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Summary

We ask first whether we need a theory of

creative thinking distinet from a theory of
problem solving. Subject to minor qualifications,
we conclude there is no such need — that we call
problem solving creative when the problems

solved are relatively new and difficult. Next,

we summarize what has been learned about problem
solving by simulating certain human problem solv-
ing processes with digital computers. Filnally,

we indicate some of the differences in degree that
might be observed in comparing relatively creative
with relatively routine problem solving.
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THE PROCESSES OF CREATIVE THINKING
Allen Newell, J. C. Shaw, and H. A, Simon*’

What 1s meant by an "explanation" of the creative process?
In the published literature on the subject, the stages of
thought in the solution of difficult problems have been des-
cribed, and the processes that go on at each stage discussed.
Interest has focussed particularly on the more dramatic and
mysterious aspects of creativity — the unconscious processes
that are supposed to occur during "incubation," the 1magery
employed in creative thinking and its significance for the
effectiveness of the thinking, and, above all, the phenomenon
of "illumination," the sudden flash of insight that reveals the
solution of a problem long pursued. Experimental work — to the
limitéd extent that 1t has been done — has been most concerned
with directional set, including the motivational and cognitive
conditions that produce set and that alter set, and inter-
personél differénces in "1nappropr1ate".persistencé of set
(stéreotypy). |

All 6f the topics we have mentioned are 1nteré§é1ng
enough, and are appropriate parts of a theory of créative'
thinking. In our own orientation to creativity, however, we
have felt the need for a clearer idea of the overall require-
ments and aims of such a theory. We propose that a theory of

creative thinking should consist in:

*¥Carnegie Institute of Technology
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l. Completely operational speqifications* for the
behavior of mechanisms (or organisms) ﬁhéﬁ, with appropriate
initial conditions, would in fact think dreatively;

2, a demonstration that mechanisms behaving as specifled
(oy these'programs) would gxhibit the phenomena that commonly
accompanybcreative thinking (e.g., incubation, illumination,
formation and change in set, etc.);

3. a set of statements — verbal or mathematical — about
the characteristies of the class of specifications'(programs)
that includes the particﬁlaf examples specified. _

Stated otherwise, we would have a satisfactory theofy
, of creative thought if we could‘design and bulld some mechanisms
that could think creatively (exhibit behavior Jjust like that of
a human carrying on creative activity), and‘if we could state
the general principles on which the mechanisms weré built and
oﬁerated.

When 1t 1s put in this bald way, these aims sound utopian.
How utopian they are — or rather, how imminent thelr realization -
depends on how broadly or narrowly we interpret the term "creative."
If we are willing to regard all human complex problem solving as
creative, then — as we shall point out - successful programs for
problem-solving mechanisms that simulate human problem solvers

already exist, and a number of their general characteristics are

*As we shall explain later, we propose that such a set of speci-
fications take the form of a program, as that term is used in
the digital computer field, and we will henceforth refer to them
as "programs."



P-1320
- 9-16-58
-3~

known. If we reserve the term "creative" for activities like
discovery of the special theory of relativity or composition
of Beethovent!s Seventh Symphony, then no example of a creative
mechanism exists at the present time.

However, the success already achieved in synthesizing
mechanisms that solve difficult problems in the same manner as
humans 18 beginning to provide a theofy of problem solving that
is highly specific and operational. The purpose of thls paper
is to draw out some of the implications of this theory for
creative thinking. To do so is to assume that creative think-
ing is simply a special kind of problem-solving behavior. This
seems to us a useful working hypothesis. v

We start by discussing the relation of creative thinking
to problem solving in general, and by inquiring to what extent
existing problem-solving programs may be consldered creative,
Next we sketch the theory of problem solving that underlies
- these programs, and then use the theory to analyze the programs,
and to compare them with some human preblem-solving behavior
exhibited in thinking-aloud protocols of subjects in the
laboratory. Finally, we consider some toples that have been
prominent in discussions of creativity to see what this analysis

of problem solving has to say about them.

Problem Solving and Creatlivity

In the psychological literature, "creative thinking"

designates a special class of actlvities, with somewhat vague
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and indefinite boundaries (see, e.g., Johnson, pp. 166-167).
Problem solving 1s called creative to the extent that one or
more of the following conditions are satisfled:
1. 'The product of the thinking has novelty and value
(elther for the thinker or for his culture).
2. The thinking is unconventional, in the sense that it
requires modification or rejection of previously-accepted ideas.
3« The thinking requires high motivation and persistence:
elther taking place over a econsiderable span of time (¢on-
tinuously or intermittently), or oceurring at high intensity.
4, The problem as initially posed was vague and 1ll-
-defined, so that part of the task was to formulate the problem
1tself.
Vagueness of the Distinction

A problem-solving process can exhibit all of these

eharacteristics to a greater or lesser degree, but we are

- unable to find any more specific criteria separating creative
from non-creative thought processes. Moreover, the data
currently avallable about the processes involved 1n‘creat1ve
aﬁd non-creative thinking show no particular differences
between the two. We may cite, as example, the data of Patrick
(11,12) on the processes involved (for both professionals and
amateurs) in drawing a picture or writing a poem, or the data
of de Groot (1) on the thought processes of chess players.
Not only do the processes appear to be remarkably similar from

one task to another — agreeing well with Wallas! (16) acecount
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of the stages in problem solving — but 1t is impossible to
distinguish, by looking solely at the statistics deseribing
the processes, the highly skilled practitioner from the rank
amateur.

Similarly, there is a high correlation between creativity
(at least in the sclences) and preficiency in the more routine
insellective tasks that are commonly used to measure intelligence.
There is little doubt that virtually all the persons who have
made major creative advances in sclence and technology in
historic times have possessed very great general problem-solving
powers (4, pp. 431-432).

Thus, creative activity appears simply to be a speeclal
elass of problem-solving activity characterized by novelty,
unconventionallty, persistence, and difficulty in problem
formulation.

Simulation of Problem Solving

As we indicated earlier, the theory of problem solving
we are putting forth derives from mechanisms that solve problems
in the same mamner as humans, and whose behavior can be observed,
medified, and analyzed. The only available technique for
constructing problem solvers 1is to write programs for digital
computers; no other physical mechanisms are complex enough.

The material in the present paper rests mestly on several
programs that we have constructed. These are:

1. The Logle Theoristw The Loglc Theorist is a computer

program that is capable of dlseovering proofs for theorems in
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elementary symbolie logic, using heuristic techniques similar
to those used by humans. Several versions of the Logle
Theorist have been coded for a computer, and a substantial
amount of éxperience has been accumulated with one of these
versions and some of its variants (6, 7, 8, 9).

2. The Chess Player. We have written a program that

plays chess. It is just now being checked out on the computer,
but we have done a good deal of hand simulation with the
program so that we know some of its more immediate echaracter-
isties (10).

When we say that these programs are simulations of human
problem solving, we do not mean merely that they solve problems
that had previously been solved only by humans — although they
do that also. We mean that they solve these problems by using
techniques and processes that resemble more or less closely
the techniques and processes used by humans. The most recent
verslon of the Loglc Theorist was designed explicitly as a
simulation of a (particular) human problem solver whose
behavior had been recorded under laboratory conditions.

Although the RAND-Carnegie group is the only one to our
knowledge that has been trying explicitly to construct programs
that simulate human higher mental processes, a number of workers
have been exploring the capabilities of computer programs to
solve complex and difficult problems. Many of these programs
provide additional infermation about the nature of the problem-

solving process. Some of the more relevant are:
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3. Musical Composition. A computer program has been

written and run on the ILLIAC that composes music employing
Palestrina's rules of counterpoint. Some of 1ts music has
been performed by a string quartet and tape-recorded, but as
far as wevare aware, no description of the program has been
published. Other experiments in musical composition have also
been made. |

4, Chess Playing. Two programs besides ours have been

written that play chess. Although both of these proceed in
a manner that 1is fundaméﬁtally different from the ways humans
play chess, some of their features provide 1lluminating com-
parisons (10).

5. Design of Electric Motors. At least two, and probably

more, computer programs have been wrltten, and are now being
used by industrial concerns, that design eleectric motors.
These programs take as thelr inputs the customers! design
specifications, and produce as thelr outputs the manufacturing
speeifications that are sent to the faetory floor. The programs
do not simply make calculations needed in the design process,
but actually carry out the analysis itself and make the
deeisions that were formerly the province of the design
engineers.

The main‘objeetiVe of these motor design programs,: of
course, 1is to provide effective problem-solving routines that
are economical substitutes for engineers. Hence, these programs

slmulate human processes only to the extent that such processes
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are belleved to enhance the problem-solving capabilities and

efflciency of the programs.

6. Visual Pattern Recognition. A program has been

written that attempts to learn a two-dimensional pattern — like
an "A" — from examples. The program was developed by Selfridge
and Dineen (2, 15). Although only partly successful, 1t was

a pioneering attempt to use computer simulation as a technique
for investigating an area of human mental functioning.

Is the Loglc Theorist Creative?

The activities carried on by these problem-solving
computer programs lie in areas not far from what is usually
regarded as "creative." Discovering proofs for mathematical
theorems, eompesing music, designing engineering structures,
and playing chess would ordinarily be thought creative if the
product were of high quality and original. Hence, the
relevance of these programs to the theory of creativity is
clear — even if the present programs fall short of exact
simulation of human processes and produce a fairly mundane -
product.

Let us consider more specifiecally whether we should
regard the Loglc Theorist as creative. When the Logic Theorist
1s presented with a purported theorem in elementary symbolic
logic,'it attempts to find a proof. In the problems we have
actually posed 1t, which were theorems drawn from Chapter 2

of Whitehead and Russell's Prineipla Mathematica (17), it has

found the proof about three times out of four. The Logie
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Theorist does not pose its own problems — 1t must be given
these — although in the course of seeking a proof for a
theorem it will derive the theorem from other expressions and
then attempt to prove the latter. Hence, in proving one
theorem, the Theorist is capable of conjecturing other theorems
and then trying to prove these.

Now no one would deny that Whitehead and Russell were

creative when they wrote Principia Mathematica (17). Their

book 18 one of the most significant intellectual products of
the twentieth century. If 1t was creative for Whitehead and
Russell to write these volumes, 1t 1s possibly creative for
the Loglc Theorist to reinvent large portions of Chapter 2 -
rediscovering in many cases the very same proofs that Whitehead
and Russell discovered originally. Of course the Loglc
Theorist will not receive much acélaim for 1ts discoveries,
since these have been anticipated, but, subjectively although
not culturally, its product is novel and original., In at
least one case, moreover, the Loglc Theorist has discovered a
proof for a theorem in Chapter 2 that is far shorter and more

elegant than the one published by Whlitehead and Russell.gf’

;/’Perhaps even this 1s not creative. The Journal of Symbolic
Logic has thus far declined to publish an article, co-
au%ﬁored by the Loglc Theorist, describing this proof. The
principal objection offered by the editor is that the same
theorem could today be proved (using certain meta-theorems
that were available neither to Whitehead and Russell nor the
Logic Theorist) in a much simpler way.
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If we wish to object seriously to calling the Logic
Theorist creative, we must rest our case on the way 1t gets
the problems it tackles, and not on 1ts activity in tackling
them. Perhaps the program is a mathematical hack, since it
relies on Whitehead and Russell to provide it with significant
problems, and then merely finds the answers to these; perhaps
the real creativity lies in the problem selection. This
certainly 1s the point of the fourth characteristic we listed
for creativity. But we have already indicated that the
Theorist has some powerstof problem selection. In working
backwards from the goal of proving one theorem, it can con-
Jecture new theorems - or supposed theorems — and set up the
subgoal of proving these. Historically, albeit on a much
broader scale, this 13 exactly the process whereby Whitehead
and Russell generated the theoremé that they then undertook
to prove. For the task they originally set themselves was to
take the basic postulates of arithmetic (as set forth by Peano
and his students), aﬁd to derive these as theorems from the
axioms of logic. The theorems of Chapter 2 of Principia were
generated, as nearly as we can determine the history of the
'matter, in the same way that subproblems are génerated by the
Logic Theobist — as subproblems whose solution would lead to
the solution of the problem originally posed.

We do not wish to exaggerate the extent to which the
Logic Theofist is capable of matching the higher flights of
the human mind. We wish only to indicate that the boundary
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between 1its problem-solving activities and activlities that are

important examples of human creativity is not simple or obvious.

An Abstract Model of Problem—Solving Behavlor

We turn next to the general theory of problem solving,
only returning later to issues that are specific to the "crea-

tive" end of the problem—solving spectrum.

Definition of "problem"

The maze provides a suitable abstract model for most kinds
of problem-solving activity. A maze is a set of paths (possibly
partly overlapping) some subset of which are distinguished from
the others by having rewards at their terminl (see Fig. 1).

These latter are the "correct" paths; to discover one of them
is to solve the problem of running the maze.

We can abstract one stage further, and characterize problem—
solving by the followlng rubric: Given a set, P, of elements,
to find a member of a subset, S, of P having specifled properties.
Here are some examples:

a. Solving a crossword puzzle. Take as P all possible
combinations of letters of the English alphabet that will fill
the white squares of the puzzle. The subset S comprises those
combinations in which all consecutive linear horizontal and
vertical sequences are words that satisfy specified definitions.

b. Finding the combination of a safe. Take as P all

possible settings of the dials of the safe; and as S those.
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Fig. |— A problem maze, alternatives at choice points,

m=2; minimum length of path to solution, k=3,
The shortest path to a solution is given
by the choices 2—I1—2; it runs from
choice point a,, through b, and
cz to dg, the solution.
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particular settings that open the safe. As safes are usually
constructed, S consists of a single element.

¢c. Making a move in chess. Take as P the set of all
possible (legal) moves; as S, the set of "good" moves, where
the term "good" reflects some set of criteria. |

d. Proving a theorem in lpgic or geometry. Take as P
the set of all possible sequences of expressidns in a formal
language for logic (or geometry, respectively); and as S the
subset of sequences that: (a) are valid proofs, and (b) terminate
in the specified theorem. ’

e. Programming a computer to invert a matrix. Take as P
the set of all possible sequences of computef instructions;
and as S a particular sequence that will perform the specified
matrix inversion.

f. Translating a German article into English. Take as P
the set of all possible sequences of English words (of length,
Say, less than g); take as S the subset of sequences that: (a)
satlisfy certain criteria of English syntax and style, and (b)
have the same meaning as the German original.

g. Deslgning a machine.  Take as P the set of all possible
parameter values for a machine design; take as S the subset of
parameters values that: (a) satisfy the design specifications,
(b) meet certain criteria of cost minimization.

In examples (d), (e), (f) the interpretation in terms of
the maze model can be carrled a step further by identifying the
elements of the sequences mentioned there with the successive

segments of the maze that constitute a path.
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A Preliminary View of Problem-Solving Processes

There are any,number of ways of classifying the processes
that are used by humans to solve problems. One useful distinc-—
tion differéntiates processes for finding possible solutions
(generating members of P that may belong to S), from processes
for determining whether a solution proposal 1s in fact a solution
(verifying that an element of P that hés been generated does
belong to S). This is a distinction that is often made in
the literature,’in one set of terms or another. Johnson (4),
for example, distinguishes "production" processes from " judgment"
processes 1n a way that corresponds closely to the distinction
we have Just made (4, pp. 50-52). We prefer to call the first

class of processes solution-generating processes, and the second

class verifying processes.

Solutlon generators range all the way from excéedingly
"primitive" trial-and-error searches that take up the elements
of P in a fairly arbitrary order to extensive calculations that
select an appropriate solution at the first try or to elaborate
analytic processes that construct a solution by some kind of
"working backwards" from the known properties of solutions.

In spite of the primitive character of trial-and-error processes,
they bulk very large in highly creative problem solving; in

fact, at the upper end of the range of problem difficu@ty there
i1s likely to be a positive correlation between creativity and

the use of trial-and—error generators.



P-1320
§-16-58
15—

PO USSR A A

In a sufficlently small maze where a member of S, once
discovered, can be ildentified easily as a solutlion, the task of
discovering solutions 1s trivial (e.g., a T-maze for a rat
with food in one branch). The difficulties in complex problem
solving arise from some combination of two factors: the silze
of the set of possible solutions that must be searched, and
the task of identifying whether a prdposed solutlon actually
satisfies the conditlons of the problem. In any particular
case, elther or both of these may be the sources of problem
difficulty. By using our formal model of problem solving we
can often obtain meaningful measures of the size and difficulty
of particular problems, and measures of the effectiveness of
particular problem-solving processes and devices. Let us
congsider some examples.

The Logic Theorist. We have made some estimates of the

size of the space of possible solutions (proofs) for the

problems handled by the Loglc Theorlist. By a possible proof—
which we shall take as the element of the set P in this case—

we mean a sequence of symbollec logic expressions. If we impose

no limits on the length or other characteristics of such sequences,
thelr number, obviously, 1s Infinite. Hence, we must suppose

at the outset that we are not concerned with the whole éet of
possible proofs, but with some subset comprising, say, the
"simpler" elements of that set. We might restrict P, for

example, to proofs consisting of sequences of not more than

twenty logic expressions, with each expression not more than 23
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symbols in length and involving only the variables p, q, r, 8,
and t, and the connectives "or" and "implies." The number of
posslble proofs meeting these restrictions 1is about 10235.~
one followed by 235 zeros! :

The task 1s also not trivial of verifylng that a particular
element of the set P, as we have Just defined it, is a proof of
a partlcular problem in logiec; for it 18 necessary to determine
whether each expression 1in the sequence 1s an axlom or follows
from some of the expressions preceding 1t by the rules of
deductive inference. 1In addition, of course, the expression
to be proved has to be contained in the sequence.

Clearly, selecting possible proofs by sheer trial and
error and testing whether each element selected 1s actually the
deslred proof 1s not a feaslible method for proving logic theorems-—
for elther humans or machines. The set to be searched is too
large and the testing of the elements selected 1s too difficult.
How can we bring this task down to manageable proportions?

First of all, the number we have Jjust computed——10235-—
is not only exceedlngly large but also arbitrary, for it depends
entlrely on the restrictions of simplicity we impose on P. By
strengthening these conditlons, we reduce the size of P, by
weakening them we increase its slze. We must look for a more
meaningful way to describe the size of the set P. This we do
by consldering a simple solution generator that produces members
of the set in a certain order, and asking how many members the

generator would have to produce, on the average, to obtain



solutions to problems of a specified class. Let us generate
elements of P according to the following simple scheme (which
we call the British Museum Algorithm in honor of the primates
who are credited with employing 1it) (7):

(1) We consider only sequences of loglc expressions that
are valid proofs — that is, whose initial expressions are axioms,
and each of whose expressions is derived from prior ones by
valid rules of inference. By generating only sequences that
are proofs (of something), we elimlnate the major part of the
task of verification. |

(2) We generate first those proofs that consist of a
single expression (the axioms themselves), then proofs two
expressions long, and so on, limiting the alphabet of symbols
as before. Given all the proofs of length k, we generate those
of length (k+l) by applying the rules of inference in all per-
missible ways to the former to generate new derlived expressions
that can be added to the sequences. That is, we generate a
maze (see again, Fig. 1) each choice point (al, by, by, etec.)
representing a proof, and the alleys leading from the choilce |
point representing the legltimate ways of deriving new expres-
sions as immedlate consequences of the expressions contained in
the proof.v Thus, in the figure, d4 is a proof that can be
derived as an immedlate consequence of Cos using path 2.

We estimate that of the sixty-odd theorems that appear in
Chapter 2 of Principia Mathematica (17) about six (all of which

are among the first ten in the chapter) would be included in
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the first 1,000 proofs generated by the algorithm, but that
about a hundred million more proofs would have to be generated
to obtain all the theorems in the chapter. (The actual number
may be much greater; it is difficﬁlt to estimate with any
accuracy.) That 1s to say, if we used this scheme to fiﬁd the
proof of a theorem selected at random from the theorems of
Chapter 2, we would, on the average, have to generate some
fifty million possible solutions before finding the one we
wanted; and the chances of finding the proof among the first
thousand generated would be only one in ten. One hundred
mlllion (108) is a large number, but a very small number
compared with 10235. Thus a proof has a very much higher
probability of turning up 1n Chapter 2 of Principia if it is
relatively simple than if it 1s complicated. On the other
hand, something more effective 1s needed than the British
Museum Algorithm in order for a man or a machine to solve
problems in symbolic logic in a reasonable time.

Before leaving the Logic Theorist, we wish to mention a
variant of the Whitehead and Russell (17) problems which we
have also studled, and which will be the subject of some
analysis later. At Yale, O. K. Moore and Scarvia Anderson (5)
have studied the problem-solving behavior of subjects who were
given a small set (from one to four) of loglc expressions as
premises and asked to derive another expression from these,

using twelve specified rules of transformation. (For details

see the discussion in the next section and the Appendix.) If



pP-1320
9-16-58
-19-
we again suppose derivations to be generated by working forward
from the premises, we can, in the case where there is a single
premise, make simple estimates of the number of possible
derivations of gilven 1ength~—and.hence characterize thig
particular problem maze.
Assuming (which are oversimplifications) that each rule
of transformation operates on one premise, and that each such
rule is applicable to any premise, this particular maze branches
in twelve directions (one for each rule of transformation) at
each choice point. That is, we start out with a single premise;
depending on which rule of transformation we apply, we obtain
one of twelve possible new expressions from each of these, and
so on. Thus, the number of possible sequences of length k 1is 12k.
If the problem expression can be derived from the premise in a
minimum of seven steps, then a trial-and-error search for the
derivation would require, on the average, the construetion of
1/2x127=1.8x10"=18,000,000 sequences.
If only four rules of transformation were actually appli-
cable, on the average, at each stage (a more realistic assumption,
since expressions must be of particular forms for pafticular

rules to be applicable to them), the number of sequences of

length 7 would still be 4'=16,384.

Chess Playing. Let us turn now to a second example—

choosing a move in chess. On the average, a chessplayer whose
turn it 1s to move has his cholice among twenty to thirty alter-—

natives. There is no difficulty, therefore, in "finding"
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possible moves, but great difficulty in determining whether a
particular legal move 1s a good move. The problem lies in the
verifier and not In the generator. However, a principal tech-—
nique for evaluating a move is td conslider some of the opponent's
possible replles to it, one's own replies to his, and sé on,
only attempting to evaluate the resulting positions after this
maze of poésible meve sequences has been explored to some.depth.
The maze of move sequences 1is tremendously large. If we consider
the number of continuations five moves deep for each player,
assuming an average of 25 legal continuatlions at each stage,
n

we find that P, the set of such move sequences has about 101

(one hundred million million) members.

Opening a Safe. We can make similar estimates of the sizes

of the set P for the other examples of problem—solving tasks we
have listed. 1In all cases the set 1s so large as to foreclose
a solution-generating process that makes a completéiy'random
search through the set for possible solutions.

Before we leave our estimates, it will be useful to consider
one additional "synthetlc" example that has a simpler structure
than any we have discussed so far, and that will be helpful later
in understanding how various heuristic devices cut down the
amount of search required to find problem solutions. Consider
a safe whose lock has ten independent dials, each with numbers
running from 00 to 99 on its face. The safe will have 10010==

20

107", or one hundred billion billion possible settings, oniy

one of which will unlock 1t. A would-be safe—cracker, twirling
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the dials at random, would take on the average 50 billion billion
trials to open it.

However, 1f the safe were defective, 80 that there was a
faint click each time any dial was turned to 1ts correct setting,
it would take an average of only 50 trials to find the correct
setting of any one dial, or 500 trials to open the safe. The
ten successive clicks that told him when he was getting “"warmer"
would make all the difference to the person opening the safe
between an impossible task and a trivial one.

Thus, 1f we can obtain information that tells us which
solutions to try, and in particular, if we can obtain information
that allows us to factor one large problem into several small

ones—and to know when we have successfully solved each of the

small ones—the search task can be tremendously reduced. This

guldance of the solution generator by information about the
problem and its solutlion, and this factorization of problems
into more or less independent subproblems lie at the heart of

effective problem—-solving processes.

Heurlistlcs for Problem Solving

We have seen that we can describe most problems abstractly
in terms of a maze whose paths are possible solutlons, and some
small fraction of which are actual solutions. Then we can
analyse the problem-solving processes into those that determine
the order in which the paths shall be explored (solution gener-—
ators) and those that determine whether a proposed solution is in

fact a solution (solution verifiers).
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Our examples show that solution generation and verification
need not operate in an inflexible sequence. In the Logic
Theorist, as we saw, certain of the verifying conditions are
built into the generator, so that only valid proofs are generated
and other sequences of logic expreééions are never considered.,

On the other hand, in chess playing, to verify‘that a proposed
move is satisfactory, it is necessary to consider a large maze
of possible continuatiohs, and to search some part of this maze.

In the present section we shall examine some actual examples
of successful problem—soiving programs to see Jjust what 1is
Involved 1n solution generation and verification, and how the
programs reduce the problems to manageable size. We use the
term heuristic to denote any principle or device that contributes
to the reduction in the average search to solution. Although
no general theory of heuristics exists yet l/, we can say a
good deal about some of the heuristics employed in human complex
problem solving. Our data derive largely from symbolic logic
and chess, problems that are formal and symbolic. This char-
acteristic of the tasks undoubtedly limits the range of
heuristics that we have observed. However, the kinds of
heuristics we have found and can describe (e.g., planning and

functional analysis) seem to have rather general applicability.

Efficient Generators

Even when the set P 1s large, as it usually is in complex

1/ See, however, the work of G. Polya (13,14) who has analysed
the use of heuristics in mathematics.
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problem solving, it 1s possible for the solution generator to
consider at an early stage those parts of P that are likely to
contain a solution, and to avoidvthe parts that are most likely
to be barren., For example, many problems have the following
form: S, the set of solutions, conslsts of all elements of P
with property A, and property B, and property C. No generator
is available that will generate elements having all three
properties. However, generators may exlst that generate elements
having any two of the properties. Thus there are three possible
schemes: (1) to generate'elements wlth properties A and B untill
one 18 found that also has C; (2) to generate elements with A
and C until one is found with property B; (3) to generate
elements with B and C until one 1s found with property A.
Which generator should be chosen depends on whilch constraints
are the more difficult to satisfy, and on the relative costs of
generation. If there are lots of elements satisfying A, then
generating elements vith B and C is reasonable, since an "A"
can be expected to show up soon. If "A's" are rare, it is
better to generate elements that already have property A.
The Loglc Theorist provides a clear example of thils type
of heuristic. Recall that the problem of the Logic Theorist
1s to find proofs. A proof 1s a list of logic expressions
satisfying the followlng properties:
| A, kThe beginning of the list consists of known theorems
(any number of them);

B. All other expresslions on the 1list are direct and valid
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consequences of prior expressions on the 1list;

C.‘ The last expression on the 1list i1s the expression to
be proved.

Now, although there 18 no generator that will turn out
sequences satisfying all three of these conditions, there are
generators that satisfy any two of them. It is easy to write
down lists that start with theorems and end with the known
expresslion. The difficult cenditien, however,}is B: that
the 1list must consist of valid inference steps. Hence, 1t
would be obviously foolish te choose a generator that auto—
matically satisfled A and C, and simply wait until it generated
a list that also satisfied B.

It 1s also posslble to construct a generator satisfying
A and B—one that produces lists that are proofs of something.
Thls generator could find a proof by producing such lists
untll one appeared containing the desired expression—condition
C. The British Museum Algorithm discussed earlier is a generator
of this kind. Finally, one can build a generator that satiafies
conditions B and C. Fixing the last expression to be the desired
one, lists are produced that consist only of valid inference
steps leading to the last expression. Then the problem is
solved when a 1ist 1s generated that satisfies condition A, 8o
that the expressions on the front of the 1list are all theorems.
With this kind of generator, the list is constructed "backwards"
from the desired result toward the given theorems. This is the

way the Logle Theorist actually goes about discoevering proofs.
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How do we choose between these two generators — the one
that requires a search to satisfy C, or the one that requires a
search to satisfy A? In the case of loglc the answer 1s reason-
ably clear. There 1s only one terminal expression (the theorem
to be proved), but there are usually many known theorems. The
difference is roughly comparable to the problem of our finding
a needle in a haystack versus the problem of the needle finding
its way out of the haystack. Working backwards 1s by far the
more effilcient.

It should be clear that there is nothing inherently superior
in working backwards as opposed to working forwards. The cholce
between them resolves itself into a question of which constraints
are the most binding. It may well be, of course, that the
particular situation found here (many possible starting points
versus a single end) which predisposes towards working backwards,

i1s relatively common.l/

Simple Selection Heuristics

When a problem solver faces a set of alternatives, such as
the branches from a choice point in the maze in Figure 1, a
common heuristic procedure is to screen out possible paths
initially, using a relatively inexpensive test. To see the

worth of this procedure, consider a maze having m alternatives

L1/ Duncker (3) calls working backwards an "organic" procedure,
and distinguishes it from the "mechanical" procedures of
working forwards. Our analysis shows both why the former
might be generally more efficient than the latter, and why
there is nothing qualitatively different between them.



P-1320
9-16-58

26~
at each branch point and length k. If there were a single
correct path to the goal, finding that path by random search
would require, on the average, i/é-mk trials. If a heuristic
test were avallable that could immediately weed out half of the
alternatives at each branch point as unprofitable, then a random
‘search with this heuristic would require only 1/2(1/2m)k trials
on the average. This 1is a reduction'in search by a ratio of Qk,
which, if the maze were only seven steps in length would amount
to a factor of 128, and if the maze were ten steps in length,
a factor of just over a thousand.

The Logic Theorist uses a number of such selection heuristics.
For example, in working backwards asvdescribed‘above, it can
| proceed in several directions from the list of loglc expressions
1t has already obtained. Different theorems can be used with
the various expressions already generated to make new valid
inferences. Thus, the Logic Theorlst generates a maze of sub-
problems, which corresponds exactly to the abstract pilctures
we have been giving (7).

In Figure 2, two mazes are shown, derived from two attempts,
under slightly different conditions, to prove a particular theorem
from the same set of knownktheorems. In each maze, the desired
theorem (*2.45) is représented_ﬁy the top node; and each node
below corresponds to a new expression generated'(as‘a subproblem)
from the node immediately above it. In both cases the Logic
Theorlst found the same proof, which is designated in each maze

by the heavy line. When it was generating the lower maze, the

Logic Theorlst had available two selective heuristics it
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did not have during the run that generated the upper maze.
One of these heuristics weeded out new expressions that appeared
"unprovable" on the basis of certain plausible criteria; the
other heuristic weeded out expreésions that seemed too compll-—
cated, In the sense of having too many negation signs. These
two heuristics reduced the amount of search required to find
the solution by a factor of 24/2 or 2.7. When the cost of
the additlional testing 1s taken into account, the net saving
in total problem—solving effort after allowing for this testing
was 2.3. On the other hand we have experimented with heuristics
that were excellent in their performance characteristics (reduc-—
ing search by factors of 10) but that required so much effort
to carry out as to cancel out the gain.
A heuristlc need not be foolproof — indeed most are notr
Both heurlstics mentioned above eliminate paths that lead to
solutions. In rare cases they can even eliminate all paths to
solutions. To take another example, a chess heuristic that would
instantly remove from consideration any move that left the queen
under attack would be an excellent rule. of thumb for a novice
player, but would occasionally lead him to miss a winning queen
sacrifice. Occasionally, heuristics are found that are fool—
proof. These are usually called algorithms. The British Museum
Algorithm is an example, for 1t will always generate a proof,
given enough time. ("Enough time" may, as we have seen, some—

times be centuries or millenia.)
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Fig. 2 — Mazes of two proofs of Theorem 2.45 from same initial
theorems. Identical

programs generated the two mazes, except
that the program of maze b had two additional selective
heuristics.

The heavy line is the proof. Dotted lines
show additional branches eliminated by selective

heuristics already in the first program.
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Strategies In Solution Generation

Usually the information needed to select promising paths
becomes available only as the seérch proceeds. Examination of
paths produces clues of the "warmer—cooler" varlety that gulde
the further conduct of the search. We have already glven a
simple, but striking, example of this in the clicking safe.

As any particular dial 1s turned to the correct setting, the
person opening the safe is informed by the cllick that he should
stop manipulating that dial and go to the next. As a result he
need attempt, on the average, only 500 of the enormous total
number of possible settings of the dials.

The sequentlal avallablility of cues derives from a deep
property of problem—solving tasks that we must examine closely.
There are, in general, two dlstinct ways to describe any partic-—
ular choice point in a problem-solving maze. In chess, for
example, a partlcular position can be specified by stating
(verbally or with a diagram) what piece occuples each square
on the board. Alternatlively, the position can be specified by
giving a sequence of moves that leads to 1t from the openilng
position.

Similarly, in loglc an expression can be specified by
writing it out explicitly in the usual way, or edually well by
giving a sequence of operations on the axioms (a proof) that
will produce it. (In Filgure 1, the solution may be described
as dg or as 2-1-2.) Or, in arithmetic, if we use the symbol

X' to mean the integer that follows x, we can write the
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number five as 5 or as O*'*'*!', Qr, as a more familiar example,
we can designate a house by an address—5936 Phlllips Avenue—
or by the sequence of turns (go two blocks, turn right, go nine
blocks, turn right, go one block) necessary to get there from
a given starting point.

In all these cases, we wlll call thé first method of
specifying an element of P specification by state description;

the second method, specification by process description. Often

problems are set by providing the problem solver with a partial
or complete state‘aescriﬁtioﬁ of the solution, the state descrip-
tions of one or more starting points, and a 1list of allowable
processes. The task, in these terms, 1s to find a sequence of
processes that, operating on the initial state, will produce
the final state. |

We can now see how cues‘pecome,available sequentially, and
why, consequently, strategles of search that use the cues are
possible. Each time a process is applied to an initial state,
a new state with a new description 1s produced. If there are
relations (known to or learnable by the problem solver) between
characteristics of the state description and distance from the
goal—from the final description that represents the solution,
these relations can be used to tell when the problem solver
is getting "warmer" or "colder," hence, whether or not he should
continue along a path defined by some sequence of processes.
If, for example, in Figure 1, the state {Jescription corresponding

to b2 indicates that 1t 1s closer to the solution than the
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description corresponding to bl’ then the problem solver at al
will take path 2 instead of path 1, and will be relieved of the
necessity of exploring the entire upper half of the maze.

Let us examine a concrete example, for whieh we haye data.
Consider the following sequence of loglic expressions that was
written down by a subject solving one of 0. K. Moore's problems
in our laboratory. (The reader ﬂoes not need to know what the

symbols mean to understand the example. The task lnvolved in

these problems 1s described briefly in the Appendix.)

Step Expression | Justification for Step
1l R (—P>Q Given
2 Re( PvQ Rule 6
3 R-( QvP Rule 1 (inside parenthesis)
4 (QvP)-R Rule 1 (outside parenthesis)

The first line 1s the expression given to the subJect as the
starting point of the*"maze.“i The last line is the expression
he was instructed to produce by applying the allowable operations.
The number at the right of each line is the number of the rule
he applied to obtain that line from the previous one. In this
example, the state description of the solution is the expression:
"(QvP)-R." The process description is: "The expression obtained
by applying rules 6, 1, 1 to expression 'R*(-P-Q)'." It is, ‘
of course, not at all obvious, except by hindsight, that these
two descriptions refer to the same loglc expression—Iif it
were obvious, the problem would be no problem.

How can the problem solver in this instance obtaln new

Information as he proceeds each step down the maze? If we compare
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the final expression with the intermediate ones, we note that
at each stage the:newly‘derived expression resembles the final
expression more closely than did the previous ones. For
example, expression (1) contains two symbols that do not appear
in the filnal expression; these have disappeared from expression
(2). The next step rectifies the order of the symbols within
parentheses, while the final step rectifies the order of the
symbols 1in the expression as a whole.

A simple heurilstic to follow in such cases 1s to apply an
operator if the result of its application is to produce a new
expression that resembles the final expression more nearly
than did the previous one. To apply the heuristic, the problem
-solver needs some criterla of similarity, but it is easy to see
what they might be in the present case. These criteria provide
the "clicks" that reduce the amount of search required.

We can test thls explanation further by comparing it with
the thinking-aloud protocol that the subject produced as he
performed the task. We produce here an excerpt from his protocol,
slightly edited to make it more comprehensible to the reader:

E. What are you looking at? -

S. I'm looking at the idea of reversing the R's.

Then I'd have a similar group at the beginning.

But I can easlily leave something like that until
the end . . . .

Now I'm trying to see what operation I might apply
to expression (1) . . . . [He goes down the list of
operations.] Rule 4 looks interesting . . . . but
there's no switching of order. I need that P and Q
changed . . . That doesn't seem practical with any

of these rules . . . I'm looking for a way, now, to
get rid of that horseshoe [D]. A . . . here 1t is,
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Rule 6. So I1'd apply Rule 6 to the second part of
what we have up there.
E. That gives you [writing] (2) R-(PvQ).

S. Okay. And now I'd use Rule 1 on P and Q, and then
with the entire expression.

E. We'll do them one at a time [writing] (3) R.(QVvP).
Now the total expression?

.S. Yeah.

E. You get [writing] (4) (QvP)-R, and .... that's 1t.

S. That's it all right. Okay . . . that wasn't too hard.

It will be observed that the subjJect thought through the
successive changes (bringing the R to the left side, inter—
changing P and Q, eliminating the horéeshoe) in the order
opposite to that in which he actually carried them out, bﬁt
that his process—that of making the expression at hand more
and more like the final expression—I1s precisely the one we
have described.

To glve a picture of the selectivity involved in this
particular plece of problem solving, we show in Figure 3 a
somewhat slmplified picture of a portion of the problem maze,
including only those branches that would actually be explored
if the problem were solved by a systematic search without
selectivity. Note that the path to the goal (1-2-6) discovered
through systematic search is different from the one (6-1-1)
discovered by the subject's selective processes, and that the
systematic search generated many expressions that-——from the

protocol evidence—did not even enter the subject's awareness.
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The same kind of alternation between state description
and process description is involved in choosing a move 1n
chess. Because of the tremendous size of the maze of contin-
uations, only a few of all the possible lines of play can be
examined. When the player conslders a particular move, he can
construct in his imagination a plcture of the board after the
move has been made. He can then examine thls new state descrip-
tion to see what features of it are favorable, what features
unfavorable, and what likely continuations 1t suggests. 1In
this way he 1s guided to examine a few paths through the maze
(1f he is a good player, his heuristic will usually lead him
to examine the lmportant ones), and he can éxplore these to
some depth—sufficiently deeply to be able to evaluate directly
the final positions he reaches. The best evidence we possess
indicates that the strongest chess players do not examine more
than (at the very most) a few dozen continuations, and these
to depths ranging from a couple of moves to ten or even more
(see Fig. 4). The ability of the chess master, so amazing to
the novice, to explore in depth derives from hils ability to
explore very selectively without missing Important alternatives.
The "clicks" he notices, inaudible to the novice, are loud and

obvious to him.

Functional Analysis

Underlying the heuristic of "reducing differences" 1s the

general concept of functional analysis. Functional or means—end
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Fig. 4 —Portion of maze of continuations examined
by chessmaster in middle game position.
(from de Groot [1], p. 207). The
subject was a master.
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analysls provides a generalized heuristic that can be applied
to a wide range of problems. We will describe a program for
functional analysis that we have lncorporated in a revised
version of the Logic Theorist, and which, while not completely
general, can almost certainly transfer without modification to
problem solving in trigonbmetry, algebra, and probably other
subjects like geometry and chess.

The entlitlies that the program recognizes are expressions,

differences between expresslions, operators, goals and subgoals,

and methods. The prograﬁ can be used as a problem—solving
heuristic for problems of the form: "given expression a and a
set of admissible operators, to derive expression B." We have
already observed that logic problems can be put in this form—
and so can most other problems formulated 1n terms of the maze
model.

Assoclated with each goal in the heuristlc i1s a set of
methods—procedures that may help attain the goal in question.
A method may, in turn, involve establishing subgoals and apply—
ing the methods associated with these. At some point, if the
heuristic is successful, a subgoal 1s attained by one of 1its
methods; this success reactivates the goal at the next higher
level 1in the hilerarchy, and so on.

Let us be more concrete. These are three types of goals
in the functioﬁal problem solver:

Type O Goal: Find a way to transform expression a into
expression b. -

Type 1 Goal: Reduce the difference d between expressions
a and b. -
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Type 2 Goal: Apply operator g to expression a.

For functional analysis, one method 1s assoclated with
each of these goals. Briefly,;the method assoclated with the
type 0 goal consists in (Fig. 5A): (a) matching the two expres—
sions to find a difference, d, between them; (b) setting up the
type 1 subgoal of reducing d—1if successful, a new transformed
expression, ¢ , is obtained; (c) setting up the type O subgoal
of transforming ¢ 1into b. If the last step 1s successfully
carried out, the original problem has been solved.

The method assoclated with the type 1 goal conslsts in
(Fig. 5B): (a) searching for an operator that is relevant to

the reduction of the difference,}g; and (b) setting up the
type 2 goal of applylng the operator.

The method assoclated with the type 2 goal consists in
(Fig. 5C): (a) determining if the conditions are met for apply-—
ing q to a; (b) if so, applying the operator, if not, setting
up the type 1 subgoal of reducing the differenee between a and
the conditions for applying q.

Let us see how this functional problem solver would approach
the particular logic problem we examined in the last section.
The problem solver is given type 0 goal of transforming expres—
sion (1) into expression (4). 1In trying to reach this goal
(Fig. 5A), 1t first matches (1) with (4) to see what differences
there are, and notes that the symbols P and Q oceur in reverse

order in (1) from the order in (4). This generates the type 1
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subgoal (Fig. 5B) of eliminating this difference. The problem
solver remembers (from instruction or previous description)
that operator 1 i1s relevant to reducing differences of this
kind, and sets up the type 2 subgoal (Fig. 5C) of applying
rule 1 to (1). The conditions for applicability are not met,
for operator 1l requires a v between P and Q, while actually
there 1s a » . Hence a new type 1 goal 1s created to change
the @ into a v. Operator 6, which has this function is found,
and the type 2 goal of applying 1t 1s set up and achieved. The
transformed expression (é), now satisfies the conditions for
applying operator 1. This 1é'now applied, achieving the type
2 subgoal, and ylelding expression (3). A similar, but simpler
sequence of events leads to expression (4) — at which time the
problem solver notes that it has eliminated all differences
between the 1lnitial and terminal expressions, and hence has
solved the original problem. Reference back to the protocol
will show how closely thilis program models the behavior of the

subjects.l/

1/ Our alm here is To illustrate, and not to deal with the
sclentific problems of how well these programs explain the
protocols. In the sketch of the program given in the text,
we generate the expressions 1in the order in which the sub-
Ject wrote them down. The protocol indicates clearly that
he proceeded initially in the opposite order. To simplify
the exposition, we have not tried to describe the program
that would simulate the subject!s behavior most closely,
and we have taken the liberty of editing the protocols. At
another time we will undertake a more systematic analysis of
the protocols as evidence.
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It will be observed that nelther the goals nor the methods
of the functional problem-solving program make reference to
logic or any other subject matter. Simply by acqulring new
definitions of the terms "expreésions," "differences," and
"operators," the problem solver can use the functional heuristic
to solve problems relating to quite different subject matter.

We hope, in the near future, to test whether this heuristic

will, for example, solve trigonometric identitles.

The Heuristics of Planning

Another class of heuristics of great generality that
increase the selectivity of solution generafors are those that
come under the rubric of "planning." Consider again a maze k
steps in length with m branches at each cholce point. Suppose
that, lnstead of cues at each choice point, there were a cue at
every second step to mark the correct path (see Fig. 6). Then
the task of traversing the maze successfully could be divided
into a number of subtasks: specifically, the tasks of reaching
successively each of the choice polnts that were marked by the
cues.

Such a set of subtasks would constitute a plan. In place
of the origilnal task of traversing a maze k steps in length,
the problem solver would now have the task of traversing (k/2)
mazes each 2 steps in length. The expected number of paths that
would have to be searched to solve the first problem is, as

before, l/é-mk. The expected number of trials to solve the
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second problem is 1/?-k/?-m2.

If, as in the flgure, the original maze were 6 steps 1n
length with two alternatives at each cholce point, the average
amount of search required would be reduced from 32 trials to
6—to which would have to be added the effort required to find
the plan.

We use such a planning technique whenever we take a cross—
country trip. Flrst we sketch a general route from maJjor city
to major clty; then, taking these clties as subgoals, we solve
the subproblem of recaching each from the previous one.

We have devised a program of this kind to describe the
way some of our subjects handle 0. K. Moore's logic problems,
and perhaps the easlest way to show what is involved in planning
1s to describe that program. On a purely pragmatic basis, the
twelve operators that are admitted in this system of logic can
be put in two classes, which we shall call "essential" and
"inessential" operators, respectively. (See, the Appendix.)
Essentlal operators are those which, when applied to an expres—
slon, make "large" changes in its appearance—change "PvP" to
"P", for example. Inessentlal operators are those which make
"small" changes—e.g., change "PvQ" to "QvP" As we have said,
the distinction is purely pragmatic. Of the twelve operators
in this calculus, we have classified eight as essential and
four as inessential. Roughly speaklng, the inessential operators
are those that change the order of the symbols in expressions,
or change the connectives ("v" to ".", for example) but make

no other changes.
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Fig. 6 —Problem space (above), and planning space (below)
for a simple task. The plan is used to find the cues
in the larger maze; then only the darkened
paths in the maze need be explored. The
steps marked E are essential, those
marked [, inessential—see text.
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Next, we can take an expresslon and abstract from 1t
those features that relate only to essential changes. For
example, we can abstract from "PvQ" the expression (Pq), where
the order of the symbols in the latter expression 1s regarded
as irrelevant (i.e., (PQ) is treated as 1dentical with (QP)).
Clearly, 1if inessential operations aré applied to the abstracted
expresslons, the expressions will remain unchanged, while
essential operations can be expected to change them (e.g., the
operator that will changei"PvP" to "P" will change (PP) to (P)).
We can now set up a correspondence between our original
expressions and operators, on the one hand, and the abstracted
-expressions and essentlal operators, on the other. Corresponding
to the original problem of transforming a into b, we can con-—
struct a new problem of transformlng a' into b', where a' and
b' are the expressions obtained by abstractling a and b respec-—
tively. Suppose that we solve the new problem, obtaining a

sequence of expressions, a!

'd' ...b'. We can now transform
back to the original problem space and set up the new problems
of transforming a 1into ¢, ¢ into d, and so on. Thus, the
solution of the problem in the planning space provides a plan
for the solution of the original problem.

Let us examine (Fig. 7) an actual example of the applica-—
tlon of the planning heuristic to the 0. K. Moore problems.
Thls example follows the protocol of one of our subjects and

shows quilte clearly that he used the planning heuristic in
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precisely this way to solve the problem 1n question. The left-—
hand side of Figure 7 shows the sequence of expressions the
subjJect wrote down in solving Moore's problem A4. The subject
was glven the expressions in lines (1) through (4) and told
to derive the expression in line (11). He carriled through the
derivation in seven steps, the prior expressions and rules used
in each step being given to the right of the derived expressilon.
The subject's protocol shows, however, that prilor to
obtaining the rigorous derivation, he had worked out a complete
plan for the proof. The plan is shown, in terms of abstracted
expressions, in the right-hand half of the figure. The planning
activity took place immedlately after the problem was presented
to the subject, and before he instructed the experimenter to
write down any transformations of the expresslons given him as
premises. Here 1s the protocol segment that dlscloses the
planning activity:
S. Well, one possibility right off the bat 1s when
you have Just a PvT like that [the problem expressiod]
the last thing you might use is that rule 9. I can
get everything down to a P and Jjust add a vT. So
that's one thing to keep in mind. . . . . I don't
know 1f that's possible; but I thlnk 1t 1s because 1
see that expressions (2) and (4) are somewhat similar.
If I can cancel out the R's, that would leave me with
Just an S and Q; and if I have Just an S and Q, I can
eventually get—expression (3)—get the S's to cancel
out and end up with just a Q. And if I end up with
Just a Q, maybe the Q's will cancel out; so you see
all the way down the line. I don't know, 1t looks too
good to be true, but I think I see 1t already.
At this point the subject has already constructed a four—

step plan, which will lead him, as he executes 1t, to two
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PROOF PLAN
Step Expression Justification Expression Justification
(1) PvQ Given PQ Given
(2) R " R :
(3) s " s "
(4) R> -8 " RS "
(5) S> -R Rule 2 on (‘4)
(6)  S>-q Rule 12 on (2), (5) sQ Rule 12 on (2), (4)
(7) -Q Rule 11 on (3), (6) @ Rule 11 on (3), (6)
(8) -P>Q Rule 6 on (1)
(9) Q> P ~ Rule 2 on (8)
(10) P Rule 11 on (7), (9) P Rule 11 on (1), (7)
(11) PVT Rule 9 on (10) PT Rule 9 on (10)
Figure 7

Solution of Problem A4 by Subject 8
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subproblems of filling in the gaps (the other two subproblems
are trivial, since they are solved simply by the translation of

the abstracted expressions back into the original space). One
of these subproblems is three steps in length, the other 1is two.
Thus, for the original seven-step maze, the subject has substi-
tuted a four-step maze, a three-step maze, and a two-step maze.
To complete our illustration, let us see how the subject
goes about solving the first subproblem—eliminating the R
between expressions (2) and (4):
S. ‘Immediately following previous excerpt) Expressions
2) and (4)—we'll have to do something with them.
If I invert expression (4)—apply rule 2 to it—I will
?ﬁge (§S>-R). Good. 0.K. Apply rule 2 to expression
E. That gives [writing]: (5) S>-R.

S. Now apply rule 12 to expressions (2) and (4)—(2)
and (5), I mean.

E. That gives [writing]: (6) S>-Q.

S. Right. I got rid of the R's. Now . . . . .

1t will be observed that only rules 9, 11, and 12 are
used in the derivation of the plan. All of these are essential
rules. Rules 2 and 6, both of which are inessential, are used
to solve the subproblems.

We can estimate how much reduction the planning heuristic
accomplishes in the size of the maze to be searched. The
number of alternative operations at each step is of the order
of 10 (because of the distinction between eSsential and inessen-—
tial operations, 1t mhy be smaller when the planning heuristic

is used than when the problem 1s solved without it, but we will
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lgnore this additional source of effilcilency ofkthe planning
heuristic). If m 1is 10, then the average number of paths to

be searched without planning isil/?-lO7= 5,000,000. With
planning, the number of paths is 1/2-10%+1/2-10°+1/2-10%= 5,550.
The search required in the first case 1s larger by a ratio of
000:1.

Of course, these ratlios assume that no other selective
heuristic—apart from the planning heuristic—i1s employed. If
the planning heuristic were superimposed, for example, on the
functlonal analysis heuristic, the latter would reduce m to a
much smaller number, hence there would be much less search
either with, or without planning. Suppose, for example, that
the functional analysis heuristic reduced m to 4. Then the
search without planning would involve l/?oh7= 8,192 paths; the
search with planning would require 1/2-#4+l/?o43+1/2'42= 168.
The savings ratlo is now only 49:1.

The subject, understandably, was pleased with hls heuristic.
His comment on solving the problem was "See, I'm acquiring an
insight." Since his protocol gives evidence of other bits of
heuristic in addition to the ones we have been discussing, his
value of mywas probably 2 or less, and the total number of paths
he searched was probaﬁly less than a dozen. The combination of
heuristics he used, simple though they were, secured him a
saving over blind trial and error of a factor of perhaps 500,000.
These rough statistics give us a good picture of the reason
for the "aha!" that goes with "insight" into the problem

structure (which we would translate, "acquisition of an
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additional heuristic").

Summary: The Nature of Heurlstics

In this section we have seen that the success of a problem
solver who 1s confronted with a complex task rests primarily on
his abllity to select—correctly—a very small part of the total
problem—solving maze for exploration.' The processes that carry
out thls selection we call heuristics. We have seen that most
heuristics depend on a strategy that modifies subsequent search
as a function of 1nforma€ion obtained in previous search; and
we have discussed at some length several of the most significant
and powerful classes of heurlstlcs that we have encountered 1n
our attempts to simulate human problem solving.

Among the heuristics we examined were: processes for
working backwards from the problem solution, selection heuristics,
functional or means—end analysis, and planning. We provided
operational meanings for these terms by sketching out what the
actual processes would be in the Logic Theorist and 1n a chess-—
playing machine. We referred to our evidence from protocols of
human subjects that such processes actually do oceur in human
problem—solving behavior. We also constructed quantltative
estimates of the reduction 1in search that result from the
selectivity of these heuristics, and used the estimates to
account for the ability of humans, and of machlines slimulating
them by using the same processes, to solve the particular

problems in question.
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Some  Conditions of Creativity

In the remalning pages of thls paper we shall use the
theory of problem solving develdped in preceding sections to
cast light on three topics that are often discussed in relation
to creativity: v

(1) the use of imagery in problem solving;

(2) the relation of unconventionality to creativity;

(3) the role of hindsight in the discovery of new

heurlstiecs. |

These three toplcs were chosen because we think our theory
has somethlng to say about them. We have not trled to include
- all the tradltlonal toplecs in the theory of creative activity—
we do not, for example, discuss the phenomenon of incubation—
nor will we try to treat definitively the toplics we have
included. We are still far from having all the mechanlsms
that will be required for a complete theory of créativity.
Hence, these last pages are necessarily extrapolations and

are more speculative than the earlier sections.

Planning and Imagery

Among the 1ssues that have surrounded the topic of imagery
in the literature on thinking the following have been prominent:
1. What internal "language" is used by the organism in

thinking—to what extent 1s this "language" related to the
sense modalitles, and is the thinklng represented by elements

that correspond to abstract "symbols" or to pilctures, or to
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something else?
2. To what extent do the internal representations, whatever
thelr nature, involve generalization and abstractlion from that
which they represent?

Using the example of planning we have been considering,

we believe some clarification can be achieved of both 1lssues.

Some Comments on Representation

How are the obJjects of thought represented internally?
We are asking here neither a physiological nor a "hardware"
question. We wish an answer at the level of Information
processing, rather than neurology or electronics. 1In a state
description of an information-processing system, we can talk of
patterns of elementary symbols. These symbols may be electric
charges, as in some computer memories, or they may be the cell
assemblies of Hebb's theories, or they may be something quite
different. We are not 1nterested in what they are made of.
Given that there are some such patterns—that the system is an
information processing system—our question is in what way the
pattérns within mirror, or fall to mirror the patterns without
that they represent.

Let us take a simple example from logic. We may wrlte on
a plece of paper the expression "(pvq)> p." What would 1t mean
to say that the "same" expression was held in memory by the
Logic Theorist? With the present program it would mean that

somewhere 1n memory there would be a branching pattern of
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elementary symbols (or the internal counterparts of elementary

symbols) that would look like:

VAN
p/// \\\q

Of course, there would not literally be mounds of ink like
"p", but there would be internal elementary patterns in one-one
correspondence to these. Note however, that the correspondence
between the internal and external representations as a whole
is far more compllicated than the correspondences between
elementary symbols. The external representation of the expres—
sion Ln the 1llustration 18 a linear array of symbols; the
internal representation has branches that make 1t topologically
distinct from a linear array. The external representation uses
symbols like "(" and ")"; these are absent from the internal
representatlions—the grouping relations they denote being
implicit in the branching structure itself (i.e., the cluster
pvqgq, which 1s enclosed in parentheses 1n external representation,
is a subtree of the entire expression in the internal represen—
tation).

The implicitness of certaln aspects of the internal
representation goes even deeper than we have just indicated.
For the tree structure we represented on the paper above by
connecting symbols with lines is represented within the computer
memory by the fact that there are certain information processes
available that will "find the left subtree" and "find the

right subtree" of such a tree structure. The actual physical
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locatlons of these elements in memory .can be (and usually are)
completely scattered, 8o long as these informatlion processes
have means for finding them.

Let us take another example. If we wish t» represent on
paper the concept of a palr of elements, P and Q, abstracted
from the order of the palr, we can write something like: (PQ),
and append it to the statement that (PQ) 1s equivalent for all
purposes with (QP). In an internal representation, order—inde—
pendence of the terms of the palr might be secured 1ln a quite
different way. Suppose that the symbols P and Q were stored
(in some order) on a list in memory, but that the only informa-—
tion processes available for dealing with lists were processes
that produced the same output regardless of the order of the
items on the list. Suppose, for example, that the "print list"
process always alphabetized the 1list before printing. Then
this process would always print out "(PQ)" regardless of
whether the items wer: stored on the list as PQ or QP. 1In
this case, the order—independence of the informatlon processes
applicable to the lists would be an implicit internal represen-
tation of the equilvalence of (PQ) with (QP).l/

The main lesson that we learn from these examples 1s that

the internal representation may mirror all the relevant properties

l/ A simple example of this in humans is well known t~ teachers
of matrix algebra. Since all the elementary arithmetic and
algebralc systems that students have encountered previously
contaln the commutative law, students must be taught that the
matrix product AB is not equivalent to the product BA.
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of the external representation without being a "picture" of it
in any simple or stralghtforward sense. 1t 18 not at all clear
whether a human subject would be aware that his internal repre—
sentation of a logic expression "carried" the information about
the expression in quite a different way from the string of
symbols on paper, or that, if he were aware, he could verbalize
what the differences were.

A similar point has been made in discussions of "encoding."
Our examples show, however, that encoding may involve something
far more complex than translating a string of symbols in one
alphabet into another string of symbols in another alphabet.
The encoded representation may not be a string at all, and
there may be important differences 1in what 1s explicit and

what 1mplicit in the two representations.

Representation and the Sense Modalitiles.

Since the internal representation of information need not

' or even of what is

be a simple mapping of what is "out there,'’
received by the sense organs, it i3 not easy to know what is
meant by saylng that a particular internal representation is

or 1s not "visual" or "auditory." 1Is the internal branching
structure that represents the loglic expression inside the

Logic Theorlst a visual image of the string of symbols on paper
or 1s 1t not?

There 1s an obvious fallacy in saying that it 1s not Just

because the spatial (or even the topological) relations are not
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around in our heads of even the most vlsual of plctures cannet
possibly have the same metrical relatlions within (and possibly
not even the same topologlc relations) as without.

We believe that the explanation of why some memorles are
visual, some auditory, and some verbal lies 1in a quite different
direction from a simple "mapping" theory. Since our explanation
rests on considerations that have not even been touched upon
in the present paper, we cannot discuss it at length. However,
a very brief statement of 1t may help us understand the role
of imagery in creative thought.

We will assert that an internal representation is visual
if it is capable of serving as an input to the same information
processes as those that operate on the iInternal representations
of immediate visual sensory experiences. These information
processés that can be appiied to visual sensations literally
serve as a "mind's eye," for they can operate on memories. that
have been encoded in the same way as sensory lnputs, and when
they are so applied produce the phenomena of visual imagination.
Since there must be processes that can deal with sensory inputs,
there 1s nothing mysterious in the notion that these same
processes can deal with inputs from memory, and hence nothing
metaphysical or non-operational about the concept of "mind's
eye" or "mind's ear."

But the mind's eye 1s used not only to process inputs that

"nature" coded in visual form. Often we deliberately construct
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visual representations of abstract relations (e.g., we draw
boxes to represent states of a system, and arrows connecting
the boxes to represent the processes that transform one state
into anothér). What can be the advantage of the imagery? fThe
advantage lies in the fact that when we encode information so
as to be accessible to visual processes, we have automatically
built into the encoded information ali the relations that are
implicit in the informatlon processes that constitute the
mind's eye. For example, when we represent something as an
arrow, we determine the 6rder in which the items connected by
the arrow will be called into attention:

We are led in this way to the concept of systems of
lmagery. A system of imagery comprises a set of conventions
forfencoding;information, and coordlnated with these a set of
information processes that apply to the encoded information.
As we have seen, the information processes for interpreting
the encoded information may be just as rich in implicit conven—
tions as the processes for encoding. 1t is the faect that the
encoding makes available the former as well as the latter that
makes 1t useful sometimes to represent information in a modality

for which we have a rich and elaborate system of imagery.

Abstraction and Generalization.

Bishop Berkeley founded his eplstemology on the personal
difficulty he experienced in imagining a triangle which 1is

"neither oblique nor rectangle, equilateral, equicrural nor
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scalenon, but all and none of these at once." Hume, on the
other hand, found thils feat of imagination perfectly feasible!
The Loglic Theorist would have to take Hume's side against
Berkeley. For in the planning brogram'the problem solyer has
the capacity to imagine a loglc expression comprised of two
variables jolned by a connective, in which the connective is
neither v nor : nor >, but all and none of these at once.
For thls is precisely what the representation (PQ) stands for
and the way 1n which 1t is used by the planning processes.
Once we admit that the relation between the object sensed
and 1ts internal representation is complex, there is no difficulty
in admitting as corollary that the internal representation may
abstract from all but a few of the properties df the object

"out there."

What we call "visual imagery", for example, may
admit of colorless images even if all light that falls on the
retina 1s colored.

The fact that the planning heuristic of the Logle Theorist
possesses generalized or abstracted images of logiec expressions
does not prove, of course, that humans construct similar
abstractlons. What 1t does prove is that the notion of an
image of a triangle "neither oblique nor rectangle, equllateral,
equicrural, nor scalenon, but all and none of these at once" is
not contradictory, but can be given a straightforward operational
definition in an informatlion-processing system. Finally, since

the Information processes that can operate on the abstracted

expressions in the Logic Theorist are of the same kind as those
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that operate on the full-bodied expressions, we would be forced,
by any reasonable criterion, to regard the two images as belong—

ing to the same modality.

The Uses of Imagery.

We have already hinted at the uses of imagery, but we would
like now to consider them a 1it£le more explicitly. To think
about something, that something must have an internal represen—
tation of some kind, and the thinking organism must have some
processes that are capablé of manipulating the repreéentation.

We have called such a comblnation of representation and processes
a system of Iimagery. |

Often, the term image 1ls used somewhat, more narrowly to
refer to those representations that correspond to one or another
of the sense modalities. Thus, we have visual images, auditory
images, and tactile images, but we would not, in this narrower
usage, speak of "abstract images"—i.e., representations and
processes not used for representations of any of the sensory
inputs.

When a partlcular representation is used for something, a
large number of properties are imputed implicitly to the object
represented because these properties are imbedded in the informa-—
tlon processes that operate on representations of the kind in
dquestion. Thus, if we represent something as a line, we are
likely—Dbecause that 1is the way our visual imagery operates—

to lmpute to 1t the property of continuity.
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Herein lies both the power and the danger of 1magery as a
tool of thought. The richer the properties of the system of
imagery we employ, the more useful 1s the imagery in manipu—
lating the representation, but the more danger there is that
we will draw conclusions based on properties of the system of
imagery that the object represented doesn't possess. When we
are aware of the danger—and are conscious that we have encoded
information into a system of imagery with strong properties—
we are likely to call the image a "metaphor."

Often we are not aware of the danger. As has often been
observed, Aristotle's logic and eplstemology sometlimes mistook
accidents of Greek grammar for necessary truths. From thils
standpoint, the significance of modern mathematics, with its
emphasis on rigor and the abstract axiomatle method, 1s that it
provides us with tests that we can apply to the products of
thinking to make sure that only those assumptlions are being
ﬁsed that we are aware of.

The imagery used 1n the planning heuristic drastically
reduces the space searched by the solution generator by abstract-—
ing from detail. This is probably not the only function of
imagery for humans, although it is the one best documented by
our present programs. We think there 1s evidence from data on
human subjects that even in those cases where there 1s not a
rich set of processes assoclated wlth the representation, imagery
may provide a plan to the problem solver at least in the sense

of a 1list of the elements he 1s dealing with and a list of which
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of these 1s related. We will have to leave detalled discussion

of thils possibllity to another occasion.

Summary: Imagery

We have applied our problem-solving theory to the classical
problem of the role of imagery in thought. Although our analysis
of 1magery 1is admittedly speculative, 1t provides a possible
explanation of the relation of internal representations to the
sense modalities, and provides an example from one of the computer
programs of generalizatioh or abstraction, and of an abstract
"visual" image. Finally, the theory shows how images of various

kinds can be used as the basis for planning heuristics.

Unconventionality and Creatlvity

Thus far, our view of the problem-solving process has been
a short-range one. We have taken as starting point a system of
heuristics possessed by the problem solver, and have asked how
it would govern his behavior. Since his initialAsystem of
heufistics may not enable the problem solver to find a solution
in a particular case, we must also understand how a system of
heurlistics 1s modified and developed over time when 1t is not

adequate initially.

Change of Set and Learning

Although all adaptive change in heuristics might be termed
"learning," it 1s convenient to distingulsh relatively short—run

and temporary changes from longer-run more or less permanent
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changes. If we use "learning" to refer only to the latter,
then we may designate the former as "changes in set."

There 1is a basis for the distinction between set change
and learning 1In the structure of the problem—solving organism.
The human problem solver (and the machine simulation) 1is
essentlially a serial rather than a parallel instrument, which
because of the narrow span of 1ts attention, does only one or
a few things at a time. If 1t has a rich and elaborate system
of heuristics relevant to a particular problem, only a small
part of these can be active in guiding search at any given
moment. When 1n solving a problem one subsystem of heuristies
is replaced by anothef, and the search, as a consequence, moves
off in a new directlion, we refer to this shift as a change in
set. Change 1n set 1s a modification of the hcuristics that
are actively~guid1ngﬂsearch, by replacing them with other
heuristics in the problem—solver's repertoire; learning 1is

change 1n the repertoire of heuristics itself.

Stereotypy

A major function of heuristies is to reduce the size of
the problem space so that it can be searched in reasonable time.
Effective heuristics exclude those portions of the space where
solutlions don't exist or are rare, and retaln those portions
where solutions are relatively common. Heurlstics that have
been acquired by experlence with some set of problems may be

exceedingly effective for problems of that class, but may
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prove inappropriate when used to attack new problems. Behavior-

ally, stereotypy is simply the subject's persistence in using

a system of heurlstics that the experimenter knows 1is inappro—

priate under the circumstances.

1t is a very common characteristic of puzzles that the
first steps toward solution require the solver to do something
that offends common sense, experience; or physical intuition.
Solutions to chess-mating problems typically begin with "sur—
prising" moves. 1In the same way, a number of classical exper—
iments with children and‘animalé show that a simple problem of
locomotion to a goal can be made more diffigult if a barrier
forces the subject to take his first steps away‘from the goal
viin order ultimately to reach it. When the tésk has this char-
acteristic, the problem solver is obviously more 1likely to
succeed 1f his repertoire of heuristics includes the injunction:

"If at first you don't succeed, try something counterintuitive."

Is Unconventionality Enough?

It sometimes seems to be argued that people wouid become
effective problem solvers if only we could teach them to be
unconventlional. If our analysis hére is correct, unconvention-—
ality may be a necessary conditibn for creativiﬁy, but 1t is
certainly not a sufficient condition. If unconventionality
silmply means rejecting some of the heuristics that restrict
search to a limited subspace, then the effect of unconvention-—

allity will generally be a return to relatively inefficient
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trial-and—-error search in a very much larger space. We have
glven enough 'estimates of the sizes of the spaces involved,
with and without particular heuristics, to cast suspicion on
a theory of creativity that places 1ts emphasls on Increase
in trial and error.
Let us state the matter more formally. Associated with
a problem is a space of possible solutions. Since the problem
solver operates baslically in a serial fashion, these solutlons
must be taken up and examined in some order. If the problem
solver has no 1nformatioﬁ about the distribution of solutions
in the space of possibilities, and no way of extracting clues
from his search, then he must resort to a solu;ion generator
that 1s, to all intents and purposes, "random"—that leads
him to solutions no more rapidly than would a chance selection.
At some later stage the problem solver learns how to change
the solution generator so that—at least for some range of
problems—the average search required to find a solution is
greatly reduced. But if the modified generator causes some
elements in the solution space to be examined earlier than
they would otherwise have been, it follows that the examlnation
of others will be postponed.
The argument for unconventlonality is that at some point
a class of problems may be faced where the generator leoks at
Just the wrong elements first, or.even carefully filters out
the right ones so that they will never be notlced (as in the

chess example of queen sacrifices). A return to the original
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trial-and-error generator would eliminate this perverse blind-
ness of the generator, but at the expense of reinstating a
search through an enormous space. What 1s needed in these

cases is not an elimination of the selective power of a solution
generator, but the replacement of the inappropriate generator
by an appropriate one.

We have neither the data nor the space to 1llustrate this
point from classical instances of sclentific creativity, but we
can give a simple example from chess. A chess novice is always
stunned when his opponent demolishes him with a "creative"
unconventional move like a sacrifice of a major piece. The
novice has carefully trained himself to reject Qut of hand
moves that lose pieces (and kicks himself for his oversights).
If he tries to imitate his more experienced opponent, he
usually loses the sacrificed plece. Clearly the opponent's
secret is not simply that he‘is willing to be unconventional—
to consider\paths the novice rejects. The secret is that the
experienced player haé various additional pileces of heuristic
that guide him to promising "unconventional" moves by giving
him clues of their deeper and more devious consequences. It
is the possesslion of this additionél selectivity that allows
'him, in appropriatevpositions, to give up the selectivity
embodied in the novice's rule of always preserving maJjor pleces.
The evidence we possess on the point indicates rather strongly
‘that the amount of exploration undertaken by the chess master

1s no greater than that undertaken by relatively weak players (1).
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He does ndt generate more solution possibilities; he dnes

generate them in a different sequence.

Nature Abhors a Vacuum

We see that set change in particular, and unconventionality
in general, are likely to facllitate the solﬁtion of a problem
only if the problem solver has an appropriate new heuristic
to replace the 1inappropriate heuristic that has been "blinding"
him. Accordingly, to understand the success of effective and
creative problem solvers we must examine not only the motiva—
tional and attitudinal factors that enable them to change an
initial set or to violate accepted conventions; we must pay
equal attentlon to the richness of their systems of heuristies
that makes any particular piece of heuristic dispensable, and
to their learning processes that generate new heuristics to
f1ll the vacuums created by the rejection of the ones previously

used.

Learning by Hindsight

Our experience with the simulation of learning has been
much more limited than our experience with the simulation of
problem solving. The chess—playing program 1is, to date,
entirely a performance program; and only a few experiments
have been carried out with learning heuristics for the Logic
Theorist. Nevertheless, from theSe explorations and from our

theoretical model we can draw some implications about learning
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processes that help us understand how the creative problem
solver can gradually improve his heuristics.

In the next two sections we will describe two kinds of
learning that have actually been tested with the Logic'Theorist.
Both kinds of learning involve "hindsight," and in the third
section, we shall undertake a more general analysis of the

role of hindsight in the acquisition of new heuristics.

Memory of Specific Results

The simplest kind of learning in a maze is to remember
the path to a solution so that the same solution can be reached
at once 1n a later trlal. There is no difficulty in programming
a machine for this kind of learning, provided that 1ts memory
is large enough; and little enough difficuity for a human,

Thus 1t 1s probable that most high school geometry students,
unless they have an enlightened teacher, foecus thelir energies
on memorizing theorems and their proofs.

The Logic Theorist stores in memory the theorems it has
proved (it could also remember the proofs themselves, but at
present is not programmed to do so), and hence can use these
as starting points in exploring new parts of the‘méze.

One sheuld not underestimate the enhancement of problem-
solving power that can be obtained even with this "routine" kind
of learning, particularly if the teacher 1s careful to present
tasks to the problem solver in an appropriate order. We have
already seen how much the search for a long proof can be reduced

if a plan 1s provided first; but a plan consists simply in
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dividing the original problem into a series of smaller problems—
‘marking the path the problem solver is to follow. Exactly the
same effect can be secured if the subproblems generated by the
planning heuristic are instead provided by the teacher.

On the other hand, storage of specific information about
paths in the maze is not always helpful in subsequent problem’
solving. We have conducted some’eXpefiments’with the Logilc
Theorist in‘which a theorem is presented for proof (a) after
all previous theorems have been stored in memory, and alterna—
tively (b) after a carefﬁlly selected small set of "powerful"
theorems has been stored in memory. In a considerable number
of cases, the program proves the theorem more quickly, and
with far less search, in the second condition than in the first.
For example, in one case (Theorem *2.48 of Principia) (17) the
Theorist achieved a three—step proof when it had in memory
only the axioms and one prior theorem (*2.16) in one—third
the time it took to find a two-step proof when it held in
memory all prior theorems. We are reminded by this example of
the blinding effects of excesses of pedantry on human problem
solvers also. A small arsenal of good general-purpose ﬁeapons
may be much more effective than a storehouse of specific,
narrowly useful ones.

A graphical impression of the qualitative difference that
is produced in the Logic Theorist's problem—solving behavior
when different numbers of prior theorems are held in memory

can be obtained from Figure 8. The upper half of the figure
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(a)— Subproblem maze of *2.17
with twenty axioms and
theorems in memory

(b)— Subproblem maze of *2.17
with ten axioms and
theorems in memory

Fig. 8
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shows the maze of subproblems the Theorist explored while
proving Theorem *2.17 with all axioms and prior theorems
(twenty in all) held in memory; the lower half shows the
maze explored while proving Theorem *2.17 with only the axioms
and five theorems (ten in all) held in memory. In the former

case, 23 branches had to be explored to find a three-step proof;

in the latter case only 11 branches to find the same proof.

Differentiation: Specialized Methods

As the problem solver accumulates a larger and larger
store of results and techniques, his problemvof selection be—
comes more difficult unless he acquires at the same time
additional clues on the basis of which to differentiate parts
of the problem space in order to use special techniques under
speclal circumstances. We have developed one example in the
Logic Theorist of a process for learning specialized techniques.
Thé Logic Theorist uses four basic methods of attack on problems.
In each method it employs theorems already proved as its "raw
materials.". It turns out, empirically, that some theorems are
used principally 1in connection with certain methods, other
theorems with other methods. The Logic Theorist, when it has
used a particular theorem in connection with a particular method
to solve a problem, assoclates the theorem with that method.
The next time it has occaslon to use the same method, it tries
theorems that have had a history of success with that method

before it tries the other theorems.
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To study the effects of introducing this learning of
assoclations between particular methods and particular theorems,
we performed the following experiment. As a pre-—test, we

instructed the Loglc Theorist to attempt in sequence the firast
52 theorems in Chapter 2 of Principia Mathematica (17), allowing

it, when attempting a particular theorem, to use all prior
theorems (whether 1t had succeeded in proving them or not),
but not to use the special methods learning program. Then, we
erased the results of this experience from memory, and as a
test of the learning, instructed the Theorist to attempt the
same 52 theorems, this time using the special methods learning
program. The main result of the experiment can be seen by
comparing the times required by the program to obtain proofs
for the twenty theorems that were proved in both pre-test and
test and whose proofs were not trivial. ({We disregard 18
additional theorems proved on both runs, but having trivial,
‘one—step proofs.)

The abécissa of each point in Flgure 9 shows the time
required to prove a theorem in the pre-test; the ordinate of
that point, the time to prove the same theorem in the test run.
The remarkable fact about this scétter diagram 1s that it.
consists of tWo straight lines, each containing about half
of the points. For the points on the upper line, almost twice
as long was required to discover a proof on the test run as on
the pre-~test; for the points on the lower line, less than half

as long was required on the test as on the pre—test.
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Closer examination of the machine's protocols provides a
simple explanation. 1In the test run, the program tried its
special high-priority theorems first. Only when these falled—
i.e., when the problem was of a new "type" that did not, yield
to any methods that had worked on previous problems—did the
program fali back on its full store of available theorems.

The additional time required in the tést run for these problems

was the time spent in the futile attempt to use the special
theorem 1ists it had learned. On the other hand, where a problem
ylelded to proof by a mefhod that had worked on a previous problem,
thlis was soon discovered in the test run with a corresponding

large improvement in performance. Comparison of the mazes for
pretest and test runs of the latter group of problems reveals

the characterlstic difference—quite similar to that in Figure
2—between shallow widely-branching trees involving much search

in the former case, and deep, sparsely-branching trees in the

latter.

The Contribution of Hindsight to Heuristles

The leérning programs we have mentioned have tw»o important
characteristics in common: (1) they consist in a gradual accumu-
lation of selective principles that modify the sequence in
which possible solutions will be examined 1n the problem space;
(2) the selective principles are obtained by hindsight—by
analysis of the program's successes in its previous problem—

solving efforts. We belleve that both of these characteristics
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are to be found in most of the important learning processes
in humans. Since we have already discussed the first at length,
we will turn next to some comments on the second.

Creatlive problem solving is mysterious because it is hard
to see how needles are found in haystacks without interminable
search. We have tried to dispel the mystery of the performance
by exhibiting devices that are capable of narrowing search to
a very small part of the haystack. In one sense, however, this
only pushes the mystery back. We can now regard the task of
learning an effective prbblem—solving heuristic as 1itself a
problem-solving task. The space of possible heuristies for
problem solving is a space that must be enormous, even as
problem spaces go. How do we find solutions in that space?
How do we learn effective heuristics?

We must be careful not to overexplain the phenomenon by
discovering learning mechanisms far more powerful ﬁhan would
vbe needed to account for the historical facts of scientific
discovery. One of the key heuristics that underlies physical
intuition in dynamics is the notion that forces prodﬁce changes
in velocity (rather than producing velocities). Evidence from
which this idea might be derived is available to anyone with
eyes. Yet at least hundreds of man-years of search by highly
intelligent men were required to discover the idea, and even
after it was enunciated by Galileo, another century of work
was required before even the most intelligent scientists had

cleared it of all obscurity'and confusion. WQ have an even
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better—documented case in chess, where the game had a large
literature and numbers of professional players for two centurles
or more before Steinitz discovered some of the principles of
positional play. From these and other examples we might
conclude that the spaces that have to be searched to find
important new heuristics are indeed large, and that the
heuristics available for searching thém are not generally very
effective.

With this caution we can return to the question of how
learning takes place—granted that 1t doesn't take place very
often or very fast. Let us suppose that the Logic Theorist
solves a difficult problem, andlthat it retains for a time 1in
memory not only the correct path (the proof) that it finally
discovered but also a record of the other paths 1t tried. One
could then program it to re-examine various of the cholce psints
at which 1t had not selected the correct branch on the first
trial to look for relations between the state description at
that point and characteristics of the correct branch. It
could also be programmed to examine expressions Just beyond
the cholce point along correct and incorrect paths in order to
determine whether there were consistent differences between
the expressions.glong the correct paths and those along the
incorrect. Whatever differentla were discovered by such a
program between correct and incorrect paths could be incorporated
in the path generator. ~With the use of such procedures, a single
successful experience of solving a problem after much trial-

and—error search could become the basis for a great deal of
learning.
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More formally, suppose we wish to search a space of
possible clues to determine which of these clues should be
incorporated in a solution generator for maze paths. In terms
of our general problem-solving theory we need a clue generator
and a clue verifier. Hindsight contributes nothing to the
construction of the clue génerator, but it provides a cheap
and effective verifier, since any possible clue we generate
can be‘tested at once against a considerable number of instances.

We wish to offer a final comment on the "hindsight" aspects
of learning. . Suppose that, in terms of avallable computing
power, the problem-solving organism can afford to explore
only a few hundred paths in searching any particular problem
space. Then an effective strategy for dealing with a large
class of problems would be to abandon problems that did not
yield solutions éfter moderate effort had been applied, to dd
learning by hindsight on the easier problems that proved
solvable, and thus gradually to add to the number of problems
that could be handled successfully.

| Assﬁme that we have a class of problems with an 1nitia1
valué of m=-10. Then, if the problem-solver had a limit of” x
500 paths per problem, he would only be able to solve problems
of length k=2 or less. As learning proceeded, however, the
new heuristic would reduce the effective value of m. By the
time that m had been reduced to 6, problems of length 3 coﬁld

be solved; when m reached 2, proplems of length 8 could be
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solved; and reductions of m below an average level of 2 would
increase very rapidly the lengths of the problems that could

be handled.

Concluding Remarks

In this paper we have treated creative activity as problem-—
solving activity characterized by the novelty and difficulty
of the task. We have proposed an explanation for creative
problem solving, developing this explanation along three
parallel lines: (a) by donstructing an abstract model of
problem—solving behavior that provides operational meaning to
such concepts as "problem difficulty” and "power.of a heuristic";
(b) by specifying programs for digital computers that simulate
human problem—solving behavior, and using the abstract model
to understand the effectiveness of the programs for solving
problems; and (¢) by re—examining some of the classical problems
in the literature of problem solving and creativity to see
what light the theoretical model, the combuter programs, and
data on human behavior cast on them.

The main results of our 1nvest1gétions up to the present
time are embodied in a number of computer programs, some of
which have actually been run on a machine, some of which are
coded but have not been run, and some of which are Specified
at the level of flow diagrams. The programs that we have referred
to specifically here include: (a) the original program of the
Logic Theorist, adapted to proving theorems in Whitehead and
Russell's Principia (17), (b) a leafning program that modifies



this basic program, permitting the Logic Theorist to learn to
use speclal methods for special classes of problems, (c) a
revision of the Loglic Theorist that adapts 1t to solving logic
problems in the form used by O, K. Moore in his experiments with
human subJjects and that incorporates a program for functional
means-end analysis, (d) a supplement to this last program that
gives 1t the capacity to construct plans, (e) a program for a
chess-playing machine. A number of other programs that are in
process of construction by members of the RAND-Carnegie group
and by others were not sbecifically mentioned here, but have
provided some;of the background for our theorizing.

Data obtained by comparing in detail the operation of
these programs with the behavior of human subJjects 1s limited.
We have now accumulated human protocols that will permit such
comparison for both the logic and chess programs, but our main
tests of the theory have thus far been of a grosser sort. We
would chiefly rely o the fact that we have specified programs
enabling mechanisms to solve complex problems so large that
they would not yield to a brute-force approach, using even the
most powerful computers. The success of these programs in
obtaining problem solutions 1s the primary evidence for the
theory of the problem-solving process that underlies their
design. |

We should like to stress our specific findings less than
the methodology we have described for understanding the human

mind. The use of computer programs to simulate information
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processes allows us to study the behavior of systems of great
complexity—far greater complexity than can be handled rellably
with elither verbal or c¢lassical mathematical techniques. We
have eonstructed a theory of human thinking in terms of its
underlying infoermation processes, and we have indicated how

the theory can glve precision to topics that, however important,
have 1iIn the past been discussed in exceedingly vague terms.

We have, for example, identified 1in the program of the Logilc

n

Theorist notions like "grasp of problem structure, visual

" "abstraction,'

image, and "set."

Some of the programs we have described perform work that
is considered difficult, and even mildly creative, when 1t is
done by humans. Although these programs fall considerably
short in performance of the highest levels of creativity of
which humans are capable, there 1is every :reason to suppose
that they are qualitatively of the same genus as these more
complex human problem-solving processes. In another place,
we have predicted that within ten years a computer will dis—
cover and prove an important mathematical theerém, and compose
music that 1s regarded as aesthetlcally significant. On the
basis of our experience with the heuristies of logic and chess,
we are willing to add the'further prediction that only moderate
extrapolatlion is required from the capacities of programs

already in exlstence to achieve the additional problem-solving

power needed for such simulation.
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APPENDTIX

It may be helpful to the reader, in following the specific
examples 1n the text, to have a brief description of thg
problem—solving task involving loglc expressions that was
'designed by 0. K. Moore and Scarvia B. Anderson.

A logic expression is a sequence of symbols of two types:
(1) variables—P, Q, R, etc.—and (2) connectives—not (-), and
(+) or (v), and implies (>). An example from the text is
R: (-P>Q), which may be interpreted as "R and (not-P implies
Q)." The subjects are not provided with this interpretation,
however, but are told that the expressions are code messages
and that the connectives are named "tilde" (-),."dot" (-),
"wedge" (v), and "horseshoe" (o).

The followlng rules are provided for transforming one or
two given logic expressions into a new expression (recoding
expressions). We will state them here only approximately,

omitting certain necessary qualifications.

One-Line Rules

1. AVB & BvA : 5. AVB & — f—A'-—B;
A-B & B-A A'B & — (-Av-B
2. A>DB & -Bo-A 6. A>B & -AvB
_ ‘ AVB & ASB
3. AVA & A 7. Ava-Cg ] gAngv 'AVC}
A-A & A A-(BvC) & (A-B)v(A.C
y, AvngC) & EAVB)VC 8. A‘B =3 A
A-(B-C) & (A-B)-C A‘B = B

9. A => AvX, where X is any expression
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The rules can be applied to complete expressions, or (except
rule 8) to subexpressions. Double tildes cancel, il.e., --A&A

but this cancellation 1s not stated in a separate rule.

Two-Line Rules

10. If A and B are given, they can be recoded into A-‘B.

11. If A and AD>B are given, they can be recoded into B.

12. If A>B and B>C are given, they can be recoded into

A>C. |

Subjecfs were instructed in the use of these rules, then
were given problems like thése described in the text. They
were asked to think aloud while working on the problems, and
each time they applied a rule to recode one or two given expres—
sions, the new expression was wrltten on the blackboard by the
experimenter, together with the numbers of the expressions and
rule used to obtailn it.

By inspection of the rules it can be seen that in the plan-—
ning space, where connectives and the order of the symbols are
disregarded, rules 1, 2, 5 and 6 would leave expresslons
unchanged. These are the inessential rules; the others, in
altered form, become the essential rules. Rule 8, for example,

becomes simply: AB=3A.
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