MEMORANDUM

RM-3588-PR
MAY 1963

THE HEURISTIC COMPILER

Herbert A. Simon

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

2t RH D pss

SANTA MONICA ¢ CALIFORN!A

MEMORANDUM

RM-3588-PR
MAY 1963

THE HEURISTIC COMPILER

Herbert A. Simon

This research is sponsored by the United States Air Force under Project RAND—
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force.

2te LA D gt

1700 MAIN ST. » SANTA MONICA = CALIFORNIA

Copyright © 1963
THE RAND CORPORATION

-iii-
PREFACE

The research reported in this Memorandum, rather
than being aimed at the construction of a specific com-
piler (a computer program for translating instructions
from a language convenient to the programmer to the
machine language), is directed towards deepening our
understanding of the kinds of problem-solving activity
that are involved in computer programming, and the kinds
of language and representational means that are needed
to produce more sophisticated compilgrs. The Memorandum
takes the form, therefore, of a series of illustrative
problems of compiler design, with proposals, worked out
in some detail, for their solution.

There has been, in the past decade, enormous progress
in the development of higher-level programming languages
for instructing computers. Through the invention of alge-
braic compilers, like FORTRAN, IT, and ALGOL, data pro-
cessing languages like COBOL, and list-processing languages
like IPL, LISP, and COMIT, the labor of programming has
been reduced several orders of magnitude. Yet, when we
are faced with the complexities of modern command and
control systems, and the programming problems they present,
we recognize that the progress made to date is not nearly
enough. Programming a computer to perform a complex task
is still very much more intricate and tedious than in-
structing an intelligent and trained human being for that

task.

-iv-

Most visibly, the human--if, to repeat, he is intel-
ligent and knowledgeable--does not have the literalness
of mind that is so characteristic of the computer, and so
exasperating in our interaction with it. From his own
store of knowledge, he supplies facts that we neglect to
give him; given statements of objectives in broad func-
tional terms, he applies his problem-solving powers to
filling in the detail of method; confronted with the
vagueness and informality of natural language, he inter-
prets meaning and intent.

The experiments reported in this Memorandum aim at
further bridging the gap between the explicitness of exist-
ing computer programming languages and the freedom and
flexibility of human communication. The work was motivated
by the belief that until we bridge that gap, we shall not
be able to harness effectively the powers made available
to us by modern digital computers and apply them to the
vast systems (e.g., command and control) that are becoming
such a central feature of our military and civilian tech-
nology.

This work is part of The RAND Corporation's continu-
ing program of research in the area of complex information
processing, under U.S. Air Force Project RAND. The author,
a RAND consultant, is a member of the faculty at Carnegie
Institute of Technology. The Memorandum is directed

primarily to systems programmers who are faced with problems

-V-

of compiler design, with the hope that its proposals will
suggest means for increasing the power, generality, and

flexibility of compiling systems.

-vii-

SUMMARY

Two major themes run through the topics discussed
in this Memorandum. The first thesis is that more of the
programming burden can be shifted from programmer to
computer if the computer is given some problem-solving
powers. In previous works it has been shown how a computer
program, the General Problem-Solver, can simulate the kinds
of means-end analysis that humans use to solve problems.*
Part I of the present Memorandum shows how a compiler can
be designed that makes use of heuristic problem-solving
techniques like those incorporated in the General Problem-
Solver (GPS). Such a scheme permits a desired program to
be specified'in general terms, with the compiler using
means-end analysis and selective trial-and-error search
to work out the exact "how' of it.

The second main theme is that if we are to have
flexibility in a compiler language commensurate with the

flexibility of natural language, we must first gain an

*The General Problem-Solver has been described, and
its behavior analyzed, in several RAND publications by
A. Newell, J. C. Shaw, and H. A. Simon: Report on a
General Problem-Solving Program, P-1584, February 9, 1959;
The Simulation of Human Thought, P-1734, June 22, 1959;
A Variety of Intelligent Learning in a General Problem
Solver, %-1752, July 6, 1959; GPS: A Program that Simulates
Human Thought, P-2257, April 10, 1961; Computer Simulation
of Human Thinking, P-2276, April 20, 1961; Computer
Simulation of Human Thinking and Problem Solving, P-2312,
May 29, 1961.

Also see, A Guide to the General Problem-Solver Program
GPS-2-2, Allen Newell, RM-3337-PR, February 1963.

~viii-

understanding of the ways in which meanings are represented
in natural language, and then devise representations of
corresponding power (and ambiguity) for compiling languages.
Parts II and III are devoted primarily to questions of
language and representation. They provide a number of
suggestions for increasing the generality and flexibility
of compiler languages.

The boundaries between the three parts are largely
chronological. Part I represents work completed during
the winter of 1960-61; Part II, work done during the
spring of 1961; and Part III, work done since the summer
of 1961, particularly during the summer and autumn of 1962.
A program listing for the main portion of the compiling
scheme, described in Sections I-V of Part I, is given in
Appendix A. A program listing for the annexing scheme,

described in Sec. IX of Part III, is given in Appendix B.

-ix-

ACKNOWLEDGMENT

I am greatly indebted to H. S. Kelly, of The RAND
Corporation, for numerous discussions of the work described
in this paper, and for help in solving many of the

problems that arose.

-xi-

CONTENTS
PREFACE Cesceceseseceeseereeetst s n s cessene iii
SUMMARYccceeeccccsonacsosnons cesesns ceceocas .. vii
ACKNOWLEDGMENT ...cecevececcecss ceceaccans R b 4
PART I: A PROBLEM-SOLVING COMPILER cececesans

1

I. THEORY OF PROBLEM SOLVING ...ccceeecococscs 2
II. PROGRAM WRITING AS PROBLEM SOLVING 5
III. OUTLINE OF A HEURISTIC CODER FOR IPL-V ... 6

The SDSC Compilerceceeeececcecssse 7
The DSCN Compilereeeeossecenanees 12
The General Compiler Ciesseseeenn 15

IV. RELATION OF THE HEURISTIC COMPILER TO GPS. 20
V. FLOW DIAGRAMS ceceenes cecetcsaceaanes 21
PART II: GENERAL IMPLICATIONS FOR REPRESENTATIONS. 27

VI. LANGUAGE AND REPRESENTATIONS IN THE

COMPILER cesecsean ceececeseaneeeen .. 28
Descriptive Namesceoeesesececeseces 28

State Descriptions ...eeeeececcccosacccns 31

VII. THE DESIGN OF REPRESENTATIONScce000 34

PART III: EXPERIMENTS WITH REPRESENTATIONS 41

VITI. GENERALIZED PROCESSES ..cccese e oo o ceeeces L4
"FIND'" ProCeSSEeS .:eeeecesoscccsocces ee. 44
"SORT" ProcesSSeS ..eeeee-e ceessseaseesss U8

Recursive Functional Languages 51

IX. DEFINITE DESCRIPTIONS ..cevevesncecasceasss 53
Syntactic Characterization 33
Semantic Characterizationece00.. 54
Annexing Descriptive Information to

an Information Storececeeeeecesss 35

X. COMPILATION OF ROUTINES FROM PARTIAL
DESCRIPTIONS ..cccceceseccnns ceceesens .. 60

Appendix
A.

B.

-xii-

PROGRAM LISTING OF THE HEURISTIC

COMPILER ® © 06 0 ¢ 0 8 00 0 5 0 0 0 00000000000 000 o o 0 o

PROGRAM LISTING OF AN INFORMATION-
ANNEXING SCHEMEccoeeeensoscnocsnsns

PART I
A PROBLEM-SOLVING COMPILER

In this first part, we describe a compiler that makes
use of heuristic problem-solving techniques like those
incorporated in the General Problem-Solver (GPS).*

Section I provides a brief introduction to the theory of
problem solving and the structure of GPS. Section II
shows how programming can be interpreted as a problem-
solving activity, within this framework. Section III
describes the main components of the compiler, and Sec. IV
indicates how the compiler could be incorporated as a

set of subroutines to GPS. Section V describes an exten-
sion of the compiler to handle flow diagrams. A complete

program listing for the compiler is given in Appendix A.

*0p. cit., p. vii.

I. THEORY OF PROBLEM SOLVING

The motivation for the Heuristic Compiler is supplied
by a theory of problem solving that also provides the
basic framework for the General Problem-Solver. By a
problem, we mean a situation of the following kind:

1. We are given a (partial) description of a present

situation and a desired situation. These situa-

tions are described in a language that we may

call the state language. The state language is

sufficiently rich to permit us to describe situa-
tions (we shall call such descriptions objects),
and to describe differences between pairs of
situations.

2. We are given a list of operators that can be
applied to situations to transform them into new
situations. Operators are named in a language

that we may call the process language. Any

sequence of operators named in the process language,
also names an operator--the compound operator
that consists in applying, successively, the
elementary operators belonging to the sequence.

3. A problem solution is a (compound) operator in
the process language that will transform the
object describing the present situation into the

object describing the desired situation.

EXAMPLE: We take as the objects in the state language
the integers, 1, 2, -... We take as the elementary opera-
tor the successor operation, which we shall designate as
in the process language. Then ''' and ''''' are examples
of compound operators. Consider the problem of trans-
forming the present object 5 into the goal object 8. The
solution is the operator ''', for 5''' = 8. More generally,
"'' is the operator that removes the difference +3 between
any two objects, x and y; for if y - x = +3, then x''' =y.

R

Here +3 is a difference in the state language; is

the operator relevant to that difference in the process

language. We may construct a table of connections to

associate with each difference the operator or operators
relevant to it.

With this formulation of the concept of 'problem,"
many techniques of problem solving can be subsumed under
the following general paradigm:

MEANS-END ANALYSIS. Given the present and desired

objects, find a difference between them. Next find

an operator relevant to the difference; determine

if the operator can be applied to the present object.

If so, apply it. (If not, describe the objects to

which it would apply and transform the present object

into an object of that kind--a new 'desired object.")

Take the new object thus obtained as the present

object and repeat the process.

The General Problem-Solver is a program that uses
this scheme of means-end analysis for attempting the

solution of any problem that can be cast into the form

described.*

*
This is a bare-bone description of GPS, but it will
suffice for our purposes.

II. PROGRAM WRITING AS PROBLEM SOLVING

The task of proving a theorem can be formulated as
a problem for GPS. The desired object is the theorem to
be proved. The present object is the set of axioms and
already-proved theorems. The operators are the legitimate
processes for transforming a subset of axioms and/or
theorems into a new theorem. We have a proof when we have
a sequence of operators that transforms the present object
into the desired object. (What we call a proof here is
usually regarded as the justification for the proof steps;
the proof, as usually written out, consists of the sequence
of successive transformations of the axioms and given
theorems.)

The sequence of operators that constitutes a proof
can also be interpreted as a program that generates the
desired object from the given object; for if we apply the
operators of the proof, in sequence, to the present object
(the axioms and previous theorems), we obtain precisely
the desired object--the theorem to be proved. Thus, a
theorem-proving system can be regarded, at least formally,
as a program-writing system. Conversely, if we can formulate
a programming goal as a difference between a present and a
desired object, we can presumably use the same processes,
which in the other context will generate the proof of a

theorem, to generate a program.

III. OUTLINE OF A HEURISTIC CODER FOR IPL-V

In the remainder of Part I, I shall describe a
number of routines for compiling programs in Information
Processing Language V (IPL-V), an interpretive list-
processing language.* What is common to all of these
compiling procedures is that they embody the problem-
solving notions discussed in the preceding paragraphs.
That is, each of the compiling routines accepts the task
of writing programs in IPL-V on the basis of certain in-
formation provided to it. The task is accomplished by
the application of the means-end analysis that has been
described. The several compiling routines differ with
respect to their methods of formulating or representing
the problem--that is, each operates with a different state
language. At present, there are three compiling routines:

1. SDSC Compiler (State Description Compiler) [UL40].**

This routine takes as its input a description (SDSC) of
the contents of the relevant computer cells before and

after the routine to be compiled has been executed. It
produces an IPL-V routine that will transform the input

state description into the output state description.

*
See Newell, Allen (Ed.), Information Processin
Language V Manual, Prentice-HalT, Englewood Cliffs, ﬁ.J.,
1961.

*%Expressions in square brackets are names of the
corresponding routines, data list structures, and symbols
in the compiler program.

2. DSCN Compiler (Descriptive Name Compiler) [U134].

This routine takes as its input a verbal definition (in
the form of an imperative sentence) of the routine to be
compiled. It produces an IPL-V routine that is the trans-
lation, in the interpretive language, of that definitionm.

3. General Compiler [U135]. This is an executive

routine that can use the SDSC Compiler, the DSCN Compiler,
and others as subroutines. It takes as its input infor-
mation about the routine to be compiled; the information
can be stated in any one of several representations (e.g.,
those appropriate to SDSC or DSCN). The routine then
selects subroutines that can use this information to pro-
duce the desired IPL-V code.

From a logical standpoint, we could describe the
Heuristic Coder as a single program whose executive
routine is the General Compiler, and which contains the
SDSC Compiler and the DSCN Compiler as subroutines. For
clarity of exposition, it will be better to describe the
two parts first as independent programs, and then show

how they are imbedded in the General Compiler.

THE SDSC COMPILER

A computer routine can be defined by specifying the
changes it produces in the contents of the storage loca-
tion it affects, or, what amounts to almost the same

thing, by specifying the before and after conditions of

these storage registers. A definition of this kind is
not, of course, univocal, for programming is a synthetic,
not an analytic task; there will generally be many programs
(not all equally efficient or elegant) that will do the
same work. As presently constituted, the SDSC Compiler
attempts to find some one routine to accomplish a given
task.

EXAMPLE: 1In IPL-V there is a process, PUT SYMBOL J3
IN MEMORY LOCATION H5, which affects a single memory
location, H5. This process [X105] happens to have the
name J3; its state description (SDSC) is the following:

BEFORE J3 is executed, cell H5 contains a symbol,
call it S1, followed by an indeterminate list of symbols,

RO (call this the pushdown list associated with H5).

AFTER J3 has been executed, cell H5 contains the
symbol J3, followed by the same list of symbols, RO, as
before. The token of symbol Sl that was previously in
H5 has been destroyed.

Notice that it is implicit in this SDSC definition
of J3 that the content of no cell other than H5 has been
altered by the routine. We can represent the SDSC [the

value of attribute X24 of the routine] diagrammatically

as follows:

SDSC of J3

Affected Cells

H5
Input S1,RO
Output J3,R0.

Generalizing, the SDSC of a routine consists of a

list of affected cells [attribute X71 of X24]. For each

affected cell on the list, the SDSC specifies its input

state [attribute X75 of X71)] and its output state

(attribute X76 of X71].

To compile the IPL-V code (JDEF) for J3, the SDSC
Compiler [Ul40] proceeds as follows:

1. It matches [X7) the input states with the output

states of the affected cells until it finds a difference.

In the example cited, the difference between the input

and output states of H5 may be called a replacement in H5.

2. It searches [U150] a table of connections [X90]

that associates with each difference a list of operators
(compiled IPL-V routines) that are relevant to that dif-
ference. In the example, the table of connections would
contain, associated with the replacement difference [X83],
the IPL-V routine P2(C) [X106]. P2(C) replaces the

symbol in cell C, a variable, with the symbol in cell HO.
Thus, P2(C) has the following SDSC [see local 95 of X106]:

-10-

SDSC of P2(C)
Affected Cells

HO c
Input S2,R0 S1,RO
Output RO S2,R0.

3. It tentatively applies [Ul41l] the relevant op-
erator it has found to the input state of the SDSC to be
compiled, and determines the resulting output state. In
applying the operator, it makes appropriate substitutions
for the variables in the operator [U153, Ul54]. Thus,
applying P2(C) to the input of J3, we find, by matching,

that we should set C = H5 and S2 = J3, giving:

SDSC of P2(H5)

HO H5
Input J3,R0 S1,RO
Output RO J3,RO.

4, The application of the operator creates two new
subproblems: Let Ia be the input state of the routine to
be compiled, 0a its output state, Ib the input state of
the operator, and 0b its output state. The original
problem was to transform Ia into Oa' The new problems
are: (1) to transform I, into I, (i.e., to establish the
input conditions for application of the operator), and
(2) to transform 0b into 0a (i.e., to transform the out-
put state of the operator into the desired output state

of the routine to be compiled). Either of these new

-11-

problems may reduce to the identity transformation, in
which case that part of the problem is solved. If this
reduction does not occur, then the same steps, 1, 2, 3,
are applied [recursion of Ul40] to the new subproblem.
In the example at hand, 0b is identical with Oa;
hence, the remaining subproblem is to transform Ia into

Ib, that is, to compile a routine with SDSC:

HO

S2,R0
J3,S2,RO0.

The repetition of step 1 for this subproblem dis-
covers a new difference, an addition [X82] to HO. Step 2
finds the relevant operator, process P1(S) [X107], which
adds the symbol S to the symbol list in HO. Applying, in
step 3, the operator P1(J3), the input state of HO:
S2,R0, is transformed into the output state, J3,S2,RO0.
Hence, the solution to the original problem of compiling
J3 is obtained by the sequence, P1(J3), P2(H5), or, in

the usual IPL-V format [X22 of the routine]:

J3 10 J3
20 H5 O.

We see that for the SDSC compiler to operate, it
must be provided with a set of differences and matching
tests for noticing differences, a set of already-compiled
operators, and a table of connections between differences

and operators. Further, when it has compiled a new routine,

-12-

the compiler can annex this routine to its set of available

operators and use it in compiling subsequent routines.

THE DSCN COMPILER

Let us now consider an alternative compiling scheme
for the same routine, J3. Instead of specifying the
before and after condition of the computer cells, we de-
fine the routine [X20 of the routine] in terms of the
function it performs: REPLACE THE SYMBOL IN H5 BY J3.
(This definition (DSCN) resembles more closely than the
previous one the manner in which routines are defined
for '"conventional'" compilers like FORTRAN or LISP. What
distinguishes the present scheme from these is the use
of heuristic means-end analysis for working from the
definition to the compiled routine.)

The first step in the DSCN Compiler [U134] is to
search a list of available (compiled) routines to find
one whose DSCN is as similar as possible to the DSCN of
the routine to be compiled. In the case at hand, we
would find the routine P2(C): REPLACE THE SYMBOL IN C
BY (HO).

At the second step [U130], means-end analysis is
performed to transform the compiled routine that has
been found into the new routine. The transformations are
performed on the DSCN's. Thus, in the present example,

there are two differences between P2(C) and J3. The

-13-

former refers to the cell C, the latter to H5; the former
refers to the symbol that is contained in cell HO, the
latter to the symbol J3.

The compiler notices these differences (in a sequence) ,
and searches for an operator relevant to removing the dif-
ferences. In this case, C can be transformed to H5 by

a substitution operator. (HO) can be changed to J3 by

an addition operator (MAKE (HO)=J3 BY ADDITION). The
application of these operators to the DSCN of P2(C) would

compile the desired routine in the following stages:

P2(C) REPLACE THE SYMBOL IN C BY (HO).
Apply substitution
REPLACE THE SYMBOL IN H5 BY (HO).

Apply addition
REPLACE THE SYMBOL IN H5 BY J3.

The resulting program in this case is identical with
that obtained by the SDSC Compiler.

A somewhat more complex routine compiled by the DSCN
Compiler is:

J13: 1INSERT (1) AT THE END OF (THE VALUE OF ATTRIBUTE

(0) OF (2)).

The list of available IPL routines includes:

J65: INSERT (0) AT THE END OF (1).

The differences between J65 and J13 are in their
arguments. J65 has the argument (0), where J13 has the
argument (1); J65 has the argument (1), where J13 has

the argument (THE VALUE OF ATTRIBUTE (0) OF (2)). Since

-14-

it is not easy in IPL-V to rearrange arguments that are
located in the pushdown list of the communication cell,

HO, the compiler facilitates matters by incorporating in
the compiled routine an algorithm that moves the inputs

of the routine to be compiled into known working storage
locations, then puts these inputs back into HO in the
order in which they are needed for the subprocesses. That
is, the compiler first transforms J13 into another routine,
call it K13, which it then compiles. The DSCN of K13 is:

K13: INSERT 1Wl AT THE END OF THE VALUE OF

ATTRIBUTE 1WO OF 1wW2.
The code for J13 may be written as:
J13 J52
K13
J32 0.

Now K13 is to be compiled with the aid of J65. Com-
paring the corresponding arguments of the two routines, we
see that this involves finding the value of attribute 1WO
of 1W2, placing this value in HO, bringing 1Wl into HO,
and then performing J65. That is to say, K13 will have
the general form:

K13 FIND V(1W0,1w2)
11w0
J65.
In the list of available routines, the compiler finds:
J10: FIND THE VALUE OF ATTRIBUTE (0) OF (1),
which may be abbreviated, FIND V((0),(1)). Comparing the

arguments of J10 with V(1W0,1W2), we see that (1) must

-15-

be set equal to 1W2 and (0) to 1WO. Hence, V(1w0,1w2)
is equivalent to

11w2
11w0
J10.

Hence, the complete code for K13 is:

11w2

11wO0
J10

11wl
J65,

and the complete code for J13 is simply:

J13 J52
11W2
11w0
J10
11wl
J65
J32 0.

THE GENERAL COMPILER

The General Compiler [U135] is an executive routine
whose task is to compile a routine from information in
any of the forms already discussed (SDSC and DSCN) or in
other forms that may be described. It takes as its input
the name of the routine to be compiled. Associated with
this name (on its description list) is the information to
be used in the compilation. More formally:

A routine is a description list containing values of
some subset of the following attributes:

1. IPLN--IPL name [X25]. The value of this attribute

is a description list that names a region

-16-

[(X33] and a location [X34] in the region;
e.g., J60, R149, J3.
2. JDEF--IPL-V definition [X22]. The value of this

attribute is a list of IPL-V instructions,
each in the form of a description list
describing [attributes X40-X46] the cor-
responding IPL-V word, that defines an IPL-V
routine with the specified name. For example,
the routine with IPLN J3 might have the
following JDEF:

J3 10J3
20H5 0.

3. DSCN--Descriptive name [X20]. The value of this

attribute is an imperative sentence (en-
coded as a list structure) that describes
(with attribute X30,X31] the process defined
by the JDEF. For example, the routine with
IPLN J3 has, as already explained, the DSCN:
REPLACE THE SYMBOL IN H5 BY J3.

4., SDSC--State description [X240]. The value of

this attribute is a list structure that

describes the state of the IPL computer

before and after the routine in question

has been executed. Only changes are men-

tioned explicitiy. Thus the SDSC of J3 is:
H5: S1,RO. J3,RO.

-17-

5. FLWD--Flow diagram [X267]. The value of this

attribute is a list structure that gives
the flow diagram corresponding to the JDEF.
This list structure will be described in
more detail later.

6. ASOJ--Associated J definition [X23]. The value

of this attribute is the IPL name of a
routine associated, in a manner to be

described later, with a given routine.

A compiled routine is a routine that has a JDEF.

Now we can state the problem of compiling a routine as
follows: Given a routine without a JDEF (the present
object), find the corresponding routine with a JDEF (the
goal object). '"Corresponding'' means that the compiled
routine has the same SDSC or DSCN as the given routine.
Figure 1 presents the flow diagram of a compiler (ul3s]

that uses means-end analysis to accomplish this compilation.

1. 2. 3.
Test if the Find Closest Find and
Routine Has Definition A
_ pply Relevant]
JDEF - (U136] * | Process [UL36]
|
+ -
|
Exit, Exit, _ Test
Compiled Failed == Progress
(u138]
T+

Fig. l--Flow Diagram for: COMPILE ROUTINE R1

-18-

Let us translate this flow diagram into the language

of means-end analysis.

1. Test if the routine has JDEF. This test determines

whether the present object has the characteristics
of the desired object. 1If so, the compilation
is complete.

2. Find the closest definition [Ul36]. This process

corresponds to finding a difference between

the present and desired objects. However, we
generalize this notion to mean look for a charac-
teristic of the present object that will suggest
a relevant operator. If the object possesses a
DSCN, then an attempt could be made to compile
the JDEF from the DSCN; if it possesses a SDSC,
an attempt could be made to compile the JDEF
from the SDSC. The attributes that the routine
could possess are listed in an order that reflects
the relative ease of compiling a JDEF from them.
The process then finds the first attribute on
this list that the routine to be compiled pos-
sesses. In the present form of the compiler, it
is assumed that it is easier to compile from a
DSCN than from a SDSC; hence, the attributes are
listed in this order. If the routine possesses
no attribute that can be used as a basis for

compilation, the compiler reports a failure.

-19-

Find and apply the relevant process [Ul37]. The

input to this process is the '"closest definition"
that has just been found. A table of connections
is searched to find a process that is relevant

to compiling the JDEF from the closest definition.
If one is found, it is applied (in a manner to

be described later).

Test progress [U138]. If the operator has been

applied successfully, the routine will now possess
at least one attribute (a JDEF or another) it
didn't previously possess. If the progress test
detects that it now has a definition closer to

the JDEF than any it had previously, it initiates
a new compilation cycle; if not, it reports a

failure and quits.

The present list of "closest definitions' is very

short, consisting only of DSCN and SDSC. The present

table of connections [X198] is also brief:

1.

If the routine possesses a DSCN, apply the oper-
ator, COMPILE JDEF FROM DSCN.
If the routine possesses only a SDSC, apply the

operator, COMPILE JDEF FROM SDSC.

-20-

IV. RELATION OF THE HEURISTIC COMPILER TO GPS

Since each of the major components of the Heuristic
Compiler is a system of means-end analysis, each of these
components can be viewed as a rudimentary GPS. It should
therefore be feasible, by modifying the top-level programs,
to bring the Heuristic Compiler into a form that would
allow its problem-solving processes to be governed by GPS.
The programs for detecting differences, the tables of
connections, and the operators would provide definitions
of task environments for GPS. To accomplish this, GPS
would have to be arranged so that a subproblem could be
attached by applying GPS to a new task environment. That
is, GPS would first be applied to the task environment
of the General Compiler; applying an operator in this
environment would consist in applying GPS to the task
environment of the DSCN's or the SDSC's, as the case may

be.

-21-

V. FLOW DIAGRAMS

Up to this point, we have considered only very simple
programs, requiring no branches or loops. Each program
is a list of instructions; each instruction is an IPL word
represented as a description list with the attributes
type [X40], name [X413], sign [X42], P [X437, Q (X447,
symbol [X45], and link [X46].

To represent a program with branches and loops, we
divide the program into segments. Each entry point to a
loop (an instruction with a local name) begins a new seg-
ment; each branch instruction (P = 7) ends a segment. Each
segment has the same attributes as an IPL word--specifically:
name, P, symbol, link, and an additional attribute [(x227,
whose value is the list of IPL instructions for the segment.
The name of the first instruction of the segment is assigned
as the name of the segment; if the segment ends in a
branch instruction, it is assigned P=7, and its symbol and
link are set equal to the symbol and link of the branch
instruction. If the segment does not end in a branch, it
is assigned P = 0 and SYMB = 0, and its LINK is set
equal to the link of its last instruction. Under these
conventions, the list of segments is a flow diagram of
the routine with the detail of the routine segments

appended.

-22-

To illustrate the format of a flow diagram, we show
below the code for IPL routine J77, followed by its flow
diagram. The DSCN of J77 is: TEST IF THERE IS A SYMBOL
EQUAL TO (0) ON LIST (1).

IPL-V CODE FOR J77

J77 J50 90 Segment I: Put (0) in WO.
90 J60 Segment II: Find next
7091 92 Tocation on list (1).
92 12HO Segment III: Test if
11wO0 symbol at location is
J2 equal to (0).
7090 91
91 30HO Segment IV: Clean up
J30 0 and ex1it.

FLOW DIAGRAM FOR J77

J77 0 90
90 7 91 92
92 7 90 91
91 0 0

From the description of the flow diagram, it is easy
to provide a program [U139] that will construct a flow
diagram from an IPL routine, and a program [U133] that
will compile an IPL routine from the flow diagram and
appended code segments. In this way the task of compiling
an IPL routine is reduced to the problem of compiling its
flow diagram, and compiling the code for each of the

segments of the flow diagram.

-23-

The program for compiling such a routine from its
DSCN has not yet been written, but examination of the
structure of the routine itself shows what is involved.

The test involves a quantifier--whether there exists a

symbol with a certain property on a particular list of
symbols. In IPL-V, such existence tests are performed by
means of a loop or a generator; the members of the set in
question are produced one by one and tested for their
possession of the property. If a test result is positive,
the process stops, and the signal, H5, is set plus. If
the set is exhausted, the signal, H5, is set minus. Thus,
a standard flow diagram can be used for all routines of
this kind:
Perform required setup.
Locate another member of set
(if none, exit, via D),

C Perform test on member

(if it succeeds, exit, via E;

if it fails, return to B),

D Exit with signal minus,
E Exit with signal plus.,

= >

Except for the provision of two distinct exits, this
is identical with the flow diagram previously shown for
J77 (Set A = J77, B =90, C =92, D =E = 91). Now, we
can compile for each segment of the flow diagram a routine
that corresponds to the DSCN of that segment. For example,
FIND ANOTHER MEMBER OF (1) becomes J60 (after appropriate
recognition of the changed location of (1)); PERFORM TEST

ON MEMBER becomes:

-2~

12H0
11w0
J2
The only complications lie in moving the inputs for
the various processes (J60 and J2) in appropriate ways.
The compiler can do this in a straightforward, if inef-

ficient, way by using the working storages. Thus, an

unedited compiled version of J77 might look like this:

J77 J51 90
90 11wl
J60
20wl
7091 92
92 12wl
11w0
J2
7090 93
91 J31 0
93 J31 o .

The same flow diagram would be used in the compilation
of J62: LOCATE ON (1) AN X SUCH THAT C(X)=(0). 1In fact,
this routine is identical with the one just discussed,
except that it requires 11Wl before the exit. It should
be observed that the indefinite article '"an' plays the
same role in the DSCN of J62 as the quantifier ''there is
a" in J77. The compiler, therefore, would be provided
with the knowledge that the above flow diagram, using J60
in the second segment, is the appropriate means for trans-
lating this quantifier.

Declarative and interrogative sentences in a DSCN

correspond to tests in the compiled routine. Thus, the

-25-

phrase, "such that C(X)=(0)," leads to the question,

"Does C(X) equal (0)?" and thence to the test J2(c(X),(0)).

-27-

PART II
GENERAL IMPLICATIONS FOR REPRESENTATIONS

Our examination of flow diagrams has already led us
to consider how some syntactical devices of English (e.g.,
the definite and indefinite articles) are to be rendered
in the compiler. In this part, we raise at a more general
level the question of the syntactical flexibility and range
of the compiler languages. In Sec. VI, we ask what forms
of English expressions are handled naturally and simply
by the DSCN and SDSC languages, respectively. In Sec. VII,
we ask how we would go about formalizing the notion of
representation so that a problem-solving compiler could

be given the task of designing its own representations.

-28-

VI. LANGUAGE AND REPRESENTATIONS IN THE COMPILER

We can ask appropriately about any compiler, 'What
range of source statements can it accept?" 1In Part I,
we have discussed two kinds of source statements, DSCN's
and SDSC's. Let us now consider in a little more detail
the range of English-language expressions that these
compilers can handle. We take up the language of de-
scriptive names and the language of state descriptions in

turn.

DESCRIPTIVE NAMES

The DSCN's are particularly interesting because
they take the form of English sentences--imperatives, or,
as we have just shown, declaratives and interrogatives.
How restricted is the language of DSCN's in relation to the
whole class of grammatical English sentences?

Consider the sentence, ''What is the color of that
apple?" The answer might be, "It's color is red," or
even, "It is red." 1In the original sentence, 'that
apple' denotes a particular object; ''the color,'" an
attribute of that object; and ''what,'" the unknown value
of the attribute. 1In the replies, "it' denotes the same
object as '"'that apple'"; '"red," the {now known) value of

the attribute. Thus, we might represent the question and

the first answer, respectively, as:

-29-

? = Color (that apple)
Red = Color (it).
The second answer can be interpreted as synonymous with
the first if we stipulate that "red" can be a value only
of the function 'color."

The process in IPL-V that provides the answer to such
questions is J10: FIND THE VALUE OF ATTRIBUTE (0) OF (1).
In terms of our example, this is: '"Find the value of
attribute 'color' of that apple." Thus, the process that
answers the question takes two inputs--the names of the
attribute and the object--and produces the value as its
output. It defines a function, in the mathematical sense
of the term. In the statement of the process, "attribute"
is in apposition with "color," the former term specifying
the genus to which the argument belongs. We could equally
(though not quite grammatically) have said, "of the object,

'that apple.'" Likewise, the phrase, "Find the value of

e n

the color," is synonymous with, "Find the color, value"

being in apposition with the (implicit) "?", That is, in
English, we abridge, "The value of the attribute, the
color, of the object, that apple, is red," to, '"'The

color of that object is red," or, "That object 1is red."
We can do this because '"color'" is an attribute, "that
apple" is an object, and "red" is a value--nothing is

added to meaning by making these classifications explicit.

-30-

This example shows how, in general, we can handle
a wide class of grammatical forms within the framework
of the DSCN's. Interrogatives are unknowns, like the
x's of algebra, whose genera may be specified, in part
or full, to identify them. The couple "the ... of ..."

signals a determiner--a phrase that names something by

giving enough of its properties to tag it uniquely.
Pronouns (e.g., '"it') and pronominal adjectives (''that'")
identify by reference to terms that have occurred in |
previous sentences. '"Find" is a general process that re-
places a determiner by the object determined. Appositive
phrases and relative clauses provide additional identifi-
catory information about the object to which they refer.
Adjectives, adverbs, prepositional phrases (other than
"of" phrases), and adjectival nouns have the same function--
identification or description. Quantifiers (''there is,"
"all," "a," "some," etc.) require special treatment--
several of them have already been discussed.

The present DSCN Compiler was constructed specifically
to handle verbs (processes), determiners (especially
those involving ''the ... of ...'"), and proper names (in
IPL-V these are always locations). Essentially, what
the compiler does is replace determiners by the appropriate
proper names, using the FIND processes for the compilation.
In the previous section, we indicated how loops and flow

diagrams could be used to handle quantifiers and con-

-31-

junctions, including "and," '"but," and "if ... then."
Pronouns could be handled in a manner similar to that
used for determiners. Appositive and modifying words,
phrases, and clauses could be used as aids in identifying
proper names. It appears that with these extensions, the
DSCN format would encompass most of the forms of gram-
matical English sentences. Only programming, of course,

can determine to what extent this claim is correct.

STATE DESCRIPTIONS

Just as the DSCN language admits of considerable
flexibility in representing English sentences, so the
SDSC language admits of broad flexibility in the repre-
sentations of information in the computer. This flexi-
bility is achieved by using description lists as the
holders of information. Each computer address that is
referred to in the SDSC is represented by a cell having
a description list. On the description list are the
attributes NAME, TYPE, P, Q, SIGN, SYMBOL, LINK--i.e.,
precisely the attributes that name the fields in an IPL
word (and the name of that word) and that appear on the
coding sheet. Since the SDSC makes these attributes
explicit, the program that uses the SDSC's need not be
provided with this information in any format more special-

ized than the description list format itself. Moreover,

-32-

additional attributes and their values can be added, ad
1ib, to the description list.

By introducing attributes that refer to a particular
machine representation of IPL, the SDSC language 1is
readily extended to admit statements about the relation
between IPL and its particular representations. For
example, suppose the fields in the words of a particular
computer were designated by the attributes DECREMENT,
ADDRESS, etc. We could then define a machine language
representation of IPL by setting up appropriate corres-
pondences between IPL attributes and machine language
attributes. (For example, we might specify SYMB =
DECREMENT, LINK = ADDRESS, etc.) We shall indicate in
the next section how this technique can be used to give
the Heuristic Compiler the capability of designing ap-
propriate representations--hence, how the compiler itself
might choose an appropriate machine language representation
of IPL prior to undertaking the task of compiling IPL
into a machine language program.

There is also no necessity in SDSC that each de-
scription list should give the description of the contents
of a single computer address. Alternatively, it may
describe a whole list. Suppose, for example, we wish to
represent the fact that the symbol in cell H5 is J3, and

that H5 is linked to a pushdown list having unknown con-

-33-

tents. All of this information can be given in two de-

scription lists:

1. NAME SYMB LINK KIND OF OBJECT
HS5 J3 RO Pushdown cell

2. NAME KIND OF OBJECT
RO List

We have already illustrated how this flexibility
is used to represent segments of instructions in flow

diagrams.

-34-

VII. THE DESIGN OF REPRESENTATIONS

One distinction between the restricted, relatively

' and the broader, more

simple tasks we call "coding,'
difficult tasks we call '"programming,'" is that the latter
may encompass the selection or design of an appropriate
problem representation, while the former do not. Our
discussion of languages now enables us to see what is
involved in the design or selection of a representation,
and what we would need to do in order to give the Heuristic
Compiler the capacity to grapple with such design and
selection tasks. To illustrate this point, we shall take
an example of a representation problem within the struc-
ture of IPL-V itself.

Let us suppose that we had an operating ''basic"
IPL system, quite like the language defined in the IPL-V
Manual, except that the description list processes were
omitted. We now give a programmer the task of intro-
ducing description lists into the language, using the
basic system itself to define them, without writing any
new machine code.

What do we mean by '"introducing description lists"?
We mean that we wish to be able to associate with the
name of an object (which in IPL is always an address) a
description of that object. The description consists of

a set of pairs: one member of each pair is an attribute;

-35-

the other member of the pair is the value of that attri-
bute for the object to which the description belongs.
Moreover, we wish to be able to store and retrieve de-
scriptive information about objects. That is, we wish to
be able to add new pairs to descriptions, and when we are
given the name of an object and an attribute, we wish to
be able to find the value of that attribute for that
object. Stated formally:

With every object A,, we associate a set of pairs,
(Bj’cij)’ The number of pairs is to be arbitrary and
variable, and we want a process that will answer questions
of the form: ?7 = Bj(Ai).

How could a programmer solve this problem? By the
basic conventions of IPL-V, "object' already means
"address." Thus, he must find some way of associating
a set with each address. Again, in IPL, the standard
way to represent a set is by a list. The question then
becomes, "What list can we associate with an address?'" The
basic relations that are represented in IPL-V are CONTENT
OF and NEXT. The CONTEﬁT OF a cell is the SYMB of that
cell, and the NEXT of the cell is its LINK. Moreover, .
basic processes exist for FIND CONTENTS (P =1, Q = 1)
and FIND NEXT (J60). Thus, the set we associate with an
address can be taken to be the list whose name is the

SYMB (or, alternatively, the LINK) at that address. Let

-36-

us call this list (pursuing the first alternative) the

description list associated with the address.

We must next define a format for description lists
that will represent the pairing of attributes and values.
One method would be to associate a pair of words with
each element of the description list, again using the
relations CONTENT and NEXT. Thus, if Sj is the content
of the jth number of the description list, we could de-
fine Bj = CONTENT OF Sj’ and Cij = CONTENT OF NEXT OF Sj'
(This is substantially the representation that was used
in an earlier version of IPL. An even simpler represen-
tation would make Cij = LINK OF Sj') Now, to add a pair,
B., C,

J’ lj)
the description list, assign it a SYMB (Sj)’ assign Bj

to the description list of Ai’ we add a cell to

as the SYMB of Sj’ and assign Cij as the SYMB of the LINK
of Sj' Similarly, if we are given Ai and Bj’ to find Cij’
we first find the description list, CONTENT OF Ai’ and we
go down this list comparing Bj with the CONTENT of the
CONTENT of each location on the list. When we obtain a
match, we find the CONTENT of the cell next to the matched
cell, and this is the desired value. These processes
follow from the representation.

An alternative representation is obtained by dividing
the members of the description list into two subsets--its
ODDS and its EVENS. We then take the ODDS as the attributes;

the value of an attribute is simply the EVEN that follows

-37-

it. These definitions, again, make use only of the
relations CONTENTS and NEXT. Thus, an ODD of a list is
the FIRST of the list or the NEXT of the NEXT of an ODD.

This definition allows us to construct a loop that
will find, in sequence, all the attributes on the list.
Given the location of an attribute, a FIND CONTENTS OF
NEXT finds its value. This representation is, of course,
the one actually adopted in IPL-V.

It will be instructive to see what the program for
J10; FIND THE VALUE OF ATTRIBUTE (0) OF (1), looks like
in each of these representations. We write the two pro-

grams side by side:

J10 J51 J10 J51
12wl 12wl Find description list.
92 J60 92 J60
7090 7090
60wl 60wl
52HO 52H0 Find next attribute.
12HO0 11wWO0
11wO0 J2 Test if it is equal to (0).
J2 7091
7091 11wl
J60 J60 If so, find value.
52H0 J31 52H0 J31
91 30HO 91 11wl list.
11wl 92 J60 92 Proceed down description/
90 30H0 J31 90 3000 J31 Exit, attribute not

found.

We see from this example that designing a suitable
representation amounts to finding an isomorphism. A
"description'" was defined in terms of certain elements

(objects, attributes, values), relations between elements

-38-

(e.g., the attributes of an object), and processes (e.g.,
FIND THE VALUE OF (0) OF (1)). The programmer had to
find a set of elements, relations, and processes defined
in IPL-V that were isomorphic with the required elements,
relations, and processes. I have not worked out how such
a search could be automated, but the main requirements
are clear. In particular, to enable the Heuristic Compiler
to perform this search, it would have to be provided with
lists of the available elements, relations, and processes,
or it would have to be able to recognize such things
when they were described in the DSCN or SDSC languages.
For example, it would have to recognize that every deter-
miner (e.g., ''the ... of ...'") defines a relation.

As a second example of what is involved in designing
a representation, let us consider the representation of
IPL-V words in SDSC. Since each word consists of a number
of symbols belonging to different fields, we can again use
the description list format, in which we equate ''field"
with "attribute'" and "symbol in field" with '"value of
attribute." But the symbols in the NAME, SYMB, and LINK
fields themselves contain encoded information, for they are
in the form ANNNN, where A is an alphameric symbol, and
NNNN is a number. Hence, we represent each of these
symbols by an object with a description list containing the
attributes REGION and LOCATION. The value of REGION is

the alphameric symbol A; the value of LOCATION, the

-39-

number NNNN. Therefore, the information that a ''local
symbol" is one with A = 9 can be represented. Again, the
lesson here is that we must create an isomorphism between
the elements of the representation, their relations, and
the structure to be represented.

Suppose, as a third example, that we set ourselves
the task of writing a program to sort a bridge hand. To
accomplish this task the meanings of '"sort' and '"bridge
hand" must be known. A bridge hand is a set of (13)
elements, each characterized by a primary characteristic,
suit (4 possible values), and a secondary characteristic,

denomination (13 ordered values). Sorting means ordering

a set of elements by one or more characteristics, taking
account of the ordering of values where this is defined.
In this case we find a straightforward isomorphism:
Each element in the bridge hand is to be represented by
an object having a description list with attributes SUIT
and DENOMINATION. A sorted bridge hand is to be represented
by a list of such elements, with the ordering of the list
to correspond with the ordering of the sort. It now
becomes a straightforward (if difficult) compiling job
to write a SORT routine that will produce a list with
these properties. Moreover, if it is done correctly, it
should be possible to write the routine in the generalized

form: SORT (0) IN FORMAT (1), where (1) enumerates the

-40-

attributes, their ordering, and the orderings of the

values that define the sorted object.

We shall explore this particular scheme in more
detail in Sec. VIII of Part III. Perhaps enough has
been said here to demonstrate that selecting or designing
a representation is a problem-solving task that can be
attacked with the same general kinds of heuristic tech-

niques as other problem-solving tasks.

-41-

PART III
EXPERIMENTS WITH REPRESENTATIONS

In Part III, we propose some extensions of the
Heuristic Compiler, most of which are motivated by lin-
guistic considerations. In particular, we explore some
methods for enabling the compiler to handle input state-
ments in forms that are close to natural language.

There are a number of important respects in which
natural languages differ from the usual programming lan-
guages. We shall be especially concerned with three of
these differences:

1. In natural languages, the word is the most im-

portant unit of meaning. (For the moment, we do not

need to distinguish among "word," "morpheme," and "idiom.")

In most computer languages, the sentence (usually an imperative
sentence, called an "instruction') is the basic unit of
meaning. Thus, if a person understands, separately, the

verb "sort," and the noun phrase 'bridge hand," he can

probably obey the instruction, 'Sort the bridge hand."

In most computer languages, a compiler would not be able

to assemble, "Sort a bridge hand," from "sort" and 'bridge
hand," but would have to be provided with a number of
specialized sort routines.

2. 1In natural languages, most communication makes

use of sentences in the indicative or declarative mode.

-42-

In computer languages, most sentences are in the imperative
mode. Computer languages are primarily languages of
command, and not languages of information, description,

or advice.

3. In natural languages, many alternative sentences
can be phrased that '"mean'" about the same thing. The
recipient of a natural-language communication is able to
decode the communication without too much concern for
details of format. In computer languages, there are various
harassing constraints on format. Failure to observe
these constraints usually causes an error condition.

These differences are, of course, differences of
degree and not of kind. Moreover, research on computer
languages over the past decade has already made sub-
stantial progress toward decreasing or erasing them. Basic
processes have become more general and parameterized;
various forms of declarative statements have been intro-
duced; compilers have been designed to accept relatively
informal input statements. The gap, however, between
natural language and computer languages is still large,
and annoying to those who are engaged in man-machine
communication.

We are here concerned with extensions of the

Heuristic Compiler directed towards reducing these

-43-

differences.* Section VIII indicates how generalized
processes (verbs) can be introduced into the DSCN
Compiler. Section IX describes subroutines for storing
and retrieving descriptive information in declarative
sentences. Section X describes an approach toward
natural-language flexibility in input statements for the
SDSC Compiler, making use of the descriptive information

provided by the techniques of Sec. IX.

*The thinking reported here, particularly in Sections

IX and X, was greatly stimulated by the work of Robert

K. Lindsay, "The Reading Machine Problem" (Unpublished
Ph.D. Thesis, Carnegie Institute of Technology, 1960),
which has been revised as Toward the Development of a
Machine Which Comprehends, University of Texas, Austin,
May 1961. I owe a great deal also to stimulating dis-
cussions with Hugh Kelly and Allen Newell of The RAND
Corporation and Carnegie Tech, respectively.

4t -

VIII. GENERALIZED PROCESSES

We shall consider two classes of processes: one
designated by the verb '"find," the other by the verb

"sort."

'""FIND'"' PROCESSES

The possible interpretations of FIND are numerous to
the point of being meaningless. Any routine that takes
some symbolic structures as inputs and produces one or
more other structures as outputs may be called a process
for "finding" the latter. Thus: FIND SINE A, FIND THE STATE
DESCRIPTION OF ROUTINE K, FIND THE PROOF OF THEOREM T.
From this point of view, a program like the General
Problem-Solver is simply a fairly general FIND routine.

Hence, any routine flexible enough to interpret
correctly the verb "find" wherever it occurs in normal
English prose, would have to make considerable use of
context. In the present section we shall aim at a lesser
degree of flexibility. Consider the two classes of
processes typified by:

FIND THE state description OF routine K, and

The first example designates an object associated
in a particular way with a specific object, K. 1In IPL-V
there is provided a special format, the description list,

for holding such information in memory, and a set of

-4 5-

processes, J10 to J16, for entering and retrieving the
information. Section IX examines definite descriptions
of this special kind at length. In the present section,
then, we shall limit ourselves to the verb 'find" as it
occurs in instructions like, FIND A ... ON ..., and FIND
THE ... ON Even this scheme covers a considerable
variety of processes:

FIND A symbol, S10, ON list L.

FIND AN object whose type is A4 ON list structure L.

FIND THE third symbol ON list L.

FIND THE largest integer data term ON the lists
of list L.

In the first two examples, the indefinite article
indicates that the object sought is not necessarily unique;
in the last two examples it is. In the first two examples
the properties that define the object sought are absolute--
their presence or absence can be ascertained without
reference to other objects. In the last two examples, the
properties are relative; and indeed, in the fourth example,
the entire set of objects must be examined before the one
sought can be identified. 1In the first example, the
object sought is designated by proper name (and the infor-
mation is added that it is a ''symbol"). This example
can be approximated to the others by rephrasing it: FIND

A token equal to S10 ON list L.

46-

With these preliminaries out of the way, we shall
describe in detail a rather general FIND process. The
object sought will be specified by some sublist of the
symbols on the pushdown list of the communication cell,
HO. The specification of the place to be searched will
be given by other symbols on that pushdown list. Hence,
we can symbolize the desired process:

FIND A F;[(0), (1),...,(k)] IN Fo[(k+l), (k+2),...,(n)],
where (0), (1), etc., designate, as usual, the symbols
on the pushdown list of HO.

We suppose that the compiler is provided with a
lexicon that contains, among others, the words '"FIND,"
"Fy (J," and "F, [1." The lexical entry for each
of these is a description list containing, for "FIND"
and "Fl," the attribute IPL ROUTINE, and for "F2," the
attribute TYPE OF OBJECT.

The IPL ROUTINE associated with FIND in the lexicon
will contain certain variables, to be replaced by constants
derived from an examination of F1 and Fy. We will first
present the routine, as it would appear in the lexicon,
and then explain the meaning of certain of the symbols
in it.

FIND J5n

J5 J3n
90 40HO

7090 J8

47-

As previously indicated, k is the number of arguments
in Fl’ (g;k) the number of arguments in F2, and n the
number of arguments in the two functions taken together.
Thus J5n preserves WO to Wn and moves all the arguments
of F; and F, into the W's; J3n restores WO to Wn. The
instruction 11W(n-k) brings into HO the arguments of F,,
while 11Wk brings in the arguments of Fy. The numbers k
and n-k are to be determined, of course, by examining F,
and F,. The variable, GEN(Fl,FZ), is to be replaced with
a generator obtained from the lexical entry for F,, while
TEST(Fl) is to be replaced with a test associated with
the lexical entry for Fy. All the other symbols have their
usual IPL-V meanings.

We can now compile FIND A F1 IN F, as follows:

1. Get IPL ROUTINE of FIND.

2. Supply values for k, n, and n-k where required.

3. Make list of subroutines required (GEN(Fl,FZ),
TEST(Fl)).

4. Get the IPL ROUTINE of TEST, supply it with its
arguments, and insert it in the IPL-V
code for FIND.

5. Get TYPE OF OBJECT of Fy, and get the associated

GEN for that type in the dictionary of
generators; insert it in the IPL-V code
for FIND.
A word may be added to this account to indicate how
relative properties are handled in FIND THE THIRD ...,
or FIND THE LARGEST. In these cases, the test needs to

be based on a recursive process--in the case of FIND THE

THIRD ..., a counting process; in the case of FIND THE

-4 8-

LARGEST ..., a process that resets LARGEST SO FAR equal

to the larger of LARGEST SO FAR and the current integer.
The test--the function Fl--would, in these cases, make
provision for storing in the W's the intermediate products

of calculation.

""SORT'' PROCESSES

As our second essay toward generalized processes, we

"

take the verb '"'sort.'" Suppose that the objects we wish
to sort are description lists. It is easy to construct a
general routine, SORT (0) ON (1), where (0) is the list
of objects to be sorted and (1) is a specification of the
attributes, their ordering, and the orderings of attribute
values on which the sorting is to be based. Thus, if (0)
were a list of description lists representing the cards
in a bridge hand, (1) would specify that the attributes
are suit and denomination (in that order), that the suit
values are S,H,D,C, in that order, and the denomination
values A,K,Q,J,10,9, etc., in that order. A further step

toward generalization would allow the sort routine to be

compiled from a definition of the collection of objects

to be sorted. Let us see how this can be done when the
object to be sorted is a bridge hand. First, we store in
memory description lists providing information about the

terms LIST, DESCRIPTION LIST, and ATTRIBUTE:

-49-

LIST
TYPE: Class of objects
ATTRIBUTES: Type of members
DESCRIPTION LIST
TYPE: Class of objects
ATTRIBUTES: Attributes
ATTRIBUTE
TYPE: Class of symbols
ATTRIBUTES: Values.

That is to say, a list is a class of objects; the
description list for any class of objects of type LIST
will have the attribute CLASS OF MEMBERS. A description
list is also a class of objects; the description list for
any class of objects of type DESCRIPTION LIST will have
the attribute ATTRIBUTES. An attribute is a class of
symbols; the description list for any class of objects
of type ATTRIBUTE will have the attributive VALUES.

Next, we store in memory description lists providing

information about the terms BRIDGE HAND, CARD, SUIT, and

DENOMINATION.
BRIDGE HAND
TYPE: List
MEMBERS: Cards
CARD
TYPE: Description List
ATTRIBUTES: Suit, denomination
SUIT
TYPE: Attribute
VALUES : Spade, hearts, diamonds, clubs
DENOMINATION
TYPE: Attribute

VALUES A,X,Q,J,10,9,8,7,6,5,4,3,2

-50-

Now we can compile SORT THE BRIDGE HAND (0), as
follows: From the information just stored, we find that
BRIDGE HAND has the type LIST. From LIST, we find that
BRIDGE HAND will have the attribute TYPE OF MEMBERS.
Finding the value of this attribute, we determine that
the members of bridge hands are cards. CARD is a
description list, which has the attribute ATTRIBUTES.

The attributes of cards are suit and denomination. We
would therefore compile the sort routine to sort on suit
and denomination, in that order of priority. Examining
the values of these two terms, in turn, we find the order
in which these values are to be arranged in sorting.

If it were known to the program that a bridge hand
is a list of description lists, then the sorting routine
could obtain the information about attributes and values
by direct examination of one or more examples of a
sorted bridge hand, and without being given the informa-
tion about CARD, SUIT, or DENOMINATION explicitly. If
the examples were not too special (e.g., a hand of
thirteen spades), the program could determine what
attributes a card possessed, which of these was relevant
to the sorting, the hierarchy of attributes, and the
ordering, if any, of the values of each. This information
could then be used to compile the specific sorting routine

required.

-51-

Thus, we see that the key to providing a generalized
routine for a verb like SORT lies in providing syntactically
or semantically the information needed to supply the
routine with the parameter values it requires. This can
be accomplished (syntactically) through a scheme of
declarative sentences that describe the 6bjects under
consideration; or (semantically) by providing examples
that can be analyzed. Moreover, the description itself
can be generated inductively from examples.

The description that would allow compilation of the
"gsort" routine could also be used to compile TEST IF X IS
A BRIDGE HAND. Thus, storing descriptions of classes of
objects is an important means for factoring sentence
meanings of nouns and verbs, respectively. It provides

a powerful basis for introducing general processes.

RECURSIVE FUNCTIONAL LANGUAGES

Consider an instruction language consisting of a
set of functions each admitting as arguments the values
of functions of the set. Each of the functions can be
regarded as a FIND instruction--i.e., FIND THE VALUE OF
F FOR THE GIVEN ARGUMENT VALUES. It may be executed
recursively by finding, first, the values of each of its
arguments, then using these to compute the value of the
function. Hence, the interpreter of such a language may

itself be regarded as a generalized FIND instruction.

-52-

Next, consider an instruction like SORT OBJECT A,
in a recursive functional language. The definition of
SORT, if it is a generalized routine like those described
in the previous section, may read something like ARRANGE
ACCORDING TO THE ATTRIBUTE VALUES OF. The definition has
different arguments from SORT itself--it refers to the
attribute values of A instead of the object A. The
interpreter would need to be general enough to replace
SORT A by ARRANGE A BY THE ATTRIBUTE VALUES OF A; then
execute FIND THE ATTRIBUTE VALUES OF A, and insert the
value of this function as the second argument of the
ARRANGE function. We have already indicated how the
FIND might be accomplished.

With a little further generalization, the scheme
could handle apposition--e.g., SORT THE BRIDGE HAND, A.
The phrase in apposition would provide information about
the type of the object designated, and as we have seen,
this information could be used to find the other argument
of the ARRANGE routine. Further light will be cast on
apposition in the next section, where we shall discuss
modifiers that identify an argument, and their relation

to modifiers that describe the object.

-53-

IX. DEFINITE DESCRIPTIONS

The meaning of much descriptive and expository prose
can be captured in a fairly simple language--a sub-
language of English--that uses only the verb "is'" and
noun phrases with definite or indefinite articles in
subjects and predicates. Consider the following example,
which, while it does not fit this restricted form exactly,
is not far from it:

The state description of a routine consists
of a 1list of affected cells. For each affected

cell on the list, the state description specifies
its input state and its output state.

SYNTACTIC CHARACTERIZATION

We might proceed to formalize this description in
either of several ways. I shall call the first of these

syntactical, since it makes statements about the terms

"state description," "affected cells,'" "input state,"
and "output state.'" These statements can then be stored
in association with the relevant terms in a lexicon.

The type of xstate description'" is '"description
list";

The attribute of "'state description' is ''list
of affected cells";

The type of "list of affected cells" is "list";

The type of "affected cell" is "description list";

The attributes of "affected cell" are "input state'
and "output state."

We have already seen this kind of description in our

discussion of generalized SORT routines in the previous

-5 -

section. Readers who are familiagr with the notation

known as Backus normal form will observe that a syn-

tactical description of this kind could without much
difficulty be translated into that form--or a slight

extension thereof. Our interest, however, is in staying

close to natural English.

SEMANTIC CHARACTERIZATION

An alternative, semantic, formalization characterizes
a given type of object (STATE DESCRIPTION in this

instance) by describing an example:

X1l is a state description of a routine if
there are an X0, X2, X3, X4,
and X5, such that:

X0 is a routine;

X1 is the state description of XO;

X2 is the list of affected cells of X1;

X3 is a member of X2;

X4 is the input state of X3;

X5 is the output state of X3.

Properly interpreted, the example implies the
syntactic description we gave previously. Consider, for
instance, "X3 is a member of X2." With the convention
that only lists have members, this statement implies that
X2 is a list., From the previous statement, "X2 is the
list of affected cells of X1," we observe that this list

is the value of the attribute, LIST OF AFFECTED CELLS,

of X1.

We can store the example in memory by storing a

description list, X0, with attribute STATE DESCRIPTION

-55-

having value X1. X1, in turn, is a description list,
with attribute LIST OF AFFECTED CELLS having the value
X2. X2 is a list whose sole member is X3. X3 is a
description list with attribute INPUT STATE having value

X4, and attribute OUTPUT STATE having value X5.

ANNEXING DESCRIPTIVE INFORMATION TO AN INFORMATION STORE

Let us use symbols from the X region--e.g., X114,
X33--to designate nouns. These nouns will be either
proper names (of objects to be represented by lists or
list structures) or attributes. Consider now the sentence:

"X114 is the X33 of the X25 of X105."

In this sentence, which is grammatical if inelegant
English, "X114" and ''X105" are proper names, while 'X33"
and '"'X25" name attributes. The objects referred to in
this sentence are X114 (or synonymously, the X33 of the
X25 of X105), the X25 or X105, and X105. The problem
of annexing the information provided by this sentence to
an existing memory store depends on what is already in
the store.

Suppose, as a first possibility, that no information
has been stored previously about the objects mentioned in
this sentence. We store the new information by creating
a name, call it X200, and assigning it as the value of
attribute X25 of X105. Then we assign X114 as the value

of attribute X33 of the newly named object, X200,

-56-

Suppose, however, that we had previously stored in
memory the information that an object named X130 was the
value of attribute X25 of X105. Then, to store the new
information, we would first have to find X130, and then
assign X114 as the value of attribute X33 of X130.

In the first case, we annexed the new information
by two ASSIGN processes--in IPL-V, two applications of
J11. In the second case, we annexed the new information
by a FIND process (J10 in IPL-V) followed by an ASSIGN.
We can write a general routine to accomplish this. 1In
processing a sentence like the one we are using as
example, we start at the extreme right and search in
memory for the object named. If we find it, we proceed
to the left, find the first attribute, and find the value
of this attribute of the object. If the value exists, it
becomes a new object on which we can repeat the process,
moving to the next attribute to the left.

When we fail to find an object meeting the descrip-
tion (when J10 fails), we enter a second phase. We now
proceed from the left-hand side of the sentence, creating
names for new objects as these are needed, and annexing
their descriptions to them (by J11), until we reach an
object that is already mentioned in memory.

Thus, depending on what is already stored in memory,

the same piece of information in the input sentence can

-57-

serve either as a descriptive phrase, providing new

information to be annexed to the memory structure, or as

an identifying phrase, to be used in locating the place

in memory where the new information is to be annexed.

In this scheme ambiguity is entirely possible. It
can enter because the scheme allows indefinite, as well
as definite description. Again, an example will make the
point clear. We consider the following sequence of four

input sentences:

X114 is the X33 of the X25 of X105.
X115 and X116 are the X99 of the X34 of the
X25 of X105.
X125 is the X41 of a member of the X71 of the
X24 of X105.
X117 is the X75 of the member whose X41 is
X125 of the X71 of the X24 of X105.
Suppose we begin with no information about X105 in
memory. Then, as we have seen, the first sentence is
stored by two executions of J1l1. The first creates a new
object, say X200, and assigns X114 as its X33; the second
assigns X200 as the X25 of X105.
The second sentence is stored by two executions of
J11 and one of J10. Working from the right, by J10, X200
is found to be already in memory as the X25 of X105. But
there is no value for attribute X34 of X200. Hence, a
list, say X201, is created whose members are X115 and
X116, and X201 is assigned as the value of X99 of another
new object, say X202. Finally, X202 is assigned as the

X34 of X200.

-58-

Storing the third sentence brings about the creation
of X203, whose X41 is X125; of a list X204, of which X203
is member; and of an object, X205, whose X71 is X204, and
which is, in turn, the X24 of X105.

The fourth sentence introduces a new complication.

It refers to '"'the member of the X71 of the X24 of X105
whose X41 is X125." A series of J10's will find the X71
of the X24 of X105--that is, X204. The sentence now calls
for locating that member of X204 whose X41 is X125. From
the previous paragraph, we see that the object in question
is none other than X203. Thus X117 would be assigned as
the X75 of X203.

Now let us return to the question of ambiguity.
Suppose that the fourth sentence read:

X117 is the X75 of the member whose X76 is
X130 of the X71 of the X24 of X105.

Now, when we examine X204, we find, as before, that
it has a member, X203, But we have no information to tell
us whether or not X203 is '"'the member of X204 whose X76
is X130." Hence, we do not know whether to assign X117
as the X75 of X203 or to create a new member of the list
X204--say X205, and assign X117 as the X75 of X205,

The ambiguity is not a consequence of the particular
annexing scheme we have used, but resides more deeply in
the nature of things. Let r and s be relations; A, B, C,

and X, objects. Suppose we know that ArB and that there

-59-

exists a Y such that CsY and YrB. Then we can neither
affirm nor deny that Y is identical with A. (The same
difficulty arises in R. Lindsay's program for annexing
genealogical information to a family tree.* If we know
only that Isaac is a son of Abraham, and Jacob is a son
of a son of Abraham, then we do not know whether or not
Jacob is a son of Isaac.) Our only recourse is to arrange
the annexing routine so that, when it detects such an
ambiguity, it outputs an appropriate question.

A program for an annexing routine is given in
detail in Appendix B. It will not deal with the ambiguity
problem just discussed; but is in all other respects
capable of annexing to memory the contents of sets of

sentences of the kinds we have been considering.

*0p. cit., p. 43.

-60-

X. COMPILATION OF ROUTINES FROM PARTIAL DESCRIPTIONS

One part of the flexibility of natural language
depends on the problem-solving capacity of the listener.
Information already in his memory allows him to supply
details that are omitted from, or only implicit in, the
communication. Suppose we wish to give a (human) pro-
grammer the task of coding a routine in IPL-V for J3.

We might tell him:

"Write a routine, J3, that changes the
contents of cell H5 from fSl,RO] to [J3,R0]."

The programmer, familiar with IPL-V, knows that H5
is a so-called '"pushdown cell," and that what is wanted
is to replace the contents of the SYMB field of that cell,
whatever they may be, by the symbol "J3."

What instruction would we have to give to the SDSC
Compiler to induce it to perform the same task? The
instructions would read:

"Compile the IPL-V definition of the

following routine: The NAME of the routine is

J3. The LIST OF AFFECTED CELLS of its STATE

DESCRIPTION has a member, whose NAME is HS5,

whose INPUT STATE is the list, S1, RO, and

whose OUTPUT STATE is the list, J3, RO."

Given some such statement, the annexing routine
described in the previous section could construct an
appropriate description list as input to the SDSC Compiler.

In Part I, we showed how the SDSC Compiler could then

write the desired routine from its state description.

-61-

Now the instructions to the compiler have required
about three times as many words as the instructions to
the human programmer. The reason is easy to see. The
essential information to be provided is that the cell to
be changed is H5, and that the change is to replace an
unknown symbol by the symbol J3. The compiler cannot
receive this information without explicit mention that
J3 is the first symbol in the list of the output state of
affected cell H5 of the list of affected cells of the
state description of the routine named J3. The human
programmer is capable of supplying this additional
information, because he knows what the structure of a
state description is like.

The last observation suggests that we might give
the compiler the same capability by providing it prior
information about the structure of a state description,
and allowing it to fill in the implicit detail. Let us
employ the language of Sec. IX to see how this might be
done.

The complete description list, necessary to the
Heuristic Compiler, is equivalent to the following set of
sentences :

Let X100 be a routine whose NAME is J3.
Let X101 be the STATE DESCRIPTION OF X100.
Let X102 be a member, whose NAME is H5, of
the LIST OF AFFECTED CELLS OF X101.

Let S1, RO be the INPUT STATE OF X102.
Let J3, RO be the OUTPUT STATE OF X102.

-62-

In parallel fashion, we can store in memory a
"template' for the description of a routine. We will use
symbols from region "Y" to denote variables.

Yl is the NAME of Y2.

Y3 is the STATE OF DESCRIPTION of Y2.
Y4 is the LIST OF AFFECTED CELLS OF Y3.
Y5 is a typical member of Y4,

Y6 is the NAME of Y5.

Y7 is the INPUT STATE OF Y5.

Y8 is the OUTPUT STATE OF Y5.

X7 and Y8 are lists,

Now to fit the specific example to the template, we
identify J3 with Y1, X100 with Y2, X101 with Y3, X102
with Y5, and so on. Suppose, however, the example were
incomplete, as follows:

X100 is a routine whose NAME is J3.
N10l is a cell whose NAME is H5,
S1, RO is the M1 of X101,

J3, RO is the M2 of X101,

Here '""M1" and '"M2" designate attributes whose
meanings are not given in the lexicon. It should not be
too difficult to devise a process for matching this
description with the template. The matching process
would discover that X101l has to be identified with Y5,
and X100 with Yl. New objects could then be created to
correspond with Y3 and Y4, and the appropriate descrip-
tion list stored in memory. The SDSC Compiler, taking
this description list as its input, could now compile the
code for J3.

Our basic proposal, then, for compiling routines

from partial descriptions rests on two devices: (1) the

-63-

use of an annexing routine like that described in Sec. IX
as a means for constructing description lists from
expository sentences; (2) the use of templates to provide
information that is not given explicitly in the input
sentences. The routine for accomplishing the second task

has not yet been written.

-65-

Appendix A
PROGRAM LISTING OF THE HEURISTIC COMPILER

This listing includes a rather simple form of the
General Compiler [U135], DSCN and SDSC Compilers [Ul34
and U140, respectively], routines for assembling flow
diagrams [U133], and routines for printing JDEF [u12s],
DSCN [U126], SDSC [Ul127], and all three of the above
(U128]. These routines are called in by a general
executive [T1].

List structures in regions E, T, and U, and X5 and X7
are routines. The remaining list structures in region X
are data. The version of Tl that is listed will print
X102, then compile and print X105 and X100, compile X182
from its flow chart, printing the result, and reconstruct
the flow chart of X102 from its code.

The program is in IPL-V (Information Processing

Language-V) and is machine independent.

E4e PRINT LIST (0) OF DATA TERMS
WITHOUT NAMES. ENTER LIST NAME

E40e. MARK ROUTINES ON (0) TO TRACE

E4le MARK ROUTINES ON (0)
NOT TO TRACE

PRINT, CLEAR

SPACE BAR ONCE
SPACE BAR TWICE
PERIODs SPACE TWICE

COMMA, SPACE ONCE

E55¢ PRINT LIST STRUCTURE),
SAVING FOR NEXT PROCESS

NN NNNDND N

-66-

AQ

EO
Lo
NO
TO
uo
X0

E4

91

92
E8

90

91

92

93

E40

90
E4l

90

E50
E51
E52
E53

91
E5¢

91
E55

Tl

40HO
J156
ES4
J60
7092
12H0
J157
E53
1090
J101
70
12H0
J156
7092
30HO
ES4
7093
E50
J156
5%0)
10N10
Jilé61l
52H0
J156
E50
10N10
Jlel
1090
J100
J147
1090
J100
J149
J155
10N1
10N2
1091
J157
+21e
1091
J157
+21
E50
40HO
3J0
10A99
J154

0200

0200
0200
0200
0200
0200
0200

51

91
J8

E50
91

E53

E54

J&

J154
J161
J161

E52

ES51

E8

E4
E4
E4
E4
E4
E4
Es
E4
E8
E8
ES8
E8
E8
E8
E8
E8
E8
£E8
E8
E8
E8
E8
E8
E8
E8
E8
E8
E40
E40
E40
E4l
E4l
E4l
E50
E51
ES52
E53
E53
ES53
E54
E54
E54
E55
E55
T1
T1
Tl

000
0l¢
020
030
040
050
060
070
000
010
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
000
0lo
020
000
0lo
020
000
0G0
000
000
0lo
020
000
210
020
000
0lo
000
010
020

-67-

930
T99
CONSTRUCT IPLV WORD (3)s WITH uloo

P=(0)sQ=(1)9SYMB=(2)e NO OQUTPUT

ASSIGN P

ASSIGN Q

ASSIGN sSyMmB

CONSTRUCT IPLV SYMBOL,s WITH ulol

13A0
10930
J100
10X102
ulzs
10X105
40HO
ul3s
30H0
ulzs
10X100
40H0
Ul35
30HO
ulz2s
10X182
10X41
J10
10X180
10X181
Ul33s
J50
J90
40HO
11wW0
10X22
J11
40HC
ulz28
40HO
ul3eQ
40HO
10X26
J10
40HO0
ulz2s
J147
J166
J52
J90
J136
40HO
11wW0
10X43
J11
40HO0
11wl
10X44
J11
40HO
11w2
10X45
J11
J51

J165

J32

Tl
T1
T1
T1
Tl
Tl
T1
T1
Tl
Tl
T1
T1
T1
Tl
Tl
Tl
T1
T1
Tl
Tl
Tl
T1
T1
Tl
T1
Tl
Tl
Tl
T1
Tl
T1
Tl
T1

T99

uloo
uloo
uloo0
uloo
uloo
vl1l00
uloo
Uloo
uloo
uloo
Uuloo
ulo00
uloo
uloo
Uulo0
ulol

030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

000
000
005
006
0l0
020
030
040
050
060
070
080
085
090
100
110
000

REGION=(0) sLOCATION=(1)e OUTPUT
(0) IS LOCAL NAME OF SYM3OL

ASSIGN REGION

SAVE LOCAL NAME
ASSIGN LOCATION

CONSTRUCT DESIGNATED SYMoOL s
£)=Qy (1)=SYMBe CUTPUT (0) IS
LOCAL NAME OF DeSYMD

ASSIGN Q VALUE

ASSIGN SYMB VALUE

CONSTRUCT = INPUT DeSes(0) IS DeSe
NO OUTPUT

CONSTRUCT — PROCESSsP=(0)»
DESeSYMBe=(1)e OQUTPUT (0) IS LOCAL
NAME OF PROCESS

CONSTRe J=DEFesNAME (0O)sOF (1)e
CONSTRUCT PROCESSs P=0s G=0»
(0)=SYMBe. OUTPUT (U) IS LOCAL
NAME OF PROCESS

CREATE WORD

AND MAKE (0) ITS SYMB

COMPARE IPL SYMB0OLS (2) AND (1)
FOR IDENTITYe SET H5

TEST IF REGIONS EQUAL.

IF SO,

TEST IF LOCATIONS EQUAL.
REPLACE ARGSe IN ROUTINE (0)
WITH COPIES.

-68-

uloz

Uulo3

Uulos

Ulo5
uloeé

ulo7

ulos

J90
J136
40HO
11wW0
10X33
J11
40HO
11wl
10X34
J11
J51
JS0
J136
40HO
11wo
10X&44
J11
40HO
11wl
10X45
J11
10N1
10X43
J50
40H0
11W0
10X43
J11
10X41
J50
J3%0
J136
40H0
11W0
10X45
J11
J51
11wl
10X33
J10
11w0
10X33
J10O
J1ll4
70431
11wl
10X3¢4
J10
11wo
10X34
J10
J114
J40
Ulls

J31

J31

J11

J30
J11

J30

J31

Ulol
ulol
ulol
ulol
ulol
ulol
Ulol
ulol
ulol
ulol
ulo2
ulo2
uloz
uloz
ulozd
uloz
ulo2
ulo2
uloe
uloz2
uloz
Ulo3
ulo3
Uulo4
ulos
Uulo4
Ulos4
Ulos
ulos
uloé
Uuloé
uloeé
uloé
uloé
Uloé
uloé
ulo7
ulov
ulo7
ulo7
ulov
ulo7
ulo7v
ulo7
ulo7
ulo7?
ulo7
uloz
ulo7
ulov
ulov
ulo7
ulos
ulos

305
0lo
020
030
040
050
055
060
070
080
00¢C
0lo0
020
030
040
050
060
070
080
090
100
000
0lo0
0co
010
020
030
040
0G0
000
010
020
030
040
050
060
000
olo
020
030
040
050
060
o070
080
090
100
110
120
130
140
150
000
0lo

-69-

FIND NEXT ARG, 90
IF NONE, EXIT

COPY ARGUMENTSs AND

INSERT COPY IH LIST

TEST IF ARGe. IS DETERMINER

IF NOT, CONTINUE

WITH NEXT ARGUMENT. 93
IF A DETERMINER(RECURSE. 92
NO MORE ARGSes EXIT 91
FIND ON LIST (0) ROUTINE WITH ullo

SAME PROCESS(DSCN) AS (1)e SET H5

PUT PROC(DSCN) IN Wl
COMPARE WITH LIST ITEMS

SET H5 + IF FOUND(- IF NOT

STORE ITeM IN W2 90
AND FIND PROC{DSCN)

COMPARE IT WITH 1wl

SET H5 - IF FOUND

FIND PROCESS OF DSCN Ulll
OF ROUTINE (0).

(ASSUME IT EXISTS)

TRANSFER HO-LIST ARGUMENT OF ullz
ROUTINE (0) TO WSe

BRING IN N-LIST

COPY 1IT

AND STORE IN Wl

FIND LIST OF ARGUMENTS

OF DSCN OF (C)

92
BRING IN TALLY
CONSTRUCT TRANSFER PROCESS
INSERT IN J-DEF OF (0)
LOCATE NEXT ARGUMENT 90

IF NONEs» GO TO 92

J60
7091
60w0
52H0
JT14
61W0
40H0
10X32
J10
10X37
J2
70 92
30H0
11wW0 90
ulos 93
30HO J30
Ja2
20W0
Uill
20wl
11W0
1090
J100O
J5 J32
60W2
Ulll
11wl
J2 J5
10X20
J10
10X30 J10
Ja2
60W0
10X199
J73
20W1
10X20
J10
10X31
J10
90
30HO J32
04J0
12wl
10L23
ulol
10N1
10N1
Uuloo0
11wW0
Jé
10X22 J12z
04J60
700

Jlo8
ulos
ulos
vulos
ulos
ulos
ulos8
Ulos
ylos
ulos
Ulos
ulosg
ulos
ulos
ulos8
ulos
ullo
ullo
Ullo
Ullo
Uullo
Ullo
ullo
ullo
Uullo
ullo
ullo
ullo
ulll
Ulll
Ulll
Uulle
Uliz
ulle
Ullz
Ulle
ullz
Uulle
Ullz
Ullz
ulle
ulle
uliz
ullze
ullz
ulle
ullz
ullz
ulle
ullz
ullz
ulle
ulle
ulle

020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
000
010
020
030
040
050
060
070
080
090
100
110
000
010
020
000
0lo
020
030
040
050
060
070
080
090
100
110
112
114
116
120
121
122
130
140
150
170
180

FIND TYPE OF ARGUMENT

TEST IF IN H-REGION

IF NOTs LOCATE NEXT ARGUMENT

IF SOy
COPY OLD ARGUMENT
AND MAKE IT LOCAL

DELETE OLD ARGUMENT

INSERT COPY AS NEW ARGUMENT

BRING IN ARGUMENT

ASSIGN X36 AS NEW TYPE

CHANGE ARG TO WN

LOCe ARGSe IN ROUTINES

CORRESPONDING TO HNs N=(0)

IN ROUTINE (1)

PUT ARGe LIST OF (1) IN Wl

PUT ARGe LIST OF (2) IN W2

LOCATE NEXT ARGe OF (1)
IF NONE » TERMINATE
AND SAVE IT

LOCATE NEXT ARGe OF (2)

TEST IF ARG (1) IN HO

IF NOTs TRY NEXT ARG.
TEST IF LOC (ARG)= (0)

FIND ITS DETERMINER

SET UP TALLY IN W3

-70-

91

Uull3

90

60wW2
52H0
10X32
J1o
10X35
J2
7091
12w2
JT4
J136
11w2
40HO
J68
J6
J63
12W2
40HO
10X36
10X32
J11
ullo9
11W1
J60
70J7
20wl
92
11w2
Ja2
20W0
Ulls
20Wl1
40HO
ulas
Ulls
20W2
11wl
J60
7091
60wl
11w2
J60
20W2
52H0
10X32
J1e
10X35
J2
7090
12wl
10X37
J1o
7047
JS0
J124

Gl
S0

Ullz
ulle
ulle
ulle
ulle
ullz
ulle
ullz
ullz
ulle
ulle
ulle
ullz
ulle
ulle
ullz
ullz
ullz
ulle
ullz
ullz
ulle
ullz
ulle
ullz
ullz
ullz
Ull3
ulls
Ull3
Ull3

Ull3
ulls
Ull3
Ull3
ulls
Uli3
ulls
Ull3
Ulis
Ull3
ulls
Ulls
ull3
ulls
ull3s
ulls
Ull3
Ull3
J113
ullz
ull3

150
200
210
220
230
240
250
260
270
275
280
290
300
310
320
330
340
350
360
370
380
410
420
430
440
445
450
000
010
020
030

040
050
060
070
075
080
090
100
110
120
130
140
150
160
170
182
184
186
188
190
192

COUNT NUMBER OF X158S

COMPARE NUMBER wITH (0)

TRY NEXT ARG.
INPUT LOCATION (2)
AND EXITe

IF NOT,
IF SO,

AND (1)

TERMINATE
FIND ARGe LIST OF DSCN

OF ROUTINE (0)

(ASSUMES IT £XISTS)

COMPILE ROUTINE (1) FROM

ROUTINE (C)e DSCN PROCESSCS SAMC
COPY R(0) AND 3RING IN TALLY

{1) HAS NAMED ARGSes

(0) HAS H=-REGION ARGS.

LOCATE ARGSe FOR HN

IF NONEs TZRMINATE
CISCARD ARG. LIST OF R(Q)
COPY SUBSTITUTE ARGUMENT
AND MAKE CCPY LOCAL

MAKE IPL wWORD = UUWN

INSERT WORD IN JDEF OF R(0)

ADVANCE TALLY AND eXIT
TERMINATE
TRANSFER JDEF OF R(0) TO R(1)e

CoPY JDEF
AND MARK COPY LOCAL

-71-

93

91
Ulléa

Uull>5

31

30

40W3
20W3
J60
7092
12H0
10X150
J2
7093
11w3
J125
30HO 93
30HO0
11w3
11wW0
J1l1l4
30W3
7090
11w2
11wl
30HO
10X20
J10
10X31
Jas
J74
J136
10X199
J60
J22
11w2
11wl
12w0
ull3
70590
30HO
52H0
J74
J136
10N1
1CN1
Uuloo
11wl
J6
10x22
J12
11wW0
J60
20W0 91
11w2
11wl
10X22
J10
J74
J136

J32
J32

J10

W2=R(1)

W1l=R(0)
WO=TALLY

Ull3
ulls
Jll3
Ull3
Ull3
Ulls
ull3
ull3
ulls
uil3
uil3
ulls
Ull3
Ull3
Uull3
Ull3s
ull3
ulls
ulls
Uull3
Ulle
Ulls
Ulls
Ull5s
Ulls
ullb
ullb
Jl15
ulls
Ulls
ulils
Ulls
ulls
ull>b
ulls
Ulls
ulls
ulls
Ulls
ulls
ulls
Ulls
ulls
ulls
ulls
Ulls
ulls
Ull5
ulls
ullb
ulls
ulls
Ulls
ulls

194
136
202
204
206
208
210
212
214
216
218
220
222
224
226
228
230
240
250
260
000
010
020
000
0lo0
015
020
030
040
050
060
070
080
090
100
130
150
160
210
220
230
240
250
260
270
280
290
295
300
310
320
330
335
336

ERASE COPY OF R(0) AND EXIT

COMPILE JDEF OF (GC)FROM ROUTINE(1).

BOTH HAVE SAME PROCESS IN DSCN
(0) HAS H-REGION ARGS.

(1) HAS W-REGION ARGS.

FIND ARGS. OF DSCN OF (0)

CREATE TALLY IN WO
TALLY NOe OF H-ARGSe

COPY J=-DEF OF (1)

FIND LAST SYMBOL OF J-DEF
ERASE ITS LINK

SAVE J-DEF

MAKE INSTRe J5N

INSERT AT FRONT OF JD&F

MAKE INSTRe J3N

ASSIGN NO AS LINK OF INSTRUCTION
INSERT INSTRe AT END OF JDEF

INSERT JDEF IN ROUT. (0)e

TEST IF ARGUMENT 1S
IN H-REGION

IF NOT, CONTINUE
IF SOy TALLY AND CONTINUE

CONSTRUCT NEW INSTRUCTION

ASSIGN NO AS LINK OF INSTR.
CREATE LOCAL SYMBOL

SAVE IT
BRING IN NO

-72-

ullé

90

91

92

10X22
J11
11wl
J72
40HO
10X20
J10
10X31
J10
10NO
J120
J50
1090
J100
Jbé
10Xx22
J10
JT74
40HO
J61
52H0
10X46
J14
40HO
10N49
91
Jé64
40HO0
10N29
91
40HO
92
J65
10X22
J11
14X32
J10
10X35
J2
70J4
11w0
J125
4J0
11W0
J120
40HO
J110
10L10
vlol
4J90
J136
40HO
J50
10NO

J33

J30

J&

uloeé

ulls
Ulls
Uulls
Ulis
Ulleé
ulle
ulleé
ulleé
ulleé
Ullé
ulleé
Ullé
ulleé
ulleé
ulleé
ulleé
ulle
ulleé
Ulleé
Ullé
ulleé
Ullé
ulle
ulleé
Ulleé
Ullé
ulle
ulleé
ulleé
ulleé
ulleé
ulle
ulleé
ulleé
ullé
ulleé
ulle
ullé
Ulleé
ulleé
ulilié
ulleé
ulleé
Ullé
Ulle
ullé
Ulleé
ullé
Ulleé
Ulleé
Ullé
ulleé
Ulleé
ulle

340
350
360
370
000
010
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
280
300
310
320
330
340
350
360
370
380
350
400
410
420
430
440
450
460
470
480
490
500
510

-73-

MAKE IT REGION OF SYMBOL

MAKE 1wC LINK OF INSTR.

REPLACE HS BY WS IN DSCN ull7
OF (0)e OQUTPUT (0)=Ns NUMBER

OF REPLACEMENTS.

FIND LIST OF ARGS OF DSCN OF (0O)

DO 90 TO ARGS ON LIST

BRING IN TALLY AND £XIT
SAVE ARG, 90

FIND ITS TYPE

TEST IF DETERMINER

DESIGe SYMbe FIND REGION

TEST IF H-REGION

IF NOT, EXIT
CHANGE ARG TO WN
AND ADD ONE TO TALLY

32
DETERMINER 91
FIND ITS LIST OF ARGUMENTS

MODIFY JDEF OF ulls

INPUTS FROM WSe

TO TAKE
OQUTPUT .

(C) N=(1)

NO

FIND AND SAveE JDEF OF
FIND ITS LAST SYMBOL

(0)

ERASE ITS LINK
SAVE JDEF
MAKE INSTRe J5N

INSERT AT FRONT CF JDEF
MAKE INSTR. J3N

10X33 ulleé
J11 ulleé
11wW0 Ullé
10X46 ulle
J11 J30 ullé
J90 ullvz
J124 ull?z
J50 1wo=TALLY U117
10X20 ul1l7v
J10 Uil7v
10X31 ullz
J10 ullvz
1090 ullvz
J100 ulliv
11W0 J30 ul1l7v
44H0 uliv
10x32 ull7
J10C ullv
10X37 ullv
J2 ullvz
70 91 ull7
40HO0 uliv
10X45 ullz
J10 U117z
10x33 U117
J10 ullv
10L8 ull7
J2 ull7
7092 ullv
Ull9 ullv
11w0 ull7z
J125 ullz
30H0 Ja ullv
10X20 ull7v
J10 ull?z
10X31 ulivz
J10 uillv
1090 U117z
J100 O U117
J51 uils
11w0 ulle
10x22 ulls
J10 ulls
40HO ulls
Jél ulls
52H0 ulls
10X46 ulls
J1la ulls
40HO ulls
10N&49 ulls
91 ulls
Jé64 ulls
10N29 ulls
91 ulls

520
530
540
550
560
000
010
020
030
040
050
060
070
080
090
100
110
120
130
140
150
155
160
170
190
200
210
220
230
240
270
280
290
300
310
320
330
340
350
000
010
020
030
040
050
060
070
080
090
100
110
120
140
150

ASSIGN NU AS LINK OF INSTR.
INSERT INSTRe AT END OF JDEtF
CONSTRUCT NEW INSTRUCTION
BRING IN N

COMPUTE XN

MAKE JXN

ASSIGN NC AS LINK OF INSTR.
CREATE LOCAL SYMbOL

SAVE IT
BRING IN NO

MAKE IT REGION OF SYMBOL
MAKE SYMBOL LINK GCF INSTR.

CHANGE ARG (0)=HN TG WN»
NO OUTPUT

FIND ITS DETERMINER

SET UP TALLY IN WC

TALLY AND ERASE X150S
FROM DETERMINER

CONSTRUCT SYMBOL WwN

ASSIGN IT AS X45 OF ARGUMENT

MODIFY JDEF TO DO PROCESS (2)

AFTER (3) WITH FIELD (1)=(0)e SET

H5+ IF (2) WAS NAMELESS, H5- IF
(2) HAS NAME« NO OUTPUT.

FIND FIRST INSTRe OF (1)
IF IT HAS NAMEs REPLACE (0)
WITH NAME, IF NOTs SKIP TO 90.

PUT (0) AS NAME OF FIRST OF (l)e

-7

91

92

ulle

94

Ulezo

90

40r0
52
Jé5
4J0
11wl
J120
40HO
J110
10L10
ulol
4J90
J136
40H0
J50
10NG
10X33
J11
11wW0
10X46
J11
40HO
10X37
J10
J90
J124
J50
40HO
10X150
J62
7094
11wW0
J125
30HO
J68
30HO
30H0
11w0
30W0
10L23
Ulo01l
10X45
J11
10NS
ulol
J53
11w2
Jgl
40HO
10X41
J10
7090
20W0
30HO0
11wO0

J31

uloe

J30

g3

91

ulls
ulls
Ulls
Ulls
Ulls
Ullsa
ulls
ulls
ullsa
ulls
Ullsé
ulls
ul1s
ulls
ulls
ulls
ulls
ulls
ulls
ulls
ulle
ulio
ulls
ullo
ulls
Ullo
ullo
ullsy
Jlilo
ulls
U119
Ulles
ulles
ulles
ulleo
ulleo
ullo
Jll9o
Jllo9
Jllg
ulls
ulle
ulzo
ulzo
ulaon
Uulzao
ulzo
ulzo
ulzao
ulz2o
ulzo
ul2d
ul2o
ulzo

160
170
180
190
200
210
220
230
240
250
260
270
280
290
3¢co0
310
320
330
340
350
0G0
010
020
040
050
060
070
080
050
100
110
120
130
140
150
160
170
180
iv%0
200
210
220
0305
010
015
020
025
030
040
050
060
070
080
090

FIND LAST INSTRe OF (3)
MAKE 1WO ITS LINKe

OR SYMB

SET H5 AND EXIT

MODIFY JDEF TO EXIT AFTER
PROCESS (0)e NO OUTPUT

MAKE SYMBe Do

ASSIGN 1T AS LINK OF LAST OF
PRINT THE JDEF OF (0)

FIND JDEF

CLEAR PRINT LINZ

PRINT LIST OF INSTRUCTIONS

PROCESS INSTRUCTION

ENTER TYPE IN COLe. 28

ENTER NAME IN COLSe 30-34

ENTER SIGN IN COLe 35

ENTER P IN COLe 36

ENTER Q IN COLe 37

ENTER SYMB IN COLS. 38-42

ENTER LINK IN COLSe 44-48.

PRINT.

FIND VALUE OF ATTRISUTE (1)
AND ENTER ITS ReGION AND
LOCATICN IN COLSe BEGINNING

AT (C)e

-75=-

91

ulaz

90
ulzs

90

910

10X41
J11
11w3
Jé61l
52H0
11W0
1iwl
J11
J5
Jél
52H0
4C0HO
10X46
J1C
70
10NO
40H0
Ulo1l
10X46
30HO
10X22
J10
J154
1090
J100
04J0
10X40
10N28
920
10X41
10N30
910
10X42
10N35
920
10X43
10N36
520
12X44
10N37
920
10X45
10N38
910
10X46
1CN&44
910
E50
30HO
04930
70J31
J160
40HO
10X33

J33

J1i
J8

ES50

Ja

Jl20
ulzaoe
ulz2g
ulzao
ulzo
ulzo
ulzo
ulzao
ulao
ulzaz
ulzz2
ulzz
ulz2z2
ulez
ulzz
ulae
Ulaz
ulaz
ulzz
ulaze
ulzs
Ulzs
ulzs
ulz25
ulzes
ulzs
ulas
ulzs
ulzs
ulzs
ulz2s
ulas
uliz2s
ulz25
Ul25
ulz2s
ulzs5
ulzas
ulzas
u1z2s
ulzes
ulas
ulzs
ules
ule5
ulz25
ulas
ulzs
ulzs
ulzes
ulzs
ules
ules
ules

100
110
120
130
140
150
160
170
180
000
010
012
0l4
0lé6
018
020
030
040
050
060
000
010
020
030
040
050
055
060
070
o080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
245
250
255
260
270
280
285
290

ENTER REGION

ENTER LOCATION

FIND VALUE OF ATTRIGUTE (1)
AND ENTER IN COLe (0)

PROCESS FOR 910 AND 920

ENTER IN PRINT LINE THE NAME OF

TEST IF ROUTINE
IS A DETERMINER

IF NOTs GO TO 96
IF SOy PRINT ITS VERSB

ENTER DATA TERMS OF VER®B

AND CONTINUE AT 96

FIND ITS DSCN

PUT PROCESS IN WO

PUT ARGS IN w1l

FIND NEXT WORD IN NAME
EXIT IF NONE

TEST IF 1HO NAMES DATA TERM

-76-

911

912

920

ulzeé

98

97

96

91

J10
70912
J157
10X34
J10
70J31
J157 J31
10N1
Jl16l 911
04930
70J31
J160
J157 J31
04J51
40H0
11wl
J10
700
11W0 0]
Jal
40H0
10X32
J10
7056
10X37
J2
7056
40HO
10X20
J10
J60
7097
12H0
510 95
ES1
30HO0 96
10X20
J10
40HO0
10X30
J10
20W0
10X31
J10
20W1
11w0
J60
7092
60W0
52H0
40H0
J131
7290
910 91

ulzo
Ulzes
ul1z2s
ulz2s
ulzs
ulzes
U125
ulzs
ulzas
ulzes
ules
ulzs
ul2s
ulza2s
ulzs
ulzs
ulzs
ulzas
ula2s
ulzae
ula2e
Ulzé
uleeé
Ulze
Ulzeé
ulzeé
ulzeé
ulae
ulzeé
ulae
ulzeé
ulze
ulze
uleeé
ulzeeé
ulae
ulz2eé
ulaze
ulzé
ulae
ulae
ulzaé
Ulzeé
ulzeeé
ulee
ulzé
ulaeé
ulze
ulzaeé
ulze
ulze
ulzé
ulzeé
ulzeé

300
310
320
330
340
350
360
365
367
370
380
390
400
410
420
430
440
450
460
000
001
002
003
004
005
006
007
008
009
010
011
012
013
0l4
015
016
019
020
030
040
050
060
070
060
090
100
110
120
130
140
150
160
170
180

DOZS NUT NANME DATA TorM
SPACE ONCE

FIND NEXT ARGUMENT
ERROR STOP

TEST IF ARG IS A DETERMINER

IF NOT, SAVE IT
TEST IF MEMKER OF hO LIST

IF SOy BRANCH TO 95
IF NOTs SAVE IT
FIND ITS DETERMINER

AND ENTER IT
SPACE ONCE
FIND ITS SYMbOL

ENTER IN PRINT LINE

LINE SPACE IF NC ROOM

ENTER NAME OF MEMDER
OF HO LIST

PRINT THt SDSC OF ROUTINE (0)

CLEAR PRINT LINE

FIND SDSC

-77-

S0

92
93

94
910

95

ulzev

3CHO
11wl
E51
J60
7047
60Wl1
52H0
40HO
10X32
J10
10X37
J2
70
40HO
10X32
J10
10X35
J2
70
40HO
10X37
J10
1093
J100
E51
10X45
J10
40HO
10X33
J10
910
10X34
J1lo
910
E51
30HO
10910
J100
ulzeé
40HO
J157
70
E50
10N10
J1690
J60
7047
52H0
910
E51
Jao
J154
10X24
J10

G4

95

91
J31

91

J8

510

91

uleae
ulzeé
ulzeé
ulze
ulzeé
ulze
ulzeé
U126
ulze
ulzé
ulae
uleeé
ulz2é6
ulzé
uleeé
ulzeé
uleeé
U126
ulzeé
ulaeeé
ulzeé
ulaze
ulzeé
ulzeé
ulzeé
ulzeé
ulzé
ulzé
uleeé
ulaeé
ulze
ulzeé
ulzeé
ulzé6
ulzeé
ulzeé
ulzeé
ulaeé
ulze
ulzeé
ulzeé
ulzaeé
ulzeé
ulzeé
ulaé
ulzeé
ulz2eé
uleeé
ulze
ulzé
ulav
ulz7v
ulai
ulzaz

190
191
195
200
210
220
230
240
250
260
270
280
290
300
301
302
303
304
305
306
310
315
320
330
335
340
350
360
370
380
390
400
410
420
425
430
440
450
460
470
475
480
490
500
510
530
540
550
560
570
000
010
020
030

FIND LIST OF AFFECTED CtLLS

DO 90 TO AFFECTtD CELLS
AND EXIT

FIND NAME OF CELL

ENTER IT IN PRINT LINE

FIND INPUT LIST

AND ENTER ITS SYMBOLS
ENTER PERIOD

FIND OQUTPUT LIST
ENTER ITS SYMBOLS

ENTER PERIOD AND PRINT LINE

ENTER A SYMBOL IN THE PRINT LINE

ENTER THE SYMBOLSs THEN COMMAS

PRINT NAMEs DSCNs JDEFs AND
SDSC OF ROUTINE (0)

TEST OF IT HAS A DSCN
IF NOTy SKIP TO 92

ENTER DSCN IN PRINT LINE

PRINT
AND SPACE

TEST IF IT HAS A JDEF
IF NOT,y SKIP TO 92

PRINT JDEF
AND SPACE

TEST IF IT HAS A SuSC

-78~

90

91

92

Ules

92

93

70J30
10X71
J10
70J30
1090
J100
60WO0
10X41
J10
91
E53
11wW0
10X75
J10
1092
J100
E53
11WO0
10X76
J10
1092
J100O
E53
40HO0
10X33
J10
J157
10X34
J10
91
J50
90
E50
11wW0
40HO
10X20
J10
7092
30H0
ulaeé
E50
E50
11w0
40H0
10x22
J10
7093
30HO
ulzas
E50
11wWO0
40HO
10X24
J10

J157
ES4

ulazv
ulzv
ulzav
ulev
ulav
ulzz
ulai
ulzv
ulav
ulazv
ulazi
ulzz
ula7z
ulz27v
ulea?
ulaz
ulaz
uiev
ulz27
ulzv
uizv
ulzav
ulazv
ulz27
ulzaz
ulz7v
ulzv
ulaz
ulav
ulza7
ules
ules
ules
ules
ulzs8
ulzs
ules
ulzs
ulzs
ulzes
Ulzes
ules
ulzs
ulzs
ulzes
ules
ulzs
ulzs
ulzs
ulzs
ules
uizs
ules
ules

040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
19¢C
200
210
220
230
240
250
260
270
280
290
300
310
320
330
000
olo
020
040
050
060
070
080
0S0
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

-79-

IF NOTs EXIT BY 95
PRINT SDSC AND EXIT
95
30
TEST IF IT HAS AN IPLN
IF NOT, EXIT

IF SO, ENTER IN PRINT LINE

COMPILE JDEF OF ROUT.(0) FROM Uul3o
JDEF OF ROUTe(1l)e ROUTI(1) IS A Jo.

COPY R1WO AND
COPY ARGS OF DSCN

REPLACE HS 8Y WS IN DSCN OF COPY.
SAVE(0)=NUMBER CF REPLACEMENTS.

COMPILE JDEF OF 1w2

FROM JUDEF OF 1wWle.

MODIFY JDEF OF 1W2 TO TAKE
N=1w3 INPUTS FROM wSe.
BRING IN 1WO0e

FIND JDEF OF 1W2
AND ASSIGN IT AS JDEF OF 1WO

ASSIGN NAME TO JDEF.
FRASE 1W2,
AND TALLY CELL»
AND EXIT
910
FIND JCEF

FIND FIRST INSTRUCTION.

IF 1T HAS NO NAME,

ASSIGN IT Vv(X25) OF ROUTINE.

7095
30H0
ulz27 J30
30HO J30
0440
11w0
10X25
J10
700
40HO
10X33
J10
J157
10X34
J10 J157
J&3
Jal
11wO0
J74
40HO
ulos
60w2
ullvz
20W3
11wl
11w2
ulsl
11w3
11wW2
Ulls
11w0
11W2
10X22
J10
J74
J136
10X22
J11
310
11w2
J72
11wW3
J9 J33
11WO0
10X22
J10
Jal
40HO
10X41
J10
70 911
11wW0
10x25
J10

Jlza
ulzs
ulzs
ules
ulzs
ules
U128
ules
ulzs
ulzs
vlzsa
U128
ulzs
ulzs
ulzs
ulso
ulso
Ul30
ul3o
uls3o
Uul3o
ul3o
ul3o
ul3o
ul3o
ul3o
Ul3o
ul3o
ul3o
ul3o
ulso
ul3o
ul3o
ul3o
ul3o
ul3so
ulio
ul3o0
ul3o
ul13o
ul3o0
ul3o
ul3o
ul3o
Ul3o
ul3o
ul3o
ul3o
ul3o
ul3o
ul3o
ul3o
ul3o
ul3o

250
290
300
310
320
330
340
350
360
370
380
390
400
410
420
000
0l0
020
030
031
040
043
050
060
070
080
090
100
110
120
130
140
150
160
161
162
165
170
175
180.
190
200
210
220
230
240
250
260
265
266
270
280
290
300

-80-

IF IT HAS NAME, EXITe 911
COMPILE JDEF OF ROUT.(0) ulsl
FROM JUDEF OF ROUT.(1)s (0) IS

A Js (1) HAS W-REGION INPUTS

SET UP TALLY IN W2

COPY JDEF OF (1) AND
ASSIGN COPY AS JDEF OF (0)e

LOCATE ARGS IN 1W0O AND 1wl 90
FOR HNy N=TALLYs IN 1Wl,

IF NONEs EXITe
SAVE ARGe OF 1W1l IN W3e

ADD 1 TO TALLY

SAVE LOCe. OF ARG OF 1w0 IN w4
FIND ARGe. OF 1WO
COMPILE (FIND ARG.)

INSERT (FIND ARGe) AT FRONT
OF JDEF OF 1wD

REPLACE ARG OF 1W0O WITH
ARG OF 1wl

51
ERASE TALLY AND EXIT
INSERT COMPILED (FIND ARG.) 92
DIVIDE JDEF
SAVE REMAINDER

ADD (FINC ARG.) TO HEAD
ADD REMAINDER

COMPILE (FIND ARG) (0)e FINAL ulsz
ARGSe ARE DESIGe SYMBSe. OUTPUT (0)

IS LIST OF INSTRSe WITHOUT TERM.

CREATE OUTPUT LIST IN Wl

TEST IF ARGUMENT
IS DETERMINER.

ARGUMENT NOT A DETERMINER)

10X41
30HO
Jab
J21
JS0
J124
20W2
11W0
11wl
10X22
J10
J74
J13é
10x22
J11
11w0
11wl
11w2
Ulls3s
7091
52H0
J74
20W3
1lw2
J125
30HO
60W4
52H0
ulaz
11W0
10Xx22
J10
92
11w3
21W4
11wz
J9
44H0
J75
20W5
Jé
J76
11W5
J76
40HOQ
J90
J136
40W1
20wl
10X32
J10
10X37
J2
70

J11

J35

J8

S0

1Wwo=1(0)
lwl=(1)
1w2=TALLY

Ul3o0
Uul3o
Ulsl
ulial
Ulsl
Ul31l
Ul3l
ul3l
ul3l
ul3l
Ul3l
ul3l
Ul3l
Ul31l
Ul3l
ul3l
ul3l
Ul3l
Ul3l
Ul3l
ul3l
Ul3l
ul3l
Ul3l
Uls3l
ulsl
uli3l
ulsl
ulsl
ul3l
ul3l
ulsl
Ul3l
ul3l
ul3l
ulsl
Ul3l
ulsl
ul3l
ul3sl
Ul3l
ulsl
ul3l
Ul3l
ulsz
ulsz
ulse
ul3z
ulae
ulse
Ul32
uliz
ulsz
ul3sz

310
320
000
010
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
30C
310
320
330
340
350
360
370
380
390
400
410
000
0lo
020
030
040
050
060
070
080
090

SET UP Q-TALLY IN WCe

SAVE ARGUMENT
FIND ITS DETERMINER

TALLY X1515=Q
OF DETERMINER IN WO

COPY SYMBOL OF ARGUMENT

MAKE INSTRUCTION 1QS.

INSERT INSTRe AT FRONT
OF LIST 1Wle
EXITs LEAVING 1Wle

SET UP INSTRe SUBLIST,
AND MARK IT LOCAL)»

AND SAVE IT IN WO
SAVE DETERMINER

FIND ITS DSCN

FIND LIST OF ARGUMENTS
AND PROCESS THEMe.
FIND JDEF

COoPY 1IT

FIND LAST INSTRUCTION

ERASE ITS LINK

FIND END OF LIST
INSERT LIST ON MAIN LIST
INSERT SUBLIST IN LIST

INSERT LIST ON MAIN LIST
BRING IN LIST AND EXITe.
COMPILE (FIND ARG.)

AND INSERT IN SUBLISTe.

-81-

32

94

93

90

910

J90
J124
J50
40HO
10X37
J10
J60
7093
12HO
10X151
J2
7094
11w0
J125
30HO
30H0
10X45
J10
JT14
11wWO0
10N1
uloo0
11wl
Jé
J64
11wl
J9o
J136
J50
40HO
10X20
J10
10X31
J10
10910
J100
10Xx22
J10
J74
J136
40H0
J61
52H0
10X46
J1la
11w0
Jé61l
95
11W0
11wl
95
11wl
ulsz
11w0

94

J31

ul3z
ulsz
ulse
Ul3e
ul3z
ulsz
ul3z
ulisz
ulse
ul3z
ul3z
ul3e
ul3z
ul32
U132
ul3z
ul3z
ulsz
ulsz
ul3z
uliz
ul32
ul3z
ul3z
uliz
ul3sz
ul3e
ulsz
uli2
Ul3e
ulie
ul3z
ul32
ul3z
uliz
ul3z
ul3z
uliz
Ul3e
ulsz2
ul32
ulie
ul32
uls2
ul3z
ul3z
Ul32
ulsz
ul3z
ul3z
ul32
ul3sz
ul3z
ul3z

100
110
120
130
135
140
145
150
155
160
170
180
190
200
210
220
225
230
240
250
260
270
300
310
320
330
340
350
360
363
365
366
380
390
400
410
420
430
432
433
434
435
436
437
438
440
445
460
470
480
490
500
510
520

INSERT LIST ON MAIN LIST
INSERT LIST AT FRONT CF MAIN LIST

COMPILE JDEF WITH NAME (2)
LIST OF SEGMENTS (1) AND FLOW
CHART (C)e OUTPUT (0) IS JDEF
NAME NEW JDEF

ASSIGN NAME TO FIRST INSTRUCTION

ATTACH SEGMENTS TO FLOW CHART

ASSIGN ADDRESSES TO SEGMENTS

ASSEMBLE SEGMENTS IN NEW JDEF

ASSIGN ADDRESSES TO SEGMENT
FIND JDEF OF SEGMENT

-82-

95

uil3ss

91

90

910

92

95 Ju
44HO
J75
40W2
20W2
J6
J76
11wW2
J76
30W2 J8
Jabs
10X199
J73
J136
J90
J136
J24
11W3
J8l
Jsl
11wéa
10X41
J11
11w2
40W3
J69o
7090
12H0
11W3
J60
7047
60W3
52H0
10X22
Jil1 91
30HO
30W3
11wW2
1092
J100
11wW0
11W3
10910
J100O
40HO
ulaz
11WO0
Jé
J76
20W0 J4
64W5
10%22
J10
11wW5

J35

lwa=NAME
lw3=SEG L
1w2=FLCW
lwl=TALLY
1w0=JUDEF

lw5=SEGM

ul3e
uls2
ul3sz
uls3e
ul3sz
ul3z
ul3e
Ul3e
ul3e
ul3iz
U133
ul33
ul3s
uls3
ul33
U133
ul33
ulis
Ul33
Ul33
Ul33
ul3s
Ul33
U133
Ul33
Ul3s
ul33
Uul3s
ul33
ul33
ul3s
Ul33
ul33
ul3s
Ul3s
ul3s
Ul33
ul33
ul33
U133
ul3s3
ul3s
U133
Ul33
U133
Ul33
ul33
ul33
U133
U133
Ul33
Ul33
U133
Ul33

530
540
550
560
570
580
590
600
6l0
620
0CO
002
0l0
020
03¢
040
050
053
054
055
056
057
058
060
070
080
090
100
110
120
130
140
145
150
160
170
180
190
200
210
215
220
230
235
240
245
251
260
262
264
270
280
290
310

-83-

.ND P OF SEGMENT
TEST IF P=7

IF NOT» GO TO 93
IF P=7

FIND SYMB OF SEGM

TEST IF SYMB IS O
IF NOTs GO TO 94
IF SO, GO 7O 93
94
FIND SYM3 ON FLOW
FIND ITS JDEF

BRING IN (FIELD)=(5YM3)

LINK SEGM TO SYMB

BRING IN JUDEF OF SEGM
FIND LINK OF SEGM 33

TEST IF LINK IS C

IF IT 1S, EXIT

IF LINK IS NOT C 95
FIND SYMZ ON FLOW

FIND ITS JDEF

BRING IN (FIELD)=(LINK)

LINK SEGM TO SYMo
K IND SYMB ON FLOW 320

FIND NAME OF SYMb 921

10X43
J10
10N7
J2
7093
11W5
40HO
925
10X45
J10
40HO
10NO
J2
7094
30H0 93
11lw2
Jé
320
10X22
J10
70J7
10X45
11wl
J60
60Wl1
52H0
ulao
11wW5
10xX22
J10
11wW5
10X46
J10
40HO
10NO
J2
7095
30HO JE
11wW2
Jbé
320
10X22
J10
70J7
10Xx46
11W1
J60
60wW1
52H0
ulzo Js&
04J50
10921
J100 J30
40HO

Ul33
uls3
Uls3
U133
ul33
ul33
U133
Uul33
ul33
ul33
ul33
ul33
ul33
Uul33
ul3s
U133
U133
ul33
Ul33
ul33
U133
ul3s
Ul33
ul33
ul33
ul33
ul3s
uls3
Ul33
Ul33
Uls3
U133
U133
ul33
ul3s3
ul3s
Ul33
Ul33
ul33
Ul33
ul3s3
Ul33
ulss
ul33
ul33
ul33
ul33
ul33
Ul33
uls3
Uls3
ul33
U133
uls3

320
330
340
350
360
370
375
376
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
545
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
755
756
160
165
770
775
780

-84 -

COMPARE WITH 1WO

EXITs STOP GENERATOR
EXITy CONTINUE GENERATOR
325

COMPILE (0) FROM ITS DSCN Uul3a
FIND LIST OF COMPILED ROUTINES
AND SEEK SOURCE ROUTINE

IF FOUND,s, COMPILE (0)
FROM DSCN OF XOURCE
FIND SOURCE ROUTINE FOR (90) S0

FIND PROCESS OF DSCN

OF SOURCE

COMPARE WITH PROCESS OF (9)

EXIT WITH SIGNAL

TO GENERATOR 31
COMPILE JDEF OF ROUTINE (0)e Ul35
OUTe(0) IS JUDEFy IF EXISTSe SET H5e

TEST IF IT EXISTS 90

IF SOy EXIT WITH H5+

FIND CLOSEST DEFCINITION
IF NONEs EXIT WITH H5-

FIND AND APPLY
RELEVANT PROCESS

FIND CLOSEST DEFINITION
TEST PROGRESS
EXIT OR REPEAT.

FIND CLOSEST DEFe OF ROUTINE (0) ul3e

10X41
J10O
11wW0
J2
70
30HO
14X22
J10
J90
J136
40HO
10N7
10X43
J11
J50
10xX196
1090
J100
70
11wO0
Ul3o
40HO0
10X20
J10
7091
10X30
J10
7091
11wo
10X20
J10
10X30
J1G
J2
70
30HO0
Jal
60WO0
lox22
J10
70
11wo
ulseé
70J31
40HO
11wo
ul3zy
11w0
ulse
Jl3s
70431
11wWO0
J50
11wo

J3
J4

J65

J30

J30

J3
Ja

J31

90

Ul3s
ul33
Uul3s
Ul33
Ul33
Ulis
U133
ul3s
Ul33
Ulis
Ul33
ul33
ul33
ul33
Ul3s4
Ulss
Ul3s4
Ul3s
Uul3s
Uul3s
Ul34
Ulisa
Ul3s
Ul3s
ul3s
Ul3a
Ul3s4
Ul3s
Ul3s
Ul3a
Ul3ea
Ul34
Ul34
ul3ss
Ul3sg
Ul3s
Ul3s
ulss
ul3ss
Uulss
ulss
ulss
ul3s
ulss
Ul3s
ul3ss
ul3s
Ul35s
Ulis
U135
Ul35
Ul35s
ulsé
Ul3é

785
790
795
800
805
810
815
820
6§25
830
835
840
845
850
000
010
020
030
040
050
060
070
080
090
095
100
110
115
120
130
140
150
160
170
180
190
030
010
020
030
040
050
060
070
080
090
100
110
120
140
150
160
000
0l0

FIND AND APPLY RELEVANT PROCESS
TO ROUTINE (0) wlITH DEFe (1)
NO OUTPUT

TEST IF DEF (0) IS CLOSER 71O
JDEF THAN DEF (1)

COMPOSE FLOW CHART OF ROUTINE (0)

FRCM ITS JDEF

STORE NAME OF CHART IN W1

ASSIGN IT TO ROUTINE 1wO

FIND JDEF OF ROUTINE
COPY JDEF, MARK IT LOCAL

STORE IT IN w2

CREATE SEGMENT
AND STORE IT

INSERT SEGMENT
AT END OF FLOW CHART

MAKE JLEF THE
X22 OF SEGM.

FIND NEXT INSTRUCTION

FIND ITS P

TEST IF P=7

IF SO, DIVIDE SEGMENT
AND REPEAT.

-85~

50
91

U137z

Ul3s

Ul3s9

91

92

93

10X20
J10
70
11wW0
10X24
J10
7CJ30
3CHO
10X20
30HO
10X24
Jé
10X198
Jé
J10
J1
10X1357
Jb6
J62
Jbé
Jé2
Ja2
60WO0
J90
J136
60Wl1
10x26
J11
11W0
10x22
J10
J74
J136
60W2
J90
J13é6
40HO
11wl
Jé
J65
Jé
10X22
J11
11w2
J60
7094
12H0
10X43
J10
7090
10N7
J2
7090
J75

90

91

J30

J30

93
91

ul3e
Ulseé
Ul3é6
Ulseé
Ul3eé
Uulseé
Uls3e
Ul3é6
Ul3e
Ul3seé
ul3é
ul3zy
ul3zv
ulsz
U137z
U137
ulss
U138
ul3s
ul3s
Ul3s
Uulio
Ul3s
ul3s
ul3s
Uul39
ul3s
Ul39
Ul39
Uul3eo
ulss
ul39
U139
ul3ss
Ulio
ul3s
Ul3so
Ul39
Ul39
ul39
Ul39
Ul3o
Ul3so
ul3e
ulie
Ul39
uls9
Ul39
ul39
Ul3o
Uul3s
uls3e
ulse
Uls3e

020
030
040
050
060
070
080
090
100
110
120
000
010
020
030
040
000
olo
020
030
040
c00
0lo
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
260
270
280
285
290
300
310
320

-86-

IF NOT, 90

TEST IF LINK IS LOCAL
IF SO,
DIVIDE SEGMENT AND REPEAT.

IF NOTs FIND NEXT INSTRUCTION
94

LOCATE NEXT SEGMENT 98
IF NONEs EXIT

PUT ITS NAME IN WO

FIND ITS JDEF

AND PUT IT IN W2

FIND FIRST INSTRUCTION
FIND ITS NAME

IF NONEs SKIP TO 95
ASSIGN IT AS SEGMENT NAME

95
FIND LAST INSTRUCTION

STORE IT IN w2

TEST IF ITS P=7

IF NOT, SKIP TO 96
IF SOy SET P=7 IN SEGMENT

ASSIGN SYMBe OF INSTRUCTION
TO SEGMENT

SET P=0 IN SEGMENT 96

ASSIGN LINK OF INSTRUCTIUN 97
TO SEGMENT

12H0
10X46
J10
7092
10X33
J10
10N9
J2
7092
30HO
11wl
J60
7099
12H0
60W0
10X22
J10
60W2
J8l
10X41
J10
7095
11W0
Jé
10X41
J11
11w2
Jé1
52H0
60W2
10X43
J10
7096
10N7
J2
7096
11w0
10N7
10X43
J11
11wo
11w2
10X45
J10O
10X45
J11
11wW0
10NO
10X43
J11
11w0
11w2
10X46
J10

93

S7

97

Ul39
Ul39
U139
ul3so
ulss
ulss
ul3s
Ul39
ulas
ul3s
Uul3o9
Ul3so
ul3s
U139
Jl39
ul39
ul39
ul3ss
ul39
Ul3sg
ul39
Ul3s
Ul3s
Ul39
ul3s
Uul3o
Ul39
Ul3o9
Ul3s
Ul39
Ul39
ul3s
U139
Ul3s
ul3s
ul3o
Ul39
ulioe
Ul39e
Ul3s
ul3e9
ul3g
ul39
ul3o
ul39
ul39
Jl39
ul39
ul3s
Jyl39
ulso
ulis
ulse
ul39

330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
645
650
660
670
680
690
700
710
720
730
740
750
760
770
780
7590
800
810
820
830
840
850

-87-

EXIT 99
COMPILE JDEF OF ROUTINE (0) Ulaeo
FROM ITS SDSCe NOU QUTPUT

COMPILE IT

ASSIGN A NAME TO IT
ASSIGN A TERMINATION TO IT

9302
FROM ITS SDSCe NO QUTPUT.

FIND SDSC.
FIND INPUT-QUTPUT DIFFERENCE,

TEST FOR NO DIFFERENCE.

IF NO DIFFERENCE
EXIT WITH H5=~
IF DIFFERENCE EXISTS» 90
PRODUCE NEW ROUTINE WITHOUT DIFFes
STORE IT IN Wle
CONSTRUCT SLCSC FOR A NEw ROUTINES
I(1WO) T(1W1l)e
SAVE NEW ROUTINE
COMPILE ITS JDEF
IF NULLs SKIP TO 91
BRING IN NEW ROUTINE
PREFIX JDEF OF NEwW ROUTINE TO JDEF
OF 1wl, AND MODIFY SDSC OF 1lWl.
91
ERASE PREFIXED ROUTINE

CONSTRUCT SDSC FOR A NEW ROUTINE,
O(1Wl) O(1WO)e

SAVE NEW ROUTINE

COMPILE ITS JDEF.

IF NULLs SKIP TO 92

BRING IN NEwW ROUTINE

SUFFIX JDEF OF NEw ROUTINc TO JDEF

OF 1Wl,s AND MODIFY SDSC OF 1wl.

ERASE SUFFIXED ROUTINE 92

BRING IN 1wOe
FIND JDEF OF 1Wwl,

COPY 1ITe

ASSIGN COPY AS JDEF OF 1W0De

10X46
J11
30HO
J50
11wW0
930
510
320
Ja2
60WO0
10X24
J10
X7
40HO0
10X50
J10
10X380
J2
7090
J32
J8
11wW0
Ulal
60Wl1
11wW0
Ulss
60W2
930
7091
11w2
1lwl
ulss
11w2
J72
11wW0
11wl
Ulsé
60W2
930
1092
11w2
11wl
ula?
1lwe
J72
11wWO0
11wl
10x22
J10
JT4
J136
10X22
J11
11wl

J30

J3

1wo=(0)

Ul3o
U139
uls39
ulao
ulac
ul4ao
ulao
Ul4o0
Ul4o
Ul4o
U140
Ulao
ulso
Uul40
Jl40
Ulao
ulso
Uulao
Ul40
ulao
ul4o0
ula4o
Uulao
Uls4o
Uulso
Ul4o0
uls4o
Ul4o0
Uulao
uls4o
Ulao
ulao
Ul40
Jlao
uls4o
ul4o
Ul40
ulao
Ul4o
ulao
Ul4o
ul4o
ulao
ulao
ulao
uléao
ulso
ulaeQ
Ul40
Ul40
Ul40
Ulao
Uulao
Ul4o0

860
870
880
0G0
001
003
005
007
009
0lo0
020
030
040
050
055
056
060
070
080
090
095
100
110
120
130
140
150
160
165
170
180
190
195
200
210
220
230
240
250
255
260
270
280
285
290
300
310
320
330
340
350
360
370
380

ERASE 1wl
AND EXIT WITH H5=+

FIND JDEF.

FIND FIRST INSTRUCTION.

IF IT HAS NO NAME,

ASSIGN IT Vv(X25) OF ROUTINE.

IF 1T HAS NAME, EXIT.

TEST IF LAST INSTRUCTION
HAS A LINK.

IF NOTs ASSIGN LINK O

IF SOy EXITo

PRODUCE ROUTINE FROM (0)
WITHOUT DIFFERENCE (1)e

QUTPUT (0) IS NEwW ROUTINE.
FIND ROUTINE RELEVANT TO DIFF.

COPY 1T AND MARK COPY LOCAL.
PUT RELEVANT ROUTe IN W2

PUT ITS SDSC IN W3

SAVE IT

LOCATE ITS VARIABLE CELLe.
IF NONEsy GO TO 90s AFTER J8
FIND ITS NAME

FIND ITS VARIABLES

FIND VARIABLE OF DIFFERENCE)
SUBSTITUTE IT FOR VARe CELL NAME.
BRING IN SDSC OF RELe ROUTe

FIND VARIABLE OF DIFF.

LOCATE CELL OF SDSC WITH THIS NAME
IF NONEs GO TO 91

-88-

910

911
920

Ulasl

90

J72
J32
11W0
10X22
J10
J8l

40HO
10Xx41
J1o
70
11w0
10x25
J10
10X41
30HO
11wWO0
10X22
J10
40HO
Jél
52H0
10X46
J10
Toul2e
30HO
Ja4b
J21
11wl
ulso
J74
J136
60W2
10X24
J10
60W3
40HO
uls2
7093
52H0
10x41
J1o
11wl
10X41
J1o
uls3
11W3
11wl
10X41
J10O
ulsl
7091
52H0
10X41
J10

Ja

911

J11
J8

J8

(0)=1wO
(1l)y=1wl

Ul40
uls40
ul40
U140
Ul40
Uls0
U140
U140
ul40
Ul40
ul40
uls0
Ul40
Ul40
Ul40
ul40
Ul40
U140
U140
ul4o
U140
U140
ul40
U140
ul40
ulsl
ulal
ulal
ulal
Ulal
ulsel
ulal
Ulsal
ulal
ulal
U141l
ulal
ulael
ulsel
ulal
ulsl
ulsl
ulal
ulal
ulal
ulael
ulal
ulal
ulsl
ulael
ulal
ulsl
ulal
ulal

390
400
410
420
430
440
450
455
456
460
470
4380
490
500
510
520
530
540
550
560
570
580
590
600
610
000
olo
020
030
040
050
060
070
080
090
100
110
120
130
135
136
140
150
160
170
180
190
200
210
220
230
232
234
235

-89-

BRING IN sSDSC OF RELe ROUTS
FIND sDSC OF 1wWO

SUBe NAMES OF (0) FOR VAR. OF W3

91
FIND LIST OF AFFECTED CELLS OF 1WO
LOCATE NEXT CELL 92
FIND CELL
FIND ITS NAME
STORE IT IN W&
FIND w3
LOCATE CELL OF w3 WITH SAME NAME
IF NONEs FIND NEXTe
SUBSTITUTE NAMES OF SDSC (W0O) FOR
VARIABLES OF (w3) IN CELL (W4&)
95
FIND ROUTINE RELEVANT TC Wl
FIND MODIFIED COPYe
MAKE JDEF OF (0) FROM (1),
LEAVE NEW ROUTINE
93
94
CONSTRUCT sSDSC FOR A NEw ROUTINE ulaz

(0) OF (1) TO (2) OF (3)e (0)=NAME

OF NEW ROUTINE.
COPY Xx71 OF 1wl

REPLACE 1Wl WITH ITS X71

REPLACE 1W3 WITH ITS X71

ERASE HALF OF 1w2

11w3
11W0
10X2¢4
J10
Ulsa
11wW0
10X24
J10
10X71
J10
J60
7094
12HO
10X41
J10
60W4
11W3
J6é
U151
7092
30H0
11wa
11w3
11wWO0
10X24
J1o
Ulss
11W1
ulso
11w2
ul55
11we
30HO
30H0
30HO
J53
11wl
10X24
J10
10X71
J10
J74
J136
20W1
11W3
10X24
J10
10X71
J10
JT4
J136
60W3
11w2
ulas

92

J34

90
95

ulal
ulal
ulsal
ulal
ulsal
Uulal
ulal
Ulsl
Uulsl
uléal
ulal
ulal
ulal
ulal
ulal
ulsal
ulal
ulsl
ulal
ulsal
Ulsl
Ulsl
Uulsl
ulal
ulal
ulsl
Ulal
Uulsal
ulal
ulal
ulal
ulal
ulsl
Uuléal
ulsal
ulaz
ulez
ula2
Uls?2
uiaz
ulal
Ula2
uls4?2
ulaz
ulaz
Uls2
uls2
ula2
uls4?
ulaez2
ula2
ulsa2
ula2
uls2

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
565
570
000
olo
015
0lé
020
030
035
036
040
050
055
056
060
070
075
076
080
090
100

ERASE HALF OF 1WO

TEST IF 1wl NEEDS REVERSAL

IF SO, REVERSE

TEST IF 1w3 NEEDS REVERSAL

IF SO, REVERSE

COMBINE LISTS OF AFFeCTED CELLS
INTO NEw LIST.

ASSIGN COMBINED LIST
AS X71 OF NEW ROUTINE. .

ERASE ATTRIBUTE NCT=-(J) OF
ITEMS OF (1)s NO QUTPUT

FIND ATTRIBUTE NOT-(0)e

ERASE IT.

CONSTRUCT SDSC FOR A NEw ROUTINE
X75(0) TO X75(1)=0UTPUT ROUTINE

PREFIX JDEF OF (1) TO JDEF OF (0)
IN (0)s AND MODIFY SDEC,

FIND JDEF OF (1)
SAVE ITe.
DIVIDE IT AFTER HEAD,

-90-

30

91

J143

S0
91

92

Ul4s

ulss

11wl
11wW0
Uulss
11w0
10X75

70
11W1
11w0
Uléss
11w2
10X76
J2
70
11w3
11w2
ulas
11W3
11wl
uls9
J90
60WO
J6
J9C
J136
60W2
J6
10X71
J11
11w2
10X24
J11
11W0
10X75
J2
7090
10X76
10X75
J50
1092
J100
11wO0
J1l4
J50
10X75
11wW0
10X75
Uulsa?2
J51
11wW0
10X22
J10
40HO
J75

90

9C

91

91

J33

91
91

J30

Ja

J30

uls2
ulaz
ulaz
Ulaz
Ulaz
ule?
ulaz
Ula2
ulaz
ulse2
ulsa2
ulaz
Ula2
ulaz
ula2
Ulaez
ulaz
Ulae2
ula2
ula?2
ulaz
ula2
Ula2
Uula2
ulaz
ula2
Ule2
ula?
ule2
uls2
ula?
ula?
ulae?
ula3
Uls43
Ula3
Ula3s
ulsa3
Ulss
ulae3
ulas
Ula3
uls43
Uléas
Ulasa
Ulas
ulas
Jlsasg
Jlabs
ulas
Jlas
Uul4as
ulas
ulas

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
332
334
336
338
340
350
352
354
356
360
000
010
020
030
04C
050
060
070
080
090
030
olo
020
030
040
000
010
020
030
040
050

SAVE TAIL IN W2e

FIND JDEF OF (0)y

INSERT IT AFTER HEAD OF JDEF (1)
ADD TAIL.

CONSTRUCT SDSC FOR A NEW ROUTINE
X76(0) TO X76(1)=0UTPUT ROUTINE

SUFFIX JDEF OF (1) TO JDEF OF
(0) IN (O)s AND MODIFY SDSC

FIND JDEF OF (0)
LOCATE ITS LAST SYMaOL

FIND JDEF OF (1)

INSERT AFTER JDEF OF (0Q)e

REVERSE ATTRIBUTES (0) OF ITEMS
ON (1)

FIND ATTRIBUTE OPPOSITE TO (0)e

STORE (0) IN Wls OPPOSITE IN WOe
GENERATE ITEMS AND REVERSE.

FIND VALUE OF ATTRIBUTES

COPY 1T,
AND ASSIGN AS VALUE OF OPPOSITE

ERASE ATTRIBUTE.

COMBINE LISTS OF AFFECTcD CELLS)
(0)=LXT759(1)=LXT76sOUTPUT=NEW LISTe
IWO=NEW LISTs 1W1=LX75»

1W2=LX76.

COMBINE PAIRS

-91-

ulaeé

ulav

Ulas

90
91

92

ulas

40W2
20W2
11wl
10Xx22
J10
JT4
J136
J76
11w2
J76
30HO
J50
10X76
11wWO0
10X76
Ulaz2
J51
11wWO0
10X22
J1o
Jél
11wl
10x22
J10
J74
J136
J76
30HO
40HO
10X75
J2
70
10X75
10X76
J51
1092
J100
40HO
40HO
11wl
J10o
J74
J136
11wWO0
J11
11wl
J90
J13é6
J&b
J22
11Wl1
1090
J100O
11wl

J32

J30

J31

S0
g1
91

J31

Jl4a

Ul4s
U145
U145
ulss
ulas
U145
ulas
uls4s
ulas
Ul45
Ul4s
Ul46
uls6
Uls6
ulab
ul46
ula?
ula7
ula7
ule7
ula7
uls?
ula7
ula7
ula’
ula?
ulae?
Ul47
Ulas
Ul4s
ulas
Ulas
Ulas
Ul4s
ulas
Ulas
ul48
ulas
Ul48
ulss
ulss
Ul48
Ulas
Ul4s
ulss
ul4s
ul4as9
ula9
U149
ul49
Uls9
U149
U149
ul49

060
070
080
090
100
105
106
110
120
130
135
000
010
020
030
040
000
010
020
030
040
050
060
070
075
076
080
085
000
010
020
030
040
050
060
070
080
090
100
110
120
130
140
145
150
160
000
010
020
030
040
050
060
070

ADD REMAINDER OF LX75

ADD REMAINDER OF LX76

COMBINE PAIRS

GENERATE MEMBERS OF LX76

FIND SYMBOL OF LX75

FIND SYMBOL OF LX76
COMPARE FOR EQUALITY.

IF UNEQUAL TRY NEXT OF LX76e

IF EQUAL
DELETE FROM LX75,

DELETE FROM LX76.

ADD LX75 TO LX76»

IF PAIR IDENTICAL,s DELETE

AND INSERT PAIR IN NEW LIST.

STOP LX76 GENERATOR.
ADD REMAINDER OF LX75

ADD REMAINDER OF LX76

ADD REMAINDER OF 1w3 TO 1w2

TEST FOR NORMAL FORM

IF NORMAL, DELETE

-92-

S0

93

91

92

94

99

1091
J100
11w2
1092
J100
11w0
24W3
l1lw2
1093
J100
24Wa
11w3
10X41
J10
11wé4
10X41
J10
ulo7
70J4
11Wl
11w3
U169
11w2
11ws
ules
l1iwa
40HO
11W3
10X75
J1o
10X75
J11
910
70
11w0
Jé
Jo64
11wl
14X76
10X75
94
11w2
14X75
10X76
94
2404
20W5
20W6
60W3
11ws
Jl1lo
96
7095
11Wé

J36

J&

915

J3

U149
Ul49
U149
Ul49
Ul49
Uls9
Ul4aso
Ul49
Ul49
Ul49
Ula9
U149
Ul49
Ul4ss
Ul49
uls9
U149
Ul49
Uls9
U149
ul4a9
Ul49
Ulsas
ulas
Ul49
ula9
uls9
Ulae9
ulses
Ul49
U149
uls9
Uls9
Uls9
Ulses
Uls9
Ul4a9
uls9
Uls9
uls9
U149
Ulss
Ul49
Ul49
U149
Ul49
Ul4e9
U149
ul49
U149
Ul49
ula9
U149
Ula9

080
050
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
395
396
400
410
420
430
435
440
450
460
465
470
480
490
500
505
510
520
530
540
550
560

-93-

IF NOT NORMAL, 95
CONSTRUCT PAIR ATTRIBUTE,

INSERT ITy
ADD TO 1WwO
AND DELETE FROM 1W3.

TEST IF NORMAL 96

TEST IF FIRST SYMBOL IS X1

IF SOy EXIT WITH H5+.
TEST IF FIRST SYMBOL IS X2

IF NOTy EXIT WITH H5-o
IF SO, TEST IF SECOND IS X1

EXIT WITH H5 SET
97

98
910

914

913
912

911

915
FIND ROUTINE RELEVANT ulso

11W3
ule6e9
11W3
J90
J136
40HO
10X1
Jb64
11w5
J11
11W0
11W3
Jé4
44HO0
J8l
40HO
10X1
J2
70
10X2
J2
70J8
J82
10X1
J2
30HO
Ja
44HO
10X75
J10
40W0
20W0
40HO
10X76
J10
J60
70911
12H0
11wO0
J60
70912
60wW0
52W0
ulo7
70913
30HO
30HO
30HO
30HO
11wWO0
J60
J5
30HO
40HO

98

97

J8
99

914
J30

913

913
J3

ulas
ulas
Ula9
Ula9
ul49
Ulas
Uls9
Ulss
Ulaso
ula9
Uls4s
ula9
Ul49
J149
ul49
Ul49
ulss9
ul49
ulsso
ulas
U149
uls9
ulss
Ul49
ul49
uls4s9
ulas
Ul49
uls4s
ula9
Ulas
Ula9
Ul49
ulss
ulas
ul49
Ul49
ulas
Uulso
Ul49
Ula9
ula9
uls9
ul49
ulas
ul49
Ulas
uls49
ul49
ulaes
Ula9
UlasS
Ulso
ulso0

570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
8lo0
830
840
845
850
855
860
865
870
875
880
890
895
300
905
910
915
320
925
930
935
940
945
950
955
960
965
970
975
000

-94-

TO DIFFERENCE (0)
FIND TYPE OF DIFFERENCE

FIND LIST OF RELEVANT ROUTINES

FIND TYPE OF AFFECTED CELL

FIND RELEVANT ROUTINE

LOCATE AFFECTED CELL (0) OF ulsl
SDSC (1)

FIND LIST OF AFFECTED CELLS

LOCATE NEXT CELL 90

IF NONEs EXIT WITH H5-

FIND ITS NAME

COMPARE WITH (0)e
EXIT OR CONTINUE

LOCATE VARIABLE AFFECTED CELL Uls2
IN SDSC (0)
LOCATE NEXT CELL 30

IF NONEs EXIT WITH H5-

FIND ITS NAME

FIND ITS TYPE

TEST IF VARIABLE

IF YESs EXIT WITH H5+

SUBSTITUTE (0) FOR VARIABLE (1) U153
THROUGHOUT SDSC(2)e

FIND LIST OF AFFECTED CLESS»

AND PROCESS IT.

SAVE CELL 90
FIND ITS NAME

COMPARE IT wWITH VARIASLE (1).

IF UNEQUAL, SKIP TO 91

IF EQUAL, SAVE CELL,

ERASE ITS NAME,

AND SUBSTITUTE (0)e

10X50
J10
10X90
Jé
J10
J50
10X41
J10
10Xx32
J1o
11w0
J6é
J10 J30
J50
10X71
J10
J60
70J30
12H0
10X41
J10
11wW0
ulo7
7090 J30
10X71
J10
Jéo
700
12H0
10X41
J10
10X32
J10
10X39
J2
7090 Ja
J51
10xX71
J10
1090
J100 J31
40HO0
10X41
J10
11wl
ulo7
7091
40HO
10X41
J14
40HO
11W0
10X41
J11 91

6W1=VAR.
1lW0=5SUBe

Uls0
Ulso
ul50
ulso
ulso0
ulse
Ulso0
Uls0
ulso0
Uls50
ulso0
Ulso
ulso
Ulsl
Ulsl
ulsl
Uls1
Uls1
Uls1
Ulsl
ulsl
ulsl
Ulsl
ulsl
ulsz
Uls2
uls2
uls2
ulsz
Uls2
uls2
ulse
uls2
uls2
uls2
uls2
Uls3
uls3
Uuls3
uls3
Uls3
Ul53
U153
uls3
uls3
uls3
uls3
uls3
uls3
Uls3
Ul53
uls3
uls3
uls3

010
020
030
040
050
060
065
066
070
080
090
100
110
V00
olo
020
030
040
050
060
070
080
090
100
o000
010
020
030
040
050
060
0790
080
0350
100
110
000
010
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170

-95-

FIND INPUT COF Clcllo 91

AND MAKE SUBSTITUTIONS.

FIND OUTPUT OF CELL>

AND MAKE SUBSTITUTIONS.

SUBSTITUTE FOR CONTENTS OF LIST 32
IF NO MORE CELLSs EXIT

FIND FIRST SYM3OL

AND COMPARE WITH 1wl

IF UNEQUALs FIND NEXT
IF EQUAL

MAKE SUBSTITUTION

SUBSTITUTE NAMES OF SDSC (0) FOR Ulb4
VARIABLES OF SDSC (1) IN CELL

NAMED (2) OF (1)

LOCATE CELL 1w2 IN SDSC 1WO

IF NONEs EXITo
PUT LOCe OF CELL OF WO IN W3

LOCATE CELL W2 IN SDSC wl
ERROR STOP
PUT LOC OF CELL OF W1l IN W&

FIND OUTPUT LIST OF WO CELL

FIND QUTPUT LIST OF Wl CELLe>
AND STORt IN W5

LOCATE NEXT SYMBOL OF CeLL O 30
IF NONE, EXIT

LOCATE NEXT SyM80L OF CELL 1
IF NONE, EXIT VIA 91

40H0
10X75
J10
92
10X76
J10
92
4J60
70J8
12H0
11wl
ulo7
7092
40W2
60W2
11w0
J74
J136
21w2
30W2
J46
J2z2
11wW0
11wWe
Ulsl
70436
20W3
11wl
11we
Ulsl
70J7
20W4
12w3
10X76
J10
12wWé
10X76
J1lo
20W5
90
12w3
10X75
J10
12Wa
10X75
J10
20W5
90
4J60
70J8
60W6
11w5
J60
7091

Ja

92

J3é

1w0=5D5C0
1wl=5D0SCl1
lw2=CELL

lw3=CELLO
1lwa=CELL1
1w5=0UTe1

Uls3
Ulb3
Ul53
Uuls3
Uuls3
Ul53
uls53
Uls3
uls3
uls3
Uls3
Uls3
uls3
Uls3
uls3
uls3
Ul53
Uls53
Uls3
Uls3
ulbss4
uls4
Uls4
Uls4
ulsa
Ulss4
Uls4
Ulbs4
ulsea
Uls4
Uuls4
Ulss
Uulb4
ulss4
ulss4
Uls4
uls4
ulsea
ulssa
uUlsa
ulss4
uls4
Ulss4
ulss
Uls4
Uls4
Uls4
Uls4
Ulb4
Uls54
UlsS4
Uulsea
Ulse4
Uuls4

180
190
200
210
220
230
240
250
260
270
300
310
320
330
340
350
355
356
360
370
000
010
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
215
220
230
240
250
260
270
280
285
290
300
310

-96-

STORE LOCATION IN W5
FIND TYPE OF SYMBOL OF 1
TEST IF A VARIABLE

IF NOTs GO TO 90 VIA 93

BRING IN sDsC 1

SUBSTITUTE THROUGH SDSC 1

91
92
MAKE JDEF OF (0)e (0) IS ROUTINE Ulss
WITH SDSC MODIFIED FROM (1)
FIND JDEF OF (1)
ASSIGN IT AS JUDEF OF (0)
BRING IN LISTS OF AFFECTED CELLS
93
FIND SDSC OF (0)
FIND LIST OF AFFECTED CELLS
AND PUT IN w2
FIND sDSC OF (1)
FIND LIST OF AFFECTED CELLS
AND PUT IN W3
FIND NEXT CELL OF (0) 91

FIND NEXT CELL OF (1)

FIND ITS NAME

TEST IF IT IS A VARIABLE

60W5
12H0
10X32
J10
10X39
J2
7092
52H0
11wl
Jé6
12wé
uls3 S0
3CHO J8
30H0 90
Ja7
J21
11W0
11wl
10xX22
J10
J74
J136
loxz22
J11
93 91
04J0
11wW0
10X24
J10
10X71
J10
20W2
11wl
10X24
J10
10X71
J10O
60W3
11w2 0
J60
7090
11wW3
J6O
60wW3
7047
52H0
40HO
10X41
J10O
10X32
J10
10X39
J2
7092

Uls4
Uls4
UulSs4
Uls4
ulss
Uls4
Uls4
ulssa
Uls4
Ulsea
Uuls4
ulss
Uls4
Uulss4
uls5
Uls5
Ul55
Ul55
uls5
Uls5
Ul55
Ul55
Uls5
Ul55
uls5
Uls55
uls5
ul55
uls5
Ul55
ulss
ulss
uls5
Uls5
ul55
uls5
uls5
Uuls5
Uls5
Uls55
Uls5
Uls55
uls5
Uls5
Uls5
ul1s5
Ul55
uls5
uls55
uls5
Ul55
Uls55
Uls55
Uls5

320
330
340
350
360
370
380
390
420
430
440
470
480
490
0G0
005
olo
020
030
040
045
046
050
060
065
066
070
080
090
100
110
120
130
140
150
160
170
180
190
2C0
210
220
230
240
250
260
220
280
290
300
310
320
330
340

SOy STORE IN Wé

STORE NAMZ OF SYMBOL OF (0) IN W5

SUBSTITUTE W5 FOR w4

THROUGHOUT (0)

SUBSTITUTE FOR VARIABLES IN CtLLS

PUT X75 OF W2 IN Wé

PUT X75 OF w3 IN W7
SUBSe FOR VARIABLE IN X75

PUT X76 OF W2 IN w6

PUT X76 OF W3 IN W7
SUBSe FOR VARIABLE IN X76

EXIT

FIND VARIABLES AND SUGSSTITUTE

FIND NEXT IN W6
IF NONE, EXIT

-97-

39

92
S0

94

95

96

20W4
12H0
20W5
99
04J0
11wWO0
10X22
J10
11Wé
10X41
J10
11wW5
10X41
J10
Uls6
30HO
30HO
30HO
93
J60
7095
60w2
52H0
10X75
J10
20W6
J60
70J7
60W3
52H0
10X75
J10
20W7
96
12w2
10X76
J1C
20W6
12W3
10X76
J10
20W7
96
11wW3
11w2
30HO
30HO
04J0
11wé
J60
70J8
60W6
11w7
J60

91

0
91

94

J37

ulss
ulss
Uls5
Uls55
ulss
uls55
Ul55
Ul55
uls5
Ul55
Ul55
Uls5
U155
ul55
ulss
uls5
Uls5
uls5
uls55
uls5
Uls5
ul55
uls5
Uls55
uls5
Ul55
uls5
Ul55
Uls55
uls5
Uls5
uls5
Uls5
Uls5
uls5
Ulss
uls5
Uls5
Ul55
ulss
uls5
ul55
U155
uls5
uls5
U155
uls5
uls5
uls5
Uls5
Uls55
uls55
uls55
Ul55

350
360
370
375
380
385
385
386
390
395
396
400
405
406
410
420

430

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
745
750
760
770
780
790

-98-

TEST IF NEXT IN W7 IS VARIAZLE

IF NOTs FIND NEXT

IF SO,

SUBSTITUTE W5 FOR W&
THROUGHOUT WO

98

SUBSTITUTE SYMBOL (0) FOR ulse
VARTABLE (1) IN JDEF OF (2)

FIND NEXT LINE OF JDEF 90
IF NONEs EXIT

FIND ITS SYMG.
COMPARE 5YM3 WITH 1wl
IF UNEQUALs FIND NEXT
IF EQUAL

COPY 1WN AS NEW SYMB
FOR LINE OF JDEF

91
DELETE CAREFULLY SYMBOL (0) uleé9
FROM LIST (1)

LOCATE (0) ON (1)

DIVIDE LIST AFTER LOC(0)
PUT REMAINDER IN Wl

DELETE LAST SymMBOL FROM (1)
LOCATE LAST SYMBGCL OF (1)
REATTACH REMAINDER

FIND BIGGEST DIFFERENCE X5
BETWEEN DSNS (0) AND (1)

70J7
60W7
12H0
10X32
J10
10X39
J2
7098
52H0
20W4
52H0
20W5
11wW0
10Xx22
J10
l1lwé4
11W5
Uuls6 96
30H0
30HO g6
J52
11w2
J6O
7091
12HO
10X45
J10
11wl
ulo07
7090
12H0
11lwo
J74
J136
10X45
J11 90

30HO J32

Jal
20wW0
40HO
11W0

J62
70J30

J75
20Wl
40HO

J70

Jél
11wl

J76

30HO J31

J&3
20W0
60wl

Jl55
Ul55
Uuls5
uls5s
uls5
U155
Uls55
uls5
uls5
Uuls5
ulss
Uls55
ulss
Ul55
Uls5
Uls5
Ul55
Uls5
Ul55
Ul55
Uls6
Ulsé6
ulsé
Ulsé
Ulsé
ulsé
Uls6
uls6
Ulsé6
ulseé
Ulsé6
ulseé
ulsé6
Ul56
uls6
Uls6
Uls6
ulées
Uules
ules
ule9
ulés
U169
ulé69
ulées
ulées
ule9
ulesg
uleés
uleés
ules
X5

X5

X5

8C0O
810
820
850
840
850
860.
870
880
8§90
300
910
320
921
922
924
526
928
930
940
000
0lo0
020
030
040
050
060
070
080
090
100
110
120
130
140
210
220
000
010
020
030
040
050
060
070
080
090
100
110
120
130
000
010
020

FIND PROCESS OF (1)

FIND PROCESS OF (Q)

COMPARE PROCESSES

IF EQUALs COMPARE ARGUMENTS

IF UNEGQUAL»s SIGNAL X62

FIND ARGe LISTS OF (0) AND (1)
FIND NEXT ARGSe OF (0) AND (1)
NONEs GO TO 91

TEST ARGUMENT TYPES

IF UNEQUALs EXIT WITH SIGNAL
ALL TYPES EQUALs TEST ARGS.
FIND NEXT ARGSs OF (0) AND (1)
NONEs GO TO 94

FIND ARGUMENT TYPE

TEST IF DETERMINER

IF NOT, FIND NEXT ARG.

IF SO, FIND BIGGEST DIFFERENCE
SAVE DIFFERENCE SIGNAL

TEST IF NO DIFFERENCE

IF DIFFERENCE, EXIT WITH SIGNAL

NO DIFFERENCE, FIND NEXT ARG.
NO DETERMINER DIFFERENCZS

FIND NEXT ARGSe OF (0) AND (1)
NONEs EXIT WITH X55

TEST IF NAMES

SIGNAL DIFFERENT NAMES
SIGNAL DIFFERENT LOCATIONS
EXIT» NO DIFFERENCE

FIND ARGUMENT LISTS

FIND LIST OF (0)
AND PUT IN WZ2e

FIND LIST OF (1)

AND PUT IN W3,

FIND NEXT ARGSe OF (0) AND (1)
FIND NEXT OF (0)

IF NONE, SET H5 -

FIND NEXT OF (1)

-99-

90
92

91

33

94

96
95
910

911

10X30
J1o
11w0
10X30
J10
J2
70
10X62
510
911
7091
X6
70433
910
911
7094
40HO
10X32
J10
7047
10X37
J2
7093
X5
40HO
10X55
J2
7097
30HO
510
911
7095
40HO
10X36
J2
7096
10X66
10X67
10X55
11w0
10X31
J10
20wW2
11wl
10X31
J10
20W3
11w2
J60
700
60W2
52H0
11W3
J60

92

93

J33

J33
J33

X5
X5
X5
X5
X5
X5
X5
x5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
x5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5
X5

030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560

-100-

TEST TYPES OF ARGUMENTS (0)s (1) X6
OUTPUT (C) IS DIFFERENCE,s SET A5

FIND ARGUMENT TYPE OF (1)
STORE IN W3

FIND ARGUMENT TYPE OF (0)
STORE IN w2
COMPARE ARGUMENT TYPES

UNEQUAL,s TEST IF (0) DETERMINER

SIGNAL (0) IS DETERMINER
TEST IF (0) IS A NAME 91

SIGNAL (0) A NAME

IF (0) A LOCATION,s SIGNAL X69 92
90
FIND LARGEST DIFFERENCE X7

BETWEEN INPUT AND OUTPUT

OF SDSC (0)e PUT DIFFe IN (0)e
PUT LIST OF AFFECTED CELLS IN WO
FIND DIFFERENCEs NOT IN HOQOe

EXIT IF FQUND

FIND DIFFERENCE IN HO

EXIT IF FOUND

IF NOT FOUND)

LEAVE NULL DIFFERENCE),
VIX50)=X80s IN HO

PUT AFFECTED CELL IN Wl 90

FIND TYPE OF AFFECTED CELL
COPY AND SAVE ITS NAME

TEST IF HO

70J7
60W3
52HQ
J43
20W0
60Wl1
10X32
J10
60W3
11w0
10X32
J10
60W2
J2
70
11wz
10X37
J2
7091
10Xx65
llwe
10X36
J2
7092
10x68
10X69
J5
Jas
10X71
J10
60WO0
1090
J100
70434
11wo
1091
J100
70J34
J90
J136
40H0
10X80
10X50
J11
64wW1
10X41
J10
J74
J136
40HO
10X32
J10
10X35
J2

0

J33

g0
J33
J33

J34

X5
X5
X5
Xé
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X6
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
x7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7

570
580
590
000
010
020
030
040
045
050
060
070
075
080
090
100
110
120
130
140
150
160
170
180
150
200
210
000
olo
020
030
040
050
060
070
080
090
100
110
120
125
130
140
150
160
170
160
182
183
184
190
200
220
230

IF SOy EXITe
IF NOTy CREATE DIFFERENCE,

SAVE ITS NAME IN W2y

ASSIGN TYPE OF CELL

FIND TYPE OF DIFFERENCE

ASSIGN TYPE TO 1wW2

BRING DIFFERENCE INs AND QUIT

FIND TYPE OF AFFECTED CELL

COPY ITS NAME

SAVE AFFECTED CELL

FIND ITS FIRST INPUT SYM3OL)»
AND SAVE IN W3.
SAVE AFFECTED CELL

FIND ITS FIRST OUTPUT SYM30OL
COMPARE SYMBOLS

IF IDENTICAL)S

CALL DIFFERENCE (COPY)
NOT IDENTICAL,

COUNT LIST X75

COUNT LIST X76

IF LISTS EQUAL
CALL DIFFERENCE (REPLACE)

IF 1W4 LARGER,

CALL DIFFERENCE (ADD)
IF SMALLERs (DELETE)
DATA

-101-

Y-

91

93

94

95

96

1092
J90
J136

60W2
Jé

10X41
J11
11wl
93
11w2
Jé
10X50
J11
11wW2
64Wl1
10X41
J10
J74
J136
J3
44HO0
10X75
J10
J8l
20W3
40HO
10X76
J10
J81l
11w3
ulo7
70594
30H0
10X84
40HO
10X75
J10
J126
20W3
10X76
J10
J126
60W4
11W3
J11l4

7095

10X83

11W3

114
J115

7096

10X82

10X81

Jo

J3

92

X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
x7
X7
X7
X7
x7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
x7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7
X7

240
250
260
270
280
290
300
310
320
330
340
350
360
370
360
390
400
410
420
430
440
450
460
470
480
450
500
510
520
530
540
550
560
570
580
550
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760

VO NdOOTV P OUNFONXYXXETECOCAOVOVDODODUOZIIrRC—~IOMMoOUONwWrX

(@]

(1)
(2)
(3)
(&)

-102-

AQ
L1
L2
L3
L4

L6

L7

L8

L9

L1D
L1l
L12
L13
Ll4
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L4l
L&42
L43
A
NO

N1

N2

N3

N&

NS

N6

N7

N8

N9

N10
N13

21A
21o
21C
210
21E
21F
21G
21H
211
21J
21K
21L
21M
21N
210
21°P
21Q
21R
21S
217
21U
21V
21w
21X
21Y
212
210
211
212
213
214
215
216
217
218
219
21(0)
21(1)
21(2)
21(3)
21(4)

—

= b b b e b b b e

0000
0001
0002
003
0004
0005
0006
0007
0008
0009
0010
o013

AQ
L1
L2
L3
LG

L5
L6

L7

L8

LS

L10o
L11
L12
L13
L1l4
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L30
L31
L32
L33
L34
L35
L36
L37
L38
L39
L40
L4l
L42
L&43
L4s
NO

N1

N2

N3

N&

N5

N6

N7

N8

NS

N10
N13

000
000
000
0090
0G0
o0co
000
000
000
000
000
000
000
000
000
0G0
000
000
000
0G0
000
000
000
0G0
000
000
000
000
000
000
000C
000
000
000
000
000
000
000
000
000
000
000
0G0
000
000
000
000
030
000
000
000
000
0300
0Go

DIFFERENCE
REMAINCER OF PUSHDOWN LIST

VARIABLE S1

VARIABLE SO

VARIABLE S2

DSCN (DESCRIPTIVE NAME)
LDEF (L-DEFINITION)
JDEF (J-DEFINITION)
ASOJ (ASSOCIATED J)
SDSC OF ROUTINE

IPLN OF ROUTINE

PROCESS

-103-

N238
N2
N30
N35
N36
N37
N36
NG &
NGO
N50
NGO
N65
NT7
N116
X0
X1
90

X2
90

X3
90

X4
S0

X20
X21
xX22
X23
X24
X25
X30

0
390

X32
X1
X33
L18
X34
NO
g0

X32
X38
X33
L19
X34
N1

S0

X32
X39
X33
L19
X34
NO

30

X32
X39
X33
L19
X34

[cNeoNoNeo N No N

[oNoRoNoNoNoRONG]

0028
0029
5030
0035
0036
0037
5038
CO44
0049
0050
0060
0065
0077
0116

N2 &
N29
N30
N35
N36
N37
N38
NG 3
NG9
N50
N6O
N65
N77
N116
X0
X1
x1
X1
X1
X1
x1
X1
X1
X2
X2
X2
X2
X2
X2
X2
X2
X3
X3
X3
X3
X3
X3
X3
X3
X4
X4
X4
X4
X4
X4
X4
X4
X20
x21
X22
X23
X24
X25
X30

000
000
0300
000
000
000
000
000
000
000
000
000
000
000
0G0
000
0lo0
020
030
040
050
060
070
000
0l0
020
030
040
050
060
070
000
010
020
030
040
050
060
070
000
010
020
030
040
050
060
070
000
000
000
000
000
000
000

LIST OF ARGUMENTS

TYPE (OF ARGUMENT)
REGION

LOCATION

MEMBER OF HO LIST

NAMED SYM30L

DETERMINER

UNKNOWN CONSTANT
VARIABLE

TYPE (OF IPL WORD)

NAME

SIGN

P-PREFIX

Q-PREFIX

SYMB

LINK

TYPE OF DIFFERENCE

TEST FOR DIFFERENCE

NO DIFFERENCE

JDEF ABSENT

LDEF ABSENT

DSCN-WRONG FUNCTION NAMC
DSCN-WRONG ARGUMENT TYPE
LDEF HAS CONNECTIVE
DSCN-DETEZRMe FOR OTHER
DSCN-ONE NAME FOR OTHEK
DSCN-ONE LOC FCR OTHER
DSCN-NAME FCOR LOCATION
DSCN-LOCATION FOR NAME
OPERATOR ROUTINE

LIST OF AFFECTED CELLS OF SDSC

INPUT STATE OF CELL

OUTPUT STATE OF CELL

SDSC - NO DIFFERENCE

SDSC - DELETION

SDSC - ADDITION

SDSC - REPLACEMENT

SDSC - COPY

INDEX TO RELEVANT ROUTINES

LIST OF ADD ROUTINES

LIST OF REPLACE ROUTINES

ADD e
HO IS AFFECTED CELL

REPLACE.
NAMED CELL IS AFFECTED CcLlL

ROUTe INSERT (1) AT END OF
VALUE LIST OF ATTRIBUTE

-104-

X31
X32
X33
X34
X35
X36
X37
X38
X39
X490
X4l
X42
X43
X44
X45
X46
X50
x51
X55
X603
X61
X62
X63
X64
X65
X66
X67
X68
X69
X70
X71
X75
X76
X80
X81
X82
X83
X84
X90
30

91

93

92
94

X100
90

ol 'ReoNoleNoNoNoNoRoNoNoNoNoNoNoNoRoNoNoNoNoNoRoNoNoNeoNoBoNoNoNoNoNeJoRojoRoNoNe!
o

O X
- 00
N

X83
G2
93

X35
X107
94

X36
X106
S0

0

[oNeoNoNoNoNoRoNoNoNoRoNoNoNoRoNoNoNoNoNoNoNeoNoNoNoNoNoNoNoNoNoRoNeNoNoNoNoNoNe]

[oNe]

loN @]

X31 000
X32 000
X33 000
X34 0390
X35 000
X36 000
x37 000
X38 000
X39 000
X40 000
X4l 000
X42 0G0
X43 000
X44 000
X45 000
X46 000
X50 000
xX51 000
X55 000
X60 000
X61 000
X62 000
Xé63 000
X64 000
X65 000
X66 000
X67 000
X638 0CO0
X69 000
X70 000
X71 CC
X75 000
X76 000
X80 00CC
Xx81 000
X82 000
X83 000
X84 000
X90 000
X90 050
X0 100
X990 110
X90 200
X90 210
X9C 300
X80 350
XS0 400
X90 410
X390 500
X90 550
XS0 600
X590 610
X100 000
X100 010

) OF (2)e
DSCN IS 91.

PROCESS IS X110

ARGS. ARE

X122

X121

SYMbe = JI13

ROUT. INSERT (D) AT END OF (1)

JDEF IS 94

PROCESS IS X110

J65

PROCESS J65

LINK C

ROUTe FIND V((0)s (1))

-105-

S1

92

93

97

99

X101
30

91
92

93

94

95
96

37
99

98

91¢

X102
90

X25
97
X290
91
92

X30
X110
X31
93

X120

X121
39

X33
L10
X34
N13
90

X20
91
X22
94
92

X30
X110
xX31
93

X122
X120

95
96

X45
97
X&46
98
39

X33
L10
X34
N65
510

X33
NO
90
0]

[oN®]

o O

X100
X100
X100
X100
X100
X100
X100
X100
X100
X100
X100
X100
X1n0
X100
X100
X100
X100
X100
X100
x1lo1
X101
X101
X101
X101
X101
X101
X101
X101
x101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X101
X102
X102

015
0lé
020
030
040
050
060
070
080
050
100
110
120
210
220
230
240
250
260
000
010
02C
030
035
036
040
050
060
070
080
030
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
000
0lo

TYPE--DETERMINER

JDEF 1S 94

VERB

PROCESS IS X1lle FIND VALUE

ARGS. ARE
X122, (0)
X120e (1)

PROCESS J10

LINK C

VERB (FIND)

ROUTe TESTN IF (0) LESS THAN NO

PROCESS IS X112 TESTNs LESS

ARGUMENTS
(C)
NO

ROUTe TESTN IF (0) LESS THAN

-106-

91

92

93

5S4

95
96

97
99

98
910

920
X123
90

91
92

93

94
X104
30

X32
X37
X20
91
X22
94
92
920
C
X30
X111
X31
93
0
X122
X120
0
95
96
0
X&45
97
X46
98
99
0
X33
L10
X34
N10
910
0
X33
NO
21FIND
90
0
X20
51
X22
94
52
0
X30
X112
X31
93
0
X122
X124
0
90
0
X20

loNe]

leNel

X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X102
X103
X103
X103
X103
X103
X103
X103
X103
X103
x103
X103
X103
X103
X103
X103
X103
X104
X104
X104

02C
03¢
040
050
n6n
070
080
085
030
130
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
000
0lo0
020
030
040
050
060
070
080
090
100
110
120
130
140
150
000
010
020

PROCESS IS X112 TESTNs LESS

J3e REPLACE TOP OF H5 WITH J3.

IPLN OF J3

sSDSC OF J3

AFFECTED CELL IS 97

-107-

91
32

93

5S4

95
96

97
99

98
910

X125
350

91
93

92
94

95

97
98

91
X22
94
92

X30
X112
X31
93

X122
X120

95
96

X45
97
X46
98
99

X33
L10
X34
N11é6
910

X33
NO
S0

X20
920
X25
51
X24
92
93

X33
L1lo
X34
N3
94

X711
95

97
98

X&41
X175

(@]

[oN e}

OO

X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X104
X1lo4
X104
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105

030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
30¢C
310
320
0G0
010
015
o0lé
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210

INPUT STATE OF H5

OUTPUT STATE OF Hb5e

DSCN

PROCESS IS X113

P2(C)e REPLACE TOP OF C WITH
TOP OF HO.

DSCN

IPLN OF P2(C)

SDSC OF P2(C)

AFFECTED CELLS ARE
96 AND 97

INPUT STATE OF HO

-108-

910

911
912

920
921

X106
90

91
93

92
94

9%

96
98

59

X75
99

X76
910

X2
X1
911
X1
912

X32
X36
X33
L10O
X34
N3

921

X30
X113
90

X20
930
X22
920
X25
91
X24
92
93

X33
L1é
X34
N2
S4

X71
95

96
97
98
X41
X170
X75
99
X76
910

O O

X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X105
X1C5
X105
X105
X105
X105
X105
X105
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106

220
230
240
250
260
270
280
290
300
310
320
330
335
336
340
350
360
370
380
390
400
410
000
01l0
0l2
013
015
0l6
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
240
2590
260
270
280

OQUTPUT STATE OF HJO

NAME IS VARIA3LEs X4

INPUT STATE OF C

OUTPUT STATE OF C

PROCESS IS X11l4.

ARGe IS X125
P1(S)e ADD S TO TOP OF HO.

IPLN OF P1(S)

SDSC OF P1(S)

-109-

S7
914

915

916

920

321
922

930

931

X107
S0

91
93

92
94

95

X3
X1

X1
914

X41
X4

X75
915
X716
916

X2
X1

X3
X1

921
922

X43
N2
X45
X4

X30
X114
X31
931

X125
S0

X20
930
X22
320
X225
91
X24
92
93

X33
L1leé
X34
N1
S4

X71
95

loNe;

X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X106
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107

290
300
310
320
330
340
341
342
350
360
370
380
390
4G0
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
000
010
012
013
015
0leé
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160

AFFECTED CELL IS HO

INPUT STATE OF HOC

OUTPUT STATE OF HC

DSCN

PROCESS IS X115

ARGe IS X126

-110-

97
98

99

9190

920

921
922

9390

931

x1l1l¢C

911
312
914
915
X111

911
912
913
914

97
98
0
X41
X170
X715
99
X76
910
0
X1
0
X3
X1
0
921
922
0
X413
N1
X45
X3
0
X30
X115
X31
931
0
X126
0
911
912
X31
914
915
X31
21INSER
21T
21AT EN
21D OF
0
911
g12
913
914
915
916
X31
918
X31
21THE V
21ALUE
21-0F T
21HE AT

0

X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
X107
x1o07
X107
X107
X107
X110
X110
X110
X110
X110
X110
X110
X110
X110
X110
X110
X111
X111
X111
X111
X111
X111
X111
X111
X111
X111
X111
X111
X111
X111

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
000
010
020
030
040
050
060
001
002
004
005
000
clo
020
030
040
050
060
070
080
050
001
0n2
003
004

PROCESS TESTN () LESS

PROCESSe SET H5 -

PROCESSe OUTPUT (0) TO

PROCESSe INPUT (e

ARGe X120 (1)

TYPE- HC LIST LOCATION

ARGe. X121

TYPE~ DETERMINER

JDEF IS 94

-111-

315
916
918
X1lliz2

911
912
914
915
916
X113

311
912
913
X1lé4

911
912
913
X115

911
X120

S0

91

92
X121
30

21TRIBU
217TE
210F

0

911

912

X31

914

915

916

X31
21TEST-
21N IF
2115 LE
2185 TH
21AN

0

911

912

513
21SET H
215 MIN
21US

0

911

912

913

X31
210UTPU
21T (0)
21 70

0

911

X31
21INPUT

90

92

0

X32

X35

X37

91

X45

X170

0

X151

X150
21(1)

S0

0

X32

X37

X22

94

O

X111
X111
X111
x1llz2
X112
X112
X112
X112
X112
X112
X112
X112
X112
X112
X112
X112
X113
X113
X113
X113
X113
X113
X113
X1ll4
X1ll4
X114
X1ll4
X1ll4
X1ll4
X114
X114
X115
X115
X115
X115
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X120
X121
X121
X121
X121
X121
X121

005
006
008
000
olo
020
030
040
050
060
070
080
090
100
110
120
000
010
020
030
040
050
060
000
0lo0
020
030
040
050
060
070
000
010
020
030
000
005
010
020
030
040
050
060
070
080
090
100
110
000
olo
020
030
035
036

DSCN IS 91.

PROCESS IS X1ll1le

ARGS. ARE
X122
X123

ARGe. X122 (0)

TYPE- HC LIST LOCATION

ARGs X123 (2)

TYPE- HO LIST LOCATION

-112-

91
92

93

94

95
96

57
99

98
310
X122

90

S91

g2
X123

S0

91

X20
91
92

X30
X111
X31
93

X122
X123

95
96

X45
97
X46
98
99

X33
L10
X34
N1O
910

X33
NO
90
92

X32
X35
X37
91
X45
X170

X151

214(0)

S0
92

X32
X35
xX37
g1
X45
X170

X151
X150
X150

X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X121
X122
X122
X122
X122
X122
X122
X122
X122
X122
X122
X122
X122
X123
X123
X123
X123
X123
X123
X123
X123
X123
X123
X123
X123
X123

040
050
060
o070
080
090
160
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
000
005
0lo0
020
030
040
050
060
070
080
090
100
000
005
olo
020
030
040
050
060
070
080
090
100
110

ARGe X124 ONO

ARGe X125

ARGe X126,

SYMB HO

VARIABLE

VARTABLE

S2.

S0

-113-

92
X124
S0

91
92
33

X125
30

g1
X126
30

91
X150

911
912
913
X151

911
912
913
X170
90

21(2)
90

X32
X36
X37
91
X45
92

93

X33
L1la
X34
NO
90

X32
X36
X37
91
X45
X4
0
90
0]
X32
X36
X37
91
X45
X3
0]

0
511
912
513

21THE N

21EXT O
21F
0]
911
912
913
21THE C
210NTEN
21TS OF
S0
0
X32
X35
X33
L8

X123
X124
X124
X124
X124
X124
X124
X124
X124
X124
X124
X124
X124
X124
X124
X124
X125
X125
X125
X125
X125
X125
X125
X125
X125
X126
X126
X126
X126
X126
X126
X126
X126
X126
X150
X150
X150
X150
X150
X150
X150
X151
X151
X151
X151
X151
X151
X151
X170
X170
X170
X170
X170
X170

120
000
0lo0
020
030
040
050
060
070
080
090
100
110
120
130
140
000
010
020
030
040
050
060
070
080
000
0l0
020
030
040
050
060
070
o080
000
o0lo0
020
030
001
002

000
olo
020
030
o0l
002
003
000
0lo0
015
0lé6
020
030

SYMB H1

SYMB HZ2

SYMBe H5

LIST OF SEGMENTS FOR
COMPOSING J77

-114-

X171
90

X172
90

X175
90

X180

90
94
940

941
942

91
35
950

951
952

X34
NO
90

X32
X36
X33
L8
X34
N1
S0

X32
X36
X33
L8
X34
N2
90

X32
X36
X33
L8
X34
N5

90
51
92
93

94
940

X45
941
942

X33
L10
X34
N50

95
350

X45
951
952

X33
L1o
X34

[N o]

X170
X170
X171
X171
X171
X171
X171
X171
X171
X171
X172
X172
X172
X172
X172
X172
X172
X172
X175
X175
X175
X175
X175
X175
X175
X175
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180

040
050
000
010
015
016
020
030
040
050
000
010
015
0l6
020
030
040
050
000
0lo0
015
0lé
020
030
040
050
000
005
010
015
020
025
030
035
04C
045
050
055
060
065
070
075
080
085
090
095
100
105
110
115
120
125
130
135

-115-

92

96
560

961
962

97
970

971
972

98

980

381

982

93

99
990

N60

96
97
98
560

X43
N1

X44
N2

X45
961
962

X33
L8
X34
NO
970

X43
N1

X44
N1

X45
971
972

X33
L23
X34
NO

980

X45
581
982

X33
L1o
X34
N2

99
910
950

X43
N3
X464
NO
X645
991

X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180
X180

140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405

FLOW DIAGRAM

FOR J77

-116-

991
992

910
995

996
997

X181

90
905

S1
915

92
925

93
935

992

X33
L8
X34
NO
995

X45
996
397

X33
L10
X34
N30

S0
91
92
93
905

X41
N1
X43
NO
X46
N2
915

X&41
N2
X43
N7
X45
N&
X46
N3
925

X4l
N3
X43
N7
X45
N2
X46
N&
935

X41
N&
X43

X180
X180
X180
X180
X180
X180
X180
X180
X180
X130
X180
X180
X180
X180
X180
X180
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
X181
x181
X181
X131
X181
x181
X181
X181
X181
X181
X161
X181
x181
X181
X181
X181
X181
X181

410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
000
010
020
030
040
050
060
070
080
090
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

ROUTINE J77

LIST OF COMPILED ROUTINES
WITH DSCNSe

DESCRIbBABLE N-LIST

KICKOFF

-117-

X182
90

91
92

X196

X197

X198
90

X199

NO
X46
NO
90

X41
91
92

X33
L1o
X34
N77

X101
X102
X104

X20
X24
90

X20
Ul3sa
X24
Ul4d

NO
N1l
N2
N3
N4
N5
N6
N7
N8
NG
Tl

o O

X181
X181
X181
X182
X182
X182
X182
X182
X182
X182
X182
X182
X182
X196
X136
X196
X196
X197
X197
X197
X198
X198
X198
X198
X198
X198
X199
X199
X199
X199
X199
X199
X199
X199
X199
X199
X139
T1

380
390
400
000
010
020
030
040
050
055
060
070
080
000
olo
020
030
000
010
020
000
010
020
030
040
050
000
010
020
030
040
050
060
070
080
090
100
000

002793

002793

-118-

Appendix B
PROGRAM LISTING OF AN INFORMATION-ANNEXING SCHEME

The listing in this Appendix is for an annexing
routine, capable of annexing to memory the contents of

sets of sentences of the kinds considered in Part III.

-119-

VI NN NN
< X Z X >

to) FOR MO
1S VALUE

PREPARF L1IST
oUTPUT (0)
IS FUNCTION
3076 X99= ,.. IS THE

3077 VALUF OF 4.

3078PUT FUNCTION IN WO

3080

3081

30831F VALUF 1S SyMBOL

3084FIND 1T, AND DO 90

3086

3087

3091

3093

3094

3089RRING IN FUNCTION 90
3097 AND EXIT
S307ASSIGN (0)
3090

J09R

3100

3102
3103SIMPLIFY
3104

3106

3107

3109

3110

3111

3114 &
3118

3120

3122

3123

3124

3129

3130

3132

3133

3134

3136

3116

3139 >
3140

3141

3143

3J127ASSIGN 1w0O

3145 AS VALUE OF J81(1W1) OF
3147

3148

31501F JR1(1wil)=X98
3152 PUT 1wWo AT END OF
3153

5306M0,
3073 M1,
3075 (1)

AS VALUE OF THF (1) M1

(0)

910
(0).

(0)

49HO
10X99
J6?2
J75
Jso
49H0
J790
40HD
J6o
70J7
J6o
3gHO
70
J60
S2H0
14W0
Jé
Ja?
J21
11W1
40H0
M20
M21
40H0
M20
20W1
J71
J71
144W1
Js3
7090
IpgHO
Joo
J136
60W2
910
11wl
J60
J68
11W2
20W0
14W1
J8?
910
11W1
J71
14W0
14W1
Ja1i
40HO
10X98
J2
70J11

10
100
100
200
209

90
90

J30

91

J32

MNDNOO10
M000020
MN00030
MO0D00D40
Mononso
M0000AD
MOop0ON70
MO0OOORO
M000090
M000095
M000100
MO00110
M000120
M000130
Mp00140
M000150
M000160
M001010
M001020
MO01025

M001026
MO01027

MO01028
M001029

M004030
MO01040
M004050
MD0D1060
M001070
MO04080
MQ01090
M001110
M0D04140
MO01150
M001160
MO01170
M0013180
MO01190
M001195
M001210
Mp01230
M0O01240
MOD1250
MO01760
M001270
MO01280
M0017290
M001300
M001310

-120-

3155 JoHO Jés M001320
5308 M2 M10 MN02010
3128 40HO

3117 J150

3115 Ja M002015
3158 1090 MO02020
3160 J100 M002025
3161 J154

3162 J155

3163 10%X105 MO02026
3165 M4 M7 MN02027
311°2 90 MO MO02030
3166 M1 M002040
3167 J154 M002045
3168 J155 MO02046
3169 10X105 M00205S0
3171 J150 J4 M002060
SI09DFLFTF X9B TO X97 OF (o) M3 10%X97 MO03010
3172 10X98 M26 MO03020
S310M4, CREATE DESCRIPTION M4 Joo MO04010
3174 OF EXPRESSION (0) Joo MO4 N20
31750UTPUT (0) 1S DESCRIPTION J5? M04 030
3176 11w M004032
3178 10X100 M004034
3180 J65S MO04036
31811W0 1S OUTPUT LIST 19W1 M04 040
31831W1 IS GENERATOR LIST 141W?2 M04 050
31851W2 IS EXPRESSION J64 MO4 060
3186 11wt M04 070
3190 1090 M04 080
3492 J100 M04 090
3193 11W0 J3? M004100
318RB1W2 1S CURRFNT EXPRESSION 90 40HQ MO04 0110
3196 J152 >
3197 aOW2

J199FIND ITS TYPE M5 M04 120
J200ADD IT To END OF VALUF LIST 40HO M04 130
32072 FOR TYPE 14W0 MD4 140
3204 Jé M04 450
3205 11W2 M04 160
3207 Jé MD4 170
3208 J13 MN4 180
3209 11W2 MO4 190
3211PUT COMPONENTS ON GEN, LIST 11W1 M004200
3213 M6 Ja MO047210
5311M5, FIND TYPE OF EXPRESSION (0) M5 Jo MO05010
3189 12H0 MOS5 015
I2150UTPUT (0) IS TYPF J60 MNS 020
3216 3oH0 MOS 030
3220 70 90 M00S5050
3222 J60 M0S 050
3223 30H0 MOS 060
322R 7091 MOS 070
3230 - 10X85 0 MOS 0RO
3218 90 30HO M005090
3233 10X86 0 M005095
3226 91 10X45 0 M0S5 100
3237 92 30HO 91 MOO0S110
5312M6, PUT COMPONENTS OF (1) M6 Js2 MO06010

3238 OF TYPE (2) 11w?2 M0& 020

32270N ARFENERATOR LIST (0)
J219N0 OUTPUT

3240

3242

3244

3246

3247

3249

3251

3253

3254

32518

3261

3266

3268

3270

3272

3273

3254

3276

3278

3280

3281

3283

3285

3286

3264

5313M7, PRINY DESCRIPTION (0)
3277 SAVFE IT IN WO

3265 PRINTS TS LIST OF DLS
3255

3288

3290 PRINT 17S LIST OF LIST
3292

3293

3295 PRINT 1TSS LIST OF SYMBOLS
3297

3262

3299 PRINT ATTRIRUTE
3300

3304

3306 PRINT [IST

3302 SPACE

5316M10. REAND LIST OF STATEMENT
3303

3301

3307 AND STORE AS LIST OF
3308 LISTS (0),

3310

3341SET UP nUTPUT LIST

3312

3313IREAD NEXT LINE

3318

3I320SET UP STATEMENT LIST
3321

3322SET POINTER 70 PSJ O

3324

3325SET POINTER TO FIRST SUMB
3326

3328

-121-

96

90
91

92
M7

910

90
Mio0

90

10X45%
J2
70
11W0
10X100
NIY
20W0
11W2
10X85
J2
7090
11W1
J6o
7092
12H0
11W0
Jé
J63
12W1
J60
7092
J6o
12H0
11wo
Jé
J63
IpHO
Jao
60W0
10X86
910
11W0
10X85
910
11W0
10X45
910
40HO
J152
J1o0
7090
J151
J154
Jo
J154
10W25
M11
10W30
M11
Joo
Jso
J180
7091
Joo
J136
11W25
J124
J184
7091
J0HO

J32?

96

91
J32

J30

J155

Mp& 030
MO0& 040
M06 050
M006K052
MN0D6054
MO06056
MO0DANS8
M06 060
Mo& 070
M06 08B0
M0& 090
MO06141
MN06142
M006143
MON6144
MO06145
M006146
MO06147
M06 150
MDé 160
M0OAk 170
MON&1L75
Mo6 180
MDé& 190
M06 200
M00&210
Mo6 230
MOon7010
MON7020
Mp02030
M007040
M007050
MON7060
M0O07070
M007080
M007090
Mn07100
M007110
MD07120
M007130
M007140
MD07150
M007160
M10005

M10040
M10020
M10030
M10040
M10050
M10060
M10070
M100R0
M10060
M10100
M1011310
M10120
M10130
M10135
M10140

-122-

- 3331 92
3334
3IISMEASURE SYMR
3336
3338 AND SAVYF 1IT

3I40AND INPUT IT TO HO
3341PUT IT AT END OF STATEMENT L1ST

3342

3344FIND NEXT SYMB

3345

3350

3316 91
3353

3355

3348 93
3358
3359
5317M11,
3349
3347
3332
3317
5326M20, CREATE FIND LIST M20
3314 FROM DESCRIPTION LIST (0)

3360 OUTPUT (0) 1S FIND LIST,

3362

3366

3368

3369

3364 90
3371
5327M21.
3365 OQUTPUT (90)
3374

3375

3377 FIND NEXT ARGUMENT

3379 92
3382LO0CATE NEXT DETERMINER

3386 IF NONE, GO TO 90

3388FIND DETERMINER

3390 SAVE IT

3392DETERMINE FUNCTION

I396IF NO VALUE, GO TO 91

3398DFLETE ARGUMENT FROM LIST

3400

3401RFPLACE DFTERMINER WITH VALUE

IIB4END OF LIST 90
3404

3394PROCESS X97 OR QUIT 91
3407

3409

3410

3412P0OINT TO PREDECESSOR OF X97

3414AND PROCESS 1T

3418

3420

3425

3423 94
3426

3428

SET UP D,T. IN (0) M11

RENUCE FIND LIST (0) M21
'S REDUCED L1IST

11W30
J124
J183
30H0
40HO
Ji181y
J65S
11W25
J184
30H0
7093
W25
30W30
11W0
11W0
Jé
J6b
Js0
J9o
J124
44W0
21W0
J50
J9o
40HD
11W0
1090
J100
30H0
J64d
40H0
Ja1
40H0
J60
60W0
S2H0
11W0
J60
7090
S52H0
60W1
J10
7091
11W0
JBR
61W0
30H0
30H0
11W1
10X97
J2
70J31
11W0
M2?2
7093
61W0
94
Jo
11W0
M24

92

J30

90

J3o

J30

92

J31

92

M10150
M10160
M10170
M101AN
M10100
M10190
M102800
M10210
M10220
M10230
M10240
M10250
Min260
M10270
M102K0
M10290
M10300
M11010
M11020
M11030
M11040D
M11050
M020010
M020020
M020030
M020040
M020050
MO20060
M020065
MD20070
MQ20080
M021010
M021020
M021030
M021040
M021050
M021060
M021070
M0210R0
M021090
M021100
M021110
MD21120
Mp21130
M021140
Mn21150
M0?P1460
Mg21170
M021180
M0?21190
M0?21200
MD21210
MN21220
Mp21230
MB21240
M021250
Mp21254
M021255
MOP1256
M0?21260

3429DFLETE X9A

3431

341 6CREATF ORJECT FOR
3432ISURBNESCRIPTION
3435C0PY PART DESCRIPTION
3436

343ACRFATF NFW ORJECT
3439

3440

3442

3444

3446

3447PUT 1T AT HFAD OF PART DESCRIPT

3448

3450

3451PUT IT AT FEND OF ARG LIST
3452

3454DFESCRIRBRE IT

3455

3456

3457SURSTITUTE IT FOR ARG
3459

5328M22, INDENTIFY LIST MEMBER
3424

3417 WITH ARG, LOCATION (0}
3415 X97 AT N(0)

339S1F INDENTIFIED, OUTPUT
3385(0) 1S NAME OF MEMBER,
3461 1F NOT IDENTIFIED, NO
34630UTPUT, FIND LIST NOT
3464

3465

3467

3469

I380MUTILATED

3472

3476

3478

3474

5329M23, COPY DFSCRIPTION FROM
3475 x97 TO X98 OF (0)
3460 OUTPUT (0) 1S COPY
3482

3484

3486 TEST IF = X97

3487

3489 PUT LOC OF XxX97 OUT
3490 CREATE NAME OF COPY
3491

3493

3498D0 90 ON CELLS OF (0)
3500

3496

35021F SYMB 1S X98, QUIT
3504

3505

3509

3511

35071F NOT, ADD TO LIST
3512

93

M2?2

90

o1
M23
91

90

92

11W0
J60
40W2
11W0
M23
20W2
Jdoo
J136
40HO
40H0
11W2
J6
J64é
12W0
Ny
J65
11W2
M20
MO
M1
21W0
94
JO
12H0
J50
M23
40H0
14W0
1090
J100
Js
70
30H0
3oHO
60W0
M?5
70
40HD
S51W0Q
Jo
J60
70d7
12H0
10X97
J2
7091
J50
J9oo
40H0
11wW0
1090
J100
40H0
10X98
J2
JS
70
J8
Jé5
40H0

J6#8

J32

J30
J30
91

Jaé
J3

J30

92
J8

0

M021270
MO212H0
M021300
M0213%10
M021320
MD21330
M0p21340
M021345
M0?1350
M0?21360
M0?1370
M021380
M0213G0
M021400
M021410
M021420
M0?1430
MOP1440
M021450
M021460
MN21470
MD214A0
Mp22010
MOP2015
M022020
M0O22030
MO22040
Mp22050
MO22040
MN22070
MO22072
MOP2074
M022076
M0O22078
M022080
ME22090
M022100
MO22110
MN22120
MOP3010
M023020
M023030
MOP3040
M023050
MO23060
M023070
M0P3080
M023090
M023100
M023110
MO?3120
M023130
M02$140
M023150
M023160
M023170
M023180
M023190
M023200
M023210

-124-

5330DFLETE X97 TO X98 0F () M24
3506 ‘

5331M25, TEST IF tg) FITS M25
3495 DESCRTIPTION (1) 01
3515 ‘

35171.0OCATE NEXT DETERMINER
I518SAVRE LOCATION
IS20FIND 1T

3522

3524

352615 IT X99

35301F SO, TERMINATE TESTY

ISI2FIND VALUE OF (0)
35331F NONE, EXIT WITH =

35351F SO, SURSTITUTE IT FoOR (o)

IS28COMPARE VALUE WITH VALUE 90
35380F DESCRIPTION

3540

3541

3543

IS45AND EXIT WITH SIGNAL

5332M26 DELFTF SECT FROM (0) TO (1) M26
I5290F LIT (o), NO OQUTPUT,

3473TESTS THAT CN(2)=(0), IF (1)

3547NOT ON 1 1ST, DOES NOTHING

3548

3550

I55?

3553

3555

3557

3558

3560 00
3562 '
3564

3565

3567

3569

3571

3572

3574

5619
5296 AQ
3561
3576
3577
3578
3579
5297 Al
3580
3581
3582
3583
3584
5298 A2
3585
3586
3587
3588

X113

10X98
10X97
Jsi1
14wWo
14W1
Jén
60W1
S2H0
40H0
10X%X99
J?
70
J1o0
70J31
20W0
30HO
11wl
J6o
70J7
52H0
J2
NLY
11UW2
11W1
J?77
70J32
141W2
J60
12H0
14W0
J2
7047
Jea
11W2
J60
7047
12H0
11W1
J2
7090
30HO

0
X113
X99
X31
X20
X105

X114
X99
X33
X25
X105

X115
X116
X99
X34

M26

90

91

J31

J32

M024010
M0?24020
M0?2S5010
MN25020
MN25030
MN25040
M0?2S050
MN25060
M025070
MN?25080
MN?25090
M025100
M02511¢0
MO?25120
M0?254130
M325140
M0?5150
MN2?25160
M025170
M025180
M025190
M026010
MO26020
M0?26030
M026040
M026050
MO26060
MN26070
M026080
M0?26090
MN264100
M026110
Mp26120
M026130
M026140
M026150
MO261560
M026170
M0264180
MN?26190
M026200

X113010
An00010
Ap00013
ADDO0NOLS
An00020
Ap00030
AQ00040
AD01010
A001013
AQ01015
A001020
A001030
A001040
A00N2010
AQ02013
A002015
AQ02017
AD02020

3589
3590
5407
5530SNSC OF ROUTINE
3591
3593
3594
3595
3599
3597
3600
5547NAME
3598
3592
3601

§577L1ST OF AFFECTED CELLS

3596
3603
3604
3605
3606
5578AFFECTED CELL
3602
3608
3609
3610
3614
3612
3615
3616
3617

SSB81INPUT STATE OF CELL

3613
3607
3618
3619
3620

5S5820UTPUT STATE OF CELL

3611
3622
3623
3624
3625
5591L1ST
SS92DESCRIPTION L1IST
SS9OIATTRIRUTE
55940BJECT
S595VALUE
SS97MEMBER TYPE
112

3630
3627
3637
3644

X113
X99
X31

3

2

2

2
3627 3 0

0

0

0

0 x20

-125-

N1
X24
90

91

x41
90

X71
90

X72
90

91

X75
90

X76
90

X85
X86
X87
x8a
X89
X91

1

X25
X105

90

X32
X86
X887
91

X71
90

X32
X45
90

X32
X85
X91
X72
90

X32
X86
X8?
91

X431
X75
X76
90

X32
X85
X91
X45
90

X32
X85%
X91
X45

M2

[« -]

A002030
A002040
N001010

X24
X24
X24
X24
X24
X24
X24
X24
X41
X41
X41
X41
X71
X71
X71
X71
X71
X71
X72
X72
X72
X72
X72
X72
X72
X72
X72
X72
X75%
X75
X75
X75
X75
X75
X76
X76
X76
X76
X?76
X76
X85
X86
X87
X88
X89
X91

010
020
030
040
050
060
070
080
010
020
030
040
010
020
030
040
050
060
010
020
030
045
050
060
070
080
090
100
010
020
030
040
050
060
o010
020
030
040
050
060

010

	00000
	00001
	00003
	00004
	00005
	00007
	00008
	00009
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125

