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SUMMARY

The Logic Theory Machine (called LT, see P-951)
represents a class cf non-numerical problems with quite
different programming requirements than either normal
arithmetic calculations or business data processing. The
storage requirements are extremely variable, with the
results of many computations being changes in the memory
structure. The program itself 1s a large, complicated
hierarchy of subroutines. For LT an intermedlate language
(interpretive pseudo code) was written for the RAND JOHNNIAC.
The paper first characterizes the programming problems
involved and then illustrates solutions to them by describing
the language.
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PROGRAMMING THE LOGIC THEORY MACHINE1

A companion paper2 has discussed a system, called the
Logic Theory Machine (LT), that discovers proofs for theorems
in symbolic logic in much the same way a human does. It
manipulates symbols, it tries different methods, and it
modifies some of 1ts processes in the light of experlence.

The primary tool currently available for studying such
systems is to program them for a digital computer and to
examine their behavior empirically ﬁnder varying conditions.
The companilon paper 1s a report of such a study of LT. 1In
this paper we shall discuss the programming problems involved,
and describe the solutions to these problems that we tried in
programming LT.

The aims of thls paper are several. First, 1t serves to
amplify and malke more precise its companion paper. Second,
progress in research on complex information processing demands
a heavy investment in technique. It is not sufficient simply
to specify a rough flow dlagram for each new system and to
program it in machine code on a one-shot basis. We hope this
paper not only shows the techniques and concepts we found
useful, but also emphasizes the role played by flexible and

powerful languages in making progress in thls area.

1. This paper 1s part of a research project being conducted
jointly by the authors and H. A. Simon of Carnegle Institute
of Technology. We have shared in the development of most

of the ideas in the language.

5. A. Newell, J. C. Shaw, and H. A. Simon, "Empirical
Explorations of the Logic Theory Machine," The RAND Corporation
P-051, January 11, 1957.
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Finally, LT is representative of a large class of
problems which are just beginning to be considered amenable to
maéhine solution: problems that require what We have called
heuristic programs. A description of the problems encountered
in LT may glve some first hints about the requirements for

writing heuristlic programs.

Nature of the Programming Problem

To avoid too much dependence on the companion paper, we
will repeat a féw general staﬁements about LT in the context
of programming. LT is a program to try to find proofs for
theorems in symbolic logic. In this type of problem a super—
abundance of information and alternatives are provided, but
with no known clean-cut way of proceeding to a solution.

These situations require 'problem-solving' activity, in the
sense that one has no path to the solution at the start,

except to apply vague rules of thumb like "consider the relevant
features." Playing chess, finding proofs for mathematical
theorems, or discovering a pattern in some data are examples

of problems of this kind. Occasionally, as in chess, one can
specify simple ways to solve the problem "in principle"” --given
virtually unlimited computational power--but in fact 1imi-
tations of computing speed and memory make such exhaustive

procedures inadmissible.
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LT,.as an example of a heuristic program, may be‘expected
to yield some clues about constructing this type of program.
Actually, LT is still very simple compared to the complexity
in learning, self-programming, and memory structure that seem
necessary for more general problem solving. Thus we think
that LT underestimates the flexibility and programming power
required in complex problem-solving situations.

Perhaps the most striking feature of LT when compared
with current computer programs 1ls 1ts truly non-numerical
character. Not only does LT wofk with other symbols besldes
numbers, but many of 1ts computations either generate new
symbolic entitiles (1.e., logilc expressions) that are used in
subsequent stages of solution, or change the structure of
memory. In contrast, in most current computer programs, the
set of entities that are going to be considered (the variables
and constants) is determined in advance, and the task of the
program 1s to compute the values 6f some of these variables
in terms of the others. Such forward planning 1is not
possible with LT. Although there are fixed entitles in LT=-
which remain constant over the problem and provide a frame-
work within which the computatlion takes place--these are
complex affairs, rather than symbols. An example of such an
entity is a 1list of subproblems. The elements on this list
are variable: each problem is a logic expression which

is generated by LT itself and may carry with it various
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amounts of descriptive information. The number, kind, and
order of these logic expressions is completely varlable.
The program of LT i1s also very large. There are large
numbers of different features under consideration and large
numbers of special cases. All of these features and cases
require special routines to deal with them, and, by a kind
of compounding rule, the existence of numerous subroutines
requires yet other subroutines to integrate them. This 1s
further compounded in LT because no one way of proceeding
ensures solution to a given logic problem, and hence many
alternative subroutines exist. Their existence again implies
routines to choose among them. Some reduction in the total
size of the program is achieved through multiple use of
routines, but this increases the complexlity of the sub-
routine structure considerably. The hierarchiles of
routines become rather large: 13 or 14 levels are common

in LT.

Another characteristic of‘LT is 1ts use of information-
abqut the workings of the program--how much memory is being
used for particular purposes, and how much effort is allocated
to various subprocesses--to govern the further course of the
program. LT uses such information in its "stop rules", by
which 1t passes from one problem to another, and in 1ts

cholce between recomputing and storing information. It 1is
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cheaper in terms of total amount of computation to compute
information and then store it; and LT does this as long as
memory space 1s avallable. When memory becomes scarce, LT
shifts to'recomputing the informatlon each time 1t is needed.
LT also contains routines for recording the results of
i1ts operation, so that we can study its behavior. It 1s
bullt to permit easy and rapild change of program, in order to
let us study radical program variations; . These additional
features do not add anything qualitatively to the features
mentioned above, but they dp add to the total size and
complexity of the program.

Requirements for the Programming Language

We can transform these statements about the general
nature of the program of LT into a set of requirements for a
programming language. By a programming language we mean a
'set of symbols and conventions that allows a programmer to
specify to the computer what processes he wants carried out.

Flexlibllity of Memory Assignment

1. There should be no restriction on the number of
different lists of items of information to be stored.
This numter should not have to be decided in advance--
that 1s, i1t should be possible to create new lists at
will during the course of computation.

2. There should be no restriction on the nature of

the 1tems 1n a list. These might range from a single
symbol or number to an arbitrary list. Thus it should



be possible to make lists, lists of lists, lists of
lists of l1lists, etc.
3. It should be possible to add, delete, insert
and rearrange items of information in a list at any
time and in any way. Thus, for example, one should be
able to add to the front of a list as well as to the end.
4. It should be possible for the same item to appear

on any number of lists slmultaneously.

Flexibllity in the Specilfication of Processes.

1. It should be possible to give a name to any
subroutine, and to use this name in bullding other
subroutines. That 1s to say, there should be no limi-
tation on the size and complexity of hierarchiles of
definitions.

2. There should be no restriction on the number of
references in the instructions, or on what is referenced.
That 1s, 1t should be possible to refer in an instruc-
tion to data, to lists of data, to processes, or what not.

3. It should be possible to define processes im-
plicitly, e.g., by recursion. More generally, the pro-
grammer should be able to specify any process in whatever
way occurs naturally to him in the context of the prob-
lem. If the programmer has to "translate” the specifi-
cation iInto a fixed and rigid format, he 1s doing a
preliminary processing of the specifilications that could

be avolded.



P-954
1-11-57

-7~

4. It should be unnecessary to have a single integrated
plan or set of conventions for the form of information--that is,
for symbols, tags, orderings, 1in lists, etc. On the other hand
it should be possible to introduce conventions locally within
parts of the problem whenever this will increase processing
efficiency.

These requirements are neither preclse nor exhaustive.
Except in a world where all things are costless, they should
not be taken as general programming requirements for all types
of problems. They characterize the kinds of flexlbility we
think are needed for the sorts of complex processes we have

been discussing.

Solutions of the Program Language Requirements for LT

The requirements stated above for LT were met by construct-
ing a complete language, or pseudo code, which has the power of
expression implied by the réquirements, but which the computer
can interpret. A first version of the language was developed
independently of any particular computer, and was used only to

specify precisely a loglc theory machine3. A second version 1s

an actual pseudo code prepared for use on the RAND JOHNNIAC”,

3A. Newell and H. A. Simon, "The Logic Theory Machine.” IRE
TRAESACTIONS on Information Theory, Vol. IT-2, No. 3, September
195¢6.

the JOHNNIAC 1s an automatic digital computer of the Princeton

type. It has a word length of 40 bits with two instructions in
each word. Its fast storage consists of 4096 words on magnetic
cores and its secondary storage consists of 9,216 words on mag-
netic drums. Its speed 1s about 15000 operations per second.
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and it 1is thils version that we will describe here. We have
had about fifty hours of machine computation using the
language, and hence we can evaluate fairly well how it performs.
The present language has a number of shortcomings. It
is very costly both in memory space and in time, for it seemed
to us that these costs could be brought down by later improve-
ment, after we had learned how to obtain the flexibllity we
required. Further, the language does not meet the flexibility
requirements completely. We will comment on some of these
deficiencies in the final section of this paper.
The language 1s purely a research tool, developed for use
by a few experienced people who know it very well. Thus a
number of minor rough spots remain. Further, we used available
utility routines, fitting the format and symbols of the language
to a symbolic loading program which already exists fqr JOHNNIAC.
This loader accepts a serles of subroutines coded in absolute,
relative, or symbolic addresses (symbolic within each routine

separately) and assigns memory space for them.

Description of the Language

The descripfion of the language, which we shall call
IPL, falls naturally into two parts. First we shall describe
the structure of the memory and the kinds of information
that can be stored in it. Then we shall describe the

language 1tself, and how it refers to iInformation, processes,

and so on.
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The Memory Structure

LT 1s a program for doing problems in symbolic logic.
Basically, then, IPL must be able to refer to symbolilc
logic expressions and their properties. It must also be
able to refer to descriptions of the expressions which are
properties only in an extended sense For example, an
expression may have a name, or it may have been derived in a
glven fashion, or by using a certain theorem, and IPL must
be able to express these facts. LT needs to consider lists
of expressions, and lists of processes used to solve logic
problems. and there must be ways to express these facts.

Elements. The basic unit of information in IPL is an
element An element consists of a set of symbols, which are
the values of a set of variables or attributes There are
different kinds of elements to handle the different kinds of
information referred to above The two most important
elements are the logic element, which allows the specification
of a symbolic logic expression, and the description, which is
a general purpose element, used to describe most other things,
and which carries with it its own identification.

Each element fits into a single JOHNNIAC word of 40
bits. The symbols are assigned to fixed bit positions in
the word, so that the element is handled as a unit when it

comes to moving information around, etc. Each variable and

symbol has a name which 18 used in IPL to refer to it. The
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name of a symbol 1s the address of a word that contains the
appropriate set of bits. Since JCHNNIAC has instructions

corresponding to the logical "and” and complemehtation, the

name of a variable is the address of a word that holds the

mask necessary to extract the bit positions corresponding

to the varlable.

Logic elements are the units from which logic expressioné

are construéted. Figure 1 shows what variables and symbols
comprise a loglc element. Expressions in symbolic loglc are
much like algebraic expressions: each element conslsts of an
operation (called a "connective' in logic) or a varilable,
together with the negation signs (1f any) that apply to it.

We use a parenthesis-free notation, in which the position of
each element in a loglc expression 1s designated by a number--
this number, therefore, belng one of the symbols in the element,
For example, the loglc expression p—> (-q v p) would be repre-
sented by five elements as shown in Figure 2. Each loglc
element consists of six variables (each taking on a variety
of values) all of which f1t into a single word: the number of
negation signs; the connective; the locatlion of the 1list which
nolds the entire logic expresslon of which this 1s an element;
the name of the variable; the position number; and the number
of levels down from the main connective.

Description elements consist of two symbols, as shown

in Figure 3. There are many different types of descriptions
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/ G|C A ///” N P Q
G Number of negation signs
C Connective (or variable)
A Location of logic expression
N Name
P Position number
Q Level in expression

Figure 1 Logic Element



P-954
1-11-57
-10b-~

p—=+(~qVp)

~

Figure 2., Logzic Expression
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DN Description name
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Figure 3. Descripticn Element
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such as the name of a logic expression, the method used to
derive a logic expression, or the number of different variables
appearing in a given loglc expression, and each type haé a
name. The left hand symbol in the element gives the name of
the type of description. The right hand symbol gives the
value of this description for some logic expression with

which this description is assoclated. Thus, for example, in
considering a certain loglc expression the description element
012-1082 might be found. The 012 indicates that this
description element glves the method used in deriving the
expression, and the LO82 is the name of the actual method
used, in this case, the method of detachment.

Lists. Lists are the general units of information in the
memory. A list consists of an ordered set of items of infor-
mation. Any item on a list may be elther a list or an element,
and these are fundamentally different types of units as we
shall see later (the difference arises mostly from the fact
that an element 1s contained in a single JOHNNIAC word).

Since a list 1s itself an ordered set of items which may
themselves be lists, we obtain most of the flexiblllty we

desire in the memory structure. There i1s no 1limit to the

complexity of the structures that can be built up--provided
that one knows how to use them--except the total memory space
available. Also, there is no restriction to the number of
148ts on which an item can appear. For example, 1f we have a
list of 1tems,}we can construct one or more indexes (1ists) on

each of which an arbitrary subset of the items of the original
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list appears.

With each item located in a given 1llst we may assoclate
descriptive information without disturbing the general structure
of the lists. That 18, each 1tem can have a list of descrip-
tion elements associated with it. As many descriptlons may
be put on the list as desired, and, since they are self-
identifying (by means of thé description names they contain)
they may be put on in any order. Descriptions are assoclated

with the item on a given list; hence, 1f an item 1is on several

lists, 1t can have several distinct description lists.

Forming Lists. This memory structure has most of the

flexibility tnat we spécified earlier as desirable. There are
informatlion processes that can create new lists at any time;
or that can add items to a list at any time, either in front,
in back, or in socme relation to other locatable 1tems 1in the
l1i1st. Likewise, items can be deleted from lists at any time,
or moved from one list to another, or simply "adjoined" to a
new list without being deleted from the old one.

All this flexibility in the memory 1s achleved by the
single expedient of divorcing the ordering relatlons among
items of information from the ordering relations bullt into
the address structure of the computer memory. Let us sketch
how this 1s done in JOHNNIAC for IPL.

To form a list we use a set of location words, each

contalning two addresses. One address locates an ltem on the

list, the other address locates the next locatlon word.
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Figure 4 shows how this is done for a list of three elements.
A location word holding a negative number serves to terminate
the 1ist. Since the JOHNNIAC word holds two instructions,
and hence contains two addresses, 1t 1s véry-oonvenient for
this scheme The left address is the address of the next
location word, the right address is the address of the item
on the 1list. In order to permit the general 1list structure
1ndicatgd earlier, each locatlion word contains a code telling
whether the item it refers to is an element (001), in which
case it contains information, or a 1list (000), in which case
it i1s the beginning of another 1list, j.e., of a series of |
location words. Figure 5 shows a general 1list containing both
elements and lists.

Each item on a list is uniquely determined by one of the
location words. To assoclate a description 1list with this
1tem we insert a location word for the description list right
pehind the location word of the item with which it 1is to be
associated. We use a code 002 to distingﬁish the location
word of the description list from tﬁe location word of the
next item. Since a description requires only half a word
to hold its two attributes, we put the location of the next
description in thé 1ist in the other half of the same
JOHNNIAC word, as shown in Figure 6.

The address of the next item or locatlon word in a list
need bear no particular relation to the address of a given

location word--they need not be adjacent, for instance.
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Location|  |Location Location -

Element Element Element

Figure 4. List of Elements

The left half of the location word contains the
address of the next location word (single arrow);

the right half contains the address of the element
(double arrow).
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I |
Element DN Element
|
DN
Figure 6. Description List

The description list for item A is inserted

immediately behind item A, and distinguished from

the next item, B, by a 002 location word.
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Hence, an item is deleted from a list simply by deleting its
location word. Suppose, as in Figure 7, we have three ltems,
A, B, and C, on a list. To delete B, we simply change the
address in the location word of A to refer to the location
word of C. DBecause of this same freedom of position of the
words in a list, location words on different lists may hold
the address of the same item of information. Hence, a
single 1tem of information may be on as many llsts as we
please.

Perhaps the major problem in creating a flexible memory
is the housekeeping necessary to make available unused words
after they have become scattered all through the memory
because of repeated use and reuse. When a word 1s deleted
from a list, we must be able to '"recapture" this word in
order that i1t may be used subsequently for other purposes.
The assoclation memory (the name we use for this type of
memory) starts with all "available space” on a single long

list, called the avallable space list. Whenever space 1is

required for building up a new list, this is obtained by
using the words from the front of the available space list,
and whenever information 1s erased and the words that held it
become avallable for use elsewhere, these words are added to
the front of the avallable space 1list. In Figure 7, the
deletion process would be completed by tylng all of the
deleted words into a list and attaching thils at the front of

the avallable space list. Thus, the fact that unused space 1is
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Figure 7. Deletion of an Item From a List

Item B deleted by changing the address in location
word of A to refer to locatlion word of C.
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scattered all through the memory creates no difficulty in
finding new space, for there i1s a single known word (the head
of the availlable space list) that always contalns the address
of the next available word. Hence, the use of the memory 1is
not complicated by any natural ordering like the natural
sequence of machine addresses.

Since all lists obtaln their new space from the same
list, the only restriction on amounts or degrees of complexity
of lists 1s the total size of memory. Thus it is clear why
there are no separate limits to the number of lists, their
maximum size, how "stacked’ up they can be, and so on. In

this sense the language is easy to learn and use.

Language Structure

The basliec form of the language is the same as in all
current programming languages. The terms of the language are

instructions. Each instruction specifies a complete inform-

ation process--that is, it can be followed by any other
instruction. Thus the syntax of the language 1s basically
identical with that of machihe codes or flow dilagrams:
sequences of instructions are carried out in succession;
with conditional transfers of control to permit alternative
subsequences to be carried out as a function of the process.
(IPL is slightly more general than this, as will be seen
subsequently.) Also, as 1s usual in this general type of
language, each instruction specifies separately (a) an oper-

ation and (b) the information upon which it operates.
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In IPL a program--e.g., LT--18 a system of subroutines.

Each subroutine 1s a sequence of instructions. Each IPL
instruction 1s defined by a subroutine (more precisely, each
particular occurrence of an instructlon has its operation
part carried out by some subroutine), usually called the

defining subroutine of the instruction. Subroutines may be

written elther in JOHNNIAC machine language or in IPL (when-
ever '"'routine” is used in this paper it always means IPL
routine, unless stated otherwise.) Correspondingly, there

are two kinds of IPL instructions: primitives, whose defining

subroutine 1is written 1in machine language, and higher instruc-

tions whose defining subroutine is written in IPL.

The system of subroutines is organized in a roughly
hierarchical fashion. There 1s a "master routine", each
instruction of which 1is defined by another routine; the
instructions in these subroutines, in turn,are defined by yet
other subroutines, and so on. Eventually, primitive instruc-
tlions are reached, and their defilning subroutines, which are
in machine language, are executed.

Instructions. Figure 8 shows a typical instruction

format An instruction 1s a vertical sequence of JOHNNIAC
words; a routine is a vertical sequence of 1instructions.

Each half-word in an instruction is a reference place, the

first being numbered O, as shown in the figure. There may be
any number of reference places in an instruction, and the

number need not even be constant from one use of the instruce
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00 | L092 2
2 3
2037 | 0

Figure 8. Typical IPL Instruction

The small numbers over the half words give the
number of the reference place.
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tion to another provided that the subroutine which carries

out the operation understands how to use the references.

Each reference states (by code) (a) the type of reference

(the small space on the left side of each reference) and (b)
the reference. All references are to elements; hence, to
refer to a 1i8t in an instruction, it is necessary to refer to
an element that refers to the list.

There are three types of references (coded O, 1, 2).
Type O glves the location of an element In memory by specify-
ing either the absolute or relative address of the word
containing the element. Type O references are used for the
fixed names of things, lilke constants (Z037) or subroutines
(L092). Within each routine, instructions are located by
symbolic addresses (such as * 32) which are also of type O.
In this scheme there 1s no general way toc make reference
in one routine to an arbltrary Instruction in any other
routine, although there are some important specilal ways of
referring from one routine to another which are considered
below.

Each subroutine has its own working storage, consisting
of an indefinlte number of elements. These are referred to
by type 1 references: 1-0, 1-1, 1~-2, . . . When a subroutine
is completed, these working storage elements are automatically
erased and made avallable for reuse.

As stated above, each subroutine carries out the
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operation for the instructlion 1t defines, called the higher

instruction cf that subroutine. Since this higher instruc-
tion has varlable references that differ with each occurrence
of the instruction, some way must exist of referring to these
variable values within the defining subroutine. This 1s done
by the type 2 references. The symbols 2-0, 2-1, 2-2, ... 1n‘

a subroutine refer to the reference places 0, 1, 2, ..., of

the higher instruction defined by the subroutine Thus the
type 2 references are indirect, referring to an element by
referring to a reference place, that, in turn, refers to the
element. The situation is shown 1in Figure 9, where a given
routine, LO81, uses an instruction, LO55, which is a higher
instruction. Thus L1055 is defined by a subroutine part of
which 18 shown further to the right  In the working memory
of L1081, shown at the far left, the element E 1s located in
cell 2. The instruction LO55 refers to E by using symbol 1-2
in reference place 3. The instruction L0992, which 1s 1n the
defining subroutine of LO055, refers to E by 2-3.

The first reference‘place (number 0) in an instruction
determines the operation;‘or, more precisely, refers to the
subroutine that will carry out the operation. All other
reference places may refer to anything needed by the sub-
routine. Thus an instruction is simply a format for a
general process that is a function of an arbitrary number of

varlables.
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Figure 9. IPL Type 2 Reference
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Execution of Instructions. Access 1s galned to the

subroutine that defines an operatlion by reference tovan
element which contains the location of that subroutine. These
elements are normally collected in a directory (the Lxxx
region), but may be put on 1lists and processed like other
elements.

From the point of view of coding for JOHNNIAC, the
language is entirely interpretive. When the interpreter
picks up an IPL instruction 1t obtalns the address of the
directory element from reference place O. Besldes giving
the location of ﬁhe defining subroutine, the directory

element tells whether the instruction is a primitive or a
5

In case an instruction is a primitive the defining sub-

highér instruction.

routine is in machine language, and the interpreter transfers
control to i1t. This subroutine then elther moves the refer-
enced elements into fixed positions or adapts its instructions
to the addresses of the referenced elements, and carries out
the operation. Upon finishing it returns control to the
interpreter.

In the case of a higher level instruction the defining
subroutine is also written in IPL and requires further inter-
pretation. To interpret the subroutine, the interpreter

sets up several lists (obtaining space for these from the

5The directory element also gives other information which
13 described in the section on other detalls.
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available space 1list). The first 1list contains the
referenced elements in the instruction; 1t i1s the "2" 1list
from the point of view of the subroutine. The second list
is the "1" 1list, which will hold the working memory elements,
as they are set up in the subroutine. Finally, before
beginning to interpret the subroutine, the interpreter must
add to the Next Instruction list the location of the
instruction following the one it is currently interpreting.
Within the subroutine the interpreter picks up the first
instruction and repeats the process described above, ‘Thus
no matter how many levels there are in the hierarchy, the
interpreter continues to set up the lists described above
for each successive subroutine until it reaches a primitive
instruction. After the primitive is executed, the inter-
preter proceeds to the next instruction in the lowest sub-
routine. When this subroutine is completed, the interpreter
backs up to the next lowest subroutine, and so on. In
operation the memory structure for interpretation looks like
a gilgantic yo-yo: lists of references are set up successively
one "below' another as the interpreter goes down in search of
a primitive, and then these llsts are erased again 1ln reverse

order as the routines they correspond to are finished.

Primitive Processes.

So far we have described only the outline of a language--

the structure of memory, and the format of the instructions.
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The power of the language tO express complex processes
depends on the set of primitive processes out of, which all the
others must be built.
The set of primitives in IPL is built to reflect the
principle that the programmer should need to know as little
as possible about the storage of information in memory. One
of the clear lessons from’programming experience 1is that
small differences in what the programmer must know about the
information in memory have important consequences for ease
of programming. Much of the power of automatilc computation
derives from the fact that in order to program it is sufficient
to know only the location of a number, and not the number
itself Further, large gains in programming efficienéy have
come from allowing the programmer to Know this location only
as a symbol or a relative address, rather than as an absgolute
address
In IPL an attempt was made to carry this principle one

step further. The concept of working memory--already encounter-

ed earlier is used to divide the memory into two parts, 80
that all the intricate processing is done in working memory.

The remaining memory, which we shall call the llst memory i1s

used for permanent storage of information. This division of
memory separates the primitive operations into two groups.
One group of operations finds information in the list memory,

makes 1t ava;lable in the working memory, and stores 1t back
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in the list memory agaln. The other group of operatlons
processes information in working memory. There are also
primitive operations for 1nput and output, which will be

discussed in the next sectlon.

Working Memory Operations. The primitives for process-
ing information in working memory are roughly similar to
typical machine instructions for a two-address computer. An
example will make thls clear. Figure 10 shows a typlcal
occurrence of 1015, the addition instruction. The instruc-
tion adds a value stored in working memory 1-0 to a value 1n
working memory 1-1. Since a working memory holds an entire
element, which is a collection of attribute values, 1t 1s
necessary to indicate which attribute is being added; the
7012 in reference place 1 designates this. 2Z0l2 1s the name
of an attribute: in this case the number of negation signs
of a logic element. Hence this instruction reads, "add the
number of negations in the element 1-0 to the number of
negations in element 1-1, and place the result in 1-1." This .
type of instruction requires the programmer to know what
information is in the working memory elements, and defilnes
some elementary process involving two of them.

The set of primitives for processing information in
working memory includes addition and subtractlon instructions;
test instructions for equality and inequality with a con-
ditional transfer of control to some other part of the sub-

routine; and instructions for copying information from one
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IPIL. Addition Instruction
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working memory to another. All of these instructions use a
reference, like the 2012 in the example, to designate which

attributes in the element are being considered.

Find and Store Operations. The find and store instruc-
tions, which pass 1nférmation between list memory and working
‘memory, are quite different in nature from the instructions
discussed above. In order to avold having the programmer
know anything in detail about the location of information in
the list memory all the find and store instructions take the
form of searches through a list with tests to ldentify the
information desired.

An example will make this clear. Referring back to
Figure 8, 1092 is a primitive find instruction which obtains
information about a logic expression. A logic expression is
stored as a list of elements (see Figure 2) in the 1list
memory. The order of symbols in a loglc expression is
specified by position numbers, and is unrelated to the
ordering of the elements in the list. Given the position
number of a loglc element it is easy to compute the position
number of the element that is in any given relative position
to it, say, its left subelement. L1092, then, 1s an instruction
that finds an element in a logic expression which bears a
specified relative position, (e.g., 7037) to some element
(e.g., in 2-1) already known, and that puts it in a working
memory (e.g., 1-0) where it can be processed further. Thus

the programmer only has to know that the element he wants
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bears a glven relation to some known element, and he need know
nothing about the actual location of this element in the list
or about the rest of the logic expression. Each logic element
carries as one attribute the location of the 1list of the logilc
expression containing 1t, so this does not have to be found
separately. Typlcally when an element is called for by an
instruction, 1t 1is not known whether the deslired element even
exlsts; hence, LO92 provides a conditional transfer of control
if the desired element is not found. This particular instruc-
tion is written as a primitive because the programming problem
it solves--to find a logic element bearing a given relation
to a known logic element--occurs repeatedly in LT.

The instructions for finding descriptions provide a
second example of how the instructions concerned with the
1ist memory use search and test pr?cesses. As stated earlier,
g list of description elements can be assoclated with any
1tem in a l1list. An instruction to find a description requires
the pragrammer to know the 1tem to which the descriptioﬁ applies.
The programmer must also know the name of the description he
wants. The operation then searches the 1ist for the 1item,
and when 1t finds it, searches the description list assoclated
with that item for the description with the indicated name.
Again there is no guarantee that the item 1s on the list,
that the description is on the description 1list, or even that
a description 1list exlists: and the failure to find the
desired description is signaled with a conditional transfer

of control.
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Like the find instructions, none of the store instructions
depend on the precise location of an item in a list. A
typlcal store instruction is L1023, which moves descriptions
from working memory to the description list of a known item
on a known list. L023 searches the 1list until 1t 1ldentifies
the item, then searches down the description 1list untlil 1t
identifies the description name of the description 1t 1s
storing. If it finds it, it stores the new valhe; if 1t
does not find 1t, i1t stores the description as a new ltem
on the description list. LO23 must also be prepared to
set up a description 1list in case 1t does not find one at
all. One of the important features of tbe descriptions 1is
that no space needs to be reserved for them until they are
actually created.

Other Processing Instructions. Besldes find and store

instructions for the various types of lists, there are
instructions for erasing lists, for creating lists, and for
moving items from one list to another directly. There is no
erasing problem in the working memory, since working memory
elements are erased automatically when a subroutine has been
carried out. In erasing items from lists, the instructions
require only that the programmer know what item 1is to be
erased and on what list it occurs, but not its location on
the 1list. Likewise, the programmer does not have to know
anything at all about the structure of a list to erase 1t,-

put only where 1t starts. The erase operations are con-
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structed to explore all possible extenslions of a list and

erase them all.

Other Details.‘

No attempt has been made with this language to bulld a
repertoire of service routines, or to make input and output
exceptionally convenient. For output the JOHNNIAC has
either punched cards or a high speed numeric printer, but
we use the printer almost exclusively. There is a “'print
1ist"” primitive, which prints any list however complicated and
extensive. This one primitive essentially suffices for our
output needs, since, if wé have several lists we wish to
print, we simply put them on a new superordinate list in
the right order, and apply the "print list" instruction to
this superordinate list. The instruction then prints out
the several 1ists in the indicated order. We can suppress
all the location words, so that only the items of information
print.

JOHNNIAC has punched-card input. We use a card format
for giving an arbitrary list to the computer, so that a
single "read list' primitive suffices for data input. The
program input is handled by the symbolic loading routine
mentioned earliler.

The use of the interpretive mode for the language allows

the computer easy access to its own processes. As a matter
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of course we trace the IPL instructions that are belng
performed. The trace can be selective, each directory

element indicating whether the trace of that instruction 1s

to be printed or not. What 1s printed is the name of the
subroutine (i.e., the relative address of the directory
element) indented according to 1ts level in the hierarchy of
routines. Since we wish to study the course of the processing
as well as end results, the trace is a prime source of data.

Also as a matter of course, we keep tallles of the
number of times each instruction 1s performed, both for our
use as data and for the program's use 1in operating. The
directory element also tells the address of the tally. For
example, LT allocates its effort by using such tallles to
see how much effort it has devoted to a given problem.

The devices mentioned above provide us with some
debugging facilities. Since all the information connected
with the hilerarchy of routines is on lists (see the section
on the language structure) we can print a single debugglng
list which contains these plus a number of other lists as
items. Printing this 1list (with all location words printing)
gives us most of the information we need. We also use the
tracing with a selective suppression of detalls to aid 1n
debugging. This procedure traces all instructions withln the

subroutines of interest, and none of the instructions in those
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The JOHNNIAC's 4096 words of high-speed, random-access
core storage 1s not adequate for a program and data lists of
this size. LT in operation has about 1600 words of interpretive
code, about 1600 words of machine code and about 400 words of
directories, constants, etc.; hence, a total storage of about
3600 words for the program alone. We have been forced to
utilize secondary storage, which for JOHNNIAC, is a drum of
9,216 words. Storage hlerarchies are notorious for presenting
difficult problems of accessibility, and the type of program
we are working with, with its avoldance of consecutlive blocks
of words, simply compounds the difficulties. So far, we have
uged the drum only for the program, and not for dataj; we are
keeping almost all the higher routines on 1it.

When the interpreter goes to the directory element of a
given instruction, it discovers whether the deflining sub-
routine 1s in cores, or on the drum. If the subroutine 1is on
the drum, it is fetched into the next avallable stretch in a
large consecutive block in core storage. As the interpreter
works down the hilerarchy, more and more subroutines are
brought in from the drum and gradually f11ll up thls large
block. ‘Each subroutine remains intact until 1t is finilshed,
but no attempt is made to plan or schedule trips to the drum.

As soon as a subroutine is completed it is "discarded" and

the next routine from the drum i1s placed in the same stretch

of the core storage block.
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Evaluation of the Language

The previous section has given a plcture of the solutions
we tried in programming LT. We will now consider more
critically what this language accomplishes, and what its
shortcomings are.

Assoclation Memory.

We have made a great issue of the flexibllity of memory--
the ablility to create lists at will and to add and delete
items from existing lists. This has certainly simplified a
number of housekeeplng tasks. For instance, the entire
structure involved in the hierarchy of subroutines with thelr
indefinite numbers of working memories was easlly handled by
means of the assoclation memory. Similarly, in a primitive
1ike ‘erase 1ist," which must search out all items in a list
of arbitrary structure, there 1s a need to remember an
indefinite number of junctions in exploring the 1list. The
flexible memory allows the primitive to bulld up a list of
these choice points, adding each new one to the front of the
list.

We have made extensive use of the flexibility throughout
LT. the one major program we have written in IPL. Our most
complicated structure to date 1s a list of 1lists of lists
~ronnected with a routine that modifies the list of theorems
used by LT as a function of experlence This same structure
also has theorems (a list of logilc elements) as items on

multiple lists.
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The association memory also has severe costs. The most
obvious cost‘is the extra memory space needed for location
words. Location words occupy about one half of the 1ist
memory, since it takes one locatlon word to refer to each
"1tem" word in a simple list. The proportion of location
words is not much greater than one half, since the space
devoted to simple lists greatly exceeds the space devoted to
the more complicated structures that take additional location
words. This cost factor is rather difficult to estimate,
however, since alternatlve schemes for achleving the same
“total program are not known Any component comparison 1s
somewhat misleading, since the virtues of the assoclation
memory arise from the avoidance of planning, of reserving
blocks of storage, and 80 O".

Another cost, which may be the more serious one, is the
loss of ability to compute addresses. 1In a gomputation which
can be well laid out in advance, it is often possible to
assign addresses to data in such a way that the addresses
can be computed in a simple fashion For example, instead
of searching a table for a function value corresponding to
a given argument, the address of the function value can be
made a simple function of the argument--say the argument
plus a constant--and the value obtained almost without
effort. This is not possible with the assocliation memory,
where the only function the address can perform is to

designate the location of another word in a list.



The Language Structure.

Some of the flexibilities of the language structure have
provided greatly increased power in the language whereas
others have not We have not made much use of the variable
number of reference places if one measures use in terms of
variability of that number. Most of our instructions have
about four references: the operation and three pieces of
information. Both examples described in this paper are of
this size. Whenever a routine exceeds about six references--
one of the executive routines has 15--the references are
not used as 'variables' but to transmit data. In the case of
the executive routine, for example, the 15 references provide
a convenlent place to hold all the parameter vélues for a run
of LT. On the other hand, we have used the variable number
of references considerably as a flexible communication device
up and down the hierarchy of routines. Thus, in making
changes in the program it is often convenient to transform
what was a constant into a variable. This can be done simply
by adding a new reference place to the higher instruction
and replacing the constant by a type 2 reference, say 2-6,
if the original instruction previously had only references
0 through 5.

We have used extensively the hierarchical propertles
of the language--the ability to define new subroutines in
terms of old ones. The number of levels in the maln part

of LT is about 10, ignoring some of the recursions, which
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sometimes add another four or five levels. It would pe
interesting to compare the size of the LT program written in
IPL and the program written in machine code. This is very
difficult to do, since when writing in machine language one
makes use of subroutines, and even of subroutines of sub-
routines. Hence there is no standard machine language
program for comparison. However, the following figures give
a rough approximation. IPL consists of about 45 primitive
instrugtions, which take an average of about 70 JOHNNIAC
instructions each. Instructions are packed two to the
JOHNNIAC word, so the numcer of words used 1is roughly 35 per
primitive. In additlion the machine language subroutines all
include some initial code either to positlon the words used
by the subroutine, or to adapt its instructlons to the
addresses of the words. This can be an apprecilable fraction
of some of the simpler primitives like LO1l5, the addition
instruction. Further these statistics do not reflect the
fact that the primitives themselves use a number of closed
‘subroutines.

The LT program descriped 1n this and the companion paper
contains about 45 different higher instructions, defined by
45 higher routines A typical higher routine contains about
16 primitives and two higher instructions. If we expand the
entire hierarchy for LT, ignoring recursions, we find that
LT can be written as about 8000 primitives. Since the

average primitive instruction takes about two JOHNNIAC words
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to write, 1t 1s clear that some hierarchization of subroutines
i1s needed to compress a program like LT into manageable size.
The fact that the operation part of an instruction is a
reference place like all the others, and can be treated as
such, gives additional power to IPL. An operation is normally
referred to by its "name’, which is the relative address of
the directory element that leads to the defining subroutine,
e.g., LO15, LO92., etc. However, an operatlon can also be
referred to by a type 1 reference, such as 1-3, 1f the correct
element 1s in the working storage. For 1lnstance, LT uses
a set of routines, called methods, whilch are, roughly speaking,
alternatives to one énother, and are used in about the same
way. There is a 1llst of methods, which is simply a list
whose items are the directory elements of the methods.
The executive routlne executes a method by searching the
list until it finds the desired one, bringing it into a
working memory (e.g., 1-3) and then performing an instruc-
tion with 1-3 in the 0 reference place. If this method
does not work, the executlve routine finds the next method
and repeats the process. Thus the executive routine is
able to perform a simple iteration over the set of methods.
We use this device also to compute sets of descriptions of
loglc expressions.
We can also use a type 2 reference for an operation.
This essentially makes the operation a variable and dependent

on Information in the higher routine. This device 1s used in



P-954
1-11-57
_3%-

several places 1in LT, out only to allow fixed specification

at a higher level We have no examples where the operation

i1s determined by a computation in the higher routlne, although
this is possible.

An entirely different kind of power arises from the
flexibllity of the hierarchy--the ability to do recursions.
An instruction may te used in 1ts own defining subroutine,
or in any of the subroutines connected with its definition,
in any way whatsoever provided that the routine does not
modify itself and that +he entire process terminates. The
restriction on self-modification 1s clearly needed if the
same routine is to be available at more than one level. All
the information necessary tO carry out the routine must be
stored in the working memory, which is set up separately for
each occurrence of the routine, and not within the routine.
In LT there are no higher routines that modify themselves.
The impetus for self-modification routines usually arises
from the use of iterative loops. In LT all iterations are
accomplished by means of lists A succession of elements is
prought in from a list to fixed worklng memory references,
and the iteration terminates when the end of the 1list 1is
reached.

There are two kinds of recursions in LT. The matching
routine, which compares one logic expression with another,
is an example of the first kind. The routine starts with

the main connective of the expression and proceeds recursively
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down the tree of the expression element by element (see
Fig. 2). The recursion is bound to stop, since the number
of elements in any expression is finite. This recursion
could also be expressed as an iteration through the l1list
of the expression. although perhaps not 80 neatly.

A more fundamental recursion occurs at the highest
levels of the program. Here LT has an executive routine
which governs its whole problem solving behavior. Within
this routine--that is, at some lower level--are me thods that
generate subproblems. Also within this routine are sub-
routines that select the sutproblem to be worked on next.

3 subproblem does not differ from the original problem with
respect to the methods and techniques used to solve 1t.

Hence the appropriate programming technique is to apply the
entire executive routine to the subproblem; that is, to
perform a recursion with the entire program Such a recursive
system will terminate if a solution is found, but since no
guarantee exlsts that the problem will be solved there 1is

no guarantee the machine will stop. In LT we add such a
guarantee simply by having LT stop after a certailn total
amount of effort, a rather trivial but effective device.

The language also has 1ts drawbacks. It is expensive:
the overall average time for a primitive 1s about 30 ms.
JOHNNIAC performs an add order in apout 80 microseconds.

Thus if we consider 1015, the addltion instruction, and

compare 1t with a direct replication of 1ts operatlon in
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‘machine language, we find we lose a factor of about 60. This
is one of the more extreme cases. If we conslder an
instruction like 1092, which 1s typical of the list type
operation, the loss factor drops to about 5. However, as
in the case of the associatlion memory, a component comparison
is somewhat misleading, since all the virtues of the inter-
pretive scheme arise from 1ts automatic handling of the
entlre problem. For example, the hierarchy provides a way
of keeping track -of some 50 words of data in process, and it
would seem that thils information must be maintained 1f the
problem 1s handled in any other way. The appropriate compari-
son is with an alternative way of coding a total pfoblem such
as LT, and no comparable alternative currently exists.

The large hlerarchy with 1ts multiple levels may seem
a very expensive feature. However, 1ts cost appears to be
less than the cost of interpreting the primitives, primarily
because of the infrequency of higher routines in comparison
with the number of primitives. All the higher instructions
account for only about 10% of the total number of instructions
interpreted, whereas the unit cost of interpretation of a
higher instruction is only two and a half times as great as
for a primitive (about 50 ms. to 20 ms.). Thus interpretation
of all the higher routines accounts for less than 30% of the

total cost of interpretation.

Additional Deficiencles of IPL

Experience in writing programs in IPL has revealed a
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number of additional deficiencies. Perhaps the one that
strikes the programmer most is the artificialilty of the
distinction between the element and the 1list. By packlng
a set of symbols into a single JOHNNIAC word we gain 1in
memory space over schemes that use one full word for each
variable. The net result, however, 1s that certaln
properties--those packed into an element--are treated in one
way, and others--those expressed by the lists or by the
description elements--are treated in another. Eléments are
brought into working storage for processing; since lists
have various sizes and shapes, they cannot be handled 1in
this fashion. Information that must be kept as a list 1s
handled by indirect reference, through an element in working
storage that refers to 1it. Information that can be fitted‘
into an element 1s hanaled directly in working storage. For
example, an element and a one element list must be processed
very differently in IPL.

A second deficiency is the restriction to certain forms
of referencing. IPL has great flexibility in the specifi-
cation of operations--that 1s, an operation can be specified
by giving an expression in the language for that operatlon.
We have allowed no such flexibility in the specification of
the other references. There are only three ways of giving
the information to be used in a routine: by giving the
address of the element, the name of the working storage that

nolds the element, and the name of a reference place that
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refers to the element. These methods allow certain indirect
references, but they still lack flexibility. A rather
simple example, but one that 1s typlcally annoying, occurs
when we want to refer to a name of a routine--that 1s,

to a symbol like L082, which is the address of a directory
element. This symbol 1s used in many places throughout the
program, but there is no simple way of getting to it. Thefe
is no reason why there should be less power of expression for
information references than for operations. It should be
possible to give a reference by giving an expression for
determining that reference, just as 1s now done in IPL for
operations.

There are other unsolved problems. For 1instance, we
have no satisfactory way of erasing in the association
memory. The problem is not how to delete items and make
their space available agaln, which we think 1s done falirly
well in IPL. The problem is how to know what can be erased,
since there 1s no direct way of knowing what else 1in the
system may be referring to the 1tems about to be erased.
References are directional, so that 1f location word A refers
to item B, there is no way of knowing this, when only the
address of B 1s known. Uniform two-way referencing seems to
be an expensive solution, although it may be the only one.
In simpler programs thls erasing problem 1s handled by
having the programmer know at all times exactly what refers

to what. But 1f we move to programs in which all lists are
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set up during operation by the program itself, such solutions

are not adequate, and the problem scon becomes acute.

Conclusion

IPL is an experimental language that was bullt to find
ways of achieving extreme flexibillty. It was devéloped in
connection with a particular substantive problem--proving
theorems 1n symbolic loglc--which requires great flexibility
in the memory structure, and powerful ways of expressing
information processes.

The language achieved 1its purpose: we have a running
program for LT which has allowed us to explore its behavior
emplrically, with a number of variations. On the other hand,
the language 1s relatlvely crude, viewed as a general
language for specifying programs like LT. It 1s very costly;
1t shows the "provinciallsm” of too close a connectlon with
symbolic loglc; and it still has a number of rigidities.

We belleve that the basic elements of the language are
sound, and can be used as the ingredients of languages
having considerably greater powers of expression and speed.
We are currently engaged in the construction of a new
language patterned on IPL, which we hope will serve us as a
general tool for the construction and investigation of

complex information processes.
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