PO. Box 480

Rati(_)nal Natick, Mass. 01760

Systems, Inc. (617) 653-6194

May 10, 1985

Dear New Customer:

Enclosed is version 1.25 of Instant-C. The two diskettes (in the back
pocket of the manual), contain:

the Instant-C prodran,

the library source files,

a stand-alone version of the Instant-C editor,

programs for configuring your keyboard and screen for the editor
(i1f you don't have an IBM PC or compatible),

a simple example program.

Also enclosed in this package are a complete manual and release notes
for version 1.25. The release notes detail some new features that aren't
in the manual yet. The manual will be updated and reprinted in the near
future. You will automatically receive the updated version of the
manual if you send in your registration.

You will want to read chapters 2 and 3 of the manual ("Overview" and
"Getting Started with Instant-C") to most quickly learn how to use
Instant-C. The interpreter environment is much different (and much
better!) than the traditional tools for C, you may have been using.

Version 1.25 is missing a few language features. All registered users
will receive a free update to version 2.00 of Instant-C. Version 2.00
- will handle larger programs and have auto initializers, bit fields in
structures, and the ability to load .0BJ files created by other
compilers or assemblers. The features will be added in approximately
this order, and each feature may be available in a separate interim
release. Please be sure to send the registration/user agreement to us,

since we can't send you your free update(s) if we don't know where you
are.

Instant-C is the fastest C interpreter, and it is the best environment
for debugging C. If you find any problems in Version 1.25 that should be
fixed or improvements that we can make, please let us know about them as
soon as possible. Please take the time to tell us about your problems
and suggestions. The feedback we have received from our early users has
been a tremendous help to us in our work on Instant-C.

Sincerely,

oo L

Terence M. Colligan
President. :

encl.

Instant-C Release 1.25

This release of Instant-C contains many important improvements. The
major area: are:

C Language Support

C pre-processor support is nearly complete, allowing
defines with arguments. Also, static initializers are
now supported. Details below.

Editor Supports much larger files or buffers. Stand-alone

editor reads files 2 to 4 times faster.

Library " Comwplete DOS 2.0 support (pathnames, devices, etc.).

Other improvements include more run-time consistency
checking, more functions, smaller/faster, improved
compatibility with Lattice, €86, and other compilers.
A math function library is included.

Debugger Many improvements, including support for multiple

screens while debugging (program output to one virtual
screen with interpreter/debugger cutput to another).

Environment Memory f£ile management is more reliable. Instant-C

makes better use of system memory.

C Language Support

Nearly all cases of static initializers (initializing declarations) are
handled. The limitations are:

-

initialized arrays must have the dimension specified, e.g., you
nust say

long array(3] = (1, 2, 3};
instead of
long array(] = (1, 2, 3};

comments are not handled in the initializer value list.
only static variables may be initialized, not automatic variables.

€ Language, continued Instait=g" Relé%ﬁj“1%25

g & -,

General” #defines are handled but agaln w1th a few llmltatlons-

keywords and operators may not be #defined.

#define text must be 'well-formed', i.e., may contaln no unbalanced

,parentheses, brackets, or braces. Ly
you may not define pieces of declarations. b

New Features

1. Static initialization of long, float, and double data is now
supported. o v

2. Static initialization of pointer data is now supported

3. Static initialization of struct's is now supported.

4. Static initialization of arrays is now supported. Note, though,
that Instant-C can't yet calculate the size of arrays from your:
initialization, so you must provxde array dlmen51ons for any array
to be: 1n1t1allzed : : g e ; -

. L . y Foay s e -

5. - The length and s;ze of anﬁargument llst lS now checked to match
previous definitions or usage. TN S TR T EI

6. : The run command now:ré-initializesfall~data.to zero if. there i€ no
explicit initializer, or to the appropriate value if declared with
an initializer.

7. #define's with arguments are now supported

sEm I o Jioaden okl P

8. Performance of operations on float varlables 1s 1mproved over

version 1.01. e 5 : T
Editor

1. A "DOS" command is added, which, like #shell in Instant-C, gives
you access to the operating system. You must be running on MS-DOS
or PC-DOS 2.0 or later. This is available in the stand-alone
editor as well as the Instant-C built-in editor. Remember to use
the DOS exit command to return to the editor. :

2. The editor command processor 'remembers' default arguments from
one command to the next much better than in version 1.0l1. File
reading from disk is much faster than 1n ver51on 1. Ol.‘ ‘

3. A new function is available for the Instant ~-C edltor. Function 51

is called '"check, format, re- -edit", ‘and it does eéxattly that: your
current buffer is complled and 1f‘compilation-is‘correct, formats
your function and leaves you in the-editor.” Thls"makes it very
easy for you to see the final form of- yout: functlon, ‘or 'to get it
"tidied up" before you continue changing it. Note: if the

-2 -

.- Editor, continued Instant-C Release 1,25

compllatlon is successful, the function or objects have been
updated in the memory flle In the default PC keyboard
conflguratlonh ctrl-P is bound to this function.

4. The editor status line displays the bytes remalnlng available for
buffers on the status line.

Instant~C Function Library

The library is distributed with DOS 2.0 file and device support. The
library has a condensed source called LS1.C, and its components are
defined in a file called LIB.IC.

An older "universal" library (which supports CP/M and DOS 1) is also on
the distribution disks, but is not installed in DOS versions of IC.EXE.
It is called LSU.C. The differences lie in STDIO.IC, which is replaced
by the STDIODOS.IC file (for DOS 2). The DOS 2 library will not run on
DOS:1.or: CP/M-86 systems. - LSU.C and- STDIOU H (rename 1t “to STDIO H)
must be used for DOS 1 or CP/M 86.. :

-~ The new ilbrary (LSl C) has the followxng 1mprovements over version
1,01 .

1. Full support of pathnames;

2. Full support of dev1ces,

3. Increased compatlblllty with libraries delivered with popular C
compilers, plus conformance with proposed ANSI C standard.

4. More IO functions, e.g., fread, fwrite, fseek, ftell, setbuf,
rewind.

5. The fopen function uses the standard convention for setting the
file's mode. The general form is (rwa}[+]([b], i.e., either "r",
"w", or "a", (read, write, or append), optionally followed by "+"
for update mode, optionally followed by "b" for binary (no
new-line translations).

6. The new library is faster.

Both the DOS 2 and the previous "universal" library have other
improvements as well:

1. More'string”fﬁncﬁions (strncpy, strncmp, strncat);

2. The memory management functions check for more error conditions,
- - .. including: infinite loops in the free pool chains, retmems of

;2o previously. returned:areas, and overlaps of returned areas. This
¢ 2o willomake: it easier for you to detect and debug memory management

-3 =

lerary, contlnued 7 sInstant-C Release '1.25

problems. - - - s B D e
main, called to start your program for the #run command; performs
redirection of stdin and stdout based on the < ‘and »> conventlon

The functions _inportw and outportw, which perform the 8086 IN
word and OUT word instructions are now avallable

A control-Z is now appended by fclose only to disk files opened
for text output (i.e., not binary). o 4

The file FUNCVAL.IC is deleted. The expression value display
functions like int and double are now built into the debugger.
However, you can still "roll your own" if you'd like: the internal
display functions are used only if no user display function is
declared.

The debugger display functions are also internal with version
1.25. Just like the expression display functions, however, you can

fdeflne your own pd etc., functions 1f you would like.

Yoosp ol S s,‘.,

A new llbrary source flle, MISCLIB IC‘replaces FUNCVAL.IC, and is

combined-in 181.C and; LSY.C. . It containg _main and some other

odds and ends.

A mathematics function library is delivered:with version 1.25,
called MATH.IC. It has the commonly available trig and
transcendental functions, such as SQRT, EXP, SIN, COS, ATAN, etc.
The header file ERROR.H defines the variableierrno, which may be
examined in the standard way for domain and range error ' ’
conditions. A header file, MATH.H, declares the math functions to
be of the appropriate type, usually double.

A header file FCNTL.H is provided to define certain values for the
level-1 library, to be compatible with other compilers. For
example, FCNTL.H contains a #define for O _RAW, which if or-ed or
added to the mode parameter of open will suppress ascii-‘hewline’
translation (i.e., O RAW is used for binary files). open in
version 1.01 assumed binary mode, which was incompatible with some
compiler's libraries.

Instant-C Environment

Instant-C version 1.25 requires less memory-than version 1.01, but
can use more 1f it is available. Instant-C will resize itself as
you load and modify your programs, and uses memory only as

needed. Versions 1.0l and before started up with fixed. .
allocations of memory for various needs; (source, user code, etc),
and these were sometimes imbalanced. Version 1.25 dynamically
sizes these various segments as needed. One major improvement

- 4 -

_Environment, cont

mentioned b

inued Instant-C Release 1.25

efore is the separation of editor buffers from

Instant-C data, allowing much larger files, functions, or
declarations to be edited. The "bad memory allocation" message
bytes the dust. :

2. A new built
characters

-in variable notabs may be used to eliminate tab
from Instant-C output. This can be set to 1 to remove

tabs both from #saved source files and from the editor.

By the way, pendi

ng the next re-publication of the manual, here is a

brief explanation of the built-in variables available, with default
settings in brackets []:

~_intnum

_stmcount

_remcol

\

_tabwidth

_tabindent

'_notabs

_screenlines

Treatment of spec
-are tentative ass
macros in a subse

qtrl-c, ctrl=X, o

[0xCO0] defines the block of interrupts used by
Instant-C -~ may be redefined if there is a conflict
with some other software/hardware (see pp. 146 and
161).

[10] defines the number of statements executed between

-checks for control-break interrupts =-- may be set
higher for slightly faster execution (at 10, it
,represents about 10% overhead).: This does not affect

the operation of the debugger or the #step command.

[24] defines the first column that may be used by
comments. Comments that start in column 1 remain in
column 1, however. A larger column number may be used
to move comments to the right, probably making a
‘neater display at the cost of longer lines.

[4] defines the spacing of tab positions. Eight is a
very common alternative. If _notabs is 0, _tabwidth
affects only displays by the #list and #type

commands. Otherwise, it affects the expansion of tabs
to spaces.

[0] this is the column number of the first tab
position, or the left margin for source listings.

[0] discussed above.

[24] defines the number of lines that may be output to
the screen before a "more?" prompt and pause suspends
output. May be set to 25 for 25 line screens, or to 0
for no pauses at all.

ial input characters is described below. Note: these
ignments. We are likely to have configurable keyboard
quent release.

r ESCape -

clear -entire line of input.

_Environment, continued Instant-¢ Releass 1725

Ctrl-H, Backspace, Del, or Rubout
erase last character entered

Fl or ctrl-N copy 1 character from correspondlng p051tlon 1n last
line entered.

F3 or ctrl-R copy remaining characters from last iine entered.
And some frequently used debugger commands are built-in:

F10 or ctrl-J or newline
the #step command.

F8 or ctrl-I the #step in command.

Fé6 or ctrl-oO the #step out command.

Instant-C Debugger

More run-time checking is provided in version 1.25. In particular,
function returns validate the return address, before possibly returnlng
to oblivion via a smashed return pointer. This can happen if store
through bad pointers or off the end of an array. Array bounds checklng,
pointer accesses, and indirect function calls w1ll be checked 1n the
next version. :

1. Several fixes and improvements are made in the #step commands in
version 1.25. #step count, where count is an integer constant,
will cause your program to continue for count more statements, and
then breakpoint. Of course any exception, explicit breakpoint
(_() function), or tracepoint will stop execution before hand.

2. At the completion of a #step operation, the completed statement
source 1is displayed (as in 1.01). With 1.25, much more
sophisticated look-ahead is performed to find the next statement
that will be executed upon resumption. This is indicated by
"next>". If the next statement does not sequentially follow the
completed statement ("if()", for example), a message such as "to
line 99" is displayed, and then the next line is shown. Version
1.01 did not do this look~ahead, although it would show a "next>"
line.

3. The command #pu, for print unsigned, is now implemented. It was
documented in version 1.01 but not really available.

4. As discussed in Library, above, immediate mode expression
evaluation display is handled internally. In version 1.01,
library functions (which you could modify), with names of the form
int for integer values or double for double precision, handled
the display. These are no longer necessary, but if they are

- 6 -

 D¢bugger,-continued Instant-C Release 1.25

present they will be used, so yoca can still customize your
debugging and evaluation displays. The debugging display
functions (with names like pd for decimal output) are also
internalized, but will be used instead of the internal code if you
have defined thenm.

Debugger display functions #pf and #plf are now available for the
display of floats and doubles, and work like the other such
commands (see #px for example).

Source code displayed in #backtraces and after steps is truncated
at 80 columns for more consistent and readable displays. Of

course, you can still see full text with the editor or the #list
command.

Temporarily, there is a bug such that blank lines between
functions may not always be properly retained between #loading and
#saveing. The results are not horrible, and you may not even

notice the problem. In any event, the results represent an
improvement over 1.01.

Summary

We wantLto hear about any problems you may encounter, any improvements
you may suggest, and, certainly, any successes that you have with

Instant-C. As always, if you like Instant-C, tell your colleagues; if
you don't. like it, tell us.

User's Manual

Instant-C

Instant—-C User's Manual

(Version 1.01)

Terry Colligan

Ben Williams

Raticnal Systems, Inc.
Natick, Massachusetts

December 31, 1984

y Fa I Systems. Inc
ALL REGHTS RESERVE [

User’s Manual InS tan t.. C

Instant-C User's Manual

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of
Rational Systems, Inc.

Disclaimer

Rational Systems, Inc. makes no representations or
warranties, either expressed or implied, with respect
to the adegquacy of this documentation or the programs
which it describes in regard <to merchantibility or
fitness for any particular purpose or with respect to
its adequacy to produce any particular result. The
computer programs and documentation are sold “as is,"
and the entire risk as to quality and performance is
with the buyer. In no event shall Rational Systems,
Inc. be 1liable for special, direct, indirect or
consequential damages resulting from any defect the
programs, documentation, or software. Some states do
not allow the exclusion or limitation of implied
warranties or liability for incidental or
consequential damages, in which case the above
limitations and exclusions may not apply to you.

CI-86 is a trademark of Computer Innovations, Inc.

CP/M is a registered trademark of Digital Research,
Inc.

Instant-C is a trademark of Rational Systems, Inc.
Intel is a trademark of Intel Corporation
Lattice~C is a trademark of Lattice, Inc.

MS-DOS is a trademark of Microsoft, Inc.

PC~DOS is a trademark of IBM.

UNIX is a trademark of Bell Telephone Laboratories,
Inc.

User's Manual

Instant-C

Table of Contents

Chapter 1 Introduction 1
Chapter 2 Overview of Instant-C 3
2.1 Components of Instant-C 3
2.2 Organization of Instant-C 4
2.3 How the Pieces Fit Together 6
2.3.1 The Interpreter 7
2.3.2 The Editor 7
2.3.3 Executing Your Programs 8
2.4 Style Differences 9
2.5 What if I Type Something
Incorrectly? 10
2.6 Interpreter Output 10
2.7 Where Are All Those Tools? 11
2.8 Source File Handling 12
2.8.1 Structure of C Source Disk
Files 13
2.8.2 The Instant-C Workspace 13
2.8.3 File Summary 15
Chapter 3 Getting Started with Instant-C 17
3.1 System Requirements 17
3.2 Backing Up the Instant-C Disk 18
3.3 Running the Test Program 18
3.4 Trying the Interpreter 21
Chapter 4 Using the Instant-C Editor 25
4.1 Creating new functions 25
4.2 Modifying Existing Functions 26
Chapter 5 Running Programs 29
5.1 Executing Expressions 29
5.2 Invoking Functions 31
5.3 #run command 32
5.4 Debugging Overview 32
5.5 Interrupting Your Program 33

User's Manual

5.6 Debugger Commands

Chapter 6 Instant-C Interpreter Command

Reference

Chapter 7 Using Instant-ED on Files

7.1 Command Line Syntax

Chapter 8 Instant-ED Reference

[2eec R vo RN oo v o)
O W

0w
030

00 0w 0o

Starting the Editoer

Editor Terminology

Display Layout

Editor Modes

Editor Input Modes (INSERT and

OVERTYPE)

Editor Command Mode
Editor Command Summary
Key Functions for the IBM-PC

.

OO ®®

NOYOED W N

Moving the Cursor

Deleting Characters
Inserting Characters
Changing Editor Modes
Moving Text

Other Editor Key Functions
Leaving the Editor

Chapter 9 Instant~C Function Library

9.1 Library Categories
9.2 Instant-C Library Functions

Y]

W W WYY

> e

NDONNDNDN

NOO N

Description

Character type and conversion
functions

String Manipulation functions

Memory Management functions

Standard IO Functions

Formatted IO functions

Low Level Routines

Interrupt Support Functions

Appendix A How Instant-C Differs from

Standard-C

A.l1 Extensions
A.2 Features Not Yet Implemented

34

39

87

87

106

106
107
108
110
115
118
120

123

User’s Manual

Instant-C

Appendix B Error Messages and Explanations 125
B.1 Language Errors 125
B.2 Internal Errors 140

Appendix C Summary of Instant-C Commands 143
C.1 User Commands 143
C.2 Internal Commands 147

Appendix D Language Summary 149

Appendix E How to Install Instant-C 151
E.1 List of Distributed Files 151
E.2 Configuring Screen Output 154
E.3 Configuring the Keyboard 156
E.4 Building a New Instant—-C 157
E.5 Modifying Your Instant-C 159
E.6 Configuring a New ED 160
E.7 Changing Interrupts 160
E.8 Making the Library Smaller 161

Appendix F Editor Keyboaxrd Functions 163
F.1l Functions to Move the Cursor 163
F.2 Functions to Delete Text 166
F.3 Input Mode 168
F.4 Text Blocks Management 170
F.5 Editor Commands 171
F.6 Miscellaneous Functions 173

Appendix G Known Bugs and Problenms 175

Appendix H Reporting Problems and/or
Suggestions 177

User's Manual

Instant-C

Cor
Bane [2entyrn
Uy teanona
A

Al BIGHT:

User's Manual

InstanttC e

Chapter 1
Introduction
Welcome to Instant-C (tm), an optimizing inter-
preter which will make your C language programming
faster, easier and simpler than ever Dbefore. It
operates on Intel 8086, 8088, and compatible

microprocessors, under the PC-DOS, MS-DOS, CP/M-86,
or MP/M-86 operating systems. Version 1 supports all

standard C language features except for:
initialization, parameterized #defines, declarations
in compound statements, bit fields, a general

assembly language interface, and certain obsolete
operators. It includes the Unix Version 7 C compiler
void data type for non~-valued functions. The
function library provided with Instant-C is designed
to be compatible with UNIX Version 7 from Bell
Laboratories, and with other C compilers for the
8086, particularly the Lattice-C and CI-86
compilers.

In addition to the normal features of any C
compiler, Instant-C provides a unigue programming
environment which will greatly improve your
productivity while creating or enhancing C language
programs. This improvement occurs because we have
made the edit-compile-run cycle the shortest
possible, often less than two seconds.

Instant-C is not only effective for developing and
enhancing C programs, but is also the best way to the
C language.

You can run Instant-C on an IBM PC or compatible
computer with at least 320K of memory. Instant-C
will run under any of PC-DOS, MS~-DOS, CP/M-86,
MP/M-86 or CCP/M-86,. You should have at least 280K
available for programs on your system. Instant-C can
use up to 440K of memory if it is available. You

Chapter 1 Page 1

User’'s Manual

INTRODUCTION

Instant-C

need one floppy disk with at least 240KB capacity to
get started.

This manual assumes that you already know C. We do
not attempt to teach you the language. If you are a
beginner to C but know Basic, we suggest that you get
a copy of the C Programming Guide by Jack Purdum (Que
Corporation, 1983). Many of the programs in the C
Programming Guide have been tested in Instant-C.

If you are a beginner to C, but don't know Basic
(or think Basic is a mistake that should have been
corrected long ago), we suggest that you get a copy
of The C Programming Tutor by Leon A. Wortman and
Thomas CO. Sidebottom (Robert J. Brady Co., 1984).

This Instant-C User's Manual doces not completely
define the ¢ language, nor does 1t serve as a
reference for C. You should have a copy of The ¢C
Programming Language by Brian W. Kernighan and Dennis
M. Ritchie (Prentice-Hall, 1978). We will refer to

this boock several times in the text as "K&R".

Instant-C is an ambitious undertaking; it is the
first system of its kind. In any software of this
complexity, especially in one so new, there are

likely te be bugs. To reach our objective of
eliminating all bugs from Instant-C, we need your
help. Please report any problems, inconsistencies,

or inconveniences you encounter. Appendix G provides
details on how to do so. We will greatly appreciate
any help you can provide.

You have purchased the most effective tool for
developing and enhancing C language progranms. We
hope that you will enjoy using it.

Conventions Used in this Manual

All examples are set off and indented. If an
example 1s interactive (as opposed to the calling
sequence of a library routine), we show what the user
types by using italics like this.

Page 2 Chapter 1

User's Manual

Instant-C

e OV ERVIEW

Chapter 2

overview of Instant-C

This chapter provides a framework for your
understanding of Instant-C, so that you can make
better use of the information in the following

chapters. It contains an overview of what the
various parts of Instant-C are and how they work
together.

Instant-C is a totally new kind of programming
environment for the C language. It was inspired by a
number of computer scilence research systems such as
MACLISP, INTERLISP, and SMALLTALK. (If you are
familiar with these systems, you can probably skip
the rest of this chapter.)

We designed Instant-C to greatly speed up the
edit-compile-load-test cycle in which many C
programmers spend most of their time. Instant-C can
be as much as 100 times faster than the traditional C
language tools.

2.1 Components of Instant-C

Instant-C contains a number of components that
correspond to tools in traditional programming
environments:

C Compiler Converts C source language text into
executable machine instructions.

C Interpreter

Runs C programs interactively. (Not
generally available in other products.)

Chapter 2 Page 3

User’s Manual | Instant_c

_OVERVIEW

Full Screen Editor
Creates and modifies the C source
language text.

Linker/Loader
Combines functions from multiple source
files into a single program.

Pretty Printer
Reformats C source language text so that
it has a standard, easy to read and
understand, layout. (Not generally
available in other products.)

C Function Library
Provides pre-~-written versions of
commonly used operations, such as disk
file reading or writing.

Source Language Debugger
Helps debug and trace C programs and
examine and modify both programs and
data. (Not generally available in other
products.)

System Checker (LINT)
Checks that c prograns made from
multiple source files are consistent.
(Not generally available 1in other
products.)

In Instant-C, all of these components are combined

into a single, unified system which handles all of
your programming needs for the C language.

2.2 Organization of Instant-C

You can think of Instant-C as two different
cooperating programs, the interpreter and the editor,
which automatically and invisibly invoke all of the
other components as needed to perfect your program,
which you might view as a third co-operating
program. You switch back and forth between the
editor and the interpreter and don't even have to

Chapter 2

User’'s Manual

OVERVIEW

InstantC

think about the other tools that are helping to speed
your programming.

Since you will wusually be using Instant-C to work
on programs which are interactive (read from your
keyboard and write to your screen), you actually have
three programs to interact with: the Instant-C
interpreter, the Instant-C editor, and your own
program. You can think of these programs as three
different parts of the total Instant-C environment:

1. Interpreting

The interpreter reads your commands and
executes them, either directly or via
the debugger. Some of the interpreter
commands switch you to the editor and
others will switch to your program.
Generally, the interpreter acts on your
input one line at a time.

2. Editing The full-screen editor reads your
command characters and manipulates C
language source text. Some of the
editor command characters switch you
back to the interpreter. Generally, the
editor acts on your input one character
at a time.

3. Executing Your Program

Your program can switch back to the
interpreter by calling the exit
function. Instant-C will also auto-
matically switch back to the interpreter
if your program makes an error, such as
dividing by zero, or if it encounters a
breakpoint. The style of interactions
when your program is in control
obviously depends upon your program.

Although you will interact with only one of these
programs at a time, you can switch rapidly and easily
between them. Since there 1is a different style of
interaction in each program, you should understand
how they are different to minimize confusion. The
differences between these three programs are
described in more detail below.

Coes Chapter 2 Page 5

;
ALL RIGHTS HE

User’s Manual Ins tan ?_C

OVERVIEW

2.3 How the Pieces Fit Together

The following diagram shows how the three basic
pieces of Instant-C fit together, and how you can
switch between them. (The labels on the arrows will
be explained in the following text.)

Operating System

i A

ic{name | #quit
I !
f !
v | #ed name
| [=== e > x
| Instant-C | | Instant-C |
{ Interpreter | Ctrl-F (No errors) | Editor |
| & Debugger |[<—==wemmemrea——a————— | |
I ‘ | Ctrl-Q (Quit) ! I
A
#run, | I
funct () | | return, exit, _exit {in your program}
| | (breakpecint encountered)
| | (runtime error)
v !
Fom e e e +
| Your i
| Programs |
Fom e = e . e - +
| Instant—~C
! Libraries f
e e e e e +

Notice that the interpreter is the central
controlling piece, invcking either your programs or
the editor to carry out your commands.

This information 1is explained in more detail
below. For each of the +three environments, we
explain when to use it, how you can tell that you're
in it, how you can get into it, and how you can get
out.

Pa{;e‘ g _C‘ﬁabtef 5

User's Manual

OVERVIEW

2.3.1 The Interpreter

You can tell that you're interacting with <the
interpreter by the "# " prompt it uses and by the

full line style of input. (The interpreter starts
executing your commands when you press the RETURN
key.)

You use the interpreter for the overall control of
Instant-C, to load and save your programs, to test
your programs, to set breakpoints, to display data,
and to invoke the editcr.

Enter the interpreter by typing the IC command to
the operating system, by returning from the editor,
or by returning from your programn.

You can get out of the interpreter by typing the
quit command. (But make sure you save your work
first! -~ see the #save command in the Command
Reference Chapter.)

2.3.2 The Editor

You can tell that you'vre interacting with the
editor by the distinctive screen format with two
status lines at the top of the screen, by the lack of
the "4 " prompt, and by the single character style of
interaction.

You use the editor to create C source text or to
fix or enhance existing ¢ source text. (That is, to
modify or create your programs.;) You will most
fregquently edit a single function. You can also edit
global data or #define declarations. The editor
always works on a copy of your functions or
declarations. The place where the copy is stored is
called the current buffer.

Enter the editor by typing the #ed command to the
interpreter, or when the compiler finds a syntax
error in a C language source file that you regquested
Instant-C to process.

Chapter 2 Page 7

User’'s Manual In S tan t- C

OVERVIEW

You can leave the editor and go back to the
Instant~C interpreter by typing the command F (Ctri~F
on most keyboards), which will cause Instant-C to try
to compile the contents of the editort's current
buffer. If the compiler finds no errors, your
functions will be wupdated, and you will be returned
to the interpreter. If the compiler finds an error,
the error message will be displayed on the top 1line
of your screen, and you will be left in the editor.

You can also leave the editor by typing the command
Q@ (Cctri~Q on most keyboards). In this case, the
contents of the editor Dbuffer are discarded and you
are returned immediately to the Instant-C
interpreter. The C functions and/or declarations you
were editing are not updated in this case, since just
the copy in the editor's buffer is discarded.

2.3.3 Executing Your Programs

You execute your program either to try it out, to
test it, or to use it.

You can normally tell that you are executing your
program because it will act differently than either
the interpreter or the editor. (Your program may
have a distinctive style of interaction and be easily
recognizable.)

You start executing your program by typing a valid
function call while you are in the interpreter. For
example:

main():;
or

printstatus(3)

You can stop executing your program and get back to
the interpreter in the following ways:

1. Your program calls the function exit or exit
directly.

2. The function that you called from the
interpreter executes a return statement, or

Page 8 Chapter 2

User's Manual

Instant-C

s . _OVERVIEW
reaches the end of the function.

3. A breakpoint you set 1is encountered during the
execution of your program.

4. A function that you have traced is called or
returns.

5. Your program completes a statement while you
are single stepping through your program.

6. Your program makes a runtime error, such as
division by zero.

7. You interrupt your program by typing Ctrl-Break
or Cctrl-cC.

2.4 Style Differences

Since Instant-C 1is such an advance over the
previous generation of software tools for the C
language, some people have been confused by the
differences in style. Here are the most common areas
of confusion with some (hopefully) clarifying
explanation.

1. The most commen thing to edit in Instant-C is a
function; in traditional environments, the only
thing that you can edit is a disk file. Since
disk files must be loaded and then edited a
function at a time, a very common error is to
try ed filename, which doesn't work in
Instant-C. For more information, see the
section on Source File Handling, below.

2. If you have worked with other C tools, it may
make you nervous not to explicitly compile your
program. Instant-C automatically compiles each
function when you leave the editor. All
programs are always Xept 1in compiled form.
This is further explained in the next section.

3. Similarly, there is no explicit 1loading or
linking for you to worry about. Instant-C is a

Chapter 2 Page 9

OVERVIEW

compile~to-memory system, and bypasses the need
for a separate linker or loader. The compiler
does all of <the 1linking necessary during
compilation.

2.5 What if I Type Something Incorrectly?

Correction of keyboard input errors will differ
depending upon whether the interpreter, the editor,
or your program is in control. On MS-D0OS and PC-DOS
systems, the interpreter uses the operating system's
input editing. On the IEM PC and compatibles, the
ESC key cancels the current Yine, and the function
keys allow you to edit and re-enter a previcus line.

On CP/M-86 and compatible systems, an interpreter
command line can be cancelled at any time before you
hit RETURN. It is cancelled by entering a control-c,
control~X, or ESC; the characters previously input
will be cleared away and the B B prompt
redisplayed.

On CP/M-86 based systems, the backspace, control-H,
and del Xeys will erase the last character on the
input line. We chose these character to match the
system or programs you may be used to.

The editor has many ways to correct input, and they
are detailed in the chapters on the editor.

Methods for correcting input to your program will,

of course, depend on the program and the library
functions involved.

2.6 Interpreter Output

In general, information displayed by the
interpreter is output one 1line at a time. If
twenty-three lines have been printed on the screen
since the last keyboard input, however, the output

Page 10 ~ Chapter 2

User's Manual

Instant-C

OVERVIEW

will cease and a special prompt will appear "more?
{control-C to abort)". output will resume and the
"more?" prompt will be erased, when you hit any Kkey
except control-c. If you don't want to continue, you
can return from command execution directly to the
Instant-C interpreter by entering a control-C. (This
pagination of interpreter output is controlled by the
_screenlines system variable.)

output from the Instant-C interpreter can be

directed to your printer if vyou wish. See the
outfile command in Chapter 6.

2.7 Where Are All Those Tools?

Farlier, we listed all of the components of
Instant-C. We then described in detail the only two
that you interact with -~ the interpreter and the
editor. These two programs create an environment in
which all of +the other tools are automatically
invoked as needed. The following is a repeat list of
those tools, with an indication of which tools are
automatically invoked, and when. We hope this helps
to dispell some of the nmystery of Instant-C.

C Compiler (Invisible Tool) Automatically invoked
when vou give the save command (Ctrl-F)
from the editor or when you execute a
#include or #load command in the
interpreter. The compiler is only
noticeable when you save a large
function because of the slight delay for
it to finish its work.

C Interpreter
(Main Environment) The "Control Center"
of Instant-C. Moves you between
environments, as well as doing the more
traditional Jjob of executing the C
statements and expressions you type.

Full Screen Editor

(Second Environment) The main way in
Instant-C to change or create your

Chapter 2 Page 11

User's Manual Instant- C

OVERVIEW

programs.

Linker/Loader
(Invisible Tool) Automatically invoked
as part of the (invisible) compilation
process.

Pretty Printer
{(Invisible Tool) Automatically invoked
as part of the editing process.

¢ Function Library
These routines are included as part of
Instant-C. They are not exactly
invisible, but rather passively wait for
you or your program to call them.

Source Language Debugger
This tool is integrated with the
interpreter. It 1is visible only as
several extra commands in the
interpreter.

System Checker (LINT)

(Invisible Tool) Automatically invoked
when you do a save command in the editor
or when you load a disk file by typing
an #include or #load command. You see
the system checking as additional error
messages exactly like the normal syntax
error messages.

2.8 Source File Handling

Most C programs consist of multiple source disk
files. Because we designed Instant-C to be
compatible with existing C programs and compilers, we
have added a number of commands to deal with multiple
simultaneous source disk files. Since no other
interpreters for any language deal with multiple
source files, the following overview of disk file
handling should help you understand what is
happening.

Pa‘g’é 12 S 7 Chapter 2 (7();)\’{,@“@ 134
by Rationatb Systems, fnc
ALL RIGHTS BESERVED

Instant-C

User's Manual

OVERVIEW

2.8.1 Structure of C Source Disk Files

In order to understand how Instant-C deals with
disk files, you should understand how the systems
with which we are trying to be compatible organize
disk files. (If you are an experienced C programmer,
you may want to skip the rest of this section.) 1In
traditional ¢ compiler environments, your program
will consist of multiple source disk files. There
are normally two kinds of disk files:

Source Disk Files
These contain the function definitions

for your program. (The function
definitions are all of the executable
code in your program.) There may also

be data declarations in thenm, but
normally, source disk files consist of
mostly function definitions. The names
for these disk files wusually end in
I!.c'l.

Header Disk Files

These contain data declarations and
#define definitions that are shared by
multiple source disk files. Each header
disk file 1is invoked by one or more
source disk file with an #include
statement. The names for header disk
files usually end in ".H".

2.8.2 The Instant-C Workspace

To be completely compatible with existing C
language systems and existing C programs, Instant-C
simulates multiple disk files by organizing its
symbol tables into separate tables, one for each
source disk file and one for each header disk file.
Since each disk file inside Instant-C will have a
symbol table with the same name, you can easily
become very confused trying to understand whether
something happens on disk or in the Instant-C work
space. To help minimize that confusion, we will from
now on always refer to files on disk as "disk files™,
and the corresponding symbol table inside Instant-C

Page 13

Chapter 2

User’s Manual M lnstant_c

OVERVIEW

as "memory files".

To run a C program with Instant-C, you need to load
disk files 1into memory in the Instant~C workspace

with the #load command. You give one #load command
for each source disk file in your program. The
header disk files are 1loaded automatically, as

specified by the #include statements in your source
files. (You can also explicitly add a header disk
file with a #load command, of course.)

Instant-C always has one memory file designated as
the current memory file. Any new declarations or
functions you type in the interpreter are added to
the end of the current memory file. Since you can
look at local data in the current memory file, vyou
will probably need to switch back and forth between
memory files. The #use command does exactly that.
The #use command can also just display what the name
of the current memory file is.

If you wish to create a new memory file, the #new
command will do so. In addition, you can give the
#new command to clear out the current memory file if
you wish to start over.

Finally, to store your changes permanently on disk,
you need to move your source code from its memory

file(s) to the corresponding disk file(s). You use
the #save command to write memory files to disk
files. The #save command writes the current memory

file to a named disk file.

Page 14 Chapter 2

HTE RESERVELD

User's Manual

OVERVIEW

2.8.3 File Summary

In summary, each disk file of C source language has
a memory file corresponding to it in the Instant-C
workspace. The following commands operate on memory
files:

load, #load Reads the disk file contents into the
memory file.

save, #save Writes the current memory file to a disk
file.

use, j#use Makes a memory file be the current
memory file.

new, #new Creates a new memory file, or clears an
existing memory file.

Chapter 2 "~ Page 15

User’'s Manual

Instantf-_g

GETTING STARTED

Paggls . éﬁ.apter ER

User's Manual

Instant-C

GETTING STARTED

Chapter 3

Getting Started with Instant-C

This chapter tells you how to install Instant-cC,
how to use the small example program included with
the package to test Instant-C, and how to start using
Instant~C by typing commands to the interpreter.

3.1 System Requirements

Instant-C is designed to run on an IBM PC or PC/XT

computer with at least 320K of memory. Instant-C
will run wunder any of PC-DOS, MS-DOS, CP/M-86,
MP/M-86 or CCP/M-86. (Multi-user or multi-tasking

operation systems such as MP/M-86 or CCP/M-86 may
require significantly more memory.) You should have
at least 260K available for programs on your system.
Because of the space your operating system takes, you
will need at 1least 320K in your machine. Instant-C
can use up to 440K of memory if it is available.

You do not need much disk capacity to run
Instant-C; 1t will run on a single 320KB disk drive.
Since Instant-C does not use the disk except to read
and write your disk files, you <can start up
Instant-C, and then replace the Instant-C disk with a
different disk containing your own C programs.

Instant-C requires Version 1.25 or later of PC-DOS
or MS-DOS.

Instant~C works well on hard disks; it has no copy

protection requiring that it reference any £loppy
disk.

Chapter 3 Page 17

e

b

ALL G WSEHVETDY

User’s Manual Instan t-‘-CM

GETTING STARTED

3.2 Backing Up the Instant-C Disk

Before starting to use Instant-C, you should make
at least two working copies of the distribution
diskettes. One copy 1s for backup; the distribution
diskettes can serve as a second backup. Since
Instant-C is sometimes distributed on single-sided
and/or single-density diskettes, you may want to
change the format of the copies to make more space
available for your programs. If so, you should not
use DISKCOPY to make your backup. Rather, you should
use COPY to copy the disk files from the Instant-C
disk to your backup disk.

If you are using Instant-C on a computer with only
a single floppy disk drive, you will probably want to
install your operating system on the disk so as to
make your Instant-C disk "bootable".

If all this is incomprehensible to you, or if you
have never made a backup disk before, please go get
some help from your dealer or a knowledgeable
friend. We haven't provided enough introductory
material here to teach you.

3.3 Running the Test Program

To confirm that you have successfully installed
Instant-C onto your working disk, and verify that
Instant~C can handle existing C language source disk
files, we have included a test disk file, HELLO.C, on
your distribution disk. This program prints on your
screen the words:

Hello, World!

(This is the very first program described in K&R.) If
you display the disk file HELLO.C with the operating
system command type, you will see the following <C

Page 18 " Chapter 3

AL RIGHTE RESERVED

User's Manual

Instant-C

GETTING STARTED

program:
main()
{
printf("Hello, World!\n"):;
}

Running the test program requires only three steps:

1. Start up Instant-C.

2. Add the program to the Instant-C workspace.
(The workspace contains a copy of the programs
or functions that Instant-C 1is currently
handling.)

3. Tell Instant-C to execute this program.

Starting up Instant-C is easy. Make sure that you

have your Instant-C working disk inserted in the
computer. Then, type the command:
A>ic

After the operating system has found and loaded
Instant-C, the following messages will be displayed:

Version 1.01, December 31, 1984
Copyright (C) 1984 by Rational Systems, Inc.

#

The " " prompt indicates that you are in
Instant-C's interpreter and it 1s ready to process
your commands. (The "# " was chosen because

Instant-C command level Iis somewhat like the
preprocessor input of a traditional C compiler.)

To leocad HELLO.C into your Instant-C workspace, type
the command:

load "hello.c'
Instant-C will respond with the message:

main defined.
#

sl 14984
I Systems ne

" Chapter 3 page 19

User’s Manual

~Instant-C

GETTING STARTED

telling you that it has completed compiling main.

If there had been any syntax errors in the disk file,
Instant-C would have automatically switched you to
the built-in editor so that you could correct the
error.

Then, to run this program, simply enter the ¢
language phrase:

main()
Instant-C will respond with:

Hello, World!
#

When you are finished with your Instant-~C session,
use the quit command to return to the operating
system:

quit
A>

You can also give a filename when you start up
Instant-C. This has the effect of automatically
executing the #load command. If you type the
command:

A> ic hello
Instant-C will respond with:

Version 1.01, December 31, 1984
Copyright (C) 1984 by Rational Systems, Inc.

main defined.

#

At this point you can execute main or quit, just as
in the previous case.

Page 20 Chapter 3

User's Manual

Instant-C

GETTING STARTED

3.4 Trying the Interpreter

To gain some familiarity with how Instant-C works,
try interacting with the interpreter.

Start up Instant-C as before: Make sure that you
have your Instant-C working disk inserted in the
computer; then type the command:

A>ic

After the operating system has found and loaded
Instant-C, the following messages will be displayed:

Version 1.01, December 31, 1984
Copyright (C) 1984 by Rational Systems, Inc.

#
Now, to try some interactions, type:
17
Instant-C should respond with:

17
#

Each time you type a valid C language expression,
Instant-C will evaluate it and display its value in

an appropriate format. (17 1is a very simple
expression.)

Now, try something a bit more complicated:
3+4
You will see:

7

Chapter 3 ~ Page 21

User’s Manual lnstan t-C

GETTING STARTED

Or:
¥ 5 % (3+4)
You will see:

35
#

Integers are displayed as decimal numbers, even if
they started as something else:

oxrf

(oxff is ‘'ff' 1in hexadecimal.) Instant-C will
print:

255
#

Similarly, octal constants (leading O with no 'x')
are converted to decimal:

¥ 0123
#

83
You can try some of the fancier C operators ("<<"
is left shift):
3 << 2
12
#
You can type things other than integers:

"This is much easier than a compiler!"

(The double quotes define a string constant.) You
should see:

U"This is much easier than a compiler!®
#

You can also type char constants:

ralt
rat

Page 227 77777 Chapter 3

User's Manual

Instant-C

#

Finally, vyou can call functions (toupper is a
library function that converts a char to upper case):

toupper('q');
IQI

Try other expressions to explore how C operators
work and to gain confidence in interacting with the
interpreter. When you are finished, you can return
to the operating system by typing:

quit
A>
You have compiled and run a program (HELLO.C) and
have invoked a function (toupper) directly. See how

easy it is to use Instant-C? Read the next chapter
to learn how to create new programs with Instant-cC.

' Chapter 3 ~ Ppage 23

User's Manual

EDITOR

Page 24 Chapter 4

ALL HICHT S 130 SE RV L

Instant-C

User's Manual

EDITOR

Chapter 4

Using the Instant-C Editor

This chapter is an introduction <to the editor in
Instant-C. It includes enough information so that
you can successfully edit any declaration or
function, but it does not cover all of the features
of the editor.

4.1 Creating new functions

In Instant-Cc you create new function with the
editor. To create a new function, simply type the
command :

ed funname

where funname is the name of the function you wish to
create. Instant-C will shift to the editor, and will
prepare a template of a function definition for you.
Instant-C can't distinguish between disk file names
and function names. DO NOT use the name of a disk
file instead of the name of a function -- you can't
edit a disk file with the editor in Instant-C.

To insert text, use the arrow keys to move the
cursor to the place on the screen where the text
should go. The editor will already be 1in insert
mode. In this mode, any normal characters (not
control or function keys) that you type go ontc the
screen and into your C program.

If you wish to delete characters, move the cursor
to the first character to delete and press the Del
key. The character will disappear, and the screen

Chapter 4 ~ Page 25

User’'s Manual

EDITOR

will be updated appropriately.

When vyou are finished defining the function, type
Ctrl~F to have your function automatically compiled.
If there are no errors in your function, your
function will be formatted and you will be returned
to the Instant-C interpreter.

I1f, however, the compiler finds an error in your
function, you will be left in the editor, in insert
mode. The cursor will be placed at the point in your
program where the compiler discovered the error, and
an error message will be displayed on the top of the
screen.

After correcting the error by inserting and
deleting characters, you can again try to compile by
typing Ctrl-F. You can repeat this cycle as many
times as you wish until you have successfully
complled your program.

If you decide to abandon the editing you are doing,
type Ctrl-Q instead of Ctrl-F. You will return to
the Instant-C interpreter, but what you were editing
will not be compiled, nor will any of your prograns
be updated. Your programs will be in the same state
they were in before you started editing.

If you don't have time to finish getting all of the
errors out of your program, you have three choices:
The first 1is to simply put comments around the
erroneous text, and then save the program normally.
The second 1is to use the Write command in the
editor's command mode -~ see Chapter 8 for more
details. The third is to use #if 0 and #endif to
conditionally omit the portion in error.

4.2 Modifying Existing Functions

To make a change or improvement to an existing cC
function that has already been loaded into the
Instant-C workspace, you use the same process. Type
the command:

Page 26 ' Chapter 4

User's Manual

EDITOR

Instant-C

4 ed funname

where funname is the name of the function you wish to
modify. (Again, this is the name of a function and
not a disk file name such as HELLO.C). The current
definition of the function will appear on an editor
screen. The editor will be in insert mode, so that
you can use the same insert and delete process and
the same Ctrl-F and Ctrl-Q mechanisms to control your

modifications.

Since you often will be editing the same function
repeatedly, Instant-C allows you to edit again the
last function you were working on by onmitting the
rame of the function to edit. That is:

ed

will edit the last function you were editing. If you
omit the function name argument the first time that
you use the editor, Instant-C will print an error
message.

To edit disk files outside of Instant-C, see
Chapter 7 on using the stand~alone version of
Instant-C's editor.

See Chapter 8 for more details on the Instant-C
editor.

" Chapter 4 7 "Page 27

User’s Manual - Instant- C

RUNNING PROGRAMS

Page 28 _ Chapter 5

User's Manual

. RUNNING PROGRAMS

Instant-C

Chapter 5

Running Programs

This chapter covers all of the commands in
Instant-C and tells you how to run your prograns.

5.1 Executing Expressions

Whenever you are interacting with +the Instant-C
interpreter, you can enter any valid C expression for

immediate evaluation. Instant-C will execute your
expression and display the resulting value. For
exanple,

2+3%4

will result in the following display:
14

Any external or global data variables can be used, as
well as any static data variables in the current
memory file 1if +they are declared outside of any
function. For the purpose of recognizing names, your
expression is treated as though it were in a function
at the bottom of the current memory file.

Instant-C converts your expressions into calls on
some built-in functions, and those functions actually
do the displaying. Different functions are called
depending upon the data type of the expression. The
specific functions called to to display the values of
expressions are:

Chapter 5 ~ Page 29

User’s Manual N Instant-c

RUNNING PROGRAMS

_Char Display the value of char expressions.
(Note that there are relatively few char
expressions, since chars are expanded to
ints if they are combined with anything
else in an expression.)

_short Display the value of short or short int
expressions. (Similarly, there are
relatively few short expressions.)

_int Digplay the value of int expressions.

_unsigned Display the value of an unsigned or
unsigned int expression.

_long Display the value of a long or long int
expression.

_fleoat Display the value of a float
expression. (Note that there are few
float expressions, since floats are

expanded to doubles in most contexts.)

_double Display the value of a double
expression.
_string Display the wvalue of a char pointer

expression (something declared char ¥).

_ptr Display the value of all other pointers
as a hex value.

In the preceeding example, Instant-C converts the
expression "2+43*%4" to the call:

_int(2+3%4);

and the function int actually displays the value.
2ll of these functions are provided in source form so
that you can edit them to satisfy your formatting
desires. You can even, 1if you wish, delete the
display statements from the functions, so that no
output is displayed. We think, however, that you
will find these displays a reassuring confirmation
that the system is doing what you asked it to.

Page 30 Chapter 5

User's Manual

RUNNING PROGRAMS _

Instant-C

5.2 Invoking Functions

Any function in the Instant-C libraries or in your
program can be called directly from the interpreter.
You simply type a normal function call complete with
parens and commas, and Instant-C will call the
function. If the function returns a value (i.e., is
not declared void), Instant~C will print its value as
described in the section on expressions above.

The printing of function results is one of the most
powerful debugging aids in Instant-C. You can easily
test any sub~piece of your program by calling the
function, and examining the resulting display. You
can also easily vary the arguments to the function to
see how the value changes.

However, this printing of the resulting value can
sometimes cause confusion because you may not think
of a particular function as having a value. Since
the C language definition requires all functions with
no specified data type to be treated as int's, many
of the functions you think of as non-valued must be
treated as int functions by Instant-C. The most
frequent surprise is the main() function. Main()
will run your program and print out the last value
computed in main -- often a meaningless value. This
may confuse you since 1in most other environments
main() can't return a value. You can change this
behavior either by changing the main function to be a
void, or by changing the int function.

Instant-C tries +to help in the main() case by
converting any definitions of main() without a
specific data type to data type void instead of to
data type int.

‘Chapter 5 Page 31

User’'s Manual Instan{_c

RUNNING PROGRAMS

5.3 #run command

So that you can test the main function of programs
that will become separate .EXE or .CMD files, we have
provided the #run command. For more details, see the
description of the #run command in Chapter 6.

5.4 Debugging Overview

Instant-C has powerful debugging capabilites that
are always available to you. No special libraries,
compiler options, or separate utilities are
necessary. The debugging facilities offered by
Instant~C fall into three categories:

Interpretation

Because Instant-C has the interactions
of an interpreter, you can perform a
number of actions that are difficult or
impossible with a compiler. Immediate
execution 1lets you call a function
directly to view 1its wvalue and any
side-effects. Arguments can be varied
each time you invoke the function to
verify proper operation. Variables can
be displayed or modified at any time.
Execution of your program may be
interrupted to allow you to examine its
progress or to pursue a different path
of execution.

Fast Modification
Because it is so fast and easy to change

your programs, debugging techniques
formerly called ‘'brute-force" methods
are now elegant and efficient. For

example, printf calls can be inserted in
a function to display the values of
certain variables, or to record the

‘Page 32 Chapter 5

User's Manual

Instant-C

RUNNING PROGRAMS

occurance of some events. The function
can be tested right away, and once the
information is obtained, the debugging
code can be removed in a matter of
seconds. Thus, Instant-C's debugging
capabilities can be extended and
customized by your own C language
programming.

Debugging Commands
Commands are available to specify
functions that are to Dbe traced, to
start, continue, or stop execution of
your program, and to examine variables
and the program execution history.

5.5 Interrupting Your Program

Most debugging activities take place after your
program has started running and is interrupted.
Interruptions can be voluntary: a call is made to a
traced function (see #trace command), a call is made

to the breakpoint function (i.e., _()) function, or a
Control~Break interrupt or Control-C interrupt is
issued from the keyboard. The keyboard interrupts

are available on MS-DOS and PC-DOS systems only.
Involuntary interrupts include division by zero,
stack overflow, call to an undefined function, or
taking the difference of dissimilarly typed
pointers. A call to the exit function is considered
an interruption so that you can see how your program
terminated.

When an interruption occurs, Instant-C displays a

nessage describing the interruption. For example,
entering
1= 3/0

Results in:

** Execution interrupted: division by zero in
command line

|

[%)

Chapter 5 ~ Page 3

User’'s Manual Instan t- Cx

RUNNING PROGRAMS

After the message 1is displayed, you are at
interpreter level. You can issue any command,
execute any statement, or (usually) resume execution
of your program.

The stack, or history of function calls to the
interruption, is preserved, and you can look at it
with the #back command. At interpreter level, you
can display variables, evaluate expressions, and
execute C language statements including calls to
functions. The C language you enter to the
interpreter is evaluated in the context of the
function that was interrupted, so you can examine or
modify local, or automatic, variables declared in
that function.

We use the term "active" to describe functions that
are on the stack. The interpreter can execute in the
context of any active function by using the #local
command. #local specifies the function to use.

Calling other functions from the interpreter may

result in another interrupticen. Interruptions
themselves may be stacked or nested. The back
command shows the level of any stacked

interruptions. The #reset command allows you discard
or unstack any or all levels. Levels should be
discarded when you no longer need them, to prevent
confusion and to avoid possible stack overflows.

5.6 Debugger Commands

The debugger commands are fully described in
Chapter 6, but an overview of each is offered here so
that you can see how they work together.

The commands fall into several categories: those
that resume or abort interrupted executions (#go,
#step, and #reset), those that manage breakpoints
(#trace and #untrace), and those that display values
(#pc, #pd, #po, #ps, #px, and #local).

Any execution that has been interrupted can be
resumed in several ways. Resuming execution is much

pPage 34 " Chapter 5

User's Manual

Instant-C

RUNNING PROGRAMS

like a executing return C language statement from the
interpreter. The various ways your can resume your
program are:

#go resumes execution at the point of
interruption, and proceeds until your
program returns to the interpreter or
another interruption occurs.

#step resumes execution, but will breakpoint
at the end of the next statement. This
is the finest 1level of contrel, and
allows you step through your program or
portions of your program, and observe
the flow of control.

#step return

resumes execution, but will breakpoint
when the interrupted function returns.
This command 1is wuseful in quickly
bypassing functions that are not of
direct concern to your debugging. For
example, you have been single stepping a
function that calls printf, step return
will let printf execute at 'full speed’
until it completes. You can then resume
single stepping if appropriate.

#step out resumes execution, but will breakpoint
when the current function calls another
function or returns. This allows you to
follow the execution of your program by
stepping from function call to function
call or return, without 1line-by-line
detail.

#step in resumes execution, and like #step will
break at each statement, but will not
notify you of calls to other functions.
This makes it easier to use a single
command to examine the execution of a
function.

#step exec C_statement
unlike the other step commands, step
exec 1s a 'call' to the € language
statement. This is used to 'step into’
a function without having to explicitly

Chapter 5 ~ page 35

User’'s Manual

RUNNING PROGRAMS

#trace it and then call it. For
example,

step exec main(argc, argv)

will call main and will break
immediately upon entry to main.

You can use the following commands to control the
debugger in various ways and to display the data and
memory of your program:

#reset level number

causes interruptions to be discarded
down to level number. If no number is
specified, zero 1is assumed and all
levels are discarded.

#trace function name

a breakpoint interruption will occur the
next time that the specified function is
called or returns. If function name is
omitted, a list of all traced functions
is displayed.

#untrace function name

removes the trace request from calls or
returns to the specified function. It
function name is omitted, all trace
requests are cancelled.

#pc, #pd, #po, #ps, #pu, #px expression count

display storage from the location of
expression, (like a C language lvalue),
for count locations, under the
appropriate printf format (character for
#pc, decimal for #pd, etc.).

#local function name

Page 36

Sets the context for evaluation of names
and expressions at interpreter level.
function name must be an active function
(otherwise references to automatic

storage class variables are
meaningless). If no function name is
given, the name of the current 1local
function is displayed. Upon

interruption, the interrupted function

" Chapter 5

[nstant-C

User's Manual

I n S tan t‘jc m - - RUNNING PROGRAMS

#back

is automatically made the local
function.

Displays the sequence of function calls
to the point of interruption, and also
displays any previous interruption
levels that have not been #reset.

Chapter 5~ Page 37

User’s Manuai

Instant-C

COMMAND REFERENCE

‘Page 38 Chapter 6

User's Manual

Instant-C .o

Chapter 6

Instant-C Interpreter Command Reference

This chapter contains a description of each command
that the Instant-C interpreter recognizes. For each
command, we list:

Purpose: what we intended the command to be used
for:

Format: the syntax of the command;

Remarks: some explanatory remarks noting major

features and possible pitfalls; and
Examples: some sample uses.

All command names have two spellings: the first is
a simple name, and the second is the same name with a
leading ‘'#' character. We originally started all
interpreter commands with the '#' character so that
the command names wouldn't conflict with any names in
your programs. After wusing Instant-C for a while,
many of our test users felt that they were overcome
by '#'s. Having both forms of the names available
means that you generally won't need to type the '#'s,
but if you want to have a function named "ed", you
can. The examples and remarks use the two spellings
for command names interchangeably.

In the format description for each command, the

fixed portion of each command is in bold type, while
variable parts of the command are in italics.

T Tttchapter 6T T T Page 39

User's Manual lnstan t-cr

BACK COMMAND e

Purpose: To display a back trace of an
interrupted execution.

Format: back
#back

Remarks: This command displays the functions
active on the execution stack at the
time execution was interrupted. Also,
any prior levels of interrupted

execution are displayed.

Backtraces are useful in determining how
you got tc the point of interruption.

The display begins with a message
describing the current execution level,
why the execution was interrupted
{breakpoint, division-by-zero, entering

a traced function, etc.). and the
source code that was being executed when
the interruption occurred. This is

followed by the active functions, listed
with the most recently invoked function
first. The source code for each active
call is shown.

The oldest invocation 1is always the
Instant-C command line that started the
execution. If more than ten functions
are active in the current 1level, only
the first ten are shown, and any others
are indicated by an ellipsis (".

Y.

Every execution interruption leaves the
Instant-C 1interpreter in control, so
that you can execute any function or C
expression in addition to issuing
debugging commands such as back. These
nested or higher level executions may
also be interrupted (by unintended

program fault or by request). #back
will show a summary description for
every interruption 1level, but will

display function-by-~function detail for

‘Page 40 Chapter 6

Instant-C

Example:

User's Manual

_ BACK COMMAND

only the most recent, or highest,
level.

If you type #back and no execution
interruption has occurred, oOr the
environment has been #reset, you will
see the message "(no levels active for
backtrace)".

See the commands #reset and #go for more
information on the management of
interruption 1levels. See #local for
information on how to reference local
variables in an active function.

back

Displays the current function caller
backtrace for the most recent
interruption of your programs'
execution.

Chapter 6 ~ Ppage 41

-ueisyy

*papNIOUT 8q 3ou [ITM dnozsizng

jo uoT3TUTIOP 8yl {PURLWOD aaes
39Ul U3TM YSTP 03 USAJTIM ST oTI3F AJousu
2yy UusuM ‘aTT3 Aiowsuw 3JusIIno 8yl

wox3y posowsx 8T dnororang uoTiLoUNI oylL

dnoasiing 93979p #

*aweu
3ey3 J0J UOTJTUTISP MOU B 93esI0 nok
TT3un ‘pa3Tpe I0 peISTT od 03 aIqelTese
99 TITIS TTITM swWeU JO UOTJTUTISP PTIO 3UL

*a113 Axouwsu
JUa2IINO 9Y3] WOIJ poAcuwsI 99 [ITM swey

‘103139 ue UTad [ITM D-3UBISUL ‘OTTJF
Azowsw jusiInd oYz UT 30U ST oweu 3II

oweu 8391oD#
sweu 23919p

*91TI Axowsw
JuaIino 9yl woxy (uoTjeIeTo9p e3P I0
‘autgsps ‘uoraouni) 3palfgo ue saowsx ol

oo ...gaeadeyy . Zy °beg

ro1dwexy

s SYarwey

1APWICT

rasodang

jenuep s,

ANYWROO dLdT3d

1esn

Instant-C

Purpose:

Format:

Remarks:

Example:

User's Manual

DIR COMMAND

To display the filenames in the current
disk directory.

dir
dir d:filename.ext
#dir
#dir d:filename.ext

d:filename.ext is a filename with
optional extension and optional disk
drive letter. If you don't specify the
disk drive, the current disk drive is
assumed. If you don't specify an
extension, blanks are assumed.

The global characters '?' and '*' may
be used in either the filename or the
extension, following normal operating
system conventions. If you omit the
file specifier completely, “#,#%" ig
assumed, and all directory entries will
be displayed.

The filenames are displayed five per
line on your screen.

Only the filename is displayed; no size
or date information is included.

dir b:*.c

The names of all files with an extension

of .C on the B: disk drive are
displayed.

Chapter 6 Page 43

User’'s Manual

~Instant-C

_ED COMMAND

Purpose: To switch to the Instant-C editor so
that you can modify an existing c
function or create a new function. You
can also use the editor to examine
existing functions in order to
understand them.

Format: ed name
ed
#ed name
#ed

Remarks: name can be the name of a function.
(This is the most common use.) name can
also be the name of a data variable,
structure tag, or #define'd name. In
each of these cases, you will be editing
the C source declaration for that itemn.

If name is omitted, the most recently
edited object 1is used. (If name 1is
onitted in the very first ed command of
a session, an error message is given.)

If no object name exists, Instant-C
assumes you are trying to create a new
function, and starts with a simple
skeleton for the function definition.

One of the most common errors in
Instant-C is the attempt to edit a file
(by specifying a file name) instead of a
function or data name. Instant-C does
not need to compile entire source files
from disk, but works directly on
individual objects in memory.

Example: # ed hello

The function hello is 1loaded into the
editor for modification or browsing.

‘Chapter 6

Instant-C

Purpose:

Format:

Remarks:

Example:

User's Manual

ERASE COMMAND

To erase specified files from the
current disk directory.

erase d:filename.ext
#erase d:filename.ext

d:filename.ext is a file specifier with
optional extension and opticnal disk
drive letter. it you omit the
extension, blanks are assumed. If you
omit the drive letter, the current
default disk drive is used.

The global characters '?' and '#*!' can
be used in either the file name or the
extension, following standard operating
system convention.

If you specify "“#.#" (erase all files),
you will be asked for a confirmation
that this drastic action is okay.

erase oldfile.c

Erases a file named "ocldfile.c" from the

current directory on the default disk
drive.

Chapter 6 ~ Page 45

User’s Manual Instan t-c

GO COMMAND

Purpose: To resume execution that has been
interrupted.

Format: go
#go

Remarks: Execution of your program can be
interrupted by a fault (e.g., division
by zero), or by request (e.g., a
breakpoint). The #go command will
resume an execution that has been
interrupted.
Not all executions can be resumed.
Examples of interruptions that are not
resumable are: division-by-zero fault,
missing function fault, call to the
function exit(), and stack overflow
fault.
If the interrupted execution cannot be
resumed, the #go command will display an
error messade, and revert to the
previous execution level. This is
equivalent to using the #reset command
to return to the previous level. You
can use the #back command to examine the
execution level to see 1f you want to
resume it, and use the #reset command to
dispose of level(s) that you don't want
to resume.

Example: # go

Resumes execution at the point of
interruption, or resets the level if it
is not resumable.

Page 46 7 Chapter 6

Instant-C

Purpose:

Format:

Remarks:

Example:

User's Manual

INFILE COMMAND

To process a series of interpreter or
debugger commands that are stored in a
disk file.

infile filename
#infile filename

The infile command switches input to the
interpreter/debugger to come from a disk
file.

The most common use of infile 1is to
issue all the load commands necessary to
include all the files of a multiple
source file program.

When the end of file is reached, input
is switched back to the keyboard.

Under MS~-DOS or PC-DOS, you can also use
the operating system's command line
redirection to execute commands from a
disk file

infile loadsys.inp
Reads interpreter commands from the file
"LOADSYS.INP". When the end of the file

is reached, command input will revert to
the console.

Chapter 6 S " Page 47

User’'s Manual Instant-cﬁ

LIST COMMAND

Purpose: To display C source language on your
screen. You can display either a single
function/variable/#define or an entire
memory file.

Format: list
list name
#list
#list name

Remarks: The name can be either a function name,
or a data variable name, or a #define'd
name. In each case the C source
language definition for the named object
is displayed on your screen.

If name is omitted, the entire current
memory file is displayed.

If the named object is not in the
current memory file, it must have
external scope. If you wish to display
a static variable not in the current
memory file, you must first switch to
the memory file that contains the
variable.

To display a different memory file,
first switch to that memory file with
the #use command, and then give a #list
command with no arguments.

To display C source language to the
printer, see the #llist command.

Page 48 Chapter 6

User's Manual

lnS tan t- C M . LIST COMMAND

Examples: # list isdigit
int isdigit(c)
char c¢;

{

return ¢ >= 10! && ¢ <= '9°%;
}

The C source Jlanguage definition of
isdigit is displayed on your screen.
list
/* C program for “Hello, World!w */
void main()

érintf("nello, World!i\n");

(Assuming that HELLO.C 1is the current
memory file.)

“Chapter 6 =~~~ Page aT

User’'s Manual

~Instant-C

LISTFILE COMMAND

Purpose: To 1list all of the memory files that
currently exist in the Instant~C
workspace.

Format: listfile
#listfile

Remarks: All wmemory files that Instant-C has

#lcaded or #included 1in the current
session are displayed, one name per
line.

You can use the #use command to display
the name of the current memory file, and
to select another file to be the current
memory file.

Example: # listfile
=> * (Unnamed memory file)

1s1l
stdio.h

Here, the "#" represents a memory file
without a name. It can nonetheless be
#saved and #used.

page 50 Chapter 6

Instant-C

Purpose:

Format:

Remark:

Example:

User's Manual

LISTNAME COMMAND

To display all of the names defined or
declared in the current memory file.

listname
#listname

Each function definition, data or
function declaration, typedef, and
#define in the current memory file is
displayed, one name per line.

listname
For file hello:

Function main

(Assuming that HELLO.C is the current
memory file.)

Chapter 6 7 Page 51

User's Manual

LLIST COMMAND

Purpose:

Format:

Remarks:

Examples:

Page 52

To print ¢ source language on your
printer. You can print a single
function, variable, or #define, or you
can print an entire memory file.

llist
1list name
#llist
#11ist name

The name can be either a function name,
or a data variable name, or a #define'd
name. In each case, the C source
language definition for the named object
is printed.

If you omit name, the entire current
memory file is printed.

To display source on your screen, see
the #list command.

11ist isdigit

Sends the C source language definition
of the function isdigit to your
printer.

1list

Sends all of the current memory file to
your printer.

TTTTTTTT"Chapter e T o

by Hational Sye

Copynight uid

Instant-C

i, fne

ALl RIGHT S RESERVED

User’'s Manual

Instant-C o conmn

Purpose:

Format:

Remarks:

Examples:

To load a C source language disk file
into a memory file.

load "filename"™
#load ""filename"

The #load command brings the specified C
language source disk file into a
corresponding memory file.

If you don't suppoy the extension of the
disk file name, it 1is assumed to be
".c“.

Only files in the current disk directory
can be loaded.

You can use the characters '<!' and ‘'>!
instead of double quotes to delimit the
file name.

If the filename and extension are each a
valid ¢ identifier, you don't need the
delimiting characters.

A #loaded memory file becomes the
current memory file.

load labels

Reads the disk file LABELS.C into a
memory file named YIABELS.C".
WIABELS.C" Dbecomes the current memory
file.

load <stdio.h>

Reads the disk file STDIO.H from the

current disk directory into a memory
file named "STDIO.H".

“Chapter 6 7 7777 Pagé 53

User’s Manual | lnstant-cr

LOCAL COMMAND

Purpose: To set or query the function assumed for
symbol table searches so that you can
examine/modify local variables.

Format: local function name
local
#local function name
#local

Remarks: Instant-C normally recognizes names if
either they are in the current memory
file, or 1if they are external. The
#local command lets you evaluate
expressions inside a particular
function.

The function name specified must be an
active function, that is, it must have
started executing and have an entry on
the execution stack. Expressions that
set or use a function's local variable
will be executed in the context of that
function.

You will generally not need to use the
#local command because the local
function is automatically set from the
context of the interrupted execution.
For example, if function f is executing
and attempts a division by zero, the
Instant-C interpreter is invoked, and
the assumed local function is £,

If function name is not specified, the
current local function name is
displayed.

Local function names are stacked with
each interruption level; #resetting or
#going to a previous level will result
in the previous level's function being
re-assumed.

Page 54 chapter 6 Lo i
Dy Rational S ‘

ALL FIGHTS BEGERVE D

Instant-C

Example:

“ User’'s Manual

LOCAL COMMAND

local f

Assume that function £ calls function g,
which calls function h. Each function
has local integer variables named i, and
3. There is a global integer x.
Execution has been interrupted in
function h by a breakpoint. The context
of function h is assumed at the time of
the breakpoint, but is changed to
function f by the example command. Now
entering i = j+x will set i in £ to the
value of j in f plus the global x.

Resuming execution with #go, h xreturns
to g, which returns to £. Function £
continues execution with the new value
in its local variable i.

Chapter 6 " "page 55

User’'s Manual 7 lnstant_;cp

MAKE COMMAND

Purpose: To create a stand-alone version of your
program after it has been debugged.

Format: make filename
make filename starting function
#make filename
#make filename starting function

Remarks: You must supply filename.

You use make to create separate programs
from Instant-C to be run under your
operating system. None of the special
debugging features such as break
checking are available, since the
interpreter is not written to the file.

Make will overwrite existing files.

If you omit +the extension portion of
filename, it defaults to .EXE under
MS-DOS and PC-DOS, and to .CMD under
CP/M-86.

Because the created module contains the
entire library, it will be relatively
big (>32KB). If you don't need the
entire library for your program, you can
use ICBASE to 1load and make your
program. If you use ICBASE, the minimum
size is about 3KB.

Make is saving an exact memory image of
your program and data values. Note that
some data values may be invalid when the
created module is executed if you have
obtained absolute paragraph memory
addresses.

Test and debugging runs may allocate
storage that is not reclaimed -- make
will save all memory that has been used
by your program during the entire
Instant-C session.

ﬁage 56 Chapter 6

Instan tC N

Examples:

User's Manual

MAKE COMMAND

You will normally omit the
starting function name, in which case
the main function in the 1library will
be used. main parses the command 1line
and calls your main function with the
standard argc, argv arguments.

make prtlabel

Writes the disk file "PRTLABEL.EXE"
("PRTLABEL.CMD" under CP/M-86). All
currently loaded functions and data are
included. When the PRTLABEL file is
executed, the 1library function _main
will call your main function with the
correct argc, argv arguments.

make setwide init
Writes the disk file "SETWIDE.EXE" (or
"SETWIDE.CMD") . Execution will begin

with the init function. {(The main
function will not be called.)

' Chapter 6 ~ page 57

User’'s Manual

NEW COMMAND

Purpose: To delete all objects from the current
memory file, or to create a new memory
file.

Format: new
new filename
#new

#new filename

Remarks: If you omit the filename, the current
memory file is reset. Resetting a
memory file means deleting all of the
objects declared or defined in it.

If you provide the filename and there
already exists such a memory file, that
memory file becomes the current memory
file and is reset to be empty.

If you provide the filename and no such
memory file exists yet, a new, initially
empty memory file is created and becomes
the current memory file.

Examples: # new

Deletes all names in the current memory
file.

new part2

Creates a new memory file named "part2"
and makes it the current memory file.

new #*

Clears the unnamed memory file (after
possibly creating it).

‘Page 58 ~ Chapter 6

Instant-C

Purpose:

Format:

Remarks:

Example:

User's Manual

_. OUTFILE COMMAND

To redirect interpreter output to
different and/or multiple devices.

outfile printer
outfile crt
outfile both
#outfile printer

outfile printer directs output to your
printer and not to your screen.

outfile crt directs output to your
screen and undoces a prior outfile
printer or outfile both.

outfile both directs output to both your
screen and your printer.

Only the output of the interpreter is
redirected. Neither the output of the
editor, nor any output of your program
is affected in any way.

Even 1if output is directed to your
printer only, any error messages will
also be displayed on your screen.

outfile printer
list main
outfile crt

Makes a listing of the main function on
your printer. (The #llist command could
be used to do the same thing.)

outfile printer
back
outfile crt

Prints a Dbacktrace of your currently
interrupted program on the printer.

Chapter 6 ~ page 59

User's Manual

~ Instant-C

PC_COMMAND B o o

Purpose: To display memory locations in character
format.

Format: pc expression count
#pc expression count

Remarks: expression 1is evaluated as an 1lvalue
(left-hand part of an assignment), and
bytes Dbeginning at that location are
displayed as characters. 1f the

optional count expression is included
with the #pec command, then count bytes
are displayed as characters. If count
is omitted, only 1 byte is displayed.

Any non~printing values are displayed as
121

The library function pe is called by
the Instant-C interpreter to implement
the #pc command. You can alter the
display format or actions by changing
the function pe.

See the commands pd, po, ps and px to
display data in other formats.

‘Page 60 Chapter 6

¢

AL RIGHT

Instant-C

Examples:

Useir’'s Manual

_.PC COMMAND

pc #*str 10

Assuming the declaration char str{lo0}],
the first ten characters of str are
displayed as characters.

pc str{oj] 10

This will have the same results as the
first exanple.

pc 1

The variable i is displayed in character
format. Although i (declared as int i;)
is two bytes in storage, only one byte
is displayed.

pc 0x2174 0x10
This will display 16 bytes as characters

starting at location 2174 hex in your
program's data. (0x10 is 16 decimal.)

Chapter 6 Page 61

User’'s Manual lnsta n t-C

PD COMMAND

Purpose: To - display memory locations in decimal
format.
Format: pd expression count

#pd expression count

Remarks: expression 1s evaluated as an 1lvalue
(left-hand part of an assignment), and
words beginning at that location are
displayed as decimal integers. If the
optional count expression is included
with the #pd command, then count words

are displayed as decimal integers. If
count 1s omitted, only one word is
displayed.

The library function pd is called by
the Instant-C interpreter to implement
the #pd command. You can alter the
display format or actions by changing
the function pd.

See the commands pec, po, ps, and px to
display data in other formats.

Examples: # pd *ia 10
Assuming the declaration int ia[20], the

first ten words of ia are displayed as
decimal integers.

pd 1
The variable i is displayed as a decimal
integer.

Page 62) Chapter 6 Comytih

by Ration

ALL 31

Instant-C

Purpose:

Format:

Remarks:

Examples:

User's Manual

PO COMMAND

To display memory locations in octal
format.

po expression count
#po expression count

expression 1s evaluated as an lvalue
(left-hand part of an assignment), and
words beginning at that location are
displayed as octal integers. If the
optional count expression is included
with the #po command, then count words
are displayed as octal integers. If
count 1is omitted, only one word is
displayed.

The library function po 1is called by
the Instant-C interpreter to implement
the #po command. You can alter the
display format or actions by changing
the function po.

po *ua 10

Assuming the declaration int ua[35], the
first ten words of ua are displayed as
octal integers.

4 po uaf27] 7

Displays the last seven elements of ua
in octal, beginning with element 27.

po 1

The variable i is displayed as an octal
integer.

Chapter 6 ~ Page 63

User's Manual

ln;tantic

?? COMMAND L -

Purpose: To display memory locations as character
strings.

Format: ps expression count
#ps expression count

Remarks: expression 1is evaluated as an lvalue
(left-hand part of an assignment), and
pointers starting at that location are
displayed as character strings. If the
optional count expression is included
with the #ps command, then count
pointers are displayed as character
strings. If count is omitted, only one
pointer is displayed.
The library function ps 1is called by
the Instant-C interpreter to implement
the #ps command. You may alter the
display format or actions by changing
the function _ps.
Any non-printing values are displayed as
'?2', A string is assumed to continue
until a byte with value 0 is found. (At
least as implemented by the _ps
function.)
See the commands pec, pd, po, and px to
display data in other formats.

Page 64) "~ Chapter 6 Cor

by Hation
ALY RIGHT S BE

Instant-C

oy fal
AL L RiGHT

Examples:

User's Manual

PS COMMAND

4 ps answer

Assuming the declaration char
answer[100], the characters beginning at
answer[0] are displayed until a byte
with value 0 is found, indicating the
end of the string.

ps answers[0] 10
Assuming the declaration char
*answers[10], an array of character

string pointers, this command will print
each character string.

$ ps 1
The variable i 1is interpreted as a

character string pointer, and data at *i
is displayed as a character string.

~ ‘Chapter 6 T TPage &5

User's Manual

- Instant-C

BX COMMBND

Purpose: To display memory locations in hex
format.

Format: PX expression count
#px expression count

Remarks: expression 1is evaluated as an 1lvalue
(left-hand part of an assignment), and
words starting at that location are
displayed as hex integers. If the
optional count expression is included
with the #px command, then count words
are displayed as hex integers. If count
is omitted, only one word is displayed.

The library functien px is called by
the Instant-C interpreter to implement
the #px command. You <can alter the
display format or actions by changing
the function px.

See the commands pe, pd, po, and ps to
display data in other formats.

Examples: # px *ia 10
Assuming the declaration int ia[20], the
first ten words of ia are displayed as
hex integers.
px 1

The variable i is displayed as a hex
integer.

px 0x2174 16
This will display 16 words starting at

location 2174 hex in your program's data
area.

‘?ééé‘éé Cﬁépter é,,

Purpose:

Format:

Remarks:

Example:

Instant-C

User's Manual

QUIT COMMAND

To return to the operating system.

quit
#quit

You use the quit command when you are
finished using Instant-C.

No memory files are automatically saved
to disk If you have changed your
program, make sure you have updated it
to disk with the save command, or with a
#savemod command.

You can also use the system command to
do the same thing.

quit

Returns vyou to the operating system.

Any modifications you have made to your
programs and have not saved are lost.

Chapter 6 ~ page 67

User’'s Manual Instan l’-cm

_RENAME COMMAND

Purpose: To change the name of a function,
variable, or a #defined symbol.

Format: #rename oldname newname
#rename oldname as newname

Remarks: The #rename command changes the name of
the object, and all of the references to
the object. This makes one part of

software maintenance much simpler.

All references in the Instant-C
workspace are changed. No references in
any disk files are nodified, unless vyou
save the workspace memory files to
disk. Similarly, no references in
comments or character string literals
are modified.

#rename will result in an error message
if oldname doesn't exist already, or i1f
newname exists already.

Since there is already a rename function
in the standard Instant-C library, vyou
must provide the leading # in the
#rename command.

Exanmple: # #rename islower issmall

Changes the name of the library function
islower <to be issmall. All references
to this function, (including, for
example, the reference 1in the library
function toupper) are changed also.

Page 68 ~ Chapter 6

Purpose:

Format:

Remarks:

Example:

User's Manual

_RESET COMMAND

To discard one or more nested
interrupted execution levels.

#reset

#reset levelnumber
reset

reset levelnumber

The #reset command allows you to get rid
of an interrupted execution level when
it is no longer needed. You will not be
able to resume execution with +the #go
command nor will the level be available
for examination of its stack history).

#reset will revert the execution level
to that indicated by the optional
levelnumber parameter, or to level 0 (no
levels active) 1if levelnumber is not
provided.

If levelnumber 1s higher or equal to the
current level number, no action is
taken.

Use the #back command to display the
levels that are active; you may use the
#go command to resume execution of the
current (highest) level.

Whenever your program is interrupted (by
fault such as division-by-zero or stack
overflow, or by request, such as a
breakpoint), a new interrupted execution
level is created.

reset 2

This command will throw away any level
information for levels higher than 2.

Chapter 6 7 "page 69

User’s Manual Instant_ Ci

RUN COMMAND e

Purpose: To execute your program as though it
were invoked from the operating system.

Format: run command arguments
run
#run command arguments
#run
Remarks: You can test stand-alone programs with
the run command. Your program exXecutes

as 1t would if it were started by the
operating system.

Instant-C invokes your program by
calling main with the normal (arge,
argv) convention of passing arguments.

The command arguments are separated by
using space characters as delimiters.

argv{0] will contain the string "main®.

If no command arguments are given, argc
will be 1.

The run command actually calls the
library function main to parse the
command line and to call your main
function. List the main function for
more details.

Exanmples: (Assumes HELLO.C as the current memory
file.)
run
Hello, World!
run this line can be 128 chars long

Hello, World!

The output is the same since the HELLO.C
program ignores its arguments.

Page 70 Chapter 6 Copyri
By Rational Syat
ALL BIGHT S RESERYE D

Instant-C

Format:

Remarks:

Examples:

User's Manual

SAVE COMMAND

To write the current memory file to
disk, thereby saving any updates,
additions or changes that you have made
to your programs.

save new_filename
save

#save new_ filename
#save

The name of the current memory file is
used for the created file, unless you
provide a new filename.

The file extension defaults to ".c" if
you don't specify one.

If the file already exists, the existing
file 1s renamed to have file name
extension ".BAK". If you discover that
you made a mistake, vyou can use the
".BAK" file to get the most recent
previous copy back.

See the #use command to display/change
the current memory file name.

use
HELLO.C
save

#

Writes the current memory file to the
disk file "HELLO.C". If YHELLO.C"
already exists, it will be renamed to
"HELLO.BAK".

save hello.new

#

Writes the current memory file to the
disk file HELLO.NEW.

~ Chapter 6 " page 71

User's Manual 'nStant'Cw

SAVEMOD COMMAND

Purpose: To save a new or updated version of
Instant-C to disk in binary form,
including all symbol tables and systen
options.

Format: savemod filename
#savemod filename

Remarks: You must supply filenane.

Savemod will overwrite existing files,
so be careful not to overwrite an
existing file unless you are sure
everything will be okay.

If you omit the extension portion of
filename, 1t defaults to .EXE under
MS-DOS and PC-DOS, and to .CMD under
CP/M-86.

You can use savemod to change
Instant-C's defaults, to update the
built-in libraries or to add your own
library functions.

You can also use savemod to save a
partially debugged program when you need
to stop working before your program is
finished. 1In this case, you are adding
your programs and workspace to a clone
of Instant-C.

The created modules will be very large
(> 210K), so be sure you have sufficient
disk space.

Savemod saves anh exact memory 1image of
your program and data values. Note that
some data values may be invalid when you
start up the saved version, such as
absolute memory addresses you may have
developed.

Page 72 Chapter 6 Copyright
by Rational Syster C
ALL RIGHTS RESERVED

User's Manual

SAVEMOD COMMAND

Instant-C

savemod may not be given 1if there are
any interrupted executions of your
program pending. (You can tell that
nothing is pending if a #back command
responds with "no levels active.) The
#reset command will remove any pending
executions for you.

Examples: # savemod newic

Writes NEWIC.EXE (or NEWIC.CMD) to

disk. After testing NEWIC, you can
replace the existing Instant—-C with
NEWIC.

savemod sortbug

Writes SORTBUG.EXE (or SORTBUG.CMD) to
disk so that you can restart it later
and continue your development or
debugging.

~ Chapter 6 " Page 73

AL RIGHTS RESERVED

User’'s Manual

_SEGMENTS COMMAND

IrstantC

Purpose: To display the paragraph address,
maximum size, and currently used space
in each of the memory segments used by

Instant-C.
Format: segments
#segments
Remarks: All data is displayed in hexadecimal.

You will probably never need to use this
command. We provided it to help the
debugging of Instant-C itself.

Your program is stored in the segments
labeled "User Code', YUser Data",
"Symbol" and "Source". By 1looking at
these values before and after loading a
file, you can tell how big your programs
are.

Example: # segments

Displays the segment use information for
Instant—-C on your screen.

Chapter 6 Copyricht 1484
fy Babonal Systems e
ALL RIGHTS BESERVED

Instant-C

Iy

Al

I8!

Purpose:

Format:

Notes:

Example:

Lional & ngodne
PAGHTS TSI RVE D

User’'s Manual

SHELL COMMAND

To temporarily switch to the operating
system to execute a few commands or to
execute a single operating system
command.

shell
shell command line
#shell
#shell command line

The shell command is only available
under MS-DOS or PC-DOS and reguires
version 2.00 or later of those operating
systems.

The shell command reguires extra memory
space beyond that of Instant-C. As a
result, you will only be able to use it
if you have at least 512KB memory on
your system.

If you provide a command Iine, that
single command is executed. If you omit
the command line argument, you are
transferred to a new copy of
COMMAND.COM. You can get back to
Instant-C by giving the DOS exit
command.

shell

Invokes a new copy of the DOS command
processor. You can get back by typing
Texit".

shell cd

Executes the "cd" command to query the
current directory.

Chapter6 T T T BHge 75

User’s Manual ’nStant"c M

STEP COMMAND

Purpose: To resume execution and interrupt after
the next statement is executed.

Format: step
#step

Notes: You wuse the #step command to execute a
single statement in the interrupted
function.

#step will stop after the next
statement, whether it is in the current
function, a function called from the
current function, or the function which
called the current function.

See the #step exec, {#step in, #step out,
and #step return commands for other ways
to resume and control execution of your
programs.

Example: # step

Interrupts your program after execution
of one more statement.

Page 76 Chapter 6

by Hational
Adt

User's Manual

Instant-C

STEP EXEC COMMAND

Purpose: To execute a C statement or function
call and to interrupt after the first
statement.

Format: step exec C statement

#step exec C_statement

Notes: The ¢ statement will most often be a
single function call.

The step exec command provides a simple
alternative for functions which are
called only once to the trace and
untrace commands.

See the #step, #step in, #step out and
#step return commands for other ways to
resume and control execution of your
prograns.

Example: # step exec fp = fopen("PRN:", "w'")
Executes a call to fopen and will

interrupt execution at the beginning cf
the fopen function.

Chapter 6 7" "pPage 77

ahional Systens
ALL HIGHTS RESERYED

User’s Manual Instan t-c;ri.v«

STEP IN COMMAND

Purpose: To resume execution and to interrupt
after the next statement in the
currently active function.

Format: step in
#step in
Notes: You use the step in command when you

want to breakpoint in the same function,
and not in any lower-~level functions.

The step in command allows you to stay
at one level in a function heirarchy.

See the #step, #step exec, #step out and
#step return commands for other ways to
resume and control execution of your
programs.

Example: # step in

Executes any nested calls without
interruption, and stops after the next
statement in the currently interrupted
function.

Page 78 ~ Cchapter 6

Copyright 184
by Rational 8 :
ALl RIGHT S BREGERYED

Instant-C

User's Manual

STEP OUT COMMAND

Purpose:

Format:

Notes:

Example:

To resume execution and to interrupt
after the next statement executed that
is not in the currently active
function.

step out
#step out

You use the step out command to see what
happens next outside of the currently
executing function.

The executlion will be interrupted when
the current function either calls
another function, or returns to its
caller.

See the #step, #step exec, #step in, and
#step return commands for other ways to
resume and control execution of your
programs.

step out
Resumes execution and interrupts when

the current function calls another one
or when it returns.

~ Chapter 6 Page 79

User’s Manual

STEP RETURN COMMAND

Purpose: To resume execution and to interrupt
when the currently active function
returns.

Format: step return

#step return

Notes: You use the step return command when you
are not interested in watching the
details of executing the rest of the
current function.

Execution will be interrupted when the
current function returns to its caller.

See the #step, #step exec, #step in, and
#step out commands for other ways to
resume and control execution of your
prograns.

Example: # step return

Executes the rest of the current
function without stopping and stops when
the current function returns to its
caller.

Page 80

Chapter 6 Copyiight 16A
by Rational Systerns e

AL RIGHTS BRESDRVED

Instant-C

Purpose:

Format:

Remarks:

Example:

User's Manual

SYSTEM COMMAND

To return to the operating system.

system
#system

You use the system command when you are
finished using Instant-cC.

No memory files are automatically saved
to disk., If vyou have made changes to
your programs that you want to keep,
make sure you have saved them with the
save command, or with a #savemod
command.

You can also use the quit command to do
the same thing.

system

Returns you to the operating system.

Any modifications you have made to your
programs and have not saved are lost.

Chapter 6 " Page 81

User’'s Manual

_TRACE COMMAND

Purpose:

Format:

Remarks:

Example:

To turn on call/return tracing for a
function.

trace functionname
#trace functionname

The #trace command will mark the
specified function to issue a breakpoint
interruption both when it is called and
when it returns. This allows you to
watch one or more traced functions to
see how and when it/they are called.

You can give a back command to see how
the traced function was called.

At interpreter level, you can use the
normal command line expression
evaluation features of Instant-C to
examine or modify the arguments to the
traced function, or to pursue any other
path of execution or debugging. Use go
to begin execution of the traced
function, or use #reset to abort the
execution.

A traced function that interrupted upon
entry will also interrupt upon return.
The message notifying you of the return
displays the return value (in decimal).
The function's local variables are
available for examination or
modification at this time.

When you no longer need a function to be
traced, use the #untrace command.

trace fopen

Will Dbreakpoint upon each subsequent
entry and return from the function
fopen.

~ chapter 6 Copy

Dy Hatonal Sye

ALL RIGHTS T

tomg e

WESERVED

Instant-C

Purpose:

Format:

Remarks:

Example:

User’'s Manual

... TYPE COMMAND

To display a disk file in the current
disk directory.

type d:filename.ext
#type d:filename.ext

If you omit the drive letter, the
current disk drive is used.

If you omit the extension, blanks are
used.

The disk file d:filename.ext is
displayed on your screen.

Any tabs are converted to spaces
controlled by the built-in systen
variable tabwidth.

type newprog.c

Displays on your screen the file

NEWPROG.C from the current directory on
the default drive.

" Chapter 6 Page 83

User's Manual

UNTRACE COMMAND

Purpose:

Format:

Remarks:

There will

Example:

To turn off call/return tracing for a
function.

#untrace function name
untrace function name

Undoes the #trace command.

no longer be an interruption when the
function function name is called or when
it returns.

untrace fopen

fopen 1is no longer traced. It will no
longer interrupt when called or when
returning.

Chapter 6 ¢

; Hational &

N
8l

MA
v

Insta U?fjc

y Y
AL RIGHT S BESEHVED

Instant-C

User's Manual

____USE COMMAND

Purpose:

Format:

Remarks:

U HVED

To make another memory file within the
Instant-C workspace be the current
memory file, or to display the name of
the current memory file.

use
use filename
#use

#use rfilename

The current memory file is where all new
declarations are put.

If you omit filename, the name of the
current memory file is displayed.

If your filename doesn't include an
extension, ".C" is used for default.

If no memory file named filename exists,
an error message 1s printed.

You can use the listfile command to

display what memory files exist.

Examples:
use

HELLO.C

Displays the current memory file name.
use stdio.h

Switches to the memory file named
"stdio.h" for edits and new
declarations. ("stdio.h" must have been
previously created or loaded.)

Chapter 6 ~ Ppage 85

User's Manual

Instant-C

EDITING FILES

Chapter 7 Conpyright 1084
by Ratonal Syatoms, Ing
AL RIGHTS RESTINVE D

‘Page 86

User's Manual

EDITING FILES

Instant-C

Chapter 7

Using Instant-ED on Files

Instant-ED, the editor in Instant~C can be used
outside of the Instant-C environment. This chapter
covers how to use Instant-ED in stand-alone mode.

7.1 Command Line Syntax

The Instant-ED editor can be used to edit any disk
file that fits within its space limitations. It is
invoked from your operating system's command level.

The syntax of the Instant-ED command is:
ed (filename] [options]

where both the filename and the options may be
omitted. If a filename is given, and the disk file
exists already, it read into the editor's buffer
before the editor will start acting on your
keystrokes.

If a filename is given, and the disk file doesn't
vet exist, Instant-ED creates a new disk file when
you give a F or W command.

The possible options are:

Option Example/Meaning
+<tab setting> +38 for tabs every eight columns

-<initial line> -123 for initial cursor at line 123.

Chapter 7 T page 87

User’'s Manual

EDITING FILES

The default tab setting is every eight characters
for disk files whose extension starts with "A" (.ASM,
.A86, etc.), and every four characters otherwise.

The initial cursor line option 1is particularly
useful with traditional compilers when you are given
a line number for some error message. You can start
up ED on the line where the traditional compiler
found the error.

The editor operates on disk files in stand-alone
mode in essentially the same way as 1t does on
functions when you are inside Instant-C. Most of the
descriptions of the editor that are in the following
chapter "Instant-ED Reference" apply identically when
operating on disk files in stand-alone mode.

The major difference 1is that no compilation
automatically occurs when exiting the stand-alone
version of the editor. The following describes the
two ways of exiting from the editor:

ctrl Q Exit without saving text contents to a
disk file.
ctrl F Write the text contents to disk and exit

if successful. Saving the contents when
not in Instant-C does not imply
successful compilation of the text.

“Pégé'88W ”héhépte}77”

Instant-C

User’'s Manual

Instant-C

Editor Reference

Chapter 8

Instant~-ED Reference

This chapter covers the use of the editor in
Instant-C, including the examination and change of
functions and other declarations in your programs.

8.1 Starting the Editor

Enter
ed object_name

where object name is optional. object name is the
name of any function, data declaration, or #defined
symbol. If you do not supply a name to be edited,
Instant-C assumes that you want to edit the last
function or declaration that you were editing. If
you don't supply a name, and if this is the first #ed
command in your session, Instant-C prints an error
message. If object name is not declared, Instant-C
assumes it is a function and will start the editor
with a function template that you can fill in with C
statements.

8.2 Editor Terminology

These terms will be used throughout the editor
chapter. To help get started with the editor, you
should know:

00
ol

Chapter 8 2 Page ¢

User’'s Manual 'nstan t_c

Editor Reference

buffer consists of your text, ranging from none
to thousands of 1lines of text. Some
editor operations work on the entire
buffer, such as the Write buffer to disk
file command. There can be more than
one buffer, and the editor has functions
to move blocks of text back and forth
between buffers.

cursor usually means both the cursor on your
conscle screen and the location in the
editor buffer at which text can be
inserted or deleted.

command causes the editor perform some
operation. Commands are distinct from
editor functions in that commands
require more information than can be
provided 1in a single Xkeystroke. An
example is to Read a file from disk into
the current buffer, where you will need
to specify the file name.

command argument
additional information needed for a
command to execute. For disk file Read
or Write, the command argument is a file
name. For text change, the command
arguments are the text to be replaced
and the replacing text.

command line
the top line of the screen. Comnmands,
and their arguments, will be displayed
here. Also, messages from Instant-C or
error messages from the editor will be
displayed here.

function or key function

a simple editor operation, which
requires no additional information to
complete. In general, you can cause

these functions to operate by a single
keystroke. Examples of functions are:
move cursor down one line, delete
character to the 1left of the cursor,
change to command mode.

Pagé 90 S ”Chapter 8

Editor Reference

’nSl"arn".Cﬂ User's Manual

status line the second line of the screen. Always
displays the editor mode, buffer name
and type, and cursor location.

8.3 Display Layout

Commands to and messages from the editor are
displayed on the first, or command, line at the top
of the screen. See the "Command Mode" section below
for details on what *the commands are, and how you
make them happen.

The current editor mode is always indicated on the
second, or status line, along with the current buffer
(indicated by the type and name of the buffer), the
line number of the cursor within the buffer, and the
column number of the cursor.

All other lines of the screen are used to display
the text in the current buffer. The screen will
always show the text area surrounding the current
cursor position.

8.4 Editor Modes

ED can be in one of three modes, which determine
the editor's response to typing from the keyboard.
The three modes are Insert (the default and most
used), Overtype, and Command.

while in Insert mode and Overtype mode all
printable characters typed will appear at the cursor
on the screen. Insert mode creates new text
characters in the buffer and on the screen, while
Overtype mode replaces existing characters with the
new characters.

Most non-printing characters or function keys may
cause other actions to occur, such as cursor
movement, mode change, deletion of characters or

 Chapter 8 " Page 91

User’s Manual Instanf-c

Editor Reference

lines, etc. These are called "key functions'"; most
key functions can be used at any time, whether in
Command, Insert or Overtype mode.

Command mode 1is an escape from this direct typing,
and allows the use of printable characters to
instruct the editor to perform other functions, such
as changing the next occurrance of a string of
characters to be a new string, going to a specific
line in the buffer, or quitting the editing session.

You can, if you wish, define the keystrokes which
will cause any function to occur. (See '"“Keyboard
Configuration" in Appendix E.) You can change the
definitions to match another editor with which you
are familiar, to be easy for your own typing style,
or to take advantage of special labels on the keys of
your XkKeyboard.

8.5 Editor Input Modes (INSERT and OVERTYPE)

In the input modes, certain characters input from
the keyboard will cause editor functions to occur
(such as the deletion of a word, or movement of the

cursor} . Any character not defined to cause a
function will be placed into the buffer, and will be
displayed on the screen. In Insert mode, the

character typed will be inserted into the current
line of text; all other characters on that line, and
the cursor, will move to the right by one character
position. In Overtype mode, the character at the
cursor 1s replaced by whatever new character is
entered, and the cursor moves to the right by one
position.

In either mode, the cursor can move to columns
greater than the width of the screen ('past' the
right side of the screen, in other words). When this
happens, the text on the screen 1is shifted to the
left so that the cursor can remain on the screen (and

on the same line as before). The cursor can't go
past column 240, though. This feature is called
'horizontal scrolling'. When horizontal scrolling is

in effect, the number of columns shifted (the number

Page 92 Chapter 8

User's Manual

InstantC

Editor Reference

of columns in the buffer to the left of the first
column displayed on the screen) is shown beside the
column indication on the status line. "col 82~ 4",
for example, would indicate that the display has been
shifted 4 columns to the right, and the current
buffer column position is 82.

Non-printable control characters that you Insert or
Overtype are handled in a special way. This is to
prevent confusion on input (many control characters
typed on the keybocard will be interpreted as key
functions), and to allow display on the screen.
Certain control characters, such as tab (control-I)
and carriage return (control-M) are not treated
specially, but instead are directly represented on
the screen. Tab is represented by spaces up to the
next tab column: carriage vreturn appears as the end
»f characters on a 1line and continuation on the
next.

The caret (or uparrow) key '~' is used to translate
the following character to a control character. For
example, entering '~x' will place control-X into the
buffer at the current 1location. The caret key also
acts as an escape to prevent the interpretation of
the next character as a key function. Entering caret
and then control-X places a control-~X character into
the buffer without switching you to Command mode. It
is necessary to enter the caret key twice to get a
single caret character into the text buffer.

Control characters are displayed with a caret
character preceding to indicate that they are control
characters (e.g., "A is control-A). Please be aware
of the ambiguity of ~~ in that the character
control-caret 1is displayed the same as the simple
caret character. Also, it is better practice to use
the backslash escape of the C language (i.e., '\t' or
*\032') to represent control characters in source
code. Control-@ ('\0') cannot be represented in the
puffer.

Chapter 8 """ Ppage 93

User's Manual

Instant-C

Editor Reference

8.6 Editor Command Mode

Commands may be given either directly with a single
keystroke, or as a two-step process where you first
enter Command mode, and then select the particular
command that you wish to execute. As delivered, the
Instant~-C Editor uses the two-step process because it
is more general and easier to learn. (See "Keyboard
Configuration’ in Appendix E for details on how to
custom-configure single keystroke commands.)

Control-X or F10 will enter Command mode. Another
character is needed to select the particular command;
in each case the first character of the command name
is used. This character will cause an
acknowledgement and prompt to appear in the command
line. The default value, if any, will appear already
filled in after the prompt. Carriage return will
start execution with the default. To use any octher
value, enter it, followed by carriage return. An
underscore is used as a curscor on the command line
when argument values are being entered. Errors in
commands usually require the space bar to be pressed
to acknowledge the error and proceed. Control-C
cancels a command you have not yet executed. Use the
Backspace key to correct the argumsnt value as you
type it in.

Contreol-R 1s used to repeat the last command. This
makes it very easy to browse through a text buffer
with the Search command, or to make a global change.
Either RETURN or Control-R signals that a command
argument is completely entered, and execution of the
command may commence.

Page 94 Chapter 8

fay [Hahc Systomis ¢
ALL RIGHTS RESERVED

User's Manual

Instant-C

Editor Reference

8.7 Editor Command Summary

Once in command mode, you enter only the first
letter of the command name; no return is needed. The
editor will respond with the full command name, and
prompts for the command arguments. These prompts
appear on the command line (the topmost line) of the
screen. When arguments are expected to a command,
you need to enter a return to mark the end of the
argument (s) .

Finish Compile and save the text in current
buffer; return to Instant-C interpreter
when no errors are detected.

(Control-F does this also)

Quit Discard buffer; return to the
interpreter without compilation.
{Control-Q does this also)

Search target string
Change target string replacement string

Target string is a string of characters to
search for. The Search and Change commands
will look for an exact match in the buffer.
Search places the cursor at the end of the
target string in the buffer. Change replaces
the target string with replacement string.

An optional + or - may be entered before C or
8 to indicate a search direction: + for
forward in the buffer, - for backwards in the
buffer from the cursor location. The direction
is remembered for repetitions of the command.

Insert string

The command argument string will be inserted
at the cursor.

Chapter 8 - Page 95

User's Manual

~ Instant-C

Editor Reference .

Line absolute_line number
Line + relative_ lines
Line - relative lines

Move cursor to the beginning of absolute line
number, or move to the line forward or backward
relative_ lines from the current line.

Read d:filename.ext
Write d:filename.ext

The current buffer is written to disk, or a disk
file is read into the buffer at the cursor. d:
is an optional disk drive specifier; .ext is
the filename extension.

BEdit d:filename.ext

The current buffer is cleared, and the disk file is loaded
into the current buffer. This is the same as quitting the
editor and restarting with a new disk file, except that the
contents of the temporary buffer is not cleared ~- thus
giving you a way to transfer text between files. This
command is available only in the stand-alone version of

the editor.

Buffer
select one of these subcommands:

Switch buffer name

switci: to another text buffer
Create buffer name

create buffer with given name
Delete buffer name

delete the named buffer

? repeat the editor startup message,
which may ke a compiler error
message with line number and
description.

Page 96 Chapter 8

User's Manual

Instant-C

Editor Reference

ctri-X or Enter command mode =-- next key
F10 will be the command.
ctrl-c At any point in Command mode, will

abort the current command and return to inser

Backspace In command mode, erase the last
character of the command argument.

Return The command argument is entered,
begin execution.

Ctril-R The command argument is entered,
begin executing the command. If not
in Command mode, Ctrl-R will
re-execute the last command.

Example of using a command (spaces are shown, but
should not be typed):

F10 - s main() Return
i.e., enter function key F10, followed by -, then by
s, followed by the string main(¢), followed by the

carriage return key. This command will search
backwards from the cursor for the string "main()".

8.8 Key Functions for the IBM-PC

These functions occur instantly when the proper key
or sequence of keys is hit. ©Not all functions are
allowed when ED is expecting a command value. (E.g.,
one cannot switch to Insert mode while entering a
search target string, but one can issue cursor
movement function). The key sequences listed here
are for the IBM PC and compatible computers; they can
be customized to your terminal or your whims (see the
section called "Configuring the Keyboard" in Appendix
E). With each description is the function number [in
brackets] as used by the Xeyboard configuration
program.

0|
~

Chapter 8 pPage ¢

User’s Manual

Editor Reference

~Instant-C

8.8.1 Moving the Cursor

Home
End

left arrow

right arrow

up arrow

down arrow

Ctrl-PgUp

ctrl-pPgDn

PgUp

PgDn

[3] cursor to top of buffer
[4] cursor to end of buffer

[6] cursor left (or to end of previous
line if at beginning of current line)

{7] cursor right (or to beginning of
next line if at end of current line)

[{9] cursor up vertically, to same column
in previous line

[121 cursor down vertically, to same
column in following line

[20) curscr up one line (to beginning of
current line, or if there already, to
previous line)

[11] curser down (to beginning of next
line, or end c¢f current line if end of
buffer)

(16(14)] ‘page! up (move cursor by
multiple lines)

{18(14)] ‘*page’ down

Ctrl right arrow

[147 cursor word right

Ctrl left arrow

[13] cursor word left

8.8.2 Deleting Characters

Del

Backspace

[22] delete character at cursor

[43(223)] delete character preceding
cursor. (In command mode, this key
deletes the last character typed in a
command argument.)

Chapter 8

InstantC

Fé

Ctrl End

F8

F7

User's Manual

Editor Reference

[24] delete entire line

[25] delete 1line from cursor to end
(same as delete entire line if cursor is
at the beginning of the line).

[38] delete word right

[37]1 delete word left

8.8.3 Inserting Characters

F5

ctrl-Return

{27} insert new line before current line

[10] insert new line following <urrent
line, with same indentation as current
line

8.8.4 Changing Editor Modes

F10 or Ctrl X

Ins

8.8.5 Moving

F4 or Alt Fe

Fl

s e

[46) enter command mode, next character
is command

[{29] toggle mode (if in Insert mode, set
to overtype mode; if in Overtype mode,
set to Insert)

Text

[35] un~delete item (as characters or
lines are deleted, the most recent are
retained in a ‘'garbage stack', and can
be recalled 1into the buffer at the
cursor location)

[31] set tag to current cursor
location. The 'block' of text between
the tag and the cursor (as it is moved
around) can be treated in special ways.
See Appendix F.4, Text Blocks
Management, for more discussion.

' Chapter 8 = Page 99

User’'s Manual Instan t- c,

Bditor Reference = = =

Alt F1 [32] swap tag and cursor (to see where
tag is, or to go back to a saved place)

F2 [33] save block of text between tag and
cursor in TEMP buffer

F3 [34] recall TEMP buffer at cursor

8.8.6 Other Editor Key Functions

ctrl R {471 Initiate command, or repeat last
command.

ctrl ¢ {42] If in Command mode, return to input
mode. Otherwise, reset editor and

redraw screen.

F9 [26] swap the two characters preceding
cursor (on current line only)

Alt F9 [36] swap case of character at cursor
(convert upper case to lower, 1lower to
upper)

8.8.7 Leaving the Editor

ctrl @ [49] Exit without compiling and saving
text contents. See "Quit" in the
Command Summary above.

ctrl F [{48] Save text and exit 1f successful.
Saving the contents when in Instant-C
implies successful compilation of the
text. If there are compilation errors,
you will be put into the editor's INSERT
MODE with the error message displayed in
the command line, and with the cursor
positioned at the point of the error.
See "Finish" in the Command Summary
above.

Page 100 Chapter 8

User's Manual

Instant-C

FUNCTION LIBRARY

Chapter 9

Instant—-C Function Library

The Instant-C function library contains all of the
library functions described in Kernighan & Ritchie
that apply to the <CP/M~-86 and MS-DOS operating
systems and their derivatives.

C language source code for these functions is
delivered with Instant-C, and the source code can be
considered the most detailed documentation. Thus,
you may modify or extend the function library, but
beware! such modification can lead to trouble later
when documentation fails to match the actual code, or
when dependencies on specific programs become buried
in the 1libraries. Good programs will make the
minimum number of assumptions about exactly how a
library function does its job.

Some extensions to the ‘'standard' libraries are
also included. These may be either specific to
Instant-C, or they may be commonly found and expected
in C libraries, although not described in Kernighan &
Ritchie.

The commonly available functions not defined in K&R
are:

cgets, cputs, movmem, setmemn,
rename, inportb, outportb

The Instant-C specific functions are:
bdos, bdosw, firstarg, lastarg,
_int, char, _string, ptr,
~dc, _dd, _do, _ds, _dx,
_call, movdat, _interrupt, _flags, _segread,

Various internal functions and variables are declared

Chapter 9 ~ Page 101

User’s Manual InS ta n l‘_c

which should be referenced only by the 1library
functions. These follow the naming convention of an
" " prefix, such as printf. You should not use
these items directly, as they may change in
definition or may not appear at all in later
versions.

The bdos and bdosw functions perform a call to the
operating system, and differ only in the type of the
return value (char and int, respectively). firstarg
and lastarg are used to support the passing of
variable numbers of arguments to library routines
such as printf and scanf. Instant-C otherwise
performs strict checking as <o numkber of arguments
and function return type.

9.1 Library Categories

The library consists of several C-language source
files. Each file contains the functions for a
particular category of functions, e.g., memory
management, IO, etc. Theze files have the suffix .IC
to help distinguish them from other source files.

The Instant-C library functions, by category, are
listed below.

Source file CTYPE.IC: Character group tests and
conversions

isalnum isalpha
isascii i ~ntrl
isdigit islower
isprint ispunct
isspace isupper
isxdigit tolower
toupper

Source file STRLIB.IC: String manipulation

strcat strcmp
strcpy strlen
Page 102 Chapter 9 Comyig “

by Rational Sysie
ALL RIGHT S RESERVED

User's Manual

Instant-C

FUNCTION LIBRARY

Source file MEMORY,.IC: Memory management

sbrk getmem
alloc malloc
calloc retmem
free movmemn
setmen

Source file STDIO.IC: IO functions

getc getchar
getch putc
putchar putch
ungetce fgets
gets fputs
puts read
write create
fopen fclose
fileno ferror
feof clrerr
open close
lseek unlink
exit _exit
cgets cputs
rename

Source file PRINTF.IC: Formatted string IO

printf sprintf
fprintf scanf
fscanf sscanf

Source file FUNCVAL.IC: Interpreter and Debugger

routines
_int _char
_unsigned _short
_long _double
_ptr _string
_pec _bd
_po _bs

px _main

[Note these functions are unique to Instant-C. The
first functions (_int, ... _string) display the
value resulting from any C-language code typed to the
Instant-C interpreter. These are executed only if
they are loaded into Instant-C and have not been

1084
Systerns oo

IS RESERVED

{
|

w

"~ Chapter 9 ~ page 1

User's Manual

FUNCTION LIBRARY

renamed. (The IC program is delivered to you with
these functions pre-loaded.) The others (_pc, _pd,
etc.) are called by the corresponding debugger
display commands (pec, pd, etc.), if the functions are
loaded into Instant-C. They are supplied as part of
the library to allow customization.]

Functions to provide low level services (built-in;
no source file)

bdos bdosw
inportb outportb
_flags _interrupt
_movdat _segread
_call

[Note these functions are provided as an alternative
to some kind of assembly-language 1interface. These
functions provide direct access to hardware
resources. They are similar to functions in other C
compiler packages, though not necessarily exactly
compatible. Any reference to these routines should
be in your machine- and system-dependent code
sections only.]

Source file INTLIB.IC: BAdditional system interrupt
management functions

interrupt get
interrupt set
prologue_init
interrupt install

[Note: INTLIB.IC functions are not built-in to the IC
program as are the other Ilibrary functions. The
source file is provided should you have applications
requiring the signalling or handling of hardware
interrupts.]

Instant-C standard library header file (STDIO.H).

You can #include STDIO.H in your programs to
provide certain frequently used #define's, such as
EOF and NULL, and also to provide a definition of the
structure for the FILE type. Compatability note: in

many C implementations, some functions are
implemented as macros (examples include isupper,
islower, getc). Because of restrictions on

Page 104 Chapter 9

InstantC Manual

FUNCTION LIBRARY

preprocessor support in Instant-C version 1, macros
are not available. All functions provided by the
Instant-C library are implemented as functions and
not as macros.

s o ‘ Chapter 9 " page 105

User’'s Manual Instan t- Cm

9.2 Instant-C Library Functions Description

For these brief (and temporary) explanations of the
Instant~C library, the following short-hand is used
to describe the calling sequence (number and type of
arguments) of each function, and the returned value,
if any. The presumed declarations are:

int b; /* boolean value, true or false */
char c: /* character value, one byte */
char *cp, *cpl, *cp2;/* character string peointer */
int 1, i1, i12; /* inteder values */
int f4; /* file descriptor for Unix IO */
char *fname; /* file name character string */
FILE *fp; /* stream file pointer for buffered IO
(FILE is typedef'ed in #STDIO.H file)*/
char rc; /* returned character value #*/

3.2.1 Character type and conversion functions

b = isalnum(c)
Returns true 1f input char c is
alphabetic or numeric, i.e., ‘'a'-'z?',
'Al_'zl, or io'_'gl-

b = isalpha(c)
Returns true 1if input char c is
alphabetic, i.e., ta'-'z' or 'A'-'Z'.

b = isascii(c)
Returns true if input char ¢ is an ascii
value, i.e., 0 to 127 decimal.

b = isdigit(c)
Returns true if ¢ is numeric digit,
i.e., '0'~*9"',

b = isxdigit(c)
Returns true if ¢ is hex digit, i.e.,
|0|_|9|, |a|_lfl, or |Al_lF|.

Page 106

Copyrnght 1984
by Hational Systems, inc
AL RIGHTS RESERVED

~ Chapter 9

User's Manual

Instant-C

__ FUNCTION LIBRARY

b = islower(c)
Returns true if c is lowercase
alphabetic, i.e., 'at-'z"'.

o
]

isprint(c)
Returns true if ¢ is a printable
character (i.e., ' '='~'} and not a
contrecl character and not outside the
ascil character sequence.

b = ispunct(c)
Returns true if ¢ is an ascii character
but 1is not alphanumeric and is not a
control character.

b = isspace(c)
Returns true 1if char c is space
character, i.e., blank ' ', tab '\t',
newline '\n', carriage return '\r', or
form feed '\f°'.

b = isupper(c)
Returns true if char ¢ 1is uppercase
alphabetic, i.e., 'A'-'Z'.

rc = tolower(c)
Returns ¢ converted to lowercase 1f
possible, or returns ¢ if no conversion
possible.

rc = toupper(c)

Returns ¢ converted to uppercase, if
possible, otherwise returns c character
unconverted.

9.2.2 String Manipulation functions

cp = strcat(cpl, cp2)
Returns the concatenation of string cpl
with string cp2, in cpl. ¢pl must point
to an area long enough for the result.

i = stremp(cpl, cp2)
Compares two character strings. Returns
a value less than 0 1if e¢pl < ¢cp2,
returns a value greater than 0 i1f cp1l >
cp2, otherwise returns 0 to indicate

' Chapter 9 ~ page 107

User’s Manual

- Instant-C

FUNCTION LIBRARY

strings equal.

strepy(cpl, cp2)
String cp2 is copied into string cpl.
cpl mnust point to an area large enough
for the reuslt.

i = strlen(cp)
The length of the input string is
returned. Length does not include the
trailing '\0' character that defines the
end-of-string.

9.2.3 Memory Management functions

The library offers a hierarchy of memory allocation
and deallocation functions for several levels of
efficiency and ease-of~-programming considerations.
Warning: be sure that allocated memory areas are
returned to the free memory pool with the proper
deallocation function. The free function is used for
areas allocated with malloc, alloc, and calloc; the
retmem function is used for areas allocated with sbrk
or getmen.

For this discussion, the #define NULL 0, as found
in STDIO.H, is assumed.

cp = alloc(i)
Allocates a memory area with i Dbytes,
and returns a pointer to the allocated

area. Return value is NULL if no area
large enough could be found. The area
is initialized to all =zeroes. alloc

calls malloc.

cp = calloc(il, 12)
Allocates a memory area large enough to
hold il elements of i2 size in bytes,
i.e., allocates i1 times i2 bytes, and
returns pointer to area. The area is
initialized to all zeroes. The return
value is zero (null pointer), 1if no
space is available.

free(cp) Returns or frees an area allocated by

alloc, calloc, or malloc. Warning: do

Page 108 Chapter 9

User's Manual

Instant-C

__FUNCTION LIBRARY

not try to free areas allocated by sbrk
or getmem, as no area length information
is constructed for the free function by
either. Use retmem instead.

cp = getmem(i)

getmem allocates a memory area of i
bytes, and returns a pointer to the
allocated area. Return value is NULL if
no area large enough cculd be found.
getmem searches a list of free memory
areas first, then will call sbrk if no
suitable area can be found on the free
list. getmem does not record the size
of the allocation, so areas can only be
returned to the free 1list by calling
retmemn.

cp = malloc(i)

Allocates a memory area of i bytes, and
returns a pointer to the allocated
area. Return value is NULL if no area
large enough could be found, malloc
records the size of the area so that it
can be returned and reused via the free
function.

movmem(cpl, cp2, i)
Copies i characters from area pointed by
cp2 into area pointed by cpl.

retmem(cp, 1)
Places an area allocated by sbrk or
getmem on the free 1list. cp 1is the
address of the area, and i is the size
of the area in bytes. The area will be
consolidated with adjacent free 1list
entries if possible,

cp = sbrk(i)
Allocates i number of bytes of data
memory, and returns pointer to allocated
area. Return pointer equals =1 1if no
space was available. sbrk is the lowest
level allocation function, and is used
by getmem. sbrk does not examine the
free area list, but instead 'pushes up'
the high-water mark and allocates memory

Chapter 9 Page 109

User's Manual

“m"‘lr?JE;l???,?KZ%i‘!:;i

FUNCTION LIBRARY

not previously used or freed; thus, it
should be used only as a last resort (no
areas on free list). Areas allocated by
sbrk can be returned to the free pool
with retmem, but the high-water mark can
not be decreased.

setmem(cp, i, <)
Copies character ¢ into area indicated
by ep for i number of bytes.

9.2.4 Standard IO Functions

Many of these functions will require that STDIO.H
be f#included. STDIO.H will provide #define EOF -1
and typedef FILE.

exit (i) Return to the Instant-C interpreter
after closing any open files. The
argument i is optional. 1If present, the
value is passed to exit, and control is

returned <tc¢ the interpreter. If the
argument is not present, exit is called
with 0.

_exit(i) Return to the interpreter directly, with
no cleanup actions performed.
[Currently, the argument i 1is nct
used.]

fd = open(fname, 1)

Opens CP/M or MS-DOS file with name
fname, and mode 1i. Mode may be 0 for
reading, 1 for writing, 2 for read and
write. The returned file descriptor is
used for all subsequent accesses to this
file until it 1is closed. The return
value is less than 0 (i.e., EOF) if the
file could not be opened, all file units
are in use, or an input argument is
incorrect.

i = close(£d)
Closes the file indicated by file
descriptor fd. Return value is 0 1f
close is completed okay.

Page 110 Chapter 9 Copyright 1984
Systems. Inc

TS RESERVED

by Rali

AlL K

Instant-C

User's Manual

FUNCTION LIBRARY

i = unlink(fname)

Deletes file fname from disk. Return
value 1is zero 1if file is erased,
otherwise -1 is returned.

fd = creat(fname, i)

Copynaht
Dy Rationa
ALL RIGHTS

A new file name with name fname 1is
created on disk, and opened for output
with file descriptor f£d, which should be
used for all subseguent operations on
this file. If the file exists, it is
deleted before creating and opening the
new file. The protection mode
parameter, i, is not used. The return
value is less than 0 if the file could
not be created or opened.

i = 1lseek(fd, offset, origin) 1long offset; int

(-
Il

-
I

1984

ystems. inc

ESERY

origin;

fd is the file descriptor for an opened
file. origin is a code that indicates
the type of file positioning to be
performed. origin values may be:

0 position after beginning of
file.

1 position relative to <current
position.

2 position before end of file.

offset 1is the number of bytes by which
the file position is changed. Be sure
that a long value is passed to lseek for
use as offset.

read(fd, buffer, i) char buffer([];

Reads i bytes from file fd into buffer.
buffer should be large enough to accept
the data. The value returned 1is the
number of Dbytes actually read into
buffer.

write(fd, buffer, 1) char buffer(];

Writes 1 bytes from buffer to file f£f4.
The return value is the number of bytes
actually written.

Chapter 9 Page 111

User’s Manual Instan t-c

FUNCTION LIBRARY

fp = fopen(fname, cp)

Opens file with name fname, and returns
pointer to a library allocated structure
used for buffered file access via the
various get and put functions listed
below. cp is a pointer to a character
string that describes the type of access
to the file. The string "r" is for read
access, "w" for write access, "a" for
append access (writing at the end of the
file). 1If the file cannot be opened, a
null, or 0, pointer is returned.

Three files are implicitly open for
Instant~C programs, and global file
structure pointers are declared for
these files: stdin, stdout, stderr.
Currently, no 'shell’' functions are
provided to simulate the services of 1I0
redirection found in Unix and Unix~like
systems. Thus, stdin is input from the
keyboard, and stdout and stderr are
output to the console,

1 = fclose(£fp)

Closes file opened with fopen. For
files opened for writing, any pending
output is written to disk. fclose
returns 0 1f the writing of pending
output and closing is completed
successfully.

fd = fileno(fp)
Returns the the file descriptor given a
file structure pointer, so that the
Unix=-compatible library functions may be
used con files opened for buffered IO.

b = ferror(£fp)
Returns true if an error has occurred
while accessing or operating on a file.
b = feof(fp)

Returns true if the end-of-file has been
reached on file fp by a read or write
operation.

Page 112 " Chapter 9

User's Manual

InstantC

FUNCTION LIBRARY

clrerr(£fp) Clears the error and end-of-file flags
for file fp. No get or put functions
may occur on a file while the error
flags are set.

i = putc(ec, fp)
Puts or writes character ¢ to file fp.
Returns value less than 0 in case of an
error.

i = putchar(c)
Writes character ¢ to file stdout.
Return value is less than 0 if an error
or end-of-file has cccured.

.

= putch(c)
Write character ¢ to console. Return
value is character c.

i = fputs(cp, fp)
Writes a character string to file f£p.
The end-of-sgtring "\0' is not written,
and no new line ('\n') 1is supplied.
Return value 1s less than 0 if an error
or end-of-file has occured.

i = puts{cp}
Writes character string to file stdout.
Unlike fputs, however, puts implicitly
outputs a new line at the end of the
string. Return value is less than 0 if
an error or end-of-file has occured.

i = putch(c)
Writes «c¢haracter ¢ to console. The
character is returned.

cputs(cp) The string c¢p 1s displayed on the
console. This function 1is implemented
as a call to the operating system

bdos (9, cp). The end of the string cp
is first modified to be '$' instead of
'\0', so the string should not itself
contain '$'. The string end is set back
to '\0' before return.

i = ungetc(c, fp)
"Backs up" file fp by one character. ¢

Chapter 9 ’ ‘Page 113

User’'s Manual

FUNCTION LIBRARY

will be the next character read from
file fp with any of the getc or gets
type functions, below. ungetc will not
work with getch or cgets.

i1 = getc(fp)
Returns next character from input file
fp. Return value 1is 1less than 0 if an
errar or end-of-file has occured.

i = getchar()
Returns next character from file stdin.
Return value 1s less than 0 if an error
or end-of~file has occured.

i = getch() Returns character from keybouard.

cp = gets(s)
Gets a line of input from file stdin,
First character of string cp must be set
to the maximum length of the string
before calling gets. Return value is
less than 0 if an error or end-of-file
has occured.

1l

fgets(s, 1, fp)
Gets a 1line of input from file fp.
Parameter i 1is the length of the
character string s. A pointer to the
string is returned if all went well,
otherwise O, or null pointer, is
returned to indicate an error.

cp

cpl = cgets(cp)

Gets a line of input from the keyvboard.
By «c¢alling bdos(10, cp), cgets takes
advaitage of any system~inplemented
input editing. cp[0] must be set to two
less than the maximum length of the
string cp. The input 1line will be
returned, but will always be cp+2. The
input will be terminated with a '\0' so
that it can be treated as a normal C
string. ¢p[0] on return will still be
the space available for input, in
characters, and cp[1l] will be the number
of characters in string cpl.

Page 114 Chapter 9 - fgp

At RIGHTS R

~Instan

t-C

bt 1984

[T
2 NG

SERVED

User's Manual

FUNCTION LIBRARY

9.2.5 Formatted IO functions

Two types of formatted I0 functions are provided:
printf for output and scanf for input.

The printf functions format output according to a
format control string. Several variations of printf
may be used depending on where ycu want the output to
go (see explanatiecns of printf, fprint, and sprintf,

below). The control string is output character-
bv-character until the end of the control string.
The percent ('s") character causes special

interpretation of the control string. Following the
percent character 1is an optional field width and
precisicn, specified as in K & R. The character
following a % (or the optional field width and
precision) describes how the next argument in the
variable argument 1list is to be handled. The
specifiers are:

c the argument is treated 1like an ascii
character.
d the argument is treated like an integer

and output in decimal.

e a float or double argument is output in
exponential form.

b a float or double argument is output in
fixed point decimal form.

g a float or double argument is output in
whichever of e or £ format requires the
least space.

o] the argument is treated like an unsigned
integer, and output in octal.

s the argument is treated like a pointer
to a character string, and the string is
output in ascii.

u the argument is treated like an unsigned
integer, and output in decimal.

Chapter 9 ~ page 115

User's Manual

Instant—vg

FUNCTION LIBRARY

X the argument is treated like an unsigned
integer, and output in hexadecimal.

1 the modifier 1 1is placed before the
specifier in the contrel string to
indicate that the value has the size of
a long integer. This is meaningful for
the ¢, 4, o, u, and x specifiers.

Any other character following a % is output as is,
and does not alter the selection of the next argument
for output. See K&R for more detail.

For the examples, control string is a character
string argument.

i

printf(control_string, ... args) Performs the
general output formatting described
above; output goes to stdout.

i = fprintf(fp, control string, ... args ...)
Same as printf, but output goes to file
fp.

cp = sprintf(cp, control_string, ... args ...)
Same as printf, Dbut output goes to
character string pointed by c¢p. The

output string must be 1long enough for
the output -- no checking by the library
is possible.

The scanf functions are the inverse of printf,
i.e., they interpret characters from an input stream
and store the corverted wvalues via a 1list of
pointers. Several variations are available (scanf,
fscanf, and sscanf), depending on what input source
you want to use. In the control string, blanks,
tabs, and other ‘white space' characters are not
significant. Percent signs indicate a conversion
specification, as detailed below. Any other
characters indicate that a literal match must be made
with the input stream, or the scanf is aborted. The
input conversion specifiers consist of an optional
field width (as a decimal integer), and a single
character to indicate the type of conversion as
follows:

Chapter 9 Copyr
Dy Rahiona sle

AL RIGHTS HESEHVE D

Page 116

Instant C

User's Manual

FUNCTICN LIBRARY

c copy single character from input, and
store through next peinter into
character. Unlike all other specifiers,
no leading blanks are discarded from the
input stream.

a treat input characters as decimal
number, and store integer value through
next pointer in argument list.

e treat input as flecating point number.
Notation nay be fixed point or
exponentizal.

f treat input as floating point number.
Notaticn may be fixed poeint or
exponential.

O treat input as octal number, and store
unsigned integer value.

3 treat input &5 string, and store
characters throug next pointer in
argument list, appending end-of-string
'\&' character. Be sure that string is
long encucgh for any possible input.

X treat input as hex number, and store
unsigned integer value.

* foliowed by one of the specifiers above,
asterisk MeANs to perform the
conversicn, but don't store value.

1 one of h specifiers above,
that a 1 ’alue is to Dbe
e.q., iong value for d
doubla valuve for f£).

Remenber that the argument list should consist of
pointers. The return wvalue is the number of stores
rhat were completed before a wmismatch of specified
format and input occurred, or Pbefore the control
string was exhausted, or befcocre the argument 1ist was
exhausted. Should end-of-file bYbe reached in the
input stream, a negative value 1is returned. See K&R
for more details and examples. Currently, leading Ox
hex numbers are not implemented.

Chapter 9 ~ Page 117

User’'s Manual

FUNCTION LIBRARY B "}745;téilfitﬂ-‘::v

i = scanf(control_string, ... args ...)
scanf performs the general input
formatting functions described above,
using the stream stdin for input.

i = fscanf(fp, contrel string, ... args ...)
Same as scanf, except that input is read
from file fp.

i = sscanf(cp, contrel string, ... args ...)
Same as scanf, except that input is read
from string cp.

9.2.6 Low Level Routines

¢ = bdos(function_number, ary}

Inveke the operating system directly.
The function number argument is passed
in CL for CP/M~86, and AH for MS-DO3 and
PC-DOS. In both cases, the second
argument ig passed to the operating
system 1n register D¥. The value of this
function is the value of register &L
after the operating system returns.

i = kdesw{function number, arg)
Same as bdos, except that the value
returned is a 16~bit register value,.
For MS-DOS oy PC~-DOS, this is the aX
register. For CP/M-86, this is <the BX
register.

The following rui:t-in functions provide direct
access to your system's hardware resources, and
remove much of the need for any assembly language
programming with Instant-C. Errors in the use of
these functions can be catastrophic; you should use
these functions only if you have a thorough
understanding of the hardware operations invelved.

Assume the following declarations for the
discussion of low-level functions:

int port number; /* hardware IO address */
int i; /* miscellanecus value */
unsigned seg, offset; /* segment:offset

for full address */

page 118 ~ Chapter 9 o

Ly Hational

e

AL RIGHTS RESFRVED

User's Manual

FUNCTION LIBRARY

_[nstant-C

unsigned cpuflags; /* processor flags
register value */
REGS inregs, outregs; /* structure for
cpu data registers */
int intno; /* system interrupt number */
SREGS sedgregs. /* structure for cpu
segment registers */

The REGS and SREGS typedefs are found in INTLIB.H.

¢ = inportb(port_number)
Do an input byte instruction to the
specified port for your 8088/8086
processor. This function allows you to
read from any input device in your
computer.

outportb(port number, i)
Do an output byte instruction to the
specifed port for your 8088/8086
processor. The byte i 1is send to the
output device. Together with inportb,
this function makes it possible to do
the very lowest-level I/0 in Instant-C.

I

cpuflags _call(seg, offset, &inregs, &outregs)
Perform a long call to location
seg:offset. CPU registers are first
loaded from the structure inregs before
the call, and saved in structure outregs
after the call. The processor flags are

returned as the value of call.

cpuflags _flags(new_cpuflags)

The processor's flags register is set to
new cpuflags. The prior wvalue of the
processor flags register is returned as
the wvalue of flags. The arithmetic
flags (overflow, carry, etc.) are
unlikely to be meaningful. The
single-step instruction trap flag cannot
be set with flags. This function does
have use, however, in controlling
whether external interrupts are allowed
or disabled.

cpuflags = _interrupt(intno, &inregs, &outregs)
The hardware interrupt number intno is

Chapter 9 ~ "Page 119

User’'s Manual Instant-c4

FUNCTION LIBRARY

signalled after loading the CPU
registers from the structure inregs.
Upon return from the interrupt, the CPU
registers are saved in the structure
outregs and the processor flags register
is returned as the value of interrupt.

_movdat (sseg, soffset, dseg, doffset, i)
Data is moved from sseg:soffset to

location dseg:doffset, for i Dbytes.
Thus any location in your system's
memory may be accessed. movdat moves

data by ascending addresses, and does
not check for any overlap of the source
and destination data areas.

_segread{&segregs) SREGS segregs;
The segment registers (CS, ES, D&, S&8)
are copied into the structure segregs.

0 You read it right, it's (). This
function is an explicit breakpoint
interruption. It can be placed at any
point in your program to force contrel
to the Instant~C interpreter for
debugging. For example:

if (var < 0 || var > 9)
_{Oq /* breakpoint when
out of range */

9.2.7 Interrupt Support Functions

These functions are supplied in the file INTLIB.IC,
and are not built into the IC progran. To access
them, you will nsed to #include intlib.ic. [Note:
these functions and there specifications are still
preliminary and subject to change.) For discussion
purposes, the following declarations are assumed:

int intno; /* an interrupt number, 0-255 on 8086 */
struct _int vector vector; /* image of an interrupt
vector, i.e., IP:CS */

unsigned flags; /* processor flags register
value =*/
int (*handler) (): /* a user-written interrupt

handler function variable */

"Page 120 Chapter 9

Instant C

Plationad

RIGHTS

User's Manual

FUNCTION LIBRARY

struct _int prologue *ip; /* pointer to an
interrupt handler prologue */

interrupt get(intno, vector)
Copy the interrupt vector (IP and CS)
for interrupt number intno to structure
vector. This 1is wuseful in saving
interrupt vectors for later restoration
with interrupt set.

interrupt _set (intno, vector)
Copies the tructure vector to the
system 1r“ervupt vector number intno.
This can be used to restore system
interrupts that vou overwrote with
interrupt install, or can be used to
switch between different interrupt
handlers that share the same interrupt

number.
ip = prologue init(h ler, flags)

aAn rupt prelogue nust be
con to all your Instant-C
int handLer. The prologue
pert such services as setting the
Yot agisters to address your data,
swi to the Instant-C execution
ata 1d setting the processor flags
reg. the value of flags. Several
pro may c¢all the same handler
fun

"*@m interrupt vector
interrupt install,
interrupt number
a <call to your

handler can be
lled with the

intno will
handler fun
ow1cched

rrupts may ccour, and the handlers execute,

you are mod;fyina or executing (other)
T ant~(C functicns. Handlers for clock or keyboard
or other hardware-generated interrupts are examples
of interrupts that may occur at any time as long as
the handler 1s installed for the Iinterrupt. Cnly

Chapter ¢ Page 121

Syatems Ine
REGLANVED

User's Manual

lnstant C

FUNCTION LIBRARY

basic memory allocation (sbrk) is protected from
interruption, so it 1s okay to allocate memory with
sbrk in an interrupt handler, but it is not okay to
alloc or free within a handler if there is any chance
that it will be handling an interrupt which occurred
during another function's call to alloc or free.
Cther things to avoid: don't update an attached
handler function with the editor, and don't quit from
Instant-C without reinstalling the system defeault
handler. DoS functions may not be re-entrant, so
asking for terminal input in a handler called by an
interrupt during terminal input wait is likely to
fail, as is calling bdos for terminal output from a
break interrupt.

Save your code to disk before t o
other hardware functions: system T

occur.

Iin general, vou should revert an interrupt
to its state as found before instaelling an Insta
coded handler. The functions interrup*
interrupt set make this £aEy. Interrupts,
particularly if signalled by hardwars or BOmE g
independent of Instant-C, sbould ke
deing arything that could interf
handler's execution, such as is
command - All Instant-C interrupt
return, and should not ¢all exit,
Further, handler functions should
stack ov;rflo\, divide v zerc) unl
handier has been installed for that v
Breakpcints, blng1e~=te}s and con txoleanx handling
11 not occur for ..andler functions active due to
interrupt. Handlers execute n the Instant-C
execution stack, «and thus have full addressing
capability, and may call any other function.

W

Page 122 Chapter 9 1984
iy Ran:o,aw ys\sn:, ine
ALL RIGHTS RESERVED

User's Manual

Instant-C T

Appendix A

How Instant-C Differs from Standard-C

This appendix contains descriptions of the
extensions available, together with an enumerated
list of all of the standard features not yet
implemented.

A.l Extensions

1. Version 7 void type for functions which don't
return a value.

2. Integrated source-~language debugger including
single-step by statement tracing.

3. Lint-like error checking for the number of
arguments and size of argument lists.

4. Automatic formatting of all functions and
declarations.

5. Immediate execution mode (type in a C statement
and it executes).

6. Integrated full-screen editor for rapid syntax
error correction.

" "Page 127

Copyiight + 1

HGHTS RESTRVED

M

User’'s Manual

Instant-C

DIFFERENCES

A.2 Features Not Yet Implemented

1. 1Initializers for struct's and unions.

2. 1Initializers for auto and register variables.
3. Initializers for pointer variables.

4. Packed fields in structures (pit-fields).

5. String literals which extend past end-of-line
6. Enums

7. #define's nore complicated than constant
expression

8. #define's with arguments

9. #undef

10. Assembly language interface

11. Math functions in likrary (trig, log, etc.)
12. #line

13. Obsolete assignment operators (=+, =-, etc.)

ﬁ;ge 124W

’nS tant- C User's Manual

ERROR MESSAGES

Appendix B

Error Messages and Explanations

Instant-C has a rich and extensive set of error
messages designed to help you understand exactly what
Trstant-C thinks is wrong. This appendix includes

i of those error messages together with additiocnal

§ mation about each error. The errors are sorted
alphabetically by the first word in the message.

Error messages are displayed either at the top of
the Instant-ED screen, above the status 1line, or
prefixed by "#%ERROR: ". Any error message which
starts with two asterisks, (and is not followed by
ERROR:), is an internal consistency check message,
and indicates a problem with Instant-C rather than
your program.

B.1 Language Errors

The fellowing error messages indicate that you have
made a mistake in your program or have used a feature
that isn't implemented yet.

<name> cannot start a statement

Instant-C was expecting a statement, but
found the <name> instead.

<name> has no procedure code.

You have typed a command which needs a
defined function as its argument.
Instant-C doesn't recognize the name
given. Misspellings are the most likely

Page 125

User’s Manual

ERROR MESSAGES

Instant-C

cause of this error.
"<name>" invalid in function header

Instant-C was processing the formal
parameter list in a function header and
found something other than a comma, a
name, or a right parenthesis.

<name> is already in the dictionary

You have tried to rename a variable or
function to a name which is already
defined as something else.

<name> is not a function

You have tried to call a function, and
the <name> 1is not a function. This
error may be caused by a missing
operator in a parenthesized expression.

<name> is not a member of struct/union <name2>

The name following a . or =-> selector
operator 1is not a member of the
indicated structure or union. This
error can be caused by spelling errors
-- either at the point of this error or
in the template for the struct or
union.

<name> is not a parameter of this function

Instant-C does not recognize the

parameter <name> in the argument
declarations for this function. This
error is usually caused by a

misspelling, either in the function
header or in the argument declaration.
It can also be caused by a missing left
brace at the start of the function.

<name> is not in the dictionary

You have typed an Instant-C command such
as #rename and the name argument to the
command doesn't exist. Misspellings can

Page 126 Comynght - 1484
by Hational Systems, inc
A IGHT S RESERVED

ERROR MESSAGES

often produce this error.
Addition of two pointers

You have tried to add two pointers
together, an operation which is not
defined in the C language.

Arithmetic on function or array pointer

You are trying to do pointer arithmetic
on a pointer teo an array or function.
Since Instant-C doesn't know how big the
peinted to array or function is, it
can't do the arithmetic.

Arrays of functions are not supported

You have tried to declare an array of
functions, which is not supported in cC.
You may want to declare an array of
pointers to functions, which is
supported.

Attempt to subscript non-array and non-ptr

You have tried to apply the subscript
operator ([) to an expression which 1is
neither an array name, nor a pointer.

BREAK not valid outside of loop or switch

Instant-C found a Dbreak statement which
appears to be outside of any loop or
switch statement. Check for misplaced
braces.

Buffer empty; no changes made
You have used Ctrl-F or the F command to
leave Edit Mode, but there was no text
in the buffer to compile. Instant~C
switches to Command Mode, and does not
save any compiled functions or data.

Call on non-function expressicn

‘Page 127

[M

Instant-C

User’'s Manual

ERROR MESSAGES

You have tried to call a computed
function address, and the computed
expression does not address a function.
This error may be caused by a missing
operator in a parenthesized expression.

Called undefined function <name>; aborted

You have invoked a function which,
directly or indirectly, called another
function which has not yet been
defined. This can be caused by
misspellings, or because you forgot to
include a source file.

Can't apply . if not struct/union
can't apply =-> if not struct/union

You have used one of the struct/union
member selection operators on an
expression that is neither a structure
nor a union.

Can't apply -> to non-pointer

The expression to the left of the -»>
operator should be a pointer to a struct
or union and isn't.

Can't create <name> for mecdule

You have issued a #savemod command, but
Instant-” couldn't open the file for
writing. This error might be caused by
full disks or disks that are read-only.

Can't create file <name>
Instant-C can't open the outfile file
you requested 1in a #save command.
Possible causes are a full disk or a
read-only disk.

Can't increment/decrement by pointer

You have tried to use a pointer
expression as the right operand of the

Page 128

Instant- C

User's Manual

ERROR MESSAGES

+= or -= operators.

Can't open output file "<name>"

Instant-C was unable to open a file for
output, possibly because the disk was
full, or because the disk was
read-only.

Can't parse <name>

Instant-C doesn't know what to do with
the first word on a 1line in command
mode.

Can't store into expression

Can't use .

Instant-C thinks that the left operand
of an assignment operator is an
expression that doesn't have a valid
lvalue. This can be caused by omitting
a unary * indirection operator.

if not simple struct or union

The . member selection operator can
only be applied to struct or union
lvalues. Your code uses a more

complicated expression. Possibly caused
by a missing * (indirection) operator.

Constant expression overflow processing <name>

CONTINUE not

The constant expression indicated has
overflowed Instant~C's internal tables.
You can get around this limitation by
breaking up the expression using
multiple #define's. We believe that
this error should never occur in normal
programs, so please notify us if you get
this error ~-- we would like to see your
program.

valid outside of loop
Instant-C found a continue statement

which appears to be outside of any loop
or switch statement. This error can be

" "Page 129

User’s Manual

ERROR MESSAGES =

caused by misplaced braces.
Editing aborted; changes not made.

You were editing program or function
text, and gave the Ctrl-Q or Quit
commands. Instant-C has thrown all of
your text away, and has not made any
changes to your prograns.

else not following if () statement

Instant~-C found an else which isn't
connected to a previous if statement.

Error writing <name>; aborted (disk full?)

Instant-C encountered disk error while
writing a module file. This error is
usually due to a disk filling up.

Error writing header for <name>; aborted

Instant-C encountered disk errors
writing the module header while it was
trying to execute a #savemoed command.
This error 1is wusually due to a full
disk.

Function returning array not supported

You have tried to declare a function
which returns an array as its value.
You should check the parenthesis
structure in your declaration. You may
also want to ©return a pointer to an
array, which 1is the only way array
values can be returned in C.

Function returning function not supported

You have tried to declare a function
which returns a function as its wvalue.
You should check the parenthesis
structure in your declaration. You may
also want to return a pointer to a
function, which is the only way
function~-related values can be returned

Page 130

Instant-C

User's Manual

ERROR MESSAGES

Instant-C B

in c.
getmem: no storage

Instant-C has run out of storage for its
internal tables. Save your programs to
disk and start a new Instant-C session
by gquiting, and giving another IC
command.

I'm sorry, but I don't know the word "<name>"

You have used a word that Instant-C
doesn't recognize. This is most likely
a misspelling either at the point of
this error or in the previous
declaration for this word.

Ignering unfinished #define definition

You have entered the pre-processor
directive #define as the last word in
your input file. Fix this by removing
the #define or by adding a word to be
defined.

Ignoring unfinished data declaration
Instant-C was expecting a name in a data
variable declaration, and found
something else instead.

Ignoring unfinished Object definition

Instant-C encountered an end-of-file
while processing a defobj command.

Incomplete expression

Instant-C encountered an end-of-file
while parsing an expression.

Indirection not on pointer

The right operand of a unary *
(indirection) operator is not
pointer.

S T page 131
vsiems e

fvED

User’'s Manual lnstan t- Cu

Insufficient code buffer space left

Instant-C doesn't have enough space left
to create the buffers it needs to do

code generation. Save your source
programs, and start a new Instant~C
session.

Local typing is too complex

You have entered a complicated
declaration that has more 1levels of
attributes than Instant-C is able to
handle. This error is very unlikely:
therefore, if you get 1it, check your
source for other errors in the indicated
declaration.

Missing (in function definition header
Instant-C was expecting a left
parenthesis as part of the definition of
a previously referenced function.
Missing (in function header
Instant~C was expecting a left
parenthesis in a void function
definition header.

Missing close quote in char literal

You have typed a character literal, but
the trailing quote is missing.

Missing comma in function call

You have omitted the comma between
arguments in a function call.

Missing formal argument name

Instant-C was expecting the name of
another formal parameter in the header
of a function definition. This error
can be caused by omitting the right
parenthesis in the header.

Page 132 Copyric
hy Rabional Systems
ALL BIGHTS RESEHVE

i

Instant-C

Missing

Missing

Missing

Missing

Missing

Missing

Missing

Missing

Missing

User’'s Manual

e oo ERROR MESSAGES
inital quote in char literal

Instant-C was expecting a character
literal, and didn't find the initial °'.

initial quotes in string literal

Instant-C was expecting a string
literal, and didn't find the initial .
left parenthesis
Instant-C was expecting a left
parenthesis after an if or while, but
didn't find it.
left parenthesis in function call
Instant-C was expecting the left
parenthesis starting the argument 1list

in a function call.
member name after .

member name after ->

Instant~C was expecting a member name
after the struct/union selector
operator.

name in declaration
Instant-C didn't find the name of the
object you were declaring in this
declaration.

parenthesis
Instant-C can't find the left
parenthesis that is supposed to follow a
for.

quotes at string end
Instant-C reached the end of a line

while ©processing a string literal.
Instant-C does not allow string literals
to be continued over more than one

Page 133

User’s Manual

ERROR MESSAGES

Missing

Missing

Missing

Missing

Missing

Missing

Page 134

line.
right bracket

Instant-C expected a right bracket].
This error can occur in array
declarations. It may be caused by an
invalid expression for the array size.

right bracket (])

You have subscripted a pointer or
pointer expression, and Instant~C can't
find the right bracket (]) where it
expects to. This error may be caused by
a syntax error in a subscript
expression.

right bracket for <name>

Instant-C expected a right bracket to
finish the subscripting of <name>. This
error is usually caused by a syntax
error in the expression for the
subscript value.

right parenthesis

Instant-C expected a right parenthesis
). This error can occur in complex
declarations, function declarations, for
statements and in other constructs.

right parenth.sis in function call

Instant-C expected the right parenthesis
which terminates the argument list for a
function call.

right parenthesis in function declaration

Instant-C was processing a function
declaration and was expecting a right
parenthesis immediately after the left
parenthesis. This error can be caused
by having too few right braces in the
preceding function definition.

by Rational

ALL RIGHTS RESE

Copyrioh

Instant-C

ByED

User's Manual

Instant-C

ERROR MESSAGES

Missing semicolon

Instant-C 1is expecting the semicolon
between the control expressions in a for
statement header. This may be caused by
an invalid expression.

Missing semicolon (;) before "“<name>"

Instant-c thinks that it has completed
parsing a statement, and expects to find
the semicolon to terminate the
statement.

Missing while in do-while statement

Instant-C can't find the while keyword
at the end of a do loop. This error can
be caused by misplaced or missing
braces.

Name <name> is not a constant

You have used a name that is not a
#define'd constant in a place where
Instant-C was expecting a constant
expression. This error may be caused by
Instant-C's limitation that #define
expressions must be constants.

Neither tag nor template for struct

Neither tag nor template for unien
Instant-C expected a tag name or a left
brace (starting a template) after the
word struct or union.

No file name given
No file name was given 1in a #save
command, and there is no default name
from a previous #save command or from

the initial Instant-C command line.

No more function space left; function not updated

" "Page 135

User’'s Manual

ERROR MESSAGES

Instant€

Instant-C has run out of space to update
or create new functions. The editing
you just did cannot be saved. Save your
source programs on disk, and start a new
Instant~C session.

No previous object to edit

You have given an ed command without a
name to edit. Unfortunately, there is
no name to use from previous edits
(because this is the first ed command of
your session).

No space to create function

Instant~C has run out of space to create
new functions. Save your source
programs, and start a new session.

Not call on pointer to function

You have entered a computed function
address call, but the computed
expression does not result in a pointer
to a function. This error may be caused
by a missing operator in a parenthesized
expression.

Object is not currently open

You have entered a endobj command
without previously issuing a defobj
command for the same object.

014 file <name> already exists; aborted

You have given a #save command naming or
implying a file that already exists on
the disk. Instant~C will ignore the
command.

out of input, check unterminated remark
Instant-C encountered the end of input
while trying to parse a statement. This

error may be caused by an incorrectly
terminated remark or string literal

Page 136

lnStant'cv User's Manual

ERROR MESSAGES

which has swallowed a right brace (}).
OUTFILE: invalid destination
Instant-C didn't understand the name you
gave as the destination of an outfile
command. The valid names are: printer,
crt, or both.
Pointer cannot be left operand of <operator>
You have tried to use a pointer
expression as the right operand of an
assignment operator.
Pointer cannot be right operand of <operator>
You have tried to use a pointer value as
the left operand of an assignment
operator other than =, +=, or -=.

Premature eof in constant expression

Instant-C was processing a constant

expression (in a #define or array
dimension) and reached the end of
input.

Premature EOF while parsing arg declarations

Instant-C was parsing the argument
declarations of a function when it ran
out of input.

Ran out of input while compiling (Missing } ?)

The code compiler has reached the end of
your program or source file, but does
not have a complete function or data
definition. This error can be caused by
a missing right brace in some cases.

Redefining data <name> as function
You have entered a new function

definition, but there is already a data
variable with the same name.

Cpy sty ‘ PR h n 7 V h N » o 7Pa"gé’]:3‘7

User’s Manual Instan t_cw

ERROR MESSAGES

Remark space overflow

Instant~C has run out of space to store
remarks from your programs. Save your
source programs, and restart a new
session.

Rename: missing name

You have omitted the name to be changed
in a #rename command.

return only valid in function definition

The return statement may not be typed at
command level, as there is no function
active to return from.

sizeof constants not implemented yet

Instant~C does not yet handle sizeof in
constant expressions.

Sorry, but "<name>'" has no source to edit

You have tried to edit something other
than a function or data variable, and
Instant-C doesn't know how to create a
source version of the object. This
message would result from typing "ed

"
F

Sorry, but <name> cannot start a declaration

Instant-C was expecting a declaration,
but you have entered a name, statement,
or command instead. This error can be
caused by #including a file with
executable statments, or by leaving out
the initial left brace ({) in a function
definition.

Sorry, but <name> is not implemented yet

You have used a valid C-language syntax
that is not yet handled by Instant-cC.

Page 138 Copyr
by Rational

ALL

/S
{IGHTS RESERVET

User's Manual

InstantC

.. .ERROR MESSAGES

Ssorry, can't find file <name>

You have named a file in an #include or
#infile command which is not in the
currently attached disks. The command
is aborted.

Struct/union <name> already has template

You have defined the structure's and/or
union's template (the declarations
enclosed in { }) more than once.

Struct/union <name> has no template yet

You are trying to select a member of the
named aggregate with the . or ->
operator, but no 1list of members has
been defined 1in a template for the
struct or union yet.

Subtraction of dissimilar pointers

You have tried to subtract two pointers
which do not point +to the same type of
object. Instant-C does not know how to
scale the resulting difference.

Subtraction of pointer from integer

While Instant-C allows you to subtract
an integer from a pointer, subtracting a
pointer from an integer is not defined
in the C language.

Symbol <name> is already a member of struct/union
You have used the same member name for
two different elements of a
struct/union.

Symbol <name> is already a tag (struct/union)
You are trying to define a new union

which is already defined as a struct (or
a new struct which is already a union).

‘Page 139

User's Manual | Instan 1’- C

ERROR MESSAGES

The name <name> is already declared as something else

You have declared the same name more
than once. Since this error occurs
outside of a function definition, it can
sometimes be caused by incorrect nesting
of braces in functions.

Too few args in call to <name>

You have tried to call a function with
fewer arguments than it was compiled to
receive.

Too many args in call tc <name>

You have tried to call a function with
more arguments than it was compiled to
receive.

Unterminated remark swallowed program

The closing */ 1is missing from a
remark. As a result, Instant~C has read
all the way to the end of your program.
The cursor should point to the beginning
of the remark.

B.2 Internal Errors

The following messages all start with two asterisks
and indicate an internal error or bug in Instant-cC.
If you recelve one of these error messages, please
report it to Rational Systems, Inc. so that we <can
fix the problem. Any copy of the program causing the
error or the sequence of commands that resulted in
the problem will help us track down the bug.

*%<name>: insufficient space for buffer
** (<name> is not a property)

*#*ADDCODE: procedure table full

" Page 140

by Hationa!

ALL RIGHTS

User's Manual

Instant-C

. .ERROR MESSAGES

**addfunct: broken chain

**addliteral: broken chain

**%addprmpt: too many prompts

*%Call relocation buffer overflow!!
**Can't generate code for <name> <name>
#*Char literal unfinished at line end
**Code buffer overflow!!

*xcodefuse: overlapping storage
*#delsym: symbol <name> not found
**kdropprmpt: unmatched prompt
**Duplicate procedure table entry
**Farly escaped eos

**GENREAD: no code to generate
**internal error #kxkik

**Internal error in procargs
*%Tnstant-C restarted

**Invalid expression -- not declared
**Invalid size for increment or decrement
**level error <#>, object is <name>.
x]litvalue of non-literal

**makecode: overlapping code

*+*memfuse: overlapping storage

*4Name <name> is missing during initialization

**No code for subscripting

Page 141

Sy
S RUSERVED

User’'s Manual

**No code to generate for <operator>
**No DATAADDR property ~- invalid code generated
*%No generation proc for <name>

**No leftgen for <operator>

*%*No object code for <name>

*%*No rightgen for <operator:>

**No size info for <type name>

*%*No stack object found

**No type info to process <operator>

¥**null h flast component

%% null inproc **

*%*Null object to addprop <name>

**Object <name> doesn't have address code
**Object <name> doesntt have value
**Premature termination of file list elements
**PROPVAL with null clist

**% recursive code generation

**Recursive remark handling

**Relocation buffer overflow!!

*%*SETPROP with null clist

*#%*String code generation buffer overflow!!
**There is no object code for <operator>

**UGEN: no code to generate

Pageli:’z

User's Manual

Instant-C

COMMANDS

Appendix C

Summary of Instant-C Commands

This appendix contains a 1list of all of the
commands available to the Instant-C interpreter,
together with a brief description.

In addition <to the listed commands, any C language
expression or statement can be issued as a command.
If the expression has a value, i.e., 1is not a call on
a void function, its value will be printed after
evaluation.

All commands are available with and without the
leading '#' in the name: both forms are provided in
case you have a routine with the same name, e.g.,
rename.

C.1l User Commands

#back Display a trace Dback, showing all
functions called ¢to the point of an
interruption in execution.

#delete name
Deletes name from the current memory
file.

#dir d:filename.ext
Display directory. filename.ext may
include * and ?. #index(#dir command)

#ed Edit the last function, data, or
#define'd literal edited.

“ Page 143

User’'s Manual

InstantC

_COMMANDS

#ed name Edit the function or data or #define'd
literal. If name doesn't exist yet, it
is assumed to be an int function.

#erase d:filename.ext
Erase file from disk.

#go Resume execution of an interrupted
program.

#infile "filename"
Read and execute interpreter commands
from the named file.

#list name Display the C~language source for the
named function, data variable, or
#defined literal.

#list Display the C-language source for the
entire contents of the current file.

#listfile Display the memory files loaded into
Instant-C.

#listname Display the names of data variables,
#defines, functions, and #included files
found in the current memory file.

#11list name Print the C-language source for the

named function, data variable, or
$defined literal on the standard
printer.

#llist Print the C-language source for the

entire contents of the current file and
the standard printer.

#load d:filename.ext
Read and compile the file into your
Instant—-C workspace.

#local function name
Interpreter command line expression
evaluation occurs in the context of
function name. If function name is
omitted, will display the current
function context, if any.

Page 144 Cop
by Hationg

AL GHT

Instant-C

User's Manual

COMMANDS

#make filename start function

Create a disk file to be astand-alone
version of your program. If
start function is omitted, execution of
the program will start with the main
function.

#new memory file

Creates a new memory file, or clears the
current memory file if no memory file is
specified.

#outfile {printer | crt | both}

#pc

#pd

#pro

ips

#pu

ipx

fqui

location

location

location

location

location

location

4
[

Redirect the output from Instant-C to
the indicated device. outfile printer
is useful for making transcripts of
Instant-C sessions.

count
Display memory, in character format, for
count characters.

count
Display memory, in decimal format, for
count words.

count
Display memory, 1in octal format, for
count words.

count
Display memory as character string
pointers, for count words.

count
Display memory as unsigned decimal
integers, for count words.

count
Display menmory, in hex format, for count
words.

Terminate the Instant-C session and re-
turn to your operating system.

#rename oldname newname

Change the name of an object in your C
program.

" Page 145

User’s Manual

Instant-C

#reset level number
Dispose of interrupted execution
environments, back to the optional
level number.

#run command_arguments
Execute your C program as though it were
invoked from operating system command
level. Execution will start with
main(arge, argv).

#save filename
Write the current memory file to a disk
file. The disk file must not exist
yet.

#savemod filename
Create a new copy of Instant-C, together
with the current workspace. This
command can be used to customize
Instant-C, or to save your work in
progress.

#segments Display the address, maximum size, and
current used space in each of the data
areas managed by Instant-C.

#shell Execute one or more operating system
commands under PC-DOS or MS-DOS.

istep Resume execution for one statement.

#step exec C statement
Executes the ¢ statement/expression and
stop after the first statement is
executed.

fstep in Resume execution for one statment,
without stopping in any nested functions
that may be called.

#step out Resume execution until the next function
is called.

#step return
Resume execution until the current
function returns.

Page 146 Copyrnight - 1984
by Hational Systems. Inc
ALL RIGHTS RESERVED

User's Manual

Instant-C o

#system Terminate the Instant-C session and re-
turn to your operating system.

#trace function_name
Breakpoints will occur for the function
upon call and return.

#type d:filename.ext
Display disk file on screen.

#untrace function name
No more function call breakpoints will
be issued for the function.

#use Display the name of the currently active
file (the one that will be written if a
#save command is given with no name

#use name Switch to a different file in the
workspace.

C.2 Internal Commands

The following commands are currently available to
help debug Instant-C. They may not be in the product
when it is released for the general public.

#dsym function name
Display the arguments and local variable
of the named function, struct, or
union.

#dproc function_name
Display the compiled code for the named
function.

#edconfigure
Read in the configuration files to
reconfigure the built-in Instant-C
editor. This is similar to doing an
ed @ conmand for the stand-alone
editor.

 Page 147

User’'s Manual

~Instant-C

#fsource name
Display the internal symbol table for
the named object.

tresetint Prepare system interrupt vectors for
interrupts used by Instant~C
internally. Use after setting variable
_intnumber.

#time Display the current time and date.

#variable name
Allow a variable number of arguments
when calling function name. This
command is provided to support printf
and scanf in the library.

jwhat hex address
Display the name of +the object whose
symbol table entry is at the indicated
address.

#where name Display the hex address for the symbol
table entry for the indicated name.

Page 148

ALL BUIGHTS RESERYE D

User's Manual

Instant-C

LANGUAGE SUMMARY

Appendix D

Language Summary

This appendix contains a brief list of all the
features in Instant~C, presented in the same order as
chapter 13 of X&R.

(This appendix will be provided in a later
release.)

" “Page 149

User’'s Manual

INSTALLATION

Page 150

User's Manual

Instant-C

. INSTALLATION

aAppendix E

How to Install Instant-C

This appendix contains any special changes or
instructions necessary to install Instant-C or to
make customizations to Instant-cC.

Before starting to use Instant-C, make at least two
working copies of the distribution diskettes, and put
the original copies in a safe place. If you are
working in a single floppy disk environment, you will
need to install your operating system on the disk so
as to make your Instant-C working disk "bootable".

If you are NOT using Instant-C on an IBM-PC or
compatible, you should refer to the sections below
about '"Configuring the Keyboard" and "Configuring
Screen Output". These sections describe the steps
necessary to adapt Instant-C to your computer and
terminal.

E.1 List of Distributed Files

The following files should be present on your
Instant-C master disks:

IC.EXE The Instant-C program with libraries.
When you are running Instant-C, this is
the only file you will need.

Page 151

User’'s Manual Instant-c

INSTALLATION

ED.EXE The stand-alone version of the Instant-C
editor.

ICBASE.EXE The base Instant-C program without
libraries. You need this to create an
Instant~C for small memory space or with
completely different libraries.

SCREEN. EXE The screen configuration program. If
you have an IBM PC or PC/XT or
compatible, you don't need this.

KEYBOARD.EXE
The keyboard configuration program. You
can use this program to change the
keyboard usage of Instant-C's editor.

CP/M-86 Version

IC.CMD The Instant-C program with libraries.
When you are running Instant-C, this is
the only file you will need.

ED.CMD The stand-alone version of the Instant-C
editor.

ICBASE.CMD The base Instant-C program without
libraries. You need this to create an
Instant—-C for small memory space or with
completely different libraries.

SCREEN.CMD The screen configuration program. If
you have an IBM PC or PC/XT or
compatible, you don't need this.

KEYBOARD.CMD
The keyboard confiquration program. You
will use this program to change the
keyboard usage of Instant-C's editor.

Page 152

Instant-C

README.DOC

HELLO.C

LIB.IC

CTYPE.IC

STRLIB.IC

MEMORY.IC

STDIO.IC

PRINTF.IC

FUNCVAL.IC

INTLIB.IC

Lsl.C

STDIO.H

User's Manual

INSTALLATION

All Versions

Special or late documentation not found
in this manual.

The simple test file to demonstrate that
Instant~C is working.

The master source file for the libraries
in Instant-c. It includes the other .IC
files.

Library source file containing the
character classification and
transformation functions.

Library source file containing the
string handling functions.

Library source file containing the
memory allocation functions.

Library source file containing the file
and system input/output functions.

Library source file containing printf,
scanf, and their supporting routines.

Library source file containing
expression display functions.

Library source file containing interrupt
handling and signaling functions.

The library source in CTYPE.IC,
STRLIB.IC, MEMORY.IC, STDIO.1C,
PRINTF.IC, and FUNCVAL.IC. This file is
included to simplify the building of a
standard library version of Instant-C.

This is the header file that declares
commonly used objects, such as the FILE
typedef for stream file IO, the #define

Page 153

User’s Manual Instant-c

INSTALLATION

for NULL, etc..

INTLIB.H This 1is the header file for use with
INTLIB.IC. It contains structure
definitions such as REGS and SREGS (used
with the call, interrupt, and _segread
functions).

ICEDSCRN.CFG
The screen drawing configuration file.
It is created by the SCREEN program and

read by the editor during

configuration. As delivered, this is a

configuration for an ANST

standard/VT-100 terminal. This file is

not used for IBM PC versions.
ICEDKEYB.CFG

The keyboard configuration file. This

file is created by the KEYBOARD program
and read by the editor during config-
uration. As delivered, this is a config
uration for an IBM PC keyboard, and uses
the PC function keys.

ICEDKEYB.MNU
This is a data file used by the KEYBOARD
program to name all of the functions
possible in the editor.

E.2 Configuring Screen Output

If you are using Instant-C on an IBM PC or PC/XT or
compatible, you don't need to configure the screen
output and should skip this sectiocn.

Since Instant-~C uses full screen operations, it is
necessary to tell Instant-C how to draw and perform
various functions on the screen. You can do this by
running the program we have provided, SCREEN. SCREEN
is an interactive application which builds or
modifies a configuration file containing
screen-driving character sequences. The
configuration file (ICEDSCRN.CFG) 1is then read by

Page 154 T T T T T eyt

ne. inc

obdeatioyey i
ty Hgliona

ALL RIGHTS RESERVED

User's Manual

Instant-C

INSTALLATION

Instant~-C to customize the screen editor to your
terminal.

Note: a configuration file is provided for IBM PC
or compatible machines. If you have one of these
machines, you will not need to specify any screen
operations. SCREEN will let you override the default
screen attribute selections, however, should you want
to do so.

To run the screen configuration program, simply
type:

A>screen

The program prompts with a menu of choices and
screen function. The normal way to run SCREEN is to
type the number of the screen drawing functions, and
answer the prompts. You will need the manual for
your terminal to enter the proper sequence of
characters. The 'T' tests only test what has been
entered, so your strategy should be to get cursor
addressing right, then clear screen and (if your
terminal has it) clear to end of line. Then use 'T!
after each change to verify your progress.

The 'B' for numeric base is for entering characters
by their value, rather than the actual keystroke.
(Some manuals use decimal, some octal, and some
hexadecimal.) If any of your seguences use a
carriage return, you will need to enter a nunmeric
value for the CR, since SCREEN uses return as the
delimiter to indicate the end of a sequence. BE SURE
to use the 'T' command to test your configuration
before writing it to disk. You can get some
spectacular, but undesirable, effects if your screen
configuration is wrong.

After running SCREEN to create your configuration
file, you can configure the keyboard (see following
section). After preparing the configuration files,
you will need to build or modify Instant-C and ED for
the changes to take effect.

" "Page 155

User’s Manual Instan t.. C«

INSTALLATION -

E.3 Configuring the Keyboard

You can reconfigure the key function interpretation
of Instant-C's editor. This key reconfiguration is
designed to adapt Instant-C to different computer
keyboards and terminals. You can also use the key
reconfiguration feature to make the Instant-C editor
more like some other editor with which you are more
comfortable. You can reconfigure the keys on an IBM
PC or PC/XT computer if you so desire. See Appendix
F for details about all of the key functions.

Note: you do not need to reconfigure the keyboard
at all to use the Instant-C editor. This feature is
provided solely to make the keyboard interface as
useful as possible for you.

To reconfigure the keyboard, you should run the
KEYBOARD program provided on your Instant-C master
disk. The KEYBOARD program interacts with you and
creates or modifies a file containing the keyboarad
assignments. The keyboard assignment file 1is then
read by Instant—-C to control which keys are bound to
which editor functions.

If you are not using an IBM PC or compatible, you
must run SCREEN, the screen configuration progranm,
before running the keyboard configuration.

To run the keyboard configuration program, simply
type:

A>keyboard

The program prompts with a menu of choices. You
can type 'H' and get +the menu back again. The most
frequently used command is 'B' for defining key to
function bindings. Xey bindings can be overriden
just by redefining them. You can map several keys to
the same function if you wish. Use the 'D' (for
delete) command to eliminate a key binding
completely.

Page 156

User's Manual

Instant-C

INSTALLATION

With Bind, you essentially teach the program what
keys or sequence of keys are to perform what editor
function. When defining, the keys or seguences of
keys can be entered just as you would type them when
running the editor, followed by a return. Note: some
ASCII terminals have function keys which send several
characters at a time and include a carriage return.
If this is true for your terminal, use the 'S' option
to set the delimiter to some other character ('/' is
a good choice).

After running KEYBOARD to create your configuration
file, you will need to build or modify Instant-C and
ED. The new configuration takes effect when:

- You run an unconfigured editor (as in ICBASE).
In this case, configuration files must be
present in the directory for the editor to
work.

- For Instant-C, you issue a #edconfigure
command. See sections on building and modifying
Instant~C, below, for instructions on how to
make the configuration a permanent part of your
Instant-C.

- For ED, you go through the editor configuration

process ("ed @"). See "Confiquring a New ED",
below.

E.4 Building a New Instant-C

Instant-C 1s delivered to you in both of two forms:

1. A pre-configured form with the standard library
built into the workspace and with the editor
configured (IC).

2. A "raw" form, with no configurations performed

(ICBASE) . All components needed to reproduce
the pre-configured are also provided.

 Page 157

User’'s Manual

~ Instant-C

INSTALLATION

Major changes to the standard library (particularly
replacing,reducing, or eliminating it) are Dbest
accomplished by rebuilding Instant-C from scratch.
Minor changes, such as changed editor configurations,
modified or added 1library functions, or changes to
default settings of options are best handled by
"cloning" an Instant-C (described in "Modifying Your
Instant-C", below).

To build a new Instant-C from scratch, you need to
have the following files:

ICBASE .EXE for PC-DOS (and MS-DOS) or .CMD for
CP/M-86. The raw Instant-C prograns.

LsSl.cC The source for the library files.
(Processed to remove all comments to
save data space -- future releases will

use the *,IC files instead.)

STDIO.H This is the header file with
declarations used by the standard
function library.

ICEDKEYB.CFG
The keyboard key assignment
configuration file.

ICEDSCRN.CFG
The screen drawing configuration file.

Once you have collected (or created) all of these
files on a single disk drive, you can build a new
Instant-C by following these steps:

A>ichase
Start up the Instant-C base code.

#edconfigure
Invoke the editor to force it to read
the configuration files.

#load "lsl.c"
Read in and compile the Instant-C
library. (Skip this and the next step
if your goal is to build a version
without a built-in library.)

Page 158 Copynght -~ 1984
by Ratonal Systems e

ALt RIGHTS RESERVED

User's Manual

Instant-C

~ INSTALLATION

dloinit()
Initialize the library control
structures. (This should result in the
printing of a four digit decimal
nunmber.)

use
Switch from LS1.C to the initial unnamed
memory file.

#savemod ic
Write out a customized version of
Instant-C. (You might want to write out
the new copy of Instant-C with a
different name until you have tested
it.)

quit
All done. Now you can copy your IC.EXE
or IC.CMD to whatever disk you wish
(subject to the license agreement, of
course!).

E.5 Modifying Your Instant-C

You may wish to customize or alter Instant-C. For
example, you may wish to use different keyboard key
assignments, or you may need to specify different

screen output for your display terminal (see
"Configuring the Keyboard" and "Configuring Screen
Output" below). You may need to add or modify

library functions for compatibility or convenience.

If you wish to simply update a version of Instant-C
(to change some default setting, for example), the
process is much simpler:

A>ic Start up your version of Instant-C.

(Make your modifications here)
You could edit a library function, or
change some system variables, add more
functions to the built-in 1library, or
read in a new editor configuration

" Page 159

User’s Manual | Instant-cw»

INSTALLATION

file.

#savemod ic
Write out a new version of Instant-C.
(You may want to write it under a
different name, if you have the disk
space.)

quit All done. Now you can test your new

version and move it to the appropriate
place for commands on your system.

E.6 Configuring a New ED

You can also configure a new stand-alone editor,
ED, by a similar process. First, you should create
the screen and keyboard configuration files as

detailed in the above sections. Then, 1issue the
command:
A>ed @

The editor will read the configuration files, and
write a new version of itself back to disk with the
name CONFIGED.EXE or CONFIGED.CMD. You c¢an now
install CONFIGED as your ED. (You should only do this
after testing the editor to be sure that you have
created configuration files that work.)

E.7 Changing Interrupts

Instant~C uses several software interrupts to
implement some of its features. Currently three
interrupts are wused, although we expect to use
several more (up to 15), especially for debugging
support. The interrupts currently used are numbered
192 (hex 0xC0) to 199 (hex 0xC7). The reserved range
is 192 to 207 (hex 0xCO to OxCF). Although all the
interrupts from 64 on are supposed to be available to
user programs, some operating systems or ROM bios

Page 160

AlL

User's Manual

Instant-C

INSTALLATION

codes use these interrupts. (CP/M-86 uses interrupt
224, and the ROM bios for the Heath/Zenith 2-100
appears to use the space for interrupt pointers 240
to 255 as data pointers.)

To accomodate these various systems, Instant-C can
change the interrupt block that it uses. The system
variable _intnumber contains the first interrupt of
the block of 16 used by Instant-C and can be changed
by setting it to some other number. After changing
#intnumber and before doing any other command, you
must give the #resetint command.

For example, to switch Instant-C to use interrupts
80 to 95 (hex 0x50 to Ox5F):

_iIntnumber = 80;
#resetint

WARNING: Failure to execute the #resetint command
after changing #intnumber can cause your system to
lock up or to fail in other mysterious ways.

After changing the interrupt block wused, you can

save a new copy of Instant-C with the #savemod
command.

E.8 Making the Library Smaller

STDIO.H has two #defines, _inel float and
_incl_scanf, that control the inclusion of certain
support code 1in the library. _incl_float, if

#defined non-zero, will include support for floating
point formatted I0 in the printf and scanf
functions. _incl _scanf, if #defined non-zero, will
include the code for scanf. If you find that you run
out of code space in Instant-C you can edit STDIO.H
and #define one or both of these to zero and recover
the code space. After determining which of these
services you don't need, edit STDIO.H, and rebuild as
indicated in Appendix E.4, above.

Page 161

User’'s Manual InStant- CW

KEYBOARD FUNCTIONS

User's Manual

Instant-C

KEYBOARD FUNCTIONS

Appendix F

Editor Keyboard Functions

This is a listing of all the editor functions that
are available, with details on how they may be used.
Not all functions need to be configured; many are
just slight variations of other functions.

Each function may be referenced by mnore than one
key or key sequence. Functions with arguments (41
execute (command), for example) may be referenced by
several keys, and each Xkey can invoke the function
with a different argument. So, control-W could be
mapped to 41('W') to be a single keystroke 'Write
buffer to file' function, and control-R could be
mapped to 41('R') as a single Xeystroke ‘'Read file
into buffer' function. Another example, function key
Fl1 could be mapped to 16(12) to provide a 'half-~page
up' function, and function key shift-Fl1 could be
mapped to 16(24) to be a 'full-page up' function.

The key assignment configuration program (KEYBOARD,

see Appendix E) is used to change the key functions
available to you.

F.1l Functions to Move the Cursor

3 cursor to beginning
Move cursor to beginning of buffer.

4 cursor to end
Move cursor to end of buffer.

5 cursor begin/end
Mcve cursor to beginning of buffer, or,

nghit 1984
systerns Ine
S RESERVED

3

Oy

Page 1

ThA

~ Instant-C

User’'s Manual

KEYBOARD FUNCTIONS

if already there, move cursor to end of
buffer. This is a single function that
can substitute for the cursor to
beginning and cursor to end functions,
above.

6 cursor left
Move the cursor left by one character.
If the cursor is at the beginning of a
line, it moves to the end of the
preceding line.

7 cursor right
Move the cursor right by one character.
If the cursor is at the end of a 1line,
it moves to the beginning of the next
line.

8 cursor up Move the cursor to the beginning of the

previous line in the buffer. You may
find function 20, cursor to beginning of
line, slightly more intuitive in
result.

9 cursor up vertical

Move the cursor to the same column in
the previous line. If the previous line
is too short, the cursor is placed at
the end of line. If the previous 1line
has no addressable character at that
column (because of a tab, for example),
the cursor is set to the next
character.

10 insert below, indent
Insert a line below the current line,
and copy the indentation from the
current line. Cursor is placed at the
end of the new line (is indented).

11 cursor down
Move the cursor to the beginning of the
next line.

12 cursor down vertical
Move the cursor to the same column of
the next 1line. If the next line is too
short, the cursor is placed at the end

Page 164 Cop
by FHatona)

ALL RIGHTS BESERYVED

Instant-C

Copvniahit
by e

ALY

User's Manual

__ REYBOARD FUNCTIONS

of 1line. If the next 1line has no
addressable character at that column
(because of a tab, for example), the
cursor is set to the next character.

13 cursor left word
Move the cursor to the 1left, to the
beginning of a 'word' or token.

14 cursor right word
Move the cursor to the right, <to the
beginning of the next word or token.

16 cursor up (decimal # lines)
Move the cursor up by the number of
lines specified in the argument, and set
to the beginning of the line. (You are
queried for the number of 1lines when
binding a key to this function in the
KEYBOARD program.) This function is
useful for looking at the previous page
or screen of text.

18 cursor down (decimal # lines)
Move the cursor down by the number of
lines specified during configuration.

17 page up (decimal # lines)

19 page down

A
W hystems ne
HIGHTS RESERVED

Similar to cursor up multiple lines
function, above, but takes into account
the cursor centering algorithm used for
the display. If the cursor is currently
below the center of the screen, it is
moved to the beginning of the center
line of the screen. If the cursor is at
or above the center line, it is moved up

by the number of 1lines specified.
Depending on the number of 1lines used,
the page up and page down functions
provide more consistent scrolling
behavior. Also, for numbers of lines
less than 25, you are guaranteed that
every line will be displayed (not lost

due to cursor centering) while scrolling
through a buffer.

(decimal # lines)

Like the page up function above, but

~ Page 165

goes down through the buffer.

20 cursor begin line
Move cursor to beginning of the current
line. If the cursor is already at the
beginning of the current line, move to
the beginning of the previous line.

21 cursor end line
Move cursor to the end of the current
line. If the cursor 1is alread at the
end of the current line, move to the end
of the next line.

F.2 Functions to Delete Text

22 delete character

Deletes the character at the current
cursor position. All characters to the
right of the cursor are moved left by
one position. If the character deleted
is the end of a 1line (the carriage
return), the next line is joined to the
current line, and all 1lines below are
brought up by one line.

23 delete left character

Deletes the character to the left of the
current cursor position. The cursor, as
well as any characters to the right of
the cursor, will be moved to the left by
one position. If the cursor was at the
beginning of a line (that is, the left
character is the carriage return of the
previous 1line), the return is deleted,
the current 1line 1is Jjoined to the
previous line, and all lines below are
moved up by one.

24 delete line
Deletes the entire line. All 1lines
below the current line are moved up by
one. The cursor is positioned at the
beginning of the first line moved up.

Page"iéG’

User’'s Manual Instan t- c

User's Manual

Instant-C

KEYBOARD FUNCTIQONS

25 delete to end line
Deletes all characters to the right of
the cursor on the current line. If the
cursor 1is at the first position of the
line, the entire line is deleted as in
the delete line function, above.

37 delete word left

Deletes from the current cursor position
to the beginning of the 'word' or token
to the left of the cursor. Characters
to the right of the cursor, and the
cursor itself, are moved 1left by the
number of characters deleted. If the
end of the previous line is deleted, the
current line is joined to the previous
line (except for the characters
deleted).

38 delete word right

Deletes characters from the current
cursor position to the beginning of the
next 'word' or token. Characters to the
right of the cursor are moved left by
the number of characters deleted, and,
if the end of line is deleted, the next
line is joined to the current line.

35 un—-delete
This function is very useful. It will
restore, at the current cursor position,
any characters, lines, or words deleted
by the delete functions listed above.

When a deletion 1is performed, the characters are
placed on a stack of deletions (in last-in-first-out
order). The type of deletion is remembered, so that
characters, lines, or words are properly replicated
when restored with the un-delete function. The
deletions stack is 1limited to about one thousand
characters, which includes about ten bytes of
overhead for each object (line, character, or word)
deleted. Un-delete is useful for recovering from
mistaken deletions, or as a very quick way to move
text from one place to another, even between
different buffers.

NPége 167

1984

I Systems inc
S RESERVED

User's Manual Instan t_ C

KEYBOARD FUNCTIONS

43 erase arg/(function)
This is hard to explain but easy-to-use
function. The idea is to allow you to
have the same key work differently in
COMMAND mode than in an input mode.

If the editor is in command mode, this function
will delete the last character of a command argument
{such as a file name or search target string). When
binding a key to this function during configuration,
you must specify another function number which is to
be executed if the key is entered during input mode.
Thus, the same key can be used to erase arguments in
command mode, and to perform another function (23
delete left char is recommended) when in input mode.

So, binding the Backspace key to function 43(23)
will always delete the character to the 1left. In
input or overtype mode, the character toc the left of
the cursor in the buffer will be deleted (function
23): in command mode, the last character of the
command argument is deleted. Note: some keyboards
send the same code (control-H) when you hit the left
arrow key as when you hit the Backspace Xkey; in this
case, you will not be able to control the cursor with
left arrow and erase with the Backspace key.

F.3 Input Mode

Text typed to the editor can be treated as either
data, and stored into the Dbuffer (Input mode), or
treated as commands (Command mode). Within input
mode, characters may either overtype existing
characters, or they may be inserted into existing
text. These functions control the selection of
Insert mode or Overtype mode.

29 insert characters mode
This function selects Insert mode for
text input. The text character appears
at the cursor, and the cursor and any
characters on the line to the right of
the cursor, are moved right by one
position. Inserting a carriage causes

Page 168 o T o

ty Habionas

AL RIGHTS REGERYVE D

User's Manual

Instant-C

_ KEYBOARD FUNCTIONS

the line to be split into two lines at
the carriage return. The cursor is set
at the beginning of the new line, and
all subsequent lines are moved down by
one line in the buffer.

30 overtype characters mode

This function selects Overtype mode. In
this mode, a text character entered will
replace the character at the cursor.
The cursor is then moved one position to
the right. There are two special
cases. When overtyping a tab, the tab
is first replaced by the proper number
of spaces, and the first replacement
space is overtyped (this preserves
alignment of columns, for example). The
last character of a line (the carriage
return), is not overtyped, but rather
the 1line is extended by any text
entered.

39 toggle mode
Go to Overtype mode, or if already in

Overtype mode, go to insert mode. This
allows a single key to perform mode
selection.

27 insert a line
A new line 1is created and inserted
before the current 1line. The current
and all subsequent lines are moved down,
and the cursor is placed at the
beginning of the new line.

28 insert a blank
A blank is inserted at the cursor, and
all other characters on the 1line are
moved to the right by one position.
This 1s wuseful in overtype mode to
create space on a line without having to
switch to insert mode.

Page 169

User’s Manual Instan Z‘-CM

KEYBOARD FUNCTIONS

F.4 Text Blocks Management

Sections or blocks of text within a buffer can be
identified by setting a tag to mark one end of a
block, and there are several functions for moving the
block of text to and from the temporary buffer.

31 tag set Sets a 'tag' to mark the current cursor
location as one end of a text block.
There is only one tag per buffer.

32 tag swap with cursor

The cursor is placed at the location of
the current tag, and the tag is set to
the former cursor location. This allows
you to see where the tag is set, and
also is a quick way to switch between a
place holder in the text and the current
cursor location (two tag swaps leaves
you where you started).

33 save block of text

The text between the cursor and the tag
is moved to the TEMP buffer, replacing
any previous contents. The block of
text is removed from the current
buffer. This a quick way to delete a
large portion of text. Text in the
temporary buffer can be edited
separately, or retrieved to any place in
another buffer. A save block function
cannot be performed in the temporary
buffer.

34 retrieve block of text
The text in the temporary buffer (TEMP)
is inserted in the current buffer before
the cursor 1location. It 1s treated
exactly as if the saved text had been
entered verbatim in insert mode from the
keyboard.

W 1wsa

Page 176 S 7(k‘

I =
x
=
U
!
ve)
<
™

User's Manual

Instant-C

KEYBOARD FUNCTIONS

Retrieving text does not remove it from the
temporary buffer, so it can be retrieved many times.
Combinations of saving and retrieving blocks of text
can be used to delete, copy, or move text ("cut and
paste") in a very general way. Text does not have to
be retrieved to the buffer from which it was saved,
so 1t 1s easy to move text within a buffer, or

between buffers/files. (See the Buffer command for
details on the wuse and management of multiple
buffers.) Saved text is only modified by a

subsequent save function or by direct editing in the
temporary buffer. In Instant-C, the temporary buffer
is undisturbed between editor invocations within an
Instant-C session.

F.5 Editor Commands

46 next char is command
This function switches the editor to
Command mode, so that one of the
commands can be entered.

42 cancel command/reset

The current command is canceled without
being executed. A general reset is
performed: if a command or function has
resulted in an error condition (search
target not found, for example), the
error message 1is removed, and further
input or commands are allowed. The
editor returns to the proper input mode
(insert or overtype). If not in command
mode, the screen is redrawn (useful for
ASCII terminals to update the screen in
the event of communications error).

43 erase arg/{function)
If the editor 1is 1in command mode, you
use this function to delete characters
as you type in arguments (such as file
names or search target strings). When
binding a key to this function during
configuration, you can specify another
function which is to be executed if the

'~ Page 171

User’'s Manual l C
KEYBOARD FUNCTIONS n S ta n t =

key is used during input mode. Thus,
the same Xkey can be used to erase
arguments in command mode, or perform
another function (23 delete left char is
recommended) when in input mode.

41 execute (command)
This 1s a function that executes a
particular editor command. During
configuration with the KEYBOARD utility,
specify an editor command letter as the
argument to this function. For example,
function 41(S) can set up a search
command with a single keystroke.
Otherwise, it 1is necessary to use
function 46 (next character is command)
and then 'S' to initiate a string
search.

Note: different keys can bke bound to
function 41, and each key can have a
different argument value. Thus, any set
of the editor commands can be invoked as
key functions.

47 re-execute command
This convenient function serves several
roles. It indicates that execution of a
command should begin, or that the
command should be re-executed if already

executed. You can also use this
function to indicate that the command
argument 1is complete. For example, the

Search command requires that the string
to be searched for be entered. The key
bound to function 47 can be hit in place
of carriage return to terminate the
search string and initiate the command.

48 guit, save/compile

Execute the 'F'ile or 'F'inish command.
Use this function to save the file (in
the standalone editor) or to save and
compile the function (in Instant-C). In
Instant-C, upon error-free completion of
the compilation, editor will return to
the interpreter. This 1is equivalent to
function 41 with an argument of 'F'.

Page 172

Instant-C

User's Manual

KEYBOARD FUNCTIONS

49 quit, discard buffer

Execute the 'Q'uit command. The editor
will ask for a vwverification, and, if
affirmative, will return to the
operating system (in the standalone
editor), or to Instant-C without writing
the buffer to disk or saving and
compiling the function in the buffer.

¥.6 Miscellaneous Functions

19 make next

50 next char

character control

Use this function to enter control
characters. The next character entered
after this function is invoked will be
converted to a control character ('h' is
converted to control-H, for example, and
displayed as '~H'). This allows control
characters to be placed into the buffer
without interpretation as a key
function.

is literal

The character entered after this
function is placed into the text buffer
directly, without interpretation as a
key function and without any other
translation. As opposed to function 19
(make next char control), the next
character must be entered literally as a
control character.

26 swap two previous characters

36 swap case

A common typing error (transposition)
can be easily corrected with this
function. The two characters preceding
the cursor on the current 1line are
reversed. Nothing happens if the cursor
is at column one or two on a line. The
cursor does not move after this
operation.

of character
The character at the current cursor

- Page 173

User’'s Manual

~ Instant-C

KEYBOARD FUNCTIONS

location is converted to uppercase if it
is lowercase, or to lowercase if already
uppercase. The cursor moves to the
right at the end of the operation, so it
is easy to change the case of a 1long
string of characters.

40 redraw screen
The screen is cleared and redrawn.

44 translate to (char)
The argument of this function (char), is
treated as input. Useful in keyboard
remapping.

45 no operation
The key bound to this function will have
no effect, and no text is entered into
the buffer. This may be useful if you
are used to a different editor, where a
key performs a function different or
unavailable in the Instant-C editor.

2 defined error

An editor error message 1is displayed
when the key(s) invoking this function
are entered. This may be wuseful as a
reninder <that some common key sequence
used by another editor is not available
or works differently in the Instant-C
editor.

Page 174
by Rat

ALL R

User's Manual

InstantC

KNOWN BUGS

Appendix G

Known Bugs and Problems

This chapter 1lists all of our known bugs, together
with any suggested workarounds. It may disappear
after the field-test peried is completed.

1. #define's are limited to expressions with a
constant value. You can't #define one symbol
to another. (Unless the second symbol has been
#defined to be a constant.)

We expect to fix this problem in the next version.

Also, we are working diligently in the following
areas:

1. Completing full language support
2. Enhancing the library functions.

3. Finishing the documentation (especially the
index).

- Page 175

THA
I

User’'s Manual | ’nStant-c

_REPORTING PROBLEMS

Page 176 {_‘,(t,"zyr
by Hational §
AL TGS

User's Manual

Instant-C

 REPORTING PROBLEMS

Appendix H

Reporting Problems and/or Suggestions

This appendix details how to report bugs, and how
to get credit for a new update by completely
reporting a problem, or by being the first person to
suggest an enhancement.

For field-test users, please send hard copy and/or
a disk copy of the files that cause the problems to:

Rational Systems, Inc.
P.O. Box 480
Natick, MA 01760
or call us at (617) 653-6194.
We will try to fix all problems as quickly as

possible and get a new version to you within a few
days.

Page 177

User's Manual

InstantC

User's Manual

Instant-C

Index

#back command 34, 37, 40, 143
#delete command 42, 143

#dir command 43, 143

#dproc command 147

#dsym command 147

#ed command 44, 143
#edconfigure command 147, 158
#terase command 45, 144
#fsource command 148

#go command 35, 46, 144
#infile command 144

#list command 48, 144
#listfile command 50, 144
#listname command 51, 144
#11ist command 52, 144

#load command 53, 144, 158
#local command 34, 36, 54, 144
#make command 56, 145

#new command 58, 145
#outfile command 59, 145

#pc command 60, 145

#pd command 62, 145

#po command 63, 145

#ps command 64, 145

#pu command 145

#px command 66, 145

#gquit command 67, 145
#rename command 68, 145
#reset command 34, 69, 146
#resetint command 148, 161
#run command 70, 146

#save command 71, 146
#savemod command 72, 146, 159, 160
#segments command 74, 146
#shell command 75, 146

#step command 35, 76, 146
¥step exec command 77, 146
#step in command 78, 146
#step out command 79, 146
#step return command 80, 146
#system command 81, 147
ttime command 148

#trace command 36, 82, 147

User's Manual

Instant-C

147
36,
147,

148

#type command 83,
#untrace command
#use command 85,
#variable command
#what command 148
#where command 148

? editor command 96
active functions 34
alloc function 108
back command 40, 143
bdos 113, 114
bdos function
bdosw function 118
breakpoint 33, 34
Buffer editor command
puffer in editor 90
C Beautifier 4, 12
C Function Library
calloc function 108
cancel command line
cgets function 114
Change editor command
close function 110
clrerr function 113
command argument 90
command in editor 90
Commands 39
commands editor
compilation 9
Compiler 3, 9, 11
configuration keyboard
configuration screen
control-@ 93
control-C 11,
control-H 10
control-R 94,
control-X 10,
cputs function
creat function
CTYPE.IC file
cursor 90
Debugger 4,
Debugging 32
delete command
dir command 43,
ed command 44, 144

ED program 151, 152
Edit editor command 96
Editor 4, 5, 7, 11, 25
erase command 45, 144

84, 147

159

118

96

12
10

95

95

94,
154,

156,
160

160,

33, 94, 97

97

94,
113
111

153

97

12

42, 143

143

163

Instant-C User's Manual

erase command line 10
Error messages 125

ESCape character 10
Executing Your Programs 8
exit function 110

fclose function 112

feof function 112

ferror function 112

fgets function 114

fileno function 112

Finish editor command 95
fopen function 112

fprintf function 116

fputs function 113

free function 108

fscanf function 118
function in editor 90
Function Library 4
FUNCVAL.IC file 153

getc function 114

getch function 114

getchar function 114
getmem function 109

gets function 114

go command 46, 144

HELLO.C file 153

IC program 151, 152

ICBASE program 152, 158
ICEDKEYB.CFG file 154, 158
ICEDKEYB.MNU file 154
ICEDSCRN.CFG file 154, 158
inportb function 119
Insert editor command 95
Interpreter 3, 5, 7, 11, 39
interruption of execution 33
interrupts Instant-Cc 160
interrupt get function 121
interrupt install function 121
interrupt set function 121
INTLIB.H file 154
INTLIB.IC file 153

isalnum function 106
isalpha function 106
isascii function 106
isdigit function 106
islower function 107
isprint function 107
ispunct function 107
isspace function 107
isupper function 107

User's Manual

isxdigit function 106
K&R 2

KEYBOARD program 152, 156, 163
LIB.IC file 153

Line editor command 95
Linker 4, 12

linking 9

LINT 4, 12

list command 48

listfile command 50, 144
listname command 51, 144
llist command 52, 144
load command 53, 144
Loader 4, 12

loading 9

local command 54, 144
Lsl.Cc file 153, 158
lseek function 111

make command 56

malloc function 109
MEMORY.IC file 153

movem function 109

new command 58, 145

open function 110
outfile command 59
outportb function 119

pc command 60, 145

pd command 62, 145

po command 63, 145
Pretty Printer 4, 12
printf function 32, 115, 116
PRINTF.IC file 153
prologue_init function 121
ps command 64, 145

pu command 145

putc function 113

putch function 113
putchar function 113
puts function 113

px command 66, 145

quit command 67, 145
Quit editor command 95
Read editor command 96
read function 111
README.DOC file 153
rename command 145

reset command 69, 146
resume execution 34
retmem function 109

run command 70

by Rati N0
ALL RIGHTS RESERVED

User's Manual

InstantC -

save command 71, 146
savemod command 72, 146
saving space 161

sbrk function 109

scanf function 118
SCREEN program 152, 154
Search editor command 95
segments command 74
setmem function 110
shell command 75

Source Language Debugger 12
sprintf function 116
sscanf function 118
STDIO.H file 153, 158, 161
STDIO.H header file 104
STDIO.IC file 153

step command 76

step exec command 77
step in command 78

step out command 79
step return command 80
strcat function 107
strcmp function 107
strcpy function 108
strlen function 108
STRLIB.IC file 153
system command 81

time command 148
tolower function 107
toupper function 107
trace command 82, 147
type command 83, 147
ungetc function 113
unlink function 111
untrace command 84, 147
use command 85

Write editor command 96
write function 111

_{) 33

_ () function 120

_call function 119
_exit function 33, 110
_flags function 119
_incl float #define 161
_incl scanf #define 161
_interrupt function 119
_intnumber system variable 148
_intnumber variable 161
_loinit function 159
_main function 57, 70

User’'s Manual Instant- Cr

_movdat function 120
_pc function 60

_pd function 62

_po function 63

_px function 66
_screenlines 11
_segread function 120

Lot
by Hatonai S

AL RIGHTS BESERve D

User’'s Manual

Instant-C

User's Manual

Instant-C

