MEMORANDUM

RM-4162-PR
JUNE 1964

JOSS: SCENARIO OF A FILMED REPORT

C. L. Baker

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

The D-ﬂ ﬂ Deamwab«

SANTA MONICA « CALIFORN!IA

MEMORANDUM

RM-4162-PR
JUNE 1964

JOSS: SCENARIO OF A FILMED REPORT
C. L. Baker

This research is sponsored by the United States Air Force under Project RAND —Con-
tract No. AF 49(638) -700 monitored by the Directorate of Development Plans. Deputy
Chief of Staff. Research and Development. Hq USAF. Views or conclusions contained
in this Memorandum should not be interpreted as representing the official opinion or
policy of the United States Air Force.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from the Defense Documentation

Center (DDC).

The D-ﬂ n D Oorporation

1700 MAIN ST « SANTA MONICA « CaLIFORNIA » 00404

Copyright © 1964

-iii-

PREFACE

This Memorandum is a somewhat modified scenario of a
22-minute film, "JOSS,'" made at The RAND Corporation in
March 1964, demonstrating the use of an on-line, time-
shared computer system. '"'JOSS" stands for "JOHNNIAC Open
Shop System."

The goal of the JOSS research program has been to
provide a personal computing service specifically tailored
to the needs of individual members of RAND's technical
staff, rather than to simply provide a remote computer
console communicating with an existing computer operating
system. The emphasis has been on the development of a
tool for problem solving rather than production computing;
this implies, of course, intimate interaction between man
and machine.

With this goal in mind, it was felt imperative that
both the hardware (i.e., the remote typewriter consoles)
and the software (i.e., the language and its use) be designed
specifically for the intended application, as opposed to
adapting an existing language and terminals to the proposed
use. Speed and power, where necessary, have been sacrificed
to the requirement for smooth operation and a natural
language.

The demonstration film, produced for RAND by Sigma
Educational Films, is intended as an introduction only,
and although most of the features of the system are demon-
strated, it has not been possible to show the rapid inter-
action which constitutes the typical mode of operation that

makes JOSS so useful in problem solving. Although the film

-iv-

is intended primarily for computer-oriented audiences, in
a number of showings to lay audiences it has been found
that it is readily understood by anyone with a knowledge
of basic mathematics; this is due to the ease with which
the user converses with JOSS.

Supplementing the information presented in the film,
Appendix B contains a somewhat edited transcript of the
discussion period which followed a showing of the film at
International Business Machines Corporation, Poughkeepsie,
New York, on April 29, 1964.

Answers to many of the most frequently-asked questions
about JOSS may be found here.

A limited number of prints of the film are available
for loan on a short-term basis. Inquiries should be
directed to: The RAND Corporation, JOSS Film Distribution,
1700 Main Street, Santa Monica, California 90406.

SUMMARY

JOSS (JOHNNIAC Open Shop System) is an on-line, time-
shared application of the RAND JOHNNIAC com.puter,T pro-
viding computational service at a number of remote electric
typewriter consoles. As many as eight users at a time
may communicate with JOSS by means of a smooth language,
specifically designed for on-line problem solving.

JOSS handles a wide range of formula-evaluation type
problems, providing the facility of a printing desk calcu-
lator as well as the capabilities of a stored-program com-
puter. JOSS provides various arithmetic and trigonometric
functions, and allows flexible output in user-specified
formats. At the present time, the eight consoles within
the RAND building--connected to a special-purpose input/
output buffer by telephone lines--include semi-private
stations for selected RAND researchers, and public stations
for use by staff members on a first-come-first-served
basis.,

A console consists of a standard IBM Model 868 electric
typewriter with a slightly modified character set and a

small box with a few indicator lights and activating switches.

fThe JOHNNIAC computer was designed in 1950-51 at The
RAND Corporation, based on the Princeton Machine model; it
has 4096 40-bit words of core memory, with an add time of
50 usec. The only additional storage consists of a 12,288-
word drum store, arranged in three 4096-word sections. The
drum heads move to access a new section--this motion requires
some 300 msec. The internal order code is austere--no in-
dexing, no indirect addressing, no floating point, no inter-
rupt mechanism. Part of JOHNNIAC is transistorized, but
it is still largely composed of vacuum tube circuitry.

-vi-

It uses continuous-feed, sprocket-guide, single-ply paper
in 8%'"x11" sheets. The user's input of instructions and
data is typed in green, and JOSS responds with output in
black.

This Memorandum contains the narration accompanying
the filmed demonstration, the user's inputs, and the re-
sulting computer outputs; only a minimum amount of the
"staging' and "action" is described. Appendix A contains
statements of the problems which were solved during the
demonstration and the longer, more detailed outputs, some
of which are shown only briefly in the film.

Appendix B presents answers to frequently-asked

questions about the system.

-vii-

CONTENTS
PREFACE .. ittt i ittt ittt tetnesottosestosneenonnnsas iii
SUMMARY ittt ittt ittt eenenensnnsassasstsesennees v
JOSS: Scenario of a Filmed Reportcc.u.. 1
Appendix
A. CHARTS AND EXAMPLES¢.tiietveneeennnnens 13
B. JOSS FILM QUESTIONS AND ANSWERS 25

C. JOSS WORDS AND SYMBOLSciieiiinnnnnens 43

JOSS Console and Station Local Control Box

JOSS: Scenario of a Filmed Report

The JOSS film is divided into three parts. During
the introductory scenes, J. C. Shaw, JOSS designer,Jr sum-
marizes the purposes of the film and briefly shows a JOSS
console station and the JOHNNIAC computer. He then intro-
duces F. J. Gruenberger and C. L. Baker who demonstrate
the use of JOSS. Willis H. Ware, Head, Computer Sciences
Department, closes the report with some comments on the
future of systems such as JOSS and the directions in which
next-generation research is likely to develop.

In the scenario, these abbreviations are used: JCS--
J. C. Shaw; U--the typed inputs of the JOSS user (F. J.
Gruenberger); J--the typed outputs from JOSS; N--commentary
of the narrator (C. L. Baker); WHW--Willis H. Ware. 1In
the film, the U and J actions are, of course, typed out
on the JOSS typewriter console.

JCS: This is a report on a research project conducted at
The RAND Corporation under Air Force sponsorship.
The aim has been to furnish the individual scientist
with a modest computational capability on a demand
basis. We call the system JOSS--standing for JOHNNIAC
Open Shop System. It is an on-line, time-shared use
of the computer.

JOHNNIAC is a venerable machine, but small and slow
by today's standards. Coupled to it is a special-
purpose buffer for messages to and from remote con-
soles. Each console consists of an electric type-
writer and a few buttons and lights. At present,
eight such stations in various locations in the RAND
building are connected by telephone lines to the
buffer.

t .
The multiple typewriter communication system used
in JOSS was designed by T. 0. Ellis and M. R. Davis.

oL ao

JCS:

G a

“La =

=

[User presses POWER button, and JOSS responds by
typing:]

Press 'IN' for JOSS service.
[User presses IN button.]

Please identify yourself.
RAND

3-21-64 RANDt

Type 2+2.

242 = 4

An executive routine in JOHNNIAC serves up to eight
users at a time by interpreting and carrying out
commands given in a simple language. Let's watch
Fred Gruenberger and Charlie Baker demonstrate some
of the features of JOSS.

JOSS may be used in three ways: as a printing desk
calculator; as a stored-program computer; and, most
productively, as a combination of these two. First,
we will demonstrate some of JOSS' arithmetic
capabilities.

Type 2+2-3-34+4+4,
242-3-3+4+4 = 6

Multiplication must be indicated by a centered dot.

Type -1.2-1.2.
-1.2-1.2 = -1.44

We divide by using a slash,...

Type 7/2.
7/2 = 3.5

...and an attempt to divide by zero will result in
an error message.

1-
This line is typed by JOSS at the top of a new page

(8%"x11"). One-inch margins and similar date-lines are
automatically supplied for each page.

Type 7/0.
Error above: Zero divisor.

An exponent is indicated by an asterisk.

Type 2%8.
2%8 = 256

Several expressions may be evaluated on one line,
and a blank line is indicated by an underscore.

Type 3+2,3-2,3-2, ,3/2,3%2.

342 = 5
3-2 =1
3:2 =6
3/2 = 1.5
3#2 =9

The arithmetic expression shown in this chart [see
Chart A in Appendix A] may be evaluated by the
addition of parentheses and brackets.

Type [.7%5-2.3%(-.7)1/[7%6-|9%5-5%7 |*(2/3) 7.
[.7%5-2.3%(=.7) 1/ [7%6- |9%5-5%7 |*(2/3)] = -3.33630357-10%(-6)

A number of functions are available. The argument is
enclosed in parentheses.

Type sqrt(49).
sqrt(49) = 7

Type sqrt(sqrt(sqrt(sqrt(3*2%2%2%2)))).
sqrt(sqrt(sqrt(sqrt(3#%2*%2%2%2)))) = 3

Trigonometric functions are provided, and we notice
that numbers may be up to nine decimal digits.

Type cos (3.14159265/4).
cos(3.14159265/4) = .707106781

Logarithms are to the base e.

Type log(2.71828183).
log(2.71828183) =1

Type vy.
Error above: Undefined.

JOSS is correct. The variable y is undefined. But
a "Set'" statement will serve to define it.

Set y = exp(10).

Type vy.
y = 22026.4658

JOSS functions are available to take the integer part

of a number, the fraction part, the digit part, and
the exponent part.

Type y, ip(y), fp(y), dp(y), xp(y).

y = 22026.4658
ip(y) = 22026
fp(y) = .4658
dp(y) = 2.20264658
xp(y) = 4

To use JOSS as a stored-program computer, we may ask
JOSS to store a statement rather than- execute im-
mediately. This is indicated by prefixing the state-
ment with an identifying number.

1.1 Type x, sqrt(x), log(x), exp(x), _.

We will now ask JOSS to execute this step a number of
times, varying x from 1, in steps of 1, to 100.

Do step 1.1 for x = 1(1)100.

x = 1
sqrt(x) = 1
log(x) = O
exp(x) = 2.71828183
x = 2
sqrt(x) = 1.41421356
log(x) = .69314718
exp(x) = 7.3890561

Our table would look much better with each set of
values on one line., Let's interrupt JOSS by pressing
the INTERRUPT button. [User presses INTERRUPT button.]
JOSS has calculated several lines and will stop when
they have been printed.

x = 3
sqrt(x) = 1.73205081
log(x) = 1.09861229
exp(x) = 20.0855369
X = 4

Interrupted at step 1.1.

We will change our program step by replacing it with
one that calls for typing in a form.

1.1 Type x, sqrt(x), log(x), exp(x), in form 1.
We must define this form.
Forml:*

JOSS does not require us to be perfect typists. A
line may be killed by ending it with an asterisk,
and JOSS will ignore this line.

Form 1:

We have corrected our mistake; we may now use under-
scores in the form to indicate the position of fixed
point numbers, and a string of dots to indicate that
scientific notation is desired.

Go.

"Go" tells JOSS to resume calculation at the point
of interruption.

4 2.0000000 1.3862944 5.4598150 01
5 2.2360680 1.6094379 1.4841316 02
6 2.4494897 1.7917595 4.0342879 02
7 2.6457513 1.9459102 1.0966332 03
8 2.8284271 2.0794415 2.9809580 03
9 3.0000000 2.1972246 8.1030839 03

Interrupted at step 1.1.

Our output looks much better now. Let's dress it up
with a heading. Again, we have interrupted.

1.05 Do part 2 if fp(x/40) = 1/40.

JOSS will insert step 1.05 before our 'Type'" state-
ment, and will request part 2 as a subroutine every
forty lines.

2.1 Page.
2.2 Type form 2.

Part 2--that is, all steps numbered two-point-some-
thing--asks for a new page and a heading line. We
must define this heading.

Form 2:
X SQRT (X) LOG (X) EXP (X)
Do part 1 for x = 1(1)100.

This time we have asked JOSS to start all over from
the beginning.

X SQRT (X) LOG (X) EXP (X)

1 1.0000000 .0000000 2.7182818 00
2 1.4142136 6931472 7.3890561 00
3 1.7320508 1.0986123 2.0085537 01
4 2.0000000 1.3862944 5.4598150 Ol
5 2.2360680 1.6094379 1.4841316 02
6 2.4494897 1.7917595 4.0342879 02
7 2.6457513 1.9459102 1.0966332 03
8 2.8284271 2.0794415 2.9809580 03

Interrupted at step 1.05.

This looks much better, but an occasional space
between lines would dress up our output nicely, so
we have interrupted again. Step 1.07 should give
us an extra space every five lines.

1.07 Line if f£p(x/5) = 1/5.
Do part 1 for x = 1(1)100.

[See Example 1 in Appendix A for JOSS' output at
this point.]

Now that our program seems to be checked ‘out, we may
ask JOSS for a copy of the program, the forms, and
the value of all variables.

U: Type all.
J: 1.05 Do part 2 if fp(x/40) = 1/40.
1.07 Line if fp(x/5) = 1/5.
1.1 Type x, sqrt(x), log(x), exp(x) in form 1.

2.1 Page.
2.2 Type form 2.
Form 1:
Form 2:
X SQRT (X) LOG (X) EXP (X)
X = 100
y = 22026.4658
N: We can now communicate with JOSS well enough to

attempt a problem. An example is found in McCracken's
Guide to FORTRAN Programmingt [see Chart B in
Appendix A]. First, we'll need the constant 2.

U: Set k = 2-3.14159265,

N: Next, we can store a program to compute the required
factors, and an approximate time interval [see Chart
Cl...

U: 1.1 Set F = sqrt[1/(L-C)]/k.
1.2 Set f = sqrt[1/(L-C)-R*2/(4-L*2)]/k.
1.3 Set T = k*F*2-Q/f.
1.4 Set d = .1/f.

N: ...and we'll type out these values.

U: 1.5 Type F, £, I, d.

N: Next, we need to enter the parameters for our specific
problem.

chCracken, D. D., A Guide to FORTRAN Programming,
John Wiley and Sons, Inc., New York, 1961.

Set R = 100.

Set L = .2.

Set C = .5°10%(-6).
Set Q = .001.

Now we ask JOSS to compute these factors.

Do part 1.

F = 503.292122

f = 501.716868

I = 3.17220634

d = 1.99315603-10*(-4)

These look fine, with the exception of that rather
messy looking time interval. We can change it to

a clean one, and, knowing that our interval is small,
our program can print the time in milliseconds rather
than seconds.

Set d = .0002.

2.1 Type 1000-t, I-exp[-R-t/(2-L)] sin(k-£-t) in form 3.
Form 3:

__.__ms. -_. ___ amp.

The program to compute and type consists of a single
step which will print in a single form. The form

may include any additional information we wish to

print out with our answers. We can now ask JOSS to
execute our step for 100 time intervals, from t = O,

in steps of d, to 100 times d.

Do part 2 for t 0(d)100-d.

[See Example 2 in Appendix A for JOSS' output at
this point.]

Since our program seems to be gold star, let's
record it.

Type all.

[See Example 3 in Appendix A for JOSS' output at
this point.]

The program is finished, so we might as well erase
it, its forms, and all associated values from JOSS'
storage.

Delete all.

That was admittedly a textbook problem. In preparing
its work for the Air Force, RAND authors frequently
have the problem of evaluating an expression for a
number of values to aid in the preparation of a graph.
Here is one such expression [see Chart D in Appendix
A]l. Let's do it on JOSS. We'll start on a page with
a heading.

1.1 Page.
1.2 Type form 1.
Form 1:
P L M
1.3 Do part 2 for p = 81, 72, 45, 9.
2.1 Line.

Step 1.3 will evaluate our formula for four values
of p--81, 72, 45, and 9;...

2.2 Do part 3 for L = .1(.2(.2)2.

...and for L equals .l--here we can backspace, strike
over the error,*t and go on--for L equals .1, .2 in
steps of .2 up to 2.

3.1 Set m = -2.5-k*log[cos(p/c).64/sqrt(.5)/L*2".
3.2 Type p, L, m in form 2.
Form 2:

Part 3 evaluates our expression and types out the
answers. Next, we need to enter the constants re-
quired to convert degrees to radians, and to convert
logs from base e to base 10. Then we can ask JOSS
for the results.

.r
Note that the user inadvertently struck the left-

paren key; the error is rectified by simply backspacing
and striking-over with the intended character, the comma.

-10-

Set ¢ = 180/3.14159265.
Set k = 1/1log(10).
Do part 1.

[See Example 4 in Appendix A for JOSS' output at
this point.]

Again, we'll keep a record of our program before we
delete it.

Type all.

[See Example 5 in Appendix A for JOSS' output at
this point.]

Delete all.

JOSS can operate with indexed variables, and a stored
program may call for values of variables to be entered
during execution.

1.1 Demand q(x,y).

We'll vary the value of the first index x from 1,
in steps of 1, to y,...

2.1 Do part 1 for x = 1(1)y.
..and vary the index y from 1, in steps of 1, to 8.
Do part 2 for y = 1(1)8.

We enter the value of each variable on the same line
as it is requested by JOSS.

q(l,1) = U: 3.456
q(1,2) = -4.32
q(2,2) = 8

q(1,3) = 4324567
q(2,3) = -56.45
q(3,3) = 0.000987
q(1,4) = b GLLLLLLL
q(2,4) = -4 . 444433

q(3,4)

-11-

When all these values have been entered, we may pro-
ceed to have JOSS calculate with indexed variables
as would be required for problems more complex than
we have been able to demonstrate here.

You have just seen a demonstration of many features
of the JOSS system. As was pointed out, this is an
experimental system designed to provide individual
scientists and engineers with a personal, on-demand
computing service. As a side aspect of the experi-
ment, we hope to gain insight into the interface
problem between a man and a computer.

The system shown here is currently available to RAND's
professional staff. Our experience in using JOSS,

our observations of user behavior, will be the basis
on which to continue research. Later-model systems
will certainly differ from what you have seen.

JOSS is one of many current efforts in on-line time-
shared use of computers. The goal of the JOSS project
has been to demonstrate that the ability to be on-line
with the computer, given a reasonable language and
almost continuous interaction, leads to a powerful
computational tool. It is probably too early to
forecast the ultimate effect of such systems, but

for a certain class of problems, at least, the program-
mer as the middleman between the problem and the
machine is no longer needed.

JOSS represents, we believe, a significant step for-
ward because of its intimate interaction between man
and machine.

7°-2.3"7
7%+ |95 57|

2/3.

'Y 1iey)

-14-

Example 1:

X SQRT (X) LOG(X) EXP (X)

1 1.0000000 .0000000 2.7182818 00
2 1.4142136 .6931472 7.3890561 00
3 1.7320508 1,0986123 2.0085537 01
4 2.0000000 1.3862944 5.4598150 01
5 2.2360680 1.6094379 1.4841316 02
6 2.4494897 1.7917595 4.,0342879 02
7 2.6457513 1.9459102 1.0966332 03
8 2.8284271 2.0794415 2.9809580 03
9 3.0000000 2.1972246 8.1030839 03
10 3.1622777 2.3025851 2.2026466 04
11 3.3166248 2.3978953 5.9874142 04
12 3.4641016 2.4849067 1.,6275479 05
13 3.6055513 2.5649494 4.,4241339 05
14 3.7416574 2.6390573 1.2026043 06
15 3.8729834 2.7080502 3.2690174 06
16 4,0000000 2.7725887 8.8861105 06
17 4.1231056 2.8332133 2.4154953 07
18 4.2426407 2.8903718 6.5659969 07
19 4.3588989 2.9444390 1.7848230 08
20 4.4721360 2.9957323 4.8516520 08
24 4.5825757 3.0445224 1.3188157 09
22 4.6904158 3.0910425 3.5849129 09
23 4,7958315 3.1354942 9,7448035 09
24 4.8989795 3,1780538 2.6489122 10
25 5.0000000 3.,2188758 7.2004899 10
26 5.0990195 3.2580965 1.9572961 11
27 5.1961524 3.2958369 5.3204824 11
28 5.2915026 3.3322045 1.4462571 12
29 5.3851648 3.3672958 3.9313343 12
30 5.4772256 3.4011974 1.0686475 13
31 5.5677644 3.4339872 2.9048850 13
32 5.6568543 3.4657359 7.8962960 13
33 5.7445627 3.4965076 2.1464358 14
34 5.8309519 3.5263605 5.8346174 14
35 5.9160798 3.5553481 1.5860135 15
36 6.0000000 3.5835189 4,3112316 15
37 6.0827625 3.,6109179 1.1719142 16
38 6.1644140 3.6375862 3.1855932 16
39 6.2449980 3.6635617 8.6593400 16
40 6.3245553 3.6888795 2.3538527 17

X

41
42
43
44
45

46
47
48
49
50

51
52
53
54
35

56
57
58
59
60

61
62
- 63
: 64
65

66
67
68
69
70

71
72
73
74
75

76
77
78
79
80

SQRT (X)

6.4031242
6.4807407
6.5574385
6.6332496
6.7082039

6.7823300
6.8556546
6.9282032
7.0000000
7.0710678

.1414284
2111026

7
7.
7.2801099

"7.3484692

7.4161985

4833148
;f5ka8344

7.6157731

7.6811458
7.7459667
7

«8102497
7.8740079
7.9372539
8.0000000
8.0622578

8.1240384
8.1853528
8.2462113
8.3066239
8.3666003

8.4261498
8.4852814
8.5440038
8.6023253
8.6602540

8.7177979
8.7749644
8.8317609
8.8881944
8.9442719

-15-

LOG(X)

3.7135721
3.7376696
3.7612001
3.7841896
3.8066625

3.8286414
3.8501476
3.8712010
3.8918203
3.9120230

3.9318256
3.9512437
3.9702919
3.9889841
4.0073332

4.0253517
4.0430513

- 4.,0604430

4,0775374
4.0943446

4,1108739
«1271344
01431347
«1588831
«1743873

.1896547
+2046926
«2195077
+2341065
.2484952

.2626799
+2766661
.2904594
4,3040651
4,3174881

4.3307333
4.3438054
4.3567088
4,3694479
4.3820266

EXP (X)

6.3984349
1.7392749
4.,7278395
1.2851600
3.4934271

9.4961194
2,5813129
7.0167359
1.9073466
5.1847055

1.4093491
3.8310080
1.0413759
2.8307533
7.6947853

2,0916595
5.6857200
1.5455389
4,2012104
1.1420074

3.1042979
8.4383567
2.2937832
6.2351491
1.6948892

4,6071866
1.2523632
3.4042761
9.2537817
2.5154387

6.8376712
1.8586717
5.0523936
1.3733830
3.7332420

1.0148004
2.7585135
7.4984170
2.0382811
5.5406224

17
18
18
19
19

19
20
20
21
21

22
22
23
23
23

24
24
25
25
26

26
26
27
27
28

28
29
29
29
30

30

31
32
32

33
33
33
34
34

X

81
82
83

85

86
87
88
89
90

91
92
93
94
95

96
97
98
99
100

SQRT (X)

9.0000000
9.0553851
9,.1104336
.1651514
.2195445

9

9

9.2736185
9.3273791
9.3808315
9.4339811
9.4868330

9.5393920
9.5916631
9.6436508
9.6953597
9.7467943

9,.7979590
9.8488578
9.8994949
9.9498744

10,.0000000

-16-

LOG (X)

4,3944492
4,4067193
4,4188406
4,4308168
4,4426513

4,4543473
4,4659081
4,4773368
4,4886364
4,4998097

4,5108595
4,5217886
4,5325995
4.,5432948
4.5538769

4,5643482
4,5747110
4,5849675
4,5951199
4,6051702

EXP (X)

1.5060973
4,0939970
1,1128638
3.0250773
8.2230127

2.2352466
6.0760302
1.6516363
4,4896128
1.2204033

3.3174001
9.0176284
2.,4512455
6.6631762
1.8112391

4,9234583
1.3383347
3.6379710
9.8890303
2.6881171

35

36
36
36

37
37
38
38
39

39
39
40
40

41

41
42
42
42
43

PROBLEM =

i=Te "2 N 27 ft

STARTING AT t =0,
EVALUATE FOR 100 INTERVALS
AT ABOUT 10 INTERVALS PER CYCLE.

g 1ey)

-18-~

Chart C:

PARAMETERS REQUIRED*
R, L, C, AND Q

- CONSTANTS TO Bt CALCULATED

"‘_!.. _'_-Ei.
2Tl LC 4L
_ 2T FéQ
I f

INTERVAL = .1 /f

-19-

Example 2:

.00 ms, .000000 amp.
«20 ms, 1.778902 amp.
.40 ms, 2.733649 amp.
.60 ms, 2.591195 amp.
.80 ms. 1.508396 amp.
1.00 ms. -.026650 amp.
1.20 ms. -1.405807 amp.
1.40 ms. -2.136197 amp.
1.60 ms. -2,010678 amp.
1,80 ms. -1,156910 amp.
2,00 ms, .041508 amp.
2.20 ms, 1.110600 amp.
2,40 ms, 1.669108 amp.
2.60 ms. 1.560014 amp.
2.80 ms. .887011 amp.
3.00 ms. -.048484 amp.
3.20 ms. -.877107 amp.
3.40 ms, -1,303985 amp.
3.60 ms., -10210201 alnpo
3&8{0 ms. - oa679828 amp.
4.00 ms. 050339 amp.
4.40 ms, 1.018606 amp.
4.60 ms, .938705 amp.
4.80 ms. «320840 amp,
5.00 ms, -.048997 amp.
5.20 ms. = 4546570 amp.
5.40 ms. =¢795583 amp.
5.60 ms. =o728019 amp.
5.80 ms, -.398878 amp.
6.00 ms, 045781 amp,
6.20 ms. «431272 amp.
6.40 ms. «621313 amp.
6.60 ms. «564544 amp.
6.80 ms. .305351 amp.
7.00 ms, -.041586 amp.
7.20 ms. -.340199 amp.
7.40 ms, -.485157 amp.
7.60 ms. -.437718 amp.
7.80 ms, =.233656 amp.
8.00 ms. .037003 amp.
8.20 ms. .268284 amp.
8.40 ms, .378791 amp.
8.60 ms, .339337 amp.
8.80 ms. .178717 amp.
9.00 ms. -.032410 amp.
9.20 ms. -.211514 amp.
9.40 ms, -.295709 amp.
9,60 ms. -.263032 amp.
9.80 ms. -.136634 amp.
10.00 ms. .028035 amp.
10.20 ms. .166713 amp.
10.40 ms. .230822 amp.
10.60 ms. .203857 amp,

10.80
11.00
11.20
11.40
11,60
11.80
12,00
12,20
12.40
12,60
12.80
13.00
13.20
13.40
13.60
13.80
14,00
14.20
14.40
14,60
14..80
15.00
15.20
15.40
15.60
16 .00
16,20
16.40
16.60
17 .00
17.20
17 .40
17.60
17.80
18.00
18.20
18.40
18.60
18.80
19.00
19.20
19.40
19.60
19.80
20,00

ms,
ms,
ms,
ms.,
ms,
ms.,
ms.
ms,
ms,
ms,
ms.
ms.
ms,
ms,
ms,
ms.,
ms.,

ms.

ms.
ms.,
ms,
ms.,
ms.
ms.
ms.
ms.,
ms.
ms,
ms PY
ms.
ms.
ms,
ms.
ms,
ms.
ms.
ms.
ms.
ms.,
ms.,

-20-

104412
-.024007
-.131368
-.180151
-.157972
-.079750
.020387
.103490
.140586
.122398
.060882
.017193
.081508
.109698
.094821
046454
014412
.064180
.085586
073447
012019
050524
.066765
.056883
027000
.009978
.039765
.052078
044047
020566
031289
040616
.034103
.015656
.006800
.031673
.026400
.011910
-.005586
-.019360
-.024697
-.020434
-.009054

.004576

amp
amp
amp
amp
amp
amp
amp

$3883998300833038885088058558

$79983388330833880 200080888800

-21-

Examiple 3
1.1 Set F = sqrt{i/gLocg]/k.
1.2 set £ = sqrt[1/(L-C)=R*2/(4-1L*2)]/k.
1.3 Set I = k+F*2.Q/f.
1.4 Set d = . .
1.5 Type F, £, I, d.
2.1 Type 1000-t, I-exp[-R-t/(2:L)]-sin(k+f-t) in form 3.
Form 3:
__.__ ms, - . amp.
d = 2:.10*(-4)
f = 501.716868
k = 6.2831853
t = 2'10*§-23
C= 5.10% (-7
F = 503.292122
I-= 3.17220634
L = .2
Q = 1.10%(-3)
R = 100

-22~

Chart D:

We can now calculate the difference in brightness from
the tabular entry as Lz and P change, holding LB constant.

This difference, Am, is given by

cos P 0.64
0.707 L 2

Om = -2.5 log

[Source: Kocher, G. E., and D. T. Jamison, A Deep-Space
Triangulation Probe to Determine the Astronomical Unit,
The RAND Corporation, RM-4014-NASA, January 1964, p. 47.]

Example 4:

-23-

la~)

00 00 00 00 00 0O 00 0O 00 0O 0O
N N W S Y

NN

N S
(G RRVRV RV IV, RV, RV, RV, TV, XV

WOOVOVOOOVOVOOO

1. 00
1.20
1 .40
1.60
1.80
2,00

.10
«20
.40
+60
.80
1.00
1.20
1.40
1.60
1.80
2.00

1.00
1,20
1.40
1.60
1.80
2.00

M

-2,.88
-1’37
.13
1.01
1.64
2.12
2.52
2.85
3.14
3.40
3.63

-3.62

1.38
1.78
2.11
2.40
2,66
2.89

'4052
-3.01
- .62

.00

.48

.88
1.22
1.51
1.76
1.99

-4 .88
-3.37
-1.87
-.99
-.36
.12
.52
.85
1.14
1.40
1.63

-24-

Example 5:

Page.
Type form 1.
Do part 2 for p = 81, 72, 45, 9.

Do part 3 for L = .1, .2(.2)2.

1.1

1.2

1.3

2.4 Line,
2,2

3.1 Set m = -2,5-k-1log[cos(p/c)-.64/sqrt(.5)/L*2].
3.2 Type p, L, m in form 2.

Form 1:
P L M
Form 2:

c = 57.2957796
k = .434294482
m= 1.62686274
p = 9

L = 2

-25-

Appendix B

JOSS FILM QUESTIONS AND ANSWERS

This appendix, supplementing the information presented
in the film, contains a somewhat edited transcript of the
discussion period which followed a showing of the film at
International Business Machines Corporation, Poughkeepsie,
New York, on April 29, 1964. Answers to many of the most
frequently-asked questions about JOSS may be found here.

The question-and-answer session was conducted by C. L. Baker.

1) Q: IS THE SYSTEM BEING USED?

A: Oh, boy, is it. Our operating hours at present are
from 11 am to 3:30 pm, and from 5 pm on, and we're continually
pressed by users to expand the schedule.

2) Q: AT THE PRESENT TIME, DO YOU ALLOW ONLY ONE USER ON

THE SYSTEM AT A TIME?

A: No; the system is time-shared among eight users.

We have three private consoles, which are given to scientists
who we feel will make good use of the system. Actually, our
goal was to give each user a console of his own that he would
treat much‘as he treats his telephone. It's at his desk, he
can use it as he wants, use it when he wants--and when he
goes on vacation, no one will come in and take it out because
it's sitting there idle.

In addition to these three private stations, we have
five public stations available to any member of the RAND
staff. To enable users to determine when a public console
is available, we have installed a dial-up telephone system.
At the first telephone number, a busy signél tells you that

the JOSS system is in operation. At other numbers, a busy

-26-

signal tells you that the corresponding console is in
operation, so you don't have to go trotting down the halls
trying to find an empty console. In practice, however, the
public stations are in use for long periods of time, so at
each console there's a sign-up sheet; when you are done,

you phone the next person on the list.

3) Q: WHO ARE THE MAIN USERS OF THE SYSTEM?

A: The professional programmer in our closed-shop
operation makes very little use of it except to get answers
to test cases, and things like that. The open-shopper who
has FORTRAN experience likes JOSS very much, but has dif-
ficulty using the system. He tends to do things in the
FORTRAN way, which is not well-adapted to this on-line
conversational mode. Our greatest response has been from
those engineers and scientists within the building who have
tried, unsuccessfully, to come in contact with computers
before, and have gotten hung up on the strange language or
the artificial barriérs of the required mechanics. These
people are throwing éway their slide rules as quickly as
they can get to a JOSS conséle.

As you noticed in the very first part of the film,
we showed the complete turn-on sequence for the machine. We
walked up to a dead machine and turned on the power (the
power lets it be used also as an electric typewriter, of
course). We turned on the system, the system identified
itself and asked us to identify ourselves, so that each page
could be headed with our little commercial on it. From that
point on, we were in business. The simplest thing you can
do takes 15 key strokes: turn on the system, do all initia-
tion steps, and get an answer back--that's to the problem

"Type 2+2."

-27-

The extreme simplicity of this turn-on-and-start-
computing procedure has been a tremendously important factor
in attracting many users to the JOSS system.

4) Q: IS IT BEING USED PRIMARILY AS A DESK CALCULATOR OR

AS A STORED-PROGRAM MACHINE?

A: As a combination of the two. There is intimate
interaction between the user and JOSS. 1In an actual problem-
solving situation, the ribbon color changes from black to
green almost every few lines. By problem-solving, we mean
that the user is continually exercising judgment during the
course of the computation--changing and modifying the pro-
cedure whenever he wishes. He starts something, sees how
it goes, pushes the INTERRUPT button, changes it, tries
again, changes the program, and so on. We showed only a
couple of errors in the film. There are actually thirty
error messages to which you must respond. You're completely
safe, in the sense that anything you try to do that is
illegal or unrecognizable to the system will result in an
error message, but always in such a way that you can clean
up and go on. There are no catastrophic errors at all.

5) Q: DO YOU HAVE ANY IDEA WHAT AMOUNT OF CONSUMED TIME

IS INPUT/OUTPUT TIME?

A: The conversation time is high for the experienced
user. The user of the system has sort of a double-plateau
learning curve. The first plateau, reached in perhaps a
few hours, is that of knowing the language. Very quickly
you get to the point where you know what it can do. When
a user has a question about the JOSS language, we encourage
him to "try it and see what happens," which is a very ef-

fective teaching tool. At this plateau, you are using JOSS

-28-

much as you would use a desk calculator. The second plateau
is reached at various levels according to one parameter
only--the user's typing ability. This plateau is one place
at which you begin to sort of put your arm around the thing
and say, '"Come on, old JOSS, let's do this together.'" And
it's really that way. You start going back and forth, back
and forth, conversing very, very quickly. It takes about a
couple of weeks to learn this, and then only if you are a
moderately skilled typist. This is one of the unfortunate
parts of this system, in a way. On the other hand, we're
rather proud of the statement that this is the biggest
stumbling block to any user we have found, to date. His
facility with the system is in direct proportion to his typing
ability: the better the typing ability, the better he uses
it; the poorer his typing ability, the more difficulty he has
with it. But this is apparently a fairly easy skill to teach
people early. And, as a matter of fact, JOSS has motivated
at least one user to learn to touch-type, so that he coﬁld

interact more easily.

6) Q: WHAT SORT OF USER TRAINING PROGRAM IS REQUIRED?

A: You have just seen it. However, most of the people
who are using JOSS haven't had even this much formal train-
ing. Because we wanted to observe the initial response of
a user, we tried very hard to keep preliminary JOSS usage
to a minimum, and especially away from the people whose
reactions we wanted to observe. While the system was being
checked out, the word about JOSS spread through RAND much
too quickly for us to be able to control the use in such a
way as to make observation of novice-user response possible.

I have a station outside my office and I can see who comes

-29-

to use it. Every day three or four new people come by.
They work away for fifteen minutes, a half-hour, or an
hour, and go away looking quite pleased. I don't know how
they've learned, but there they are. We know that this
language turns out to be very good for a conversational mode
of operation. We found, too, that the large character set
really helps, as do the capital and lower letters. It is
much easier to use the language because sentences start
with capitals and end with periods, and it's very easy to
tell English commands from algebraic expressions. JOSS is
a very readable language. We feel this is an extremely
important characteristic for a language to have--a readable
language is easy to learn.

We do have a list of the '"okay words' available at
each console. We plan to publish a series of examples of
common things that you do all the time, such as solving for
the zeros of functions, roots of polynomials, integration
schemes, and a number of other common procedures.

7) Q: DO YOU THINK PEOPLE (ENGINEERS) ARE WASTING TIME OR

LOSING EFFECTIVENESS BECAUSE THEY MUST PROGRAM THE
MACHINE THEMSELVES?

A: Well, there are two ways of using JOSS because there
are two groups of users. One is the engineer who is at the
console himself. 1Ideally, he would have his own and wouldn't
be under any pressure. However, the usual situation is that
he's not alone, and he is under pressure, and perhaps he's
not able to work most effectively this way. More consoles
would take care of that. But if it's answer-getting rather
than problem-solving, he would very likely turn this over

to the second type of user: the computing aide, who can

-30-

program and run the job in whatever system is appropriate--

from desk calculator on up. These computing aides tell us

that JOSS has markedly increased their productivity.

8) Q: WHEN I VISITED YOU AT RAND ABOUT TWO WEEKS AGO, WE
TALKED TO A USER AT THE STATION NEXT DOOR. HE WAS

VERY ENTHUSIASTIC. PERHAPS YOU COULD SAY A FEW
WORDS ABOUT HIS PROBLEM?

A: The problem that this fellow had was a Fourier
transform problem. He wanted to determine the shape of a
pulsed wave form after it had been passed through a filter.
He knew the input pulse in the time domain, the filter
response in the frequency domain, and decided that the
frequency domain was the one in which to do his integration.
So now he was confronted with a very complex integrand, which
had to be integrated from zero to infinity many times in
order to determine the output response. He didn't know
what this output pulse was going to look like at this point,
so he didn't know how many times he would have to integrate
it. He didn't know the nature of the integrand, really,
because it was a very complex algebraic function, but he
had to do the job. He happened to show up at my console
one day, and because I always like to observe user response
to the system, we started working on the problem together.
He was a brand new user of the system, but was making good
rrcgress when I sat down with him. Within two days we had
his entire problem almost solved. By that time, we knew
pretty much what the integrand looked like, and what form
of numerical integration to use to take a minimum amount
of time while giving sufficient accuracy. We were able to
identify the errors resulting from numerical integration

as opposed to those which arose from truncation of the

-31-

integrand at some finite point. We were able to tailor the
integration scheme to the integrand and develop a program
which would integrate with various step sizes over various
length intervals, but always keeping aware of the maximum
frequency within the system in order to insure stability.
We eventually ended up relating the integration intervals
and step sizes to the various parameters in the integrand.
At this point, we really were masters of the functions in-
volved in the problem. And, of course, he learned a lot of
other things about his problem, I'm sure, such as how to
synthesize different filters that would work a little bit
better. But, as I'm sure you can imagine, in doing this with
a brute-force method, he perhaps would have gotten answers,
but ﬁe would not necessarily have known their reliability,
he would have been in the dark about how to proceed on future
problems, and, of courée, the time span for doing this could
have been several weeks or several months.

9) Q: DOES THE SYSTEM KEEP A LOG TO DETERMINE SUCH THINGS

AS TIME ON THE SYSTEM, NUMBER OF USERS, LENGTH OF
PROBLEMS, ETC.?

A: We wish we could. The system is a little bit too
small for that. We would like to but we just have not been

able to.

10) Q: DO YOU KNOW THE AVERAGE TIME A MAN IS AT A CONSOLE?
A: No, we don't. It's highly variable. I look outside

my office and see people coming and going. Sometimes it's

five minutes, sometimes it's 20, sometimes it's 3:00 in the

morning before he leaves.

11) Q: HOW DO YOU KEEP THE RESPONSE TIME SMALL?
A: Our scheduling algorithm minimizes response time

quite well with eight people on-line. The system runs

-32-

entirely interpretively, so that the supervisor (JOSS) is

in control at all times. Now let's suppose that there are
six or seven users on, which is the normal case, and that
JOSS is interpreting the program of one of these users. At
the end of each interpretation cycle, which is one statement
within the machine, the supervisor will go and look at the
I1/0 buffering system to see if, during the last interpretation
cycle, anyone in the system has hit the carriage return--
this is the signal to JOSS requesting processing of a line.
It turns out that if there are six or seven people on-1line,
and all are in the conversational mode--putting in a line at
a time and getting a response--you will notice as much as

a second or second-and-a-half delay. Fortunately, it never
goes over two seconds, and reaches that only if almost every-
body hits the carriage return at the same time.

If, on the other hand, you happen to be in the execution
mode, without printout, you don't expect an immediate re-
sponse, and expect to wait for the computation to take place.
At this point you may have at your disposal anything between
an entire JOHNNIAC and one-eighth of a JOHNNIAC. You can
therefore notice quite a variance in computation time--but

not in initial response time.

12) Q: HOW DO YOU ALLOCATE COMPUTE TIME AMONG USERS?

A: It's on a clock basis, which means that at the end
of every interpretation cycle you also look at the real-time
clock. At the end of a user's allotted time slot, which is
about two seconds, you go get the next user, and so forth.

All compute-limited users go around and around.

-33-

13) Q: IS THIS TIME SLOT THE EQUIVALENT OF ONE LINE?

A: No. It's the equivalent of about 30 average inter-
pretation cycles, meaning pick up a statement, scan it, execute
it, and go on to the next one. At the end of each one of these
cycles, JOSS looks at the clock, so it is dependent on how
much time you have used rather than on the number of cycles.

If everybody is computing, everybody will get a shot every
sixteen seconds. That means your shots are about two seconds

long.

14) Q: ARE PROGRAM STEPS COMPILED BEFORE BEING EXECUTED?

A: No. 1'd like to stress the fact that this is an
interpretive system. The internal representation of JOSS
statements is identical to the external representation, as
is the representation of decimal wvalues.

We feel that this interpretive mode of operation is
very important. Although "interpretation' has been a nasty
word for many years, we don't think it should be, because an
interpretive system can do a lot for you. It's hard for us
to state simply exactly why interpretation is so useful, but
the effect of interpretation is that the context in which
your statement will be executed is determined at the time of
execution and can change from execution to execution, giving
you a very powerful language when you make use of this fact.
For instance, anyplace where there is a number in the lan-
guage, you may substitute a variable or an expression. For
example, we might want to see a given form, say form 3, so
we could say "Type form 3.'" We could also say '""Type form x,"

and if the value of x happened to be 3, we would print form 3.

-34-

We could say, "Type form i" in a step, ''Do" this step for
i =1 to 10, and print out forms 1 to 10. Similarly, we
can print out steps individually, parts individually, and
values individually. Any subscript may also be an expres-
sion, and the expression may involve subscripted variables
whose subscripts are expressions--almost ad infinitum.

The same feature may be used in "for'" statements.
The limits of executing the "for'" statement can be of the
form "expression, in steps of expression, to an expression,
in steps of another expression, to another expression,'" and
so on as far as you want to go. This "limit-step-limit-etc."
form may be one item on a list, and a list may have maﬁy
items. Each of the components can be just about as compli-
cated an expression as you want to make. All of this is,
of course, finalized at the time of execution.

Another point that I should emphasize while we're
on the subject is that the conditional clause doesn't just
test the sign of a variable, but tests relationships between
expressions. For instance, we can say: if a = b = c and
y > z or x = y and relation R between expression U and ex-
pression V. This type of conditional statement may appear
with any step or command, and it turns out that this is
very, very powerful. 1In fact, in some programs all the
computation is done in the conditional expressions; that is
particularly true of the problem-solving type of work. And
it reflects very naturally what is done in the textbooks on
mathematics. You see on the left something that you do, and
over on the right-hand side you see the conditions under which
this holds. You can take a numerical analysis textbook and

sort of copy it onto JOSS. In using this feature, it's

-35-

important for all calculations to be done in decimal, so
that all "magic numbers'" come out accurately. If you ask
for a function you know, such as 216 or sqrt(2), you'll get
out the right number, exact to 9 decimal digits. If there
is a fractional power, JOSS looks at the fraction, and if
it turns out to be 1/2, you get the square root routine
rather than the log and exponential routines. A lot of
attention has been paid to making the numbers you think you
know, come out the way you know them. As an example, the
log of e is indeed 1, not .999999999 or 1.00000001 which
can be pretty annoying to people.
15) Q: IS IT POSSIBLE FOR A STATION TO TIE THE SYSTEM IN
A LOOP?

A: Absolutely imposéible. The user can get a loop
himself, of course, by asking for an endlessly repeated
computation. The worst this can do is to degrade the system
1/8. The other people are going to get their time slots.
Endless loops don't happen too often in practice, however,
because rather than writing the loops yourself, you usually
ask JOSS to do it as we did here. We didn't write any loops
in the filmed examples; we let JOSS do the work.

16) Q: HOW DOES THE DIAGNOSTIC FUNCTION WORK?

A: Though it wasn't brought out explicitly, there are
two types of commands. Those that are to be done immediately--
such as '"Do part so-and-so," or "Type y,'" etc.--are of course
scanned and executed immediately and must be well formed with
all variables defined at this point. Statements that are
to be stored internaily are not scanned until actual execu-
tion time, because execution time is the only time at which

their context actually need exist. The only check that is

-36-

made on these is that there is a well-formed statement
number preceding the statement, so that there is some place
in the hierarchy of storage to put in and recall it properly.
So there are two times: one at execution if it is internally
stored, and one at direct entry time if it is to be executed
directly. It is important to remember that when JOSS is
interpreting steps in the internal mode and detects an error
condition, it responds with an appropriate error message.

The system then backs off so that you can correct the of-
fending step or steps, change any of the variables, define
new variables, put in a part if a part is missing, and so

on. Then by saying "Go.", you ask JOSS to try again from
the beginning of the execution of the statement which caused
the error. As you noticed, the very first thing we did with
a stored program was to start JOSS iterating over the step,
interrupt, knock the whole step out from undermeath the
iteration control, put in a new step, and then start up

again.

17) Q: WHAT ARE THE STORAGE LIMITATIONS FOR A PROGRAM?

A: Well, the primary limitation, of course, is JOHNNIAC,
which as I said is a very small machine. Currently, each
user--of which there are eight--has available for his own
use a stock of JOSS cells. These JOSS cells are arranged
in a list structure so that he uses these up and gives them
back continually. Each JOSS cell holds nine characters.

The internal representation is the same as the external
representation in all cases, and there is currently a stock
of 110 cells for each user, in addition to the cells which

are needed for variables, control, and so on. This represents

-37-

about a page's worth of typing. We hope very shortly, when
we get some of our drum transfer problems solved, to increase

this to around 300-350.

18) Q: WHAT HAPPENS WHEN YOU RUN OUT OF SPACE?

A: When you override the limit, you come to an error
message which will print out the words "Insufficient storage
space,' but there's enough safe space left to allow you to
clean up. You can usually recover. For instance, if you
are printing in a form, you may decide to eliminate the form
and go back to JOSS-style output, which is much simpler and
takes much less storage space. However, the problems are
generally small. Our goal, again, was to get problem-solving
interaction rather than production-computing interaction.
19) Q: DOES THE SYSTEM MAKE ANY PROVISIONS FOR SAVING A

PROGRAM AND RE-ENTERING IT AT A LATER TIME?

A: Not mechanically. A user can, of course, as we did
here, "Type all" and retype in. We plan very shortly, since
the system is still evolving, to put in a "Punch" (on cards)
and a "Reload" capability. JOHNNIAC's only output equipment
is a 519 punch and an Analex printer; it has a collator on
the input end. The system operates now without an operator

present.

20) Q: HOW BIG IS THE JOHNNIAC PROGRAM FOR JOSS?

A: Right now we have 6000 40-bit words that are as-
sociated with the system. JOHNNIAC, in addition to being
small and slow, has no indexing, no floating point (which
we wouldn't want anyway), and no indirect addressing. It
has the unfortunate characteristic that there is a left

instruction and a right instruction in each word, a la 701.

-38-

However, the addressing scheme doesn't know about this, so
the program is continually plagued with left-right problems.
I don't know how much this would condense down to if you had
a nice, powerful instruction set, but it could be quite a

bit less.

21) Q: DOES THE SYSTEM EMPLOY LINE BUFFERS FOR EACH STATION?
A: Yes. Each station is tied to the buffering system
over an open-wire telephone line which is strung by the
telephone company. This must be a full-duplex line, because
we're sending signals both upstream and downstream at the
same time. For instance, if JOSS is typing and the user
interrupts, the station must send a signal back indicating
that the individual console user wants control. The buffering
system consists of a small drum which contains a number of
control words--one for each station. 1In addition to these
control words, there are sixteen line buffers which will
take 81 characters each. A line buffer assembles a line as
it is typed by the user, and takes care of the backspacing,
strikeovers, and corrections. When the carriage return is
pushed, this sets a bit in the control word in the buffering
system which is then examined by the JOSS supervisory pro-
gram. There's no interrupt system in the JOHNNIAC, but
software control of I/0 function is preferable because of
the interpretive nature of the system. At each interpreta-
tion cycle, the interpreter system knows to go around and
look at the buffering system. The 16 buffers are assignable
to any stations via the control words, which specify which
buffer is to be assigned to which station. If everybody is
typing in, of course, you need only one buffer line per user.

On the other hand, you may have, say, five stations on-line

-39-

and operating. Three of them may be in the conversational
mode. That means there are three out of the 16 buffers

used for input lines. The other 13 may be assigned to the
two remaining programs for output lines. This leads to

the fact that after we push the INTERRUPT button and JOSS is
typing out, we may get four or five lines. This varies con-
siderably. Sometimes you'll interrupt right away, sometimes

you'll have filled up a number of buffers before you interrupt.

22) Q: WHERE DID YOU GET THE BUFFER SYSTEM?

A: We made it ourselves. All the hardware for this
system, with the exception of the typewriter itself, was
constructed at RAND over a period of ten years, the JOHNNIAC
early (1952-53) and the consoles late (1961-62).

23) Q: WHAT ARE THE BUFFERS MADE OF?

A: We use a very small drum, made for us to our spec-
ifications. All of the electronics was done at RAND, and
1s reasonably modern transistor circuitry.

24) Q: WHAT ADDITIONS OR CHANGES WOULD YOU LIKE TO MAKE
TO THE SYSTEM?

A: We are considering additions to both the language
and the hardware. For instance, we'd like to have the "sum"
function: sum, over an index running between two limits,
the values of an expression. We plan to add a number of
functions like this if we can squeeze them in. Field defini-
tions in forms should be made more flexible, too. We would
like the ability to save a program in some way: on paper -
tape, disk file, or in cards for reloading at a later time.

With regard to the console itself, on the Model 868

typewriter we're using, the up/down shift doesn't lock when

-40-

JOSS takes control, so sometimes it is possible to shift
before control has been returned, and the shift character
is lost. This we'd like to fix, and we're investigating
the use of the Selectric typewriter. The size of the console
electronics could certainly be reduced.
25) Q: HAVE YOU THOUGHT OF IMPLEMENTING THE SYSTEM SO THAT
UNUSED COMPUTER TIME COULD BE USED FOR PRODUCTION?

A: Lots of organizations are working on that. We
decided to keep our problems simple.
26) Q: DO YOU HAVE ANY IDEA AS TO WHAT THE CAPABILITIES

OF JOSS WOULD BE ON A FASTER, LARGER MACHINE?

A: Yes. Just before our 7090 left to be replaced by
a 7040/44 combination, a routine was added to the 7090
FORTRAN monitor which would print out statistics, etc., on
the nature of jobs, amount of core storage used, time of
execution, time of compilation, etc.; for each open-shop
FORTRAN job that was run through our batching system. We
looked over these statistics, and someone made the following
observation: "If we had the same processor behind JOSS that
we do behind our FORTRAN open-shop system, it looks as if
over 50 per cent by number of our FORTRAN open-shop jobs
would be handled better in the JOSS interpretive mode than
in the FORTRAN mode." And this is just on a straight-time
and execution basis. It is interesting to know that JOSS
could handle about half of your jobs by number (which is
certainly much less by time). I feel that this is a mis-
leading figure, however, for the following reasons: I think
that we came up with an average time in a 7090 FORTRAN job
of, say, 40 seconds for compilation and perhaps 10 seconds

for execution. We feel--we have no way of measuring, of

-41-

course--that of this 40 seconds of compilation, perhaps

35 seconds are spent compiling statements which were com-
piled on a previous run, and 5 seconds are spent compiling
out the changes to correct a bug. Similarly on execution:
of that 10 seconds, 8 seconds may get you back to where you
quit in the previous run, and 2 seconds are spent going from
the last bug to the next bug. We don't know how to measure
this, but we feel that if we could, this would put the

figure even more in favor of the JOSS system.

27) Q: HOW MUCH WOULD USERS PAY FOR THIS SERVICE?

A: JOHNNIAC is free, but I think that they'd pay a
lot. We really don't know. This is one of the things we
want to determine. Incidentally, the consoles that you see
here are rather expensive. The purchase price of those, and
the associated electronics, runs around $4000 in a lot size
of eight--much more expensive than a desk calculator. And
on to that, of course, you have to tack the $75 a month
typewriter rental. At any rate, we know that the users are
willing to pay enough so that we are going to be forced to
provide a follow-on to the JOSS system very shortly. We've
done some preliminary work on this sort of thing. We esti-
mate that the follow-on system should have the following
characteristics: Roughly 2000 JOSS words available to the
user, which would be, at 10 characters per word, around
20,000 characters. At present, it's 1000 characters, so
this is a factor of about 20 in core size. Speed should be
increased proportionately. I think that we would plan for
roughly a hundred terminals to be connected, and service up
to something like 25-30 at a time. 1In addition to this, we

would provide long-term storage of some nature. The purchase

-42-

price for the new model could, I think, he brought down to
somewhere between $500,000 and $750,000. Now this means

that the cost per terminal is around $7500, which is high,

but perhaps you can put background work on it during the

"off" hours. We haven't thought about putting it on during
the "on" hours because we feel that response is very important
and we've got another computer in the other room anyway that
works awfully well. That's about as far as we've gone into
the economics of it, but I think that would be an economical
situation for almost any engineering or scientific organiza-

tion with this sort of problem.

COMMANDS

Direct only:
Cancel
Delete
Go
Form

Indirect only:

To
Done
Stop
Demand

Both:
Type
Do
Set
Line
Page

JOSS WORDS AND SYMBOLS

MODIFIERS FUNCTIONS
if, and, or sqrt
for log
in form exp

sin
cos
arg

DESIGNATORS max
step, all steps min
part, all parts sgn
form, all forms ip
all values fp
all dp
size Xp

PUNCTUATION AND SPECIAL CHARACTERS

OPERATIONS

oy s s " #8022

+

s —
Lt N —

RELATIONS

W ANV VR

O xTpuaddy

_€-|7-

	000
	001
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

