MEMORANDUM

RM-3879-PR
OCTOBER 1963

TIPL: TEACH
INFORMATION PROCESSING LANGUAGE

Robert Dupchak

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

2t RHTD g

SANTA MONICA » CALIFORNIA

MEMORANDUM

RM-3879-PR
OCTOBER 1963

TIPL: TEACH

INFORMATION PROCESSING LANGUAGE
Robert Dupchak

This research is sponsored by the United States Air Force under Project RAND —
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force. ‘

e DN D e

1700 MAIN ST + SANTA MONICA « CALIFORNIA

-iii-
PREFACE

TIPL (Teach Information Processing Language) is a
computer program which checks the correctness of solutions
to problems written in Information Processing Language-V
(IPL-V). It is a teaching aid designed to automatically
evaluate both the correctness and the efficiency of a
student's program.

TIPL was developed at Carnegie Institute of Tech-
nology and The RAND Corporation and was used at the 1963
Summer Institute on the Simulation of Cognitive Processes,
held at The RAND Corporation. It proved to be a highly
‘useful tool.

This Memorandum is being released in order to make
TIPL available wherever IPL-V is being taught, and to
provide necessary information to the potential user for
modifying the program to fit the particular IPL-V System
being implemented. The Memorandum, of course, assumes

familiarity with IPL-V.

- -

SUMMARY

TIPL is a system to assist students in learning IPL-V,
a list-processing computer language, and is used in con-

junction with the problems contained in the Information

*
Processing Language-V Manual. It accepts as input a

student's program and it proceeds to check the correctness
of the program.

The first section of this Memorandum is intended for
the student. It describes how he must prepare his pro-
gram deck and what conventions he must observe. The second
section describes how the system operates and the manner
in which the instructor may modify old problems and add
new ones.

Since TIPL is written entirely in IPL-V, it requires
only minimal effort to incorporate it into any IPL-V
processor. Those interested in obtaining tape copies of
the program should write The RAND Corporation for further
information. The program is written on IBM tape as a

single file of BCD card images.

*Newell, Allen (ed.), Information Processing Language-V
Manual, 2d ed., Prentice-Hall, Englewood Cliffs, New Jersey,
1964. The problems with which this Memorandum is concerned
were not carried in the first edition of the Manual, pub-
lished in 1961.

-vii-

CONTENTS

PREFACE @ o6 o 00 0 e 00 000 000000 00 ® 6 00 0000000 0000000000 iii

SUMMARY cececccccssecsscssrsssessersnoes cooe v

Section
I. STUDENT INSTRUCTIONScceecececccccosoe 1

II. INFORMATION FOR INSTRUCTORScco0cvese
Operationeveeeeecccccvsccsnsnccens
Printercieieiceecncncnnns ceveene
Adding and Modlfylng PROBLEM DATA

STRUCTURESc.iieiieeececconncnnanns 12
ASSIGNMENTSc.cvveenne Cetrecseneenn 20
Possible Modifications Required by

Limited SystemsScc0e0ee. ceeesnens 20
The TIPL Deck ..ieveeveeoennnnns ceesecnn 25

O Ut

I, STUDENT INSTRUCTIONS

TIPL is a system to assist students in learning IPL.
It accepts as input a student's program and it proceeds
to test the correctness of the program. It does this by
first supplying a set of data for the program to operate
on. It then fires the program. When the program termin-
ates, TIPL checks the results. It also checks to see if
WO-W9 remained safe over the program and if the program
has erased all the temporary data structures it may have
created during its execution. In some problems where the
student's program is required to take differential action,
TIPL will test the student's program on several sets of
data.

The TIPL deck is set up in the following order:

1. One Type-9 card.

2. One Type-5 card, P =4, Q = 0, and SYMB = 2.

3. All Type-2 cards giving only region size.

You may use any of the 36 possible regions except
the period region and the dollar region. No region
may have more than 101 symbols.

4, One Type-T card with NAME = problem number.
Your name must appear in the comments field of this
card.

5. Sets of data and routines, in any order.

6. A final Type-5 card with .0 for SYMB.

A complete example of a correct TIPL solution to
Problem 12* is given in Fig. 1.

In your program you may use any and all of the IPL
diagnostic aids. You are encouraged to trace your first
few programs. Also, you may want to print the inputs to
your program and any outputs it generates. If you create
any temporary data structures, you may want to print these
at various points in your program.

In each problem TIPL will impose a cycle limit on
your program. This limit is always far greater than any
correct program will require. This limit is imposed to
prevent any program caught in an endless loop from using
up valuable computer time doing nothing. If your program
gets caught in such a loop, TIPL will print an error mes-
sage and then give you a post mortem. By looking at this
post mortem you should be able to tell where the loop
occurred.

Problems 10 through 75 may be run using TIPL. 1In
all problems TIPL supplies all HO inputs. In some problems

it also supplies various data structures and subroutines;

*
All problems referred to in this Memorandum are
those found in the IPL-V Manual, Ibid.

Tk S
o ; .
COMMENTS P} | NAME |G|PQ _ | COMMENTS | 1I.D.
Ef N - 5
%000011111111112222222222333333333 344 [es444|4145[55555[5(55566846666666777|77777778
§1678901234567890123456789012345678901{2134567|8190[12345/6{789 01}2]3456789012|34567890
9 B
RGBERT DUPCHAK PR@BLEM 12 5
DEFINE REGIUNS T¢ BE USED 2k]A DUPCHAK |P32 000
2B DUPCHAK [P32 010
2P {DUPCHAK |P32 020
2E4T |DUPCHAK [P32 030
2} X {puPCHAK [P32 040
R$BERT DUPCHAK T} {12 {DUPCHAK [P32 050
5k “{DUPCHAK |P32 060
PRINT LIST X6 P32 {DUPCHAK __[P32 070
- :|DUPCHAK [P32 080
L@CATE Al ¢N LIST X6 |{DUPCHAK [P32 (90
-{DUPCHAK [P32 100
#|]DUPCHAK |P32 110
ST@RE L@CATION IN WO |DUPCHAK |P32 120
REPLACE Al WITH Bl “IDUPCHAK [P3Z 130
:{DUPCHAK |P32 140
P@P UP WO
REM@VE T1 FRgM LIST X6
PRINT LIST X6 AGAIN
FINAL TYPE 5 KICK@FF CARD

3456789012

34567890

Fig. l--Example of a Correct TIPL Solution to Problem 12

these are listed below.

PROBLEM TIPL SUPPLIES
12 List X6
13 List X7
14 List X8
31 Subroutine P78
37 Subroutine P88
47 Empty described lists Bl and B2
49 List L12 and empty described list L13
51 List L14
52 List L14
53 Lists L12 and X12
54 List L12
55 List L12
56 Tree L10
60 Subroutine Ql1
62 Subroutine Q13
67 Subroutine Q18
68 Subroutine Q17
69 Subroutine R81 and list L17
70 List L18
72 Print line X1 and a card for J180 to read
73 Print line X1 and cards for J180 to read

74

Print line X1 and cards for J180 to read

IT, INFORMATION FOR INSTRUCTORS

OPERATION

TIPL is a program written in IPL; therefore it can
be used on any IPL computer. As written it requires about
13,000 words of core storage, but it is possible to reduce
this to 4000 words and even less by modifications described
below. The program requires a KICKOFF DECK which should
call IPL and specify an IPL external tape number two. The
construction of the KICKOFF DECK will depend on the ma-
chine system used. This KICKOFF DECK is used to assemble
TIPL, to run students' solutions, and to add and modify
problems.

The TIPL program deck (about 8800 cards) is preceded
by the KICKOFF DECK. The program deck will then assemble
and do J166--SAVE ON UNIT (2) FOR RESTART. This RESTART
tape is used to run student problems, modify old problems,
and add new problems.

The students' programs are batched and preceded by
the KICKOFF DECK. The RESTART tape should be mounted with
file protect. TIPL will then read, assemble, and test
each student's program.

The second card in the student's deck (Type-5, P = 4,

Q = 0, and SYMB = 2) causes a new copy of TIPL to be read

-6-

into core from the RESTART tape. TIPL then reads in
(using J180's) the student's Type-2 cards and it modifies
the region control words* according to the specifications
on these cards. When it hits a Type-T card it notes the
problem number and it saves this card image. TIPL then
does J165--LOAD ROUTINES AND DATA--and this causes the
student's routine(s) and data to be loaded. This ter-
minates PHASE ONE of the TIPL program. Note that because
the region control words have been modified, any attempt
by the student to load undeclared symbols will cause the
IPL loader (J165) to print an "UNDEFINED SYMBOL'" error
message.

The last card in the student's deck is a final Type-5
card that kicks off to TIPL, PHASE TWO. Corresponding to

each problem number there is a PROBLEM STRUCTURE. The

name of the PROBLEM STRUCTURE is a period symbol whose
subscript is ten times the problem number. Thus, the
PROBLEM STRUCTURE for‘Problem 24 is ,240. The format for
PROBLEM STRUCTURES will be described later. The informa-
tion in a PROBLEM STRUCTURE gives a series of PROBLEM
PARAMETERS and a list of DATA SETS.

In the PROBLEM PARAMETERS is the name of the STUDENT'S

*
See §18.0 in the IPL-V Manual.

-7-

ROUTINE, a CHECKING ROUTINE, a CYCLE LIMIT, and sometimes

a KICKOFF ROUTINE. The STUDENT'S ROUTINE is the name of

the routine the student is required to write to solve this

problem. The CHECKING ROUTINE is a routine that checks

to see if the student's program operated correctly. The

CYCLE LIMIT is a limit imposed on the student's program.

TIPL imposes this limit by setting W33 and supplying a

trap routine for H3 on W26. The KICKOFF ROUTINE is a

routine that is fired once at the very beginning of PHASE
TWO. It is used, for example, in Problem 69 to modify
J155 so that J155 checks each line the student prints.
Most data sets do not have KICKOFF ROUTINES. If no CYCLE

LIMIT is specified, then a STANDARD CYCLE LIMIT of 1000

cycles is imposed.

DATA SETS give a list of INPUTS to be placed in HO for
the student's program to operate on. The STUDENT'S ROUTINE
is then fired. When the STUDENT'S ROUTINE terminates, TIPL
puts into HO an ANSWER, which is also supplied in the DATA
SET. It then fires the CHECKING ROUTINE. The CHECKING
ROUTINE sets H5 plus if the student's program was correct,
minus if not. Another piece of information stored in a
DATA SET is a SIGNAL. The SIGNAL specifies how the student's
program was to have set H5--plus, minus, or don't care.

Before TIPL puts any INPUTS into HO it counts available

space and after the CHECKING ROUTINE has finished (and
presumably removed the ANSWER and the student's outputs
from HO) it again counts available space. It then compares

the difference to the integer data term DELTA SPACE that

is stored in the DATA SET. TIPL then prints "DATA SET
n CORRECT" or "DATA SET n INCORRECT'". 1If H5 was set
incorrectly, it also prints "H5 INCORRECT". If the dif-
ference in the available space counts did not equal DELTA
SPACE, it also prints "AVAILABLE SPACE INCORRECT'". TIPL
also checks to see if the W's remained safe over the
student's program; if not, it prints "W'S NOT KEPT SAFE".

TIPL then goes back to the PROBLEM STRUCTURE, finds
the next DATA SET, and does the same thing for this DATA
SET. After the last DATA SET it prints "PROBLEM n CORRECT"
or "PROBLEM n INCORRECT" and "m CYCLES" where m is the
number of cycles the student's program operated. This
provides a rough estimate of how efficient the student's
program was. It then again prints the card image of the
student's Type-T card, which presumably has his name on
it and hence provides identification at the end of his
output. TIPL then goes on to the next student's program,
or, if that is the end of the batch, it terminates.

If in any data set the student's program exceeds the

CYCLE LIMIT, TIPL will print "TIPL IMPOSED CYCLE LIMIT

EXCEEDED", '"PROBLEM n INCORRECT" and then it does J202.
It then prints the Type-T card again and goes on to the
next student's program.

An example of a typical TIPL run is given in Fig. 2.

PRINTER

The PROBLEM STRUCTURES may be printed by using Type-P
cards. A Type-P card with no name will cause all the
problems to be printed. A Type-P card with NAME = n will
cause the PROBLEM DATA STRUCTURE for problem n to be
printed. Any number of Type-P cards may be used. They
must, of course, be preceeded by the KICKOFF DECK. An
example of the output produced by a Type-P card is given
in Fig. 3. The output is generated directly from the
PROBLEM DATA STRUCTURES. 1If an old problem is modified
or a new problem added it can be printed with a Type-P
card. The output produced is helpful in debugging data
sets. It is helpful for the instructor to know what TIPL
is checking for and how these checks are being carried out.
If TIPL is being used to grade students in a programming
course, it is suggested that Type-P cards be kept confi-
dential since their output gives excellent clues on how

to cheat.

9
5 402
2 A 2
2 B 2
2 P 33
2 T 2
2 X 7
ROBERT DUPCHAK PROB 12 T 12
5
PRINT LIST X6 P32 10X6
J151
LOCATE Al ON LIST X6 10X6
10A1
J62
STORE LOCATION IN WO J50
REPLACE Al WITH Bl 10B1
21Wo
POP WO J30
REMOVE T1 FROM LIST X6 10X6
10T1
J69
PRINT LIST X6 AGAIN 10X6
J151 O
5 .0
X6 0
S1
Al
Tl
X6 0
S1
Bl
DATA SET 1 CORRECT
X6 0
Tl
S1
Al
X6 0
S1
Bl

DATA SET 2 CORRECT
PROBLEM 12 CORRECT 30 CYCLES
ROBERT DUPCHAK PROB 12 T 12

Fig. 2--Output Produced by the Deck Shown in Fig. 1

PROBLEM 11 R66 STUDENT'S ROUTINE .3 CHECKING ROUTINE 1000 CYCLE LIMIT 11

DATA SET 1k kkdkdhkdhddhdkhkdddkhhdiokdhdkdddodkdkdoddoddddoddodod sk dedd o dodod Fdedodohdd vk Fork v kv do v e ek s s e s ok
INPUT (0)
S 0
INPUT (1)
5862% 9-0 0

5862* MUST BE THE SAME AS
5877* 9-0 0

H2 MUST BE 1 CELL SHORTER H5 MUST BE +
DATA SET 2***
INPUT (0)
S 0
INPUT (1)
5889% 9-0 0

5889* MUST BE THE SAME AS
5903* 9-0 0

S3

H2 MUST BE THE SAME LENGTH H5 MUST BE -
Kk ddededddededededdekededededededededededededode dededoded dodededodededo dedededededededede e

Fig. 3--Printout for Problem 11

-‘['[‘.

-12-

ADDING AND MODIFYING PROBLEM DATA STRUCTURES

Modification of TIPL or of the PROBLEM STRUCTURES or
the addition of new problems can be accomplished by using
Type-L and Type-S cards. A Type-L card causes TIPL to do
a J165--LOAD ROUTINES AND DATA. When loading in this
manner the final Type-5 card should kick off to period
zero. A Type-S card with NAME = n will cause TIPL to do a
J166--SAVE ON UNIT n FOR RESTART.

An example of a PROBLEM STRUCTURE is given in Fig. 4;
its printout via a Type-P card was shown in Fig. 3.

The symbol in the head cell of the PROBLEM STRUCTURE
names the PROBLEM PARAMETER sublist. This sublist must
contain in its head the name of the CHECKING ROUTINE. 1If
it is desirable to impose a CYCLE LIMIT other than the
STANDARD CYCLE LIMIT, an integer data term should be added
to the‘PROBLEM PARAMETER sublist. If no CYCLE LIMIT is
desired, then the symbol .1 should be added. If a KICKOFF
ROUTINE is to be imposed, then the CYCLE LIMIT must be
given explicitly, followed by the name of the KICKOFF
ROUTINE (.0 may be used to specify the STANDARD CYCLE
LIMIT in this case). The PROBLEM PARAMETER sublist never
has more then three symbols (including the symbol in its

head cell).

-13-

5 01
PROBLEM PARAMETERS .110 9-0
STUDENT'S ROUTINE R66
DATA SET ONE 9-1
DATA SET TWO 9-2 0
CHECKING ROUTINE 9-0 .3 0
DATA SET ONE 1
INPUT (O) 9-1 SO
INPUT (1) 9-10
ANSWER 9-11
DELTA SPACE 9-19
SIGNAL 40
9-10 0
s1
s2 0
9-11 9-10
0
s1
S2
so 0
9-19 -01
DATA SET TWO 1
INPUT (0) 9-2 o)
INPUT (1) 9-20
ANSWER 9-21
DELTA SPACE 9-29
SIGNAL .30
9-20 0
S2
o)
s3 0
9-21 9-20
0
S2
SO
s3 0
9-29 +01

Fig. 4--PROBLEM STRUCTURE for Problem 11

-14-

The first list cell on the main PROBLEM STRUCTURE
list always contains the name of the STUDENT'S ROUTINE.
If the student is not required to supply a routine but
simply to supply a data structure, we would say the STUDENT'S
ROUTINE is JO.

Following the name of the STUDENT'S ROUTINE on the
main list of the PROBLEM STRUCTURE are the names of the
DATA SETS.

Each DATA SET is given as a list. The list begins
with any number of INPUTS (including zero) for the student's
program. Immediately following the INPUTS comes the
ANSWER. The ANSWER can be a symbol, the name of a list,
or the name of a structure. Following the ANSWER is
DELTA SPACE. DELTA SPACE is either an integer data term
or the symbol .0, meaning '"'don't check available space.'
The next element on the DATA SET list is either .2 or .3
or .4. This is the SIGNAL. .3 means the student's pro-
gram must leave H5 minus; .4 means the student's program
must leave H5 plus; .2 means it doesn't matter how the
student's program leaves H5. Instead of using .2, this
last symbol can be deleted from the DATA SET list and the
effect will be the same.

Another example of a PROBLEM STRUCTURE is given in

-15~-

Fig. 5 and its printout is given in Fig. 6. This example
shows one additional convention (our last). Following
the SIGNAL there may be any even number of symbols on
the DATA SET list. Before the student's program is
executed, TIPL reads these symbols in pairs and sets the
first symbol of each pair identical to the second symbol
in the pair (using J121). The necessity for this ability
is obvious in this example. It should be noted that this
feature can be used not only for supplying data structures
with particular names but also for supplying routines with
given names. Thus, in Problem 37, routine P88 is supplied
to the student as routine .371. P88 cannot be loaded
directly since in another problem the student may use cell
P88 for another purpose and indeed in Problem 35 he is
required to code routine P88.

The following TIPL routines and cells may be found
useful when adding new problems.

CHECKING ROUTINE .1--This routine normally has two inputs,
(0) is normally the ANSWER and (1)
is normally the student's output.
The routine tests if structure (0)
is identical to structure (1). Sym-
bols must be of the same type and
data terms must be equal. Non-local

symbols must be identical. If (0)

-16-

5 01
PROBLEM PARAMETERS .120 9-0
STUDENT'S ROUTINE P32
DATA SET ONE 9-1
DATA SET TWO 9-2 0
CHECKING ROUTINE 9-0 .3 0
DATA SET ONE 1
ANSWER 9-1 9-10
DELTA SPACE 9-99
SIGNAL .2
MAKE THIS IDENTICAL X6
TO THIS 9-11 O
9-11 0
S1
Al
Tl 0
9-10 X6
0
S1
Bl 0
DATA SET TWO 1
ANSWER 9-2 9-20
DELTA SPACE 9-99
SIGNAL .2
MAKE THIS IDENTICAL X6
TO THIS 9-21 O
9-21 0
Tl
S1
Al 0
9-20 X6
0
S1
Bl 0
9-99 +01 1

Fig. 5--PROBLEM STRUCTURE for Problem 12

PROBLEM 12 P32 STUDENT'S ROUTINE .3 CHECKING ROUTINE 1000 CYCLE LIMIT 12

DATA SET R T e e e e e

SUPPLIED
X6 0
S1
Al

X6 MUST BE THE SAME AS
5944% 9-0 0

H2 MUST BE 1 CELL LONGER
DATA SET 2%kkddcdddddeddeddcodedodeddodoioddeioidohdoddiokiodokdokiikkdokddhdokkkdkddkdddddoddoddk ki kikdks
SUPPLIED
X6 0
T1
S1
Al
X6 MUST BE THE SAME AS

5967* 9-0 0
S1
Bl

H2 MUST BE 1 CELL LONGER
Fkkkdkkdddokdkdkddkhdhdhdddkkdddddkikikkikihkkhkkhikkkdkdhkkhkdhidkkdddhddodkdddokdkikhdddhdhikik

Fig. 6--Printout for Problem 12

-L‘[-

-18-

is J8, this routine removes J8 from
HO and sets H5 plus. This feature
is useful in Problem 29 for example.

CHECKING ROUTINE .2--This routine normally has two inputs,
(0) is normally the ANSWER and (1)
is normally the student's output.

The routine tests if list (0) and
list (1) contain the same symbols,
independent of order. This routine
observes the J8 convention of .1.

CHECKING ROUTINE .3--This routine has one input, (0), which
is normally the ANSWER. It assumes
that (0) is a cell whose SYMB names
a structure and whose LINK names
another structure. It tests if these
two structures are identical by using
.1. It also observes the J8 conven-
tion.

CHECKING ROUTING .4--This routine has one input, (0), which
is normally the ANSWER. It assumes
that (0) is a cell whose SYMB names
a list and whose LINK names another
list. It tests if these two lists
are the same, independent of order,
by using .2. It also observes the
J8 convention.

DATA SET FLAG .5----- At the beginning of each data set a
J4 is stored into cell .5. If at
anytime this is replaced by a J3, the

data set will be marked incorrect.

-19-

This is used, for example, in the
problems on generators. TIPL supplies
a subprocess to the student's gen-
erator which, among other things, tests
if the W's are in proper context. If
they are not, it signals an error by
putting J3 in .5.

HO DEPTH TESTER .8---This routine assumes (0) is an integer
data term n. After removing this
input it tests if HO is n cells deep.
If so, it sets H5 plus. If not, it
removes everything from HO and sets
H5 minus. This routine is used at
the beginning of CHECKING ROUTINES to
make sure the student left enough
outputs. This prevents the CHECKING
ROUTINE from clobbering out because of
too few inputs.

CYCLE STOPPER .9----- This routine is identical to Jl except
that H3 is increased by only one cycle
no matter how many cycles routine (0)
takes. All routines that TIPL sup-
plies to the student are executed by
.9 and thus do their work in one cycle.
This makes the cycle count given at
the end of the student's output a truer
reflection of the efficiency of his

routine.

-20-

ASSIGNMENTS

When printing out a problem that has a KICKOFF
ROUTINE .n it is desirable to also print a comment de-
scribing what routine .n does. This is done by making a
list of print lists (like L17, Problem 69) with the regional
name .m. This structure is loaded (with a Type-L card)
and .m is ASSIGNED to .n with a Type-A card, NAME = .n,
SYMB = .m. An example of this feature can be seen in Prob-
lem 69, where .694 is ASSIGNED to .691. This feature is
optional--KICKOFF ROUTINES are not required to have as-
signments,

Likewise, CHECKING ROUTINES can have assignments.
However, routines, not lists, are ASSIGNED to CHECKING
ROUTINES. The printer, if it finds an assignment for a
CHECKING ROUTINE, will place in (0) the ANSWER and then
it will fire the ASSIGNED routine. An example can be seen
in Problem 22 where .222 is ASSIGNED to CHECKING ROUTINE
.221., 1If the printer does not find an assignment for
CHECKING ROUTINE .n it will print ".n IS APPLIED TO" and

then it will print the ANSWER with J150.

POSSIBLE MODIFICATIONS REQUIRED BY LIMITED SYSTEMS

The code for .8 does a J126 on HO. This may not work

on your machine, or, if it does, it may not work in the

-21-

same manner. Therefore .8 may have to be recoded. 1If this
is difficult, an easy way out is to code it .8 J8 J4.
This may cause the checking routines to clobber out when
the student does not leave enough outputs. This may con-
fuse the student, but it is the only ill effect.

TIPL detects undefined symbols by modifying region
control words, using routines J175 and J197. This is all
done in subroutine 9-22 in routine .0. 9-22 has two in-
puts. (0) is the zeroth element of a region and (1) is an
internal symbol. 9-22 sets the maximum size of region (0)
to (1), where (1) is interpreted as an integer. If your
system does not have J175 and/or J197 this subroutine will
have to be recoded. If this is difficult to do, the easy
way out is to code it 9-22 J8 J8. The only ill effect
here is that any error the student makes in his Type-2 cards
will go undetected. This is the one and only place in the
entire program that a J19n or a block manipulation primitive
is used.

TIPL assumes five characters are packed per BCD data
term. If your System packs four characters, or more than
five characters, per BCD data term, then the PROBLEM
STRUCTURES for Problems 73-75 will have to be modified.

If your System packs fewer than four characters, you are

-22-

in great trouble. All the print lists in .0 will have to
be recoded and many of the PROBLEM STRUCTURES will have to
be modified.

TIPL assumes a 120-character print line. TIPL will
function properly with any other size print line of 72 or
more characters, except that Problem 71 will have to be
modified and some information will be lost when making
Type-P card problem printouts.

TIPL assumes one character is packed per word in a
print line. If this is not so on your machine, the LINK
fields of the Type~3 cards reserving print lines .6 and .7
will have to be modified.

TIPL uses about 12,100 words of core: 4500 words
are reserved by Type-2 and Type-3 cards; routines .0 through
.9 use 1600 words; and the data sets use about 6000 words.
This storage requirement may be reduced in two ways if
necessary: (1) the Type-2 and Type-3 cards can reserve
fewer words; and (2) most of the data sets can be put in
auxiliary storage.

1000 words can be gained by not reserving the special
character regions (the period region must of course be
reserved). The student should then of course be instructed

that he can only use alphabetic regions. Another 240 words

-23-

can be gained by reserving the period region only up to

760. More space can be gained by reducing the size of the
alphabetic regions. Note however that the zero element

of every region (special character regions included) must

be defined and that (with the exception of Problem 71) A8,
B5, Cl, D99, L100, N10, P97, Q23, R87, s8, T13, V2, X12,
Yll, and Z7 are the highest subscript elements used in each
of these regions. Problem 71 uses the 100th element of

each of the alphabetic regions and hence it would have to be
modified if the size of the alphabetic regions is reduced.

The second method of reducing the amount of core
required is to put most of the data sets on auxiliary
storage. Not all the data sets can be put on auxiliary
since some of them are not true IPL data structures. The
data structures that can be put on auxiliary are listed
in Fig. 7. To do this, simply insert Type-7 cards with
Q = 5 in front of each of these data structures. Doing
this will reduce the core requirement by 3850 words. The
executive routine .0 will call in these data structures
via J105 and thus the cost in running time of this modifi-
cation will be one (and only one) auxiliary storage reference
per problem.

An additional 1875 words of core can be saved by
loading the routines listed in Fig. 7 into auxiliary. This
modification can be made by reserving a 240-word buffer
for auxiliary routines (and thus reducing the profit of this
modification to 1635 words) and inserting Type-7 cards with
Q = 4 in front of each of these routines. The cost of this
modification in running time will also be one (and only one)

auxiliary storage reference per problem.

24

DATA STRUCTURES
THAT CAN BE PUT

IN AUXILIARY:

.110
.120
.130
.140
.150
.160
.170
.180
.190
.200
.210
.220
.230
.240
.250
.260
.270
.280
.300
.310
.320
.330
.340
.360
.370
.380
.390
.400
403
410
420
440

.450
460
470
.480
.490
.500
.510
.520
.530
.540
.550
.560
.570
.580
.600
.610
.620
.630
.640
.647
.670
.680
.690
.694
.700
.710
.720
724
.730
.740
.750

ROUTINES

THAT CAN BE PUT
IN AUXILIARY:

221
222
.301
.302
441
4b42
461
462
481
.521
.522
.531
.532
.592
.593
.603
.613
.633
.643
.691
.697
.721
.751
.752

Fig. 7--Data and Routines that can be Put in Auxiliary

-25-

THE TIPL DECK

The TIPL deck is sequenced in cols. 77-80. The first
card is 0001 and the last card is 8849. It must be pre-
ceded by a KICKOFF DECK, as described at the beginning of
this section. Card 7970 is a final Type-5 KICKOFF card.
Cards 7971-7988 are Type-A cards. Card 7989 is a Type-S
card with NAME = 2. It causes a SAVE ON UNIT 2 FOR RE-
START. Card 7990 is a Type-P card with blank NAME. This

causes the data sets for all the problems to be printed
out.

Cards 7991-8849 consist of two series of tests. The
first series consists of 11 complete '"solutions" to Prob-

lem 11. Each of these 'solutions,"

except the last ome,
contains an error. The error each of these "solutions"
contains is gang-punched in cols. 6-40. TIPL, if it is
functioning correctly on your machine, should detect each
of these errors and take appropriate action.

The second series of tests consists of correct
solutions to 27 problems. These 27 problems use every
routine in TIPL. These solutions should not be used as
examples for the student since some of the solutions cheat
(use TIPL routines to solve problems) and others, especial-
ly the early ones, use J's that have not yet been intro-
duced to the student. TIPL, if it is functioning correctly

on your machine, should mark each of these solutions

correct.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

