PROGRAMMING THE LOGIC THEORY MACHINE

BY
A. NEWELL anp J. C. SHAW

Reprinted from the PROCEEDINGS OF THE WESTERN JOINT CoMPUTER CONFERENCE
Los Angeles, California, February 1957

PRINTED IN THE U.S.A.

Programming the Logic Theory Machine”

A. NEWELL?Y anp J. C. SHAWY

INTRODUCTION

COMPANION paper! has discussed a system,
A called the Logic Theory Machine (LT), that dis-

covers proofs for theorems in symbolic logic in
much the same way as a human does. It manipulates
symbols, it tries different methods, and it modifies some
of its processes in the light of experience.

The primary tool currently available for studying
such systems is to program them for a digital computer
and to examine their behavior empirically under varying
conditions. The companion paper is a report of such a
study of LT. In this paper we shall discuss the pro-
gramming problems involved and describe the solutions
to these problems that we tried in programming LT.

The aims of this paper are several. First, it serves to
amplify and make more precise its companion paper.
Second, progress in research on complex information

* This paper is part of a research project being conducted jointly
by the authors and H. A. Simon of Carnegie Institute of Technology.
All of us have shared in the development of most of the ideas in
the language.

t The RAND Corp., Santa Monica, Calif.

1 Newell, Shaw, and Simon, this issue, p. 218.

processing demands a heavy investment in technique.
It is not sufficient simply to specify a rough flow dia-
gram for each new system and to program it in machine
code on a one-shot basis. We hope this paper not only
shows the techniques and concepts we found useful, but
also emphasizes the role played by flexible and powerful
languages in making progress in this area.

Finally, LT is representative of a large class of prob-
lems which are just beginning to be considered amenable
to machine solution; problems that require what we
have called heuristic programs. A description of the
problems encountered in LT may give some first hints
about the requirements for writing heuristic programs.

NATURE OF THE PROGRAMMING PROBLEM

To avoid too much dependence on the companion
paper, we will repeat a few general statements about
LT in the context of programming. LT is a program to
try to find proofs for theorems in symbolic logic. In this
type of problem, a superabundance of information and
alternatives is provided, but with no known clean-cut
way of proceeding to a solution. These situations require
“problem-solving” activity, in the sense that one has no

Newell and Shaw: Programming the Logic Theory Machine

path to the solution at the start, except to apply vague
rules of thumb, like “consider the relevant features.”
Playing chess, finding proofs for mathematical theorems,
or discovering a pattern in some data are examples of
problems of this kind. Occasionally, as in chess, one can
specify simple ways to solve the problem “in principle”
—given virtually unlimited computational power—but,
in fact, limitations of computing speed and memory
make such exhaustive procedures inadmissible.

LT, as an example of a heuristic program, may be
expected to yield some clues about constructing this
type of program. Actually, LT is still very simple com-
pared to the complexity in learning, self-programming,
and memory structure that seem necessary for more
general problem solving. Thus, we think that LT under-
estimates the flexibility and programming power re-
quired in complex problem-solving situations.

Perhaps the most striking feature of LT when com-
pared with current computer programs is its truly non-
numerical character. Not only does LT work with other
symbols besides numbers, but many of its computations
either generate new symbolic entities (i.e., logic expres-
sions) that are used in subsequent stages of solution, or
change the structure of memory. In contrast, in most
current computer programs, the set of entities that are
going to be considered (the variables and constants) is
determined in advance, and the task of the program is
to compute the values of some of these variables in
terms of the others. Such forward planning is not possi-
ble with LT. Although there are fixed entities in LT—
which remain constant over the problem and provide a
framework within which the computation takes place—
these are complex affairs, rather than symbols. An
example of such an entity is a list of subproblems. The
elements on this list are variable: each problem is a logic
expression which is generated by LT itself and may
carry with it various amounts of descriptive informa-
tion. The number, kind, and order of these logic expres-
sions are completely variable.

The program of LT is also very large. There are large
numbers of different features under consideration and
large numbers of special cases. All of these features and
cases require special routines to deal with them, and,
by a kind of compounding rule, the existence of numer-
ous subroutines requires yet other subroutines to inte-
grate them. This is further compounded in LT, because
no one way of proceeding ensures solution of a given
logic problem, and hence, many alternative subroutines
exist. Their existence again implies routines to choose
among them. Some reduction in the total size of the pro-
gram is achieved through multiple use of routines, but
this increases the complexity of the subroutine structure
considerably. The hierarchies of routines become rather
large: 13 or 14 levels are common in LT.

Another characteristic of LT is its use of information
about the workings of the program—how much memory
is being used for particular purposes, and how much
effort is allocated to various subprocesses—to govern
the further course of the program. LT uses such in-

231

formation in its “stop rules,” by which it passes from one
problem to another, and in its choice between recom-
puting and storing information. It is cheaper in terms
of total amount of computation to compute information
and then store it; LT does this as long as memory space
is available. When memory becomes scarce, LT shifts to
recomputing information each time it is needed.

LT also contains routines for recording the results of
its operation, so that we can study its behavior. It is
built to permit easy and rapid change of program, in
order to let us study radical program variations. These
additional features do not add anything qualitatively to
the features mentioned above, but they do add to the
total size and complexity of the program.

Requirements for the Programming Language

We can transform these statements about the general
nature of the program of LT into a set of requirements
for a programming language. By a programming lan-
guage we mean a set of symbols and conventions that
allows a programmer to specify to the computer what
processes he wants carried out.

Flexibility of Memory Assignment:

1) There should be no restriction on the number of
different lists of items of information to be stored. This
number should not have to be decided in advance; that
is, it should be possible to create new lists at will during
the course of computation.

2) There should be no restriction on the nature of the
items in a list. These might range from a single symbol
or number to an arbitrary list. Thus, it should be possible
to make lists, lists of lists, lists of lists of lists, etc.

3) It should be possible to add, delete, insert, and re-
arrange items of information in a list at any time and in
any way. Thus, for example, one should be able to add
to the front of a list as well as to the end.

4) It should be possible for the same item to appear
on any number of lists simultaneously. -

Flexibility in the Specification of Processes:

1) It should be possible to give a name to any sub-
routine, and to use this name in building other sub-
routines. That is to say, there should be no limitation
on the size and complexity of hierarchies of definitions.

2) There should be no restriction on the number of
references in the instructions, or on what is referenced.
That is, it should be possible to refer in an instruction
to data, to lists of data, to processes, or what not.

3) It should be possible to define processes implicitly;
e.g., by recursion. More generally, the programmer
should be able to specify any process in whatever way
occurs naturally to him in the context of the problem.
If the programmer has to “translate” the specification
into a fixed and rigid format, he is doing a preliminary
processing of the specifications that could be avoided.

4) It should be unnecessary to have a single inte-
grated plan or set of conventions for the form of infor-
mation; that is, for symbols, tags, orderings, in lists, etc.

232

On the other hand, it should be possible to introduce
conventions locally within parts of the problem when-
ever this will increase processing efficiency.

These requirements are neither precise nor exhaus-
tive. Except in a world where all things are costless,
they should not be taken as general programming re-
quirements for all types of problems. They characterize
the kinds of flexibility we think are needed for the sorts
of complex processes we have been discussing.

Solutions of the Program Language Requirements for LT

The requirements stated above for LT were met by
constructing a complete language, or pseudo code,
which has the power of expression implied by the re-
quirements, but which the computer can interpret. A
first version of the language was developed independ-
ently of any particular computer and was used only to
specify precisely a logic theory machine.? A second ver-
sion is an actual pseudo code prepared for use on the
RAND JOHNNIAC,? and it is this version that we will
describe here. We have had about fifty hours of machine
computation using the language and hence, we can eval-
uate fairly well how it performs.

The present language has a number of shortcomings.
It is very costly both in memory space and in time, for
it seemed to us that these costs could be brought down
by later improvement, after we had learned how to ob-
tain the flexibility we required. Further, the language
does not meet the flexibility requirements completely.
We will comment on some of these deficiencies in the
final section of this paper.

The language is purely a research tool, developed for
use by a few experienced people who know it very well.
Thus a number of minor rough spots remain. Further,
we used available utility routines, fitting the format and
symbols of the language to a symbolic loading program

which already exists for]OHNNIAC. This loader ac-

cepts a series of subroutines coded in absolute, relative,
or symbolic addresses (symbolic within each routine
separately) and assigns memory space for them-

DESCRIPTION OF THE LLANGUAGE

The descriptipn of the language, which we shall call
IPL, falls naturally into two parts. First, we shall de-
scribe the structure of the memory and the kinds of in-
formation that can be stored in it. Then we shall de-
scribe the language itself and how it refers to informa-
tion, processes, and so on.

The Memory Structure

LT is a program for doing problems in symbolic logic.
Basically, then, IPL must be able to refer to symbolic
logic expressions and their properties. It must also be

2 A, Newell and H. A. Simon, “The logic theory machine,” IRE
TRANS., vol. IT-2, pp. 61-79; September, 1956.

¢ The JOHNNIAC is an automatic digital computer of the
Princeton type. It has a word length of 40 bits with two instructions
in each word. It®*fast storage consists of 4096 words of magnetic
cores and its secondary storage consists of 9216 words on magnetic
drums. Its speed is about 15,000 operations per second.

1957 WESTERN COMPUTER PROCEEDINGS

able to refer to descriptions of the expressions which are
properties only in an extended sense. For example, an
expression may have a name, or it may have been de-
rived in a given fashion, or by using a certain theorem,
and IPL must be able to express these facts. LT needs
to consider lists of expressions and lists of processes
used to solve logic problems, and there must be ways to
express these facts.

Elements: The basic unit of information in IPL is an
element. An element consists of a set of symbols, which
are the values of a set of variables or attributes. There
are different kinds of elements to handle the different
kinds of information referred to above. The two most
important elements are the logic element, which allows
the specification of a symbolic logic expression, and the
description, which is a general purpose element, used to
describe most other things, and which carries with it its
own identification.

Each element fits into a single JOHNNIAC word of
40 bits. The symbols are assigned to fixed bit positions
in the word, so that the element is handled as a unit
when it comes to moving information around, etc. Each
variable and symbol has a name which is used in IPL to~
refer to it. The name of a symbol is the address of a
word that contains the appropriate set of bits. Sin‘ce
JOHNNIAC has instructions corresponding to the logi-
cal “and” and complementation, the name of a variable
is the address of a word that holds the mask necessary

to extract the bit positions corresponding to the

variable.
Logic elements are the units from which logic expres-
sions are constructed. Fig. 1 shows what variables and

>

[0

(bits) 3 3 12 . 5 9 3 170
)
41G|C A % N P Q
%
G Number of negation signs
C Connective, (or variable)
A Location of logic expression
N Name
P Position number
Q Level in expression

Fig. 1—Logic element.

symbols comprise a logic element. Expressions in sym-
bolic logic are much like algebraic expressions: each
element consists of an operation (called a “connective”
in logic) or a variable, together with the negation signs
(if any) that apply to it. We use a parenthesis-free nota-
tion, in which the position of each element in a logic
expression is designated by a number—this number,
therefore, being one of the symbols in the element. For
example, the logic expression p—(—q v p) would be
represented by five elements as shown in Fig. 2. Each
logic element consists of six variables (each taking on a
variety of values) all of which fit into a single word :
the number of negation signs, the connective, the loca-

Newell and Shaw: Programming the Logic Theory Machine

p—=(~qVp)

R —

Fig. 2—Logic expression.

tion of the list which holds the entire logic expression of
which this is an element, the name of the variable, the
position number, and the number of levels down from
the main connective.

Description elements consist of two symbols, as shown
in Fig. 3. There are many different types of descriptions,

(bits) 6 12

DN v

DN Description name

V Value of description

Fig. 3—Descripfion element.

such as the name of a logic expression, the method used
to derive a logic expression, or the number of different
variables appearing in a given logic expression, and each
type has a name. The left-hand symbol in the element
gives the name of the type of description. The right-
hand symbol gives the value of this description for some
logic expression with which this description is associ-
ated. Thus, for example, in considering a certain logic
expression the description element 012-L082 might be
found. The 012 indicates that this description element
gives the method used in deriving the expression, and
the 1082 is the name of the actual method used, in this
case, the method of detachment.

Lists: Lists are the general units of information in the
memory. A list consists of an ordered set of items of in-
formation. Any item on a list may be either a list or an
element, and these are fundamentally different types of
units, as we shall see later (the difference arises mostly
from the fact that an element is contained in a single
JOHNNIAC word). Since a list is itself an ordered set
of items which may themselves be lists, we obtain most
of the flexibility we desire in the memory structure.
There is no limit to the complexity of the structures that
can be built up, provided that one knows how to use
them, except the total memory space available. Also,
there is no restriction to the number of lists on which
an item can appear. For example, if we have a list of
items, we can construct one or more indexes (lists) on
each of which an arbitrary subset bf the items of the
original list appears.

With each item located in a given list we may associ-
ate descriptive information without disturbing the gen-

233

eral structure of the lists. That is, each item can have a
list of description elements associated with it. As many
descriptions may be put on the list as desired, and, since
they are self-identifying (by means of the description
names they contain) they may be put on in any order.
Descriptions are associated with the item on a given list;
hence, if an item is on several lists, it can have several
distinct description lists.

Forming Lists: This memory structure has most of
the flexibility that we specified earlier as desirable.
There are information processes that can create new
lists at any time; or that can add items to a list at any
time, either in front, in back, or in some relation to other
locatable items in the list. Likewise, items can be de-
leted from lists at any time, or moved from one list to
another, or simply “adjoined” to a new list without
being deleted from the old one.

All this flexibility in the memory is achieved by the
single expedient of divorcing the ordering relations
among items of information from the ordering relations
built into the address structure of the computer mem-
ory. Let us sketch how this is done in JOHNNIAC for
IPL. :

To form a list, we use a set of location words, each con-
taining two addresses. One address locates an item on
the list, the other address locates the next location word.
Fig. 4 shows how this is done for a list of three elements.

*’LocénionT |Locbtion] |Locdtion| l -1 I

I Element I lElemean I Element]

Fig. 4—List of elements. The left half of the location word contains
the address of the next location word (single arrow); the right
half contains the address of the element (double arrow).

A location word holding a negative number serves to
terminate the list. Since the JOHNNIAC word holds
two instructions and hence, contains two addresses, it is
very convenient for this scheme. The left address is the
address of the next location word, the right address is
the address of the item on the list. In order to permit the
general list structure indicated earlier, each location
word contains a code telling whether the item it refers
to is an element (001), in which case it contains informa-
tion, or a list (000), in which case it is the beginning of
another list; i.e., of a series of location words. Fig. 5
shows a general list containing both elements and lists.
Each item on a list is uniquely determined by one of
the location words. To associate a description list with
this item, we insert a location word for the description
list right behind the location word of the item with
which it is to be associated. We use a code 002 to dis-
tinguish the location word of the description list from .
the location word of the next item. Since a description
requires only half a word to hold its two attributes, we
put the location of the next description in the list in the
other half of the same JOHNNIAC word (Fig. 6).-

A 4
Lists [ool [ool
|
List C

Element

Fig. 5—General list. List B is the second item on list A; list Cflis
the third item on list B.

item A
ltem A Description list

—rom }——-roozgl»——l ool J"’
[Ele:\eﬂ | [Etement]
L

Fig. 6—Description list. The description list for item A is inserted
immediately behind item A, and distinguished from the next
item, B, by a 002 location word.

Item B

Dval

The address of the next item or location word in a list
need bear no particular relation to the address of a given
location word; they need not be adjacent, for instance.
Hence, an item is deleted from a list simply by deleting
its location word. Suppose, as in Fig. 7, we have three

Deleted

Fig. 7—Deletion of an item from a list. Item B deleted by chang-
ing address in location word of A to refer to location word of C.

items, A, B, and C, on a list. To delete B, we simply
change the address in the location word of A to refer to
the location word of C. Because of this same freedom of
position of the words in a list, location words on differ-
ent lists may hold the address of the same item of in-
formation. Hence, a single item of information may be
on as many lists as we please.

1957 WESTERN COMPUTER PROCEEDINGS

Perhaps the major problem in creating a flexible
memory is the housekeeping necessary to make avail-
able unused words after they have become scattered all
through the memory because of repeated use and reuse.
When a word is deleted from a list, we must be able to
“recapture” this word, in order that it may be used sub-
sequently for other purposes. The association memory
(the name we use for this type of memory) starts with
all “available space” on a single long list, called the
available-space list. Whenever space is required for build-
ing up a new list, this is obtained by using the words
from the front of the available-space list, and whenever
information is erased and the words that held it become
available for use elsewhere, these words are added to
the front of the available space list. In Fig. 7, the dele-
tion process would be completed by tying all of the de-
leted words into a list and attaching this at the front of
the available-space list. Thus, the fact that unused
space is scattered all through the memory creates no
difficulty in finding new space, for there is a single
known word (the head of the available-space list) that
always contains the address of the next available word.
Hence, the use of the memory is not complicated by any
natural ordering like the natural sequence of machine
addresses.

Since all lists obtain their new space from the same
list, the only restriction on amounts or degrees of com-
plexity of lists is the total size of memory. Thus, it is
clear why there are no separate limits to the number of
lists, their maximum size, how “stacked” up they can
be, and so on. In this sense the language is easy to learn
and use.

Language Structure

The basic form of the language is the same as in all
current programming languages. The terms of the lan-
guage are insiructions. Each instruction specifies a com-
plete information process; that is, it can be followed by
any other instruction. Thus, the syntax of the language
is basically identical with that of machine codes or flow
diagrams: sequences of instructions are carried out in
succession, with conditional transfers of control to per-
mit alternative subsequences to be carried out as a
function of the process. (IPL is slightly more general
than this, as will be seen subsequently.) Also, as is usual
in this general type of language, each instruction speci-
fies separately: 1) an operation and 2) the information
upon which it operates.

In IPL, a program—e.g., LT—is a system of sub-
routines. Each subroutine is a sequence of instructions.
Each IPL instruction is defined by a subroutine (more
precisely, each particular occurrence of an instruction
has its operation part carried out by some subroutine),
usually called the defining subroutine of the instruction.
Subroutines may be written either in JOHNNIAC ma-
chine language or in IPL (whenever “routine” is used in
this paper it always means IPL routine, unless stated
otherwise). Correspondingly, there are two kinds of
IPL instructions; primitives, whose defining subroutine

Newell and Shaw: Programming the Logic Theory Machine

is written in machine language, and higher instructions
whose defining subroutine is written in IPL.

The system of subroutines is organized in a roughly
hierarchical fashion. There is a “master routine,” each
instruction of which is defined by another routine; the
instructions in these subroutines, in turn, are defined by
yet other subroutines, and so on. Eventually, primitive
instructions are reached, and their defining subroutines,
which are in machine language, are executed.

Instructions: Fig. 8 shows a typical instruction for-

o) |
. L0992 2 |

100

2 3
Z037 I 0

Fig. 8—Typical IPL instruction. The small numbers over the half
words give the number of the reference place.

mat. An instruction is a vertical sequence of JOHN-
NIAC words; a routine is a vertical sequence of instruc-
tions. Each half-word in an instruction is a reference
place, the first being numbered 0, as shown in the
figure. There may be any number of reference places in
an instruction, and the number need not even be con-
stant from one use of the instruction to another, pro-
vided that the subroutine which carries out the opera-
tion understands how to use the references. Each refer-
ence states (by code): 1) the type of reference (the small
space on the left side of each reference) and 2) the
reference. All references are to elements; hence, to refer
to a list in an instruction, it is necessary to refer to an
element that refers to the list.

There are three types of references (coded 0, 1, 2).
Type 0 gives the location of an element in memory by
specifying either the absolute or relative address of the
word containing the element. Type-0 references are used
for the fixed names of things, like constants (Z037) or
subroutines (L.092). Within each routine, instructions
are located by symbolic addresses (such as * 32) which
are also of type 0. In this scheme there is no general way
to make reference in one routine to an arbitrary instruc-
tion in any other routine, although there are some im-
portant special ways of referring from one routine to
another which are considered below.

Each subroutine has its own working storage, consist-
ing of an indefinite number of elements. These are re-
ferred to by type-1 references: 1-0, 1-1, 1-2, - - - . When
a subroutine is completed, these working-storage ele-
ments are automatically erased and made available for
reuse.

As stated above, each subroutine carries out the oper-
ation for the instruction it defines, called the higher in-
struction of that subroutine. Since this higher instruc-
tion has variable references that differ with each occur-
rence of the instruction, some way must exist of referring
to these variable values within the defining subroutine.
This is done by the type-2 references. The symbols

235

2-0, 2-1, 2-2, - - -, in a subroutine refer to the reference
places 0, 1, 2, - - -, of the higher instruction defined by
the subroutine. Thus, the type-2 references are indirect, .
referring to an element by referring to a reference place,
that, in turn, refers to the element. The situation is
shown in Fig. 9, where a given routine, L081, uses an

Losl Routine LO8I Defining
working memory using LOSS subroutine
for LO55
o] o
2-3 refers to E vio
LOSS reference place 3
2 3 Lo92| 2-3
1-2 refers to
2 working memory 2
which contains E 2 3
ko™

Fig. 9—IPL Type 2 reference.

instruction, L.O5S, which is a higher instruction. Thus,
L0535 is defined by a subroutine, part of which is shown
further to the right. In the working memory of L081,
shown at the far left, the element E is located in cell 2.
The instruction L05S refers to E by using symbol 1-2 in
reference place 3. The instruction 1.092, which is in the
defining subroutine of L0535, refers to E by 2-3.

The first reference place (number 0) in an instruction
determines the operation; or, more precisely, refers to
the subroutine that will carry out the operation. All
other reference places may refer to anything needed by
the subroutine. Thus, an instruction is simply a format
for a general process that is a function of an arbitrary
number of variables.

Execution of Instructions: Access is gained to the sub-
routine that defines an operation by reference to an ele-
ment which contains the location of that subroutine.
These elements are normally collected in a directory
(the Lxxx region), but may be put on lists and processed
like other elements.

From the point of view of coding for JOHNNIAC,
the language is entirely interpretive. When the inter-
preter picks up an IPL instruction, it obtains the address
of the directory element from reference place 0. Besides
giving the location of the defining subroutine, the direc-
tory element tells whether the instruction is a primitive
or a higher instruction.*

In case an instruction is a primitive, the defining sub-
routine is in machine language, and the interpreter
transfers control to it. This subroutine then either moves
the referenced elements into fixed positions or adapts its
instructions to the addresses of the referenced elements,
and carries out the operation. Upon finishing it returns
control to the interpreter.

The directory element also gives other information which is de-
scribed in the section, “Other Details.”

236

In the case of a higher-level instruction, the defining
subroutine is also written in IPL and requires further
interpretation. To interpret the subroutine, the interpre-
ter sets up several lists (obtaining space for these from
the available space list). The first list contains the
referenced elements in the instruction; it is the “2” list

from the point of view of the subroutine. The second list .

is the “1” list, which will hold the working memory ele-
ments, as they are set up in the subroutine. Finally, be-
fore beginning to interpret the subroutine, the inter-
preter must add to the next-instruction list the location
of the instruction following the one it is currently
interpreting.

Within the subroutine the interpreter picks up the
first instruction and repeats the process described above.
Thus, no matter how many levels there are in the hier-
archy, the interpreter continues to set up the lists
described above for each successive subroutine until it
reaches a primitive instruction. After the primitive is
executed, the interpreter proceeds to the next instruc-
tion in the lowest subroutine. When this subroutine is
* completed, the interpreter backs up to the next lowest
subroutine, and so on. In operation, the memory struc-
ture for interpretation looks like a gigantic yoyo: lists
of references are set up successively one “below” another
as the interpreter goes down in search of a primitive, and
then these lists are erased again in reverse order as the
routines they correspond to are finished.

Primitive Processes

So far we have described only the outline of a
“language—the structure of memory and the format of
the instructions. The power of the language to express
complex processes depends on the set of primitive proc-
esses out of which all the others must be built.

The set of primitives in IPL is built to reflect the
principle that the programmer should need to know as
little as possible about the storage of information in
memory. One of the clear lessons from programming
experience is that small differences in what the program-
mer must know about the information in memory have
important consequences for ease of programming. Much
of the power of automatic computation derives from the
fact that in order to program it is sufficient to know only
the location of a number, and not the number itself.
Further, large gains in ‘programming efficiency have
come from allowing the programmer to know this loca-
tion only as a symbol or a relative address, rather than
as an absolute address.

In IPL an attempt was made to carry this principle
one step further. The concept of working memory, al-
ready encountered earlier, is used to divide the memory
into two parts, so that all the intricate processing is done
in working memory. The remaining memory, which we
shall call the list memory, is used for permanent storage
of information. This division of memory separates the
primitive operations into two groups. One group of
operations finds information in the list memory, makes
it available in the working memory, and stores it back

1957 WESTERN COMPUTER PROCEEDINGS

in the list memory again. The other group of operations
processes information in working memory. There are
also primitive operations for input and output, which
will be discussed in the next section.

Working-Memory Operations: The primitives for
processing information in working memory are roughly
similar to typical machine instructions for a two-address
computer. An example will make this clear. Fig. 10

o] i
[100 ! LOIS l
2 3

()) B

Fig. 10—IPL addition instruction.

shows a typical occurrence of L015, the addition in-
struction. The instruction adds a value stored in work-
ing memory 1-0 to a value in working memory 1-1.
Since a working memory holds an entire element, which
is a collection of attribute values, it is necessary to
indicate which attribute is being added; the Z012 in
reference place 1 designates this. Z012 is the name of an
attribute: in this case the number of negation signs of
a logic element. Hence, this instruction reads, “add the
number of negations in the element 1-0 to the number of
negations in element 1-1, and place the result in 1-1.”
This type of instruction requires the programmer to
know what information is in the working memory ele-
ments and defines some elementary process involving
two of them.

The set of primitives for processing information in
working memory includes addition and subtraction in-
structions; test instructions for equality and inequality
with a conditional transfer of control to some other part
of the subroutine; and instructions for copying informa-
tion from one working memory to another. All of these
instructions use a reference, like the Z012 in the exam-
ple, to designate which attributes in the element are
being considered.

Find and Store Operations: The find and store instruc-
tions, which pass information between list memory and
working memory, are quite different in nature from the
instructions discussed above. To avoid having the pro-
grammer know anything in detail about the location of
information in the list memory, all the find and store in-
structions take the form of searches through a list with
tests to identify the information desired.

An example will make this clear. Referring back to
Fig. 8, L092 is a primitive find instruction that obtains
information about a logic expression. A logic expression
is stored as a list of elements (see Fig. 2) in the list
memory. The order of symbols in a logic expression 1is
specified by position numbers and is unrelated to the
ordering of the elements in the list. Given the position
number of a logic element it is easy to compute the posi-
tion number of the element that is in any given relative
position to it, say, its left subelement. 1.092, then, is an
instruction that finds an element in a logic expression

Newell and Shaw: Programming the Logic Theory Machine

which bears a specified relative position, (e.g., Z037) to
some element (e.g., in 2-1) already known, and that puts
it in a working memory (e.g., 1-0) where it can be proc-
essed further. Thus, the programmer only has to know
that the element he wants bears a given relation to some
known element, and he need know nothing about the
actual location of this element in the list or about the
rest of the logic expression. Each logic element carries
as one attribute the location of the list of the logic ex-
pression containing it, so this does not have to be found
separately. Typically, when an element is called for by
an instruction, it is not known whether the desired ele-
ment even exists; hence, L.L092 provides a conditional
transfer of control if the desired element is not found.
This particular instruction is written as a primitive be-
cause the programming problem it solves—to find a
logic element bearing a given relation to a known logic
element—occurs repeatedly in LT.

The instructions for finding descriptions provide a
second example of how the instructions concerned with
the list memory use search and test processes. As stated
earlier, a list of description elements can be associated
with any item in a list. An instruction to find a descrip-
tion requires the programmer to know the item to which
the description applies. The programmer must also
know the name of the description he wants. The opera-
tion then searches the list for the item, and when it finds
it, searches the description list associated with that item
for the description with the indicated name. Again there
is no guarantee that the item is on the list, that the de-
scription is on the description list, or even that a descrip-
tion list exists; and the failure to find the desired de-
scription is signaled with a conditional transfer of
control.

Like the find instructions, none of the store instruc-
tions depend on the precise location of an item in a list.
A typical store instruction is 1.023, which moves de-
scriptions from working memory to the description list
of a known item on a known list. L023 searches the list
until it identifies the item, then searches down the de-
scription list until it identifies the description name of
the description it is storing. If it finds it, it stores the
new value; if it does not find it, it stores the description
as a new item on the description list. L023 must also be
prepared to set up a description list in case it does not
find one at all. One of the important features of the de-
scriptions is that no space needs to be reserved for them
until they are actually created.

Other Processing Instructions: Besides find and store
instructions for the various types of lists, there are in-
structions for erasing lists, for creating lists, and for
moving items from one list to another directly. There is
no erasing problem in the working memory, since work-
ing memory elements are erased automatically when a
subroutine has been carried out. In erasing items from
lists, the instructions require only that the programmer
know what item is to be erased and on what list it oc-
curs, but not its location on the list. Likewise, the pro-
grammer does not have to know anything at all about

237

the structure of a list to erase it, but only where it
starts. The erase operations are constructed to explore
all possible extensions of a list and erase them all.

Other Details

No attempt has been made with this language to
build a repertoire of service routines or to make input
and output exceptionally convenient. For output, the
JOHNNIAC has either punched cards or a high-speed
numeric printer, but we use the printer almost ex-
clusively. There is a “print list” primitive, which prints
any list however complicated and extensive. This single
primitive essentially suffices for our output needs, since,
if we have several lists we wish to print, we simply put
them on a new superordinate list in the right order, and
apply the “print list” instruction to this superordinate
list. The instruction then prints out the several lists in
the indicated order. We can suppress all the location
words, so that only the items of information print.

JOHNNIAC has punched-card input. We use a card
format for giving an arbitrary list to the computer, so
that a single “read list” primitive suffices for data input.
The program input is handled by the symbolic loading
routine mentioned earlier.

The use of the interpretive mode for the language al-
lows the computer easy access to its own process. As a
matter of course we trace the IPL instructions that are
being performed. The trace can be selective, each direc-
tory element indicating whether the trace of that in-
struction is to be printed or not. What is printed is the
name of the subroutine (7.e., the relative address of the
directory element) indented according to its level in the
hierarchy of routines. Since we wish to study the course
of the processing as well as end results, the trace is a
prime source of data.

Also as a matter of course, we keep tallies of the num-
ber of times each instruction is performed, both for our
use as data and for the program'’s use in operating. The
directory element also tells the address of the tally. For
example, LT allocates its effort by using such tallies to
see how much effort it has devoted to a given problem.

The devices mentioned above provide us with some
debugging facilities. Since all the information connected
with the hierarchy of routines is on lists (see the section
on the language structure), we can print a single debug-
ging list which contains these plus a number of other
lists as items. The printing of this list (with all location
words being printed) gives us most of the information
we need. We also use the tracing with a selective sup-
pression of details to aid in debugging. This procedure
traces all instructions within the subroutines of interest,
and none of the instructions in those of no interest.

The JOHNNIAC’s 4096 words of high-speed,
random-access core storage is not adequate for a pro-
gram and data lists of this size. LT in operation has
about 1600 words of interpretive code, about 1600
words of machine code, and about 400 words of directo-
ries, constants, etc.; hence, a total storage of about 3600
words for the program alone. We have been forced to

238

utilize secondary storage, which for JOHNNIAC, is a
drum of 9216 words. Storage hierarchies are notorious
for presenting difficult problems of accessibility, and the
type of program we are working with, with its avoidance
of consecutive blocks of words, simply compounds the
the difficulties. So far, we have used the drum only for
the program, and not for data; we are keeping almost
all the higher routines on it.

When the interpreter goes to the directory element of
a given instruction, it discovers whether the defining
subroutine is in cores, or on the drum. If the subroutine
is on the drum, it is fetched into the next available
stretch in a large consecutive block in core storage. As
the interpreter works down the hierarchy, more and
more subroutines are brought in from the drum and
gradually fill up this large block. Each subroutine re-
mains intact until it is finished, but no attempt is made
to plan or schedule trips to the drum. As soon as a sub-
routine is completed it is “discarded” and the next rou-
tine from the drum is placed in the same stretch of the
core storage block.

EVALUATION OF THE LANGUAGE

The previous section has given a picture of the solu-
tions we tried in programming LT. We will now consider
more critically what this language accomplishes, and
what its shortcomings are.

Association Memory

We have made a great issue of the flexibility of
memory—the ability to create lists at will and to add
and delete items from existing lists. This has certainly
simplified a number of housekeeping tasks. For instance,
the entire structure involved in the hierarchy of subrou-
tines with their indefinite numbers of working memories
was easily handled by means of the association memory.
Similarly, in a primitive like “erase list,” which must
search out all items in a list of arbitrary structure, there
is a need to remember an indefinite number of junctions
in exploring the list. The flexible memory allows the
primitive to build up a list of these points of choice,
adding each new one to the front of the list.

We have made extensive use of the flexibility through-
out LT, the one major program we have written in IPL.
Our most complicated structure to date is a list of lists
of lists connected with a routine that modifies the list
of theorems used by LT as a function of experience.
This same structure also has theorems (a list of logic
elements) as items on multiple lists.

The association memory also has severe costs. The
most obvious cost is the extra memory space needed for
location words. Location words occupy about one half
of the list memory, since it takes one location word to
refer to each “item” word in a simple list. The propor-
tion of location words is not much greater than one half,
since the space devoted to simple lists greatly exceeds
the space devoted to the more complicated structures
that take additional location words. This cost factor is
rather difficult to estimate, however, since alternative

1957 WESTERN COMPUTER PROCEEDINGS

schemes for achieving the same total program are not
known. Any component comparison is somewhat mis-
leading, since the virtues of the association memory
arise from the avoidance of planning, of reserving blocks
of storage, and so on.

Another cost, which may be the more serious one, is
the loss of ability to compute addresses. In a computa-
tion which can be well laid out in advance, it is often
possible to assign addresses to data in such a way that
the addresses can be computed in a simple fashion. For
example, instead of searching a table for a function
value corresponding to a given argument, the address
of the function value can be made a simple function of
the argument, say the argument plus a constant, and
the value obtained almost without effort. This is not
possible with the association memory, where the only
function the address can perform is to designate the
location of another word in a list.

The Language Structure

Some of the flexibilities of the language structure have
provided greatly increased power in the language where-
as others have not. We have not made much use of the
variable number of reference places if one measures use
in terms of variability of that number. Most of our in-
structions have about four references: the operation
and three pieces of information. Both examples de-
scribed in this paper are of this size. Whenever a routine
exceeds about six references—one of the executive rou-
tines has 15—the references are not used as “variables”
but to transmit data. In the case of the executive rou-
tine, for example, the 15 references provide a convenient
place to hold all the parameter values for a run of LT.
On the other hand, we have used the variable number
of references considerably as a flexible communication
device up and down the hierarchy of routines. Thus, in
making changes in the program it is often convenient to
transform what was a constant into a variable. This can
be done simply by adding a new reference place to the
higher instruction and replacing the constant by a
type-2 reference, say 2-6, if the original instruction pre-
viously had only references 0 through 5.

We have used extensively the hierarchical properties
of the language—the ability to define new subroutines
in terms of old ones. The number of levels in the main
part of LT is about 10, ignoring some of the recursions,
which sometimes add another four or five levels. It
would be interesting to compare the size of the LT pro-
gram written in IPL and the program written in ma-
chine code. This is very difficult to do, since when
writing in machine language one makes use of sub-
routines, and even of subroutines of subroutines. Hence
there is no standard machine language program for
comparison. However, the following figures give a rough
approximation. IPL consists of about 45 primitive
instructions, which take an average of about 70
JOHNNIAC instructions each. Instructions are packed
two to the JOHNNIAC word, so the number of words
used is roughly 35 per primitive. In addition the ma-

Newell and Shaw: Programming the Logic Theory Machine

chine-language subroutines all include some initial code
either to position the words used by the subroutine, or to
adapt its instructions to the addresses of the words.
This can be an appreciable fraction of some of the
simpler primitives like 1.015, the addition instruction.
Further, these statistics do not reflect the fact that the
primitives themselves use a number of closed sub-
routines.

The LT program described in this and the companion‘

paper contains about 45 different higher instructions,
defined by 45 higher routines. A typical higher routine
contains about 16 primitives and two higher instruc-
tions. If we expand the entire hierarchy for LT, ignoring
recursions, we find that LT can be written as about 8000
primitives. Since the average primitive instruction
takes about two JOHNNIAC words to write, it is clear
that some hierarchization of subroutines is needed to
compress a program like LT into manageable size.

The fact that the operation part of an instruction is
a reference place like all the others, and can be treated
as such, gives additional power to IPL. An operation is
normally referred to by its “name,” which is the relative
address of the directory element that leads to the de-
fining subroutine; e.g., LO1S5, L092, etc. However, an
operation can also be referred to by a type-1 reference,
such as 1-3, if the correct element is in the working
storage. For instance, LT uses a set of routines, called
methods, which are, roughly speaking, alternatives to
one another, and are used in about the same way. There
is a list of methods, which is simply a list whose items
are the directory elements of the methods. The execu-
tive routine executes a method by searching the list
until it finds the desired one, bringing it into a working
memory (e.g., 1-3) and then performing an instruction
with 1-3 in the O reference place. If this method does not
work, the executive routine finds the next method and
repeats the process. Thus the executive routine is able
to perform a simple iteration over the set of methods.
We use this device also to compute sets of descriptions
of logic expressions.

We can also use a type-2 reference for an operation.
This essentially makes the operation a variable and de-

. pendent on information in the higher routine. This de-
vice is used in several places in LT, but only to allow
fixed specification at a higher level. We have no exam-
ples where the operation is determined by a computation
in the higher routine, although this is possible.

An entirely different kind of power arises from the
flexibility of the hierarchy—the ability to do recursions:
An instruction may be used in its own defining sub-
routine, or in any of the subroutines connected with its
definition, in any way whatsoever provided that the
routine does not modify itself and that the entire process
terminates. The restriction on self-modification is clearly
needed if the same routine is to be available at more
than one level. All the information necessary to carry
out the routine must be stored in the working memory,
which is set up separately for each occurrence of the
routine, and not within the routine. In LT there are no

239

higher routines that modify themselves. The impetus for
self-modification of routines usually arises from the use
of iterative loops. In LT all iterations are accomplished
by means of lists. A succession of elements is brought in
from a list to fixed working-memory references, and the
iteration terminates when the end of the list is reached.

There are two kinds of recursions in L'T. The matching
routine, which compares one logic expression with
another, is an example of the first kind. The routine
starts with the main connective of the expression and
proceeds recursively down the tree of the expression ele-
ment by element (see Fig. 2). The recursion is bound to
stop, since the number of elements in any expression is
finite. This recursion could also be expressed as an itera-
tion through the list of the expression, although perhaps
not so neatly.

A more fundamental recursion occurs at the highest
levels of the program. Here LT has an executive routine
which governs ‘its whole problem-solving behavior.
Within this routine, that is, at some lower level, are
methods that generate subproblems. Also within this
routine are subroutines that select the subproblem to be
worked on next. A subproblem does not differ from the
original problem with respect to the methods and tech-
niques used to solve it. Hence the appropriate program-
ming technique is to apply the entire executive routine
to the subproblem; that is, to perform a recursion with
the entire program. Such a recursive system will termi-
nate if a solution is found, but since no guarantee exists
that the problem will be solved there is no guarantee the
machine will stop. In LT we add such a guarantee sim-
ply by having LT stop after a certain total amount of
effort, a rather trivial but effective device.

The language also has its drawbacks. It is expensive;
the over-all average time for a primitive is about 30
milliseconds. JOHNNIAC performs an add order in
about 80 microseconds. Thus if we consider 1015, the
addition instruction, and compare it with a direct repli-
cation of its operation in machine language, we find we
lose a factor of about 60. This is one of the more ex-
treme cases. If we consider an instruction like 1.092,
which is typical of the list operations, the loss factor
drops to about 5. However, as in the case of the associa-
tion memory, a component comparison is somewhat mis-
leading, since all the virtues of the interpretive scheme
arise from its automatic handling of the entire problem.
For example, the hierarchy provides a way of keeping
track of some 50 words of data in process, and it would
seem that this information must be maintained if the
problem is handled in any other way. The appropriate
comparison is with an alternative way of coding a total
problem such as LT, and no comparable alternative
currently exists.

The large hierarchy with its multiple levels may seem
a very expensive feature. However, its cost appears to
be less than the cost of interpreting the primitives,
primarily because of the infrequency of higher routines
in comparison with the number of primitives. All the
higher instructions account for only about 10 per cent

240

of the total number of instructions interpreted, whereas
the unit cost of interpretation of a higher instruction is
only two and a half times as great as for a primitive
(about 50 ms to 20 ms). Thus interpretation of all the
higher routines accounts for less than 30 per cent of the
total cost of interpretation.

Additional Deficiencies of IPL

Experience in writing programs in IPL has revealed
a number of additional deficiencies. Perhaps the one
that strikes the programmer most is the artificiality of
the distinction between the element and the list. By
packing a set of symbols into a single JOHNNIAC word
we gain in memory space over schemes that use one full
word for each variable. The net result, however, is that
certain properties, those packed into an element, are
treated in one way, and others, those expressed by the
lists or by the description elements, are treated in an-
other. Elements are brought into working storage for
processing; since lists have various sizes and shapes,
they cannot be handled in this fashion. Information
that must be kept as a list is handled by indirect ref-
erence, through an element in working storage that
refers to it. Information that can be fitted into an ele-
ment is handled directly in working storage. For
example, an element and a one-element list must be
processed very differently in IPL.

A second deficiency is the restriction to certain forms
of referencing. IPL has great flexibility in the specifica-
tion of operations, that is, an operation can be specified
by giving an expression in the language for that opera-
tion. We have allowed no such flexibility in the specifi-
cation of the other references. There are only three ways
of giving the information to be used in a routine: by
giving the address of the element, the name of the work-
ing storage that holds the element, and the name of a
reference place that refers to the element. These meth-
ods allow certain indirect references, but they still lack
flexibility. A rather simple example, but one that is
typically annoying, occurs when we want to refer to a
name of a routine, that is, to a symbol like L082, which
is the address of a directory element. This symbol is used
in many places throughout the program, but there is no
simple way of getting to it. There is no reason why there

1957 WESTERN COMPUTER PROCEEDINGS

should be less power of expression for information ref-
erences than for operations. It should be possible to give
a reference by giving an expression for determining that
reference, just as is now done in IPL for operations.

There are other unsolved problems. For instance, we
have no satisfactory way of erasing in the association
memory. The problem is not how to delete items and
make their space available again, which we think is done
fairly well in IPL. The problem is how to know what
can be erased, since there is no direct way of knowing
what else in the system may be referring to the items
about to be erased. References are ditectional, so that
if location word A refers to item B, there is no way of
knowing this, when only the address of B is known.
Uniform two-way referencing seems to be an expensive
solution, although it may be the only one. In simpler
programs this erasing problem is handled by having the
programmer know at all times exactly what refers to
what. But if we move to programs in which all lists are
set up during operation by the program itself, such solu-
tions are not adequate, and the problem soon becomes
acute. ’

CoNcLUSION

IPL is an experimental language that was built to
find ways of achieving extreme flexibility. It was de-
veloped in connection with a particular substantive
problem—proving theorems in symbolic logic—which
requires great flexibility in the memory structure, and
powerful ways of expressing information processes.

The language achieved its purpose: we have a
running program for LT which has allowed us to explore
its behavior empirically with a number of variations.
On the other hand, the language is relatively crude,
viewed as a general language for specifying programs
like LT. It is very costly; it shows the “provincialism”
of too close a connection with symbolic logic; and it still
has a number of rigidities.

We believe that the basic elements of the language are
sound, and can be used as the ingredients of languages
having considerably greater powers of expression and
speed. We are currently engaged in the construction of
a new language patterned on IPL, which we hope will
serve us as a general tool for the construction and in-
vestigation of complex information processes.

gramming?

one, it then takes a look at the lower left

Discussion

L. P. Meissner (Nol, Corona): Do you
have a list of those lists which do not list
themselves?

Mr. Shaw: Without going further into
paradoxes except to say that there is not a
direct answer to this question, but the de-
bugging list does list itself.

P. Sayre (Northrop): Would you reiter-
ate or expand your remarks on the next ver-
sion especially with regard to automatic pro-

Mr. Shaw: No, except to suggest that
programming itself is a field of complex
information. Processing such is the field we
are studying.

J. Matlock (Douglas): Can you give an
example of a subroutine using itself?

Mr. Shaw: I think the best example of
this is the matching routine which is asked
to match one expression to another. The
first part of this routine merely looks at the
main connectives. If it is successful in
matching the given expression to the second

element of each expression and there again
it is faced with exactly the same problem as
it was faced with initially. Again the match-
ing routine is asked to match this expression.
So, at this point the routine recourses and
calls upon itself to match the expression it
is faced with to the second expression. Even-
tually, of course, it comes to the termination
on these trees and proceeds to back off. So,
it says, “I am done” to itself, reiteratively,
and then backs up to a certain point at
which it proceeds down the right branch.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12

