direction of minimizing the amount of
exploration of continuations. These programs, especially the
Los Alamos one, provide real anchor points. They show that,
with very little in the way of complexity, we have at least

entered the arena of human play — we can beat a beginner.

P-1319
9-4-58
-17-

Bernstein's Program

Over the last two years Alex Bernstein, a chess player
and programmer at IBM, has constructed a chess-playlng program
for the IBM 704 (for the full 8 x 8 board) (1,2). This
program has been in partial operation for the last six months,
and has now played one full game plus a number of shorter
sequences. It, too, is in the Shannon tradition, but it takes
an extremely important step in the direction of greater
sophistication: only a fraction of the legal alternatives and
continuations are considered. There is a series of sub-
routines, which we can call plausible move generators, that
propose the moves to be considered. Each of these generators
is related to some feature of the game: King safety, develop-
ment, defending own men, attacking opponent's men, and so on.
The program considers at most seven alternatives, which are
obtained by operating the generators in priority order, the
most important first, until the seven are accumulated.

The program explores continuations two moves ahead, just
as the Los Alamos program did. However, 1t uses the plausible
move generators at each stage, so that, at most, 7 direct
continuations are considered from any given position. For its
evaluation function it uses the ratio of two sums, one for
White and one for Black. Each sum consists of four welghted
factors: material, King defense, area control, and mobility.
The program minimaxes and chooses the alternative with the

greatest effective value.

P-131
9-4-5
-18-
The program's play 1s uneven. Blind spots occur that
are very striking; on the other hand it sometimes plays very
well for a series of moves. It has never beaten anyone, as
far as we know; in the one full game it played it was beaten
by a good player (1), and i1t has never been pitted against
weak players to establish how good it 1is. |
Bernstein's program gives us our first information about
radical selectivity, in move generation‘and analysis. At 7
moves per position, it examines only 2,500 final positlons two
moves deep, out of about 800,000 legal continuations. That it
still plays at all tolerably with a reduction in search by a
factor of 300 implies that the selection mechanism 1is fairly
effective. Of course, the selections follow the common and
tested lore of the chess world; so that the significance of
the reduction lies in showing that this lore 1ls belng suc-
" cessfully captured in mechanism. On the other hand, such
radical selection should give the program a strong proclivity
to overlook moves and consequences. The selective méchanisms
in Bernstein's program have none of the checks and balances
that exist in human selection on the chess board. And this 1s
what we find. For example, in one situation a Bishop was
guccesslively attacked by three pawns, each time retreating one
square to a post where the next pawn could attack it. The
program remained oblivious to this possibility since the
successive pawn pushes that attacked the Blshop were never

proposed as plausible moves by the generators. DBut this is

P-1319
9-4-58
-19-

nothing to be unhappy about. Any particular difficulty 1is
removable: in the case of the Bishop, by adding another move
generator responaive to another feature of the board. This
kind of error correction is precisely how the body of
practical knowledge about chess programs and chess play will
accumulate, gradually teaching us the right kinds of selectivity.
Every increase in sophistication of performance is |
paid for by an increase in the complexity of the program. The
move generators and the components of the static evaluation
require varied and diverse information about each position.
This implies both more program and more computing time per
position than with the Los Alamos program. From the Table,
we observe that Bernstein's program takes 7,000 words, the
Los Alamos program only 600 words: a factor of about 10, As
for time per position, both programs take about the same time
to produce a move — 8 and 12 minutes respectively. Since the
increase in problem size of the 8 x 8 board over the 6 x 6
board (about 5 to 1) 1is approximately canceled by the increase
in speed of the IBM 704 over the MANIAC (also about 5 to 1,
counting the increased power of the 704 order code), we can
say they would both produce moves in the same 8 x 8 game
in the same time. Hence the increase 1n amount of processing
per move in Bernstein's program approximately cancels the
gain of 300 to 1 in selectivity that this more complex pro-
cessing achieves. This 1s so, even though Bernstein's program

is8 coded to attain maximum speed by the use of fixed tables,

direct machine coding, and so on.,

P-1319
9-4258
-20-

We have introduced the comparison in order to focus
on computing speed versus selectivity as sources of improve-
ment in complex programs. It 1s not possible, unfortunately,
to compare the two programs in performance level except very
crudely. We should compare an 8 x 8 version of the Los Alamos
program with the Bernstein program, and we also need more
games with each to provide reliable estimates of performance.
Since the 8 x 8 version of the Los Alamos program will be
better than the 6 x 6, compared to human play, let us assume
for purposes of argument that the Los Alamos and Bernstein
programs are roughly comparable in performance. To a rough
approximation, then, we have two programs that achlieve the
same qQuality of performance with the same total effort by two
different routes: the Los Alamos program by using no
selectivity and beilng very fast, and the Bernstein program by
using a large amount of selectivity and taking much more effort
per position examined in order to make the selection.

The point we wish to make 1s that this equality 1s an
accldent: that selectivity 1s a very powerful device and speed
a very weak device for improving the performance of complex
programs. For instance, suppose both the Los Alamos and the
Bernstein programs were to explore three moves deep instead
of two as they now do. Then the Los Alamos program would
take about 1,000 times (30°) as long as now to make a move,
whereas Bernstein's program would take about 50 times as long

(72), the latter gaining a factor of 20 in the total computing

P-1319
9-4-58
-21-

effort required per move. The significant feature of chess is
the exponcntial growth of positions to be considered with
depth of analysis. As analysis deepens, greater computing
effort per position soon pays for 1tself, since 1t slows the
growth in number of positions to be considered. The com-
parison of the two programs at a greater depth is relevant
since the natural mode of improvement of the Los Alamos
program 1s to increase the speed enough fo allow explorations
three moves deep. Furthermore, attempts to introduce selectivity
in the Los Alamos program will be extremely costly relative
to the cost of additional selectivity in the Bernstein program.

One more calculation might be useful to emphasize the
value of heuristics that eliminate branches to be explored.
Suppose we had a branching tree in which our program was
exploring n moves deep, and let this tree have four branches
at each node. If we could double the speed of the program -
that 1is, consider twice as many positions for the same total
effort — then this improvement would let us look half a move
deeper (g + 1/2). If, on the other hand, we could double the
selectivity — that 1s, only consider two of the four branches
at each node, then we could look twice as deep (2n). It is
clear that we could afford to pay an apparently high computing
cost per position to achieve this selectivity.

To summarize, Bernstein's program introduces both
sophistication and complication to the chess program.

Although in some respects — e.g., depth of analysis — it still

P-1319
9-4-58
PP

uses simple uniform rules, in selecting moves to be considered
it introduces a set of powerful heuristics which are taken
from successful chess practice, and drastically reduce the

number of moves considered at each position.

Newell, Shaw, and Simon Program

Although our own work on chess started in 1955 (6), it
took a prolonged vacation during a period in which we were
developing programs that discover proofs for theorems in
symbolic logic (8, 10). In a fundamental sense, proving
theorems and playing chess involve the same problem: reaabning
with heuristiocs that select fruitful paths of exploration in
a space of possibilities that grows exponentially. The same
dilemmas of speed versus selection and uniformity versus
sdphistioation exist in both problem domains. Likewise, the
programming costs attendant upon complexity seem similar for
both. So we have recently returned to the chess programming
problem equipped with ideas derived from the work on logioc.

The historical antecedents of our own work aré aoméwhat
different from those of the other investigators we have
mehtioned. We have been primarily concerned with describing
and understanding human thinking and decision processes (9).
HoWever, both for chess players and for chess programmers,
the structure of the task dictates in considerable part the
approach taken, and our current program can be described in

the same terms we have used for the others. Most of the

P-1319
9-4-58
-93-

positive features of the earlier programs are clearly dis-
cernible: the basic factorization introduced by Shannon;
Turing's concept of a dead position; and the move generators,
associated with features of the chess situation, used by
Bernstein. Perhaps the only common characteristic of the
other programs that is strikingly absent from ours — and from
human thinking also, we believe — is the use of numerical
additive evaluation functions to compare alternatives.

Baslic Organization

Figure 3 shows the two-way classification in terms of
which the program is organized. There is a set of goals,
each of which corresponds to'some feature of the chess
situation — King safety, material balance, center control,
and so on. Each goal has associated with it a collection of
processes, corresponding to the categories outlined by Shannon:
a move generator, a static evaluation routine, and a move
generator for analysis. The routine for integrating the
static evaluations into an effective value for a proposed
move, and the final cholice procedure are both common routines
for the whole program, and therefore are not present in each
separate component.

The goals form a basic set of modules out of which the
program 1s constructed. The goals are independent: any of
them can be added to the program or removed without affecting

the feasibility of the remaining goals. At the beginning of

BASIC ORGANIZATION

Goal Move Static Analysis
Specifieation Generator Evaluation Generator
King Safety
]
|
Material Balance
]
|
Center Control
Development
King - side Attack
|
|
Promotion
I
Figure 3

-42-,
85-h~6
61£1~4d

P-1319
9-4-58
-5~

each move a preliminary analysls establishes that a given chess
situation (a "state") obtalns, and this chess sltuatlon evokes
a set of goals appropriate to it. The goal specification
routines shown for each goal in Flgure 3 provide information
that 1s used in this initial selection of goals. The goals

are put on a 1list with the most crucial ones first. This goal
list then controls the remainder of the processing: the
selection of alternatives, the continuations to be explored,
the static evaluation, and the final choice procedure.

What kind of game the program will play clearly depends
on what goals are avallable to it and chosen by 1t for any
particular move. One purpose of this modular construction 1s
to provide flexibllity over the course of the game 1n the
kinds of considerations the program spends its effort upon.
For example, the goal of denying stalemate to the opponent
is relevant only in certain endgame situations where the
opponent is on the defensive and the King is in a constrained
position. Another purpose of the modular construction is to
give us a flexible tool for investigating chess programs —
so that entirely new consliderations can be added to an already
complex but operational program.

Move Generation

The move generator associated with each goal proposes
alternative moves relevant to that goal. These move generators
carry the burden of finding positive reasons for doing things.

Thus, only the center control generator will propose P-Qi as a

P-1319
9-4-58
-26 -~

good move in the opening; only the material balance generator
will propose moving out of danger a plece that 1s en prise.
These move generators correspond to the move generators in
Bernatein's program, except that here they are used
excluslvely to generate alternative moves and are not used
to generate the continuations that are explored in the course
of analyzing a move. In Bernstein's program — and a fortiori
in the Los Alamos program — ldentlcal generators are used both
to find a set of alternative moves from which the final choice
of next move is made, and also to find the continuations that
must be explored to assess the consequences of reaching a given
position. In our program the latter function 1s performed by
a separate set of analysis generators.

Evaluation

Each move proposed by a move generator 1is assigned a
value by an analysls procedure. We said above that the move
generators have the responsibility for finding positive reasons
for making moves. Correspondingly, thé analysis pro¢edure is
concerned only with the acceptabllity of a move once it has
been generated. A generator proposes; the analysis procedure
disposes.

The value asslgned to a move is obtained from a series
of evaluations, one for each goal. The value is a vector, if
you like to think of it that way, except that it does not
nec@ssafily have the same components throughout the chess game,

gince the components derive from the basic list of goals that

P-1319
9-4-58
-27-

is constructed from the positlon at the beginning of each move.
Each component expresses acceptabllity or unacceptabllity of a
position from the viewpoint of the goal corresponding to that
component. Thus, the material balance goal would assess only
the loss or gain of material; the development goal, the
relative gain or less of templ; the pawn structure goal, the
doubling and isolation of pawns; and so on. The valué for a
component 18 in some cases a number — e.g., in the material
balance goal where we use conventional plece values: 9 for a
Queen, 5 for a Rook, and so on. In other cases the component
value 18 dichotomous, simply designating the presence or
absence of some property, like the blecking of a move or the
doubling of a pawn.

As in the other chess programs, our analysis procedure
consists of three parts: exploring continuations to some depth,
forming static evaluations, and integrating these to establish
an effective value for the move. By a process that we will
describe later, the analysls move generators assocliated with
the goals determine what branches will be explored from each
position reached. At the final position of each continuation,
a value 1s assigned using the static evaluation routines of
each goal to provide the component values. The effective
value for a proposed move is obtained by minimaxing on these
final static values. Minimaxing seems especlally appropriate
for an analysls procedure that is inherently conservative,

such as an acceptance test.

P-1319
9-4-58
-28-

Po be able to minimax it must be possible to compare any
two values and decide which 1s preferable, or whether they are
equal in value. For values of the kind we are using, there
must be a complete ordering on the vectors that determine them.
Further, this ordering must allow variation in the size and
composition of the goal list. We use a lexicographicvordering:
each component value is completely ordered within itself; and
higher priority values completely dominéte lower priority values,
as determined by the order of goals on the goal list. To com-
pare two values, then, the first components are compared. If
one of these is preferable to the other, thls determines the
preference for the entire value. If the two components are
equal, then the second palr of components is\compared. If
thesé are unequal in value, they determine the preference for
the entire value, otherwise the next components are compared,
and so on.

It is still necessary to select the move to be played
from the alternative moves, given the values assigned to them
by the analysis procedure. In the other programs the final
choice procedure was simply an extension of the minimax:
choose the one with highest value. 1Its obviousness rests on
the assumption that the set of alternatives to be considered 1s
a fixed set. If this assumption is relaxed, by generating
alternatives sequentially, then other procedures are possible.
The simplest, and the one we are currently using, 1s to set an

acceptance level as final criterion and simply take the first

acceptable move. The executive routine proceeds down the goal
list activating the move generators of the goals in order of
priority, so that important moves are considered first. The
executive saves the best move that has been found up to any
given moment, and if no moves reach the specified level of
acceptabllity, iﬁ makes the best move that was found.

Another possible final cholce procedure 1s to séarch for
an acceptable move that has a double function — that is, a
move that is proposed by more than one generator as having a
positive effect. With this plan, the executive proceeds down
the 1list of goals in order of priority. After finding an
acceptable move, 1t activates the rest of the generators to
gsee 1f the move will be proposed a second time. If not, it
works from the list of unevaluated moves Jjust obtained to see
if any move proposed twice 1s acceptable. If not, 1t takes the
first acceptable move or the best i1f none has proved acceptable.
This type of executive has considerable plausibllity, since
the concept of multiple-function moves plays an important role
in the chess literature.

Yet a third variation in the final choice procedure is
to divide the goals into two lists. The first list contains
all the features that should normélly be attended to; the
second list contains features that are rare in occurrence but
elther very good or very bad if they do occur. On thls second
list would be goals that relate to sacrificial combinations,

hidden forks or pins that are two moves away, and so on. The

P-1319
9-4-58
-30-

executive finds an acceptable move with the first, normal
list. Then the rest of the available time 1s spent looking
for vérioﬁs rare consequences derived from the second list.
Analysis | |

In describing the basic orgaﬁization of the program we
skipped over the detéiied methanism for exploring continuations,
simply assuming that certain continuations were explored, the
static values computed, and the effecti?e value obtained by
minimaxing. But it 1s clear that the exact mechanisms aré
very 1mportant. The analysis move géneratops are the main
agents of selectivity in the programs: they determine for each
position arrived at in the anaiysis jﬁst hhich further branches
must be explored, hence the average number of branches in the
exploration tree and 1ts average depth. The move generators
for the alternatives and the final choice procedure also-affect
the amount of expleoration by determining what moves are con-
sidered. But their_selection operates only once per move,
whereas the selectlivity of the analysis geﬁérators operates
at each step (half-move) of the exploratién. Hence the
selectivity of the analysis generators varies geometrically
with the average depth of analysis. |

The exploration of continuations is based on' a genera-
lization of Turihg's cenéept of a dead position. Recall that
Turing appllied thils notion to exchanges, arguing that it made
no sense to count material on the board until all exchanges

that were to take place had been carried out. We apply the

P-1319
9-4-58
..3]_...

same notion to each feature of the board: the statliec evalua-
tion of a goal is meaningful only 1f the position belng
evaluated is "dead" with respect to the feature assoclated
with that goal — that 1s, ohly if no moves are likely to be
made that could radically alter that component static value.
The analysis move generators for each goal determine for any
position they are applied to whether the posgition is dead with
respect to their goal; if not, they generate the moves that
are both plausible and might seriously affect the static value
of the goal. Thus the selection of continuations to be
explored is dictated by the search for a position that is dead
with respect to all the goals, so that, finally, a static
evaluation can be made. Both the number of branches from each
position and the depth of the exploration are controlled in
this way. Placid situations will produce search trees contain-
ing only a handful of positions; complicated middle game
situations will produce much larger ones.

To make the mechanics of the analysls clearer,
Figure 4 gives a schematic example of a situation. PO is the
initial position from which White, the machine, must make a
move., The arrow, a , leading to P1 represents an alternative
proposed by some move generator. The move 1s made internally
(1.e., "considered"), yilelding rosition Py, and the analysis
procedure must then obtain the value of Pl, which will become
the value imputed to the proposed alternative, a . Taking each

goal from the goal 1list in turn, an attempt is made to produce

White /

V P (5,3, a)
Black B ¢
R4,3,1) Fle e
. -) €
White
P, (2,8,1) R, (4,7, 3)

Figure 4

_z¢-
8G~4-6
61ET-d

P-1319
9-4-58
=33~

a static evaluation. For Pl this attempt 1s successful for
the first and second components, ylelding values of 5 and 3
respectively. (Numbers are used for values throughout this
example to keep the picture simple; in reality, varlous sets
df ordered symbols are used, their exact structure depending
oﬁ the nature of the.computation.) Howeyer,_the third com-
ponent does not find the position dead, and generates two moves;
B and Y. The first, B, 1s consldered, leading to PQ, and an
attempt i1s made to produce a static evaluation of it. This
proceeds Jjust as with Pl, except that thls time all components
find the position dead and the static value (4, 3, 1) 1is
obtalned. Then the second move,Y , from Pl 1s consgidered,

leading to P The attempt to produce a static value for P

3.
runs into difficulties with the first component, which

3

generates one move, &6, to resolve the instability of P3 with
respect to its feature. This move leads to Pq which 1is
evaluable, having the value (2, 8, 1). However, the second
component also finds P3 not dead and generates a single move,
€, leading to P5. This is also evaluable, having the value
}(4, 7, 3). The third component finds P3,dead and therefore
contributes no additional moves. Thus the exploration comes
to an end with all terminal positions ylelding complete static
values. Since it 1s White's move at P3, White will choose the
move with the highest value. This is €, the move to P5, with
a value of (4, 7, 3) (the first component dominates). The

value of this move 1s the effective value assigned to P3.

Black now has a choice between the move, B, to Pz, ylelding
(4, 3, 1) and the move,Y , to P3, yielding (4, 7, 3). Since
Black is minimizing, he will choose B. This yields (4, 3, 1)
as the effective value of the alternative, o, that leads to
Pl’ and the end of the analysis.

The minimaxing operation is conducted concurrently with
the generation of branches. Thus if PS’ which has a value of
(4, 7, 3), had been generated prior to P, no further moves
would have been generated from P3, since it 1s already apparent
that Black will‘prefer P, to P3. The value of P3 is at least
as great as the value of P5 since it is White's move and he
will maximize.

This analysls procedure is not a simple one, elther
conceptually or technically. There are a number of possible
ways to terminate search and reach an effective evaluation.
There is no built-in rule that guarantees that the search
will cdnverge; the success depends heavily on the abllity to
evaluate statically. The more numerous the situations that
can be recognized as having a certain valﬁe without having to
generate continuations, the more rapidly the search will
terminate. The number of plausible moves that affect the
value 1s also of consequence, as we discussed in connection
with Bernstein's program, but there are limits beyond which
this cannot be reduced. For example, suppose that a positionA
18 not dead with respect to lMaterlal Balance and that one of

the machine's pleces 1s attacked. Then it can try to (a) take

the attacker, (b) add a defender, (c) move the attacked plece,

(d) pin the defender, (e) interpose a man between the attacker

and the attacked, or (f) launch a counter-attack. Alternatives
of each of these types must be sought and tried — they are all

plausible and may radically affect the Material Balance.

As an example df the heuristics involved in achleving a
static evaluation, imagine that the above situation occurred:
after several moves of an exploration, énd that the machine
was alréady a pawn down from the early part of the continuation.
Then, being on the defensive 1mp11eé a very remote chance of
recovering the pawn. Consequently, a negative value of at least
& pawn can be assigned to thé position statically. This 1is
usuélly enough in connection with concurrent minimaxing to

eliminate the continuation from further consideration.

Summary
Let us summarize our entire program. It is organized in
terms of a set of goals: these are conceptual units of chess -
King safety, passed pawns, and so on. Each goal has several
routines assoclated with 1it:
1. A routine that specifies the goal in terms of
the given position.
2. A move generator that finds moves posltively
related to carrying out the goal.
3. A procedure for making a static evaluation of
any position with respect to the goal, which

essentially measures acceptablility.

P-1319
9-4-58
-36-

4. An analysis move generator that finds the
continuations required to resolve a situation
into dead positions.

The alternative moves come from the move generators,
considered in the order of priority of thelr respective goals.
Each move, when it is generated, is subjected to an analysis.
This analysis generates an exploration of the continuations
following from the move until dead positions are reached and
static evaluations computed for them. The static evaluations
are compared, using minimax as an 1ﬁference procedure, so that
an effective value ls eventually produced for each alternative.
The final choice procedure cén rest on any of several criteria:
for instance, choosing the first move generated that has an

effectlive value greater than a given norm.

Examples of Goals

In this section we will glve two examples of goals and
their various components to illustrate the type of program we
are constructing. The first example 1s the center control
goal:

Center control

Specification: Goal 1s always operative unless

the:e are no more center pawns to be moved to
the fourth rank,

Move pgenerator:

1. Move P-Q4, P-K4 (primary moves).
2. Prevent the opponent from making his

primary moves.

P-1319
9-4258
. _37_

3. Prepare your own primary moves:
a. Add a defender to Q4% or K4
square.
b. Eliminate a block to moving
QP or KP.

Static evaluation: Count the number of blocks

to making the primary moveg.

Analysls move generators: None, static

evaluation 1s always possible.

To interpret this a little: Goals are proposed in terms
of the geﬁeral situation — e.g., for the opening game. The
list of goals is made up for a position by applying, in turn,
the specification of each of the potential goals. Whether any
particular goal is declared relevant or irrelevant to the
position depends on whether or not the position meets its
specification. For Center Control, no special information
need be gathered, but the goal is declared irrelevant if the
center pawns have already been moved to the fourth rank or
beyond.

The most important part of the center control program
is its move generator. The generator is concerned with two
primary moves: P-Q4 and P-K4. It wlll propose thesevmoves,
if they are legal, and it is the responsibility of the
analysis procedures (for all the goals) to reject the moves
1f there 1s anything wrong with them — e.g., if the pawns will

be taken when moved. So, after 1. P-Q4, P-QU, the center

P-1319
9-4-58
-38-

control move generator will propese 2. P-K4, but (as we shall
see) the evaluation routine of the material balance goal will
reject this move because of the loss of material that would
result from 2. ..., P x P, The center control generator will
have nothing to do with tracing out these consequences.

If the primary moves cannot be made? the center control
move generator has two choices: to prepare them, or to prevent
the opponent from making his primary moeves. The program's
style of play will depend very much on whether prevention has
priority over preparation (as it doés in our deseription of
the generator above), or vice versa. The ordering we have
proposed, which puts prevention first, probably produces more
aggressive and slightly better opening play than the reverse
ordering. Similarly, the style of play depends on whether
the Queen's pawn or the King's pawn is considered first.

The move generator approaches the subgoal of preventing
the opponent's primary moves (whenever this subgoal is evoked)
in the following way. It first determines whether the
opponent can make one of these moves by tfying the move and
then obtalning an evaluation of it from the opponent's view-
point. If one or both of the primary moves are .not rejected,
preventive moves will serve some purpose. Under these
conditions, the center control move generator will generate
them by finding moves that bring another attacker to bear on
the opponent's K4 and QU4 squares or that pin a defender of one

of these squares.” Among the moves this generator will normally

propose are N-B3 and BP-B4.

P-1319
9-4-58
...39.~

The move generator approaches the subgoal of preparing
its own primary moves by first determining why the moves
cannot be made without preparation — that 1is, whether the
pawn is blocked from moving by a friendly pilece, or whether
the fourth rank square is unsafe for the pawn. 1In the former
case, the generator proposes moves for the blocklng pilece; in
the latter case, it finds moves that wlll add defenders to
the fourth rank square, drive away or pin attackers, and so on.

So muach for the center control move generator. The task
of the evaluation routine for the denter control goal 1is
essentially negative — to assure that moves, proposed by some
other goal, will not be made that Jjeopardize control of the.
center. The possibility is simply lgnored that a move
generator for some other goal will inadvertently provide a
move that contributes to center control. Hence, the statlc
evaluation for Center Control 1s only concerned that moves
not be made that interfere with P-K4 and P-Q4. A typilcal
example of a move that the center control evaluatlion routine
1s prepared to reject is B-Q3 or B-K3 before the respective
center pawns have been moved.

The second example of a goal 1s Material Balance. This
is a much more extensive and complicated goal than Center
Control, and handles all questlions about gain and loss of
material in the immedlate situation. It does not consider
threats like pins and forks, where the actual exchange is

still a move away; other goals must take care of these. Bdth

P-1319
9-4-58
-40-

the negative and positive aspects of materlial must be included
in a single goal, since they compensate directly for each
other, and materlial must often be spent to galn material.

Material balance

Specification: A list of exchanges on squares

occupled by own men, and a 1ist of exchanges

on squares eccupled by opponent'!s men. For

each exchange square there 1sllisted the target
man, the list of attackers, and the list of
defenders (including, e.g;, both rooks if they
are doubled on the appropriate rank or file).
For each exchange sQuare a statlc exchange

value 1s computed by playing out the exchange
~with all the attackers and defenders assuming

no indirect consequences like pins, discovered-
attacks, etc. Exchange squares are listed in
order of static exchange value, largest negative
value first. Squares with positive values for the
defender are dropped from the list. At the same
‘time a list of all pinned men 1s generated.

Move generator: Starting with the exchange

squares at the top of the list, appropriate
moves are generéted. If the most important
exchange square is occupied by the opponent,
captures by attacking piedes are proposed, the

least valuable attacker being tried first. If

200

3

oW
[]

the move 1s rejected because the attacker 1is
plnned, the next attacker 1s tried. If the
move ls rejected for another reason, the
poasibllity of exchange on thls square is
abandoned, and the next exchange square
examined.
If the exchange square under examination 1is
occupied by the program's own plece, a whole
series of possible moves 1s generated:
a. Try "no move" to see if attack
is damaging.
b. Capture the attacker.
¢. Add a defender not employed in
another defense.
d. Move the attacked pilece.
e. Interpose a man between the
attacker and the target; but not
a man employed elsewhere, and not
if the interposer will be captured.
f. Pin the attacker with a man not
employed elsewhere and not capturable
by the attacker.

Static evaluation: For each exchange square,

add the values of own men and subtract the
values of opponent's men. Use conventional

values: Q = 9, R=5, B=N= 3, P = 1,

P-1319
9-4-58
T oyo

Move generators toward dead positions: A position

is dead for this goal only if there are no
exchanges — that 1s, 1f the specification list
defined above 1s empty. Then a static evalua-
tion can be made. Otherwlse, the various kinds
of moves defined under the move generator are
made to resolve the exchanges. However, various
additional qualifications are introduced to
reduce the number of continuations examined.

For example, if in a partiéular exchange
material has already been lost and a man is still
under attack, the position is treated as dead,
since 1t 1s unlikely that the loss will be re-
covered. When a dead position 1s reached, the
static evaluatidn is used to find a value for
the position.

It is impossible to provide here more than a sketchy
picture of the heuristics contained in this one goal. It
should be obvious from this brief description that there are a
lot of them, and that they incorporate a number of implicit
assumptions about what 1s important, and what isn't, on the
chess board.

Performance of the- Program.

We cannot say very much about the behavior of the program.
It was coded this spring and is not yet fully debugged. Only

two goals have been coded: Materlial Balance and Center Control.

P-1319
9-4-58
-43-

Development is fully defined as well as a pawn structure goal
sufficient for the opening, where its role is primarily to
prevent undesirable structures like doubled pawns. These
four goals — Material Balance, Center Coentrol, Development
and Pawn Structure — in this order seem an appropriate set
for the first phase of the opening game. Several others —
King Safety, Serious Threats, and (Gambits — need to be added
for full opening play. The serious threats goal could be
limited initially to forks and pins.

We have done considerable hand simulation with the
program in typical positions. Two examples will show how the
goals interact. In Figure 5 the machine is White and the
play has been 1. P-K4, P-K4., Assuming the goal list mentioned
above, the material balance move generator will not propose
any moves since there are no exchanges on the board. The
center control generator will propose P-Q4, which is the
circled move in the Figure. (In the illustration, we assume
the eenter control move generator has the order of the
primary moves reversed from the order described earlier.)

This move 18 rejJected — as it should be — and 1t is instructive
to see why. The move 1s proposed for analysis. Material
Balance does not find the position dead since there is an
exechange, and generates Black's move, 2., P x P. The
resulting position is still not dead, and 3. @ x P, 1is
generated. The position is now dead for Material Balance, with

no gain or loss in material, The first component of the static

2

B

ls)

»|
»

N [P

1]

ak

A\

O

#A\S

Figure 5

evaluation.is "even." There are obviously no blocks to pawn
moves, so that the center control static value 1s acceptable.
However, the third compongnt, Development, finds the position
not dead because there is nbw an exposed plece, the Queen.

It generates replies that both attack the plece and develop -
1l.e., add a tempo. The move 3., N-QB3 1s generated.
This forces‘a‘Queen move, resulting in loss of a tempo for
White. Hence Development rejects thekmbve, 2. P-Q4. (The
move 3., B-B4 would not have sufficed for rejection by
Development, since the Bishop could be taken.)

The second example, shown in Figure 6, is from a famous
game of Morphy against Duke Karl of Brunswick and Count
Isouard. Play had proceeded 1. P-K4%, P-K4; 2. N-KB3, P-Q3;
3. P-Ql4., Suppose the machine is Black in this position. The
move 3. ..., B-N5 1s proposed by Material Balance to deal with
the exchange that threatens Black with the loss of a Pawn.
This 1s the move made by the Duke and Count. The analysis
proceeds by 4, P x P, P x P. This opens up a new exchange
possiblility with the Queens, which 1s tried: 5. @Q xQ, K x Q;
6. N x P. Thus the pawn 1s lost in this continuation. Hence,
alternative MOves are considered at Black's nearest option,
which 1s move 4, since there are no alternative ways of re-
capturing_the'Queen at move 5. The capture of White's Knight
1s possible, so we get: 4t, ;..., BxN; 5. P x B, P x P;
6'. @ x Q, K x Q. This position is rejected by Development

since the forced King move loses Black his castling privilege,

P

9

I?
-

Ar | A | I nY?
_— A L 1 |
: \\\.//,)
N P .,AB_ —
/(\\
D
Mmia | o | e
| P
- _— 2 Sy
V o 1 N R f7==Y~
| — — N
A D) (D
: l» —/ S—
| D
< | o I
a Q | e
— —/ | e

4131
b5

~ Figure 6

(25.s)

=
-~ 1w
Ul

and this loss affects the tempo count. This 18 a sufficient
reason to reject the move 3. ..., B-N5, without even examining
the stronger continuation, 5". Q@ x B, that Morphy as White
chose. In our program, 5. P x B 18 generated before 5., Q x B.
Elther reply demonstrates that 3. ..., B-N5 is unsound.

One purpose of these examples is to 1llustrate a
heuristic for constructing chess programs that we incline to
rather strongly. We wish not only to héve the program make
good moves, but to do so for the right reasons. The chess
commentary above is not untypical of human analysis. It also
represents rather closely the analysis made by the program.

We think this 1s sound design philosophy in constructing
complex programs. To take another example: the four-goal
opening program will not make sacrifices, and conversely, will
always accept gambits. The existing program is unable to
balance materlal against positional advantage. The way to
make the program take account of sacrifices is to introduce
an additional goal having to do with them explicitly. The
corresponding heuristic for a human chess player is: don't
make sacrifices until you understand what a sacrifice is.
Stated in still another way, part of the success of human
play depends on the emergence of appropriate concepts. One
major theme in chess history, for example, 1s the emergence
of the concept of the center and the notion of what it means
to control the center. One should ﬁot expect the equivalent

of such a concept simply to emerge from oomputation based on

quite other features of the position.

O
i
=
oW
oo

1\

Programming.

The program we have been descrlibing is extremely com-
plicated. Almost all elements of the original framework put
forward by Shannon, which were handled initially by simply
uniform rules, have been made varlable, and dependent on rather
complicated considerations. Many special and highly particular
heuristics are used to select moves and declde on evaluations. |
The program can be expected to be much larger, more intricate,
and te require muech more processing per position considered
than even the Bernstein program,

In the introduction to this paper we remarked on the close
connection between complexity and communication. Processes as
complex as the Los Alamos program are unthinkable without
languages like current machine codes in which to specify them.
The Bernstein program is already a ver& complicated program
in machine code; it involved a great deal of coding effort and
parts of it required very sophisticated coding techniques. Our
own program is already beyond the reach of direct machine
coding: It requires a more powerful language.

In connection with the work on theorem-proving programs
we have been developing a series of languages, called informa-
tion processing languages (IPL's) (7). The current chess
program 18 coded in one of them, IPL-IV. An information pro-
cessing language 1s an interpretive pseudo-code— that is,
there exists a program in JOHNNIAC machine code that is ogpable
of interpreting a program in IPL and executing 1it. When

P-1319
9-4-58
T aygt

operating, JOHNNIAC contains both the machine code and the IPL
code.

It 1s not possible to give in this paper a description of
IPL-IV or the programming techniques involved in constructing
the chess program. Basioally IPL 18 designed to manipulate
lists, and to allow extremely complicated structures of 1lists
to be built'up during the execution of a program without
ineurring intelerable problems of memory assignment and
program planning.l It allows unlimited hierarchies of sub-
routines to be easily defined, and permits recursive definition
of routines. As it stands — that 1is, prior to ecoding a
particular problem — it is independent of subject maﬁter
(although biased towards list manipulation in the same sense
that algebraie compllers are biased towards numerical evalua-
tion of algebraic expressions). To code chess, & couplete
"echess vocabulary" is built up from definitions in IPL. This
vocabulary consists of a set of processes for expressing basie
concepts in chess: tests of whether a man bears on another man,
or whether two men are on the same diagohal; processes for
finding the direction between two men, or the first man in a
given direction from another; and processes that express
l1terations over all men of a given type, or over all squares
of a given rahk. There are about 100 terms in this basic
process vecabulary. The final chess program, as we have been
describing it in this paper, is 1arge1y coded in terms of the

chess vocabulary. Thus there are four language "levels" in the

P-1319
9-4-58
-50-

chess program: JOHNNIAC machine code, general IPL, basic chess
vocabulary, and finally the chess program itself.

\ We can now make a rough assessment of the size and
complexity of this program in comparison with the other
programs. The table indicates that the program now consists
of 6000 words and will probably increase to 16,000. The upper
bound is dictated by the slze of the JOHNNIAC drum and the
fact that JOHNNIAC has no tapes. In terms of the pyramiding
structure described above, this program is already much larger
than Bernstein's, although it is difficult to estimate the
"expansion" factor involved in converting IPL to machine code.
(For.one thing, it 18 not clear how an "equivalent" machine
coded program would be organized.) However, only about 1000
words of our program are in machine code, and 3000 words are
IPL programs, some of which are as many as ten definitional steps
removed from machine code. Further, all 12,000 words on the
drum will be IPL program; no additional data or machine code
are planned.

The estimated time per move, as shown in the Table, is
from one to ten hours, although moves in very placid situations
like the opening will only take a few minutes. ~Even taking
into account the difference in speed between the 704 and
JOHNNIAC, our program still appears to be at least ten times
slower than Bernstein's. This gap reflects partly the mis-
match between current computers and computers constructed to

do efficiently the kind of information processing required in

P-1319
9-4-58
-51-

chess (12). To use an interpretive code, such as IPL, is
in essence to simulate an "IPL computer" with a current
computer. A large price has to be paid in computing effort
for this simulation over and above the computing effort for the
chess program itself. However, this gap also reflects the
difficulty of specifying complex processes; we have not been
able to write these programs and attend closely to the
efficiency issue at the same time.

On both counts we have felt it important to explore the
kind of languages and programming techniques appropriate to
the task of specifying complex programs, and to ignore for

the time being the costs we were incurring.

Conclusion

We have now completed our sukvey of attempts to program
computers to play chess. There 1is clearly evident in this
succession of efforts a steady development toward the use of
more and more complex programs and more and more selective
heuristics; and toward the use of principles of play similar
to those used by human players. Partly, this trend represents —
at least in our case — a deliberate attempt to simulate human
thought processes. In even larger part, however, it reflects
the constraints that the task 1tself imposes upon any inform-
atlon processing system that undertakes to perform it. We
believe that any information processing system — a human, a

computer, or any other — that plays chess successfully will

use heuristics generally simllar to those used by humans.

We are not unmindful of the radlcal differences between
men and machlines at the level of componentry. Rather, we are
argulng that for tasks that could not be performed at all with-
out very great selectivity — and chess 1is certainly one of
these — the main goal of the program must be to achleve this
selection. The higher-level programs involved in accomplish-
ing this will look very much the same whatever processes are
going on at more microscopic levels. Nor are we gaying that
programs will not be adapted to the powerful features of the
computing systems that are used — e.g., the high speed and
precision of current digital computers, which seems to favor
exploring substantial numbers of continuations. However,
none of the differences known to us — in speed, memory, and so
on — affect the essential nature of the task: search in a
space of exponentlally growing possibilities. Hence, the
adaptations to the ldlosyncracles of particular computers will
all be sececondary in lmportance, although they wlill certainly
exist and may be werthwhile.

The complexity of heurlstic programs requires a more
powerful language for communicating with the computer than
the language of elementary machine instructions. We have seen
that thls necessity has already mothered the creation of new
information processing languages. But even with these powerful
Interpretive languages, communication with the machine 1is

difficult and cumbersome. The next step that must be taken

P-1319
9-4-58
_53-

1s to write programs that wlll glve computers a problem-solving
ability in understanding and interpreting instructions that

is commensurable with their problem-solving ablility in playing
chess and proving theorems.

The interpreter that will transform the machine into an
adequate student for a human instructor will not be a passive,
algorithmic translator — as even the most advanced interpreters
and compilers are today — but an active, complex, heuristic
problem-solving program. As our explorations of heurlstic
programs for chess playlng and other tasks teach us how to
build such an interpreter, they will at last enable us to
make the transition from the low-level equilibrium at which
man-machine communication now rests to the high-level equlllibrium

that 1s certalnly attainable.

COMPARISON CF CURRENT CHESS PROGRAMS

Vital Statistics

BERNSTEIN

|
‘i TURING 10S ALAMCS NSS |
N Kister, Stein, Ulam, Roberts, Arbuckle, Newell, Shaw, Simon i
| Walden, Wells Belsky - —
Date 3 1951 1956 1957 1958
Soard _ 8 x8 6x96 . 8x8 8x8
! Computer " Hand simulation MANTAC-I IBM 704 RAND JOHNNIAC
b 11,000 ops/sec 42,000 ops.sec 20,000 ops/sec o
hess Progranm , '] ’ i
Alternatives || A11 moves. All moves. 7 plausible moves. Variable,
) Sequence of move | Sequence of move
| generators. generators, o

Depth of analysis

i

. Until dead.
{ .

(exchanges only)

7 plausible moves..
2 moves deep,

All moves,
2 moves deep.

Until dead. :
Each goal generates moves,

values -

Static evaluation ;| Numerical Numerical Numerical . Non-nurerical,
i Many factors Material, Mobility Material, Mobility, ; Vector of values,
i Area control, i Acceptance by goals,
| King defense, !

Integration of || Minimax Minimax (modified) Minimax ‘Minimax

N]

Final choice .. Material dominates; Best value ‘{Best value '1. First acceptable,

| Otherwise, best value 2. Doutle function.]
. Prograrming i
" Languace N Machine code Machine code IPL-IV, interpretive
| Data scheme Single board. Single board. Single board,
{ No records. Centralized tables. Decentralized,
: Recompute. List structure.
Recompute.

Time ~ Minutes 12 min/move 8 min/move 1-10 hours/move (est.)
Space 600 words {7000 words Now 600C words, est. 16,000
! Results o T T T T !
 Experience © 1 game 3 games 12 games 0 games

(no longer exists) | Some hand simulation

Description -Loses to weak player. !-Beats weak player. i~Passable amateur. -Good in spots {opening).

i

-Aimless,
~-Subtleties of evalua-

* tion lost.

-Equivalent to human '~Blind spots.
with 20 games experience%-Positional.

!

-No aggressive goals yst.

L ; !

TARIE I

!
1 U
gur

3

8Gig=6
3¢5 CF

10.

11,

12.

P-1319
9-4-58

REFERENCES

Bernstein, A., and M. deV. Roberts, "Computer vs Chess-
player," Scientific American, 198, 6, June 1958.

Bernstein, A., et al., "A Chess-playing Program for the

IBM TO4," Proceedings of the 1958 Western Joint Computer
Conference, May 195%.

Bowden, B. V., Faster Than Thought, Chapter 25, Pitman,
1953.

Deugroot, A. D., Het Denken van den Schaker, Amsterdam,
1946.

Kister, J., et al., "Experiments in Chess," J. Assoc.
for Computing Machinery, 4, 2 April 1957.

Newell, A., "The Chess Machine," Proceedings of the 1955

Western Joint Computer Conference, Marc 5.

Newell, A., and J. C. Shaw, "Programming the Logic Theory
Machine,'" Proceedings of the 1957 Western Joint Computer
Conference, February 1957.

Newell, A., J. C. Shaw, and H. A. Simon, "Empirical
Explorations of the Logic Theory Machine," Proceedings
of the 1957 Western Joint Computer Conference,
February 1957.

Newell, A., J. C. Shaw, and H. A. Simon, "Elements of a
Theory of Human Problem Solving," Psych. Rev,., 65,
May 1958.

Newell, A., and H. A. Simon, "The Loglc Theory Machine,"
Transactions on Information Theory, IT-2, No. 3,
September 1956,

Shannon, C. E., "Programming a Computer for Playing Chess,"
Phil. Mag., 41, Mareh 1950.

Shaw, J. C., A. Newell, H. A, Simon, T. 0. Ellis, "A
Command Structure for Complex Information Processing,"

;roceedings of the 1958 Western Joint Computer Conference,
ay 1954,

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55

