MEMORANDUM

RM-5322-FPR
MAY 1967

JOSS: PROBLEM SOLVING
FOR ENGINEERS

E. P. Gimble

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

7te RH D grsone

SANTA MONICA « CALIFORNIA

MEMORANDUM

RM-5322-PR
MAY 1967

JOSS: PROBLEM SOLVING
FOR ENGINEERS
E. P. Gimble

This research is supported by the United States Air Force under Project RAND—Con-
tract No. F44620-67-C-0045—monitored by the Directorate of Operational Requirements
and Development Plans, Deputy Chief of Staff, Research and Development, Hq USAF.
Views or conclusions contained in this Memorandum should not be interpreted as
representing the official opinion or policy of the United States Air Force.

DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

1700 MAIN ST. » SANTA MONICA *» CALIFORNIA * 90406

Published by The RAND Corporation

PREFACE

JOSS,r is a computing system developed at RAND to pro-
vide the individual scientist or engineer with a personal
computational service, immediately available whenever re-
quired, in his own working environment. The system con-
sists of a central computer containing the JOSS software
and a number of typewriter consoles connected to the com-
puter via telephone lines. The central computer turns its
attention rapidly from console to console, in such a way
that each user seems to have exclusive use of the system.

From the engineer's point of view, JOSS is a problem-
solving tool that he can use in solving numerical prob-
lems with a minimum investment on his part in learning its
use. This memorandum introduces the basic principles of
JOSS operation through examples and discussion, includ-
ing a step-by-step demonstration of the features of the
system that the reader may try for himself. These princi-
ples are presented in a sequence designed to enable the
engineer to solve progressively more involved scientific
problems. 1In addressing itself to an audience of users
with access to the system, the memorandum assumes that the
reader is familiar with the mechanics of the operation of
the JOSS console. This background may be gained either
from a short demonstration at a JOSS console or by a read-
ing of pages 7-13 of C. L. Baker's JOSS: Introduction to a
Helpful Assistant (The RAND Corporation, RM-5058-PR, July
1966) .

*JOSS is the trademark and service mark of The RAND
Corporation for its computer program and services using
that program.

iii

iv PREFACE

This document, as originally published in August 1966
under the title Problem-Solving with JOSS, was written by

E. P. Gimble, an electronics engineer with the Service
Engineering Division, Sacramento Air Materiel Area,
McClellan Air Force Base, California. In recognition of
the value of this text to engineers, C. L. Baker has pre-
pared the present version for publication in the RAND
series of JOSS documentation, a part of The RAND Corpora-
tion's continuing program of research in computer sciences

under U.S. Air Force Project RAND.

SUMMARY

JOSS, RAND's interactive, remote computing system, is
designed to provide engineers with the ability to solve
complex numerical problems. The JOSS language is easy to
learn and easy to use, with relatively few rules governing
correct use. To use JOSS in the solution of numerical
problems, the engineer needs only to express the required
answers in terms of formulas and to specify the values of
the parameters involved. The formulas and values are en-
tered into JOSS through a typewriter keyboard.

This memorandum begins with an overview of the JOSS
system, including descriptions of the console, the language,
and the basic principles of operational procedure. Examples
of JOSS input and output are used to demonstrate step by
step how the basic commands, both direct and indirect, are
applied.

Direct commands are used to solve problems when only
a few answers are required. On presentation of a direct
command, JOSS immediately performs the requested action.

If formulas or values are misused or missing, JOSS responds
with a message indicating the trouble.

Indirect commands are used to solve problems when many
answers are required, when many variables are to be set, or
when a number of steps must be performed in a prescribed
sequence. A command becomes indirect when it is prefixed
by a step number, indicating its position within a sequence.
The step number is, in effect, a request for JOSS to store
the command for interpretation and execution when the step
is reached in the course of a program.

The versatility of JOSS as an aid in solving complex

vi SUMMARY

problems is demonstrated by a discussion of special tech-
niques. Such techniques include choosing between several
acceptable commands, minimizing function argumenfs, and
directing JOSS to ''dress up'" output with headings and con-
densed printout. The interactive use of JOSS in correcting
program errors is also discussed, including explanations

of error messages that may arise.

A JOSS filing system provides long-term storage for
programs and data. This system eliminates the need for
retyping frequently used material and allows a program to
be constructed gradually over a period of time.

The appendices to this memorandum consist of a list of
legitimate JOSS commands, both direct and indirect, includ-
ing rules of form and notes applicable to the commands; a
description of the use of expressions and propositions; and

a discussion of the available JOSS functions.

CONTENTS

PREFACE .

SUMMARY .

AUTHOR'S PREFACE

Chapter 1
WHAT IS JOSS?

Section

1.1. The JOSS System
2.
3.

1.
1.

NMNMNMNPNMNNNDNDNDNNDN
oo LN

WWwwwwww
SNouvmpuwppopH

The Language .
Error Correction .

Chapter 2
IDENTIFIERS AND DIRECT COMMANDS

Introduction
Calculation: Type Command .
Variables: Set Command

Variables Defined by Formulas: Let Command

Functions: Let Command .
Indexed Variables: Set Command
Propositions: Let Command .
Conditional Expre351ons

Setting Variables to Boolean Values

Chapter 3
INDIRECT COMMANDS

Introduction

Steps and Parts; Do and To Commands

Do Iterations; For Phrase, Demand Command
Forms and Fields e e

. Programmed Printout

Programmed Calculation; If Phrase

Sequencing Program Steps, Stop, Done, and gul

Commands,

vii

iii

ix

SN

10
15
19
22
25
26

28
28
30
33
35
37

39

viii

CONTENTS

Chapter 4
TECHNIQUES

Section

~reErEAEPErEPRAERERERE

(S G, G, |

oSO P WN

EN Nt N

Introduction . .

Direct versus Indlrect Commands
Set versus let . . .
Degrees versus Radians . .
Minimizing Function Arguments
Dressing Up the Output .
Debugging; Error Messages

. More Debugging Tools; Cancel; Parenthetlc Do .

Chapter 5
FILING

Introduction
The File System
The File Commands

. Using the File

Appendix

A,

JOSS COMMANDS
A.l1., Some Rules of Form .
Notes Applicable to the Commands
. Operational Commands
. File Commands
Direct Inputs

>
LN

EXPRESSIONS AND PROPOSITIONS

B.1l. Expressions . .
B.2. Some Rules of Form for Express1ons .
B.3. Propositions

FUNCTIONS

C.1. JOSS Functions

C.2. User-defined Functlons

C.3. Constants Derived from the Functlons .

43
43
45
46
46
48
51
57

59
59
60
61

64
64
65
67
68

69
70
70

72
74
75

AUTHOR 'S PREFACE

JOSS is a "computing aid interacting with the user by
means of a simple language.' The aim of this document is
to acquaint the reader with the language and the manner of
interaction to give him the immediate ability to solve
problems on JOSS. Our method is to enumerate the various
JOSS commands and to show, by examples and discussion,
JOSS's response to each of them. With an understanding of
these basic principles, the user should be able to solve
progressively more involved scientific problems. If pos-
sible, he should actually use JOSS during the reading of
this document and immediately apply the principles being
discussed. He should try the examples, inserting various
expressions, and also solve real problems with JOSS.

Machine limitations have not been fully described.
These will be pointed out in the form of error messages
from JOSS as the need arises.

The JOSS language is summarized in the appendices.
The material for this section was drawn almost entirely

from JOSS: One-page Summary, JOSS Functions: A Brief

Description, and What's New in JOSS II, informal memos

prepared by The RAND Corporation. The remainder of the
material in the document is an expansion of the above memos
together with information the author has learned directly

from using JOSS.

August 1966 E. P. Gimble
McClellan Air Force Base
Sacramento, California

ix

Chapter 1

WHAT IS JOSS?

1.1. THE JOSS' SYSTEM

JOSS is an on-line, time-sharing computer system de-
veloped by The RAND Corporation for direct use by engineers
without the assistance of programmers. Terminals are con-
nected through individual multiplexor lines to the computer,
Inputs are accepted one typed line at a time. Multiplexor
lines are rapidly sampled in sequence by the computer so
that outputs are generally as fast as the IBM typewriter
that gives the printout.

The console control box at each input/output console

has an on/off switch that clears the immediate memory allot-

ted to that console and automatically causes a request for
operator identification. The only other panel switch is an
interrupt button with which the user may stop JOSS to make
changes in the midst of a program or computation. Also in-

cluded are green and red lights that indicate, respectively,

user control and JOSS control of the typewriter. Three white

tnon ' 1"

lights indicate "system on," '"console on,'" and "typewriter

on. 1)

The typewriter has a standard IBM keyboard, altered by
the addition of a few special mathematical symbols. Its
operation is much like any electric model, but pressing a
key causes the associated electronics to transmit a coded

character to the computer. Striking the carrier return key

fJOSS is the trademark and service mark of The RAND

Corporation for its computer program and services using
that program.

2 1., WHAT IS JOSS?

gives console control to the computer, thus presenting a
complete line for interpretation.
There are three typewriter adjustments with which we

should be familiar. The platen pressure lever located on

the upper right should be positioned to the rear. The

double space lever is next to it and should be positioned

forward. The page adjust knob is on the left platen roller

and should be positioned in. The page is adjusted so as

to receive its typed heading on the top line by pulling out
the knob, rolling to the correct position, and pressing in
the knob.

1.2, THE LANGUAGE

Appendix A lists all the legitimate JOSS commands.
Each command occupies a single line and is presented by

striking the carrier return key.

On presentation of a direct command, JOSS immediately

takes the requested action and then returns control to the
user. The direct command is not stored.
A command becomes indirect when it is prefixed by a

step number (mixed decimal number). The presentation of

an indirect command is, in effect, a request for JOSS to
store the command. JOSS will interpret and execute the
indirect command when that step is reached in the course
of a program. A program is a step or set of steps (in-
direct commands) to be performed in a specified order.
The 26 upper- and 26 lower-case English letters are

used as identifiers. Each of the 52 identifiers may be

defined as a variable, function, or proposition. An iden-
tifier must always be a single letter. A definition is

changed (or corrected) by simply reusing the identifier.

1.2. THE LANGUAGE 3

We shall define an expression as one number or identi-

fier or a combination of numbers and/or identifiers and/or

JOSS functions (App. C) that is reducible to a number when

JOSS is called on to use it. Thus, the term "expression"
used alone will mean '"'mathematical expression reducible

to a number.'" The usual mathematical symbols

II’[]a()s*9/s',+s"

are used. The symbols are conventional, except for the

asterisk, which indicates exponentiation.
The order of precedence for operations is conventional:

| |, 11, and () from inside outward
*

1
2
3. - and / from left to right within each term
4, + and -

Attention to this order is necessary because we are re-
stricted to a single line for the expression. The left-to-

right rule, for example, means that

x/2. is X, not X
y 2 2y
. X X

x/2/y is 5y not 775

The order of precedence rule, for example, means that

atb.ctd is at(b-c)+d not (atb):-(ctd), nor (atb)-ctd,
a.btc-d is (a.b)+(c-d) not a- (btc)-d, nor (a'b+tc)-d,

2
and x/y*2 is =, not (§> ,
y? y
x2
y

x*2/y is

4 1. WHAT IS JOSS?

JOSS also handles Boolean expressions composed of

mathematical statements using the relational operators

and the negation
not,

and connected in turn by the logical operators
and, or.

These will be discussed further in Sec. 2.7.

1.3. ERROR CORRECTION

JOSS helps the user to type his commands and expres-
sions precisely. During the typing of a line, the user
may backspace and strikeover, or he may use the strikeout
symbol # to delete a character. To delete an entire line,
he may begin or end the line with an asterisk.

If errors are detected in the line as finally pre-
sented, JOSS will respond with an error message. For
improperly written direct commands, JOSS will give an im-
mediate error message; the direct command should be re-
entered. For indirect commands, however, the only check
that JOSS makes is for a valid step number. Thus, a deci-
mal number followed by a space and any string of characters,
for instance, will be stored as a step. Errors in the
command itself, if any, are detected only when the command
is interpreted; in this case, JOSS stops at the point of

the error, gives a message beginning with "Error at step ...",

and returns control to the user.

1.3. ERROR CORRECTION 5

If an improper formula definition is indicated, the
definition may be replaced or corrected by reusing the
identifier. The step itself may be replaced or corrected
by reusing the step number. JOSS resumes the program at

the point of error when the Go command is given.

Chapter 2

IDENTIFIERS AND DIRECT COMMANDS

2.1. INTRODUCTION

Many engineering and other mathematical problems can
be solved by (1) expressing the required answer in terms
of formulas, (2) determining the values of the parameters
involved, and (3) evaluating these formulas for these values.
To solve such problems with the aid of JOSS, we do (1) and
(2) by entering formulas and values through the typewriter
keyboard; JOSS will evaluate and type the answer (3) when
requested. Missing or misused formulas will be pointed out
in lieu of an answer. Typing (1) and (2) is similar to
setting up the problem with pencil and paper.

All methods of solving problems, other than calcu-
lating numerical expressions, normally require the defini-
tion of identifiers as variables, functions, and/or propo-
sitions. These identifiers are defined and used on JOSS
according to standard mathematical usage and notation
except for a few added English words. |

In this chapter we will use only direct commands.

We will solve problems by using the Type, Set, Let, and

Delete commands directly. Type or Delete may be used at

any time to examine or to delete part or all of our input.
Appendix A presents a list of the allowable forms of
these four commands and includes rules of form and notes
that are applicable to the commands. Appendix B describes
the use of expressions and propositions, and App. C dis-
cusses the available JOSS functions. The reader should

make reference to these sections, as he finds necessary,

2.3. VARIABLES 7

for elaboration of the material presented in the main text.Jr

2.2. CALCULATION: TYPE COMMAND

When we enter 'Type [C1.'", JOSS repeats the expression
signified by """ and types its value: '"[CJ = (number)".

The expression is, in fact, a number.

EXAMPLES

Type 2.
2 = 2
Type _}3*2,3.1416-3*2,_)sin(3.1416/6), 5+7411/12/8+3,

3%2 = g
3,1416¢3%2 = 28,2744
sin(3,1416/6) = .50000106
5¢7¢11/12/8+3 = 12,03125

Note that expressions separated by commas may be
listed in one Type command, and that underscores
may be used to indicate null items for formatting
JOSS's output. (A void response would result from

"Type all.'", as JOSS has stored no information.)

2.3. VARIABLES: SET COMMAND

We define a variable by choosing an identifier (such

TThe symbol [T is used throughout this memorandum to
indicate that any mathematical expression reducible to a num-
ber may be substituted. Actual JOSS input and output will be
distinguished by a two-color, elite-typeface, indented format.
The reader with access to a JOSS console may verify JOSS's re-
sponses by entering these examples as he reads them.

8 2, IDENTIFIERS AND DIRECT COMMANDS

as "x") and typing "x = 1" or "Set x = [J.

Set x = 5¢10%3,
y=sqrt(x/3) + 5
Type all.

5000
45,8248291

<
non

The identifiers x and y are set to the proper numerical
values and retain these values until redefined. This com-
mand has two distinct parts joined by an equals sign. The
expression that appears to the right of the equals sign
must be reducible to a number. The single letter to the
left of the equals sign, although it may have been pre-
viously defined as a number (variable), is not a number

in this command, but an identifier about to receive a new

definition. For example, after defining x above, we may

type
X = 2ex+1

The expression on the right of the equals sign is a num-
ber, while the x on the left is the identifier being newly
defined.

We may find the value of a variable by typing

Type x.
X = 10001

which is the same command as used in Sec. 2.2.

2.3. VARIABLES 9

A lengthy expression may be shortened by using vari-

ables to represent its parts.
EXAMPLE

Evaluate the expression

2
11 42 - J11
(6 + "37) + 17

1T
(6 + 35)

by assigning identifiers to the values of parts of

the expression.
Solution:

a = 6+11/32
b={u42-sqrt(11)1/17
Type (a%2+b)/a.
(a®2+b)/a = 6,70244836

We may define frequently used constants, such as pi
and a conversion factor for changing from degrees to ra-

dians, by

p=arg(-1,0)
k=p/180

where arg is the JOSS abbreviation for the argument function

of a rectangular coordinate point.Jr Any of these defined

TThe argument function is used here merely as a con-
venient way of getting a numerical value for the constant m;
see App. C for a detailed description of this function.

10 2. IDENTIFIERS AND DIRECT COMMANDS

variables, or constants, may now be used to form expres-

sions. For example:

x=2
Type pex®2, 45<k,
prx¥*2 = 12.5663706
45k = .785398163

The status of our input may be examined by typing

Type all.

a = 6.34375

b = 2.27549266

k = .0174532925
P = 3.,14159265
X = 2

y = 45,8248291

2.4, VARTABLES DEFINED BY FORMULAS: LET COMMAND

We can tell JOSS how to calculate x, rather than fix-
ing the value of x as in the previous section, by typing
"Let x = 1." Before demonstrating this, however, we
should type ''Delete all." to instruct JOSS to erase all

of our previous inputs,

Delete all,
Let d = c¢/arg(-1,0).
Type all.

d: c/arg(-1,0)

The use of Let indicates that the identifier d is not

set to the numerical value of the expression on the right,

2.4, VARIABLES DEFINED BY FORMULAS 11

but is defined by the formula. This formula for diameter

is indeed an expression reducible to a number when all of

its elements are defined, but its value will be calculated

only when d is called for; as when we enter

c = 10.5
Type d, arg(-1,0)a#2/4,

d = 3.34225381
arg(-1,0)«d*2/4 = 8.77341623

Although JOSS has not stored a value for d, it calculates
a value each time d is called for, provided the [is

reducible to a number at that time.

If 3 contains a Y that is undefined, for example,
Let x = Y*2earg(-1,0).
we get

Type X.
Error in formula x: Y = 2?27

when we attempt to use x. JOSS helps us keep our formulas

straight. We may check our formula with

Type formula x,
X: Y#*2earg(-1,0)

JOSS's response presents the formula as we defined it.

Formulas may be broken into parts in much the same

way used for the example in Sec. 2.3.

12 2. IDENTIFIERS AND DIRECT COMMANDS

EXAMPLE

Solve each of the following equations for x:

10x% + 45% + 29 = 0,

1.7x2 + .08x + .95 = 0.

Solution:

We write the quadratic formula

b+ Wb% - 4ac

2a

in parts by typing

Delete all,
Let A = -b/2/a.
Let B = sqrt(b%*2-bea-c)/2/a.

then set a, b, c and solve; thus

a=10

b=u5

c=29

Type A+B, A-B.
A+B = -.77945588
A-B = ~3,72054412

We may reset a, b, ¢ and solve the second equation:

a=1.7

b=,08

c=,95

Type A+B, A-B.

Error in formula B: I have a negative argument for sqrt.

2.4. VARIABLES DEFINED BY FORMULAS 13

This means that the answer will be A + Ci, where i is

the square root of -1 and defining C as

Let C = sqrt(-b*2+4easc)/2/a.
Type A, C.
A
C

-.0235294118
S 747174612

Let us check the present contents of our immediate

memory:

Type all.

A: -b/2/a

B: sqgrt(b*2-4eaec)/2/a
C: sqrt(-b*2+4ea-c)/2/a
a = 1.7

b = .08

c = .95

The fact that a variable may be defined by a formula
containing variables, which are defined in turn by other
formulas, simplifies the analysis of physical problems.
Unknown quantities may be designated by letter identifiers;
the user may enter these identifiers and formulas in any

convenient order.
EXAMPLE

Find the tensile stress in a wire with radius of r
supporting a triangular piece of material with sides
a, b, and ¢, thickness t, and density d (in inches

and pounds).

14

2. IDENTIFIERS AND DIRECT COMMANDS

Solution:

Stress, x, is weight divided by wire cross-sectional

area:

Delete all.
Let x = W/A.

Wire cross-section:

Let A = per#2,
p = arg(-1,0).

Weight is thickness times face area times density:
Let W = tef-d.
Area of triangular face of weight:

Let £ = [se(s-a)+*(s=b)+(s-c)]*.5,
Let s = (atb+c)/2.

All that remains to be done is to set values for r,

t, a, b, ¢, d, and type

Type x,W,A.
Error in formula W: t = ?2??

Thus, JOSS will remind us in the event parameters
have not been defined.

r=,1
t=1
a=15
b=20
c=25
d=490/12%3
Type x,W,A.
1353,92226
42,5347223
. 0314159265

X
W
A

2.5. FUNCTIONS 15

To solve the above example with a change in any of the

parameters, say, a and b, it is only necessary to type

a=18
b=18
Type x,W,A.
X = 1461.31468
W = 45,9085546
A = .0314159265

because all other identifiers retain their definitions.

Type all.

A: per®2

W: tefed

f: [se(s-a)+(s-b)e(s-c)]*.5
s: (atb+c)/2

x: W/A

a = 18

b = 18

c = 25

d = .283564815
P = 3.14159265
r = .1

t = 1

2.5. FUNCTIONS: LET COMMAND

We may assign the identifier x to be a (user-defined)

function of two arguments by typing ''Let x(y,z) = 3"

Delete all,
Let x(y,z) = y%2 + z/2,

" The letters y and z in this example are dummy arguments; up

to ten of these may be used in defining a function. Thus,

16 2, IDENTIFIERS AND DIRECT COMMANDS

x(a,b) is a” +

x(2,4) is 27 +

and so forth, and x has become a function. We may apply
the newly defined function by furnishing, in this case,

two arguments:

Type x(3,7).
x(3,7) = 12,5

A user-defined function, together with arguments, is an
expression (reducible to a number). The identifier used
alone is defined as a function and has no numerical value.

When we try

Type x.
®(y,z): y¥%2 + z/2

JOSS does not respond as it did to a '"Type [CJ." command
because x, alone, is not an expression. We are saying
"Type the definition of x.'" JOSS gives us the definition
of the function x exactly as we typed it initially. Note

that the same type of response was obtained in Sec. 2.4 by

Type formula x.
®(y,z): y#*2 4+ z/2

which is also a valid command here.
The value of the function x(y,z) is not defined at

this point because y and z have not been defined.

Type x(y,z).
y = ??2°?

2.5. FUNCTIONS 17

The use of an identifier as a dummy argument does not de-
fine it nor affect its previous definition in any way.

Some useful user-defined functions are log to base 10:

1"

Let L(x) = log(x)/log(10).

and tangent:

sin(a)/cos(a).

Let T(a)

Now let us use the newly defined functions. First we will

define a radian/degree constant:
k=arg(-1,0)/180

It is clear from the defining expressions (to the right of
the equals signs) that numbers or expressions are to be used

in place of the dummies x and a. So we type

Type L(100), T(45+k).
L(100)
T(45+k)

2
1

H H

In the derivative we have a function of a function,

which is defined (approximately) by

% £ (x) f(x + 5)6 - £(x)

or, for JOSS:

Lef D(f,x) = [f(x+.0001) - £(x)1/.0001.

18 2. IDENTIFIERS AND DIRECT COMMANDS

In using this function, the dummy f must be replaced by a
function, and the dummy x replaced by a value for the in-

dependent variable. We can evaluate (approximately)

— tan x and iL-sin X
X dx

and compare the latter with cos 30° by the command

Type D(T,0), D(sin,30+k), cos(30+k).

D(T,0) = 1
D(sin,30+k) = .866
cos(30ek) = . 866025404

The integral function may be defined by Simpson's rule,

which tells us that the area under a curve from a to b is

Ax
T (y0+4y1+'2y2+ 4y3+ 2}’4 see +yn)a
where fx = 2= a
n
yo = £(a),
y, = £(b),

and the general ordinate is
y; = £[a+ 2 (b-a)]
i n ’
We define this function in JOSS by typing

Let I(f,a,b)
Let S(f,a,b)
n=100

(b-a)/n/3+[f(a) + £(b) + S(f,a,b)].
sum[1=1(1)n-1: [3-(-1)*iJef(ati+*[b-a]l/n)].

thou

2.6. INDEXED VARIABLES 19

where f is the function, and a and b are the lower and
upper limits. An even number must be used for n. One
hundred gets good accuracy (around .00l percent, depending
on the function). Larger n improves accuracy but takes
more computation time. Other schemes for numeric integra-

tion (for example, two-point Gaussian) may be constructed

in an analogous fashion.
EXAMPLE

Using the Simpson's rule integral function defined
above, we may numerically integrate JOSS functions

or those that we define:

10 90°

x3 dx and f sin x dx.

0 0

For example:

Let a(x) = x*3,

k=arg(-1,0)/180

Type 1(a,0,10), I(sin,0,90+k).
I(a,0,10) = 2500

I(sin,0,90+k) = 1

2.6. INDEXED VARIABLES: SET COMMAND

A variable may be indexed and defined by setting it
equal to a number in the same manner as were simple vari-
ables in Sec. 2.3. Variables defined by formulas (using
Let) may not be indexed.

Each indexed x, for example, is a distinct variable
and may be assigned values and used in the same way as

other variables. We may type

20 2. IDENTIFIERS AND DIRECT COMMANDS

Delete all.
x(1) = 9
x(2) = 13

and then use these x's as numbers:

Type 2+x(1), x(2)%2,
2ex(1)
x(2)#%2

18
169

n o

The nonindexed variable x cannot coexist with the indexed

variable x. Accordingly, in this case the command

Type X.
x(1)
%(2)

o
-
w

results in all the defined values of x being typed, just
as a single value was typed for a variable in Sec. 2.3.

In Sec. 2.3 we indicated that an identifier may be
used in only one way at a time and that redefinition de-
letes any previous definition. In the example above, x
is being used as an indexed variable with a dimensionality

of 1. If we now type

x(1,1) = 25

x(1) and x(2) are deleted:

x(1,1) = 25

An identifier may be indexed with from one to ten subscripts

with integer values in the range -250 through +250.

2.6. INDEXED VARIABLES 21

When we need to set a large number of variables, the
use of indirect commands (Sec. 3.3) simplifies the procedure.
Indexed variables are frequently used with the JOSS

functions sum, prod, max, min, and first. (See App. C.)

EXAMPLE

Assume that for a straight member, the weight distribu-
tion has been defined by n weights, w(i), and their mo-

ment arms, x(i), about some reference point.

w(1)
x(1)
w(2)
x(2)
w(3)
x(3)
w(k)
x(u4)
n=h

(L T | L [R S VO

Find the total moment M, total weight W, and the
location C (with respect to the reference point) of

the center of gravity.

Solution:

M = sum(i=1(1)n: w(i)ex(i)).
W sum(i=1(1)n: w(i)).
Type M,W,M/W.

M= -15
W= 26
M/W = ~-.576923077

The iterative phrase reads '"[sum] over i, from 1, in
steps of 1, through n." The i (or other letter) used as

the iteration variable in the arguments of sum, prod, max,

22 2. IDENTIFIERS AND DIRECT COMMANDS

min, and first functions is a dummy; that is, the use and
definition of identifier i outside the bracketed argument

are not affected.

2.7. PROPOSITIONS: LET COMMAND

- . t
Propositions are Boolean expressions composed of

arithmetic statements using the relational operators

If there is more than one statement, they are connected

in turn by the logical operators

and, or.

Each proposition has a logical value of true or false. To

define an identifier as a proposition, we type

Delete all.
Let x=2<3 and not 3=4 or (5=3 and 2=2).

with the defining proposition following the first equals

sign. To see how JOSS handles propositions, we type

Type X.
X = true
Type formula x,
x: 2<3 and not 324 or (5=3 and 2=2)

TIn this text, the term expression used alone (or
the symbol [C1) means a mathematical expression that is
reducible to a number, and Boolean expressions (proposi-
tions) are excluded.

2.7. PROPOSITIONS 23

Expressions may replace the numerical values in the fore-
going illustration. Also, the arithmetic statements may

be replaced by identifiers defined as propositions, such as

Let p = x or y and z.

Type p.
Error in formula p: y = ?2°?

We have defined x as a true proposition. Let us define y

and z with

Let y
Let z

true.
false.

JOSS reads the word ''true' as a true proposition and '"false"

as a false proposition. Now the command

Type p.
P = true

can be executed.
The order of precedence of operations within a propo-
sition is as follows:

l. evaluation of expressions

2 () from inside outward
3. relational operations
4. not

5 and

6. or

A series of relational operations is an and chain. For

example,

a<x=y>b

is read "a < x and x =y and y > b."

24 2. IDENTIFIERS AND DIRECT COMMANDS

The truth value function, tv(), takes a proposition

as its argument. The truth value for a true proposition

is 1; for a false proposition, it is O.

Type tv(x), tv(y), tv(z), tv(x or y and z).
tv(x) 1
tv(y)
tv(z)
tv(x or y and z) =

1
0
1

Thus, the truth value function may be used as an expres-
sion since it is reducible to a number.

Aside from strictly Boolean applications, propositions
find use in JOSS as conditions for the conditional command
(see if phrase, Sec. 3.6) and for conditional expressions
(Sec. 2.8).

Propositions may be written as functions, with their
arguments consisting of expressions or propositions. For

example, we may use the propositions defined above:

Let P(a,b) = a or b.
Type P(y,z).
P(y,z) = true

or use expressions as arguments:

Let p(a,b) = a>b.
Type p(3,2).

p(3,2) = true
Type all.

P(a,b): aorb

p(a,b): a>b
X: 2<3 and not 324 or (5=3 and 2=2)
y: true
z: false

2.8. CONDITIONAL EXPRESSIONS 25

2.8. CONDITIONAL EXPRESSIONS

A conditional expression is indicated by a set of
parentheses (or brackets) containing several expressions
separated by semicolons, with each expression preceded by

a proposition and colon:

(prop: [; prop: [;)

The value of the conditional expression is the value of

the expression 3 that follows the first true proposition,
reading from left to right. The conditional expression,
therefore, reduces to a single expression for any given
condition. The last proposition may be omitted if the

last expression is to hold for all cases not covered by

the other propositions.
EXAMPLES
1. Define the function shown below:

y=1

Let f(x) = (x<0: 0; 0sx<l: x%2; 1).
Type £(-3), f£(.25), £(.5), £(.75), £(3).

£(-3) = 0
£(.25) = . 0625
£(.5) = .25
£(.75) = .5625

£(3) = 1

26 2. IDENTIFIERS AND DIRECT COMMANDS

2. Define the factorial function.

Solution: By definition, if n is a positive in-
teger, n! is 1 - 2 - 3 .., (n - 1) * n; if n is
0, n! is 1.

Let f(n) = (n=0: 1; fp(n)=0: prod(i=1(1)n: 1)).
Type £(0), £(5), £(20).

£(0) = 1
£(5) = 120
£(20) = 2,432902¢10%18

Type £(3.5).
Error in formula f: Eh?

The second proposition guards against inadvertent

application of the function to a noninteger.

We may also write a conditional proposition by using

propositions in place of the expressions. The conditional

proposition reduces to a single proposition for any given

condition.

EXAMPLE

Define f(x) to be true if x is even, false otherwise.

Let f(x) = [fp(x/2)=0: true; falsel].
Type £(1), £(2), £(5).

f(1) = false
£(2) = true
£(5) = false

2.9. SETTING VARIABLES TO BOOLEAN VALUES

In Secs. 2.3 and 2.6 we have emphasized that the Set
command assigns a numerical value that the identifier re-

tains until it is redefined. We will now find that with

2.9. BOOLEAN VALUES 27

a similar command we may assign Boolean values (Sec. 2.7)

that the identifiers retain until redefined.

Set p(1) = true.
p(2) = a>b
a = ?2??
a=sin(3,3)
b=exp(~-2)
p(2) = a>b
Type p.

p(1)

p(2)

true
false

Chapter 3

INDIRECT COMMANDS

3.1, INTRODUCTION

By the methods described in Chap. 2, we are able to
solve a complex problem where only a few answers are re-

quired. We use indirect commands when many answers are to

be typed, when many variables are to be set, or when a pro-
cess is to be done repeatedly or in a particular sequence.
Section 3.5 describes programs that set variables and orga-
nize tabular printout of data, using formulas to define the
problems. Section 3.6 shows how calculations may be de-

fined and performed by program steps.

3.2. STEPS AND PARTS; DO AND TO COMMANDS

We have defined a program as a step or set of steps
(that is, indirect commands) to be performed in a specified
order.

A step is defined by prefixing a command with a mixed
decimal number, making it an indirect command. A step may
be replaced or corrected by simply reusing the same step
number.

A part is the collection of all steps whose step labels

have the same integer part. This integer is the part number,

The Do command initiates a program by telling JOSS to
do one part or one step. In doing a part, JOSS executes
each step in turn by order of step number, regardless of
the order in which the steps were typed. This means that
a step may be inserted between two other steps at any time

by using a step number whose value lies between that of the

28

3.2. STEPS AND PARTS 29

other two steps. Execution of the last step in the part

named completes the execution of the Do part [J. command.

To illustrate:

Delete all.

1.1 Type "The quick",
1.2 Type "jumps over",
2.1 Type "the lazy dog".
1.15 Type "brown fox".
Type all.

1.1 Type "The quick".
1.15 Type "brown fox".
1.2 Type "jumps over'",

2,1 Type "the lazy dog".

Note how step 1.15 was inserted in the proper place.

Do part 1.
The quick
brown fox
jumps over

When JOSS finished part 1, the direct command was satisfied.
The part being done may contain Do commands that reach

out to another step or entire part:

Delete all,

2.1 Type "brown",
2.2 Type "fox",
2.3 Type "jumps'.

1.1 Type "The quick".

1.2 Do part 2.

1.3 Type "over the lazy dog".
Do part 1,

The quick

brown

fox

jumps

over the lazy dog

30 3. INDIRECT COMMANDS

The To command has a different effect. Let us replace

step 1.2 with

1.2 To part 2.
Do part 1.

The quick
brown

fox

jumps

Notice that To causes the part being executed to be dis-
continued at that point. A transfer is made to another
part, and when the new part is finished, the direct com-
mand is satisfied. We may wish to transfer to some step

other than the first in the new part:

1.2 To step 2.2,
Do part 1.

The quick

fox

jumps

The direct command is satisfied when the remainder of the

new part is executed.

3.3. DO ITERATIONS; FOR PHRASE; DEMAND COMMAND

Do iterations are formed when the Do command contains

the 1 times phrase or the for phrase.

Delete all,
1.1 Type x*2,
Do part 1 for x = 1(1)4,6.

X" = 1
x%2 = 4y
x%2 = 9
x%2 = 16
X®2 = 36

Type x.
X = 6

3.3. DO ITERATIONS 31

The for phrase, "for x from 1, in steps of 1 to 4, then 6,"
has caused JOSS to ''Do part 1" for each value of x listed.
In the process, x was actually set to each value listed,
as evidenced by the response to Type x. Thus, a real iden-
tifier, not a dummy, is used in the for phrase iteration,
In Chap. 2 we used formulas to define our problem and
obtained answers with direct commands for various settings
of the parameters. We are now prepared to obtain as large

a table of values as we wish by the use of Do iterations.
EXAMPLE

Define A, B, and C in terms of x by means of formulas,

Let A = x%2 + 5,2+x - 3,5,
Let B = x*2 - 6,1*x + 4,3,
Let C = x%*2 + 3,3*x + 5.7.

Suppose we wish to evaluate these expressions for a num-

ber of values of the independent variable x. We may type

1.1 Type _4%,A,B,C,
Do part 1 for x=1(1)5(5)20,

X = 1
A = 2.7
B = -.8
C = 10
X = 2
A= 10,9
B = -3.9
C = 16.3

»

N\

280,2
X = 20
A = 500,5
B = 282,3
C = 471.7

32 3. INDIRECT COMMANDS

A Do iteration involving the Demand command is a con-
venient way to set a number of variables, since JOSS then
helps with the typing. To input the data for the example
in Sec. 2.6, we could type (for 5 weights)

1.1 Demand x(i).

1.2 Demand w(i).

Do part 1 for i=1(1)5,
x(1) =

(Only one variable may be listed in each Demand step.) The
Do iteration has begun. JOSS has set i = 1, typed the first
part of the set x(1) command, and returned control to us for
typing the value. When we type a value and strike carrier
return, w(l) will be demanded. The process may be inter-
rupted at any point by striking carrier return without en-
tering a value. The Go command resumes the process, which

is completed when all variables through w(5) are set.

X(i) =3
w(1) =5
x(2) = 3.654
w(2) = z%2

z = ?2?2?
w(2) =

I'm at step 1.2,

z=23,5

Go.
w(2) = z*2
x(3) = z/7
w(3) =5
x(4) = 3ez+y
w(l4) = 5.331
x(5) = 7/3.551
w(5) = 6

If we desire to see a printout of all the x(i) and
w(i) that have been set, we may type "Type all." (JOSS

will type steps and values), "Type all values.'", or

3.4. FORMS AND FIELDS 33

Type X, ,W.
x(1) = 3
x(2) = 3.654
x(3) = 3.35714286
x(4) = 74,5
x(5) = 1,9712757
w(l) = 5
w(2) = 552,25
w(3) = 5
w(d) = 5.331
w(5) = 6

Since i is a real variable that has actually been set to

the values in the iteration phrase, it now has the value 5.

Type i, x(i), w(i).

is=)
x(i) = 1.9712757
w(i) = 6

Do iterations using the (] times phrase find use in
approximations requiring a repetitive process (see the last
example on p. 39; note the comma between the step or part

number and the (] times phrase).

3.4. FORMS AND FIELDS

The first printout on p. 31 gives one value per line,
occupies considerable space, and is relatively slow. To
improve the situation, define a form with fields. Forms
are entered on two lines, the first of which must be '"Form
:". The colon reminds us that the next full line is

committed to the form definition. For example,

Form 1:

L] . . .
— — — ———— — —

allows JOSS to type the four values on one line. The

34 3. INDIRECT COMMANDS

form number must be an integer, followed by a colon; the
form definition is typed on the next line. The formulas
for A, B, and C are still in our immediate memory; before
we use them again, we should delete the program steps no
longer needed.

Delete all steps.

1.1 Type x, A, B, C in form 1.
Do step 1.1 for x=1(1)5(5)20,

1.0 2,7 -.8 10.0
2,0 10.9 -3.9 16.3
3.0 21.1 ~5,0 24,6
4,0 33.3 -4,1 34,9
5.0 u7,5 -1.2 47,2
10.0 148.5 43,3 138.7
15.0 299,5 137.8 280,2
20.0 500,5 282.3 W71.7

The fields in the example have three places before and
one place after the decimal point, so they will accept
numbers less than 999.95. Significant figures less than
.1 will be lost.

Fields for a tabular form of scientific notation may

be indicated by strings of periods.

Form 1:

e 0000000 ee s 0 t00 ss0 000000

They are thus more convenient to use if the approximate
size of the answers cannot be predicted. Compare the pre-

vious output with the following:

Do step 1.1 for x=1(1)5(5)20.

1.0 2,700 00 -8,000-01 1.000 01
2,0 1,090 01 -3,900 00 1,630 01
3.0 2,110 o1 -5,000 00 2,460 01
4,0 3.330 01 -4,100 00 3.490 01
5.0 4,750 01 -1.200 00 4,720 01
10.0 1.485 02 4,330 01 1.387 02
15.0 2.995 02 1.378 02 2.802 02
20,0 5.005 02 2.823 02 4,717 02

3.5. PROGRAMMED PRINTOUT 35

The last three characters in each field represent the ex-
ponent part. The number of significant figures is 5 less
than the number of periods in the field.

Sometimes it is desirable to include text with the

typed numbers, such as

Form 2:
Whenxis [] ’ thenAiS 000000 00 andBiS ® 0 0 0600 0 00

When using a form to format the data output, the Type

command must list no more values than there are fields in
the form; an underscore may be used to indicate that a
field is to be left blank.

x=7,253

Type x,A,B in form 2,

When x is 7.253, then A is 8.682 01 and B is 1,266 01
Type %x,A in form 2,

When x is 7.253, then A is 8,682 01 and B is

Type x, , B in form 2.

When x is 7,253, then A is and B is 1.266 01

We may also use a form without field indication for a

heading, such as

Form 3:

Elevation Angle Distance Height
Type form 3.

Elevation Angle Distance Height

3.5. PROGRAMMED PRINTOUT

We will now deal with the use of programs to control
the setting of independent variables and to obtain certain
arrangements of data printout. Calculations will be de-
fined by expressions and formulas as they were in Chap. 2.

We have seen that the Do part command results in the

36 3. INDIRECT COMMANDS

execution, in numerical sequence, of each step of an entire
part. A Do step command causes the single step to be done.
A To step command (if executed while doing a part) causes
the current part to be discontinued, and the new part to
be done starting with the step named. The for phrase is
used only with Do commands, and a Do iteration is formed

if it includes an iteration expression.

The actions to be accomplished, such as demanding
variables, typihg a heading, and typing a block of data,
can be made to occur in the desired order by the proper
arrangement of program steps.

Indirect commands should be used for operations that
must be done repetitively or in a specified sequence.

The defining of a formula, function, or proposition
is required only once, and its timing is not critical. The

Let command therefore should usually be given directly.

EXAMPLES

1. There may be a requirement to perform the same
operation repeatedly on many data., A program
such as the following might be used:

1,1 Demand a.

1.2 Demand b.

1.3 Type a*b, a/b, b/a in form 1.

Form 1:

8*D = teiiieensy @D T tieinnseey D/A T teeeneens
1.4 To part 1.

Do part 1.
a = 3.5
b = arg(1,1)

asb = 2,749 00, a/b= 4,456 00, b/a = 2,244-01
a = 3.7
b=0>,

asb = 2,906 00, a/b = 4,711 00, b/a = 2,123-01
a =

I'm at step 1.1.

3.6. PROGRAMMED CALCULATION 37

JOSS continues demanding values for a and b, as
before, until the program is interrupted by strik-

ing carrier return without entering data.

2, This program gives a family of curves. The com-

putation is by formula.

Delete all.

Let x = a*2+sin(b/a+5).
1.1 Type ,a.

1.2 Type b x",
1.3 Do part 2 for b=1(1)4,
2,1 Type b,x in form 1.
Form 1:

es so0000cse

Do part 1 for a=10(1)13,.

a = 10
X
-9,.2581 01
-8,8345 01
~8,3227 01
=7.7276 01

FowoNoRryu

a = 11
b X
1 -1.,12u43
2 ~-1,0794

3.6. PROGRAMMED CALCULATION; IF PHRASE

Until now we have done all computation simply by de-
fining our problems in terms of formulas and functions,
and have used programming as a means of obtaining the de-
sired order of printout. In some instances, it is neces-
sary or advantageous to fix the required order of calcula-
tions by means of a program,.

The if phrase is frequently used in this type of pro-
gram. Any command may become conditional by the addition
of the if phrase. JOSS ignores the command unless the if

phrase is satisfied.

38

2,

3. INDIRECT COMMANDS

EXAMPLES

We can find the prime numbers between 100 and 200
by dividing each number by 2, 3, 5, 7, etc., up
to the square root of the number, and checking

for integral quotients,

Delete all,

1.1 Do part 2 for w = 2,3(2)ip[sqrt(i)].
1.2 Type i in form 1 if i=0.

2.1 Set i=0 if fp(i/w) = O.

Form 1:

53_bart 1 for i=100(1)200,
101
103
107
109
113
127
131

B~
122

The following program finds the approximate real

roots of an equation by Newton's method:

Delete all.

1.1 Set x = x - f(x)/4d.

1.2 To part 1 if |f(x)/d]>e.
1.3 Type x, f(x), d in form 1.
Form 1:

e=10%(-7)
Let 4 = [f(x+.,00001)-f(x)]/.00001.

For example, to solve the equation
x3 - 4x” log x = 0,

we first explore the shape of the function:

3.7. SEQUENCING PROGRAM STEPS 39

Let f(x) = x%3 - Lex¥*2elog(x),
Do step 1.3 for x=1(1)10.

1.00000000 00 1.00 00 -1.,00 00
2,00000000 00 -3.09 00 -7.09 00
3,00000000 00 -1.26 01 -1,14 01
4,00000000 00 ~-2.47 01 -1.,24 01
5.00000000 00 -3.59 01 -9.,40 00
6.00000000 00 -4,20 01 -2,00 00
7.00000000 00 -3.84 01 1.00 01
8,00000000 00 -2,03 01 2,69 01
9.00000000 00 1.71 01 4,88 01
1,00000000 01 7.30 01 7.58 01

The columns are x, f£(x), and d, since this is
their order in step 1.3. By exploring the func-
tion in this way, we have found two zero crossings.
We may refine these two approximate roots by

Do part 1 for x = 1,8,

1.423961186 00 -1.30-07 -3.68 00
8.61316937 00 ~-1.00-06 3.96 01

These are good approximations as evidenced by the

small values for f(x). They may be checked by

Do part 1, 3 times,

8.61316940 00 -2,00-06 3.96 01
8,61316945 00 1.00-06 3,97 01
8.61316942 00 -2,00-06 3.98 01

This is a manually directed program. Unless we
know the general shape of our function, we may step
over some roots during our original exploration.
Also, for some functions, the value of e must be

made larger in order to ensure convergence.

3.7. SEQUENCING PROGRAM STEPS; STOP, DONE, AND QUIT COMMANDS

There are four other useful programming devices that

bear mentioning at this time. A conditional expression for

40 3. INDIRECT COMMANDS

the step number could be used in step 1.2 of the preceding

example to provide a printout for the condition d = 0 be-

fore we get the error message for a zero divisor in step 1.1.
1,2 To step [d=0: 3; |[f(x)/d|>e: 1.1; 1.3].
1.3 Do part 2, 3 times,

2.1 Type x, f(x), 4 in form 1.
2,2 Set x = x=-f(x)/d.

3 Type d, x, f(x).

Do part 1.

8, 61316947 00 0 3.98 01
8.61316947 00 0 3.98 01
8.61316947 00 0 3.98 01

Here we have specified three alternate program sequences
in a single step. The 3 times printout used manually in
the previous example has been written into step 1.3.

The other three devices to be noted are Stop, Done,

and Quit. The indirect Stop command may be placed at any
point in the program sequence, and JOSS will return control
to us at that point. We may take a look at conditions, make
changes as desired, and then resume the program with Go.

The Done command allows us to omit the remaining steps
of a part. Done is usually given conditionally, except
when added temporarily for part-program operation.

The Quit command, like Done, omits the remaining steps
within the same part. In addition, Quit satisfies the com-

mand to Do that part, stopping any further iteration.
EXAMPLES

1. This program will give the solution to n simul-

taneous equations of the form

3.7. SEQUENCING PROGRAM STEPS 41

allx1 + a12x2 + . a1 Xn = c1
ay1%) T agx, tay T ¢
anlx1 + anzx2 + + annxn = cn

if S is set to 1. It will perform the inversion
of the n x n matrix a; . and stop if S is not 1.
The program will demand the necessary inputs; it

types either X, or aij’

Delete all.

1.1 Demand n.

Demand S.

Do part 2 for i=1(1)n.
Do part 4 for k=1(1)n.
To step 9.1 if S=1,

Do part 8 for i=1(1)n.

10
1.
10
1.
1.
1.7 Type x.

~No o FE W

1 Do part 3 for j=1(1)n.
2 Demand c(i) if s=1,

3.1 Demand a(i,j).

4,1 Do part 5 for j=1(1)n.

4,2 Set a(k,k) = 1/a(k,k).

4,3 Do part 6 for i=1(1)n.

5.1 Set a(k,j) = a(k,j)/a(k,k) if =k,
6.1 Done if i=k,

6.2 Do part 7 for j=1(1)n.

6.3 Set a(i,k) = -a(i,k)¢a(k,k).

7.1 Set a(i,]) = a(i,j »ra(i,k)ealk,j) if j=k.
8.1 Set x(i) = sum(j=1(L)n:al(i,j)e+c(I)).
9.1 Type a.

This program may be initiated by '"Do part 1."

42

3. INDIRECT COMMANDS

An inverted square matrix may be checked by adding

the step

10 To step 1.k,

and initiating reinversion of the matrix by '"'Do

part 10."

Let us use the Done command in a program to find
the prime numbers less than 100 (see Example 1,

Sec. 3.6):

Delete all,

1.1 Done if fp(n/2) = 0 and n=z2,
1.2 Done if fp(n/3) = 0 and n#3,
1.3 Done if fp(n/5) = 0 and n=#5,
1.4 Done if fp(n/7) = 0 and n=z7,

1.5 Type n in form 1,
Form 1:

bt

Initiate the program with ''Do part 1 for n = 1(1)100."
The Type command is reached only if none of the Done

conditions is satisfied.

Chapter 4

TECHNIQUES

4.1. INTRODUCTION

The JOSS language and software are constructed so that
programs may be evolved through trial and error. The ma-
chine cannot be hurt or the program "hung up'" by combina-
tions of invalid or illegal commands at the console. All
that is necessary to solve most problems is a knowledge of
the problem, a list of JOSS commands and functions (see
Apps. A and C), and patience.

There are many alternate ways of writing a correct
program, however, and this chapter aims at helping us with
a few of the choices. Error message explanations are also
given to help shorten the trial-and-error process of pro-

gram debugging.

4.2, DIRECT VERSUS INDIRECT COMMANDS

Many commands may be given either directly or indi-
rectly. The choice is simple if we remember the general
rule: Use direct commands unless the operation is to be
done repetitively or in some specified sequence.

Let is used to define formulas, functions, and propo-
sitions. Although it is possible to give the Let command
indirectly, the better practice is to give this command
directly. Generally, it is necessary to make these defini-
tions only once during the course of a problem, and timing
is not critical.

Consider some of the difficulties encountered with an

indirect Let command.

43

YA 4. TECHNIQUES

Suppose that we enter

1.4 Let x = a/b.

as a step in our program, and JOSS later tells us that

there is an

Error at step 4.3 (in formula x): b = 7??

because we should have written x = a/c. We may attempt to

correct the trouble with

1.4 Let x = a/c.
Go.

But JOSS will still respond

Error at step 4.3 (in formula x): b = 777

because x is still defined as a/b until step 1.4 is executed
again,

Another possible mistake is to correct the formula
directly:

Let x = a/c.
Go.

without correcting step 1.4, in which case formula x will
be correct until it is redefined incorrectly by the execu-
tion of step 1l.4.

Finally, it may be that the formula x is defined cor-

rectly but at too late a point in the program. In this

4.3, SET VERSUS LET 45

case we might get, for example,

Error at step 1.1: x = 2777

because step 1.4 has not yet defined x. This is one rea-

son for the general rule that Let should be used directly.

4.3. SET VERSUS LET

The Let command must be used when we need a function.
However, we may choose between Set and Let when defining
a variable.

The command

Let x .

allows x to follow the value of the formula as its inde-
pendent variables change. This frees us from having to
reset x repeatedly. Program sequence can be disregarded
in the definition of x. However, the commands "x = —3.",
"1.1 Set x = .", and "1.1 Demand x(i)." also have their
advantages.

Set is more efficient than Let if the value is to be
used repeatedly at each setting. (JOSS must recalculate
a variable-defined-by-formula each time its value is used.)
Set allows us to retain a value while independent variables
change, as may be necessary in some programmed calculations.
Set variables may be indexed.

The Demand command, under control of a Do command with
a for phrase, is a good way to enter a long sequence of

values under program control,

46 4. TECHNIQUES

4,4, DEGREES VERSUS RADIANS

It is good practice to let all identifiers of angles
be defined in terms of radian measure. This eliminates the
need for conversion factors within formulas and reduces the
possibility of programming error. Any necessary conversion
should be made at the time of inputting and/or outputting
data.

4,5, MINIMIZING FUNCTION ARGUMENTS

Considerations of space and convenience make it wise
to use no more dummies in the definition of a function
than are needed, particularly in expressions containing

many function symbols. Consider the following examples:

EXAMPLES

1. In Sec. 2.5 we could have defined the derivative

function as follows:

Delete all,
Let D(f,x,d) = [f(x+d)-f(x)]1/d.

and its use would have required

Let T(x) = sin(x)/cos(x).
Type D(T,0,.00001),
D(T,0,.00001) = 1

or

d=,00001
Type D(T,0,d).
D(T,0,d) = 1

4.5, MINIMIZING FUNCTION ARGUMENTS 47

But, since d will remain .00001, we omit it from
the list of dummies in the argument of the func-

tion D, and type

Let D(f,x) = [f(x+d) - f(x)]/d.
d=,00001
Type D(T,0).

D(T,0) = 1

Suppose our intended use of D is to set x to some
value and examine (or use) the derivatives of
several functions of x at that value. We could

use D(f,x), as in Example 2, and type

x=0
Type D(T,x), D(sin,x), D(cos,x).
D(T,x) = 1
D(sin,x) = 1
D(cos,x) = 0

but, since x is actually a defined variable, we
may redefine the derivative function using one

less dummy:

Let D(f) = [f(x+d)-f(x)1/d.
Type D(T), D(sin), D(cos).

D(T) = 1
D(sin) = 1
D(cos) = 0

Suppose also that only one function, say, the
tangent, needs differentiation in our problem,
but we need symbols for the derivative of tan(x)
at any value of x. We could define f as a tan-

gent function and then let D be a function of

x (only) by typing

48 4. TECHNIQUES

Let f(x) = sin(x)/cos(x).
Let D(x) = [f(x+d)-f(x)1/d.
d=,00001

k=arg(-1,0)/180

Type D(0), D(15¢k), D(30°k), D(45+k), D(60+k).

D(0) = 1
D(15+k) = 1,0718
D(30+k) = 1.3334
D(45¢k) = 2
D(60ek) = uy

5. If x and f will always be defined, D need only be

a variable defined by the formula:

Let D = [f(x+d)-f(x)]/d.
d=,00001

Let f(x) = sin(x)/cos(x).
x=0

Type D.

4,6. DRESSING UP THE OUTPUT

There are two ways to direct JOSS to print headings

with output: (1) using forms and a
2.2 Type form [,
command, and (2) using the
2.2 Type " ... our heading".
command. In either case JOSS repeats, stroke for stroke,
the form definition or the material between the quotes.

To speed up the data printout, the tabulator can be

used in the definition of the form for data. If we desire,

4.6. DRESSING UP THE OUTPUT 49

we may reset the mechanical tabs on the typewriter after
the form has been defined. The same tabs may also be used
in the definition of the heading. Backspacing during the
definition of the heading will cancel spaces and tabs in
reverse order.

The Line command is used to separate blocks of data.

1.71 Line.
1.72 Line.
1.73 Line.

Also, a blank line is given for each underscore in a Type

command, such as

1.7 Type _,_,_
We use a Page command in order to avoid dividing a

block of data between two pages. For example, if the data

block and heading together comprise ten lines, we would

enter
6.25 Page if $>44,

just before the step that types the heading. The $ symbol
carries the current line number. JOSS pages automatically
after line 54,

Condensing the printout to get as many figures as

possible on a page is a useful technique when we are pro-
ducing extensive data. One way of accomplishing this is
to present output in tabular form. As an example, let us

use the cylindrical volume formulas.

50 4, TECHNIQUES

Delete all.,

Let v = heA,
Let A = per#*2,
p=arg(-1,0)

1.1 Type r,v in form 1.

2,1 Type _,h,
2.2 Type '"Radius Volume",
2,3 Do part 1 for r=1(1)10.,

Form 1:

it ———— —

Do part 2 for h = 1,2,3,

h = 1

Radius Volume

3.1
12.6
28,3
50,3
7845
113,1
153.9
201.1
25u,5
314,2

C WU FwWwN R

[N

h = 2
Radius Volume
6.3
25.1
56.5
100,5
157.1
226,2
307,.9
402.1

508.9
——~__J;u;z/’“‘///r‘

OC OO OE Wl

\3

Part 2 gives one table of data. This program results in
one table for each value of h, with about four tables per
page.

A condensed printout may be achieved by redefining
the volume v as a function of r. Then, area A must be

defined as a function of r.

4.7. DEBUGGING; ERROR MESSAGES 51

Delete all.

Let A(r)
Let v(r)

por}'\‘z.
h'A(I‘) .

p=arg(-1,0)

Line,

Type "Ht. Radius -->",

Type ,1,2,3,4,5,6,7,8,9,10 in form 1,
Line.

Do part 2 for h = 1,2,3,

PR PR
] (] ®
UFEWN R

2,1 Type h,v(1),v(2),v(3),v(4),v(5),v(6),v(7),v(8),v(9),v(10) in form 1.

Form 1:

. » . L LJ L]
— — — — —— o g e — — —

Do part 1.

Ht., Radius -->
1.0 2.0 3.0 4,0 5.0 6,0 7.0 8.0 9.0 10,0

1 3.1 12,6 28,3 50,3 78,5 113.1 153.9 201.1 254.,5 314,2
2 6,3 25,1 56,5 100,5 157.1 226,2 307.9 402,1 508,9 628,3
3 9.4 37.7 84,8 150.8 235,6 339,3 461.8 603.2 763.4 9u42,5

Part 2 gives one line of data. Step 1.3 is a heading and
uses a null value, , in the first field because no column

heading is required.

4.7. DEBUGGING; ERROR MESSAGES

The salient feature of JOSS is the manner in which it
works with us to make corrections during the inputting and
execution of our program. When JOSS gives an error message,
we may restate our command in the proper form, as we do,
for example, in conversation when the other person fails
to understand our comment,

We also use the Type command to question JOSS when
the reason for the error message is not understood. We

can use "Type all steps.", "Type all formulas.", "Type all

52 4. TECHNIQUES

values.", etc., or even "Type all." when the amount of
revision makes it difficult to see the current status of
our program.

If the error message contains a step number, we may

use the Go command after making the needed correction.

EXAMPLES

The following examples present common indications of

errors, with possible causes listed below each example

to aid in pinpointing and correcting errors.

1. "Eh?" means that the previous line is incorrect-
ly written.

a. If the line is an indirect command, the step

number has been improperly written (for ex-
ample, not followed by a space).

b. If the line is a direct Let command, the Let
x= portion is improperly written--the space
omitted, or the command doesn't end with a
period.

c. The command may not be legitimate or may be
incorrectly written. (See App. A.)

d. Some expressions may be incorrectly written.

(See App. B.)

e. We should immediately retype the command with
any change that seems plausible if we cannot
find rules that apply. When the expression is
long, time may be saved by constructing short

examples to check our notation. For example:

Type [2+5)/3.
Eh?

4.7. DEBUGGING; ERROR MESSAGES 53

implies that brackets and parentheses must

be used in matching pairs.

Type 2, if 1=1,
Eh?
Type 2 if 1=1.

2 = 2
tells us not to use a comma before the if
phrase.

f. Transmission line noise can occasionally
cause an error in transmission. If we feel
that the line has been correctly written, we
may check for a transmission error by re-

typing the line as isj

2. "Error at step 3.1: Eh?" means that the step

number is correctly written, but that the command
is improperly stated. Use the Go command after
attending to this error.

a. To see how this step was last defined, type
Type step 3.1.

JOSS will type step 3.1 as received.

b. If step 3.1 is a Let command, the Let x=
portion is written wrong, or the period is
omitted.

c. Check for errors (steps l.c, 1.d, l.e).

3. "Y“Error in formula A: Eh?", following a direct

TSimultaneous space bar/shift key before carrier re-
turn makes JOSS repeat the line as received, plus ## for
the illegal space/shift.

54

4, TECHNIQUES

command in which A is used, usually means that
the form of the expression for A is in error.

a. To see how A was last defined, type

Type formula A.
A: [

b. Check for errors (steps l.c, 1.d).

c. The possibility exists that formula A is, in
fact, correctly written, but that the defini-
tion of one or more identifiers is not con-
sistent with its use in formula A.

"Error at step 3.1 (in formula A): Eh?" is cor-

rected as in Example 3. Use the Go command after
attending to this error,.

"Error at step 3.1: I can't find the required

"

step.'" or " ... required part." is given when

step 3.1 refers to a nonexistent step or part.
Use Go after attending to this error.

a. Examine step 3.1 with

Type step 3.1.
3.1 To step 7.2.

b. If 7.2 is the required step, it has been
omitted, deleted, or its step number incor-

rectly written. Investigate with

Type part 7.
7. 2 Line.
t tt

7.1 Type X .
7.3 Do part 8 for x = 1(1)10.

4.7 . DEBUGGING; ERROR MESSAGES 55

“"Error at step 6.3: I can't express value in

your form." or

the form." Use Go after attending to this error.

n I have too many values for

a. Have JOSS type the step and type the form.

b. Check the fields of the form (Sec. 3.2). Do
not use hyphens for underscores. Use periods,
not center dot, for decimals and for fields

for scientific notation.

t [1]

c. For I can't express value ...", type

the values without a form to find out which
ones are too large. Remember that JOSS rounds
numbers as required to match the field size,
and may, for example, round 9.99 ... to
10.00.... Check that a position has been

provided for a minus sign if required.

Type x,y.
X = (number)
y = (number)

d. Use scientific notation fields if necessary.

No printout. Check program order to see why Type

command is not reached.

Printout not as expected.

a. Use interrupt to stop needless printout.
b. Check program order, Do iterations, and Type
commands (Sec. 3.3).

Obviously-incorrect answers may be due to faulty

problem analysis and/or setup, or to a number of
JOSS inputting errors, including disagreement be-

tween: typed formulas and problem analysis, typed

56

10.

4, TECHNIQUES

variables and intended data input, program steps

and desired operations, or the Type statement and

intended quantities for printout.

a.

Ask JOSS to type the Type statement. Check
it against the problem setup to see if it
gives the quantities wanted.

Call for formulas with

Type all formulas.

Check expressions for violation of order of
precedence (App. B). In case of doubt, short

examples may be tried. For example:

Type (2/3)%2, 2/(3%2), 2/3%2,

(2/3)*2 = IIVITIAIRIINS
2/(3%2) = $222222222
2/3%2 = $222222222

verifies that the exponentiation is performed
before the division.

Have JOSS type intermediate answers, or parts
of longer expressions, to isolate the source

of error.

"I'm at step 1.1. I ran out of space." or "Re-

voked. I ran out of space." means that the user's

immediate memory is filled.

a.

0

Check for endless loops via Do or use of Do
instead of‘Ig.
Check for unlimited recursive definition.

Check for x defined in terms of y, and y in

terms of x.

4.8, MORE DEBUGGING TOOLS 57

d. The program may be just too large for the
immediate memory to handle. "Type size."
may be given to determine how many of the
available cells of immediate memory have
been used. The file (Chap. 5) might pos-
sibly be used to partition the program and

do a part at a time.

11. "I have an overflow:" means that some number has
exceeded 9.99999999-10%99 in magnitude.

4.8. MORE DEBUGGING TOOLS; CANCEL; PARENTHETIC DO

Other time-saving devices that may be used during

program construction or debugging are interrupt; Cancel,

Done, Stop, and parenthetic Do; and flow tracers.

When a process is stopped by an error message or in-
terrupt, we may use direct commands for tests and altera-
tions as in the preceding examples and then resume the
process with the Go command. If we do not wish to resume
the process, it will be automatically canceled when a
direct Do command initiates another part or step. However,
the Cancel command may be used at any time to cancel a
stopped process and release some immediate memory.

A suggestion was made in Example 1 that simple direct
commands may be constructed to test for proper notation,
without disturbing a stopped program or calculation. We
may also, at such a time, wish to Do a special trial part
or an existing part as a test. Since this action would
normally cancel the interrupted program, a special paren-
thetic Do is provided. 1In the following example, use

interrupt when JOSS enters an endless loop.

58 4. TECHNIQUES

Delete all.

1.1 To step 1.1.

Do part 1.

I'm at step 1.1,

2.1 Type x.

(Do part 2.)

Error at step 2,1: x = 2?°?

x=2
Go.
X = 2
Done. I'm ready to go at step 1.1,
Go.

I'm at step 1.1.

Parenthetic Cancel cancels the current subexecution. The
parenthetic Do process may be carried out indefinitely
subject to storage limits.

The Done, Stop, or Quit commands may be temporarily

inserted for partial program operation during debugging.
Use interrupt to stop any unprofitable process.
Tracers may be placed in a multipart program if we

desire to determine what parts JOSS is performing between

printouts. This is done by means of such commands as

1 Type "Start part 1.".
2 Type "Start part 2.".
7.99999999 Type "End part 7.".

JOSS will then indicate when it begins or ends a part.

Chapter 5

FILING

5.1. INTRODUCTION

The immediate memory allotted to our console is cleared
by "Delete all." when we wish to begin a new problem, or
by operation of the on/off switch when we turn the console
over to another user. We may have JOSS "Type all." to get
a copy of our program before clearing the memory. We will
also want to file the program, for immediate recall with-
out the necessity of retyping, if we expect to use the same
basic program in the near future. This chapter explains

the JOSS file system and its manner of use.

5.2. THE FILE SYSTEM

A centrally located magnetic disc unit provides large-
volume storage into which information in the immediate mem-
ory may be filed. Users are assigned files, each of which
is referenced by the file number followed by a preassigned
5-character code, enclosed in parentheses,

Each file provides space for 25 items of nominal size.
An item may consist of combinations of steps, parts, forms,
formulas, and values. The available space in a file may be
fully occupied by fewer than 25 items if some of the items
are large. A completely filled immediate memory corre-
sponds to about one-third of a file.

The user assigns a number to each item at the time it
is filed. The number may be followed by a code of from 1
to 5 characters in parentheses. Both number and code (if

any) must be used when recalling the information.

59

60 5. FILING

5.3. THE FILE COMMANDS

The five commands, Use, File, Recall, Discard, and

Type item-list. accomplish all the necessary file actions.

Fictitious file and item codes will be used in our examples,

The command

Use file 123 (abcde).
Roger.

makes our file available for use. The acknowledgment ''Roger."
indicates that henceforth all item references will be to
items in this file until another Use command is given or

the console on/off switch is operated. If file 123 (abcde)

had not existed, JOSS would have responded with an error

message: ''I can't find the required file.'" (In this ex-

ample, note the mandatory space required between the file
number and the code.)
We may now file all or part of the information in our

immediate memory with a command such as

File all as item 5 (jones).
Done.

As a result, both file memory and immediate memory contain
the information. (If we try to file an item before we have

opened a file, we get the error message 'You haven't told

me what file to use.'") We may wish to file only all val-

ues, all formulas, part 1, etc. (see App. A). (If item 5

had already been occupied, an error message would have

been given: ''Please discard the item or use a new item

number.")

5.4. USING THE FILE ' 61

To recall the same item at a later time, we must be

using file 123 (abcde) when we type

Delete all,.
Recall item 5 (jones).
Done.

Once again, the item is present in both our immediate mem-

bry and the file., (If item 5 (jones) had not existed, JOSS

would have responded with an error message: 'I can't find

the required item.') Recall is the only file command that

causes a change in our immediate memory. The effect is
the same as if we had retyped the item. Existing steps,
forms, and identifiers will remain as is, except where re-
defined by the recalled item.

When we no longer need the item, we may discard it

while using file 123 (abcde) by typing

Discard item 5 (jones).
Done.

and the item 5 space is cleared. The immediate memory is

unchanged by the Discard command.

5.4, USING THE FILE

We may want to file information for several reasons:

e We expect to solve similar problems using the same
basic pfogram or the same data.

e We need time to evaluate the results of a first
trial before deciding how to modify the program

and proceeding further.

62 5. FILING

e The problem is of such length that more than one
sitting is necessary to compose a program.

e We want to try a modification of a part, with the
option of restoring the current setup.

e We want to keep general processes as subroutines.

e We have not finished our session by the scheduled

recess hour,

An index is necessary if we are to know where we may
file as well as where to find the required items. JOSS pro-
vides a basic index to the contents of a file in response

to the command

Type item-list,

ITEM CODE RPN DATE SPACE
5 JONES 1407 12/23/66 3
7 1 1/02/67 1

25 INDEX 1407 1/02/67 1

For each item in the file, JOSS will type the item number,
item code (if any), date of filing, project number, and
space occupied by that item, (The total space available
in a file is 100.) Since this is often insufficient in-
formation to identify the file items precisely, the user
is strongly urged to maintain an additional index to his
file in an otherwise unused item.

When modifying an item, the original version should
not be discarded until the new version has been filed and
verified.

We may wish to recall parts of a program, such as
formulas or values, without upsetting existing program
steps in our console. This may be done by separate filing,

but other arrangements are also possible. If, for example,

5.4. USING THE FILE 63

we wanted the values from item 1 to replace the values in

our existing program, we could

File all as item 20.

Done.
Delete all values.
File all as item 21.

Done.

which files our existing program both with and without

values. To file the values from item 1 separately, we

Delete all.
Recall item 1,

Done.
File all values as item 22,

Done.
Delete all.

At this point we have filed

e The existing program as item 20, and
e The existing program without values as item 21, and

e The values from item 1 as item 22,

This example, which presents only one of several ways
to replace values, is primarily intended to indicate how
information may be sifted and sorted. Items without a
future use should be discarded as soon as they are no

longer needed.

Appendix A

JOSS COMMANDS

A.1l. SOME RULES OF FORM

A command to JOSS takes the form of an imperative En-
glish sentence, obeying the standard rules for spelling,
capitalization, punctuation, and spacing. "Eh?" indicates

that one or more of the following rules has been violated.

e Limit commands to those listed.

e Capitalize the first word only.

e Insert a period at the end of each command.

e Use commas to separate items in a list.

e Space before and after each English word and be-
fore the first bracket of a file or item code. No
space is allowed within a word or number, nor be-
fore the first bracket of a subscript or function
argument. Spaces are optional elsewhere.

e Follow the rules for expressions given in App. B.

A.2, NOTES APPLICABLE TO THE COMMANDS

Commands are represented in general form in this ap-

pendix. The following notes apply:

e Single-letter identifiers may be used in place of
f, x, and y.
e Indexed variables may be used in place of x and y.
e Single-letter dummies only may be used in place of
a, b, and ¢ in function definitions.
e [indicates that an expression may be used (App. B).

e The if phrase may follow any command. The command

64

A.3. OPERATIONAL COMMANDS 65

will be ignored unless the if phrase is satisfied.

e Expressions for part and form numbers (and the in-
dex of an indexed variable) must equate to integers.

e Strikeover with # deletes a character.

® JOSS ignores lines (other than the body of a form)
begun or ended with *,

e $ is a single character which always carries the
value of the current line number.

e (Do commands) and (Cancel) may be given directly in

parentheses (Sec. 4.8).

A.3. OPERATIONAL COMMANDS

Some commands are limited to direct use only and others
to indirect use only, but most may be used either way. This
section groups the commands according to the category in

which they fall and references their discussion in the text.

Direct or Indirect Commands Section Reference
Set x= (1. 2.3
Set x= ... a proposition. 2.9
Let f= ... a formula. 2.4
Let f= ... a proposition, 2.7
Let f(a,b,c)= ... a function of a,b,c. 2.5

General Rule: Use Let directly.

Type —3, 3, 3, _
Type 3, C3 in form [,
Type formula £,

Type ‘'ABCDE".

Type step (1.

S 0NN NN
N &~ B NN

66

A. JOSS COMMANDS

Direct or Indirect Commands (cont.)

Section Reference (cont.)

Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type

Do
Do
Do
Do
Do
Do

fo

al

si
ti

us

step
step
step
part
part
part

Line.

Page.

Delete

Delete

Delete

Delete

Delete

Delete

Delete

Delete

part (1.

rm 1,

all steps.
all parts.
all forms.

all formulas.

1 values.

all.

ze,
me,

ers.

.

3 for x=(C1, 3, ().
1, A times.

i,

1 for x=C3(C) ().

3, 3 times.

step (1.
part 1.
form 3.
all steps.
all parts.
all forms.
X,¥.

all values.

0~
~

=

PR S TR S T S B Y o R o S
v
w

N NN NN NN Oy

w W W W w w
w w NN LWwWwN

DN NN NN
e e e

A.4. FILE COMMANDS 67

Direct or Indirect Commands (cont.) Section Reference (cont.)

Delete all formulas.

Delete all. 2.1

Quit. 3.7

Direct Only Commands Section Reference
Go. 1.3, 4.7
Cancel, 4.7

Indirect Only Commands Section Reference

1.1 To step 1.
1.1 To part 3.

1.1 Done. 3.7
1.1 Stop. 3.7
1.1 Demand x. 3.3

A.4, FILE COMMANDS

File commands follow the same rules as the operational
commands. The format for item and file designators is an
integer, a space, and a parenthetic code. File codes are
5 characters; item codes are from 1 to 5 characters. See

Chap. 5 for rules of use.

Direct or Indirect Commands Section Reference

Use file 1 (code). 5.3

File f,x,y as item (1 (code). 5.3

68

A, JOSS COMMANDS

Direct or Indirect Commands (cont.)

Section Reference (cont.)

File
File
File
File
File
File
File
File
File
File

formula £ as item [J (code).
step 1 as item [(code).
part 1 as item (3 (code).
form 1 as item [(code).

all steps as item 1 (code).
all parts as item (1 (code).
all forms as item 1 (code).
all formulas as item (1 (code).
all values as item 3 (code).

all as item 31 (code).

Recall item 3 (code).

Discard item 1 (code).

Type

A.5.

item-1list.

DIRECT INPUTS

(S S L Y S Y Y Y Y, Y
w W W W W W w w w W

JOSS recognizes, in addition to the above commands, the

following direct-only methods of entering values and forms:

Variable Definition

x= [

x= o o 0

a proposition

" Form Definition

Form (1

Section Reference

'

Section Reference

3.4

Appendix B

EXPRESSIONS AND PROPOSITIONS

B.1l. EXPRESSIONS

In this text, the term expression (used alone), or

the symbol (], means a mathematical expression that is
reducible to a number at the time JOSS interprets that ex-
pression; Boolean expressions, or propositions, are ex-
cluded. Generally, a number may be written as an expression
anywhere in the language except as the step label on an in-
direct command.

Expressions are made up of one number or identifier
or a combination of numbers and/or identifiers and/or JOSS
functions related by the usual mathematical symbols. The
symbols are conventional, except for the asterisk, which
indicates exponentiation.

Listed in their operational order of precedence, the

symbols are

Conditional expressions are written

(prop: [33; prop: [1; 1)

and take the value of the expression [J following the first

true proposition (Sec. B.3).

69

70 B. EXPRESSIONS AND PROPOSITIONS

B.2. SOME RULES OF FORM FOR EXPRESSIONS

Expressions are written in standard mathematical form,
linearized to place the expression on a single line, follow-
ing the order of precedence of the above section. "Eh?" in-

dicates a violation of one or more of the following rules:

e Each bracket, parenthesis, and absolute value sign
must have a matching opposing member.

e The lower-case el (1) may not be used for the one
(1); the upper-case oh (0) may not be used for the
zero (0).

e The dot (°) must be used to indicate multiplication.

e Spaces may not appear within numbers, between a
function and its argument bracket, and between a
variable and its index bracket.

e Single-letter identifiers only may be used.

e Identifier subscript use must be consistent with the

identifier definition.

B.3. PROPOSITIONS

Propositions (Boolean expressions) are composed of

expressions related by

and the negation

not.

If there is more than one relational statement, they are

joined by the logical operators
and, or.

Each proposition has a logical value of true or false.

B.3. PROPOSITIONS

The order of precedence of operations within a

proposition is

evaluation of expressions (Sec. B.1)
() from inside outward

relational operations

not

and

N BN

or

71

Appendix C

FUNCTIONS

C.1l. JOSS FUNCTIONS

The available JOSS functions, along with explanations

of their use, are listed in this appendix.

are covered in Sec.

Function

sqrt ()

log (™)

exp ()

sin(C™)
cos ()

ip(c)
fp(C)
dp(C3)
xp(C3)
sgn(C)

tv(prop)

Rules of form

B. 2,

Explanation

Square root. The argument must have a value
z zero.,

Natural logarithm. The argument must have
a value > zero.

The argument x must be such

100. If X < 10-99,

Exponential.
that e* < 10 the result
will be zero.

Sine and cosine. The argument is assumed to
be in radian measure and must have a magni-
tude < 100.

ip(-22026.4658) = -22026
Fraction part. fp(-22026.4658) = -.4658
dp(-22026.4658) = -2,20264658
xp(-22026.4658) = 4

The value of the signum function is +1 for

Integer part.

Digit part.

Exponent part.

an argument greater than zero, 0 for an ar-
gument equal to zero, and -1 for an argument
less than zero.

The truth value function converts its argu-
ment, which is a proposition, into the num-

ber 1 if p is true, and 0 if p is false.

72

C.1l. JOSS FUNCTIONS 73

Function Explanation

arg(C—,C 1) The argument function requires two arguments,
separated by a comma, and as a result gives
the angle between the positive x axis of the
X,y plane and the line joining the point
(0,0) and a point (x,y). The result is in
radian measure, -m < arg(C3,) s 7. The
value of arg(0,0) is zero.
sum(i=r(C)c1: ... some function of i ...)
prod(i=r(C)c: ... some function of i ...)
max(i=C23(CQ)c: ... some function of i ...)
min(i=C3(C3)3: ... some function of i ...)
first(i=ta(X)c: ... some proposition in i ...)

The five iterative functions, sum, product,

maxXimum, minimum, and first, take two argu-

ments: an iteration expression such as that
in a for clause, and, separated by a colon,
the expression (or proposition) to which the
iteration is to apply. The variable of iter-
ation i is a dummy; no real identifier is af-
fected in any way.

For all but the first function, the in-
dicated operation is applied repeatedly, and
the function gives the resulting numeric value.
(For these functions, arguments may also be
given in list fashion: sum(C3, 3, (1, (1,
1) etc.) In contrast, the first function
gives the first value of the index i for which

the proposition is satisfied.

74 C. FUNCTIONS

C.2. USER-DEFINED FUNCTIONS

We may define other functions, with 1 to 10 arguments,
using the Let command. Any single-letter identifier may
represent the function, and any distinct single letters
may be used as dummies. The use of the letters as dummies
does not affect their concurrent use as identifiers.

A few commonly used functions are listed below, but
the number of possibilities is unlimited. Any convenient
identifier may be substituted in place of f, D, I, S, and
L. The arguments (x), (f,a,b) are dummies. (See Secs.

2.5 and 2.8.)

Tangent

Let f(x)=sin(x)/cos(x).
Arc sin
Let f(x)=arg(sqrt(l-x*2),x).
Arc cos
Let f(x)=arg(x,sqrt(1l-x*2)).
Arc tan
Let f(x)=arg(l,x).
Arc sec
Let f(x)=arg(l/x,sqrt(1l-1/x%*2)).
Arc csc
Let f(x)=arg(sqrt(1l-1/x*2),1/x).
Arc cot

Let f(x)=arg(x,l).

C.3. CONSTANTS DERIVED FROM THE FUNCTIONS 75

Derivative of a function of a variable

Let D(f,x)=[f(x+.0001)-f(x)7/.0001.

(Note: Depending on the function £, another value may

be needed in place of .0001.)

Integral of a function from lower limit to upper limit

Let I(f,a,b)=(b-a)/n/3-(flaHf(b}HS[f,a,b]).
Let S(f,a,b)=sum(i=1(1)n-1: [3-(-1)*i]-flat+i-(b-a)/n]l).
n=100

(Note: n must be even.)

Log to base 10

Let L(x)=1log(x)/log(10).

Factorial
Let f(x)=[x=0: 1; fp(x)=0: prod(i=1(1l)x: i) 1.

C.3. CONSTANTS DERIVED FROM THE FUNCTIONS

The constant pi may be defined by

p‘—'arg(- 1 ’O)

Another frequently used constant, for converting de-

grees to radians, may then be defined by

k=p/180

76 C. FUNCTIONS

or if p has not been defined as pi, the radians/degree con-
stant is defined by

k=arg(-1,0)/180

JOSS gives us the constant e, the base of natural log-

arithms, directly through the exponential function, exp(1).

«TYPE ALL.

1 .00

1.0l RO v AS "STARTING VELOCITY'.

1.0z ND 2 A8 MLOOP C-yaALUET,

1.03 ¥T L &S "PRINTOUT TINE STEZP (IN SECONDS)".
1,04 SET L=IP(1CALY /10,

1.05 T0 ST3P 1.03 IF L=C.

1.0€ SET TzL/IC. }

1.07 DEMAND ¥ A8 "TIMG LIYIT (I¥ RLAL-TINE MINUTES)".
1.C7 SET J=FsLSE. o
1,09 DL¥&ND ¥ &8 15 “wf'fy CONCERVID? (TRUI/FALSE)".
1 10 ST o= ThUZ IF (e ThUZ

L1l LINE,

[12 82T ¥=0.

.13 ST 7=0.

l.14 ST QC1)=C.

1.15 SET =20,

1,16 SIT UzFALSE.

1,17 P&CE,

l.18 TYPE V, A IN FORW l.

1.1 TyPz " ENERGY IS CONSERVLD.," IF d.
1.20'TYPE "o CGNSTﬁVT VELOCITY LOOP." IF. NOT Jdo
l.21 LINE,

| SL; _-\.L»V/(_ IF Je

1.23 RESET TIMER.

l.24 DO PART 2 FOR I=1C1)10CQ,.

1.25 LINE, o

.26 TYPE TIMER IF TIMER>N

1-27 LI \]uIF TI\'L.}'{>'\). : : ‘
l.2g T0 SsIcP 1.00. ‘ . ' .

2.00 SET C=F(G(1)).

2.0l SET R2)=QC)+T&V/C.
2.02 SET R=(CGHF(R(Z))) /2.
2,03 SET G(2)=&C(1)+TEV/k.
2,04 SET Rz (GHF(G(2)))/E.,

2,05 SIT Xz XHRE&(SINCR(2))=SINCRC1I),
2 .06 SAT Z=7+R&(COS(Q(1))-COS(&(2))).
2,07 SET G(1)=Q(2), .
2.02 DO PART 3.
2,08 SET SI1S+T.
2,10 SET V=SQRI(E+E-6
2,11 To STEP 2.15 IF (S, L)>0. ,
2.12 TYPE S, ¥, Z, K, B(&(1)), V I FORM 2.
2,13 SET U=TRUZ IF G(: '
2,14 QUIT IF (U AND Q(1)>0 AND X>0).

2.15 GUIT IF ($>50 OR TLuZR>M).

3.00 TO STZP 3.03 IF @<1><w.
3,01 SET QUl)=GCl)=-2&Y,

3.02 DONZ.

3.03 DONI IF Q(I)>-W,

3,04 TIT A=Al

3.05 DONE,

FORM 13 :
- SPELED = TPt Tt METLRES/SECOND, TTT. Tt "G LOOP.

FORY 2¢ , ‘ i S
TTTt. 1 S TTTTT. T X Tt Z MM T. 1T R 1T T DEG 11T N/

pe

2X)r X/0.0174530¢ :
MR MENZERLKA~FO0S(E)

o

“ = <

C = 1C15.€2¢58

E = 5CC0

G = S, 707

1 = 370

Jd = FalLse

X = FALSE

L = 1

Nz 5 .

R = IC1G.€554¢

g = 37

T = ol

U= TPUT

V' = 100

Wz Z.14155252

X = ¢Sz, 035137

7 = 4, 5276488 10%x(=4)
Qely = Q.23623€3210%(-4)
ey = S.,25823€3&10%(~4)

~PAGE,

1154 4715771 #11 BN 213 [19)

STARTING VELOCITY =
LOOP G=VALUZ = «

PRINTOUT TIME STEP (IV
TIME LIMIT (IN REAL-TIME
IS ENERGY CONSERVED?

<100

MINUTES)

1138 4715771 #11 BwN o 713
SPEED = 100,00 METERS/SACOND,
ENERGY IS CONSIRVED.

1.0 S S8.% ¥ 4.9
2.0 S 192.1 X 1.6
3.0 S 293.6 X £3.¢
4.0 S 394,€ X 17,4
5.0 € . 46%.7 ¥ 120.0
€.0 S 567.1 X 171.0
7.0 S €15.1 X £229.6
7.0 S €71.7 X 2s4, 2
$.0 S T14.8 X v 364,9
10,0 S T42.,5 X 437.2
11,0 S 52.3 X 510.3
12.0 S 742.7 X 577.¢
13,0 s 713.2 X €34.0
14,0 S €66.5 X €70.5
15.0 8 €10.2 X 621.4
16.0 S 555.7 X €63,3
17.0 S 513.5 X 62C.5
18.0 § 485,77 X 560.S
19.0 S 485.9 X 4520
20.0 S 501.2 X 413.€
21.C S 533.6 X 349,0
22.0 S 50,9 X 272,
23.0 5 . €40.8 X - 217.3
24.0 S 7117 X 161.7
25.0 S 791.4 X 113.5
26,0 S °72,1 X 74,2
1 27.0 S 570.2 ¥ 44,7
22,0 S 10€6.3 ¥ 24,2
25.0 S 1164,7 X 13,2
30,0 S - 1264.1 ¥ 2.1

SECONDE) =

(TRUZ/FALSE)

(e

«l

NN I O PN N N N TN DN DN DN DN N N DN O N N RN N PN N B DL NN

5

<TRUE.

2,00 "G

Cl1.3
$e3.9
27¢€.0
£00. 1
T13.4
€15.7
+523.1
422.1
33S.1

2€0,6 .

19€6.4
149.4
121.3
z.7
123.7
154.2
203.6
2€S.¢
54%.9

435.¢9

€31.0
123 .2
€07.5
220.4
532,93
970.5
1003.6
1007.4

LOOP.

00200 I W00 S0 M I 50 N S0 50 30 0 sy S0 o0 0 S0t X0 20

=345
-27.6

-15,0
=S.2
=3.5

2.2

DEG
DEG
DEG

, DEG

DEG -
DEG
DEG

>. DEG

DEG
DEG
DEG

DEG

.DEG

DE G
DEG
DEG
DEG
DEG
DEG’
DEG
DEG.
DEG
DEG
DEG
DEG
DEG
DEG -
DEG

DEG

DEG

96,1

S gl.2
25,2

$S.2 ¥
99.0
$7.8 ¥/8

$3,9 M/8
sl.2 M/S

ge,.0 N/S
24,3 M/S
20,1 M/S
5.5 /S
70,7 /S
65,9
61.5 M/S

58,5 M/S

5706
59,1 M/S
62,6 M/S
€7.1 ¥/8
71.9
7€, 7
/S
M/s
M/S
M/S
M/S
M/S

e,
el.7
S4.2
9€,3

. 972 /¢S

4 M/S

M/S -

STARTING VELOCITY = «l00

LOOP G-VALU = «&

PEINTOUT TIMZ STEZP (IN SZCONDE) = ol

TINZ LIMIT C(IN REAL-TIXE WINUTFS) = 5

IS, ENERGY CONSEZRVED? (TRUZ/FLLSE) = «FALSE

1144 4715771 #11 pEN 013 (157

SPEED = 100,00 MZITE?
CONETART-VELOCITY LoOCP

.

"o
o

—
(]
o

T

: ~oAA
N e £ oeldu

DEG 100,00 M/¢

1.0 8 90,7 X L5 2 1015.3 K 5.6 |
2.0 S 152.7 ¥ 19,6 7 1001.2° R ' 11.3 DEG 100.0 M/S
3.0 S £95.6 X ta,1 7 S77.5 R 17,1 DEG 100.0 p/S
4.0 s 379.5 X 72,4 7 S46.0 F 23.1 DEG 100,0 M/S
5.0 & 479,z X 122.5 z S08.4 R 29.3 DEG 100.0 M/S
€.0 S 563.5 X 17€.1 z °€0.4 F 35.2 DEG 100.0 M/S
‘7.0 S €41.0 X 222,37z £05.1 R 42,6 DEG 100.0 ¥/S°
2.0 S 710.1 % 311.5 7 754.1 R 50.0 DEG 100.0 M/S
9.0 S 767,35 X 32,2 7 €37.0 R 57.5 DEG 100.0 M/S
10.0 S ?15.5 X 40,6 7 €39.3 R €6.€ DEG 10C,0 M/S
1.0 8 FLT.T X 575.2 552, R 76,0 DEG 100.0 M/S

s 12.0 ¢ 783.2 % €73.2 7 529.2 R £€.3 DES 100.0
13.0 s £55.2 X 773.6 2 478,95 R 97.8 DEG 100.0 M/S
14,0 € £35.7 ¥ £70.4 7 43€,3 R 110.4 DIZC 100.0 ¥/S
15.0 8 750.1 ¥ 858,27 399.7 F 24,2 DEG 100.0 /S
1€.0 S 24,0 ¥ 102,97 7 371.2 B 139.1 DEG 100.0 M/S
17.0 ¢ €40,4 X - 1077.0 7 ©351.5 R 15531 DEG 100.0 M/S
12,0 S 544,09 ¥ 118,58 7 341.4 R 171.7 DEC 100.0 M/S
1S.0 S 445,35 X 111£,5 7 340.9 R =171,5 DI 10C.0 /€

26,0 C 34°.8 x |0F7.6 7 350.2 B -154,% DE& 100.0 M/S
21,0 C3 2€6.4 X 1033.2 7 2€5.0 R -13%.0 DEGC 100.0 M/S
22,0 § 200.4 X °Ee. L 7 336.2 B -124.0 DEG 100.0 M/S
23.0 S 155.1 X £€e,5 7 432.6 B -110.2 DEG 100.0 M/S
24,0 S 13l.2 ¥ 772.€ 475.6 k- =3$7.7 DEG - 100.0 M/S
25,0 127, X €72.9 7 524.5 R =-€6,2 DEG 100.0 Y/S
26.0 S 143,6 ¥ 574,27 577.9. R =75.8.DEG 100.0 ¥/8
27.0 S 175.¢ ¥ £78.7 2 €34.1 R -€6.5 DEG 100.0 WS
22,0 § 222.7 X iS4 7 €¢1.7 R =57.9 DEG 100.0 "/S
29.0 S 291.6 X 310.8 7 749.0 R =49.,9 DEG 100.0 /%
30,085 350.2 X 237,68 7 £04,2 R -42.6 DEG 100.C ¥/S
31,0 S 429,3 % 175.¢ 2 755.9 B =35.7 DEG 10C,0 /¢
32.0 S 512.7 X 22,0 7 $02.5 K =25.2 DEG 100.0 /S
33.0 € €0z.5 ¥ 7.1 2 $42,7 F -23,0 DEG 100.0 ¥/S
34,0 S €S€.4 X 43,0 7 $75.3 K =17.0 DEC 100.C »/¢
35,0 S 93,3 ¥ Livg 7 S.5 R =11.3 DEG. 100.0 M/S
16,0 8 £s2.2 v L0 7 I0l4.4 R =5.€ tEc 109,08 v/<
7.0 € corLf N o7 1C18.7 7 N R A S

.

STAKTING VELOCITY = «l00

LOOP G-VALUE = «& |

PRINTOUT TIME STZP (IN SECONDS) = «l

TIME LIMIT (IN REAL-TINE MINUTES) = &5

IS ENERGY CONSERVED? (TRUE/FALSE) = «TRUE

1156 4/15/71 #11 ReM f13 211

SPZLD = 100,00 METERS/SEZCOCND, 2,00 "¢"

ENERGY IS CONSLRJLD

1159 4715771 #11 HYM 213 (221

1.221 SET V=-V,
1.222 55T QC1)=-W,

: 100 S -7904 X —So[‘: Z 345.1
2.0 S -173.1 ¥ ~48,6 Z I€9.1
3.0 S -255.1 X -1C0¢.3 7 412,17
4,0 § -322.8 X -l1s3,2 7 475.6
5.0 § -387,9 ¥ -293.,5 .7 . 55743
€.0 § -394.9 X -405,7 Z €56,9
7.0 S -401,8 ¥ -525,9 7 772.¢€
£,0 S -398,4 X -650,3" 7 $03.,0
.0 S -~35¢.4 X -77€.6 7 1045,¢

10.0 S -310.2 % -50z2.4 7 1158, 7
11,0 S -245,% X -1025,5 7 135%.0
12,0 S ~16€6,9 X -1145,€6 7 C1524,1

. 13,0 8 =T4,3 X =1260.3 7 " 1651,.5
14,0 S 30.5 X~ =13€%.2 X 1258.,4
15,0 S 46,4 X -1471.3 7 2022.3
16,0 S 272.3 X -1566.1 z 2120,7
17.0 S 407.2 X 1€53,0 7 2331.4

12,0 s 549,9 X - ~1751.€ Z 2472,2
1$.0 § €99.5 X -1801.6 Z 2601,0

20,0 S ®55,2 X -1862.,5 7 " 2716,2

21.0 S 1015.,2 X =-1S514,3 7 2916, 1

23,0 S 1342,2 X -1599,4 7 2965,.2

24,0 S 151$.,3 X =2012.5 7 3012.5

25,0 S 1651.4 ¥ -2025.9 7 . 3040.6

26,0 § 12€4,2 X <-202%.5 7 304

S.2

el =B BBl s s B ey l=nlie s 1=t oo o= o i « oot e v -5 e g st B x =

LOOP,

DEG
DEG
DESG
DEG

' DEG

DEG

DEG -

DEG
DEG
DEG
DEG

-DEG .
DEG.

DEG

9 DEG
 DEG
DEG

DEC
DEG
DEG

- DEG

DG

DEG

BDEG
DEG

100,55
102.,3
105.2
10S.1

11e,2
123.1

.lzr.0

132,17
137.3
141,.€
14547
149,5
123,1

15s.2

1€1.8

164,3
166,3

S 187,.1
1€35.6.

170.2

M/S
M/S
¥/8
M/ S

M/S
yY/s

M/ S
M/S
M/ S
M/ S
MS

M/ S
¥/8
M/ S

M/s

M/S
M/S
M/S
M/S
n/s
M/S

171.2 Y/8§

172, 4
172.2
172,

¥/S

M/s

M/ s

113.5 Mg

STARTING VELOCITY = «100
LOOP G=VALUE = «2
PRINTOUT TIME STEP (IN SECONDS) = «]

TIME LIMIT CIN REAL-TIN MINUTES) = &
I.S ENEPGY CONSZRVED (TEUE/FALSE) =
1211 £/15/71 #11 HMM =13 [31]
SPEZZD = 100.00 M¥ETERS/SECOMD,
ENZRGY IS CONSERVED.
1.0 S 9%, ¥ 5.8 7
2.0 .5 lse,1 v 13.8 7
3.0 S 233,68 ¥ Lx, 0 7
4,0 S 37L,6 ¥ 77,4 7
5.0 % 4ES,7 ¥ 120.0 72
€.0 S 547.1 % 171.0 7
7.0 S €15,1 ¥ 229.€ 7
2.0 S €71.7 ¥ 24,2 7
2.0 S 714,58 ¥ i€4.35 7
y 10,0 & T42 .5 ¥ £37.2 7
& 11.0 S 752.3 X% 510.2 7
D% > 12.0 s 750.5 X 585,7 7
13,0 s T45,€ X 45,7 7
14.0 S T4€,5 X - 70€,9 7
15.0 S 744,3 X 753,99 Z
1,0 § T41.8 X 208,17
17.0 S 739.1 X 251,37
12,0 S 735.9 ¥ 723,686 7
15,9 S 7324 X [822,98 7
20,0 S 7082.2 X 951.,2 7
21,0 S . 723.2 ¥ ST4.4 7
22,0 S 717.0 X ©52,2 7
23,0 S 708.9 X 1004,2 7
24,0 S 692,82 X 1007.,3 7
25,0 S €29,1 X 1002.,3 7
26,0 S 651.7 X 551.,0 7
27.0 S 676.1 X $73.0 .7
25,0 S €67.5 X 21,5 7
30.0 S 664,28 X 228,98 7
31,0 S €62.0 X £51.,0 7
32.0 S | 655.6 X 07,2 7
33,0 S 857.4 X 7€0.6 Z
34,0°S €55,5 ¥ 67,0 7
5.0 8 €53.7 % §50.5 7
36.0 S €52.0 X 5¢9,2 7
37.0 S €50,5 ¥ 521.0 7
3,0 S €49,0 X LLe,e 7
S 35,C S 7.7 X I71.8 7
£0,0 S €48,4 ¥ £2C.0 7
21,0 5 45,2 X zok,2 7
42,0 53 44,1 X 11,5 7z
TIMER =

- W
.
n

no
L]

(]
(&)

«TRUE

—

) i W QO

O 3 Wg —
L] * [] o
O — N

N O -

(@]
.

713.4
€19.7
523.1
4281
$%9.1
2€0.€
15227,4

11€645,6°

f315.4
5756€.1
323¢,6
2445,7
1471.9
223,323
418,3
176,77
70.3

22.S

11.4
22.0
€2.6

185.9
423 .4
£44,5

1526, 4

2558.¢8

4C49.1
€112.4
2eg2l.€
12502.3
17133.2
22549.71

XTI 0 X0 NS0 X0 M M S0 S0 30 20 M W S0 Y30 S0 S0 S0 U S0 X0 I T tp 3 5o e

LCOP,

~NOWw NN

IS DN N e
DS g Ny — U
o o o o o

wn

N
‘»

\n

“ e

~1 N
U (N
-

&

9.7
S1.€
S1.9
52.2

S2.7

€3.3
S4.1
$5.3
S7.1
100.0
105,0
115.0
137.3

=177,

-133.3

-112,7

-103.6
-99.0.
-9€.3

' ‘940,7

‘93'6
=92.5
'9204
-52.0
-51.7
-S1.4
-51.2
=911
-90.9
-S‘QQ"”
-50.7
-9007

1 v 01 15

OO wa

2144

"35.¢

C€9.9

Y/S
M/s
M/ 8
M/ <
Y/&
My <
‘N/S
¥/ 8
/S
M/ s
/8
¥/S
M/S
Mm/<
M/s
AVAS
M/S
M/ S
MN/S
/S
M/ S
/g
M/7S
M/ s
M/S
M/S.
m/S
M/Ss
M/ s
/8
/S

~N N0 M W WY DWW
OWVODLM— N QN
[3 L] . L] L] L] . * L] * L]

SN NO NN —MOm

5.2
6C.3
55,4
50,5

5.6
40.6
35,7
30.8
25.9
21,1
16,4
12,3

10.6
12.7
16,2

26,1
31.0

40,17
45,5
50.4 N/S°
55.3 M/S

€0.2 /S
€5.0 M/S
/S
4.9 1/S
79,7
L€
£5.5
4.4

/<
v/
M/ S

M/S

1=

ArniinG valLJdoliY = e
" AT STZP 1,01,
‘D«LETE ALL,

RECALL ITEM 4 (TURN).
no, R
" «TYPZ ALL.

- =)

1o 93]

13

T

1.0C PACE,
1.005 SET J=0.

1.00€ SET T:=C,

1.0l DEMAND T AS "MZADING 27IYUTK (DIGREEZS)™ IF J=C.
1202 DEMAND V AS “SPILD (XETIRS/SECOND)" IF J=0.
1,03 DEMAND & AS "TURNING 2",
1.C31 TC STEP 1,07 IF 2:z0.
10035 SE a-aec,

.04 TO STEP 1.03 IF e>p, !
L0051 SET L=FaLgeE,

052 ST k=TRUZ. -

3 DEMNAND K AS " TURN DIRICTION? (L=LEFT, R=RIGHTOY".
SuT R=FALSE IF RZTRUZ. '

U—r\‘[-‘:\\n r\ ﬂc n'—.I,,..
] l“l\lh »\q \Q ”w \\1”

e~

SET Mz IP(X+0.5).

TG STEP 1.0% IF <], ‘
?:%%NW X AS "STARTING X COORDINAZTZ™ IF J=0.
SINAND Y AS “STA RTING Y COCRDINATE™ IF J=C.

LING
Llﬁw.
SET 7=0.0174 53 482,
TYPE 3 IN FORM 1.
TYPc V IN FOR™ &,
TYre "STRAIGFT FLIGKT' IF. &-0,
STZF 1.23 IF £:z0,
<0 TYPZ A/G IN FORNM 3,
2l TYPZ "KIGHT TURN." IF Ff.

NN YN IS (N — OO 0 = 7AW AN \n.

v._.._.»..»_»-»-—o—-»—‘~—-'—-()OC)OC)OO
——

w2
no
]
(@]

ce TYPE "LEFT TURN." IF (NOT P).

2el TYPE § IV FORM 31,

cz2 TYPE (1. 7079646—*(3 /8))/0.017453254 1IN FORN 32,
.23 LINE ‘

24 LIN

.25 TYPE J, T,
.251 TO STEP 1|
l.26 TO STEP 1.
.27 DO PART 3 FOR Iz1i(l)™,
1.22 TO STEP 1.33,

1.2% %, ’

1¢30 DO PART 2 FOR I=1(1)mM,
1.21 TO STEZP 1.33,

1.32 DO PART 5 FOR Iz1(l) .
1,33 LINE,

.54 PAGE,

1,35 T0 STEP 1.C1.

2.00 SET ko1,

«Cl SET T=T+D,
¢.02 SET CaRkD/s.
£.03 SET X=¥452(C0S(7D)- COSC74C)).
€404 SET YzY+S&(SINC7+C)- CINCD).
C.05 SET z=7+C.

2.08 DO PART 4,

3.00 SEZT Jzol.

3.01 ST T=T+0. .

E.C(Z S:T CZ Vur)/:z.

3.03 SiT X:\T-E’.&(COS(-”-CO;’.‘,).
3.04 CFT \{:v+sa<su.!—szr.:<~->>.
2.05 SIT 7=7-C.

3.0 DO PART 4. :

4,00 TO STEP 4,03 IF 730,

4,01 SET 7:74€.27210504,

4,02 TO STEP 4.00. »
4,03 TO STZP 4,06 IF 7<6.293]3555,
4,04 SET 7:7-6.29317574, ,

4,05 TO STZP 4.03.

4.0€ SET 327/0.017453254.

4,07 TYPE J, T, 3, ¥, Y IN FORY, 4,
4,02 PAGE IF $>40.

5.00 SET J=u].

5.01 SET T=T+0.

5.02 SET X=x+VEDESINC7).

5.03 SET Y= Y+V&D&COS(7).
5.04 DO PART ¢,

HEADING AZIMUTH = 471,11 DEGREES,

TN T METERS/SECOND.

FORM 3. .
TURNING G VALUZ = 1,11,

FORM 4. ' .
T Tt 11T S TTT. T DEG TTTTTTe T X TTTTTT.TT Y

~ FORM 31
"TURNING RADIUS = TTTTTMTT, T METERS,

FORM 32¢ :
SANK ANGLE = TTTT T DEGRERES
F(X)s ARG(QCFT(I-’*C),X)
P FCLa5TCTSC4€~-Cr0)
Se WKZ /(LS TN CLWSTCTSELE-F(G/R))Y)

~

A =z 0

3= 192,04

C = W 1E6LT031T
Doz 40

G = 9.707

I = 1

o = |

L= FALSE

Moo= 1

5oz TR

T = L0

V oz 5CC

X = CL4TE,05€47

Y = 1747, 4274
7oz 2.2T1e1 T4

1205 4715771 # 11 HMY 713

<D0 PART 1.

1255 &£/15/71 #11 FNMN 213 [26)]

HIaRING AZIMUTH (DECGREES)

- D
SPERD (MITERS/EECOND) =z «l10C
TURNING & = 2

TURY DIRECTION? (LzLEFT, f=prIfHT) = &k

TINE INCREIMENT = «l
WUESLR OF TIXZ STEPS = 5

STARLTING X COORDINATE = O
STARTING Y COORDINCTE = D

1207 4/15/11 #11 RNY O T1E [27)

TURNING G = &0

TIME INCREMENT = &5
NUu?bh OF TIME STEPS = &l

HEADING AZIMUTH = 4%.€¢€

DRSS
[BN R S M
SPEED = 100, CC MZTERS/SECOND,

STRAIGHT FLIGKHT

(6, Ve)
L]

oM

JAREN

mun
—
o w
.
\Jt e
-3¢0

HEADING

SPEEDS =

TURNING

RIGHT T

TURNING

CoNK AN
0 .00 S .0C DG .00 %
| 1.0 S 9,73 NIa 2.7 %
S\ 2,00 ¢ 1S, 4€ Dig 33,65 X
3 3.00 S 26,20 DEC 76 .90 X
4 £,00 S . 33.93 NEC 120.74 ¥
5 5.00 S L9 ,€E€ DEC 19e,97 X

N\
o
-3
Q -
g K K L

Laz.02 Y
772.27 ¥

TURNING 0 = 2
TURY DIRECTION? (LzLEFT, RzKIGKT) 2 «L

GE IVCRLVZWT

TI! = '
NU BER OF TIMZ STEPS = &5

HZADING AZINUTR =
SFPued = 130.00 M& :
TURNING & VALUE = 2,00,
LEFT TUKMN, .
TURNING RADIUS = oo
PANK ANGLE = E0.0 DEGRE

g 10,00 s L2,€6€ DE2 575.27 ¥ T72.27Y
7 11.00 s, 32,88 DIE 44,41 ¥ TLLE 56 Y
& 12,00 S £8.,20 DIE 700,35 ¥ ee7.11 Y
S 13.00 S$2 Is.46 TIG T41.5C X 10le.12 v
1C 14,00 s S.73 BDEG 76,67 X 1114,77 %
11 12.00 S .00 DEC 772,15 X lel4a.25 v

-

1209 4/15/771 #l1 KM 13 {293

TURNING G =z «

I'm AT STEP 1,03,
<DELETE ALL,

e« px)
«RECALL ITEM 5 (LOOP).
SONE,
“ .oll SET Az0 IF QCl)suyz2,
«D0 PAKT 1.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-09
	A-10
	A-11
	A-12

