
.
PO Box480Rational Natck,Mass.01760

Systcms, Inc. {617)653-6194

May 10, 1985

Dear New Customer:

Enclosed is version 1.25 of Instant-C. The two diskettes (in the back
pocket of the.manual), contain:

the Instant-C program,
the library source files,
a stand-alone version of the Instant-C editor,
programs for configuring your keyboard and screen for the editor

(if you don't have an IBM PC or compatible),
a simple examo1e program.

,..

Also enclosed in this package are a complete manual and release notes
for version 1.25. The release notes detail some new features that aren't
in the manual yet. The manual will be updated and reprinted in the near
future. You will automatically receive the updated version of the
manual if you send in your registration.
You will want to read chapters 2 and 3 of the manual ("Overview" and
"getting Started with Instant-C") to most quickly learn how to use
Instant-C. The interpreter environment is much different (and much
better!) than the traditional tools for C,you mqy have been using.

Version 1.25 is missing a few language features. All registered users
will receive a free update to version 2.00 of Instant-C. Version 2.00

' will handle larger programs and have auto initializers, bit fields in
structures, and the ability to load .OBJ files created by other
compilers or assemblers. The features will be added in approximately
this order, and each feature may be available in a separate interim
release. Please be sure to send the registration/user agreement to us,
since we can't send you your free update(s) if we don't know where you
are.

Instant-C is the fastest C interrreter, and it is the best environment
for debugging c. If you find any problems in Version 1.25 that should be
fixed or improvements that we can make, please let us know about them as
soon as possible. Please take the time to tell us about your problems
and suggestions. The feedback we have received from our early users has
been a tremendous help to us in our work on Instant-C.

Sincerely,

LQ!r~AL -

m
Terence M. Colligan

, President .

encl. '. .
,

Instant-C Release 1.25

This relea'üe of Instant-C contains many important improvements. The
major area: z. are:
C Language Support'

C pre-processor support is nearly complete, allowing
defines with arguments. Also, static initializers are
now supported. jjetails below.

Editor Supports much larger files or buffers. Stand-alone
editor reads files 2 to 4 times faster.

Library '" cc}I[: plete dos 2.0 support (pathnames, devices, etc.).
other imÉ)rDve1nents include more run-time consistency
checking, more functions, smaller/faster, improved
compatibility with Lattice, c86, and other compilers.
A math function library is included.

Debugger Many Lr,provements, including support for multiple
screens while debugging (program output to one virtual
screen with interpreter/debugger output to another).

Environment Memory file management is more reliable. Instant-C
makes better use of system memory.

C t,anguaqe Support

Nearly all cases of static initializers (initializing declarations) are
handled. The limitations ar-e:

- initialized arrays must have the dimension specified, e.g., you
must say

long array[3] = {I, 2, 3};

instead of

long array[] = {I, 2, 3};

- comments are not handled in the initializer value list.
- only static variables may be initialized, not automatic variables.

— l —

C Languagé, 'co'ntÍñued 1ns't"á'RtL'C"R¿leá"g%t lú 25

Genetral"' #defines" "até'"')iandled", 'but again. with. a" Eew""li'ii!i¢átioñ¢ i

- keywords and "opeVators may not b,e "#cíeHned. ' j - .i,'--, .
F,.-,,-

- Mefine text must be 'well-formed' , i. e. , may contaixi no unbalanced
,. ,parentheses, bra.cke,ts , or braces. . ,. -

.
by

'

- you may not define' pieces of declarations. ",
e

New Features

l. static initialization of long, float, and double data is now
supported. - . ' ,{ "

2 . static initialization of pointer data is now supported.
g·

3
. Static initialization of struet's is ñQW supported.

:. A. ,-

4 . Static initialization of arrays is now supported. Note , though,
that Instant-C can't yet calculate the siZe of arraYs from"..your4
initialization, so you must provide. array, dimensions i for ahy aFray
to be ,initialized. '

.
-, i :- - S' '

.
:

L. ,
5 . .

The .leng,th .a,'na'T sjpe :of 'an""argument.'list is- now"" checkeá ' to "match
previous definitions or usage. . -·".',': :. "" " :;. :' · :í--· '" '". "-[-::I; -

.
.1'¿-.':.

6
,

' The' run' command 'now",:ré-i·ni'tializes!l'all'" datá¢ to zero"' j'ft there iSfno
explicit initializer, or to the appropriate value if declared" with
an initializer.

,
7 . tÑiefine 's with arguments are now supported.

: C, ""- I' V'" C', ' , ? " ' ' " " " " "' ' ' ; 7 ' · ,A. . ' -§. i" .-: T... A U ~5 .'. '. ..''- ?L..' .· . , A. ^ ·' Y m[·

8 . Performance of operations on float variables is i!rlproved over ..version 1.01.
' g ' " ' ',, - ' ,, '" ' "' ".·'

,
i"': .'

u
" r i. ' ",

T "

i

Editor

l. A "DOS" comniand is added, which, like #shell in jnstánt-C, gives
you access to the operating system. You must be running on MS-DOS

or PC-DOS 2.0 or later. This is available in the stand-alone
editor as well as the Instant-C built-in editor. Remember to use
the DOS exit command to return to the editor.

2 . The editor command processor 'remembers' default aÉguments from
one command to the next much better than in veUion I. Dl. Pile
reading from disk is much faster than in version 1.01.

Y· F

3
. A new function is available for the Instant-C editor. Function 51

is called "check, format, re-edi±'í', .. añd it' doés éxactl'y 'that: ·your
current buffer is compiled, and if""cómpilatióñ is correct, formats
your function and leaves you in thé-'eáiUr: "'..'Thi"s.: makes'¿"ít very
easy for you to see the final forní oE"'youf' function4'"s: or:'t'o get it
"tidied up" before you continue changing it. Note: if the

- 2 -

,-Edi,t.o.r, .cpntjínüed Instant-C Release 1,25
¿u"" ' ,'" , ' ' · - ' ·' ' I

compilation is successful, the function or objects have been -.updated'"in the memory file. In the default PC keyboard
'

configuration,. ctrl-P is bound to this function.

4. The editor status line displays the bytes'remaining available for
buffers on the status "line.

Instant-C Function Library

The library is distributed with DOS 2.0 file and device support. The
library has a condensed source called LSI.C, and its components are
defined in a file called LIB.IC.

An older "universal" library (which supports CP/M and DOS l) is also on
the distribution disks, but is not installed in DOS versions of IC.EXE.

It is called LSU.C. The differences lie in STDIO.IC, which is replaced
by the STDIODOS.IC file (for DOS 2). The DOS 2 library will not run on
D,OS-l or".cp/M-86 systems. LSU.C an'd-STDIOU.H (rename it to STDIO.H)
must be used for DOS I or CP/M-86.. - . -' -

t

X The new Zibrary (LSl..C) has the following inprovements over version
'
, i .

O l .: ' :.
. .

'

1. Full support of pathnames;

2. Fúll support of devices;

3. Increased compatibility with libraries delivered with popular C

compilers, plus conformance with proposed ANSI C standard.

4. More IQ functions, e.g., fread, fwrite, fseek, fte11, setbuf,
rewind.

5. The fopen function uses the standard convention for setting the
file's mode. The general form is {rwa}[+][b], i.e., either "r",
"wU, or "a", (read, write, or append), optionally followed by "+"

--. for update mode, optionally followed by "b" for binary (no
new/line translations).

"""" 6. IVie n'ew library is faster.

Both the DOS 2 and the previous "universal" library have other
improvements as well:

l. More string funcÉions (strncpy, strncmp, strncat);
-.,.- ·2. TÚ mempry mñnagement functions check for more error conditions,
-·· · ,.

inclucÚng infinite loops in the free pool chains, retmems of.- d

t'--"'. preyiQuslY.returned aFeas, and overlaps of returned areas. This
::)' :>-1. will..: make.:it,easier'Tfor .you to detect and debug memory management

-
3

-

Library,, continyea,
.

7,""1ns'tant-C,"Rele=e!."l': :25

problems. - j ""'," .
: '" 'i.; .:í.c;"
'" '" ": r ?".

- - .

3. _main, called to start your program for the #run coniÍñánd) ">erforms

redirection of stdin and stdout based on the <'"and'> co-ñüéñtion.

4. The functions inportw and outportw, which perform the 80'Í36 IN
word and OUT word instructions are now available.

T

5. A control-Z is now appended by fclose only to disk files opened
for text output (i.e., not binary). ' -' '-

6. The file FUNCVAL.IC is deleted. The expression value display ·

functions like int and _doub1e are now built into the debugger.
However, you can still "roll your own" if you'd like: the internal
display functions are used only if no user display function is
declared.

The debugger display functions are also internal with version
1.25. just: like the expression cíispla.y functions, however,'you can

·define(you-r.own _pdj etc: , funetí?n"s'-i4f..: y'o"ú'..·would like.
í " (' " t "' "' · : - ' ' ..L, " .,¿ - zl .:. -} E; 3 .,, C, ,ES ' ,i. .. ' · f.í , . .

E S... - . r É .. - .. -L · - '

·v-.,7-i -A'-'new: ·rl,ibrary source'-'file, M'.ISCL'IB": IC"F'épl'á'c'és'FUNCVAL.IC, and is
e!Qmbined::in· LSl".C and?."LSU.C..L It coñtái'ns main and some other
odds and ends.

8. A mathematics function library is delivere.d: with version 1.25,
called MATH.IC. It has the commonly aváilable trig and
transcendental functions, such as SQRT, EXP, SIN, COS, ATAN, etc.
The header file ERROR.H defines the yariabíe: errno, which may be
examined in the standard way for domain and range errorconditions. A header file, PÍATH.H, decláres'the math fuñctióñs to
be of the appropriate type, usually double. "

9. A header file FCNTL.H is provided to define certain values for the
level-l library, to be compatible with other compilers. For
example, FCNTL.H contains a #define for O_RAW, which if or-ed or
added to the mode parameter of open will suppress ascii..: "newline"
translation (i.e., ORAW is used for binary files). open in
version 1.01 assumed binary mode, which was incompatible with some

compiler's libraries.
· T' , \

Instant-C Énvironnent ' '

} ,

l. Instant-C version 1.25 requires less memory"thañ versión 1.01, but
can use nore if it is available. Instant-C wilt resize itself as
you load and modify your programs, and uses memory only as
needed. Versions 1.01 and before started.up.: with fíxéd . '-- "..

allocations of memory for various neqds,'(.scmrcé, user code, etc.),
and these were sometimes imbalanced. Version 1.25 dynamically
sizes these various segments as needed. One major improvement

- 4 -

Environment, continued Instant-C Rélease 1.25

mentioned before is the separation of editor buffers from
Instant-C data, allowing much larger files, functions, or
dee1,arations to be edited. The "bad memory allocation" message
byt;es the dust.

2. A new built-in variable notabs may be used to eliminate tab
characters from Instant-C output. This can be set to l to remove
tabs both from #saved source files and from the editor.

—
By the way, pending the next re-publication of the manual, here is a

brief explanation of the built-in variables available, with default
settings in brackets L]:
intnum [oxcoj defines the block of interrupts used by

" Instant-C -- may be redefined if there is a conflict
with some other software/hardware (see pp. 146 and
161).

,
_stmcount , [IQ] defines the number of statements executed between

'checks for control-break interrupts -- may be set
higher for slightly faster execution (at 10, it·', ,represen·ts. about 10% overhead). "-This does' not- affect

, . .,
"the operation o,f the d'ebugger'or the #step command.

remcol [24] defines the first column that may be used by
,

'
. .

comments. Comments that start in column l remain in
, column I, however. A larger column number may be used

i .' to move comments to the right, probably making a

neater display at the cost of longer lines.
tabwidth

'

'[4] defines the spacing of tab positions. Eight is a

" very common alternative. If _notabs is O, _tabwidth
affects only displays by the #iist and #type
commands. Otherwise, it affects'the expansion of tabs
to spaces.

tabindent [O] this is the column number of the first tab
position, or the left margin for source listings.

F

notabs [O] discussed above.

screenlines [24] defines the number of lines that may be output to
" the screen before a "more?" prompt and pauSe suspends

output. May be set to 25 for 25 line screens, or to O

for no pauses at all.
Treatment of special input characters is described below. Note: these
-are tentative assignments. We are likely to have configurable keyboard
macros in a subsequent release.

,

ctrl-C, ctrlmX, or EScape
I -" - ,·.' " clear entire line of input.

i . .
L

, í .

- 5 -

Énvironníent, cOntinued Tnsta'nt'gC"Release"'"i: ""25

Ctrl-H, Backspace, Del, or Rubout ' "' " ' '

erase last character ente'red. ' '."""'
" '· r·.; ,

FI ok ctrl-N copy l character from corresponding positio.ñ, in last
line entered.

F3 or ctrl-R copy remaining characters from last line entered.

And sonnie frequently used debugger commands are built-in:
FlO or ctrl-j or newline

the #step command.

F8 or ctrl-l the #step in command.

F6 or ctrl-O the #step out command.
. .

.

Instant-C Debuqqer

More run-time checking is provided in version 1.25. In particular, .,function returns validate the return address, before possibly returniiig
to oblivion via a smashed return pointer. Th:Ís can happen if store
through bad pointers or off the end of an array. Array bounds checki.ng,
pointer accesses, and indirect function calls will be checked.in Fhe.

next version. " _
, r · ¿

l. Several fixes and improvements are inacíe'in the #steí? c"ommands'in
version 1.25. #step count, where count is an integer constant,
will cause your program to continue for count more statements, and
then breakpoint. Of course any exception, explicit breakpoint
(() function), or tracepoint will stop execution before hand.

2. At the completion of a #step operation, the completed statement
source is displayed (as in 1.01). with 1.25, nuch more
sophisticated look-ahead is performed to find the next statement
that will be executed upon resumption. Th:Ís is indicated by
"next>". If the next statement does not sequentially follow the
conpleted statement ("if()", for example), a message such as "to
line 99" is displayed, and then the next line is shown. Version
1.01 did not do this look-ahead, although it would show a "next>"
line.

3. The command #pu, for print unsigned, is now implemented. It was
documented in version l.Ol but not really available.

4. As discussed in Library, above, immediate mode expression
evaluation display is handled internally. In version 1.01,
library functions (which you could modify), with names of the form

int for integer values or _double for double precision, handled
Éhe display. These are no longer necessary, but if they are

- 6 -

.D9bugger, -continued Instant-c Release 1.25

present they will be used, so you can still customize your
debugging and evaluation displays. The debugging display
functions (with names like pd for decimal output) are also
internalized, but will be uéeci instead of the internal code if you
have defined them.

5. Debugger display functions #Pf and #p1£ are now available for the
display of floats and doubles, and work like the other such
commands (see #px for example).

6. Source code displayed in ffbacktraces and after steps is truncated
at 80 columns for more consistent and readable displays. Of
course, you can still see full text with the editor or the #list
command.

7. Temporarily, there is a bug such that blank lines between
functions may not always be properly retained between €Loading and
#saveing. The results are not horrible, and you may not even
notice the problem. In any event, the results represent an
improvement over 1.01.

.. , . . .Summary

We" want.to hear about any problems you may encounter, any improvements
yoü may suggeSt, and, certainly, any successes that you have with
Instant-C. As always, if you like Instant-C, tell your colleagues; ifyou don't like it, tell us.

..

.

t d . .

·. t

..

_ 7 —

'" User's ManualInstant-C

Instant-C User' s Manual

(Version 1.01)

Terry Colligan

Ben Williams

Rational systems, Inc.

Natick, Massachusetts

December 31, 1984

(¢')t",·'lu!\' I'?'i4

1)'\/ lí,ít Ot',ii S;y!;lr'lns,, inc.

ALL P!C.4i9U., tu SI á'\g fjj:

User'sManual Instant£""

Instant-c User's Manual

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of
Rational Systems, Inc.

Disclaimer

Rational SYstems, Inc. makes no representations or
warranties, either expressed or implied, with respect
to the adequacy of this documentation or the programs
which it describes in regard to merchantibility or
fitness for any particular purpose or with respect to
its adequacy to produce any particular result. The
computer programs and documentation are sold "as is,"
and the entire risk as to quality and performance is
with the buyer. In no event shall Rational Systems,
Inc. be liable for special, direct, indirect or
consequential damages resulting from any defect the
programs, documentation, or software. some states do
not allow the exclusion or limitation of implied
warranties or liability for incidental or
consequential damages, in which case the above
limitations and exclusions may not apply to you.

ci-86 is a trademark of computer Innovations, Inc.
CP/M is a registered trademark of Digital Research,

Inc.

Instant-C is a trademark of Rational Systems, Inc.

Intel is a trademark of Intel corporation

Lattice-C is a trademark of Lattice, Inc.

ms-dos is a trademark of Microsoft, Inc.
PC-DOS is a trademark of IBM.

UNIX is a trademark of Bell Telephone Laboratories,
Inc.

'"""": '""Y'\':¿bf · "g:q 1

!?"y ?4?;t![.){!,'j' C" Cé.·\t·".. i"2¢'
"' i ! n 1(':l { 3 ;·:. RÉ·g: l"'t j"v/f !)

" User'sManua!Instant-C'

Table of Contents

chapter l Introduction 1

Chapter 2 Overview of Instant-C 3

2.1 Components of Instant-C 3

2.2 Organization of Instant-C 4

2.3 Flow the Pieces Fit Together 6

2.3.1 The Interpreter 7

2.3.2 The Editor 7

2.3.3 Executing Your programs 8

2.4 Style Differences 9

2.5 What if r Type Something
Incorrectly? 10

2.6 Interpreter output 10
2.7 Where Are All Those Tools? II2.8 Source File Handling 12

2.8.1 Structure of C Source Íjisk
Files 13

2.8.2 The Instant-C workspace 13

2.8.3 File Summary 15

Chapter 3 Getting Started with Instant-C 17

3.1 system Requirements 17

3.2 Backing Up the Instant-C Disk 18

3.3 Running the Test Program 18

3.4 Trying the Interpreter 21

Chapter 4 Using the Instant-C Editor 25

4.1 Creating new functions 25

4.2 Modifying Existing Functions 26

Chapter 5 Running Programs 29

5.1 Executing Expressions 29

5.2 Invoking Functions 31

5.3 #run coinmand 32

5.4 Debugging Overview 32

5.5 Interrupting Your Program 33

. .. : '.' ' :"' i '-HU

;'j ' ;j'\ \' ": ' ;'":v"tr '\\'- i' '

User'sManual Instant-C"

5.6 Debugger Commands 34

chapter 6 Instant-C Interpreter Command

Reference 39

chapter 7 Using Instant-ED on Files 87

7.1 Comnand Line Syntax 87

Chapter 8 Instant-ED Reference 89

8.1 Starting the Editor 89
8.2 Editor Terminology 89

8.3 Display Layout 91
8.4 Editor Modes 91
8.5 Editor Input Modes (INSERT and

OVERTYPE) 92

8.6 Editor Command Mode 94

8.7 Editor Command Summary 95
8.8 Key Functions for the IBM-PC 97

8.8.1 Moving the Cursor 98

8.8.2 Deleting Characters 98

8.8.3 Ínserting Characters 99

8.8.4 Changing Editor Modes 99
8.8.5 Moving Text 99

8.8.6 other Editor Key Functions lOó
8.8.7 Leaving the Editor lOó

Chapter 9 Instant-C Function Library lC)1

9.1 Library Categories 102
9.2 Instant-C Library Functions

Description 106

9.2.1 Character type and conversion
functions 106

9.2.2 String Manipulation functions 107
9.2.3 Memory Management functions 108
9.2.4 standard TO Functions llO
9.2.5 Formatted IO functions 115
9.2.6 Low Level Routines 118
9.2.7 Interrupt Support Functions 120

Appendix A How Instant-C Differs froin
Standard-c 123

A.l Extensions 123
A.2 Features Not Yet Implemented 124

(":L)L","|(jí"i " '!"1

1\| i Rl(jf{í C,; in L,j {}'q l : '

"^ User'sManuaiInstant-C'
zíppendix B Error Messages and Explanations 125

B.l Language Errors 125
B.2 Internal Errors 140

Appendix C sumnary of Instant-C Commands 143

C.l User Commands 143
C.2 Internal Commands 147

Áppendix D Language Summary 149

Áppendix E How to Install Instant-c 151

e.i List of Distributed Files ISl
E.2 configuring Screen Output 154
E.3 Configuring the Keyboard 156
E.4 Building a New Instant-C 157
E.-5 Modifying Your Instant-C 159
E.6 Configuring a New ED I6Q
E.7 Changing Interrupts 160
E.8 Making the Library Smaller 161

Appendix F Editor Keyboard Functions 163

F.l Functions to Move the Cursor 163
F.2 Functions to Delete Text 166
F.3 Input Mode 168
F.4 Text Blocks Management 170
F.5 Editor Commands 171
F.6 Miscellaneous Functions 173

Appendix G Known Bugs and Problems 175

Appendix H Reporting Problems and/or
Suggestions 177

('\ ji", ' :.":" } i muj

' k l7,n c'C;. ,' ¿Gy'S.fF'jü': ;1 C"
/k¡ l j}{/ 4; l ' :; ¢á¿'>1 ll¿f l ?

User's Manual Instant-C

"' User'sManuallnstant"C
,N,R,,U,,,ON

chapter I
Introduction

Welcome to Instant-C (tin), an optimizing inter-
preter which will make your C language programming

faster, easier and simpler than ever before. Itoperates on Intel 8086, 8088, and compatible
microprocessors, under the PC-DOS, MS-DOS, CP/M-86,

or MP/M-86 operating systems. Version I supports all
standard C language features except for:
initialization, parameterized #defines, declarations
in compound statements, bit fields, a general
assembly language interface, and certain obsolete
operators. It includes the Unix Version 7 C compiler
void data type for non-valued functions. The
function library provided with Instant-C is designed

to be conpatible with UNIX Version 7 from Bell
Íjaboratories, and with other C compilers for the
8086, particularly the Lattice-C and CI-86
ccmpilers.

In addition to the normal features of any C

compiler, Instant-c provides a unique programming
environment which will greatly improve your
productivity while creating or enhancing C language
programs. This improvement occurs because we have
made the edit-compile-run cycle the shortest
possible, often less than two seconds.

Instant-c is not only effective for developing and
enhancing C programs, but is also the best way to the
C language.

You can run Instant-c on an IBM PC or compatible
computer with at least 320K of memory. Instant-c
will run under any of pc-dos, MS-DOS, CP/M-86,
MP/M-86 or CCP/M-86. You should have at least 280K
available for programs on your system Instant-C can
use up to 440K of memory if it is available. You

l.(.,7\.t': "1 'l'"y'} Chapter l Page l
l \ l ",·1\', " ',j' $"y ,tfí¡í' ,

1')('

tj
, t l?|,',f í"ty, j,{" f,t {"\'j j.l

User'sManual ""Instant-C
INTRODUCTION

need one floppy disk with at least 240KB eapacitY to
get started.

This manual assumes that you already know C. We do
not attempt to teach you the language. If you are a

beginner to C but know Basic, we suggest that you get
a copy of the c Proqramminq Guide by jack Purduni (Que
corporation, 1983). Many of the programs in the C

Proqra]nming Guide have been tested in Instant-C.

If you are a beginner to C, but don't know BasÍc
(ar think Basic is a mistake that should have been
corrected long ago), we suggest that you get a copy
of The c Programming Tutor by Leon A. Wortínan and
Themas O. Sídebottona (Robert j. Brady Co., 1984).

This Instant-c User's Manual does not completely
define the C language, nor does i-t serve as a
reference for C. You should have a copy of The c
proqraIrlIninq Lanquage by Brian TG. Kernighan and 6eríni":
m R: Ítchie (prentice-Hall, 1978). we will refer to
this book several times in the text- as "K&R".

Instant-C is an ambitious undertaking; it is the
first system of its kind. In any software of this
complexity, especially in one so new, there are
likely to be bugs. To reach our objective of
eliminating all bugs from Instant-C, we need your
help. Please report any problems, inconsistencies,
or inconveniences you encounter. Appendix G provides
details on how to do so. We will greatly appreciate
any help you can provide.

You have purchased the most effective tool for
developing and enhancing C language programs. We

hope that you will enjoy using it.

Conventions Used i-n this Manual

All examples are set off and indented. If an
exainple is interactive (as opposed to the calling
sequence of a library routine), we show what the user
types by using italics like this.

Page 2 Chapter i (.(}r}y'{t-í'"l '>¿: -·¿

!" y' ltúl}lC'lá¿t! b';': ií ii '! 1'"{

l'j :. l ?)(¿j t "t :, t'?i Sí ji'\/i l

User'sManualInstant-C"
~ERV-IEW-

chapter 2

Overview of Instant-C

This chapter provides a framework for your
understanding of Instant-C, so that you can make
better use of the information in the following
chapters. It contains an overview cjf what the
various parts of Tnstant-C are and how they work
together.

Instant-C is a totally new kind of programming
environment for the C language. It was inspired by a

number of computer science research systems such as
IUACLISP, INTERLISP, and SMALLTALK. (If you are
familiar with these systems, you can probably skip
the rest of this chapter.)

We designed Instant-C to greatly speed up the
edit-compile-load-test cycle in which many C

programmers spend niost of their tine. Instant-C can
be as much as lOó times faster than the traditional C

language tools.

2.1 Components of Tnstañ_t;;C

Instant-C contains a number of components that
correspond to tools in traditional programming
environments:

C Compiler Converts C source language text into
executable machine instructions.

C Interpreter
Runs C programs interactively. (Not
generally available in other products.)

. ,':.,·',,' ' ',J,!i 1 Chapter 2 Page 3

t · : - ' .' i ' :7',.'-'tt-";

' j-'l' j1 ',7: if; I,l í,",:l f
,

""'"""'""' Instant-C"
_QVERVIEW

Full Screen Editor
Creates and modifies the C source
language text.

Linker/Loader
Combines functions front multiple source
files into a single program.

Pretty Printer
Reformats C source language text so that
it has a standard, easy to read and
understand, layout. (Not generally
available in other products.)

C Function Library
Provides pre-written versions of
commonly used operations, such as disk
file reading or &'riting.

source Language Debugger
Helps debug and trace C programs and
examine and modify both programs and
data. (NOt generally available in other
products.)

System Checker (LINT)
Checks that C programs made from
multiple source files are consistent.
(NOt generally available in other
products.)

In Instant-C, all of these components are combined
into a single, unified system which handles all of
your programming needs for the C language.

2
.

2 organ,jz,at,ion o,f T.n.s,t,a.n,tÁc

You can think of Instant-c as two different
cooperating programs, the interpreter and the editor,
which automatically and invisibly invoke all of the
other components as needed to perfect your program,
which you night view as a third co-operating
program. You switch back and forth between the
editor and the interpreter and don't even have to

Page 4 Chapter 2 ((1(.·,/:' ;h{ 'Qt·, i

·. ""·-' ,· ' ("l .J;"n'i-; I';'"i/j/ PaL,l,í,)T|cl ·-' 7 '-

' User'sManualInstant-C"
QyF,pvTFTÑT

think about the other tools that are helping to speed
your programming.

Since you will usually be using Instant-C to work
on programs which are interactive (read from your
keyboard and write to your screen), you actually have
three programs to interact with: the Instant-c
interpreter, the Instant-C editor, and your own
program. You can think of these programs as three
different parts of the total Instant-C environment:

I. Interpreting
The interpreter reads your commands and
executes them, either directly or via
the debugger. Some of the interpreter
commands switch you to the editor and
others will switch to your program.
Generally, the interpreter acts on your
input one line at a time.

2. Editing The full-screen editor reads your
cominand characters and manipulates C

language source text. Some of the
editor command characters switch you
back to the interpreter. Generally, the
editor acts on your input one character
at a time.

3. Executing Your Program
Your program can switch back to the
interpreter by calling the exit
function. Instant-C will also auto-
matically switch back to the interpreter
if your program makes an error, such as
dividing by zero, or if it encounters a

breakpoint. The style of interactions
when your program is in control
obviously depends upon your program

Although you will interact with only one of these
programs at a time, you can switch rapidly and easily
between then. Since there is a different style of
interaction in each program, you should understand
how they are different to minimize confusion. The
differences between these three programs are
described in more detail below.

l (j: ', ' 'ni : '.-u: c Chapter 2 page 5

/Qt L f2lCu l Tfj l/j S-,l it\v/t f)

""'"""'""' Instant-C"'
OVERVIEW

2.3 How the pieces Fit troqether

The following diagram shows how the three basic
pieces of Instant-c fit together, and how you can
switch between them. (The labels on the arrows will
be explained in the following text.)

operating System
i ^

ic|name l Équit
] l

i)

V i #ed name
l I "l
l Instant-C I l Instant-C i

i Interpreter ! Ctrl-F (No errors) : Editor l

! & Debugger]< l I

l Ctrl-Q (Qüit) l l

l ^
#run, ! l

funct()j ! return, exit, exit {in your program}
I (breakpoint encountered)
i (runtime error)

V

! Your i

l Programs i

+ ~ ~ ~ ~ ©NP+

i Instant-C
l Libraries !

Notice that the interpreter is the central
controlling piece, invoking either your programs or
the editor to carry out your commands.

'Í'his information is explained in more detail
below. For each of the three environments, we
explain when to use it, how you can tell that you're
in it, how you can get into it, and how you can get
out.

É'age 6 ' Chapter 2 l ':"j '\, -i:l ' ' '.': '· t

f":, : 'C: C'f',il t":7 :,h_" ' : , t
-?.,}i Hi-: -:i ! : g.. l fi. I',! 1· 'ji I '

"^ User'sManua!instant-C
OVERVIEW

2.3.1 The Interpreter

You can tell that you're interacting with the
interpreter by the "# " prompt it uses and by the
full line style of input. (The interpreter starts
executing your commands when you press the return
key.)

You use the interpreter for the overall control of
ljnstant-C, to load and save your programs, to test
your programs, to set breakpoints, to display data,
and to invoke the editor.

Enter the interpreter by typing the IC comniand to
t-he operating system, by returning from the editor,
t'>r by returning from your program.

You can get out of the interpreter by typing the
quit command. (But wake sure you save your work

first! -- see the #save command in the Command

Reference chapter.)

2.3.2 The Editor

You can tell that you're interacting with the
editor by the distinctive screen format with two
status lines at the tap of the screen, by the lack of
the "# " prompt, and Kjy the single character style of
interaction.

You use the editor to create C source text or to
fix or enhance existing c' scmrce text. (That is, to
modify or create your pro9raln"3.) You will most

frequently edit a single function. You can also edit
global data or #define decZacatione7. The editor
always works on a copy of your functions or
declarations. The place where the copy is stored is
called the current buffer.

Enter the editor by typing the #ed command to the
interpreter, or when the compiler finds a syntax

error in a C language scmrce file that you requested

Instant-C to process.

("' :j' .",,: ",: í\ñí-< Chapter 2 Page 7

t'.V !i,i; :'"'a' í',,'Q,t[-"y",'. l",.':

t: i j'l' ' { ; ': j?f iii i "\'[l '

lAer'sManual lnstantwC'^
OVERVIEW

You can leave the editor and go back to the
Instant-C interpreter by typing the command F (ctrl-F
on most keyboards), which will cause Instant-C to try
to compile the contents of the editor's current
buffer. If the compiler finds no errors, your
functions will be updated, and you will be returned
to the interpreter. If the compiler finds an error,
the error message will be displayed on the top line
of your screen, and you will be left in the editor.

You can also leave the editor by typing the command
q (Ctrl-Q on ínost keyboards). In this case, the
contents of the editor buffer are discarded and you
are returned immediately to the Instant-C
interpreter. The c functions and/or declarations you
were editing are not updated in this case, since just
the copy in the editor's buffer is discarded.

2.3.3 Executing Your Programs

You execute your program either to try it out, to
test it, or to use it.

You can normally tell that you are executing your
program because it will act differently than either
the interpreter or the editor. (Your program may
have a distinctive style of interaction and be easily
recognizable.)

You start executing your program by typing a valid
function call while you are in the interpreter. For
example:

main();

or :

printstatusg3)

You can stop executing your program and get back to
the interpreter in the following ways:

I. Your program calls the function exit or _exit
directly.

2. The function that you called from the
interpreter executes a return statement, or

Page 8 Chapter 2 Coy,' Á\jl' ' : 'j'.l}

t" ,
f[,l tlí ÍfGii Á\ ' tut: "' :' }{

"" User'sManualInstant-C
OVERVIEW.

reaches the end oE the function.

3. a breakpoint you set is encountered during the
execution of your program.

4. A function that you have traced is called or
returns.

5. Your program completes a statement while you
are single stepping through your program.

6. Your program makes a runtime error, such as
division by zero.

7. You interrupt your program by typing CtrI-Break
or Ctrl—c.

2.4 Style Differences

Since Instant-C is such an advance over the
previous generation of software tools for the C

language, some people have been confused by the
differences in style. Here are the most common areas
of confusion with some (hopefully) clarifying
explanation.

l. The most comincm thing to edit in Instant—C is a

function; in traditional environments, the only
thing that you can edit is a disk file. Since
disk files must be loaded and then edíted a

function at a time, a very common error is to
try ed filename, which doesn't work in
Instant-C. For more information, see the
section on Source File Handling, below.

2. If you have worked with other C tools, it may
make you nervous not to explicitly compile your
program. Instant-C automatically compiles each
function when you leave the editor. All
programs are always kept in compiled form.
This is further explained in the next section.

3. similarly, there is no explicit loading or
linking for you to worry about. Instant-c is a

(Ú,·,c;'t í.\i--.-; Chapter 2 Page 9

:"
g

!:,,Í:t,)!j,!' f',v :¡c'Íí',, !'1('

t".; ¿ |·:)i. :' ; : ": íff f-mli':n l \

-.' t. . '- i , .' ' ·' "' q -"".i·.' ¿ ': 4.,,w· ' " S " ·- :¿. {-Tµ.¿*"
OVERVIEW

compile-to-memory sYstem, and bypasses the need
for a separate linker or loader. The compiler
does all of the linking necessary during
compilation.

2.5 What if I Type Something Incorrectly?

correction of keyboard input errors will differdepending upon whether the interpreter, the editor,
or your prograír, is in control. On MA-DOS and PC-DOS

systems, the interpreter uses the operating system's
input eáiting. On the ILLX PC arid compatibles, the
ESC key cancels the currerít line, and t.he function
keys allow you to edit anc^ re-enre-r a previous line.

On CP/M-86 and compatible systems, an interpreter
command line can be car,celled at any time befare you
hit RETURN. It is cancelled Ty entering a control-C,
control-x, cir ESC; the characters previously input
will be cleared away and the "# " prompt
redisplayed.

On CP/M-86 baced systems, the backspace, eontroI-H,
and del keys will erase the last character on the
input line. We chose these character to match the
system or programs you níay be used to.

The editor has many ways to correct input, and they
are detailed in the chapters on the editor.

Methods for correcting input to your program will,
of course, depend on the program and the library
functions involved.

2.6 iííterpreter Output

In general, information displayed by the
interpreter is output one line at a time. Iftwenty-three lines have been printed on the screen
since the last keyboard input, however, the output

Page IQ Chapter 2 (.{\j '."' 'í;'i! l ' '"a
'"y' 4,]' lj"' 'u C '. " ' ', , \'. ,:tj":'·' I! 'i

""' User'sManualInstant-C
OVERVIEW

will cease and a special prompt will appear "more?
(controj-C to abort)". Output will resume and the
"more?" prompt will be erased, when you hit any key
except control-C. If you don't want to continue, you
can return from command execution directly to the
Instant-C interpreter by entering a control-c. (This
pagination of interpreter output is controlled by the
_.screenlines system variable.)

output from the Instant-C interpreter can be
directed to your printer if you wish. See the
cmtfile ccmmand in Chapter 6.

2.7 w!"iere Are Ali Those Tools?

Earlier, we listed all of the components of
Instant-C. We then described in detail the only two
that you interact with -- the interpreter and the
editor. These two programs create an environnent in
which all of the other tools are automatically
invoked as needed. The following is a repeat list of
those t.QQis, with an indication of which tools are
automatically invoked, and when. We hope this helps
to dispell some of the mystery of Instant-c.

c compiler (Invisible Tool.) Automatically invoked
when you give the save cominand (ctrl-F)
from the editor or when you execute a
#inclucíe or #load command in the
interpreter. The compiler is only
noticeable when you save a large
function because of the <Light delay for
it to finish its work.

C Interpreter
(Main Environment) The "Control center"
of Instant-C. Moves you between
environments, as well as doing the more
traditional job of executing the C

statements and expressions you type.

Full screen Editor
(Second Environment) The main way in
Instant-C to change or create your

(jt';"',Í. t',: Uj.1Á Chapter 2 Page ii1)'\/ ft.: t FY'¿f' S Y'¿)!E"'/)j, jug

/'i\(l i?j' ;;"{ c-, Al cjf nvr l",

I\aUser'sManual Instant-C
OVERVIEW

programs.

Linker/Loader
(Invisible Tool) Automatically invoked
as part of the (invisible) compilation
process.

pretty Printer
(Invisible Tool) Automatically invoked
as part of the editing process.

C Function Library
These routines are included as part of
Instant-C. They are not exactly
invisible, but rather passively wait for
you or your program to call them

Source Language Debugger
This tool is integrated with the
interpreter. It is visible only as
several extra commands in the
interpreter.

System Checker (LINT)
(Invisible Tool) Automatically invoked
when you do a save command in the editor
or when you load a disk file by typing
an #inclucie or #load command. You see
the system checking as additional error
messages exactly like the normal syntax

error messages.

2.8 Source File Handlinq

Most c programs consist of multiple source disk
files. Because we designed Instant-C to be
compatible with existing C programs and compilers, we

have added a number of commands to deal with multiple
simultaneous source disk files. Since no other
interpreters for any language deal with multiple
source files, the following overview of disk file
handling should help you understand what is
happening.

Page 12 """""""" " " Chapter 2
{ :(-}[}\,'//!Í'|l ".rt'i

L'y ¢¿,lt|í")l',·li S)y¿ (("Íi',, i"'\
Al L lií(íH Tg; glí :it µ'jj l i

' User'sManualInstant-C'
OVERVIEW

2.8.1 Structure of C Source Disk Files

In order to understand how Instant-C deals with
disk files, you should understand how the systems
with which we are trying to be compatible organize
disk files. (If you are an experienced C programmer,
you may want to skip the rest of this section.) In
traditional C compiler environments, your program
will consist of multiple source disk files. There
are normally two kinds of disk files:
source Disk Files

These contain the function definitions
for your program (The function
definitions are all of the executable
code in Yotir program.) There way also
be data declarations in them, but
normally, source disk files consist of
mostly function definitions. The names
for these disk files usually end in
".C".

Header Disk Files
These contain data declarations and
#define definitions that are shared by
multiple source disk files. Each header
disk file is invoked by one or more
source disk file with an #include
statement. The nantes for header disk
files usually end in ".H".

2.8.2 The Instant-C Workspace

To be completely compatible with existing c
language systems and existing C programs, Instant-C
simulates multiple disk files by organizing its
symbol tables into separate tables, one for each
source disk file and one for each header disk file.
Since each disk file inside Instant-c will have a

symbol table with the same name, you can easily
become very confused trying to understand whether
scmething happens on disk or in the Instant-C work
space. To help minimize that confusion, we will fron
now on always refer to files on disk as "disk fíles",
and the corresponding symbol table inside Instant-c

(O,'i;" '"-'.i Chapter 2 Page 13

t:y ?;,,lm: "ii ! , ,' $t" :\,- !',£

User'sManual Instant-C""
OVERVIEW

as "nemory files".
To run a C program with Instant-C, you need to load

disk files into memory in the Instant-C workspace
with the #1oad ccminand. You give one #ioaíí command
for each source disk file in your program. The
header disk files are loaded automatically, as
specified by the #inciude statements in your source
files. (You can also explicitly add a header disk
file with a #loaci command, of course.)

Instant-C always has one memory file designated as
the current memory file. Any new declarations or
functions you type in the interpreter are added to
the end of the current memory file. Since you can
look at local data in the current memory file, you
will probably need to switch back and forth between
memory files. The #use command does exactly that.
The #use command can also just display what the name
of the current memory file is.

If you wish to create a new memory file, the #new
command will do so. In addition, you can give the
#new command to clear out the current memory file ifyou wish to start over.

Finally, to store your changes permanently on disk,
you need to move your source code from its memory
fíle(s) to the corresponding disk file(s). You use
the #save command to write memory files to disk
files. The #save command writes the current memory
file to a named disk file.

Page 14 Chapter 2
\ :CV-',m;'íl ' í'í.i

,'"y i ?í'::i{:/t,'í $mú·lt"n,
,

i' I

"" User's ManualInstant-C
OVERVIEW

2.8.3 File summary

In summary, each disk file of C source language has
a memory f lle corresponding to it in the Instant-c
workspace . The following commands operate on memory
files:
load, #1oad Reads the disk file contents into the

memory file.
save, #save Writes the current memory file to a disk

f lle.
use, #use Makes a memory f lle be the current

memory f lle.
new, #new Creates a new memory file, or clears an

existing memory file.

(: (?{";,·'[¿;lÍ: jg'¿ Chapter 2 page 15
i:y É: .(c'.fÉ,Ü Sv: .telY$:., liíC:

All lí'?'}lííS, !'U3f i?V['f)

User's Manual ""Instant-C
,GETTING STARTED

Page 16 Chapter 3 (.'t')t..}\'";(: '¡| "l¿S.t

tj\, K:,'tt/)'l¿i S>·>'Í '. '" '
a l l ií: ma C) j;"i tjf l t Lj'i l i

"' User'sManualInstant-C'
GETTING STARTED

chapter 3

getting started with Instant-C

This chapter tells you how to install Instant-C,
how to use the small example program included with
the package to test Instant-C, and how to start using
Instant-C by typing commands to the interpreter.

3.1 system RequireInents

Instant-C is designed to run on an IBM pc or pc/xt
ccünputer with at least 320K of memory. Instant-C
will run under any of PC-DOS, MS-DOS, CP/M-86,
MP/9I-86 or CCP/M-86. (Multi-user or multi-tasking
operation systems such as MP/M-86 or CCP/M-86 may
require significantly more nnteniory.) You should have
at least 26OK available for programs on your system.
Because of the space your operating system takes, you
will need at least 320K in your machine. Tnstant-C
can use up to 440K of memory if it is available.

You do not need much disk capacity to run
Instant-C; it will run on a single 320KB disk drive.
Since Instant-C does not use the disk except to read
and write your disk files, you can start up
Instant-c, and then replace the Instant-C disk with a

different disk containing your own c programs.

Instant-C requires Version 1.25 or later of I?C-DOS

or MS-DOS.

Instant-C works well on hard disks; it has no copy
protection requiring that it reference any floppy
disk.

(' 9[\/-';tí' jjc\ t chapter 3 Page 17
t:',' ,1!,J,l : :$,"'V:' t ' .,n . '..
\1, ! |¿|{ ;fí U) j?f Q:t híil l }

""'"""'""' lnstant"C"^
getting STARTED

3.2 Backinq Up the Instant-C Disk

Before starting to use Instant-C, you should make
at least two working copies of the distribution
diskettes. One copy is for backup; the distribution
diskettes can serve as a second backup. Since
Instant-C is sometimes distributed on single-sided
and/or single-density diskettes, you may want to
change the format of the copies to make more space
available for your programs. If so, you should not
use DISKCOPY to make your backup. Rather, you should
use COPY to copy the disk files from the Instant-C
disk to your backup disk.

If you are using Instant-C on a computer with only
a single floppy disk drive, you will probably want to
install your operating system on the disk so as to
make your Instant-C disk "bootable".

If all this is incomprehensible to you, or if you
have never made a backup disk before, please go get
some help from your dealer or a knowledgeable
friend. We haven't provided enough introductory
material here to teach you.

3.3 Runninq the Test Proqram

To confirm that you have successfully installed
Instant-C onto your working disk, and verify that
Instant-c can handle existing C language source disk
files, we have included a test disk file, FIELLO.C, on
your distribution disk. This program prints on your
screen the words:

Hello, World!

(This is the very first program described in K&R.) If
you display the disk file HELLO.C with the operating
system command type, you will see the following C

page 1 8 " """" " " " " " Chapter 3 ('c p-wi ñ-;!',í ' ' i;'-'1

í:'v ! í,íl'(}r\dj g:y'3t{'|í'g; "iq

A) fill iH]" g; Rh S!- íi'\' ! f.:

" User'sManuallnstant"C"
,,,,,N, ,,,,,,,

program:

main()
{

printf("Hello, World!\n");
}

Running the test program requires only three steps:

l. Start up Instant-C.

2. Add the program to the Instant-C workspace.
(The workspace contains a copy of the programs
or functions that ínstant-C is currently
handling.)

3. Tell Instant-C to execute this proqram.

starting up Instant-C is easy. Make sure that you
have your Instant-C working disk inserted in the
computer. Then, type the command:

A>ic

After the operating system has found and loaded
Instant-C, the following messages will be displayed:

version 1.01, December 31, 1984
copyright (C) 1984 by Rational Systems, Inc.
#

The "# " prompt indicates that you are in
i:ñstant-C's interpreter and it is ready to process
your commands. (The "# " was chosen because
Instant-C command level is somewhat like the
preprocessor input of a traditional c compiler.)

To load HELLO.C into your Instant-c workspace, type
the comnand:

load "hello.c"

Instant-C will respond with the message:

main defined.
#

{ {
Jyím;ñt

' 1984
" """ " " " " Cha'pter "i" page 19

by \i,tí 1()1iéí" S\/sit'iÍ's :nc
AL l Rl(íl { rs tit SÉ lí'jí D

User'sManual 'Instant-C"'
GETTING STARTED

telling you that it has completed compiling main.

If there had been any syntax errors in the disk file,
Instant-C would have automatically switched you to
the built-in editor so that you could correct the
error.

Then, to run this program, simply enter the C

language phrase:

main()

Instant-C will respond with:

Hello, world!
#

When you are finished with your Instant-C session,
use the quit command to return to the operating
system:

quit
A>

You can also give a filename when you start up
Instant-C. This has the effect of automatically
executing the #lQad command. If you type the
command:

A> ic hello

Instant-c will respond with:

version 1.01, December 31, 1984
copyright (C) 1984 by Rational systems, Inc.
main defined.
#

At this point you can execute main or quit, just as
in the previous case.

Page 20 Chapter 3
{ ,|',/t|,: "|¡ '-u"

t'; ' [(i"\)"Í¿í! 5:'v:n·," '. l' .;
fit i líií ii4 l ¿: jii j: i f' ,'1 !

"' User'sManua!Instant-C
GETTING STARTED

3.4 Trj'inq the Interpreter

To gain some familiarity with how Instant-C works,

try interacting with the interpreter.

start up Instant-c as before: Make sure that you
have your Instant-C working disk inserted in the
computer; then type the command:

A>ic

After the operating system has found and loaded
Tnstant-C, the following messages will be displayed:

version 1.01, December 31, 1984
copyright (C) 1984 by Rational Systems, Inc.
#

Now, to try some interactions, type:
17

Tnstant-C should respond with:
17

#

Each time you type a valid C language expression,
Instant-C will evaluate it and display its value in
an appropriate format. (17 is a very simple
expression.)

Now, try something a bit more complicated:

3-i'4

You will see:

7

#

(,1'll'.'": :'|'. '.'t',.1 Chapter 3 Page 21
l,',' 'lí.;: '(:'::'} :'W ::t:Ti'., l"C
·" L ' I?:.' ;y;t jíi s:j ij'\/[:)

User'sManua' lnstant"C"
GETTING STARTED

Or:

5 * (3+4)

You will see:

35
#

Integers are displayed as decimal numbers, even ifthey started as sonething else:
Oxff

(Oxff is 'ff' in hexadecimal.) Instant-C will
print:

255
#

Similarly, octal constants (leading C) with no 'x')
are converted to decimal:

0123
83

#

You can try scme of the fancier C operators ("<<"
is left shift):

3 << 2

12

#

You can type things other than integers:
"This is much easier than a coínpiler!"

(The double quotes define a string constant.) You
should see:

"This is much easier than a compiler!"
#

You can also type char constants:
'a'

Ial

Page 2 2 " " " " """ " " ' " Chapter " 3 " ")."K
iy ' t;',t '"".i

li. ií¿|: "")l':t' (-j',,'.fÉ'['|'- l "(
/\!

,
Í: jf ;f{ i t líl $"'1 t' j'j t i

" User'sManua!Instant-C
GETTING STARTED

#

Finally, you can call functions (toupper is a

library function that converts a char to upper case):
toupµer('CV):

'Q'
#

Try other expressions to explore how c operators
work and to gain confidence in interacting with the
interpreter. When you are finished, you can return
to the operating system by typing:

quit
A>

You have compiled and run a program (HELLO.C) and
have invoked a function (toupper) directly. See how
easy it is to use Instant-C? Read the next chapter
to learn how to create new programs with Instant-c.

".1,[
,/ ¿,1'; i'}¿\'j

" " " """ "" " " " Chapter 3 " " " " " "Page 2 3

1') it: ñ ' " ;,1' 7)\' jcne, : \'
At l Rs\ ,' i \ :", iu í: i {j ,/i i"'

User's Manual Instant-C""
EDITOR

Page 24 Chapter 4 (,"|r: \,'·l(:'t: '"¿i.i

í"y H:::i[.::',ti ¿'yf.: rl?[:- t:'.
All [{!: 'ÁiiT:_,i·{ls,f[{"."il.:

" User'sManua!Instant-C
EDITOR

chapter 4

Using the Instant-c Editor

This chapter is an introduction to the editor in
Instant-C. It includes enough information so that
you can successfully edit any declaration or
function, but it does not cover all of the features
of the editor.

4.1 Creating new functions

In Instant-C you create new function with the
editor. To create a new function, simply type the
command:

ed funname

where funname is the name of the function you wish to
create. Instant-C will shift to the editor, and will
prepare a template of a function definition for you.
Instant-C can't distinguish between disk file nantes
and function names. DO NOT use the nante of a disk
file instead of the name of a function -- you can't
edit a disk file with the editor in Instant-C.

To insert text, use the arrow keys to move the
cursor to the place on the screen where the text
should go. The editor will already be in .insert
mode. In this mode, any normal characters (not
control or function keys) that you type go onto the
screen and into your C program.

If you wish to delete characters, Rove the cursor
to the first character to delete and press the Del
key. The character will disappear, and the screen

,",
. . . ,. Chapter 4 Page 25

, ,' ' ',' . (Ít "y "

User'sManuat '

Instant-C'
EDITOR

will be updated appropriately.
When you are finished defining the function, type

Ctrl-F to have your function automatically compiled.

If there are no errors in your function, your
function will be formatted and you will be returned
to the Instant-C interpreter.

If, however, the compiler finds an error in your
function, you will be left in the editor, in insert
mode. The cursor will be placed at the point in your
program where the compiler discovered the error, and
an error message will be displayed on the top of the
screen.

After correcting the error by inserting and
áeleting characters, you can again try to compile by
typing ctrl-F. You can repeat this cycle as many
times as you wish until you have successfully
compiled your program.

If you decide to abandon the editing you are doing,
type ctrl-Q instead of ctrl-F. You will return to
the Instant-C interpreter, but what you were editing
will not be compiled, nor will any of your programs
be updated. Your programs will be in the sanje state
they were in before you started editing.

If you don't have time tc\ finish getting all of the
errors out of your program, you have three choices:
The first is to simply put comments around the
erroneous text, and then save the program normally.
The second is to use the Write command in the
editor's conímand mode -- see Chapter 8 for more
details. The third is to use CÉif q and #endif to
conditionally omit the portion in error.

4.2 Modifyinq Existinq Functions

To make a change or improvement to an existing c
function that has already been loaded into the
Instant-c workspace, you use the saíne process. Type
the command:

Page 2 6 Chapter 4 (U) yú 'g'íl i;gG.1

b'y f',.1t,l()I,,í S,",/:,rt"| ' 17, ,: it
í\' i, fAí 'jLi T E) R l L7l l Z\JL {)

' ' User's ManualInstant-C'
EDITOR

ed funname

where funname is the name of the function you wish to
modi fy. (Again, this is the name of a function and
not a disk file name such as HELLO.C). The current
definition of the funct ion will appear on an editor
screen. The editor will be in insert mode, so that
you can use the same insert and delete process and
the same ctrl-F and ctrl-Q mechanisms to control your
modif ications.

Since you often will be editing the same function
repeatedly, Ihstant-C allows you t¢j edit again the
last function you were working on by omitting the
name. of the function to edit. That is:

ed

will edit the last function you were editing. If you
omit the function name argument the first time that
you u"e the editor, Instant-C will print an error
message.

To edit disk f i.les outside of Instant-C, see
Chapter 7 on using the stand-alone version of
Instant-c' s editor.

See Chapter 8 for more details on the Instant-C
editor.

'":(.il";ti¡l(}{É{ '9M
" """""""" "" " " "" "" "Chapt"er 4 " " """ "" " ""Page 27

l:"v !Q,'!'("'"¿l! Sy: ';lf'!rÍ"iS. !!ÍÍ'

At L- KK: i-i"lS Ri'"SLfñ'i'l'

User's Manual " 'Instant-C"
RUNNING PROGRAMS

Page 28 Chapter 5
c.üµ,t ,f\l '"".',

:'y !',{|q}'í/l' f": ,"·!t":;"- l :
1.\l l 6\ :li7 y, l{f j;j f¿',/i ('

"d' User'sManuaiInstant-C'
RUNNTNG PR9GRAMS

chapter 5

Running programs

This chapter covers all of the commands in
Instant-C and tells you how to run your programs.

5.1 Executinq Expressions

Whenever you are interacting with the Instant-C
interpreter, you can enter any valid C expression for
immediate evaluation. Instant-C will execute your
expression and display the resulting value. For
exaniple,

2+3*4

will result in the following display:
14

Any external or global data variables can be used, as
well as any static data variables in the current
memory file if they are declared outside of any
function. For the purpose of recognizing names, your
expression is treated as though it were in a function
at the bottom of the current memory file.

Instant-C converts your expressions into calls on
some built-in functions, and those functions actually
do the displaying. Different functions are called
depending upon the data type of the expression. The
specific functions called to to display the values of
expressions are:

,,· ÍA'.Á Chapter 5 Page 29

h ', [q,i ' (I '
,\ L : : i ' : \ 'i I i,;I l {\\ :

Ai ' jtj' :: l '
g Iii ,51 t?

, t l }

User'sManual Instant-C"'
RUNNING PROGRAMS

char Display the value of char expressions.
(Note that there are relatively few char
expressions, since chars are expanded to
ints if they are conbined with anything
else in an expression.)

_short Display the value of short or short int
expressions. (Similarly, there are
relatively few short expressions.)

int rñsplay the value of int expressions.
unsigned Display the value of an unsigned or

unsigned int expression.

_long rjisplay the value of a long or long int
expression.

float Display the value of a float
expression. (Pote that there are few
float expressions, since floats are
expanded to doubles in most contexts.)

_double Di"play the. value of a double
expression.

_string Display the value of a char pointer
expression (some-thing declared char *).

_ptr Display the value of all other pointers
as a hex value.

"In the preceeding example, Instant-C converts the
expression "2+3*4" to the call:

ínt(2+3*4);

and the function int actually displays the value.
All of these functions are provided in source form so
that you can edit them to satisfy your formatting
desires. You can even, if you wish, delete the
display statements from the functions, so that no
output is displayed. We think, however, that you

will find these displays a reassuring confirmation
that the system is doing what you asked it to.

Page 30 " Chap"t"er""5 " """ "'""""'" """"-"" "" "l'.:
(".(.'["j"','H',;i;; i; (' t

rw íI"t!Í()l)ri| S'",'"1b'.>Íy·1 i;j
/"\I : f'i 1('; ' l J' : , f'?É''".i l'?",' i ['

"^ User'sManualInstant-C
RUNNING PROGRAMS

5.2 ínvokinq ninctKns

Any function in the Instant-c libraries or in your
program can be called directly from the interpreter.
You simply type a norínal function call complete with
parens and commas, and Instant-C will call the
function. If the function returns a value (i.e., is
not declared void), Tnstant-C will print its value as
described in the section on expressions above.

The printing of function results is one of the most
powerful debugging aids in Instant-c. You can easily
test any sub-piece of your program by calling the
function, and examining the resulting display. You
can also easily vary the arguments to the function to
see how the value changes.

However, this printing of the resulting value can
sometimes cause confusion because you may not think
of a particular function as having a value. Since
the C language definition requires all functions with
no specified data type to be treated as int's, many
of the functions you think of as non-valued must be
treated as int functions by Instant-c. The ínost
frequent surprise is the main() function. Main()

will run your program and print out the last value
computed in main -- often a neaningless value. This
may confuse you since in most other environments
main() can't return a value. You can change this
behavior either by changing the main function to be a
void, or by changing the _int function.

Instant-C tries to help in the main() case by
converting any definitions of main() without a

specific data type to data type void instead of to
data type int.

\' '¿lj'Y' ig't ;'·j,,.4 Chapter 5 Page 3 I
1)\' lh: 'tc:'á' SY',;t"u'\t' |'"1(-

/'.1 ! fll{',i ; ' ", Ljj '3í m.'r l)

User'sManual 'Instant-C"
RUNNING PROGRAMS

5.3 #run command

So that you can test the main function of programs
that will become separate .EXE or .CMD files, we have
provided the #run command. For more details, see the
description of the #run command in Chapter 6.

5.4 Debuqqinq Overview

Instant-C has powerful debugging capabilites that
are always available to you. No special libraries,
compiler options, or separate utilities are
necessary. The debugging facilities offered by
Tnstant-c fall into three categories:

Interpretation
Because Instant-C has the interactions
of an interpreter, you can perform a
number of actions that are difficult or
impossible with a compiler. Immediate
execution lets you call a function
directly to view its value and any
side-effects. Arguments can be varied
each tinte you invoke the function to
verify proper operation. Variables can
be displayed or modified at any time.
Execution of your program may be
interrupted to allow you to examine its
progress or to pursue a different path
of execution.

Fast Modification
Because it is sq fast and easy to change
your programs, debugging techniques
formerly called "brute-force" methods
are now elegant and efficient. For
example, printf calls can be inserted in
a function to display the values of
certain variables, or to record the

Page 32 """" """ " chapter 5
l-.:'l,',.:'·.i||' '-'I'

!·y líc?!|[: ":,l, ".·\ .,I,-"' - " ?

' User's Manuallnstant"C"
,,NN,N, ,,,,R,M,

occurance of sorne events. The function
can be tested right away, and once the
information is obtained, the debugging
code can be removed in a watter of
seconds. Thus, Instant-c's debugging
capabilities can be extended and
customized by your own c Language
programming.

Debugging commands
Commands are available to specify
functions that are to be traced, to
start, continue, or stop execution of
your program, and to examine variables
and the program execution history.

5.5 Interruptinq Your Program

Most debugging activities take place after your
program has started running and is interrupted.
Interruptions can be voluntary: a call is made to a
traced function (see #trace command), a call is made
to the breakpoint function (i.e., _()) function, or a

Control-Break interrupt or control-c interrupt is
issued from the keyboard. The keyboard interrupts
are available on MS-DOS and pc-dos systems only.
Involuntary interrupts include division by zero,
stack overflow, call to an undefined function, or
taking the difference of dissimilarly typed
pointers. A call to the exit function is considered
an interruption so that yÓu can see how your program
terminated.

When an interruption occurs, Instant-C displays a

message describing the interruption. For example,
entering

i = 3/0

Results in:

** Execution interrupted: division by zero in
command line

\
l?:·,""í;'|! '"'i

\.}
"' " " ""' " " " "" Chapter '5 " " " " " Page 3 3

! y i 1,;| ¿:"·1 !i; : If'"."; |'1('

/\t l
fül' l : t(,? [?1 c)l j?\/[j'!

fVUser'sManual Instant-C
running programs

After the message is displayed, you are at
interpreter level. You can issue any command,
execute any statement, or (usually) resume execution
of your program.

The stack, or history of function calls to the
interruption, is preserved, and you can look at itwith the #back command. At interpreter level, you
can display variables, evaluate expressions, and
execute c language statements including calls to
functions. The C language you enter to the
interpreter is evaluated in the context of the
function that was interrupted, so '{ou can examine or
modify local, or automatic, variables declared in
that function.

We use the term "active" 'to describe functions that
are on the stack. The interpreter can execute in the
context of any active function by using the €Loca1
command. #local specifies the function to use.

calling other functions from the interpreter may
result in another interruption. Interruptions
themselves may be stacked or nested. The back
command shows the level of any stacked
interruptions. The #reset command allows you discard
or unstack any or all levels. Levels should be
discarded when you no longer need them, to prevent
confusion and to avoid possible stack overflows.

5.6 Debugqer Commands

The debugger commands are fully described in
chapter 6, but an overview of each is offered here sc)

that you can see how they work together.

The commands fall into several categories: those
that resuine or abort interrupted executions (#go,
#step, and #reset), those that manage breakpoints
(#trace and #untraee), and those that display values
(#Pc, #pd, #po, #ps, #px, and #local).

Any execution that has been interrupted can be
resumed in several ways. Resuming execution is much

Page 34 Chapter 5 {".('Ig,'"\:),| '9üa
l:t Rc¿!'('rí,,1,

, ..,/, ,, '.· t (

" User'sManualInstant-C
RUNNING PROGRAMS

like a executing return C language statement from the
interpreter. The various ways your can resume your
program are:
#go resumes execution at the poínt of

interruption, and proceeds untíl your
program returns to the interpreter or
another interruption occurs.

#step resumes execution, but will breakpoint
at the end of the next statement. This
is the finest level of control, and
allows you step through your program or
portions of your program, and observe
the flow of control.

#step return
resumes execution, but will breakpoint
when the interrupted function returns.
This command is useful in quickly
bypassing functions that are not of
direct concern to your debugging. For
example, you have been single stepping a

function that calls printf, step return
will let printf execute at 'full speed'

until it completes. You can then resume
single stepping if appropriate.

#step out resumes execution, but will breakpoint
when the current function calls another
function or returns. This allows you to
follow the execution of your program by
stepping from function call to function
call or return, without line-by-line
detail.

#step in resumes execution, and like #step will
break at each statement, but will not
notify you of calls to other functions.
This makes it easier to use a single
command to examine the execution of a

function.

#step exec c statement
unlike the other step commands, step
exec is a 'call' to the C language
statement. This is used to 'step into'
a function without having to explícitly

(,,,. ,,t i-,,.: ,;
"" " """ Chapter 5 """ É'age 35

!. Y' FIÑI L:' 'cl :",'. li' :} i 1"(-
.',, L !-|1 ,Ft i: , lit Í',l ¿{\,'j t'

""'"""'""' Instant-C"'
RUNNING programs

#trace it and then call it. For
example,

step exec main(argc, argv)

will call main and will break
immediately upon entry to main.

You can use the following commands to control the
debugger in various ways and to display the data and
memory of your program:

#reset level number
causes interruptions to be discarded
down to level number. If no number is
specified, zero is assumed and all
levels are discarded.

#trace function name
a breakpoint interruption will occur the
next time that the specified function is
called or returns. If function name is
omitted, a list of all traced functions
is displayed.

#untrace function name
removes the trace request from calls or
returns to the specified function. Iffunction name is omitted, all trace
requests are cancelled.

#pc, flpd, #po, #ps, #pu, #PX expression count
display storage from the location of
expression, (like a C language lvalue),
for count locations, under the
appropriate printf format (character for
#pc, decimal for #pd, etc.).

#iocal function name
Sets the context for evaluation of names
and expressions at interpreter level.
function name must be an active function
(otherwise references to automatic
storage class variables are
meaningless). If no function name is
given, the name of the current local
function is displayed. Upon
interruption, the interrupted function

Page 36 Chapter 5
..(fc.:[.'yi tqn! 1!..iM

I!'y l"?rii!["!{\{3,: SyyífeiÍ'!<", 1!"\{".

Ai i Ft '(}f i TS RL S É.Fi'j i t }

"·° User's ManualInstant-C
RUNNING PROGRAMS

is automatically made the local
function.

#ack Displays the sequence of function calls
to the point of interruption, and also
displays any previous interruption
levels that have not been #reset .

(),\,."l: ¿-!]!!
jífr1

""' " "" " "" cilapeer "g""""" ' ' " " " " Page 3 7

,;\: l"a!}('í',?: Sy'-;l.rjf7jb !ízg

.All, í::l!":i^'F: f.?!'F!c¢'v'r[)

""" """""' Instant C"
COMMAND REFERENCE

Page 38 chapter 6 l:.()L)Y':(;'ll '\tl.1
by i{.1ll(: :Í¿t' Si'í'·.tt?'!i?í i:ií
Ai.! lílQH1 Si 'ít: i·,i p'i·'f·L'

" Uset'sManualÍnstant"C"
,,MMAN, RE,,R,N,,

chapter 6

Instant-C Interpreter command Reference

This chapter contains a description of each command
that the Instant-c interpreter recognizes. For each
command, we list:
Purpose: what we intended the command to be used

for;
Format: the syntax of the command;

Remarks: some explanatory remarks noting major
features and possible pitfalls; and

Examples: some sanple uses.

All command names have two spellings: the fírst is
a simrñe name, and the second is the same name with a

leading 'Él' character. We originally started all
interpreter commands with the '#' character so that
the command names wouldn't conflict with any nanes in
your programs. After using Instant-C for a while,
many of our test users felt that they were overcome
by '#'s. Having both forms of the names available
means that you generally won't need to type the ül's,
but if you want to have a function named "ed", you
can. The examples and remarks use the two spellings
for command names interchangeably.

In the format description for each command, the
fixed portion of each command is in bold type, while
variable parts of the command are in italics.

" chákt"é"r 6 " """"""""""Page 39
(.:(_ÉL")|.·'iÜ\i 193 q

Úy i üt,o' '.'ii Sy'Ac'ms, |f¿C

/\t_ t '-i'()/-i ' S R)j2,f" Rvi l)

User'sManual '"^

Instant-C
BACK COMMAND

Purpose: To display a back trace of an
interrupted execution.

Format: back
#back

Remarks: This command displays the functions
active on the execution stack at the
time execution was interrupted. Also,
any prior levels of interrupted
execution are displayed.

Backtraces are useful in determining how
you got to the point of interruption.

The display begins with a message
describing the current execution level,
why the execution was interrupted
(breakpoint, division-by-zero, entering

a traced function, etc.). and the
source code that was being executed when
the interruption occurred. This is
followed by the active functions, listed
with the most recently invoked function
first. The source code for each active
call is shown.

The oldest invocation is always the
Instant-C command line that started the
execution. If more than ten functions
are active in the current level, only
the first ten are shown, and any others
are indicated by an ellipsis (". ·
,jf) ,

Every execution interruption leaves the
Instant-C interpreter in control, so
that you can execute any function or C

expression in addition to issuing
debugging commands such as back. These
nested or higher level executions may
also be interrupted (by unintended
program fault or by request). #baek

will show a summary description for
every interruption level, but will
display function-by-function detail for

Page 40 " "" " "Chapter 6 "
{/,k".'?':": '!"·m

|;y Lj, !!'l",']¿l :i ;j"-;'ñ j;': ·. " '..
ALI liGú{I! ; I'! ': j l?',"j : '

"·^ User'sManualInstant-C
BACK COMMAND

only the most recent, or highest,
level.

If you type #back and no execüticjn
interruption has occurred, or the
environment has been #reset, you will
see the message "(no levels active for
backtrace)".

See the commands #reset and #go for more
information on the management of
interruption levels. See #local for
information on how to reference local
variables in an active function.

Example: # back

Displays the current function caller
backtrace for the most recent
interruption of your programs'
execution.

,(.l.íl: :": :q.'; Chapter 6 Page 41
!'\ l : ñ': li í; :Jv - t i, , rjg
'a; l jjk

, i;'; :;j :",,1 it\,'t t"

User'sManual

v

,,,,,,

,,MM,N,

Instant"C'

Purpose:

To

remove

an

object

(function,

iÉdefine,

or

data

declaration)

from

the

current

memory

file.

Format:

delete

name

#delete

name

Remarks:

If

name

is

not

in

the

current

memory

file,

Instant-C

will

print

an

error.

Name

will

be

removed

from

the

current

memory

file.

The

old

definition

of

name

will

still

be

available

to

be

listed

or

edited,

until

you

create

a

new

definition

for

that

name.

Example:

#
delete

buttercup

The

function

buttercup

is

removed

from

the

current

memory

file.

When

the

memory

file

is

written

to

disk

with

the

save

command,

the

definition

of

buttercup

will

not

be

included.

"jp"ágé__42

Ch@téf_6"____"_"___"

__"_

_"__

("c)h"'\'

uqhf

l
cí¿}/j

by

Hal'í)fIa|

S","Mc:'rzs

l:ic.

Alt
PU("1A

7
S
FÍE

SI'

RU!
!:

"' User'sManualInstant-C
DIR COMMAND

purpose: To display the filenanes in the current
disk directory.

Format: dir
dir d: fi1ename.ext
#dir
#dir d: filenaine.ext

Remarks: d: filename.ext is a filename with
optional extension and optional disk
drive letter. If you don't specify the
disk drive, the current disk drive is
assumed. If you don't specify an
extension, blanks are assumed.

The global characters '?' and '*' may
be used in either the filename or the
extension, following normal operating
system conventions. If you oinit the
file specifier completely, "*.*" is
assumed, and all directory entries will
be displayed.

The filenames are displayed five per
line on your screen.

only the filename is displayed; no size
or date infornation is included.

Example: # dir b:*.c
The names of all files with an extension
of .C on the B: disk drive are
displayed.

'LIk,,|'." ': :g Chapter 6 page 43

Ai l ti}{,jl r;j·, Rj ;-} í'j'| ;i

User'sManual "'Instant-C
ED COMMAND

Purpose: To switch to the Instant-C editor so
that you can modify an existing C

function or create a new function. You
can also use the editor to examine
existing functions in order to
understand them.

Format: ed name
ed
#eCí name
#eéí

Remarks: name can be the name of a function.
(This is the most common use.) name can
also be the name of a data variable,
structure tag, or #define'd name. In
eaoh of these cases, you will be editing
the C source declaration for that item.

If name is omitted, the most recently
edited object is used. (If name is
emitted in the very first ed command of
a session, an error message is given.)

If no object name exists, Instant-c
assumes you are trying to create a new
function, and starts with a siniple
skeleton for the function definition.

one of the most common errors in
Instant-C is the attempt to edit a file
(by specifying a file name) instead of a

function or data name. Instant-c does
not need to compile entire source files
from disk, but works directly on
individual objects in memory.

Example: # ed hello

The function hello is loaded into the
editor for modification or browsing.

Page 4 4 Chapter 6 (y\'r7\/r,": 7'}: } 'i!s4

t:y 'I\Á¡ClKÁi S,.3 lf-·:í'L-
.

i-'í

AL l lllGHl" S rjg I)! ítV! i'

1'.^ User'sManuallnStantmC
,R,,E ,,MM,N,

purpose: To erase specified files from the
current disk directory.

Format: erase d: fi1enaine.ext
#erase á: filename.ext

Remarks: d: filename.ext is a file specifíer with
optional extension and optional disk
drive letter. If you omít the
extension, blanks are assuíned. If you
omit the drive letter, the current
default disk drive is used.

The global characters '?' and '*' can
be used in either the file name or the
extension, following standard operating
system convention.

If you specify "m*" (erase all files),
you will be asked for a confirmation
that this drastic action is okay.

Example: # erase oLdfile.c

Erases a file named "oldfile.c" from the
current directory on the default disk
drive.

u,,,·,,u'" ic!) "" ' "" Chapter 15 "" " '" Page 45

1·,.,/íq,.,!t, ",,¿{ 2\. ,>4\\', ;"1.
'tíj : ?¿| ,1|? f

j'k
f3,'"N\,"Í i"

User'sManuai Instant-C""
GO COMMAND

Purpose: To resume execution that has been
interrupted.

Format: go
#go

Remarks: Execution of your program can be
interrupted by a fault (e.g., division
by zero), or by request (e.g., a

breakpoint). The #go command will
resume an execution that has been
interrupted.

Not all executions can be resumed.
Examples of interruptions that are not
resumable are: division-by-zero fault,
missing function fault, call to the
function exit(), and stack overflow
fault.

If the interrupted execution cannot be
resumed, the #go command will display an
error message, and revert to the
previous execution level. This is
equivalent to using the #reset command
to return to the previous level. You
can use the #back comnand to examine the
execution level to see if you want to
resume it, and use the #reset command to
dispose of level(s) that you don't want
to resume.

Example: # go

Resumes execution at the point of
interruption, or resets the level if itis not resumable.

pá"¢jé " 4 6 """""" "" " " "" "" " " Chapter 6 " " " " " " "
, u ¢i" (,} it " '·',..

t. } l Líl'oúüi : ·\1, 1\'|í !- : ,',
Ai L ít(Él¢ 1 I? fit :n j'l'j'j l '

' User'sManuallnstant"C"
,N,,,, ,,MMAN,

Purpose: To process a series of interpreter or
debugger commands that are stored in a

disk file.

Format: infile filename
#inUie filename

Remarks: The infile command switches input to the
interpreter/debugger to come from a disk
file.
The most common use of infile is to
issue all the load commands necessary to
include all the files of a multiple
source file program.

When the end of file is reached, input
is switched back to the keyboard.

Under MS-DOS or PC-DOS, you can also use
the operating system's command line
redirection to execute commands from a

disk file

Example: # infile loadsys.inp

Reads interpreter commands from the file
"LOADSYS.INP". When the end of the file
is reached, command input will revert to
the console.

,
Chápter 6 "" Pá¢jé""47

! '\.' ' ' i : l.' '. t ' , .,,
' t ' I , . ;",'

'.' I ' " ' ', t I \(i i'

User'sManual Instant-C""
LIST COMMAND

Purpose: To display C source language on your
screen. You can display either a single
function/variable/#define or an entire
memory file.

Format: listlist name
#list
#list name

Remarks: The name can be either a function nante,
or a data variable name, or a #define'd
name. In each case the C source
language definition for the named object
is displayeá on your screen.

If name is omitted, the entire current
memory file is displayed.

If the named object is not in the
current memory file, it must have
external scope. If you wish to display
a static variable not in the current
memory file, you ínust first switch to
the memory file that contains the
variable.

To display a different memory file,
first switch to that memory file with
the #use command, and then give a #list
conurtand with no arguments.

To display C source language to the
printer, see the #llist command.

Page 48 Chapter 6 C:()[gy ka'1í ' tif',}

Í.:y !í.·!l: ol:,j| g,',':,'.t""í's',, 1"(
Al i [q'l(":2i 1 S nj cj [j\,'j f '

"" User's Manuallnstant"C
,,,T ,,MMAN,

Examples: # list isdigit
int isdigit(c)
char c;

{

return c >= 'O' && c <= '9';}

The C source language definition of
isdigit is displayed on your screen.

list
/* c program for "Héjlo, World!" */
void main()

{

printf ("Hello, World!\n") ;
}

(Assuming that HELLO. C is the current
memory f lle.)

- - éhapter 6 - """ -"- "- -""_" page" 't9_

i, .ÜZ'\," :;' : j'"í>·,.Q

;.'j, R-j."."¿'; $}y'",}t': ::'", iiu

User's Manual """

Instant-C
LISTFILE COMMAND

Purpose: To list all of the memory file" that
currently exist in the Instant-C
workspace .

Format : Iistfile
#listfile

Remarks : All memory f lies that Ihstant-c has
#loaded or #inc1uded in the current
session are displayed, one nante per
line.

You can use the #use command to display
the name of the current memory file, and
to select another file to be the current
memory file.

Example: # listfile
=> * (Unnamed memory file)

Isl
stdio. h

Here, the "*" represents a memory file
without a name. It can nonetheless be
#saved and #used.

Page 50 Chapter 6 (: c;r)\it!(;l,¡ '"¿'.·:

t:'y H¿.iti(:'i!'a! g4'[.·:.:t{j:!}g,. 1!)(...

At 't. M'iliT$: . lí!.¿;: l mií j}

" User'sManualInstant-C
LISTNAME COMMAND

Purpose: To display all of the names defíned or
declared in the current memory fíle.

Format: Iistname
#listname

Remark: Each function definition, data or
function declaration, typedef, and
Mefine in the current memory file is
displayed, one name per line.

Example: # listname

For file hello:
Function main

(Assuming that HELLO.C is the current
memory file.)

,,,,,,",,, ".,.,,, " "' Chapter 6 "" """]eá"ge"Eí""

' ',. j: ;t.C :',¢, ?.., 'uj;;., ;j: '

User's Manual "°

,,,,, ,,MM,N,
Instant"c

Purpose: To print c source language on your
printer. You can print a single
function, variable, or #deHme, or you
can print an entire memory file.

Format: llistl1ist name
#iíist
#llist name

Remarks: The name can be either a function name,
or a data variable name, or a #ciefine'd
name. In each case, the C source
language definition for the named object
is printed.

If you oirtit name, the entire current
memory file is printed.

To display source on your screen, see
the #list command.

Examples: # llist isdigit
Sends the C source language definition
of the function isáigit to your
printer.
llist
sends all of the current memory file to
your printer.

7áge"52""""""""" """""""" """CÍíaftér"6" """"" "" "" "" "" " """ " """",
Cot"'yt,ahl jg;'í-.

I)'y f'"if '""\¿ji cj",fémi-" |'j' '
A! ! P4|()'Ú S j{j SFNVt- r.

" User'sManualinstant"C"
,,,, ,,MMAN,

Purpose: To load a C source language dísk file
into a inenory file.

Format: load "filename"
#ioaCi "filename'¢

Remarks: The #load command brings the specified c
language source disk file into a

corresponding memory file.

If you don't suppoy the extension of the
disk file naine, it is assumed to be
".C".
Only files in the current disk directory
can be loaded.

You can use the characters '<' and '>'
instead of double quotes to delimít the
file name.

If the filename and extension are each a

valid C identifier, you don't need the
delimiting characters.
A #loaded memory file becomes the
current memory file.

Exainples: # load labels

Reads the disk file LABELS.C into a

memory file named "LABELS.C".
"LABELS.C" becomes the currenc memory
file.
load <stdio.h>

Reads the disk file STDIO.H from the
current disk directory into a memory
file named "STDIO.H".

Ch@téF 6 " " """" " Pá_g_e"_53""
:.'¿:'í,, li :' ' íQfi'1

\'y i " ' ',j; Sy'-tt: m:i Int.

A) l li)í ·1IT!" fif ui l$vi 1_)

User'sManual Instant-C"'
LOCAL COMMAND

Purpose: To set or query the function assumed for
symbol table searches so that you can
examine/modify local variables.

Format: local function name
local
#locai function name
#local

Remarks: Instant-C normally recognizes names ifeither they are in the current memory
file, or if they are external. The
#ioeai command lets you evaluate
expressions inside a particular
function.

The function name specified muát be an
active function, that is, it must have
started executing and have an entry on
the execution stack. Expressions that
set or use a function's local variable
will be executed in the context of that
function.

You will generally not need to use the
#local command because the local
function is automatically set from the
context of the interrupted execution.
For example, if function f is executing
and attempts a division by zero, the
Instant-c interpreter is invoked, and
the assumed local function is f.
If function name is not specified, the
current local function name is
displayed.

Local function names are stacked with
each interruption level; #resetting or
#going to a previous level will result
in the previous level's function being
re-assumed.

Page 54 " "" " " Chapter 6
u'p , ',c",l I t;-' É

l;",' R,iht 'Ccíi g · ,',.i' :'1" :' C
AL l K')(alñ $", ííj tí! i",.'! j)

" User'sManual
lnstant"C

u,,,, ,,MMAN,

Example: # local f
Assume that function f calls function g,
which calls function h. Each function
has local integer variables named i, and

j. There is a global integer x.
Execution has been interrupted in
function h by a breakpoint. The context
of function h is assumed at the time of
the breakpoint, but is changed to
function f by the exanple command. Now

entering i = j+x will set i in E to the
value of j in f plus the global x.
Resuming execution with #go, h returns
to g, which returns to f. Function E

continues execution with the new value
in its local variable i.

,
Chapter 6 " "Page 55

,L

' . "C i: : ' ' Á',,'i l'

User'sManuai ""Instant-C
MAKE COMMAND

Purpose: To create a stand-alone version of your
program after it has been debugged.

Format: make filename
make filename starting_function
#make filename
#make filename starting_function

Remarks: You must supply filename.

You use make to create separate programs
from Instant-c to be run under your
operating system. None of the special
debugging features such as break
checking are available, since the
interpreter is not written to the file.
Make will overwrite existing files.

If you omit the extension portion of
filename, it defaults to .EXE under
MS-DOS and PC-DOS, and to .CMD under
CP/M-86.

Because the created module contains the
entire library, it will be relatively
big (>32K!3). If you don't need the
entire library for your program, you can
use ICBASE to load and make your
program. If you use ICBASE, the minimum
size is about 3KB.

Make is saving an exact memory linage of
your program and data values. Note that
some data values may be invalid when the
created module is executed if you have
obtained absolute paragraph memory
addresses.

Test and debugging runs may allocate
storage that is not reclaimed -- make

will save all memory that has been used
by your program during the entire
Instant-C session.

Page 56 Chapter 6 : -Í\f· ,mt;!: ' ' t" i

Uy l '.A: íñ'm ¿p. 3'\ I" g ' .

"^ User'sManualInstant-C
MAKE COMMAND

You will normally omit the
starting function name, in which case
the main function in the library will
be used. main parses the command line
and calls your main function wíth the
standard argc, argv arguments.

Examples: # make prtlabel

Writes the disk file "PRTLABEL.EXE"
("PRTLABEL.CMD" under CP/M-86). All
currently loaded functions and data are
included. When the PRTLABEL file is
executed, the library function _main

will call your main function with the
correct argc, argv arguments.

make setwide init
Writes the disk file "SETWIDE.EXE" (or
"SETWIDE.CMD"). Execution will begin
with the init function. (The main
function will not be called.)

l"'-j: .'.'l|t_;·,- 1'·R,A Chapter 6 Page 57

m } f jk ,1 i7 tí Ñj c;¿ Pc,'1 l :

User'sManual '^

N,W ,,MMA,,
Instant-C'

Purpose: To delete all objects from the current
meníory file, or to create a new memory
file.

Format: new
new filename
#new
#new filename

Remarks: If you omit the filename, the current
memory file is reset. Resetting a

memory file means deleting all of the
objects declared or defined in it.
If you provide the filename and there
already exists such a memory file, that
memory file becones the current memory
file and is reset to be empty.

If you provide the filename and no such
memory file exists yet, a new, initially
empty memory file is created and becomes
the current memory file.

Examples: # new

Deletes all names in the current memory
file.
new part2
Creates a new menory file named "part2"
and wakes it the current memory file.
new *

Clears the unnamed memory file (after
possibly creating it).

"Paige 58 " """" Chapter 6 ""
,(. íj{ ; y 'a'"" i; ;j'.,

Ny L' if.', IJ! CJ "{ 1'"2 :;,;

"" User's ManualInstant-C
OUTFILE COMMAND,

Purpose: To redirect interpreter output to
different and/or inultiple devices.

Ebrniat: outfile printer
outfile crt
outfile both
#outfile printer

Remarks: outfile printer directs output to your
printer and not to your screen.

outfile crt directs output to your
screen and undoes a prior outfile
printer or outfile both.

outfile both directs output to both your
screen and your printer.

only the output of the interpreter is
redirected. Neither the output of the
editor, nor any output of your program
is affected in any way.

Even if output is directed to your
printer only, any error messages will
also be displayed on your screen.

Example: # outfile printer
list main
outfile crt

Makes a listing of the main function on
your printer. (The #llist command could
be used to do the saíne thing.)
outfile printer
back
outfile crt

prints a backtrace of your currently
interrupted program on the printer.

\,-,í,i,;"' u-,.; Chapter 6 Page 59
t/í ! l-i: c.' i JV-jit"' '- lut

User'sManual ""Instant-C
PC COMMAND

purpose: To display memory locations in character
format.

Format: pc expression count
#pc expression count

Remarks: expression is evaluated as an lvalue
(left-hand part of an assignment), and
bytes beginning at that location are
displayed as characters. If the
optional count expression is included
with the #pe command, then count bytes
are displayed as characters. If count
is omitted, only I byte is displayed.

Any non-printing values are displayed as
!?q ,

The library function _pc is called by
the Instant-C interpreter to implement
the #pc command. You can alter the
display format or actions by changing
the function pc.

See the commands pd, po, ps and px to
display data in other formats.

Page 60 Chapter 6 (,opy' qi" 'túk'
tj y

li,1I|·¿}f"|¿gj SÉ'y':te'm
,

'íic

At i HlGltj y Ri 13Éj: '"jl l"

" Useí'sManualinstant-C'
pc COMMANR.

Examples: # pc *str 10

Assuming the declaration char str[í0j,
the first ten characters of str are
displayed as characters.
pc str{O] 10

This will have the same results as the
first example.

pc i
The variable i is displayed in character
format. Although i (declared as int i:)is two bytes in storage, only one byte
is displayed.
pc OX2174 OXIO

This will display 16 bytes as characters
starting at location 2174 hex in your
program's data. (OxlO is 16 decimal.)

\){\r'k'l \(;' ·{ 1tí64 chapter 6 Page 61
¿;y ¡'.!: l:)l!:l| 8v";lf"[/l'.- luí.

Al L fjj: íl4 r"C;,Hi_3:i Pi y/[_i)

User'sManua! lnstant-C'^
pd command

Purpose: TO
. display memory locations in decimal

format.

Format: pd expression count
#pd expression count

Remarks: expression is evaluated as an lvalue
(left-hand part of an assignment), and
words beginning at that location are
displayed as decimal integers. If the
optional count expression is included
with the #pd command, then count words
are displayed as decimal integers. Ifcount is omitted, only one word is
displayed.

The library function pd is called by
the Instant-C interpreter to implement
the #pd command. You can alter the
display format or actions by changing
the function pd.

See the commands pc, po, ps, and px to
display data in other formats.

Examples: # pd *ia IQ

Assuming the declaration int ia[20], the
first ten words of la are displayed as
decimal integers.
pcT i
The variable i is displayed as a decimal
integer.

Page 62 Chapter 6 \-'C'í)tf' I :"1 l ¿"¿-t.;

j'\t l?¿1t|')":¿i. g;,,' X'lf.' ;' ':
Ai j pj:'; jq I C, f¿j" Iii A'jf l '

" User'sManuaílnstart-C
po command

Purpose: To display memory locations in octal
format.

Format: po expression count
#po expression count

Remarks: expression is evaluated as an lvalue
(left-hand part of an assignment), and
words beginning at that location are
displayed as octal integers. If the
optional count expression is included
with the #po command, then count words
are displayed as octal integers. Ifcount is omitted, only one word is
displayed.

The library function po is called by
the Instant-c interpreter to implement
the #po command. You can alter the
display format or actions by changing
the function po.

Examples: # po *ua 10

Assuming the declaration int ua[35], the
first ten words of ua are displayed as
octal integers.
po ua[27j 7

Displays the last seven elements of ua
in octal, beginning with element 27.

po i
The variable i is displayed as an octal
integer.

:ít),'¿]" j'ft'; Chapter 6 page 63

! y' ' .' .' fí',·;,t r"' ,',. lj 1(-.
.M l fj,: ' ,) l t;-, l|f f·;.l [<\j'{ |':

User's Manual ""Instant-C
ps COMMAND

Purpose: To display memory locations as character
strings.

Format: ps expression count
#PS expression count

Remarks: expression is evaluated as an lvalue
(left-hand part of an assignment), and
pointers starting at that location are
displayed as character strings. If the
optional count expression is included
with the #PS coíninand, then count
pointers are displayed as character
strings. If count is omitted, only one
pointer is displayed.

The library function ps is called by
the Instant-c interpreter to implement
the #ps command. You may alter the
display format or actions by changing
the function ps.

Any non-printing values are displayed as
'?'. A string is assumed to continue
until a byte with value O is found. (At
least as implemented by the _ps
function.)

See the commands pc, pd, po, and px to
display data in other formats.

Page 64 """"" Chapt"er"¿ """""""" "" " """ """ ,""""" " " ",""",,"-
LÁ)í)'y"|!;lil l 'i, ,{,

by L'(:itl:)|'|:di SvMtt: t't,, l'\C.
Al : Rl(:'S] S 1-ll ?;l fí'j[l :'

" User'sManualinstant"C'
,, ,,MM,N,

Examples: # ps answer

Assuming the declaration char
answer[1oo], the characters beginning at
answerjo] are displayed until a byte
with value O is found, indicatíng the
end of the string.
ps answers[O] 10

Assuming the declaration char
mnswers[1o], an array of character
string pointers, this command will print
each character string.
ps i
The variable i is interpreted as a

character string pointer, and data at *i
is displayed as a character string.

""" """ " "" "" ,""" " "" " " "" Chaktér"6" " """"" """""__"""págÉT"65
l ('r'YT'cl,k" i U,\j ,
[ii,' i?,ll\C)' \¿ji :7'y'gÍ}t"\}?; |'?i,

Al L KK ii n $4 t'k_g3! íí\'j i '

User'sManual ""'Instant-C'
PX COMMAND

purpose: To display memory locations in hex
format.

Format: px expression count
#px expression count

Remarks: expression is evaluated as an Ivalue
(left-hand part of an assignment), and
words starting at that location are
displayed as hex integers. If the
optional count expression is included
with the #px command, then count words
are displayed as hex integers. If count
is omitted, only one word is displayed.

The library function _px is called by
the Instant-C interpreter to implement
the #px command. You can alter the
display format or actions by changing
the function px.

See the commands pe, pd, po, and ps to
display data in other formats.

Examples: # px *ia IQ

Assuming the declaration int ia[20], the
first ten words of la are displayed as
hex integers.
px i
The variable i is displayed as a hex
integer.
px OX2174 16

This will display 16 words starting at
location 2174 hex in your program's data
area.

Page 66 Chapter 6 { ;-j\', ;ii .;ií " 'A/\ q

'",L L U\ 3{i T Cj ¢'(í"'j {j"jl '

" User'sManualInstant-C
Q_jIr COMMAND

Purpose: To return to the operating system.

Format: quit
#quit

Remarks: You use the quit command when you are
finished using Instant-C.
No memory files are automatically saved
to disk If you have changed your
program, make sure you have updated itto disk with the save command, or with a

#savemoá command.

You can also use the system command to
do the saíne thing.

Example: # quit

Returns you to the operating system.
Any modifications you have made to your
programs and have not saved are lost.

l,.{,r,ll" j'nj.; Chapter 6 Page 67

t ', js,¡ ! 'I. í'ct !7y' .t F"""i ', |1:

User'shanual "'instant-C'
RENAME COMMAND

Purpose: To change the name of a function,
variable, or a #defined symbol.

Format: #rename oldname newname
#rename olána: me as newname

Remarks: The #rename ccüninand changes the name of
the object, and all of the references to
the object. This wakes one part of
software maintenance much simpler.

All references in the Instant—C
workspace are ohanged. No references in
any disk files are mociifieá, unless you
save the workspace íneníory files to
disk. similarly, no references in
conments or character string literals
are modified.

#rename will result in an error message

if oldname doesn't exist already, or ifnewname exists already.
Since there is already a rename function
in the standard Instant-C library, you
must provide the leading # in the
#rename command.

Example: # #rename islower issmall

Changes the name of the library function
is1ower to be issmall. All references
to this function, (including, for
example, the reference in the library
function toupper) are changed also.

Page 68 Chapter 6 (|'t\\',.: "' '"y'
3..,'\ ' ! JUfí2 S\ -.Ft"" '· " .t

/Z\j 41', ji¢j S., ijf :"}r fÁ't't L'

"' User'sManualinstant=C"
,,,,T ,,MMAN,

Purpose: To discard one or more nested
interrupted execution levels.

Format: #reset
#reset levelnumber
reset
reset Ievelnumber

Remarks: The #reset command allows you to get rid
of an interrupted execution level when

it is no longer needed. You will not be
able to resume execution with the #go
command nor will the level be available
for examinati-on of its stack history).

#reset will revert the execution level
to that indicated by the optional
levelnumber parameter, or to level C) (no
levels active) if levelnumber is not
provided.

If levelnumber is higher or equal to the
current level number, no action is
taken.

Use the #back conunand to display the
levels that are active; you may use the
#go command to resume execution of the
current (highest) level.

Whenever your program is interrupted (by
fault such as division-by-zero or stack
overflow, or by request, such as a

breakpoint), a new interrupted execution
level is created.

.

Example: # reset 2

This command will throw away any level
information for levels higher than 2.

"'""'"" "
g ;:,·

" " """'" ' "chapter 6 " "'""""""'" page 69
(,(}l: 'tííi::!!¿ jC-j>d¿

í',t t 'í'i'in i ': f"kt ";É F'y'É { '

User'sManual "Instant-C'
RUN COMMAND

Purpose: To execute your program as though itwere invoked fron the operating system.

Format: run commandarguments
run
#run command_arguments
#run

Remarks: You can test stand-alone programs with
the run command. Your program executes
as it would if it were started by the
operating system

Tnstant-c invokes your program by
calling main with the normal (argc,
argv) convention of passing arguments.

The command_arguments are separated by
using space characters as delimiters.

argv[0] will contain the string "main".

If no command arguments are given, argc
will be l. ""

The run command actually calls the
library function _main to parse the
command line and to call your main
function. List the main function for
more details.

Examples: (Assumes HELLO.C as the current memory
file.)
run
Hello, World!

run this line can be 128 chars long
Hello, World!

The output is the same since the HELLO.C
program ignores its arguments.

Page 7 O Chapter 6 (()[f',Í' iii' i '· ' i;·í.z

t-", l t,íll{)[Í.í) S',,:-it'iu:, ¡'"t

" User'sManualInstant-C'
SAVE COMMAND

Purpose: To write the current memory file to
disk, thereby saving any updates,
additions or changes that you have nade
to your programs.

Format: save new filename
save
#save new filename
#save

Remarks: The name of the current memory file is
used for the created file, unless you
provide a new_filename.

The file extension defaults to ".C" ifyou don't specify one.

If the file already exists, the existing
file is renamed to have file name
extension ".BAK". If you discover that
you made a mistake, you can use the
".BAK" file to get the most recent
previous copy back.

See the #use command to display/change
the current memory file name.

Examples: # use
HELLO.C

save
#

Writes the current memory file to the
disk file "HELLO.C". If "HELLO.C"
already exists, it will be renamed to
"HELLO.BAK".

save he11o.new
#

Writes the current memory file to the
disk file HELLO.NEW.

."
,,

" " " " Chapter 6 page 71
! ·y l t,}' 1'\'', : b', · ,'t " 71·, ' ';g
·u i líµ',t{ 't-, lú '·í Á','i- I'j

User'sManua' Instant-C"
SAVEMOD COMMAND

Purpose: To save a new or updated version of
Instant-C to disk in binary form,
including all symbol tables and system
options.

Format: savemod filename
#savemoá filename

Remarks: You must supply filename.

savemod will overwrite existing files,
so be careful not to overwrite an
existing file unless you are sure
everything will be okay.

If you omit the extension portion of
filename, it defaults to .EXE under
MS-DOS aná PC-DOS, and to .CMD under
CP/M-86.

You can use savemod to change
Ihstant-c's defaults, to update the
built-in libraries or to add your own
library functions.

You can also use savemoá to save a

partially debugged program when you need
to stop working before your program is
finished. In this case, you are adding
your programs and workspace to a clone
of Instant-C.
The created modules will be very large
(> 21OK), so be sure you have sufficient
disk space.

savemod saves an exact memory image of
your program and data values. Note that
some data values may be invalid when you
start up the saved version, such as
absolute memory addresses you may have
developed.

Page 7 2 "" " "" """ """"" "chapter 6 (?c)[-)Yr|(;!)| 1984

!.iy li¿.!t,()na¡ Systf-'í'{¿g;. Inc.

AL L FílGii rS l'íf.$)F fi'jÉ t)

" User'sManua!Instant-C
SAVEMOD COMMAND

savemod may not be given if there are
any interrupted executions of your
program pending. (You can tell that
nothing is pending if a #back conunand
responds with "no levels active".) The
#reset command will remove any pending
executions for you.

Examples: # savemod newic

Writes NEWIC.EXE (or NEWIC.CMD) to
disk. After testing NEWIC, you can
replace the existing Instant—C with
NEWIC.

savemod sortbug

Writes SORTBUG.EXE (or SORTBUG.CMD) to
disk so that you can restart it later
and continue your development or
debugging.

(X\f 4:l(í!|! 1!tf(íi
"" " "" """ """"" """ " " " Ch"apter" ¿ " " page"TZ

r y i j¿j iÍ()l ,¿j! Sy': te'ns)['1("

Ai iil(.í! i I S RF SI RVL i: '

User's Manual 'Instant-C"'
SEGMENTS COMMAND

Purpose: To display the paragraph address,
maximum size, and currently used space
in each of the memory segments used by
Instant-C.

Format: segments
#segments

Remarks : All data is displayed in hexadecimal.

You will probably never need to use this
command .

we provided it to help the
debugging of Instant-C itself.
Your program is stored in the segments
labeled "User Code", "User Data" ,
"Symbol" and "Source" . By looking at
these values before and after loading a
file, you can tell how big your programs
are .

Example : # segments

Displays the segment use information for
Instant-C on your screen.

Page 74 Chapter 6 (: ()pyl!L;l',l 1'iú3.':

fíy !talicma! SV: .:¡Lb:7'|g,: i'ic:

.Al.! RIGHTS Bl-St i'Vl I)

' User'sManua!Instant-C'
SHELL COMMAND

Purpose: To temporarily switch to the operating
system to execute a few conmands or to
execute a single operating system
command.

Format: shell
shell command line
#shell
#she1l command line

Notes: The shell command is only available
under MS-DOS or PC-DOS and requires
version 2.00 or later of those operating
systems.

The shell command requires extra memory
space beyond that of Instant-c. As a

result, you will only be able to use itif you have at least 512KB memory on
your system.

If you provide a command line, that
single command is executed. If you omit
the command line argument, you are
transferred to a new copy of
COMMAND.COM. You can get back to
Instant-C by giving the DOS exit
contnand.

Example: # shell

Invokes a new copy of the DOS command

processor. You can get back by typing
"exit".
shell cd

Executes the "cd" command to query the
current directory.

(t p[7\'t it;' :
'"'Ir

.1
" '" "" " """ " "" " " " Chapt"er' "6 "" " """ "' " page 7 5

t"", l ¿;j t'u"it' S',.ú: pu\·., ! f\C'
At ', 'zí\"'í' t';'; nr $2 fl"jí "

User'sManual Instant-C"'
STEP COMMAND

Purpose: To resume execution and interrupt after
the next statement is executed.

Format: step
#step

Notes: You use the #step command to execute a

single statement in the interrupted
function.

#step will stop after the next
statement, whether it is in the current
function, a function called from the
current function, or the function which
called the current function.

See the #step exec, #step in, #step out,
and #step return commands for other ways
to resume and control execution of your
programs.

Example: # step

Interrupts your program after execution
of one more statement.

page 7 6 "" """ """"""" " " " " Chaptier" 6 "" " """ "" "
GgñÑ/ ':gt'il 19L34

}.\\,/ l: ,\t\()rj,í' g;'y:;!E!l'(j?{ |1It
A!. L HlCipi7 S Rl sr Rl'[i.:'

"' User'sManuaiInstant-C'
STEP EXEC COMMAND

Purpose: To execute a C statement or function
call and to interrupt after the first
stateinent.

Format: step exec C statement
#step exec C statement

Notes: The C statement will wost often be a

single function call.
The step exec command provides a simple
alternative for functions which are
called only once to the trace and
untraee commands.

see the #step, #step in, #step out and
#step return commands for other ways to
resume and control execution of your
programs.

Example: # step exec fp = fopen("PRN: ", "W")

Executes a call to fopen and will
interrupt execution at the beginning of
the fopen function.

C'[[·j..,k,,t,| i;,!\4
" " " Cliai?ter"¿" "" "" """""""" ""p"á"gé"""n

Lv l),,í,{)'.(í' Sy'file"1l:) l': c
AL I lHt Áí i1 S Fíi Si R\¡p '".

User'sManua! 'Instant-C"
STEP IN COMMAND

Purpose: To resume execution and to interrupt
after the next statement in the
currently active function.

Format: step in
#step in

Notes: You use the step in command when you
want to breakpoint in the same function,
and not in any lower-level functions.

The step in command allows you to stay
at one level in a function heirarchy.

See the #step, #step exec, #step emt and
#step return commands for other ways to
resume and control execution of your
prograíns.

Example: # step in

Executes any nested calls without
interruption, and stops after the next
statement in the currently interrupted
function.

Page 7Él " """""" " " """" " "Chapter "6 " " " "" " "" "" "
(: ()ljv':(:|]| Kití4

t.'y l-l¿ít}c)["|¿|| S', ':', f'i'í'.)' i'
,Ai ! m jt l T g; kíl t"'! rí",' i !)

"" User's ManualInstant-C
STEP OUT COMMAND

Purpose: To resune execution and to interrupt
after the next statement executed that
is not in the currently active
function.

Format: step out
#step out

Notes: You use the step out command to see what
happens next outside of the currently
executing function.

The execution will be interrupted when
the current function either calls
another function, or returns to its
caller.

See the #step, #step exec, #step in, and
#step return commands for other ways to
resume and control execution of your
programs.

Example: # step out

Resumes execution and interrupts when
the current function calls another one
or when it returns.

(,,.,, ,,,, ,,,i,,
a,,,",,,) """" " """" " " "" " " cHaEjter 6 " """""" " "" " " """ ""É'áfjé "79

t)v ftr!lt{)!l¿|| (""'y
,

i '"13 Iq\c

Al) Ei(í4 s) fil SI Í$Vl I)

User'sMariual "instant-C
STEP RETURN COMMAND

Purpose: To resume execution and to interrupt
when the currently active function
returns.

Format: step return
#step return

Notes: You use the step return command when you
are not interested in watching the
details of executing the rest of the
current function.

Execution will be interrupted when the
current function returns to its caller.
See the #step, #step exec, #step in, and
#step out commands for other ways to
resume and control execution of your
programs.

Example: # step return
Executes the rest of the current
function without stopping and stops when
the current function returns to its
caller.

Page 80 Chapter 6 (j{)ll'yí|\: i;' i'fÓi :

ti\' Fí¿i{Í()(?¿i| ¶gV:7l('/:l,-)iu'

ALI i?!Grt TS I'll ur iíVl I)

' User'sManuallnstant"C'
,,,,,M ,,MM,N,

purpose: To return to the operating systen.

Format: system
#system

Remarks: You use the system command when you are
finished using Instant-C.
No memory files are autonatically saved
to disk. If you have wade changes to
your programs that you want to keep,
make sure you have saved them wíth the
save command, or with a Éfsavemod
command.

You can also use the quit command to do
the same thing.

Example: # system

Returns you to the operating system.
Any modifications you have made to your
programs and have not saved are lost.

,"." "" """" ,", """ " """"" """ "" " cnapter""¿"" " "' "" "" Page 81
,{lj", ' i;y',l 1(1,\.,

::', fi,: Í'{)",ti f)'Y':)lf'l)):-; l'ic

A, ', {-'
. ,.ll'", ni ti! ii\'p [J

User'sManuai ""Instant-C
TRACE COMMAND

purpose: Tcj turn on call/return tracing for a

function.

Format: trace functionname
#trace functionname

Remarks: The #traee command will mark the
specified function to issue a breakpoint
interruption both when it is called and
when it returns. This allows you to
watch one or inore traced functions to
see how and when it/they are called.

You can give a back command to see how
the traced function was called.
At interpreter level, you can use the
normal comnand line expression
evaluation features of Instant-C to
examine or modify the arguments to the
traced function, or to pursue any other
path of execution or debugging. Use go
to begin execution of the traced
function, or use #reset to abort the
execution.
A traced function that interrupted upon
entry will also interrupt upon return.
The message notifying you of the return
displays the return value (in decimal).
The function's local variables are
available for examination or
modification at this time.
When you no longer need a function to be
traced, use the #untrace command.

Example: # trace fopen

will breakpoint upon each subsequent
entry and return from the function
fopen.

Page 8 2 Chapter 6 GÜ[-)y[": -l{l l ' fk'4

t:y fiahonal Sj,'f !t'ót, 1'!("

/\,L t ft)Crí1 S Ill SI R"ji !)

"' Useí"'sManuallnstant"C'
,,,, ,,MM,N,

Purpose: To display a disk file in the current
disk directory.

Format: type d: filename.ext
#type d: filename.ext

Remarks: If you omit the drive letter, the
current disk drive is used.

If you omit the extension, blanks are
used.

The disk file d: fi1ename.ext is
displayed on your screen.

Any tabs are converted to spaces
controlled by the built-in systeni
variable tabwidth.

Example: # type newprog.c

D: Ísplays on your screen the file
NEWPROG.C from the current directory on
the default drive.

,,"". """"""""""" """ " " Chahtier 6 "" """" Page 83

tí,' l"rG (1'"[| $Í'y' t"' ' ', 1'1(.

'f\í t !ii(:' i ' f-p ñf í3l ii\,'¿ l l

TkaUser'sManual 'Instant-C
UNTRACE COMMAND

Purpose: To turn off call/return tracing for a

function.

Format: #untraee function name

untrace function name

Remarks: Undoes the #traee command.

There will no longer be an interruption when the
function function name is called or when

it returns.

Example: # untrace fopen

fopen is no longer traced. It will no
longer interrupt when called or when
returning.

Page 8 4 Chapter 6 ('(: t}y| y;'jf " Ul.'l

7)y k?,iti()[Í¿l| U{i.ft'|'Í'? Iih

Al i Fíl(Al: T!} iu t;j f?\jí r,

Instant C"' User'sManual

USE COMMAND

Purpose: Td inake another memory file within the
Instant-C workspace be the current
memory file, or to display the name of
the current memory file.

Format: use
use filename
#use
#use filename

Remarks: The current memory file is where all new
declarations are put.

If you omit filename, the name of the
current memory file is displayed.

If your filename doesn't include an
extension, ".C" is used for default.

If no memory file named filename exists,
an error message is printed.

You can use the listfile command to
display what memory files exist.

Examples:
use

HELLO.C

Displays the current memory file name.

use stdio.h

Switches to the inenory file named
"stdio.h" for edits and new
declarations. ("stdio.h" must have been
previously created or loaded.)

(j,Lñ t .cl't µnpj chapter 6 Page 85
I)'y 1<,,',,) ,cI' S'y:·lr'['|') i'í(,
A! ! '"1',\ ii i t S fj' t: i él l/É L.'

User's Manual 'Instant-C"
EDITING FILES

Page 86 Chapter 7 (":()r')y'/lc';t¡l ',')íí4

1)\' fE?tt|()l}¿i| SVf-!(glÍ'l?; l'":c

a t- i i'?Kí!t1'S Hi' :":ctrji i)

""' User'sManuallnstant"C
,,,,,N, ,,,,,

Chapter 7

Using Tnstant-ED on Files

Ihstant-ED, the editor in Instant-C can be used
outside of the Instant-C environment. This chapter
covers how to use Instant-ED in stand-alone mode.

7.1 Command Line Syntax

The Instant-ED editor can be used to edit any disk
file that fits within its space limitations. It is
invoked from your operating system's command level.

The syntax of the Instant-ED command is:

ed [filename] [options]

where both the filename and the options nay be
omitted. If a filename is given, and the disk file
exists already, it read into the editor's buffer
before the editor will start acting on your
keystrokes.

If a filename is given, and the disk file doesn't
yet exist, ljnstant-ED creates a new disk file when
you give a F or W comnand.

The possible options are:

option Example/Meaninq
+<tab setting> +8 for tabs every eight columns
-<initia1 line> -123 for initial cursor at line 123.

(
".-\,,,.r,,,t-,: 1(4:":,:1"""" """"" """ " " " " """ Chapter" "7" '"" " """ ' "" """'" " page 87

1",/' t ':l$¡(}t'l.'íi $::y:.,?E"7is,, !/Í(.'.
A!.', ld!(,"í\'i'¡"$'; ii! sr i íi/i f":

User'sManual "'lnstant-C'^
EDITING FILES

The default tab setting is every eight characters
for disk files whose extension starts with "A" (.ASH,
.A86, etc.), and every four characters otherwise.

The initial cursor line option is particularly
useful with traditional compilers when you are given
a line number for some error message. You can start
up ED on the line where the traditional compiler
found the error.

The editor operates on disk files in stand-alone
node in essentially the same way as it does on
functions when you are inside Instant-C. Most of the
descriptions of the editor that are in the following
chapter "Instant-ED Reference" apply identically when
operating on disk files in stand-alone mode.

The major difference is that no compilation
automatically occurs when exiting the stand-alone
version of the editor. The following describes the
two ways of exiting from the editor:

Ctrl Q Exit without saving text contents to a

disk file.
ctrl F Write the text contents to disk and exit

if successful. Saving the contents when
not in Instant-C does not imply
successful compilation of the text.

Page 88 Chapter 7
(,'-,{\,·rl;pll }'1'.'

l' \{ rí,t: :\7Í'f¿,· 9)'j': | t' m - f'}(

" User'sManualinstantwC'
,,,, , , R e ,, ,, n , ,

Chapter 8

Instant-ED Reference

TlhÁs chapter covers the use of the edítor in
Instant-C, including the examination and change of
functions and other declarations in your programs.

8.1 Starting the Éditor

Enter

ed object__name

where object name is optional. object name is the
name of any function, data declaration, or #defined
symbol. If you do not supply a name to he edited,
Instant-C assumes that you want to edit the last
function or declaration that you were editing. If
you don't supply a name, and if this is the fírst #eCi

command in your session, Instant-c prints an error
message. If object name is not declared, Instant-C
assumes it is a function and will start the editor
with a function template that you can fill in with C

statements.

8.2 Editor Terminology

These terms will be used throughout the editor
chapter. To help get started with the editor, you
should know:

.'¿f.,': :" '1Qkj """ " Chapter 8 "" " Fage""á9

;"y' t-, ' ','," ,' j"; y'- }l"1)¿' 1"(.

' ' : 'M: ;' l' L' '7 C l 'it : r

'bmUser'sManual Instant-C
Ed1tor Reference

buffer consists of your text, ranging from none
to thousands of lines of text. Some

editor operations work on the entire
buffer, such as the Write buffer to disk
file command. There can be more than
one buffer, and the editor has functions
to move blocks of text back and forth
between buffers.

cursor usually means both the cursor on your
console screen and the location in the
editor buffer at which text can be
inserted or deleted.

command causes the editor perform some
operation. Commands are distinct from
editor functions in that commands
require more information than can be
provided in a single keystroke. An
example is to Reací a file from disk into
the current buffer, where you will need
to specify the file name.

command argument
additional information needed for a
command to execute. For disk file Read

or Write, the command argument is a file
name. For text change, the command
arguments are the text to be replaced
and the replacing text.

command line
the top line of the screen. Commands,
and their arguments, will be displayed
here. Also, messages from Instant-C or
error messages from the editor will be
displayed here.

function or key function
a simple editor operation, which
requires no additional information to
complete. In general, you can cause
these functions to operate by a single
keystroke. Examples of functions are:
move cursor down one line, delete
character to the left of the cursor,
change to command niode.

Page"90 "" Chapter 8 :,(lf/\r'.,iL' i";".
t:, ií,¿t·c)i" 1' "u. ':lt""' :'
t"ú ! U:1',q ! ! s f'Á ni :·'.'; !

.

instant C"" User'sManuai

Editor Reference

status line the second line of the screen. Always
displays the editor mode, buffer name
and type, and cursor location.

13.3 Msplay Layout

Commands to and r,essages from the editor are
displayed on the first, or command, line at the top
of the screen. See the "Command Mode" section below
for details on what the commands are, and how you
make them happen.

The current editor mode is always indicated on the
secor'-d, or status line, along with the current buffer
(AÑiicated by the type and name of the buffer), the
line' number of the cursor within the buffer, and the
column number of the cursor.

All other lines of the screen are used to display
the text in the current buffer. The screen will
always show the text area surrounding the current
cursor position.

3.4 Editor Modes

ed can be in one of three modes, which determine
the editor's response to typing from the keyboard.
The three modes are Insert (the default and most
used), Overtype, and Command.

While in Insert mode and Overtype mode all
printable characters typed will appear at the cursor
on the screen. Insert mode creates new text
characters in the buffer and on the screen, while
Overtype mode replaces existing characters wíth the
new characters.

Most non-printing characters or function keys may
cause other actions to occur, such as cursor
movement, mode change, deletion of characters or

(_:(r)','\\j",: i9f)4 Chapter 8" "" """" page""gí
t,\/ lq¿i!'(.)"¿,l i !;'v!;lHí71!. i"f-'

""'""""'"' Instant-C"'
Editor Reference

lines, etc. These are called "key functions"; most
key functions can be used at any time, whether in
Command, Insert or Overtype mode.

Comnand mode is an escape from this direct typing,
and allows the use of printable characters to
instruct the editor to perforn other functions, such
ae changing the next occurrance of a string of
characters to be a new string, going to a specific
line in the buffer, or quitting the editing session.

You can, if you wish, define the keystrokes which

will cause any function tc occur. (See "Keyboard
Configuration" in Appendix E.) You can change the
definitions to match another editor with which you
are faniliar, to be easy for your own typing style,
or to take advantage of special labels on the keys of
your keyboard.

8.5 Editor ínput Modes (INSERT and OVERTYPE)

In the input modes, certain characters input from
the keyboard will caum" editor functions to occur
(such as the deletion of a word, or movement of the
cursor). Any character not defined to cause a

function will be placed into the buffer, and will be
displayed on the screen. In Insert mode, the
character typed will be inserted into the current
line of text; all other characters on that line, and
the cursor, will move to the right by one character
position. In Overtype mode, the character at the

cursor is replaced by whatever new character is
entered, and the cursor moves to the right by one
position.

In either mode, the cursor can move to columns
greater than the width of the screen ('past' the
right side of the screen, in other words). When this
happens, the text on the screen is shifted to the
left so that the cursor can remain on the screen (and
on the same line as before). The cursor can't go
past column 240, though. This feature is called
'horizontal scrolling'. When horizontal scrolling is
in effect, the number of columns shifted (the number

Page 92 " Chapter 8 ,,,,,,,,,,, ,.·

/"\1 \ ¿{if ;' l ' 'S ¢-' ' ,! : ' ,
i '

" User's ManualÍnstant"C
,,,, O, R, ,, ,,n, ,

of columns in the buffer to the left of the first
column displayed on the screen) is shown beside the
column indication on the status line. "coL 82- 'V',
for example, would indicate that the display has been
shifted 4 columns to the right, and the current
buffer column position is 82.

Non-printable control characters that you Insert or
overtype are handLed in a special way. This is to
prevent confusion on input (many control characters
typed on the keyboard will be interpreted as key
functions), and to allow display on the screen.
Certain control characters, such as tab (control-l)
and carriage return (control-M) are not treated
specially, but instead are directly represented on
the screen. Tab is represented by spaces up to the
next tab column: carriage return appears as the end
tjf characters on a line and continuation on the
next.

The caret (or uparrow) key '^' is used to translate
the following character to a control character. For
example, entering '^x' will place control-X ínto the
buffer at the current location. The caret key also
acts as an escape to prevent the interpretation of
the next. character as a key function. Entering caret
and then control-X places a control-X character into
the buffer without switching you to Command mode. Itis necessary to enter the caret key twice to get a

single caret character into the text buffer.

Control characters are displayed with a caret
character preceding to indicate that they are control
characters (e.g., '"A is controL-A). Please be aware
of the ambiguity of ^^ in that the character
control-caret is displayed the same as the simple
caret character. Also, it is better practice to use
the backslash escape of the C language (i.e., '\t' or
'\032') to represent control characters in source
code. Control-© ('\0') cannot be represented in the
buffer.

,,,:,: :" :'z·.;
Chapter 8 ""Page 93

:,,. l' " !3'/,';]r'F" ' I"?'

;·1
,

:tií x|i':
.
; ::i bí jd'j'f ! 'l

User's Manual "·'Instant-C
Edi-tar- ._R:e£er-eRc?

8. 6 Editor command Mode

commands may be given either directly with a single
keystroke, or as a two-step process where you first
enter Command niode, and then select the particular
command that you wish to execute. As delivered, the
Instant-C Editor uses the two-step process because itis more general and easier to learn. (See "Keyboard
configuration" in Appendix E for details on how to
custom-conf igure single keystroke cürü'mands

.
)

control-X or FlO will enter CQF7na!1cZ jñocíe. 3nother
character is needed to select the pa: :t.icuiar command;
in each case the first ch-a: racter of the címma..ná neme

ig used. This character will cause an
acknowledgement and prompt to µppear in the commánd
line. The- default value, if any, wiZl appear alreacly
filled in after the prompt. Carriage return will
start execution with the default. 'To use any other
value, enter it, followed by carriage return. An
underscore is used as a cursor cm the command line
when argument values are being entered. Errors in
commands usually require the space bar to be pressed
to acknowledge the error and proceed. Control-C
cancels a ccmw.and you have not yet executed. Tjse the
Backspace key to correct the argument value as you
type it in.

Control-R is used to repeat the last command. This
makeE it very easy to browse through a text buf fer
with the Search conunand, or to make a global change.
Either RETURN or Ccmtrol-R signals that a command
argument is completely entered, and execution of th=
command may commence.

page 94 Chapter 8 (Xúi\, tm";j i'3?\..t

? \/ [i¿iÍ|(.')rí¿:: S\': 't¢"jñ,'. 1'1(

ALI FñGl-ltS RL SI [·'y"j I')

"" User'sManua!Instant-C
Edttor Reference

8.7 Editor Command Summary

once in command mode, you enter only the first
letter of the command name; no return is needed. The
editor will respond with the full command name, and
prompts for the command arguments. These prompts
appear on the ccminand line (the topmost line) of the
screen. When arguments are expected to a conunand,
you need to enter a return to mark the end of the
argument(s)·

FÍ.:Ü.sh Compile and save the text in current
buffer; return to Instant-C interpreter
when no errors are detected.
(Control-F does this also)

Qtiit Discard buffer; return to the
interpreter without compilation.
(Control-Q does this also)

search target string
change target_string replacementstring

Target string is a string of characters to
search"for. The Search and Change commands

will look for an exact match in the buffer.
Search places the cursor at the end of the
target ,"tring in the buffer. change replaces
the target_str"ing with replacementgtring.
An optional + or - may be entered before C or
s to indicate a search direction: + for
forward in the buffer, - for backwards in the
buffer from the cursor location. The direction
is remembered for repetitions of the command.

Insert string

The command argument string will be inserted
at the cursor.

,",,, r.,r·s ,,,.,
" " Chapter 8 Page 95

A ' ' Fíi: , l t
.

m. C-' " i L .

User'sManual 'Instant-C"
Edttor Reference

Line absolute line number
Une + relative lines
Liíie — relative lines

Move cursor to the beginning of absolute line
number, or move to the line forward or backward
relative lines from the current line.

Read d: filename.ext
Write d: filename.ext

The current buffer is written to disk, or a disk
file is read into the buffer at the cursor. d:
i< an optional disk drive specifier; .ext is
the filename extension.

Édit d: filename.ext

The current buffer is cleared, and the disk file i.s loaded
into the current buffer. This is the same as quitting the
editor and restarting with a new disk file, except that the
contents of the temporary buffer is not cleared -- thus
giving you a way to transfer text between files. This
command is available only in the "@tand-alone ver=Fiorl of
the editor.

Búffer

select one of these subcommands:

Switch buffer name
swítcíí to another text buffer

Create buffer name
create buffer with given name

jjelete buffer name
delete the named buffer

? repeat the editor startup message,
which may be a compiler error
message with line number and
description.

Page 96 Chapter 8
(.(;.[\',/[,.,t): 't,'1j

É'j Igíi: ':'}/'|,1l :"'," h'"t'- :í ,.

' User'sManuallnstant"C'
,,,, , , ,e ,,,,n , ,

ctrl-X or Enter command mode -- next key

fió will be the command.

ctrl-c At any point in Command mode, will
abort the current command and return to inser

Backspace In coímand mode, erase the last
character of the command argument.

Return The command argument is entered,
begin execution.

ctrl-R The command arguínent is entered,
begin executing the command. If not
in Command mode, Ctrl-R will
re-execute the. last command.

Example of using a conunand (spaces are shown, but
should not be typed):

PIó - s main() Return

í.e., enter function key FlC), followed by -, then by
s, followed 3y the string main(), followed by the
carriage return key. This command will search
backwarás from the cursor for the string "main()"·

8.8 íCey Functions for the íBMZP.C

These functions occur instantly when the proper key

or sequence of keys is hit. Not all functions are
allowed when ED is expecting a command value. (E.g.,
one cannot switch to Insert mode while entering a

search target string, but one can issue cursor
níoveínent function). The key sequences listed here
are for the IBM PC and compatible computers; they can
be customized to your terminal or your whims (see the
section called "Configuring the Keyboard" in Appendix
E). With each description is the function number [in
brackets] as used by the keyboard configuration
program.

, ,,,, ,, ,. · i
.)/,., " Chapter 8 " " "pag"e" 97"

l ·y
Ng; ' : '.." 6'j', :O""- 1,\(.'

L,,
, Á,(.jj;' l-l c,| í;','l I ,

User's Manual "·'Instant-C
Em-t!Qr_-Re£eEencg

8 .8.1 Moving the cursor
Home [3] cursor to top of buffer

Eñá [4] cursor to end of buffer

left arrow [6] cursor left (or to end of previous
line if at beginning of current line)

right arrow {7] cursor right (or to beginninrr of
next line if at end of current line)

up arrow [3] cursor up vertically, to njame column
in previous line

down arrow [12j cursor down vctically, t o saíne
column in following' line

ctrl-pgUp f2Cl] cursor up one line (to beginning of
current line, or if there alreMiy, to
previous line)

ctr1- Pgtjn [ílj cursor down (to beginr.ing of next
line, or end cf current line if end of
buffer)

PgUp [i6(í4)] 'page' up (ínove cursor by
multiple lines)

PgDíi [IB (14)] 'page' down

Ctri right arrow
[14] cursor word right

Ctrl left arrow
[13] cursor word left

8.8.2 Deleting Characters

Del [22] delete character at cursor
Backspace [43(23)j delete character preceding

cursor. (In conmand mode, this key
deletes the last character typed in a
command argument .

)

Page 98 Chapter 8 GüpynChí 7·/¿)/l

5:\' lt{í1'¿),{<í{ 2y't,tt"ms.. ,/1(.
ALL líiGHTS [zrsFl{\,.: F,¿:

' User'sManualInstant-C'
EChtor Reference

F6 [24] delete entire line

ctrl End [25] delete line from cursor to end
(same as delete entire line if cursor is
at the beginning of the line).

f8 [38] delete word right
F7 [37] delete word left

13.8.3 Inserting Characters

f5 f27} insert new line before current line

ctrl-Return [ID] insert new line following current
line, with same indentation as current
line

3.13.4 Changing Éditor Modes

FlO or ctrl X

f46] enter command mode, next character
is command

Ins [39] toggle mode (if in Insert node, set
to overtype mode; if in Overtype mode,
set to Insert)

8.8.5 Moving Text

F4 or Alt F6
[35] ur.-delete item (as characters or
lines are deleted, the most recent are
retained in a 'garbage stack', and can
be recalled into the buffer at the
cursor location)

FI [31] set tag to current cursor
location. The 'block' of text between
the tag and the cursor (as it is moved
around) can be treated in special ways.
See Appendix F.4, Text Blocks
Management, for more discussion.

(X":sv' iüM 'flt'.-: Chapter 8 Page 99
by l?E:tl()r)¿i| 3],.'?,Ítb:T|j,, !| iC
Al [j?|g;·'; í, FU ':,1 '7'\,'{ "

User'sManual "'

.

Instant-C
Edttor Reference

Alt FI [32] swap tag and cursor (to see where
tag is, or to go back to a saved place)

f2 [33] save block of text between tag and

cursor in TEMP buffer

f3 [34] recall TEMP buffer at cursor

8.8.6 Other Editor Key Functions

Ctrl R f47} Initiate command, or repeat last
command.

ctrl c [42] If in Command mode, return to input
mode. Otherwise, reset editor and
redraw screen.

f9 [26] swap the two characters preceding

cursor (on current line only)

Alt f9 [36? swap case of character at cursor
(convert upper case to lower, lower to
upper)

8.8.7 Leaving the Editor

Ctrl Q [49] Éxit without compiling and saving
text contents. See "Quit" in the
Coníníand Summary above.

Ctrl F [48] Save text and exit if successful.
Saving the contents when in Instant-C
implies successful compilation of the
text. If there are compilation errors,
you will be put into the editor's INSERT
MODE with the error message displayed in
the command line, and with the cursor
positioned at the point of the error.
See "Finish" in the Command Summary
above.

Page 1 O O Chapter 8
(. cjj ,', l 'jlfi i ' ' J¿1.,

t") l?,í'|c)",í) S?'Y':·ít'l}':·. " '
fit l l?!(";¡j i y ldj ;jj ji"j! l

" User'sManualInstant-C
FUNCTION LIBRARY

chapter 9

Instant-C F'unetion Library

The Instant-C function library contains all of the
library functions described in Kernighan & Ritchie
that apply to the CP/M-86 aná MS-DOS operating
systems and their derivatives.

C language source code for these functions is
delivered with Instant-C, and the source code can be
considered the most detailed documentation. Thus,
you may modify or extend the function library, but
beware! such modification can lead to trouble later
when documentation fails to match the actual code, or
when dependencies on specific programs become buried
in the libraries. Good programs will make the
minimum nurnber of assumptions about exactly how a

library function does its job.
Some extensions to the 'standard' libraries are

also included. These may be either specific to
Instant-c, or they may be commonly found and expected
in C libraries, although not described in Kernighan &

rütchie.

The commonly available functions not defined in k&r
are:

cgets, cputs, movmem, setmem,
rename, inportb, outportb

The Instant-C specific functions are:

bdos, bdosw, firstarg, lastarg,
int, _char, string, ptr,dc, dd, do, ds, dx,

call, movdat, jnterrupt, _flags, _segread,

Various internal functions and variables are declared

(: l1:,'r|(:" ',Á,"i Chapter 9 page 101
f'y ft f}y. ,/ .jI fú.: ,)f'l'o- '::í
Al ! i '; j1 i) !, j?j t-,i llvl l l

User'sManua' instantjC"'
FUNCTION LIBRARY

which should be referenced only by the library
functions. These follow the naming convention of an
" " prefix, such as printf. You should not use
these items directly, as they may change in
definition or may not appear at all in later
versions.

The bdos and bdosw functions perform a call to the
operating system, and differ only in the type of the
return value (char and int, respectively). firstarg
and lastarg are used to support the passing of
varíabZe numbers of arguments to library routines
such as printf and scanf. Instant-C otherwise
performs strict checking as to number cjf arguments
and function return type.

9.1 Library Categories

The library consists of several C-language source
files. Each file contains the functions for a

particular category of functions, e.g., memory
management, IO, etc. These Elles have the suffix .IC
to help distinguish them from other source files.

The Instant-C library functions, by category, are
listed below.

Source file CTYPE.IC: Character group tests and
conversions

isalnuni isalpha
isascii i. cntrl
isdigit islower
isprint ispunct
isspace isupper
isxdigit tolower
toupper

Source file STRLIB.IC: String manipulation

strcat strcmp
strcpy strlen

Page 102 Chapter 9 Cüóy :'cjt'! 1'ñu
L:·y í?a;/c)A¿á) Si\r't7|ef: }q 111('

,/'\} l Rl(4lt rs R! S? Lj",'f L)

"" User's Man'ja|Instant-C
function LIBRARY

Source file MEMORY.IC: Memory management

sbrk getmem
alloc malloc
calloc retniem
free incnnnem

setmem

Source file STDIO.IC: IO functions

getc getchar
getch putc
putchar putch
ungeto fgets
gets fputs
puts read
write create
fopen fclose
fileno ferror
feof clrerr
open close
lseek unlink
exit exit
cgets cputs
rename

Source file PRINTF.IC: Formatted string IO

printf sprintf
fprintf scanf
fscanf sscanf

Source file FUNCVAL.IC: Interpreter and Debugger
routines

int char
unsigned _short

_1ong _double
ptr string

_pc _pd
po ps

_px _main

[Note these functions are unique to Instant-C. Ríe

first functions (int, ... string) display the
value resulting from any C-language code typed to the
Instant-C interpreter. These are executed only ifthey are loaded into Instant-C and have not: been

(: ()r:'\,",jí'l: 1Wtí
"""" "" " ' ' " " "" " "Chai)te"r "9 ' "" ' "" ""' """""""Page 103

by [?,ít!Cl/i¿¿| ¿-')y')t(?{-[Í', 1{)(.'

At l mgt-j a) Flt ífi, '2\JÉ ,",

User'sManua' Instant C"'
FUNCTI9N LI_BRAR¥-----

renamed. (The IC program is delivered to you with
these functions pre-loaded.) The others (_pc, _pd,
etc.) are called by the corresponding debugger
display commands (pm pd, etc.), if the functions are
loaded into Instant-C. They are supplied as part of
the library to allow customization.]

Functions to provide low level services (built-in;
no source file)

bdos bdosw
inportb outportb
flags interrupt
movdat segread
call

fNote these functions are provideá as an alternative
to some kind of assenbly-language interface. These
functions provide direct access to hardware
resources. They are similar to functions in other C

compiler packages, though not necessarily exactly
compatible. Any reference to these routines should
be in your machine- and system-dependent code
sections only.]

Source file INTLIB.IC: Adáitional system interrupt
management functions

interrupt get
interrupt set
prologue init
interruptjnstall

µ'ote: INTLIB.IC functions are not built-in to the IC
program as are the other library functions. The
source file is provicb"d should you have applications
requiring the signalling or handling of hardware
interrupts.]

Instant-C standard library header file (STDIO.H).

You can iÉinclude STDIO.H in your programs to
provide certain frequently used jjdeELne's, such as
EOF and NULL, and also to provide a definition of the
structure for the FILE type. Compatability note: in
many C implementations, some functions are
implemented as macros (examples include isupper,
islower, getc). Because of restrictions on

Page 104 Chapter 9 GC'{;','j m;'i{ "· 'cl 1

by l í,?¡'(.}t"',í' S-jY'Stt'"í', ; : i:

' User's Manualhstant"C"
,,N,,,,N ,,,R,R,

preprocessor support in Instant-C version l, macros
are not available. All functions provided by the
Instant-C library are implemented as functions and
not as macros.

, , . ,,, .,,,,., Chapter 9 " páge "íó"5

k '
l . i t r , . , , C ', , :. ,,

"""""""' Instant C"
FUNCTION LIBRARY

9.2 Instant-C Library Functions Description

For these brief (and temporary) explanations of the
Instant-C library, the following short-hand is used
to describe the calling sequence (number and type of
arguments) of each function, and the returned value,
if any. The presumed declarations are:

int b; l* boolean value, true or false */
char c; l* character value, one byte */
char *cp, *cpi, *cp2;/* character string pointer */int i, il, i2; l* integer values */'
int fd; /* file descriptor for Ünix TO */
char *fnanie; l* file name character string */
FILE *fp; l* stream file pointer for buffered IO

(FILE is typedef'ed in #STDIO.H file)*/
char rc; l* returned character value */

9.2.1 Character type and conversion functions
b = isalnuní(c)

Returns true if input char c is
alphabetic or numerio, i.e., 'a'-'z',
'A'-'Z', or '0'-'9'.

b = isalpha(c)
Returns true if input char e is
alphabetic, i.e., 'a'-'z' or 'A'-'Z'.

b = isascii(c)
Returns true if input char c is an ascii
value, i.e., O to 127 decimal.

b = isdigit(c)
Returns true if e is numeric digit,
i,e,, úV—'9C

b = isxdigit(c)
Returns true if c is hex digit, i.e.,
'0'-'9', 'a'-'f', or 'A'-'F'.

Page 106 Chapter 9 cor'\','}!jl): 1!.'84

uy l fahoml Systems: , liíc

Ai l lílCíl¢"T7i EI Sf_li'."E t7

"" User'sManua!Instant-C
FUNCTION LIBRARY

b = islower(c)
Returns true if c is lowercase
alphabetic, i.e., 'a'-'z'.

b = isprint(c)
Returns true if e is a printable
character (i.e., ' '_'~') and not a

control character and not outside the
ascii character sequence.

b = ispunct(c)
Returns true if c is an ascii character
but is not alphanumeric and is not a

control character.

b = isspace(c)
Returns true if char c is space
character, i.e., blank ' ', tab '\t',newline '\n', carriage return '\r', or
form feed '\f'.

b = isupper(c)
Returns true if char c is uppercase
alphabetic, i.e., 'A'-'Z'.

rc = tolower(c)
Returns c converted to lowercase ifpossible, or returns c if no conversion
possible.

rc = toupper(c)
Returns c converted to uppercase, ifpossible, otherwise returns c character
unconverted.

9.2.2 string Manipulation functions

cp = strcat(cp1, cp2)
Returns the concatenation of string cpi
with string cp2, in cpi. cpi must point
to an area long enough for the result.

i = strcnip(cpl, cp2)
Compares two character strings. Returns
a value less than O if cpl < cp2,
returns a value greater than O if cpi >

cp2, otherwise returns O to indicate

Gul-g l '¢,i'i 19t: .·í Chapter 9 Page 107
by ha i'c:míi by',!c·mu i! '(_.
AL I líil 4\ i

,
;"·i Rf Sl gVt ?"'

User'sManual' 't^

Instant-C
function library

strings equal.

strcpy(cp1, cp2)
String cp2 is copied into string cpI.
cpI must point to an area large enough
fcm the reuslt.

i = strlen(cp)
The length of the input string is
returned. Length does not include the

trailing '\0' character that defines the
end-of-string.

9.2.3 Memory Management functions
The library offers a hierarchy of memory allocation

and deallocation functions for several levels of
efficiency and ease-of-programming considerations.
Warning: be sure that allocated memory areas are
returned to the free memory pool with the proper
deallocation function. The free function is used for
areas allocated with malloc, alloe, and ca1loc; the
retmem function is used for areas allocated with sbrk
or getmem.

For this discussion, the #define NULL o, as found
in STDIO.H, is assumed.

cp = alloc(i)
Allocates a memory area with i bytes,
and returns a pointer to the allocated
area. Return value is NULL if no area
large enough could be found. The area
is initialized to all zeroes. alloc
calls malloc.

cp = calloc(il, i2)
Allocates a memory area large enough to
hold ii elements of i2 size in bytes,
i.e., allocates ii times i2 bytes, and
returns pointer to area. The area is
initialized to all zeroes. The return
value is zero (null pointer), if no
space is available.

free(cp) Returns or frees an area allocated by
alloc, ca1loc, or malloc. Warning: do

page 108 Chapter 9 ((,·,.·,.t-' 'á?'k

f;\ I j jÍl, \'7".| ! Y,"-Nj"'tÉU jr'-

Al l !-Á1Ú I Ó: .t! ! ! l'í'l !.'

" User'sManualInstant-C
FUNCTION LIBRARY

not try to free areas allocated by sbrk
or getinem, as no area length infcmmation
is constructed for the free function by
either. Use retmem instead.

cp = getmem(i)
getmem allocates a memory area of ibytes, and returns a pointer to the
allocated area. Return value is NULL if
no area large enough could be found.
getmem searches a list of free memory
areas first, then will call sbrk if no
suitable area can be found on the free
li=t. getmem does not record the size
of the allocation, so areas can only be
returned to the free list by calling
retniem.

= = malloc(i)
Allocates a memory area of i bytes, and
returns a pointer to the allocated
area. Return value is NULL if kiq area
large enough could be found. mal1oc
records the size of the area so that it
can be returned and reused via the free
function.

movmem(cp1, cp2, i)
Copies i characters from area pointed by
cp2 into area pointed by cpi.

retmem(cp, i)
Places an area allocated by sbrk or
getmem on the free list. cp is the
address of the area, and i is the size
of the area in bytes. The area will be
consolidated with adjacent free listentries if possible.

cp = sbrk(i)
Allocates i number of bytes of data
memory, and returns pointer to allocated
area. Return pointer equals -l if no
space was available. sbrk is the lowest
level allocation function, and is used
by getmem. sbrk does not examine the
free area list, but instead 'pushes up'
the high-water mark and allocates memory

., ,,. , , . Chapter 9 page 109

User'sManua' lnstant"C"'
FUNCTION LIBRARY

not previously used or freed; thus, itshould be used only as a last resort (no
areas on free list). Areas allocated by
sbrk can be returned to the free pool
with retmem, but the high-water mark can
not be decreased.

setmem(cp, i, C)

Copies character c into area indicated
by cp for i number of bytes.

9.2.4 Standard IO Functions

Many of these functions will require that STDIO.?I
be #inc1uded. STDIO.H wilt provide #define EOF -1
and typedef FILE.

exit(i) Return to the- Instant-C interpreter
after closing any open files. The
argument i is optional. If preEent, the
value is passed to exit, and control is
returned to the interpreter. If the
argument is riot present, exit is called
with o.

_exit(i) Return to the interpreter directly, with
no cleanup actions performed.
[Currently, the argument i is not
used.]

fd = open(fname, i)
Opens CP/M or MS-DOS file with name
fname, and mode i. Mode may be O for
reading, l for writing, 2 for read and
write. The returned file descriptor is
used for all subsequent accesses to this
file until it is closed. The return
value is less than O (i.e., EOF) if the
file could not be opened, all file units
are in use, or an input argument is
incorrect.

i = close(fd)
closes the file indicated by file
descriptor fd. Return value is O ifclose is completed okay.

Page I10 Chapter 9 (: cgLlY'|glÍt 19lP1

t-,y f?al/Ü/?al Sy ',lcmu,, liic

Al L lil()H"Í S RF S! f'Ví L.)

"' User'sManualinstant"C'
,U N ,, ,,N , , ,R, R ,

i = unlink(fname)
Deletes file fname from disk. Return
value is zero if file is erased,
otherwise -I is returned.

fd = creat(fname, i)
A new file nante with name fname is
created on disk{ and opened for output
vith file descrLptDr fd, which should be
used for all subsequent operations on
this file. If the file exists, it is
deleted before creating and opening the
new file. The protection mode
parameter, i, is not used. The return
value is le3s than O if the file could
not be created or opened.

.1- = lseek(fd, offset, origin) long offset; int
origin;
Ed is the file descriptor for an opened

file. origin is a code that indicates
the type of file positioning to be
performed. origin values may be:

O position after beginning of
file.

1 position relative to current
position.

2 position before end of file.
offset is the number of bytes by which
the file position is changed. Be sure
that a long value is pacsed to lseek for
use as offset.

i = read(fd, buffetj i) char buffer[];
Reads 1 bytes from file fd into buffer.
buffer should be large enough to accept
the data. The value returned ís the
number of bytes actually read into
buffer.

i = write(fd, buffer, i) char buffer[];
Writes i bytes from buffer to file fd.
The return value is the number of bytes
actually written.

¿'c'¢)y"cll1l 19&1 Chapter 9 Page Illby fí¿ll|{}[1a I Sysl F'ñlf: Inc

Al L RlG?i"'S l·tl S7 Av'T I?

User'sManual Instant-C"'
function LIBRARY

fp = fopen(fname, cp)
Opens file with name fname, and returns
pointer to a library allocated structure
used for buffered file access via the
various get and put functions listed
below. ep is a pointer to a character
string that describes the type of access
to the file. The string "r" is for read
access, "w" for write access, "a" for
append access (writing at the end of the

file). If the file cannot be opened, a

null, or O, pointer is returneá.
Three files are implicitly open for
Instant-C programs, and global file
structure pointers are declared for
these files: stdin, 8tdout, stderr.
currently, no 'shell' functions are
provided to simulate the services of ID
redirection found in Unix and Unix-like
systems. Thus, stdin is input from the
keyboard, and stdout and stderr are
output to the console.

i = fclose(fp)
Closes file opened with fopen. For
files opened for writing, any pending
output is written to disk. fc1ose
returns O if the writing of pending
output and closing is completed
successfully.

fd = fileno(fp)
Returns the the file descriptor given a

file structure pointer, so that the
Unix-compatible library functions may be
used on files opened for buffered IQ.

b = ferror(fp)
Returns true if an error has occurred
while accessing or operating on a file.

b = feof(fp)
Returns true if the end-of-file has been
reached on file fp by a read or write
operation.

Page 112 Chapter 9 ('c: ,'.. ',: ;'u ' lj' :

; Y"É2,}t't)|),"í| qé,/f'Íp'77Í',, l"l'

" User'sManualInstant-C
FUNCTION LIBRARY

clrerr(fp) Clears the error and end-of-file flags
for file fp. No get or put functions
may occur on a file while the error
flags are set.

i = putc(c, fp)
Puts or writes character c to file fp.
Returns value less than O in case of an
error.

i = putchar(c)
Writes character c to file stdout.
Return value is less than O j-f an error
or end-oÉ-—fíle has c'ccured.

L = putch(c)
Write character c to ccmsole. Return
value i"' character c.

i- = fputs(cp, fp)
Writes a character string to file fp.
The end·-of-Etring '\,Cj' is not written,
and no new line (",n') is supplied.
Return value is less than O if an error
or ead-of-file has occureá.

i = puts(cp)
Writes character string to file stdout.
Ünlike fputs, however, puts implicitly
outputs a new line at the end of the
string. Return value is less than O if
an error or end-of-file has occured.

i = putch(c)
Writes character e to console. The
character is returned.

cputs(cp) The string cp is displayed on the
console. This function is implemented
as a call to the operating system
bdcis(9, cp). The end of the string cp
is first modified to be '$' instead of
'\0', so the string should not itself
contain '$'. The string end is set back
to '\0' before return.

i- = ungetc(c, fp)
"Backs up" file fp by one character. c

,',,,.,,.,,,.,' ;,,-.1 Chapter 9 Page"l"i±

I lit , ,
" " l,' 1 .

User's Manual "Instant-C'
FUNCTION LIBRARY

will be the next character read from

file fp with any of the getc or gets
type functions, below. ungete will not
work with getch or cgets.

i = getc(fp)
Returns next character from input file
fp. Return value is less than C) if an
error or end--of-file has occured.

i = getchar()
Returns next character frcur. file stáin.
Return value is less than C) if an error
or end-of-file has occured.

i = getch() Returns character from keyboard.

cp = gets(s)
Gets a line of j nput from file stcZin.
First character of string cp 'must be qet
t.o the maximum length of Eiié"'" string
before calling gets. Return value is
less thar, c if an error or end-of-f lle
has occured.

cp = fgets(s, i, fp)
Gets a line of input from file fp.
Parameter i is the length of the
character string s. A pointer to the
string is returned if all went well,
otherwise O

, or null pointer, is
returned to indicate an error.

cpl = cgets(cp)
Gets a line of input from the keyboard.
By calling bdos(l0, cp), cgets takes
advai.tage of any system- implemented
input editing. cp[0] must be set to two
less than the maximum length of the
string cp. The input line will be
returned, but will always be ep-f2 . The
input will be terminated with a '\0' so
that it can be treated as a normal c
string. ép[0] on return will still be
the space available for input, in
characters, and cp[1] will be the number
of characters in string cpI.

Page 114 Chapter 9 (: c)Í7ytl(l!)' :',;L3a

by fí,íí|(): Í,:l Sy: :h:ir,s. l'íc:

/úl 'LIGHTS Fil SFf'V! l?

' User'sManualInstant-C"
FUNCTION LIBRARY

9.2.5 Formatted TO functions
Two types of formatted IO functions are provided:

printf for output and scanf for input.

The printf functions format output according to a

format control string. Several variations of printf
may be used depending on where you want the output to
go (see explanations of printf, fprint, and sprintf,
below). The control string is output character-
by-character until the end of the control string.
The percent ('%'} character causes special
interpretation of the control string. Following the
j."'erc.ant character is an optional field wídth and
precision, specified as in K & R. The character
following a % (or the optional field width and
precision) describes how the next argument in the
variable argument list is to be handled. The
specifiers are:
g the argument is treated like an ascii

character.
d the argument is treated like an integer

and output in decimal.
e a float or double argument is output in

exponential form.

f a float or double argument is output in
fixed point decimal form.

g a float or double argument is output in
whichever of e or f format requires the
least space.

o t.he argument. is treated like an unsigned
integer, and output in octal.

s the argument is treated like a pointer
to a character string, and the <tring is
output in ascii.

u the argument is treated like an unsigned
integer, and output in decimal.

l .l [' . · ;'í' 'fí?<.t Chapter 9 page 115
: 'Y l ?,

.
' C" I " {"}'Y'"l(': ':". ;'i;'

:',, : i ·;:t , ! : t
,

í-'f :".,1í-j\,' b ' "

"""""'""' Instant=¢"'
FUNCTION LIBRARY

x the argument is treated like an unsigned
integer, and output in hexadecimal.

l the modifier l is placed before the
specifier in the control string to
indicate that the value has the size of
a long integer. This is meaningful for
the c, d, o, u, and x specifiers.

Any other character following a % is output as is,
and does not alter the selection of the next argument
for output. See K&R for more detail.

For the examples, control string is a character
string argument.

i = printf(control>tring, ... args) Performs the
general output forinatting described
above; output goes to stdout.

i = fprintf(fp, control_string, ... args ...)Same as printf, but output goes to file
fP.

cp = sprintt(cp, control_string, ... args 9..)
Saíne as printf, but output goes to
character string pointed by cp. The
output string must be long enough for
the output -- no checking by the library
is possible.

The scanf functions are the inverse of printf,
i.e., they interpret characters from an input stream
and store the converted values via a list of
pointers. Several variations are available (scanf,
fscanf, and sscanf), depending on what input source
you want to use. Ir, the control string, blanks,
tabs, and other 'white space' characters are not
significant. Percent signs indicate a conversion
specification, as detailed below. Any other
characters indicate that a literal match must be made
with the input stream, or the scanf is aborted. The
input conversion specifiers consist of an optional
field width (as a decimal integer), and a single
character to indicate the type of conversion as
follows:

Page 116 Chapter 9 ('C)7:',/l.[}!1¡ ' frC!.'

l:y fI,l'|(:)|\,íl t: ',,", itmu, ;'jf

" User's Manualinstant"C
,UN,,,,N ,,,R,R,

c copy single character from input, and
store through next pointer into
character. Unlike all other specifiers,
no leading blanks are discarded from the
input stream.

d treat input characters as decimal
number, and store integer value through
next pointer in argument list.

e treat iríput as floating µoint number .

Ñatatíon niay be f ixed point or
expcinential.

t treat input as floating point number.
Nrtaticm may be f ixeci point or
exponential.

() treat input as octal number, and store
unsigned integer value.

3 treat input áb string, and store
characters through next pointer in
argument list, appending end-of -string
'\,2 ' character. Be sure that string is
l.onq ens3'Aoh for any po3sj.ble input.

x treat- input as hex number , and store.
unsigned irteger value.

* followed t'y one ciT the specifiers above,
asterisk F'.é-añí3 to pe.rfcmn the
%:onUery:3 c:n, Fut. '.ion 't store vaime .

! fol Zowed k.'y c!'í(.9 of tke sL?ecifg ers above,
indicate-is that- a F.t.mg" ','alue .is to be
stored ('" ¥g r , l c?.ñi{ va J.ue for d
specifier, ácml"ü= ',al l'e "or f) .

Remember t-7',at the argument list. z:|'}otlld cons 1st of
r)oi?4ter& O 'Me return vajjüE ! q "J1p nuiabez" of sfores
t-hat were c(jn: ple.ted before a mismatch of specified
f ormat and input occurred, cr" before "the control
string was E;}[hÁust.ed, or hefcre the argument 1 i=t was
exhausted. should end-of-f lle be reached in the
input stream, a negative value is returned. See K&R

for mare details and examples. Currently, leading C)x

hex numbers are not implemented.

" ",,
, .. .

" Chapter 9 Page 117

s i
,

R!(7 1" ,· i\i >! l?jQ i '

User's Manual ""Instant-C
function LIBRARY

i = scanf (control
_
string, . . . args . . .

)

scant perf orms the general input
formatting functions described above,
using the stream stdin for input.

i = fscanf (fp, control_ string, . . . args . . e
)

Same as scanf, except that input is read
from file fp.

i = sscanf(cp, control
_
string, . . . args e & ·

)

Saíne as scanf, except. T-hat input is read
frcm string cp.

9
.

2
.

6 Low Level Routines

c = lidos (function
_

number, arg)
Invoke the opera-ting sYstem directly.
The function number argument is passed
in CL for CP/Í'4-86, and AH for MS-DOS and
PC-DOS

. In both cases, the second
argument is ,passed to the operat ing
system in regí "= i"r D?í. The value c'f this
function is t-te value of register KL.

aft=r the operating system returns.

i = Mosw(functton number, arg}
Same ás bdos, except that the value
returned i s a 16-bit. reg: i stet"' value.
For PIS-DOS or PC-DQS

, this is the AX

reg ister. For CP/fl-86, tkip ifS the 3X

regi.ster.

The following l:'üíi í.-iÉ functions provide direct
accés3 to your syste.ír,' s hardwarr resources , and
remove much OF tu. npe.d for any assembly language
programming with Instant-C. Errors in the use of
these functions can be catastrophic; you should use
these functions only i f you have a thorouc;h
understanding of the hardware operations invclved.

Assune the following declarations for the
discussion of low-level functions:

int port number; l* hardware IQ address */
int i ; l* miscellaneous value */
unsigned seg, offset; l* segment: offset

for full address */

Page 118 Chapter 9 ('{Íib\..'í :',1 ' " '

t.y 4.jÍ (ñ";j' S\,Áí\""; ' "
fu k k'lj;uR"í f-\, ,'1 j4,! l'

"" User's ManualInstant-C
FUNCTION LIBRARY

unsigned cpuflags; l* processor flags
register value */

REGS inregs, outregs; l* structure for
epu data registers */

int intno; l* system interrupt number */
SREGS segregs. l* structure for cpu

segment registers */
The REGS and SREGS typedefs are found in INTLIB.H.

c = inportb(port number)
Do an input byte instruction to the
specified port for your 8088/8086

processor. This function allows you to
read from any input device in your
computer.

Q'Llt.pot'tb(portnuwber, i)
Do an output byte instruction to the
specifed port for your 8088/8086

processor. The byte i is send to the
output device. Together with ínportb,
this function makes it possible to do
the very lowest-level I/O in -Instant-C.

cpuflags = call(seg, offset, Unregs, &outregs)
"" Perform a long call to location

seg: offset. CPU registers are first
loaded from the structure inregs before
the call, and saved in structure outregs
after the call. The processor flags are
returned as the value of call.

cpuflags = flags(new,_cpuflags)
The processor's flags register is set to
new cpuflags. The prior value of the
processor flags register is returned as
the value of flags. The arithmetic
flags (overflow, carry, etc.) are
unlikely to be meaningful. The
single-step instruction trap flag cannot
be set with flags. This function does
have use, however, in controlling
whether external interrupts are allowed

or disabled.

cpuflags = interrupt(intno, &inregs, &outregs)

" The hardware interrupt number intno is

'-c';';',;" lí'ti.: Chapter 9 Page 119
I-j.,. li.,: (g,'!' Síyú:t-m-- 'It"

/\ : i gi' u 4 u;, 4t f',l R \'/í l)

User'sManuai ""

,,N,,,,N ,,,,U,R,
Instant"Ly

signalled after loading the cpu
registers from the structure inregs.
Upon return from the interrupt, the cpu
registers are saved in the structure
outregs and the processor flags register
is returned as the value of interrupt.

jnovdat(sseg, soffset, dseg, doffset, i)
Data is moved from sseg: soffset to
location dseg: doffset, for i bytes.
Thus any location in your system's
memory may be accessed. _movCiat moves
data by ascending addresses, and does
not check for any overlap of the source
and destination data areas.

_segread(&segregs) SREGS segregs;
The segment .registers (CS, ES, DS., SS)

are copied into the structure segregs.

_() You read it right, it's (). This
function is an explicit "'"breakpoint
interruption. It can be placed at any
point in your prograíii to force contrel
to the Instant-C interpreter for
debugging. For example:

if (var < O I! var > 9)
(); l* breakpoint when

out of range */

9.2.7 Interrupt Support Functions

These functions are supplied in the file INTLI3.IC,
and are not built into the IC program. To access
them, you will need to lÉinclude intlib.ic. yote:
these functions and there specifications are stillpreliminary and subject to change.f For discussion
purposes, the following declarations are assumed:

int intno; l* an interrupt number, 0-255 on 8086 */
struct _intyector vector; l* image of an interrupt

vector, i.e., IP: CS */
unsigned flags; l* processor flags register

value */
int (*handler)(); l* a user-written interrupt

handler function variable */

"pagé 120" "" " Chapter 9 "
, ,,,.,\.r..b.\, '., ' ' ·t

? y' r-'.:: l.)' .l' $- ',','('""· ' .'

"·' User's Manual
lnstant"C

,UN,,,,N ,,,R,,,

struct int prologue *ip; l* pointer to an
interrupt handler prologue */

interrupt get (intno , vector)
Copy the interrupt vector (IP and CS)

for interrupt number intno to structure
vector. This is useful in saving
interrupt vectors for later restoration
with interrupt set.

i['}terrLzpt set. (intnc: , vector)
""' Copies the s.·tructure veetor to the

sy27t.e?: l interrup't vector number intno .
Th is can he used to restore system.
interrupt.s that you overwrote with
interrupt install, or can be used to
switch between díf ferent interrupt
handlers that £hare the same interrupt
number.

i. Fj = M-4Á -/Yii·@ ir!.ir (harídler, flags)
Ar interrupt prologue must be
cc-rr,struct.ed to c.aí i your Instant-C
i r,terr\}}"t handler. The prologue
Déz'f'"oFMs mic.h services as setting the-
segíiient registers to address your data,
switchir: g to the Instant-C execution
stac: ±, aíid setting the processor flags
Le£-3.A¿m- t-o the value of flags. Several
gzolom,eá may call the same handler
function.

.¿rLt-=.& á..'^p't irísta2Á (irjt.no, ip)
Inst-ai Ze. ?'o1¿r interrupt handler function
E·rgÜ\: 'gUc: ip in más t"eni interrupt vector& .L
imtne 3

A: í t..er ca ' ': ; t'· 7 interrupt install,
tííe óccurance oí' an interrupÉ numbe r
intno i/.'iÁí rc': ":"ÁLt' i rí a call to your
ríarídler functiom 'l'he handler can be
swi'tched or áe·-insta1íed with the
int.errupt_ set function.

Írñ: erruptsz- zíay occur, and the handlers execute ,
'.·,'7! i i e you are- modify ing or executing (other)
: :',:1_ 'u't---(' "}Ip7r"rq"'ns. Handlers for clock or keyboard
c) l" other har(qwarD-ge-nerated interrupts are examples
cf interrupts t-hat may occur at any time as long as
t he handler is installed for the interrupt. only

" Chapter 9 " " "" Page 121
\ l Ir \ l ;;jl j9 'uí4

t:"," lí¿ti|(")ll,| ¿7,/
,,. lYÍj |j('

Á,| l R ¢jjy-, :-¿j t,,l ü'\,/'j í'/

User's Manua' Instant C
FUNCTION LIBRARY

basic memory allocation (sbrk) is protected f rom
interruption, so it is okay to allocate memory with
sbrk in an interrupt handler, but it is not okay to
alloc or free within a handler if there is any chance
that it will be handling an interrupt whicÜi occurred
during another function 's call to alloc or frem
Other things to avoid: don't update an attacheá
handler function with the editor, and don't quit from
-tnst: ant:-C' without reinstalling the system default
hanálem DOS functions in-ay not be re-entrant , so
a: -3ki[2L7 foz terminal input in a hand1.2r called by ari
inter rupt during' terminal input. wait. is J ikeiy tí: :·

fail, as is calling bdos for t: eriUna1 out"mt from a&
break interrupt.

Save your code to disk before testing Lñ' ""í"upts cl'
other hardware functions: system hangs arc : . Lkelj' tCf

occur.

In general, you should revert an ínt.err',pt "4"ec"t.¿..L"

to its state as found befcu'e installing an !nst: ant"-u"
coded hand?. er P

The. functions interrupt gin- aná
interrupt set ñ:ake. this E..zi: ' g± :"Aerrupt-s

¥
particularly ii!" simzalled kjj." haz'diá·m: e or 3;(jr,e atjénc.y
ir.dependent of Instant-C, should Í>e reverted before
doing anything that could interfere with your
handler' s execution, such as issuing the qui tcommand- All Instant-C irlteít"¡-2!?t: handlers; shou.7 cZ

returri, and stoulá riot caZ-l exit,
_
exit, or lc)íígjTRp*

F'ut'"tker, ríandie"" functions sPoul a ncj" fau7 r (E7- Lj - ,
stack c^·"erflotd, divide k.y zere) unle!: 3s an é$-"É}Ér(.3.E)z"i{±t-¿'

Eaná1 e.r has been installed Tor that. inteí- í"'uj.'t- a Lao
.

É."e.akpoints , sing]e-8tep'"7 , and ccmtroZ--E3reak r,a: "n1- ing
",'.'ili nc't occur Eor .-¿i ndler functions active due tQ
interrupt . Handlers execute on the' ínstant:-c;'
execution stack, ciñCí thus haw' full addressing
capability, and ínaj' call any other Eunct.i.on.

Page 122 Chapter 9 CC)L3yrigt)', 19d4

Uy j?allo: l,|| Systt"rí"s, inc

A : I N(ñi I q '"if SÉ ft\/[- t)

"n User'"ManuaiinstantwC
,,,,,,,N,,,

Appendix A

How Instant-C Differs from standard-c

Th:Ís appendix contains descriptions of the
extensions available, together with an enumerated

list of all of the standard features not yet
implemented.

A.l Extensions

I. Version 7 void type for functions which don't
return a value.

2. Integrated source-language debugger including
single-step by statement tracing.

3. Lint-like error checking for the number of
arguments and size of argument lists.

4. Automatic formatting of all functions and
declarations.

5. Immediate execution mode (type in a C statement
and it executes).

6. Integrated full-screen editor for rapid syntax

error correction.

C(j¿)y'i iqhi 1913
:" "" " " "" " " " "" "" " " " """ """ " ""Págé""1"Z3"

L'iy R'¿il|"\r¡a' '7yStb"rr]'¿ i'-j "
AL l É')l(í>iTS F[!_!2,t"la\'F('

User's Manual ""^

Instant=C
DIFFERENCES

A. 2 Features Not Yet Implemented

I . Initializers for struct's and unions.

2
. Initializeu for auto and register variables.

3
. Initializers for pointer variables.

4
. Packed fields in structures {:7it-fieldF) .

5
. Str i.ng i it.erals 'a"hiCh t"xtúñd past end-of- L-Íñe

6
.

Enums

7
W #define' s more complicated than constant

expression

8
. 4define 's with arguments

9. Éundef

lCl. Asseíríbly language interface

II. Math functions in library (trig, log, etc.)

12. #iine
13

. Obsolete assignment operators (=-1-, =-, etc.)

Page 124 C'{Íl"'L'|' :1'! 1[q'.¡

t g' l?,l|'O",{l S'," jr'[3i'-)" 'i
/',tí fílG'RS'ii 'yj","i i:

' User's ManualInstant-C'
ERROR MESSAGES

Appendix B

Error Mes3ages and Explanations

Instant-C has a rich and extensive set of error
messacíes designed to help you understand exactly what
u St¿ARt-C thinkgy is c'rong. T!ÜSt appendix includes

". '! of those error F,eEsages together with additional
-,-rÁ'cü"mation about each error. The errors are sorted
alghabetically by the first word in the message.

Error messages are displayed either at the top of
the. Instant-ED screen, above the status line, or
prefixed by "**ERROR: ". Any error message which
íAarts with two asterisks, (and is not followed by
error:)

, is an internal consistency check message,
and indicates a problem with Instant-C rather than
your program.

B.l Language Errors

The following error messages indicate that you have
made a mistake in your program or have used a feature
that isn't inpleniented yet.

<nairíe> cannot start a statement

Instant-C was expecting a stateinent, but
found the <name> instead.

<name> has no procedure code.

You have typed a command which needs a

def ined function as its argument .

Instant-C doesn 't recognize the name
given. MisspellÁngs are the most: likely

..;,,.j-í'...,' :'í' 1·jf·.'| Page 125
m, r¿,:"()l¿t'$,.,.lr·'"·, 'jí:
,l. ! Ai,: ;": i¿l¿: l.j\,/'ti"

User'sManual '^Instant-C"
error messages

cause of this error.
"<name>" invalid in function header

Instant-C was processing the formal
parameter list in a function header and
found something other than a comma, a

name, or a right parenthesis.
<name> is already in the dictionary

You have tried to rename a variable or
function to a nante which is already
defined as something else.

<name> 13 not a function

You have tried to call a function, and
the <name> is not a function. This

error may be caused by a missing
operator in a parenthesized expression.

<name> is not a member of struct/union <name2>

The nante following a . or -> selector
operator is not a member of the
indicated structure or union. This

error can be caused by spelling errors
-- either at the point of this error or
in the template for the struct or
union.

<name> is not a parameter of this function

Instant-C does not recognize the
parameter <name> in the argument
declarations for this function. This

error is usually caused by a

misspelling, either in the function
header or in the argument declaration.
It can also be caused by a missing left
brace at the start of the function.

<name> is not in the dictionary

You have typed an Instant-C command such
as #rename and the name argument to the
command doesn't exist. Misspellings can

Page 12 6 Coyy'it;ht 1g¿jti

by Haiional Systtm's, ifÍC

Al ! l'í'C)i4 t S: R[': í" ÍE\"F j';

ERROR MESSAGES

often produce this error.

Áddition of two pointers

You have tried to add two pointers
together, an operation which is not
defined in the C language.

Arithmetic on function or array pointer

You are trying to do pointer arithmetic
on a pointer to an array or function.
since Instant-C doesn't know how big the
pointed tQ array or function ís, itcan't do the arithmetic.

Arrays of functions are not supported

You have tried to declare an array of
functions, which is not supported in c.
You nay want to declare an array of
pointers to functions, which is
supported.

Attempt to subscript non-array' and non-ptr
You have tried to apply the subscript
operator (I) to an expression which is
neither an array name, nor a pointer.

BREAK not valid outside of loop or switch

Instant-C found a break statement which
appears to be outside of any loop or
switch statement. Check for misplaced
braces.

Buffer empty; no changes wade

You have used Ctrl-F or thr' F comniand to
leave Edit Mode, but there was no text
in the buffer to compile. Instant-C
switches to Command Mode, and does not
save any compiled functiorts or data.

Call on non-function expression

('iq ,'i.;!L ""l,j : Page 12'7

r:y l',: ' :}y..:t
,.

Í'ÍI

User'sManual Instant-C"'
ERROR MESSAGES

You have tried to call a computed
function address, and the computed
expression does not address a function.
This error may be caused by a missing
operator in a parenthesized expression.

Called undefined function <name>; aborted

You have invoked a function which,
directly or indirectly, called another
function which has not yet been
defined. This can be caused by
misspellings, or because you forgot to
include a source file.

can't apply . if not struct/union

Can't apply -> if not struct/union

You have used one of the struct/union
member selection operators on an
expression that is neither a structure
nor a union.

Can't apply -> to non-pointer

The expression to the left of the ->
operator should be a pointer to a struct
or union and isn't.

Can't create <name> for module

You have issued a #savemod command, but
Instant-: " couldn't open the file for
writing. This error might be caused by

full disks or disks that are read-only.

Can't create file <name>

Instant-C can't open the outfile file
you requested in a #save command.
Possible causes are a full disk or a

read-only disk.

can't increment/decrement by pointer

You have tried to use a pointer
expression as the right operand of the

page 12 8
("i y)\,· f ,íy',j " "i'-'

,n; i Al' í'd i : i :n"'.2 i ",·'1 ! :

"' User'sManua!Ínstant"C"
,,,,, M,,,,,,,

+= or -= operators.

can't open output file "<name>"

Instant-c was unable to open a file for
output, possibly because the disk was
full, or because the disk was
read-only.

Can't parse <name>

Instant-C doesn't know what to do with
the first word on a line in command
mode.

Can't store into expression

Instant-C thinks that the left operand
of an assignment operator is an
expression that doesn't have a valid
lvalue. This can be caused by omitting
a unary * indirection operator.

Can't use . if not simple struet or union

The . member selection operator can
only be applied to struct or union
lvalues. Your code uses a more
complicated expression. Possibly caused
by a missing * (indirection) operator.

Constant expression overflow processing <name>

The constant expression indicated has
overflowed ljnstant: -C's internal tables.
You can get around this limitation by
breaking up the expression using
multiple #cieMne's. We believe that
this error should never occur in normal
programs, so please notify us if you get
this error -- we would like to see your
program.

CONTINUE not valid outside of loop

Instant-C found a continue statement
which appears to be outside of any loop

or switch statement. This error can be

': t ': y' ', ;ij
"

',"t'. :
" " " " " " " " " " " ""page iZ"9"

'1 l ; till' ' ' 1"{c; fif 4 R \ií '

User'sManual "'Instant-C'
ERROR MESSAGES

caused by misplaced braces.

Editing aborted; changes not made.

You were editing program or function
text, and gave the ctrl-Q or Quit
commands. Instant-C has thrown all of
your text away, and has not made any
changes to your programs.

else not following if () statement

Instant-C found an else which isn't
connected to a previous if statement.

Error writing <name>; aborted (disk full?)

Instant-C encountered disk error while
writing a module file. This error is
usually due to a disk filling up.

Error writing header for <name>; aborted

Instant-c encountered disk errors
writing the module header while it was
trying to execute a #savemod command.
This error is usually due to a fulldisk.

Function returning array not supported

You have tried to declare a function
which returns an array as its value.
You shüuld check the parenthesis
structure in your declaration. You may

also want to return a pointer to an
array, which is the only way array
values can be returned in C.

Function returning function not supported

You have tried to declare a function
which returns a function as its value.
You should check the parenthesis
structure in your declaration. You may

also want to return a pointer to a

function, which is the only way
function-related values can be returned

Page l 3 O ()CJ7y'l ¿;'if ' t'."-:

tu l: ,2||()l",!í !"'Y',|t'"l': |j"Q

At l ltj¿ zü l '1 ffi Sfí J'l! :"

"·" User'sManualInstant-C
ERROR MESSAGES

in c.

getmem: no storage

Instant-C has run out of storage for its
internal tables. Save your programs to
disk and start a new Instant-C session
by quiting, and giving another IC
command.

I'm sorry, but I don't know the word "<name>"

You have used a word that Instant-C
doesn't recognize. This is most likely
a misspelling either at the point of
this error or in the previous
declaration for this word.

Ignoring unfinished #define definition

You have entered the pre-prQcessor
directive tMefine as the last word in
your input file. Fix this by removing
the #deHne or by adding a word to be
defined.

Ignoring unfinished data declaration

Instant-C was expecting a name in a data
variable declaration, and found
something else instead.

Ignoring unfinished object definition

Instant-C encountered an end—of-file
while processing a defobj command.

Incomplete expression

Instant-C encountered an end-of-file
while parsing an expression.

Índirection not on pointer

The right operand of a unary *
(indirection) operator is not a

pointer.

(:cj; ,

)G'"i!
1'hí4

" " " " " """ " " " "'" " " "" ' " " " " " " "" "'""" Page l 3 I
1)\,' lhil o": 'íi ::;'}'!;ter7':, l'j(,
/'\t !- lti(i'-l '!7 ;y SI l·'Vi i)

User'sManual Instant-C""
ERROR MESSAGES

Insufficient code buffer space left
Instant-C doesn't have enough space left
to create the buffers it needs to do
code generation. Save your source
programs, and start a new Instant-C
session.

Local typing is too complex

You have entered a complicated
declaration that has more levels of
attributes than Instant-C is able to
handle. This error is very unlikely;
therefore, if you get it, check your
source for other errors in the indicated
declaration.

Missing (in function definition header

Instant-C was expecting a left
parenthesis as part of the definition of
a previously referenced function.

Missing (in function header

Instant-C was expecting a left
parenthesis in a void function
definition header.

Missing elose quote in char literal
You have typed a character literal, but
the trailing quote is missing.

Missing comma in function call

You have emitted the comma between
arguments in a function call.

Missing formal argument name

Instant-C was expecting the name of
another formal parameter in the header
of a function definition. This error
can be caused by omitting the right
parenthesis in the header.

Page 132 ('()l)yr|cll I '?d¿', i

j"jl l?c¿!|L)/)¿i) SAc: k'm:i l' i.
fu, ! li t RíTG |{[fpj j¿'Y't i]

"' User'sManualInstant-C
__,.____ERRQR MFqe7CFQ,

Missing inital quote in char literal
Instant-C was expecting a character
literal, and didn't find the initial '.

Mssing initial quotes in string literal
Instant-C was expecting a string
literal, and didn't find the initial ".

Missing left parenthesis

Instant-C was expecting a left
parenthesis after an if or while, but
didn't find it.

Hissing left parenthesis in function call

Instant-c was expecting the left
parenthesis starting the argument listin a function call.

Mssing member name after .

Missing member name after ->

Instant-c was expecting a member nante
after the struct/union selector
operator.

Missing name in declaration

Instant-C didn't find the name of the
object you were declaring in this
declaration.

Missing parenthesis

Instant-C can't find the left
parenthesis that is supposed to follow a

for.
Missing quotes at string end

Instant-C reached the end of a line
while processing a string líteral.
Instant-C does not allow string líterals
to be continued over more than one

\ .'[', : t:" ': '¿·"í page 13 3

bí,, ,
1"\,¿,t i",: !7\' ·tt 'l. - I' L

/i,| í ' 'I ' '. P! :'¿ : .",:'1 ! \

User'sManua! '"^Instant-C
ERROR MESSAGES

line.

Missing right bracket

Instant-C expected a right bracket].This error can occur in array
declarations. It may be caused by an
invalid expression for the array size.

Missing right bracket (I)

You have subscripted a pointer or
pointer expression, and Instant-C can't
find the right bracket (I) where itexpects to. This error may be caused by
a syntax error in a subscript
expression.

Éfissing right bracket for <nante>

Instant-C expected a right bracket to
finish the subscripting of <name>. This

error is usually caused by a syntax

error in the expression for the
subscript value.

Missing right parenthesis

Instant-C expected a right parenthesis
). This error can occur in complex
declarations, function declarations, for
statements and in other constructs.

Missing right parentk.'sis in function call

Instant-C expected the right parenthesis
which terminates the argument list for a

function call.
Missing right parenthesis in function declaration

Instant-C was processing a function
declaration and was expecting a right
parenthesis immediately after the left
parenthesis. This error can be caused
by having too few right braces in the
preceding function definition.

Page 13 4 (-:('r)\'[|(;l"|l i 'lu.j

l'y fíjúonal f'.,'f;: f'l7\';, 1'\('

AL : fi'i(;f·!"l '} ttl Si Fj'\/k : j

"' User'sManualInstant-C"
ERROR MESSAGES

Missing semicolon

Instant-C is expecting the semicolon
between the control expressions in a for
statement header. This may be caused by
an invalid expression.

Missing semicolon U) before "<name>"

Instant-c thinks that it has completed
parsing a statement, and expects to find
the semicolon to terminate the
statement.

Missing while in do-while statement

Instant-C can't find the while keyword
at the end of a do loop. This error can
be caused by misplaced or missing
braces.

Name <name> is not a constant

You have used a name that is not a

#define'd constant in a place where
Instant-C was expecting a constant
expression. This error may be caused by
Tnstant-C's limitation that Mefine
expressions must be constants.

Neither tag nor template for struct

mither tag nor template for union

Instant-C expected a tag name or a left
brace (starting a template) after the
word struct or union.

No file name given
No file name was given in a #save
command, and there is no default name
from a previous #save command or from
the initial Instant-C command line.

No more function space left; function not updated

" '""":""" ""' "" " " ' """ " " " " """" """ Page 135

: ,', l't, : ' «.i{ ' .:i :}y:.!f"t)!-.)'\c

Áí l jqi -'m i !, j?f ::1 !Ev'í I}

Use'"Manu"' Instant-C"
ERROR MESSAGES

Instant-c has run out of space to update

or create new functions. The editing
you just did cannot be saved. Save your
source programs on disk, and start a new
Instant-C session.

No previous object to edit

You have given an ed command without a

name to edit. Unfortunately, there is
no name to use from previous edits
(because this is the first ed command of
your session).

No space to create function

Instant-C has run out of space to create
new functions. Save your source
programs, and start a new session.

Not call on pointer to function

You have entered a computed function
address call, but the computed
expression does not result in a pointer
to a function. This error may be caused
by a missing operator in a parenthesized
expression.

object is not currently open

You have entered a endobj command
without previously issuing a defobj
command for the sanie object.

Old file <name> already exists; aborted

You have given a #save command naming or
implying a file that already exists on
the disk. Instant-C will ignore the
command.

Out of input, check unterminated remark

Instant-c encountered the end of input
while trying to parse a statement. This

error may be caused by an incorrectly
terminated remark or string literal

page 136 (: (,L-1:.·[:,::!;t ';.ty·;

i:ui H¿:í 1|(')1)¿·j! (':>'¥"".ít"\ñ i: : ; '{

/'-'l !_ lt!t ;j f I i--: 4í !?Í i ' c! :

" User'sManualInstant-C
ERROR MESSAGES

which has swallowed a right brace (})·

outfile: invalid destination

Instant-C didn't understand the name you
gave as the destination of an outfi1e
command. The valid names are: printer,
crt, or both.

Pointer cannot be left operand of <operator>

You have tried to use a pointer
expression as the right operand of an
assignment operator.

pointer cannot be right operand of <operator>

You have tried to use a pointer value as
the left operand of an assignment
operator other than =, +=, or -=.

premature eof in constant expression

Instant-C was processing a constant
expression (in a tlCíefine or array
dimension) and reached the end of
input.

Premature EOE' while parsing arg declarations

Instant-C was parsing the argument
declarations of a function when it ran
out of input.

Ran out of input while compiling (Missing } ?)

The code compiler has reached the end of
your program or source file, but does
not have a complete function or data
definition. This error can be caused by
a missing right brace in some cases.

Redefining data <naine> as function

You have entered a new function
definition, but there is already a data
variable with the same name.

(.. [. :',:"' ' -'¿i : Page 13 7

j,, i t,;l (,",i :":'.'. lt-':i,µ f'iC

;lj , i íi; jl 'i ', ffí :.f lli'f l ;

User'sManual Instant-C
ERROR MESSAGES

Remark space overflow

Instant-C has run out of space to store
remarks from your programs. Save your
source programs, and restart a new
session.

Rename: missing name

You have omitted the name to be changed
in a #rename command.

return only valid in function definition

The return statement may not be typed at
command level, as there is no function
active to return from.

sizeof constants not implemented yet

Instant-C does not yet handle sizeof in
constant expressions.

Sorry, but "<name>" has no source to edit

You have tried to edit something other
than a function or data variable, and
Instant-C doesn't know how to create a
source version of the object. TPÁs
message would result from typing "ed

n
T "

sorry, but <name> cannot start a declaration

Instant-C was expecting a declaration,
but you have entered a name, statement,

or command instead. This error can be
caused by #incluCíing a file with
executable statments, or by leaving out
the initial left brace ({) in a function
definition.

sorry, but <name> is not implemented yet

You have used a valid C-language syntax
that is not yet handled by Instant-C.

Page 13 13 (: :)[)y"gllj ' "6,1

t)y f'a: ic'm' Si\,'g,É(}lÍj: ,F)(j
/\,t l |{|\'íH]"r, Rl ':,j |J\,,/{"['

^ User'sManualInstant-C"
ERROR MESSAGES

Sorry, can't find file <naine>

You have named a file in an #inclucie or
#infile command which is not in the
currently attached disks. The command
is aborted.

struct/union <name> already has template

You have defined the structure's and/or
union's template (the declarations
enclosed in { }) more than once.

struet/union <name> has no template yet
You are trying to select a íneinber of the
named aggregate with the . or ->
operator, but no list of members has
been defined in a template for the
struct or union yet.

subtraction of dissimilar pointers

You have tried to subtract two pointers
which do not point to the sane type of
object. Instant-C does not know how to
scale the resulting difference.

Subtraction of pointer from integer
While Instant-C allows you to subtract
an integer from a pointer, subtracting a

pointer frcm an integer is not defined
in the C language.

symbol <naine> is already a rríeníker of struct/union

You have used the same member name for
two different elements of a

struct/union.

symbol <name> is alreaaY a tag (struct/union)

You are trying to define a new union
which is already defined as a struct (or
a new struct which is already a union).

Cc:gy. ichi 191',4 Page 13 9

t/v F),ti|orlIl| Systems, k:c
A! l FhGlllC l"·íl:S1 Rvll {'

User'sManual "Instant-C'
ERROR MESSAGES

The name <name> is already declared as something else
You have declared the same name more
than once. Since this error occurs
outside of a function definition, it can
sometimes be caused by incorrect nesting
of braces in functions.

Too few args in call to <name>

You have tried to call a function with
fewer arguments than it was compiled to
receive.

Too many args in call to <name>

You have tried to call a function with
more arguments than it was compiled to
receive.

Unterminated remark swallowed program

The closing */ is missing front a

remark. As a result, Instant-C has read

all the way to the end of your program.
The cursor should point to the beginning
of the remark.

!3.2 Internal Errors

The following messages all start with two asterisks
and indicate an internal error or bug .in Instant-C.
If you receive one of these error messages, please
report it to Rational Systens, Inc. so that we can
fix the problem. Any copy of the program causing the
error or the sequence of commands that resulted in
the problem will help us track down the bug.

**<name>: insufficient space for buffer

**(<name> is not a property)

**addcode: procedure table full

Page 140 """ " ""' """"""
(: c)[),'[|c|"l ';j¿', l

L)t F",,ttl()||,t : ':\'1 ,[' í". I' I,

"'^ User'sManualinstant"C"
,,ROR M,,,,,,,

**addfunct: broken chain

**addliteral: broken chain

**addprmpt: too many prompts

**call relocation buffer overflow!!

**can't generate code for <name> <name>

**char literal unfinished at line end

**code buffer overflow!!

**codefuse: overlapping storage

*Melsyin: symbol <name> not found

**droppriript: unmatched prompt

**Düplicate procedure table entry

**Early escaped eos

**genread: no code to generate

internal error ****

**Internal error in procargs

**Instant-C restarted

**Invalid expression -- not declared

**Invalid size for increment or decrement

**level error <#>, object is <name>.

**litvalue of non-literal

**makecode: overlapping code

**memfuse: overlapping storage

**Naine <name> is missing during initialization
**No code for subscripting

Page 141
L '. ¥ 4. '-4 .
ÍJ'y Á,ln,,í',í' .";Y','.tj;): '; i'íg

,áj t !?l,",H'fi f'l :ii j?\/f_ I)

User'sManual "'Instant-C
ERROR MESSAGES

**No code to generate for <operator>

**No DATAADDR property -- invalid code generated

**No generation proc for <name>

**No leftgen for <operator>

**No object code for <name>

**No rightgen for <operator>

**No size info for <type name>

**No staek object found

**No type info to process <operator>

**null hf1ast component

** null inproc **

**Núll object to addprop <name>

**object <name> doesn't have address code

**object <name> doesn't have value
**premature termination of file list elements

**PROPVAL with null clist
** recursive code generation
**Recursive remark handling

**Relocation buffer overflow!!

**SETPROP with null clist
**string code generation buffer overflow!!

**There is no object code for <operator>

**UGEN: no code to generate

Page 14 2 GÜj"7',',' fG't'; i 9t?.<t

tí, '·?,"fl\¿}'1¿É'[Sí>,ic'tt: ': i íc
,/\, : RIG! i'!" S fil y t ¿i,-i l

,

' User'sManualInstant-C
C,MMAN,,

Appendix C

Summary of Instant-c Commands

This appendix contains a list of all of the
commands available to the Instant-C interpreter,
together with a brief description.

In addition to the listed commands, any C language
expression or statement can be issued as a command.

If the expression has a value, i.e. is not a call on
a void function, its value will be printed after
evaluation.

All commands are available with and without the
leading '#' in the name: both forms are provided in
case you have a routine with the sanie name, e.g.,
rename.

C.l User Commands

¶back Display a trace back, showing all
functions called to the point of an
interruption in execution.

Meiete name
Deletes name from the current memory
file.

Éldir d: filename.ext
Display directory. filename.ext may
include * and ?. #index(#dir command)

fed Edit the last function, data, or
#define'd literal edited.

, , , , ,,,, ,
, . , , ,, , ,

" " " " "" Éage i4ii
(;"V ' i - i (" '.' $)',.".Í f"i' 1·, ",.
It,, i i-" ;: i7',', j-;; i,: t\\,"i t"

User'sManual ""'Instant-C
COMMANDS

#ed name Edit the function or data or #define'd
literal. If name doesn't exist yet, itis assumed to be an int function.

Élerase d: filename.ext
Erase file from disk.

#¢Jq Resume execution of an interrupted
program.

Élinfile "filename"
Read and execute interpreter cornands
from the named file.

Hist name Msplay the C-language source for the
named function, data variable, or
MeUneá literal.

7list Display the C-language source for the
entire contents of the current file.

Éñistfiie ijisplay the memory files loaded into
Instant-C.

#listnaine Display the. names of data variables,
íÉdefir'.es, functions, and #incíMed files
found in the current memory file.

tllist name Print the C-language source for the
named function, data variable, or
fjdefined literal on the standard
printer.

lÉllist Print the C-language source for the
entire contents of the current file and
the standard printer.

fload d: filename.ext
Read and compile the file into your
Instant-C workspace.

#1ocai function name
Interpreter command line expression
evaluation occurs in the context of
function name. If function name is
omitted,"" will display the"" current
function context, if any.

page 14 4 U)v\,,' l ,;'ú ; : ¿i '!

L'y' l'c¿l't)"(l' j"\'jjf"7u ,,'ll
Iii i l: :j(4ll ! i: lji ill |""j'[! I

' User'sManualInstant-C'
,,MM,N,,

#inaü: e filename start function
Create a disk file to be astand-alane
version of your program. Ifstart function is omitted, execution of
the program will start with the _.main
function.

énew memory_file
" Creates a new memory file, or clears the

current memory file if no memary__fi1e is
specified.

#outfile {printer i crt i both}
Redirect the output from Instant-c to
the indicated device. outfile printer
is useful for naking transcripts of
Instant—C sessions.

Epc location count
D: ísplay memory, in character format, for
count characters.

Épd location count
Display níewory, in decimal format, for
count words.

llpo location count
Display memory, in octal format, for
count words.

Íps location count
Display memory as character string
pointers, for count words.

llpu location count
Display níemory as unsigned decimal
integers, for count. wQwiís.

#px location count
Display wemory, in hex format, for count
words.

Éiquit Terjninate the Instant-C session and re-
turn to your operating system.

ErenaÍne oldname newname
Change the name of an object in your C

program.

,.,,',: : '.¿¿.t Page 145

User'sManual "m

Instant-C
COMMANDS

#reset level number
Dispose of interrupted execution
environments, back to the optional
level number.

#run commandaz"guments
Execute your c program as though it were
invoked from operating sYstem command
level. Execution will start with
main(argc, argv).

#save filename
Write the current inemoa: y file to a disk
file. The disk file must not exist
yet.

#savelaod filename
Create a new copy cjf Instant-c, together
with the current workspace. This
command can be used to customize
Instant-c, or to save your work in
progress.

#seginents Display the address{ maximum size, and
current used sµace in each of the data
areas managed by Instant-C.

#SM1I Execute one or more operating system
commands under PC-DOS or MS-DOS.

#step Resume execution for one statement.

tlstep exec c statement
Executes the C statement/expression and
stop after the first statement is
executed.

llstep in Resume execution for one statment,
without stopping in any nested functions
that nay be called.

l|step out Resume execution until the next function
is called.

kstep return
Resume execution until the current
function returns.

Page 14 6 G(jE}y'lg|Í! 198á

¿j'y ria l'c.mal Systems. Inc

ALL HIGHT S: RF SF RVE jj)

'" User's ManualInstant-C
COMMANDS

jjsystem Terminate the Instant-C session and re-
turn to your operating system.

#trace function name
Breakpoints will occur for the function
upon call and return.

#type d: filename.ext
Display disk file on screen.

Éuntrace function name
No more function call breakpoints will
be issued for the function.

#use Display the name of the currently active
file (the one that will be written if a
#save command is given with no name

#use name Switch to a different file in the
workspace.

C.2 Internal Commands

The following commands are currently available to
help debug Instant-C. They may not be in the product
when it is released for the general public.
#císym function_nanie

Display the arguments and local variable
of the named function, struct, or
union.

Édproc function name
Display the compiled code for the named
function.

Éedconfigure
Read in the configuration files to
reconfigure the built-in Instant-C
editor. This is similar to doing an
ed @ command for the stand-alone
editor.

(f';·',/',,}'- ' Í 9f-,.i Page 14 7

Áj t r|(Ét ! i $"] Iii Z:t""Á\il ,j.

User'sManual "^"

Instant-C
COMMANDS

#fsource name
Display the internal symbol table for
the named object.

#resetint Prepare system interrupt vectors for
interrupts used by Instant-c
internally. Use after setting variable

intnumber.

Éltime Display the current tinte and date.

Élvariable name
Allow a variable number of arguments
when calling function name. This
command is provided to support printf
and scanf in the library.

Étwhat hex address
Display the name of the object whose
symbol table entry is at the indicated
address.

#wiiere naíne Display the hex address for the symbol
table entry for the indicated name.

"Rage jÁá" "" " "" """ " " " " " "" " """ "" "
t: ,,,- , r,,,Pfl 1,,,t i

AL : f?l(",lí ' S '-'i $A it\'í l ;

Instant-C"' User's Manual

LANGUAGE SUMMARY

Appendix D

Language Summary

This appendix contains a brief list of all the
features in Instant-C, presented in the sanie order as
chapter 13 of K&R.

(This appendix will be provided in a later
release.)

Page 149
\ .(tj"\' ' " 'l ' , .'ft-l

l: í" íí,"!|í,: ',li f'|y: 2l"rTl:,. !ttC

Ail. !'l(: !il')¡Íls.IF;"L-'bl'"'

User's Manual ""Instant-C
INSTALLATION

Page 1 sn ('.l: !'}'íí".(jl'! 'í,l!\4

¿iy ;l: 2!'O'"¿i: ít;y';í£"iÍ?: 2, mc

AN íj" ||TS,pf-q{·L?'d'F['

" User'sManuatInstant-C'
INSTALLAII_QN.

Appendix E

How to Install Instant-c

This appendix contains any special changes or
instructions necessary to install Instant-C or to
ínake customizations to Instant-c.

Before start.ing to use Instant-C, make at least two
working copies of the distribution diskettes, and put
the original copies in a safe place. If you are
working in a single floppy disk environment, you will
need to install your operating system on the disk so
as to make your Instant-C working disk "bootabíe".

If you are NOT using Instant-C on an IBM-PC or
compatible, you should refer to the sections below
about "Configuring the Keyboard" and "Confíguring
Screen Output". These sections describe the steps
necessary to adapt Instant-C to your computer and
terminal.

E.l List of Distributed Files

The following files should be present on your
Tnstant-C master disks:

MS-DOS or PC-DOS Version

IC.EXE The Instant-C program wi.th libraries.
When you are running Instant-C, this is
the only file you will need.

(í'r¿'\/i Ít¡>' wúi4 Page 15 l
1)'/ l{"[t|/'}r4-íj $:\·":1("r]": i'j:

Al l íi)(;;-j"'y: Fí' SE 'ii.'! t I

User'sManual 'Instant-C"'
INSTALLATION

ED.EXE The stand-alone version of the Instant-C
editor.

ICBASE.EXE The base Instant-C program without
libraries. You need this to create an
Instant-C for small memory space or with
completely different libraries.

SCREEN.EXE The screen configuration program. Ifyou have an IBM PC or PC/XT or
compatible, you don't need this.

KEYBOARD.EXE

The keyboard configuration program. You
can use this program to change the
keyboard usage of ljnstant-c's editor.

CP/M-86 version

ic.cmd The Instant-C program with libraries.
When you are running Instant-C, this is
the only file you will need.

ED.CMD The stand-alone version of the Instant-C
editor.

ICBASE.CMD The base Instant-C program without
libraries. You need this to create an
Instant-C for small memory space or with
cQmpLete: y different libraries.

SCREEN.CMD The screen configuration program. Ifyou have an IBM pc or PC/XT or
compatible, you don't need this.

KEYBOARD.CMD

The keyboard configuration program. You

will use this program to change the
keyboard usage of Instant-C's editor.

Page 152 (/{;lÍy'|": "Il '-'"·'
!) y

f-O : l?)l'jl : ' y.,té , i i"; ?' \'

"' User'sManua!Ínstant"C
,N,,A,,A,,,N

All versions

README.DOC Special or late documentation not found
in this manual.

hello.c The simple test file to demonstrate that
Instant-c is working.

LIB.IC The master source file for the libraries
in Instant-C. It includes the other .IC
files.

ctype.ic Library source file containing the
character classification and
transformation functions.

strlib.ic Library source file containing the
string handling functions.

MEMORY.IC Library source file containing the
memory allocation functions.

stdio.ic Library source file containing the file
and sYstem input/output functions.

PRINTF.IC Library source file containing printf,
scanf, and their supporting routines.

FUNCVAL.IC Library source file containing
expression display functions.

INTLIB.IC Library source file containing interrupt
handling and signaling functions.

lsi.c The library source in CTYPE.IC,
STRLIB.IC, MEMORY.IC, STDI1).IC,
PRIMTF.IC, and FUNCVAL.IC. This file is
included to simplify the building of a

standard library version of Instant-C.

STDIO.H This is the header file that declares
commonly used objects, such as the FILE
typedef for stream file IO, the #define

(,.·,-., ',,,lj' ,.
Page 153

:. , '{""' ;,,."

User'sManual lnstant"C"'
INSTALLATION

for NULL, etc..

INTLTB.H This is the header file for use with
INTLIB.IC. It contains structure
definitions such as REGS and SREGS (used
with the call, interrupt, and segread
functions).

TCEDSCRN.CFG

The screen drawing configuration file.
It is created by the SCREEN program and
read by the editor during
configuration. As delivered, this is a

configuration for an ANSI
standard/VT-lOO terminal. This file is
not used for IBM PC versions.

ICEDKEYB.CFG
The keyboard configuration file. This

file is created by the KEYBOARD program
and read by the editor during config-
uration. As delivered, this is a config
uration for an IBM PC keyboard, and uses
the PC function keys.

ICEDKEYB.MNU

This is a data file used by the KEYBOARD

progran to name all of the functions
possible in the editor.

E.2 Confiqurinq Screen Output

If you are using Tnstant-c on an IBM PC or PC/XT or
compatible, you don't need to configure the screen
output and should skip this section.

Since Instant-C uses full screen operations, it is
necessary to tell Instant-C how to draw and perform
various functions on the screen. You can do this by
running the program we have provided, SCREEN. SCREEN

is an interactive application which builds or
modifies a configuration file containing
screen-driving character sequences. The
configuration file (ICEDSCRN.CFG) is then read by

Page 154 (: 'bL:\y::\;!)l 1"¿\.1

"y' Á¿}l'Q"'a S.
,, l ,

:i'c'
AL i Fll(itt T :G W-SF '?'jj-j)

" User'sManua!hstant~C"
,N,,A,,,,,,N

Instant-C to customize the screen editor to your
terminal.

Note: a configuration file is provided for IBM PC

or compatible machines. If you have one of these
machines, you will not need to specify any screen
operations. SCREEN will let you override the default
screen attribute selections, however, should you want
to do SQ.

To run the screen configuration program, simply
type:

A>sc: reen

The program prompts with a menu of choices and
screen function. The normal way to run SCREEN is to
type the number of the screen drawing functions, and
answer the prompts. You will need the manual for
your terminal to enter the proper sequence of
characters. The 'T' tests only test what has been
entered, so your strategy should be to get cursor
addressing right, then clear screen and (if your
terminal has it) clear to end of line. Then use 'T'
after each change to verify your progress.

The 'B' for numeric base is for entering characters
by their value, rather than the actual keystroke.
(Some manuals use decimal, some octal, and some
hexadecimal.) If any of your sequences use a
carriage return, you will need to enter a numeric
value for the CR, since SCREEN uses return as the
delimiter to indicate the end of a sequence. BE SURE

to use the 'T' conunand to test your configuration
before writing it to disk. You can get some
spectacular, but undesirable, effects if your screen
configuration is wrong.

After running SCREEN to create your configuration
file, you can configure the keyboard (see following
section). After preparing the configuration files,
you will need to build or modify Instant-C and ED for
the changes to take effect.

{"'t: ,-",
¿l;j 1'1[44

" " ' ' ' ' " ' " " page""'i"55"

fil ! :'J ," '
,
" j':, Rl Sí |-í',if l ')

User'sManual 'Instant-C"
INSTALLATION

E.3 Confíqurinq the Keyboard

You can reconfigure the key function interpretation
of Instant-c's editor. This key reconfiguration is
designed to adapt Instant-C to different computer
keyboards and terminals. You can also use the key
reconfiguration feature to make the Instant-c editor
more like some other editor with which you are more
comfortable. You can reconfigure the keys on an IBM
pc or PC/XT computer if you so desire. See Appendix
F for details about all of the key functions.

Note: you do not need to reconfigure the keyboard
at all to use the Instant-c editor. This feature is
provided solely to make the keyboard interface as
useful as possible for you.

To reconfigure the keyboard, you should run the
KEYBOARD program provided on your Instant-c master
disk. The KEYBOARD program interacts with you and
creates or modifies a file containing the keyboard
assignments. The keyboard assignment file is then
read by Instant-C to control which keys are bound to
which editor functions.

If you are not using an IBM PC or compatible, you
must run SCREEN, the screen configuration program,
before running the keyboard configuration.

To run the keyboard configuration program, simply
type:

A>keyboard

The program prompts with a menu of choices. You
can type 'H' and get the menu back again. The most
frequently used command is 'B' for defining key to
function bindings. Key bindings can be overriden
just by redefining them. You can map several keys to
the same function if you wish. Use the 'D' (for
delete) command to eliminate a key binding
completely.

Page 156 (;jf'í, T'(¿ll! 'tj'-'!

l""," l |cít'{)'),l| S',,': 1\'g, : " ',,'

" User'sManüalInstant-C'
INSTALLATION

with Bind, you essentially teach the program what
keys or sequence of keys are to perform what editor
function. When defining, the keys or sequences of
keys can be entered just as you would type them when
running the editor, followed by a return. Note: some
ASCII terminals have function keys which send several
characters at a time and include a carriage return.
If this is true for your terminal, use the 'S' option
to set the delimiter to some other character ('l' is
a good choice).

After running KEYBOARD to create your configuration
file, you will need to build or modify Tnstant-C and
ED. The new configuration takes effect when:

- You run an unconfigured editor (as in ICBASE).
In this case, configuration files must be
present in the directory for the editor to
work.

- For Instant-C, you issue a #edconfigure
command. See sections on building and modifying
Instant-c, below, for instructions on how to
make the configuration a perinanent part of your
Instant—C.

- For ED, you go through the editor configuration
process ("ed (d"). See "Configuring a New ED",
below.

E.4 Building a New Instant-C

Tnstant-C is delivered to you in both of two forms:

l. A pre-configured forní with the standard library
built into the workspace and with the editor
configured (IC).

2. A "raw" form, with no configurations performed
(ICBASE). All components needed to reproduce
the pre-configured are also provided.

,,,..,,k,j -'F-,; Page 157

\,i ' l¿j ,rl", ¢"'C"'l }¿\/j l'

User'sManual 'Instant-C"
INSTALLATION

Major changes to the standard library (particularly
replacing,reducing, or eliminating it) are best
accomplished by rebuilding Instant-C from scratch.
Minor changes, such as changed editor configurations,
modified or added library functions, or changes to
default settings of options are best handled by
"cloning" an Instant-C (described in "Modifying Your
Instant-c", below).

To build a new Instant-C from scratch, you need to
have the following files:
ICBASE .EXE for PC-DOS (and MS-DOS) or .CMD for

CP/M-86. The raw Instant-C programs.

LSl.C The source for the library files.
(Processed to remove all comments to
save data space -- future releases will
use the *.IC files instead.)

STDIO.H This is the header file with
declarations used by the standard
function library.

ICEDKEYB.CFG
The keyboard key assignment
configuration file.

ICEDSCRN.CFG
The screen drawing configuration file.

Once you have collected (or created) all of these

files on a Ungle disk drive, you can build a new
Instant-c by following these steps:
A>icbase

Start up the Instant-c base code.

i'Éedconfigure
Invoke the editor to force it to read
the configuration files.

É/load "lsl.c"
Read in and compile the Tnstant-C
library. (skip this and the next step

if your goal is to build a version
without a built-in library.)

Page 158 (: opyT|qf]l 1!-)8A

t'y f-l:i!1¢:)r-,a) Systems Ii' íc
Ai L R'GI'T S RF 3F fíVf r: '

"' User'sManuaiInstant-C
INSTALLATION

ioinit()
Initialize the library control
structures. (This should result in the
printing of a four digit decimal
number.)

use *
switch front LSl.C to the initial unnaned
memory file.

#savemod ic
Write out a customized version of
Instant-C. (You might want to write out
the new copy of Instant-C with a
different name until you have tested
it.)

quit
All done. Now you can copy your IC.EXE
or IC.CMD to whatever disk you wish
(subject to the license agreement, of
course!).

E ,_5

_
M.o.d,ifyi,ng Yo.u.r InStantÁC

You may wish to customize or alter Instant-C. For
example, you niay wish to use different keyboard key
assignments, or you may need to specify different
screen output for your display terminal (see
"configuring the Keyboard" and "Configuring Screen
output" below). You may need to add or modify
library functions for compatibility or convenience.

If you wish to sinply update a version of Instant-C
(to change some default setting, for example), the
process is much simpler:

Á>ic Start up your version of Instant-C.

(Make your modifications here)
You could edit a library function, or
change some systeín variables, add more
functions to the built-in library, or
read in a new editor configuration

. Page 159

/\ ' i " : ' , " 'I': :
'K "" ,"'

User'sManual ""'Instant-C
INSTALLATION

file.
#savem>i ic

Write out a new version of Instant-c.
(You may want to write it under a

different name, if you have the disk
space.)

quit All done. Now you can test your new
version and nove it to the appropriate
place for commands on your system.

E.6 Confiqurinq a New ED

You can also configure a new stand-alone editor,
ED, by a similar process. First, you should create
the screen and keyboard configuration files as
detailed in the above sections. Then, issue the
command:

A>ed @

The editar will read the configuration files, and
write a new version of itself back to disk with the
name CONFIGED.EXE or CONFTGED.CMD. You can now
install CONFIGED as your ED. (You should only do this
after testing the editor to be sure that you have
created configuration files that work.)

E.7 Changing Interrupts

Instant-C uses several software interrupts to
implement some of its features. Currently three
interrupts are used, although we expect to use
several more (up to 15), especially for debugging
support. The interrupts currently used are numbered
192 (hex OXCO) to 199 (hex OXC7). The reserved range
is 192 to 207 (hex oxeo to OXCF). Although all the
interrupts from 64 on are supposed to be available to
user programs, sorne operating sYstems or ROM bios

É'a"jje 160 " """ "" "" " " "
,:"',, \, ,', l ,,j-,f 1. r-' i

t:j l-;cl:'("".'!: S \'$í"t': 'í, ,
;; '

/j\(t Hl(íl2 ! ?, lit : i '-'t'f l :

"' User'sManualInstant-C'
INSTALLATION

codes use these interrupts. (CP/M-86 uses interrupt
224, and the ROM bios for the Heath/Zenith Z-lOO
appears to use the space for interrupt pointers 240
to 255 as data pointers.)

To accomodate these various systems, Instant-C can
change the interrupt block that it uses. The system
variable intnuinber contains the first interrupt of
the block of 16 used by Instant-C and can be changed
by setting it to some other number. After changing
#intnumber and before doing any other command, you
must give the #resetint command.

For example, to switch Instant-C to use interrupts
80 to 95 (hex OX50 to Ox5F):

intnumber = BO;
#resetint

WARNING: Failure to execute the #resetint command
after changing #intnumber can cause your system to
lock up or to fail in other mysterious ways.

After changing the interrupt block used, you can
save a new copy of Instant-C with the #savemocí
command.

E.8 Making the Mbrary Smaller

STDIO.H has two íÉdefines, incl float and
incl scanf, that control the inclusion of certain

support code in the library. _incl_float, if -

Éfdefined non-zero, will include support for floating
point formatted IO in the printf and seanf
functions. incl scanf, if fjdeELned non-zero, will
include the code for scanf. If you find that you run
out of code space in Instant-c you can edit STDIO.H
and MeHne one or both of these to zero and recover
the code space. After deternining which of these
services you don't need, edit STDIO.H, and rebuild as
indicated in Áppendix E.4, above.

m';,',.: " '·i,'g; Page 161
l .' i: r . ' ' '. If t 1:µ
, y c: (i' ti' ' '\'.'1' '
"\{ 'i" ,' ' ' "·, i'! f·i l':\'l {'

User's Manual "'Instant-C
KEYBOARD FUNCTIONS

Page 162 (.C}i"y",: !'l :í.ún:

Atí í'íi(il-!if·'.iqE: :';t¿¿',./'l!';

Instant-C"" User'sManual

KEYBOARD FUNCTIONS

Appendix F

Editor Keyboard Functions

Tbjs is a listing of all the editor functions that
are available, with details on how they may be used.
Not all functions need to be configured; many are
just slight variations of other functions.

Each function may be referenced by more than one
key or key sequence. Functions with arguments (41
execute (command), for exanple) may be referenced by
several keys, and each key can invoke the function
with a different argument. So, control-W could be
mapped to 41('W') to be a single keystroke 'Write
buffer to file' function, and control-R could be
mapped to 41('R') as a single keystroke 'Read file
into buffer' function. Another example, functíon key
FI could be mapped to 16(12) to provide a 'half-page
up' function, and function key shift-FI could be
mapped to 16(24) to be a 'full-page up' function.

The key assignment configuration program (KEYBOARD,
see Appendix E) is used to change the key functions
available to you.

F.l FunctÍons to Move the Cursor

3 cursor to beginning
Move cursor to beginning of buffer.

4 cursor to end
Move cursor to end of buffer.

5 cursor begin/end
Move cursor to beginning of buffer, or,

·· ib r
"'" """""""""'" " '""' " "" """""""""""""" """' """"" Page 163\.c}t'\í't|g| it 1f}j'g l

by Fía ho': ál S)'y'.qIer"$,
,

ÍllC
At.i rim'-' is l'f' SE jVü:

User'sManual 'Instant-C
KEYBOARD_FUNCTIONS

if already there, move cursor to end of
buffer. This is a single function that
can substitute for the cursor to
beginning and cursor to end functions,
above.

6 cursor left
Move the cursor left by one character.
If the cursor is at the beginning of a

line, it moves to the end of the
preceding line.

7 cursor right
Move the cursor right by one character.
If the cursor is at the end of a line,
it noves to the beginning of the next
line.

8 cursor up Move the cursor to the beginning of the
previous line in the buffer. You may
find function 20, cursor to beginning of
line, slightly more intuitive in
result.

9 cursor up vertical
Move the cursor to the same column in
the previous line. If the previous line
is too short, the cursor is placed at
the end of line. If the previous line
has no addressable character at that
column (because of a tab, for example),
the cursor is set to the next
character.

10 insert below, indent
Insert a line below the current line,
and copy the indentation from the
current line. Cursor is placed at the
end of the new line (is indented).

ll cursor down
Move the cursor to the beginning of the
next line.

12 cursor down vertical
Move the cursor to the saíne column of
the next line. If the next line is too
short, the cursor is placed at the end

Page 164 Cof y'i::"' '""·"
Ü,)y'Fí,íi|("f{|,t' I": y" Ii") " ; ·'

Instant C'^ User'sManual

KEYBOARD FUNCTIONS

of line. If the next line has no
addressable character at that column
(because of a tab, for example), the
cursor is set to the next character.

13 cursor left word
Move the cursor to the left, to the
beginning of a 'word' or token.

14 cursor right word
Move the cursor to the right, to the
beginning of the next word or token.

16 cursor up (decimal # lines)
Move the cursor up by the number of
lines specified in the argument, and set
to the beginning of the line. (You are
queried for the number of lines when
binding a key to this function in the
KEYBOARD program) This function is
useful for looking at the previous page
or screen of text.

18 cursor down (decimal # lines)
Move the cursor down by the number of
lines specified during configuratíon.

17 page up (decimal # lines)
similar to cursor up multiple lines
function, above, but takes into account
the cursor centering algorithm used for
the display. If the cursor is currently
below the center of the screen, it is
moved to the beginning of the center
line of the screen. If the cursor is at
or above the center line, it is moved up
by the number of lines specified.
Depending on the nunber of lines used,
the page up and page down functions
provide more consistent scrolling
behavior. Also, for numbers of lines
less than 25, you are guaranteeá that
every line will be displayed (not lost
due to cursor centering) while scrolling
through a buffer.

19 page down (decinal # lines)
Like the page up function above, but

(}'i;'.. i jG'f'i 'I-Úí4 page 165
!'y ií,j1l|'}: ",l :á'y·qjf'f|}·, itiC:
A! l j"q t hl ! : ¿g Flt í:í I?VL !j

User'sManual ""Instant-C
KEYBOARD FUNCTIONS

goes down through the buffer.

20 cursor begin line
Move cursor to beginning of the current
line. If the cursor is already at the
beginning of the current line, move to
the beginning of the previous line.

21 cursor end line
Move cursor to the end of the current
line. If the cursor is airead at the
end of the current line, move to the end
of the next line.

f.2 Functions to Delete Text

22 delete character
Deletes the character at the current
cursor position. All characters to the
right of the cursor are moved left by
one position. TE the character deleted
is the end of a line (the carriage
return), the next line is joined to the
current line, and all lines below are
brought up by one line.

23 delete left character
Deletes the character to the left of the
current cursor position. The cursor, as
well as any characters to the right of
the cursor, will be moved to the left by
one position. If the cursor was at the
beginning of a line (that is, the left
character is the carriage return of the
previous line), the return is deleted,
the current line is joined to the
previous line, and all lines below are
moved up by one.

24 delete line
Deletes the entire line. All lines
below the current line are moved up by
one. The cursor is positioned at the
beginning of the first line moved up.

Page I 6 6
ó ('t - , " ': ' 7'[l.j.!

. Y ' ;,-t,;', :± :"f'" i, " - ""
:,.' ,, '

"' User'sManualInstant-C'
KEYBOARD FUNCTIONS

25 delete to end line
Deletes all characters to the ríght of
the cursor on the current line. If the
cursor is at the first position of the
line, the entire line is deleted as in
the delete line function, above.

37 delete word left
Deletes from the current cursor position
to the beginning of the 'word' or token
to the left of the cursor. Characters
to the right of the cursor, and the
cursor itself, are inoved left by the
number of characters deleted. If the
end of the previous line is deleted, the
current line is joined to the previous
line (except for the characters
deleted).

38 delete word right
Deletes characters from the current
cursor position to the beginning of the
next 'word' or token. Characters to the
right of the cursor are moved left by
the number of characters deleted, and,

if the end of line is deleted, the next
line is joined to the current line.

35 rm-delete
This function is very useful. It: will
restore, at the current cursor position,
any characters, lines, or words deleted
by the delete functions listed above.

When a deletion is performed, the characters are
placed on a stack of deletions (in last-in-first-out
order). The type of deletion is remembered, so that
characters, lines, or words are properly replicated
when restored with the un-delete function. The
deletions stack is limited to about one thousand
characters, which includes about ten bytes of
overhead for each object (line, character, or word)
deleted. Uri-delete is useful for recovering from
mistaken deletions, or as a very quick way to move
text from one place to another, even between
different buffers.

(.¿X '.'rÍí'}|)' ' 994 Page 16 7

1",/ Lí;iíi()"¿: | Syblf'f'|s l '"l"
Ai t !íl(7 !"!"S F¥ftb r:y,t¿ l'

l h4User'sManual Instant-C
KEYBOARD FUNCTIONS

43 erase arg/(function)
This is hard to explain but easy-to-use
function. The idea is to allow you to
have the same key work differently in
COMMAND mode than in an input mode.

If the editor is in command mode, this function
will delete the last character of a command argument
(such as a file name or search target string). when
binding a key to this function during configuration,
you must specify another function number which is to
be executed if the key is entered during input mode.
Thus, the same key can be used to erase arguments in
command niode, and to perform another function (23
delete left char is recommended) when in input mode.

So, binding the Backe\pace key to function 43(23)

will always delete the character to the left. In
input or overtype mode, the character to the left of
the cursor in the buffer will be deleted (function
23): in command mode, the last character of the
command argument is deleted. Note: some keyboards
send the same code (co'ntrol-H) when you hit the left
arrow key as when you hit the Backspace key; in this
case, you will not be able to control the cursor with
left arrow and erase with the Backspace key.

F.3 Input Mode

Text typed to the editor can be treated as either
data, and stored into the buffer (Input mode), or
treated as commands (Command mode). Within input
mode, characters may either overtype existing
characters, or they may be inserted into existing
text. These functions control the selection of
Insert mode or Overtype node.

29 insert characters mode
This function selects Insert mode for
text input. The text character appears
at the cursor, and the cursor and any
characters on the line to the right of
the cursor, are moved right by one
position. Inserting a carriage causes

Page 168 (".c-)l)',': !Q'2| j'jf'.·;

t";·.t l [,í',!()í',ií í")y",fí'i' t;, ' I'
,/\ l lii(ii t i g; líj :,,i l?';, ! "

" User'sManuallnstant"C'
,,,,,,,, ,UN ,, ,,N ,

the line to be split into two Lines at
the carriage return. The cursor is set
at the beginning of the new líne, and

all subsequent lines are moved down by
one line in the buffer.

30 overtype characters mode
This function selects Overtype mode. In
this mode, a text character entered will
replace the character at the cursor.
The cursor is then moved one position to
the right. There are two special
cases. When overtyping a tab, the tab
is first replaced by the proper number
of spaces, and the first replacement
space is overtyped (this preserves
alignment of columns, for example). The
last character of a line (the carriage
return), is not overtyped, but rather
the line is extended by any text
entered.

39 toggle ínode
Go to Qvertype mode, or if already in
Overtype mode, go to insert mode. This
allows a single key to perform mode
selection.

27 insert a line
A new line is created and inserted
before the current line. The current
and all subsequent lines are moved down,
and the cursor is placed at the
beginning of the new line.

28 insert a blank
A blank is inserted at the cursor, and

all other characters on the line are
moved to the right by one posítion.
Th:is is useful in overtype mode to
create space on a line without having to
switch to insert mode.

, ,,,, Page 169

User'sManual '""'

Instant-C
KEYBOARD FUNCTIONS

F.4 Text Blocks Management

Sections or blocks of text within a buffer can be
identified by setting a tag to mark one end of a

block, and there are several functions for moving the
block of text to and from the temporary buffer.
31 tag set Sets a 'tag' to mark the current cursor

location as one end of a text block.
There is only one tag per buffer.

32 tag swap with cursor
The cursor is placed at the location of
the current tag, and the tag is set to
the former cursor location. This allows
you to see where the tag is set, and
also is a quick way to switch between a

place holder in the text and the current
cursor location (two tag swaps leaves
you where you started).

33 save block of text
The text between the cursor and the tag
is moved to the TEMP buffer, replacing
any previous contents. The block of
text is removed from the current
buffer. This a quick way to delete a
large portion of text. Text in the
temporary buffer can be edited
separately, or retrieved to any place in
another buffer. A save block function
cannot be performed in the temporary
buffer.

34 retrieve block of text
The text in the tenporary buffer (TEMP)

is inserted in the current buffer before
the cursor location. It is treated
exactly as if the saved text had been
entered verbatim in insert mode from the
keyboard.

Page 17 O (: ()I"','rlCl\t 1fúcR1

t:',' ?íat'í)rja: S'Ystell"|s., Ii lC'
At l Rli-íi47 S i"u": ':r '7Uí i.)

·' User'sManua!instant"C'
,,,,,,R, ,UN,,,,N,

Retrieving text does not remove it from the
temporary buffer, so it can be retrieved many tintes.
Combinations of saving and retrieving blocks of text
can be used to delete, copy, or move text ("cut and
paste") in a very general way. Text does not have to
be retrieved to the buffer from which it was saved,
so it is easy to move text within a buffer, or
between buffers/files. (See the Buffer command for
details on the use and management of multiple
buffers.) Saved text is only modified by a

subsequent save function or by direct editing in the
temporary buffer. In Instant-C, the temporary buffer
is undisturbed between editor invocations within an
Instant-C session.

F.5 Editor Commands

46 next char is command
This function switches the editor to
command mode, so that one of the
commands can be entered.

42 cancel cominand/reset
The current command is canceled without
being executed. A general reset is
performed: if a connnand or function has
resulted in an error condition (search
target not found, for example), the
error message is removed, and further
input or commands are allowed. The
editor returns to the proper input node
(insert or overtype). If not in command
mode, the screen is redrawn (useful for
ASCII terminals to update the screen in
the event of communications error).

43 erase arg/(function)
If the editor is in command mode, you
use this function to delete characters
as you type in arguments (such as file
names or search target strings). When
binding a key to this function during
configuration, you can specify another
function which is to be executed if the

'". ' ,".",." ' ' " page 171

' }', Fi,',t. {it.';' 9)
y .' , ' I - l[,í

Áj i :2\í';¿ l K-, PÍ\ sr jr';; i '

User'sManual '

K,,,,,,, ,,N,,,,N,
Ínstant"C"^

key is used during input mode. Thus,
the same key can be used to erase
arguments in command mode, or perforn
another function (23 delete left char is
recommended) when in input mode.

41 execute (command)
This is a function that executes a

particular editor command. During
configuration with the KEYBOARD utility,
specify an editor command letter as the
argument to this function. For example,
function 41(S) can set up a search
command with a single keystroke.
Otherwise, it is necessary to use
function 46 (next character is ccünmand)

and then 'S' to initiate a string
search.

Note: different keys can be bound to
function 41, and each key can have a

different argument value. Thus, any set
of the editor commands can be invoked as
key functions.

47 re-execute coíninand
This convenient function serves several
roles. It indicates that execution of a

command should begin, or that the
command should be re-executed if already
executed. You can also use this
function to indicate that the command
argument is complete. For example, the
Search command requires that the string
to be searched for be entered. The key
bound to function 47 can be hit in place
of carriage return to terminate the
search string and initiate the command.

48 quit, save/compile
Execute the 'F'ile or 'F'inish command.
Use this function to save the file (in
the standalone editor) or to save and
compile the function (in Instant-C). In
Instant-C, upon error-free completion of
the compilation, editor will return to
the interpreter. This is equivalent to
function 41 with an argument of 'F'.

Page 172 ' -
t ';["y"" }\ 'I'j ' ' } .1

1"\/ ¡j,jü " ji :"' ', ' :C"Í '
l,,, ' I-jw 4l:: '. ;tj ("l :i',': i"

'^ User'sManua!Instant"C'
,,,,,,R, ,UN,,,ON,

49 quit, discard buffer
Execute the 'Q'uit cominand. The editor
will ask for a verification, and, ifaffirmative, will return to the
operating system (in the standalone
editor), or to Instant-C without writing
the buffer to disk or saving and
compiling the function in the buffer.

F.6 Miscellaneous Functions

19 make next character control
Use this function to enter control
characters. The next character entered
after this function is invoked wíll be
converted to a control character ('h' is
converted to control-H, for example, and
displayed as '^H'). This allows control
characters to be placed into the buffer
without interpretation as a key
function.

50 next char is literal
The character entered after this
function is placed into the text buffer
directly, without interpretation as a
key function and without any other
translation. As opposed to function 19
(make next char control), the next
character must be entered literally as a

control character.
26 swap two previous characters

A common typing error (transposition)
can be easily corrected with this
function. The two characters preceding
the cursor on the current 'line are
reversed. Nothing happens if the cursor
is at column one or two on a line. The

cursor does not move after this
operation.

36 swap case of character
The character at the current cursor

- Page "'1'73

;'í t: ,' /4 ,I-y ·,!TJ""' jfr,.

li, : 1·; .:g ' ', r.'t S_l ijt"i l"'

""'"""""' Instant-C"
KEYBOARD FUNCTIONS

location is converted to uppercase if itis lowercase, or to lowercase if already
uppercase. The cursor moves to the
right at the end of the operation, so itis easy to change the case of a long
string of characters.

40 redraw screen
The screen is cleared and redrawn.

44 translate to (char)
The argument of this function (char), is
treated as input. Useful in keyboard
remapping.

45 no operation
The key bound to this function will have
no effect, and no text is entered into
the buffer. Th:Ís may be useful if you
are used to a different editor, where a

key performs a function different or
unavailable in the Instant-C eáitor.

2 defined error
An editor error message is displayed
when the key(s) invoking this function
are entered. This may be useful as a

reminder that some common key sequence
used by another editor is not available
or works differently in the Instant-C
editor.

Page 174 (A: ;'y .gtíl. ú,Cí.4

7.')/ fí¿tk,v\á f:gy':lC'|| ? I: i?
Al l fi|[";l-t. F t-; 14! !Í! ii\j l 3)

'^ User's ManualInstant-C
KNOWN BUGS

Appendix G

Known Bugs and Problems

This chapter lists all of our known bugs, together
with any suggested workarounds. It may disappear
after the field-test period is completed.

l. #define's are limited to expressions with a

constant value. You can't #define one symbol
to another. (Unless the second symbol has been
#defined to be a constant.)

We expect to fix this problem in the next version.

Also, we are working diligently in the following
areas:

l. Completing full language support

2. Enhancing the library functions.

3. Finishing the documentation (especially the
index).

(."(.,:_',lt,,yi' ! 'iii-i page 175
l: y li,íll(: :|,-íl '- ," 'r"\'jµ |!"1."

,!! i i F,(:k-l7S ÉíL$ü 1¿",/¿[7

User's Manual ""'Instant-C
REPORTING PROBLEMS

Page 176 (.:(\:'l',í:·¿:t!i ;'·Át

" User'sManua!Instant-C
REPORTING PROBLEMS

Appendix H

Reporting Problems and/or Suggestions

This appendix details how to report bugs, and how
to get credit for a new update by completely
reporting a problem, or by being the first person to
suggest an enhancement.

For field-test users, please send hard copy and/or
a disk copy of the files that cause the problems to:

Rational Systems, Inc.
P.O. Box 480
Natick, MA 01760

or call us at (617) 653-6194.

We will try to fix all problems as quickly as
possible and get a new version to you withín a few
days.

, . , . .. Page 177
' '\ ",,' ' '1",¿ " , ' 't":". 'í: ;

,'" ' ,"' l"c t l ' ' l' l'j i

User's Manual 'm

Instant-C

Co»yr'c;m 1£%).7

by Raima' System., Inc

ALL RIGHTS RE$FflVLL>

"" User's ManualInstant-C

Index

Éback command 34, 37, 40, 143
Édelete command 42, 143
Edir conunand 43, 143
Édproc command 147
Élcísym cornínand 147
Éed command 44, 143
4edconfigure command 147, 158
4erase command 45, 144
dfsource command 148
#go conunand 35, 46, 144

tinfiie command 144

tiist command 48, 144
éiistfile command 50, 144
Élistname command 51, 144

#liist command 52, 144
#imaCi cominand 53, 144, 158
Élocal command 34, 36, 54, 144
#make command 56, 145
#new command 58, 145
Éioutfile command 59, 145
4pc command 60, 145
#pd command 62, 145
Épo command 63, 145
i?ps command 64, 145
ew conunand 145
llpx command 66, 145
llquit command 67, 145
4rename command 68, 145
#reset command 34, 69, 146
4resetint command 148, 161
Élrun command 70, 146
Élsave command 71, 146
Ésavemod command 72, 146, 159, 160
#segments command 74, 146
qstieLL command 75, 146
#step command 35, 76, 146
4step exec command 77, 146
Éstep in command 78, 146
¿step out command 79, 146
Fstep return command 80, 146
jjsystem command 81, 147
lltiine command 148
4trace command 36, 82, 147

y { '"-'.i: , · " '."{' r

' i Ai; y' ' t
,

au :',.' '""ji
,

User'sManua! Instant-C'^

#type command 83, 147
#untrace command 36, 84, 147
#use command 85, 147, 159
#variable command 148
#wíiat command 148
#wiiere command 148
? editor command 96
active functions 34

alloc function l0l3
back coninand 40, 143
Mos 113, 114
bdos function 118
bdosw function 118
breakpoint 33, 34

Buffer editor command 96
buffer in editor 90
C Beautifier 4, 12

C Function Library 12

calloc function 108
cancel command line 10

cgets function 114
Change editor command 95
close function 110
clrerr function 113
command argument 90
command in editor 90
Commands 39

commands editor 95
compilation 9

Compiler 3, 9, 11
configuration keyboard 94, 156, 160, 163

configuration screen 154, 160
control-@ 93

control-C li, 33, 94, 97

control-H lO
control-R 94, 97
control-X 10, 94, 97

cputs function 113
creat function IllCTYPE.IC file 153

cursor 90
Debugger 4, 12

Oebugging 32

delete command 42, 143
dir command 43, 143
ed command 44, 144
ED program 151, 152
Edit editor command 96

Editor 4, 5, 7, li, 25
erase command 45, 144

(t :pYí \¿j'j' l'; :g\Á

t.'}' ii¿l;t()/): l; Sv': iÉ"í'.. lj'(
,Z: t '?1(ij "' F5 kl ': i l ?',"í l)

"' User's ManualInstant-C

erase command line lO
Error messages 125
ESCape character IQ
Executing Your Programs 8

exit function IlCl
fclose function 112
feof function 112
ferror function 112
fgets function Ll4
fileno function 112
Finish editor command 95
fopen function 112

fprintf function 116
fputs function 113
free function 108
fscanf function 118
function in editor 90

Function Library 4

FUNCVAL.IC file 153
getc function 114
getch function 114
getchar function 114
getmem function 109
gets function 114
go command 46, 144
HELLO.C file 153
IC program 151, 152
ICBASE program 152, 158
ICEDKEYB.CFG file 154, 158
ICEDKEYB.MNU file 154
ICEDSCRN.CFG file 154, 158
inportb function 119
Insert editor command 95
Interpreter 3, 5, 7, li, 39

interruption of execution 33

interrupts Instant-C 160
interrupt_get function 121
interrupt_install function 121
interrupt_set function 121
INTLIB.H file 154
INTLIB.IC file 153
isalnum function 106
isalpha function 106
isascii function 106

isdigit function 106
islower function 107
isprint function 107
ispunct function 107
isspace function 107
isupper function 107

(, '[', 't : " 1· í,'·>!

!)'y' ií-¿¡,',\'],i Ci'y.:!("TÍ')íí/"

^1 : '-Jj ,;!1 ' kí !·1 l?'i/! L)

User'sManual ""'Instant-C

isxdigit function 106
K&R 2

KEYBOARD program 152, 156, 163
LIB.IC file 153
Line editor command 95

Linker 4, 12

linking 9

LINT 4, 12

list command 48

listfile command 50, 144
listnaine command 51, 144

llist command 52, 144
load command 53, 144
Loader 4, 12

loading 9

local command 54, 144
LSI.C file 153, 158
lseek function Illmake command 56

malloc function 109
MEMORY.TC file 153
movem function 109
new command 58, 145
open function lióoutfile command 59

outportb function 119
pc command 60, 145
pd command 62, 145
po command 63, 145
Pretty Printer 4, 12

printf function 32, 115, 116
PRINTF.IC file 153
µrologue_init function 121
ps command 64, 145
pu command 145
putc function 113
putch function 113
putchar function 113
puts function 113
px command 66, 145
quit command 67, 145
Quit editor command 95
Read editor command 96
read function IllREADME.DOC file 153

rename command 145
reset command 69, 146
resume execution 34

retmem function 109
run command 70

C¿);)y['gí)l 1'ik'4

by í?¿3í|C:lí¿I: S'jSl€!Í'l|f, i'QC

al !- RiGHTS re SÉ fZ\j ¿ l)

Instant C" User'sManual

save command 71, 146
savemod command 72, 146
saving space 161
sbrk function 109
scanf function 118
SCREEN program 152, 154
Search editor command 95

segments command 74

setmem function llO
shell command 75

source Language Debugger 12

sprintf function 116
sscanf function 118
STDÍO.H file 153, 158, 161
STDIO.H header file 104
STDIO.IC file 153
step command 76
step exec command 77

step in command 78

step out command 79

step return command 80
strcat function 107
strcmp function 107
strcpy function 108
strlen function 108
STRLIB.IC file 153

system command 81
time command 148
tolower function 107
toupper function 107
trace conunand 82, 147
type command 83, 147
ungetc function 113

unlink function Illuntrace command 84, 147
use comnand 135

Write editor command 96
write function Ill() 33

() function 120
call function 119
exit function 33, lió
flags function 119

incl float #cíefine 161
incl scanf #Cíefine 161
interrupt function 119
intnumber system variable 148
intnumber variable 161

ioinit function 159

main function 57, 70

{ .c.:,'," ql'i 1!',;í."}

t'y tía : i()tXh S',';.] í'71\l l:ic

Al l lt)(:'-iZ:3 'i! 8(Ií\/f [".

User's Manual 'Instant-C"'

movdat function 120
,jpc function 60

_
pd function 62

_
po function 63

_
px function 66
screenlines 11

_
segread function 120

{..(}f'y'r".: l2l 7Ufij

u', pi,ñ'aüa' SSVfM"í'·-, 72(

P\í i ft!{7liÍs-, Rt': -,f :íUl'l.}

User's Manual ""Instant-C

(,(3;)'/'i(;!7l Í'í4i
t)'y' F{<¿!líy'?.! Sy-3tE3:Í"'!í, if':C

Ali- í"l(.íi{1¿j msiiní't ¿'

User's ManualInstant-C

