MEMORANDUM

RM-5058-PR
JULY 1966

JOSS: INTRODUCTION TO
A HELPFUL ASSISTANT

C. L. Baker

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

7t RH D g

SANTA MONICA ¢« CALIFORNIA

MEMORANDUM
RM-5058-PR

JULY 1966

JOSS: INTRODUCTION TO
A HELPFUL ASSISTANT
C. L. Baker

This research is sponsored by the United States Air Force under Project RAND—Con-
tract No. AF 49(638)-1700—monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

7te RH 1D possn

1700 MAIN ST + SANTA MONICA ¢« CALIFORNIA « 90406

-ii-’

Copyright © 1966
THE RAND CORPORATION

Published by The RAND Corporation

-iii-
PREFACE

This memorandum was originally delivered as a speech
to the Eleventh Annual Data Processing Conference at the
University of Alabama Birmingham Center on May 4, 1966.

A brief but explicit description of the capabilities
of the JOSST system is presented through a step-by-step
demonstration of the process, with illustrative material
taken from actual JOSS output. (The slides prepared for
the original presentation have been reproduced and have been
inserted in the text of the present memorandum as illustra-
tions.) The unique aspects that distinguish JOSS from other
systems permit the user to combine a few highly refined
basic features in a variety of ways without restriction.

The process is described in layman's terms and will give

the uninitiated user, if not the ability to converse fluently
with JOSS, the capacity to 'overhear' a conversation with
almost full comprehension.

This memorandum is a part of The RAND Corporation's
continuing program of research in computer sciences under
U.S. Air Force Project RAND.

The JOSS system was originally implemented on the
JOHNNIAC computer in 1963 by J. C. Shaw, and the present
expanded version is implemented on the Digital Equipment

Corporation PDP-6 computer.

JrJOSS is the trademark and service mark of The RAND
Corporation for its computer program and services using
that program.

SUMMARY

Though JOSS is implemented on a high-speed, general-
purpose, time-sharing computer, it is a special-purpose
system designed to provide the user with a personal service
through remote computation. The only component of the sys-
tem that the user is aware of is his own console--a mobile
unit that is plugged into his office outlet and that sup-
plies computational power. The console itself consists
of a standard IBM Selectric typewriter with a slightly mod-
ified character set. The conventional characters take up
73 of the standard 88 keyboard positions, leaving 15 posi-
tions available for special graphics, which, since the JOSS
system is restricted to numeric computations, have been
chosen from the usual set of mathematical symbols.

An auxiliary control box, equipped with indicator lights,
activates the console. The JOSS console has been designed
so that control of the typewriter is proprietary: Either
JOSS has control for output purposes, or the user has con-
trol for typing in to JOSS. Which of these situations is
actually the case is indicated by visual, tactile, and
audible signals. The user's input of instructions and data
is typed in green, and JOSS responds with output in black.

JOSS commands are limited to one line; take the form
of an imperative English sentence, and in fact may be read
out loud; begin with a verb; and obey the conventional rules
of English for spacing, capitalization, punctuation, and
spelling. The ability to append a conditional clause to
any JOSS command is an extremely powerful feature of the
language. Three brief examples are presented that touch on
almost every feature of the JOSS system: the readability
of the language, including the identity of the ''speaker,"
its computational ability, its logical ability, and JOSS's
response to errors.

In addition to computing directly with numbers, JOSS

-vi-

can assign values to letters, to help in working with
numbers that are repeated many times, or initially have
unknown values. Further examples demonstrate that JOSS
operates with numbers that are (1) always in decimal,

(2) limited to 9 significant digits, (3) are exact on

input and output, (4) are expressed in scientific notation
where appropriate, and (5) may be denoted by single letters.
Any legitimate algebraic expression involving letters, num-
bers, and functions may replace any number, anywhere in the
language, without reservation, and JOSS will interpret the
result appropriately. JOSS arithmetic also provides us
with the true result, rounded, if necessary, to 9 decimal

digits, for the operations of add, subtract, multiply,
divide, square root, and selected cases of exponentiation.

Supplementing the basic operations of arithmetic, the
JOSS functions fall into three groups: elementary tran-
scendental (log, exp, sin, cos, arg), number dissection
(sgn, ip, fp, dp, xp), and iterative (sum, prod, max, min,
first).

Several '"'real' problems are next presented to illus-
trate how the user can add to JOSS's power to work with him
in specific problem-solving situations. We see how JOSS
can store values, expressions, functions, and forms, as
well as sequences of commands, called steps, for subsequent
interpretation.

The ability of JOSS to produce, easily and quickly,
report quality output, in a standard format of 8% by 11 in.,
contributes a great deal to the power of the system. The
value of the JOSS language itself lies not in the user's
ability to continually expand and refine the language in
many small ways, but in his ability to combine a few highly
refined basic features in a variety of ways without restric-
tion. The language is highly readable, and the JOSS user
will soon come to actually 'think'" in the JOSS language--or,
at least, to express his problem using JOSS's vocabulary.

-vii-

ACKNOWLEDGMENTS

I am grateful to the several members of The RAND
Corporation staff who assisted in the preparation of the
lecture: Ray Clewett for his expertise in taking the
slides, Sylvia Comfort for her skill in preparing them,
and Edward Lowe and Bernard Dickson for their many valuable
suggestions on the organization of the presentation.

-ix=-

CONTENTS

PREFACEitiiteeeeensesooooaassssnosssssannssns
SUMMARY . ittt iveeeenennenecnsnsnasnsnssansasocncasnns
ACKNOWLEDGMENTSttt eeestnoocsscesansonss
I. GENERAL DESCRIPTION OF JOSS00...
II. CONSOLESciteoerennenansosasonecnsnsnsos
Keyboardcituiiinnennnnncneeenannnn

Control BOX ...iiiiieteneeerrisonoccacncnnns

TII. COMPUTATIONvierrneeennonecocoosensonan
IV. CONCLUDING REMARKSccciiiiteevenracnnn

-1-

I. GENERAL DESCRIPTION OF JOSS

JOSS is an acronym derived from:

JOHNNIAC--the RAND-built Princeton-type
computer, named for the mathematician
John von Neumann, on which JOSS was first

implemented in 1963.

OPEN SHOP--operation of a computing facil-
ity where operating can be performed by
any qualified employee of the organization,
and not necessarily by the personnel of the

computing center itself.

SYSTEM--although '"'service' would be more
descriptive of the goals of JOSS, and, in
fact, JOSS is the trademark and service
mark of The RAND Corporation for its com-

puter program and services using that program.

Of the four main components of the JOSS system, the
user is aware only of his own console, located in his own
office. The console is connected, of course, by a commu-
nication link--a two-way telephone line--to a central
computer. This machine, along with its resident software
programs, is dedicated full-time--24 hours a day, seven
days a week--to providing JOSS service. It is through the
software package that this hardware becomes a JOSS system.

Please keep in mind in what follows that a high-speed,
general-purpose, time-sharing computer is used to implement
JOSS, but JOSS is not a general-purpose system for time-
sharing and using a general-purpose computer. Let me ask
you, therefore, to remember that JOSS is a special-purpose
system and should be viewed accordingly. It supplies a
personal service, and by this we invite comparison with a

telephone, a desk calculator, or a slide-rule--always avail-

able at a user's desk.

-2-

We restrict JOSS to numeric calculations, and do not
attempt to provide any of the many symbolic capabilities
of the computer. To attract the casual user, and to provide
intimate interaction, we have tried to avoid at all costs
the placing of many of the small stumbling blocks that com-
puter systems often erect in the path of the would-be user.
To the initiate, of course, these pose no problems--in fact,
they cannot be seen--but to the novice, these often appear
to be barriers beyond which he is hesitant to venture.

This afternoon I am going to introduce you to JOSS by
inviting you to look over my shoulder, as you would do as
a visitor at RAND, while I demonstrate some of the capabil-

ities of the JOSS system. Since JOSS is not a programming

language, and since it is not a language for programmers, I
believe that you will leave with the feeling that, while you
might not be able to converse with JOSS fluently yourself,
you could certainly '"overhear'" a conversation with almost

full comprehension.
Throughout this demonstration, I will try to place

-3-

special emphasis on those features that distinguish JOSS
from other systems and make it unique--features that have
contributed to its enthusiastic adoption by the RAND staff.

i

II. CONSOLES

The first of the special features of the JOSS system
is the JOSS console itself. This unit was developed for
this use alone, and, as you will see, is quite different
from, say, the familiar Teletype consoles, which were orig-
inally developed for an entirely different purpose. The
console is mobile, and may easily be moved, as required,

from one office to another.

; -A.;

If JOSS were indeed a truly personal service, each
user would, of course, have his own console, always avail-
able but normally unused, just as with his telephone. Micro-
electronic circuits notwithstanding, however, the cost of
a console is still much higher than that of a telephone,
and so too few consoles are available to provide one in
each office. What we have done instead is to put a ''JOSS
Plug'" into the office of each RAND staff member. This
outlet may be thought of as supplying JOSS computational

power, just as the conventional AC outlet is a source of
electrical energy.

As soon as it is plugged in, our console is ready
for use; but first I'd like to take a moment to describe
the JOSS console network. Each of our 30 JOSS consoles

JOSS CONSOLE NETWORK

i
T 300 LINES
L i1 141 1.1
DATA SET
\ CONCENTRATOR / | 0ATA SET
32 LINES

1 1 1 1 1
DATA
MULTIPLEXER

COMPUTER

may be plugged into any one of more than 300 lines, which
are connected to a centrally located line concentrator.
This line concentrator, in turn, extends the connection
over one of 32 lines to a data multiplexer, which inter-
mixes all communications to the computer.

Not all consoles are located in RAND, however. At
McClellan AFB, Sacramento, California, and at the AEC's
Nevada Test Site, remote--really remote, in the Nevada
desert--consoles are connected to a data set, which is
connected to a matching set at RAND over a common carrier
link (AT&T or Western Union lines).

At all times, communication over each of these lines
is full duplex--that is, in both directions simultaneously--
so that the consoles and the computer can be in immediate
contact with each other.

We're now ready to use our JOSS console. But just as
we look over the dashboard of a new or unfamiliar auto be-
fore we start the motor and drive away, let's spend a few

moments for a "'cockpit layout check."

KEYBOARD

The typewriter keyboard itself is undoubtedly familiar
to everyone here--even to the hunt-and-peck artist. We
can try out the typewriter simply by pushing the ON switch
and typing a bit. At first, the "golf-ball" typing element
of the IBM Selectric typewriter will attract the attention
of anyone who has not seen this fascinating mechanism at
work. It is more important, however, to become accustomed
to the "feel'" of the keyboard and to locate the conventional
and unique characters available.

We'll return to the auxiliary control box in a moment,
but first let's take a closer look at the typewriter graph-

ical character set.

JOSS TYPEWRITER GRAPHICS

CONVENTIONAL
® LETTERS: abc ...xyzABC ... XYZ

® PUNCTUATIONZ..,5: """ 2 () []
@ DIGITS2 123..,.90
® NON-PRINTING:

SPACE, BACKSPACE, TAB, SHIFT,
CARR. RTN., PAGE

The letters (upper and lower case) preserve their conven-
tional positions, as do most of the usual punctuation marks.
The period and comma in the upper case position have been
replaced by brackets, and we should point out that lower
case "one" and "ell' are different, as are ''oh'" and 'zero."
The nonprinting functions--SPACE, BACKSPACE, TAB, SHIFT,

-8-

and CARRIER RETURN--are all to be found in their usual
positions, and do the usual things. PAGE is a RAND-added
feature that combines forms-feed with carrier return.
These conventional characters take up 73 of the stan-
dard 88 keyboard positions, leaving 15 positions available
for special graphics which, since the JOSS system is de-
signed for numeric computations, have been chosen from the

usual set of mathematical symbols.

SPECIAL
® OPERATOR: + — «/ * |
® RELATION: < < = # > >

® OTHER: $ # _

The standard centered dot has been selected to indicate
multiplication, and the slash has been retained to indi-
cate division. Mathematical notation commonly uses a
superscript to indicate raising a number to a power; to
linearize such notation requires an explicit sign, for
which we chose a 5-pointed, upward-pointing, elevated
asterisk (drawn on the following slides as a star). The

' etc., round out the mathematical

relations '"'less than,'
signs. The remaining characters are all used for special

purposes. The dollar sign is always appropriate; the "#"

..

sign is used to strike out any typing errors; and the use

of the underscore will be shown later.

CONTROL BOX

Now that we've familiarized ourselves with the type-
writer keyboard, we can take a closer look at the auxiliary

control box on the console.

POWER ON

RETURN

Of primary concern is the POWER ON switch, which we use
to request JOSS service. When power has been applied,
three white status lights let us know in turn that

1. The console electronics package is working.
2. The JOSS system is working.
3. The typewriter is working.

In the lower half of the console control box are a RED
light, a GREEN light, and an INTERRUPT button and light,
all of which we'll encounter later on.

-10-

We've seen where the controls are, so let's try to
use JOSS. As we turn on the console with the POWER ON

switch, the typewriter comes to life and types out:

JOSS II at your service,
Initials please:

Nm

It looks as if JOSS is now waiting for some action on our
part, but how can we be sure?

The JOSS console has been designed so that control of
the typewriter is proprietary: Either JOSS has control
for output purposes, as in the sign-on salutation, or the
user has control, for typing in to JOSS. Which of these
situations is actually the case is indicated by the RED/

GREEN light pair on the control box.

POWER ON

RETURN - . POWER OFF

SHIFT

\

-11-

We therefore speak of the console being either in the RED
state (computer control) or, as shown above, in the GREEN
state (user has control and may type).

When JOSS turns control over to the user, the follow-
ing signals are given: (1) light changes to GREEN, (2) key-
board unlocks, (3) ribbon changes to GREEN, and (4) soft
BEEP tone is sounded. These visual, tactile, and audible
signals leave no doubt in the user's mind as to who is in

control of the station.

JOSS CONSOLE RED/GREEN STATES

® JOSS HAS CONTROL
CONTROL @ USER HAS CONTROL

® LOCKED
KEYBOARD e UNLOCKED

® JOSS TYPES IN BLACK
RIBBON ® USER TYPES IN GREEN

The user turns control back to JOSS by either CARRIER
RETURN or PAGE with consequent motion of carrier and platen.
At that time, the signals are: (1) light goes to RED,

(2) ribbon changes to black, and (3) keyboard locks.

The two colors used for typing, black and green, not
only leave a permanent record of '"who said what to whom,"
but form a valuable aid while the system is being used.

For the moment, we'll not make any typing mistakes, or
forget to follow instructions, and we'll respond properly

to JOSS's requests.

-~12-

JOSS II at your service,
Initials please: RAND
Project number: 3407
Department: CSD

What is shown above is reproduced from actual typewriter
output. Now it turns out that typewritten material is
fine for reading at a desk or console, or for putting into
reports, but not for slides in a lecture hall. So, I've
had the following slide, and the rest of them as well,

produced by our graphic arts department.

JOSS T at your service.
Initials please: RAND

Project number: 3407
Department: CSD

-13-

I1I. COMPUTATION

As the sign-on procedure is completed with the final
carriage return, JOSS advances the form in the typewriter to
the top of a new sheet of paper, where the time, date, and
user identification are typed. Also on each sheet is a

centered page number.

JOSS OUTPUT PAGE HEADING

11:31 4/15/66 RAND 3407

812" x 11" PAPER

1" MARGINS

o O O O

The output paper is pin fed, but when the tear strips are
removed, each sheet, with a heading line as shown above,
is reduced to the standard size of 8% by 11 in. In ad-
dition, JOSS feeds enough lines to leave a l-in. margin
at the top of each page, and will also give us a l-in.
margin at the left and 1 in. at the bottom of each page.
This unique feature of JOSS is especially appropriate
for RAND, since as a nonmanufacturing research organization,
almost all of our tangible product consists of 8% by 11 in.
sheets of typewritten paper.
As a starter, let's ask JOSS for the answer to that
simplest of all problems--what is 2+2? We do this by asking
JOSS to Type the value of 2+2.

14~

Type 2+2.

242 = 4
Type "ok'' if 500< 3*6<£1000.
ok
type2+2

Eh ?

JOSS responds, in black, with '"'2+2 = 4", as we would expect.

In the second example, which is read "Type "ok" if
500<3*%6<1000.”", we observe that a JOSS command may be
modified by a conditional clause. 1In this case 3%6 = 729,
which meets the stated condition, so the remainder of the
command is obeyed, and JOSS types ''ok''; this could have been
any series of characters. Had the stated condition not
been obtained, JOSS would simply have returned control with-
out typed response. The third example shows JOSS's response
to meaningless inputs (compare with correct form of first
example). The error response ''Eh?" covers a great variety
of situations; the user can quickly scan the offending line
to determine the cause of error. Thus JOSS avoids misleading
the user by misconstruing his intentions. Other error situ-
ations give rise to more particularized error messages, as
we will shortly see, but the brevity of the "Eh?" response
to an obvious error will be appreciated by the user.

Notice that a command to JOSS is

1. Limited to one line.
2. Takes a form of an imperative English sentence,

and in fact may be read out loud.

=1 5=

3. Begins with a verb.
4. Obeys the conventional rules of English for
spacing, capitalization, punctuation, and,

of course, spelling.

The ability to append a conditional clause to any JOSS
command is an extremely powerful feature of the language.
We shall not use it further this afternoon, since an intro-
ductory demonstration is hardly the occasion for untangling
complicated logical knots.

In these three brief examples, on one slide, we have
touched on almost every feature of the JOSS system: the
readability of the language, including the identity of the
"speaker,'" its computational ability, its logical ability,
and JOSS's response to errors. And, incidentally, we have
tested a very large portion--perhaps 90 percent--of the
hardware and software of the entire JOSS system.

In addition to computing directly with numbers, we can
ask JOSS to assign values to letters, to help us work with
numbers that are repeated many times, or initially have
unknown values. The command ''Set x = 3." results in no

Set x=3,
Type x.
x = 3
Type x+2, x =2, %x°2,x/24 x*2.
x+2 = 5
X=-2 = 1
x*2 = 6
x/2 = 1.5
x¥2 = 9

.

output, but JOSS responds by switching back to green. The

" verifies that x indeed has been as-

response to ''Type x.
signed the value 3. Each of the 52 lower and upper case
letters may be used this way.

We can compact several calculations onto one line, as
above, where we see each of the arithmetic signs used.
As always, we can read the command out loud: "Type x+2,
x-2, x-2, x/2, x to the power 2 (or simply x squared)."
Each result appears, as we see, on a separate output line,
with the decimal points aligned.

More elaborate expressions can, of course, be evaluated,
although the inclusion of the brackets, parentheses, and
absolute value signs required to linearize the expression

makes it harder to read.

Type [(|x=5|°3+4)-2-15]-3+10.
[(|x-5]-3+4)+2-15]*3+10 = 25
x =7

Type ([x=7|-3+4)-2 *

Type [(|x=5]*3+4)-2~15]3+10.

[(|x-5]*3+4)°2-15]-3+10 = 25

But let's try: 'The absolute value of x minus 5, times 3, plus
4, all times 2, minus 15, all times 3, plus 10 equals 25."

"x = 7" (using

To try another value of x, we merely say
an abbreviated form for input), and try again. Here, in at-

tempting to type the expression again, I've hopelessly botched

o, 1

things up. An asterisk instructs JOSS to ignore the line,
and we start again. Had the error been less serious, back-
spacing plus strikeover would have sufficed.

This is an appropriate point to explain that although
the nontypist is initially annoyed by JOSS's insistence on
capitals, periods, spacing, and correct spelling, he soon
learns that their contribution to readability is indeed
worthwhile, and that the requirement for the letter-perfect
entry of expressions is really the limiting factor of type-
writer input--a limitation that is experienced by typist
and nontypist alike.

JOSS has a number of features that help us overcome
this problem, but for the moment we'll continue with our

demonstration of JOSS's computational ability. We use

Type sqrt(3),_,sqrt(4).
sqrt(3) = 1,73205081

sqrt(4) = 2
Type sqrt(-1).

I have a negative argument for sqrt.

"sqrt'' as an abbreviation, so we can read ''Type the square
root of 3, leave a blank line, type the square root of 4."
Note the use of parentheses enclosing the 3 and 4. JOSS

comes right back with a 9-digit number for the square root
of 3, a blank line, and the exact value of the square root

B

of 4. 1If we try the impossible operation of a negative
square root, JOSS lets us know with an appropriate error
message.

JOSS provides a number of elementary functions, such

as sine and cosine, shown below, which yield 9 decimal

Type sin (.5), cos(.5).
sin(.5) = .479425539
cos(.5) = 377582562
Type exp(0), exp (1), exp (20).
exp(0) = 1
exp(1) = 2.71828183
exp(20) = 4.8516519510%8

digit results. There are, of course, an infinite number
of digits in both of these answers; JOSS has rounded
" o:386,,." to ¥...39" and ¥, ..618..." to Y...62". Not
shown is the computation sin2+cosz, to which JOSS replies
with the single digit ''1". The exponential function, "e to
the power x'', yields an exact answer, 1l; the rounded value
of e; and, in the case of e to the 20th power, JOSS ex-
presses the answer in scientific notation: '"4.85... times
10*8", as is appropriate for very large or for very small
numbers.

It is often desirable to be able to work with the var-
ious parts of a number expressed in scientific notation.
To show this, we give y the value -1.23456-10%2, or -123.456.
We can ask JOSS to "Type y, the integer part of y, the

-19-

y = -1.23456°10%*2
Type ysip (y)s fp (y)s dp (y)sxp(y)-

y = -123.456
ip(y) = -123
fp(y) = -.450
dp(y) = - -1.23450
xp(y) = 2

fractional part of y, the digit part of y, and the exponent
part of y." The fp operation, for example, allows us to
test to see if a computed number is an exact integer by
using the phrase "if fp(x) = 0."

In statistical work, as in many other scientific fields,
we often encounter the summation operator, a built-in JOSS
function. Shown below is a textbook example that we can ask
JOSS to verify: for a value of N =, say, 100. Since the

g 2 = N(N+D N+
. 6
1=1

N =100

Type sum[i=1(1) Nz i*2].
sum[i=1(1)N2i*2] = 338350
Type prod[N,N+1,2°N+1]/6.
prod [N,N+1,2°N+1]/6 = 338350

-20-

JOSS notation is concise, it's not immediately readable,
but an example will clarify: '"Sum over i (from 1, in steps
of 1, to N) the values of the expression: 1 squared." The
result should be equal to the product of the values of N,
N+1, and 2 times N+1, and indeed this is the case. Other
similar JOSS functions permit us to find the maximum or
minimum of a series of values, or a list of values. These
iterative expressions provide a first hint of how we can
let JOSS work for us in repetitive calculations.

Before we go on with the JOSS demonstration, I'd like
to show you the actual typewriter output, or protocol, of
what we have done so far (see facing page), and, at the same
time, summarize the features of JOSS that we have observed.

First, JOSS operates with numbers that are

1. Always in decimal.

2. Limited to 9 significant digits.

3. Are exact on input and output.

4 Are expressed in scientific notation where
appropriate.

5. May be denoted by single letters.

Also, I must point out that although not explicitly shown
in these examples, any legitimate algebraic expression
involving letters, numbers, and functions may replace any
number, anywhere in the language, without reservation,
and JOSS will interpret the result appropriately.

Second, JOSS arithmetic provides us with the true
result, rounded, if necessary, to 9 decimal digits, for
the operations of add, subtract, multiply, divide, square
root, and selected cases of exponentiation.

A few examples will serve to emphasize the care with
which JOSS does familiar decimal arithmetic, and, inciden-
tally, will provide you with exercises to try on other sys-
tems. In the first example we subtract .05 from 1 followed

-2

11:39 4/15/66 RAND 3407 [1]

Type 2+2,

242 = L
Type "ok" if 500<3%*6<1000.
ok
type2+2
Eh?
Set x=3.
Type X
X = 3
Type X+2,X=2,X*2,X/2,X*2,
x+2 = 5
X=2 = 1
Xe2 = 6
x/2 = 1.5
X*2 = 9

Type [(|x=5]e3+4)e2-15]3+10,
[(lx-5|°3+4)°2-15]°3+10 = 25
x=7
Type ([x=7]*3+u4)e2 %
Tvpe [(|x=5|*3+4)+2-15]+3+10.
[(|x-5|°3+“)'2—15]'3+10 = 25
Type sqrt(3), ,sqrt(d).

sqrt(3) 1.73205081

sqrt(u4) 2
Type sqrt(-1),
I have a negative argument for sqrt.

Type sin(.5), cos(.5).

sin(.5) = 479425539

cos(.5) = .877582562
Type exp(0), exp(1), exp(20).

exp(0) = 1

exp(1) = 2,71828183

exp(20) = 4,85165195210%8

v = =1,23456¢10%2
Type y,ip(y),£fp(y),dp(y),xp(y).

y = -123,456
ip(y) = -123
fply) = - 456
dp(y) = ~1,23u56
xp(y) = 2

N=100

Type sum[i=1(1)N:i%*2],
sum[i=1(1)N:i%*2] = 338350
Type prod[N,N+1,2+N+1]/6,
prod[N,N+1,2+N+1]/6 = 338350

L.

Type 10%8-.0500000000,
10%8-.0500000000 = 1-10*8

Type 10%8-.0500000001.
10%8-.0500000001 = 9,99999999-10*7
Type sqrt(.5).

sqrt (.5) = 707106781
Type [sqrt(.5)] "
[sqrt (.5)*2 = 5

by 8 zeroes, or one hundred million, and are not surprised
when JOSS returns 10*8 as the rounded answer. However, ,
if we increase the .05 by a single digit in the 10th decimal
place, the true answer does not round to 10*8, but is in-
deed 9.99999999.10%7. Nineteen-digit arithmetic is involved.
In the second example, the square root of % yields a 9-digit
number, and this number, when squared, yields %--a very
comforting situation.

Supplementing the basic operations of arithmetic, the
JOSS functions fall into three groups, as shown on the
facing page. The accuracy of the logarithmic, exponential,
and circular functions is not so easily stated as with
arithmetic. Great care is taken to hit ''magic' values on
the nose, and for most purposes it is correct to say that
the resulting values elsewhere are in error by at most a
few digits in the last decimal place. The number dissection
functions, of course, yield exact answers, while the ac-
curacy of the summation, product, and max and min operators
is subject to the arithmetic operations involved as well
as the order of, say, summation. The remaining function
"first" is essentially a table-look-up operator; since it

-23-

JOSS FUNCTIONS

® ELEMENTARY TRANSCENDENTAL
log, exp, sin, cos, arg

® NUMBER DISSECTION
sgn, ipy fpydp, xp

® ITERATIVE

sum, prod, max, min, first

v
properly belongs to '"advanced JOSS," it will be skipped
over here.

The examples so far have covered all of those opera-
tions by which JOSS can directly aid the user. To continue,
I've chosen several so-called real problems to illustrate
how the user can add to JOSS's power to work with him in
specific problem-solving situations.

The first of these (shown on the following page) is
taken from a beautiful book by E. H. Lockwood, A Book of
Curves,T where we find the formula for s, the arc length
along a parabola, as a function of two parameters a and t.
Our first thought is to proceed as before, by entering
values for a and t and by asking JOSS to type the value of
the expression. But JOSS has the ability to store expres-
sions as well as numbers. In this example we see a common
subexpression sqrt(1l+t*2) appearing twice; we'll denote
this by the letter r, for root. We ask JOSS to store our
expression by means of the command: 'Let r = sqrt(l+t*2)."
Similarly, '"Let s = a-[t-rtlog(ttr)]." We have thus ab-

1.Cambridge University Press, Cambridge, 1961, p. 8.

-24-

Arc Length Along a Parabola:

s=a[tViTtZ + log (t+Vi+t?)]

sqrt (1+ t*Z).

Let r
Let s = a*[t°rtlog(t+r)].
Type s.

Error in formuld s¢ a= 72727

breviated the long expression by a single letter; and we ask
JOSS to "Type s." An error message reminds us that we have
neglected to enter a value for a--and for t as well.

We enter these values and try again, and now JOSS re-
sponds with the value of the expression that we have abbre-

viated by the single letter s.

a=3
t=1.5
Type s.
s = 11.69078
t=2.5
Type s.
s = 25.1300015

Type formula s.
s: a‘[ter+log(t+r)]

-25=-

The same expression may now be evaluated several times for

different parameters, and to recall one of our stored ex-

pressions, we ask JOSS to "Type formula s." This ability

to abbreviate an entire expression by a single letter is

appreciated by the typist and nontypist alike, and shows

how we have added to JOSS's power for our particular problem.
Even more powerful is the ability to define a complete

functional relationship for JOSS, and to illustrate this,

I've chosen the classical problem of finding the roots of

a polynomial; that is, finding those values of x that make,

for example, x3—10x2-6x+10 = 0. We will have to evaluate the

Polynomial Equation®
x3-10 x*-6x+10=0
Let P(x) = x*3—10*x*2—0°x+10.
Type P(—=10),P(0), P(10), P(20).
P(-10) = -1930

PO) = 10
PO = -50
PO = 3890

polynomial many times, so we ask JOSS 'Let P of x = ime =

JOSS stores the expression as before, but now we can easily
indicate the values for which the polynomial is to be eval-
uated and can, in a single step, 'Type P(-10), P(0), P(10),
P(20)." 1I've cleverly chosen the polynomial and its co-
efficients so that we can see immediately that there are
roots between -10 and 0, between 0 and 10, and between 10
and 20. Let's see if we can find the value of x between 0
and 10 for which P(x) = O.

~ 96

So far in our demonstration, all of the output from
JOSS has been in a standard format--each number is identified
and decimal points are aligned. Since we are shortly going
to start getting a lot more output from JOSS, we'd like JOSS
to use a more economical format, and one that is particularized
to our problem. We do this by first entering a form that will

describe the output format desired.

Form 1¢
X T oo FX) = o
x= 5/3

Type x4 P(x)in form 1.

x = 1.00007 f(x) = —23.14815

Forms are identified, not by letters, but by numbers, as
"Form 1:" The colon serves to remind us that the next full
line is the form itself; in this form we may type literal in-
formation such as '"x =" and "f(x) =", and denote fields for
decimal numbers by using the underscore combined with the
decimal point. After entering a value for x, we ask JOSS to
"Type x, P(x) in form 1.", with the results shown above.
Notice that JOSS has rounded the value 5/3 to fit into the
first field, and that a position is required for the minus
sign in the second field. Because of the ease with which we
describe output formats to JOSS, we'll use them freely from

now on.

=3 7=

We've seen so far how JOSS can store values, expressions,
functions, and forms for us; the next step is to get JOSS to
store a command, or a sequence of commands, called a part, for
subsequent interpretation. We can thus avoid retyping a com-
mand many times, and at the same time provide a means for

carrying out a number of commands in sequence.

1. Type x, P(x) in form 1.

Type step 1.

1. Type %, P(x) in form 1.

Do step 1.

We indicate that JOSS is to store a command by typing
it as before, but preceded by a numeric step label, which
also serves to identify the step. We can now ask JOSS to
"Type step 1.", which JOSS does, or to "Do step 1.", which
results in the same action as if we had entered step 1 as a
direct command.

The real problem at hand, however, is to find a value
of x that makes the polynomial P(x) = 0. We now know that
one such value lies somewhere between zero and one; we'd like
to repeat step 1 for a number of values of x in this range
and see the result. We can ask JOSS, therefore, to ''Do step

1 for x = zero, in steps of point two, through one."

~ 98-

Do step 1 forx=0(.2)1.

x = ,00000 f(x) = 10.00000
20000 f(x) 3.40800
x = ,40000 f(x) = 6.06400

X

x = ,L,060000 f(x) = 3.01600
x = 1,00000 f(x) = =-5.00000

JOSS obeys this command, and the result is six lines of
formatted output. This narrows the range of x somewhat
(to between .6 and .8), and we could continue to home in
on X by taking finer and finer intervals over a smaller
range by asking, say, '"Do step 1 for x = .7(.01).8.", and
eventually we would get our answer.

There's a much better way, however, which we can find
by consulting any textbook or handbook of numeric methods
and where, almost without fail, we will find a description
of the Newton-Raphson method of root solving. This method
states that if we have a point that is an approximation to
the root of an equation, a better approximation is given
by subtracting the value of the function at that point
divided by the derivative of the function at that point
from the approximation. As shown in the next slide, we
denote this improved value of x by the function i(x), and
copy the rest of the formula directly into JOSS; except
that we use Q(x) to denote the derivative P'(x). But what
about that derivative? Nearby in our numerical analysis
book, we should find the formula for an approximate deriv-

ative, and we can also copy it directly into JOSS.

= P

® If x is an approximate root of

P(x)=0

® Then x - s,(") is an

(x)
improved root

Let i (x) = x = P(x)/Q(x).
Let Q(x) = [P(x+d) = P(x)] /d.

That's just about all we need to begin. We'll start
with a guess, .7, and ask for the improved value, i(x).

X = o/

Type i(x)e

Error in formula Q¢ d =777
d= .0001

Type i(x)y P[i(x)] in form 1.

x = L,706708 f(x) = =-.03519

We've forgotten d, of course, so we enter an appropriately
small value and try again--but let's use form 1, too. Sure
enough, we seem to get a better x--at least f(x) is smaller.

=30~

Let me point out what may not be entirely obvious: The
literal information (here '"x =" and "f(x) =") that we have
entered in the form does not in any way determine the num-
bers that print in the form. This is merely descriptive
information that JOSS types along with our numbers.

Thus, x being a guess, and i(x) being a better guess,
if we improve the improved value with i[i(x)], that ought
to be better still--at least it seems to be.

Type i[i(x)].

i[i(x)] = 765280012
Let R =i(i[iG[i(x)D])-
Type R, P(R) in form 1.

x = L0528 f(x) = .00000

But what we need is to improve our guess a number of times,
so we will use the letter R as an abbreviation for "the
improved value of, the improved value of, the improved value
of ... etc.," five times--which should be enough for our
purposes. And, when we try it, we find that R indeed yields
a root of the polynomial from the repeated application of
the basic definition of Newton's method, as copied from our
handbook.

Our first look at the polynomial roughly located three
roots, but we have found only one so far. So, we'll ask
JOSS to store a step to type out R, the root derived from

-3]1-

starting with a guess, x, near the root, and the value of

the polynomial for that root.

2. Type Ry P(R) in form 1.

Do step Z for x = -1, 1, 10,
x = -1,24670 f(x) = .00000
x = .76828 f(x) = .00000
x = 10.48142 f(x) = 00000
Delete all.
Then we '"'Do step 2" for three initial guesses for x: -1,

1, and 10. JOSS responds with the values of the three
roots, which appear to be correct to at least 5 places.

Our part in the solution of the problem has been merely
to identify the formulas to be used; we have delegated to
JOSS not only the arithmetic computations required, but also
all of the sequencing of these computations, and even the
formatting of the output.

The entire sequencing problem cannot always be turned
over to JOSS so neatly, however; and besides, the problem we
have just solved has a somewhat artificial air about it. In
several years of demonstrating JOSS to many different groups
and individuals with every possible background, I've found
only one problem with wide appeal--a problem that everyone
has, that almost no one can solve, and that is universally
understood: the amortization of a loan in equal monthly pay-
ments. Most of us have the problem as debtors, to be sure,

but even the creditors are interested.

.

The first step is easy: We borrow (or think about
borrowing) money to buy a new car, perhaps. When we look
up the formula for monthly payments to check the quoted
interest rate, we are confronted with a formidable-looking
equation involving small numbers raised to large powers,
which is almost impossible to evaluate by hand--and so we

take the dealer's word.

B = Acre (140N
- "
(14" -1
Let p = Aere(14r)*N/[(1+r)*N-1].
Let r = [R/12] /100,
A = 1500
R=7

N=124

But with JOSS, we start off by copying the formula
directly, or almost; we do have to add brackets to put the
expression on one line. In this formula the interest rate,
r, is per period (in our case, per month), but we would
prefer to work directly with a percent per year--6 or 7 or
10 or whatever; so we must also define r to be the yearly
percentage; r is divided by 12 to get the monthly percentage,
and by 100 to get the true rate.

The remaining values we enter directly: the amount
"A = 1500", the rate "R = 7", and the term "N = 24", We
"Type p." and learn that our payments will be $67.1588831
monthly. But we should really get rid of those fractional

-33-

Type peo

p = 67.1588831
Let P= ip[100°p+ .5]/100.
Form 1
A= oee R=__o_ N=___ P=___.__

Type A,Qqup in Form 10
A= 1500.00 R=T7.0 N= 24 P= 07,10

pennies, and we can define a new P, which will round to the
nearest penny. We multiply p by 100 to express the value
in pennies, add %¥ cent to round up, use the "integer part"
function to keep a whole number of pennies only, and then
divide by 100 to get back to dollars and cents.

We'll probably want a formatted output if we plan to
try, say, several terms, rates, or amounts; so, as before,
we define a form for our output and ask JOSS to type the
amount A, the rate R, the term N, and the payments P. We
could easily, as before, store this step, and ask JOSS to
"Do'" it for a number of values of A, R, or T.

A more interesting problem, however, is that of actually
constructing an amortization table to keep track of how our
balance is declining, and how much interest we are paying in
a year. Our payments are first applied to the interest due,
and what's left over goes to reduce the balance. The interest
due is merely the rate times the existing balance. As before,
we more or less copy these definitions into JOSS (rounding
the interest amount to the penny), after which we enter forms
2 and 3 (see following page). Form 2 has no fields for

numbers--just column headings for month, interest, reduction

- 34~

P=i+a

1=reB
Let 3 = P-i.
Let i = ip[reB°100 + .5]/100.
Form 2:
Mo. Int. Pr. Bal.
Form 3¢

of principal, and balance remaining. In the same way, form
3 has fields for these values that are lined up directly
under the respective headings.

Our remaining task is to store a step that will type
these values in form 3: month, m; interest, i; reduction

of principal, a; and balance, B. When we try to "Do step 1

1 Type m,i,a,B in form 3.

Do step 1 for m =1(1)N.

Error at step 1 (in formula i) B= 777
B=A

|

starting m (the number of the month) with one, then increased

' we get an

in steps of one to N (the period of the loan),'
error message: JOSS wants to know the value of B, the bal-
ance outstanding. Initially, the value of B is the amount
(A) of the loan; therefore, B = A. '"Go." tells JOSS to

resume, and our table begins to emerge.

-35-

/\,_—————'//\/\/\

8.75 58.41 1500.00
8.75 58.41 1500.00
8.75 58.41 1500.00
8.75 58.41 1500.00

N -

This is clearly wrong; the interest and reduction of
principal amounts seem to be OK for the first month, but the
principal hasn't been reduced, and all the lines are the
same. The month number does go up, but this certainly isn't
a very good way to pay off a loan.

For the first time, we're really aware of the fact that
the console is in the RED state: the keyboard is locked,
the light is red, and unless we regain control, JOSS will
supply us with 24 lines of garbage--or 360, if we've tried
a 30-year home loan. We must somehow ask JOSS to turn con-
trol of the console back to us, and we do this by pressing
the INTERRUPT button. JOSS acknowledges this request by
lighting the button, as shown below, and shortly returns the

* « RETURN POWER OFF

=3

console to the GREEN state, in an orderly manner, with an

appropriate message.

S 8.75 58.41 1500.00
o 8.75 58.41 1500.00
I'm at step 1.
Delete step 1.
1.1 Type m,i,a, B-a in form 3.
12 Set B = B-a,

Type part 1.

It's apparent that our single stored step isn't up to
the job, and that we'll need a two-step procedure to con-
struct our table--one step to type out the table entry
itself, and another to reduce the balance by the correct
amount each month. 1In the first step, labeled 1.1, we
correct our first mistake by typing B-a, the reduced bal-
ance, instead of B. The second step, labeled 1.2, actually
replaces the old balance, B, by the reduced balance of B-a.
We mustn't reverse the order of these two steps, however,
since the interest due, i, is calculated on the basis of
the old balance due. These two steps, labeled 1.1 and 1.2,
are collectively referred to as part 1, and we can ask JOSS
to type out part 1, just to make sure we got it in OK.

Now that we know how to store a sequence of steps in
a part, we might as well construct another part that will
combine all of the steps that we've had to do so far. We'll
use part 2, by labeling each step '"Iwo point something."

=3 P

1.1 Type m,i,a,B-a in form 3.
1.2 Set B = B-a.

2.1 Type A,R,NyP in form 1.
2.2 Line.

2,3 Type form 2.

2.4 Linee.

2.5 Do part 1 for m=1(1)N.

2.45 Set B = A,

Let's read out loud:

2.1 Type A,R,N,P in form 1."

2.2 Line.!" Leave a blank line on the output
page.
2.3 Type form 2." Form 2 is our column

heading form--as yet unused.

"2.4 Line.'" Another blank line.

2.5 Do part 1 for m = 1(1)N." The "Do" com-
mand is the same as before, except that
now we use ''part’ in place of '"'step’ to
refer to all of the steps comprising part

2, taken in sequence.

But before that last step is interpreted, we must set
the initial balance, B, to the amount of the loan, A, as
JOSS reminded us before. JOSS will insert step 2.45 be-
tween steps 2.4 and 2.5, so that it will indeed be inter-
preted at the proper place.

Now, if all goes well, the single command ''Do part 2."

will produce our table:

-38-

Do part 2.
A= 1500.00 R= 7.0 N= 24 P= 6716
Mo. Int. Pr. Bal.

8.75 58.41 1441,59
8.41 O58.76 1382.84
8,07 0§9.09 1323,75

7,72 59.44 1264.31
7 2_ 59,78 4704 53

nd N =

Our table looks good, and had I released the ''Do
part 2." line with the PAGE key, or better yet, added

' as a step at the beginning of part

the command ''Page.’
2, our table would have been neatly typed on a fresh

sheet with the proper margins, as shown in the slide of

the actual output on the facing page.

However, at the end of the table, we find a balance
line of $-.03. Exactly zero would be much better, of
course, and by adding one or two more steps we could with-
out much difficulty arrange to indicate that the final
payment should be adjusted by a few pennies. Further, we
would undoubtedly want to total the interest for twelve-
month periods, for tax purposes, and add similar refine-
ments. None of these will require us to learn new features
of JOSS--in fact, in our few examples this afternoon, we
have used all of the features of the JOSS language, with

only a few minor exceptions.

-39-

12:23 4/15/66

A= 1500,00
Mo. Int,
1 8.75
2 8,41
3 8.07
y 7.72
S 7.38
6 7.03
7 6.68
8 6.32
9 5.97
10 5.61
11 5.25
12 4,89
13 4,53
iu 4,16
15 3.79
16 3.43
17 3,05
18 2.68
19 2,30
20 1,92
21 1,54
22 1.16
23 .78
24 «39

R= 7,0
Pr.

58,41
58,75
59.09
59,4k
598,78
60,13
60,48
60,84
61,19
61,55
61.91
62,27
62.63
63,00
63,37
63,73
64,11
64,48
64,86
65.24
65,62
66,00
66,38
66,77

RAND 3407

N= 24 P=
Bal,

i441,59
1382,84
1323,75
1264,31
1204,53
1144,40
1083,92
1023,.08
961,89
900,34
838,43
776.16
713,53
650,53
587,16
523,43
459,32
394,84
329,98
264,74
199,12
133,12
66,74
-.03

67.16

[11]

-40-

IV, CONCLUDING REMARKS

The ability to produce, easily and quickly, report
quality output, in a standard format, contributes a great

deal to the power of the JOSS system.

The power of the JOSS language itself lies not in the
user's ability to continually expand and refine the lan-
guage in many small ways, but in his ability to combine

a few highly refined basic features in all manner of ways,
without restriction. As you have seen, the language is
highly readable, and the JOSS user soon comes to actually
"think" in the JOSS language--or, at least, to express

his problem using JOSS's vocabulary.

JOSS itself is not a problem-solver, of course, but
rather acts as a "helpful assistant' to which the human
problem-solver can delegate most of his computational
chores. The JOSS language is not a programmer's language,
and, in fact, most of the matters with which a programmer

usually busies himself--input and output; converting,

“41-

branching, looping, testing; compiling and assembling;

symbol manipulation and list processing; etc.--are either
delegated to JOSS or are entirely out of the scope of the
JOSS system. To the professional computer programmer,
therefore, JOSS undoubtedly appears naive and unsophisticated.
Many of the problems that JOSS users have solved, however--
including simultaneous nonlinear integral equations--would
tax the abilities of most such programmers. To the large
body of its many users at RAND, the JOSS system represents

a manyfold increase in power over what is available to them

by any other means.

	000
	001
	002
	003
	005
	006
	007
	009
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41

