26)

THE CHESS MACHINE: AN EXAMPLE OF DEALING 1
WITH A COMPLEX TASK BY ADAPTATION ;
s

Allen Newell f

P-620

28 December 1954

Presented before the Western Joint Computer
Conference, March 1, 1955 at Los dngeles

2te LA N D orponaio

1700 MAIN ST. « SANTA MONICA » CALIFORNIA

P-6<0
-1-

The modern general purpose computer can be characterized as the
embodiment of a three point philosophy:

1. There shall exist a way of computing anything computable;

&. The computer shall be so fast that it does not matter how

complicated the way is;

3. Man shall be so intelligent that he will be able to discern the

way and instruct the computer.

Sufficient experience with the large machines has accumulated to reveal
the peculiar difficulties associated with these points. There has been a
growing concern over problems which violate them, and instead satisfy:

1. The relevent information is inexhaustible;

2. The set of potential solutions is neither enumerable nor simply

representable;

3. The processing to be accomplished is unknown until other processing

is dones

L. An acceptable solutioq is rejuired within a limited time.

Most desirn problems, including programming a computer, are of this
nature; so are the very complex information processing tasks like translating
lanpuages or abstracting scientific articles. The current arguments about
thinking machines and general purpose robots also revolve about whether
computers can deal with problems of this general nature.

The problem of playing good chess certainly falls into this class of
nltracomplicated problems. It is a useful type case for general discussion
because the nature of the task and the complexities surrounding it are common
knowledge. Further, it already has something of a history (1,%,3,hL).

The aim of this effort, then, is to program a current computer to learn

(1) Numbers in parenthe%es refer to similarly numbered references at end of
paper.

P-6:0

~ % -
to play good chess. This is the means ‘o understanding more about the kinds
of computers, mechanisms, and pgograms that are necessary to handle ultra-
complicated problems. The limitatioﬁ to current computers provides the
constant reminder that the heart of the pfoblem lies in the limitation of
resources, both memory and time. This aim would be somewhat ambitious even
if all the details were available. The péper will actnally be limited to
presenting an overall schemat which appe%ﬁs feasible, and relating it to some
of the critical problems which must be solved. The reference to learning
expresses the conviction that the only way a machine will play good chess is
to learn how. Although learning considerations have been prominent in the
thinking and motivation behind the machine, attention will have to be
restricted to the performance system; that is, to those features which are
necessary in order to play the game. However, gome of the learning potenti-
alities implicit in the performance system will be discussed.

The work presénted here represents the early phases of an attempt to
actually construct such a program for the Johnniac, one of RAND's high speed
computers.

Before starting it is degirable to give some additicnal conditicns of -
the problem. From now on the computer with prégram will be called the
"machine', and the variouvs parts of what it does will be called "mechanisms".
The problem is not to construct a machine which can induct the rul~s of
chess by playing; 1t will oe instructed concerni- g the legalities. Finally,
the machine is only to do the job of one man; it will reguire an outside
opronent, human or otherwise.

Problems

As everyone knows (5), it is possible in principle to determine the

P-6&0

-3 -
optimal action for a given chess position. First compute out all contin-
uations to the bitter end. See whether they %in, lose, or draw; and then
work backwards on the assumption that the opponent will always do what is
best for him and you will do what is best for you.

The difficulty, of course, is that this "in-principle" solution requires
a rather unnerving amount of computing power, (1) and doesn't give any clues
about what to do if you don't have it. It will provide us, however, with
a short checklist of problems which must be solved if the computing require-
ments are ever to shrink to a reasonable size.

The most striking feature of the "in-principle® soluticn is the tremen-
" dous number of continuations. This is accounted for by both the number of
new consequences that appear at each additional move intc the future, and
the larse number of moves required to explore to the end. This provides two
problems:

1. The consequences problem, or which of the possibilities that follow

from a given proposed action should be examined;

<. The horizon problem, or how far ahead to explore.

The possibility that one might stop looking at some intermediate position,
only raises a third problem:

3. The evaluation problem, or how to recognize a good position when

you see one.

Another feature of the "in-principle" solution is the identical examina-
tion of all the possible alternative actions. Despite the similarity in
describing both present and future moves, it is worthwhile keeping distinct
the actions that are actually available at a move, and from which a choice

must be made; and the futvre conseguences of these actions, which may include,

P-6:0
- -
among other things, limitations on the alternatives available in the future.
Yence, we havet |
i« The alternatives problem, or which actions are worth congidering.
These four probleﬁs; conséquences, horizon, evaluation, and alterna-
tives; will be sufficient to keep us aware of the difficulties as we search
for a set of mechanisms to play chess. Solutions must be found to all of
them if the machine is to play good chess wit!.reasonable resources.
Overview
There is a common pattern to the solutions to be described here. 1In
all of them the machine uses very partial and approximate methods. It is as
if the machine consisted of a vast collection of rules of thumb. Each rule
is a much oversimplified expression of how the machine should behave with
respect to some particular aspect of the problem. The rules are of all kinds:
chess principles to follow, measurements to make, what to do next, how to
interpret rules of thumb, and so on. These are sc organized that they form
he necessary qualifications and additional specifications for each other.
Each rule is essentially a machine prcgfam. At any particular instant the
machine is under the control of some such rule, or shunting between rules
under the control of a master program. .
The main effort of the paper is devoted to describing how such a set
of rules can be defined, and organized to acheive solutions to the four
problems; and thus provide a schemat for a machine which puts all these pieces
togethef to play chess. Only minor effort is devoted to indicating the de-
tailed structure of these programs at the level of machine code.
One aspect of the underlying coding does require attention, and is dealt

with at the end of the paper. The large number of rules, their comprlexity,

P-6.0
and the necessity for adding new ones and modifyins old ones, implies the
use of a fairly extensive general purpose language. That is,all these rules
are to be given in this language or pseudo code as it might also be called. -

3

Hence, cach use of a rule must be preceded by an interpretive step. However,

.

a lew programs suflice for using any and all of the rules that might be
regquired in the machine.
Preliminaries
Let vs start by providing the machine with a few basic facilities.
Tach chessman and each squara of the chessboard needs a name, suitably cocded
into binary oits. A fixed set of addresses are set aside to hold the current
nogition. This can be given as a 1ist of the men with the s,uares they

. L4

cccupy, including a hine

&)

zero” squars if the man is qff the btoard. The ma
can accept an opponent's action by reading a punched card. This can be given
as a list of the men which havgvbeen moved, along with their new locations.
Thus an action involving a capture has two terms: one giving the new location
of the man that captured, and a sescond siving the location of the captured
man as the zero square, that is, off the board. The machine obtains the new
position by substituting in the old one, which is already stored. It can
alsc cvtput its own action on a punched card.

The machine must alsc be equipped to answer an array of elementary
questions that recur constantly, such as, "can a given man move to a given
square?” cr, "what man is blocking the Queen Pawn?" Tach of these gusstions
can be answered by a stralght forward ahd nct-toc-lenthy investigation of
the current position. The number of actual programs needed is within reason-
able bounds since the more complicated ,usstions are combinations of the more

2

elementary ones.

Assume, then, that the machine has these basic capabilities. They have
solved none of the four problemé.

Goals and Tactics

Suppose, in the midst of a game, the machine (which is White) has
stored in a suitable place the following expression:

att (BKB, WKR).

The machine interprets this as: "Attack the Black King-Bishop with the
White King-Rook." Attack will be considered to mean a successful attack,
which in turn means that the attacking man (here, the Rook) is capable of
capturing the object of the attack (here, the Bishop) with a relative gain
in material after the smoke of engagement has cleafed. Thus, for a given
position, the attack is either succéésful‘or not; and the machine can
determine this by a sejuence of those elementary programs given it earlier.
Call such an expression a goal, which is either achieved or not achieved
for any given position.

Now, suppose the machine were to start tracinc out continuations. It
could determine at each new position it arrived at whether or not the goal
was achieved. If it is, the machige could stop searchins. This might pro-
vide a solution to the horizoﬁ problem: have a goal and only explore contin-
uations until a position is reached where the goal is achieved.

The machine can represent such a set of continuations as a branching
net, or tree, of actions. Each action is linked:by some kind of indexing
to the immediately preceding action, and to each action is associated by this
indexing a number of other actions that might possibly follow. Such a tree
is a tactic for a given goal if it always terminates in positions that achieve

that goal. Further, a tactic will always indicate a single action for the

P-6:0
-7 -
machine tc tazke, and many actions for the opponent.

But if the machine has a goal like "attack the Black Xing," it is right
baclk with the original difficulty of searchinrs for continuations which end"
in checkmate. This merely indicates that in genersl one can hardly expectx
lto find a2 tactic for a given goal. But on the other hand, one sometimes will:
men dc get captured and games do-get won. J

By some means let the machine acyuire in memory a second goal, which is
indexed to the first: .

blk (BQ,BKB) - att (BKB, WKR).

The machine interprets this as: "Block the Black Gueen's ability to
recapture where the Black King-Bishop is." If this ability to recapture was
in fact one of the deterrents to taking the Bishoé with the Rook, then achieve-
ment of this second goal could be considered as an intermediate aid to achieve-
ment of the attack. Such a g@gl will be called a subgeoal. Tt may itzelf
have subpoals, and thus the machine may aéquire rather large networks of goals.

Now, instead of trying to construct a tactic for the attack goal, the
machine can search for a tactic for the subgoal of blocking. Perhaps it will
find one. If it cannot, then it needs either other subgoals for the attack
or some subgoals for the block. '

The single large search for winning positions has been replaced by two
searches, each terminating theother. The machine searches for intermediate
goals; it stops this searchvwhen it finds subgoals it can achieve. It deter-
mines the juestion of achievement bv a search for particular sequences of
action. This search terminates with a completed tactic, that is, when the
segyu=snces end in goal achievemént.

But when to stop if the tactic search continues to be unsuccessful?

The mechanism of subgoal formation operates only if the signal has been
given to terminate further search for a tactic. Before discussing this, it
1s apnropriate to consider another aspect of the total problem, which, after
a twist or two, will lead back tc thils same decision problem.

Livelihoods

The mechanisms introduced so far have only yielded a solution to the
horigon problem. For instance, they do not provide a soluticn for the
conse uences problem. It would still seem the machine would examine all
branches at any given future move it arrived at. Thus, tactics might be -
short, but they would have very large spreads.

Supposeb;he machine had some other goals in its memory labeled
"opoonent's goals". For example, the machine might have:

ctl (Q5).

The machine interprets this as, "Cohtrol the Jueen five square", and
tales as a definition of achievement for the opponent that he could win an
engagement 1f White tried to occupy the sguare or capture a Black man who
did occupy it. If the machine considered this goal to be one of the oppe-
nent's important goalé,‘fhen clearly, any opponent's acticn which achieved
this goal would be relatively likely to occur. Oé would it? It certainly
depends tp what degree the machine's representations of the opponent's
goals correspond to the opponent's real goals or whatever other mechanisms
guide his actions. |

The machine must now be equipped with all the apparatus for collecting
evidence, forming hypctheses, verifying them, and makin- inferences from
them. At least in’some rudimentary form these will all be required tc
develop and maintain a running mod;I of the opnohent's intentions.

If such a set of mechanisms were available to the machine, then, within

P-620

-9 -
certain limits of accuracy, it could assign likelihoods to the various
alternatives by inference from the model. These likelihoods provide a
solution to half the problem of consequencés: how to know which conse-
quences to examine at any position that is the opponent's move. Examine
those alternatives which seem most likely.

A rather large number of mechanisms are involved. First, each action

that the ovronent makes must be classified as stemming from some goal or

goals. Somewhere in memory let there be stored some expressions like:

1. Does action ccntribute to any soal.

NO ' YES

~

3. How many men involved? <+ Classify with goal.
3 < 1
Li. Does man attack any White man?

NO YFS

5. Make a new goal.

These expressiocns are coded in the languare spdken of earlier. The
machine starts with expression 1 and interprets it. This instructs the
machiné to test each of the opponent's'goals to see if the action contributes
to it. This term is used in a narrow sense: only men who can capture ccn-
tribute to an attack; only men who command the syuare contribute to its

control. Thus, in the example, "control Queen five," the machine wruld deter-

P-620

- 10 -
mine if the action had resulﬁed in any new man commanding the Queen five
square. If the answer is yes, the machine proceeds to expression <. When
interpreted, this instructs the machine to classify the action as stemmingr,
frem the goal to which it contributes. This ends the decision process. But
as usual, the answer could also be ncj the first rule does not suffice to
classify the action. The machine then p&oceeds to expression 3, interprets
it, and counts the number of men who changed in the current action. Finding
the number of men who changed in the current action. Finding the number to
be one, which means that nothing complicated live a capture, promotion, or
castle occurred, it proceeds to expression l. The machine is now instructed
tc see if the man which moved can be considered as attacking some new man,
and if so to read expression 5, which instructs the machine to create a new
goalf Notice that this alternative is consideréd only if the action has
failed to be consistent with any of the goals already hypothesized as
accounting for the orponents action.

So far only a mechanism for classification and possible introduction of
new goals has been described. It should be remarked about this mechanism
that the content of the expressions is much less important at this juncture
than the general schemat. Other expressions and more of them could Jjust as
well be used. Instead of describing the rest of the mechanisms needed to
complete this component, it is necessary to move on to other key pieces.

The undescribed elements will be constructed in the same vein. For instance,
there will be expressions for obtaining likelihoods like, "How often has a
goal been contributed to recently,” and "Eigh activity implies continued

activity is likely."

P-60
- 1] -

Utility

Even admitting the machine‘can assign likelihoods to the opponent!'s
alternatives, this solves only the half of the problem of consequences
associated with opponent's moves. There remains the other half: how to
know which of the machine's possibilities to explore when searching for a
tactic.

Consistent with the design philosophy emerging here, the machine will
have a s=cticn of memory devoted to expressions in the language that are
relevant to this problem. These will be organized into a decision net in
the same fashion as the expressions for claésifying opronent's actions.

The object of such a net will be to assign a utility to future machine
actions that cculd be explored in trying to complete tactics. This utility
would be expected to reflect a complex of factors. The feature to note is
not just the possibility of such nets, but the kinds of relevant information
that now are available to be used.

The most important kind, I think, is that every man has asséciated
with it the funqtions that it is performing. These associations occur by
means of the goal structure. Suppose there is a subgoal that the King-
¥night supports the King-Bishop; that is, can retaliate by recapturing any
man that captures the Bishopn. This serves as a statement that the Knight
has a function to perform. Anyv gecal whose tactic depends on moving the
Knight into a new position must compete with the goal which already has the
Knight suprorting the Bishop. The machine cen determ’'ne this by a simple
search of its goals. Therefore a reasonable decision net would recommend
exploraticn of this Knight's mcves only as a last resort.

The vision of a large collection of small reasons why various moves

*

P-610
- 1le -

i
should have low utility for exploration, raises a caution. We do not want
the machine to spend all its time examining the future actions of committed
men; yet if it were never to do this, it could overlook real oprortunities
and might even gradually paralyze itself bj the accumulation of commitments.
The solution, cf course, is the random element. The difficulty with random
search in a complex environmment is that in reasonable time scales, nothing
will ever be discovered. Therefore, randomness should be introduced into
the decision nets only in small and well controlled amonts. The machine
shculd rarely search for combinations which sacrifice a Queen and Rook to
nc apparent gain only to develop a mate eight moves later.

Level of Aspiration

By now we have finally returned to the decision problem stat=d earlier.
There are devices for stopping the search for tactiecs if successful. There
are devices for differentiating the various directicns of search. These are
likelihoods for the opponent's moves, and utilities for the machine's. But
there exists no stop rule in the face of continued difficulties.

Te find a solution we turn to a phenomena well known in the human
seiences: levels of aspiration. The fundamental reascn why the machine must
terminate the search is limitation of rescurces, in this case mostly com-
puting time. By a level-of-aspiration tyve solution, is meant the intro-
duction into the machine of the limitation of resources as an explicit
mechanism. That is, various expressions will exist in the machine which
measure and utilize the information about the amoun® of resources available.
Thus, the limitations will no longer function as absolute constraints; the
way in which they affect the machine is partially within the machine's control.

For tactics a suitable measure, correlated with computing time but more

~

P=620
- 13 -

approvnriate to the task, is the likelihood of a position. As the machine
explores into the future, selecting one possible action after another, the
likelihoods compound like probabilities so that the ultimate likelihood
diminishes as actions get further into the future, or are reached throughf;
lower 1ikelihéod actions.

The machine sets out on a tactic search with a predetermined leavel
of final likelihood., It gradually extends the tree of actions until each
terminal position ﬁés fallen below this level; then it stops. If now, the
aggregate likelihood of reaching a position of goal achievement lies
above another predetermined aspiration level, the machine considers the
tactic adequate. If not, it returns to the goal structure and develops
some additional goals, as described earlier.

Transformation Rules

Nothing has yet been said about how all these sub-goals are generated.
The structure of the mechanism is clear; it will consist of more rules of
thumb. There will exist a set of expressions in the language which function
like the rules of inference in logic: they allow us to derive new expres-
sions from old ones. They are of the form, "For a goal of type A, try a
subgoal of type B." For example, "For att (x,y) try def (y)." This
expresses the fact that there is some®merit to defending the men who are
involved in carrying out an attack. If this transformation rule, as it
is called, were applied prior to the opponent's actual attack on the
attackers, this would constitute a fine example of anticipatory response.

The machine must examine its goal structure to determine the typeé
of goals for which it requires new subgoals. It selects out those trans-

formation rules which might be relevant; that is, where the structure of

P-620

-1} -
the goals in the net fits the gpecifications of the first part, or premise,
of the trsnsformation rule. Several possible rules may be obtained. It
seems appropriate to introduce a random element to guide the final choice,
since the inference expressed by the rules is rather a loose oné. The
weights assigned to each rule will be functions of experience, so that
rules which work get chosen relatively often,

We have again arrived at a place where the important question is the
actual content of these expressions. Certainly, if the rules are poor
the machine will play terrible chess. Its operation will bear little
relation to the objective game situation. Again, other problems are more
important. No scluticn has yet been described for either the evaluation
or the alternatives problem. It will be appropriate to consider
evaluations next.

Bvaluations

It may seem that somehow the evaluation problem has an implieit
solutlen in the array of mechanisms vostulated so far. The problem is to
relate a position to the winning of the game. Stnce the machine uses
intermediate goals, the problem now is to relate positions to these sub-
goals. It seems that the tactics do provide this relation. If a sequence
of actions in a tactic results, sometime, in the given position, then the
likelihood of achieving that tactic's goal from the position is known.

The machine spent time computing it when generating the tactic.

The immediate difficulty with this is that it relates a position to a
goal only if it occurs in that goal's tactics. This provides no evaluation
for the other goals. Hence, it is only a partial solution since the’
problem of evaluation is assessing the relation to the ultimate goal, which

is winning. In order to make playing possible, the machine has replaced

P-6%0

- 15 -
the single remote goal with a large number of more immediate ones. Thus,
for the machine the problem is: for any given goal, determine the likelihood
of achievement from any given position.*

The solution exists for special case where the positicn occurs in the
tactic of the goal. Consider two other special cases. First, suppose the
goal ﬁere achieved for the given position. It would receive a likelihood
of one if we think of likelihoods as similar to probabilities. Second,
suppose a goal were not achie%ed, had no tactie, and noxggbgoals. It would
receive ahlikelihood of zero, since its achievement rests solely with
coincidence or the opponent, both egually bad bets.

These special cases provide the basis for a solution the evaluation
problem. If the machine generates goals as described, then at any instant
all the terminal eleﬁents velong to cne of the three special cases. This ig
so since the situations not covered by the special cases all involve a goal
having subgoals, which means they cannot be terminal elements. The terminal
evaluations are a set of boundary conditions, from which, step by step,
evaluations can be assigned throughout the goal structure.

In the general case, the problem will be to compute the likelihood
éf a goal given the likelihoods of all its subgoals. It is here that the

relation of subgoal is given operational sicnificance. The machine operates

3*

Throughout the paper I have very carefully used the term, "likelihood,"
instead of "prcbability”. The logical status of the entities referrsd to
is not at all clear since the machine uses the measured likelihoods to
determine action which in turn determines whether the move or position will

ever occur; that is, what the likelihood "really' 1is.

P-6£0
- 16 -

as if the following principle were true: }f g1 is a subgoal of gcs then

an increase in the like}ihood of achievement of gl'produces an increase

in the likelihood of achievement of g, » It interprets its experience in
this light, so that contrary instances are treated as implying the subgoal

is a poor one. ,

The laws of combination of likelihoods must have several simple
properties, mostly those implied by the principle above. Other than this
it may not make too ﬁuch difference; simple linear cpmbination may do
admirably.

Although some of the details have not been enumerated, the machine now
has the mechanisms for evaluatio;. The result is a large set of numbers,
one’for each goal. The reason why more combination is not required, or
perhaps not even desirable, leads to the problem of alternatives,

| Alternatives |

Clearly, the machine is interested only in alternatives that further
its goals. Now, goals are general statements, and the tactic is the bridge *
provided to pass between the goalé and the very particular current situation;
Tactics provide actions that lead to goal achievement. At any moment, then,
there are a certain'number of tactics and theée yield an ejual number of
alternatives (not necessarily all distinct), all of which are worth consider-
ing since fhey each further some part of the machine's goal structure.

This would be a solution to the alternatives problem if this set were
always adequate. It can hardly be sxpécted to be so at all times. For
instance, right after a very unexpected move by the opponent there may be
no tactics left at all.

The splution lies in more lévels of aspiration, partial efforts and

P-620
- 17 -

iteration. For each alternative, the machine computes the goal evaluations
for the new position that would follow if the alternative were chosen.
This yields an evaluation of each alternative's effect throughout the goal
structure. Although this evaluation appears to be only one move deep, it is
fundamentally grounded in the tactics, which extend much further into the
future.

The decision is now made whether to make the available set suffice,
or whether to return and work some more: to add and modify the goals and
tactics. This is a level-of-aspigation type decision, which will depend
not only on whether the alternatives are "good enough”, but also on how
much time remains, and whether the move is crucial. Only if the decision
is made not to explore and expand further, is the best alternative picked
from the limited set and punched into the card as the machine's actual move.

The term, "best alternétive", is used in a very casual way. The
evaluations consist of many numbers, at least one for each goal. It is
clear that if a single alternative dominates all others, it shoﬁld be
chosen. It is also fairly clear’ that an alternative which achieves a
very important subgoal is to bhe preferred over one which only increases
the likelihood of a few very subordinate ones. But basically this is a
multiple value situation, and in general nc such simple rules can be
expected to indicate a single best action. The problem for the machine
is not to scmehow obtain a magic formula to solve the unsolvable but to
make a reasonable choice with least effort and proceed with more produc-
tive work. There are other ways to deal with the problem; for instance,
include conflict as a fundamental consideration in the decision to explore

further.

P-620
- 18 -

Thus at each move, the machine can be expected to iterate several
times until it achieves an alternative that it likes, cr until it runs
out of time and thus loses the»game by not being smart enough or lucky enough.

Performance Schemat

The pieces now exist to give an over-all schemat for the performance
system of the chess learning machine. This is a set of mechanisms which is
sufficient to enable the machine to play chess. There is no learning in
this system; it will play no better next time beeczuse it played this time.

If the content of all the excressions re uired is appropriate, it will play
gocd chess; if they are not, it will play very peer chess.

This performance system is highly acdaptive. A goal structure peculiar
to each play of the game 1is generated cduring the cburse of play. Tactics
reflect the minute detail of the current situation. This short run adapta-
bility is not to be confused with learning which weuld permanently affect
the way the machine would play in the future.

(Insert Fig. 1 about here.)

Figure 1 gives the schemat of operétion. Rather than present as
systematic and complete a representation as possible, attention kas been
given to relating the elements discussed so far. The rectangles represent
the major kinds of information in the system. ‘These may be viewed as memories.
The arrcws indicate processes that operate on one kind of information to pPro-
duce another. The small writing by these arrows relates these processes to
key words used earlier. Some of the main decisions are put in circles, since
it ma%es the diagram easier to follow. Th- programs for carrying out most
of these processes are the various nets, like the classification net. TFor

the sake of clarity, these are not shown as explicit kinds of information,

P-6:0
- 19 =
although they certainly occupy a large part of the computer's memory.

Fach sequence always starts with an opponent's move being received
(at the top). The process continues (downward) by a series of straight-
forward computations until the question is reached whether the situation is}
Yg00d enough™. This is the fundamental question. tIf the answer 1is yes, thé
machine has only to choose from among the available alternatives and play,
thus ending the sequence (down). So far the effort spent is nominal. If,
however, the answer is no, the machine proceeds to the modification and
extension of the goals and tactics (to the right and up). This part is of
indeterminant duration and effort and utilizes all of the complex apparatus
that has been built up. Following this, the machine again attemots to produce
a move (downward again). This is the fundamental cycle: to try to decide on |
a move with little effort, to modify the basis of decision, and to try again.
Finally, of course, a move is made and the sequence stops.

Lafiguage

It is necéssary to add a few comments about the general purpose language
required tc make a machine of this nature feasible. An essential feature of
this languase is its ability to refer to itself as well as to the "external"
chess situation. The only languages of this power of expression that have
been fcrmalized at all are those used in symbolic logic such as the calculus
of propositions (6). The one illustrated below is an adaptation for computer
use.

Each svmbol has a binary code, although for efficiency's sake, not all
have different codes. An expression, then, is a long sequence of zeros and
ones. The expression is decodable by proceeding from left to right: knowing
which symbols have been found so far rives sufficient information to deter-

mine how many bits to consider next and what class of symbols it belongs to.

P-6i
The following illustrates this, language., It is the translation of the

classification net exhibited earlier.

1. S EXxG(gs(i))(ctb(a(rO),x))

Y

3. N xM(a(ro) 2. 21
| \L
e S EX:xM(W)(cps(Ma(r0),x))

No Yes

« S 5. ZT1I

Consider expression 1 as an example. In toto it means, "Does the
action contribute to any goal?" A 4question in the symbolic language is a
sentence without its truth value. The machine interprets the missing value
as an instruction to determine it; that is, to obtain the answer to the
4uestion. Expression 1, then, starts with 'S' to identify itself as a
sentence. (Expression 3 has an 'N', and its value would be a ;umber).
"%X x G" means, "there exists an x which is a roal”. The "rs ()" in
parentheses gives additional soecifications on the range of x, The nachine
will only search gs(£) w-ich is the opponent's goal structure. The last

parentheses contains the predicate, "contribute” symbolized by "ctb".

P-4:0

- &2 -
Its arguments are first, an action, "a(r0)", the "roQ" standing for relative
time zero so the machine will always 109? at the current action; and then a
goal, "x", which is the variable over which the machine will search.

The machine interpretation and execution of such an expression runs
along lines very similar to those used in algebraic coding schemes. The
machine has programs for determining the truth or falsity of each individual
predieate, here only the "etb". Truth values are combined, with due regard
for orackets, by the laws of Mand", "or", and "not", depending on which occur
in the expression. It interprets "=X" as making the sentence true if for any
of the coals considered it obtains 'true! for ctb.

Learning

The section is limited to some remarks on the requirements for learning
and the votentialities for it that exist in the machine.

The large number of hizhly interrelated mechanisms involved in the
performance of the machine indicates a major difficulty. Censider the
hundreds of expressions which each determine a hishly specific rule of action.
How 15 it possible to have a set thaty actually fits together to preduce
effective chess play? The assumntion that man can discern which sets will
work seems rather untenable; there are toc many effects and hidden conse-
quences. Learning seems to offer a solution.

£t any given t'me the machine has a set of expreséions, which work
tolerablv well over some restricted range of environments. The machine
generates a few extensions or modifications to its current set. These are
incormorated if their use provides an improvemert in perf rmance. The
features to note about this learning process are first, that it gradually

extends the set of expressions and second, that expressions get admitted

P-6.0
- &k -

only‘if they "fit in" with the others already there. Thus, given that an
approoriate training sequence of ~ames are played, the machine ﬁill grow
itself a set of expressions of sufficient complexity to play good chess.
Manv of the mechanisms necessary to provide this learning are already
in the machine. First, it is necessary to measure the effects of one
mechanism on another. The machine is already able to perform any test or
measurement given by a network of expressions. All that is required is that
the expressions refer to the appropriate internal parts of the machine and
ask the right questions. The language is powerful enoush to do this. These
nets also allow diagncsis of which parts of a complex mechanism are causing
the undesirable effects. Memory is needed to keep performance records, and
mechanisms are needed to collect and classify these records; all of which
are already possible. The p§ssibilities for new nechanisms are limited
only by the modes of expression of the languape, since the specific behavior
of the performance system is determined by the content of expressions.
Finally, the search for new mechanisms is guite similar to obtaining sﬁbgoals
for goals. That is, there would be sets of transformation rules to givaf%he
types of modifications that might prove useful for a given type of expressicn.
The problem of sample sizé.requires mention: How large a sample of
experience is necessary to obtain learning? Or better: How much informa-
tion about the effects of behavior is necessary to successfully modify the
behavior? Chess affords a good example of this problem. It is extremely
doubtful whéether there is enough information in "win, lose, or draw" when
referred to the whole play of the gamé to permit any learning at all over
available time scales. There i3 too much behavior. For learqing to take

place each play of the rame must yield much more information. This is

P-AL0

- 23 -
exactly what is achieved by breaking the problem into components. The unit
of success is the goal. If a goal is achieved its subgoals are reinforced;
1f not, they are inhlbited. (Actually, what is reinforced is the transfor-
mation rule that provided the subgoal.) This is so whether the game is
ultimately won or lost. Each play gives learning information abopt each
goal that is generated. This also is true of the other kinds of sttucture:
every tactic that is created provides information about the success or
failure of tactic search rules; every opponent's action provides information
about success or fallure of likelihood inferences; and so on. The amount of
information relevent to learn ng increases directly with the number of
mechanisms in the chess playing machine.

Conclusiecn
"A3 every design engineer knows, the only difference betwesn a good

design and the actual machine is time and effort.” This adage is a byword
' in the field of robots and thinking machines. The scheme prsanted here is
not far from a "pood design.” One can ostimate the man hcurs necessary to
draw up the detailed flow diagrams from which machine coding follows as
routine chere. 3ut this is not sufficient. These mechanisms are so comnli-
cated that it is impossible to predict whether they will work. The justifi-
cation for the présent article is the intent to ses if in fact an organized
collection of rules of thumb can pull itself up by its tootstraps and learn

to play good chess.

1.

References

Shannon, C. E. Programming a computer for playingjchess. Phil..Mag.

1950 13 31L «56-&75

Weinberg, M. Mechanism in neurosis. Amer. Scientist. 1950 39 7}

Richards, P. I. On game learning machinss. Scientific Mon.

195 7L L £01-205

i

Strachey,. 5. 3. Logical or non mathematical programmes. Proc. Ass.

Computing Machinery. Toronto. 1952 16-);9

ven Neumann, J. and Morgenstern, O. Theory of games and economic

behavior (ind ed). Princeton: Princeton University Press 19)7.

Carnap, R. Logical syntax of language. New York: Harccurt, Brace,

and Co. 1937

‘input

OPPONENTS classify OPPONENTS
o .
MOVE GOAL S
eliminate
useless branches likelihoods
CURRENT tactic
TACTICS | Search
%Sc‘a?ncga\é\c%tion atilities
AVAILABLE MACHINES
ALTERNATIVES GOALS
t tep by step transformation
ggsﬂr:}{%\)r({v go%rw)pu;:/ft\gn rules
EVALUATION which
FOR EACHALT Lactic
diagnose
tacticsggoals

yes

MACHINE'S

MOVE

* output

choose best”
alternative

e /.

cor Pre-oo.emdzvce Srsresr

_Scmarmvarc Feonw Drag&mRrany

	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

