
UNCLASSIFIED

Division
Operation

Department

MISSILE SYSTEMS
Bedford Laboratories
Data Processing Systems

To Alan Deerfield (904)

From Steven Wallach (904)

Subiect CMS-2

Enclosures: Appendix A (5 pages)
Appendix B (3 pages)

1.0 INTRODUCTION

Contract No.

D istri b uti on aa

File No.

Memo No. SW-7l-6

Date. 11 June 1971

This document analyses the CMS-2 Language as specified in

"Compiler Monitor System-2, Vol I, M-50l2, 9 June 1969, Fleet

Computer :,.Programming Center, San Diego, California." The analysis

takes the language statements and determines the method by which

they are executed on a computer system. The execution of Higher

Order Language (HOL) statements requires two forms of processing:

Hardware and Software.

The software form of processing, typically referred to as the

Compiler, is referred to as the CMS-2 Preprocessor. The term 'pre­

processor' is used, in that the typical compiler functions of rear­

rangement of operator sequences (infix to polish), expansion of HOL

operators into Macro sequences, and maintaining a data insensitive

system as seen by the programmer are eliminated. This reduction of

the software processing leads to a simplified compiler or preproces­

sing. The major functionforpreprocessing is to manipulate the

name-table. The name-table contains the name, data attributes, and

memory locations of data elements declared in the CMS-2program.

The hardware form of procesa;;ing is referred to as the CMS-2

processor. The instruction set of the CMS-2 processor is approxi­

mately one-to-one with the operators defined in CMS-2. Two new

architectural concepts are present in the CMS-2 processor1 paren~_1 ~

\. C -
" '

• I PRODUCT
• EXCELLENCE

PROGRAM

Memo SW-71-6
Page 2

thetical control and address tags. Parenthetical control provides

the ability to execute statements in the order they are written in)

without rearrangement to a polish notation. A parenthesis notation is

used to indicate manipulations of this mechanism. A 11(11 indicates a

defer operation, no parenthesis indicates immediate execution, and

a- 11)11 indicates immediate execution and an undefer operation. More

than one right parenthesis can be specified. All addresses in the

CMS-2 processor are tagged. This facility allows the system to be

data insensitive and eliminates explicitly invoked conversion instruc­

tions.

Throughout the analysis, the terms data partition, structor

partition, instruction partition, etc., are used. These partitions

are physical partitions of memory which exist at preprocessor time.

At execution time, the linking loader combines these areas into two

basic physical memory areaS1 instructions and data. A structor is

a special fonn of data.

No mention of CMS-2 I/O is presented. CMS-2 I/O is extensive

enough and interacts with the rest of the system, (peripherals,

executive system, etc.) that a separate study will be undertaken to

analyse it.

2.0 CMS-2
2. 1 Alphabet

The CMS-2 alphabet consists of letters, digits, and marks. The

marks are used to denote operators and to delimit statements.

2.2 Symbols

Symbols are composed of strings of the CMS-2 alphabet.

2.2.1 Operators

Operators are symbols which are used to denote action or

delineation to the preprocessor.

2.2.2 Identifiers

Memo SW-7l-6
Page 3

Identifiers are arbitrary names used to label various elements

of a CMS-2 program. In general, the declaration of an identifier

results in the entry of the identifier in the name-table.

2.2.2.1 Statement Label

A statement label is used to identify a CMS-2 operative

statement. The occurrence of a statement label causes an entry in

the next available name-table location. The entry contains the

label name and the relative displacement of the label from the origin

of the main program partition.

2.2.3 Constants

2.2.3.1 Numeric Constants

All numeric constants are assigned to a full computer word.

They are all signed.

2.2.3.1.1 Octal Constant

An octal constant consists of one or more base 8 digits

(0 through 7). The CMS-2 preprocessor converts the constant into

binary equivalent. If the constant is an integer, the conversion is

into integer form. Otherwise, the conversion is into floating point.

An entry is made in the next available name-table location. This

entry contains the name of the octal constant and the tagged·address

(floating point or integer) of the location of the octal constant in

the data partition.

2.2.3.1.2 Decimal Constant

A decimal constant consists of one or more base 10 digits

followed by the leter D. The preprocessor converts the constant into

binary equivalent. If the constant is an integer, the conversion is

into integer form. otherwise, the conversion is in ~I floating point.

An entry is made in the next available name-table

contains the name of the decimal constant and the
I

(floating point or integer) of tbe location of the
l

the data partition.

ation. This entry

ged address

cimal constant in

2.2.3.1.3 Hexadecimal Constant

Memo SW-7l-6
Page 4

A hexadecimal constant consists of one or more base

16 characters followed by the letter S. A hexadecimal constant

must always begin with one of the digits 0 through 9. The prepro­

cessor converts the constant into binary equivalent. If the constant

is an integer, the conversion is into integer form. Otherwise, the

conversion is into floating point. An entry is made in the next

available name-table location. This entry contains the name of the

decimal constant and the tagged address (floating point or integer)

of the location of the decimal constant in the data partition.

2.2.3.2 Hollerith (Literal) Cpnstant

A Hollerith constant provides a means of representing

alphanumeric characters in the machine. The format of the Hollerith

constant is:

H (character string)

The preprocessor delineates the character string and stores it

in the next available location in the data partition. An entry is

made in the nex't available name-table location. This entry contains

the name of the character s~ring and the tagged address of the

location of the structor. The location of the structor is the next

available location in the structor partition. The structor contains

the starting address and the length of the character string.

2.2.3.3 Status Constants

The status constant is used to indicate the presence of

one of a predetermined set of conditions. The predetermined set of

conditions is set by the VRBL declaration (Subsection 3.2.1.6).

2.2.3.4 Boolean Constants

Memo SW-71-6
Page 5

The Boolean constant is used to set the values of I (true)

or 0 (false) into a variable. The CMS-2 preprocessor converts the

Boolean constant into binary equivalent. An entry is made in the

next available name-table location. This entry containes the name

of the Boolean constant (true or false) and the tagged address of

the location of the constant. The Boolean constant is stored in the

neX't available location in the data partition.

2.3 Delimiters

CMS-2 delimiters, usually a mark or blank, serve to delineate

statement fields to the preprocessor. The use of delimiters are a

function of the statement type. Their use is shown in the examp~es

presented throughout this treatise.

2.4 Sentences

All CMS-2 sentences are terminated by a dollar sign ($).

2.5 Corrunents

Within a statement comments are bracketed with a pair of primes

(II). As a separate statement, all corrunents are preceded by the

COMMENT operator. The preprocessor ignores all characters defined

as within the scope of a comment.

2.5.1 Special Comments

To be covered in-subsequent publications._

2.6 Source Card Format

To be covered in subsequent publications.

3.0 DECLARATIONS

Memo SW-7l-6
Page 6

Declarative sentences provide the preprocessor with information

about program structure and data element definitions. Declaratives

generally do not result in executable object code. Declaratives

are divided into two groups: program structure and data.

3.1 Program Structure

The following are program structures that define CMS-2 system

organization.

3.1.1 System and END-System

The SYSTEM and END-SYSTEM statements delimit the source code.

Upon recognition of the END-SYSTEM statement, the generated code

is acted upon· by the next software module (if necessary), or executed

as a program module.

3.1.2 SYS-DD and END-SYS-DD

The SYS-DD and END-SYS-DD statements delimit a system data

design within a system. All data elements defined within a system

data design are global to the system. That is, all programs processed

within the SYSTEM and END-SYSTEM statements have access to the name­

table data elements defined in a system data design. More than one

system data· design can exist within the SYS~~M and END-SYSTEM statements.

Using this feature will group the data elements in each system data

design into self-contained data partitions. In the ·final executable

form, these data partitions may be linked together to form one parti­

tion. This is a function of the relocatable loader.

3.1.3 SYS-PROC and END-SYS-PROC

The SYS-PROC and END-SYS-PROC statements delimit a system

procedure within a system. More than one system procedure may exist

in a system. The system procedure must contain one or more proce~ures

Memo SW-7l-6
Page 7

(Section 3.1.5) and may contain one or more local data designs

(Section 3.l.4). The system procedure is a group of source code

which produces executable code. The system procedure is a self­

contained program module which can comprise, by itself, an executable

program.

3.1.4 LOC-DD and END-LOC-DD

The LOC-DD and END-LOC-DD statements delimit local data designs

within a system procedure. Data elements defined within a local

data design can only be used within the system procedure that contains

the local design definition. The portion of the name-table which

contains the definition of the local design data elements is not

valid for other system procedures unless thay are externally defined.

When a data element is defined locally, a check is made in the name­

table for previous element definition in a system data design or

local data design. If any of these conditions exists, an error is

flagged to the programmer.

The locations in memory allocated to the data elements of a

local data design are reserved for procedures only within the system

procedure which contains the local data design. Two or more system

procedures can have local data designs which occupy the same loca­

tions in memory.

3.1.5 Procedure and END-PROC

A procedure is the basic organizational unit that results in

the generation of executable statements. The general form of a pro­

cedure declaration is:

PROCEDURE name INPUT formal-parameter OUTPUT formal parameter

formal parameter EXIT abnormal-exit-name (S) $.
steps of the procedure .
END-PROC name $

Memo SW-7l-6
Page 8

The CMS-2 prepreocessor makes several entries in the name-table.

The next available location contains the name of the procedure, name,

and the address of name in the procedure partition. Subsequent

name-table entries contain the name of the formal input/output

parameters and abnormal eX'it names. The tagged addresses of these

parameters are, POINTER n. Where n is 0,1 ••• etc. n is equal to the

relative positioning of the procedure parameters from the $ delimiter.

PROCEDURE EXAMPLE INPUT X', Y OUTPUT Z$

would result in the entry for X' being pOinter 2, for y pointer 1,

and for Z pointer O. Local data designs declared in a procedure are

assigned tagged addresses which directly reference the data partition.

The st,eps of the procedure are delineated and stored in the

procedure partition. All references to the formal parameters in the

delineated code have a POINTER tag address. Upon recognition of the

END-PROC name $ statement, the name-table entries for the procedure

are wiped out.

3.1.6 FUNCTION and END-FUNCTION

A function is a special class of procedure. The generation

form of a function declaration is:

FUNCTION name (formal input parameter) $

STEPS OF FUNCTION
· · · END-FUNCTION name $

The CMS-2 preprocessor makes two entries in the name-table.

The next available location contains the name of the function, and

the address of name in the procedure partition. The other entry

'contains the name and tagged pointer address of the formal input

parameter. Only one formal input parameter is allowed. All instruc­

tions which re'ference a function, have a tagged function address.

The output of the function must be stored inunediately preceding the

return from the function. See Section 4.3.3 for'the execution of a
function call.,

Memo SW-71-6
Page 9

The situation of one formal input parameter to a function

appears to be overly restrictive. No additional processor or pre­

processor functionality is needed to support multiple input func­

tion parameters.

3.1.7 LOC-INDEX

The general form of the LOC-INDEX statement is:

LOC-INDEX name(s) $

The CMS-2 preprocessor makes any entry in the name-table for

each name declared in the LOC-INDEX statement. The 'entry contains

the name of the index register and the address of the next available

index register. The preprocessor must allocate index registers to

the names declared in the LOC-INDEX statement.

In the final analysis, the inclusion of this declaration may be

entirely superfluous. Past and present analysis indicates that

index registers, as commonly referred to, are unnecessary to support

programs written in a HOL.

3.2 Data Declarations

Data declarations define the structure and order of data elements

within a preprocessor-time system and provide a means for referencing

these elements. 'In general, data declarations involve operations

upon the name-table and structor partition.

3.2.1 Variables

The following describes the declaration of: integer, fixed

point, floating point, Boolean, Hollerith, and status data. If the

values are of the default nature: full computer word, signed, no

structor is necessary to describe the data. For fixed point data,

the option exists to always describe full-word fixed-point data.

See AppendixB, Section 7 for structor formats.

3.2.1.1 Integer

Memo SW-7l-6
Page 10

Tpe general form of the integer declaration is:

VRBL name(s) I # bits S/u initial-value $

The CMS-2 preprocessor makes an entry in the next available

name-table location. This entry contains the name of the variable and

the tagged address of the location of the integer variable. If the

variable is of the default nature, the tagged address points to the

next available location in the data partition. If the integer

variable is not of the default nature, the tagged address points to
!

the next available structor in the structor partition. This structor

contains the· attributes of the integer (# of bits, unsigned, etc.)

and the location of the variable in the data partition.

If more than one integer declaration exists, an entry is made for

each name. If the variable is preset with an initial value (initial

value preceded by a P), the preprocessor converts the initial value

into binary equivalent and stores the value in the data element

location in the data partition. All constants used in the variable

declaration observe the rules for constant declaration (Section 2.2.3).

3.2.1.2 Fixed Point

The general form of the fixed point declaration is:

VRBL name(s) A # bits S/U # fractional bits initial-vlaue $

There are two possible alternatives to the handling of full word

fixed point items. The first alternative is to reference all fixed

point items via a structor. The structor would contain the # of

fractional bits (implied decimal part). Any scaling of fixed pOint

operands would be done at execute time. The processor would auto­

matically ~lign fixed point operands.

The second alternative is to align fixed point operands prior

to execute time. This would require the preprocessor to calculate

a decimal point and scale all operands which do have this fractional

Memo SW-7l-6
Page 11

precl.sl.on. During execute time the full word signed fixed point

operand would be treated as integers. In this case, the preprocessor

may have to insert shift instruction to properly scale operands.

Examining Section 4.1.1.1, "Fractional Significance in Fixed

Point Operations," in the CMS-2 programmers manual, one becomes

aware of the shifting necessary to align fixed point operands. The

software demands that fixed point operands use full word precision,

they can not be converted to floating point. For example if A,B,C

have different radix points the replacement statement set A to B+C

would be translated as:

SET <A>

TO (B

SHIFT COUNT ----ALIGN THE RADIX POINT OF B

ADD C

SHIFT COUNT ----ALIGN THE ,RADIX POINT OF THE SUM

The above statement required five instructions for execution

or more specifically, five memory locations. Referencing the fixed

point operands via structors would require three instructions, but

a total of six memory locations. Three for instructions and three

for sturctors. However, if one can envision many CMS-2 statements

referencing A,B, and C one can envision many shift instructions

necessary to align the resulting operands. Only one memory location

is needed for the structor which is repetitively referenced when a

fixed point operand is addressed. One must conclude that: it is

advisable to declare floating point variables where a loss of pre­

cision is acceptable. It must further be noted, that in the past,

military computers did not have hardware implemented -floating point.

This led to the use of fixed point arithmetic. The AADC with hard­

ware floating point may reverse this trend. Further analysis as to

the frequency of usuage of fixed point operands and shift instructions

is needed so as to come to a reasonable conclusion.

Memo SW-7l-6
Page 12

In either case, an entry is made in the name-table. This

entry contains the name of the fixed point operand and the tagged

address of the location of the: structor or operand, depending upon

the handling of fixed point operands.

3.2.1.3 Floating Point

The general form of the floating point declaration is

VRBL name(s) F initial value $

The preprocessor makes an entry in the next available name­

table location. This entry contains the name of the variable and

the tagged address of the location of the floating point variable

in the data partition.

3.2.1.4 Boolean

The general form of the Boolean declaration is:

VRBL name (s) B initial value $

The preprocessor makes an entry in the next available

location in the name-table. This entry contains the name of the

variable and tagged address of the location of the aoolean Var­

iable in the data partition. The initial value of a Boolean

Variable must be either 1 (true) or ¢ (false). Any other ini­

tial value results in an error condition.

3.2.1.5 Hollerith

Memo SW-7l-6
Page l2A

The general form of the Hollerith declaration is:

VRBLE name(s) H #char initial value $

The preprocessor makes an entry in the next .available location

in the name-table. This entry contains the name of the Hollerith

variable and the tagged address of the location of the structor in

the structor partition. The structor contains the # of characters

in the Hollerith variable and the starting location of the string.

Enough locations in the data partition are reserved so as to

accommodate the Hollerith variable.

Multiple entries and variable preset are handled in the same

fashion as Integer (Section 3.2.1.1).

3.2.1.6 Status

The general form of the status declaration is:

VRBLE name(s) S status states initial value $

Memo SW-7l-6
Page 13

The preprocessor makes several entries in the name-table.

One entry contains the name of the status variable and the tagged

address of the structor. This structor contains the number of bits

in the status variable and the location of the variable in the data

partition. Additional entries are made in the name-table for the

status states. These entries conatin the name of the status state

and the tagged address of structors. The structors describe the

location of the status state in the data partition and the number of

bits allocated for its value. The number of bits a status state

requires is a function of the number of defined states. The number

of bits, m, is equal to log2(# of states). The binary configuration

assigned to the status states, is equal to the binary equivalent of

the positioning of the status state as it appears in the variable

declaration.

The initial value of a status variable must be a status state

defined in the declaration

3.2.2 Tables

A table is one or more related items grouped together an entity.

A phone directory would correspond to a CMS-2 table. An entry in a

table is called an item.

3.2.2.1 Table Dimensions

A CMS-2 table may be one, two, or three-dimensional. The

product of ··the dimensions specifies the number of items in a table.

An n dimensional table may be referenced with n+l subscripts. n sub­

scripts are used to reference an item within the table, and the n+l
th

subscript is used to reference a position ~th the addressed item.

3.2.2 Fields· and Words

Items of a CMS-2 table are partitioned into fields and words.

For example, the following CMS-2 item has three fields.

Item n Field 1 Field 2 Field 3

Memo SW-7l-6
Page 14

Each field within an item has attributes specifying data

element type, starting bit, length, etc.

3.2.2.3 Vertical, Horizontal, and Multidimensional Tables

There are two types of one-dimensional tables: vertical

and horizontal. The words of a vertical table are stored serially

within each" item. The organization of a phone directory with the

structure of: name-address-telephone repeated n times represents a

vertical table. The relative displacement of a word occurrence

from the first word (origin) of a vertical table is calculated by

the equations:

Displacement = ixN +f w

where i = item number

Nw = number of computer words per item

f = word position within item

Like words of a horizontal table are stored serially. A table

(using a phone directory) with all the names grouped together, all

the addresses grouped together, and all the phone numbers grouped

together would represent a horizontal table. The relative displace­

ment of a word occurrence from the first word of a horizontal table

is calculated by the equation:

where

Displacement = i+fxN .
1.

i = word number

N. = Number of table items
1.

There is one type of multidimensional table called an array.

An array table has three dimensions (DI,D2,D3). The relative

position of a word occurrence from the first word of an array is

calculated by the equations:

Displacement = (i+jDl +KDI D2)Nw+£

where

N = w number of words per item

Dl = size of dimension 1

D2 = size of dimension 2

D3 = size of dimension 3

i = item index 1 ·number

j = item index 2 number

k = item index 3 number

f = word position in item subset

N is equal to one for all numberical data. w

3.2.2.4 Table Declaration

Memo SW-7l~6
Page 15

The general form of the table declaration is:

where

TABLE name type words-per- #-of-items- major $

item/-or- or-dimensions index name

packing description

Table - specifies a TABLE declaration

name - identification of table

type - H(horizontal) , V(Vertical), or A(array)

words per item - specifies the number of words contained in
each item

packing description - the preprocessor computes the number of
words per item as specified by the NONE,
MEDIUM, or DENSE descriptors. The descrip­
tions apply to the FIELD (See 3.2.2.5)
declarations associated with the table
declaration •

. # of items - an integer value that specifies the maximum

number of array dimensions if A type table

Major index name - optional: specifying which variable contains

the current number of items in the
named table.

Memo SW-71-6
Page 16

The CMS-2 preprocessor makes several entries in the name-table.

One entry contains the name of the table and the address of the

table structor. The table structor contains the number of words

per item, the type of table (V,H,A) and, if an A-type table two or

three dimensions, and the address of the origin of the table.

WORDS/ITEM TABLE 2/3 ITEM UNUSED ADDRESS TYPE DIMEN AREA

1 12 13 14 15 16 17 20 21 32

TABLE STRUCTOR

In the location immediately following the table structor is an

operand. If the table structor is for a V,H type table, this

operand contains the number of items in the table. If a major index

is specified for the table, an entry is made in the name-table. This

entry contains the name of the major index and the tagged address of

the location of the operand following the table structor.

If the table is A type (Array), the operand following the table

structor contains the dimensions of the array table. A bit in the

table structor signifies whether two or three dimensions are specified.

Due to the 32-bit word operands of the AADC, a lim,it of 1024 is put

dimension of an array_ The format of this operand is:

I DIMENSION 2 DIMENSION 2 DIMENSION 1

2 10 10 10

The use of this format limits the maximum limit of a dimension to

1024. Considering the application programs, this restriction does

not appear to be unduly restrictive. Storing the array dimension in

this manner results in memory savings and the reduction in execution

speed that accompanies this reduction.

Memo SW-71-6
Page 17

The preprocessor allocates enough storage in the data partition

to hold the 'number of table words indicated. If the ZERO option is

specified, no allocation of main memory is made. The ZERO option

precedes the declaration of the number of items. Under these condi­

tions, the address field of the table structor contains all zero's.

See Section 3.2.2.10 for addressing unallocated tables.

3.2.2.5 Field Declaration

Items within a table may be further subdivided into units

called fields. Fields for items within a table are defined within

the TABLE and END-TABLE declarations. Field definitions are

descriptions of partial, whole, or more than one word fields with a

table item. Fields are independent of one another and may describe

fields which overlay. There are three types of fields: A,B, and C.

3.2.2.5.1 Type A

The type A field allows the programmer to specify word or

bits within an item that comprises the fields. The general form of

the type A field declaration is:

FIELD name data-type word location starting-bit-position$

The preprocessor make an entry in the name-table. This .entry

contains the name of the field and the tagged address of the structor

in the structor partition. The location of the structor is location

immediately following the table name structor in the structor parti­

tion. The field structors contain the VRBLE description (Section 3.2.l)

and two address fields. One field contains the starting bit position

of the variable and the other field contains the word location of the

field within.an item. Type A fields can have the same attributes as

can be specified in the VRBL declaration.

3.2.2.5.2 Type B

. Type B fields are used when the packing description option

is used in table declaration. The end result of a type B field

declaration is, the same as a type A field declaration. The only

Memo SW-7l-6
Page 18

difference being that the preprocessor determines the starting bit

positions and word locations rather than the programmer.

3.2.2.5.3 Type C

Type C field declarations are type B field declarations

with the data type defined by the inherent mode of the preprocessor

(Section 3.2. 7) •

3.2.2.6 Item-Area Declaration

An item-area is a convenient working storage area, assigned

by the preprocessor outside the table, where a single item of the

table may be temporarilly stored. The format of the item-area is

identical to that of the table with exactly the same number of words

and the same field configuration. The general form of the item-area

declaration is:

ITEM-AREA area-name(s)$

The CMS-2 preprocessor makes an entry in the name table. The

entry contains the name of the item-area and the address of the table

structor. The table structor has the item-area field set to 1. The

address field of the table structor points to the origin of the item I

in the data partition. The preprocessor must allocate enough

storage to hold the table item.

3.2.2.7 Subtable Declaration

A subtable is a set of adjacent items, wholly contained

within the parent table, with item size and field configurations

identical to those defined for the parent table. The general form of

the subtable declaration is:

SUB-TABLE name initial-item-number- maximum-
of-parent table number-of-

items-in­
sub-table

major $
index
name

Memo SW-71-6
Page 19

where:

SUB-TABLE - Specifies a SUB-TABLE declaration

Name - identification of sub-table

Initial item number - the base item of the sub-table

max.# of items - an integer value that specifies the maximum
number of items.

major index name optional 1 specifying which variable contains
the current number of items in the named
subtable.

The CMS-2 preprocessor makes several entries in the name-table.

One entry contains the name of the sub-table and the tagged address

of the table structor. The table structor contains the same infor­

mation as the table structor of the parent table with one difference.

(A sub-tabl~ is defined within the declaration of a table,

referred to as the parent table). The only difference between the

table structor of the parent table and the table. structor of the sub­

table is that the origin field of the subtable structor points to the

origin of the subtable.

Additional name-table entries are made for the field descrip­

tions of the parent table. If a major index is specified, an entry

is made in the name-table. This entry contains the name of the major

index and the tagged address of the location of the major index in

the location immediately following the sub-table table structor.

3.2.2.8 Like-Table Declaration

Like-tables have configurations identical to the parent

table they duplicate. The general form of the like-table declaration

is:

LIKE-TABLE name number-of-items major-index-name $

Memo SW-7l-6
Page 20

where:

LIKE-TABLE - Specifies a LIKE-TABLE declaration

name - identification of like-table

number of items - the maximum number of items in the table

major index name - optional~ specifying which variable contains

the current value of items in the named

like-table.

The preprocessor makes several entries in the name-table. One

entry contains the name of the like-table and the tagged address

of the table structor. The table structor of the like-table is the

same as the table structor of the parent table ~ith one exception.

The address field of the like-table table structor points to the

origin of the like-table.

The table structor is placed in the next available location in

the structor partition. Additional entries are made in the structor

partition. These entries are the field structors which follow the

table structor of the parent table. Additional entries are made in

the name-table for the field structors of the like-table.

If a major index is specified, an entry is made in the name­

table. This entry contains the name of the major index and the

tagged address of the location of the major index in the data par­

tition.

3.2.2.9 Table Addressing

Tables are accessed in one of the following manners:

• Whole table

• Item addressing

• Field addressing

3.2.2.9.1 Whole Table

Whole table addressing may only be used in replacement

statements (Section 4.4.1). The general form of whole table addressing

is :

SET TABLE~ TO (TABLE-2 or Variable)

Case I - Variable

Memo SW-71-6
Page 21

Every word of the receptable table is set to the variable.

Since items of a table can be typeless and field definitions can

overlap, no conversion of the variable results. The type of the

data stored·is the type of the variable. The preprocessor generates

SET

TO

< tagged address of table structor>

variable

The execution of the SET instruction results in the fetch of

the table structor and # items or dimension field. These operands

occupy to deferral stack locations. Further execution of the set

instruction puts the processor in a block transfer mode. The set

instruction recognition of the table structor results in this a~tion.

Once in this mode the extent of the block transfer is calculated.

If the table is a V,H type the extent is the words/item field of the

table structor multiplied by the number of items field. If the table

is an A type, the extent is the multiplication of the dimensions of

the array by the number of words/item. Once this extent is calculated,

the next instruction is fetch. The execution of a TO instruction

with a scalar quantity results in the repetitive storage of the

variable in the words of the table.

The implementation of this feature in hardware results in savings.

These savings accrue as a result of the elimination of the explicit

multiply instructions necessary to calculate the number of elements

transferred reduction of overall memory required as a result of the

packing achieved with the table structor.

Case 2 - TABLE

The general form of this type of addressing is:

SET TABI TO TAB 2

Memo SW-7l-6
Page 22

If TAB 2 is longer than TABl, the transfer of values will stop

at the end of TABI. If TAB2 is shorter than TABl, the transfer of

values will stop at the end of TAB2. The preprocessor generates

SET <. tagged address of table structor>

TO ~ tagged address of table structor>

The execution of the SET instruction is the same as in Case 1.

The execution of the TO instruction is in two phases. The first

phase calculates the extent of the table, the second phase performs

the word-by-word transfer from TAB2 to TABI. During this phase, the

extent of both Tables are tested. If either extent becomes zero

(the extent is used as a counter), the operation ceases and the next

sequential instruction is fetched. This transfer is typeless. There

is no consideration given to operand types.

3.2.2.9.2 Item Addressing

There are three forms of item addressing:

• Horizontal or Vertical Table

• Two dimensional array

• Three dimensional array

3.2.2.9.2.1 Horizontal or Vertical Table

The general form of this type of item addressing is:

TABLE NAME (ITEM INDICATOR)

The calculation of the effective memory locations of tables

items is a function of the type of table. If the table is vertical

the offset fram the base of the table is equal to:

ITEM INDICATOR X WORDS/ITEM

Memo SW-71-6
Page 23

The extent of the item is equal to the number of words/item.

If the table is horizontal the offset from the base of the table is

equal to the item indicator. The extent of the item is equal to

the number of words/item. However, since successive words of an

item are not stored in sequential locations, the number of items

must be used as an increment to address successive words of an item

in a horizontal table.

As a consequence of these item attributes, the following means

of item addressing results.

Case I - Vertical

Vertical tables are easier of the two types of tables to

manipulate. Successive item words are stored in successive memory

locations. The general form of the item addressing is translated to

Operator < ITEM I TABLE STRUCTOR ADDRESS>

BUILD ITEM) Item indicator

The operator on the table item is item table structor. This

results in the retrieval of the table structor (addressing as an

item structor) to the accumulator. The execution of the BUILD ITEM

operator builds the final address and extent of the addressed item.

In the case of a vertical table, the words/item field of the table

structor contained in the accumulator is multiplied by the item

indicator. The result is added to the address field of the

accumulator. ,The extent of the item is equal to the words/item

field. If this is greater than oneJblock mode is entered. If the

table operator is the SET instruction, the contents of the accumu­

lator are tagged item structor with the appropriate address fields,

extent fields, and table type saved. If the table operator is not

the SET instruction, the operation is executed. For example, if the

CMS-2 statement were:

SET TABI(I) TO TAB 2 (2)

Memo SW-7l-6
Page 24

The execution of the TO instruction would result in the

transfer of the TAB2 item to the TABl item.

Item addressing is a typeless operation.

Case 2 - Horizontal

Horizontal item addressing is executed in a similar manner to

vertical item addressing. The exception being that the BUILD ITEM

instructor calculates the item offset differently, and must also

retrieve the number of item field which is used as an increment to

obtain successive item words. To achieve this purpose, the table

type bit of the table structor is examined upon retrieval. If a

horizontal table is indicated, the next sequential memory location

is fetched.

3.2.2.9.2.2 Two Dimensional

The general form of two dimensional array item ad-

dressing is:

ARRAY NANE (I ,J)

The effective address of the array item from the origin of

the array is

Given this information, array item addressing is achieved as

follows: (Assume the array item is referenced by operator arraynam(I

(I, J)). The preprocessor generates.

Operator

LOAD

BUILD ARRAY 2

< tagged address of i tern stru~tor ')

I

J

Memo SW-7l-6
Page 25

The execution of the operator instruction with an item

structor tage results in the fetch of the table structor and the

dimension op.erand which immediately follows the table structor.

The operator-tagged structor is held in the accumulator. The

following instruction load the item indicator I. The BUILD ARRAY' 2)J

instruction, performs the necessary calculation of the effective

item address and the extent of the array item (# of words).

The end result of the BUILD ARRAY instruction is the accumu­

lator containing the held op code (SET or TO), the tagged

address (typeless) of an array word, and the number of words to be

manipulated.

There are two possible item operators SET and TO. The SET

instruction builds the effective address of the array item. The

TO instruction builds the effective address of the right term

operand, fetches the operand(s), and stores these values in the

receptacle. Array item operations are typeless.

3.2.2.9.2.3 Three Dimensional

The three-dimensional array item addressing functions

in the same manner as two-dimensional item addressing with the

following exceptions

• The effective address of the array item from the origin

of the array is:

• The three-array indices I,J, and K are specified.

• The BUILD ARRAY 3 instruction is specified.

3.2.2.9.3 Field Addressing

There are three types of field addressing.

• Horizontal or Vertical Tables

• Two-dimensional array

• Three-dimensional array

Memo SW-7l-6
Page 26

Operations involving fields manipulate tagged data. Fields

may be referenced in Arithmetic (Section 4.1.1) and Logical (Sec­

tion 4.1.2) expressions. Before a field can be referenced, the

effective address of the field must be built in the accumulator.

A special case of field referencing, word addressing, is allowed.

Word addressi"ng is a typeless operation.

3.2.2.9.3.1 'Horizontal or Vertical Tables

where

The general form of a field reference is:

Operator Table-name (I,F)

table-name is the table which contains the referenced

field.

-I is the item indicator

- F is the field indicator. A Field is referenced by a

,a field name. A word is referenced by a variable or

constant.

The preprocessor generates:

Operator

LOAD (

<tagged address of item structor>

I

BUILD WORD F

The execution of the operator instruction results in the

accumulator containing the held operator and the table structor.

The Load (I instruction stores the item value in the accumulator.

The execution of the BUILD WORD instruction uses the contents of

the accumulator and the first two levels of the deferral stack to

calculate the effective tagged address of the referenced table word.

If the reference word is a field, the tagged address of the

BUILD WORD instructor points to the FIELD structor. Otherwise, the

tagged address of the BUILDWORD instruction points to a typeless

operand.

Memo SW-71-6
Page 27

The execution of the BUILDWORD instruction results in the

formation of the tagged address of the referenced word in the

accumulator. An undefer operation is executed which results in

the execution of the held operator. If the table is Vertical the

effective address of the referenced word is equal to:

ORIG IN OF TABLE + Item number x WORDS/ITEM + 'WORD POSITION.

If the table is horizontal, the effective address is equal to:

ORIGIN OF TABLE + # of item X WORD POSITION + Item number.

If F is an integer, a word is referenced. A word is a special

form of a field. In this case, the BUILDWORD instruction points

to a typeless operand. The contents of the accumulator after

execution, is 'the typeless address of the table-word.

The direct support of these functions in the hardware enhances

program executions as a result of the reduced memory requirements

and memory fetches that would be necessary to explicitly support the

effective address calculations.

3.2.2.9.3.2 Two and Three-Dimensional Array

The effective addeess of the array word is calculated

in two steps.

• The effective address of the array item is calculated as

in Section 3.2.2.9.2.4.2.

• The BUILDWORD instruction adds the word position of the

referenced field to the contents of the accumulator and adjust the

tagged address to indicate the type of data referenced.

3.2.2.10 Unallocated Tables

The addressing of an unallocated table is accomplished as

in any of the table addressing methods (Section 3.2.2.9) except that

the address specifier follows the table-name. The general form of

addressing unallocated tables is:

Tablename (addressing parameters)N

Memo SW-71-6
Page 28

where N is a variable or index. The preprocessor inserts a load

address instruction (SET) after the fetch of the tablename

structor: Then, the standard addressing parameter sequence is

followed.

3.2.2.11 Item-Area Addressing

Addressing item-areas is handles in the same fashion as

table item addressing. For example:

SET Item-Area (1) TO 5

is translated to:

SET <item-table structor address)

BUILDWORD 1

TO 5

Since the contents of the accumulator are tagged, item-table

structor/item area, the BUILDWORD instruction add the lower order

twelve bits of the addressed location to the address part of the

accumulator. The contents of the accumulator are tagged typeless.

If the CMS-2 statement were:

SET Item-area (Field) TO 5

the generated sequence would be

SET (item-table structor address>

BUlL DWORD < field structor >
TO 5

The execution of the BUILDWORD instruction would leave the

structor which points to the addressed field in the accumulator.

3.2.2.12 General Remarks

In the previous examples of table addressing, it must be

understood that the final address of the referenced operand must be

built in the accumulator prior to fetch. Upon fetching,the execution

sequence of the held operator continues, according to the parenthetical

field which was also held. In effect, three distinct phases of an

1. Instruction Fetch

2. Operand Fetch

3. Operator Execution

Memo SW-71-6
Page 29

The appropriate address tags defer execution of Step 2 until

an address is built in the accumulator. The parenthetical field

can defer Step 3 until some other operation is completed. Steps 2

and 3 are independent.

3.2.3 Switches

CMS-2 allows the specification of four different switches:

SWITCH, P-SWITCH, SP-SWITCH, and PS-SWITCH.

3.2.3.1 Switch (Statement Switch),

There are two types of statement switches: index and item.

3.2.3.1.1 Index

The index switch defines a transfer of control that is

determined by a user-supplied index. The general form of the Index

Switch is:

SWITCH name switch points

where: name is an identifier used to reference the switch

switch points are one or more statement number separated

by connnas.

The CMS-2 preprocessor makes an entry in the name-table. This

entry contains the name of the index switch, and the tagged address

of the delineation of the switch points in the data partition. The

preprocessor translates the statement names of the switchpoints into

branch addresses and stores these addresses in sequential locations

in the data partition. The tagged address associated with the switch

name points to the first of the sequential branch addresses.

Memo SW-7l-6
Page 30

If two switches are defined simultaneously, the above process

is repeated twice.

Additionally, the name-table entry for the switch name has an

associated entry which specifies the number of switch-points defined

for the declared switch. This field is used, if the INVALID operator

is used.

3.2.3.1.2 . Item Switch

The item switch defines switch points that are accessed

by a constant as specified in the definition. The general form of

the item switch declaration is:

SWITCH name (variable) $

Constant switch-point $

Constant switch-point $

END-SWITCH name $

where Name is an identifier used to reference the switch:

variable is a CMS-2 variable

constant is a CMS-2 constant one word or less

Switch-point is a statement name

When an item switch is invoked, the variable is compared with

each constant of the switch declaration. If a match exists, the switch­

point is branched to. If no match occurs, the next sequential

statement after the switch declaration is executed.

The CMS-2 preprocessor makes an entry in the name-table.

This entry contains the name of the item switch, the tagged address

of the CMS-2 variable, and the tagged address of the delineation of the

switch declaration in the data partition. The CMS-2 preprocessor

delineates the switch declaration in the data partition as follows:

Memo SW-71-6
Page 31

of Switch Points Tagged address of item switch
variable

24 12

CONSTANT (1)

SWITCH-POINT (1)

CONSTANT (N)

SWITCH-POINT (N)

Sections 4.5.2,GOTO switch, describes the execution of the

item switch.

3.2.3.2 Procedure Switch (P-Switch)

The P-Switch declaration defines an ordered set of pro­

cedure names (switch points). The general form of the P-SWITCH is:

P-SWITCH name INPUT formal~parameters OUTPUT

formal-parameters $
P Switch point $

P Switch point $

END-P-SW name $

The CMS-2 preprocessor makes an entry in the name-table. This

entry contains the name of the procedure switch, and the tagged

address of the delineation of the procedure switch points in the data

partition. The procedure names are translated into memory addresses.

These memory addresses point to the first instruction of the name

procedure. The preprocessor must check to see that the formal INPUT

and OUTPUT parameters of the P-SWITCH are defined for the procedures

named as switch points. Section 4.3.4 describes the execution of the

P-SWITCH.

3.2.3.3 SP-Switch and PS-Switch

Memo SW-7l-6
Page 32

The SP-Switch and PS-Switch are means by which the pro­

grammer can declare two different type switches in the same block of

coding. The CMS-2 preprocessor delineates the SP and PS switches

as if the switches were declared individually in s'eparate blocks of

coding.

3.2.4 Data Declaration

A DATA declaration is used to assign a preset value to a data

element that was previously declared (Section 3.2.1). The general

form of the DATA declaration is:

name DATA constant-a . •
DATA constant-a

constant-b $

constant-b $

Multiple DATA declarations are needed if the named data element

is multiword. If two constants are specified on the same DATA

declaration, the constants declared are packed in one word.

The preprocessor converts the constants into binary equivalent

and stores this value into the named data element.

3.2.5 EQUALS Declaration

The EQUALS declaration can be used to either make a value

substitution, or preempt the sequential allocation of locations by

the preprocessor and to designate the location to be assigned. The

general form of the EQUALS declaration is:

Identifier EQUALS value

where identifier is the name of a data element, procedure, function,

or labeled statement

Value is an integer constant or an arithmetic expression.

The use of the identifier in the EQUALS declaration is context

sensitive. That is, the effect of the equals is a function of the use

of the identifier in subsequent statements. The EQUALS declaration

is a preprocessor function: Its use does not result in any code that

is executed (Dynamic).

3.2.6 MEANS Declaration

Memo SW-7l-6
Page 33

The MEANS declaration provides a method of character substi­

tution during the preprocessor translation phase. The general form

of the MEANS declaration is:

name MEANS string-og-characters $

The preprocessor makes an entry in the name-table. This entry

contains the MEANS name and the string-of-characters. In future

references to this name, the preprocessor subtitutes the MEANS

character string and then translates the HOL statement.

3.2.7 MODE Declaration

The MODE declaration defines the attributes of variables and

fields that are not declared. The general form of the MODE declara­

tion is:

MODE VRBL description

or MODE FIELD description

The preprocessor defines an area in the name-table, MODE area.

When a variable or field is declared without attributes, the attri­

butes defiried in the MODE area of the name-table are ssociated with

the data declaration and consequently with the name-table entry of

the declared data element.

3.2.8 System Linking

As a result· of the partitioning of procedures and data de-

sign allowed in CMS-2 (see Section 3.1, Program Structure), facilities

must be provided for referencing a CMS-2 item (variable, table, func­

tion, etc.) defined in one data design or system procedure and

referenced in an independent system procedure. To provide for this,

the EXTDEF (external definition) and EXTREF (external reference)

operators are provided. The use of this operators provide linkage

mechanisms by which the linking loader substitutes the proper

addresses at load time. For CMS-2 items defined with these operators,

the CMS-2 preprocessor substitutes linkage information rather than

address information in the name-table entry for the CMS-2 item.

Memo SW-7l-6
Page 34

A complete analysis of the linkage mechanisms necessary to

support these operators will be undertaken at some future time.

4.0 DYNAMIC STATEMENTS

Dynamic statements result in the generation of instructions

which exist in memory at execution time. This contrasts to the

statements of Section 3.0, which, by and large, are name-table

manipulations and other system bookkeeping functions. Dynamic

statements are executed every time the programs are run. The

statements of Section 3 are executed only for the first time the

program is run. The following subsections describes the types,

preprocessor (software) considerations, and processor (hardware)

considerations of dynamic statements.

4.1 Expressions

4.1.1 Arithmetic Expressions

An arithmetic expression consists of two or more numeric

data elements connected by arithmetic operators. These operators are:

+ - addition

subtraction

- unary minus

* - multiplication

/ - division

** - exponentation

The general form of the HOL representation of an arithmetic

expression is:

Operator Operand name

The CMS-2 preprocessor generates:

Operator paren field <'tagged address of operand>

Memo SW-7l-6
Page 35

The CMS-2 processor (hardware) supports the six HaL arithmetic

operators. Tagged addresses provide the capability of achieving a

data insensitive system. Mixed mode operations and scaling is fully

supported in hardware. Conversion and scaling control sequences are

automatically invoked by the hardware. The hardware examines the

address tags ·to determine if additional control sequences are

necessary.

4.1.1.1 Inline Definition can be specified which overrides a fixed

point data declaration. The general form of the inline scaling

operator is:

Identifier •• radix point

Thus, A •• 5 specifies that the variable A has a radix point

of 5 (5 from the least significant bit). The preprocessor generates

Operator (identifier

L(R) SHIFT RADIX POINT

An inline definition is valid only for a particular reference.

A succeeding operand reference utilizes the radix point definition

of the data definition. The preprocessor in generating the L SHIFT

or R SHIFT instruction, must be aware of the present radix point of

the modified operand. The SHIFT instruction shifts the accumulator left

or right as a function of the count field contained in the address

of the instruction. The address field is used as an immediate operand.

4.1.2 Logical Expressions

A logical expression performs a comparison between two operands

via logical operators and returns a Boolean value. The logical

operators are:

• EO - EQUAL

• NOT - NOT EQUAL

.LT - LESS THAN

• GT - GREATER THAN

• LTEQ - LESS THAN OR EQUAL TO

• GTEQ - GREATER ~HAN OR EOUAL TO

Memo SW-7l-6
Page 36

The general form of the HaL representation of a logical

expression is:

logical operator operand name

The CMS-2 preprocessor generates:

logical operator paren field <tagged address of operand>

The CMS-2 processor supports the six HaL logical operators.

Tagged addresses provide the capability of achieving a data insensi­

tive system. Mixed mode and illegal comparisons are fully supported

in the hardware. For example, if two fixed point operands each

occupying different fields in a table word are to be compared, the

hardware will automatically recognize this condition and perform the

necessary shifting so as to align the fields before comparison.

This eliminates unnecessary explicit shift instructions. The hardware

will also check for illegal comparison operations (e.g., comparing

Hollerith operands for other than equal or not equal) .

The execution of a logical operator returns a Boolean value

to the accumulator. The contents of the accumulator are tagged

Boolean.

4.1.3 Boolean Expressions

A Boolean expression consists of two or more Boolean operands

connected by Boolean operators. The Boolean operators are:

• CaMP
• AND

• OR

Complement

And

Or

The general form of the HaL representation of a Boolean

expression is:

Boolean operator operand name

The CMS-2 Preprocessor generates:

Boolean operator paren field .c(tagged address of operand "/

. \

Memo SW-7l-6
Page 37

The CMS-2 processor supports the three HOL Boolean operators.

Tagged addresses and tagg"ed data in the accumulator provides the

means to automatically detect illegal Boolean operations.

4.2 Special Operators

The following are special operators that facilitate references

or operations upon data structures.

4.2.1 Bit Operator

The Bit operator is used to reference one or more bits in a

data element. The general form of the Bit operation is

BIT (Starting bit, number-of-bits) (data-element)

where starting bit specifies the initial bit position of the string

number of bits specifies the number of bits in the string

data -- element is the name of a variable or table element.

The starting bit and number-of-bits operands can either be a

constant, variable, or a variable plus or minus a constant.

If the number of bits is not specified, a value of one is assumed.

The CMS-2 preprocessor generates:

LOAD

LOAD

BIT

{

STARTING BIT

NUMBER OF BITS

< ADDRESS OF DATA-ELEMENT>

The execution of the BIT instruction, results in the fetching

of the operand pointed to by its address field, and the right justi-

fication of the field indicated by the starting bit and number-of-

bits operands contained in the deferral stack. At the conclusion of

the execution of the HIT instruction, the indicated operand is right

justified in the accumulator. The deferral stack is popped two levels

to clear its contents of the bit indicators.

Memo SW-71-6
Page 38

4.2.2 CHAR Operator

The CHAR operator is used to reference a string of characters

in a data element. The general form of the CHAR operator is:

where

CHAR (starting-character, number-character) (data-element)

starting-character specifies the initial character position

of the string

number-character specifies the number of characters in the

st~ing

data element is the name of a variable or table element.

TIe starting characters and number-character operands can either

be a constant, variable, or a variable plus or minus a constant.

Among the two possible ways to execute a CHAR HOL statement are:

or

Method #1

Define a CHAR instruction. The preprocessor generates:

LOAD

LOAD

CHAR

Method #2

STARTING CHARACTER

NUMBER-OF CHARACTER

< ADDRESS OF DATA-ELEMENT >

~ransfer the character positions into bit positions and use the

BIT operator. For example, CHAR (0,2) (A) could be translated(assuming

8-bit characters) as:

LOAD (0

LOAD (16

BIT < ADDRESS OF A >
Method #1 results in compile-time efficiencies and minimal

run-time memory requirements if the character positions are specified

by variables. Method #2 results in the definition of one less op code.

Presently, method #1 is prefer;-l,ble.

4.2.3 CORAD Operator

Memo SW-7l-6
Page 39

The CORAD operator is used to return the core address of a

data element·. The general fonn of the CORAD operation is:

CORAD data-element or statement-name

The CMS-2 preprocessor generates:

SET < data-element or statement-name>

The execution of the SET instruction (see Replacement

Statements, Section 4.4) loads the address of the data element

in the accumulator.

4.2.4 ABS Operator

The ABS operator is used to return the absolute value of a

data element. The general fonn of the ABS operation is:

ABS (element)

The CMS-2 preprocessor generates:

ABS <tagged address of element>

The ABS instruction returns the positive value of the data

element to the accumulator.

4.2.5 CaMP Operator

The CaMP operator is supported in the CMS-2 processor (see

Section 4.l.3). If the data element is not Boolean, the CaMP

operator functions as a unary minus.

4.2.6 to 4.2.9

Sections 4.2.6-4.2.9 are special I/O operators (pas, LENGTH,

DRMAD,DISCAD). A separate memo entitled "CMS_2 1/011 will cover

these operators.

4.3 Procedures

Memo SW-71-6
Page 40

This section describes the methods by which CMS-2 procedures

are invoked and returned from. There are three means to invoke a

procedure:

• Procedure

• Function

• Procedure

call

call

switch

There is only one way to return from a procedure, that is

using the return statement. Before explaining the items, a brief

discussion of the two means by which parameters can be passed to

procedures will be discussed, followed by a discussion of an entity

called the parameter stack.

There are two ways to pass parametersto a procedure: Call by,

name and call by value. All references to parameters called by

name, are by indirect addresses. That is, call by name involves

two levels of addressing. The first level accesses the address of

the call by name parameter. The second access references the parameter.

Call by value, suffers only one level of addressing. The first

memory reference, accesses the parameter directly. This is the

obvious advantage of call by value over call by name. One half

the memory accesses are required. However, call by value requires

the actual storage of the parameter in a reserved location. Should

this parameter bea table, the entire table must be moved to these

locations. It is in this case, that call by name has its advantages.

The only storage required is for the address of the table, not the

table itself. It also makes no sense to define output parameters

as call by value. By definition these parameters are only receptacles.

Defining all output parameter as call by name results in a simplified

return from a procedure. Output parameters called by value would

require an epilogue upon return from the procedure. This epilogue

would transfer the output parameter values to their original storage

location in the data partition. It will, therefore, be assumed that

all scalar input parameters are call by value, all output parameters

and input tables are call by name.

Memo SW-71-6
Page 41

4.3.1 Procedure Call

where

The general form of the procedure call is:

procedure name INPUT input-parameter(s) OUTPUT output-parameter(s)

EXIT· statement-name(s)

Name identifies the procedure to be executed.

INPUT specifies the following parameters are input parameters.

- Input parameters are constants, variable, or arithmetic

expressions that are the format input parameters.

OUTPUT specifies that the list of output parameters follow.

Output parameters are variables that are the formal output

parameters.

EXIT specifies that statement names that follow are abnormal

exit reentry points (abnormal in the sense that the next

sequential statement after the procedure is not ex:ecuted

after procedure termination).

Statement name(s} the abnormal statement-name(s}.

As a result of the call by value feature of CMS-2, the necessity

of defining a parameter stack is required. The parameter stack is

made up of two pushdown stacks: the pointer pushdown and parameter

pushdown. All formal parameters of the procedures are brought into

the parameter stack prior to invoking the procedure. Each parameter

pushdown location has a tag. The tag indicates either a value or an

address. The pointer pushdown maintains the base of the parameter

stack for each procedure invoked. All pointer references in the

procedure use this value as a base address.

Even though the following discussion includes an implementation

of call by value, the additional complexities introduced by call by

value should be weighed against the simplicity of call by name,

especially with the adoption of tagged addresses.

The preprocessor code which results in the execution of a

procedure is in two parts: the prologue and the call to the procedure.

PROLOGUE

Memo SW-71-6
Page 42

Due to the call by value property of CMS-2 formal parameters,

the actual values of the formal parameters must be moved to the

parameter stack. The tagged values of the actual parameters are

moved to the parameter stack in the order of their appearance from

the procedure name. Input parameters first, output parameters, and

then abnormal exits. Upon completion of the prologue the procedure is

invoked.

PROCEDURE CALL

Procedures are invoked by the CALL instruction. The general

form of the CALL instruction is:

CALL <:ADDRESS)

The address field of the CALL instruction points to the first

executable instruction of the named procedure. The execution of the

CALL instruction results in the following actions:

• The value of the Program Counter (PC) for the CALL instruc­

tion plus one is pushed into the pointer pushdown.

• The present location of the top of the parameter stack is

pushed along with the value of the Program Counter into the pointer

pushdown.

• The present value of the PC is replaced with the address

field of the CALL instruction and instruction sequencing is initiated.

All references in the procedure with a pointer address tag

reference the parameter stack. The address field of these instruc­

tions .is used as a decrement from the top of the pointer pushdown

stack location field. The address calculated, points to the tagged

actual parameter operand. This tag indicates whether the operand is

a value (call by value) or an address (call by name).

If the operand is a value, the operand is immediately used in

the invoking instruction. If the operand is an address, the second

level of addressing is initiated. Since all operands whether address

or value are tagged, all CMS-2 procedures are data insensitive. That

is, one copy of procedure suffices for all the defineable CMS-2 data

types.

Memo SW-71-6
Page 43

The following is an example of a procedure call. ASsume the

following' CMS-2 procedure call.

TEST INPUT X,Y OUTPUT Z $

1Vhere the first executable instruction of the procedure TEST is at

location 1000 the preprocessor generates:

LPSV x (LOAD PARAMETER STACK VALUE)

LPSV Y

LPSA z (LOAD PARAMETER STACK ADDRESS)

PC is 500 CALL <1000>

The contents of the pointer pushdown and parameter stack upon

completion of this is:

501 iTOP OF STACK ... ADDRESS Z -
POINTER PUSHDOWN VALUE Y

VALUE X

PARAMETER STACK

If the procedu~e TEST calls the procedure NEST with actual

input parameters A,Y and output par,ameter C, with NEST the call

to NEST at location 1010, the pointer pushdown and parameter stack

would be.

1011 TOP STACK

501 TOP STACK

~ POINTER PUSHDOWN

ADDRESS

VALUE

VALUE

ADDRESS

VALUE

VALUE

PARAMETER

C

y

A

Z

y

X

STACK

Memo SW-7l-6
Page 44

In this case, A/C are data local to the procedure TEST.

If Y was "an output parameter of TEST, the address of Y would

have_~to ".ge" P9.ssed to NEST. Y would be call 1?y name.
~/. "

4.3.~ Procedure Return

The return from a procedure is signified by the RETURN

statement. The general form of the RETURN statement is:

RETURN Abnormal exit

where abnormal exit is optional and is only used when the

EXIT specifier is used in the procedure call. The preprocessor

generates:

RETURN < POINTER ADDRESS)

If a normal return is specified, the address tag of the RETURN

instruction does not specify pointer. The pointer pushdown is

popped, and the PC field becomes the present value of the Program

Counter and instruction execution is initiated. If an abnormal

exit is specified, the pointer tag indicates the address of the

statement-name in the parameter stack to be returned to. This

address field becomes the present value of the PC. The pointer

pushdown is popped.

4.3.3 Function Call

A function call differs from a procedure call in that one

valUe is returned to the accumulator and a function is treated an

arithmetic operator. A prologue precedes a function call just as in

Memo SW-71-6
Page 45

procedures. The following example will illustrate function calls.

CMS-2 STATEMENT
SET Z TO A+FUNCT(B)

where FUNCT(B) invokes the function FUNCT with the actual

parameter B. The preprocessor generates:

SET <: Z >
TO A

LPSV B

+ FUNCTION TAGGED ADDRESS OF FUNCT

The instruction +) tagged function address acts in the

same manner as the call instruction with one exception. The

instruction's op code and parenthetical field is held in the

accumulator. Even though the parenthetical field indicates

immediate execution and an undefer operation, the function operand

must first be calculated. The address tag, function, initiates this

sequence.

The return from a function is the same as a procedure return

with one exception. Before the instruction indicated by the

restored PC is executed, an accumulator pop is initiated. This

pop completes the ex'ecution sequence of the instruction which

invoked the function. As recalled from Section .3.1.8, the last

statement of a function before a return must be a replacement

statement which loads an operand in the accumulator. This ensures

that the proper accumulator value is manipulated upon function return.

4.3.4 Procedure Switch

The procedure switch specifies a transfer of control to one

of the procedures named in a procedure switch (Section 3.2.3.2).

The general form of the procedure switch call is:

name USING index INVALID statement-name

INPUT input-parameters OUTPUT output-parameter $

where

- name identifies the procedure switch

Memo SW-71-6
Page 46

Index is a data unit, constant, or arithmetic expression

whose integer value determines the procedure to be called.

INVALID (optional) specifies that the procedure linkage

should be accomplished only if the switch index is valid.

The CMS-2 preprocessor generates:

GOTO (< TAGGED PROCEDURE ADDRESS)

+
INVALID

LPS V •

LPS V

.
•

INDEX

. <. STATEMENT NAME >
ACTUAL PARAMETER

ACTUAL PARAMETER

(OPTIONAL)

The execution of the GOTO instruction with a procedure tag

results in the procedure whose address is contained in the address

field of the GOTO instruction being invoked (orie level of indirection).

The last LPSV instruction initiates the execution of the GOTO

instructions.

4.3.5 General Remarks

Section 4.3 dealt with the topic of CMS-2 procedure linkages.

AS was mentioned,several advantages and disadvantages exist with

the ability to provide call by name and call by value parameter

linkages. It must be mentioned that in actual implementation

the parameter stack may be united with the accumulator. By itself,

this presents no problems. However, should the hardware depth of

the stack be exceeded, the stack may have to be extended into main

memory. Since the MDC word is 32 bits, and the· accumulator

operands are tagged and thus greater than 32 bits, two memory words

would be "required to hold one stack word. If this should happen,

the advantages of reduced memory access time gained by call by

value linkage would be eliminated by the double memory access

necessary to· fetch the tagged operands. Should further study con­

firm this matter, linkages established by call by name should be

Memo SW-7l-6
Page 47

adopted. The same number of memory accesses would be required

during procedure execution, but the procedure prologue would be

obviated, i.e., the parameter values would not be loaded.

4.4 Replacement Statements

There are two types of replacement statements:

assignment and exchange.

4.4.1 Assignment Statements

There are five types of assignment statements:

• Aritlunetic

• Hollerith

• Status

• Boolean

• Multiword

The general form of the assignment statement is:

SET receptacles) TO right-term $
where SET specifies a receptable .follows.

receptac1e(s) is a data element that is to receive a new

value. Multiple receptacles are separated by commas.

'TO specifies that the right term follows

Right term is a data element or expression

The preprocessor generates:

SET « RECEPTACLE >
TO RIGHT TERM

If multiple receptacles are specified, as in SET A,B TOC,

the preprocessor generates

SET <A/

TO (<. B >
TO C

Memo SW-7l-6
Page 48

The execution of the TO instruction results in the storage of

the operand of the TO in the memory location whose address is con­

tained in the accumulator. The contents of the accumulator after

the execution of the TO instruction contains the operand just stored

in memory. In the case of multiple receptacles, a:undefer operation

is" initiated" after the execution of the first TO instruction. This

causes execution of the held TO instruction, which results in the

storage of the same operand in the second receptacles memory loca­

tion.

4.4.1.1 Arithmetic Assignment Statement

This statement assigns an arithmetic value to the receptacle.

The arithmetic value may be either an arithmetic data unit (as in A = B)

or an arithmetic expression (as in A = B+C). If the data elements

are mixed mode, that is data elements are not all the same type,

conversion sequences are automatically invoked as a result of a

comparison of the address tags. For example, if the HOL statement is

SET A "TO B+C

The preprocessor generates

SET < tag address of A)

TO (B

+) C

If Band C are fixed point and A is floating point, the execution

of the TO instruction will automatically invoke a fixed point to

floating point conversion. This approach to mixed mode arithmetic

results in minimizing preprocessor complexity and the savings of

one memory location that would otherwise be used for a conversion

instruction.

4.4.1.1.1 Saving and DIVFLT Operators

The SAVING and DIVFLT operators may be used in arithmetic

expressions involving a divide operator.

The general form of the SAVING operator is:

SAVING data-element

The preprocessor generates:

SAVING < address of data element)

Memo SW-71-6
Page 49

The preprocessor checks to see that the previous operation

specified in the CMS-2 source statement contains a HIli operator.

If this is not true, a diagnostic is rel~ted to the programmer.

The execution of the SAVING instruction results in the storage of

the contents of the Arithmetic Logic Unit register that normally

contains the remainder of fixed point divide operations in the

address specified by the SAVING instruction.

The following illustrates the use of the SAVING operator:

SET· TO A+B/C SAVING Y+D

The CMS-2 Preprocessor generates:

SET <x)
TO (A

+ (B

I C

SAVING <Y >
+ D

The general form of the DIVFLT operator is:

DIVFLT statement-name

The preprocessor generates:

DIVFLT (address>

The DIVFLT instruction tests the divide overflow indicator.

If the indicator is set, sequential instruction execution is halted

and control passed to the instruction pointed to by the address

field of the DIVFLT instruction. If the overflow indicator is not

set, the next sequential instruction is executed.

The following illustrates the DIVFLT operator:

SET X TO B/C DIVFLT Sl+D

The CMS-2pr.eprocessor generates:

SET (X)

TQ B

/ C

DIVFLT < address of Sl ")

+ D

4.4.1.2 Hollerith Assignment Statement

Memo SW-71-6
Page 50

The general form of the Hollerith assignment statement is:

SET receptacle TO data-element.

The preprocessor generates:

SET STRUCTOR OF RECEPTACLE

TO STRUCTOR OF DATA-ELEMENT

All references to Hollerith data element are made via a structor.

Explicitlyde£ined Hollerith data (Section 3.2.1.5) have an associated

structor. Dynamically declared Hollerith strings (declared via the

CHAR operator) results in a Hollerith structor being built in the

accumulator. The execution of the TO instruction/results in a

memory-to...:memory move of the Hollerith strings.

4.4.1.3 Status Assignment Statement

The general form of the status assignment statement is:

SET receptacle TO data-element

The preprocess generates:

SET < tagged address of receptacle>

TO (" tagged address of data-element)

Status variables and constants are defined as in Section 3.2.1.6.

There are two possible ways to effect status assignment statements.

If the status variable is defined for an entire-word (thus, not a

Memo SW-71-6
Page 51

field or partial word). The preprocessor references the status

variable and constants as floating point variables. Thus, a simple

memory-to-memory transfer is effected. In this case, the preprocessor

must chec'k to see if the data-element status structure (# of bits) is

the same as the receptacle structure.

If the status variable (receptacle or data-element) is a field

in a table; it must be referenced by a status structor. This will

ensure pr9per alignment and masking of status' bit configurations.

The first case involves less memory accesses but is limited to

the case of a status variable solely occupying a computer word.

4.4.1.4 Boolean Assignment Statement

Th~ Boolean assigns a Boolean value to a Boolean receptacle.

The right term may be a Boolean data-element or Boolean expression.

The general form of the Boolean assignment statement is:

SET receptacle TO right term

The preprocessor generates:

SET < tagged address of receptacle>

TO right term.

If the right term is constructed as a result of a BIT operator

(Section 4.2.1), the preprocessor must check to see that only one bit

is extracted by the BIT operator.

4.4.1.5 Multiword Assignment Statement

This type of statement assigns a value or values to a

mu1tiword data element. See section 3.2.2.9, Table Addressing, for

a description of the handling of multiword assignment statements.

4.4.2 Exchange Statement (SWAP)

Memo SW-7l-6
Page 52

The exchange statement swaps the values contained in two

data units. The exchange statement may be viewed as two assignment

statements that are executed simultaneously. The general form of

the exchange statement is:

SWAP NAME 1 AND Name 2 $

This form is equivalent to the CMS-2 statements:

TEMP 1 = Name 1

NAME 1 = Name 2

NAME 2 = TEMP 1

Among the possible ways to execute the SWAP statement are:

1. TheCMS-2 preprocessor substituting the three-statement

code as illustrated above, and then processing the three statements

as assignment statements. This procedure involves the allocation

of tempor~:r:y storage and the execution of six instructions.

2. Defining a SWAP instruction. Initially, the efficiency of

the operation, with regards to the CMS-2 preprocessor, is to make

translation non-context sensitive. The IIANDII delimiter is ambiguous.

AND has previously been defined as a Boolean operator. Defining an

operator such as IIWITH" would be preferable. In either case, if

the exchange statement is supported in hardware, the preprocessor

would generate the following code:

SET

SWAP

< NAME 1)

(NAME 2 >
The burden of temporary storage allocation would be with the

hardware.' The condition where this might present some difficulty

is the exchanging of Table or Hollerith data-elements. One possible

solution to this problem, is to exchange data-element ONE-by-ONE

rather than- in a block fashion as weuld normally be suggested by

methed #1.- For example, if twO' 4-item tables (A and B) are to be

ex-changed, the centrol sequence of the SWAP instructien would be:

INDEX4-- 3*

TEMP 4- A (INDEX)

A (INDEX)4-B (INDEX)

B (INDEX>-I-TEMP

YES

INDEX· -- INDEX-l

Memo SW-7l-6
Page 53

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

Executing the SWAP instruction in this manner, eliminates the

allocation of temporary storage for an entire Table or Hollerith

string. The data-elements are exchanged via an iterative sequence.

*NOTE: In CMS-2, the origin of a table is the oth element.

4.5 \Contro1 Statements

There are three types of control statements:

• GOTO' statement name

• GOTO 'switch

'. S'rOP

4.5.1 GOTO Statement Name

Memo SW-71-6
Page 54

In this section and the following section', types of GOTO

statements are discussed. The preprocessor in translating GOTO

st'atements, generates a GOTO instruction with a tagged address.

The tag part of the address field identifies the type of GOTO

statement, not the data type as with arithmetic instructions.

In effect, the tag field identifies statement type.

The general form of this GOTO statement is:

GOTO name $

where name is the name of the next statement to be executed,

The CMS-2 preprocessor generates

GOTO (tagged address of statement name>

4.5.2 GOTO SWitch

The.re are two types of GOTO switches:

• Index

• Item

4.5.2.1 Index

The general form of the index switch is:

GOTO name index INVALID statement name $

where Name is a declared index switch

'Index is an integer value that is used to reference
an index declaration

INVALID (optional) specifies a transfer of control to

the following named statement only if the index is out­

side the range of switch index values.

Case 1 INVALID Not Specified

The preprocessor generates:

GOTO (< tagged address of index' switch>

+) index'

Memo SW-7l-6
Page 55

The GOTO'index switch is deferred. The +) index instruction,

adds the index to the address field of the GOTO index switch

instruction, and undefers the GOTO instruction. The execution

sequence of· the GOTO index switch instruction uses 'its address

field to reference a memory location. The contents of the memory

location are interpreted as an address. A branch to this address

is taken. The GOTO index' switch instruction can be likened to an

indirect transfer instruction of conventional machines.

Case 2 INVALID Specified

The INVALID operator is used to transfer control to a name

statement only if the index is outside the range of the switch

value.

The preprocessor generates:

GOTO. « tagged address of index switch>

+ (index

INVALID RANGE < statement name>

The INVALID instruction is a special instruction. It is never

deferred, nor is an address tag necessary. Thus, the instruction

format is:

.1 INVALID NOT USED RANGE ADDRESS

6 2 12 12

Depending upon final implementation, the range field of the INVALID

instruction appears on the order of 12 bits or 4096 switch points.

This is sufficient for all CMS-2 useage. The execution of the

INVALID instruction is as follows: The range field is compared for

Memo SW-7l-6
Page 56

greater-than or equal-to the address field of the acc~ulator.

If the test is true, the held instructions in the accumulator are

executed (undefer). If the test is false, the deferral mechanism

is popped two levels, and the instruction pointed to by the address

field of the INVALID instruction is executed.

The preprocessor inserts the proper value in the range field by

interrogating the name table entry for the defined switch declara­

tion.

4.5.2.2 Item Switch

The general form of the item switch is:

GOTO name INVALID statement name

where
Name is a declared item switch

INVALID (optional) specifies a transfer of control to the

following named statement only if a match is not found.

The CMS-2 preprocessor generates:

GOTO

GOTO

'< tagged address of item switch)

< statement name) (if INVALID specified)

The CMS-2 processor, upon recognition of the item switch call,

proceeds with the following execution sequence: (See Section 3.2.3.1.2

for the memory topography of the item switch).

This last CMS-2 translation will serve as an example of the

efficiencies.gain when a processor is designed to efficiently exe­

cute a HaL. The AADC is a word-oriented machine. A valid compari­

son between the efficiency of code, would be to compare the code

that would be produced with a more conventional machine. For this

purpose a machine with the IBM 7090 structure will be used. The

best code for execution of an item switch on the 7090 would be:

AXT XRl 2 times the number of switch points
LOOP CLA address of variable

SUB XRl ~ l+address of constant N ')
TZE XRl * ~l+address of switch point N '7
TIX XRl LOOP, 2

FETCH ADDRESSED LOCATION

COUNT "'4-- SWITCH POINT FIELD

FETCH ITEM SWITCH VARIABLE

ACCUM ___ -- ITEM SWITCH VARIABLE

FETCH CONSTANT

YES

COUNT ... 4----- COUNT-l

NO

EXECUTE NEXT
SEQUENTIAL INSTRUCTION

Memo SW-71-6
Page 57

'INCREMENT
CON~TANT
POINTER

Memo SW-71-6
Page 58

The AXT instruction loads an index register with twice the

number of switch points. The CLA (clear and add) loads the accumu­

lator with the item switch variable. The SUB (subtract) is a fixed

point subtract. The TZE (transfer on zero) tests the accumulator

for zero' (equal comparisons). If the test is true, an indirect

branch is taken to the switch point associated with the compared

constant, otherwise, the next sequential instruction is executed.

The TIX instruction decrements the index register by two, compares

for completion of loop, and re-initiates looping.

Supporting the item switch in this manner results in five in­

structions plus memory locations equal to two times the number of

switch points declared. Supporting the item switch with the CMS-2

processor, results in one instruction plus memory locations equal

to 1+2 times the number of switch points declared .. · The net savings

is three memory locations and the elimination of explicitly invoked

index register operations.

4.5.3 STOP

The STOP statement temporarily suspends program execution.

The general form of the STOP statement is:

STOP $

The CMS-2 preprocessor generates:

STOP,

The effect of the execution of the STOP instruction, other than

halting program execution is dependent upon final system implemen­

tation.

4.6 Decision Statements

A decision statement involves the conditional execution of one

or more statements. There are three types of decision statements:

• Logical

• Search

• Validity

4.6.1 Logical

Memo 8W-7l-6
Page 59

The general form of the logical decision statement is:

IF logical-expression THEN statement(s) $

where

IF specifies that a decision is to be made

logical expression is a logical or Boolean expression as

specified in Section 4.1.2 and 4.1.3.

THEN specifies that the statement or statements that follow

are to be executed only if the result of the logical expression is

true.

Statement is any dynamic statement except IF, VARY, and FIND.

The preprocessor output for logical decision stateme·nts takes

one of two forms:

Case 1 - Dynamic Statement is a GOTO

The general form of Case 1 is:

IF logical-expression THEN GOTO statement-name

The CMS-2 preprocessor generates:

LOAD operand

Delineation of logical expression

TIT ~ statement-name>

The ex-ecutionof the TIT (Transfer If True) instruction tests

the Boolean bit of the accumulator. If the bit is "lit, the branch

to statement-name is taken. Otherwise, the next sequential instruc­

tion is executed. For ex-ample,

IF A EQ

is translated to

LOAD

EQ

TIT

B

A

B

THEN GOTO 81 $

(address of Sl ')

Case 2- Dynamic Statement is not a GOTO

The general form of CASE 2 is :

Memo SW-7l-6
Page 60

IF logical-expression THEN dynamic statement

The CMS-2 preprocessor generates:

LOAD operand

Delineation of logical-expression

TIF < statement-name)

The ex'ecution of the TIF (Transfer If False) instruction tests

the Boolean bit of the accumulator. If the bit is 110", the branch

to statement-name is taken. Otherwise, the nex't sequential instruc­

tion is executed. For example,

IF A ,EQ B THEN SET A TO 1

SET X.

is translated to

LOAD A

EQ B

TIF < address of SET X stateme·nt >
SET (~ A)

TO) ONE

The TIF and TIT instructions are special forms of the GOTO in­

struction. Before a branch is taken, a test is made. Since the

address tags are normally meaningless for branch operations,

the bits were used to define variations of the basic GOTO instruc­

tion. This same approach can be undertaken with the TIF and TIT

instructions. Thus, for logical statements of the form of CASE 1,

the same sequence of instructions is generated if the dynamic

statement is any form of a GOTO (item, index, procedure, and state­

ment label). The address tag of the TIT instruction serves to

identify the appropriate form of branch.

4.6.2 Search Decision Statement

Memo SW-71-6
Page 61

The search decision statement must immediately follow a

table search operation. (See FIND, Section 4.7.2.) The general

form of the search decision statement is:

IF DATA FOUND/NOT FOUND THEN statement(s)

The preprocessor generates TIF or TIT, <address of next state­

ment > depending upon whether FOUND/NOT FOUND and the form of the

statement after THEN. The end result of a FIND statement, which

must precede the search decision, is a load of a Boolean value in

the accumulator.

4.;6.3 Validity Decision Statement

The validity decision determines whether a subscripted data

reference is valid. The general form of the validity statement is:

IF table-element VALID/INVALID THEN statement(s) $

The preprocessor output is a function of the form of the tab1e­

element refer'ence. If the table-element is referenced as:

tab (X,Y)

where X,y are variables, the preprocessor must generate:

IF

IF

x
y

GR

GR

of items THEN

of words THEN •

which, inturn, is processed as:

IF statements.

It appears that the inclusion of the Validity statement adds

little, if anything, to the utility of CMS-2. The preprocessor

complexity, as well as program understanding is enhanced if the

programmer simply writes the appropriate IF statements rather than

the preprocessor inserting like code.

Memo SW-7l-6
Page 62

4.7 LOOP Statement

Loop statements direct repeated execution of a specified group

of statements or perform a table search. There are three HOL loop

statement primitives:
"

• VARY

• FIND

• RESUME

4.7.1 VARY

A vary block comprises a set of statements that are to be

executed a specified number of times. The general form of the vary

block is

statement-label VARY loop-index FROM initial-value

Separator final-value increment $

loop statement :=:J-
VARY BLOCK

END STATE¥ENT-NAME

where - statement label is the name by which the vary block is

referenced

- vary specifies the start of a vary block

loop index is the name of an index to be varied

FROM specifies the init.ial value of the loop index. If

the WITHIN separator is used, FROM is not needed.

initial value is a constant, arithmetic expression, or

variable that specifies the beginning index value of the

loop. If omitted, the initial value is 0 (FROM is not

needed) •

sperator is THRU or WITHIN. The separator specifies the

final loop index value.

• WITHIN signifies that the number of items of the following

table is the final value of the loop index.

increment is BY followed by a constant, arithmetic expres­

sion, or variable. If BY is omitted, an increment of one

is assumed.

Memo SW-7l-6
Page 63

END specifies the end of a vary block.

statement name corresponds to a VARY statement.

The CMS-2 preprocessor makes two entries in the name-table.

One entry contains the name of the VARY statement (the statement

label that precedes the VARY specification), and the address of the

delineation of the VARY BLOCK. The entry contains the name of the

loop-index and the tagged address of the loop-index in the data

partition. The address tag of the loop-index denotes loop-index.

The preprocessor generates the following code for a VARY

statement:

LOAD

LOAD

LOAD

(

(

INCREMENT

F;I:NAL

INITIAL

FORM VARY < address of loop-index '>

delineation of vary block

VARY

. .
< address of loop-index '7' < address of vary block

beginning "1

The code generated for a VARY BLOCK is in two parts: loop

initiation and loop indexing. Loop initiation involves itself with

the formation of a loop-index in a memory location. The structure

of the loop-index in memory is:

S INCREMENT FINAL VALUE CURRENT VALUE

1 7 12 12

LOOP-INDEX

The loop-index' is formed by loading the three defined fields in

the accumulator-deferral stack and executing the FORMVARY instruc­

tion. The FORMVARY instruction takes the top two stack locations

and the accumulator and packs the fields into one memory word. The

accumulator/stack mechanism is popped three levels. The loop-index

Memo SW-7l-6
Page 64

as defined, allows a range from 0 to 4096 for the value of the loop

index and an increment of ±255. More will be said concerning

these ranges in a subsequent discussion.

The VARY instruction has two l2-bit address fields. There is

never any need to defer a VARY instruction. The execution of the

VARY instruction is as follows:

• The increment field of the addressed loop-index is algebraically

added to the current value field.

• If the increment is positive, the final value field is compared

for less-than.

• If the increment is negative, the final value is compared

for greater~than. The final value and current value fields are

always 0 ,or greater.

• If the comparison is true, the next sequential instruction

is executed. If the comparison is false, a branch to the beginning

of the VARY BLOCK is taken.

If in the VARY BLOCK, the loop-index is referenced for some

manipulation, the address tag of the reference denotes loop-index.

All references to a loop-index operand by any instruction other

than VARY and FORMVARY, treat the memory location as a 12-bit

positive integer right justified. A loop-index can not be a recep­

tacle (the left side of a TO operator). At thi's point, some mention

must be made about the ranges of the loop-index afforded by the

packed memory- word. As previously stated, the maximum range of the

loop index is 4095, the maximum increment is ± 255. Though a quan­

tative analysis was not undertaken, it is felt that these ranges

will suffice for the vast majority of applications. The reduction

in memory space and execution time also lends credence to this

approach. If the need should arise that a VARY BLOCK parameters

should exceed these ranges, the CMS-2 preprocessor will artificially

create a VARY BLOCK with the following sequence:

LOOP. 'SET I TO INITIAL VALUE

VARY BLOCK

SET I TO I+INCREMENT
IF I LT FINAL VALUE GOTO LOOP

4.7.1.1 Multiple Loops

Memo SW-7l-6
Page 65

Two or more loop-indices can be specified in one VARY

BLOCK. For example:

STEP 7. VARY CATA THRU 20 and CATB THRU 30 by 4 $

END

The CMS-2 preprocessor generates:

LOAD

LOAD (

LOAD (

FORMVARY

LOAD

LOAD (

LOAD (

FORMVARY

VARY

GOTO

1

20

o
< address of CATA ')

4

30

o
< address of CATB ')

< address of CATA> < *+2 '7

<" statement after STEP 7 >

STEP 7 $

VARY < address of CATB) <" address of vary block beginning)

4.7.2 Table Search (FIND)

The table search statement provides the capability of

searching a table for data that specifies end conditions. The

statement is a combination of a avary block and a logical decision

statement. The general form of the FIND statement is:

Statement label • FIND expression VARYING loop-index

initial-value final-value increment

where - (Optional) statement label is the name by which this

statement is referenced. The label is required if the table search

is resummed.

FIND specifies a table search

expression is a logical or Boolean expression, the first term

of which must be a subscripted table reference using the loop index.

Memo SW-71-6
Page 66

VARYING spe~ifies that the operands that follow control the

loop. If the VARYING statement is not included, the loop index

is assumed to vary from 0 through # of table items with an increment

of 1.

The search decision statement must immediately follow a table

search. This statement tests whether or not the end condition was

met. The following is an example of the use of the FIND statement

FIND TAB(I,I} EQ 'TEST' $

IF DATA NOT FOUND THEN GOTO OUT $

The preprocessor first translates the FIND statement into VARY

and IF statements.

AGAIN • VARY I WITHIN TAB $

IF TAB(I,I) EQ 'TEST' THEN LOAD 'TRVE' THEN GOTO OVER $

END AGAIN $

LOAD 'PAUSE' $

OVER. TIF . <. address of out> $

The FIND statement ultimately loads the accumulator with Boolean

taue or false. The search decision statement is translated to a

Test if true (TIT) or Test If False (TIF) depending upon DATA FOUND/

NOT FOUND. See the appropriate sections for the processing of VARY

and IF statements.

4.7.3 Resume Statement

A resume loop statement is used to terminate a pass through

a vary block before the end of the end vary statement or used

to transfer back into a vary block from outside the block. The

general form of the RESUME statement is:

RESUME statement label.

where the statement label is the name of the vary block referenced.

The preprocessor generates:

GOTO <branch address>

where the branch address points to the VARY instruction, which

terminates the delineation of the VARY statement.

4.8 Compound Statements

Memo SW-7l-6
Page 67

Two or more statements may be joined by the connector THEN

to form a compound statement. The THEN connector does not generate

code. It serves to define the range of applicable CMS-2 operators

and at execute time, it typically defines a branch address as in:

IF A EO
THEN SET

SET M TO

B THEN SET X TO 4+Z $

E TO F+G $

N+P

The multiple use, THEN serves to define the branch point of the

IF statement as the set M to N+P statement, rather than the next

sequential statement set E to F+G.

Dept. 7675 Ext. 3473

SW/gb

dc:
J. Baker (917)

A. Deerfield (904)

S. Nissen (904)

B. Scheff (E-H1)

S~ Wallach (904)

~ppenQ~X A/uW-/l-O
Page 1 of 5

APPENDIX A

CMS PROCESSOR INSTRUCTIONS

The following is a description of the CMS-2 .processor instruc­

tions. The descriptions of the execution assumes the referenced

operand is fetched. It is understood that before the final exe­

cution, the instruction can be interrupted by: parenthetical con­

trol and address tag considerations. Unless otherwise noted, the

format of a CMS-2 instruction is:

OP CODE I PAREN FIELD

1 6 7 10

A.l Arithmetic Operators

+, -, *, /, **

UNUSED TAG

11 16 17

ADDRESS j
20 21 32

The contents of the accumulator are operated upon the operand

indicated by the address of the arithmetic operator. The result is

left in the accumulator.

COMP (Unary Minus)

The sig'n of the address operand is changed. The result is left

in the accumulator.

A.2 Relational Operators

EQ, NOT, LT, GT, LTEQ, GTEQ

The contents of the accumulator are compared to the operand

indicated by the address of the relational operator. A Boolean

result is left in the Boolean bit of the accumulator.

A.3 Boolean Operators

AND, OR

The contents of the accumulator are Boolean combined with

the referenced operand. A Boolean resuit is left in the Boolean

bit of the accumulator.

Appendix A/SW-71-6
Page 2 of 5

COMP

The COMP operator with a Boolean address tag complements the

referenced operand (Boolean) and leaves the result in the accumu­

lator.

A.4 Branch Operations

GOTO, TIT, TIF

The execution of these instructions depends on the address

tags:

0000

0001

0010

0011 '

1100) .
(

1111)

Statement label

Index switch

Item switch

Procedure switch

Not used.

The GOTO instruction is an unconditional branch to one of the

four branch types. The TIT (Transfer If True) andTIF (Transfer If

False) test the accumulator. If the condition is met, the branch is

taken, otherwise the next sequential instruction is taken.

A.5 Stor'es. and Loads

LOAD, SET, TO, SWAP

LOAD

The addressed operand is loaded into the accumulator.

SET

The address field of the set operator is loaded in the

address part of the accumulator. The address field is used as an

immediate operand.

TO

The operand referenced by the address field of the TO instruction

is stored in the address contained in the field of the accumulator.

The stored operand becomes the contents of the accumulator.

Appendix A/SW-71-6
Page 3 of 5

SWAP

T~e operand referenced by the address field of the SWAP

instruction is exchanged with the operand referenced by the address

field of the accumulator.

A.6 Loop Instructions

FORMVARY

The ~op two stack locations and the accumulator are packed

into the word referenced by the address field of the FORMVARY in­

struction. See Section 4.7.1 for a description and use of the

FORMVARY instruction.

The VARY instruction is a two-address instruction with the

following format.

OP CODE UNUSED ADDRESS OF LOOP-INDEX 'ADDRESS OF VARY BLOCK

1 6 7 8 9 20 21 32

See Section 4.7.1 for a description and use of the VARY instruction.

A.7 Procedure Instructions

CALL

The execution of the CALL instruction results in:

• The value of the Program Counter for the CALL instruction

plus one is pushed into the pointer pushdown.

• The present location of the top of the parameter stack is

pushed along with the value of the Program Counter into the pointer

pushdown.

• The present value of the PC is replaced with the address

field of the CALL instruction and instruction sequencing initiated.

LPSV - (Load Parameter Stack-Value)

The operand pointed to by the address field is loaded into

the parameter stack.

Appendix A/SW-7l-6
Page 4 of 5

LPSA - (Load Parameter Stack-Address)

The address field of the LPSA instruction is used as an immedi­

ate operand and loaded into the parameter stack.

RETURN

The RETURN instruction has three meanings depending upon

the address tag field.

0000 ~ Normal Return - The pointer pushdown is popped and the

PC field becomes the present value of the program counter

0001 :... Abnormal Exit (pointer) - The address field is used as

a decrementer from the pointer pushdown base to obtain the

address of the location which contains the address of the

location to be returned to

0010 ;- Function - The deferral mechanism is popped one level

and the held op code executed. Sequencing then continues as in

the normal return.

A.8 Special Operators

BIT

The operand pointed to by the address field is fetched.

The number of bits and the starting bit fields contained in the

accumulator and deferral stack are used to mask out the desired

field. This field is right justified in the accumulator.

CHAR

Same as BIT, except the count fields indicate starting

character position and number of characters.

ABS

The absolute value of the referenced operand is placed in
the accumulator.

SAVE

The contents of the ALU register that normally contains the

remainder of a fixed-point divide is stored in the location Whose

address is contained in the SAVE instruction.

Appendix A/SW-7l-6
rage 5 of 5

DIVFLT

The divide overflow indicator is tested. If the indicator

is set, sequential instruction execution is halted and control passed

to the instruction pointed to by the address field of the

Otherwise, the next sequential instruction is executed.

STOP

Sequential execution of instructions is halted. Further

operation is system dependent.

INVALID

The INVALID instruction is a two-field instruction with the

format:

OP CODE NOT USED RANGE ADDRESS

1 6 7 8 9 20 21 32

The range field is compared for greater-than, or equal-to the

address field of the accumulator. If the test is true, the HELD

instructions in the accumulator are executed (undefer). If the

test is false, the deferral mechanisms is popped two levels and the

instruction pointed to by the address field is executed.

A.9 Shift Instructions

There are two shift instructions: L Shift (left) and R Shift

(right). The contents of the accumulator are left (right) shifted

according to the address of the L(R) Shift instruction. The address

field is used as an immediate operand.

A.lO Table Addressing

There are four table addressing instructions:

• BUILDITEM (Section 3.2.2.9.2.1)

• BUILDARRAY2 (Section 3.2.2.9.2.2)

• BUILDARRAY3 (Section 3.2.2.9.2.3)

• BUILDWORD (Section 3.2.2.9.3.1)
Refer to the above sections for a description of execution of these

instructions.

Appendix B/SW-7l-6
Page 1 of 3

APPENDIX B

ADDRESS TAGS

There are presently ten address tags defined. One tag,

structor, ·requires a level of indirection to obtain a description

ofa data element. When an operand is fetched from memory, the

address tag is appended to it. In effect, all operands in the ALU

are tagged. If the operand is not full word, a structor must also

be carried along.

B.l Floating Point

The data-element referenced is a fullword floating point

operand.

B.2 Boolean

The data-element referenced is a Boolean operand with the

value occupying the Boolean bit.

B.3 Pointer

The address field of the instruction is used as a decrement

from the pointer pushdown base. The effective address points to a

tagged operand in the parameter stack. This tagged operand can be

either a data-element or address. If an address, another level of

addressing is required.

B.4 Function

The instruction and parenthetical field is held in the

accumulator.·· The function whose address is in the address field of

the instruction is invoked.

B.5 Loop-Index

The referenced operand is a loop-index. Bits 21-31 are

treated as positive integer value. Bits 1-20 are ignored. A loop­

index cannot be a receptacle.

Appendix B/SW~71-6
Page 2 of 3

B.6 Typeless

The referenced operand is type1ess. This address tag is

used in whole table, table item, and table word manipulations.

B.7 Structor

The following are the structor formats defined for CMS-2

variables and fields. If a field is referenced, the address field

is interprel:.ed as the word position within an item. If an address

tag is structor, the type field of the structor must be examined

so as to ascertain the type of structor.

Hollerith·

1
STARTING CHAR- # OF CHARACTERS UNUSED ADDRESS ACTER POSITION

134 5 6 14 15 20 21 32

The # of characters, nine bits, was arbitrarily chosen.

Integer

2
I

SIGNED (UN- UNUSED # OF BITS STARTING BIT I ADDRESS SIGNED (S/U) ADDRESS
. f

134 4 5 10 11 15 16 20 21 32

Fixed Point

3 s/u IUNUSED # OF FRAC- # OF BITS STARTING BIT ADDRESS
J

TIONAL BITS ADDRESS

1 3 455 6 10 11 15 16 20 21 32

STATUS

4 UNUSED # OF BITS STARTING BIT ADDRESS ADDRESS

1 3 4 10],1 15 16 20 21 32

Appendix B/SW-71-6
page 3 of 3

Floating Point

5

1 3 4

Boolean

I 6 I UNUSED

1 3 4 15

B.8 Integer

UNUSED ADDRESS

20 21 32

STARTING BIT ADDRESS ADDRESS

16 20 21 . 32

The data-element referenced is a fu11word signed integer.

B.9 Whole Table-Table Structor

B.IO Item - Table Structor

These address tags reference a table structor. Each tag

interprets the table structor differently. See Section 3.2.2.9,

Table Addressing, for a description of the use of these tags.

WORDS/ITEM TABLE TYPE 2/3 DIMEN ITEM AREA UNUSED ADDRESS

1 12 13 14 15 16 17 20 21 32

TABLE STRUCTOR

