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1.0 Introduction 

This paper describes the AADC Data Process­
ing Element (DPE) developed and being built 
by Raytheon for the Navy to be used for 
multiplatform (air, land, seas, and under­
seas) applications in the 1978-1990 time 
frame. It was the intent of the designers 
of this computer to: achieve a Syntax­
oriented internal architecture (Ref. 1) so 
that application programs written in a 
higher level language (HLL) would run 
efficiently, and to make use of a memory 
heiracy system to minimize the number of 
page faults generated by the virtual address­
ing mechanisms. 

The HLL language used as a standard to 
model the internal computational structures 
was APL (Ref. 5). Studies (Ref. 2,3,4) 
convinced the designers that the most 
efficient machine code and most efficient 
program execution is achieved by the most 
compact representation of a problem in a 
HLL. This led to the choice of APL. Thus, 
the majority of APL operators are part of 
the instruction set of the DPE and the 
capability exists to directly execute oper­
ations on vectors and matrices without 
resorting to compiler generated loops. 

1.1 System Overview 

The AADC is a modular computer system. As 
the application warrants, system resources 
(DPE's, Channels, Signal Processor's (SPE), 
Random Access Main Memory (RAMM), etc.), 
are attached to the main data buses to 
achieve the desired configur~ion. 

Figure 1 depicts a block diagram of a 
configuration of the AADC system. Here, 
the Data Processing Element normally executes 
all programs. The RAMM contains storage 
for variables and the BORAM (Block Oriented 
Random Access Memory) contains storage for 
procedure and constants. The typical 
addressing structure results in variables 

*This work was performed under contract 
number N62269-72-C-0023 for the Naval 
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beinq accessed in RAMM. consequently, no 
replacement of data pages in TM (Task 
Memory) results. Procedure and constants 
address BORAM. If the addressed RORAM 
structure is resident in TM, the virtual 
addressing logic supplies the base address 
of the resident page and no BORAM request 
is made. If the addressed BORAM structure 
is not resident, a read page request to 
BORAM is automatically generated. BORAM, 
typically, has a 2 microsecond access time 
and alSO nano-second/word transfer rate. 
While waiting for the SORAM data, the 
location of the page to be replaced is 
derived by a micro-routine (see Section 
5.0). partitioning the data and procedure 
is this manner reduces the number of page 
faults detected in the course of a program's 
execution. 

The DPE (Figure 2) is composed of two com­
puters, the PMU (program Management unit) 
and AP (Arithmetic Processor). The PMU 
is a highly specialized 16 bit minicomputer. 
Its main functions are to fetch instructions, 
perform effective address calculations, 
support the virtual memory addressing 
mechanisms in micro-code, and take control 
of the PE when array operands are accessed. 

The AP performs all full word arithmetic 
operations in floating point. During non­
array operations the AP executes instructions 
and operands from the APQ (the fetch and 
execute portions of the PE are pipelined). 
When array operators require arithmetic 
processing the PMU takes control of the AP 
and issues commands to the AP to execute 
various control sequences (Section 4.0 
discussed this process in more detail). 

The remainder of t~is paper will discuss 
the salient features of the DPE. The 
features discussed are the: 

• Data Insentive Arithmetic Structure 

• Stac~ operated accumulator structure 
to directly execute expressions in 
infix notation (Parenthetical Control) 

• Implementation of APL primitives 



• Vi~tual Addressing Support 

• Debugging & Performance Monitoring 

• Pipeline Architecture 

2.0 Data Insensitive Arithmetic Structure 

A "Data Insensitive Arithmetic Structure" 
is achieved by appending a data tag (3 
binary bits) to every word in memory and 
by providing a bit in every instruction 
word which controls the precision of the 
accumulator upon completion of an operation. 
The initial description of this structure 
discusses the use of the data tag. 

Data Tag Description 

Every word wi thin memory has the follo'",ing 
format: 

Parity 

DATA 

o 31 32 33 34 35 

Memory Format 

In the particular implementation, the 8 
possible data tag meanings (2 3=8) are: 

000 LOGICAL 
001 DIMENSION WORD 
010 INTEGER 
011 LOGICAL 
100 SINGLE PRECISION 
101 DOUBLE PRECISION 
110 COMPLEX (REAL & IMAGINARY) 
111 SECOND WORD OF TWO 

When a data word is fetched from memory, 
the data part of the word (BITS 0 through 
31)are inputted to a logic structure 
referred to a!!l a "FANOUT BOX". 

The FANOUT BOX is depicted as follows: 

~::a o,er:::::u:
om ieroory 

from ---:, BOX 
memory 

Output ready for Arithmetic 
Processing 

The FANOUT BOX converts memory formats into 
one common internal format. This internal 
format is "FLOATING POINT" (40 bits - 7 bit 
exponent, 1 bit sign, 32 bit mantissa. In 
the particular application the output of 
the FANOUT BOX is stored in the APQ (Arith­
metic Processor Queue) along with aPPropriate 
control information to tell the AP how to 
manipulate the memory operand. 

controlling Precision of Result 

Another part of the data insensitive struc­
ture is the insensitivity to the precision 
of the data (i.e. single precision or 
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double precision). When an entry is made 
in the APQ, the data (as already described) 
has a common format. When the AP 'arith­
metic processor) fetches the operand from 
the APQ, the Data Tag is examined to ascer­
tain the precision of the operand. Thus 
in the AP, all operands are the same type 
(floating point) and all are tagged as to 
their precision. completing the data 
insensitive structure is the function of 
handling conversion from single to double 
and vice versa. 

within each AADC instruction bit 8 (Figure 
3), the precision bit, is used to determine 
the precision of the result after the oper­
ation specified by the opcode is completed. 
This feature eliminates explicit instructions 
which would otherwise be needed. The con­
version process functions as follows. 

The AP accumulator is depicted as follows: 

~DOUB I 
ACCUMULATOR 
PRECISION 

I AH (A HIGH) I 
I-Double 
O-Single 

AL (A LOW) 

When the accumulator is double precision 
and the result is to be single precision, 
the ADOUB flip flop is cleared to 0 and AL 
is cleared to all O's. This results in the 
accumulator assuminq the AP single precision 
format. 

When the accumulator is single precision 
and the result is to become double precision, 
the ADOUB flop is set to 1 and AL is left 
unchanged. (Since the accumulator was 
single precision before the operation AL 
was all O's to begin with. O's in AL is 
exactly the value AL should be when converting 
single to double.) If a double precision 
result in generated from two single precision 
numbers, all precision can be preserved. 

3.0 Parenthetical Control 

Analysis of Naval programs indicated that 
5~fo of the instructions executed were loads 
and stores. This instruction mix resulted 
from the storage and subsequent retrieval 
of intermediate results that were generated 
in the process of executing an arithmetic 
expression. To decrease program execution 
time and reduce memory requirements by 
eliminating unnecessary loads and stores, 
a multi-accumulator arithmetic structure 
was postulated. 

Typical multi-accumulator approaches employ 
explicit addressing (e.g. IBM 360/370) or 
the addressing of the top two levels of a 
logically infinite stack (e.g. Burroughs 
B-6700). It was decided that a stack 
oriented accumulator approach was the most 
desirable. This decision coupled with some 
of the other architectural considerations 
(memory size and width, pipelining techniques, 



indexing requirements) led to the develop­
ment of a technique which executes expres­
sions in an infix notation. 

This technique, parenthetical control (Ref. 6), 
uses a 3 bit field (Bits 9-11, Fig.3)of every 
arithmetic processor instruction to determine 
the sequence of execution of the instruction 
and consequently the c.ontrol of the stack. 
The meanings of these three bits are as 
follows: 

1. If all bits are 0, no parenthetical 
action takes place. This simply means 
that the instruction operates as it 
would in any conventional computer. 

2. If all bits are 1, a begin parenthesis 
is specified. Analysis shows that it 
is never necessary to call for more 
than one beginning parentheses. When 
a begin appears, the present value of 
the accumulator (that register which 
holds a;r-ithmetic results' already com­
puted) is stored, with the operation 
code of the present instruction and 
certain control information. The 
operand associated with the present 
instruction becomes the new accumulator, 
and is treated as such by subsequent 
instructions. 

3. If a number between 1 and 6 is specified, 
that many parentheses are closed. 
First·, the AI? performs the operation 
specified by the instruction operation 
code. However, the answer is now treated 
as an operand for the most recently 
deferred operation code and accumulator. 
This process constitutes the closing 
of one parentheses, and continues for 
each close specified (up to six). 

The operation of parenthetical control will 
be illustrated via the following APL expres-' 
sion. 

A +- (B+C) . x D 

The AADC code to execute this expression 
is: 

LOAD D 

x 

+ 
STORE 

C DEFER THE MULTIPLY 

B EXECUI'E THE ADD + POP 

A STORE THE ANSWER 

EXecution of the four instructions proceed 
as follows: the LOAD D loads Ithe accumula­
tor into the hardware stack, with the 
previous contents of the accumulator (D) 
and replaces the accumulator with C, AP 
control circuitry automatically detects a 
begin parenthesis on instructions fetched 
from the APQ. If the accumulator is double 
precision (as indicated by a flip flop), 
two pushes are necessary to store the 
accumulator. The +(B instruction results 
in two operations. First, the operand B 
is added to the contents of the accumulator 
(C), produc ing B+C, then one pop is executed. 
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The AP detects the presence of a pending 
pop before fetching new instructions from 
the APQ. Honoring the pending pop results 
in the action of placing the accumulator 
B+C in the M register and bringing the top 
of the deferral stack into the accumulator 
with the opcode register getting the deferred 
opcode (x). Then the held opcode is executed 
producing (B+C) x D. The next instruction 
is now fe'tched from the AI?Q and the accumu­
lator stored in A. Note that honoring a 
pending pop results in a register holding 
the pop count being decremented by one. A 
pop is pending if this register is not 0 
or 7. 

The above example illustrated the basic 
characteristics of parenthetical control. 
In this case all operators were arithmetic 
the following illustrates the ability to 
delay binding of operations to operands: 

Z 4r- ((E=D)/lC>B) x A 

The AADC code is 

LOAD A 

x B 

> C 

I, D 

(( E 

STORE <z> 

Assume all operands are integers. The >C 
instruction produces a boolean value 
(integer 0 or 1). The A) D will eventually 
produce a boolean result. But, due to the 
begin parenthesi.s 1, the operand D is loaded 
into the accumulator with the deferred 
opcode being~. The = instruction results 
in a boolean result being produced for the 
A instruction. The two pops result in the 
execution of the tv instruction and the X 
instruction. 

Parenthetical control allows for direct 
execution of statements without the necessity 
to translation to Polish. In the AADC the 
translator must eliminat~ redundant pushes, 
insert a NOP instruction with closes if 
more than 6 parenthesis'closes. are necessary, 
and insert pushes where the HLL possesses 
operators which exhibit operator precedence. 

4.0 Array Handling Features 

One of the major features of the AADC is its 
array handling procedures, implemented 
entirely in hardware (Ref. 7). 

When an AADC arithmetic instruction 
addresses an operand, it will encounter any 
one of 8 different types of data. Six of 
these describe the format 'of the data, which 
could span two words. A seventh type, com­
plex data will be considered later. The 
eighth type is a dimension word (Figure 4). 
The dimension word acts as a descriptor for 
the array which has been accessed. The 



instruction, having accessed the dimension 
word as an operand, will operate on the 
whole array. 

within the dimension word is a data type 
describing the form of the array which must 
be homogeneous with regard to number of 
words per operand. Additionally, either 
one or two dimensions can be specified, 
with one dimension being a vector and two 
a matrix. Each dimension can range up to 
255, though the total physical space used 
by the array must be 256 or less including 
the dimension word. 

In order to further support array operations, 
a set of API, primitives is implemented. 
These include inner product, outer product, 
reduction, take, drop, compression, expansion, 
lamination, decode, index generation (iota), 
ravel, reshape, reverse, rotate, monadic 
transpose, as well as non-APL operation, 
outer product reduction which includes as 
a subset membership and within limits 
search (Ref. 9). 

Actual operation of these instructions 
occurs in a mode in which the arithmetic 
processor dedicates itself to servicing 
the array operands. The PMU also turns 
itself over to the array controller. For 
the duration of array operation, sequencing 
is performed within a ROM, which controls 
both PMU and AP operation. As main array 
storage is in TM, this Controller causes 
the PMU to provide the AP with appropriate 
operands at the proper time, initiating 
an arithmetic operation within the AP when 
these operands have been placed into the AP 
active registers. 

Complex arithmetic is treated as a case 
of array arithmetic with an additional 
implied dimension of two. Thus, if two 
complex scalars operate on each other, 
array sequencing will be called upon. 
Complex matrixes can be processed with this 
arrangement. 

Many operations involve rearrangement of 
array elements. These are performed 
exclusively within the PMU, though the AP 
remains halted pending instructions from 
the array controller or a return to normal 
operating mode. 

Array mode is entered upon encountering 
either a dimensioned operand, a complex 
operand (can be a complex scalar), or an 
array operation code. At this time the array 
microprogram is entered, beginning with 
a fixed, uniform initialization sequence 
in which a page of Task Memory is set aside 
for the result of the operation with the 
scalar accumulator. This answer area 
becomes the accumulator of the end of the 
operation. During array mode, an extension 
to the index register scratch pad containing 
16 registers is used to hold pointers to 
the various elements involved as well as 
dimensions of the accumulator and operand 
arrays. 
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Once the scratchpad pointers have been 
initialized, a particul~r sequence is 
entered, according to the operation code, 
in which length and domain checking is 
performed as in APL. 

Having verified the computer's ability to 
operate on the accumulator with the operand, 
the operation itself is performed. Upon 
completion of the operation, a uniform 
sequence is used to return the machine to 
a common state in preparation for the next 
instruction. 

A final facet of array operation is packing 
control. This function allows arrays to be 
stored with a homogeneous packing factor as 
either binary (32 I-bit numbers) Quaternary 
(16-2 bit numbers) hexidecimal, byte (4 

8 bit numbers), half-word or full word 
(logical). These arrays are unpacked when 
they are operated upon as full word operands 
and optionally stored back as packed or 
fullword. 

It should be noted, that as a result of the 
method used to bind operator to operand, 
procedures can be written that are data 
insensitive and structure insensitive. 

5.0 Virtual AddreSSing Support 

The AADC has provisions for a virtual 
address ing mechanism. Res ides the "Norma 1" 
amount of hardware support for virtual 
addressing, 15 replacement algorithms are 
directly supported by hardware in the PMU. 

When a page fault occurs, a microprogram 
sequence is entered. This sequence accesses 
hardware which determines the page in Task 
Memory to be replaced. upon determining 
the replacement page, the kernel location 
of the page to be overlayed is accessed and 
the residency bit (bit 3, Figure 5) is 
reset to indicate that the page is no longer 
resident. The replacement algorithm chosen 
is under programmer control and is established 
by the STP (Set Task Parameters) instruction. 

Prompting the inclusion of 15 replacement 
algorithms under program control was the 
desire to minimize the number of page 
faults. While it is not the intent of this 
paper to analyze the advantages of one 
replacement algorithm versus another, it is 
documented that no one algorithm can obtain 
the operational efficiencies of the optimal 
replacement algorithm, min, as postulated 
by Belady (Ref. 8). Thus, the programmer. 
knowing the sequence of execution of his 
program, can take advantage of the various 
benefioial characteristics of different 
algorithms in different program flows. 

6.0 Debugging & Performance Monitoring 

The AADC hardware provides two facilities 
which can be used for program debugging and 
performance monitoring. These features 
are referred to as the Instruction Trace 
Mechanism and Kernel Trap Mechanism. 



Bit 34 of every instruction word (Figure 3) 
is referred to as the Trace Bit. When an 
instruction is fetched, the Trace Bit is 
examined. If the bit is 1, the instruction 
just fetched is executed and a trap to the 
Trace Bit Trap location is executed. The 
contents of the location trapped to are 
interpreted as an instruction, and sub­
sequently executed. Normally, the instruc­
tion executed invokes a subroutine which 
can keep a running count on the number of 
times a particular type of instruction is 
dynamically being executed or output the 
value of the accumulator. This last 
feature directly parallels the Tracing 
mechanism of APL. 

Bit 1 of every Kernel location (Figure 5) 
is the Kernel Trap bit. During the virtual 
address translation process this bit is 
examined. If it is 1, the instruction in 
the process of being executed is allowed 
to finish and then a trap to the Kernel 
Trap location is execution. The instruction 
of this location is then executed. This 
Kernel Trap is enabled for both reads 
and writes. This facility complements the 
instruction trace mechanism, and would be 
used to gather statistics and perform 
traces on operand accesses. 

7.0 Pipeline Architecture 

The DPE in order to meet the operational 
requirement of 2 MIPS (million instruction 
per second, based on a mix of seven adds 
to 3 multiply instructions), overlaps data 
requests to RAMM with instruction fetch­
ing, and provides up to 16 levels of 
instruction look ahead. The facilities 
which provide these capabilities are the 
APQ and the AADC channel. 

The APQ is a FIFO stack which holds operands 
and instructions awaiting execution by the 
AP. The APQ is configured in a manner 
that allows the queue to act as two inde­
pendent stacks, for the control part (bits 
0-11 of an instruction), and the operand 
addressed. The AP executes all instructions 
from the APQ. The PMU loads the control 
part of the APQ every 450 nanoseconds. 

The AADC channel is the means by which 
all internal inter resource communications 
occurs. The channel utilizes a non­
dedicated time slotted bus. A distributed 
equal priority bus controller is used. In 
order to allow communications to operate 
efficiently, resources are always available 
to receive information. Queues in the 
input and output parts of the channel 
facilitate this "always available" attribute. 

The pipeline functions as follows. The 
PMU fetches an instruction, accesses the 
kernel associated with the addressed page, 
performs a security check, and then, loads 
the control part of the APQ and issues a 
read word request to RAMM. This sequence 
is repeated every 450 nanoseconds. In 
parallel to these actions, the channel is 
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transmi ttinq the read request to RAMM. Tlf-e, 
RAMM reads the addressed word and transmits 
the data back to the originating resource. 
The data once it is available to be ~aced 
into its proper space in the operand part 
of the APQ, is stored simultaneous wi,th 
the fetch of new instructions. 

There are some other interesting facets of 
this pipelined structure. All index registers 
are located in the PMU. The PMU has its 
own instruction set, including adds, subtracts, 
logicals, multiply, divide, etc) that ma­
nipulate 16 bit operands. This physical 
and computational distinction between index 
registers and accumulators allows for pro­
grams to be written which run concurrently 
in the PMU and AP, thereby achieving a 
large degree of parallelism. Another 
advantage achieved by this structure is the 
elimination of the ambiguous condition of 
the use of an index register before the 
index register is loaded. In instruction 
look ahead machines with accumulators that 
function as index registers or where index 
registers are located in the arithmetic 
section of the processor, instructions which 
use an index register must first determine 
if any inst~tion queued and not executed 
modifies t~'index register to be used (e.g. 
the Reservation and Control Scoreboard 
actions of the'CDC 6600). The AADC approach 
eliminates'wflis control and results in a 
greater degree of parallelism. 
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