JOHNNIAC FLOATING-POINT.
INTERPRETIVE SYSTEM
by John I. Derr

Revised

4 August 1958

JOHNNIAC FLOATING-POINT INTERPRETIVE SYSTEM

INTRODUCTION
SECTION I WORD FORM FOR FLOATING-POINT DATA
A. External Form of Data p. E
B. Internal iPacked) Form of Data p.
C. Internal (Unpacked) Form of Data p. 6
D. Normalizing and Significant Digits Modes p. 8
E. Summary of Section I. P 9
SECTION II INSTRUCTION WORD FORMS FOR FLOATING-POINT OPERATIONS
A, Operation Types and Classes : p. 13
B. Indexing Mode p. 15
C. Input-Output Word Form p. 22
SECTION III SYSTEM PHILOSOPHY FOR THE ARITHMETIC TYPE
OPERATIONS .
A. Significant Digits p. 24
B. Approximate and Exact Numbers p. 24
C. Absolute and Relative Error ‘p. 26
D. Guarding Figures . p. 29
E. Application to the Normalizing Mode p. 30
F. Summary of Section III p. 31
SECTION IV FLOATING-POINT OPERATIONS
A. Arithmetic Type Operations p. 34
B. Logical-Control Type Operations
Non-indexing) - p. 54 _
C. Loglcal-Control Type Operations (Indexing) [p. 57
D. Input-Output Type Operations , p. 63
SECTION V OPERATION |
A. Tracing | p. 68 |
B. Error Halt v p. 72
- 4
SECTION VI APPENDIX
A. Data Forms p. T4
B. Instruction Word Forms p. 75
C. Switch Settings p. 76
D. Operations which Differ Significantly from
JOHNNIAC Operations p. 76
E. List of JOHNNIAC Operations p. 83
F. List of Floating Point Operations p. 8%
G. Addressable Input Data Sheet p. 85

H.' |Floating-Point Data Sheet p. 86

INTRODUCTION

This system is a floating-point interpretive system,
and és sﬁch its primaiy function i1s to facilitate the ex-
ecution of the elementary arithmetic operations (add, sub-
tract, multiply, and divide) and, in addition, some of the
more frequently used elemeniary mathematical function
‘operations (square root, sine cosine, arc tangent, éxpon-
ential, and logarithm). Entry into the system is effected
by basie linkage under stored-program control. Upon entry
into the system, all succeeding operations are carried out
as pseudo-orders under the control of the interpretivé
system until one of a unique pair of exit orders is encountered.

The system is, relatively speaking, almost complete
within itself. In addition to the arithmetic operations
mentioned, the system recognizes input and output orders
for floating-point}data, conditional and unconditional
transfer orders, indexing orders for the modification of
addresses and the execution of repetitive loops, and in-
dications (from'both external and stored-program control)
to print out the results of specifled operations.

The logical form of the orders, which will be recog-
nized by the interpreter, is very similar to that of the
JOHNNIAC itself. (This system is basically a two-operation,
. two-address per instruction word system with an interpreta-
tion cycle of fetch, left, right. The same points hold
true for the JOHNNIAC, and és a result, both are essentil-

ally_single—address.) Another analogy is the agreement of

both numeric and mnemonic order codes for most of the
operations which exist in both the JOHNNIAC and the
floating-point system. The extent to which the over-all
logic of this system conforms with that of the JOHNNIAC

makes possible the integration of this system into the

system of utility programs and sub-programs written for the
JOHNNIAC. For example, that section of a problem code which
18 to be executed under interpreter control can be modified
in the same way as machine-language code. The same assembly
program can be used to process floatling-point orders as that
which 1s used to process machine-language code including the
floating-point system 1tself, all of which implies that with-
in a program we can convenilently intersperse fixed-point
arithmetic, floating-point arithmetic, and logical operatidns

in the ratio required by the problem being solved.

I. WORD FORM FOR FLOATING POINT DATA

The JOHNNIAC is a high-speed computer with an approxi-
mate add-time of ;38 ps and 4096 words of high-speed mag-
‘netic core storage. A JOHNNIAC word contains 40 binary bits
with the binary point to the right of the left-most bit.
When data words are being considered, the left-most bit
functions as a sign indicator and the remaining 39 bits
fepresent the‘ggggéfggggxof the data. Negative numbers are
represented in complement form. _

At all times the numerical data, which are operated
upon or which are being transmitted to or from the high-
speed storage under interpreter control.,, are in single-
precision, floating-decimal form: 1.e.,every plece of data
can be expressed in the form t M . 10" where M is a posi-
tive nine decimal digit number with a fixed decimal point
and m is a two decimal diglt integer. M 1s called the
mantissa and m 1s the exponent of the number. The sign (%)

is assoclated with the mantissa.

A. External Form of Data

By the external form of a plece of numerical data X
we mean either the form in which X is punched into a card
for input to high-speed storage or the form in which X is
printed or punched as output from high-speed storage. First

of all, X can be uniquely represented as follows: D)

p. 4

(F) X =1 a* . 102", where A* is a positive
Xnine decimal digit proper fraction or zero, 1.g£;-
1077 < A* <1 or A* = 0, and a* 1s a decimal
integer in the range -50 < a* < 50.
In order to eliminate the sign (t) from the exponent,

we can Iincrease a* by 50. Then O < a* + 50 < 100. We

shall at times refer to (F) as the implicit fractional

form of X, and call a¥* the true exponent or the implicit

exponent of X. 1In the same way, let us call a* + 50 the

explicit eXponent of X.
[a*+50] | A* |
Lra 31

il
External Form of Data

A* is a positive 9-digit decimal fraction, a*+50 is
the true exponent increased by 50, and S is the sign
associated with A*., In summary, the external form of X
is that of sign, fractional mantissa, and true exponent +50.

Examples: Prepare m 2 3.1416 for input in 1) and 2) below.

1) 3.1%16 = + w316 . 10t (implicit fractional form)
= |+[51].31 41060000 (external form)
'3t a3l [E3
2) -3.1416 = + .0000 31416 - 10° (implicit fractional form)
) l+| 5 5].00003 1416 (external form)
1 Tt 3T T11

Note: The mantissa A* need not be normalized. (See Section D

below for definition of "normalized".)

B. 1Internal (Packed) Form of Data

From (F) above, it follows that X can also be represented

p.5

as follows:

9 is a positive

(1) X =*%A - 10% where A = A* - 10
‘9-digit decimal integer or zero, l.e. 1 < A K 109
or A=0, and a = a* - Q is a decimal integer in
the range - 59 < a < 41.

We shall refer to (I) as the implicit integer form of

X. By combining certain aspects of all three of the mentioned
representations of X, we have as a result the expllcit

representation of X in its internal form.

- a* + 50 = . 109
Eﬂ a + 59 A= A* - 10
‘ 7 'q Io™ T3

Internal Packed Form of Data (X > 0)

The above representation holds true if X is non-negative.
If X is negative, the entire word 1s complemented.

Note that in order to transform A* into A, A* is not
explicitly multiplied by 109, since when A* is read from a
card it 1is simply converted as an integer. Note also that
a* + 50 = a + 59. As a result, no extra arithmetic is nec-
essary when converting the external form of X into the in-
ternal form, since the only difference between the two is
the location of the decimal polnt of the mantissa.

Example: Consider again 7 = 3.1416.
3.1416 =+ . 314160000 « 10° (implicit fractional form)

3.1416 =+ 314160000 - 10"8 (implicit integer form)

[+151]. 31 416000 0] external form

[+]5 11~"?§ 15160000 -Jinternal form

Note: The' only difference between the last two forms

is the location of the decimal .point.

p.6

Three reasons for choosing this system for the repre-

sentation of data are enumerated below:

1) Exact reconversion of input data is made possilble.
For example, any number X is exactiy the same
after having been read into the machine and then
printed as it was before eilther of these opera-
tions was performed. Therefore, under certain
limitations to be specifie& later, this system
can simulate a true decimal computer.

2) The form of packing data internally makes possible
algebraic and magnitude comparisons of data while
outside of the interpreter control, provided that

the numbers to be compared are normalized.
3) Nine digit'mahbissas were chosen because

229 ¢ 109 < 239 and 100 < 27 < 29,

C. Internal (Unpacked) Form of Data

All arithmetic operations executed under interpreter
control involve an arithmetic pseudo-register called the
AMQ. All floating-point numbers placed in the AMQ are in

their unpacked form, which 1is as follows:

Exponent : [o]lo ... ee 0ia¥* + 50]
o'y) 3o V3L ¥ T34

Mantissa [o]Oo ... © A ;A
T BT T

Internal Unpacked Form of Data (A > 0)

The above representation holds true if the mantissa is
non-negative. Otherwise, the mantissa only is complemented.
’ Then the AMQ consists of two adjacent full words of
storage. The function of the AMQ is closely tied to the

one-address nature of the system. Some of i1ts properties

are listed below:

1) The AMQ receives floating-decimal numbers from
storage to initilate a sequence of operations. In
the process of being transmitted from storage to
the AMQ, all numbers are converted from their
packed form to their unpacked form.

2) Conversely, at any stage of a sequence of‘operations
the number retained in the AMQ may be transmitted
to storage, and in this process it will be con-
verted from 1ts unpacked form to its packed form.

3) All "binary" arithmetic operations executed under
interpreter control involve tvo 6perands, one of
which is in the AMQ, while the other 1s in the loca-
tion specified by the address part of the opera-
tion. Purthermore, the result of the operatibn
will be placed in the AMQ. For example, consider
the operation X+Y; One of the operands (say X)
must origiﬁally be in the AMQ, and the other must
be at a specifled location in storage. The
result (X+Y) of the operation will be found in
the AMQ upon completion of the operation. All
"unary" arithmetic operations executed under inter-
preter control 1nv61ve only the contents of the
AMQ, and the result of any such operation will
be placed in the AMQ. For example, consider the
operation s8in X; X must originally be in the AMQ,

p. 8

and the result (sin X) of the operation will be
found in the AMQ upon completion of the opera-

tion.

D. ‘Normalizing and Significant Diglt Modes

Two mutually exclusive modes of executing arithmetic
operations are avallable. The interpreter is said to be
in the normalizing mode (the N mode) if the results of all
elementary arithmetic operations (+, -, X, ¢) and all ele-
mentary mathematical function operations are normalized
prior to being placed in the AMQ. A number 1is normalized
11 10° <A <10% or A= 0. If A =0, then a* + 50 = 0 also.
Note that if A # 0, thils amounts to saying that the most
significant (left-most) position of the mantissa contains
a non-zero digict.

Conversely, the interpreter is said to be in the
significant digits mode (the SD mode) if for the results of
all elementary arithmetic operations and mathematical func-
tion operations the following statement holds true:

Roughly speaking, carry only as many significant digits as
e i

would be justified by the theory of error analysis with the
possible exception of guard;gg figures.

L e “\\‘_,f" ~—
The system will be in the N mode (SD mode) if console

switch T, is off (on).

P

Examples: X, Y are in the packed internal form.

1) X <> 59 .1234% 00000
Ye——.é 59.1201 00000
X-Y «—> 59 .0033 00000 (SD mode)
X-Y < 57 .3300 00000 (N mode)
2) X &> 53.0030 00000
Y e 51.1000 00000
XY ¢« 53.0030 00000 (SD mode)
x-Ye——-; 51.3000 00000 (N mode)

Note that the mantissa of X 1s }ess significant than
that of Y. Therefore, the number of significant digits of
the mantissa of X*'Y depends upon the number of significant
digits of X. (See Section III for a more detailed discﬁssion
of significant digits.)

E. Summary of Section I

The external form for representing data is that of sign,
fractional mantissa, and true exponent + 50, and the user
is required to know only this form of representation. The
internal form for representing data is that of integer
mantissa, true exponent + 59, and complémentation for sign.
This form has been described for the primary purpose of
giving the user an insight into the systgm so that he may
take full advantage of the opportunities available to him.
It might be pointed out here that the user might need to
know the internal form for representing data if he desires

to convert fixed point numbers into floating point numbers,

and vice versa. However, one way of performing the conver-
sion has been described in detail in Section V.

A primary advantage of treating floating polnt
mantissas as integers has already been mentioned in para-
graph B of this section, namely, the exact reconversion of
input data. This is made possible by the fact that decimal
integers and binary integers convert exactly one into the
other.

But this system simulates a true decimal machine 1in a
broader class of operations than just Input-Output opera-
tions. The results of all arithmétic‘operations are
truncated decimally and without rounding. Then the re-
sults of any sequence of operations, with the exception of
the elementary mathematical function operatlons, can be
simulated exactly on a desk calculatoé by using nine digit
operands. However, the algorithm for carrying out the
simulation becomes more complicated when operations are
carried out with unnormalized operands. A systematic way
of accomplishing this simulation will be described for each
order 1n Séction IV.) Once more, we can say that this simu-

lation is possible because no binary truncation is involved.

But the simulation of decimal numbers 10 not closed under the
"mathematical function operations, because for these opera-
tions it is most desirable to transform at least the man-
tissa into a proper binary fraction. This transformation,

as well as the ensuing calculations necessary to compute

the resulting functional value, lnvolves binary truncation,

p. 11

and it is a well-known fact that in general decimal frac-
tions do not convert exactly into binary.fractions, and

vice versa.

p. 12

IT. INSTRUCTION WORD FORMS FOR FLOATING POINT OPERATIONS
It was asserted in the Introcduction that the inter-
pretation of floating polnt orders is similar in many re-
spects to the Interpretation of JOHNNIAC machine language
orders. In what follows we shall describe explicitly the
logical form of the floating-point orders. However, we
might take as our point of departure a brief description of
the way in which the JOHNNIAC interprets instruction words.

o'l d/(1gl9 20pl 22 27ES 3G
Left Lef® Not Right Right

Operation | Address Used | Operation Address
Left Order Right Order

JOHNNIAC Instruction Word Form (J)

The octal operation codes are restricted to the range

000 - 1778 (128 possibilities). The octal representations
of addresses are restricted to the range 0000 - T777g (4096
possibilities).

It has been mentioned in the Introduction that fhe
basic interpretation cycle of the JOHNNIAC is fetch, left,
right; i.e., first a word of the form (J) is fetched from
storage, then the left order 1s executed, and finally the
right order 1s executed. As is usual 1n the execution of
an order the operation part of the order takes precedence
over the address part of the order. The JOHNNIAC operation
list has been arranged so that operations which are similar
to each other in some respect are grouped in the same class,

where the class 1s deflined by the two most significant

p. 13

octal digits of the octal operation code. As a result,
the classes range from 008 to 178. See p.83 for a list of
JOHNNIAC operations.

A. Operation Types and Classes

Perhaps it will be convenlent at this point to break
up the list of floating point operations into three basic
types: Logical-Control type operations, Arithmetic type
operations, and Input-Output type operatioms. The Logical-

Control type operations include the conditional and uncon-

ditional transfer operations, the Indexing operations, the
operations effecting exit from the interpreter control, and

also the "No Operation" operation. The Arithmetic type

operations include the operations necessary for the trans-
mission of floating-point data between the high-speed stor-
age and the AMQ as well as the elementary arithmetic opera-
tions and the elementary mathematical_function operations.
Those floating-point operations which are used to transmit
floating-point data between the high-speed storage and any
of the mechanisms used for reading cards, punching cards,

or printing, constitute the Input-Output type operations.

With the exception of orders executed 1n the Indexing
mode and the Input-Output type operationg thls system is,
like the JOHNNIAC, a two-operation, two-address per in-
struction word system with an interpretation cycle of fetch,
left, right. Under the same restrictions the instruction

word form is unchanged except that the fields for the opera-

p. 14

tion codes have been defined as follows:

0O Q1 8 1919 20 21 [22 2728 3

Lefd Left Not [Rt | Right

Con.| Oper|.neTt Address iy o4 bon. oper. | Right Address
Lef't Order 5 Right Order

Floating-Point Word Form (F)

The control fields are used for special control indications
to the interpreter (with the exception of the Input-Output
type orders). For example, the presence of a "1" in the
Left Control field can cause the breakpoint printing of an '
order immediately after the order is executed. The octal
operation codes are now restricted to lie in the range
00-77g (64 possibilities). Recall that the operation part
of an order is that part which takes precedence over all
others. Note that the operation parts in (F) colncide with
the least significant 6 binary (2 octal) digits of the cor-
responding operation parts in (J), and that the control parts
in (F) coincide with the most significant binary (octal)
digits of the corresponding operation parts in (J). For
convenience of exposition in what follows, the term “opera-
tion" will be used interchangeably in either the sense of
(J) or that of (F). However, after having noted the dis-
tinction between the two meanings, the reader should exper-
lence no difficulty from this direction.

In analogy with the concept of classes of operations
for the JOHNNIAC, 1t is reasonable for us to group the

floating-point operations according to eight classes (a zero

p. 15

class, a one class, ...; a seven class), where the class

is defined by the most significant octal digit of the octal
operation code. (See p. 8% for a complete list of the
floating-point operations.) Note that the Logical-Control
type operations afe in classes 0,1, and 7, the Arithmetic
type operations are in classes 2, 3, 4, and 5, and the

Input-Output type operations are in classes O and 1.

B. Indexing Mode

An Indexing mode (X mode) for interpretation of float-
ing-point orders and a corresponding class (7) of Indexing
orders have been incorporated into the interpretive system
in order to facilitate the address modification and the
counting involved in the execution of the .repetitive loops
which occur in a program. Immediately'following the execu-
tion of the Enter Indexing operation, the Interpreter will
be in the Indexing Mode. Then all succeeding orders will
be interpreted in the Indexing Mode until a "1" 1s encountered
in the Right Control field. The presence of a "1" in the
Right Control field will’always cause the Interpreter to
exit the Indexing Mode. For thilis reason the Right Control
field will be referred to as the Exit Indicator field while
the Interpreter is in the X Mode. | '

When interpreting orders in the X Mode this system
becomes a one operation per instruction w&rd system with
an interpretation cycle of fetch, left. The system also
remains a single-address one, since one high-speed storage

cell at most can be referred to in a single order. The in-

p. 16

struction word form for orders executed in the Indexing

Mode 1s as follows:

ol gdr 1319 20| 21 ?§3E4§53657§8 3

Cor| Oper.| Left Address |Not | X|X T A G|Right Address
hised [Ind.

Floating-Point Word Form (X Mode)

Only the Left Operation'functions as an operation. The
Right Operation field contains the Indexing Tag (X Tag)

which can be used to specify uniquely any of the 64 possible
combinations (including the combination where none of the
indexing registers is involved) of six Indexing Reglsters
which are involved in a given operation. Each of the‘lggg§f
ing Registers contains two quantities X() and AX() .The
primary function of x() is at execution time only to
modify the addresses of arithmetic type orders which are
executed in the Indexing Mode, and which have X Tags refer -
ing to X()* The principal use of AX() is to modify the
corresponding X() upon execution of a Transfer on Positive
Index order or a Transfer on Negative Index order. Each of
the six Indexing Registers occupies one permanent full-word

of storage within the Interpretive System as follows:

o' To|T! 16119 27 126" 39
Zero X() Zero . AX()

Indexing Register Layout

Obviously, both x() and AX() contain numbers in the
range 0000 - 77778. Negative humbers are represented in

p. 17

complement form. For example, if X() = - 7 and AX()
= - 1, then the corresponding Indexing register would

contain:

Zero T771g = 4089, Zero TT77g = 40954

Thus far, we have made no attempt to assign to each of
the Indexing Registers a unique name. Consider the figure

below:

22| 23|24 25(26|27
A B |C (D |E |F

If we agree to use x() to designate the Index Register
containing X()? as well as X()* then we can enumerate
the Indexing Registers as XA’ XB’ cs ey XF. We can, in a
one-to-one manner, associate XA with blnary position 22 and
likewlse for the other Indexing Registers.
Now we can adopt the convention that the presence of

a "1" in any of the binary tag positions means that the
corresponding Indexing Register is involved in the execu-
tion of the given order, and that the'presence of a "O"
in the same position implies the opposite condition. Since
1t is natural to express JOHNNIAC operation codes in octal
and since the Tag part of our orders coincides with the
Right Operation of form (F), then it will be convenient to
asgoclate the octal representation of the Tags for each of
the Indexing Registers as follows:

A ¢ 40, B ¢ 20, C ¢ 10

D' ¢ Ok, E ¢ 02, F = 01
Example: Assume that the X Tag field contains 658.

p. 18

658 = 110 101,.
= bog + 20g + 048 + Olg.
According to either of the right-hand members above, Index-
ing Registers XA’ XB’ XD’ and XF are involved in this oyder.

Given two modes of interpretation, the X Mode and the
NX Mode, and two categories of operations, the Indexing
operations (7 class operations) and the Non-Indexing opera-
tions, we have four logical possibilities:

1) Indexing orders executed in the X Mode,

2) Indexing orders executed in the NX Mode,

3) Non-Indexing orders executed in the X Mode, and
4) Non-Indexing orders executed in the NX Mode.

Condition 4 represents the standard situation, and the
instruction word form is that of (F).A The only order which
satisfies Condition 2 1is the Entér Indexing order. The
instruction word form is also that of (F). Therefore, we
can say that all orders executed in the NX Mode have the
instruction word form of (F).

Conversely, all orders which are executed in the X Mode
have the basic instruction word form of (X Mode). These
orders, of course, satisfy Conditions 1 and 3. Although
both Conditions 1 and 3 ha§e the basic word form of (X
Mode), there is a fundamental difference between the two
conditions insofar as the contents of the Address fields
are concerned.

Under Condition 3 we exclude the Input-Output orders

2 .L‘:}

which cannot be executed in the X Mode. We do explicitly in-
clude all of the cperations which are neither Indexing opera-
tions nor Input-Output type operations. Then under Condition 3

we have the instruction word form of (X Mode) modified to be:

0Ol [¢ 181G 2021 253&455503728 33 42526;7;5%9
i Goer | TeTt Address [Not | X[v m CLUE
P ieos |TNp X T A G| Blank L

Floating-Point Word Form (Condition 3)

Note that this form differs from the form X Mode only in the

Right Address.

The six least significant bits of the word correspond in a
one-to-one fashion with the six bits of the X Tag. Ordin-
arily, the Clue field will be left blank. However, if the
X Tag field corresponding to XA contains a zero and if some
other X Tag field contains a "1", then if the user will
place the numerical representation of the first X()* which
has a "1" in 1ts corresponding X Tag field, in the Clue
field, the time required for executing the order will be
decreased. (The saving of time results from the fact that
the bits of the X Tag are examined from left to right,
ordinarily beginning with A.)

Note that 1f the information contained in the Address
fields 1s being processed by an assembly program as decimal
information and if the information contained in the Opera-
tion fields 1s being processed as octal information, then .

the user must convert the numerical representation of the

X() from octal to decimal. Perhaps the following table
and an example will help to fix the idea:

X Register Tag Octal Equiv. Dec. Equiv.

A 40 32
B 20 16
c 10 08
D ob o4
E 02 02
F 01 01
Examples: 1. X TAG = 268.
CLUE = 20g ==.1610. (or = Zero)
2. X TAG = 0Tg

CLUE = Olg = Ok, .. (or = Zero)

We shall now emphaslze the functlon of the Indexing
Registers under Condition 3. For any Non-lindexlng order

under Condition 3 we define the Effective Address of‘that

order to be the sum of the Left Address plus all of the X()

which have a "1" in the corresponding X Tag position. The

Effective Address 1s computed at interpretation time, and

it 1s the address assoclated with the execution of the order.

It 1s important to note that the Left Address of the 1lnatruc-

tion word as 1t was stored in high-speed storage is left

unchanged by the execution of the order. -

Examples: Assume X, = 10, X; = 5, X, = 20. (A1l numbers
except those in the operation flelds are
decimal numbers.)

1. Consider the foiiowing Reset and Add 6fder
which 1s being executed'in the X Mcde:

0 ©of7 18721 27[28 39

020/0900/0 5 0|0000

The Effective Address = 900 + 10 + 20 = 930.

Condition 1.

p. 21

Then the result of this order is to place

the contents of storage-cell'0930 into the
AMQ in unpacked form.
Consider the following Multiply order which

is stored in storage cell 1000 under the same

conditions as in example 1:

0 ol7 lo |21 27 |20 29

032/2800|{1 1 0j00038

The Effective Address = 2800 + 20 = 2820.
There are two significaht results of this
operation:

1) The contents of the AMQ wiil be multiplied
by the contents of memory cell 2820, and
the floating-point product will be placed
into the AMQ in unpécked form.

2) The Interpreter will exit from the Index-
ing Mode; i.e., the instruction word

stored in storage cell 1001 will be exe-
cuted in the NX Mode.

We have seen that the application of the Indexing Reg-
isters for the purpose of modifying addresses is performed
by orders executed under Condition 3. However, the opera-
tions performed upon the Indexing Reglsters themselves lie

strictly in the domain of the Indexing orders executed under

The precise operations which can be performed

on the Indexing Registers willl be discussed in Section.IV.
Let it suffice here to say that for each of the Indexing

jo

Registers there exist operations for 1) setting x() and
AX() = to given values, 2) increasing x() and aX ()
by given values, and 3) increasing X() by AX() and
then testing X() + AX() = g glven value.

C. Input-Output Word Form

With the exception of the Addressable Input Order (which
has the condition 3 word form) the Input-Output orders have a
word form which differs from both of the forms (F) and
(X Mode). However, this word form 1s quite similar to the
form (X Mode). Once more we have only one operation per
instruction word, and hepce, at the same time an interpreta-
tion cycle of fetch, leff. All addresses both between and
including the ones specified are 1lnvolved in the execution
of the order. Below 18 the basic instruction word form
for the Input-Output type operations (Addressable Input
excepted).

1 7 1819 2122-24p5-27128 39

OOper.Flrst Address A| B C |[Last Address

Input-Output Word Form (Addressable Input excepted)

The left Operation field functions as the operation fileld
for the order.

The First Address field contalns the address of the
first floating-point number to be transmitted between the
high-speed storage and the input-output mechanism specified
by the operation fleld. Similarly, the Last Address field
contains the address of the last floating-point number. . Of
course, these flelds colincide with the address flelds of the

22

p. 23

other instruction word forms.

The flelds B and C coinclde with the octal digits of
the Right Operation field in the sense of (F). The function
of the A, B, C fields is to specify to>the interpreter the
form which the data will take at the specified input-output
mechanism. With respect to reading and punching cards, for
instance, the user can specify the number of déta words per
card. |

In the conclusion of Section II, we should like to
point out to the reader that in this section we have ém-
phasixed the differences existing among all of the various
instruction word forms. In doing so, we have presupposed
that the similarities would speak for themselves. Most of
the differences consist in calling the same fields by d4dif-
ferent names. All of the forms are similar in one very
important respect; they are, with minor exceptions to be

pointed out, compatible with all existing hssembly programs.

p. <4

III. SYSTEM PHILOSOPHY FOR THE ARITHMETIC TYPE OPERATIONS

A. Significant Digits

We shall define the significant diglits of any decimal

number to be that set of digits which consists of all of

the non-zero digits (1, 2, ..., 9) and in addition all of

the zero digits which lie to the right of some non-zero digit.
The most significant digit is deflned to be the first non-

zero digilt from the left. The least significant dlgit is

defined to be the right-most significant digit. We shall
denote by SN the number of significant digits of N.

Examples: 1) N =009800106 .
The digits 9800106 abe significant. The
digit 9 is the most significant digit. The
digit 6 is the least significant digit. Sy =T-
2) N=00000000O0.
There are no significant digits. SN = 0.

B. Approximate and Exact Numbers

It i1s a well-known fact that certaln classes of'real
numbers cannot be represented exactly by a finite number of
digits in the decimal system. Examples of this phenomenon
include the transcendental numbers, the irrational numbers
and most of the rational numbers. Explicit examples are ,
Y§“T and 1/3, respectively. There also, of course, exist

rational numbers (including integers) which can be repre-

p. 25

sented by a finite number of decimal dig;ts, but such that
this finite number exceeds some preassigned number. For
example, the.number 1234567891 cannot be repre-
sented exactly by nine decimal digits. In either of these

cases we have examples of what we shall call approximate

numbers. Under the class of approximate numbers we shall
also include the computed results of operations'performed ’
upon either approximate numbers or, in some cases, exact

numbers. By exact numbers we shall mean only those quan-

tities which can be represented exactly by a given number
(nine in our case) of decimal digits. Observe that exact
numbers can arise as the result of arithmetic operations.
However, note that the arithmetic operations performed by
this interpretive system are pseudo-operations. (Decimal
éruncations are performed in accofdance with the algorithms
to be specified for each operation.) It is important for
the reader to understand that, in order for the result of

an operation to be exact, two hecessary conditions must- be

satisfied:
X _ %
1) The operands must have been exact. * 7

2) The pseudo-operation performed on these exact
operands must give the same result as the true
operation; i.e., no information can be lost
because of approximations, truncations, etc.

For extensive calculations carried out in the floating-

point system, however, the class of exact numbers should in

general be restricted to include only constants and data

-

p. 26

which do not change during a calculation. Furthermore,
these exact numbers should always be normalized. Extreme
caution 1s advised when considering the results of arith-

metic operations to be exact. Recall that in order for the

ﬂ

p
must have been exact. In addition the actual pseudo-opera-

result of an operation to be exact, both of the operands

tion performed must be thoroughly understood.
Examples: 1) Assume X=100000001,
and Y=1000000O01 to be exact.
‘Then Xt¥Y =2 0 0 0 0 O 0 0 2 is exact.
Also X xY=10000000200000001
is exact. Denote by X o Y the result of
X X Y after truncation to 9 digits. Then
XoY¥Y=1000000O02 1is not exact.
2) Assume X =0000000O0 1 is exact. Then
arc tan X = ., 785 3 981 6 3 18 not exact,
since .785398163 is only an approximation to

/4.

C. Absolute Error and Relatlve Error

If we denote by N* the approximate number representing

an exact number N, then we shall define the absolute error

of N¥ to be N¥ - N. Let us denote the absolute error by AN.
Then we shall define the relative error to be (AN) + N.

(Ordinarily, AN + N can be approximated by AN + N*.)

In what follows now let us assume that our numbers N#*
are 9 digit decimal integers, some of the digits of which
might not be slgnificant. We shall also assume that these

approximate numbers have been truncated decimally without

p. 27

rounding, and that |AN| < 1. This fact means that we are
considering only the absolute error introduced by this last
truncation, or that we are not including the accumulated
error which has been propagated from previous pseudo-operations.
Example: N=000001234%.999
N#¥ =00000123%4.,
Therefore, AN = - . 999 . . . and |AN| < 1.
RULE I. The absolute value of the absolute error of the sum
of two approximate numbers cannot exceed the sum of the
absolute values of the absolute errors of the given numbers.
Example: Let X =0000123 45,9 and
Y=00005432 1. 9. Then
X*=000012-345and¥Y*=0000514321,
Therefore, |AX| = . 9 and |AY]| = . 9 .
Now X+ Y=000066667 .8 and
X* 4+ Y*=0000666 6 6. Therefore, \
|a(x+Y)| = 1 . 8, and so |a(x+Y)| < |ax| + |ay].
Observe that the worst case 1s approached when
AX and AY both approach one and are of the same
sign.
RULE IX. The absolute value of the relative error of the
product or quotient of two approximate numbers cannot ex-
ceed the sum of the absolute values of the relative errors
of the given numbers.
Example: LetX=000000001.9
and Y= 0000000 6 2 . 9.

AX| .9 AY - 9
Then lfxl 1.9 and l Y| g

p. 28

X*Y=000000005 .51 and

X*.Yy* = 00000000 2.

Therefore Iéi§{§ll n-%fg%, and Iéi§%§ll‘5 lé§| + Ié%’.

These two rules give us a convenient way for positing

an upper bound for the error introduced by truncation in any
one of the pseudo-operations (+), (x), (+). We can, however,
rephrase the second rule into a more useful form. We are
able to derive this alternate form from the original because
of the close connection between the concepts of significant
digits and relative error.
RULE III. The number of significant digits carried in the
product or the quotient of two approximate numbers cannot
in general be justified beyond the number of significant
digits carried in the least significant of the two operands.

Proof: We shall outline a proof for the product.
" Let X and Y be the two operands and let X be the
more significant of X and Y; i.e., Sx‘Z Sy. Also, assume
X and Y are both positive, and AX = 1, and AY = 1.
We know that (X + AX) (Y + AY) = XY + YAX + XAY
+ AY AX, and that elther Syy = S + Sy or Syy = Sy + Sy - 1.

Since AY = 1, S s S_. Therefore, the Sx least

XAY X
significant positions of (X + AX) (Y + AY) cannot be Justi-
fied.

Then SXY - Sx = SY if SXY = Sx + Sy, and SXY - Sx
=Sy - 1 1f Syy = Sy + Sy - 1. 1In elther case, Syuyx < Sy
(Recall that X* = X + AX.)

A similar argument exists for the quotient.

p. 29

D. Guarding Figures : B

Rule III holds true in general;fe.g., even in the worst
possible case when AX and AY = 1, X and Y are of the same
sign, and Sx = Sy. However, 1f we assume a random distribué
tion of truncated diglts, we can éay that the average value
of AX or AY 1s 1/2. Furthermore, in many cases the relative
errors approach zero, in which case we would be Justified
in keeping all or most of the generated digits of the prod-
uct. As a compromise we can always retain some additional
digits in the product or quotient. These additional digits

we shall call guarding figures. In the floating-point

system we have adopted the convention of keeping at most
one guarding figure in.the results of the elementary arith-
metic type orders. Referrihg back to the preceding proof,
we see that for the product Syy - (SX -1) = Sy + 1 or S.
The product is actually computed in an analogbus manner 80
that SY or SY + 1 significant digits are carried in the
final result; and the same method is applied for the quotiént.
The decision to keep zero or one guarding figure in
the results of the elementary arithmetic operations waé
influenced by several factors. First and foremost, the
same computational algorithm is used for both of the cases
of zero and one guarding figures. Whether or not an extra
digit 1is retained in a result is determined only by the dis-
tribution of the digits in the operands. In order to make
the computational algorithm independent of the distribution

of the digits, 1t 1s necessary to retain a variable number

p. 30

of guarding figures, and the domain of this number must consist
of two consécutive integers. Secondly, if a "negative number
of guarding figures" were allowed, information would be
needlessly‘lost. Thirdly, if more than zero or one guarding
flgure were retalned, we would fast lose the primary advantage
of the SD Mode.

This advantage of the SD Mode 1s to indicate. the number
of "good" Justifiable digits which result from a calculation.
During the course of a calculation the leading significant
digits of numbers can be lost when performing the Add type
operations, and significant digits can be gained by inserting
guarding figures into the low order position of the result
when performing any of the elementary arithmetic operations.
Consequently the quality of the indication given by the number o
of significant digits of a result depends upon the particular
sequence of calculations required to produce the result. For
example, several significant digits may be lost in computing
an intermedliate sum, but subsequent operations cén conceal this
fact by'retaining an extra guarding figure at each of several
steps in the problem. The occaslonal additlon of just one
extra guarding figure is very costly since otherwise the
number of significant digits in an operand would serve (round-
off error excepted) as a lower bound rather than an upper bound

to the accuracy of the operand. ;&&Xﬁtaug?

E. Application to the Normalizing Mode

The advantage of using the N Mode is that the maximum

number of guarding flgures 1is kept in the results of the
Multiply and Divide operations, provided that the operands

p. 31

are always normalized. If the operands are normalized, the
non-zero products and quotients are computed so as to con-
tain nine or ten significant digits. If the operands are

not normalized, the products and quotlents are computed
according to Rule III modified to insert at most one guard-
ing figure, and under normalization only zeros can be in-
serted into the least significant position of the mantissa.
Note that this operation of effectlively shifting the result

to the left does not change the relative error, since the rela-

tive error is independent of the decimal point.

The advantage just mentioned for using the N Mode
becomes important in the same ratio as the relative errors
of the operands approach zero. Thisﬁ{gﬁf_implies that all -
exact numbers should be kept normalized at all times since
for exact numbers the relative errors equal zero.

Example: Input the number 2. |
1) If the formi1s + 51200000 0 0 O, then
the relative error is considered to be
approximately 1 4 (2'108).
2) If the formis +5 9000000002, then

the relative error is considered to be

approximately 1 + 2.

F. Summary of Section IIIX

The conventions adopted for carrying out the "binary"
elementary arithmetic operations were chosen so as to per;
mlt these operations to be performed on numbers which may

or may not be normalized and to be carried out in either the

N Mode or the SD Mode. It is more efficient from the stand-

p. 32

point of execution time to post-normalize the résults of
these operations than to pre-normalize them. Storage space
is saved by using the same set of internal instructions to
carry out these operations (excluding post-normalization)
independent of the mode of operation and the state of normal-
1zation of the operands.

The conventions which were adopted for these operations are:

vl) The operands are not pvé-hormalized prior to the

" executlon of the operation.

2) The calculation (prior to the final normalization)
18 always carried out as if the operands were
not normalized and the mode of operation were
the SD Mode. This means that decimal truncations
might have been performed af some point during
the calculation with the result that less than 9
significant digits are present in the resulting
mantissa. |

3) The result is normalized only if the system is in

the N Mode. Note that only zeros can be inserted
into the least significant positions of the mantissa
during the normallzation process.

The operands are always normalized prior to the execution
of the mathematical function operations. The resulting func-
tional values are normalized 1f the system 1s in the N Mode, or
in the case of the SD Mode, the number of significant digits of
the functional values are usually made to agree with the original
operand.

Decimal truncation wilthout rounding and the use of

p. 33

integer mantissas were decided upon in order to permit this
system to simulate a true decimal computer (except for the
mathematical function operations). Decimal simulation and
significant digits control have not been included in this
system without certain accompanying disadvéntages. The dis-
advantages involve basically a loss of efficiency in regard
to space, time,and accuracy as described below:

l. The incorporation of a SD Mode and the use of
integer mantissas result in more internal machine-
language instructions than would be'necessary if
only the N Mode were available and fractional
mantlissas were used.

2. The admittance of unnormalized numbers and the use
of integer mantissas increase the execution time
for the elementary arithmetié operations.

3. Unrounded truncation and the significant digits
method of computing products and quotients can
result in a faster accumulation of truncation
error.

Only the practical application of the system will deter-
mine whether or not the advantagesof decimal simulation and
significant digits control oupweigh the accruing disadvan-
tages just enumerated. The notions of decimal simulation
and significant digits control are admittedly novel ones
(at least relative to interpretive systems for high-speed
binary computers), but they have been incorporated into this
system anyway in the spirit of experiment.

p. 34

IV FLOATING-POINT OPERATIONS

The discussion of the floating-point opgrations will
be broken down into paragraphs which parallel the types of
operations discussed in Section II. The‘only exception is
that the Logilcal-Control type operations will be split into
two parts. One part consists of the Indexing orders, and
the other part consists of the Non-indexing orders. See P 84

for a complete list qf floating—poiﬁt operations.

A. Arithmetic Type Operations

The data operated upon by the floating-point operations
are assumed to be floating-point numbers of the internal
form as discussed in Section I. Any of the Arithmetic typé
operations can be executed in either the Indexing Mode or
the Non-indexing Mode.

The Arithmetic type of operations consists of the 2,

3, 4, and 5 classes of floating-point operations, and the

discussion of the operations will be by classes.

1. The Two Class (Add Class) of Operations

Oc< Mne - Oc- | Mner

OPERATION taimonid OPERATION tal monié
Reset Add 20| RA | Add ‘ 24 |A
Reset Subtract| 21| RS Subtract 25 IS

Reset Add Ab- 22 | RAV| Add Absolute 26 |AV
solute Value Value

Reset Subtract| 23| RSV| Subtract Ab- 27 SV
Absolute Value solute Value

List of ?wo Class Operations

p. 35
RESET ADD RA Y 20
The contents of cell Y (a packed floating-point number)
is first unpacked, and then the unpacked number replaces

the contents of the AMQ.

RESET SUBTRACT RS Y 21

1) The contents of cell Y (a packed floating-point <z7

number) is complemented. .

2) The result of Step 1 is unpacked.

3) The result of Step 2 replaces the contents of the
AMQ.

RESET ADD ABSOLUTE VALUE " RAV Y 22

1) Take the absolute value of the packed floating-
point contents of Y.
2) The result of Step 1 is unpacked.

3) The result of Step 2 replaces the contents of
the AMQ.

RESET SUBTRACT ABSOLUTE VALUE RSV Y 23

1) Take the negative absolute value of the packed
floating point contents of Y.
2) The result of Step 1 is unpacked.

3) The result of Step 2 replaces the contents of
the AMQ.

ADD A Y 24

] ,
1) The packed floating-point number in Y is first

p. 36

unpacked, and then the unpacked number replaces
the contents of the floating-polnt Number Register
(NR). The Number Register corresponds to the
JOHNNIAC Number Register 1n the same way that the
AMQ corresponds to the JOHNNIAC Accumulator and
Multiplier Quotient registers. '

2) Compare the exponents of the NR and the AMQ. (Note
that we use NR and AMQ here to mean the contents
of the NR and AMQ respectively.) If the exponent
of the NR exceeds that of the AMQ, then inter-
change the contents of the NR and the AMQ.

3) Compute the non-negative difference of the exponents
of the NR and the AMQ. If the difference exceeds
8 or if the mantissa of the NR equals O, then pro-
ceed to Step 7.

}) Divide (unrounded) the mantissa of the NR by 10
raised to a power equal to the difference of the
exponents.

5) Add algebraically the result of Step 4 to the
mantissa of the AMQ. Retain the at most ten-digit
in the mantissa of the AMQ.

6)a.If the number of significant digits of the mantissa
of the AMQ = 10, then replace the mantissa by the
mantissa divided (unrounded) by 10, and increase
the exponent of the AMQ by 1. If the resulting
exponent exceeds 99, then we shall say that the

Exponent Overflow condition exists. The AMQ ex-

ponent 1is replaced by 99. The machine will halt

p. 37

will halt at the Error Halt location, and if the
GO button i8 pressed, then the results of this
operation will be printed and the control Qill go
to execute the next lnterpretation cycle. If the
exponent does not exceed 99, then this operation
is completed. '
b.If the number of significant diglts of the mantissa
of the AMQ is less than 10, then proceed to Step
7. '
7)a.If the interpreter is in the SD Mode, then this
operation is completed. '
b.If the interpreter 1s in the N Mode, find the
number of significant digits in the mantissa of
the AMQ. (We shall designate this number as SAMQ.)
8)a.If SAMQ < 9, then compute the positive difference
(9 - SAMQ)' :Proceed to Step 9.
b.If SAMQ = 9, then this operation is completed.

9) Multiply the mantissa of the AMQ by 10¢9 = Sam).
(Note that only zeros are inserted into the least

significant positions of the mantissa.)

10. Place the product in the mantissa part of the AMQ.
Decrease the exponent of the AMQ by (9 - SAMQ)' Ir
the resulting exponent is negétive, then we shall

say that the Exponent Underflow condition exists. The

AMQ is replaced by zero. The machine will halt at the
Error Halt location, and if the GO button is pressed,
then the results of this operation will be printed

p. 38

and the control will go to execute the next inter-

pretation cycle.

If the resulting exponent 1s

positive, then this operation 1s completed.

Examples for the Add Operation:

1)

3)

%)

AMQ
NR

AMQ

AMQ
NR

AMQ
AMQ

AMQ
NR

AMQ

AMQ

AMQ
AMQ

AMQ
AMQ

+
+

+

+ 4+ 41+

+ +4+4+ ++

4

+4+ +++

55999000000
51505006011

999000000
50500

999050500
55999050500

51999000000
21997005000

999000000
997005000
001995000

51001995000

49199500000

50999999999
50000000002

999999999
000000002
T000000001

51100000000
50123456789
50123456789
50000000000
00000000000
41876543210

50000000000
41876543210

(Step 4)
(step 5)
(Resulting Sum)

(Ster)

(Sum if SD Mode)
(Step 9 if N Mode)

$Step #;
Step 5

(Step 6a)

iSum 1f SD Mode
Sum if N Mode

§Sum if SD Mode}
Sum if N Mode

p. 39

5) AMQ + 20123456789
NR + 11876543210
AMQ + 50123456789 (Sum in either Mode)
NR - 50123456789
AMQ + 50000000000 $Sum if SD Mode;
AMQ + 00000000000 Sum if N Mode

In examples 4 and 5, the same three numbers are
added in different order. These examples emphasize
the relative importance of the eﬁponents as compared
with the mantissas for the Add orders executed in

a floating-point system. The number of significant
digits of the mantissas plays an equally strong

role for the Multiply and Divide orders.

6) AMQ 59000000001 gexact number;
NR 51123456789 exact number
AMQ 59000000002 (Sum is an approximate
number

The reader should | Hote the sum 1f the original
number in the AMQ were normalized; i.e., 51100000000.
This example i1llustrates the neceséity for keeping
exact numbers normalized.
According to Rule I of Section III, the maximum absolute
error which can be introduced into the ten-digit sum in Step
5 of this operation is equal to the sum of the absolute errors
of the addends. Observe that normalization will not produce
any additional guarding figures for the Add operations.
Normallzation increases the absolute error corresponding to
the amount of shifting required, while it leaves the relative

error unchanged.

p. 40

SUBTRACT ; S Y 25

1)a. The contents of cell Y (a packed floating-point
number) is complemented.
b. The result of a. is unpacked.
c. The result of b. replaces the contents of the NR:-
Steps 2, 3, ..., 9 are the same as for the ADD

operation.
ADD ABSOLUTE VALUE AV Y 26

lja. Take the absolute value of the packed floating-
point contents of Y. _
b. The result of a. is unpacked.
¢. The result of b. replaces the contents of the NR.
Steps 2, 3, ..., 9 are the same as for the ADD

operation.
SUBTRACT ﬁBSOLUTE VALUE SV Y 27

1l)a. Take the negative absolute value of the packed
floating-point contents of Y.
b. The result of a. 1s unpacked.
¢. The result of b. replaces the contents of the NR.
Steps 2, 3, ..., 9 are the same as for the ADD

operation.

2. The Three Class (Multiply Class) of Operations

OPERATION Octal | Mnemonlc
MULTIPLY . 32 M
MULTIPLY NEGATIVELY 33 MN

List of Three Class QOperations

MULTIPLY

1)

3)

4)

5)

6)

7)

8)

p. 41

M Y 32

If the mantissa of the AMQ equals O, then the ex-
ponent of the AMQ 1s set equal to O, and this
operation is completed.

The packed floating-point number in Y is first
unpacked, and then the unpacked number replaces
the contents of the NR.

If tﬁe mantissa of the NR equals 0, then the
mantissa and the exponent of the AMQ are set
equal to O, and this operation 18 completed.

Find the number of significant digits (SM) of the
most significant.of the mantissas of the AMQ and
the NR.

Replace the mantissa of the AMQ by thé double-
length product of the mantissas of the AMQ and
the NR, all divided (unrounded) by 1o(SM-l).

Replace the exponent of the AMQ by the sum of the
exponents of the AMQ and the NR increased by
(Sy-1) and diminished by 59.

If the exponent of the AMQ is negative, then the
Exponentpnderf\lo'w}'cbndition exists. See Step 10
of the ADD operation.

If the exponent of the AMQ exceeds 99, then the
Exponent Overflow condition exists. See Step 6 a.

of the ADD operation.

p. 42

Steps 9, 10, 11, and 12 are the same as Steps 7, J
8, 9 and 10 for the ADD operationiMJrﬂm'“ o

If we denote the original contents of the AMQ by A*10%,
the original contents of the NR by B-lob, and the resulting
contents of the AMQ by C°10°, then we can summarize symbollic-
ally the MULTIPLY operation as follows:

C = (A*B) + 1oSM-l, c+59 = a+59 + ‘r;+59 + (Sy-1) - 59.

Denote by SA-B the number of significant digits of the
double-length product A*B. If 8, o = S, + Sy, then if
Sp.B # 18 there will be one more significant digit in the
resulting mantissa (C) than there was/ in the least signifi-
cant of the Mantissas (A and B) of the AMQ and the NR. If
Sp.p = Sy * Sg -
digits in C as there were in the least significant of A and .

- 1, then there will be as many significant ’

B. Assuming a uniform distribution of digits for A and B,
the former condition (one more significant digit) will ocecur
about 83% of the time. In either event one additional sig-
nificant digit is obtained so far as the relative error 1is
concerned.

If the user desires to simulate the Multiply operation
on a desk calculator, he can combline the décision concerning -
whether or not to retain one extra significant digit in the
product mantissa along with the calculation of the double-
length product. Just perform the multiplication on the desk
calculator by using normalized mantissas. If the lead digit
of the product 1s zero, write the product mantissa with as
many leading zeros as the least significant of A and B. Other-

wise, write the product mantissa with one less leading zero

than the least significant of A and B.

p. 43

Note: In the N Mode, the result left in the AMQ is always
normalized. Observe that only zeros are introduced into the

least significant position.

Examples for the Multiply Operation

1) AMQ + 50000000000
- NR + 51100000000
AMQ + 00000000000 (Step 1)
2) AMQ + 52040000040 (A-10%)
NR + 55000050000 (B-10°)
SAMQ = 8 and SNR = 5, Therefore SM = 8 and SM-l = 7,
000002000002000000
c=52+55+ 7 - 59 = 55,
AMQ + 55000200000 (Product if SD Mode;
AMQ + 52200000000 (Product if N Mode
Note that S, p= S,+Sg. For this reason, SA'B=SB+1'
3) AMQ + 51400000400
NR + 51500000000
C = 2000002000 (Step 5)
¢ = 51 '
AMQ +52200000200 (Product)
MULTIPLY NEGATIVELY MN Y 33

1) (Same as Step 1 of Multiply operation.)
2)a. The contents of cell Y (a packed floating-point
number) 1s complemented.#*
b. The result of a. 1s unpaéked.

¢c. The result of b. replaces the contents of the NR.

Step 2)a actually precedes step 1.

p. 44

Steps 3 through 12 are the same as the same steps for

the Multiply Operation.

- 3. The Foﬁr Class (Divide Class) of Operations

DIVIDE

2)

3)

[OPERATION . Octal | Mnemonic
DIVIDE 40 DS
DIVIDE NEGATIVELY 41 DNS

List of Four Class Operations

DS Y 4o

The packed flogting-point number in Y is first un-
packed, and then the unpacked number replaces the
contents of the NR.

If the mantissa of the NR equals zero, then we shall
say that the Divide Check condition exists. The
machine will halt at the Error Halt location, and
1f the Go button 1s pressed, then the status of
this operation will be printed and the control will
go to execute the next interpretation cycle.

If the mantissa of the AMQ equals zero, then the
exponent of the AMQ 1s set equal to zero, and this

operation is completed.

4)a. If the absolute value of the mantissa of the AMQ

is less than that of the NR, then replace the

mantissa of the AMQ by the doﬁble—length product
S

of the mantissa of the AMQ and 10 NR, all divided

(unrounded) by the mantissa of the NR. Also re-

p. 45

place the exponent of the AMQ by the difference
of the exponents of the AMQ and NR increased by
59 and diminished by S\R*
b. If the absolute value of the mantissa of the AMQ
is equal to or greater than that of the NR and if
28\g 2 SAMQ’ then replace the mantlssa of the AMQ
by the double-length product of the mantissa of the
(2Syg- SAMQ§
AMQ and 10 : » a1l divided unrounded by
the mantissa of the NR. Also replace the exponent
of the AMQ by the difference of the exponents of
the AMQ and NR increased by 59 and diminished by

(2s -8

NR AMQ)'

¢. If the absolute value of the mantissa of the AMQ
is equal to or greater than that of the NR and if
2SNR < SAMQ’ then reglace the mantissa of the NR
by the full-length product of the mantissa of the

(s - 28
NR and 10 AMQ NR) |

Then replace the contents
of the mantlissa of the AMQ by the unrounded quo-
tient of the mantissa of the AMQ divided by the
mantissa of the NR. Also replace the exponent of
the AMQ by the difference of the exponents of the
AMQ and NR increased by 59 and (SAMQ - QSNR).

5) The remaining steps are the same as Steps 7 through

12 for the Multiply Operation.

p. 46.

SYMBOLIC SUMMARY OF DIVIDE OPERATION
a. If |A] < |B|, then

C = A-lOSB and c¢+59 = a+59 -(b+59) + 59 - Sg-

b. If |A] > |B| anad 285 > S,» then
(23

C = A-10
B

- (sz - sA).

c. If |A] > |B| and 8, > 28, then

5-Sy)

and c¢+59 = a+59 -(b+59) + 59

C = A and c+59 = a+59 - (b+59) + 59
SA~28B
B+*10
+ (sA - QSB) ‘
Note: If the user desires to simulate the Divide Opera-

tion on a desk calculator, he can combine the decision con-
cerning whether or not to retain oné extra significant digit
in the quotient mantissa along with the calculation of the
unrounded quotient. Just perform the division on the desk
calculator by using normalized mantissas. If the quotient
is less than one, write the quotient mantissa with as many
leadihg zeros as the least significant of A and B. Other-
wise, write the quotient mantissa with one less lead zero
than the least significant of A and B. Assuming a uniform
distribution of digits for A and B, both of these cases are
equally likely. In either event one additional significant
digit 1s obtained so far as the relative error 1s concerned.

In the N Mode the quotieht left in the AMQ is always normal-

p. 47

1zed. Observe that only zeros are introduced into the least

significant positions.

Examples for the Divide Operation:

1)

3)

AMQ
NR

+ 58000000050
+ 57000010000

lal < |B| and Sg = 5.

50102

C = 15000

= 500.

c =58 -57 +59 -5 = 55.

AMQ
AMQ

AMQ
NR

+55000000500
+49500000000

+ 57000010000
+ 56000000900

%

$
é

a
A°10
B-lob;

Quotient if SD Mode
Quotient if N Mode

a
A-10
B-lob}

|Al > |B| and 2S5 > S,- S, =5 and Sy = 3.

QSB-SABI‘

¢ = 10000°10

= 11]1.

c =57 -58459-1=57.

AMQ
AMQ

AMQ
NR

+ 57000000111
+ 51111000000

+ 56009000000
+ 57000000500

5

Quotient if SD Mode
Quotient if N Mcode

|al > IB| and 8, > 28;. S, =7 and S5 = 3.

- 28

B = 1.

Sp

¢ = 2990090 100,

c =56 - 57+ 59+ 1= 59,

AMQ
AMQ

+ 59000001800
+ 54180000000

%

Quotient if SD Mode
Quotient 1f N Mode

)

)

)

p. 48
DIVIDE NEGATIVELY DNS Y M
1) a.The contents of cell Y (a packed floating-point
number) is complemented.
b. The result of a. 1s unpacked.

¢. The result of b. replaces the contents of the NR.

Steps 2 through 10 are the same as for the Divide Operation.

4, The Five Class of Operations

OFPERATION OO 7 OPERATION Ccy | Wen,
< Ve TR o'vk'
Store 50 | ST Arc Tangent 54 | ART

Square Root 51 | SQR || Exponential 55 | EXP
Sine 52 | SIN || Logarithm 56 | LOG

Cosine 53 | COS

List of Five Class Operations

STORE ’ ST Y 50

The unpacked floating-point number in the AMQ is packed
and then the packed number replaces the contents of Y.

a+50

" For the remaining five class operations let A 10 denote
the initial contents of the AMQ.
SQUARE ROOT SQR 51

1) If A = zero, then this operation 1s completed.
2) If A < 0, the machine will halt at the Error Halt
| location. If the GO button 1s pressed, the present
state of the'operation wilill be printed. Then A Will

be complemerited. Proceed to Step 4.

SINE

3)

4)

5)
6)

7)

pe.e Y

Replace the mantissa of the AMQ by the unrounded
quotient |A|/109. Denote the mantissa by x. ‘
Normalize x so that 2—2_5 x-2°9¢1, Let y = x.2°9,

If y < 1/2, set Vo = 1/ +y. Ify >1/2, set Vo =
1/2 + y/2. With Yo as a "first guess" compute y by
a Newton iteration process using 39 binary bit
arithmetic. Ordinarily, the test for the completion
of the iteration (this test can be modified by alters

ing & shift order) is made upon only the 3% most

significant positions.

If a is odd, replace fy by\y - V1.

PlaceYy . 107/2% in the AMQ mantissa. Place the
integer part of 1/2 (a + 51) in the AMQ exponent.
The. remaining steps of this operation are like steps

7-10 for the ADD operation.

(Radian Arguments) SIN 52

1)

2)

3)

4)
5)

Compute SA = the number of SD of A.

If the exponent of the AMQ exceeds 59, the machine

will halt at the Error Halt location. If the GO

button is pressed, then the status of this operation

will be priﬁted, and the control will proceed to

execute the next interpretatlion cycle.

a. If a > -4, proceed to step 4.

b. Otherwise, the remaining steps of this operation
are like steps 7-10 of the ADD operation.

Compute the unrounded quotient |Al/(109) = F.

Compute (Fo2’3) / (n/4) = F/(27)

p. 50

6) a. If a <0, compute the unrounded quotient

(F/27) / 10% = |o/2r]. : fl“pﬁ'“~£””f“'

b. If a =0, let |o/2r| = F/2w,
c. If ad0, compute |6/2m| & the fractional part
of (F/2mw)102.

7) Compute 2]}/4 - |e/2r| sgn'A] e 1/2 - o/w. ?>}n“nh ?

8) The remainder of the calculation of 1/2 sin @
follows JOHNNIAC Library Program J154 (or equivalently
the ILLIAC Code T5-157).

9) Replace the AMQ exponent by 50 and the mantissa by
2 [(1/2 sin 6) 107].

10) If the interpreter is in the N Mede, the remaining
steps are like steps 6-10 for the ADD operation.

11) a. If AMQ mantissa modulus > 10%, set S, = 10.

c
b. If AMQ mantissa modulus < 109, set 8o = S mantissa®
12) a. If Sy - SA < 0, the operation is complete.
b, If SC - SA > 0, increase the exponent by Sc - SA'
If the resulting exponent exceeds 99, the Exponent
¢ Overflow condition exists. Proceed as in step 6a
for the ADD operation.
13) If the exponent < 99, replace the AMQ mantissa by the
unrounded quotient (mantissa)/lOSC = SA. The

operation 1s complete.

COSINE (Radian Arguments) cos 53
We indicate only those steps where the COSINE calculation
differs from the SINE. Replace sin © by cos © in steps 8 and
9.
3) b. If a< -4, set the AMQ exponent = 51 and mantissa

= 108. If now SA = O, the operation is complete.

>

p. 51

If, on the other hand, SA > 0, proceed to step 10.
7) -2 |e/2r| sgn A = - o/7. ?

ARC TANGENT (Radians) ‘ ART 54

1) Compute S, = the number of SD in A.

A
2) Normalize the contents of the AMQ.

3) If the true exponent > 9, replace the AMQ exponent
by 50 and the mantissa by 2 {(w/u) [109 sgn A]} . The

(remaining steps are like steps 10-13 for the SINE.

4) If the true exponent < — 3, then the remaining steps
are like steps 10-13 for the SIHNE.

5) Replace the AMQ mantissa by the unrounded quoctient
(mantissg modulus)/log.

exp

6) If exp > O and mantissa < 1/10 "%, replace the AMQ

exponent by 50 and the mantissa by 2 {1/2(v/4)[109 sgn g%.

Proceed to step 10 for SINE. Otherwise compute:

unrounded quotient (AMQ mantissa)/lOleXpl if exp < O

y ={AMQ mantissa if exp = O

1/10%*PAAMQ mantissa) if exp > O and mantissa > 1/10°%P,

7) Cowmpute & = tan 1 y-tan lar /16 where k = 1 if
‘ I + y tan kw/10

y < tan 7/8 and k = 3, otherwise. In either case,

| tan bl < tan v/16. The calculation is carried out
with a Maclaurin's serles expansion using 39 binary

bit arithmetic. The test for convergence is ordinarily
made on the leading 34 positions, although this test

may be modified. A maximum of eight terms of the series

{s required for convergence. The maximum number of

p. 52

terms 1s required, in particular, when |tan 8| =
tan 1/16.

8) Compute a = & + B, where B = k m/1G, Set |o|/2 =
a2t i exp < 0 and = (7/2 -a) 2! otherwise.

9) Replace AMQ exponent by 50 and mantissa by
2 [IGI/Q (109 sgn A)] . Proceed to step 10 for the
SINE.

EXPONENTIAL (e*) EXP 55
1) Compute S, = the number of SD in A.
2) 1If S, = 0, replace the AMQ exponent by 51 and the
mantissa by 108. The operation is complete.
é) Normalime the AMQ.
) Replace the AMQ mantissa by the unrounded quotient
(mantissa modulus)/lOg.
5) If the true exponent > 9 then,
a. If A > O, the Exponent Overflow condition exists.
Prdceed as in step 6a for the ADD operation.
b. If A < 0, the Exponent Underflow condltion exists.
Proceed as in step 10 for the ADD operation.
6) If the tru exponent is less than -9, then proceed
as in step}3b for the COSINE.
7) If the true exponent = EXP < O, compute
x| = |AMQ mantissal-2-2/(10/EXPly ang set Amg EXP = 50.
If the true exponent = O, set |x} = |AMQ mantissal .27
and AMQ EXP = 5C.
If the true exponent = EXP > O, compute y = lAWQnmntissal.

(M) 1OEXP, where M = log;, €. Let I and F

8)

9)

10)
11)
12)

13)

If A >0, set x = |x

p. 53

denote the respective integral and fractibnal parts

of y. Let the AMQ EXP = I + 50 and compute |x| &
52

(17| - 27%)/m.

If A <0, set x = -|x| and replace AMQ EXP by 100 -EXP.
Compute e¥-1 with a MacLaurin serles expanasion using
39 binary bit arithmetle. The test for convergence

is ordinarily made on the first 34 binary bits.

A maximum of 12 terms is required for convergence.

The maximum number of terms 1s required, in particular,
when x = (1/M) 272 L 576,

Compute e 27l o (e*-1) 271

+ 271,

= !
Compute AMQ MAN = (ex o 2 l)109-2¥.

10, proceed to step 13.

a. If MAN < 10
b. If MAN > lOlO, replace MAN by the unrounded

| quotient MAN/10 and replace EXP by EXP + 1.
a., If EXP < 0, proceed as in step 10 for ADD.
b. If EXP - 100 > O, proceed at in step 6a for ADD.
c. Otherwise (0< EXP < 99), proceed to step 10 for

SINE.

LOGARITHM (Log e) LOG 56

1) Compute S, = the number of SD in A.

2)

a. If A <0, the machine will halt at the ERROR
BALT location. - If the GO button 1is pressed the
present state of the operatlion will be printed..
Now if A < O proceed to step 3. Otherwise (A = 0),
the operation is complete.

b. If A > O, proceed to step 3.

p. 54
3) Normalize the AMQ.
4) Replace AMQ mantissa by the unrounded quotient
(mantissa modulus)/log.
5) Let the integer q (0 < q < 3) be determined by
\2/2 < A+ 2% <V2. Compute x-27° = (A 27%) .29
and (q log 2) 272 = [(log 2) 2'2] q.

6) Formy = x+272 2~

x+27¢ 4 27

With y as argument, compute

(1og x) .27 with a Taylor series expansion using 39
bit arithmetic. The test for convergence 13 ordinarily
made on the first 34 blts. A maximum of 7 terms of the
J series is required for convergence. In particular,

the maximum number of terms-is required when y-azﬁg——%%)

7) Compute EXP = true exponent. Set AMQ exponent = 50.

8) Compute,LQG .27 = [(log X) -2'1]'2'1 - (q log 2) .72
+EXP [(1/m) 27F] .

9) a. If the integer part of LOG = O or 1, replace the
AMQ mantissa by {\LOG-2 -10?} *2%, Proceed to
step 10 for the SINE.

b. If the integer part of LQG # 0 and 1, replace the
AMQ mantissa by [(LOG’ 2‘7)109]-27 .

10) a. If mantissa modulus < 1010

, proceed to step 10
for the SINE.

b. Otherwise, replace the AMQ exponent by 52 and the
mantissa by LOG -10'2 . Proceed to step 10 for
the SINE.

B. Loglcal-Control Type Operations (Non-indexing)

Any of the operations to be discussed 1in this paragraph can

be executed in elther the Indexing Mode or the Non-indexing Mode.

These operations constitute most, but not all, of the "O"

p. 55
class and the "1" class of operations. The Input-Output
operatlions which occur in these two classes will be
discussed in a later paragraph.

1. The Zero Class of Operations
Oc-[Mne- Oc- |Mne-

OPERATION tal lmonic OPERATION tal lmonic
No Operation 00 |-~-=- (Ebad AMQ o4
Transfer Neg. to Left |01 |TNL Transfer Nég. to Right{ 05 |TNR
Transfer Plus to Left |02 |TPL [Transfer Plus to Right| 06 |TPR
Transfer to the Left 03 |TL Transfer to the Right | 07 |TR

List of Zero Class Operations

NO OPERATION ——- -- 00

Proceed to the next operation.

p. 56

TRANSFER NEGATIVE TO LEFT | ™L Y Ol
TRANSFER NEGATIVE TO RIGHT T™NR Y 05

If the mantissa of the AMQ 1s negative, then the left
(right) operation of the instruction word stored in Y will

be executed next. Otherwlise, proceed to the next operation.
TRANSFER PLUS TO LEFT TPL Y 02
TRANSFER PLUS TO RIGHT TPR Y 06

If the mantissa of the AMQ i1s non-negative, then the
left (right) operation of the instruction word stored in Y

will be executed next. Otherwise, proceed to the next opera-

tion.
TRANSFER TO THE LEFT TL Y 03
TRANSFER TO THE RIGHT ‘ TR Y o7

The left (right) operation of the instruction word
stored in Y will be executed next. (Note that this opera-
tion 1s the same as the JOHNNIAC operation 010 (Ol4) with
mnemonic code TRL (TRR).)

2. The One Class of Operations

Oc-|Mne- Oc~- Mne-
OPERATION tal|monic tal imonic

Exit Interpreter Left|10 |EXL |[Exit Interpreter Right |14 [EXR
Transfer Zero to Left|1ll |TZL Transfer Zero to Right |15 |TZR

Adgressable Input Datal2 Punch Data Cards - |16 |pcH
ards ’
Input Data Cards 13 | INP Print Data 17 |PNT

List of One Class Operations

p. 57
EXIT INTERPRETER TO LEFT EXL, Y 10
EXIT INTERPRETER TO RIGHT EXR Y 14

The 1eft'(r1ght) operation of the instruction word
stored in Y, and all operations following this one and pre-
ceding re-entry into interpreter control will be executed
as JOHNNIAC machine-language operations. (Note that the
octal operation code for this operation is the same as that

for the transfer to the left (right) JOHNNIAC operation.)

TRANSFER ZERO TO LEFT TZL Y 11
TRANSFER ZERO TO RIGHT ‘ TR Y 15

If the mantissa of the AMQ is O, then the left (right)
operation of the instruction word stored in Y will be

executed next. Otherwlse, proceed to the next operation.

C. Logical-Control Type Operations (Indexing)

A1l of the operations to be discussed in this paragraph
must be executed in the Indexing Mode with the exception of
the Enter Indexing Mode operation. These operations con-

stitute the "7" class of operations.

p. 58

Oc- [Mne- Oc- [Mne-
OPERATION tal Imonic OPERATION tal lmonic
Reset Add Index 70 |RAX Add Index 74 |AX
Transfer on Negative Index|71 |TNX 5
Transfer on Positive Index|72 |TPX 76
Enter Indexing Mode 73 |ENX 7
List of Seven Class Operations
ENTER INDEXING MODE ENX 73

The operation in the next instruction word and all opera-
tions succeeding this one will be executed in the X Mode ,
until a "1" 1s encountered in the Exit Indicator field.

RESET ADD INDEX _ RAX 70
01 ol7 1619 20 21[22 27|28 39
' Not | X
CON| 7T O X Used [nd X TAG AX

The contents of the X() and Ax() of the Indexing
Register specified by the X Tag are replaced by X and AX
respectively. If eithér X or AX 1s negative, then the values
must be expressed in complement form, i.e., 21° - |x].

For example, if XC 1s specified, then X — XC and
AX —> &y -

ADD INDEX AX T4
O |1 ol|7 1619 20| 21]22 27 128 39

Not A
CON | 7 4 X Use@ Tnd X TAG AX

The contents of the X() and AX() for the Indexing

. p. 59
Reg;sters specified by the X Tag are 1ncréased by X and
AX respectively. If either X or AX is negative, then thelr
values must be expressed in complement form, i.e., 212 _ |x].
Also, the res@lting values of X()* and‘AX() are retained
modulo 212.

For example, if Xp 1is specified, then X + Xp (mod 212)
12
—> Xz and &X + AXE(mod 27) M

TRANSFER ON NEGATIVE INDEX TNX 71
0 |1 ol7 18119 20| 21 |22 27128 39

Not X
CON| 7 1 Y Used |Ind X TAG xMAX

1) Denote the Indexing Register specified in the X Tag
- field by Xa. Then compute X} = X, + X, .
2)a. If Xy,y - X4 1s negative, replace X, by X4
12). Then execute the Left Operation of
the instruction word stored in Y.

b. If Xyax - X4 18 inon-negative, then execute the

left operation of the next instruction word

(leaving X unchanged) .
NOTE: This operation is designed for use with Indexing Reg-
isters which have complemented X() and AX() In any event,

X& and XM should be of the same sign prior to the exebution

AX
of step 2. Observe that Y refers to a location in storage,
whereas XMAX does not. This fact should not be overlooked

when the‘code 18 to be translsted by an assembly program.

P. 8¢

TRANSFER ON POSITIVE INDEX TPX 72

op olf 10119 20|21 R2 27 |20 39
Not | X
CON| 7 2 Y Used |Ind X TAG XMAX

1) Compute X, =X, + &X .
2)a. If X& - Xyax 18 negative, feplace X, by X}
(mod 212). Then execute the Left Operation of
the instruction word stored in Y.
b. If Xé - XMAX is non-negative, then execute the
Left Operation of the next instruction word
(leaving X, unchanged) .
Note: Observe that Y refers to a location in storage, whereas
XMAX does not. The TPX operation 1is designed for use wlth
Indexing Reglsters which have uncomplemented X() and AX()
In any event Xa and XMAX should be of the same sign prior to
the ex;cution of step 2.
The formation of loops can be accomplished by the use
of the RAX operation, followed lated in the code by the use
of either the TPX or the TNX operation. The RAX operation
sets the specified Indexing Reglister, say Xa, to the values
X and £X. The TPX or TNX operation "increases" or "decreases"
Xa by AXQ, and then tests the result against XMAX‘ If
XMAX = X + n*AX, then the loop will be executed exactly n
times. Ordinarily X = 0. In this case XMAX = n-AX.
The addresses of the operations executed between the
RAX and the TPX or the TNX can be modified at execution
time (that is, the Effective addresé 1s computed and used)
by the Indexing Registers specified in the X Tag. If the

Effective addresses result in selecting particular elements

p. 61

of an array of data, then we can conceive of the X TAG
positions which contain a "1" as being subscripts. For the
‘NX operations executed in the X Mode, i1f none of the X
Tag 'positions contains a "1", then we shall say that these

operations are non-subscripted. On the other hand if at

least one of the X Tag positions contains a "1", we shall

call these operations subscripted.

Example: Given the matrices A and B, compute the product
matrix C = A x B. A is a 10x20 array which is stored by

rows. The element AiJ is in storage location 1000+201i+].

B 1s a 20x10 array which 1is stored by columns. The

element b is in storage location 2000+ j+20k.

Jk
C is a 10x10 array which 18 to be computed and stored

by rows. The element ¢ is to be 1n storage location

ik
3000+101+k, where c,, = §: Byy X Dy

A code for producing C is as follows:

p. 62

LoC LOP LA ROP RA COMMENTS
M.00 RA M.00 010 F.00 |Basic link to interpreter
M.01 ENX -- - - Enter X Mode.

M.02 RAX 0000 oko 0020 |1 = 0, Al = 20

M.03 RAX 0000 o004 0010 |i'= 0,(al)' = 10

M.O4 RAX 0000 010 0020 |k = 0, Ak = 20

M.05 RAX 0000 001 0001 |k' = 0, (Ak)' =1

M.06 RAX 0000 020 0001 |J =0, AJ =1

M.O7T | RA K.00 000 0000

M.08 ST T.00 -- - Set Cy 4 = O.

M.09 RA (x000) | 060 -- AiJ 1000 + 20 i+]°
M.10 M (2000) | 030 0016 Apg * ka 2000 + J + 20k
M.11 A T.00 -- -- +Cy g

M.12 ST T.00 -- -- —> Cy 1y

M.13 TPX M.09 020 0020 |J < 20, J+1 —>

M.14 | RA T.00 - -

M.15 ST (3000) | 005 0004 |Ci'k! 3000 + 101' + k!
M.16 AX 0001 001 0000 (k' + 1 —> k'

M.1l7 TPX M.06 010 0200 |k < 200, k + 20 —> k
M.18 AX 0001 | OOk 0000 141 —> 1!

M.19 TPX M.O4 ok4o 0200 |1 <200, 1 + 20 —> 1
M.20 - - 100 -- Exit X Mode

M.21 EXR M.21 HTL M.00 |Exit Interpreter End
K.00 000 0000 000 0000 |(Constant - Zero

T.00 -- - - - ci'k' Temporary

p. 63

The interpretation time required to execute Non-
indexing operations in the Non-indexing Mode 1s less than
1f the operations were executed in the X Mode. In’addition,
the storage requirement for the instruction words, which con-
tain the operations, 1s doubled if the operatlons are
executed in the X Mode. Then from the standpoint of both
space and time, the operations can be executed more effi-
ciently in the NX Mode. Therefore, if a reasonably long
sequence of operations occurs after a RAX operation and -
before a TPX or TNX operation, and if all of these opera-
tions are non-subscripted, 1t may be desirable to exit the
X Mode prior to this sequence of operations and re-enter

the X Mode followlng this sequence of operations.

D. Input-Output Type Operations

With the exception of the 012 operation, the operations
to be discussed in this paragraph cannot be executed in the
Indexing Mode. None of the operations can be printed (traced).

These operations occur among the "1" class of operations.

OPERATION Oc- | Mne- | Oc-| Mne-
£al | monic +allmonice

Exit Interpreter Left |10 EXL | Exit Interpreter Right | 14| EXR
Transfer Zero to Left |11 TZL | Transfer Zero to Right | 15| TZR

Addressable Input 12 Punch Data Cards 16/ PCH
Data Cards
Input Data Cards 13 INP | Print Data 17, PNT

List of One Class Operations

ADDRESSABLE INPUT DATA CARDS 12
Ol ©ol7 18119 - 2IE3R567FS 39
0|1 2 | Base Address A X TA Right Address

Floating-polnt numbers will be read from data cards
punched according to the format described below, and the

numbers will be stored in packed form in the associated

o4

locations punched in the cards, relative to the Base Address.

The primary (secondary) feed will be selected if column 21

of A =0 (1). Successive cards will be processed until a 12

punch in column 80 is encountered.

1 2 3 4

g P o o L o o s o o] 43

(o] el)] (o] c n [o 1] Q o

o ()] ul o 3]] o (O] 2] Ll)

e ot Lol + o L) + o o + o

B g o +» d o O 4 g S o 4 B B e e

2 B 8XF § 5 64k & |v Sof g > 6 R

. ©

- 2 30nE = 2 Sad £ & Sad g S a8

-00?00000000000ﬂ00000000

g 120 456 7181910 18 1213/t4 15116[17 18 19 20 21 22 23 24 25{26(27 28 29 30131{32 33{34{35 35 37 38 39 40 41 42 4Y 4445 45 47 48 9150 5115253 54 55 56 57 58 53 60 6] 62/ 63 64 65 66{67]68 69|

:IllIlllllllllllll]llllllllIIIIllllllllIllllllllllllllll]lllllllllllll
o

222
3333333333333333133
444444440 444141441414 4444444414444 414)44/4144444444 1414 444)404414)4444444444/4444]4144
555555 5/5/5555/555/5[555555555/5(5555|5(55/5/5555555585/5{5555(5{55(5/5555555585/5555/5[55
66666666666 6{6(66/66666666666/6666|6{66{6/666666666{6{6666/5/66/6/5666666666/6666(6/56
777777777777777771777777777777777777777171777777777777777777777777777

88888808/812888{6/88/6138838088068{8/88828(8]88/8|/888RR8B88(8/6888/8|38/8/83888888883/8/8888/888
99099999/809959/9/199/9999999999|9/99998{9{99/91999999999/9{9999/9(99[{9/9999999993/99989/9/199
123 456 718l 1000 12fi3ia1she 7 18 19 20 21 22 23 20 2526 b 28 29 3031 b2 333435 36 37 38 39 40 41 42 43 4abis a6 47 aakaba sils2ba 54 55 56 57 58 59 60 6 62ksa 64 65 esf67 o8 69

Addressable Input Data Oard Format

o

=y

8
9

0

Mantissa

000000000
1127047256178 19
RRERERER
222222222
h33333333
TYRYIRRY
555555555
566666666

7111111111

98899

Eﬂ8888888

17273 425767118 19

Erd or T1le

W N ==

gm --] ~ o o

p. 65

The key column is ordinarily left blank. If a key column
contains é comma, the information in the remainder of the
corresponding data field willl be ignored and processing will
proceed with the next data field. A period in a key column
causes the program to ignore all columns (except column 80)
to the right of the period and to proceed to the next card un-
less an end of file mark intervenes.

All numerical information is in decimal. All special
symbols are SHARE characters. Zeros may be represented by
blanks or 0O's, plus signs by blanks or 12 punches, and minus
signs by 11 or 8, 4 punches.

Remarks: The 012 order can be indexed with the following
proviso:l.If A = 1, the interpreter will exit the X Mode (1f
in the X Mode) and read from the secondary feed.

2.The 12 order form differs from the form described
in JOHNNIAC Note #6T7 for the JOHNNIAC Floating-Point Interpre-
tive System #2°

3.See JOHNNIAC Note #66 for a more general discussion
of Addressable Input.

INPUT DATA CARDS INP 13
011 67 18|19=-21]| 22-24 |25-27 |28 3t
Cl 13 Flrst Address A 0 C Last Address

Floating-point numbers will be read from either the
primary or secondary feed of the collator, C words per

card, beginning with column "9", and will be stored in

p. 66

packed form in the consecutive storage cells between the
First Address and the Last Address inclusive, unless a 12
punch in column 80 is encountered on a card before the Last
Address is reached. In the latter event the addresé into
which the last word (Cth word) from the card with the 12
punch in column 80 mark is stored will replace the Last
Address of the INP instruction word in high-speed storage.
If A = 1, the secondary feed of the collator will be
read. Otherwise, the primary feed will be read. A maximum
of slx words can be read from a card, i.e., C < 6. The
cards to be read must be punéhed according to the Floating
Point Data Card Format described below. A blank or a zero

punch 1s interppeted as zero in the EXP and MANTISSA fields.

1 ol9]10-11112 20169 70-7L[72 79 |00

e

ID|S| EXP MANTISSA S{ EXP MANTISSA

Floating-Point Data Card Format

The above format holds for both the PCH and the INP
operations. Card columns 1-8 are not examined by the inter-
preter. If a number is negative, the corresponding S column
must contain an "11" punch. If the number is positive, the
corresponding S ¢olumn may contain a 12 punch or it may be
Jeft blank. The EXP columns contain the true exponent in-
creased by 50, and the columns labeled MANTISSA contain the
mantissa as a proper fraqtion with the decimal point at the

extreme left.

p. 67

PUNCH DATA CARDS | PCH 16
T 6[7 ~IB[I0 - 2Ips-2Ip5-07B8 I
0| 0 4 | First Address A 0 C | Last address

The packed floating-point numbers in the consecutive
storage cells between the Filrst Address and the Last Address
inclusive will be punched, C words per card, into IBM punched
cards. If A = 1, a 12 punch will be placed in column 80 of
the last card punched. ’The numbers will appear in consecutive
posltions of the cards in their explicit external form, be-
ginning with column "9". A maximum of six words can be
punched in a card, i.e., ¢ < 6. If a2 number is positive, the
correspondlng S column will contain a 12 punch. The cards
will be punched according to the Floating-Point Data Card

Format described above.

PRINT PNT 17

o1 AN B0 1213 T 516 17128 19

% .
P11 7 First Address C;;xl X x3 Xy x5 x6 x7 Xg Last Address

The packed floating-point numbers in the consecufive
storage cells between the First Address and the Last Address
inclusive will be printed by the ANelex Printer. The format
for printing depends upon the information contained in the |
X1y Koy wee, Xg fields. A maximum of eight numbers can be
printed on one line, and the printer is spaced before each
line is printed. The positions on the paper into which these
numbers can be printed line up vertically from line to line

and are called positions Xys KXoy vee, Xg, starting from the

pe W
v
left-hand side of the paper. Now, the presence of 1 in any of
the fields, x,, xg,‘J..; Xg, means that floating-point numbers
can be printed in the corresponding positions Xys Xgy +eey Xg
on the paper. Any combination of these elght positions can be
specified by the INP 1nséruction word. If all of the fields
Xys KXoy oo, xé are zero, then the paper will be spaced as
many lines as the number appearing in the Last Address fleld.
In this event, the First Address is not interpreted, and no
printing occurs. If, in addition, the Last Address fleld is

also zero, then one page will be restdred (ejected).

1 - 15016 - 30|31 - 4546 - 6061 - 75|76 - 90/91 - 105/105 - 120

Xl X2 X3 Xu X5 X6 X.T X8

120 Column ANelex Printer Print Format

1 - 2]3JF - 51617 - 15
//////s EXP |»| MANTISSA |

15 Column Format for One Number

S 1s left blank for positive numbers. The EXP position
contalns the true exponent increased by 50, and the MANTISSA
position contains a proper fraction with the decimal point at the
extreme left. The number is printed as sign and 12 .'s if

EXP or MANTISSA exceeds 1ts range.

V OPERATION
A. Tracing

Tracing 1s the name by whlch we shall call the process of
8electively printing the results of the operations executed
under interpreter control as well as the associated instruction

words .

p. 69

Tracing is controlléd first and foremost by the settings
of the T2 and ‘I‘3 8wiltches. There are four mutually exclusive
settings for these two switches, and corresponding to each

there is a distinct type of tracing.

SWITCH SETTING A TYPE OF TRACING
T2 orf T3 orf _ No Tracing
T2 On T3 ore Breakpoint Tracing
T2 off T3 On | Transfer Tracing
T2 On T3 On All Orders Tracing

It T2 is off and 'I‘3 is off, then no orders will be
traced (unless the calculator has stopped at the Error Halt
location).

If T2 is on and T3 1s off, then no orders can be traced
unless the Left Control field contains a "1" (or the calcu-
lator has stopped at the Error Halt location). Note thét the
"1" in the Left Control field can cause either a Left Order
or a Right Order or both to be traced; i.e., Bréakpoint
tracing can only be specifiled for an entire instruction word,
and not for Left and Right orders separately.

If T2 is off and T, 1s on, then no orders can be

traced except those Traisfer orders which result in a Jump

to the location specified in the address field; i.e., for
conditional Transfer orders the condition must be satisfied
(unless the calculator has stopped at the Error Halt location).
The Transfer orders consist of the 01, 02, 03, 05, 06, 07, 11,

15, 71, and 72 orders.

p. (0

If Tp is on and T3 is on, then all floating point Cfders

can be traced upon execution with the following exception

which applies to all forms of tracing.

Note: Under no circumstances can the EXL, EXR, or Input-Output

orders be traced.

ORDER RIGHT ORDER

LEFT
1-4 ///7-9 le-lq //16 —"By// 0 - 42 //[45-7 ///’}119..52 /51; -662 58-80
LOC //*L.OPV//L.ADD4&C(AMQ)WC(L.ADD.;V/‘ .OP 7//‘ .ADD ZC(AMQ)'/C(R.A_D-IS_.T

printed as octal integers.

Tracing Format for NX Mode

The LOC, L.OP, L.ADD., R.OP., and R.ADD. positions are

The format for printing C(AMQ),

C(L.ADD), and C(R.ADD) is given by columns 3-15 of the 15

column Print format for floating-point numbers.

for the "0", "1", and "7" classes of operations.

The C(L.ADD.) and C(R.ADD.) positions will be left blank

A left op

right operation is printed after i1t is executed and before the

next Interpretation cycle.

with the first operation printed for a given line.

The location is printed together

ORDER
1-%/, _gP/ll;.%ufé%ﬂ}Q§8/ 0 ..ggnz/ N 9-50:/525%2-5 67-T00/ 88,
LOCY/AL.O 7L.. D A (L. V//<V A R.V, A X
A0 R e Y= i 1

Tracing Format for X Mode

The printing for the first 42 columns is the same as for

the NX Mode tracing, except that the effective address is printed

in the L.ADD positdion. The remaining quantities are printed as

Hattl
octal integers. Xa and AXa correspond only to the right-most "1

in the X Tag.

right operation.

Columns 19-21 are printed in the X IND positions.

An exception arises when a 73(ENX) order is executed as a

If the order is traced the format will be that

for the X Mode, and the right operation will be printed in the

X IND, X TAG, and R.ADD positions.

The printer is spaced when either of the following conditions
holds: (1) The location differs from the location of the last
operation traced.

(11) Two operations have been'printed in succession
with the same location. gggg: .At most one line can be printed
over another line, but this situation will seldom occur.

In order to allow the uéer to maké more complicated
decislons concerning which orders shail be traced, traps may be
set manually or by machine-language code. There are three |
independent traps, one for each type of tracing, i.e., Break-
point, All Orders, and Transfer types of tracing. One storage

register (call it a Trap Register) is set aside within the

interpreter for each of the three traps. Ordinarily, each of
these cells contains a negative number. In thils case, orders
stored in all high-apeed storage locations can be traced if

the othér conditions are satisfied. 1In order to set a trap for
a more restricted range of storage locatlons, the user must
modify the contents of the Trap Register to suit his purpose.
The Regilsters must be set in the following form:

0 ©off 16 [19-20[21 277128 39
000 | LOWER BEOUND 0 000 | UPPER BOUND

Trap Register Layout

Denote the Lower Bound by LB and the Upper Bound by
UB where LB and UB represent addresses. Then an order

stored in location Y can be traced only if LB <Y< UB.

In order to return the Trap Register to the condition where
all locations can be traced, place any negatlve number into
the register, or set LB = 0000 and UB = 409510.

Three levels of exclusion exist in which orders can be
removed from the class of traceable orders. The first level
use8 the mutually exclusive settings of the T2 and T3
switches to reduce the class of traceable crders. The second
level conslsts of the Left Control indication. This level,
of course, holds only for :the Breakpoint type of tracing.
The third level makes use of traps. The order in which the
levels have been described 18 the same crder in which the
levels are examined by the interpreter for each individual
operation. (The user need not be concerned with the order,
however, except from the standpoint of efficiency.) The
~effective class of traceable orders 1s at any time Jjust the

logical intersection of the classes of traceable corders at

each level.

B. Error Halt

The Error Halt Location is the location within the

Interpreter to which control is transferred when an inconsls-
tency occurs during the execution of one of the operations.
The arithmetical inconsistencles have been discussed 1n
Section IV, but we shall explain what will happen in the
event that an Error Halt occurs with either the Exponent Over
flow or the Exponent Underflow condition.

The Exponent COverflow condition 1s sald to exist if the

p. 72

true exponent increased by 50 exceeds 99. Whenever the exponent

exceeds 99, the exponent will be replaced by 99 and the

P (3

calculator will halt at the Error Halt Location. If the GO
button 1s pressed, the status of the operation causing the
Exponent Overflow condition will be traced. Then the control
will go to execute the next interpretation cycle.

The Exponent Underflow condition is said to exist if

the true exponent increased by 50 becomes negative. When-
ever the e#ponent becomes negative, the exponent will be
repiaced by zerc and the calculator will halt at the Error
Halt Location. If the GO button is pressed, the status of
the operatlon causing the Exponent Underflow condition will
be traced. Then the control will go to execute the next

interpretation cycle.

VI APPENDIX

A. Data Forms

ol 213 11
Sfa¥ + 50 TA¥

External Forﬁ'of Data

A* 18 a positive 9-digit decimal fraction with the
decimal point at the extreme left, a* is the true exponent,

and S 1s the sign associated with the mantissa.

oL 970 39
0la* + 50 A* . 10°

Internal Packed Form of Data

The above representation holds true if the mantissa
1s non-negative. If the mantissa is negative, the entire
word 1s complemented.

1T BPLO-111Z o malcin] 32 BITO-TITZ 80
ID BEXP [MANTISSK [S | EXP | MANTISSA ™S T EXF | MANTIZZR

Floating-Point Data Card Format

Columns 1 - 9 are not interpreted. The S positions
must contain an "11" punch if the corresponding mantissa
18 negative. If the mantissé 1s positive the S position
may contain a "12" punch or be left blank. A ".2" punch

in column 80 indicates an end-of-file condition for the
INP operation. Prom one to six consecutive data words can

be punched into one card beginning with column 9.

See pages 64 and 85 for the Addressable Input Data Card Format.

Pe 1B~

B. Instruction Word Forms

o] §) 1819-2021 27128 39
Tel't eIt Address[Not| Right Right Address
Operation Used[Operatio
Left Order Right Order

JOHNNIAC Instruction Word Form

The interpretation cycle is Fetch, Left Right.

0 & 1819-20 21 B2 2738 39

Lelt Left Not [Right Right
Con.| operfef® Address|y oyl con. oper. Right Address

Left Order Right Order

Floating-Point Word Form (NX Mode)

This form holds for all flbating-point operations
which are executed in the NX Mode except for the Input-
Output ty;e of operations. The interpretation cycle is
Fetch, Left, Right.

0 q/ 1919-20 21 %jQSQ 233] 39

' Not
Con| Oper.Left Address Used [nd X TAG | Right Address

Floating-Point Word Form (X Mode)

The interpretation cycle is Fetch, Left.

OL . of 1919-2021P2-2125-27F8 39
OPper.Kirst Address Not K | B ¢ ‘| Last Address
: Used

! .
iInput-Output'WOrd Form (Addressable Input excepted)

The interpretation cycle is Fetch, Left.

See page 64 for Addressable Input Word Form.

p. 76

C. Switch Settings

Tl orfe N MODE

T, On SD MODE

T, Off T3 Off NO TRACING

T, On T, Off BREAKPOINT TRACING
T, Off T, On TRANSFER TRACING
T, On T3 0n ALL ORDERS TRACING

D. Operations Which Differ Signiflcantly from JOHNNIAC
: Operations i

TRANSFER TO THE LEF'I‘~ TL Y 03
TRANSFER TO THE RIGHT TR Y - 07

These operations are exebuted in a manner analogous
to the TRL and TRR (010 and 014) JOHNNIAC operations. See

page 56 for a more exhaustive discussion of the TL and TR

orders.
EXIT INTERPRETER TO LEFPT EXL Y 10
EXIT INTERPRETER TO RIGHT EXR Y o . 1u

The Left (Right) order of location Y will be executed
next as a JOUNNIAC operation. All succeeding orders will
be executed outside the Interpreter control until the control
is re-entered by the standard basic linkage. (Note that the
octal operation code for thls operation is the same as that for
the transfer to the left (right) JOHNNIAC operation). These
orders are not traced. Sec page 57 for a further discussion of

the EXL and EXR orders.

TRANSFER ZERO TO LEFT , TZL Y 11

TRANSFER ZERO TO RIGHT TZR ¢ 15
If the mantissa of the AMQ is zero, the left (right)

order of location Y willl be executed next. Otherwise, pro-

ceed to the next operation. See page 57 for a more exhaustive

discussion of the TZL and TZR orders.

INPUT DATA CARDS INP 13
ol1 6|7 1819 - 21|22-24 [25-27 |28 39
{lo| 13 | First Address A 0 Last Address
|

| P —— [—— . e e o e 41 o . e e e e e e

Floating-polnt numbers are read from cards punched in
the Floating-point Data Card form, C words per card, and
stored in locations between the Firsﬁ Addresas and the Last
Address inclusive. However, if a 12 punch in column 80
appears on a card before the Last Address 1s reached, then
no more cards will be read and the Last Address field of
the instruction word will be replaced by the last address
into which a number has been stored. If the A field con-
tains "0", the primary feed will be selected. Otherwise,
the secondary fleld will be selected. See page 65 for a more

exhaustive discussion of the INP order.

Pe 10

PUNCH DATA CARDS o o PCH 16
oIT 67 T8I0 = Z1P2-2We5 2798 3q |
Ol 0 4| Firat Address A 0 C | Last Address

The fioating point numbers stored in the 1ocat16ns
 between the First Address and the Last Address inclusive
will be punched, C words per bard; The cards are punched
in the Floating-Point Data Card form. If the A field
contains a "1", a 12 punch will be punched into column 80
of the 1aét card punched for the order. If the punch in
column 80 18 not desired, A should be zero. See page 67

for a more exhaustive discussion of the PCH order.

PRINT _ ' " PNT 17

1 97 18|19]20{1 |2 |3 |4 (5 |6 |7 |28

39

17 First Address Xq x2 x3 X x5 X6 7 xg Last Address

The floating-point numbers stored in the locations
between the First Address and the Last Address inclusive
will be printed. The presence of a "1" in any of the fields
Xys Xpy eees Xg indicates that numbers can be printed in the
corresponding print positions. If all of the fields X1 Xo»
s+, Xg are zero, then the paper will be spaced as many times
as the number appearing in the Last Address field. If, in
addition, the Last Address is zero also, then one page will be
restored (ejected). See page 67 for a more exhaustive dis-

cussion of the PNT order.

SQUARE ROOT SQR -- 51

Denote the contents of the AMQ by X. Thia.operation
computes Vj? for X > 0. 1If X < 0, the calculator will
halt at the Error Halt Location. If the GO button is pressed,
the operation will be printed and |X| will be computed.

See page 48 for a more exhaustive discussion of the 3QR order.

SINE ‘ SIN -- 52
Denote the contents of the AMQ by X,'where X is in

radians. Thls cperation computes sin X whenever some signifi-

cance remains after the determination of the quadrant. Other-

wise, the calculator will halt at the Error Halt location. If

the GO button 1s pressed, the operation will be printed. See

page 49 for a more exhaustive discussion of the SIN order.
- COSINE Cos -- 53

Denote the contents of the AMQ by X, where X is in
radians. This operatlion computes cos X whenever some sig-
nificance remains after the determination of the quadrant.
Otherwise, the calculator will halt at the Error Halt location.
If the GO button is pressed, the opération will be printed.

See page 50 for a more exhaustive discussion of the COS order.
ARC TANGENT ART -—- 54

Denote the contents of the AMQ by X. This operation
computes arc tan X in radlans. See page 51 for a more ex-

haustive discussion of the ART order.

p. 80
EXPONENTIAL EXP 55

Denote the contents of the AMQ by x. This operation
computes e® for all x such that 10720 < e < 1029,

1r e* > 10°° or &* < 10_50, then the calculator will
halt at the Error Halt location. If the GO button is pressed,
the operation will be printed.

See p. 52 for a more exhaustive discussion of the EXP

order.

LOGARITHM ' ' LOG 56

Denote the contents of the AMQ by X. This operation
computes logex for 0 < X < 1020, If X < 0, the calculator =
will halt at the Error Halt location. If the GO button 1s
pressed, the operation will be printed. Now log, [X] will be
cémputed 1f X € 0. See page 53 for a more exhaustive discussion

of the LOG order.

RESET ADD INDEX RAX 70
O 677 T8[19-20] 21| 23%557 |28 39
~Not X —
CON 70 X Used fing| X TAG AX

X-—->X()andAx->AX().

The control must be in the X Mode when executing this
order. If the X IND field contains a "1", the control will
exit from the X Mode following the execution of the order.

See page 58 for a more exhaustive discusssbn of the RAX crder.

p. 81

 TRANSFER NEGATIVE INDEX ™NX Y T1
ofL 6|7 18 19-20|21 2345678 39
Not T X 5 ma
CON 71 Y Used | Ind X TAGl X MAX

Compute X() + &X = X; . If Xyuy - xz) <05
' '
X() > % Fn@ the control will jump to Y. If XMAx - X()
> 0, proceed to the next operation.
The control must be in the X Mode when executing this -
operation. If the X IND field contains a "1", the control
will exit from the X Mode following the execuﬁion.of this

order. See p. 59|for a more exhaustive discussion of the

TNX order.
TRANSFER POSITIVE INDEX | TPX Y T2
o) ol 18[119-20]21 3345p7 o 39
Not x | S . Y
CON| 72 Y Used |Ind X TAG} XMAX

Compute X) + &X = x& X 1 xz) - Xgax < o,:xi y —>

X() and the control will Jump to Y. If xz). Kuax 2 0
proceed to the next operation.

The control must be in the X Mode when executing this
operation. If the X IND field contains a "1", the control
will exit from the X Mode following the execution of this
order. See p.;EO'for a more exhaustive discussion of the

TPX order.

p. 82

ENTER INDEXING MODE ENX -- T3

Upon execution of this operation all succeeding opera-
tions will be executed in the X Mode until a "1" is en-
countered in the X IND field. This operation can be executed
in the X Mode or the NX Mode. See p._58v.for a more exhaustive
discussion of the ENX order.

ADD INDEX | AX -~ Th

O GT7 T8TI9-20] 21 [23W56T78 3
cON| 74 X |ysos bnal X TAG AX

X+X()-—-—>X()&deAX*FAX()-->AX().

The control must be in the X Mode when executing this
order. If the X IND field contains a "l1", the control will
exit from the X Mode following execution of this order. See

" Pp. 5d‘for a more exhaustive discussion of the AX order.

JF. List of Floating-Point

p.

B4

(; Operations
+) |
N
O¢c~ | Mne- OCc-| Mne-
OPERATION tal | monic OPERATION tal | monic
No Operation 00 --- || Load AMQ : o4 ‘
Tranafer Neg. to Left 0l TNL || Transfer Neg. to Righ 05 TNR
Transfer Plus to Left 02 TPL || Transfer Plus to Right 06 TPR
Transfer to the Left 03 TL || Transfer to the Right o7 TR
Exit Interpreter Left 10 | EXL || Exit Interpreter Right 14 | EXR
Transfer Zero to Left 11 TZL Transfer Zero to Right 15 TZR
Addressable Input Data 12 Punch Data Cards 16 PCH
Cards '
Input Data Cards 13 INP || Print Data 17 PNT
Reset Add 20 RA Add 24 A
Reset Subtract 121 RS Subtract 25 |, S
Reset Add Absolute Value 22 RAV Add Absolute Value 26 AV
Reset Sub. Absolute Value |23 RSV Subtract Absolute Value 27 SV
30 34
31 ’ 35
Multiply 32 M 36
1 M\tiply Negatively 33 MN 37
hw¢£de 4o DS by
Divide Negatively 41 DNS 45
42 46
43 47
Store : 50 ST Arc Tangent 54 ART
Square Root 51 SQR Exponential 55 EXP
Sine 52 SIN || Logarithm 56 LOG
Cosine 53 CoS 57
60 64
61 65
62 66
63 67
Reset Add Index 70 RAX || Add Index T4 AX
Transfer on Neg. Index 71 TNX 75
Transfer on Pos. Index 72 TPX 76
Enter Indexing Mode 73 ENX 77

7
9

7
6

MANTISS A
7
S

»
7
2

4
7
0

6
9
T RqgnN!

Lhet T Exp
6
S
}
—

T

K
e
\’/
6
2
3

MANTISSA
5
7

"
€

T I STy W, p—

5
4
T T A R E e S s e A T S I A e e T e o 1l o T e

MAavTISsAaly ~¢C L g

<
3
6

A

13
4
-

Exp
3
3

-~
3
|

3
2
|
]
i
i
T
i
-~ o NNl NI AL

vy Loc
2
8

X
E
2

6

N

MAaxvTiSSa
2
o

—

¢ M O o m O " ey NN MY e a4~ ™ AN PN LSS A C.

] Y SN S U Q SR TR DU VS S G

'fEﬂp
1
a4

+
Br(
e
Y o
11
01

G
7

A
l

A

ORI B y: . DR

399ys ®3eq InduI ©TABSEAIPDY D

<o

Pe

Floating Point Data Sheet

H.

Punch one decimal card per 1line.
(+), the sign need not be punched.)

FLOAIING POINT DATA FORM

(<) is an ll-punch in the’ sign column, (cols. 9, 21, etc).

EF punch

(12-punch, col. 80, 1§st data card)

___ DESIRED,

(+) i3 a 12-punch. (If’
___ NOT DBSIRED,’ -

¢ 53
: ¥
(1) (2) 3) (4) (5) (6) %
Ident. . ' A ' S
+EX, Mantissa +EX., Mantissa EX, Mantissa (EX Mantissa + E Mantissa |+ EX Mantissa-'-''F;
0000 o1ttt 1111 12j22222222233 333333444 444455 5555555 666666 6667777 7777783
3456 901234567890j1 2345678901 4567889 2 678901 3456789 23 456 7890123 6789
T B T T T T T T T T T T t T T T T T I. T
8 3 b + L 3 1 Y i " " " 1 I " n [4 3 i i { AI
t + t . T t -t -+ 3 T T '3 T T T T T T T T T =t T L
3 3 1 $ e i e 1 It Il] } I 1 I 3 3 ¢ 3 [l + + {
T ¥ T T * T T T T + T T T v T T T T T T A\l \ Y
+ " : 1 : . I " : ! ! L 4 ' L A N 1 1 IR 4} $ {
v I e MLl [. T T T g T v ng T T T L3 L L A 1 8 1 L3
. " 4 — i 3 ' 1 N 1 H § - ' 3 1 4]) 1 { 1 N | L -
+ + + t * t t L * t T Y v r T =t ¥ t T T — 4 N -
L 1 1 ' N [1 4 e L 1 } 1 i { L - 1 1 ! i] 'S il L :
+ } 4 t + + { +- + + + + + + + - + + + + + } - 2
" 1 1 3 : s L L ' I 1 3 " 1 i 1 " 3 I 3 L Y] i :
4 * t T ¥ v t T ~T ¥ T T T * T T T T T T '3 t T \
. N L s 4 ‘1 . ! : 1 y N i : I ' 4 i 1 i1 1 i
T ' T T T T + T A Y T A * T T Y T Al T] T T A
. % St S 1 . e N . y . " $ 1 i) $ i) : 1 1 L
+ T + t ~+ T T t t T T A ¥ T ~1 + Y - T T T
" 3 4 3 1 1 1 1] L 1 % % { " 4 e 1 ! i 1 i L
L} T v o v v L) v T v L T v v v A L Al L . v 1] A v
) N . ! M -t , : R ! T o . 1 N N [L I :
-t 1 $ + + + + t $ + —+ + } + + y 'y t + + + + —
) t “3 I 1 3 N 1 1 i i 3 { 'l 1 i 3 [l L { i } 1
v A] b v 1 T LE R + ¥ Lg L) Ll 1) L} 13 ¥ ¥ A A S <
4 " 3 . : 3 i [" % } . + } i 3 d k 3 L T [& t
t+ + ¥ T T T + T L T 13 ' g t + v T t v B a T T T T
[i } . S i I i 1 3 . " ¢ ! + [} 3] 3 L 1 Iy] 4
- v ¥ T . il Ll L 1 L] A L3 v R L] R L v T L] " A
" 3 4 3 " . " 3 I ! X + s s 1 —_— 1 1 I8 3 l .
= Al » L L] T T * LS v v L) .' L L) L} 13 A Ll v v L] 1 4 L]
n + 1 N - } 3 + t] L +] I 3 - 3 L 1 1 1] I 4
+ - t + + + + + + $ —t $ t t + t + + + $
. 3 s { 3 Y 3 i + 1 3 [(3 It Iy] 3 3]] } 1 "
T L L ¥ A L] T ¥ L T v T A L] v v T T L
4 . - - 3 } 1 : i e I { 1 [1 t 3 } " v| i X
+ + + -+ —4— - + - t T Y T L - T A T M T v T ¥
. . + + s 5 L 4 —— 3 3 4 $: + " N) 1 . : % { s
t t T s T t y T ™~ t - T ~T T v T 1 T]
— 1 1 4 N i It . : 4 ' N ' " { ; \ I 1 l 1 { i
T t t t t T y T t t T + t T T 1 - T + T T
4+ + -+ 4 " 1 .‘ i 4 4 s 3. i Il & 3 + " [H I
} t ~t + + — \m t t + + t r— * y T t t T M T
L . s N R R " - i 1 ' - ¢ N e 1 3 N : : s
- + \ t -+ + + -+ - + + + $ + + } + + + +
i : I : 3 - 1 b 4 ; _ L 3 L Il 1 . (] 1 ; 3 1 l
t t += ~+ E '3 + $ - + + L 4= t + $ + T t + - ~ $
" N —t + t + TN —t 4 : + 4 e + !/ﬁ\——hm—
| L))
Y i 5 N 4 " N — 4 — + 't + [4] SIS : I
et t T t T T T ¥ — + + + T + + L Lo Y
\ , Foe
. / 2] _ [} [! 1 L] 1 [S L 1 1 L 1 2 [} (] 1 y -

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	84
	85
	86

