
P897

THE ALL APPLICATIONS
DIGITAL COMPUTER

Stanley M. Nissen & Steven J. Wallach
SYMPOSIUM ON HIGH LEVEL LANGUAGE

COMPUTER ARCHITECTURE
College Park, Maryland

NOV. 7 & 8,1973

THE ALL APPLICATIONS DIGITAL COMPUTER*

by

Stanley M. Nissen

and

Steven J. wallach

Raytheon Company
crosby Drive

Bedford, Mass. 01730

1.0 Introduction

This paper describes the AADC Data Process­
ing Element (DPE) developed and being built
by Raytheon for the Navy to be used for
multiplatform (air, land, seas, and under­
seas) applications in the 1978-1990 time
frame. It was the intent of the designers
of this computer to: achieve a Syntax­
oriented internal architecture (Ref. 1) so
that application programs written in a
higher level language (HLL) would run
efficiently, and to make use of a memory
heiracy system to minimize the number of
page faults generated by the virtual address­
ing mechanisms.

The HLL language used as a standard to
model the internal computational structures
was APL (Ref. 5). Studies (Ref. 2,3,4)
convinced the designers that the most
efficient machine code and most efficient
program execution is achieved by the most
compact representation of a problem in a
HLL. This led to the choice of APL. Thus,
the majority of APL operators are part of
the instruction set of the DPE and the
capability exists to directly execute oper­
ations on vectors and matrices without
resorting to compiler generated loops.

1.1 System Overview

The AADC is a modular computer system. As
the application warrants, system resources
(DPE's, Channels, Signal Processor's (SPE),
Random Access Main Memory (RAMM), etc.),
are attached to the main data buses to
achieve the desired configur~ion.

Figure 1 depicts a block diagram of a
configuration of the AADC system. Here,
the Data Processing Element normally executes
all programs. The RAMM contains storage
for variables and the BORAM (Block Oriented
Random Access Memory) contains storage for
procedure and constants. The typical
addressing structure results in variables

*This work was performed under contract
number N62269-72-C-0023 for the Naval
Air Development Center, warminster. Pa.

1 9

beinq accessed in RAMM. consequently, no
replacement of data pages in TM (Task
Memory) results. Procedure and constants
address BORAM. If the addressed RORAM
structure is resident in TM, the virtual
addressing logic supplies the base address
of the resident page and no BORAM request
is made. If the addressed BORAM structure
is not resident, a read page request to
BORAM is automatically generated. BORAM,
typically, has a 2 microsecond access time
and alSO nano-second/word transfer rate.
While waiting for the SORAM data, the
location of the page to be replaced is
derived by a micro-routine (see Section
5.0). partitioning the data and procedure
is this manner reduces the number of page
faults detected in the course of a program's
execution.

The DPE (Figure 2) is composed of two com­
puters, the PMU (program Management unit)
and AP (Arithmetic Processor). The PMU
is a highly specialized 16 bit minicomputer.
Its main functions are to fetch instructions,
perform effective address calculations,
support the virtual memory addressing
mechanisms in micro-code, and take control
of the PE when array operands are accessed.

The AP performs all full word arithmetic
operations in floating point. During non­
array operations the AP executes instructions
and operands from the APQ (the fetch and
execute portions of the PE are pipelined).
When array operators require arithmetic
processing the PMU takes control of the AP
and issues commands to the AP to execute
various control sequences (Section 4.0
discussed this process in more detail).

The remainder of t~is paper will discuss
the salient features of the DPE. The
features discussed are the:

• Data Insentive Arithmetic Structure

• Stac~ operated accumulator structure
to directly execute expressions in
infix notation (Parenthetical Control)

• Implementation of APL primitives

• Vi~tual Addressing Support

• Debugging & Performance Monitoring

• Pipeline Architecture

2.0 Data Insensitive Arithmetic Structure

A "Data Insensitive Arithmetic Structure"
is achieved by appending a data tag (3
binary bits) to every word in memory and
by providing a bit in every instruction
word which controls the precision of the
accumulator upon completion of an operation.
The initial description of this structure
discusses the use of the data tag.

Data Tag Description

Every word wi thin memory has the follo'",ing
format:

Parity

DATA

o 31 32 33 34 35

Memory Format

In the particular implementation, the 8
possible data tag meanings (2 3=8) are:

000 LOGICAL
001 DIMENSION WORD
010 INTEGER
011 LOGICAL
100 SINGLE PRECISION
101 DOUBLE PRECISION
110 COMPLEX (REAL & IMAGINARY)
111 SECOND WORD OF TWO

When a data word is fetched from memory,
the data part of the word (BITS 0 through
31)are inputted to a logic structure
referred to a!!l a "FANOUT BOX".

The FANOUT BOX is depicted as follows:

~::a o,er:::::u:
om ieroory

from ---:, BOX
memory

Output ready for Arithmetic
Processing

The FANOUT BOX converts memory formats into
one common internal format. This internal
format is "FLOATING POINT" (40 bits - 7 bit
exponent, 1 bit sign, 32 bit mantissa. In
the particular application the output of
the FANOUT BOX is stored in the APQ (Arith­
metic Processor Queue) along with aPPropriate
control information to tell the AP how to
manipulate the memory operand.

controlling Precision of Result

Another part of the data insensitive struc­
ture is the insensitivity to the precision
of the data (i.e. single precision or

4

double precision). When an entry is made
in the APQ, the data (as already described)
has a common format. When the AP 'arith­
metic processor) fetches the operand from
the APQ, the Data Tag is examined to ascer­
tain the precision of the operand. Thus
in the AP, all operands are the same type
(floating point) and all are tagged as to
their precision. completing the data
insensitive structure is the function of
handling conversion from single to double
and vice versa.

within each AADC instruction bit 8 (Figure
3), the precision bit, is used to determine
the precision of the result after the oper­
ation specified by the opcode is completed.
This feature eliminates explicit instructions
which would otherwise be needed. The con­
version process functions as follows.

The AP accumulator is depicted as follows:

~DOUB I
ACCUMULATOR
PRECISION

I AH (A HIGH) I
I-Double
O-Single

AL (A LOW)

When the accumulator is double precision
and the result is to be single precision,
the ADOUB flip flop is cleared to 0 and AL
is cleared to all O's. This results in the
accumulator assuminq the AP single precision
format.

When the accumulator is single precision
and the result is to become double precision,
the ADOUB flop is set to 1 and AL is left
unchanged. (Since the accumulator was
single precision before the operation AL
was all O's to begin with. O's in AL is
exactly the value AL should be when converting
single to double.) If a double precision
result in generated from two single precision
numbers, all precision can be preserved.

3.0 Parenthetical Control

Analysis of Naval programs indicated that
5~fo of the instructions executed were loads
and stores. This instruction mix resulted
from the storage and subsequent retrieval
of intermediate results that were generated
in the process of executing an arithmetic
expression. To decrease program execution
time and reduce memory requirements by
eliminating unnecessary loads and stores,
a multi-accumulator arithmetic structure
was postulated.

Typical multi-accumulator approaches employ
explicit addressing (e.g. IBM 360/370) or
the addressing of the top two levels of a
logically infinite stack (e.g. Burroughs
B-6700). It was decided that a stack
oriented accumulator approach was the most
desirable. This decision coupled with some
of the other architectural considerations
(memory size and width, pipelining techniques,

indexing requirements) led to the develop­
ment of a technique which executes expres­
sions in an infix notation.

This technique, parenthetical control (Ref. 6),
uses a 3 bit field (Bits 9-11, Fig.3)of every
arithmetic processor instruction to determine
the sequence of execution of the instruction
and consequently the c.ontrol of the stack.
The meanings of these three bits are as
follows:

1. If all bits are 0, no parenthetical
action takes place. This simply means
that the instruction operates as it
would in any conventional computer.

2. If all bits are 1, a begin parenthesis
is specified. Analysis shows that it
is never necessary to call for more
than one beginning parentheses. When
a begin appears, the present value of
the accumulator (that register which
holds a;r-ithmetic results' already com­
puted) is stored, with the operation
code of the present instruction and
certain control information. The
operand associated with the present
instruction becomes the new accumulator,
and is treated as such by subsequent
instructions.

3. If a number between 1 and 6 is specified,
that many parentheses are closed.
First·, the AI? performs the operation
specified by the instruction operation
code. However, the answer is now treated
as an operand for the most recently
deferred operation code and accumulator.
This process constitutes the closing
of one parentheses, and continues for
each close specified (up to six).

The operation of parenthetical control will
be illustrated via the following APL expres-'
sion.

A +- (B+C) . x D

The AADC code to execute this expression
is:

LOAD D

x

+
STORE

C DEFER THE MULTIPLY

B EXECUI'E THE ADD + POP

A STORE THE ANSWER

EXecution of the four instructions proceed
as follows: the LOAD D loads Ithe accumula­
tor into the hardware stack, with the
previous contents of the accumulator (D)
and replaces the accumulator with C, AP
control circuitry automatically detects a
begin parenthesis on instructions fetched
from the APQ. If the accumulator is double
precision (as indicated by a flip flop),
two pushes are necessary to store the
accumulator. The +(B instruction results
in two operations. First, the operand B
is added to the contents of the accumulator
(C), produc ing B+C, then one pop is executed.

6 9

The AP detects the presence of a pending
pop before fetching new instructions from
the APQ. Honoring the pending pop results
in the action of placing the accumulator
B+C in the M register and bringing the top
of the deferral stack into the accumulator
with the opcode register getting the deferred
opcode (x). Then the held opcode is executed
producing (B+C) x D. The next instruction
is now fe'tched from the AI?Q and the accumu­
lator stored in A. Note that honoring a
pending pop results in a register holding
the pop count being decremented by one. A
pop is pending if this register is not 0
or 7.

The above example illustrated the basic
characteristics of parenthetical control.
In this case all operators were arithmetic
the following illustrates the ability to
delay binding of operations to operands:

Z 4r- ((E=D)/lC>B) x A

The AADC code is

LOAD A

x B

> C

I, D

((E

STORE <z>

Assume all operands are integers. The >C
instruction produces a boolean value
(integer 0 or 1). The A) D will eventually
produce a boolean result. But, due to the
begin parenthesi.s 1, the operand D is loaded
into the accumulator with the deferred
opcode being~. The = instruction results
in a boolean result being produced for the
A instruction. The two pops result in the
execution of the tv instruction and the X
instruction.

Parenthetical control allows for direct
execution of statements without the necessity
to translation to Polish. In the AADC the
translator must eliminat~ redundant pushes,
insert a NOP instruction with closes if
more than 6 parenthesis'closes. are necessary,
and insert pushes where the HLL possesses
operators which exhibit operator precedence.

4.0 Array Handling Features

One of the major features of the AADC is its
array handling procedures, implemented
entirely in hardware (Ref. 7).

When an AADC arithmetic instruction
addresses an operand, it will encounter any
one of 8 different types of data. Six of
these describe the format 'of the data, which
could span two words. A seventh type, com­
plex data will be considered later. The
eighth type is a dimension word (Figure 4).
The dimension word acts as a descriptor for
the array which has been accessed. The

instruction, having accessed the dimension
word as an operand, will operate on the
whole array.

within the dimension word is a data type
describing the form of the array which must
be homogeneous with regard to number of
words per operand. Additionally, either
one or two dimensions can be specified,
with one dimension being a vector and two
a matrix. Each dimension can range up to
255, though the total physical space used
by the array must be 256 or less including
the dimension word.

In order to further support array operations,
a set of API, primitives is implemented.
These include inner product, outer product,
reduction, take, drop, compression, expansion,
lamination, decode, index generation (iota),
ravel, reshape, reverse, rotate, monadic
transpose, as well as non-APL operation,
outer product reduction which includes as
a subset membership and within limits
search (Ref. 9).

Actual operation of these instructions
occurs in a mode in which the arithmetic
processor dedicates itself to servicing
the array operands. The PMU also turns
itself over to the array controller. For
the duration of array operation, sequencing
is performed within a ROM, which controls
both PMU and AP operation. As main array
storage is in TM, this Controller causes
the PMU to provide the AP with appropriate
operands at the proper time, initiating
an arithmetic operation within the AP when
these operands have been placed into the AP
active registers.

Complex arithmetic is treated as a case
of array arithmetic with an additional
implied dimension of two. Thus, if two
complex scalars operate on each other,
array sequencing will be called upon.
Complex matrixes can be processed with this
arrangement.

Many operations involve rearrangement of
array elements. These are performed
exclusively within the PMU, though the AP
remains halted pending instructions from
the array controller or a return to normal
operating mode.

Array mode is entered upon encountering
either a dimensioned operand, a complex
operand (can be a complex scalar), or an
array operation code. At this time the array
microprogram is entered, beginning with
a fixed, uniform initialization sequence
in which a page of Task Memory is set aside
for the result of the operation with the
scalar accumulator. This answer area
becomes the accumulator of the end of the
operation. During array mode, an extension
to the index register scratch pad containing
16 registers is used to hold pointers to
the various elements involved as well as
dimensions of the accumulator and operand
arrays.

7 9

Once the scratchpad pointers have been
initialized, a particul~r sequence is
entered, according to the operation code,
in which length and domain checking is
performed as in APL.

Having verified the computer's ability to
operate on the accumulator with the operand,
the operation itself is performed. Upon
completion of the operation, a uniform
sequence is used to return the machine to
a common state in preparation for the next
instruction.

A final facet of array operation is packing
control. This function allows arrays to be
stored with a homogeneous packing factor as
either binary (32 I-bit numbers) Quaternary
(16-2 bit numbers) hexidecimal, byte (4

8 bit numbers), half-word or full word
(logical). These arrays are unpacked when
they are operated upon as full word operands
and optionally stored back as packed or
fullword.

It should be noted, that as a result of the
method used to bind operator to operand,
procedures can be written that are data
insensitive and structure insensitive.

5.0 Virtual AddreSSing Support

The AADC has provisions for a virtual
address ing mechanism. Res ides the "Norma 1"
amount of hardware support for virtual
addressing, 15 replacement algorithms are
directly supported by hardware in the PMU.

When a page fault occurs, a microprogram
sequence is entered. This sequence accesses
hardware which determines the page in Task
Memory to be replaced. upon determining
the replacement page, the kernel location
of the page to be overlayed is accessed and
the residency bit (bit 3, Figure 5) is
reset to indicate that the page is no longer
resident. The replacement algorithm chosen
is under programmer control and is established
by the STP (Set Task Parameters) instruction.

Prompting the inclusion of 15 replacement
algorithms under program control was the
desire to minimize the number of page
faults. While it is not the intent of this
paper to analyze the advantages of one
replacement algorithm versus another, it is
documented that no one algorithm can obtain
the operational efficiencies of the optimal
replacement algorithm, min, as postulated
by Belady (Ref. 8). Thus, the programmer.
knowing the sequence of execution of his
program, can take advantage of the various
benefioial characteristics of different
algorithms in different program flows.

6.0 Debugging & Performance Monitoring

The AADC hardware provides two facilities
which can be used for program debugging and
performance monitoring. These features
are referred to as the Instruction Trace
Mechanism and Kernel Trap Mechanism.

Bit 34 of every instruction word (Figure 3)
is referred to as the Trace Bit. When an
instruction is fetched, the Trace Bit is
examined. If the bit is 1, the instruction
just fetched is executed and a trap to the
Trace Bit Trap location is executed. The
contents of the location trapped to are
interpreted as an instruction, and sub­
sequently executed. Normally, the instruc­
tion executed invokes a subroutine which
can keep a running count on the number of
times a particular type of instruction is
dynamically being executed or output the
value of the accumulator. This last
feature directly parallels the Tracing
mechanism of APL.

Bit 1 of every Kernel location (Figure 5)
is the Kernel Trap bit. During the virtual
address translation process this bit is
examined. If it is 1, the instruction in
the process of being executed is allowed
to finish and then a trap to the Kernel
Trap location is execution. The instruction
of this location is then executed. This
Kernel Trap is enabled for both reads
and writes. This facility complements the
instruction trace mechanism, and would be
used to gather statistics and perform
traces on operand accesses.

7.0 Pipeline Architecture

The DPE in order to meet the operational
requirement of 2 MIPS (million instruction
per second, based on a mix of seven adds
to 3 multiply instructions), overlaps data
requests to RAMM with instruction fetch­
ing, and provides up to 16 levels of
instruction look ahead. The facilities
which provide these capabilities are the
APQ and the AADC channel.

The APQ is a FIFO stack which holds operands
and instructions awaiting execution by the
AP. The APQ is configured in a manner
that allows the queue to act as two inde­
pendent stacks, for the control part (bits
0-11 of an instruction), and the operand
addressed. The AP executes all instructions
from the APQ. The PMU loads the control
part of the APQ every 450 nanoseconds.

The AADC channel is the means by which
all internal inter resource communications
occurs. The channel utilizes a non­
dedicated time slotted bus. A distributed
equal priority bus controller is used. In
order to allow communications to operate
efficiently, resources are always available
to receive information. Queues in the
input and output parts of the channel
facilitate this "always available" attribute.

The pipeline functions as follows. The
PMU fetches an instruction, accesses the
kernel associated with the addressed page,
performs a security check, and then, loads
the control part of the APQ and issues a
read word request to RAMM. This sequence
is repeated every 450 nanoseconds. In
parallel to these actions, the channel is

8 9

transmi ttinq the read request to RAMM. Tlf-e,
RAMM reads the addressed word and transmits
the data back to the originating resource.
The data once it is available to be ~aced
into its proper space in the operand part
of the APQ, is stored simultaneous wi,th
the fetch of new instructions.

There are some other interesting facets of
this pipelined structure. All index registers
are located in the PMU. The PMU has its
own instruction set, including adds, subtracts,
logicals, multiply, divide, etc) that ma­
nipulate 16 bit operands. This physical
and computational distinction between index
registers and accumulators allows for pro­
grams to be written which run concurrently
in the PMU and AP, thereby achieving a
large degree of parallelism. Another
advantage achieved by this structure is the
elimination of the ambiguous condition of
the use of an index register before the
index register is loaded. In instruction
look ahead machines with accumulators that
function as index registers or where index
registers are located in the arithmetic
section of the processor, instructions which
use an index register must first determine
if any inst~tion queued and not executed
modifies t~'index register to be used (e.g.
the Reservation and Control Scoreboard
actions of the'CDC 6600). The AADC approach
eliminates'wflis control and results in a
greater degree of parallelism.

Acknowledgement

The authors wish to thank: Ronald Enter of
Navair, Carl Mattes of NADC, and Warren
Loper of NELC for their encouragement and
assistance in the design and development
phase of this project. Also, we wish to
thank Alan Deerfield of Raytheon who pro­
vided the authors with countless suggestions
for improvement during the course of the
project.

References

1. Chu, Y.," Introducing the High-Level­
Language Computer Architecture",
Technical Report TR-227, Computer Science
Center, University of Maryland,
February 1973.

2. wallach, S.,et aI, "Second Interim
Report - 2 MIPS Process ing Elements",
BR-6399, Raytheon Corporation, Bedford
Laboratories, April 20, 1971.

3. "Analysis of the CMS-2 Programming
Language", BR6704, Raytheon Corpora tion,
Bedford Laboratories, December 1, 1971.

4. "Proposal for Aerospace Higher Order
Language Study", BR-6296, Raytheon
Corporation, Bedford Laboratories,
February 26, 1971.

5. "APL/360 Primer", GH20-0689, IBM Corp.,
January 1970.

6. Deerfield, "., "Instruction Deferral
Sequencing Mechanism", Proceeding of
the Symposium on Programming and Machine
Organization, IEEE Computer Society,
Mid Eastern & New Jersey Coast Chapters,
April 27, 1971.

7. Nissen, S. M., and Wallach, S. J.,
"An APL Microprogramming Structure",
Sixth Workshop on Microprogramming,
College Park Maryland, September 1973.

8. Belady, L. A., "A Study of Replacement
"lgorithms for a Virtual-Storage
Computer," IBM Systems Journal, Vol. 5,
No.2, 19Q6.

9. Outer Product Reduction performs the
operation OP2/B O.OP1, A in one control
sequence where A is the accumulator
and B is the operand fetched from
memory. If OP2 is specified as V (or)
and OPl as = (equal), the membership
operat10n results. By specifying the
proper compare opcodes, a high low
search is performed.

9 9 Nissen & Wallach

AADC COMPUTER

OPE I RAMM I
1

AADC

~
DEVICE

CHANNEL

-M=
NTDS
DEVICE IBM 360/370 PERIPHER

SET (OR) NTDS 1M
AL

SERIAL DATA COMPUTER-TO-COMPUTER • • -• ~
INTERFACE LINK

RAMM RAMM RAMM -8-
PMU PMU PMU

CHANNEL CHANNEL I CHANNEL I CHANNEL CHANNEL I CHANNEL" I
1 1 1 1 1 - - - - - -

I I 1
OiANNEl CHANNEL CHANNEL CHANNEL

PMU ~TMI PMU rl TMI HTMJ BORAM PMU SPE
AP AP

DATA PROCESSING ELEMENTS 110 EXECUTIVE

TASK MEMORY (TM)

B
... PROGRAM MANAGEMENT

il.> UNIT (PMU)

~ ~
V

ARITHMETIC PROCESSOR
QUEUE (APQ)

I
< ~ V

ARITHMETIC PROCESSOR
~ DEFERRAL

CAP)

Figure 2 AADC Data Processing Element

3 9

PARENTHET ICAl
FIELD

OP CODE

o

.. SIGN lOW

j rlGN HIGH

UNUSED

012

7 8

DATA
TYPE

78

RESIDENT

TM PAGE

o I 234

5 9

ADDRESSABLE
liTERAL

AP/PMU----------

PAGE DISPLACEMENT

1112 1516 2324 3132333435

Figure 3 Instruction Format

RANK DIMENSION HIGH DIMENSION lOW

1112 1516 2324 31

Figure 4 Dimension Word Format

ADDRESS

1112

Figure 5 Kernel Word Format

PARITY

COMMAND PROTECT

WRITE PROTECT

READ PROTECT

REPRINTS AVAILABLE

S. HUMPHREY
RAYTHEON COMPANY
MISSI LE SYSTEMS DIVISION
Bedford, Massachusetts

