MEMORANDUM

RM-5654-PR
OCTOBER 1968

THE HISTORY OF THE JOHNNIAC

F.J. Gruenberger

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

e LAND e

SANTA MONICA » CALIFORNIA

THE RAND CORPORATION 1,00 mMmAIN STREET, SANTA MONICA, CALIFORNIA 90406

11-8-68

ERRATA

RM-5654-PR, The History of the Johnniac, by F. J. Gruenberger,
October 1968.

Page 2, first footnote -- For reference referred to read:
John von Neumann Collected Works, Vol. 5
(MacMillan: N.Y., 1961), pp. 34-79.

Page 19, footnote -- For reference referred to read:
Willis H. Ware, Johnniac Eulogy, The
RAND Corporation, P-3313, March 1966,
pp. 11-12.

Page 130 -- Final photograph caption should read
Selectron memory.

- w
The Reports Department

MEMORANDUM

RM-5654-PR
OCTOBER 1968

THE HISTORY OF THE JOHNNIAC

F. J. Gruenberger

This research is supported by the United States Air Force under Project RAND—Con-
tract No. F44620-67-C-0045—monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF.
Views or conclusions contained in this study should not be interpreted as representing
the official opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

2t RATID g

1700 MAIN ST. *« SANTA MONICA * CALIFORNIA =+ 90406

Copyright © 1968
THE RAND CORPORATION

This Rand Memorandum is presented as a competent treatment of the subject,
worthy of publication. The Rand Corporation vouches for the quality of the
research, without necessarily endorsing the opinions and conclusions of the
author.

Published by The RAND Corporation

-iii-

PREFACE and SUMMARY

This Memorandum describes the thirteen-year life of
the JOHNNIAC computer, a Princeton-class machine designed
and built at The RAND Corporation in 1953. The history
presented here is based on documents and recollections of
the individuals involved in the creation of JOHNNIAC, and
includes a definitive paper coauthored by mathematician
John von Neumann, for whom JOHNNIAC was named. The author,
while at The RAND Corporation, was associated closely with
various studies made with the aid of JOHNNIAC. He is
presently a RAND consultant, and a Professor in the De-

partment of Accounting at San Fernando Valley State College.

-V-

CREDIT WHERE CREDIT IS DUE....

Funds for the development, construction, and main-
tenance of the JOHNNIAC were supplied entirely by the
United States Air Force through its Project RAND contract.
Most of the research areas explored on JOHNNIAC were
supported by Air Force contract and by Air Force encourage-

ment. The Air Force is therefore an essential part of this

History of the JOHNNIAC.

-vii-

CONTENTS
PREFACE and SUMMARY ... cceeecccsccccocacnscs ces e
ILLUSTRATIONS ceescecs e s s ecenececssee e ceececnon
THE HISTORY OF THE JOHNNIACccc00 ccacensvsense
Appendix
A. MEMORANDUM DATED JUNE 12 FROM JOHN WILLIAMS

B.

(THEN HEAD OF THE MATHEMATICS DIVISION OF
RAND) TO VICE PRESIDENT J. R. GOLDSTEIN ..

PRELIMINARY DISCUSSION OF THE LOGICAL
DESIGN OF AN ELECTRONIC COMPUTING

INSTRUMENT
PHOTOGRAPHS

e e s 0 0

e o 0 o

6 0 606 060 9 060 0 0 0 0 00 0000000 . o

iii

ix

21

35
126

-1xX-

ILLUSTRATIONS

(Frontispiece) --Keith Uncapher at the

CONSOle .iveieereeeenssseseccnasnannse .. X
John Williams Using JOSS T ..cceeeeeceeans 20
John von Neumann ceeesecnn ceeeaen 34

132-133

Retirement of JOHNNIAC ...cceeeeeecancccces

| llustration 1—Keith Uncapher at the console

THE HISTORY OF THE JOHNNIAC

The purpose of this Memorandum is to capture some
history and flavor of an era. The era is that of the pio-
neering days of the world of computing; specifically, the
thirteen-year life span of the JOHNNIAC. JOHNNIAC, one of
the last of the so-called Princeton-class machines, became
operational early in 1953 and was retired to the Los Angeles
County Museum early in 1966, thus spanning the first decade
of the computer industry.

The Princeton--or Institute for Advanced Study--com-
puters include, besides the IAS machine itself, ORDVAC,
ILLIAC, AVIDAC, ORACLE, MANIAC, WEIZAC, BESK, DASK, CSIRAC,
and JOHNNIAC, all built to the logic described by Burks,
Goldstine, and von Neumann in the historic paper reproduced
here as Appendix B.

Each of the Princeton-type machines had the same general
logic, but they were hand-built, individually adapted, and
each had, therefore, its own peculiarities. JOHNNIAC* was
no exception. Its designers began with the hope of stretch-
ing the mean free time between failures and of increasing
the overall reliability by a factor of ten over previous
machines.

The history presented here has little direct scientific
value. Technology has long since made obsolete those early
machines. What value this Memorandum has rests in its bring-
ing together some of the documents that attended the concep-
tion and construction of JOHNNIAC and some of the reflections

of those individuals who participated.

*

The machine is named for von Neumann, who protested
the choice of name. John Williams settled the matter with
the following note:

Ed Paxson has relayed your blushing disavowals
regarding the appropriateness of the term
"JOHNNIAC." In this matter your view just
represents dispersion. If it helps any, recall
that there are lots of Johns in the world.

The paper of Burks, Goldstine, and von Neumann has not
been previously available in its full and original form.
John Williams' Memorandum, without which JOHNNIAC might
have met an early death, constitutes the other major docu-
ment published here. The rest consists of shorter memora-
bilia and the statements given in interviews.

The history of JOHNNIAC begins with the decision in late
1950 to build a computer at RAND. At that time, RAND's com-
puting facility, in some sense the world's largest installa-
tion for scientific computing, operated six IBM 604 calculators
around the clock. In 1949, when IBM's Card-Programmed Calcu-
lator emerged, RAND ordered two of them, though rumor had it
that there would be only six built.Jr

In 1950, as RAND felt the need for more computing power,
few electronic computing devices were operating. The
Princeton machine (the first to be started according to the
logical design laid out in the Burks-Goldstine-von Neumann
paper) was nearly built, but not yet operating. Univac I
was committed but no deliveries had been made. As shown in
Appendix A, three copies of the Princeton machine (at Los
Alamos, the University of Illinois, and the Argonne Labora-
tory) were under construction.

A decision had to be reached: should RAND build or buy?
And if the decision was to buy, then buy what? (There was,
of course, a third possibility; namely, to continue and -ex-
tend the 604-type of computing.) John von Neumann was a RAND
consultant at the time, and properly pointed out that the way

*An abridged version was published in Datamation
(September and October 1962), and an edited version appears
in Ref. 1, pp. 34-79. The text shown in Appendix B is
transcribed from the report submitted to the U.S. Army
Ordnance Department.

+Though original plans called, it is said, for only
six CPC's, a formal announcement by IBM in November 1948
stated that 25 machines would be installed by the mid-1950s.
Ultimately some 700 machines were installed.

to go was via stored programming. Though no one--including
von Neumann--could foresee the wide applicability and tre-
mendous power of the true computer, all concerned felt that
the wired-program route was a dead end.

John Williams, George Brown, and William Gunning set
out on a tour to investigate what might be bought or built.
The team visited the IBM plant at Poughkeepsie; the Uni-
versity of Illinois installation; the Moore School at
Pennsylvania, where the EDVAC was under construction; and
the Eckert-Mauchly Company, where BINAC was built and
Univac I was about to go into production.

What the team found was discouraging. A large part
of their concern was with questions of reliability, safety
margins, mean free time between failures (MFTBF), and oper-
ating speeds. All efforts were being bent toward devices
that would have thousands of components, and these components
would all have to work together. For many of the groups
working on such problems, the techniques being explored were
modifications of radar technology, which was largely analog
in nature. To quote Gunning, "They were doing all kinds of
tweaky things to circuits to make things work. It was all
too whimsical."

This comment pertains to the groups that were at least
forging ahead. The picture at IBM was worse. They seemed
content with the 604 (wired-program) philosophy, perhaps
extended with a magnetic drum. At that, the circuitry of
the 604 was not reliable enough, as the RAND team well knew
from having lived with six of them. 1In any event, the word
from IBM was negative as far as computers were concerned.
The word from IBM was that they had no intention of ventur-
ing into stored-program machines.

The bright spot found in the tour around the country
was at Princeton, where Julian Bigelow was the chief engin-
eer in charge of building the IAS machine. Bigelow was

conscious of the weaknesses in using modified radar techniques,

and already had experience with many techniques that should
not be repeated; for example, he was able to point out the
weaknesses in Williams tube storage. The antipathy to this
storage device was heightened later when Gunning spent three
days a week at UCLA working on SWAC, which used the Williams
tube store (and does to this day).

The decision was to build, and Gunning became the pro-
ject engineer of a not very formal group.

RAND's decision probably had some impact on IBM's
decision to swing from punched-card equipment to computers.
In 1962, when Thomas Watson Jr. gave a dinner in New York
for those who had figured in the IBM decision, he included
George Brown, who was head of RAND's Numerical Analysis
Department at the time of the JOHNNIAC decision. Mr. Watson's
theme was "We were pushed into it, and these [guests] were
the people who pushed us." His other guests were:

J. Presper Eckert and John W. Mauchly, co-inventors of
ENIAC, and (in the period 1948-1950) the designers of Univac 1.

The official of the Metropolitan Life Insurance Company
who ordered a Univac I.

The IBM-er who had taken the stand, against the current
company policy, that IBM should swing to computers.

Each guest received an expensive watch as a token of
IBM's gratitude.

The quality of JOHNNIAC's design must be measured
against the context of its time. It is tempting to dis-
parage the early models of every technological innovation--
the Model T Ford can appear crude in comparison to a modern
car. In terms of what could have been built (using the
tools available at the time of construction) and what could
have been properly used if it had been built, JOHNNIAC
measures up extremely well. It had a useful life that just
covered the first decade of mass production, during which

time some 20,000 other machines were built.

At the time of JOHNNIAC's design, modern techniques
(e.g., magnetic storage devices) were not available, nor
were modern ideas of machine organization (e.g., indexing,
or indirect addressing), so the design as seen today appears
somewhat primitive. It is important, however, to bear in
mind the context of computing needs of the day. IBM, for
example, was about to propose that 18 of the 701 computers
might saturate the country's computing needs, as indeed
they would have if they had all been available in 1951. (It
would be a fair estimate that one Control Data 6600 can pro-
cess in a few months all the computation that all the 18 701's
performed in their lives.)

The point is that JOHNNIAC represented the state-of-
the-art of its day. It could have been made better, perhaps,
but could its users have capitalized on the improvements?

In the period of peak use of the machine (1954-1957), com-
puters were invariably used by professional computer people,
and the philosophy of the day called for a user to have the
entire machine. Today's scheme of operation for large ma-
chines revolves around monitor routines; the user may have
nearly all the machine, but the master control is performed
by the monitor. 1In 1955, people were just beginning to
explore the idea that a computer could be efficiently shared
by many users.

The term "state of the art" carries a different con-
notation today from what it did during the fabrication of
JOHNNIAC. Today it implies "If anyone has done it, we can
do it, too, and perhaps something more." 1In 1951, "state
of the art" meant something a little different, in that one
might be aware of certain developments and yet find it dif-
ficult to adapt them to a particular use.

Consider, for example, the decision to put punched-
card input/output gear on JOHNNIAC. There were then only
two American firms making equipment to handle cards: IBM

and Remington Rand. The Remington machines were undesirable

for many reasons, an important one being that RAND was
loaded with standard IBM punched-card equipment, and the
decision to use cards revolved around the availability of
this auxiliary equipment. But, unfortunately, IBM did not
list in their catalog items described specifically as "card
reader into computer" or "computer to card punch."

The 077 collator and the 523 summary punch were can-
didates, respectively, to be a card reader and a punched-
card output device. To perform the proposed marriage be-
tween these standard devices and the computer, some changes
had to be made to them. 1In 1951, this simply was not being
done. Even the installation of one toggle switch on the 523
caused a heated conflict between RAND's engineers and IBM
which ran for many months. Eventually it was resolved with
grudging permission for the modification.

Another aspect affecting the decision to use punched-
card equipment for input and output was the feeling of many
people that punched cards were about to be phased out, that
the swing was to photoelectric readers and punched paper
tape. There was also a common misconception that, in sci-
entific computing, input and output were relatively un-
important, since most problems would be compute-bound anyway.
The people on the JOHNNIAC project felt that a punched-card
reader was relatively reliable, was time-tested, and was the
fastest device for the cost. Their judgment in this matter
may have had an effect on the entire field.

The design goal for JOHNNIAC was an improved copy of
the Princeton machine. The MFTBF was to be significantly
longer than 10 minutes (a time that was considered to repre-
sent the state-of-the-art, although the other Princeton
machines were already bettering that figure), and the overall
reliability was to be increased by a factor of ten over all
previous designs.

Today it is difficult to appreciate a MFTBF of 10 minutes.

Equipment of as far back (now) as 1961 is so reliable that

some people argue that machines used for training should
have a built-in failure switch, so a student can experience,
on demand, what a machine failure is like. MFTBF's of six
months (in the electronic portions of computers) are not un-
common, leading a student to believe that a machine can
never fail.

On the other hand, one is tempted to ask how any com-
puting at all can be accomplished on a large problem with
a MFTBF of 500 seconds or so. The answer is that the users
of that day had to be extremely clever. They were faced
with the availability of what seemed to be fantastic com-
puting power in short bursts. The game reduced to outwitting
the machine failures that were due and payable without warn-
ing. The people who became adept at that game are the senior
citizens of the computing world today. The thought of having
a machine that could be depended on to give up to an hour
(now and then) of trouble-free computing was stimulating.

For JOHNNIAC, one important change from earlier designs
was a closed-cycle air-cooling system surrounding the elec-
tronic circuits. The idea was to enclose the chassis com-
pletely and pump cold air through the enclosure. This was
quite feasible. Unfortunately, during the early days of
operation, the glass doors were open a good deal of the time
for trouble shooting. For a while, the machine was known as
"Pneumoniac."

The use of more-or-less standard punched-card devices
for input and output was a departure from the designs of
previous machines. Another innovation was the use of octal
notation, a "short-hand" for pure binary, as a convenience
to the programmers. Earlier machines had made some use of
hexadecimal notation--what today might be called 4-bit bytes.*

*
Ideas never seem to die in the computing world. After

many years of "Thank heaven, at least we don't have to deal
with hexadecimal notation any more," it's back with us in

JOHNNIAC was designed to be maintained. Among other
things, this meant that all tubes were readily accessible;
that tube-heater voltages could be monitored remotely; that
heater-cathode leakage could be monitored with the machine
in operation; and that voltage levels could be varied at
the console for subsets of the machine.

In addition, the circuits in JOHNNIAC were to be inter-
locked in such a way that the precise shape of signals was
not important, in the following sense: each step furnished
a "done" signal to allow the subsequent step to proceed.
Thus, if the machine hung up for any reason, in theory the
bad condition was right there. In previous machines, diag-
nosis was possible under dynamic conditions only with an
oscilloscope. In principle, the JOHNNIAC would be able to
run at any speed from DC to its maximum. This idea was felt
to be a big step forward. When the Selectron store* of the
machine became operational, checking facilities were added
so that the computer itself could be used to exercise and
check all of the storage.

Construction of JOHNNIAC began with Gunning in charge
of the hardware--"strictly a nuts and bolts sort of thing,"
as he puts it. Ideas were accepted from any source. A key
one was Julian Bigelow's: to eliminate capacitance coupling
between circuits. The Princeton machine was nearly completed
by that time--"It looked like a 40-cylinder diesel engine."

The following appeared in a RAND computer sciences de-
partment newsletter in 1952:

Discussions are in progress with regard to the
console. Several display schemes and methods
for entering numbers into the machine are being

IBM's System/360. Similarly, many people were pleased at
the passing of JOHNNIAC's two-instructions-per-word format;
but it keeps coming back; e.g., in the Russian BESM-6.

*
See Appendix A (pp. 21-34) for a discussion of the
adventures with this novel storage device.

-9-

considered. Probably there will be an operator's
console presenting to him only as much as he needs
to play the machine, and a maintenance console
which reveals the deepest secrets of the whole
JOHNNIAC. No other machine can make this state-
ment: Our console is human engineered.

JOHNNIAC will definitely be the most completely
protected machine ever devised. The present plans
for supervisory control will take care of the
machine in event of voltage failure, refrigeration
failure, fuse burnout, and all else. In addition
to shutting down the machine, an alarm will be
sounded and a tell-tale light will tell who do-ed
it. The precise nature of this alarm is not yet
settled; many diabolical devices, all directed
toward the best interests of the operator, are
being considered.

Other safeguards were planned. Wes Melahn remembers:

Bill Gunning asked Gardner Johnson, one of the
staff engineers, to procure a switch for the main
power supply for JOHNNIAC that would be safe from
accidental movements. Gardner complied and made
his selection with great conservatism and regard
for mechanical as well as electrical character-
istics. The switch had a lock and key that would
have discouraged any tampering and no doubt made
the Yale people happy. No accidental movement was
likely either, because both hands of a strong man
were clearly required to turn the switch. All
who saw the massive construction could not doubt
its mechanical strength, and the big copper ele-
ments of the connectors certainly looked reliable.

I don't believe Gardner's switch was used for

JOHNNIAC. As I recall, Gunning quietly put the

switch back on the market, and it is now probably

used to connect some major city's electrical

system to its generators.

In 1952, as hardware for JOHNNIAC neared completion,
the prospective users faced some of the basic philosophic
questions of computer design that von Neumann had considered
in his paper.

For example, von Neumann discussed the pros and cons of
having floating-point hardware (as opposed to subroutines
for floating point) and concluded that the cost of the hard-

ware could not be justified. Again, he dwelt at length on

-10-

the philosophy of considering the machine as inherently
integral (i.e., all numbers are integers) or fractional
(i.e., all numbers have their binary point at the far left.)

JOHNNIAC users in 1952 faced other problems as well.
Would it pay to include special operation codes to facilitate
subroutine linkages? What form should the divide operation
take?--indeed, is a separate divide operation essential at
all? To what extent should automatic rounding be built
into the multiply commands?

Meanwhile construction progressed. Something of the
atmosphere of that phase of JOHNNIAC's history emerges from
Cecil Hasting's memorandum, "Johnniac Progress Report,"

dated August 8, 1952.

*
As is fairly evident to anyone who goes by the zoo,
the main frame for the JOHNNIAC is ready to receive
registers. Bob Rumsey, who has been working with
Mike Stobin to wire the filament transformers which
supply power to heat vacuum tubes, has formed a
private operation outside where he is holding down
floor space vacated by IBM files. We promise to
have this auxiliary activity (you might call it
Rumsey's Rump Session) replaced by bona fide JOHNNIAC
ventilation.

Gan Baker has been given the awesome responsibility
of Chief Inspector. What this means in essence--
we know where to point the finger--anything that
goes wrong is, of course, Gan's fault. Under Gan's
direction the shop has produced all of the chasses
of the adder, the digit resolver, the accumulator
and the MQ. Two memory registers are completed;
two more will be completed in two weeks. Two clear
and gate drivers have been completed.

What all this adds up to is, that if Mike Stobin
and Willis Ware who have been dealing with the
ventilation engineers can come through with ‘the
ventilating equipment in time, it is very likely
that we can have a smoke test of the arithmetic
unit (less control of memory) in the JOHNNIAC
main frame in October. The goal of the test will
be to connect the A and MQ for end-around shifting

*
The term "zoo" refers to a caged area built inside
the cleared facility.

-11-

(7.5 order) and let the machine shift a set of

digits all day while we hammer on the frame and

wiggle wires. Applications for wire wigglers

are now open.

Construction of JOHNNIAC continued during the first
quarter of 1953. During this period, The RAND Corporation
moved from its early quarters to its present site. Shortly
after the move, JOHNNIAC Junior's* arithmetic unit was
placed in operation for the first time. "During the time
it was tested, something over a billion operations (add-
ing, subtracting, and shifting) were carried out without a
single error." (How time flies. The IBM 1130--a desk-
sized computer costing around $30,000--can perform a billion
such operations in a little over two hours--and is expected
to have no errors.)

Seminars were held regularly, and sample problems were
coded and analyzed. The trade-offs implied in the questions
above (e.g., built-in floating point) were debated at length,
and those who were writing codes were beginning to see the
rich possibilities in being clever and ingenious in their
use of instructions. All of this took place in an atmos-
phere of uncertainty, since no one had a good feel for what
problems would eventually be tackled. Background and ex-
perience were conditioned by years of what today would be
called straight-line programming on the wired- and card-
programmed machines. The beauty of looping with address
modification and subroutines was still novel. What's more,
the computer was still looked at as a pure calculating de-
vice; the thought of using it as a symbol-manipulating
device was yet to be explored.

In 1968, it is rare for the designers and the users of
a new computer to meet. Few, if any, modern-day programmers

have had the experience of discussing with design engineers

£3
A preliminary, quarter-sized computer, built as a
prototype.

-12-

the kinds of instructions the machine should have. In

1952, this was a give-and-take process of programmers saying
"Can you do this?" and engineers replying "Yes, but this is
easier." The process would continue until a compromise was
reached on each class of instruction. Don Madden recalls
that many hours were spent converging on the characteristics
of JOHNNIAC's shift commands.

JOHNNIAC went on the air in the first half of 1953,*
using the Selectron store. Shortly thereafter, a contract
was let with International Telemeter (later Telemeter
Magnetics) for the construction of a core storage. The
specifications for this store (the first commercial 4096-
word core store) were written by Gunning and Willis Ware.

Over the years, the hardware of JOHNNIAC was improved
and updated. The original Selectron store, for example,
was replaced by a magnetic core store in early 1955. The
vacuum tube circuitry was somewhat replaced by transistors,
and so on. A memorandum of January 1956 indicated that
despite mechanical problems associated with the drum and
the punched-card gear, JOHNNIAC was one of the most reliable
computers then in existence, consistently ahead of RAND's
701 in this respect. For the electronic components, the
MFTBF was never under 100 hours. It has been said that
despite the word "electronic" in electronic computers, such
systems still have many mechanical components which are
orders of magnitude less reliable than electronic ones.

That statement was true in 1955 and is still true today,
although the reliability levels of all components have
shifted significantly upward.

From 1957 on, those in charge of the machine were

constantly facing the choice of further extending the

*

Curiously, in all the mass of printed matter concern-
ing JOHNNIAC, there is no clue as to the day the machine
became operational.

-13-

machine's capability or of abandoning it. Should central
storage be expanded beyond the original 4096 words? Should
magnetic tape capability be added? (A 12,288-word drum was
added to the machine shortly after the installation of the
core storage.) How about indexing? Or built-in floating-
point operations? These features were not added, in part
because they were available on RAND's commercial (IBM) com-
puters. One feature, indirect addressing, was added in 1963.
In other respects, the logical design of the machine re-
mained much the same during its life. An on-line plotter
was added to the machine in 1958; an ANelex line printer
added in 1955; and an improved ANelex printer in 1958.

A major programming effort on JOHNNIAC was the Linear
Programming Code, written by Bill Orchard-Hays and Leola
Cutler, which was active until 1961. (There is an interest-
ing sidelight. During its life, the Linear Programming Code
was persistently plagued by an obscure drum error that no
one could diagnose. With the advent of JOSS (the JOHNNIAC
Open Shop System),* years later, Dick Stahl decided to
double the capacity of the drum by doubling the recording
density. Dick asked Mort Bernstein to write a special test
routine for the drum, and this routine uncovered the logical
bug in the original drum circuits.)

During most of its active life, JOHNNIAC had a central
core store of 4096 40-bit words, supplemented by the 12,288-
word drum. There was a repertoire of 83 operation codes
including eight halts and a hoot. The single-address logic
called for 7 bits in an instruction for the operation code
and, of course, 12 bits for the address. A complete in-
struction, then, could be contained in 19 bits, and it was
logical to pack two instructions into one 40-bit word.

Figure 1 shows the list of JOHNNIAC operations as it
appeared in 1955, after many iterations. It should be noted

*

JOSS is the trademark and service mark of The RAND
Corporation for its computer program and services using
that program.

-14-

LIST OF JOHNNIAC OPERATIONS — MARCH 16, 1955

Operation Codes are Base Eight Numbers.

Notes are Base Ten

000 i Proceed to next order in sequence | oos! LM : Clear MQ, M — MQ
Q0L TNL! If A < 0, c—> left command in M 005 TNR’ If A <0, ¢c—> rignt command in M
002] TPL} If A > O, c~—> left command in M 006 TPR: If A > 0, ¢—> right command in M
003| TFL | If overflow, ¢ —> left command in M 007| TFR; If overflow,c —>-right command in M
010} TRL ¢ —> left command in M Ol4| TRR ¢ —> right command in M M_—
011 TIL| If T; on, ¢ —> left command in M 015/ TIR| If T, on, ¢ —» right command in M
012(T2L | If Tz on, ¢ > left command in M 016{T2R| If Tz on, ¢ = right command in M
013|T3L { If Ts on, ¢ —> left command in M 017!/ T3R| If Ts on, ¢ —» right command in M
020/ RA Clear A, M —> A 024 A M +A = A
021 RS Clear A, — M — A 0251 S -M +A =5 A
O22|RAV {Clear A, | M | A 026| AV I Ml+A > &
023|RSV | Clear A, —=| M |=> A 027isV | | M|+ A > A
030|MR | Clear A, M ° MQ rounded —> A o34[MB [M - MQ+ 23 (A +40-1 A Y] > Aand MQ
031 'MNR | Clear A, -M * MQ rounded —> A 1035 [MNB |-M - MQ + 23 A Y 3G3-1A,)] > Aana M
032(M |Clear A, M * MQ —> A and MQ o;6m§n~m+z"" A -> Aand MQ
033{MN | Clear A, -M - MQ —> A and MQ O37|MNA, M - MQ + 2°3° A —> A and MQ
o4o[Ds (A + M > M, r—> A O44[D | (A +2°° M)+ MM, T >A
O41|DNS | A +(—M)> M, r —> A O45'DN (A +23° MQ) ~(—M)>M, r>A
050{ST A -> M 054{SAB] 7 A 19 and 28 A 30 —>7 M 10 and 28 M se
051{SOL} c A e —> o Me 055{SOR{20 A 27 => 20 M a7
052|SAL| 7 A 19 > 7 M 19 {056 {SAR| 28 A ss —> 28 M 39
053|SHLY 0 A 18 => o M 19 LO5TiSHR {20 A 39 —> 20 M sp
060|STQ | Clear A, MQ —> A and M . 064 |AQS MQ + A —>A and M
061|SNQ | Clear A, —MQ@ —> A and M 1065(sQ3| —MQ + A —>f and M
062|svQ [Clear A, | MQ | > A and M 066 AVS| | M | + A —> A and M
063/SNV | Clear A,—] MQ | —> A and M 067|svs| - MQ |+ A > A and M
O70| SRC | Clear MQ, shift A right n places O74|SRH| Shift A right n places. Zeros into Ag.
Zeros into Ag.
071|CLC | Clear MQ, circular shift of A and MQ 075 |CLH| Circular shift of A and MQ 1left n places.
left n places. Couple MQo to Aas, Couple MQo to Aas; Ao to MQae.
Ao to MQas.
072| LRC | Clear MQ, power shift A and MQ right n 076 |LRH| Power shift A and MQ right n places.
places. Couple Ass to MQ;. ' Couple Aszp to MQ;. oA o > o Mo-
ohAoto—>0Mo.
073| LLC | Clear MQ, power shift A and MQ left n O77|LLH| Power shift A and MQ left n places.
places. Couple zeros into MQse; MQ, Couple zeros into MQse, MQ, tO Ase.
to Asse.
100|SEL | Select input outout 104 [DIS| Display
Addrecs XOO Pri. Feed Reder 105 ot Root
100 XXx2 Feed Punch 106 [EJ | Eject page
XXX3 Peed Punch and echo
XXX4 Select Printer and space
XXX5 Select Printer
101(C Copy) |
110{RD Read drum words to M and memory addresses following numerically. Denoting MQ as
xxx f,f2fafe dpb 131213ly, the f's determine the first drum address and the 1l's the last
drum address. d selects the drum; p, the position of the heads; and b, the band to be read.
111 |WD Read M and words in memory addresses following numerically to drum. MQ has the same
significance as in 110.
120 |ZTA | Clear A to Zero 24 [pPT | M I A > A
121 Clear A 125|NI |- M I A —> A (— denotes digit inversion
122 Clear A 126 PMI, | M [I A —> A of M).
123 Clear A 127 NMI-| M |[I A —> A
130 |HTL | Halt ¢ —> left command in M 134 {[HTR | Halt ¢ —> right command in M
131 {H1L | Halt if H, on; ¢ —> left command in M 135 [H1R| Halt if Hy on; ¢ —> right command in M
132 |H2L |Halt if Hz on; ¢ —> left command in M 136 |H2R | Halt if He on; ¢ —>» right command in M
133{H3L | Halt if Hs on; c —» left command in M 137 |H3R { Halt if Hs on; c¢ -> right command in M
140
150
160
170
DEFINITIONS
A Accumulator
MQ Multiplier Quotient Register
M Word in the Mth address in Internal Storage
g0Rhap Digits in position 272° through 2732 of the word in A.
c —> Control goes to
I Logical (digit by digit) product or Intersection.
o T T T2T3 T aTsTe 718 18 0l iTTiz 3411611611718 9T20 21 122123 124 25126 127 | 26129130 131 ‘stlw
: ‘\ : L | 1 : i : I
LEFT LEFT NOT RIGHT RIGHT }
OPERATION ADDRESS USED OPERATION ADDRESS

JOHNNIAC INSTRUCTION WORD LAYOUT

FIG. 1--List of JOHNNIAC Operations--March 16, 1955

-15-

that the sheet defines each operation code precisely, thus
offering the user a condensed machine manual on one page
(another innovation with JOHNNIAC) .

Input to the machine was provided through:

1) A keyboard (closely resembling the keyboard of
the then-current Friden calculator out of which

it was constructed) plus some operating buttons.

2) A punched card reader, made by modifying an IBM
077 collator.

Output from the machine was provided through:

1) A card punch; an IBM 523 summary punch, suitably

modified.

2) A line printer. After 1959 this was an ANelex
printer capable of up to 1200 lines of numeric
printing per minute, which was fast even for
1965. At that, the printing speed could have
been set at 1800 1pm, but at reduced quality.

3) A loudspeaker, connected to the machine's

operation decoder.

4) Console lights, including a set of Lucite edge-
lighted figures that gave the contents of certain

registers in ordinary Arabic (octal) numerals.

These peripheral devices--particularly the punched-
card gear--were not designed for JOHNNIAC. Consequently,
a body of programming and operating lore built up around
the machine, with local house rules like "never hit LOAD
with the IR selected," and "don't hit STOP while the card
reader is reading unless you want to lose a card." Most
of these rules related to timing considerations. The
troubles were recognized, but no one could or would remove
their causes.

The loudspeaker was a simple and inexpensive device to

make the action of the machine audible, and was intended

-16-

originally as a means of communication with the computer's
operator. However, it was noticed that by proper choice

of computer instructions (meaningless computationally),

the sounds could be made meaningful in the form of music.*

A lot of extra-curricular programming effort went into the
construction of card decks that would cause the computer to
"play" things like "Jingle Bells" or "Hail to the Chief"

(in case the President dropped in). Eventually, of course,
this process was mechanized by the writing of a master pro-
gram+ to make it easy to transcribe any given piece of music.
More important, the condition of things (e.g., a tight loop)
could be sampled dynamically, and reached the user's mind
much faster than lights, bells, or printed messages. All in
all, this was a neat and clever idea, and still is: nearly
every college computing center rediscovers it independently.
(With today's faster machines, an FM radio near the console
does the job without having to tap into the computer's
circuitry.)

Since JOHNNIAC dates back to early explorations of
stored-programming computing, much of its first programming
was done in absolute octal. Very soon, however--around
1954--a symbolic, relative assembler was written by Jules
Schwartz (of JOVIAL fame). Associated with this assembler
was a system of relative binary library routines that formed
the predecessor of what is now called relocatable code. In
1955 Cliff Shaw produced a load-and-go assembler (EASY-FOX)
that added the feature of local symbols. EASY-FOX had
another feature that was somewhat novel for its day; it
was written in its own language.

In the days of JOHNNIAC, conversion between base 10
and base 8 was a chore that programmers performed daily.
Wall charts of conversion tables were a help (every pro-

grammer's office was papered with them), but an octal desk

*
This had been noticed earlier on the SEAC.

1'.1\. true compiler, written very early in the days of
compiler writing.

-17-

calculator was nice to have, particularly if it had 13
banks so that it would simulate the JOHNNIAC word format
exactly. A government agency was found to have declared
two 13-bank Monroes surplus, and RAND successfully bid on
them ($79 and $104). The cost of converting one of them

to base 8 ran around $500. The machines are probably still
in use.

A package of floating-point subroutines was developed;
and in 1958 an interpretive coding system, QUAD, was added
to the library, followed by SMAC, a small compiler. Both
QUAD and SMAC, though somewhat trivial by today's standards,
were notable for being foolproof. In both coding systems,
open-shop users found little need for mothering; i.e., all
troubles were reported to them by explicit printed error
messages or, in the case of an endless loop, by an oper-
ator's message. The manuals for these systems were short
but complete. The systems were active for about two years,
until open-shop work was converted to FORTRAN II.

The decision to build JOHNNIAC was made at a time when
no commercially mass-produced machine was available. Co-
incidental with JOHNNIAC's going on the air in 1953, the
IBM 701 appeared. From then on, excellent machines were
always available, and RAND maintained a large computing
facility with commercial machines: the 701 from 1953 to
1956; the 704 from 1956 to 1959; and various other machines
(7090, 1401, 305, 7040, 7044 and System/360's) subsequently.

Like all the early computers, JOHNNIAC was associated
with legendary anecdotes, such as the story that it was
afraid of the dark. As Mort Bernstein tells it:

It must have happened around 1959. Harriet Pierson

was running part of payroll at night on JOHNNIAC

and would have great difficulties with the punch--

an unreasonably high rate of echo-check failures.

When the job was rerun during the following day, no

such trouble was encountered. After a bit of digging
it was determined that the only difference in the

-18-

operation was that the JOHNNIAC machine-room lights
were turned out at night when the run was made and
no one was in the room. The only conclusion that
could be drawn was that JOHNNIAC was afraid of the
dark, and indeed it was true. Neons had been used
as active elements in the I/0 lines and some had
aged and become de-ionized so that they would not
conduct without the aid of some external radiation--
namely, light. So it came to pass that JOHNNIAC was
provided with its own lights independent of the room
lights and never had to be in the dark again.

From 1957 on, JOHNNIAC was considered essentially a
"free" machine, easily maintained at low cost and quite
useful for computer experimentation. On February 18, 1966,
at the decommissioning ceremonies for JOHNNIAC, Willis Ware

recalled some landmark uses:

In the earliest days of 1954, most programming was
done in machine language and in absolute octal at
that. In 1955 Jules Schwartz wrote the first
assembly routine for JOHNNIAC, and Cliff Shaw pro-
duced a revised assembler in 1956. Then came QUAD,
an interpretive programming system, and SMAC, a
small compiler. Each was noted for being foolproof.
The non-professional programmer could use these
systems comfortably; his errors would be reported
to him in great detail by the machine. There were
other significant contributions to the programming
art as well; among them were items with such names
as EASY FOX, CLEM, JBL-4, J-100, MORTRAN done by
Mort Bernstein, and Load-and-Go.

In the late '50s, the nature of JOHNNIAC's task
changed. The rental equipment from IBM carried
most of the computing load from the RAND staff.
JOHNNIAC became a free good; its time was available
for research use. The cost of operation was suf-
ficiently low that one need not be concerned about
using large amounts of machine time. Much of its
time was consumed by research on the general ques-
tions of artificial intelligence and the initials
NSS came to be closely associated with JOHNNIAC.
These are the initials of Allen Newell, Cliff Shaw,
and Herb Simon who used the machine extensively

for research. During this period came such achieve-
ments as:

List structures, list processing techniques
and their embodiment in such languages as
IPL-2, -3, -4;

-19-

. Chess playing routines such as CP-1 and -2;

. Theorem proving routines such as LT--the
Logic Theorist;

. The general problem solver--GPS;

. The assembly line balancer of Fred Tonge.

Most recently JOHNNIAC has been the research tool
which made possible both of RAND's current highspots
in computer research. The initial experiments on
graphical input-output terminals was done on JOHNNIAC
and from that has come the successful development of
the RAND Tablet. Finally, JOHNNIAC has made JOSS
possible. JOSS is the JOHNNIAC Open Shop System
which provides each of its time-shared users with a
typewriter connection from his office to the machine.
Those who know JOSS and perceive the friendliness of
its help and reaction feel strongly that systems such
as it will be one of the prominent, if not exclusive,
ways of computing for the future.

Certainly, it is fitting that a machine with the
stature of the JOHNNIAC should have completed its
career as a research vehicle, dedicated to improving
and extending the technology and art which it helped
inaugurate.*

*
Reference 2, pp. 11-12.

Ilustration 2—John Williams using JOSS |

OZ.

-2]1-

Appendix A

MEMORANDUM DATED 12 JUNE 1953 FROM JOHN WILLIAMS (THEN
HEAD OF THE MATHEMATICS DIVISION OF RAND) TO
VICE PRESIDENT J. R. GOLDSTEIN

I was inclined to ignore the silly question about the
JOHNNIAC--i.e., should we, in view of the reported success
of IBM's 701 Calculator, chop it into little pieces and put
it down the drain?--but I've decided to assume that you are
basically sound (in fact, solid as a rock in places) and
therefore capable of relearning the gospel. I will discuss
the 701, and then the JOHNNIAC. Since I've never seen either
type successfully add two and two and since (crossing myself
devoutly) I am not an engineer, this account will perforce
be free from a lot of very stuffy details--but suited to a
front-office type.

The 701 looks like a typical success story in the field
of big business. After sitting on its hands and patents for
twenty-five years or so, IBM finally noticed that the world
was beginning to act as if it could and would pass it by.

I believe that RAND's decision to build its own computer

may have been the final wasp sting which goaded them to
their feet. It went off at a dead run, pouring in engineers
by the hundred and money by the bucket, resolved to build the
best possible machine in the shortest possible time--there
weren't any RAND people around to explain that this is mean-
ingless. The machine would have everything--high speed
arithmetic, high speed electrostatic storage, medium speed
drum storage, low speed tape storage, and organ music. The
state of the art was pretty sketchy in all these fields at
the time--the general principles were known, but not much
practical hardware existed--so they had to lick all com-
ponents into shape and, simultaneously, perform the messy
marriages. If the 701 lives up to advance billing, they
have done just that; in the remarkable time of two to three

years.

-22-

By hammer and tongs, but they did it. For example,
the only existing high speed parallel memory device was the
Williams tube. This had some fundamental weaknesses which--
if you were smart enough, careful enough, willing to nurse,
and philosophical enough to accept morning sickness--one
could live with. This had been developed into a fairly
practical parallel memory device (taking off from F. C.
Williams' serial memory machine) by the early birds in the
Princeton-type-machine field. Aside from nursing care
(expensive maintenance, son), the practical significance
of the presence of this leperous element in the machine is
that everyone who sits down to do a problem must be aware
of it and be prepared to be just a little cagey, depending
on the problem; for the blips fade in a fraction of a second
and if the problem requires that you re-use a number before
the blip is regenerated, you get the wrong answer. It is
as if a desk calculator would fail any time the 7th, 8th,
and 9th places in a fifteen-digit number happened to be a
three-digit prime--in other words, a completely irrational
thing to have to contend with; it just isn't decent for the
operator to have to worry about how the machine is built.
However, good design and technology, plus thoughtful use,
lead to a machine which can do a lot of fine computing.
Even the Princeton-types (with a laboriously selected 5% of
garden variety cathode ray tubes) are pretty prodigious
machines. IBM picked up this device and--knowing that the
fundamental weaknesses could not be eliminated--spent (it
is said) a million dollars developing an improved cathode
ray tube which would work somewhat better than the garden
variety. They then traded away some speed by putting in
three repainting cycles for each action cycle, with the
result that the 701 programmer can forget about read-around
ratio. The mean free path between errors is of the order
of half an hour. For contrast, consider the horrible ex-

ample, the SWAC: our programmers learned through bitter

-23-

experience that, to have reasonable assurance the memory
was behaving, they had to cause it to spill everything out

onto cards for examination after each minute of computing.

(The SWAC is presently edging up to a mean free path of

ten minutes and to the barrier due to inferior tubes.) That
it is worthwhile to compute at all under such limitations
testifies to the speed of the present generation of machines
compared to the last generation; the work that can be done
in this minute compares favorably with an eight-hour shift
on a CPC; and the mean free path between CPC errors is
estimated at eight hours.

Because the 701 was developed and built in an expensive
way, it is a rich man's machine. You can rent time on one
for $300 an hour (you supply all personnel except maintenance
crew), or you can have exclusive use of one, for a forty-
hour week, for $190,000 a year (plus $25,000-$30,000 for
installation). If it needs maintenance (which it for sure
does), this is thrown in free, except that the maintenance
is done during the same forty hours that are yours for
computing; so you compute during what is left of the forty
hours after repairs are made. Things are much better for
second and third shift rental--if you have any money left--
for these shifts together cost only $190,000, and you get
a pro rata reduction for hours lost to maintenance. So the
full-time rental for a 701 is $380,000 a year; of course,
this is the basic machine--if you want fancy extras, like
another tape or violin music, you pay extra.

For machines which have much the same mission and,
superficially, the same capability, the 701 and the JOHNNIAC
have been conceived and built in remarkably different ways--
it is sort of like the difference between a gold-plated
three-dollar alarm clock and a Vacheron chronometer in a
simple titanium case. One major difference was our decision
to start with a very simple machine. We plan to have every
useful and convenient feature on JOHNNIAC--in the fullness of

-24-

time--but our first goal has been to start with the simplest
useful machine and add the features as they become solid.
For instance, tapes can be beautiful, but we didn't want the
headache of developing them--when they aren't quite right
you may get confetti all over the building.

We naturally--being itchy--wanted our simple machine

soon, but not as soon as possible, for other values came

first--even an administrative one, for we decided it was

best to build it out of the Numerical Analysis running budget
and with permanent personnel, to the practical limit; we have
thus traded some time for organizational stability, and
probably for a better thought out machine. Of our technical
values, reliability came first. This is practically a fetish
with us. We are dedicated to the proposition that when you
ask a digital machine to estimate the sum of two and two, it
should always (not just frequently) say "four"--unless Hoover
Dam breaks, in which case the machine should turn on a red
light (powered, doubtlessly, by a simple nuclear pile) and
refuse to discuss arithmetic. It should do its work at a
rate of an interesting number of thousands per second, and

it should do it for hours on end without dropping a stitch.
We also wanted it to be easy to live with--in no way tricky
to operate, requiring little maintenance, and trouble being
easy to identify and correct. The basic Princeton-type
machine was wonderfully adaptable to our goals and, by

virtue of being late-comers to the field, we were able to
bypass some of the inevitable early mistakes. Moreover,
since our engineers did not have to do the fundamental work
on the design of certain major units, they have devoted

their considerable talents to cleaning it up and putting
bonded guarantees on every slightly fishy thing in the
originals. We have also, I believe, been blessed with much
better shop work (both electrical and mechanical) than any
other Princeton-type machine. The net result is that it will

probably be years before anybody produces a better machine

-25-

of this type than ours. As an example of a detail which

we believe will pay off: the builders of Princeton-type
machines expect so little trouble that they employ about
one fuse--to guard against the 440-line surging to 880,

I presume (I told you I wasn't an engineer)--whereas
JOHNNIAC has a panel containing hundreds of fuses; so in
the event of trouble the damage will be very local and
instantly identifiable. Another example: the original
machines were so tightly designed as to have little flexi-
bility for meeting afterthoughts and new developments; as

a result they had to hang stuff informally on the outside
and inside before they finished Mark I; whereas we (smug)
allowed for twice as many tube-socket positions in standard
chassis locations, and we also provided several uncommitted
registers. Ours is the only machine with a closed cycle air
conditioning system. In short, we expect to have the right
things in the box, to have room for them, and we expect it
to work until hell freezes over--and when hell does free:ze
over we expect to thaw it without undue delay.

The Princeton machine was conceived about the notions
of reliability and speed. The original intent was to couple
the present type of arithmetic unit with a high speed
Selectron memory of 1024 words. However, RCA became
interested in television and never put in the development
time needed to debug the tube, so the builders of Princeton-
type machines were put in an unhappy position: they could
choose between Williams tubes and mercury delay lines. Both
were messy technologically and neither was satisfactory
logically; they chose Williams tubes as the lesser evil and
wore a silly grin so people would judge them to be happy.
How happy they really were may be inferred from the ad-
vantages they had had to forego: In the Selectron a par-
ticular slot in the memory is selected by digital (rather
than analog) means, and the output signals are a thousand
times larger than those in Williams tubes and delay lines--

facts intimately related to sensitivity to noise and

-26-

therefore to reliability. Immediately after we decided to
build JOHNNIAC, RCA showed signs of life in Selectrons; they
began a small production of 256-spot tubes for the Air Force.
This looked like our boat, for we could get 512 words by
running a double bank of these--and we much preferred this
to 1024 words on Williams tubes--which proves that (a) we
are not hogs and (b) we practice what we preach on reliability.
Further, since all Princeton-types were going to Williams
tubes, in the interest of getting finished, it looked as
though we could contribute to the field and thus pay our
passage, by exploring something different; Aiken of Harvard
recently complimented us on this aspect of our choice. So
we abandoned plans for Williams tubes and placed a sizeable
order for Selectrons in the expectation that, thus encouraged,
RCA would lean into the harness, push development and pro-
duction, and prepare to welcome all the frustrated computer
people who had been living (reluctantly) on Williams tubes
and delay lines. There was a high level confab at this
juncture between RCA and IBM regarding Selectrons, which
made it look as though they might hit a really big market.

So RCA took its engineers off black-and-white television and
put them on color television, and hired the mothers-in-law
of two deserving employees (the Chairman of the Board and
the President) to make Selectrons for us. Besides wanting
to sell us the rejects, the price of the tubes was remark-
ably arranged so that the more we bought the higher the unit
cost became. There is even some question that the tubes
really meet RCA specifications (and they are not bound
because it is a development contract).

Like my late lamented gall bladder, the above some-
what unsatisfactory situation existed for some time before
we became fully aware of it. We have enough Selectrons for
the JOHNNIAC, but we are completely unhappy about the re-
placement problem. Very little is known about their life
expectancy under dynamic conditions--JOHNNIAC JR. is just

beginning a test program, so we will know something soon.

-27-

Actually we never worried about this, partly because RCA
initially indicated that the tubes would have life ex-
pectancies of at least several thousand hours--later tests
(after we had received a good many tubes) shook our con-
fidence--and partly because we expected the price to fall
and the quality to improve so that eventually it would be
OK whatever the initial conditions might be.

In passing: those of us responsible for the initial
decision to go to Selectrons still feel that we used what
brains God gave us in a pretty sensible way--though we
deplore the result. The only remorse is that (for economy!:)
we decided not to keep the Williams tube as an insurance
policy; i.e., as a parallel development.

We may be incurable optimists, but we think we see
our way out of this mess; covered with diamonds, moreover.
We considered, briefly, returning to Williams tubes. For
emotional reasons (and a couple of engineering ones!), we
would just about as soon see JOHNNIAC chopped into those
little pieces and put down the drain as to see it hooked
up to this degrading companion at this late date. Our im-
mediate plan is to go ahead with the Selectrons (we will
soon own 100), as an interim measure. We may put JOHNNIAC
on a reduced diet--256 words (40 tubes) instead of 512
words (80 tubes)--if the life tests on JOHNNIAC JR. make
this appear advisable. (We can do a lot of computing with
256 words. 1In fact, if really pressed, we can drop to 20
tubes and 128 words.) Our aim is to get at least a year
of work out of the Selectron memory.

The sunshine, which is giving us that exalted look
again, is attributable to the little ceramic doughnuts--
the magnetic cores. These have been on the horizon for
several years and have looked like the next generation of
high speed memory--completely in the spirit of the Selectron,
logically, but simple and practically permanent. They

looked wonderful whenever someone succeeded in mixing the

-28-

right kind of mud, but when they did succeed they didn't
know what they had done right. Within the last year at
least two organizations--RCA and General Ceramics (and

IBM is beginning to catch on)--have learned how to do it,
dropping the magic wand only fitfully now; you can buy them
today just as you'd buy rivets, and groups all over are
making lattices and trying to build things out of them.

There are some problems, but the general feeling is that any
competent group can lick them in one way or another. A
1024-word memory is now running at M.I.T.; it has a few bugs,
but looks better than Williams after only one month of shake-
down. Our own group is confident of its ability to build
one--and would dearly love to do it--and we may end up doing
it ourselves. However, time is worth something to us and

we would have to schedule it for later, nwing to the present
commitments of our small group. So if we can get it done
reasonably on the outside, we would rather buy it. We sent
detailed specifications and invitations to bid to about a
dozen and a half vendors a couple of weeks ago. Seven have
expressed a desire to bid--International Telemeter, Brush,
Eckert-Mauchley (Remington Rand affiliate), RCA, IBM, Bendix,
and Magnetic Research. We shall know more about this very
soon. In any event, we feel off the hook memorywise. Mark I
will have Selectrons; Mark I Mod I will have magnetic cores,
probably a year later.

Where do we stand? We have, since November 1950, spent
abou t $200,000 for materials and outside work, and about
$150,000 in salaries, including a fair pro rata share of
departmental supervisory salaries (why should I be so fair?).
If you wanted to be real dirty, you could add another
$110,000 to represent 75% overhead on the salaries--but if
you did, I might be goaded into mentioning hidden extras,
such as consulting on RAND hardware problems, maintenance
of electrical equipment throughout the RAND buildings,
assistance to the Systems Research Laboratory, and planning

-29-

for the move to the new building, and the lock on your

office door. Also about $10,000 for travel. To recap:

Purchases $200,000
Salaries 150,000
Travel 10,000
Department Cost $360,000
Overhead 110,000
RAND Cost $470,000

We have quite a lot to show for it, and more that will show.
We have JOHNNIAC JR. which is a faithful fraction (one-
fourth) of Senior, with arithmetic unit, Selectron memory,
and complicated elements of control. Many bugs, big and
little, have been worked out here and will never plague
Senior. Senior's arithmetic unit can be completed in short
order whenever we throw our manpower on it--present schedule
calls for arithmetic unit tests in about August. The main
frame is complete and 34 of the eventual 42 registers are
complete; of the remaining eight, four are in process and
four (one-half full units, part of memory) await Junior's
verdict. The main case is designed and prototyped and the
most messy parts (panels for doors on end boxes) have been
built. The Selectron memory is designed, and prototyped

in Junior; Senior construction will go fast if Junior's
tests are satisfactory. The air conditioning system is
almost installed (about two weeks to go), as is a large
motor generator set and a stand-by. Most of the power
supplies have been installed. As you can see, we have spent
a smaller part on the showy gadget itself. Despite our semi-

leisurely pace, we don't look too bad on this list:

-30-

Estimated Construction Periods for

Princeton Machines and Copies

1. IAS: June 1946 - about October 1952 6 1/3 years
2. Los Alamos: July 1949 - January 1952 2 1/2 years
3. University of Illinois: July 1949 -

March 1952 2 2/3 years
4. Argonne: September 1949 - January 1953 3 1/3 years

(two machines)
5. RAND: November 1950 - ? 2 2/3 years
to date

On the above completion dates, these were all bare-
bones machines--Williams tubes plus teleprinter input-output
plus nothing; most of them have since added (or are adding)
drums and cards (switch from teleprinter). We don't know
what the dollar costs were at the other institutions. It
is evident, however, that our costs in money and elapsed
time will be inflated by the Selectron interlude--perhaps
by 12-18 months and by $200,000-$300,000--if we measure
history from the moment when we have a machine which we
regard as sound as a dollar (in the old sense!); i.e., one
based on cores, big drum, and card input-output. This grim
circumstance is mitigated more than somewhat by two factors:
First, unless Nature is very unkind, the Selectrons will do
a lot of computing for us during their year; second, it will
take at least as much (in fact, more) additional time and
money to bring the other Princeton-type machines up to a
comparable level of modernization. (The transition Williams
+ cores is much harder than Selectrons -+ cores, requiring
extensive rework; and of course the poor guys don't have
room in which to do all this stuff--maybe they can't be
modernized to JOHNNIAC level; to hear me talk, you'd never
believe that all we have is an assortment of pieces! Ah,
me...) So another way to look at our troubles is to say

that we have tricked ourselves into building a better Mark I

-31-

machine than we had planned, so perhaps the only lasting
damage will be that suffered by our pride.

We will probably pay out another $50,000 of department
funds before reaching the prime-number stage, what with
bills for Selectrons and air conditioning still coming in.
After that it may require about $75,000 to get the first
really important JOHNNIAC. The major item needed which
is not in the works now, hardwarewise, is a big drum. Much
of the control for the drum has been designed and we are
about ready to place an order for a good one--about $35,000.
The small drum ($5,000) has given us some needed information
and experience, but, since we are not going to tapes in Mark I
and will have a relatively small high-speed memory initially,
we need a larger intermediate-speed memory. Incidentally,
ERA seems to have learned the drum business and purchasers
are very pleased. 1IBM decided to build its own, and this
is the best current headache on the 701. There is a console
in the works, too, which is lagging for lack of a free
engineer; the console is not essential, but not very costly
and very convenient.

Our first working version of JOHNNIAC--Selectrons plus
drum card input-output (hooking up a standard IBM machine)--
will thus cost about as much as 701 rental for five or six
quarters. It will be less flexible than the 701, because
of the lack of tapes and smaller high-speed memory, but
somewhat faster inside and more reliable. It will be very
efficient for problems which have small input, which blow
up into a lot of computing in the middle, and which boil
down to a small output--a general characteristic of
scientific problems, as opposed to census-type and data-
handling problems.

If the money is available, we can probably usefully
spend from $100,000 to $250,000 a year for several years--
embellishing this machine, making a copy, or possibly going
to transistors (if vendors are no more available then than

-32-

they are for Princeton-types now); some embellishment (like
magnetic cores) is essential, and tapes would be nice. But
why bother? Why not just rent a 701? It's such a silly
guestion I'm embarrassed for having written it. It's like
questioning the economics of owning a Cadillac, on the one
hand, and an oil well on the other. The 701 will only work
if you have a nickel to put in it (some nickel), whereas

the JOHNNIAC will do hundreds of thousands of dollars worth
of computing each year so long as you pay the light bill.
Actually each needs a staff; the real cash outlay to operate
a 701 is probably like $600,000 a year and that of a com-
parable JOHNNIAC about $250,000 a year. It's like the REAC;
we probably have $200,000 invested there, yet it will do
prodigious work now for a song.

Incidentally, obsolescence is not a very important
matter. While we will always want and be able to use better
machines as they become available, a machine like the JOHNNIAC
will always be a fine and useful machine--it will be able to
solve just as many and as difficult problems ten years from
now as it will next year; the log log duplex slide rule is
still after fifty years the best way to evaluate a few
hundred three-digit products and exponentials, and my
twenty-year-old machine is about 95 per cent as efficient
as a brand new one; also note the REAC.

So, kindly cease asking silly questions (except of me)
which only serve to make our crew feel insecure and unloved.
The odds are very attractive that we will end up with a
gorgeous useful gadget; and that the members of our computer
group will have the best reputations in the country. But I
don't believe anyone in my crowd will really begin to enjoy
life until those Selectrons recede into history.

If you ever want another brief note on this subject,

feel free to call on me.

-34-

[lustration 3—John von Neumann

-35-

Appendix B

PRELIMINARY DISCUSSION OF THE LOGICAL DESIGN
OF AN ELECTRONIC COMPUTING INSTRUMENT

by

Arthur W. Burks
Herman H. Goldstine
John von Neumann

Part 1, Volume 1

-37-

PREFACE TO FIRST EDITION

This report has been prepared in accord-
ance with the terms of Contract W-36-034-ORD-7481 between
the Research and Development Service, Ordnance Department,
U. S. Army and the Institute for Advanced Study. It is
intended as the first of two papers dealing with some
aspects of the overall logical considerations arising in
connection with electronic computing machines. An attempt
is made to give in this, the first half of the report, a
general picture of the type of instrument now under con-
sideration and in the second half a study of how actual
mathematical problems can be coded, i.e., prepared in the

language the machine can understand.

It is the present intention to issue from
time to time reports covering the various phases of the
project. These papers will appear whenever it is felt
sufficient work has been done on a given aspect, either

logical or experimental to justify its being reported.

The authors also wish to express their
thanks to Dr. John Tukey, of Princeton University, for

many valuable discussions and suggestions.

Arthur W. Burks
Herman H. Goldstine

John von Neumann

The Institute for Advanced Study
28 June 1946

-38-

PREFACE TO SECOND EDITION

In this edition the sections dealing with
the arithmetic organ have been considerably expanded and a
more complete account of the arithmetic processes given.
In addition certain sections have been brought up to date
in the light of engineering advances made in our

laboratory.

Arthur W. Burks
Herman H. Goldstine

John von Neumann

The Institute for Advanced Study
2 September 1947

-39~

ALPHABETIC LIST OF ABBREVIATIONS AND SPECIAL TERMINI

Synbol | 5" 8FsQEsuiog o°
Accumulator A pp. 9, 12
Additional (binary) 9-11
Arithmetic Register AR 13
Binary Arithmetic (examples) 26-29
Complement, Complementation 12
Control 1
Control Counter oC 31
Control Register OR 31
Division (binary) 23-26
Not restoring Division 23
Restoring Division 23
Floating Binary Point 23, 37-38
Function Table Register FR 31
Memory Location Number 3
Multiplication (binary) 13-19
Round-0Off 19-22
Selectron Register SR 7, 13
Substitution Order 36
Partial Substitution Order 3
Total Substitution Order 3
Subtraction (binary) 11-13
Transfer Order 31-32
Conditional Transfer Order 3
Unconditional Transfer Order 4
Word 4

-40-

TABLE OF CONTENTS

Preface to First Edition
Preface to Second Edition
Alphabetic List of Abbreviations and Special Termini

1.0 Principal Components of the Machine

1.

1

1

.2
1.

3

1.4
1.5

1

.6

Introduction
Storage and execution of orders

Use of one memory organ for both orders
and numbers

The Control
The Arithmetic Organ
Input and Output Organs

2.0 First' Remarks on the Memory

2.

1

Introduction

2.2 Memory requirements of various types of

2.

3

problems

Size of memory

3.0 First Remarks on the Control and Code

3.

4.0 The

w W wwwuw
N o BN

1

Introduction

Arithmetic orders

Memory substitution orders
Transfer of orders to the Control
Shifting the Control

Input-output orders

Conclusion

Memory Organ

.1
.2
.3

Types of memory
Choice of Selectron for memory

Choice of parallel representation of
numbers

Switching Selectrons in parallel

Page

NN N N R

b~ B P LwWwwwww

N

5.0 The

v

6.0 The

~ BB BB
O 00 ~N O

(S IV, BV, BV, B U, BV, BV,

(VN B, BN,

AN O OV O O

-41-

TABLE OF CONTENTS (cont'd)

Requirements of wire memory
Library of wires
Making and reading wires
Visual indication of results
Selectron Register
Arithmetic Organ
1 1Introduction
2 Choice of binary system
3 Floating binary point
4 Choice of built-in arithmetic operations
5 The Accumulator and addition
6 Average length of carrying sequences
7 The binary point, negative numbers and
subtraction
8 Multiplication
9 The binary point and multiplication
.10 Complement corrections for multiplication
.11 Multiplication in static and dynamic
Accumulators
.12 Round-off procedures
.13 Addition with the floating binary point
.14 Division
.15 Examples
Control
1 Introduction
2 Switching the memory
3 Decoding orders
4 Transfer of orders to the Control
5 Synchronized Control circuits
6 Orders for the internal operations

6.6.1 Addition
6.6.2 Register transfers

Page

NN N N O

O O 00

10

11
13
15
16

19
19
23
23
26

29
29
29
30
31
32
33
34
34

SN O O O OO

-42-~

TABLE OF CONTENTS (cont'd)

.6.3 Multiplication

.6.4 Division

.6.5 Memory substitution

.6.6 Shift of Control

.6.7 Unit shifts and the floating

binary point

6.7 Timing circuits

6.8 Input-output orders

Table I

6.
.8.2 Binary decimal conversion

SN O O O

8.1 Wire orders

.8.3 Viewing tubes
.8.4 Input-output equipment
.8.5 Finish signal

Summary of orders for the internal
operations

35
35
36
37

37
38
38
38
40
40
40
41

42

—43-

PRELIMINARY DISCUSSION OF THE LOGICAL DESIGN OF AN
ELECTRONIC COMPUTING INSTRUMENT

1.0 Principal Components of the Machine

1.1 1Inasmuch as the completed device will
be a general-purpose computing machine it should contain
certain main organs relating to arithmetic, memory-stor-
age, control and connection with the human operator. It
is intended that the machine be fully automatic in
character, i.e., independent of the human operator after
the computation starts. A fuller discussion of the impli-
cations of this remark will be given in Chapter 3 below.

1.2 It is evident that the machine must be
capable of storing in some manner not only the digital
information needed in a given computation such as boundary
values, tables of functions (such as the equation of state
of a fluid) and also the intermediate results of the com-
putation (which may be wanted for varying lengths of
time), but also the instructions which govern the actual
routine to be performed on the numerical data. 1In a
special-purpose machine these instructions are an integral
part of the device and constitute a part of its design
structure. For an all-purpose machine it must be possible
to instruct the device to carry out any computation that
can be formulated in numerical terms. Hence there must be
some organ capable of storing these program orders. There
must, moreover, be a unit which can understand these in-
structions and order their execution.

1.3 Conceptually we have discussed above two
different forms of memory: Storage of numbers and storage
of orders. 1If, however, the orders to the machine are
reduced to a numerical code and if the machine can in some
fashion distinguish a number from an order, the memory

-44-

organ can be used to store both numbers and orders. The
coding of orders into numeric form is discussed in 6.3
below.

1.4 1If the memory for orders is merely a
storage organ there must exist an organ which can auto-
matically execute the orders stored in the memory. We
shall call this organ the Control.

1.5 Inasmuch as the device is to be a
computing machine there must be an arithmetic organ in it
which can perform certain of the elementary arithmetic
operations. There will be, therefore, a unit capable of
adding, subtracting, multiplying and dividing. It will be
seen in 6.6 below that it can also perform additional
operations that occur quite frequently.

The operations that the machine will view
as elementary are clearly those which are wired into the
machine. To illustrate, the operation of multiplication
could be eliminated from the device as an elementary
nrocess if one were willing to view it as a properly
ordered series of additions. Similar remarks apply to
division. 1In general, the inner economy of the arithmetic
unit is determined by a compromise between the desire for
speed of operation -- a non-elementary operation will gen-
erally take a long time to perform since it is constituted
of a series of orders given by the Control -- and the desire
for simplicity, or cheapness, of the machine.

1.6 Lastly there must exist devices, the
input and output organ, whereby the human operator and the
machine can communicate with each other. This organ will
be seen in 4.5 below, where it is discussed, to constitute

a secondary form of automatic memory.

2.0 First Remarks on the Memory.

-45-

2.0 First Remarks on the Memory.

2.1 It is clear that the size of the mem-
ory is a critical consideration in the design of a satis-
factory general-purpose computing machine. We proceed to
discuss what quantities the memory should store for various
types of computations.

2.2 1In the solution of partial differential
equations the storage requirements are likely to be quite
extensive. 1In general, one must remember not only the
initial and boundary conditions and any arbitrary functions
that enter the nroblem but also an extensive number of
intermediate results.

a) For equations of parabolic or hyperbolic
type in two independent variables the integration process
is essentially a double induction. To find the values of
the dependent variables at times t + At one integrates with
respect to x from one boundary to the other by utilizing
the data at time t as if they were coefficients which
contribute to defining the problem of this integration.

Not only must the memory have sufficient
room to store these intermediate data but there must be
provisions whereby these data can later be removed, i.e.,
at the end of the (t + At) cycle, and replaced by the cor-
responding data for the (t + 24t) cycle. This process of
removing data from the memory and of replacing them with
new information must, of course, be done quite automatically
under the direction of the Control.

b) For total differential equations the
memory requirements are clearly similar to, but smaller
than, those discussed in (g) above.

c) Problems that are solved by iterative
procedures such as systems of linear equations or elliptic
nartial differential equations, treated by relaxation tech-

-46-

niques, may be expected to require quite extensive memory
capacity. The memory requirement for such problems is
apparently much greater than for those problems in (a)
above in which one needs only to store information corres-
ponding to the instantaneous value of one variable
(t in a) above), while now entire solutions (covering all
values of all variables) must be stored. This apparent
discrepancy in magnitude can, however, be somewhat over-
come by the use of techniques which permit the use of much
coarser integration meshes in this case, than in the cases
under (a).

2.3 It is reasonable at this time to build
a machine that can conveniently handle problems several
orders of magnitude more complex than are now handled by
existing machines, electronic or electro-mechanical. We
consequently plan on a fully automatic electronic storage
facility of about 4,000 numbers of 40 binary digits each.
40 9.9 . 10712, ..
of about 12 decimals. We believe that this memory capacity

This corresponds to a precision of 2~

exceeds the capacities required for most problems that one
deals with at present by a factor of about 10. The pre-
cision is also safely higher than what is required for the
great majority of present day problems. In addition, we
propose we have a subsidiary memory, which is also fully
automatic, of much larger capacity on some medium such as
magnetic wire or tape.
3.0 First Remarks on the Control and Code

3.1 It is easy to see by formal-logical
methods, that there exist codes that are in abstracto
adequate to control and cause the execution of any
sequence of operations which are individually available
in the machine and which are, in their entirety, conceivable

-47-

by the problem planner. The really decisive considera-
tions from the present point of view, in selecting a code,
are more of a practical nature: Simplicity of the equip-
ment demanded by the code, and the clarity of its appli-
cation to the actually important problems together with
the speed of its handling of those problems. It would
take us much too far afield to discuss these questions at
all generally or from first principles. We will therefore
restrict ourselves to analyzing only the type of code
which we now envisage for our machine.

3.2 There must certainly be instructions
for performing the fundamental arithmetic operations. The
specifications for these orders will not be completely
given until the arithmetic unit is described in a little
more detail.

3.3 It must be possible to transfer data
from the memory to the arithmetic organ and back again.

In transferring information from the arithmetic organ

back into the memory there are two types we must distin-
guish: Transfers of numbers as such and transfers of num-
bers which are parts of orders. The first case is quite
obvious and needs no further explication. The second case
i1s more subtle and serves to illustrate the generality

and simplicity of the system. Consider, by way of illus-
tration, the problems of interpolation in the system. Let
us suppose that we have formulated the necessary instruc-
tions for performing an interpolation of order n in a
sequence of data. The exact location in the memory of

the (n + 1) quantities that bracket the desired functional
value is, of course, a function of the argument. This
argument probably is found as the result of a computation
in the machine. We thus need an order which can substitute
a number into a given order -- in the case of interpolation

—48—

the location of the argument or the group of arguments
that is nearest in our table to the desired value. By
means of such an order the results of a computation can be
introduced into the instructions governing that or a dif-
ferent computation. This makes it possible for a sequence
of instructions to be used with different sets of numbers
located in different parts of the memory.

To summarize, transfers into the memory
will be of two sorts: Total substitutions, whereby the
quantity previously stored is cleared out and replaced by

a new number. Partial substitutions in which that part

of an order containing a memory location-number -- we

assume the various positions in the memory are enumerated
serially by memory location-numbers -- is replaced by a
new memory location-number.

3.4 It is clear that one must be able to
get numbers from any part of the memory at any time. The
treatment in the case of orders can, however, be more
methodical since one can at least partially arrange the
control instructions in a linear sequence. Consequently
the Control will be so constructed that it will normally
proceed from place n in the memory to place (n + 1) for
its next instruction.

3.5 The utility of an automatic computer
lies in the possibility for using a given sequence of
instructions repeatedly, the number of times it is iterated
being either preassigned or dependent upon the results of
the computation. When the iteration is completed a dif-
ferent sequence of orders is to be followed, so we must,
in most cases, give two parallel trains of orders preceded
by an instruction as to which routine is to be followed.
This choice can be made to depend upon the sign of a

-49-

number (zero being reckoned as plus for machine purposes).
Consequently we introduce an order (the conditional trans-
fer order) which will, depending on the sign of a given

number, cause the proper one of two routines to be

executed.
Frequently, two parallel trains of orders

terminate in a common routine. It is desirable, therefore,
to order the control in either case to proceed to the
beginning point of the common routine. This unconditional
transfer can be achieved either by the artificial use of

a conditional transfer or by the introduction of an

explicit order for such a transfer.

3.6 Finally we need orders which will in-
tegrate the input-output devices with the machine. These
are discussed briefly in 6.8.

3.7 We proceed now to a more detailed
discussion of the machine. Inasmuch as our experience has
shown that the moment one chooses a given component as
the elementary memory unit one has also more or less deter-
mined upon much of the balance of the machine, we start
by a consideration of the memory organ. In attempting an
exposition of a highly integrated device like a computing
machine we do not find it possible, however, to give an
exhaustive discussion of each organ before completing its
description. It is only in the final block diagrams that
anything approaching a complete unit can be achieved.

The time units to be used in what follows
will be:

10-6 seconds,
10-3 seconds.

1 usec = 1 microsecond

1l msec = 1 millisecond

4.0 The Memory Organ.
4.1 TIdeally one would desire an indefinitely

large memory capacity such that any particular aggregate

-50-

of 40 binary digits, or word (cf. 2.3), would be immed-
iately available -- i.e., in a time which is somewhat

or considerably shorter than the operation time of a fast
electronic multiplier. This may be assumed to be practical
at the level of about 100 microseconds. Hence the avail-
ability time for a word in the memory should be 5 to 50
microseconds. It is equally desirable that words may be
replaced with new words at about the same rate. It does
not seem possible physically to achieve such a capacity.
We are therefore forced to recognize the possibility of
constructing a hierarchy of memories, each of which has
greater capacity than the preceding but which is less
quickly accessible.

The most common forms of storage in
electrical circuits are the flip-flop or trigger circuit,
the gas tube, and the electro-mechanical relay. To
achieve a memory of n words would, of course, require
about 40 n such elements, exclusive of the switching
elements. We saw earlier (cf. 2.2) that a fast memory
of several thousand words is not at all unreasonable for
an all-purpose instrument. Hence, about 105 flip-flops
or analogous elements would be required! This would, of
course, be entirely impractical.

We must therefore seek out some more funda-
mental method of storing electrical information than has
been suggested above. One criterion for such a storage
medium is that the individual storage organs, which
accomodate only one binary digit each, should not be
macroscopic components, but rather microscopic elements
of some suitable organ. They would then, of course, not
be identified and switched to by the usual macroscopic
wire connections, but by some functional procedure in

manipulating that organ.

-51-

One device which displays this property to
a marked degree is the iconoscope tube. In its con-
ventional form it possesses a linear resolution of about
one part in 500. This would correspond to a (two-dimen-
sional) memory capacity of 500 x 500 = 2.5 x 105. One is
accordingly led to consider the possibility of storing
electrical charges on a dielectric place inside a cathode-
ray tube. Effectively such a tube is nothing more than a
myriad of electrical capacitors which can be connected
into the circuit by means of an electron beam.

Actually the above mentioned high reso-
lution and concomitant memory capacity are only realistic
under the conditions of television-image storage, which
are much less exigent in respect to the reliability of
individual markings than what one can accept in the stor-
age for a computer. In this latter case resolutions of
one part in 20 to 100, i.e., memory capacities of 400 to
10,000 would seem to be more reasonable in terms of
equipment built essentially along familiar lines.

At the present time the Princeton Labor-
atories of the Radio Corporation of America are engaged
in the development of a storage tube, the Selectron, of
the type we have mentioned above. This tube is also
planned to have a non-amplitude-sensitive switching system
whereby the electron beam can be directed to a given spot
on the plate within a quite small fraction of a milli-
second. Inasmuch as the storage tube is the key component
of the machine envisaged in this report we are extremely
fortunate in having secured the cooperation of the RCA
group in this as well as in various other developments.

An alternate form of rapid memory organ is
the acoustic feed-back delay line described in various

-52-

reports on the EDVAC. (This is an electronic computing
machine being developed for the Ordnance Department, U.,S.
Army, by the University of Pennsylvania, Moore School of
Electrical Engineering.) Inasmuch as that device has been
so clearly reported on in those papers we give no further
discussion. There are still other physical and chemical
properties of matter in the presence of electrons or
photons that might be considered, but since none is yet
beyond the early discussion stage we shall not make further
mention of them.

4.2 We shall accordingly assume throughout
the balance of this report that the Selectron is the modus
for storage of words at electronic speeds. As now planned
this tube will have a capacity of 212 = 4,096 ~ 4,000
binary digits. To achieve a total electronic storage of
about 4,000 words we propose to use 40 Selectrons, thereby
achieving a memory of 212 words of 40 binary digits each.
(Cf. again 2.3)

4.3 There are two possible means for stor-
ing a particular word in the Selectron Memory -- or in fact
in either a delay line memory or in a storage tube with
amplitude-sensitive deflection. One method is to store the
entire word in a given tube and then to get the word out
by picking out its respective digits in a serial fashion.
The other method is to store in corresponding places in
each of the 40 tubes one digit of the word. To get a word
from the memory in this scheme requires, then, one switch-
ing mechanism to which all 40 tubes are connected in
parallel. Such a switching scheme seems to us to be simpler
than the technique needed in the serial system and is, of
course, 40 times faster. We accordingly adopt the paral-
lel procedure and thus are led to consider a so-called

-53-

parallel machine, as contrasted with the serial principles
being considered for the EDVAC. (In the EDVAC the peculiar
characteristics of the acoustic delay line, as well as

various other considerations, seem to justify a serial pro-
cedure. For more details, cf. the reports referred to in
4.1) The essential difference between these two systems
lies in the method of performing an addition; in a parallel
machine all corresponding pairs of digits are added simul-
taneously, whereas in a serial one these pairs are added
serially in time.

4.4 To summarize, we assume that the fast
electronic memory consists of 40 Selectrons which are
switched in parallel by a common switching arrangement.

The inputs of the switch are controlled by the control.

4.5 Inasmuch as a great many highly impor-
tant classes of problems require a far greater total memory
than 212 words, we now consider the next stage in our
storage hierarchy. Although the solution of partial dif-
ferential equations frequently involves the manipulation
of many thousands of words, these data are generally re-
quired only in blocks which are well within the 2
capacity of the electronic memory, Our second form of
storage must therefore be a medium which feeds these blocks
of words to the electronic memory. It should be controlled
by the Control of the computer and is thus an integral part
of the system, not requiring human intervention.

There are evidently two distinct problems
raised above. One can choose a given medium for storage
such as teletype tapes, magnetic wire or tapes, movie film
or similar media. There still remains the problem of
automatic integration of this storage medium with the
machine, This integration is achieved logically by
introducing appropriate orders into the code which can

-54-~

instruct the machine to read or write on the medium, or
to move it by a given amount or to a place with given
characteristics. We discuss this question a little more
fully in 6.8.

Let us return now to the question of what
properties the secondary storage medium should have. It
clearly should be able to store information for periods
of time long enough so that only a few per cent of the
total computing time is spent in re-registering infor-
mation that is ''fading off.'" It is certainly desirable
although not imperative, that information can be erased
and replaced by new data. The medium should be such
that it can be controlled, i.e., moved forward and back-
wards, automatically. This consideration makes certain
media, such as punched cards, undesirable. While cards can,
of course, be printed or read by appropriate orders from
some machine, they are not well adapted to problems in
which the output data are fed directly back into the
machine, and are required in a sequence which is non-
monotone with respect to the order of the cards. The
medium should be capable of remembering very large numbers
of data at a much smaller price than electronic devices.
It must be fast enough so that, even when it has to be
used frequently in a problem, a large percentage of the
total solution time is not spent in getting data into
and out of this medium and achieving the desired position-
ing on it. If this condition is not reasonably well met,
the advantages of the high electronic speeds of the
machine will be largely lost.

Both light- or electron-sensitive film and
magnetic wires or tapes, whose motions are controlled by
servo-mechanisms integrated with the Control, would seem
to fulfill our needs reasonably well. We have tentatively

-55-

decided to use magnetic wires since we have achieved re-
liable performance with them at pulse rates of the order
of 25,000 per second and beyond. In a subsequent paper
(Part III in this series) we discuss a few problems to
show the overall efficiency of this system using such
wires.

4.6 Lastly our memory hierarchy requires a
vast quantity of dead storage, i.e., storage not integrated
with the machine. This storage requirement may be satis-
fied by a library of wires that can be introduced into
the machine when desired and at that time become auto-
matically controlled. Thus our dead storage really is
nothing but an extension of our secondary storage medium.
It differs from the latter only in its availability to
the machine.

4.7 We impose one additional requirement
on our secondary memory. It must be possible for a human
to put words onto the wire or other substance used and to
read the words put on by the machine. In this manner the
human can control the machine's functions. It is now
clear that the secondary storage medium is really nothing
other than a part of our input-output system, cf. 6.8.4
for a description of a mechanism for achieving this.

4,8 There is another highly important part
of the input-output which we merely mention at this time,
namely, some mechanism for viewing graphically the re-
sults of a given computation. This can, of course, be
achieved by a Selectron-like tube which causes its screen
to fluoresce when data are put on it by an electron beam.

4.9 For definiteness in the subsequent
discussions we assume that associated with the output of
each Selectron is a flip-flop. This assemblage of 40

flip-flops we term the Selectron Register.

-56-

5.0 The Arithmetic Organ.

5.1 1In this chapter we discuss the feat-
ures we now consider desirable for the arithmetic part of
our machine.. We give our tentative conclusions as to
which of the arithmetic operations should be built into
the machine and which should be programmed. Finally, a
schematic of the arithmetic unit is described.

5.2 1In a discussion of the arithmetical
organs of a computing machine one is naturally led to a
consideration of the number system to be adopted. 1In
spite of the longstanding tradition of building digital
machines in the decimal system, we feel strongly in favor
of the binary system for our device. Our fundamental
unit of memory is naturally adapted to the binary system
since we do not attempt to measure gradations of charge
at a particular point in the Selectron but are content to
distinguish two states. The flip-flop again is truly a
binary device. On magnetic wires or tapes and in acoustic
delay line memories one is also content to recognize the
presence or absence of a pulse or (if a carrier frequency
is used) of a pulse train, or of the sign of a pulse. (We
will not discuss here the ternary possibilities of a pos-
itive-or-negative-or-no pulse system and their relation-
ship to questions of reliability and checking, nor the
very interesting possibilities of carrier frequency modu-
lation.) Hence if one contemplates using a decimal system
with either the Iconoscope or delay-line memory one is
forced into a binary coding of the decimal system -- each
decimal digit being represented by at least a tetrad of
binary digits. Thus an accuracy of ten decimal digits
requires at least 40 binary digits. In a true binary
representation of numbers, however, about 33 digits suf-

10

fice to achieve a precision of 107", The use of the

-57-

binary system is therefore somewhat more economical of
equipment than is the decimal,

The main virtue of the binary system as
against the decimal is, however, the greater simplicity
and speed with which the elementary operations can be
performed. To illustrate, consider multiplication by
repeated addition. In binary multiplication the product
of a particular digit of the multiplier by the multipli-
cand is either the multiplicand or null according as the
multiplier digit is 1 or 0. In the decimal system,
however, this product has ten possible values between
null and nine times the multiplicand, inclusive. Of
course, a decimal number has only 1og102~.3 times as
many digits as a binary number of the same accuracy, but
even so multiplication in the decimal system is consider-
ably longer than in the binary system. One can accelerate
decimal multiplication by complicating the circuits, but
this fact is irrelevant to the point just made since
binary multiplication can likewise be accelerated by add-
ing to the equipment. Similar remarks may be made about
the other operatioms.

An additional point that deserves emphasis
is this: An important part of the machine is not arith-
metical, but logical in nature. Now logics, being a yes-
no system, is fundamentally binary. Therefore a binary
arrangement of the arithmetical organs contributes very
significantly towards producing a more homogenous machine,
which can be better integrated and is more efficient.

The one disadvantage of the binary system
from the human point of view is the conversion problem.
Since, however, it is completely known how to convert
numbers from one base to another, and since this conver-

sion can be effected solely by the use of the usual

-58-

arithmetic processes there is no reason why the computer
itself cannot carry out this conversion. It might be
argued that this is a time consuming operation. This,
however, is not the case. (Cf. 9.6 and 9.7 of Part II.
Part II is a report issued under the title, ''Planning

and Coding of Problems for an Electronic Computing In-
strument'.) Indeed a general-purpose computer, used as a
scientific research tool, is called upon to do a very great
number of multiplications upon a relatively small amount
of input data, and hence the time consumed in the decimal
to binary conversion is only a trivial percent of the
total computing time. A similar remark is applicable to
the output data.

In the preceding discussion we have tacitly
assumed the desirability of introducing and withdrawing
data in the decimal system. We feel, however, that the
base 10 may not even be a permanent feature in a scien-
tific instrument and consequently, will probably attempt
to train ourselves to use numbers base 2 or 8 or 16. The
reason for the bases 8 or 16 is this: Since 8 and 16 are
powers of 2 the conversion to binary is trivial; since both
are about of the size of 10, they violate many of our habits
less badly than base 2 (Cf. Part II, 9.4.).

5.3 Several of the digital computers being
built or planned in this country and England are to con-
tain a so-called "floating decimal point'. This is a
mechanism for expressing each word as a characteristic and
a mantissa -- e.g., 123.45 would be carried in the machine
as (0.12345, 03), where the 3 is the exponent of 10 assoc-
iated with the number. There appear to be two major pur-
poses in a ''floating'" decimal point system both of which
arise from the fact that the number of digits in a word
is a constant, fixed by design considerations for each

-59-

particular machine. The first of these purposes is to
retain in a sum or product as many significant digits as
possible and the second of these is to free the human op-
erator from the burden of estimating and inserting into a
problem ''scale factors'' -- multiplicative constants which
serve to keep numbers within the limits of the machine.

There is, of course, no denying the fact
that human time is consumed in arranging for the intro-
duction of suitable scale factors. We only argue that
the time so consumed is a very small percentage of the
total time we will spend in preparing an interesting prob-
lem for our machine. The first advantage of the floating
point is, we feel, somewhat illusory. In order to have
such a floating point one must waste memory capacity which
could otherwise be used for carrying more digits per word.
It would therefore seem to us not at all clear whether the
modest advantages of a floating binary point offset the
loss of memory capacity and the increased complexity of
the arithmetic and control circuits.

There are certainly some problems within the
scope of our device which really require more than 2-40
precision. To handle such problems we wish to plan in
terms of words whose lengths are some fixed integral mul-
tiple of 40, and program the machine in such a manner as to
give the corresponding aggregates of 40 digit words the
proper treatment. We must then consider an addition or
multiplication as a complex operation programmed from a
number of primitive additions or multiplications (cf.
Chapter IX, Part II). There would seem to be considerable
extra difficulties in the way of such a procedure in an
instrument with a floating binary point.

The reader may remark upon our alternate
spells of radicalism and conservatism in deciding upon

-60-

various possible features for our mechanism. We hope,
however, that he will agree on closer inspection, that we
are guided by a consistent and sound principle in judging
the merits of any idea. We wish to incorporate into the
machine -- in the form of circuits =--only such logical
concepts as are either necessary to have a complete system
or highly convenient because of the frequency with which
they occur and the influence they exert in the relevant
mathematical situations.

5.4 On the basis of this criterion we
definitely wish to build into the machine circuits which
will enable it to form the binary sum of two 40 digit
numbers. We make this decision not because addition is a
logically basic notion but rather because it would slow the
mechanism as well as the operator down enormously if each
addition were programmed out of the more simple operations
of "and", "or'", and 'not'. The same is true for the sub-
traction. Similarly we reject the desire to form products
by programming them out of additions, the detailed motiva-
tion being very much the same as in the case of addition
and subtraction. The cases for division and square-root-
ing are much less clear.

It is well known that the reciprocal of a
number can be formed to any desired accuracy by iterative
schemes. One such scheme consists of improving an estimate
X by forming X' = 2X - aX2. Thus the new error 1 - aX'
is (1 - aX)z, which is the square of the error in the pre-
ceding estimate. We notice that in the formation of X',
there are two bonafide multiplications -- we do not con-
sider multiplication by 2 as a true product since we will
have a facility for shifting right or left in one or two
pulse times. If then we somehow could guess 1/a to a
precision of 2-5, 6 multiplications -- 3 iterations --

-61-

would suffice to give a final result good to 2-40. Accord-

ingly a small table of 24 entries could be used to get the
initial estimate of 1/a. In this way a reciprocal 1l/a
could be formed in 6 multiplication times, and hence a
quotient b/a in 7 multiplication times. Accordingly we
see that the question of building a divider is really a
function of how fast it can be made to operate compared to
the iterative method sketched above: In order to justify
its existence, a divider must perform a division in a good
deal less than 7 multiplication times. We have however
conceived a divider which is much faster than these 7
multiplication times and therefore feel justified in
building it, especially since the amount of equipment
needed above the requirements of the multiplier is not
important,

It is, of course, also possible to handle
square roots by iterative techniques, In fact, if X is
our estimate of a2, then X' = %(X + a/X) is a better esti-
mate, We see that this scheme involves one division per
iteration. As will be seen below in our more detailed
examination of the arithmetic organ we do not include a
square-rooter in our plans because such a device would
involve more equipment than we feel is desirable in a
first model. (Concerning the iterative method of square-
rooting, cf. 8.10 in Part II,)

5.5 The first part of our arithmetic organ
requires little discussion at this point, It should be a
parallel storage organ which can receive a number and add
it to the one already in it, which is also able to clear
its contents and which can transmit what it contains., We
will call such an organ an Accumulator. It is quite con-
ventional in principle in past and present computing
machines of the most varied types. (E.g.: Desk multipliers,

-62-

standard IBM counters, more modern relay machines, the
ENIAC,) There are, of course, numerous ways to build such
a binary accumulator. We distinguish two broad types of
such devices: Static and dynamic or pulse-type accumu-
lators. These will be discussed in 5.11, but it is first
necessary to make a few remarks concerning the arithmetic
of binary addition. In a parallel accumulator, the first
step in an addition is to add each digit of the addend to
the corresponding digit of the augend. The second step is
to perform the carries, and this must be done in sequence
since a carry may produce a carry. In the worst case, 39
carries will occur. Clearly it is inefficient to allow

39 times as much time for the second step (performing the
carries) as for the first step (adding the digits). Hence
either the carries must be accelerated, or use must be
made of the average number of carries, or both.

5.6 We shall show that for a sum of binary
words, each of length n, the length of the largest carry
sequence is on the average not in excess of “log n. Let
pn(v) designate the probability that a carry sequence is of
length v or greater in the sum of two binary words of
length n. Then clearly pn(v) - pn(v + 1) is the probability
that the largest carry sequence is of length exactly v and

n
the weighted average a_ == __, v[pn(v) - pn(v+l)] is the

average length of such a carry. Note that

n
D= PR(V) - p (V)] =1

since pn(v) =0 if v > n. From these it is easily inferred

n
that a, =T pn(v). We now proceed to

show that)
pn(v) < min [1, (n-v+1)/2 J.

Observe first that

63

Pa(v) = p () + 1 ';xﬁv(") if v S o,
Indeed, pn(v) is the probability that the sum of two n-
digit numbers contains a carry sequence of length 2y,
This probability obtains by adding the probabilities of
two mutually exclusive alternatives: First: Either the
n - 1 first digits of the two numbers by themselves con-
tain a carry sequence of length 2 v. 1In this case any
carry sequence of length 2 v in the total numbers (of
length n) must end with the last digits of the total
sequence. Hence these must form the combination 1,1.
The next v - 1 digits must propagate the carry, hence
each of these must form the combination 1, 0 or 0, 1.
(The combinations 1, 1 and 0, 0 do not propagate a carry.)
The probability of the combination 1, 1 is %, that one of
1

the alternative combinations 1, 0 or 0, 1 is %. The
total probability of this sequence is therefore %(%)V-l

+
=5V 1. The remaining n - v digits must not contain a
carry sequence of length > v. This has the probability
1 - pn_v(v). Thus the probability of the second case is
(1 - pn_v(v)]/ZV+lo Combining these two cases, the de-

sired relation 1-p)
Pn(V) = Pn_l(V) * zviiv obtains.

The observation that pn(v) =0 if v > n is trivial,

We see with the help of the formulas proved
above that pn(v) - pn_l(v) is always < 1/2V+1, and hence

that the sum Z?=v [pi(v)~- pi_l(v)J = pn(v) is not in

+ .
excess of (n - v + 1)/2V 1 since there aren - v + 1
terms in the sum; since, moreover, each pn(v) is a pro-

-64-

bability, it is not greater than 1. Hence we have

p_(v) < Min [1, (a-v+1)/2V711.

Finally we turn to the question of getting

an upper bound on a =71 p.(v). Choose K so that
n v=1l *n
2K <ng 2K+1. Then
_ K K-]_ n V+1= - K
a_=IN_p (v) + Z p (v) 5,07 1+ T, n/2 K-1 +n/2

This last expression is clearly linear in n in the interval

L S

2K+1, i.e. it is = 21og n at both ends of this interval.

2 and it is = K for n = 2X and = K + 1 for n =

A

Since the function 21og n is everywhere concave from
below, it follows that our expression is g 21og n through-
out this interval. Thus a = 2log n. This holds for all

K, i.e. for all n, and it is the inequality which we wanted
to prove.

For our case n = 40 we have a < 1og240~5.3,
i.e. an average length of about 5 for the longest carry
sequence. (The actual value of a0 is 4.62.)

5.7 Having discussed the addition, we can
now go on to the subtraction. It is convenient to discuss
at this point our treatment of negative numbers, and in
order to do that right, it is desirable to make some ob-
servations about the treatment of numbers in general.

Our numbers are 40 digit aggregates, the
left-most digit being the sign digit, and the other digits

-65-

genuine binary digits, with positional values 2-1, 2'2,

ey 2“39 (going from left to right). Our accumulator
will, however, treat the sign digit, too, as a binary

digit with the positional value 2° -- at least when it
functions as an adder. For numbers between 0 and 1 this is
clearly all right: The left-most digit will then be 0, and
if 0 at this place is taken to represent a + sign, then the
number is correctly expressed with its sign and 39 binary
digits.

Let us now consider one or more unrestricted
40 binary digit numbers. The Accumulator will add them,
with the digit-adding and the carrying mechanisms function-
ing normally and identically in all 40 positions. There
is one reservation, however: If a carry originates in the
left-most position, then it has nowhere to go from there
(there being no further positions to the left), it is
"lost". This means, of course, that the addend and the
augend, both numbers between 0 and 2, produced a sum ex-
ceeding 2, and the accumulator, being unable to express a
digit with a positional value 21, which would now be nec-
essary, omitted 2, I.e. the sum was formed correctly,
excepting a possible error, 2, If several such additions
are performed in succession, then the ultimate error may
be any integer multiple of 2, 1I.e. the accumulator is an
adder which allows errors that are integer multiples of
2 -- it is an adder modulo 2,

It should be noted that our convention of
placing the binary point immediately to the right of the
left-most digit has nothing to do with the structure of
the adder., In order to make this point clearer we pro-
ceed to discuss the possibilities of positioning the

binary point in somewhat more detail.

-66—

We begin by enumerating the 40 digits of
our numbers (words) from left to right. In doing this we

use an index h - 1, ..., 40. Now we might have placed the
binary point just as well between digits j and j + 1,
j=0,1, ..., 40. Note, that j = 0 corresponds to the

position at the extreme left (there is no digit h = j = 0);
j = 40 corresponds to the position at the extreme right
(there is no position h = j+1 = 41); and j = 1 corresponds
to our above choice. Whatever our choice of j, it does
not affect the correctness of the Accumulator's addition.
(This is equally true for subtraction, cf. below, but not
for multiplication and division, cf. 5.8.) 1Indeed, we have
merely multiplied all numbers by 2371 (as against our
previous convention), and such a 'change of scale' has no
effect on addition (and subtraction). However, now the
accumulator is an adder which allows errors that are
integer multiples of 2J -- it is an adder modulo 2J. We
mention this because it is occasionally convenient to
think in terms of a convention which places the binary
point at the right end of the digital aggregate. Then
j = 40, our numbers are integers, and the accumulator is
an adder modulo 240. We must emphasize, however, that all
of this, i.e. all attributions of values to j, are purely
convention -- i.e. it is solely the mathematician's in-
terpretation of the functioning of the machine -- and not
a physical feature of the machine. This convention will
necessitate measures that have to be made effective by
actual physical features of the machine -- i.e. the con-
vention will have become a physical and engineering
reality -- only when we come to the organs of multipli-
cation.

We will use the convention j = 1, i.e. our
numbers lie in O and 2 and the accumulator adds modulo 2.

-67-

This being so, these numbers between 0 and
2 can be used to represent all numbers modulo 2. Any real
number x agrees modulo 2 with one and only number X between
0 and 2 -- or, to be quite precise: 0 £ x < 2. Since our
addition functions modulo 2, we see that the accumulator
may be used to represent and to add numbers modulo 2.

This determines the representation of nega-
tive numbers. If x <0, then we have to find the unique
integer multiple of 2, 2s (s = 1, 2, ...) such that
0<x<2 for x=x+2s (i.e. -2s £ x < 2(1-s)), and
represent x by the digitalization of X.

In this way, however, the sign digit
character of the left-most digit is lost. It can be O or
1 for both x £ 0 and x < 0, hence 0 in the left-most
position can no longer be associated with the + sign of x.
This may seem a bad deficiency of the system, but it is
easy to remedy -- at least to an extent which suffices for
our purposes. This is done as follows:

We will usually work with numbers x between
-1 and 1 -- or, to be quite precise: -1 £ x < 1. Now the
x with 0< x < 2, which differs from x by an integer
multiple of 2, behaves as follows: If x £ 0, then 0 £ x <1,
hence X = x, and so 0 < x < 1, the left-most digit of x is
0. If x <0, then -1 < x < 0, hence x = x+2, and so
1 < x < 2, the left-most digit of x is 1. Thus the left-
most digit (of x) is now a precise equivalent of the sign
(of x). O corresponds to + and 1 to -.

Summing up:

The Accumulator may be taken to represent all
real numbers modulo 2, and it adds them modulo 2. If x
lies between -1 and 1 (precisely: -1 < x <1) -- as it will

-68-

in almost all of our uses of the machine =-- then the left-
most digit represents the sign: O is + and 1 is =-.
Consider now a negative number: x with

-1 < x <0, Put x ==y, 0 <y £ 1., Then we digitalize x
by representing it as x + 2 = 2-y = 1 + (1l-y). I.e. the
left-most (sign) digit of x = -y is, as it should be, 1,
and the remaining 39 digits are those of the complement of
y = =x = Ix[, i.e. those of l-y., Thus we have been led

to the familiar representation of negative numbers by

comp lementation.
The connection between the digits of x and
0. In-

AV

those of -x is now easily formulated, for any x
deed, -x is equivalent to

1 -39 -39 39 i -39
2-x = ((27 - 2) -x) + 2 = (Zi=0 2 T-x) + 2 .
(This digit index i = 1, ..., 39
is related to our previous digit index h =1, ..., 40 by
i = h-1. Actually it is best to treat i as if its domain
included the additional value i = 0 -- indeed i = 0 then
corresponds to h = 1, i.e. to the sign digit. In any
case 1 expresses the positional value of the digit to
which it refers more simply than h does: This positional
value is 2-i = 2-(h-1). Note that if we had positioned
the binary point more generally between j and j+l, as
discussed further above, this positional value would have
been 2°(B"3)+ ye now have, as pointed out previously,
j = 1.) Hence its digits obtain by subtracting every
digit of x from 1 -- by complementing each digit, i.e.
by replacing O by 1 and 1 by 0 -- and then adding 1 in the
right-most position (and effecting all the carries that
this may cause.) (Note how the left-most digit, inter-
preted as a sign digit, gets inverted by this procedure,

as it should be.)

-69-~

A subtraction x - y is therefore performed
by the Accumulator, A, as follows: Form x + y’, where y’
has a digit 0 or 1 where y has a digit 1 or 0, respec-
tively, and then add 1 in the right-most position. The
last operation can be performed by injecting a carry into
the right-most stage of A -- since this stage can never
receive a carry from any other source (there being no
further positions to the right).

5.8 1In the light of 5.7 multiplication
requires special care, because here the entire modulo 2
procedure breaks down. Indeed, assume that we want to
compute a product xy, and that we had to change one of
the factors, say x, by an integer multiple of 2, say by 2.
Then the product (x+2)y obtains, and this differs from the
desired xy by 2y. 2y, however, will not in general be an
integer multiple of 2, since y is not in general an integer.

We will therefore begin our discussion of
the multiplication by eliminating all such difficulties,
and assume that both factors x, y lie between 0 and 1. Or
to be quite precise: 0 < x, <1, 0 <y < 1.

To effect such a multiplication we first
send the multiplier x into a register AR, the Arithmetic
Register, which is essentially just a set of 40 flip-flops

whose characteristics will be discussed below. We place
the multiplicand y in the Selectron Register, SR, (cf 4.9)
and use the Accumulator A, to form and store the partial
products. We propose to multiply the entire multiplicand

by the successive digits of the multiplier in a serial
fashion. There are, of course, two possible ways this can
be done: We either can start with the digit in the lowest
position -- position 2-39 -- or in the highest position --
position 2-1 -- and proceed successively to the left or
right, respectively. There are a few advantages from

our point of view to starting with the right-most digit

of the multiplier. We therefore describe that scheme.

-70-

The multiplication takes place in 39 steps,
which correspond to the 39 (non-sign) digits of the multi-

plier X = 0, g]_, 52, o s ey §39 = (O. gl %2 539), enumer -
ated backwards: 539, coes %2, %1. Assume that the
k-1 first steps (k=1, ..., 39) have already taken place,

involving multiplication of the multiplicand y with the
k-1 last digits of the multiplier: 539, eeos §4l-k; and

that we are now at the k-th step, involving multiplication
with the k-th last digit: %ao_k. Assume furthermore, that
A now contains the quantity Pr-1° the result of the k-1
first steps. (This is the k-1l-st partial product. For
k = 1 clearly p_ = 0.) We now form 2p, = p,_; ¥ gAO-ky’

i.e.

=0 for 8,5 = 0
) 2o T Pro1 T Ve Yk)=y for 5,4, = 1

That is, we do nothing or add y, according to whether

€40-k 0 or 1. We can then form p, by halving 2p, .
Note that the addition of (*) produces no

carry beyond the 2° position, i.e. the sign digit: O £

Py < 1 is true for h = 0, and if it is true for h = k-1,

then (*) extends it to h = k also, since 0 £ y;, < 1. Hence
the sum in (*) is £ 0 and < 2, and no carries beyond the
2° position arise.

Hence p; obtains from 2pk by a simple right
shift, which is combined with filling in the sign digit
(that is freed by this shift) with a 0. This right shift
is effected by an electronic shifter that is part of A.

Now
= o=1l,,-1,,-1 -1
P3q 2 (2772 “(...(2 539 y + 538y)...) + §2y) + §1y)

=539 o-i €,y = xy.
i=1

-71-

Thus this process produces the product xy, as desired.
Note, that this xy is the exact product of x and y.

Since x and y are 39 digit binaries, their
exact product xy is a 78 digit binary (we disregard the
sign digit throughout.) However, A will only hold 39 of
these. These are clearly the left 39 digits of xy. The
right 39 digits of xy are dropped from A one by one in
the course of the 39 steps, or to be more specific, of the
39 right shifts. We will see later that these right 39
digits of xy should and will also be conserved (cf. the
end of this section and the end of 5.12, as well as 6.6.3).
The left 39 digits, which remain in A, should also be
rounded off, but we will not discuss this matter here
(cf. loc. cit. above and 9.9, Part II).

To complete the general picture of our
multiplication technique we must consider how we sense the
respective digits of our multiplier. There are two schemes
which come to one's mind in this connection. One is to
have a gate tube associated with each flip-flop of AR in
such a fashion that this gate is open if a digit is 1 and
closed if it is null. We would then need a 39 stage
counter to act as a switch which would successively stimu-
late these gate tubes to react. A more efficient scheme
is to build into AR a shifter circuit which enables AR
to be shifted one stage to the right each time A is
shifted and to sense the value of the digit in the right-
most flip-flop of AR. The shifter itself requires one gate
tube per stage. We need in addition a counter to count out
the 39 steps of the multiplication, but this can be achieved
by a six stage binary counter. Thus the latter is more
economical of tubes and has one additional virtue from our

-72-

point of view which we discuss in the next paragraph.

The choice of 40 digits to a word (includ-
ing the sign) is probably adequate for most computational
problems but situations certainly might arise when we
would desire higher precision, i.e. words of greater
length. A trivial illustration of this would be the com-
putation of T to more places than are now known (about
700 decimals, i.e., about 2300 binaries). More important
instances are the solutions of N linear equations in N
variables for large values of N. The extra precision
becomes probably necessary when N exceeds a limit somewhere
between 20 and 40. A justification of this estimate has
to be based on a detailed theory of numerical matrix in-
version which will be given in a subsequent report. It
is therefore desirable to be able to handle numbers of
39k digits and sign by means of program instructions. One
way to achieve this end is to use k words to represent a
39k digit number with sign. (In this way 39 digits in
each 40 digit word are used, but all sign digits, excepting
the first one, are apparently wasted, cf. however the
treatment of double precision numbers in Chapter IX, Part
II.) It is, of course, necessary in this case to instruct
the machine to perform the elementary operations of arith-
metics in a manner that conforms with this interpretation
of k-word complexes as single numbers. (Cf. 9.8 - 9.10,
Part II.) 1In order to be able to treat numbers in this
manner, it is desirable to keep not 39 digits in a prod-
uct, but 78; this is discussed in more detail in 6.6.3
below. To accomplish this end (conserving 78 product
digits) we connect, via our shifter circuits, the right-
most digit of A with the left-most non-sign digit of AR.
Thus, when in the process of multiplication a shift is
ordered, the last digit of A is transferred into the

-73-

place in AR made vacant when the multiplier was shifted.

5.9 To conclude our discussion of the
multiplication of positive numbers, we note this:

As described thus far, the multiplier forms
the 78 digit product, xy, for a 39 digit multiplier x
and a 39 digit multiplicand y. We assumed x 2 0, y > 0
and therefore had xy 2 0, and we will only depart from
these assumptions in 5.10. 1In addition to these, however,
we also assumed x < 1, y < 1, i.e. that x, y have their
binary points both immediately right of the sign digit,
which implied the same for xy. One might question the
necessity of these additional assumptions.

Prima facie they may seem mere conventions,
which affect only the mathematician's interpretation of
the functioning of the machine, and not a physical feature
of the machine. (Cf. the corresponding situation in addi-
tion and subtraction, in 5.7.) Indeed: If x had its
binary point between digits j and j + 1 from the left
(cf. the discussion of 5.7 dealing with this j, it also
applies to k below), and y between k and k + 1, then our
above method of multiplication would still give the correct
result xy, provided that the position of the binary point
in xy is appropriately assigned. Specifically: Let the
binary point of xy be between digits x and x+l. x has
the binary point between digits j and j+1, and its sign
digit is O, hence its range is 0 < x < 2371, Similarly

k-1

y has the range 0 < y < 2 , and xy has the range 0 <y

< 21-1. Now the ranges of x and y imply that the range of

k-1 o p3*k-2 ponce

xy is necessarily 0 £ xy < 23-1
= j*tk-1. Thus it might seem that our actual positioning of
the binary point -- immediately right of the sign digit,
i.e. =k =1 --1is still a mere convention.

It is therefore important to realize that

-74-

this is not so: The choices of j and k actually correspond
to very real, physical, engineering decisions. The reason
for this is as follows: It is desirable to base the run-
ning of the machine on a sole, consistent mathematical
interpretation. It is therefore desirable that all arith-
metical operations be performed with an identically con-
ceived positioning of the binary point in A. Applying
this principle to x and y gives j = k. Hence the pos-
ition of the binary point for xy is given by j + k - 1 =
2.-1. If this is to be the same as for x, and y, then
2j-l = j, i.e. j = 1 ensues -- that is our above posi-
tioning of the binary point immediately right of the sign
digit.

There is one possible escape: To place
into A not the left 39 digits of xy (not counting the
sign digit 0), but the digits j to j + 38 from the left.
Indeed, in this way the position of the binary point of
xy will be (2j-1) - (j-1) = j, the same as for x and y.

A This procedure means that we drop the left
j-1 and right 40-j digits of xy and hold the middle 39 in
A. Note, that positioning of the binary point means that

x < zj'l, y < zj'l and xy can only be used if xy <23_1.

232 Hence Xy must

Now, the assumptions secure only xy < 2
be 237! times smaller than it might be. This is just the
thing which would be secured by the vanishing of the left
j-1 digits that we had to drop from A, as shown above.

If we wanted to use such a procedure, with
those dropped left j-1 digits really existing, i.e. with
j # 1, then we would have to make physical arrangements for
their conservation elsewhere. Also the general mathematical
planning for the machine would be definitely complicated,
due to the physical fact that A now holds a rather ar-

bitrarily picked middle stretch of 39 digits from among

-75-

the 78 digits of xy. Alternatively, we might fail to make
such arrangements, but this would necessitate to see to
it in the mathematical planning of each problem, that all
products turn out to be 2-]-1 times smaller than their a
priori maxima. Such an observance is not at all im-
possible, indeed similar things are unavoidable for the
other operations. (E.g. with a factor 2 in addition [of
positives] or subtraction [of opposite sign quantities].
Cf. also the remarks in the first part of 5.12, dealing
with keeping 'within range'.) However, it involves a
loss of significant digits, and the choice j = 1 makes

it unnecessary in multiplication.

We will therefore make our choice j = 1,
i.e. the positioning of the binary point immediately
right of the sign digit, binding for all that follows.

5.10 We now pass to the case where the
multiplier x and the multiplicand y may have either sign
+ or -, i.e. any combination of these signs.

It would not do simply to extend the method
of 5.8 to include the sign digits of x and y also: 1Indeed,
we assume -1 £ x < 1, -1 £y < 1, and the multiplication
procedure in question is definitely based on the > O
interpretations of x and y. Hence if x < 0, then it is
really using x + 2, and if y < 0, then it is really using
y + 2. Hence for x < 0, y 2 0 it forms (x + 2)y = xy +
2y; for x 2 0, y < 0, it forms x (y + 2) = xy + 2x, for
x <0, y<0, it forms (x +2) (y +2) =xy + 2x + 2y +
4, or since things may be taken modulo 2, xy + 2x + 2y.
Hence correction terms -2y, -2x would be needed for x <
0, y < 0, respectively, (either or both).

This would be a possible procedure, but
there is one difficulty: As xy is formed, the 39 digits
of the multiplier x are gradually lost from AR, to be

-76-

replaced by the right 39 digits of xy. (Cf. the discus-
sion at the end of 5.8.) Unless we are willing to build
an additional 40 stage register to hold x, therefore, x
will not be available at the end of the multiplication.
Hence we cannot use it in the correction 2x of xy, which
becomes necessary for y < O.

Thus the case x < 0 can be handled along
the above lines, but not the case y < 0.

It is nevertheless possible to develop an
adequate procedure, and we now proceed to do this.
Throughout this procedure we will maintain the assumptions
-1 < x<1, -1 £y < 1l. We proceed in several successive

steps.

First: Assume that the corrections neces-
sitated by the possibility of y < 0 have been taken care
of. We permit therefore y > 0. We will consider the

A

corrections necessitated by the possibility of x <O.

Let us disregard the sign digit of x, which
is 1, i.e. replace it by 0. Then x goes over into x' =
x-1 and as -1 < x < 0, this x' will actually behave like
(x-1) + 2 = x + 1. Hence our multiplication procedure
will produce x'y = (xt+l)y = xyty, and therefore a
correction -y is needed at the end. (Note that we did
not use the sign digit of x in the conventional way. Had
we done so, then a correction -2y would have been nec-
essary, as seen above.)

We see therefore: Consider x 2 O.

Perform first all necessary steps for forming<x.y (y 2 0),
without yet reaching the sign digit of x (i.e. treatiﬁg X
as if it were 2 0). When the time arrives at which the
digit % of x has to become effective -- i.e. immediately
after §1 became effective, after 39 shifts (cf. the dis-
cussion near the end of 5.8) -- at which time A contains,

77

say, p (this corresponds to the P39 of 5.8), then form

; =p if §O =0

=p -y 1if %O 1

This ; is xy. (Note the difference between this last step,
forming ; and the 39 preceeding steps in 5.8, forming P>
Pos =vos p39.)

Second: Having disposed of the possibility
x < 0, we may now assume x 2 0., With this assumption we
have to treat all y 2 0. Since y 2 0 brings us back
entirely to the famiiiar case of 5.8, we need to consider
the case y < 0 only.

Let y' be the number that obtains by dis-
regarding the sign digit of y, which is 1, i.e. by replac-
ing it by 0. Again y' acts not like y - 1, but like
(y-1)+2 =y + 1. Hence the multiplication procedure
of 5.8 will produce xy' = x(y+l) = xy + x, and therefore,
a correction -x is needed. (Note, that, quite similarly
to what we saw in the first case above, the suppression of
the sign digit of y replaced the previously recognized
correction -2x by the present one - x.) As we observed
earlier, this correction -x cannot be applied at the end
to the completed xy' since at that time x is no longer
available. Hence we must apply the correction -x digit-
wise, subtracting every digit at the time when it is last
found in AR, and in a way that makes it effective with
the proper positional value.

Third: Consider then x = O, %1, 52, ey
€39 = (§1 Sy vves 539). The 39 digits §; ...839 of x
are lost in the course of the 39 shifts of the multipli-
cation procedure of 5.8, going from right to left. Thus
the operation No. k+1 (k=0, 1, ..., 38, cf. 5.8) finds
g39-k in the right-most stage of AR, uses it, and then

-78-

loses it through its concluding right shift (of both A
and AR). After this step 39-(k + 1) = 38-k further steps
i.e. shifts follow, hence before its own concluding shift
there are still 39 - k shifts to come. Hence the posi-

tional values are 239'k

times higher than they will be at
the end. §39-k should appear at the end, in the correct-
i?%3g?£? -xX, with the sign - and the positional value
2 . Hence we may inject it during the step k + 1
(before its shift) with the sign - and the positional
value, 1. 1I.e. '§39—k in the sign digit.

This, however, is inadmissible. Indeed,
-849.y Might cause carries (if £,54_, = 1), which would
have nowhere to go from the sign digit (there being no
further positions to the left). This error is at its
origin as integer multiple of 2, but the 39 k subsequent

39<k times, hence it

shifts reduce its positional value 2
might contribute to the end result any integer multiple
of 2-(38-k) -- and this is a genuine error.

Let us therefore add 1-E39_ to the sign
digit, i.e. 0 or 1 if §39-k is 1 or 0, respectively. We
will show further below, that with this procedure there
arise no carries of the inadmissible kind. Taking this
momentarily for granted, let us see what the total effect
is. We are correcting not by -x but by 239 2-i -

= 1.0"39 _ i=1 _
1-2 X+ Hence a final correction by -1 + 2 39

is
needed. Since this is done at the end (after all shifts),
it may be taken modulo 2. That is to say, we must add 1 +

-39
2

1 in the right-most position has the same effect as in the

, i.e. 1 in each of the two extreme positions. Adding

discussion at the end of 5.7 (dealing with the subtraction):
It is equivalent to injecting a carry into the right-

most stage of A. Adding 1 in the left-most position

i.e. to the sign digit, produces a 1, since that digit

-79-

was necessarily 0. (Indeed, the last operation ended in
a shift, thus freeing the sign digit, cf. below.

Fourth: Let us now consider the question
of the carries that may arise in the 39 steps of the
process described above. 1In order to do this, let us
describe the k-th step (k = 1, ..., 39), which is a var-
iant of the k-th step described for a positive multip-
lication in 5.8, in the same way in which we describe
the original k-th step loc. cit. I.e. let us see what
the formula (*) of 5.8 has become. It is clearly

= - 1 .
2pp = Py P (- S0 T Eu0 Vs Lee.

' =1 for §,5_, =0

(*%) ZPk = Pr-1 + y'k' Yk

I
[

y' for €40_k -
That is, we add 1 (y's sign digit) or y' (y without its
sign digit), according to whether €40-x = 0 or 1. Then
Py should obtain from 2pk again by halving.

Now the addition of (**) produces no carries
beyond the 2° position, as we asserted earlier, for the
same reason as the addition of (*) in 5.8. We can argue
in the same way as there: 0 £ P < 1l is true for h = 0,

and if it is true for h = k-1, then (*) extends it to
h = k also, since 0 £ y'k < 1. Hence the sum in (**) is

0 and < 2, and no carries beyond the 2° position arise.

nw

Fifth: 1In the three last observations we
assumed y < 0. Let us now restore the full generality of
y2 0. We can then describe the equations (*) of 5.8
(éalid for y 2 0) and (**) above (valid for y < 0) by a
single formula.

-80-

|
o

= y's sign digit for §,,_; =
A = " "
(¥%) 2pp= Pp-1 t Y, Y y without its for §,, , =1
k k . < 40-k
sign digit

Thus our verbal formulation of (**) applies here, too: We
add y's sign digit or y without its sign, according to
whether §,4 ; = 0 or 1. All py are 2 0 and < 1, and the

addition of (*i) never originates a carry beyond the 2°
position. Py obtains from 2pk by a right shift, filling
the sign digit with a 0. (Cf. however, Part II, Table

IT for another sort of right shift that is desirable in
explicit form, i.e. as an order.)

For y 2 0, xy is P39> for y < 0, xy obtains
from P39 by injecting a carry into the right-most stage of
A and by placing a 1 into the sign digit in A.

Sixth: This procedure applies for x 2 o.
For x < 0 it should also be applied, since it makes use
of x's non-sign digits only, but at the end y must be
subtracted from the result.

This method of binary multiplication will
be illustrated in some examples in 5.15.

5.11 To complete our discussion of the
multiplicative organs of our machine we must return to a
consideration of the types of accumulators mentioned in
5.5. The static accumulator operates as an adder by
simultaneously applying static voltages to its two inputs
-- one for each of the two numbers being added. When
steady-state operation is reached the total sum is formed
complete with all carries. For such an accumulator the
above discussion is substantially complete, except that it
should be remarked that such a circuit requires at most
39 rise times to complete a carry. Actually it is pos-
sible that the duration of these successive rises is pro-
portional to a lower power of 39 than the first one.

-81-

Each stage of a dynamic accumulator con-
sists of a binary counter for registering the digit and a
flip-flop for temporary storage of the carry. The counter
receives a pulse if a 1 is to be added in at that place;
if this causes the counter to go from 1 to 0 a carry has
occurred and hence the carry flip-flop will be set. It
then remains to perform the carries, Each flip-flop has
associated with it a gate, the out-put of which is con-
nected to the next binary counter to the left. The carry
is begun by pulsing all carry gates. Now a carry may
produce a carry, so that the process needs to be repeated
until all carry flip-flops register 0. This can be de-
tected by means of a circuit involving a sensing tube
connected to each carry flip-flop. It was shown in 5.6
that, on the average, five pulse times (flip-flop reaction
times) are required for the complete carry. An alternative
scheme is to connect a gate tube to each binary counter
which will detect whether an incoming carry pulse would
produce a carry and will, under this circumstance, pass
the incoming carry pulse directly to the next stage.

This circuit would require at most 39 rise times for the
completion of the carry. (Actually less, cf. above.)

At the present time the development of a
static accumulator is being concluded. From preliminary
tests it seems that it will add two numbers in about
5u and will shift right or left in about 1u.

We return now to the multiplication opera-
tion, In a static accumulator we order simultaneously an
addition of the multiplicand with sign deleted or the
sign of the multiplicand (cf. 5.10) and a complete carry
and then a shift for each of the 39 steps. In a dynamic
accumulator of the second kind just described we order in
succession an addition of the multiplicand with sign

-82-

deleted or the sign of the multiplicand, a complete carry,
and a shift for each of the 39 steps. In a dynamic ac-
cumulator of the first kind we can avoid losing the time
required for completing the carry (in this case an aver-
age of 5 pulse times, cf. above) at each of Fhe 39 steps.
We order an addition by the multiplicand with sign deleted
or the sign of the multiplicand, then order one pulsing
of the carry gates, and finally shift the contents of
both the digit counters and the carry flip-flops. This
process is repeated 39 times. A simple arithmetical
analysis which may be carried out in a later report,

shows that at each one of these intermediate stages a
single carry is adequate, and that a complete set of
carries is needed at the end only. We then carry out the
complement corrections, still without ever ordering a
complete set of carry operations. When all these correc-
tions are completed and after round off, described below,
we then order the complete carry mentioned above.

5.12 It is desirable at this point in the
discussion to consider rules for rounding-off to n-digits.
In order to assess the characteristics of alternative
possibilities for such properly, and in particular the
role of the concept of "unbiasedness', it is necessary to
visualize the conditions under which rounding off is

needed.

These things being understood, we can now
undertake to discuss round-off procedures, realizing that
we will have to apply them to the multiplication and to

the division.

Let x = (.%l...in) and y = (.ﬂl...ﬂn) be

-83-

unbiased approximations of x' and y'. Then the ''true"
Xy = (‘gl"°gn§n+l"'§2n) and the "true' x/y = (.wl

ceaW @ g wn+2...) (this goes on in infinitum!) are
approximations of x'y' and x'/y'. Before we discuss

how to round them off, we must know whether the ''true'

xy and x/y are themselves unbiased approximations of

x'y' and x'/y'. xy is indeed an unbiased approximation
of x'y', i.e. the mean of xy is the mean of x(=x') times
the mean of y(=y'), owing to the independence assump-

tion which we made above. However, if x and y are
closely correlated, e.g. for x =y, i.e. for squaring,
there is a bias. It is of the order of the mean square
of x-x', i.e. of the variance of x. Since x has n digits,
this variance is about 1/22T, (If the digits of x'
beyond n are entirely unknown, then our original
assumptions give the variance 1/12'22n.) Next, x/y

can be written as x'y-l, and since we have already
discussed the bias of the product, it suffices now

to consider the reciprocal y-l. Now if y is an unbiased
estimate of y', then y-l is not an unbiased estimate of

y'-1 , i.e. the mean of y's reciprocal is not the
reciprocal of y's mean. The difference is ~ y—3 times
the variance of y, i.e. it is of essentially the same

order as the bias found above in the case of squaring.

It follows from all this that it is
futile to attempt to avoid biases of the order of

magnitude 1/22n or less. (The factor 1/12 above may
seem to be changing the order of magnitude in question.
However, it is really the square root of the variance

which matters and 1/12~.3 is a moderate factor.) Since

-84-

we propose to use n=39, therefore 1/278 (~3'10_24) is

the critical case. Note, that this possible bias level
is 1/239 (~2'10_12) times our last significant digit.

Hence we will look for round-off rules to n digits for
the "true'" xy = (. 8qe 8 8 41+ -59y) and x/y = (Lwg

LW W wn+2"‘)’ The desideratum (1) which we formu-
lated previously, that the variance should be small, is
still valid. The desideratum (2), however, that the
bias should be zero, need according to the above, only
be enforced up to terms of the order 1/2%7,

The round-off procedures, which we can use
in this connection, fall into two broad classes. The
first class is characterized by its ignoring all digits
beyond the n-th, and even the n-th itself, which it re-
places by a 1. The second class is characterized by the
procedure of adding one unit in the ntl-st digit, perform-
ing the carries which this may induce, and then keeping
only the n first digits.

When applied to a number of the form

(’Vl"'vnvn+1vn+2...)(in infinitum!), the effects of either
procedure are easily estimated. 1In the first case we may
say we are dealing with (.vl...,vn_l) plus a random number

of the form (.O,...,Ovnvn+1vn+2...), i.e. random in the

interval 0, 1/2""". Comparing with the rounded off

(.vl,vz,...vn_ll), we therefore have a difference random

in the interval —1/2n, 1/2". Hence its mean is 0 and
its variance l/3'22n. In the second case we are dealing
with (.vl...un) plus a random number of the form (.0...
OOvn+1vn+2...), i.e. random in the interval 0, 1/2".

The ''rounded-off' value will be (.vl...vn) increased by 0

or by 1/2", according to whether the random number in

-85-

question lies in the interval O, 1/2n+1, or in the interval
l/2n+1, 1/2". Hence comparing with the ''rounded-off' value,
we have a difference random in the intervals O, l/2n+l, and
0, -1/2n+1, i.e. in the interval -l/2n+l, 1/2°* . Hence

its mean is 0 and its variance 1/12‘22n,

If the number to be rounded-off has the
form (‘vl"'vnvn+lvn+2'"vn+p) (p finite), then these
results are somewhat affected. The order of magnitude of
the variance remains the same, indeed for large p even its
relative change is negligible. The mean difference may
deviate from O by amounts which are easily estimated to be
of the order 1/2% * 1/2P = 1/2°%P,

In division we have the first situation,
xly = (Lwpeoow @ g0 4o...), i.e. p is infinite. In
multiplication we have the second one, xy = (. %1...
§n§n+l"'§2n>’ i.e. p = n. Hence for the division both
methods are applicable without modification. In mul-
tiplication a bias of the order of 1/22n may be intro-
duced. We have seen that it is pointless to insist on
removing biases of this size. We will therefore use the
unmodified methods in this case, too.

It should be noted that the bias in the
case of multiplication can be removed in various ways.
However, for the reasons set forth above, we shall not
complicate the machine by introducing such corrections.

Thus we have two standard ''round-off"
methods, both unbiased to the extent to which we need
this, and with the variances 1/3'22n, and 1/12’22n,
that is, with the dispersions (1/“/3) (1/2™) = .58 times
the last digit and (1/2\/53 (1/2™) = .29 times the last
digit. The first one requires no carry facilities, the
second one requires them.

Inasmuch as we propose to form the product
x'y' in the Accumulator, which has carry facilities, there

is no reason why we should not adopt the rounding scheme

-86-

described above which has the smaller dispersion, i.e. the
one which may induce carries. In the case, however, of
division we wish to avoid schemes leading to carries since
we expect to form the quotient in the Arithmetic Register,
which does not permit of carry operations. The scheme which
we accordingly adopt is the one in which w is replaced by
1. This method has the decided advantage that it enables
us to write down the approximate quotient as soon as we
know its first (n-1) digits. It will be seen in 5.14 and
6.6.4 below that our procedure for forming the quotient of
two numbers will always lead to a result that is correctly
rounded in accordance with the decisions just made. We do
not consider as serious the fact that our rounding scheme
in the case of division has a dispersion twice as large as
that in multiplication since division is a far less fre-
quent operation.

A final remark should be made in connection
with the possible, occasional need of carrying more than
n=39 digits. Our logical control is sufficiently flexible
to permit treating k (= 2, 3, ...) words as one number, and
thus effecting n = 39k. In this case the round off has to
be handled differently, cf. Chapter IX, Part II. The
multiplier produces all 78 digits of the basic 39 by 39
digit multiplication. The first 39 in the A, the last 39
in the AR. These must then be manipulated in an appropriate
manner. (For details, cf. 6.6.3 and 9.9.9.10, Part II.)

The divider works for 39 digits only: In forming x/y, it is
necessary, even if x and y are available to 39k digits to
use only 39 digits of each, and a 39 digit result will appear.
It seems most convenient to use this result as the first
step of a series of successive approximations. The succes-
sive improvements can then be obtained by various means.
One way consists of using the well-known iteration formula
(cf. 5.4). For k=2 one such step will be needed, for

k = 3, 4, two steps, for k =5, 6, 7, 8 three steps, etc.

-87-

An alternative procedure is this: Calculate the remainder,
using the approximate, 39 digit, quotient and the complete,
39k digit, divisor and dividend. Divide this again by the
approximate, 39 digit, divisor, thus obtaining essentially
the next 39 digits of the quotient. Repeat this procedure
until the full 39k desired digits of the quotient have
been obtained.

5.13 We might mention at this time a
complication which arises when a floating binary point
is introduced into the machine. The operation of addi-
tion which usually takes at most 1/10 of a multiplication
time becomes much longer in a machine with floating binary
since one must perform shifts and round-offs as well as
additions. It would seem reasonable in this case to place
the time of an addition as about 1/3 to 1/2 of a multi-
plication. At this rate it is clear that the number of
additions in a problem is as important a factor in the
total solution time as are the number of multiplications.
(For further details concerning the floating binary point,
cf. 6.6.7.)

5.14 We conclude our discussion of the
arithmetic unit with a description of our method for
handling the division operation. To perform a division
we wish to store the dividend in SR, the partial remainder
in A and the partial quotient in AR. Before proceeding
further let us consider the so-called restoring and
non-restoring methods of division. In order to be able

to make certain comparisons, we will do this for a general
base m = 2, 3,

Assume for the moment that divisor and
dividend are both positive. The ordinary process of
division consists of subtracting from the partial re-
mainder (at the very beginning of the process this is,

-88-

of course, the dividend) the divisor, repeating this until
the former becomes smaller than the latter. For any fixed
positional value in the quotient in a well-conducted div-
ision this need be done at most m - 1 times. If, after
precisely k = 0, 1, ..., m - 1 repetitions of this step,
the partial remainder has indeed become less than the
divisor, then the digit k is put in the quotient (at the
position under consideration), the partial remainder is
shifted one place to the left, and the whole process is
repeated for the next position, etc. Note that the

above comparison of sizes is only needed at k = 0, 1, ...,
m - 2, i.e. before step 1 and after steps 1, ..., m - 2,
If the value k = m -~ 1, i.e. the point after step m - 1,
is at all reached in a well-conducted division, then it
may be taken for granted without any test, that the par-
tial remainder has become smaller than the divisor, and
the operations on the position under consideration can
therefore be concluded. (In the binary system, m = 2,
there is thus only one step, and only one comparison

of sizes, before this step.) In this way this scheme,
known as the restoring scheme, requires a minimum of

m - 1 comparisons and utilizes the digits 0, 1, ...,

m - 1 in each place in the quotient. The difficulty of
this scheme for machine purposes is that usually the

only economical method for comparing two numbers as to
size is to subtract one from the other. If the partial
remainder r were less than the dividend d, one would
then have to add d back into r, - d in order to restore
the remainder. Thus at every stage an unnecessary oOp-
eration would be performed. A more symmetrical scheme is
obtained by not restoring. In this method (from here on
we need not assume the positivity of divisor and dividend)

one compares the signs of r_, and d; if they are of the

-89-

same sign, the dividend is repeatedly subtracted from the
remainder until the signs become opposite; if they are
opposite, the dividend is repeatedly added to the remain-
der until the signs again become like. 1In this scheme

the digits that may occur in a given place in the quotient
are evidently +1, +2, ..., + (m - 1), the positive digits
corresponding to subtractions and the negative ones to
additions of the dividend to the remainder.

Thus we have 2(m - 1) digits instead of
the usual m digits. In the decimal system this would
mean 18 digits instead of 10. This is a redundant
notion. The standard form of the quotient must there-
fore be restored by subtracting from the aggregate of its
positive digits the aggregate of its negative digits.
This requires carry facilities in the place where the
quotient is stored.

We propose to store the quotient in AR,
which has no carry facilities. Hence we could not use
this scheme if we were to operate in the decimal system.

The same objection applies to any base m
for which the digital representation in question is
redundant -- i.e. when 2(m - 1) >m. Now 2(m - 1) > m
whenever m > 2, but 2(m - 1) = m for m = 2. Hence, with
the use of a register which we have so far contemplated,
this division scheme is certainly excluded from the start
unless the binary system is used.

Let us now investigate the situation in
the binary system. We inquire if it is possible to obtain
a quasi-quotient by using the non-restoring scheme and by
using the digits, 1, O instead of 1, -1. Or rather we
have to ask this question: Does this quasi-quotient
bear a simple relationship to the true quotient?

Let us momentarily assume this question

-90-

can be answered affirmatively and describe the division
procedure. We store the divisor initially in A, the
dividend in SR and wish to form the quotient in AR. We
now either add or subtract the contents of SR into A,
according to whether the signs in A and SR are opposite
or the same, and insert correspondingly a 0 or 1 in the
right-hand place of AR. We then shift both A and AR one
place left, with electronic shifters that are parts of
these two aggregates.

At this point we interrupt the discussion
to note this: Multiplication required an ability to shift
right in both A and AR (cf. 5.8). We have now found that
division similarly requires an ability to shift left in
both A and AR. Hence both organs must be able to shift
both ways electronically. Since these abilities have to
be present for the implicit needs of multiplication and
division, it is just as well to make use of them explicitly
in the form of explicit orders. These are the orders
20, 21 of Table I, and of Table 2, Part II. It will,
however, turn out to be convenient to arrange some details
in the shifts, when they occur explicitly under the control
of those orders, differently from when they occur implicitly
under the control of a multiplication or a division. (For
these things, cf. the discussion of the shifts near the
end of 5.8 and in the third remark below on one hand, and
in the third remark in 7.2, Part II, on the other hand.)

Let us now resume the discussion of the
division. The process described above will have to be
repeated as many times as the number of quotient digits
that we consider appropriate to produce in this way. This
is likely to be 39 or 40; we will determine the exact
number further below.

]
In this process we formed digits €i =0

-91-

or 1 for the quotient, when the digit should actually

have been £, = -1 or 1, with §£ = 2%{ - 1. Thus we have

a difference between the true quotient z (based on the
digits £.,) and the quasi-quotient z' (based on the digits
ii), but at the same time a one-to-one connection. It
would be easy to establish the algebraical expression for
this connection between z' and z directly, but it seems
better to do this as part of a discussion which clarifies
all other questions connected with the process of division
at the same time.

We first make some general remarks:

First: Let x be the dividend and y the
divisor. We assume, of course, -1 £ x <1, -1 £y <1,

It will be found that our present process of division is
entirely unaffected by the signs of x and y, hence no
further restrictions on that score are required.

On the other hand, the quotient z = x/y
must also fulfill -1 £ z < 1. It seems somewhat simpler
although this is by no means necessary, to exclude for the
purposes of this discussion z = - 1, and to demand |z|< 1.
This means in terms of the dividend x and the divisor y
that we exclude x = -y and assume (x| < y.

Second: The division takes place in n
steps, which correspond to the n digits §i,...,§; of the
pseudo-quotient z', n being yet to be determined (presum-
ably 39 or 40.) Assume that the k - 1 first steps (k = 1,
...,n) have already taken place, having produced the k - 1
first digits: §&;,...,5) ;; and that we are now at the
kth step, involving production of the kth digit; éi.
Assume furthermore, that A now contains the quantity
r,_.1» the result of the k - 1 first steps. (This is the
(k - 1)st partial remainder. For k = 1 clearly r, = x,)
We then form r, = Zrk-l + y, according to whether the

-92-

signs of Tr-1 and y do or do not agree, i.e.

re = 2rk_1 d oy,

(4) Iis - if the signs of ryo1 and y do agree;
E}Lis + if the signs of r, _; and y do not agree.

Let us now see what carries may originate
in this procedure. We can argue as follows: Irh| < |yl is
true for h = 0 (rro| = |x| < |y|), and if it is true for

h =%k - 1, then (4) extends it to h = k also, since Tl
and My have opposite signs. The last point may be
elaborated a little further: because of the opposite
signs !rk‘ = Z‘rk-ll - |yl < 2)y|-|y| =|yk Hence we have

always ‘rk| < |y| » and therefore a fortiorilrk| <1, i.e.
-1c¢< r, < 1.

Consequently in equation (4) one summand is
necessarily > -2, <2, the other is 2 1, < 1, and the sum
is > -1, <1. Hence we may carry out the operations of (4)
modulo 2, disregarding any possibilities of carries beyond
the 2° position, and the resulting Ty will be automatically
correct (in the range > - 1, < 1.)

Third: Note however that the sign of
r,_1> which plays an important role in (4) above, is only
then correctly determinable from the sign digit, if the
number from which it is derived is 2 -1, <1. (Cf. the
discussion in 5.7) This requirement however, is met, as we
saw above, by Tp-1s but not necessarily by 2rk_1. Hence
the sign of r, _q, (i.e. its sign digit) as required by (4),
must be sensed before r;, _; is doubled.

This being understood, the doubling of

ry_q may be performed as a simple left shift, in which the

-93-

left-most digit (the sign digit) is allowed to be lost--
this corresponds to the disregarding of carries beyond the
2° position, which we recognized above as being permis-
sible in (4). (Cf. however, Part II, Table 2, for another
sort of left shift that is desirable in explicit form, i.e.
as an order.)

Fourth: Consider now the precise impli-
cation of (4) above. §'i =1 or 0 corresponds to M =
- or +, respectively, Hence (4) may be written

1
rk = 2rk_1 + (]- = zgk)yy

) k. _ ,-(k-1) ~k_,-(k-1)) v.

Summing over k = 1,..., n gives

n
27 = x +{(1 -2 gy 27Dy

k=1
n

. = - - - ! -n -1
i.e. x 1 +) 2-(k-1)&; + 2 y +2 r .
k=1

This makes it clear, that z =-1-+§:E=1

2-(k-1)§£ + 2™™ corresponds to true quotient z = x/y

and 2_nrn, with an absolute value <2™ % |y| < 27" to the

remainder. Hence, if we disregard the term -1 for a

moment , i,%é,...,éa, 1 are the n + 1 first digits of what
may be used as a true quotient, the sign digit being part
of this sequence.

Fifth: If we do not wish to get involved
in more complicated round-off procedures which exceed

the immediate capacity of the only available adder, A

b

-04-~

then the above results suggest that we should put n + 1
=40, n = 39, The £, ...,f39 are then 39 digits of the
quotient, including the sign digit, but not including the
right-most digit.

The right-most digit is taken care of by
placing a 1 into the right-most stage of A.

At this point an additional argument in
favor of the procedure that we have adopted here becomes
apparent. The procedure coincides (without a need for
any further corrections) with the second round-off pro-
cedure that we discussed in 5.12.

There remains the term -1, Since this
applies to the final result, and no right shifts are to
follow, carries which might go beyond the 2° position
may be disregarded. Hence this amounts simply to changing
the sign digit of the quotient z: replacing O or 1 by 1
or 0 respectively.

This concludes our discussion of the
division scheme. We wish, however, to re-emphasize two
very distinctive features which it possesses:

First: This division scheme applies equally
for any combinations of signs of divisor and dividend.
This is a characteristic of the non-restoring division
schemes, but it is not the case for any simple known
multiplication scheme, It will be remembered, in par-
ticular that our multiplication procedure of 5.9 had to
contain special correcting steps for the cases where either
or both factors are negative.

Second: This division scheme is practicable
in the binary system only; it has no analog for any other
base,

This method of binary division will be

illustrated on some examples in 5.15,

-95-

5.15. We give below some illustrative
examples of the operations of binary arithmetic which
were discussed in the preceding sections.

Although it presented no difficulties or

ambiguities, it seems best to begin with an example of

addition. .]
Ceraettonat fomm)
Augend...veeeeeecannn0,010110011 179/512
Addend.....ovvvennnnn0.011010111 215/512
SUM veveeennnnnnns ceee...0.110001010 394/512

(Carries) evoeeceeeeesssas 1111 111

In what follows we will not show the carries any more.

We form the negative of a number (cf. 5.7):

Binary notation Decimal notation
(fractional form)
0.101110100 -372/512
Complement...oeeeesssss. 1.010001011
1 e ————
1.010001100 -1 +140/512
A subtraction (cf. 5.7):
Binary notation Decimal notation
(fractional form)
Subtrahend 0.011010111 215/512
Minuend........0e0vve.e.. 0.110001010 394/512

Complement of subtrahend 1.100101000
1 -1 +297/512

Difference0vee.... 0.,010110011 179/512

Some multiplications (cf 5.8 and 5.9):

Binary notation

Multip]—icand. ® ® & & 0 9 0 0 9 0 00
Multiplier' e & o 0 0 0 0 0

-96-

0.101
0.011

0101
0101
0

Product .e.eeeceesceosses

Binary notation

Multip]-icandoooono.nooo..
MU1tip]-ier ® 0 @ 06 000000 00 00

0.001111

1.101
1.011

0101
10101

. a
Correction 1 ...eeeeene

.101111
1 1

Correction 2P (Complement
of the multiplicand).

0.010
1

A division (cf. 5.14):

Binary notation

DiViSOI' ® ®© 0 0 0 08 0 0 000 0 000

Dividend e 8 0060 00 000008000

0.001111

1.011000
0.001111

1.110110

0.011110
1.011000

Decimal notation
(fractional form)

5/8
3/8

15/64

Decimal notation
(fractional form)
-3/8
-5/8

15/64

Decimal notation

(fractional form)
Q.D.€
-5/8

15/64

-97-

1.101100
0.100111
1

0.010100

0.101000
1.011000

0.000000

0.000000
1.011000

1.011000

0.110000
0.100111
1

1.011000

Quotient (uncorrected)

" (corrected)

0.10011
1.100111

2 For the sign of the multiplicand.
For the sign of the multiplier.

b

c . . .
Quotient digit.

-1+39/64= ~25/64

-98-

Note that this deviates by 1/64, i.e. by
one unit of the right-most position, from the correct
result =-3/8. This is a consequence of our round-off
rule, which forces the right-most digit to be 1 under all
conditions. This occasionally produces results with
unfamiliar and even annoying aspects (e.g. when quotients
like O:y or y:y are formed), but it is nevertheless un-
objectionable and self-consistent on the basis of our

general principles.
6.0 THE CONTROL

6.1. It has already been stated that the
computer will contain an organ, called the control, which
can automatically execute the orders stored in the Sel-
ectrons. Actually, for a reason stated in 6.3, the or-
ders for this computer are less than half as long as a
forty binary digit number, and hence the orders are stored
in the Selectron memory in pairs.

Let us consider the routine that the con-
trol performs in directing a computation. The control
must know the location in the Selectron memory of the
pair of orders to be executed. It must direct the
Selectrons to transmit this pair of orders to the Sel-
ectron register and then to itself. It must then direct
the execution of the operation specified in the first of
the two orders. Among these orders we can immediately
describe two major types: An order of the first type
begins by causing the transfer of the number, which is
stored at a specified memory location, from the Sel-
ectrons to the Selectron register. Next, it causes the
arithmetical unit to perform some arithmetical operations
on this number (usually in conjunction with another
number which is already in the arithmetical unit), and

-99-

to retain the resulting number in the arithmetical unit.
The second type order causes the transfer of the number,
which is held in the arithmetical unit, into the Selectron
register, and from there to a specified memory location
in the Selectrons. (It may also be that this latter
operation will permit a direct transfer from the arith-
metical unit into the Selectrons.) An additional type of
order consists of the transfer orders of 3.5. Further
orders control the inputs and the outputs of the machine.
The process described at the beginning of this paragraph
must then be repeated with the second order of the order
pair. This entire routine is repeated until the end of
the problem,

6.2. It is clear from what has just been
stated that the control must have a means of switching
to a specified location in the Selectron memory, for with-
drawing both numbers for the computation and pairs of
orders. Since the Selectron memory (as tentatively
planned) will hold 212 = 4,096 forty-digit words (a word
is either a number or a pair of orders), a twelve-digit
binary number suffices to identify a memory location.
Hence a switching mechanism is required which will, on
receiving a twelve-digit binary number, select the cor-
responding memory location.

The type of circuit we propose to use for
this purpose is known as a decoding or many=-one function
table., It has been developed in various forms independ-
ently by J. Rajchman and P. Crawford.* It consists of

Rajchman's table is described in an RCA Laboratories'
report by Rajchman, Snyder and Rudnick issued in 1943
under the terms of an OSRD contract OEM-sr-591, Crawford's
work is discussed in his thesis for the Master's degree

at Massachusetts Institute of Technology.

-100-

n flip-flops which register an n digit binary number. It
also has a maximum of 2" output wires. The flip-flops
activate a matrix in which the interconnections between
input and output wires are made in such a way that one
and only one of 2™ output wires is selected (i.e. has a
positive voltage applied to it). These interconnections
may be established by means of resistors or by means of
non-linear elements (such as diodes or rectifiers); all
these various methods are under investigation. The
Selectron is so designed that four such function table
switches are required, each with a three digit entry and
eight (23) outputs. Four sets of eight wires each are
brought out of the Selectron for switching purposes, and
a particular location is selected by making one wire
positive with respect to the remainder. Since all forty
Selectrons are switched in parallel, these four sets of
wires may be connected directly to the four function
table outputs.

6.3. Since most computer operations in-
volve at least one number located in the Selectron memory,
it is reasonable to adopt a code in which twelve binary
digits of every order are assigned to the specification of
a Selectron location. In those orders which do not re-
quire a number to be taken out of or into the Selectrons
these digit positions will not be used.

Though it has not been definitely decided
how many operations will be built into the computer (i.e.
how many different orders the control must be able to
understand), it will be seen presently that there will

3 but certainly less than 26.

probably be more than 2
For this reason it is feasible to assign 6 binary digits
for the order code. It thus turns out that each order

must contain eighteen binary digits, the first twelve

-101-

identifying a memory location and the remaining six
specifying an operation. It can now be explained why
orders are stored in the memory in pairs. Since the same
memory organ is to be used in this computer for both or-
ders and numbers, it is efficient to make the length of
each about equivalent. But numbers of eighteen binary
digits would not be sufficiently accurate for problems
which this machine will solve. Rather, an accuracy of

at least 10710 or 2733
ferable to make the numbers long enough to accommodate

is required. Hence it is pre-

two orders.

As we pointed out in 2.3, and used in 4.2
et seq. and 5.7 et seq., our numbers will actually have 40
binary digits each. This allows 20 binary digits for each
order, i.e. the 12 digits that specify a memory location,
and 8 more digits specifying the nature of the operation
(instead of the minimum of 6 referred to above). It is
convenient, as will be seen in 6.8.2. and Chapter 9, Part
II, to group these binary digits into tetrads, groups of
4 binary digits. Hence a whole word consists of 10
tetrads, a half word or order of 5 tetrads, and of these
3 specify a memory location and the remaining 2 specify
the nature of the operation. Outside the machine each
tetrad can be expressed by a base 16 digit. (The base 16
digits are best designated by symbols of the 10 decimal
digits 0 to 9, and 6 additional symbols, e.g. the letters
a to f. Cf. Chapter 9, Part II.) These 16 characters
should appear in the typing for and the printing from the
machine. (For further details of these arrangements, cf.
loc. cit. above.)

The specification of the nature of the
operation that is involved in an order occurs in binary
form, so that another many-one or decoding function is

-102-

required to decode the order. This function table will
have six input flip-flops (the two remaining digits of the
order are not needed). Since there will not be 64 differ-
ent orders, not all 64 outputs need be provided. How-
ever, it is perhaps worthwhile to connect the outputs
corresponding to unused order possibilities to a checking
circuit which will give an indication whenever a code
word unintelligible to the control is received in the
input flip-flops.

The function table just described energizes
a different output wire for each different code operation.
As will be shown later, many of the steps involved in
executing different orders overlap. (For example, addition,
multiplication, division, and going from the Selectrons to
the register all include transferring a number from the
Selectrons to the Selectron register.) For this reason it
is perhaps desirable to have an additional set of control
wires, each of which is activated by any particular combi-
nation of different code digits. These may be obtained
by taking the output wires of the many-one function table
and using them to operate tubes which will in turn operate
a one-many (or coding) function table. Such a function
table consists of a matrix as before, but in this case
only one of the input wires is activated at any one time,
while various sets of one or more of the output wires are
activated. This particular table may be referred to as
the recoding function table.

The twelve flip-flops operating the four
function tables used in selecting a Selectron position,
and the six flip-flops operating the function table used
for decoding the order, are referred to as the Function
Table Register, FR.

6.4 Let us consider next the process of

-103-

transferring a pair of orders from the Selectrons to the
control. These orders first go into SR. The order which
is to be used next may be transferred directly into FR,
The second order of the pair must be removed from SR
(since SR may be used when the first order is executed),
but cannot as yet be placed in FR., Hence a temporary
storage is provided for it. The storage means is called
the Control Register, CR, and consists of 20 (or possibly
18) flip-flops, capable of receiving a number from SR

and transmitting a number to FR.

As already stated (6.1), the control must
know the location of the pair of orders it is to get
from the Selectron memory. Normally this location will be
the one following the location of the two orders just
executed, That is, until it receives an order to do
otherwise, the control will take its orders from the
Selectrons in sequence. Hence the order location may be
remembered in a twelve stage binary counter (one capable
of counting 212) to which one unit is added whenever a
pair of orders is executed. This counter is called the
Control Counter, CC.

The details of the process of obtaining a

pair of orders from the Selectron are thus as follows:

The contents of CC are copied into FR, the proper Sel-
ectron location is selected, and the contents of the
Selectrons are transferred to SR, FR is then cleared,

and the contents of SR are transferred to it and CR. CC
is advanced by one unit so the control will be prepared

to select the next pair of orders from the memory. (There
is, however, an exception from this last rule for the
so-called transfer orders, cf, 3.5. This may feed CC in
a different manner, cf. the next paragraph below.) First

the order in FR is executed and then the order in CR is

-104-

transferred to FR and executed. It should be noted that
all these operations are directed by the control itself--
not only the operations specified in the control words
sent to FR, but also the automatic operations required to
get the correct orders there.

Since the method by means of which the control
takes order pairs in sequence from the memory has been
described, it only remains to consider how the control
shifts itself from one sequence of control orders to
another in accordance with the operations described in
3.5. The execution of these operations is relatively
simple. An order calling for one of these operations con-
tains the twelve digit specification of the position to
which the control is to be switched, and these digits will
appear in the left-hand twelve flip-flops of FR. All that
is required to shift the control is to transfer the con-
tents of these flip-flops to CC. When the control goes to
the Selectrons for the next pair of orders it will then go
to the location specified by the number so transferred.

In the case of the unconditional transfer, the transfer is
made automatically; in the case of the conditional trans-
fer it is made only if the sign counter of the Accumulator
registers zero.

6.5. In this report we will discuss only
the general method by means of which the control will
execute specific orders, leaving the details until later.
It has already been explained (5.5) that when a circuit is
to be designed to accomplish a particular elementary
operation (such as addition), a choice must be made between
a static type and a dynamic type circuit. When the design
of the control is considered, this same choice arises.

The function of the control is to direct a sequence of
operations which take place in the various circuits of the

-105-

computer (including the circuits of the control itself).
Consider what is involved in directing an operation.

The control must signal for the operation to begin, it
must supply whatever signals are required to specify that
particular operation, and it must in some way know when
the operation has been completed so that it may start the
succeeding operation. Hence the control circuits must be
capable of timing the opzrations. It should be noted that
timing is required whether the circuit performing the
operation is static or dynamic. In the case of a static
type circuit the control must supply static control sig-
nals for a period of time sufficient to allow the output
voltages to reach the steady-state condition. 1In the case
of a dynamic type circuit the control must send various
pulses at proper intervals to this circuit.

If all circuits of a computer are static in
character, the control timing circuits may likewise be
static, and no pulses are needed in the system. However,
though some of the circuits of the computer we are planning
will be static, they will probably not all be so, and
hence pulses as well as static signals must be supplied
by the control to the rest of the computer. There are
many advantages in deriving these pulses from a central
source, called the clock. The timing may then be done
either by means of counters counting clock pulses or by
means of electrical delay lines (an RC circuit is here
regarded as a simple delay line). Since the timing of
the entire computer is governed by a single pulse source,
the computer circuits will be said to operate as a
synchronized system.

The clock plays an important role both in
detecting and in localizing the errors made by the

-106-

computer. One method of checking which is under consid-
eration is that of having two identical computers which
operate in parallel and automatically compare each other's
results. Both machines would be controlled by the same
clock, so they would operate in absolute synchronism. It
is not necessary to compare every flip-flop of one machine
with the corresponding flip-flop of the other. Since all
numbers and control words pass through either the Selectron
register or the accumulator soon before or soon after they
are used, it suffices to check the flip-flops of the
Selectron register and the flip-flops of the accumulator
which hold the number registered there; in fact, it seems
possible to check the accumulator only (cf. the end of
6.6.2). The checking circuit would stop the clock when-
ever a difference appeared, or stop the machine in a more
direct manner if an asynchronous system is used. Every
flip-flop of each computer will be located at a convenient
place. 1In fact, all neons will be located on one panel,
the corresponding neons of the two machines being placed
in parallel rows so that one can tell at a glance (after
the machine has been stopped) where the discrepancies are,
The merits of any checking system must be
weighed against its cost. Building two machines may ap-
pear to be expensive, but since most of the cost of a
scientific computer lies in development rather than pro-
duction, this consideration is not so important as it
might seem, Experience may show that for most problems
the two machines need not be operated in parallel., Indeed,
in most cases purely mathematical, external checks are
possible: Smoothness of the results, behavior of dif-
ferences of various types, validity of suitable identities,
redundant calculations, etc. All of these methods are

usually adequate to disclose the presence or absence of

-107-

error in toto; their drawback is only that they may not
allow the detailed diagnosing and locating of errors at
all or with ease. When a problem is run for the first
time, so that it requires special care, or when an error
is known to be present, and has to be located--only then
will it be necessary as a rule, to use both machines in
parallel., Thus they can be used as separate machines most
of the time, The essential feature of such a method of
checking lies in the fact that it checks the computation
at every point (and hence detects transient errors as well
as steady-state ones) and stops the machine when the
error occurs so that the process of localizing the fault
is greatly simplified. These advantages are only partially
gained by duplicating the arithmetic part of the computer,
or by following one operation with the complement operation
(multiplication by division, etc.), since this fails to
check either the memory or the control (which is the most
complicated, though not the largest, part of the machine).
The method of localizing errors, either
with or without a duplicate machine, needs further dis-
cussion. It is planned to design all the circuits (in-
cluding those of the control) of the computer so that if
the clock is stopped between pulses the computer will re-
tain all its information in flip-flops so that the compu-
tation may proceed unaltered when the clock is started
again. This principle has already demonstrated its use-
fulness in the ENIAC. This makes it possible for the
machine to compute with the clock operating at any speed
below a certain maximum, as long as the clock gives out
pulses of constant shape regardless of the spacing between
pulses. 1In particular, the spacing between pulses may
be made indefinitely large. The clock will be provided

with a mode of operation in which it will emit a single

-108-

pulse whenever instructed to do so by the operator. By
means of this, the operator can cause the machine to go
through an operation step by step, checking the results by
means of the indicating lamps connected to the flip-flops.
It will be noted that this design principle does not ex-
clude the use of delay lines to obtain delays as long as
these are only used to time the constituent operations of
a single step, and have no part in determining the machine's
operating repetition rate. Timing coincidences by means
of delay lines is excluded since this requires a constant
pulse rate.

6.6. The orders which the Control under-
stands may be divided into two groups: Those that specify
operations which are performed within the computer and
those that specify operations involved in getting data
into and out of the computer. At the present time the
internal operations are more completely planned than the
input and output operations, and hence they will be dis-
cussed more in detail than the latter (which are treated
briefly in 6.8.) The internal operations which have been
tentatively adopted are listed in Table 1. It has already
been pointed out that not all of these operations are
logically basic, but that many can be programmed by means
of others, In the case of some of these operations the
reasons for building them into the control have already
been given. In this section we will give reasons for
building the other operations into the control and will
explain in the case of each operation what the control must
do in order to execute it.

In order to have the precise mathematical
meaning of the symbols which are introduced in what follows
clearly in mind, the reader should consult the table at the
end of the report for each new symbol, in addition to the

-109-

explanations given in the text.

6.6.1 Throughout what follows S(x) will
denote the memory location No. x in the Selectron.
Accordingly the x which appears in S(x) is a 12 digit
binary, in the sense of 6.2. The eight addition
operations [S(x) —Act, S(x) -Ac-, S(x) —Aht+, S(x) -Ah-,
S(x) -ActM, S(x) —Ac-M, S(x) —AhtM, S(x) —~Ah-MI] involves
the following possible four steps:

First: Clear SR and transfer into it the
number at S(x).

Second: Clear A if the order contains the
symbol c¢; do not clear A if the order contains the symbol
h.

Third: Add the number in SR or its negative
(i.e. in our present system its complement with respect to
21) into A. If the order does not contain the symbol M,
use the number in SR or its negative according to whether
the order contains the symbol + or -. If the order contains
the symbol M, use the number in SR or its negative accord-
ing to whether the sign of the number in SR and the symbol
+ or - in the order do or do not agree.

Fourth: Perform a complete carry. Building
the last four addition operations (those containing the
symbol M) into the control is fairly simple: It calls only
for one extra comparison (of the sign in SR and the + or -
in the order, cf. the third step above), and it requires,
therefore, only a few tubes more than required for the
first four addition operations (those not containing the
symbol M). These facts would seem of themselves to justify
adding the operations in question: plus and minus the
absolute value. But it should be noted that these opera-
tions can be programmed out of the other operations of

-110-

Table 1 with correspondingly few orders (three for abso-
lute value and five for minus absolute value), so that
some further justification for building them in is required,
The absolute value order is frequently in connection with
the orders L and R (see 6.6.7), while the minus absolute
value order makes the detection of a zero very simple by
merely detecting the sign of -IN’. (If -INl> 0, then
N =0.)

6.6.2 The operation of S(x) —~R involves
the following two steps:

First: Clear SR, and transfer S(x) to it.

Second: Clear AR and add the number in the
Selectron Register into it. The operation of R —~A merits
more detailed discussion, since there are alternative ways
of removing numbers from AR. Such numbers could be taken
directly to the Selectrons as well as into A, and they
could be transferred to A in parallel, in sequence, or in
sequence parallel. It should be recalled that while most
of the numbers that go into AR have come from the Selectrons
and thus need not be returned to them, the result of a
division and the right-hand 39 digits of a product appear
in AR. Hence while an operation for withdrawing a number
from AR is required, it is relatively infrequent and there-
fore need not be particularly fast. We are therefore con-
sidering the possibility of transferring at least partially
in sequence and of using the shifting properties of A and
of AR for this. Transferring the number to the Selectron
via the Accumulator is also desirable if the dual machine
method of checking is employed, for it means that even if
numbers are only checked in their transit through the
Accumulator, nevertheless every number going into the
Selectron is checked before being placed there.

6.6.3 The operation S(x) x R —A involves

-111-

the following six steps:

First: Clear SR and transfer S(x) (the
multiplicand) into it.

Second: Thirty-nine steps, each of which
consist of the two following parts: (a) Add (or rather
shift) the sign digit of SR into the partial product in

A, or add all but the sign digit of SR into the partial
product in A -- depending upon whether the right-most
digit in AR is O or 1 -- and effect the appropriate carries.

(b) Shift A and AR to the right, fill the sign digit of
A with a 0 and the digit of AR immediately right of the
sign digit (Positional value 2-1) with the previously
right-most digit of A. (There are ways to save time by
merging these two operations when the right-most digit in
AR is 0, but we will not discuss them here more fully.)

Third: If the sign digit in SR is 1 (i.e.-),
then inject a carry into the right-most stage of A and
place a 1 into the sign digit of A.

Fourth: If the original sign digit of AR is
1 (i.e.-), then subtract the contents of SR from A.

Fifth: 1If a partial carry system was em-
ployed in the main process, then a complete carry is nec-
essary at the end.

Sixth: The appropriate round-off must be
effected. (Cf. Chapter 9, Part II, for details where it
is also explained how the sign digit of the Arithmetic
Register is treated as part of the round-off process.)

It will be noted that since any number
held in A at the beginning of the process is gradually
shifted into AR, it is impossible to accumulate sums of
products in A without storing the various products
temporarily in the Selectrons. While this is undoubtedly
a disadvantage, it cannot be eliminated without constructing

-112-

an extra register, and this does not at this moment seem
worthwhile.

On the other hand, saving the right-hand 39
digits of the answer is accomplished at very little extra
equipment, since it means connecting the 2_39 stage of A
to the 271 stage of AR during the shift operation. The ad-
vantage of saving these digits is that it simplifies the
handling of numbers of any number of digits in the computer
(cf. the last part of 5.12). Any number of 39k binary
digits (where k is an integer) and sign can be divided into
k parts, each part being placed in a separate Selectron
position. Addition and subtraction of such numbers may be
programmed out of a series of additions or subtractions of
the 39-digit parts, the carry-over being programmed by
means of Cc ~S(x) and Cc' -S(x) operations. (If the 2°
stage of A registers negative after the addition of two
39-digit parts, a carry-over has taken place and hence
2739 hust be added to the sum of the next parts.) A sim-
ilar procedure may be followed in multiplication if all 78
digits of the product of the two 39-digit parts are kept, as
is planned. (For the details, cf. Chapter 9, Part II.)
Since it would greatly complicate the computer to make
provision for holding and using a 78 digit dividend, it is
planned to program 39k digit division in one of the ways
described at the end of 5.12.

6.6.4 The operation of division A ¢ S(x)

-R involves the following four steps:

First: Clear SR and transfer S(x) (the
divisor) into it.

Second: Clear AR.

Third: Thirty-nine steps, each of which
consists of the following three parts: (a) Sense the signs
of the contents of A (the partial remainder) and of SR, and

-113-

sense whether they agree or not. (b) Shift A and AR left.
In this process the previous sign digit of A is lost. Fill
the right-most digit of A (after the shift) with a 0, and
the right-most digit of AR (before the shift) with 0 or 1,
depending on whether there was disagreement or agreement in
(a). (¢) Add or subtract the contents of SR into A,
depending on the same alternative as above.

Fourth: Fill the right-most digit of AR
with a 1, and change its sign digit.

For the purpose of timing the 39 steps in-
volved in division a six-stage counter (capable of counting
to 2= 64) will be built into the Control. This same
counter will also be used for timing the 39 steps of multi-
plication, and possibly for controlling A when a number
is being transferred between it and a tape in either
direction (see 6.8).

6.6.5 The three substitution operations
[At -S(x), Ap —S(x), and Ap' ~S(x)!] involve transferring
all or part of the number held in A into the Selectrons.
This will be done by means of gate tubes connected to the
registering flip-flops of A. Forty such tubes are needed
for the total substitutions, At -S(x). The partial substi-
tution Ap -S(x) and Ap' -S(x) requires that the left-hand
twelve digits of the number held in A be substituted in
the proper places in the left-hand and right-hand orders
respectively. This may be done by means of extra gate
tubes, or by shifting the number in A and using the gate
tubes required for At —S(x). (This scheme needs some
additional elaboration, when the order directing and the
order suffering the substitution are the two successive
halves of the same word; i.e. when the latter is already
in FR at the time when the former becomes operative in
CR, so that the substitution effected in the Selectrons

-114-

comes too late to alter the order which has already reached
CR, to become operative at the next step in FR. There are
various ways to take care of this complication, either by
some additional equipment or by appropriate prescriptions
in coding. We will not discuss them here in more detail,
since the decisions in this respect are still open.)

The importance of the partial substitution
operations can hardly be over-estimated. It has already
been pointed out (3.3) that they allow the computer to
per form operations it could not otherwise conveniently
per form, such as making use of a function table stored in
the Selectron memory. Furthermore, these operations remove
a very sizeable burden from the person coding problems, for
they make possible the coding of classes of problems in
contrast to coding each individual problem separately.
Because Ap “S(x) and Ap'~ S(x) are available, any program
sequence may be stated in general form (that is, without
Selectron location designations for the numbers being
operated on) and the Selectron locations of the numbers to
be operated on substituted whenever that sequence is used.
As an example, consider a general code for nth order in-
tegration of m total differential equations for p steps of
independent variable t, formulated in advance. Whenever a
problem requiring this rule is coded for the computer, the
general integration sequence can be inserted into the
statement of the problem along with coded instructions for
telling the sequence where it will be located in the memory
Lso that the proper S(x) designations will be inserted
into such orders as Cu —S(x), etc.] Whenever this sequence
is to be used by the computer it will automatically sub-
stitute the correct values of m, n, p and At, as well as
the locations of the boundary conditions and the descriptions

of the differential equations, into the general sequence.

-115-

(For the details of this particular procedure, cf. Chapter
13, Part II.) A library of such general sequences will be
built up, and facilities provided for convenient insertion
of any of these into the coded statement of a problem (cf.
6.8.4)., When such a scheme is used, only the distinctive
features of a problem need be coded.

6.6.6. The manner in which the control
shift operations [Cu -~S(x), Cu' ~S(x), Cc -S(x), and Cc'
-S(x)] are realized has been discussed in 6.4 and needs no
further comment.

6.6.7. One basic question which must be
decided before a computer is built is whether the machine
is to have a so-called floating binary (or decimal) point.
While a floating binary point is undoubtedly very convenient
in coding problems, building it into the computer adds
greatly to its complexity and hence a choice in this matter
should receive very careful attention. However, it should
first be noted that the alternatives ordinarily considered
(building a machine with a floating binary point vs. doing
all computation with a fixed binary point) are not exhaus-
tive and hence that the arguments generally advanced for the
floating binary point are only of limited validity. Such
arguments overlook the fact that the choice with respect
to any particular operation (except for certain basic ones)
is not between building it into the computer and not using
it at all, but rather between building it into the computer
and programming it out of operations built into the
computer. (One short reference to the floating binary point
was made in 5.13.)

Building a floating binary point into the
computer will not only complicate the control but will also
increase the length of a number and hence increase the
size of the memory and the arithmetic unit. Every number

-116-

is effectively increased in size, even though the floating
binary point is not needed in many instances. Further-
more, there is considerable redundancy in a floating binary
point type of notation, for each number carries with it a
scale factor, while generally speaking a single scale
factor will suffice for a possibly extensive set of numbers.
By means of the operations already described in the report
a floating binary point can be programmed. While additional
memory capacity is needed for this, it is probably less
than that required by a built-in floating binary point
since a different scale factor does not need to be remembered
for each number.

To program a floating binary point involves
detecting where the first zero occurs in a number in A.
Since A has shifting facilities this can best be done by
means of them. In terms of the operations previously
described this would require taking the given number out of
A and performing a suitable arithmetical operation on it:
For a (multiple) right shift a multiplication, for a
(multiple) left shift either one division, or as many
doublings (i.e. additions) as the shift has stages. However,
these operations are inconvenient and time-consuming, so
we propose to introduce two operations (L and R) in order
that this (i.e. the single left and right shift) can be
accomplished directly. These operations make use of
facilities already present in A and hence add very little
equipment to the computer. It should be noted that in
many instances a single use of L and possibly of R will
suffice in programming a floating binary point. For if the
two factors in a multiplication have no superfluous zeros,
the product will have at most one superfluous zero (if 5 £ X
< 1and ¥ <Y < 1, then % £ XY < 1). This is similarly

true in division (if ¥ < X< % and %5 £ Y < 1, then

-117-

% < X/Y < 1.,) 1In addition and subtraction any numbers
growing out of range can be treated similarly. Numbers
which decrease in these cases, i.e. develop a sequence of
zeros at the beginning, are really (mathematically) losing
precision. Hence it is perfectly proper to omit formal re-
adjustments in this event. (Indeed, such a true loss of
precision cannot be obviated by any formal procedure, but,
if at all, only by a different mathematical formulation of
the problem.)

6.7. Table 1 shows that many of the oper-
ations which the control is to execute have common elements.
Thus addition, subtraction, multiplication and division all
involve transferring a number from the Selectrons to SR.
Hence the control may be simplified by breaking some of the
operations up into more basic ones. A timing circuit
will be provided for each basic operation, and one or more
such circuits will be involved in the execution of an
order. The exact choice of basic operations will depend
upon how the arithmetic unit is built.

In addition to the timing circuits needed
for executing the orders of Table 1, two such circuits are
needed for the automatic operations of transferring orders
from the Selectron register to CR and FR, and for trans-
ferring an order from CR to FR. In normal computer oper-
ation these two circuits are used alternately, so a binary
counter is needed to remember which is to be used next.

In the operations Cu' = S(x) and Cc - S(x) the first order of
a pair is ignored, so the binary counter must be altered
accordingly.

The execution of a sequence of orders in-
volves using the various timing circuits in sequence.

When a given timing circuit has completed its operation, it
emits a pulse which should go to the timing circuit to be

~-118-

used next. Since this depends upon the particular opera-
tion being executed, these pulses are routed according to
the signals received from the decoding and recoding function
tables activated by the six binary digits specifying an
order.

6.8 In this section we will consider what
must be added to the control so that it can direct the
mechanisms for getting data into and out of the computer
and also describe the mechanisms themselves. Three dif-
ferent kinds of input-output mechanisms are planned.

First: Several magnetic wire storage units
operated by servomechanisms controlled by the computer.

Second: Some viewing tubes for graphic
portrayal of results.

Third: A typewriter for feeding data di-
rectly into the computer, not to be confused with the equip-
ment used for preparing and printing from magnetic wires.
As presently planned the latter will consist of modified
Teletypewriter equipment, cf. 6.8.2 and 6.8.4.

6.8.1 Since there already exists a way of
transferring numbers between the Selectrons and A, there-
fore A may be used for transferring numbers from and to
a wire. The latter transfer will be done serially and
will make use of the shifting facilities of A. Using A
for this purpose eliminates the possibility of computing
and reading from or writing on the wires simultaneously.
However, simultaneous operation of the computer and the
input-output organ requires additional temporary storage
and introduces a synchronizing problem, and hence it is not
being considered for the first model.

Since, at the beginning of the problem, the
computer is empty, facilities must be built into the

Control for reading a set of numbers from a wire when the

-119-

operator presses a manual switch. As each number is read
from a wire into A, the control must transfer it to its
proper location in the Selectrons., The CC may be used to
count off these positions in sequence, since it is capable
of transmitting its contents to FR. A detection circuit
on CC will stop the process when the specified number of
numbers has been placed in the memory, and the control
will then be shifted to the orders located in the first
position of the Selectron memory.

It has already been stated that the entire
memory facilities of the wires should be available to the
computer without human intervention. This means that the
control must be able to select the proper set of numbers
from those going by. Hence additional orders are required
for the code. Here, as before, we are faced with two
alternatives. We can make the control capable of executing
an order of the form: Take numbers from positions p to p
+ s on wire No. k and place them in Selectron locations
v to v + s, Or we can make the control capable of execut-
ing some less complicated operations which, together with
the already given control orders, are sufficient for pro-
gramming the transfer operation of the first alternative.
Since the latter scheme is simpler we adopt it tentatively.

The computer must have some way of finding
a particular number on a wire. One method of arranging for
this is to have each number carry with it its own location
designation. A method more economical of wire memory
capacity is to use the Selectron memory facilities to
remember the position of each wire. For example, the
computer would hold the number ty specifying which number
on the wire is in position to be read. If the control is
instructed to read the number at position p; on this wire,
it will compare P with ty; and if they differ, cause the

-120-

wire to move in the proper direction. As each number on

the wire passes by, one unit is added or subtracted to

ty and the comparison repeated. When Py <ty numbers will
be transferred from the wire to the Accumulator and then to
the proper location in the memory. Then both ty and py will
be increased by 1, and the transfer from the wire to
Accumulator to memory repeated. This will be iterated,
until ty + s and P + s are reached, at which time the
Control will direct the wire to stop.

Under this system the Control must be able
to execute the following orders with regard to each wire:
Start the wire forward, start the wire in reverse, stop the
wire, transfer from wire to A, and transfer from A to
wire. In addition, the wire must signal the Control as
each digit is read and when the end of a number has been
reached. Conversely, when recording is done the Control
must have a means of timing the signals sent from A to the
wire, and of counting off the digits. The 26 counter used
for multiplication and division may be used for the latter
purpose, but other timing circuits will be required for the
former.

If the method of checking by means of two
computers operating simultaneously is adopted, and each
machine is built so that it can operate independently of
the other, then each will have a separate input-output
mechanism. The process of making wires for the computer
must then be duplicated, and in this way the work of the
person making a wire can be checked. Since the wire servo-
mechanisms cannot be synchronized by the central clock, a
problem of synchronizing the two computers when the wires
are being used arises. It is probably not practical to
synchronize the wire feeds to within a given digit, but
this is unnecessary since the numbers coming into the two

-121-

organs A need not be checked as the individual digits
arrive, but only prior to being deposited in the Selectron
memory.

6.8.2 Since the computer operates in the
binary system, some means of decimal-binary and binary-
decimal conversions is highly desirable. Various alternative
ways of handling this problem have been considered. 1In
general we recognize two broad classes of solutions to
this problem.

First: The conversion problems can be re-
garded as simple arithmetic processes and programmed as
sub-routines out of the orders already incorporated in
the machine. The details of these programs together with
a more complete discussion are given fully in Chapter 9,
Part 1I, where it is shown, among other things, that the
conversion of a word takes about 5 msec. Thus the con-
version time is comparable to the reading or withdrawing
time for a word -- about 2 msec -- and is trivial as com-
pared to the solution time for problems to be handled by the
computer. It should be noted that the treatment proposed
there presupposes only that the decimal data presented to
or received from the computer are in tetrads, each tetrad
being the binary coding of a decimal digit -- the informa-
tion (precision) represented by a decimal digit being
actually equivalent to that represented by 3.3 binary digits.
The coding of decimal digits into tetrads of binary digits
and the printing of decimal digits from such tetrads can be
accomplished quite simply and automatically by slightly
modified Teletype equipment, cf. 6.8.4 below.

Second: The conversion problems can be
regarded as unique problems and handled by separate con-
version equipment incorporated either in the computer

proper or associated with the mechanisms for preparing and

-122-

printing from magnetic wires. Such convertors are really
nothing other than special purpose digital computers. They
would seem to be justified only for those computers which
are primarily intended for solving problems in which the
computation time is small compared to the input-output
time, to which class our computer does not belong.

6.8.3. It is possible to use various types
of cathode ray tubes, and in particular Selectrons for the
viewing tubes, in which case programming the viewing oper-
ation is quite simple. The viewing Selectrons can be
switched by the same function tables that switch the memory
Selectrons. By means of the substitution operation Ap -
S(x) and Ap' #S(x), six-digit numbers specifying the
abscissa and ordinate of the point (six binary digits
represent a precision of one part in 26 = 64, i.e. of
about 1.5 per cent which seems reasonable in such a compo-
nent) can be substituted in this order, which will specify
that a particular one of the viewing Selectrons is to be
activated.

6.8.4. As was mentioned above, the mechanisms
used for preparing and printing from wire for the first
model, at least, will be modified Teletype equipment. We
are quite fortunate in having secured the full cooperation
of the Ordnance Development Division of the National Bureau
of Standards in making these modifications and in design-
ing and building some associated equipment.

By means of this modified Teletype equip-
ment an operator first prepares a checked paper tape and
then directs the equipment to transfer the information from
the paper tape to the magnetic wire. Similarly a magnetic
wire can transfer its contents to a paper tape which can
be used to operate a teletypewriter. (Studies are being
undertaken to design equipment that will eliminate the

-123-

necessity for using paper tapes.)

As was shown in 6.6.5, the statement of a
new problem on a wire involves data unique to that problem
interspersed with data found on previously prepared paper
tapes or magnetic wires. The equipment discussed in the
previous paragraph makes it possible for the operator to
combine conveniently these data on to a single magnetic
wire ready for insertion into the computer.

It is frequently very convenient to intro-
duce data into a computation without producing a new
wire. Hence it is planned to build one simple typewriter
as an integral part of the computer. By means of this
typewriter the operator can stop the computation, type in
a memory location (which will go to the FR), type in a
number (which will go to A and then be placed in the
first mentioned location), and start the computation
again.

6.8.5 There is one further order that the
Control needs to execute. There should be some means by
which the computer can signal to the operator when a com-
putation has been concluded, or when the computation has
reached a previously determined point. Hence an order is
needed which will tell the computer to stop and to flash
a light or ring a bell.

TABLE I

Symbolization

S
1, [S(x)~ Act X
2. [S(x)— Ac- Xx-
3. [S(x)~ AcM xM
4, |S(x)~ Ac-M | x-M
5. |S(x)~ Ah+ xh
6. |S(x)— Ah- xh-
7. |S(x)— AhM xhM
8. |S(x)~ Ah-M | x-hM
9. {S(x)" R xR
10, [R ~— A A
11. |S(x) x R~ A | xX

Clear Accumulator
Selectrons into
Clear Accumulator

and add number located at position x in the
it.
and subtract number located at position x in

the Selectrons into it.

Clear Accumulator

and add absolute value of number located at

position x in the Selectrons into it.

Clear Accumulator and subtract absolute value of number located

at position x in the Selectrons into it.
Add number located at position x in the Selectrons into the

Accumulator.

Subtract number located at position x in the Selectrons into

the Accumulator,

Add absolute value of number located at position x in the

Selectrons into
Subtract absolute

Selectrons into
Clear Register *

Selectrons into
Clear Accumulator
Clear Accumulator

the Accumulator.

value of number located at position x in the
the Accumulator.

and add number located at position x in the
it.

and shift number held in register into it.
and multiply the number located at position

x in the Selectrons by the number in the register, placing
the left-hand 39 digits of the answer in the Accumulator and
the right-hand 39 digits of the answer in the Register, :

|

¥ Register means arithmetic register.

-vZ1-

TABLE I (continued)

Symbolization
Abbre-
Complete viated

12.{ A#S(x)— R x4 Clear Register and divide the number in the Accumulator by the
number located in position x of the Selectrons, leaving the
remainder in the Accumulator and placing the quotient in the
Register.

13.| Cu- S(x) xC Shift the control to the left-hand order of the order pair lo-
cated at position x in the Selectrons.

14, Cu'~ S(x) | xC' |Shift the control to the right-hand order of the order pair
located at position x in the Selectrons.

15.| Cc » S(x) xCc If the num%eg in the Accumulator is > 0, shift the control as
in Cu~ S(x).

16.| Cc'» S(x) | xCc' |If the number in the Accumulator is > 0, shift the control as
in Cu'- S(x).

17.] At - S(x) xS Transfer the number in the Accumulator to position x in the
Selectrons.,

18.] Ap » S(x) | xSp |Replace the left-hand 12 digits of the left-hand order located
at position x in the Selectrons by the left-hand 12 digits in
the Accumulator.

19.| Ap'~ S(x) | xSp' |Replace the left-hand 12 digits of the right-hand order located
at position x in the Selectrons by the left-hand 12 digits
in the Accumulator.

20.| L L Multiply the number in the Accumulator by 2, leaving it there.

21.{ R R Divide the number in the Accumulator by 2, leaving it there.

-GC1-

-126-

Appendix C

PHOTOGRAPHS

+ - = e
et T
e T ‘

Debugging JOHNNIAC Sr

-128-

ing

Facilities for marginal check

-129-

Installing JOHNNIAC core memory

Crosswire and main frame

-130-

Typical bay: Operator's view

Typical bay: Machine view

Selection memory

-131-

Illustration of Retirement of JOHNNIAC

	000001
	000002
	00001
	00002
	00003
	00005
	00007
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	034
	035
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133

